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Abstract  

Diagnosis and clinical management of Rheumatoid Arthritis (RA) have improved significantly over 

the last three decades however, not all patients respond successfully to treatment and currently a 

cure for RA remains elusive. Chronic inflammation is a key feature of RA and if left untreated or 

improperly managed, can lead to irreversible joint damage. Understanding the immune 

dysregulation which occurs in RA is central to improving existing approaches for managing RA. 

Extensive research directed towards immunophenotyping and functional analysis of immune cell 

subsets in RA have contributed to our current understanding of RA but the impact of these findings 

have been restricted by existing technology. In this study, deep immunophenotyping was performed 

using mass cytometry which is a novel multiparameter, high-dimensional single cell technology, to 

comprehensively interrogate immune cell subsets present in peripheral blood and synovial fluid 

from patients with RA using a 37 protein marker panel.  

This study set out to investigate two main aims, the first of which was to evaluate whether mass 

cytometry was a suitable technology that could be adopted for large patient cohort 

immunophenotyping studies which prior to the commencement of this study, had not been 

reported. Significant effort was invested for protocol validation and optimisation and in addition, 

with support from UCB Pharma, an automated bioinformatics pipeline was developed to analyse the 

data without the limitations of traditional gating approaches. The second aim was to assess whether 

mass cytometry could detect immune cell populations which associated with disease stage or 

immune signatures which are specific to the local joint microenvironment in RA.  

10 palladium isotope tagged barcoded batches were prepared and an internal batch control was 

included to compare consistency of staining. Data pre-processing steps were applied to obtain a 

single cell population and discovery hypothesis driven analysis was performed through R Studio 

using a published pipeline called Diffcyt which assessed immune cell populations across different 

conditions and between samples.  

Diffcyt analysis revealed that decreased percentage changes in innate cell populations are evident 

early on in RA compared to healthy donors. Differential expression analysis revealed that both 

innate and T cell subsets in RA peripheral blood have an activated phenotype characterised by CD27, 

CD38, CD28 and HLA-DR suggesting the beginning of a hyper chronic inflammatory environment.  

In addition, analysis of immune cell populations in synovial fluid further corroborated reports of 

pathologically expanded memory CD4 T cell populations present in RA synovial fluid compared to 

peripheral blood. Furthermore, a specific CD8 NK cell immunophenotype was detected in RA 

synovial fluid suggesting a potential role in crosstalk between innate and adaptive immunity.  

This research has demonstrated that mass cytometry can be used to comprehensively interrogate 

the immune landscape in large patient cohorts and using the methodology described here, 

successfully identifies cell populations that support findings previously reported by other 

researchers giving confidence in the data obtained by mass cytometry. It is hoped that the 

methodology for analysing high-dimensional cytometry data will provide a template for future 

analysis of either this dataset or new datasets and that the cell populations identified here will 

inform further investigation in RA.  
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Chapter 1 Introduction 

1.1 Rheumatoid Arthritis 

Rheumatoid Arthritis (RA) is a chronic, debilitating inflammatory disease which primarily targets the 
small joints in the hands and feet and has a preponderance towards females at a ratio of 3:1 1. The 
age of onset for RA is usually between the 40-60 years, however, this does not preclude earlier or 
later onset outside of this range 1.  

The presence of autoantibodies provides the single most compelling evidence that RA is an 
autoimmune disease with two classes of autoantibodies identified in individuals with RA; 
Rheumatoid Factors (RF) and anti-citrullinated peptide autoantibodies (ACPAs) which target the Fc 
(fragment crystallizable region) portion of IgG (immunoglobulin G) antibodies 1.  

In 1940, Waaler was the first to report the occurrence of RF in RA serum 2. Waaler obtained serum 
from patients with RA, and observed that RA serum inhibited haemolysis of sheep red cells and 
caused the cells to agglutinate 2. The activating component in the serum was later identified as RF 
which targets the Fc portion of immunoglobulins 2. Further work subsequently showed that RF are 
produced by B cells and form immune complexes typically IgM and IgA isotypes, that bind Fc 
fragments of IgG. RF are present in 60-80% of patients with RA, however, RF has been identified in 
other diseases including systemic lupus erythematosus (SLE) and mixed connective tissue disease in 
addition to chronic infection and old age, suggesting that RF are not specific to RA 3. Furthermore, RF 
is present in healthy individuals, and a titre of ≥50 Units/mL is considered specific to RA 3.  

Although high RF titres are associated with a poor prognosis in RA, their lack of specificity has left 
researchers in RA looking for other autoantibodies that may be implicated in RA pathology 4. ACPAs 
are present in 70-90% of patients and have a 90-95% specificity to RA 5. ACPAs occur by amino acids 
undergoing the post translational modification process of citrullination 6. An arginine residue is 
replaced by citrulline which is catalysed by the peptidylarginine deiminase (PADI) enzymes 6. To 
date, certain citrullinated proteins have been identified as autoantigens that can form ACPAs 
including structural proteins such as type I and II collagen, fibrin and fibrinogen 6.  

Autoantibodies are important in their diagnostic and prognostic value and are central to the 
classification criteria for identifying RA in patients 7. ACPA specificities and titres in longitudinal 
analysis of patients have been detected up to 10 years before symptoms of RA begin to appear and 
have shown a significant increase in titre 6 months before the onset of RA suggesting that the 
pathogenesis directly affects titre levels 8. Patients who have high titres of autoantibodies have 
poorer prognostic outcomes in particular structural damage and joint erosions 9. However, serology 
can change during the course of disease for some patients suggesting that serology alone cannot be 
relied upon to predict the course of RA progression 10,11.     

Furthermore, the focus of RA research has returned to the synovium (also known as synovial tissue), 
the primary site of joint pathology in RA. The synovium is a soft tissue lining which covers the spaces 
across the diarthrodial joints, tendon sheaths and bursae 12. The synovium consists of two layers: the 
upper layer known as the intimal lining and the lower layer known as the subintimal lining. In health, 
the synovium is a largely acellular structure with a 1-2 cell layer thick intimal lining consisting of two 
cell subtypes: macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) 12. In addition, a 
small volume of synovial fluid is present to lubricate the joint. In RA, the synovial lining becomes 
inflamed and an infiltration of immune cells can be detected. Recent work has focused on how the 
synovium is implicated in RA revealing distinct immune signatures that suggest different pathotypes 
exist in RA 13,14.  
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The aim of this chapter is to provide an overview of RA in terms of epidemiology, diagnosis, 
treatment and understanding the conceptual frameworks that surround the onset of RA and the 
‘stages’ within RA progression. Lastly, the recent advancements in single cell technologies, 
particularly in cytometry, have provided a renewed opportunity to interrogate multi-parameter 
protein expression on immune cell populations. The final section of this chapter will focus on mass 
cytometry and its applications for immunophenotyping in RA. 

1.2 Epidemiology 

Most of the epidemiological studies in RA have been conducted in Europe and North America with 
prevalence estimated to be between 0.5%-1% in Caucasian individuals 15. Whilst it is thought that 
this percentage remains consistent across the population worldwide, it should be applied to other 
populations with a degree of caution 16. In certain populations, the prevalence of RA is much higher 
such as in the Pima Indians (5.3%) and Chippewa Indians (6.8%) and the incidence rate is lower in 
China and Japan (0.2%-0.3% respectively) suggesting genetics play a role in the prevalence of RA. 
Interestingly, some studies have reported that the incidence rate in United States has declined 
which can be attributed to improved treatment 16,17.  

1.3 Clinical manifestation and diagnosis of RA 

To date, there is no accurate and consistent diagnostic test or biomarker which can be used to 
diagnose RA. Instead classification criteria are used by rheumatologists which include clinical 
manifestations and serology assays (ACPA and/or RF positive) that inform diagnosis. Erythrocyte 
sedimentation rate (ESR) and C reactive protein (CRP) are calculated as markers of general 
inflammation. RA is regarded as a heterogeneous disease and patients differ in terms of duration of 
disease, joints affected, treatment response and prognostic outcomes. Therefore, the classification 
criteria is to be used in conjunction with the clinician’s expertise. Two classification criteria are 
currently used to guide the diagnosis of RA; the 1987 American College of Rheumatologists (ACR) 
and the 2010 European League Against Rheumatism (EULAR) which are outlined in Table 1-1 7,18. RA 
is currently characterised by soft synovial tissue swelling known as clinical synovitis accompanied by 
morning stiffness which lasts longer than 15 minutes 18. Joints are usually affected in a symmetrical 
manner, but it is also possible to observe inflammation in an asymmetrical pattern. Although RA is a 
heterogeneous disease, there are distinct features that are specific to RA. This includes the joints 
that are involved which are the metacarpophalangeal and proximal interphalangeal joints but not 
the distal interphalangeal joints which is commonly associated with osteoarthritis 18. Moreover, RA is 
a disease that can be distinguished from other arthritic pathologies due to the irreversible damage 
caused to the bone and the loss of function as a result 18. 

Table 1-1|Comparison of the 1987 ACR and 2010 EULAR criteria for diagnosing RA 7,18.  
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Whilst the synovial joint is the primary site of pathology, RA is regarded as a systemic disease with 
cardiovascular disease being the most cited cause of death in patients 19. Understanding which 
patients are susceptible to developing cardiovascular disease or whether cardiovascular disease 
precedes onset of RA is not fully understood although current research suggests that genetic and 
serological factors play a role 20. Additional comorbidities associated with RA include type II diabetes 
mellitus, obesity and respiratory disease 21. Many studies have used the collagen induced arthritis 
(CIA) mouse model to understand RA but it is often argued that this model is not fully representative 
of RA due to mice not developing systemic complications as identified in patients with RA 22.  

Mental health particularly depression and fatigue has been reported by patients through health 
assessment questionnaires 23. The cause of fatigue and depression can largely be attributed to the 
chronic pain that is associated with RA 23. Furthermore, for some patients the loss of independence 
or work due to joint damage or associated comorbidities can affect mental well-being 23.  

The classification criteria are important for guiding the clinician when diagnosing RA. However, 
research and knowledge about RA have increased significantly since the ACR 1987 and EULAR 2010 
guidelines were compiled 7. The classification criteria is driven by seropositive serology although a 
proportion of patients are seronegative which is currently not included in the classification criteria 
24. It has been observed that seronegative patients fare less well in their prognosis compared to 
seropositive patients 24. The classification criteria to some extent is tentative in order to prevent a 
misdiagnosis, given the treatment for RA aims to suppress immunological pathways. As more 
research emerges, it is likely that the classification criteria will be updated in order to improve 
disease management and thus patient quality of life.  

1.4 Risk factors contribute to the development of RA 



21 

 

1.4.1 Genetic predisposition to RA 

It is not fully understood what causes RA although many risk factors have been identified over the 

years that have been shown to increase susceptibility of developing RA. However, evidence shows 

that RA has a significant genetic component which is estimated to be 60% inheritable25. Human 

Leukocyte Antigen – DR isotype (HLADR ) is the most strongly associated gene with predisposition to 

RA first observed by Stastny in 1976 26. HLADR is a polymorphic gene; the third hypervariable region 

DRB1 is known to be important for T cell antigen recognition and the alleles HLA-DRB*01 and HLA-

DRB*04 are strongly associated with the risk of developing RA 27. The shared epitope (SE) hypothesis 

refers to five amino acids that form a functional unit in the DRB1 region. However, this hypothesis 

has evolved since to suggest that whilst the three amino acids at positions 72-74, RAA (arginine, 

alanine, alanine) remain fixed, the amino acids at positions 70 and 71 can vary thus modulating the 

risk of developing RA depending on the sequence 27,28. DR4 is however polymorphic in the general 

population, and present in other autoimmune diseases; it is therefore clear that these 

polymorphisms alone are not enough to break peripheral tolerance and initiate the development of 

RA. 

In addition to the HLA-DR gene, genome wide association studies (GWAS) with fine mapping have 

identified more than a 100 loci as having an association with RA, although a much weaker 

correlation in comparison to HLA-DR 29. Peptidyl arginine deiminase 4 (PADI4) is a member of the 

family of enzymes that catalyse the post-translational modification reaction of arginine to citrulline 

which results in ACPAs. In a Japanese cohort, single nucleotide polymorphisms formed a haplotype 

and further functional studies determined that this haplotype affected stability of the mRNA causing 

increased production of citrullinated peptides 29. However, in 2004 Barton et al. reported that PADI4 

could not be identified in the United Kingdom using a Caucasian cohort however, in 2005, 

researchers in Japan reconfirmed the presence of PADI4 in a different Japanese cohort suggesting 

that it is at least associated in Japanese RA patients 30,31. PTPN22, which encodes a hematopoietic-

specific tyrosine phosphatase, is a risk allele present in approximately 17% of Caucasian individuals 

in the general population rising to 28% in Caucasian RA patients 32. It was originally identified in type 

I diabetes 33 but has since been associated with juvenile idiopathic arthritis, psoriatic arthritis, 

psoriasis and multiple sclerosis thus implicating it as a strong candidate for autoimmune disease 

association 34. The genes PRL and NFIA associate with seronegative RA and the genes AFF3, CD28 

and TNFAIP3 are attributed to seropositive RA suggesting genes can drive differences in serology 
35,36.  

1.4.2 Epigenetics  

Genetic cues alone cannot explain the aetiology of RA and environmental triggers are thought to 

combine with a genetic predisposition and lead to the onset of RA. Epigenetics is the process by 

which heritable phenotypic changes can occur without affecting the DNA sequence. There are many 

types of epigenetic mechanisms, DNA methylation being the most common, typically observed using 

RA peripheral blood comparing to healthy or disease controls. Numerous cell types are known to 

have aberrant methylation patterns including B cells, T cells and monocytes. Various genes have 

been identified as either hypermethylated such as CTLA-4 or hypomethylated such as FoxP3 in T 

regulatory cells from RA patients 37,38.  

microRNAs (miRNAs) have been identified to influence gene regulation by either repressing 

translation or degrading mRNA. miRNA-146a and miRNA-155 are the best characterised in terms of 
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RA with elevated levels of both having been observed in peripheral blood and synovial tissue 39,40. It 

remains unclear whether aberrant miRNA expression is a result of RA or whether dysregulation leads 

to the onset of RA pathogenesis, however, this along with epigenetic modulation could be harnessed 

as both a biomarker and a therapeutic intervention.  

1.4.3 Smoking  

Susceptibility to RA cannot be entirely explained by genetic factors and it is thought that 40% of risk 

factors can be attributed to environmental influence of which smoking is one of the leading causes. 

Individuals who have a long history of smoking 20 pack cigarettes a day are at a greater risk of 

developing RA compared to those who do not smoke 41. Duration, in terms of number of years an 

individual had smoked had a higher association with risk of RA than number of cigarettes smoked 42. 

In addition, individuals who smoke are shown to have a 20-fold increase in the shared epitope and 

are typically RF positive compared to non-smokers. Moreover, smoking is thought to increase the 

risk of ACPAs in these patients who have the shared epitope 43. Smoking is thought to be associated 

with poor increases pulmonary infections and disrupt the microbiota composition.  

Smoking has long been associated with early mortality in the general population and smoking is 

associated with a poorer prognostic outcome in RA. Patients who cease smoking show remarkable 

improvement in their lipid profile and cardiovascular health and lower disease activity 44.  

Intriguingly it has been observed that the non-tobacco component of cigarettes has been associated 

with the risk of RA and not the tobacco component suggesting that other particulates within 

cigarettes are responsible. Interestingly, studies have looked at particulate exposure in work-related 

environments with findings from a study in Sweden showed that men who had been exposed to 

silica were at a twofold increased risk of developing RA compared to men who had not been 

exposed 45. Furthermore, a threefold increased risk to RA was observed in men whose occupation 

involved stone crushing or rock drilling 45. However, smoking could not be discounted as a 

confounding factor in this study as some of the individuals were current smokers or had smoked in 

the past.  In a separate study conducted in Malaysia, a gene-environment interaction between HLA-

DRB1 SE and textile dust exposure increased risk of RA in ACPA-positive and ACPA-negative women 

who had never smoked 46. The authors of this study go on to speculate that textile dust could have a 

general immune activating role compared to both silica and smoking due to presence in ACPA 

negative patients as well 46.  

It has been noted that data regarding the role of smoking in RA can be conflicted suggesting that 

whilst smoking is thought to be implicated in RA, it cannot be concluded that smoking is solely 

responsible for increasing the risk of RA 47. Further work elucidating the mechanistic process 

between particulate exposure and the increased risk of RA would be essential to confirm clinical 

observations. For now, it is clear however, that smoking combined with genetic and other 

environmental factors can enhance the risk of RA.  

1.4.4 Gender  

Females are at a threefold increased risk of developing RA. This in part is driven by hormones, in 

particular oestrogen which is thought to have the ability to immunomodulate the immune system 

although this has been disputed by other researchers within the field 48. Women who have not given 

birth are at a greater risk of developing RA compared to women who have given birth although this 

is not definitely proven 49.  
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1.4.5 The microbiome 

The gut and oral microbiome have been implicated in RA pathogenesis and appear different when 

compared to non-RA individuals 50. It is thought that the beginning stages of RA are proinflammatory 

and that microbiota may influence this environment by interacting with immune cells and further 

promoting immune dysregulation 51. Evidence identifying IgA immune complexes in the circulation 

and synovial fluid of patients promote the hypothesis that RA may be of mucosal origin or at the 

very least mucosal sites contribute to RA pathology 52. To date, two main species of bacteria have 

been associated with microbiota dysbiosis in patients with RA. The first of these is Prevotella copri 

which is increased in new onset RA patients compared to patients with established RA 53. In addition, 

the oral microbiome has been associated with RA pathogenesis. Patients with RA who had 

periodontal disease revealed oral microbiome dysbiosis which when treated alleviated RA symptoms 
53. Porphyromonas gingivalis has provided a mechanistic link between the oral microbiome and 

citrullination of peptides ultimately leading to autoantibody production and synovial inflammation. 

Further evidence suggests that Porphyromonas gingivalis can also manipulate the TLR2 pathway 

compromising its ability to clear bacteria.  

1.4.6 Lifestyle 

Some lifestyle factors have shown to increase the risk of developing RA. Obesity has shown a modest 

association with predisposition to RA with an odds ratio of 1.45 in individuals with a body mass index 

over 30kg/m2 54. Lower socioeconomic status and manual labour jobs increase an individual’s 

predisposition to RA. Conversely, moderate consumption of alcohol has been associated with 

lowering the risk of developing RA 55. Furthermore, moderate consumption of alcohol is associated 

with lowering disease severity in RA 55.  

As can be observed, there are many risk factors that have been associated with increasing 

susceptibility to RA reflecting the heterogeneity of the disease. It is unlikely that an individual with 

RA would be predisposed to all the risk factors neither is it likely that one risk factor is solely 

responsible for RA. The lack of mechanistic studies showing how these factors cause disease make it 

difficult to prevent RA. However, understanding the aetiopathogenesis of RA and the associated risk 

factors remains an active research interest.  

1.5 Immune dysregulation in active RA 

The transition from a preclinical state to clinical synovitis comprises of numerous immunological 

pathways that become dysregulated 56. It is apparent that the presence of autoantibodies alone do 

not result in RA and therefore the concept of the elusive ‘second hit’ has been much sought for to 

identify the mechanism by which the pathology manifests 56. It has been hypothesised that the 

second-hit comprises of a combination of vascular, neuro-regulatory, microtrauma or transient-

infection-dependent pathways 56. This change in the vasculature allows for immune complexes to 

bind to Fc receptors within the synovium and an immune cascade to ensue including synovial innate 

cells to release vasoactive mediators and increase antibody activity within the joint 56. Additionally, 

inflammatory events within the joint can be exacerbated by complement activation, toll-like 

receptor engagement and osteoclastogenesis 56. This coupled with the production of 

proinflammatory chemokines and cytokines result in clinical synovitis. Clinical synovitis during the 

pre-RA phase is initially not obvious however, as symptoms of RA clinically manifest, it is apparent 

that normal synovial lining layer thickness is altered from 2-3 cells thickness to 10-12 cells depth 
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mainly consisting of macrophages and fibroblast-like synoviocytes 57. However, the complexity of the 

immune dysregulation that occurs in RA is becoming better characterised with increasing access to 

biological material including synovial tissue biopsies allowing for a more robust interrogation of the 

immune infiltrate 58. The following sections aim to summarise the contribution of cellular and 

cytokine biology which contribute to RA pathogenesis and is well characterised in patients who have 

active RA.   

1.5.1 Cytokines in RA 

It is evident that cytokines actively contribute to RA pathogenesis and play an important role in 

inflammation, articular destruction and comorbidities associated with RA 59. Of these, TNF inhibition 

has been regarded as one of the biggest treatment successes in RA. The importance of TNF in RA 

was demonstrated in 1989, by elegant in vitro cell culture experiments in which disaggregated RA 

synovial mononuclear cell cultures, along with IL-1, IL-6, GM-CSF and IL-8 were spontaneously and 

chronically produced over a 5 day culture period 60. Intriguingly, when TNF production was inhibited 

in vitro, it was discovered that spontaneous production of IL-1 protein and IL-1B mRNA expression 

also reduced 60. The importance of TNF inhibition has been further identified to reduce the 

expression of GM-CSF, IL-6 and IL-8 61,62. TNF is regarded as one of the most successful treatment 

blockades in RA and is also used to treat other chronic inflammatory arthritis conditions including 

juvenile arthritis, psoriatic arthritis and ankylosing spondyloarthritis 63.  

The discovery and effectiveness of TNF blockade has led to additional cytokines within the TNF 

superfamily being identified including B lymphocyte stimulator (BLyS) and a proliferation-inducing 

ligand (APRIL) 64. BLyS promotes the survival and differentiation of B cells and is produced by 

numerous cell types including stromal cells, B cells, activated T cells, stimulated neutrophils, 

monocytes, macrophages and plasmacytoid dendritic cells 65. Whilst BLyS can act alone its 

bioavailability is limited however, together with APRIL, they can maintain the activation of B cells 

and thus promote autoimmune disease 65. Increased levels of BLyS have been observed in serum, 

synovial fluid and saliva in RA and have been associated with severity of disease which improves 

upon inhibition with Belimumab, a drug which inhibits BLyS 66.   

The RANKL (Receptor activator of nuclear factor-κB ligand)/RANK/osteoprotegrin pathway that is 

connected between bone resorption and bone formation 67. RANKL is a member of the TNF 

superfamily and combined with M-CSF can form osteoclasts. Expression of RANKL is regulated by 

TNF and modulated by osteoprotegrin 67. In a clinical trial study conducted in Japan, it was observed 

that denosumab which inhibits RANKL, was capable of suppressing bone erosion and bone loss in 

patients with RA with or without concomitant osteoporosis 68.  

In addition to TNF, inhibition of IL-6 is regarded as a successful therapeutic target and tocilizumab is 

widely used in the clinic to treat patients with RA, in particular those patients who have not 

responded well to TNF treatment 69. In the early 1990s, in vitro cell culture experiments revealed 

that IL-6 might be involved in osteoporosis, cartilage destruction and synovial inflammation 

associated with RA and animal models showed that IL-6 inhibition was effective in preventing RA 
70,71. 

IL-6 activates cells via a signalling mechanism that requires two receptor components, IL-6Rα and 

glycoprotein 130 which together form a hexameric complex which induces signal transduction 72. IL-

6 can signal through two different pathways, classical signalling, or trans-signalling. Classical 

signalling occurs by IL-6 binding to its membrane-bound receptor IL-6Rα whereas trans-signalling 
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binds to circulating soluble IL-6Rα which together form a complex with glycoprotein 130 73. IL-6Rα is 

expressed on only a few cell types including hepatocytes, monocyte, macrophages neutrophils and 

some T cell subsets 72. Activation of the receptor complex occurs by phosphorylation of JAK 1 and 2 

and tyrosine kinase 2 which can be therapeutically targeted however, in RA the receptor is targeted 

as the concentration is less variable across patients thus simplifying dose regimes 69.  

A multitude of predominantly proinflammatory cytokines have been discovered that are capable of 

joint destruction. These include IL-1 (and members of IL-1 superfamily including IL-1α, IL-1β, IL-18 

and IL-33), IL-7, IL-12, IL-17, IL-18, IL-21, IL-23 and IL-32 74. There are anti-inflammatory cytokines 

that have been associated with RA pathology including IL-4, IL-10, IL-13 and IL-35 but their role in RA 

is less prominent in comparison to proinflammatory cytokines 74. 

1.5.2 B cells  

Adaptive and innate immune cells are both implicated in RA pathogenesis. The most studied 

immune cell populations are B and T cells due to their association with autoantibody production.  

B cells are important in RA due to their ability to produce physiologically important proteins 

including RF, ACPAs and proinflammatory cytokines (TNF, IL-6, IL-12, IL-23 and IL-1) and their ability 

to activate T cells through co-stimulatory molecules 75. Under normal conditions, autoreactive B cells 

are eliminated by immune checkpoint mechanisms which are stationed throughout the B cell 

development stages predominantly during the early immature to immature B cells in the bone 

marrow (central tolerance), or before B cells become mature naïve B cells in the periphery 

(peripheral tolerance) 75,76. Despite these immune checkpoints, it is estimated that 20% of the 

antibodies produced by mature naïve B cells entering the periphery are autoreactive and shown to 

be even higher in RA patients 77,78. It was also observed that some clones of mature naïve B cells 

displayed reactivity to citrullinated peptides and immunoglobulins in RA suggesting aberrant 

processes within the tolerance mechanisms thought to be attributed to the genetic predisposing 

gene PTPN22 which may exert its influence on the B cell activation threshold 76,79. Autoreactive B 

cells are also capable of pathologically contributing to immune dysfunction, inflammation and bone 

damage 80.   

B cells also contribute to the formation of ectopic lymphoid-like structures (ELS) which are observed 

to develop in the synovial membrane in approximately 25% of patients with RA 81. ELS show a high 

degree of cellular organization which resemble structures similar to those observed in lymph nodes 

and are composed of distinct T and B cell areas which show a diffused or aggregated composition 

and a network of follicular dendritic cells 82. Evidence suggests that ELS are capable of inducing B cell 

somatic hypermutation and class switch recombination in the local synovial environment by the 

presence of the enzyme activation-induced cytidine deaminase and ACPA positive plasma cells 81. 

This evidence further suggests that B cells are able to deviate from the norm and bypass trafficking 

to the lymph nodes to differentiate into antibody secreting cells thus expediting the production of 

autoantibodies locally. The proximity of B and T cells in ELS suggest that they can communicate with 

one another closely meaning that these B cells can present autoantigen to T cells, leading to T cell 

activation, proliferation and proinflammatory cytokine production indicating that these structures 

can self-perpetuate autoimmunity 81. 

1.5.3 T cells 
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Evidence that T cells are central to RA pathogenesis first emerged in the 1980s where increased 

numbers of activated T cells were observed in the peripheral blood, synovial membrane and synovial 

fluid 83,84. It is evident that CD4+ T cells play a key role in RA pathogenesis highlighted by the fact that 

the RA genetic risk HLA-DR loci preferentially map to enhancers and promoters which are active in 

CD4+ T cell subsets. There are numerous subsets of CD4+ T cell subsets distinguished by their 

differential capacity to produce cytokines 85. At the simplest level, CD4+ T cells can be divided into 

two subsets known as T helper 1 (Th1) and T helper 2 (Th2). Th1 cells are important in the defence 

against intracellular pathogens and secrete IFNγ, TNF and IL-2 whereas Th2 cells mediate against 

parasitic infections such as helminths and secrete IL-4 and IL-5 85. Although this is a simplistic 

classification, it is apparent that Th1-like CD4+ T cells are more abundant in RA than Th2 CD4+ T cells 

as evidenced by the detection of a significant increase in IFNγ cells in RA synovial fluid that was not 

observed in peripheral blood 86. Furthermore, the same study also noted that IL-4 cells did not 

change between the synovial fluid and peripheral blood which further supported the skewing 

towards a Th1 phenotype within RA 86. Effector functions of Th1 CD4+ T cells in RA are thought to be 

involved in macrophage activation and B cell isotype switching.  

The Th1 and Th2 paradigm has evolved with additional subsets of CD4+ T cells have been 

characterised. IL-17 is a proinflammatory cytokine which was identified as a product of activated T 

cells leading to the coining of Th17 cells 87. Th17 were shown to be distinct from the Th1/2 paradigm 

as identified by the lineage-specific transcription factors RORγt. CD4+ T cells secreting IL-17 were 

detected in the RA synovium in 1999 although at the time, the term Th17 cells had not been coined 

so was termed as being produced by ‘some’ Th1 cells 88. IL-17 from Th17 cells can stimulate 

epithelial, endothelial and fibroblast cells to produce proinflammatory cytokines including IL-6, IL-8 

and GM-CSF and also play a role in recruiting neutrophils as evidenced in RA synovial fluid 89.  

Regulatory T cells (Tregs) are specialised CD4+ T cells which are capable of modulating the immune 

response to environmental pathogens and suppressing inappropriate immune responses to self-

antigens. Tregs were first characterised by Sakaguchi et al. as CD4+ CD25+ and further distinguished 

by the transcription FoxP3 90. Evidence of Treg involvement in RA initially came from studies in mice 

where depletion of CD4+CD25+ T cells showed a more severe arthritis 91 and conversely when 

CD4+CD25+ T cells were adoptively transferred into the joint of mice, this decelerated disease 

progression 92.Tregs numbers in RA peripheral blood is inconsistent with some reports stating that 

Tregs are elevated and other reports suggesting that they are diminished although in RA synovial 

fluid there is a general consensus that Tregs are elevated 93. The role of Tregs in RA is still under 

investigation and whether increasing their numbers in the joint would alleviate inflammation and 

promote self-tolerance has yet to be definitively shown in clinical trials.  

In recent years, single cell immunophenotyping of T cells have revealed novel subsets of CD4 T cells 

which pathologically contribute to RA will be discussed later on.  

1.5.4 Monocytes and macrophages   

At present, it is widely accepted that there are three subsets of human monocytes present in 

peripheral circulation known as classical (CD14+CD16-), intermediate (CD14+CD16+) and non-

classical (CD14-CD16+) 94. Within RA, it is the intermediate subset which is observed to be at a higher 

frequency when compared to health and correlated with reduced response to methotrexate 95,96. 

It was previously thought that all circulating monocytes gave rise to tissue macrophages 97. In light of 

elegant fate-mapping lineage studies performed in mouse embryos, the relationship between 
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monocytes and macrophages is more complex than initially thought 98. These studies have shown 

that tissue-resident macrophages are seeded from embryonic precursors giving rise to tissue specific 

macrophages where in adulthood macrophages can undergo self-renewal although it is uncertain 

whether this happens in the synovium 98. Macrophages are phagocytic cells which are capable of 

antigen presentation, T cell activation and cytokine production. Broadly, human macrophages can be 

divided into two subsets known as classically activated (M1) and alternatively activated (M2) 

macrophages although it is known that macrophages are dynamic and capable of responding to 

environmental stimuli meaning that they can fluctuate between M1 and M2 states 99. M1 

macrophage differentiation is driven by proinflammatory cytokines GM-CSF, TNF and IFNγ and are 

present in the synovial sublining layer which positively correlate with disease activity 100. Activated 

M1 macrophages are prolific producers of effector cytokines including TNF, IL-1 and IL-6 contributing 

to the chronic inflammatory environment within the joint and the ability to recruit more cells into 

the synovium 101. M2 macrophage differentiation is driven by IL-4 and IL-13 and is thought to have 

an anti-inflammatory function characterised by its production of IL-10 and TGF-β. There is no clear 

evidence to suggest that there is a presence of M1 or M2 macrophage phenotype in the joint 

however, abundant levels of TNF and IL-1 are found in the joint whereas IL-10 is relatively 

diminished in the joint 102.  

1.5.5 Innate and non-immune cell populations in RA pathology 

In addition to the above immune cell subsets which are implicated in RA, considerable evidence is 

emerging that innate immune cell populations are implicated in RA pathogenesis including dendritic 

cells (DCs), neutrophils and natural killer (NK cells) 103. The concept of innate immunity is evolving 

and it is becoming increasingly evident that the binary distinction of adaptive and innate immune 

cell populations is a reductionist approach 104. Innate immune cell populations are longer-lived than 

previously thought 105 , capable of memory 106 and also capable of immunoregulatory functions as 

well as proinflammatory functions 107. In RA, innate cell populations are known to contribute to the 

excess inflammation and are capable of producing proinflammatory cytokines however, they have 

not been as extensively studied as their adaptive immunity counterparts, although interest in their 

pathologic contribute is increasing. In the subsequent chapters, the role of innate cell populations in 

RA will be elaborated upon in the context of their contribution to RA pathology. 

FLS are not immune cells however, interact closely with other immune cell populations. In RA, FLS 

and macrophage-like synoviocytes are the two cell subsets that are present in the synovial intimal 

lining 108. The synovial intimal lining sits on a delicate network of connective tissue which contains 

fibroblasts along with blood vessels and macrophages 108. It is evident that within the rheumatoid 

joint, the number of FLS increases considerably contributing to the formation of the pannus, which is 

an abnormal layer of fibrovascular tissue within the synovial lining 108. RA FLS are able to expand in 

the joint in response to the proinflammatory cytokines produced by immune cells and infrequent 

apoptosis 108. FLS are capable of undergoing epigenetic reprogramming particularly by DNA 

methylation and it is thought that this process contributes to their pathological function in RA 108. 

Fibroblasts will be reviewed in more detail further on in sections 1.8.2 and 1.8.3 of this chapter and 

in subsequent chapters their phenotypic subsets will be further embellished upon. 

Finally osteoclasts are cells which play a key role in maintaining skeletal homeostasis by supporting 

steady-state bone remodelling in the bone marrow 109. Osteoclasts are multinucleated cells derived 

from a myeloid lineage and are capable of differentiation in response to environmental cues and 

stimulation from M-CSF, RANKL and osteoprotegrin 109. In RA pathology, osteoclasts are capable of 
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causing bone erosion through a combination of specific enzymes and an ATPase proton pump that 

enables degradation of bone matrix and solubilize calcium 110. During RA pathology, osteoclasts are 

found in the pannus of the synovial intimal lining and link joint inflammation and structural damage 

by resorbing mineralised tissue adjacent to the joint resulting in tissue destruction 110.   
1.6 Treatment in RA 

At present, methotrexate remains the cornerstone of RA treatment 111. Methotrexate is most 
effective when prescribed at the earliest opportunity of disease however, compliance to 
methotrexate can diminish over time as patients experience adverse side effects 112.  

Both treatment options and treatment strategy in RA have evolved considerably over the last 30 
years. Initially disease modifying anti rheumatic drugs (DMARDs) were considered to halt the 
progression of RA 113. Examples of DMARDs include sulfasalazine, hydroxychloroquine, azathioprine 
and cyclosporin 113. However, it became apparent that whilst DMARDs reduced symptoms and 
disease activity for some patients, it did not reverse joint damage 113.  

The advent of biologics has revolutionised treatment options in RA. Biologics are designed to target 
specific arms of the immune system. Cellular components of the immune system are targeted and 
the most effective have been treatment directed towards B cells and T cells. These treatments are 
known as rituximab (B cells) and abatacept (T cells) 114. Cytokine therapy include TNF (tumour 
necrosis factor) and IL-6 (interleukin – 6) inhibitors. 5 classes of TNF inhibitors exist: etanercept, 
infliximab, adalimumab, certolizumab pegol and golimumab 115. These different classes of TNF 
inhibitors target different epitopes of the TNF protein. IL-6 is another cytokine that has been 
targeted for treatment in RA and tocilizumab (IL-6 inhibitor) has been shown to be effective for 
many patients 69. Small molecule inhibitors are a recent addition to biologic therapy. Baricitinib and 
tofacitinib target the Janus kinase (JAK) pathway but target different JAK molecules; baricitinib 
blocks JAK1 and JAK2 and tofacitinib blocks JAK1, JAK2 and JAK3 114.  

1.6.1 Remission in RA  

Treat-to-target is the current treatment strategy which looks at selecting treatment which will result 
in low disease activity thus slowing disease progression and lead to remission 116. If disease activity is 
not lowered, change to treatment should be made that will lead to low disease activity .  

Remission is currently the gold standard for assessing treatment success as present treatment does 
not cure RA. Remission is defined as an ‘absence of articular and extra-articular inflammation and 
immunologic activity related to RA’ 117. Attaining remission is currently expensive and not many 
patients can achieve this status without lifelong treatment. In 2010, a report by the National 
Rheumatoid Arthritis Society calculated the cost of treatment in RA to be £689 million in the United 
Kingdom (UK) 118. Remission continues to be an active area of research in the management of RA. 
Encouragingly, more patients achieve remission status with the availability of targeted biologics but 
drug-free remission is significantly harder to achieve 119.  

For many patients, the prospect of lifelong treatment is undesirable and becomes an unsustainable 
approach when considering the cost of treatment, clinic time dedicated to reviewing patients and 
potential toxicity to the patient from continuous treatment. These reasons alone support the need 
for understanding drug-free remission which has been observed in 10-15% of patients 120. 
Unfortunately, 50% of those patients who achieve drug-free remission relapse and begin to flare 
after the cessation of treatment 120. Identifying a biomarker which would distinguish patients who do 
flare from those that do not flare after treatment withdrawal would prove to be invaluable and 
further refine the remission criteria. In 2019, Baker et al. set out to identify biomarkers which 
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distinguished patients likely to flare from those who did not after cessation of treatment 121. Patients 
were deemed to be in remission by assessing their DAS28 and CRP which if less than 2.4 allowed 
them to qualify for remission 121. In the CD4+ T cell population, two gene transcripts which were 
statistically significant identified patients who were likely to flare and one gene transcript was 
statistically significant for patients who did not flare. The cytokine IL-27 was associated with 
increased risk of flare after DMARD cessation 121. Clinical factors also defined patients who were at a 
reduced risk of flare if they fulfilled the ACR/EULAR remission criteria at baseline, had a longer 
interval since their last change in DMARD therapy and had a longer disease duration 121. Although 
the study consisted of a small cohort, and these results would need to be confirmed in larger 
cohorts, it strengthens the argument for inclusion of drug-free remission in remission guidelines 122.  

1.7 Conceptual frameworks aim to define stages of disease progression 

within RA 

1.7.1 Pre-clinical and early RA phase 

Within RA research, biologics have offered more precise treatment to ensure that not only the 

symptoms of RA are managed but the underlying chronic inflammation is targeted. In RA, the 

concept of early RA has received active research interest. Early RA aims to capture RA preferably 

before the condition manifests in the joint. Early RA was first put forward as a hypothesis at the 

beginning of the 1990s based on the existence of a time frame referred to as the ‘window of 

opportunity’ 123. The window of opportunity is the concept where treatment is optimal resulting in 

long term benefits that closely resemble a ‘cure’ 123,124. Before the concept of early RA was put 

forward, patients were historically treated by using the least effective and toxic drugs first and when 

joint erosion became visible, it was considered justifiable to administer DMARDs 124. At the time, RA 

was thought to be a mild disease with slow progression but data from MRI now informs us that joint 

erosion can occur within weeks of symptom onset 125. Duration of symptoms is regarded as the best 

response to therapy and evidence demonstrated that patients presenting with less than 1 year 

disease duration showed 53% patients responded to DMARD treatment which diminished as the 

duration of symptoms increased 126.  

Furthermore, conceptual frameworks exist to capture the progression of RA as it is no longer 

considered to be a uniform disease but more akin to a ‘syndrome’ due to its heterogeneous nature 

in both diagnosis and prognosis 127,128. Currently there are six phases (A-F) defined in RA progression. 

Phases A and B refer to genetic and environmental risk factors for RA respectively, phase C refers to 

the systemic autoimmunity associated with RA, phase D refers to symptoms without clinical arthritis 

and phases E and F refer to undifferentiated arthritis and RA respectively 129. These phases assist in 

identifying patients who are at the highest clinical risk of developing RA however, not all patients 

experience each phase. Treatment is observed to be most effective when given at the earliest 

opportunity and known as the ‘window of opportunity’ 124. Considerable research effort has been 

directed towards the concept of early RA and what constitutes early RA as traditionally this was 

viewed as initial phase after arthritis became clinically detectable 129. Recent studies have offered to 

challenge this presumption by suggesting that disease mechanisms become altered in the preclinical 

peripheral and by the time clinical arthritis is diagnosed, this is not the beginning of disease but 

rather the culmination of a plethora of well-established pathological events 129. Ultrasound imaging 

in preclinical RA has shown that patients can display levels of sub-clinical inflammation in the at-risk 

individual 130. Identifying biomarkers that could detect early RA and thus distinguish patients from 
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undifferentiated RA has been actively researched with several markers being reported including a 

type I interferon gene signature which distinguished DMARD-naïve patients who would go onto 

develop persistent inflammatory arthritis 131–134. In patients with early inflammatory arthritis the 

gene ST6GALNAC1, an enzyme involved in glycosylation, could be a potential biomarker for 

undifferentiated arthritis compared to healthy controls 131. In addition, SIGLEC1 was also considered 

to be a useful marker of disease activity in undifferentiated arthritis 131.  

The lack of a robust clinical biomarker to identify early RA makes it difficult to precisely identify a 

time frame for early RA. However, researchers have made efforts to identify immune profiles which 

would differentiate early RA from other arthritides. Research published in 2005 looked at cytokine 

profiles of T cell and stromal cell origin in synovial fluid taken from 36 patients with early 

inflammatory arthritis and non-inflammatory synovial fluid were used as controls 135. Within the first 

12 weeks of symptoms onset, patients who subsequently went onto developing RA had a distinct 

and consistent synovial fluid cytokine profile 135. The cytokines that were associated with early RA 

were IL-1, IL-2, IL-4, IL-13, IL-15 and IL-17 which were found to be expressed by T cells, stromal cells 

and macrophages 135. This cytokine profile was specific to early RA synovial fluid and not observed in 

any other arthritides. Another study looked at CD4+ T cell subsets across the inflammatory arthritis 

continuum to see whether changes within the subsets could predict progression from one stage to 

the next 136. Naïve CD4+ T cells predicted disease flare and disease progression along the whole 

inflammatory arthritis continuum suggesting that naïve CD4+ T cells can be used to distinguish 

individuals who are at high-risk of developing RA 136. Lastly, a review aiming to define cytokine 

profiles across the stages of RA suggests that during the pre-clinical phase of RA, IL-17/IL-23, IL-8, IL-

4, IL-5 and type I interferon cytokines are more prominent and may explain why not all patients 

respond well to TNF and IL-6 inhibitors as these cytokines become more prominent during early RA 
137.   

1.7.2 Refractory RA 

The prospect of numerous treatment options and in particular biologics has undeniably improved 

the clinical management of RA. Disappointingly, not all patients with RA respond successfully to 

treatment and it is common for patients to cycle through multiple rounds of different biologics, with 

the expectation that they can achieve remission 138. These patients are at the opposite end of the 

spectrum to those with pre-clinical and early RA, and are termed as ‘refractory RA’ which at its 

broadest definition ‘indicates the inefficacy of multiple agents in conjunction with unabating and 

systemic inflammation’ 139. A more refined definition currently suggests following methotrexate 

inefficacy, failure of two mechanistically different inhibitors however, at this stage remains 

speculative and open to further refinement in the presence of empirical data 139,140. What precisely 

constitutes refractory RA or more specifically how to identify patients who are likely to develop 

refractory RA is not well understood, although it is estimated that approximately 6-17% of patients 

who are refractory 138,139,141–143. 

Whilst the definition for defining refractory RA remains dynamic, it is a concept that is gaining 

traction in the clinical setting to identify better treatment strategies as it currently remains an unmet 

clinical need 143. For example, small molecule inhibitors such as JAK inhibitors have shown to be 

effective in a subset of patients who were refractory to previous multiple biologics 141. Another small 

inhibitor, Evobrutinib which inhibits Bruton’s tyrosine kinase, crucial for B cell development, failed to 

improve response rate in patients with refractory RA demonstrating that not all small molecule 
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inhibitors are successful in treating refractory RA as a result of its heterogeneity between patients 
144.   

As little is known about refractory RA, simple questions such as whether it is driven by 

predominantly innate or adaptive immune cells is yet to be elucidated or whether it is driven by non-

immunological pathways such as stromal cells 138. It is argued however, that if refractory RA was 

driven by stromal cell pathology, a more consistent presentation would be observed whereas 

refractory RA is heterogeneous 138. Finally, treatments that have historically not worked well in RA 

such as IL-1 blockade and IL-23-IL-17 inhibitors may be successful in treating refractory RA 138.     

1.8 The multi-omics era and revolution of single cell technologies 

The revolution in single cell technologies has provided an unprecedented platform for 

comprehensive profiling at the cellular and molecular level of translational research. This revolution 

has been informally coined the ‘multiomics era’ where biological tissue is subjected to in-depth 

interrogation of the genomic, epigenomic, metabolomic, transcriptomic and proteomic tissue 

landscape 145. Multi-omic technology has been refined over time resulting in robust, high-resolution 

technologies which are capable of incorporating multiple parameters which can scale up the number 

of analytes to be analysed in a single cell 146.  

One single cell technology which has withstood the test of time and become a routinely used 

technique in cell biology and immunology research is flow cytometry which measures protein 

expression on single cells in solution. Antibodies which specifically recognise extracellular or 

intracellular proteins which are measured by a flow cytometer which utilizes lasers as light sources 

to produce both scattered and fluorescent light signals that are read by detectors such photodiodes 

or photomultiplier tubes 147. These fluorescent signals are converted into electronic signals that 

measure and electronically record the fluorescence signals for the duration of acquisition which can 

subsequently be written into a standardised format (.fcs) data file 147. Flow cytometry is primarily 

used for immunophenotyping immune and non-immune cells but can also be used for molecular 

assays measuring various cell functions including apoptosis, phagocytosis, phosphorylation, cell cycle 

analysis and this possibility continues to increase. Cell sorting is another main feature of flow 

cytometry which requires a specific cell sorting flow cytometer to selectively isolate a specific 

population of cells using a characterised immunophenotype. These cells are subsequently used in 

downstream in vitro experiments to determine the functional role of the specific cell population. All 

of these features of flow cytometry have made the technique versatile for numerous research 

questions concerning both pathology and health.  

1.8.1 Challenges of compensation in flow cytometry   

Flow cytometry is widely regarded as a pioneering multiparameter single cell technology, however, a 

major limitation is spillover from one fluorescent channel into another channel. This fluorescence 

spillover can be corrected by applying a calculation which adjusts for spillover known as 

‘compensation’ 148. If compensation is not adjusted for, this can lead to inaccurate interpretation of 

the data known as a ‘false positive’ if a fluorescence signal is emitted due to spillover signal from 

another channel or a ‘false negative’ when a fluorescence signal is not recorded resulting in the 

interpretation that the protein is not present on the cell. Compensation can be calculated manually 

however, this approach is infrequently used as it is considered inaccurate. Automated compensation 

software to correct fluorescent spillover is present on most flow cytometers or incorporated in 

cytometry analysis softwares such as FlowJo where a compensation grid is calculated and the 
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fluorescent channels for each marker plotted against one another to visualise the effect of 

fluorescence on the population of cells to be analysed.  

Designing a flow cytometry experiment requires significant time especially in the event of a new 

panel design which incorporates proteins which are not routinely studied by the researcher. Careful 

consideration should be applied from the beginning including the understanding of the cytometer 

the cells will be acquired on including the number of fluorescent channels that are present, the 

fluorescent dyes available for conjugating the antibodies and the number of proteins that are to be 

included in the panel design. Furthermore, based on whether proteins are extra/intracellular will 

require an understanding of whether cells need to be permeabilised and/or fixed will impact on 

compensation and requires optimisation prior to sample acquisition. Compensation can fluctuate 

between each sample and for each acquisition run meaning that controls need to be included each 

time. Controls for compensation include a negative and positive control for the protein marker and 

fluorescence minus one controls which include all the fluorescence colours that comprise the panel 

excluding one fluorophore to observe the staining signal when it is absent 148,149. Incorporating these 

experimental controls becomes logistically challenging when the biological sample is limited. 

Moreover, successful compensation of a panel consisting of ≥ 20 protein markers can be challenging 

even for an experienced cytometrist. Thus deep immunophenotyping by flow cytometry is 

challenging and despite the multi-parameter capability, it is practically challenging to create protein 

marker panels in excess of 20 markers without encountering technical challenges. This limitation has 

restricted the scope of current flow cytometry immunophenotyping data in RA in terms of specific 

cell populations being interrogated which overlooks the heterogeneity of RA or limited in terms of 

the number of protein markers that can be included in one panel 150. The advent of mass cytometry 

has provided an opportunity for deep immunophenotyping which overcomes the significant 

challenges presented by compensation in flow cytometry 151,152.      

1.8.2 Mass cytometry in discovery analysis 

Mass cytometry has provided an opportunity for both multi-parameter high-dimensional 

immunophenotyping and retaining high resolution making it a desirable technology to deep profile 

every single cell from a representative population of cells. Principally mass cytometry is similar to 

flow cytometry slowing for immunophenotyping single cells in suspension 150. However, the 

important difference is that flow cytometry is a technology that measures protein expression by 

fluorescence and mass cytometry dispenses with fluorescence and instead antibodies are labelled 

with elemental (metal isotopes from the lanthanide series also known as rare earth metals) reporter 

ions via covalent conjugation with chelating polymers 153. Samples are subsequently stained with 

these lanthanide-labelled antibodies and are introduced as single cell suspensions where they are 

nebulised into droplets which pass through an inductively coupled mass spectrometer which 

vaporizes, atomises, and ionizes the sample which means that the cells are no longer viable and 

after acquisition on a mass cytometer cannot be retrieved for further downstream analysis. The ion 

cloud created passes through quadrupoles which deflect biologically abundant low-mass ion species 

such as carbon, nitrogen and oxygen therefore selectively allowing high-mass ion lanthanide 

reporter masses to be recorded by time-of-flight mass spectrometry and measure the abundance of 

all reporter masses included in the panel 153. These reporter masses can be visualised during 

acquisition to ensure that channels where a signal is expected can be detected. This recording of 

isotopic masses allows for bound antibody to be quantified which can be used in subsequent 

analysis to inform the expression of the markers of interest. At present, 37 protein markers can be 

interrogated in one panel by mass cytometry and it is anticipated this can be increased to 50 
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markers with intentions to explore new lanthanides and ultimately create panel in excess of 100 

markers.  

The use of metal isotopes to measure each antibody significantly reduces the challenges introduced 

by fluorescent spillover in flow cytometry however, careful consideration should be given to panel 

design to minimise the contamination of isotopic oxidation which can result in adjacent channels 

recording an unspecific signal. By strategically placing markers, such that proteins which have a 

stable expression e.g. lineage markers can be conjugated with isotopes occurring for the same metal 

as contamination into adjacent channels will be easier to correct. This is a straight-forward solution 

and considerably less problematic to solve compared to fluorescence compensation.  

The amount of publications reporting data from mass cytometry has increasingly grown as 

accessibility to the technology widens. It should be mentioned that although the number of 

publications have increased, these are often from research groups working in collaboration with 

other groups/departments to generate and analyse the high-dimensional data. It is important to 

acknowledge the differences and hence the suitability of mass cytometry in experiments compared 

to flow cytometry. These include a maximum of 500 events per second can be acquired by mass 

cytometry compared to several thousand events per second in flow cytometry 154. The running of a 

mass cytometry experiment is considerably more expensive than flow cytometry with Fluidigm 

currently being the only vendor supplying reagents and instrumentation 155. Lastly, mass cytometry 

is a commitment as it requires specific facilities adapted to suit the purpose of the technology 

including gas/liquid argon which delivers the sample to the plasma, calibration of the mass 

cytometer daily takes between 1.5-2 hours prior to acquisition and dedicated personnel to maintain 

and operate the machinery 156.  

To date, much of the immunophenotyping analysis in RA has been performed by flow cytometry. 

Opportunity for in-depth immune profiling with improved precision single-cell technologies has 

allowed for old questions to be revisited with better insight. Mass cytometry has provided the 

opportunity for researchers to either probe specific cell populations more intently or to look at a 

heterogeneous population of cells within a given biological sample. Currently, RA research has fully 

embraced mass cytometry as an opportunity to answer some of the unmet clinical needs which exist 

with particular aim towards understanding if there are specific immunophenotypes or immune 

signatures that correlates with treatment response or disease stage. These questions are broad and 

are further tailored to the cohort and samples collected.  

The use of mass cytometry to understand RA has received considerable attention and publications 

over the last 5 years have steadily increased which have revealed novel subpopulations of immune 

cells which are expanded in RA compared to health and inflammatory arthritis which is not RA. The 

expanded immune cell populations identified are further detailed in chapters 5 and 6 however, a 

brief overview will be provided here to put the hypotheses and aims of this study into context. 

Pathological expansion of peripheral helper T cells (characterised as CD4+PD-1hiCXCR5-) discovered 

by the Accelerating Medicines Partnership (AMP) group where they identified a population of T cells 

functionally characterised as B helper T cells which are not functionally exhausted despite high PD-1 

expression but instead displayed features of chronic activation 157–159. Another subset of CD4 T cells 

characterised as CD27- and HLA-DR+ have also been reported to be aberrantly expanded in RA 

peripheral blood by mixed effects associated single cell modelling and also had features of chronic 

activation 160. Analysis of 51 samples of synovial tissue from patients with RA or osteoarthritis 

detected specific cell populations that were associated with driving joint inflammation in RA 

including an expansion of THY1+ HLA-DRAhi sublining fibroblasts which demonstrated that stromal 
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cell populations and subsets can be detected by mass cytometry 161. 17 unique cell populations were 

additionally identified by transcriptomics which included IL-1B+ pro-inflammatory monocytes, 

autoimmune-associated B cells and CD8 T cell subsets with increased cytolytic function 161. These cell 

populations will be discussed in more detail in terms of their phenotype and functional 

characteristics however, it does demonstrate the value of mass cytometry in revealing 

subpopulations that contribute to RA pathogenesis.  

Mass cytometry remains however, a technology in its infancy and is not routinely used unlike flow 

cytometry. This could be viewed as a disadvantage but it is already apparent from the conception of 

this study, that accessibility to mass cytometry is improving and an advantage of this is that 

protocols can be optimised and refined to enable best practice across all research groups and 

improve replicability of data. The findings above however, are preliminary in terms of their impact. It 

is not clear for example to what extent peripheral helper T cells are pathologically implicated in RA 

and how existing treatments affect this population if at all. Large patient cohorts are not currently 

acquired by mass cytometry and this can be attributed to both the logistical practicality and the 

complex data analysis required following acquisition. In particular, mass cytometry data analysis has 

advanced considerably in the last 5 years and existing approaches such as manual gating and two 

dimensional clustering visualisation plots 162,163 have been surpassed by approaches which can both 

cluster and statistically quantify cell populations across defined conditions 164–166. It is here that this 

study will aim to bridge the gap between manual and automated gating by using the novel 

bioinformatics approaches for data analysis to interrogate the immune cell populations in RA 

peripheral blood and synovial fluid. It also aims to be one of the first studies to acquire a patient 

cohort of over 150 samples by mass cytometry using a clinically translatable protocol. It is hoped 

that the work presented here will instil confidence for future researchers to pursue large 

immunophenotyping studies with an automated bioinformatics analysis pipeline which can expedite 

findings from bench to clinic. 

1.8.3 Synovial pathotypes aim to enhance RA classification and treatment 

approach  

The above studies have extended the discussion about the pathological involvement of cell 

populations in RA. The single cell technology revolution has enabled us to identify specific subsets 

within large cell populations such as macrophages, neutrophils, fibroblasts and T and B cells and in 

addition, specific phenotypes are associated with functional status of the cells. The AMP group and 

collaborators have made extensive progress in identifying pathologically expanded populations in RA 

however, in addition to these findings, the stratification of synovial tissue pathotypes has also 

developed significantly 167. The three pathotypes that have been consistently identified are 

lymphoid, myeloid and pauci-immune. Pauci-immune refers to very minimal/absent infiltrating 

immune cells but presence of a fibroblast phenotype 167,168.  

Based on this stratification, further evidence has shown that these findings correspond with stages 

of RA. In a cohort of 144 treatment naïve early RA patients, it was demonstrated that three 

pathotypes exist prior to treatment intervention or further clinical progression which include: 

lympho-myeloid which is dominated by the presence of B cells as well as myeloid cells, diffuse-

myeloid which is characterised by the presence of myeloid lineage cells but poor B cell presence and 

pauci-immune which demonstrates a lack of immune cells but rich in stromal cells 169–171. Lymphoid-

rich patients also showed high expression of myeloid genes when analysed by Nanostring 

technology, leading to the term ‘lympho-myeloid’ 170. The advantage of this stratification is that 
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multiple clinical parameter analyses can be performed to determine whether there is a correlation 

between immune pathotype and clinical outcome. Analysis showed that elevated expression of 

myeloid and lymphoid genes strongly correlated with worsening outcomes including osteoclastic 

radiographic joint progression, disease activity, acute phase reactant and autoantibody positivity 

whereas pauci-immune pathology showed less severe disease activity and radiographic progression 
170. Conversely, in a cohort of 37 RA patients, synovial biopsies were obtained from patients pre-and 

post TNF blockade treatment using certolizumab pegol where it was observed that those with a 

lymphoid-myeloid pathotype at baseline, achieved better clinical response compared to those with a 

pauci-immune pathotype suggesting that these pathotypes are a continuous rather than a discrete 

distribution 172,173.  

Dennis et al., in 2014 set out to observe whether synovial pathotypes could be identified by specific 

biomarkers which would also correlate with treatment response 172. Using a combination of synovial 

tissue histopathology, transcriptional profiling and serology they found increased levels of soluble 

ICAM1 in the serum which associated with a synovial myeloid cell pathotype and predicted good 

response to adalimumab, whereas the chemokine CXCL13 associated with a synovial lymphoid 

pathotype and predicted good response to tocilizumab 172.   

Therefore, it is evident that single cell technologies have been richly utilised within the RA field and 

it is anticipated that over time, this will only increase. Both transcriptomic and cytometric 

approaches have revealed specific immune cell subsets which have a pathologic role in RA. The 

complex nature of the data means that appropriate analysis approaches need to be applied to 

achieve the most meaningful analysis from high throughput technology. Although the field of RA has 

returned to the synovium, blood is easier to obtain and can be more extensively explored with mass 

cytometry. Furthermore, the immunophenotyping panel in this study is deliberately broad, to 

capture numerous immune cell populations to understand not only the subsets within the 

populations but also assess the relationship between different cell populations. 

1.9 Study hypotheses and aims 

1.9.1 Technical hypotheses 

1. Mass cytometry is a novel single cell technology yielding reliable, reproducible data for 37 

protein markers in a large patient cohort immunophenotyping study.  

Aim 1: To validate antibody clones to be used in mass cytometry by flow cytometry to ensure the 

staining quality is comparable. 

Aim 2: To validate metal lanthanide conjugated by staining beads to ensure that the metal 

conjugation has covalently attached and that a signal can be read in the appropriate channel on a 

mass cytometer. 37 protein markers will be titrated to ensure optimal staining by mass cytometry.  

Aim 3: To ensure that reliable data is obtained by mass cytometry, patient samples will be processed 

using the same fixation method immediately upon collection and will simultaneously be barcoded 

and stained by the 37-antibody marker panel to ensure staining consistency. Inclusion of a batch 

control will ensure any staining inconsistencies across the batches can be detected. 

2. Novel automated bioinformatics pipelines produce comparable data to manual gating and 

expedite multi-parametric, high-dimensional single cell protein analysis.  
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Aim 1: To apply an automated bioinformatics script for data clean-up to obtain a single cell 

population of cells across all samples included in analysis. 

Aim 2: Identify a robust mass cytometry data analysis pipeline which can statistically quantify the 

cell populations between conditions and can be used for discovery analysis. Clustering algorithms 

will be validated for consistent cell populations being identified across conditions for comparative 

analysis.   

Aim 3: This study will aim to identify the two CD4+ T cell populations which have recently been 

reported to be pathologically expanded in RA by mass cytometry. Ensuring replicability of data by 

mass cytometry will increase confidence and lend more weight to investigating specific cell 

populations further. 

1.9.2 Hypothesis to interrogate the immune landscape in RA peripheral blood and 

synovial fluid  

3. Immune dysregulation occurs in early RA and specific immune cell populations in 

peripheral blood can distinguish this phenomenon from health. 

Aim: To compare immune cell populations in peripheral blood from patients clinically defined as 

‘early’ RA to healthy donors to determine if there are specific changes that distinguish early RA from 

health.  

4. Innate immune cell populations in peripheral whole blood predominantly drive immune 

dysregulation in early RA in comparison to health. 

Aim 1: To establish whether innate immune cell populations become dysregulated and drive the 

inflammation observed in early RA or whether this is still largely dominated by adaptive immune cell 

subsets.  

Aim 2: To determine whether neutrophil populations are altered in early RA compared to health. 

5. Biological microenvironment shapes the immunophenotype of cell populations revealing 

specific functional adaptation or response to stimuli within the microenvironment. 

Aim: To compare cells in the joint microenvironment, synovial fluid obtained from patients with RA 

will be collected in conjunction with matched peripheral blood to compare the influence of 

microenvironment on immune cell populations including whether T cells are chronically activated in 

the synovial fluid microenvironment.  

The structure of this dissertation will focus on systematically demonstrating the validation and 

optimisation of using mass cytometry. This will include a step wise description of the methodology in 

chapter 2, where the main aim is to provide a replicable protocol for future users. This includes 

cohort selection and criteria, designing a protein panel for mass cytometry and preparing and 

acquiring data on the mass cytometer, Chapter 3 focusses on the validation of the antibodies used 

for mass cytometry validated using flow cytometry (an established technique) and mass cytometry 

to ensure that downstream analyses and conclusions drawn are robust. Chapter 4 will discuss the 

bioinformatics pipeline used to analyse the data acquired from mass cytometry and thus 

demonstrate a novel approach to this research. Chapter 5 will look at the immune profiles in whole 

blood across the different stages of RA using the bioinformatics pipeline described in chapter 4. 

Chapter 6 aims to explore the immune profiles between synovial fluid and whole blood obtained 
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from 3 patients with RA to compare the biological microenvironment. Furthermore, synovial fluid 

offers the opportunity to observe immune cell populations in RA at its primary site of pathology. 
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Chapter 2 Materials & Methods  

2.1 Patient cohort 

The intention of this project originally set out to comprehensively immunophenotype synovial 

biopsy tissue obtained from patients with RA. Currently the field of mass cytometry has been 

exploited in this way by other research groups. However, it became logistically challenging to obtain 

synovial biopsy tissue at Chapel Allerton Hospital. Furthermore, if tissue had been possible to obtain, 

this would have required extensive validation in terms of processing the tissue to obtain optimum 

cellular yield and validation in processing tissue for mass cytometry. Whilst other groups have 

successfully developed protocols for synovial biopsy digestion for single cell suspension, and 

subsequently used mass cytometry to immunophenotype these cells, better techniques exist. The 

Helios Mass cytometer requires cells to be in suspension and thus disaggregating cells from a tissue 

biopsy disrupts the architecture and questions determining origin of cells (resident vs. infiltrating) 

remain unanswered.  

The Hyperion imaging mass cytometer would be a better tool for tissue and whilst utilised in cancer 

biomarker screening from tumour biopsies, imaging mass cytometry remains to be utilised in RA 

synovial tissue research. Unfortunately, at the time of this research, the Hyperion imaging platform 

was not available at UCB. Indeed, as the field of tissue research expands, technology continues to 

improve and provide more options. Examples of this include the CODEX (Co-Detection by inDEXing) 

technology provided by Akoya Biosciences, which is a multiplexing imaging technology that was 

originally developed in Garry Nolan’s research group at Stanford University. The technology uses 

antibodies conjugated to oligonucleotides which allows for deep immunophenotyping of more than 

40 markers in a single tissue sample 174. RNA sequencing and in situ hybridisation have also been 

extensively reported by groups although these techniques do not focus on proteins. It remains clear 

however, that the questions to be answered must be considered in accordance with the available 

resources and logistics. Disaggregation of tissue is undesirable, and the field is moving from basic 

histology to an automated, precision platform. 

Therefore, blood samples were collected from patients with RA. Blood samples are easier to scale up 

over a short time period and less invasive than biopsy samples. It is also possible to obtain healthy 

control samples to control for findings which can be challenging when working with tissue. Blood 

samples are still pertinent to RA research as they represent the systemic environment of the disease. 

Where possible synovial fluid was collected from large joint aspirations as a way of understanding 

the joint microenvironment. However, presently in clinics at Chapel Allerton Hospital, joints are 

infrequently aspirated in clinic due to better treatments available resulting in reduced swelling and 

inflammation. 

2.1.1 Ethical approval for patient biological samples 

Ethical approval was obtained prior to the commencement of patient recruitment and biological 

sample collection for this project. Ethical approval was obtained from Leeds Teaching Hospitals Trust 

Research and Development for the study RADAR (Rheumatoid Arthritis Disease Research), sponsor 

identification number RR09/9134. Patients and healthy donors were also consented to RADAR BMC 

(biologics monitoring clinic) which is a sub-study of RADAR. All participants in this study read the 

patient information sheet and written informed consent was given prior to sample collection. 

Samples were collected from Chapel Allerton Hospital, Leeds and processed and stored at the 
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Wellcome Trust Brenner Building at the St. James’ Hospital site, Leeds. Ethics allowed for the 

transportation of samples between Chapel Allerton Hospital and St. James’ Hospital and covered 

processing and storage of biological material at St. James’ Hospital. The ethics also encompassed 

transportation, processing, storage and data collection of samples at UCB Pharma, Slough for 

research and development purpose. Samples were stored at UCB for longer than two weeks and 

were stored according to the Human Tissue Act regulation. Training for Human Tissue Act regulation 

were undertaken at Leeds and UCB according to in-house guidelines.  

2.1.2 Patient recruitment criteria   

Patients were recruited to this study from two different Rheumatology clinics at Chapel Allerton 
Hospital, Leeds and a summary of the cohort is shown in Flow chart 2-1.  

A power calculation was not performed before patient recruitment. The justification for this 

approach is that prior to embarking on this work, publications using mass cytometry reported results 

using a maximum of ten patient samples or less. This can be directly attributed to the novelty of the 

technology in which validation and protocol development takes considerable time and therefore a 

patient cohort in excess of 10 patients would be considered a risk. Therefore, this work both 

acknowledged the limitations of current findings in the literature and exceeded the number of 

samples processed and analysed by mass cytometry which included patients that would represent 

the broad spectrum of RA including treatment, treatment timepoints and disease stages. It was not 

possible to calculate a power calculation a priori to the study due to the uncertainty of how many 

patients could be recruited within the 9 months, which was the recruitment time frame for this 

study.  

Inclusion criteria for patients recruited for this study were recruited from the RADAR BMC and had 

been diagnosed with RA for over 12 months, were over the age of 18 years old and had received 

either DMARDs or biologic treatment and none of these patients were treatment naïve. These 

patients are referred to as having established RA. Table 2-1 summarises this patient cohort. Single 

time point peripheral blood samples were obtained from 55 patients. Single time point means that 

only one sample was collected from the patient at one time point with no follow up sample. This 

single time point was not identical for each patient. For some patients, it was only possible to obtain 

a sample at a ‘baseline’ time point. Baseline time point means that a patient is not currently 

receiving treatment. This does not mean that the patient has never received treatment; it means 

that the patient is currently undergoing a ‘wash out’ phase. The ‘wash out’ is a window of time 

between the previous treatment and the new treatment which the patient will commence which 

was defined as 4 weeks. This ‘wash out’ phase is important allowing for the previous drug and 

associated compounds to be removed from the biological system before commencing new 

treatment. The baseline time point should ideally be obtained for each patient to understand the 

immune system of that individual which is thought to represent the immune system as close to its 

‘natural’ state although this is not strictly true as patients have been on prior treatment; the long-

lasting effects of which are not fully understood. Where possible single time points were taken at 

baseline, but it was not logistically possible to obtain this time point for all patients. Therefore, for 

some of the patients, the sample was collected at either three months or six months after they have 

received the new treatment. The RADAR BMC clinic oversees patients who are switching from one 

biologic to another biologic. In addition, there are patients who are receiving biologics for the first 

time as well as patients who would be currently defined as having refractory RA. In addition to the 

patient cohort, 23 peripheral blood samples from healthy individuals were recruited for this study at 
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a single time point. These healthy individuals did not have a diagnosis of RA as defined by the 

current classification system and were not on treatment for another condition that overlapped with 

those used in this RA cohort.  

It was possible to recruit an additional cohort of patients from RADAR BMC where a baseline time 

point and a follow up time point at either 3 or 6 months and where possible both follow up time 

points were recruited (Table 2-2).  

Thirty-two patients with early RA were recruited from the early RA clinic and had been newly 

diagnosed (less than 12 months) and not received treatment. 

Two preclinical RA individuals were recruited from the preclinical RA screening clinic. These 

individuals did not have diagnosed RA or have symptoms of RA but they have been screened based 

on risk factors including ACPA/ RF titre.  

As synovial biopsies were not logistically possible to obtain, synovial fluid was the closest option to 

observing the immune system in the joint microenvironment. Due to improved treatment and better 

treatment outcomes, swelling in larger joints, particularly in RA are not routinely observed in the 

Chapel Allerton Hospital arthrocentesis clinic. This is an excellent outcome for both clinicians and 

patients and a testimony to the high level of care and treatment provided by the Rheumatologists at 

Leeds. Although occurrence was infrequent, where possible, synovial fluid was collected from 

patients with inflammatory arthritis which would form a modest sized cross-sectional cohort. In 

total, 11 synovial fluid samples were obtained from the clinic and of these, 4 paired samples with 

peripheral whole blood were collected to compare synovial fluid mononuclear cells (SFMCs) and 

peripheral blood microenvironments from the same patient. Table 2-3 shows the pathology from 

which the synovial fluid (and paired samples) were obtained from.  

The experimental design is represented by this wide-ranging cohort, spanning disease duration, time 

points, treatment and in addition the clinical parameters associated with each patient. This cohort 

was considered to best represent and answer the hypotheses within this project acknowledging the 

heterogeneity of RA.  
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Flow chart 2-1| Inclusion and exclusion criteria for patient cohort 

A Inclusion and exclusion criteria for peripheral blood collected from patients with RA and B shows inclusion and exclusion 

criteria for both paired blood and synovial fluid cohort or unpaired synovial fluid from inflammatory arthritis. 
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Table 2-1| Number of healthy and patient peripheral blood samples obtained at a single time 
point 

Cohort Number 

(n) 

Healthy  n=23 

Pre-Rheumatoid 

Arthritis  

n=2 

Early Rheumatoid 

Arthritis  

n=32 

Established 

Rheumatoid Arthritis  

n=55 

Table 2-2| Number of established Rheumatoid Arthritis longitudinal peripheral blood samples 

Cohort Time 

point 

Number 

(n) 

Established RA 

longitudinal 

cohort  

Baseline  n=24 

3 months n=22 

6 months n=13 

Table 2-3| Number of paired peripheral blood and synovial fluid samples and single synovial fluid 
samples obtained from inflammatory arthritis 

Cohort Disease Number (n) 

Paired 

peripheral blood 

and synovial 

fluid 

Psoriatic 

Arthritis  

n=1 

RA n=3 

Inflammatory 

arthritis (only 

synovial fluid)  

Gout n=1 

Oligo RA n=1 

Psoriatic 

Arthritis 

n=2 

RA n=2 

Spondyloarthritis n=1 

2.1.3 Collection and biobanking of whole blood samples for mass cytometry 
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Samples were collected 2-4 hours after collection and processed using a method developed by UCB 

Pharma, Slough to maintain consistent processing across all samples. This procedure was performed 

in a category II tissue culture hood using sterile, aseptic techniques. In a 50mL falcon tube 5mL of 

16% paraformaldehyde (PFA) was added to 40mL of PBS supplemented with 1mM EDTA 

(Ethylenediaminetetraacetic acid) thus creating a 1.6% PFA solution. 5mL of blood was then added 

to the 1.6% PFA solution and mixed thoroughly by inversion and left to stand for 5 minutes at room 

temperature. Samples were then centrifuged at 400g for 7 minutes at room temperature (RT) and 

the supernatant discarded to leave a solid red blood pellet. This was resuspended in PBS/1mM EDTA 

and thoroughly mixed and centrifuged at 500g for 7 minutes at RT. The supernatant was removed by 

using a 25mL stripette and the final small volume removed by a 1mL pipette tip to leave a semi solid 

blood pellet that was resuspended in 10% DMSO (dimethyl sulfoxide)/90% PBS/1mM EDTA. 1mL of 

blood was aliquoted into cryovials for cryogenic preservation at -80C in a CoolCell© freezing box. 

After cells were frozen for 2 hours they were transferred into a storage box and kept at -80°C. 

2.1.4 Collection and preparation of synovial fluid samples for mass cytometry 

Where possible, matched synovial fluid with peripheral blood or just synovial fluid was collected 

from patients undergoing arthrocentesis. The fluid was centrifuged at 400g for 5 minutes and the 

synovial fluid was filtered through a 70M filter to remove non-cellular material. The pelleted 

synovial fluid cells were fixed in 1.6% PFA as described in section 2.1.3. 

2.2 Materials 

Table 2-4|General equipment and plastic ware 

Equipment Company 

Flow Cytometer Mass cytometrylex S  Beckman Coulter 

Mass Cytometer Mass cytometry 2 Fluidigm 

Laminar Flow Class II Tissue culture hood Nuaire 

Swing bucket centrifuge Eppendorf  

37C bead bath SHEL LAB 

37C/5% CO2 cell culture incubator - 

Automated cell counter Sysmex 

Haemocytometer Thermo Fisher Scientific 

0.5-10µL, 10-20µL, 20-200µL, 200-1000µL pipettes Eppendorf  

Finnpipette ™ F2 Multi-channel pipette 30µL - 300µL Thermo Fisher Scientific 

Serological pipette S1 Pipet fillers  Thermo Fisher Scientific  

Nanodrop Thermo Fisher Scientific 

CoolCell freezer box Biocision 

Scotsman Laboratory Ice machine  Progen Scientific  

Human Tissue Act approved -80C freezer storage                     - 

±4°C Refrigerator  - 
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-20°C freezer - 

 

Plastic ware  Company 

5mL, 10mL and 25mL stripettes Fisher Scientific  

5mL polystyrene FACS tubes Fisher Scientific  

5mL polypropylene FACS tubes Fisher Scientific  

5mL polystyrene filter cap FACS tubes Fisher Scientific 

15mL falcon tube Fisher Scientific 

50mL falcon tube Fisher Scientific 

12 well cell culture plates Corning, Fisher Scientific 

10, 20, 200, 1000L pipette tips Rainin 

Pasteur pipettes VWR 

1.5mL Superlock Microcentrifuge tube Starlab 

1.5mL Eppendorf Fisher Scientific 

0.5mL Eppendorf Fisher Scientific 

1.5mL Cryogenic tubes  Corning 

Freezer boxes  Camlab 

70M cell strainer Fisher Scientific 

Nunc® MicroWell™ 96-Well Plates, 

Polypropylene, High Volume (used in this work 

for Mass cytometry barcoding) 

 

Thermo Fisher Scientific 

 

2.3 Reagents 

Table 2-5|General reagents, company and catalogue number 

Reagent Company Catalogue number  

Maxpar Cell acquisition 

solution buffer 

Fluidigm 201240 

Cell-ID™ Intercalator-Ir—125 

µM 

 

Fluidigm 201192A 

Deionized water - - 

EQ™ Four Element Calibration 

Beads 

Fluidigm 201078 

Gibco Phosphate buffered 

Saline Solution, pH 7.4 

ThermoFisher Scientific 10010-023 

DMSO Sigma D2650-100ML 
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EDTA ThermoFisher Scientific 15575020 

Fetal bovine serum (FBS) ThermoFisher Scientific 10100147 

L-glutamine 200mM ThermoFisher Scientific 25030081 

Lymphoprep Stemcell Technologies 07861 

autoMACS Running Buffer – 

MACS Separation buffer 

MACS Miltenyi Biotec 130-091-221 

Maxpar Cell Staining buffer Fluidigm 201068 

Maxpar Water  Fluidigm 201069 

Methanol  Merck 179337-1L 

OneComp 

ebeads™Compensation beads 

ThermoFisher Scientific 01-1111-41 

Pierce™ 16% Formaldehyde 

(w/v), Methanol-free 

ThermoFisher Scientific 28908 

Penicillin-Streptomycin Merck P4333-100ML 

Fixation/Permeabilisation 

Solution kit 

BD Biosciences 554714 

RPMI 1640 media ThermoFisher Scientific 11875093 

Trypan blue  Sigma Aldrich 93595 

Viability fixable stain 780  BD Horizon 565388 

 

2.3.1 Immunophenotyping panel for mass cytometry 

Table 2-6| Metal lanthanides abbreviation for mass cytometry 

Periodic table abbreviation for lanthanide 

metal isotope 

Lanthanide metal isotope 

170Er Erbium-170 

145Nd Neodymium-145 

146Nd Neodymium-146 

209Bi Bismuth-209 

166Er Erbium-166 

160Gd Gadolinium-160 

148Nd Neodymium-148 

142Nd Neodymium-142 

149Sm Samarium-149 

167Er Erbium-167 

158Gd Gadolinium-158 
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172Yb Ytterbium-172 

162Dy Dysprosium-162 

89Y Yttrium-89 

169Tm Thulium-169 

171Yb Ytterbium-171 

173Yb Ytterbium-173 

176Yb Ytterbium-176 

168Er Erbium-168 

151Eu Europium-151 

163Dy Dysprosium-163 

147Sm Samarium-147 

175Lu Lutetium-175 

161Dy Dysprosium-161 

156Gd Gadolinium-156 

165Ho Holmium-165 

153Eu Europium-153 

174Yb Ytterbium-174 

154Sm Samarium-154 

155Gd Gadolinium-155 

144Nd Neodymium-144 

152Sm Samarium-152 

159Tb Terbium-159 

150Nd Neodymium-150 

141Pr Praseodymium-141 

143Nd Neodymium-143 

164Dy Dysprosium-164 

 

Table 2-7| Mass cytometry immunophenotyping panel for this study 

Antibody Clone Host, 

Isotype 

Metal 

conjugation 

Company Catalogue 

number 

Dilution 

CD3 UCHT1 Mouse 

IgG1, κ 

170Er Biolegend 300443 1:100 

CD4 RPA-T4 Mouse 

IgG1, κ 

145Nd Biolegend 300541 1:100 

CD8 RPA-T8 Mouse 

IgG1, κ 

146Nd Biolegend 301053 1:100 

CD11b ICRF44 IgG1 209Bi Fluidigm 3209003B 0.5:100 
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CD11c 3.9 Mouse 

IgG1, κ 

166Er Biolegend 301639 1:100 

CD14 61D3 Mouse 

IgG1, κ 

160Gd Thermo Fisher 

Scientific 

14-0149-80 1:100 

CD16 3G8 Mouse 

IgG1, κ 

148Nd Biolegend 302051 1:100 

CD19 HIB19 Mouse 

IgG1, κ 

142Nd Biolegend 302247 1:100 

CD25 M-A251 Mouse 

IgG1, κ 

149Sm Biolegend  356102 2:100 

CD27 O323 Mouse 

IgG1, κ 

167Er Biolegend 302839 1:100 

CD28 CD28.2 Mouse 

IgG1, κ 

158Gd Biolegend 302902 1:100 

CD38 HIT2 Mouse 

IgG1, κ 

172Yb Biolegend  303535 1:100 

CD40 HB14 Mouse 

IgG1, κ 

162Dy Biolegend 313002 1:100 

CD45 HI30 Mouse 

IgG1, κ 

89Y Fluidigm 304045 0.5:100 

CD45RA HI100 Mouse 

IgG2b, κ 

169Tm Biolegend 304143 1:100 

CD45RO UCHL1 Mouse 

IgG2a, κ 

171Yb Biolegend 304239 1:100 

CD56 CMSSB Mouse 

IgG1, κ 

173Yb Thermo Fisher 14-0567-82 1:100 

CD80 MEM-233 Mouse, 

IgG1 

176Yb Biorad MCA2071 1:100 

CD86 FUN-1 Mouse 

BALB/c 

IgG1, κ 

168Er BD Biosciences 555655 1:100 

CD123 6H6 Mouse 

IgG1, κ 

151Eu Biolegend 306027 1:100 

CD127 A019D5 Mouse 

IgG1, κ 

163Dy Biolegend 351337 1:100 

CD138 MI15 Mouse 

BALB/c 

IgG1, κ 

147Sm BD 551902 1:100 

CD152 (CTLA-4) L3D10 Mouse 

IgG1, κ 

175Lu Biolegend 349902 1:100 

CD161 DX12 Mouse, 

C3H/Bi 

IgG1, κ 

161Dy BD 556079 1:100 

CD203c NP4D6 Mouse 

IgG1, κ 

156Gd Biolegend  324602 1:100 

FCRIα AER-37 (CRA-1) Mouse 

IgG2b, κ 

165Ho Biolegend 334602 1:100 
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Granzyme B GB11 Mouse, 

IgG1 

153Eu Biorad MCA2120 1:100 

HLA-DR L243 Mouse 

IgG2a, κ 

174Yb Biolegend 307651 1:100 

IgD IA6-2 Mouse 

IgG2a, κ 

154Sm Biolegend  348202 1:100 

NKp44 P44-8 Mouse 

IgG1, κ 

155Gd Biolegend 325102 1:100 

NKp46 9-E2 Mouse 

BALB/c 

IgG1, κ 

144Nd BD Biosciences 557911 1:100 

PD-1 EH12.2H7 Mouse 

IgG1, κ 

152Sm Biolegend 329941 1:100 

PDL1 MIH1 Mouse 

IgG1, κ 

159Tb Thermo Fisher 14-5983-82 1:100 

Perforin dG9 Mouse 

IgG2b, κ 

150Nd Biolegend 308102 1:100 

TNFR2 3G7A02 Rat IgG2a, 

κ 

141Pr Biolegend  358402 1:100 

Va7.2 3C10 Mouse 

IgG1, κ 

143Nd Biolegend 351702 1:100 

TCR B1 Mouse 

IgG1, κ 

164Dy Biolegend 331202 1:100 

 

2.3.2 Immunophenotyping panel for flow cytometry 

Table 2-8| Mass cytometry immunophenotyping panel for this study 

Antibody Clone Host, 

Isotype 

Fluorescence 

conjugation 

Company Catalogue 

number 

Dilution 

CD3 UCHT1 Mouse 

BALB/c 

IgG1, κ 

Brilliant Violet 421 BD Horizon 562426 1:100 

CD4 RPA-T4 Mouse 

IgG1, κ 

APC/Cy7 Biolegend 300517 1:100 

 

CD8 RPA-T8 Mouse 

IgG1, κ 

Alexa Fluor 700 BD Pharmingen 561453 1:100 

CD11b D12 Mouse 

BALB/c 

IgG2a, κ 

PE BD Biosciences 347557 1:100 

CD11c 3.9 Mouse 

IgG1, κ 

FITC Biolegend 301603 1:100 

CD14 M5E2 Mouse 

IgG2a, κ 

Alexa Fluor 700 BD Pharmingen 557923 1:100 

CD16 3G8 Mouse 

IgG1, κ 

Pacific blue Biolegend  980106 1:100 
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CD19 HIB19 Mouse 

IgG1, κ 

Brilliant Violet 421 BD Horizon 562440 1:100 

CD25 M-A251 Mouse 

BALB/c 

IgG1, κ 

PE BD Pharmingen 555432 1:100 

CD27 O323 Mouse 

IgG1, κ 

PE Biolegend 302807 1:100 

CD28 CD28.2 Mouse 

IgG1, κ 

PE Biolegend 302901 1:100 

CD38 HIT2 Mouse 

IgG1, κ 

PE Biolegend 303505 1:100 

CD40 HB11 Mouse 

IgG1, κ 

PE Biolegend  313005 1:100 

CD45 HI30 Mouse 

IgG1, κ 

PECy7 BD Pharmingen 557748 1:100 

CD45RA HI100 Mouse 

IgG2b, 

κ 

PC5.5 Biolegend 304110 1:100 

CD45RO UCHL1 Mouse 

IgG2a, 

κ 

PE Biolegend 304205 1:100 

CD56 CMSSB Mouse 

IgG1, κ 

APC Thermo Fisher 

Scientific 

17-0567-42 1:100 

CD80 MEM-233 Mouse, 

IgG1 

APC Thermo Fisher 

Scientific  

A15707 1:100 

CD86 FUN-1 Mouse 

BALB/c 

IgG1, κ 

Brilliant Violet 510 BD Horizon  563461 1:100 

CD123 6H6 Mouse 

IgG1, κ 

FITC Biolegend 306013 1:100 

CD127 R34.34 Mouse, 

IgG1 

PE Novus Biologicals DDX0700P-100 1:100 

CD138 MI15 Mouse 

IgG1, κ 

PE Biolegend 356503 1:100 

CD152 (CTLA-4) L3D10 Mouse 

IgG1, κ 

PE Biolegend  349905 1:100 

CD161 DX12 Mouse, 

C3H/Bi 

IgG1, κ 

PE BD Pharmingen  556081 1:100 

CD203c NP4D6 Mouse 

IgG1, κ 

Alexa 647 Biolegend  324625 1:100 

FCRIα AER-37 (CRA-1) Mouse 

IgG2b, 

κ 

FITC Biolegend 334607 1:100 

Granzyme B GB11 Mouse, 

IgG1 

PE ThermoFisher 

Scientific  

GRB04 1:100 

HLA-DR Immu-357 Mouse, 

IgG1 

FITC Beckman Coulter IM1638U 1:100 
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IgD IA6-2 Mouse 

IgG2a, κ 

PE Biolegend  348203 1:100 

NKp44 P44-8 Mouse 

IgG1, κ 

PE Biolegend  325107 1:100 

NKp46 9E2 Mouse 

BALB/c 

IgG1, κ 

PC5.5 BD Biosciences 557991 1:100 

PD-1 EH12.2H7 Mouse 

IgG1, κ 

FITC Biolegend 329903 1:100 

PDL1 MIH1 Mouse 

BALB/c 

IgG1, κ 

PE BD Pharmingen 557924 1:100 

Perforin dG9 Mouse 

IgG2b, 

κ 

PerCP/Cyanine 5.5 Biolegend 308113 1:100 

TNFR2 3G7A02 Rat 

IgG2a, 

κ 

PE Biolegend 358403 1:100 

Va7.2 3C10 Mouse 

IgG1, κ 

PE Biolegend 351705 1:100 

TCR B1 Mouse 

IgG1, κ 

FITC Biolegend  331207 1:100 

2.3.3 Reagent kits 

Table 2-9|Mass cytometry antibody conjugation reagents and equipment, Fluidigm catalogue 
number 201300 

Product supplied with kit Volume (for 40 reactions) 

R- Buffer 60mL 

C-Buffer 55mL 

L-Buffer 14mL 

W-Buffer 80mL 

Maxpar Polymer® 40 tubes 

Lanthanide solution 200μL 

Table 2-10|Additional reagents required for antibody conjugation not provided with kit 

Reagents Company Catalogue number 

Antibody stabiliser Candor Bioscience 

GmbH 

131125 

Cell staining buffer  Fluidigm 201068 

100g of each antibody As specified As specified 

0.5M TCEP: Pierce ™ 

Bond-Breaker® TCEP 

solution  

Thermo Fisher Scientific  77720 
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Table 2-11|Antibody conjugation with lanthanide metal equipment 

Equipment required for mass 

cytometry antibody conjugation 

Company Catalogue 

number (if 

applicable)  

Thermo shaker PHMP-4 Grant-Bio  n/a 

Microcentrifuge Centrifuge 5415D 

Eppendorf 

n/a 

Amicon Ultra 0.5mL 50K Millipore UFC505096 

Amicon Ultra 0.5mL 3K Millipore UFC500396 

 

Table 2-12|Fluidigm, Cell-ID™ 20-Plex Pd Barcoding kit 

Product supplied with kit (catalogue 

number 201060) 

Volume provided (for 60 samples) 

3 sets of 20 barcodes in PCR tubes  10L each 

Maxpar ® Fix I Buffer (5x) 15mL 

Maxpar Cell Staining Buffer 500mL 

Maxpar 10x Barcode Perm Buffer 50mL 

Maxpar PBS 500mL 

 

Table 2-13|Plasmablast differentiation reagents 

Reagent Company  Catalogue number 

Leucosep tubes  Greiner Bio One 227288 

Total B cell isolation kit II, human Miltenyi Biotec 130-091-151 

MACS LS columns Miltenyi Biotec 130-042-401 

QuadroMACS Separator  Miltenyi Biotec 130-090-976 

IL-21 Peprotech 200-21 

Mega CD40L soluble human recombinant Enzo Life Sciences ALX-522-110-C010 

2.4 Methods 

2.4.1 Justification for antibodies selected for mass cytometry 

The antibodies that were chosen for mass cytometry were selected for comprehensively 

immunophenotyping abundant and rarer populations of cells in blood samples. The decision was 

made to not stimulate the blood samples obtained from patients or healthy donors, but to keep the 

samples in their original biological context to observe the cellular populations. In addition, logistical 
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factors meant that a cytokine/chemokine panel could not be devised because mass cytometry 

requires samples to be processed fresh and not frozen. Whilst many antibodies have been 

conjugated successfully for mass cytometry, it is still limited in comparison to the possibilities 

available to flow cytometry. Although all antibodies were validated before applying to samples, 

some antibodies were already approved by the Fluidigm Immune Monitoring kit which provided 

confirmation for a novel technology.  

2.4.2 Flow cytometry 

2.4.2.1 Preparation of peripheral blood mononuclear cells from whole blood 

Lithium heparinised coagulated whole blood was collected from healthy volunteers and processed 

for PBMCs by density gradient centrifugation. Using sterile, aseptic techniques in a category 1 tissue 

culture hood, blood was diluted at a 1:1 volume with PBS and slowly layered at a 45 angle onto the 

density gradient medium Lymphoprep™ and subsequently centrifuged for 20 minutes at room 

temperature with acceleration brake set at 5 and deceleration brake set at 0. After centrifugation, 3 

layers can be observed with the top layer consisting of plasma, a middle layer consisting of the buffy 

coat containing the PBMCs and a bottom layer consisting of red blood cells and granulocytes. The 

buffy coat was removed by Pasteur pipette and placed into a new tube and washed with MACS 

buffer at 200g for 10 minutes to remove any contaminating platelets. Cells were then washed again 

in MACS buffer and resuspended in RPMI-1640 media supplemented with 10% FBS and 1% penicillin 

streptomycin. Cell count was obtained by using a haemocytometer and viability was assessed by 

trypan blue. Total cell number was calculated using the following equation below: 

Total cell number = Cell count x 104 x volume of media x trypan blue dilution 

2.5 CD138 plasmablast cell differentiation 

2.5.1 Purified B cell isolation and labelling 

This protocol was kindly provided by UCB Pharma, Slough. 20mL lithium heparinised coagulated 

whole blood was obtained from 1 healthy donor. Blood was diluted 1:1 using sterile PBS. Diluted 

blood was layered onto Leucosep tubes in a vertical manner aiming for the centre of the tube and 

centrifuged at 800g for 15 minutes with acceleration set at 3 and deceleration set at 3. The interface 

layer of PBMCs was collected in a fresh 50mL falcon tube and the volume made up to 50mL by PBS. 

Samples were centrifuged at 300g for 8 minutes with the acceleration and deceleration set to the 

maximum speed. Supernatant was discarded and the cell pellet was resuspended in 6mL PBS. 10µL 

of cells were taken and counted using a haemocytometer by diluting 1:1 with trypan blue. Cell 

suspension was centrifuged at 300g for 5 minutes. The supernatant was discarded and the pellet 

resuspended in RPMI-1640 media supplemented 10% FBS, 1% L-glutamine and 1% Penicillin 

Streptomycin and centrifuged at 300g for 5 minutes. The cell pellet was resuspended in 40µL of 

MACS buffer per 107 cells and 10µL biotin cocktail per 107 cells and incubated for 5 minutes in the 

refrigerator. After incubation, an additional 30µL MACS buffer per 107 cells and 20ul anti-biotin 

MicroBeads per 107 cells were added to the cell suspensions and incubated for 10 minutes at 4°C. LS 

columns were placed in a QuadroMACS separator and washed through with 3mL of MACS buffer. 

15mL falcon tubes were set up beneath the columns ready for sample collection and 1mL of sample 
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was applied to each column and flow through collected. Columns were additionally washed with 

3mL MACS buffer and the flow through collected.  

2.5.1.1 Plasmablast differentiation assay protocol  

For differentiation of B cells into plasmablasts, 96 well u-bottom plates were plated with 200,000 B 

cells and stimulated with 10ng/mL CD40L and 50ng/mL IL-21 and incubated for 5 days at 37°C, 5% 

CO2 in a cell culture incubator. When incubation was completed, supernatant was removed and cell 

pellets were resuspended in PBS and placed in a 15mL falcon tube. The differentiated plasmablasts 

were stained for with the markers CD19, CD27, CD38 and CD138 to confirm the presence of CD138.  

2.6 Mass cytometry laboratory methods 

2.6.1 Lanthanide assignment for mass cytometry antibodies 

Lanthanides were assigned to antibodies by prior knowledge of the immunology of the expression of 

the marker. Metals that have multiple isotopes were assigned to antibodies that were not close or 

related in terms of expression. This is because the metal can become oxidised therefore causing the 

metal to contaminate the subsequent isotope channel.  

2.6.2 Antibody conjugation 

Whilst most steps remain consistent with manufacturer’s protocol, some modifications were made 

to optimise antibody yield as determined by UCB Pharma. The lanthanide and antibody steps were 

performed simultaneously. 

2.6.2.1 Antibody concentration 

Concentration of the purified carrier-free antibody concentration was determined by Nanodrop 

after blanking against the buffer they are suspended in. Filter tips were used throughout this 

protocol to prevent cross-contamination.  

2.6.2.2 Preloading the polymer with lanthanide 

The polymer reagent was spun down for 10 seconds in a microcentrifuge to ensure that the reagent 

was at the bottom of the tube. It was resuspended in 95μL of L-buffer (supplied with the Fluidigm 

Maxpar antibody labelling kit) and 5μL of lanthanide metal solution was added making the 

concentration 2.5mM in a total volume of 100μL. This solution was mixed thoroughly by pipetting 

and incubated at 37°C in a heat block for 35 minutes. 

2.6.2.3 Purifying the lanthanide-loaded polymer 

After incubation 200μL of L-buffer was added to a 3kDa filter and 100μL of the metal loaded polymer 

mixture was added to this. This was centrifuged for 25 minutes at room temperature, flow through 

discarded and repeated by adding 400μL of C-buffer to the filter and centrifuge at 12,000g for 30 

minutes at room temperature.  

2.6.2.4 Buffer exchange and partial reduction of antibody 
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Next, 100µg of stock antibody was added in up to 400μL of R-buffer to a 50kDa filter and centrifuged 

for 10 minutes at room temperature. The column flow through was discarded and 100μL of 4mM 

TCEP-R buffer was added to each antibody and mixed by pipetting. This was incubated at 37°C in a 

heat block for 30 minutes and paramount not to exceed this time as over reduction of the antibody 

would damage the epitope.  

2.6.2.5 Purifying the partially reduced antibody  

The 50kDa filter containing the partially reduced antibody was retrieved from the heat block and 

300μL of C-buffer was to the 50kDa filter to wash the antibody. This was centrifuged at 12,000g for 

10 minutes at room temperature, discard the flow through and repeat the wash by adding 400μL of 

C-buffer to the filter and centrifuge again for 12,000g for 10 minutes at room temperature.  

2.6.2.6 Conjugate the antibody with lanthanide-loaded polymer 

The 3kDa filter containing the purified lanthanide-loaded polymer from the centrifuge and the 

50kDa filter containing the purified partially reduced antibody from the centrifuge were retrieved 

and the flow-through for both was discarded. The lanthanide-loaded polymer was resuspended in 

100μL of C-buffer and the contents transferred to the corresponding partially reduced antibody in 

the 50kDa filter. This was mixed gently by pipetting and incubated at 37°C for 90 minutes.  

2.6.2.7 Washing the metal-conjugated antibody 

To wash the conjugated antibody, 200µL of W-buffer was added to the 100μL antibody conjugation 

mixture and centrifuged for 12,000g for 5 minutes and the flow-through discarded. The wash step 

was repeated for a further three times but with 400μL of W-buffer. After the final wash with W-

buffer, 80μL of W-buffer to the 50kDa filter to dilute the 20μL conjugate to a volume of 100μL. The 

solution was mixed thoroughly by pipetting and the walls of the filter rinsed with the W-buffer. The 

absorbance of the conjugated antibody was measured at 280nm against a W-buffer blank using the 

Nanodrop. The volume of antibody stabilization buffer was calculated to elute the antibody at 

0.1mg/mL. The filter was inverted in a new collection tube and half of the calculated volume of 

antibody stabiliser was added to the filter and centrifuged at 1000g for 2 minutes. This step was 

repeated with the next half of the calculated volume of antibody stabilization buffer and centrifuged 

at 1000g for 2 minutes. Antibodies were stored at 4°C ready for titration. The process yields 60% of 

the original concentration of the antibody.  

2.6.2.8 Antibody conjugation confirmation  

For each antibody, a separate 1.5mL Eppendorf tube was prepared. In each tube, one drop of 

OneComp compensation beads was added to the tube and 1L of antibody added and mixed 

thoroughly with the beads. The mixture was incubated for 10 minutes at room temperature. Next, 

1mL of Maxpar cell staining buffer was added for washing and the tube was centrifuged at 1000g for 

3 minutes. The supernatant was discarded and the wash step repeated. The pellet was then 

resuspended in 100µL CAS and acquired on the mass cytometer.  

2.6.2.9 Antibody titration  

All antibodies used for mass cytometry were titrated to ascertain the optimum concentration of 

antibody required to differentiate between the negative and positive population. To assess this, 1mL 
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of whole peripheral whole blood from one healthy donor was fixed and frozen as described in 

section 2.1.3. Antibodies were titrated at the following concentrations: 5µg/mL, 2.5µg/mL, 

1.25µg/mL, 0.625µg/mL, 0.3125µg/mL and 0.125µg/mL and collected on the mass cytometer. 

2.6.3 Compensation for mass cytometry  

As described in the previous section 2.6.2.8, antibodies were added to OneComp compensation 

beads but this time simultaneously in one tube in their titrated volume. An acquisition of 10, 000 

events on the mass cytometer were required to create a compensation matrix which can be applied 

post acquisition.  

2.6.4 Barcoding patient samples for mass cytometry 

All patient and healthy donor samples were processed on the same day to reduce staining 

variability. Forty samples were retrieved at a time from the -80C freezer and thawed in a 37C bead 

bath. Once the samples were thawed, 1mL of fixed blood or synovial fluid was added to 9mL of 1x 

permeabilisation buffer in a corresponding labelled 15mL falcon tube and left upright for 15 minutes 

at room temperature. Samples were centrifuged at 800g for 5 minutes and the supernatant 

removed by aspiration. Samples were then resuspended in 5mL dPBS/1mM EDTA. Subsequently, 

100L aliquots of each sample was removed and placed into a 0.5mL Eppendorf tube and counted 

on the automated Sysmex cell counter which had been previously validated in house to count fixed 

cells. The 15mL falcon tubes containing cells in 5mL dPBS/1mM EDTA were then stored at 4C 

overnight. The next day, cells were adjusted to 3 million cells and stored in dPBS/1mM EDTA 

overnight at 4C.  

The following day, samples were centrifuged at 800g for 5 minutes and flow through removed by 

aspiration. Samples were washed again in 5mL dPBS/1mM EDTA, centrifuged at 800g for 5 minutes 

and flow through removed by aspiration. Each sample was resuspended in 1mL barcode perm buffer 

and centrifuged at 800g for 5 minutes. Flow through was removed by aspiration and each sample 

was resuspended thoroughly in 100L of barcode perm buffer and samples were added to every 

other well of a deep V bottom 96-well plate. Each barcode was resuspended in 100L of 1x barcode 

perm buffer and transferred to the corresponding sample. Samples and barcodes were mixed 

thoroughly by multi-channel pipetting and left to incubate for 30 minutes at room temperature. 

After 15 minutes of incubation, samples were thoroughly mixed by pipetting. Plates containing the 

samples and barcodes were centrifuged at 800g for 5 minutes and using a multi-channel pipette, the 

supernatant was carefully aspirated to avoid disturbing the cell pellet. It was critical to remove the 

supernatant in its entirety to avoid unbound barcodes contaminating other samples. Cell pellets 

were washed by adding 300L of Maxpar cell staining buffer solution to each well and mixed 

thoroughly by using a multi-channel pipette. This step was repeated following centrifugation. After 

the second wash step with Maxpar cell staining buffer, each sample was resuspended in 100L of 

Maxpar cell staining buffer and combined in a 15mL falcon tube. Sample wells were rinsed an 

additional two more times to ensure maximum cell recovery. Cells were centrifuged at 800g for 5 

minutes and the supernatant discarded by aspiration. Each batch of 40 samples were stored at 4C 

in the refrigerator until all samples had been barcoded as antibody staining was to be done 

simultaneously across all barcoded samples.  

2.6.4.1 Preparation of internal batch control for barcoding 
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Each barcoding batch contained an internal batch control which was obtained from the same donor. 

The internal batch control consisted of collecting 40mL of blood. The blood was divided with 10mL 

of whole blood processed as described in section 2.4.3 which provided the unstimulated control. The 

remaining 30mL of blood was collected and processed to obtain PBMCs using the method outlined 

in section 2.5.5.1. This served as a stimulated control for activation markers included in the mass 

cytometry panel. Isolated PBMCs were stimulated in a 15mL falcon tube with 50ng/mL PMA and 

1ug/mL ionomycin for 4 hours at 37°C in a cell culture incubator. Cells were subsequently washed 

with PBS and centrifuged at 400g for 5 minutes. This was step was repeated and then cells were 

fixed with 1.6% PFA using the protocol described in 2.4.3. Subsequently, 10mL of 10% DMSO/90% 

PBS was added to the pellet and aliquoted across 10 tubes to store at -80C. These internal batch 

controls were thawed at the same time as the patient samples were prepared as described in 

section 2.5.3. At the end both the unstimulated cells and stimulated PBMCs were counted and 

1.5x106 cells of each were combined to create 1 sample containing 3x106 cells.  

 

Figure 2-1| Schematic depicting the workflow of barcoding 

2.6.4.2 Antibody staining  

After all samples had been barcoded and combined in their respective 15mL falcon tube, antibody 

staining commenced. Firstly, 100µL of Maxpar cell staining buffer was required for each sample. The 

dilution of each antibody was determined by titration. Antibodies were prepared in Maxpar cell 

staining buffer and left to incubate for 1 hour at +4°C in the refrigerator. Once the incubation was 

complete, 5mL PBS/1mM EDTA was added, and samples were centrifuged at 800g for 5 minutes. 

Supernatant was discarded, and the wash step was repeated. After another wash step, 300µL of 

chilled methanol was added to the cell pellet and the pellet left on ice for 15 minutes. After 

incubation, the pellet was centrifuged at 800g for 5 minutes and the methanol carefully aspirated 

and disposed appropriately following local safety procedures. The pellet was washed in 5mL 

PBS/1mM EDTA and centrifuged at 800g for 5 minutes. If the sample was to be run within 24 hours it 

was stored overnight in 4% PFA with 1/10,000 DNA Iridium Intercalator added at 4°C in the 

refrigerator. If the sample was to be run after 24 hours it was stored in 4% PFA in a -80°C freezer.  

2.6.4.3 Preparation of samples on the day of mass cytometry 
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On the day of acquisition, the sample was thawed at room temperature and once defrosted, 1/5000 

DNA Iridium Intercalator was added and the sample incubated for 1 hour at 4°C in a refrigerator. 

Following the incubation, 5mL of PBS/1mM EDTA was added to the sample and centrifuged at 800g 

for 5 minutes and the supernatant discarded. The pellet was washed in 5mL PBS/1mM EDTA and 

centrifuged at 800g for 5 minutes. The supernatant was discarded and the sample was resuspended 

in 5mL PBS/1mM EDTA. 1mL of sample was removed and placed into a fresh tube. This 1mL of 

sample was centrifuged at 800g for 5 minutes and the supernatant discarded. The pellet was 

resuspended in 1mL of CAS and the remaining 4mL of sample were stored at 4°C in a refrigerator. 

The 1mL of sample was subsequently acquired on the mass 

 cytometer and the remaining 4mL of sample was processed in the same way until all sample was 

used to completion. 

2.6.5 Data acquisition on mass cytometer 

The mass cytometry machine was turned on daily and calibrated with EQ beads. Set up, calibration 

and pass checks took between 1.5-2 hours daily. Each day a new nebuliser was attached to the 

sample line to ensure that the nebuliser was free of any contaminating material to prevent 

blockages. Before acquisition began with samples, Maxpar water was run through the sample line 

for 5 minutes, followed by CAS buffer for 5 minutes.   

Each barcoded batch was run where possible to completion over 2 consecutive days. It was 

important to run the samples over consecutive days to reduce any variability in antibody staining. 

Samples were run at a rate of 300 events per second to reduce the formation of doublets and 

collection took place over 8 hours.  

2.7 Data analysis  

2.7.1 Normalization and concatenation of files 

After acquisition, .fcs files were normalized to correct for any signal discrepancies. Sample batches 

were normalized according to the internal reference determined by the EQ beads using the Fluidigm 

Normalizer built into the Mass cytometry2 v.6.0.626 software, Passport P13H2302_ver2 (User Guide 

UG13-02_150501). Once files were normalized, they were concatenated to create one file for each 

barcoded batch.  

2.7.2 Debarcoding 

Each file was debarcoded using The Debarcoder software provided by Fluidigm v6.7.1014. The 

minimum Barcode Separation value was set to 0.12 as the optimum cut-off for distinguishing single 

cells from doublets and debris. The Mahalanobis Distance was not altered from default as it was not 

necessary to perform a secondary filter to remove aggregates.  

2.7.3 R Studio and statistical analysis 

R studio was downloaded through the R studio open platform https://rstudio.com/ The version of R 

Studio used in this study was ‘R version 3.6.2 (2019-12-12)’ and scripts were run on a UCB provided  

HP Elitebook Folio 1040 G3 laptop, Intel® Core™ i5-6300U CPU @ 2.40GHz, 2496MHz, 2 Core(s), 4 

Logical Processor(s). The scripts used for automated gating and compensation matrix were 

https://rstudio.com/
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developed by Dr Emma Sutton at UCB. The normalisation script was adapted from the CytoNorm 

script 175 and can be found in full in Appendix III. The complete R Studio scripts used for the analysis 

in this study are in the supplementary section of this document.  

To visualise the cell populations across all the samples the Diffcyt script was run in R studio. Samples 

were analysed according to the hypothesis as the computing power was limited to run all samples at 

simultaneously. It was ensured that the files were simultaneously prepared through the automated 

gating, compensation matrix and normalisation scripts to minimise signal staining discrepancies 

when analysing through Diffcyt.  

The Diffcyt script was developed by Nowicka et al as an approach for analysing data from mass 

cytometry 166,176. An automated data analysis approach using the Diffcyt script was selected due to 

the number of samples to analyse and applying a consistent approach for gating and clustering of 

cell populations which reduces bias which may increase if done by manual gating. Furthermore, 

small and rare cell populations can be overlooked if manual gating is initially applied. The Diffcyt 

script is not a fully automated script therefore encouraging the user to manually check the outcomes 

of each step to remove computer bias.  

The Diffcyt script incorporates many of the features associated with single cell data analysis. Sample 

files were selected that best answered the hypothesis being tested and placed into a folder. To begin 

in Diffcyt, sample files were down sampled to the same number of events which would be 

determined by the file which had the lowest number of events. An excel file which contains 

information on the sample name, sample category (e.g. healthy, early RA, refractory RA) is uploaded 

into the script and a separate file containing the phenotyping markers and whether they are lineage 

and/or functional (denoted by a 1 if applicable or 0 if not). The first set of plots is a staining plot for 

each sample against all markers to observe if there are any obvious differences in marker 

expression. At this stage, if there are differences in expression it can be assessed whether these 

differences can be attributed to batch variation affects or if these differences may be biological. If it 

is thought that the differences are due to batch variation, staining profiles for samples need to be 

checked in Flowjo. In this study, staining profiles for all markers were checked after the application 

of the normalisation algorithm CytoNorm. It was observed that the staining expression for CD11b 

and CD16 fluctuated across batches which was rectified by CytoNorm. 

Once staining expression across all markers and samples is confirmed, a multidimensional scaling 

(MDS) plot which visualises similarity in individuals of a dataset. Individuals are plotted on an 

abstract Cartesian axis scatterplot with marker expression being the measure of similarity. The MDS 

plot performs a global analysis to observe if there are any similarities in the samples and whether a 

trend can be observed. If nothing is observed by the MDS plot, this does not mean that there is no 

pattern or trend within the dataset, but it indicates that should there be any trends or differences, 

these may be more subtle.  

The Diffcyt script incorporates the unsupervised clustering algorithm FlowSoM (Flow self-organising 

map) which can cluster millions of cells within minutes without the need for further sub setting. 

Clusters obtained from FlowSoM are labelled by the user and these labelled cell populations are 

visualised on tSNE1 and tSNE2 Cartesian axes. Once the unsupervised clustering step is completed, 

statistical testing can be performed to obtain a p value. The p value for significance can be set within 

the script and for this study a p value of ≤0.05 was significant.   

The statistical testing is performed in two parts. Differential testing for cell population abundance 

and differential expression across the functional markers in each cell population uses the edge R 
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statistical package to fit models and calculate moderated tests at the cluster level 176. These 

moderated tests improve power by sharing information on variability across clusters and return 

values in the form of raw p-values which is adjusted to account for false discovery rate 176. For 

differential abundance, the data is represented as boxplots with percentage of cells denoted on the 

y axis and condition on the x axis. For differential expression the median expression of markers are 

measured on the y axis and the functional markers are measured on the x axis.  

To confirm the findings from mass cytometry analysis, .fcs files were analysed in FlowJo version 

10.7.1 to confirm populations using biaxial gating.  
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Chapter 3 Antibody clone validation 

3.1 Introduction 

3.1.1 Optimisation and selection of antibody clones for novel technologies 

Mass cytometry is a novel technique when compared to flow cytometry with the clear advantage of 
including more markers in one panel. This provides the opportunity to either immunophenotype 
multiple cell populations or to comprehensively immunophenotype specific cell populations of 
interest. However, the flow cytometry field has further advanced and established protocols exist for 
immunophenotyping. Despite this, protocols can vary across different research groups due to the 
particular sample (e.g. patient tissue/cell line), methods used to handle and process the sample, the 
combination of markers to be analysed, controls included and the specific flow cytometer used for 
acquisition 177. Although this list of variables is not exhaustive, it serves to highlight how 
inconsistencies can affect the antibody staining, which is measured by the cytometer before 
biological variation can even be considered. If the antibody staining fluctuates across samples, it can 
pose challenges when analysing data and drawing conclusions.  

One of the drawbacks within the flow cytometry field is protocols can differ between groups even if 
similar biological samples and markers are used. This makes it difficult to compare findings let alone 
replicate findings although inclusion of validation data and controls used for flow cytometry 
experiments are part of the requirements to publish in many journals 178.  In flow cytometry, the 
expansion of panels and thus the inclusion of more markers has been gradual. It is only within the 
last decade that the increase of more markers (panels consisting of ≥10 markers) has become 
possible, creating the need for robust validation. As mass cytometry is regarded as a novel 
technique, there is encouragement within the field to streamline protocols for end users with 
concerted efforts to communicate new methods conveyed through publications, webinars and 
online resources. Mass cytometry is a field that is gaining more traction with the possibility of 
yielding new insights for many diseases, and has become increasingly accessible for many 
researchers leading to book chapters and textbooks compiling the latest approaches and protocols 
within mass cytometry 179,180.  

In this project it was important to validate all antibody clones to ensure that they bound specifically 
to the epitope of interest. All antibody markers were tested by flow cytometry, in order to evaluate 
the specificity of the target epitope being bound to the antibody. If antibody markers detected the 
specific epitope by an established technique such as flow cytometry, this would provide assurance 
that the antibody markers would be successful in mass cytometry. Testing antibody markers by flow 
cytometry is cost effective as testing clones initially by mass cytometry would be expensive and an 
inefficient use of resource.  

Sample processing for mass cytometry is similar to flow cytometry although there are some caveats 
that are specific to mass cytometry. One of the key steps in preparing samples for mass cytometry is 
applying a fixative to samples. In flow cytometry, extracellular surface markers are often 
immunophenotyped without the application of a fixative. However, with logistical practicalities to 
take into consideration, (this study was geographically split between Leeds and Slough) it was not 
possible to acquire these samples on the mass cytometer on the same day as collection and 
processing. Therefore, whole blood and synovial fluid was immediately fixed with 1.6% 
paraformaldehyde, washed with phosphate buffered saline, and aliquoted into cryovials to be stored 
at -80°C until it was possible to acquire on the mass cytometer. This fixation process allows for many 
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cell types to be preserved and minimises cell loss. This method will be referred to as the ‘fix freeze 
method’. As the samples were instantly fixed on the day, a cell viability marker was not included. 

The fix freeze method has been published by groups who have established mass cytometry protocols 
and was further validated in-house at UCB Pharma 181. I validated the technique to ensure uniform 
processing across all samples for the purpose of this study. Before the fix freeze technique was 
applied to the samples, peripheral blood was obtained from one healthy donor to compare antibody 
staining on fresh samples compared with antibody staining on samples that have been processed by 
the fix freeze method. In flow cytometry, antibody markers could not be run simultaneously due to 
the limited channels so antibody markers were validated in smaller panels where the antibody 
markers included would identify the corresponding cell populations. For some of the antibody 
clones, several clones were validated to determine which clone had the best specificity. Antibody 
markers for flow cytometry from reputable companies are often extensively tested in both fixed and 
unfixed conditions but this should be confirmed by the end user for the specific sample type and 
processing methods used. The clones shown in the results section will be the final clones that were 
selected for this study and it is anticipated that findings from this study can be replicated. 
Furthermore, it is hoped that the protocols can be easily translated from a laboratory setting to a 
clinical setting diagnostic setting should future findings become clinically relevant.     

The 37 antibody markers selected for this study was to broadly immunophenotype immune cells in 
peripheral blood and synovial fluid from patient with RA. The immunophenotyping panel in this 
study consisted of a combination of markers that have been well profiled in flow and mass 
cytometry literature alongside known but less characterised markers. It was only possible to include 
surface markers for the immunophenotyping panel as the samples were fixed with 
paraformaldehyde during the processing step. Due to logistical practicalities, it was decided that 
intracellular cytokines and chemokines would not be included in immunophenotyping panels. 
Primarily this was due to the cohort mainly comprising of peripheral blood. In order to capture 
intracellular cytokine and chemokine activity, this would require an additional stimulation step and 
access to the mass cytometer on the same day which was not possible. Intracellular staining by flow 
cytometry is a technique that would require a significant amount of validation especially if novel 
chemokines/cytokines are to be included in panels. Therefore staining for chemokines and cytokines 
by mass cytometry was beyond the scope of this study despite published reports including RA, 
including chemokines and cytokines in their mass cytometry panel design 157,182,183. 

Gating strategy and staining profiles within mass cytometry requires experience and familiarity with 
single cell staining plots. Familiarity with these plots improve over time but initial training and 
guidance for the researcher are required to achieve a level of confidence when interpreting 
cytometry data. Numerous papers reporting various markers have demonstrated gating strategies 
by flow cytometry. These are widely available and can serve as an initial reference point for 
comparing staining profiles and gating strategy although variables as outlined earlier must be taken 
into consideration. However, differences in gating and staining profiles exist in mass cytometry 
compared to flow cytometry. Firstly, mass cytometry does not possess the light scatter properties 
which are the forward and side scatter parameters. The light scatter properties are independent to 
antibody markers and can be used to profile lymphocytes, monocytes and granulocytes present in 
one sample. This is present in flow cytometry and although not exclusively used or relied upon, can 
be an initial approach for gating strategy which cannot be easily applied to mass cytometry. 
However, the light scatter properties become less relevant if samples have been fixed as was the 
case in this study. In mass cytometry, cells undergo a harsher process during acquisition whereby 
they are vaporized, atomised and ionized before the staining signal is recorded, making the binding 
specificity of antibody markers crucial in order to identify cell populations. In turn, the antibody 
staining informs the data analysis downstream which commonly incorporates unsupervised analysis 
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through bioinformatics and computer algorithms; thus the specificity of antibody staining is 
important when interpreting results and forming conclusions. 

3.2 Results 

3.2.1 Flow cytometry light scatter properties are redundant with fix freeze 

processed samples 

Sample preparation for mass cytometry used the fix freeze method on whole blood and synovial 

fluid cells which comprises of fixing the samples on day of collection from the clinic with 1.6% 

paraformaldehyde and storing at -80°C until required for acquisition by thawing the sample for  

mass cytometry. This processing method changes the cellular profile visually when compared to a 

freshly processed sample which consists of lysing red blood cells, washing with phosphate buffer 

saline, staining with antibodies and acquiring events on the flow cytometer. Methods for this 

process are fully detailed in Chapter 2. The difference in cellular profiles affected by the processing 

method can be observed during the acquisition process on the flow cytometer and subsequently 

data analysis in the single cell analysis software Flowjo shown in Figure 3-1. This is particularly 

noticeable when viewing the cells against the forward and light scatter properties. As mentioned 

earlier, these light scatter properties are not present in mass cytometry but by flow cytometry 

demonstrate the affect of processing methods on the cellular profile. This is a widely known 

phenomenon in the cytometry field and Figure 3-1 illustrates the impact that processing methods 

have on cells. 

 

Figure 3-1|Comparison of fresh and fixed whole blood from the same donor against light scatter 
parameters. 

(figure legend on next page) 
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Whole blood from the same donor was processed by two different methods and acquired on the same day. Freshly 
processed blood prepared for flow cytometry was run on the Cytoflex S where 100,000 events were collected. 
Granulocytes, monocytes, and lymphocytes populations can be observed based on the forward and side scatter light 
properties. In contrast, when the blood sample was processed by 1.6% paraformaldehyde fixation, frozen at -80°C and 
subsequently thawed (fix freeze process), the light scatter parameters can no longer be relied upon to distinctly identify 
granulocytes, monocytes and lymphocytes with the cell populations resulting in a condensed profile. In both the profiles, a 
population with high SSC-A  (which sit above the granulocyte population) can be observed. It is uncertain what this 
population of cells are although speculative analysis suggests that these could be eosinophils but this has not been 
confirmed by comprehensive immunophenotyping. The two profiles are for illustrative purposes only but underscores the 
importance of robust immune markers to identify cell populations and to not be reliant upon light parameters. Analysis 
done using FlowJo software version 10.7.1    FSC-A forward side scatter area, SSC-A side scatter area 

In a freshly processed blood sample acquired on the flow cytometer, using the light scatter 

parameters, three broad immunological cell populations can be observed which is often a starting 

point for basic flow cytometry training and serves as an introduction to gating and general 

visualisation of flow cytometry data. Granulocytes typically consisting of neutrophils, have a larger 

scatter profile compared to the lymphocyte and monocyte populations. The granulocyte population 

is typically the largest immune cell population in whole blood shown as 46% followed by 

lymphocytes (39.9%) and monocytes (5.67%) in Figure 3-1. In health, these cell percentages can 

subtly vary for each donor, but the pattern is broadly similar, with the granulocyte population 

comprising the largest immune cell population in blood. However, this distinction of granulocytes, 

monocytes and lymphocytes are absent with the fix freeze processing method when looking at the 

cell events against the forward and side scatter parameters. The cellular profile condenses to the 

lower left corner of the axes demonstrating that the cells do not retain their shape after undergoing 

fixation and freezing processes. The loss of cell shape is not an issue and does not compromise the 

integrity or the interpretation of the data but strengthens the need for robust and reliable 

antibodies to identify cell populations.  

3.2.2 CD45+ single cell gating strategy for flow cytometry 

To analyse the antibody clones, a two-step initial gating strategy was applied which consisted of 

removing the doublet cells and debris using the forward scatter area and height parameters and 

gating on the CD45+ cell population which is present on all differentiated haematopoietic cells and 

absent on erythrocytes (Figure 3-2). The gating profile for freshly processed whole blood and fix 

freeze whole blood is shown in Figure 3-2 to demonstrate the cell profiles from the same healthy 

donor.   
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Figure 3-2|Gating strategy to obtain single cell CD45+ cell population in peripheral whole blood 

Gating strategy shown for both fresh and fixed frozen processed whole blood from the same donor to obtain a single cell 
CD45+ population. Analysis done using FlowJo software version 10.7.1   FSC-A forward side scatter area, SSC-A side scatter 
area, FSC-H forward side scatter height, PECy7 Phycoerythrin-Cyanine 7 

3.2.3 Validation of antibody clones by flow cytometry 

The same healthy donor was used for all antibody marker clone validation experiments to determine 

how the staining pattern appears in whole blood in health without any activation of cells. Due to the 

limitation of the flow cytometer as to the number of fluorophore channels that can be analysed in 

one panel it was decided to run each marker separately with CD45 only. This was the simplest way 

to assess the specificity of the antibody marker removing the complication of panel designs to 

accommodate fluorophores and compensation calculation. Each clone used in this study is detailed 

in Chapter 2. Fresh and fix freeze methods were applied to each antibody to compare percentage of 

cells staining positive for the marker and these have been adjacently positioned to compare the 

staining profiles. Freshly processed and fix freeze processed blood was run separately on the flow 

cytometer. Due to the effects of the fix freeze on the cells, the axes within the FlowJo analysis 

software were set to a biexponential scale.  As anticipated, the process of fixing and freezing 

samples results in partial cell loss when compared to freshly processed samples. However, the fix 

freeze method was applied to all samples acquired on the mass cytometer thus removing this 

variation in cell percentage. Each marker was gated against CD45 to assess the staining profile. After 

applying the initial clean up gating (shown in Figure 3-2) the markers were assessed against CD45 to 

view their staining profiles (Figure 3-3). For freshly processed whole blood the percentage of cells for 

CD3, CD19, CD8a and IgD were 28.3%, 5.97%, 17.9% and 4.05% respectively whereas for fix freeze 
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processed whole blood the percentage of cells were 23.2%, 4.49%, 16% and 3.71% respectively. 

Therefore, fix freeze processing leads to a decreased percentage in positive cell staining for samples 

when compared to fresh processing. However, the markers clearly define a positive population and 

the cell percentages are comparable with fresh processed sample.     

CD3 is an important marker in this study as it is used to identify the T cell population. The design of 

the antibody panel has many markers that would subset out T cells making it crucial for the CD3 

marker to be specific. The CD3 marker separates the T cell population distinctly in a heterogeneous 

population of cells in both fresh and fix freeze sample processing conditions. Similarly, CD19 is a 

marker that has been selected to identify the B cell population. It was decided to use CD19 as a 

generic marker for B cells rather CD20 which can also be used either in conjunction with CD19 or as 

a substitute as some patients with RA are receiving the treatment Rituximab which targets CD20 on 

B cells. A large proportion of studies that immunophenotype T and B cells either isolate T or B cells 

from the blood prior to immunophenotyping to ensure the population of cells being assessed by 

cytometry techniques are already a ‘pure’ population with no other immune cell populations 

included. Alternatively, another approach is to isolate the lymphocyte and/or monocyte cell 

populations from blood and remove the granulocyte population as these are often seen as an 

expendable cell population due to their large number. However, the scope of mass cytometry allows 

for a more encompassing approach which means that the role of B and T cells amongst other cell 

populations gives us a more realistic ‘snapshot’ of the cellular interaction within health and disease. 

CD8a is a marker can be used to identify various cell populations, but it is commonly used to 

immunophenotype cytotoxic T cells. In addition, CD8a is also expressed on a population of natural 

killer (NK) cells and MAIT cells.  

IgD is used to identify various subpopulations of B cells. IgD is an immunoglobulin that is expressed 

on naïve B cells and the loss of surface IgD expression and expression of CD27 is associated with 

identifying classical switched memory B cells  184. B cells expressing  both IgD and CD27 are 

characterized as non-switched memory B cells 184. 
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Figure 3-3| Validation of CD3, CD19, CD8a and IgD by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers CD3, CD19, CD8a and IgD respectively. Analysis done using FlowJo software version 10.7.1  

PECy7 Phycoerythrin-Cyanine 7, AF700 Alexa Fluor 700, BV421 Brilliant Violet 421, PE Phycoerythrin 
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Figure 3-4 shows the validation for CD45RO, CD27, CD14 and CD45RA and for freshly processed 

whole blood the percentage of cells were 73%, 20.5%, 3.34% and 22.9% respectively whereas for fix 

freeze processed whole blood the percentage of cells were 71.6%, 16.5%, 2.65% and 21.1% 

respectively.  

CD45RO is a marker that is typically used to identify memory T and B cells. Figure 3-4A shows the 

granulocyte population also stains positive for CD45RO and this staining pattern is also seen in mass 

cytometry data (shown in Chapter 2). CD45RA is a marker used in immunophenotyping naïve B and T 

cells.  

CD27 is expressed on predominantly on T, NK and B cells and is a member of the tumour necrosis 

factor receptor family 185. CD27 plays a key role in T cell activation by providing a costimulatory 

signal and increases T cell proliferation and differentiation 186. Whilst knowledge of CD27 has existed 

since 1994, it has garnered recent attention as it may serve as an important immune modulation 

target which offers new treatment options 186. 

CD14 is expressed on macrophages and monocytes and is a coreceptor for the detection of 

lipopolysaccharide 187. Monocytes have received considerable attention over the last decade as 

evidence suggests that they have a role in chronic inflammatory diseases including expansion of the 

intermediate monocyte subset in RA 96,188–190. CD14 is regarded as a broad marker of monocytes and 

along with CD16, three monocyte subsets have been characterised. These subsets are defined as 

classical monocytes (CD14+ CD16-), intermediate monocytes (CD14+CD16+) and non-classical 

monocytes (CD14- CD16-) although data from mass cytometry immunophenotyping recommends 

using CCR2, CD36, HLA-DR and CD11c to characterise monocyte subsets accurately especially when 

discriminating classical and intermediate monocytes 191. However, characterisation of monocytes is 

not fully understood in particular with regards to the precise function of the intermediate and non-

classical monocyte subsets. Whilst this study was not exclusively investigating monocytes, CD86, 

CD11c and HLA-DR were included to further define the three monocyte populations. 
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Figure 3-4| Validation of CD45RO, CD27, CD14 and CD45RA by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 



70 

 

Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers CD45RO, CD27, CD14 and CD45RA respectively. Analysis done using FlowJo software version 

10.7.1     PECy7 Phycoerythrin-Cyanine 7, AF700 Alexa Fluor 700, PC5.5 phycoerythrin-cyanine 5.5 PE Phycoerythrin 
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Figure 3-5 shows the validation for γδ T cell receptor (TCR), CD123, CD25 and CD16 and for freshly 

processed whole blood the percentage of cells were 3.26%, 0.64%, 1.46% and 60.1% respectively 

whereas for fix freeze processed whole blood the percentage of cells were 1.31%, 0.43%, 1.52% and 

69% respectively.   

γδ T cells are an unconventional population of T cells and are a small population of T cells found in 

the peripheral blood. Conventional populations of T cells namely CD4 and CD8 T cell express αβ 

receptors however, γδ T cells are composed of γδ chains 192. Whilst the selection process of γδ T cells 

is less well understood, they display unique characteristics. γδ T cells can target molecules without 

the need for MHC molecules and are capable of killing infected cells and microbes. In addition they 

are able to phagocytose large particulates including bacteria and are capable of acting as 

professional antigen presenting cells 193.  

CD123 is a marker for dendritic cells. Dendritic cells can be further subsetted into myeloid dendritic 

cells with additional markers CD11c and CD11b (both included in this study) and CD33. Plasmacytoid 

dendritic cells can be defined by CD123 and CD303 amd CD304 194. Furthermore, dendritic cells 

express HLA-DR and lack canonical markers of other cell subsets such as CD3 and CD19.  

CD25 is a marker typically used to define T regulatory (Tregs) cells along with CD4 and transcription 

factor FOXP3  195,196. Recently T regulatory cells have also been defined as a subpopulation identified 

as CD25high and FOXP3high and CD127lo predicting treatment response in aplastic anemia 197.   

CD16 also known as FcγRIII is essential for antibody-dependent cellular cytotoxicity and is expressed 

on neutrophils, natural killer cells, macrophages (not found in peripheral blood) and monocytes 198. 

As mentioned earlier, CD16 is used in collaboration with CD14 to subset monocyte populations. 

CD16 is a useful marker for subsetting neutrophils along with CD11b.  
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Figure 3-5| Validation of γδTCR, CD123, CD25 and CD16 by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers γδTCR, CD123, CD25 and CD16 respectively. Analysis done using FlowJo software version 

10.7.1     PECy7 Phycoerythrin-Cyanine 7, FITC fluorescein isothiocyanate, PE Phycoerythrin 
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Figure 3-6 shows the validation for HLA-DR, CD138, TNFR2 and Perforin and for freshly processed 

whole blood the percentage of cells were 10.5%, 0.62%, 3.33% and 8.49% respectively whereas for 

fix freeze processed whole blood the percentage of cells were 10.7%, 0.85%, 1.85% and 8.13% 

respectively. 

HLA-DR (also known as MHCII) is mostly expressed on antigen presenting cells including B cells, 

dendritic cells, NK cells and monocytes and has also been observed to be expressed on activated 

effector T cells 199,200. HLA-DR can also be used as a measure of activation on cells. As mentioned in 

Chapter 1, HLA-DR gene is central to the aetiopathogenesis of RA and has been incorporated in the 

immunophenotyping panel to investigate its expression at the protein level.   

CD138 is expressed on plasma cells which are present as a small percentage in whole blood. Tumour 

necrosis factor 2 (TNFR2) is expressed on immune cells but is restricted to myeloid cells, Tregs, glial 

cells and endothelial cells 201,202. Only the membrane bound TNF induces TNFR2 activation and not 

soluble TNF. TNFR2 is thought to be responsible for the survival and maturation of immune cells 202.  

Perforin is a pore forming cytolytic glycoprotein which is essential for immune cells to kill infected 

cells. Perforin is found in the granules of NK cells and cytotoxic CD8+ T cell lymphocytes. Perforin 

forms a pore in target cell membranes which then polymerizes and forms a channel in Ca2+ 

dependent manner 203,204. Perforin works with granzyme and together they are the main pathway 

used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells 204.  
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Figure 3-6| Validation of HLA-DR, CD138, TNFR2 and Perforin by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 



76 

 

Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers HLA-DR, CD138, TNFR2 and Perforin respectively. Analysis done using FlowJo software version 

10.7.1 

PECy7 Phycoerythrin-Cyanine 7, FITC fluorescein isothiocyanate, PC5.5 phycoerythrin-cyanine, PE Phycoerythrin 
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Figure 3-7 shows the validation for FCεRIα, CTLA4, Va7.2 and CD28 and for freshly processed whole 

blood the percentage of cells were 1.34%, 1.53%, 3.08% and 16% respectively whereas for fix freeze 

processed whole blood the percentage of cells were 0.47%, 0.76%, 1.37% and 18.8% respectively. 

FCERIα is an antibody binding site for the high affinity IgE receptor. IgE is associated with allergy and 

parasitic infections. FCERIα is expressed on mast cells (present in tissue and assent in peripheral 

blood) and basophils.  

T cell activation is a process consisting of two signals. The first signal consists of an antigen 

presenting cell presenting an epitope through MHC I or MHC II to the TCR on the T cell. To result in a 

fully activated T cell, CD28 binds to CD80/CD80 costimulatory receptors. However, CTLA4 (cytotoxic 

T lymphocyte-associated protein 4) can bind with higher affinity than CD28 and bind to CD80/CD86 

and inhibit T cell activation 205,206. T cell activation signalling through CD28 is better characterised 

than T cell inhibition through CTLA4. Studies have shown that CTLA4 and CD28 both bind with a 

higher affinity to CD80 than CD86 although very often CD80/CD86 are written together as the exact 

mechanism which determines how binding works has not been fully elucidated. CTLA4 is regarded as 

one of the immune checkpoints of the immune system that can be targeted by therapy and has 

shown to be useful in treating many cancers 207. Abatacept which is an inhibitor of CTLA4 is 

commonly prescribed in the clinic to treat RA 208.  

Va7.2 is an α chain segment on the TCR which joins with the Jα33 segment which is known as an 

invariant TCR. These T cells are known as mucosal associated invariant T (MAIT) cells and possess 

both innate and adaptive immune cell characteristics. MAIT cells are restricted by the non-

polymorphic MHC class I related (MR1) molecule which is expressed by many cell types 209. MAIT 

cells are capable of combating bacterial disease by secreting IFN-γ and TNF observed in lung 

epithelial  cells taken from healthy individuals which were infected in vitro with Mycobacterium 

tuberculosis 210. MAIT cells are found in peripheral blood in healthy individuals as well as in tissues 

and are usually characterised with Va7.2 and CD161 211.  
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Figure 3-7| Validation of FCεRIα, CTLA4, Va7.2 and CD28 by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 



79 

 

Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers FCεRIα, CTLA4, Va7.2 and CD28 respectively. Analysis done using FlowJo software version 

10.7.1   PECy7 Phycoerythrin-Cyanine 7, FITC fluorescein isothiocyanate, PE Phycoerythrin 
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Figure 3-8 shows the validation for CD86, CD4, CD203c and CD11c and for freshly processed whole 

blood the percentage of cells were 1.96%, 15.9%, 0.94% and 1.80% respectively whereas for fix 

freeze processed whole blood the percentage of cells were 1.59%, 11.7%, 0.77% and 1.75% 

respectively. 

CD86 is involved as a costimulatory molecule in B and T cell activation. It is present on antigen 

presenting cells including monocytes, B cells, dendritic cells and macrophages. Its role in T cell 

activation is one that is extensively studied along with CD80 and whilst their biophysical properties 

are well elucidated, their functional role in T cell activation remains less understood and an active 

research area 212.   

CD4+ T cells are a well characterised and studied immune cell subset within the T cell population and 

interacts with MHC class II (HLA-DR). CD4+ T cells are essential to the immune system in its effort to 

fight disease best demonstrated in individuals infected with human immunodeficiency virus have a 

depleted number of CD4 T cells and the ability for the host to fight infection is diminished 213. 

CD203c is a transmembrane protein expressed on basophils which are present in the granulocyte 

population and constitute 0.5-1% of circulating white blood cells 214. Basophils are associated with 

allergy and asthma and are functionally important in secreting histamine which induces 

inflammation 214.  

CD11c is expressed on various cell populations including dendritic cells, monocytes, macrophages, 

neutrophils and B cells. CD11c is a member of leukointegrin family and is implicated in phagocytosis, 

cell migration and cytokine production by monocytes and macrophages. 
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Figure 3-8| Validation of CD86, CD4, CD203c and CD11c by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers CD86, CD4, CD203c and CD11c respectively. For the validation of CD203c shown in C, the 

granulocyte population was removed due to high background staining. Analysis done using FlowJo software version 10.7.1    PECy7 Phycoerythrin-Cyanine7, FITC fluorescein isothiocyanate, 

BV510 Brilliant violet 510, PE Phycoerythrin 
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Figure 3-9 shows the validation for CD56, CD161, PDL1 and CD40 and for freshly processed whole 

blood the percentage of cells were 2.26%, 1.66%, 0.70% and 5.54% respectively whereas for fix 

freeze processed whole blood the percentage of cells were 1.04%, 1.23%, 0.94% and 5.78% 

respectively. 

CD56 is mainly expressed on NK cells with the marker used to distinguish between CD56bright and 

CD56lo subsets. In health, NK cells are present at varying levels between 0.61-16.87% 215. CD161 is a 

type II transmembrane glycoprotein and is a member of the C type lectin superfamily and is 

expressed on NK cells and natural killer T cells 216. In addition CD161 along with va7.2 and CD8 can 

identify MAIT cells 211.  

PDL1 (programmed death ligand 1) expression has been identified on macrophages, some activated 

T and B cells, dendritic cells and some epithelial cells particularly under inflammatory conditions 

such as IFN-γ activated monocytes and not abundantly expressed in healthy individuals 217,218. The 

PD-1/PDL1 axis has been extensively studied in cancer and tumour immunology as an immune 

checkpoint blockade target 219.  

CD40 is a member of the tumour necrosis factor receptor superfamily and is well characterised in B 

cell signalling where CD40 is involved in promoting germinal centre formation, B cell activation and 

proliferation and is known to play a role in isotype switching220. CD40 binds to CD40 ligand which is 

situated on CD4+ T cells. CD40 however, is not restricted to B cells and is also present on monocytes, 

dendritic cells, NK cells and granulocytes 220,221. CD40 plays a different role in these cells to that of B 

and T cells whereby it promotes cell survival and cytokine production 220.  
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Figure 3-9| Validation of CD56, CD161, PDL1 and CD40 by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers CD56, CD161, PDL1 and CD40 respectively. Analysis done using FlowJo software version 10.7.1 

PECy7 Phycoerythrin-Cyanine7, APC allophycocyanin, PE Phycoerythrin 
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Figure 3-10 shows the validation for granzyme B, PD-1, NKp44 and CD80 and for freshly processed 

whole blood the percentage of cells were 5.18%, 0.33%, 0.26% and 0.86% respectively whereas for 

fix freeze processed whole blood the percentage of cells were 4.22%, 0.36%, 0.13% and 0.38% 

respectively. 

Granzyme B is a serine protease that in combination with perforin mediates target cell apoptosis 

found in the granules of cytotoxic CD8+ T cells and NK cells 222. Currently 4 other granzymes have 

been identified which are granzymes A, H, K and M. Granzyme B is perhaps the best studied out of 

the granzyme family and whilst an extensive amount of literature focuses on its cytotoxic role, 

evidence has emerged that suggest granzymes may have additional roles 223. These roles include 

immune regulation such as cytokine processing and extracellular matrix degradation suggesting a 

role for granzymes in fibrosis 223. Whilst granzyme B levels are present as part of a healthy immune 

system, they have been implicated in autoimmune disease including myositis and SLE and in RA, 

granzyme B has been shown to positively correlate with disease activity 224 . It has been 

hypothesised that granzyme B cleaves autoantigens which can lead to the creation of immunogenic 

protein fragments which are preferentially recognised by autoantibodies present in patients with 

autoimmune disease 224.  

Programme cell death protein 1 (PD-1) is an inhibitory receptor that is expressed by all T cells during 

activation 225. PD-1 is a transmembrane molecule and is a member of the CD28 immunoglobulin 

family and in addition to being found on conventional T cells, PD-1 can be expressed by T regulatory 

cells, B cells, NK cells and myeloid cell populations 226. PD-1 is considered to be an immune 

checkpoint molecule and PD-1 inhibitors exist and are particularly used as part of cancer treatment 
227. PD-1 often shows high and sustained expression especially during persistent antigen encounter 

often as a result of chronic infections and cancer and can limit the activation and function of 

potentially pathogenic self-reactive CD4+ and CD8+ T cells 225. PD-1 is important for maintaining 

homeostasis of the immune system but when this balance becomes dysregulated chiefly in response  

to chronic pathogens and tumours, PD-1 can fail to limit protective immunity 225. PD-1 has become 

synonymously linked with ‘T cell exhaustion’, a concept in which T cells progressively lose their 

effector functions over time in response to chronic antigenic stimulation and thus sustained chronic 

inflammation 228.  However, as PD-1 is expressed on a variety of cell populations, it is important to 

look at the context of this expression and therefore it is not always a marker of exhaustion. 

NKp44 is expressed on IL-2 activated NK cells and enhances NK cell mediated cytolysis triggering 

receptor involved in non-MHC restricted cytotoxicity by activated NK cells 229. NKp44 along with 

NKp30 and NKp46 are important receptors for NK cell cytotoxicity 230. NKp30 and NKp46 are 

constitutively expressed on NK cells whereas NKp44 is expressed only upon activation. 

CD80 is found on various surfaces of antigen presenting immune cells including B cells, monocytes 

and dendritic cells and is involved in the immunological synapse of T and B cells. It has been 

hypothesised that CD80 binds to CD28 with higher affinity than CD86 212. However, the mechanistic 

role of CD80 in T cell activation is yet to be fully elucidated.  
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Figure 3-10| Validation of Granzyme B, PD-1, NKp44 and CD80 by flow cytometry. 

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as shown in Figure 3-2. On the dot plot, each dot represents a single 

cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each marker was plotted against CD45 to ascertain the percentage of cells 

staining positive in fresh and fixed frozen blood processing. A-D Antibody validation for markers Granzyme B, PD-1, NKp44 and CD80 respectively. Analysis done using FlowJo software version 

10.7.1 

PECy7 Phycoerythrin-Cyanine7, FITC fluorescein isothiocyanate, PE Phycoerythrin, APC allophycocyanin 
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Figure 3-11 shows the validation for CD127, NKp46, CD38 and CD11b and for freshly processed 

whole blood the percentage of cells were 16.2%, 3.55%, 33.1% and 54.2% respectively whereas for 

fix freeze processed whole blood the percentage of cells were 14.6%, 3.07%, 36.4% and 69.4% 

respectively. 

CD127 is also known as IL-7Rα which is a receptor found on IL-7 cytokine. Upon engagement of this 

interaction, a signal transduction pathway is initiated through JAKs 1 and 3. IL-7Rα signals are 

important for VDJ recombination and thus present on T and B cell lineages 231. CD127 is used in 

immunophenotyping for T regulatory cells with expression being low on this population of T cells.  

NKp46 is expressed by all CD56dim CD16+ and CD56bright CD16- human NK cells irrespective of their 

activation status 232. Blocking the expression of NKp46 by specific monoclonal antibodies can result 

in decreased NK cell cytotoxicity 232. 

CD38 is a multi-functional transmembrane, ecto-enzyme protein which is ubiquitously expressed on 

many immune cell types including bone marrow progenitors, NK cells, neutrophils, monocytes and 

activated B and T cells 233. CD38 is functionally important in the synthesis of cyclic ADP-ribose which 

is a potent regulator of cytoplasmic Ca2+ mobilization 234.   

CD11b is a member of the α2-integrin family and with CD18 forms a heterodimer to form the 

complement receptor CR3 235. Conventionally CD11b is expressed on myeloid lineage cells including 

neutrophils, monocytes, macrophages, NK cells and granulocytes 236. CD11b is thought to play a role 

in the migration of leukocytes from peripheral blood to sites of inflammation and has been further 

implicated in cell-mediated cytotoxicity, chemotaxis and phagocytosis 236.  
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(figure legend on next page)



91 

 

Figure 3-11| Validation of CD127, NKp46, CD38 and CD11b by flow cytometry.  

Gating for single cells and CD45+ cell population was performed for each antibody validation experiment in the analysis as 

shown in Figure 3-2. On the dot plot, each dot represents a single cell and density of a collection of single cells which 

equate to a population are denoted by blue, yellow, green and red colouration. 

Antibody validation was carried out on peripheral whole blood and 100,000 events were acquired on Cytoflex S. Each 

marker was plotted against CD45 to ascertain the percentage of cells staining positive in fresh and fixed frozen blood 

processing. A-D Antibody validation for markers CD127, NKp46, CD38 and CD11b respectively. Analysis done using FlowJo 

software version 10.7.1 

PECy7 Phycoerythrin-Cyanine 7, PC5.5 phycoerythrin-cyanine, PE Phycoerythrin 

3.2.4 Validation of lanthanide conjugated antibodies for mass cytometry 

Mass cytometry is a novel technique which means that validating the methods was crucial to ensure 

antibody staining was optimum. Prior to running any cohort samples through the mass cytometer, 

each antibody that was conjugated with a metal lanthanide was checked to ensure that the signal 

emitted from the lanthanide metal and the cell population identified by the antibody marker was 

detected correctly. Ultracomp™ compensation beads which are commonly used in flow cytometry 

were used for lanthanide metal detection to ensure that a signal was recorded in the correct metal 

channel. It is important to emphasise that the Ultracomp ™ beads were used as the antibody bound 

better to these beads to elicit a signal compared to other compensation beads. It is important to 

assess that the antibody has bound successfully to the metal lanthanide as the chemical reaction 

that takes place to allow this conjugation process to occur is not fully understood or explicitly 

explained by Fluidigm most likely due to intellectual property.  

However, it is possible that the conjugation process may not work successfully leaving the metal 

lanthanide and antibody unbound therefore making this validation step important. Figure 3-12 

shows the validation checks for each antibody that was conjugated and used in the 

immunophenotyping panel. To assess conjugation, histograms were plotted in Flowjo analysis 

software and median intensity was calculated for each metal lanthanide conjugated to an antibody 

on the mass cytometer. For each metal lanthanide conjugated antibody, a single peak should be 

detected. CD45 and CD11b were purchased from Fluidigm conjugated to Yttrium and Bismuth 

respectively. These two lanthanides are often difficult to conjugate. Fluidigm robustly validate their 

antibodies and are a reliable source so it was not necessary to check these antibodies although these 

were subsequently checked during antibody titration.  

Using the compensation beads only allows the assessment of whether the metal lanthanide has 

been conjugated successfully to the antibody. Whether the conjugated antibody specifically binds to 

the epitope of interest and thus identifies the correct cell population would need to be further using 

cells.  
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Figure 3-12| Validation of each lanthanide conjugated antibody for mass cytometry using 
Universal Comp beads.  

(please see figure legend on next page) 
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A histogram for each metal labelled antibody with the median intensity for the lanthanide metal and bead count shown for 

each antibody that was conjugated in-house at UCB Pharma, Slough. Beads were used instead of cells as an initial check to 

ensure the lanthanide had bound to the antibody. If this initial conjugation had not worked, the conjugation would have to 

be repeated. The X axis label depicts the antigen marker and the Y axis shows the bead count number. For each marker, 

the median intensity is shown which quantifies the signal strength of the conjugated antibody recorded in its appropriate 

channel. A single peak represents a signal has been detected in the channel. Where there is a bimodal peak distribution 

this indicates that the signal, though present in the appropriate channel, may indicate that part of the lanthanide is 

chemically dissociating from the marker. However, this is not a concern as the signal can be observed in the appropriate 

channel and no markers have dissociated completely from their lanthanides. Whilst this analysis confirms that the 

antibodies have been successfully conjugated, it does not confirm epitope specificity, which will be demonstrated in the 

next figure.  
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Figure 3-13 depicts the gating strategy used to obtain a single cell population where the DNA intercalator Iridium and event length are the initial gates 

drawn to broadly identify the cell population. To reduce the number of doublets, events were collected between 300-500/s but not exceeding 500 events. 

Increasing the number of events not only increases the formation of doublets but also potentially leads to blocking of the nebulizer resulting in longer run 

times. The bead population are removed using the metal channel 140 Ce as this channel was not used for any of the markers and was the best at 

distinguishing the normalisation beads and gating on the CD45+ cells. Lastly, to remove the contaminating platelets, a gate using the 143Nd and 209Bi 

lanthanide channels was drawn to eliminate this population.  

Once all the antibodies for the panel had been conjugated and validated, antibodies for the mass cytometry panel were titrated at 5μg, 2.5μg, 1.25μg, 

0.625μg, 0.3125μg and 0.16μg to determine the optimum volume which would distinguish the negative and positive cell populations. Figure 3-14, Figure 

3-15, Figure 3-16, Figure 3-17 and Figure 3-18 show 1.25μg of each antibody run in one panel to determine the staining of the particular marker against 

CD45. Figure 3-19 shows the gating strategy and staining pattern of CD138 which is a marker for plasma cells present in low frequencies in healthy blood. 

Therefore B cells were differentiated into plasma cells (method highlighted in chapter 2) and staining of CD138 was confirmed by gating for plasma cells 

which were CD19 negative and CD138 positive.  

3.2.5 Titration and validation of lanthanide conjugated antibodies for mass cytometry 



95 

 

 

Figure 3-13|Manual gating strategy for mass cytometry to obtain a single cell population  

To check the antibody staining by mass cytometry, a simple gating strategy was performed. To identify the cell population, a gate was drawn on the events which were positive for the DNA 

intercalator Iridium (Ir) against event length. Events that stain highly for the DNA intercalator are doublets and were not included in the gate. Beads were excluded from the cell events by 

gating on the metal channel 140 Ce and gating on the CD45+ events 140Ce negative. Beads and cells are clearly separated in this biaxial gating dot plot. The last gate was to remove the 

platelet population from the event count which was best achieved against the metal channel 143Nd and 209Bi. A single cell population can now be obtained and further gated to identify 

antibody staining.   
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Figure 3-14|Validation of lanthanide conjugated antibodies for mass cytometry using 1.25μg of antibody  
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After the gating strategy shown in figure 3-13, biaxial plots were drawn for each marker on the x-axis to assess the staining of the marker against CD45 on the Y axis. On the dot plot, each dot 

represents a single cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration.  
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Figure 3-15|Validation of lanthanide conjugated antibodies for mass cytometry using 1.25μg of antibody 

After the gating strategy shown in figure 3-13, biaxial plots were drawn for each marker on the x-axis to assess the staining of the marker against CD45 on the Y axis. On the dot plot, each dot 

represents a single cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Figure 3-16|Validation of lanthanide conjugated antibodies for mass cytometry using 1.25μg of antibody 
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After the gating strategy shown in figure 3-13, biaxial plots were drawn for each marker on the x-axis to assess the staining of the marker against CD45 on the Y axis. On the dot plot, each dot 

represents a single cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration.
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Figure 3-17|Validation of lanthanide conjugated antibodies for mass cytometry using 1.25μg of antibody 

After the gating strategy shown in figure 3-13, biaxial plots were drawn for each marker on the x-axis to assess the staining of the marker against CD45 on the Y axis. On the dot plot, each dot 

represents a single cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Figure 3-18|Validation of lanthanide conjugated antibodies for mass cytometry using 1.25μg of antibody 

After the gating strategy shown in figure 3-13, biaxial plots were drawn for each marker on the x-axis to assess the staining of the marker against CD45 on the Y axis. On the dot plot, each dot 

represents a single cell and density of a collection of single cells which equate to a population are denoted by blue, yellow, green and red colouration. 
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Figure 3-19|Gating strategy for marker CD138 expression on plasma cells using 1.25μg of antibody 

Identifying the plasmablast cell population using the DNA1 191Ir and Event length parameters, followed by bead exclusion using the CD45 89Y and 140Ce parameters. A single cell population 

was obtained by gating against the CD11b 209Bi and Va7.2 143Nd parameters which eliminated non-specific cells. CD19 142Nd and CD45 89Y parameters defined the B cell population with 

plasmablasts being characterised as CD19 negative and CD138 positive as depicted by the final gate.  
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3.3 Discussion 

Ensuring that the antibody clones selected for mass cytometry are compatible with the technique is 
a critical step in ensuring that the data obtained can be reliable. The aim of this chapter was to 
demonstrate that the clone of antibody selected was specific for the epitope on the antigen. 
Furthermore, it was demonstrated that the antibody clones selected for mass cytometry were 
capable of binding to the epitope under fix freeze conditions as confirmed by flow cytometry. A 
further verification step was carried out that ensured that staining profiles resembled the technical 
specification sheet as shown on the vendor’s website and also published literature where these 
clones have been used in previous immunophenotyping experiments. This provides a reference 
profile for the expected staining to assess that staining profiles using mass cytometry are 
comparable to staining profiles achieved from flow cytometry and that irrespective of technology, 
staining profiles and thus downstream analysis are comparable. For mass cytometry, protocols 
provided by Fluidigm recommend validating antibodies prior to applying the panel to cohort 
experiments.   

To maintain a consistent approach, the same donor blood was used in both fresh and fixed freeze 
blood processing to compare the effects of the different processing methods. If it were logistically 
possible, fresh sample processing yields the best data as the cell populations have had minimal 
handling. Fresh sample processing has the advantage of representing the immune cell population 
setting in its natural state. Fresh sampling would also allow for a viability dye to be added in mass 
cytometry before the application of fix freeze, however this was not possible as the samples were 
immediately fixed and frozen upon collection. However, the strength of the fix freeze protocol 
allows for a uniform and consistent method across all samples. Whole blood samples allow for 
neutrophils to be retained which are a cell population often removed due to their presumed short-
lived status and abundance. However, having access to technology such as mass cytometry which 
allows for deep immunophenotyping of multiple cell populations, it would under utilise the 
opportunity if cell populations were to be removed. 

The biaxial gating strategy performed in FlowJo, was deliberately simplified to assess epitope 
specificity. Data analysis from mass cytometry is reliant upon robust markers given that cellular 
profiles cannot be detected using light scatter properties. Sensitivity was measured by titration to 
ensure the optimal amount of antibody was used to detect a positive signal and thus separate the 
positive and negative populations. All markers were analysed against CD45, a marker of white blood 
cells, even for those markers which traditionally would subset a population for example CD4, which 
would typically be shown in a biaxial plot against a CD3 T cell marker. This broad gating strategy was 
applied to demonstrate the robust specificity of the markers but also anticipating the analysis 
approach used for high throughput cytometry data such as unsupervised clustering. Unsupervised 
clustering algorithms assess staining profiles of markers and according to similarity of which cell/s 
stain for particular markers, will place them in close proximity and thus cluster cells that are similar 
in staining. Clustering algorithms look across the whole panel of markers and place all markers 
against one another which overcomes the reductionist and limited approach of biaxial gating. This 
also enables identification of novel cell populations which may be overlooked from a biaxial gating 
approach. Thus it was deemed a holistic approach to assess each marker against CD45 to identify the 
entire staining profile of that marker in whole blood. It was not possible to run all 37 markers in one 
panel by flow cytometry so smaller panels were created.  

The 37 markers which form the mass cytometry panel are those which have been well studied by 
cytometric analysis. However, some of the markers selected are based on their functional read out 
but these markers also require an activating stimulus to obtain a signal in a healthy donor. These 
markers include NKp44, PD-1, PDL1 and CD80 which are expressed at low levels in healthy 
unstimulated cells but increase upon activation in response to a stimulus or pathology.  
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Ascertaining the clones for each antibody marker was important to ensure the data obtained is 
reliable. In addition checking the conjugation of antibodies to their metal lanthanides and titration 
of these antibodies to determine the optimum signal to ensure that negative and positive 
populations could be distinguished are important for downstream analysis. 

The next chapter will detail the methodology for analysing data from mass cytometry using 
bioinformatics.   
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Chapter 4 Methodology for analysing mass cytometry data  

4.1 Introduction  

4.1.1 High throughput data acquired by mass cytometry requires bioinformatics 

pipelines 

The aim of this chapter is to describe and justify the analysis approach for data acquired from mass 

cytometry. The biggest challenge in any high throughput data and in this case, cytometry data, is 

how best to approach and select the most appropriate, efficient and replicable method(s) suited for 

the data. As the field moves away from traditional manual gating approaches 162,237 towards artificial 

intelligence and computer algorithms to model cellular subsets, the complexity of analysis becomes 

ever more challenging due to the continuously evolving and vast array of bioinformatics tools to 

select from. With little consistency in the field as to the best practices or guidelines for selecting the 

optimum approach, this can prove to be an overwhelming task for the researcher 238. As quickly as 

the field is evolving, this too raises the issue of older algorithms and approaches becoming 

redundant; requiring a certain degree of flexibility to explore the field.  

Before considering which algorithmic tools to use, it was important to check the quality of the 

antibody staining and to ensure that the data clean-up process obtained a single cell population of 

cells. This is a crucial step as a population of cells containing debris or doublets will distort the 

interpretation of the data by fluctuating the antibody staining. This experimental design included a 

batch control in each barcoded run to ascertain the antibody staining quality. Unanticipated 

technical challenges did arise during this project which resulted in antibody staining discrepancies 

across the batches. To overcome this, a normalisation algorithm tool developed by Sofie van Gassen 
175 was performed through the R Studio platform to normalise the data which will be detailed in this 

chapter.  

As data sets become increasingly complex, comprising of both large patient cohorts and 

immunophenotyping panels, this project being no exception, robust analysis pipelines are required. 

To date, there are no published reports that have acquired a clinical cohort as large as 187 barcoded 

samples on the mass cytometer. It was anticipated that the analysis of this data would take a 

significant amount of time, which was confirmed by the length of time it did take, 12 months, to 

understand the relevant findings from the data.  

When faced with the dilemma of where to begin analysis of a complex data set, it can be of some 

reassurance to approach this initially by unsupervised learning. Unsupervised learning consists of 

computer algorithmic approaches which can compute independently of human supervision. The 

data set is uploaded into the algorithm and by machine learning, mines through the data, looking for 

cellular relationships irrespective of the data labels. An unsupervised learning approach is often 

combined with a supervised learning approach which consist of traditional manual gating techniques 

including Boolean gating and biaxial plots. The supervised component of the analysis is often used to 

verify the findings from the unsupervised approach to ensure that the cellular subsets are not an 

artefact of the algorithm but are bona fide populations. Dimensionality reduction, clustering and 

density mapping are all features of unsupervised learning. These allow for the researcher to obtain 

‘signposts’ as to which cellular subsets or cellular immunophenotypes may be of interest to 

investigate further. This was especially useful for this project where the population of cells were 
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heterogeneous in the samples. The panel was designed to capture this heterogeneity and so an 

unsupervised learning in this instance was appropriate to perform a global analysis across the data. 

Furthermore, the blood and synovial fluid samples were left unstimulated; this was to capture the 

immunological landscape as close to its natural state in vivo and thus neutrophils were retained in 

the sample preparations. 

The evolution of analysis for cytometry data has undergone extensive progress. As mentioned 

before, traditionally manual gating approaches through Flowjo or similar software have allowed for 

comprehensive analysis of single cell analysis most commonly depicted by biaxial plots. A 

considerable amount of our existing knowledge about the cellular immunophenotyping has come 

from this approach and it is an approach that is still currently used. Moreover, analysis through 

FlowJo has become the default approach when validating other approaches to ensure that 

automated algorithms yield comparable results to those achieved by manual analysis. However, the 

limitations of manual approaches are outweighing the benefits and these become more apparent 

when handling a large cohort with multiparameter dimensions. A second but equally major  

limitation of biaxial gating is that it does not readily convey the relationship amongst immune cell 

populations and thus struggles to capture the global immune landscape in a particular sample 

representing either disease or steady state i.e. health.  

With this in mind, Cytobank was developed as a cloud-based platform that offers machine-learning 

assisted analysis of high dimensional single cell data 239. This platform allows for multiple cytometric 

FCS files to be uploaded and accessed by anyone within a laboratory research group to explore the 

data in an intuitive manner. Whilst manual gating can be performed within Cytobank, the main 

attractive feature is interactive approach with data sets from single cell experiments. The result of 

this exploration leads to visually aesthetic plots, the most common being a tSNE or viSNE plot which 

conveys all the cell populations interrogated by the immunophenotyping panel in a globe shaped 

graph. These plots have become almost synonymous with cytometry data as they convey the cell 

populations that have been included in a quick, accessible format. A viSNE plot does not represent 

the relationship between cell populations and is thus only 2 dimensional in its output. Cytobank 

offers a number of clustering and visualisation tools to observe data including SPADE, flowSOM and 

Citrus which vary in terms of output but are all essentially clustering tools to visualise cell 

populations.  

Cytobank has been regarded as an important data analysis platform however, in a rapidly evolving 

field it is no longer considered the gold standard of cytometric analysis. The need for visual 

clustering platforms whilst important, in essence only capture part of the cytometric analysis 

journey.  To be able to interrogate which immune cell populations, if any have changed in a given 

condition is not necessarily apparent by clustering algorithms particularly if these changes are in rare 

cell populations or functional changes which may not be easy to discern from a global analysis. 

Additionally, Cytobank does not allow more than 1.3-2 million cells to be analysed at any one time, 

thus restricting the scope of analysis in large data sets. Another major drawback is that a license 

needs to be purchased if Cytobank is to be used frequently which for smaller research facilities can 

be a limitation. Despite these drawbacks, Cytobank has been adopted by many research groups due 

to its intuitive interface and cloud-based platform and its accessibly has increased in part due to it 

being recently purchased by the company Beckman Coulter.  

Cytobank is not the only software that allows for clustering algorithms with increasing options 

becoming available 126,240,241. For example an extension of viSNE analysis is U-map which allows for 

the relationship between any single cell point to be assessed in the context of another cell point and 
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can also broadly capture cellular differentiation stages 163,242. U-map analysis is currently not a 

feature of Cytobank and the seemingly endless options of algorithms can make it difficult to choose 

which one is most suitable for the data set in question. An automated machine learning tool SIMON 

(sequential iterative modelling ‘overnight’) allows for researchers to compare results from 128 

different algorithms and is particularly useful for datasets which contain many missing values 243. It is 

becoming evident that a combination of approaches may be required as one software or algorithm 

may not provide all the solutions. Original softwares such as Flowjo have improved with recent 

versions incorporating clustering features such as tSNE which also interacts with the traditional 

biaxial gating features enabling the user to precisely map where the gated population is on a high 

dimensional clustering plot.  

The resources available to a research group influence the bioinformatics approach chosen. There are 

a number of considerations including the availability of in-house bioinformaticians, statisticians, 

computing power i.e. the availability of supercomputers or high specification computing processors 

able to compute a large number of events quickly.  

Optimising the clustering algorithms took the most time in the whole analysis process. This is 

important because if a population is over or under clustered it will affect the interpretation of the 

cellular subsets and their relationships. I explored the clustering algorithms extensively, optimising 

cell number, markers and computing time which are detailed further in this chapter. Once the 

clustering optimisation was completed, I analysed the data through a scripted pipeline devised by 

the Robinson Bioinformatics group based at the University of Zurich, Switzerland called Diffcyt 166,176. 

The analysis methodology for this data is summarised in Figure 4-1. 

It is hoped that in a vast field of both bioinformatics and cytometry, this chapter will describe and 

explain the rationale in the approach for analysing this dataset, whilst additionally providing a 

starting platform or template for future (mass) cytometry analysis.  
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Figure 4-1|Methodology of analysis applied to data from mass cytometry. 

Flow diagram sequentially outlines the data analysis approach and the software used. 

 

 

 

 

 

 

 



110 

 

 

4.2 Results 

4.2.1 Data pre-processing 

4.2.1.1 Debarcoding samples after acquisition on mass cytometer 

Barcoding has provided an opportunity to ensure uniformity across samples at a previously 

unmatched level. The limitation however, is that only 20 samples can be pooled together and 

barcoded simultaneously using a set combination of palladium isotopes. Efforts have focussed on 

alternative lanthanides such as tellurium which can potentially generate up to 35 unique barcodes 
244. Barcoding is relatively new method to mass cytometry although is used frequently in cohort 

studies run on flow cytometers. However, the barcoding technology for mass cytometry has proven 

to be a relatively straight-forward concept and Fluidigm have provided the methods for wet lab and 

also an automated software which allows for the debarcoding of individual samples.  

To prepare samples for barcoding, 3 million cells are counted from each sample which is an 

important step to ensure that during acquisition, the number of cells acquired on the mass 

cytometer are equal for all samples. If the number of cells are disproportionate between samples 

this will distort the collection of events and result in uneven collection of events across the samples. 

In Figure 4-2A, the Fluidigm debarcoding software allows the researcher to analyse the number of 

events collected for each sample in a histogram plot with the barcode sample number across the x 

axis and the event count on the y axis. Figure 4-2B shows the 20 combinations of palladium isotopes 

for labelling 20 individual samples. The palladium isotopes are provided in a combination of three 

different palladium isotopes for each barcode.  
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(figure legend on next page) 
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Figure 4-2| Fluidigm debarcoding software allows samples to be individually identified.  

The figures (A-D) are from a pilot experiment with 20 barcoded patient samples. The software is provided with the Mass 

cytometry machine and can be downloaded from the Fluidigm website https://dvssciences.com/ A The event count for 

each sample within a barcoded batch of 20 samples (C1-C20 along the X-axis) can be visualised to assess uniformity of 

event collection across the samples. The uniformity of the cell number is variable due to the technical steps which can 

result in cell loss. In addition, during acquisition, cell event loss can occur due to machine blockages. B Palladium isotopes 

are used to barcode up to 20 samples which equals one batch. The schematic demonstrates the combination of 3 isotopes 

used for barcoding each sample as prepared by Fluidigm and for subsequent debarcoding. C The zoomed-in dot plot shows 

the barcoding staining intensity. The three palladium isotopes that are used to barcode each sample can be identified 

between 0.6 and 0.8 on the Y axis and can be assessed for each individual cell collected for that sample to ensure 

consistent staining. This dot plot shows for event counts between 10001 and 40001 a uniform barcode stain. Events that 

have picked up non-specific staining can be viewed below 0.6 on the rescaled barcode intensities axis and are removed 

from the file. D The histogram depicts the Barcode separation cut off which is set at 0.12 to remove debris and capture cell 

events. The number of cells (yield) obtained after setting the barcode separation cut off is shown below.  

When debarcoding each sample using the debarcoding tool, it is important to analyse the specificity 

of the barcode staining. For each sample, the intensity of the barcode staining can be observed by 

zooming into the event count for each sample and ensuring that the events included for the sample 

are stained by the specific palladium isotope combination. In Figure 4-2C, the barcode intensity 

staining is shown for events collected between 1 to 40,001. The combination of three palladium 

isotopes used to stain the sample can be precisely analysed where any contaminating isotopes can 

be removed. Each event can be analysed if deemed necessary but the precision of the barcode 

staining is high so to check, every 10,000th event was analysed to assess precision of staining 

intensity for events.  

https://dvssciences.com/
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To further aid identification of events for each sample, the barcode separation histogram can be 

adjusted (Figure 4-2D-E). In this investigation, it was unnecessary to go further than the barcode 

separation index which was set at 0.12 for all the barcoded samples. This is similar to that of a 

meltcurve for real time polymerase chain reaction experiment, except the barcode separator 

distinguishes between debris and the start of events. There is always debris at the beginning to 

account for the ions and particles that are present before the sample events are collected and these 

are efficiently removed by the barcode separation tool. If the barcode separation index is insufficient 

or the sample is particularly contaminated by non specific barcodes, the Mahalanobis distance can 

be applied to filter outliers taking into the account the covariance of the barcode populations 245.  

The Mahalanobis distance was not applied to this data as the barcode staining had few outliers after 

the barcode separation index was set.   

4.2.1.2 Identifying and obtaining single cells using Gaussian parameters for mass 

cytometry 

Whilst flow and mass cytometry are technologies both designed to interrogate the single cell 

population, the principles of both technologies are fundamentally different. This includes the 

acquisition parameters for identifying the cell population. As a starting point, identifying the general 

cellular population on a flow cytometer normally includes the forward and side scatter parameters 

which is a redundant principle in mass cytometry. However, defining a ‘cell’ in mass cytometry 

requires additional parameters to be used as part of the data cleanup process to begin the analysis 

of a single cell population. Whilst identifying a single cell population was broadly described in Figure 

3-13, the process of data cleanup has become more complex including the removal of debris and 

dead cells (a viability marker was not included in this study), normalisation beads and coincidental 

ion clouds from raw data. When cells are injected into the hot argon torch, the plasma formed strips 

the electrons off the atoms. In turn the positively charged ions from the lanthanide labelled 

antibodies collide with the ion detector to form electron pulses that are then converted into voltage 

pulses 246. The event length parameter is able to filter out pulses that are either incomplete or  have 

an abnormally long lag time between signal pulses. In brief, the event length parameter is capable of 

eliminating unwanted noise 246. A cut off point is calculated that an internal threshold less than 10 

would not be included in the event length and no more than 150 consecutive pushes of an event 

would be calculated 246. Event length is usually measured in combination with DNA1 and/or DNA2 

with researchers often using both DNA channels to avoid any discrepancies between the signals. 

DNA1 and DNA2 are derived from the cationic double-stranded nucleic acid intercalators that have a 

natural abundance of iridium 191Ir and 193Ir 246. When optimising the gating strategy for this data 

set, no difference was observed between DNA1 and DNA2 and therefore gates were drawn using 

DNA1.  

Whilst the event length and DNA intercalator parameters are robust parameters for identifying 

single cells, four additional measurements have been identified that can improve the clean up of the 

data and eliminate signal noise more accurately. These four parameters are collectively known as 

the Gaussian parameters: width, offset, center and residual (Figure 4-3). These parameters are used 

to discriminate between noise and signal ratio of the pulse recorded by the mass cytometer which 

also helps in double removal. Gaussian parameters reduce the bias of gating strategies that are 

adopted by the individual researcher for example performing numerous biaxial plots with different 

combinations of markers to eliminate doublets. These Gaussian parameters have been validated and 

verified by two approaches: the software Gemstone 247 and Fluidigm. In the automated gating script 

applied to this dataset, width was the first Gaussian parameter to be incorporated which 
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distinguishes the occurrence of ion clouds. The offset parameter determines the presence pf 

multiple-peak pulses and center defines the Gaussian fit of the signal pulse 246. The last Gaussian 

parameter applied to this dataset measures the differences between the Gaussian model and the 

pulse and thus assesses the normal distribution of the pulse emitted 246.  

The automated gating script was applied to all 182 samples to be analysed through R studio of which 

only 3 samples failed shown in Figure 4-4. Two samples were from the same barcode batch 3 and 

were taken from the patient and the third sample was synovial fluid. The samples passed all of the 

automated gating script except the last step which was to draw the final doublet exclusion gate. In 

that gate, for all three samples, the CD19+ B cell population were gated out in the final .fcs ouput 

file. It is unknown why this error occurred but it was decided to remove these three samples from 

further analysis to ensure consistency and uniformity downstream of the analysis process.  
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Figure 4-3| Automated gating strategy using Gaussian parameters for identifying single cell 
population 

The above image sequentially details the automated gating approach (A-K) through the R Studio platform for obtaining a 

single cell population using Gaussian parameters width, offset, center and residual against the parameter 140Ce for one 

patient whole blood sample. These four additional parameters are integrated within the mass cytometer software and 

calculates the measurements that provide information about the quality of the total ion current pulse. These parameters 

are stored as FCS 3.0 measurements. Offset is a Gaussian discrimination parameter that is low for multiple-peak pulses. 

Width is a Gaussian discrimination parameter that is generally low for coincident ion clouds. Center is related to the mean 

of the Gaussian fit of the signal pulse. If a pulse has two peaks due to coincident ion clouds, where the first is the highest, 

center is relatively low, whereas if the second peak in the pulse is highest, then the center is high. This gating approach was 

applied to all samples simultaneously following acquisition on the mass cytometer and subsequent debarcoding using the 

Fluidigm software. A shows the width Gaussian parameter before it has been applied to the sample and B shows the cell 

population once the width parameter has been applied. It can be observed that the bead population present in A has been 

removed resulting in a more defined peak where the cut-off was drawn between 4 and 6 for the width parameter and at 3 

on the 140Ce parameter resulting in a defined peak removing unspecific events. C shows the offset Gaussian parameter 

prior to being applied to the sample. A solid peak is visible between 5 and 6 on the offset scale and 2.5 on the 140Ce 

parameter where events on the outside of this peak will be removed due to them being part of the ion cloud. Events 

outside the peak represent ion clouds D shows the cell population once the offset parameter has been applied to the 

sample E shows the cell population before the center parameter has been applied. It is evident here that the peak is 

‘cleaner’ meaning that ion clouds or unspecific events are not visible compared to that observed for Width and Offset 

parameters F shows the cell population once the center parameter has been applied. Cut-off was defined between 7 and 

8.5 on the Center parameter and between 0 and 2.5 on 140Ce parameter G shows the cell population prior to the residual 

parameter being applied. The cut-off was determined between 5 and 6 on the residual scale and between 0 and 2.5 on the 

140Ce scale H shows the cell population once the residual parameter has been applied to the sample I After defining the 

single cell population using the Gaussian parameters, the CD45+ cell population against the DNA intercalator 191 Iridium 

(Ir) channel was defined. The cut-off to remove debris was set at 5 on the CD45 89Y axis and J shows the CD45+ 191Ir+ cell 

population once the CD45 cut-off has been applied and K shows the final CD45+ 191Ir+ cell population when the 191Ir cut-

off determined at 5 L shows doublets in the CD3 170Er CD19 142Nd double positive gate. M To remove the doublet 

population identified in image L, CD19+ population cut-off gate was determined at 3.8 and the CD3 cut-off gate was 

determined at 4.8. This removes the doublet population whilst also identifying a single population of T cells (determined by 

CD3) and a single population of B cells (determined by CD19). The CD3 negative and CD19 negative populations are also 

present in the lower left quadrant of the plot. N The gates calculated in images L and M were applied to remove the CD3+ 

CD19+ doublet population to obtain a single cell population for downstream analysis.    
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Figure 4-4| Automated gating for obtaining a single cell population can be applied on a large data 
set 

Automated gating was applied simultaneously on 187 patient samples obtained on the mass cytometer. This was 

successful excluding three samples A-C RADAR 3351 blood sample baseline and D-F RADAR 3351 blood sample follow up 

time point at 3 months and G-I 1 synovial fluid sample did not pass automated gating. The gating step that failed for all 3 

samples was at the final step when applying the gate for removing doublets using the CD3 170Er and CD19 142Nd axes. An 

incorrect gate is drawn resulting in the removal of the CD19 B cell population. These 3 samples were removed from further 

analysis. 

4.2.1.3 Compensation for mass cytometry data  

The concept of compensation is closely associated with flow cytometry where the fluorescent signal 

is not only measured in the primary channel but also in neighbouring channels due to overlapping 

excitation and emission spectra of fluorescent dyes 248. This concept is known as ‘spillover’ where 

signal is recorded non it should be  in adjacent channels and can be mathematically corrected by 

correlating the original signal in an approximately linear manner known as compensation 248. 

Software to correct compensation is easily accessible such as FlowJo however, panels that consist of 

more than 15 markers become harder to compensate. Flow cytometers with the capacity to 

phenotype more than 28 markers have been developed but currently not widely available 249. 

Therefore the advent of mass cytometry has provided not only the prospect of immunophenotyping 

40 markers but also significantly reducing spillover.  

However, using mass cytometry does not eliminate spillover altogether as whilst fluorescence is not 

a factor to consider, spillover can still occur by three main sources: abundance sensitivity, oxidation  

and isotopic impurities 250. Abundance sensitivity is the spillover results from imprecisions in ion 

detection caused by asynchronous movement of identical ions (e.g. 145Nd ions detected in 146Nd 

or vice versa) at the initiation of acceleration thus resulting in metal ± 1 250. Abundance sensitivity is 

checked during the calibration set up time of the mass cytometer prior to acquisition. The cut off 

threshold for abundance sensitivity is 0.3% for 159Tb of a primary signal. If the abundance sensitivity 

accelerates the threshold the calibration would need to be repeated until 0.3% or less was achieved. 

Oxidation is an unavoidable as it occurs due to the plasma ionization of isotopes and results in 

metal+16 interference 250. As oxidation is undesirable, it is also measured during the daily instrument 

calibration prior to sample acquisition. If the oxidation interference is less than 3% of signal 

measured from the reference isotope 139La isotopes (as these are easily oxidised) in tuning solution 

the mass cytometer is considered to have minimal oxidation levels and thus does not need to be 

recalibrated 250. Isotopic impurity occurs as a result of isotopes not being 100% monoisotopic. 

Challenges in elemental enrichment can exist as it is not always possible to enrich every isotope to 

100% purity 250. Lastly, isotopic impurity can be measured accurately by conventional inductively 

coupled plasma mass spectrometry which can detect signal contamination which is the most 

prominent source of overlap in mass cytometry assays.  

Chevrier et al., in 2018 designed an algorithm to address spillover issues from mass cytometry data 

through the CATALYST R/Bioconductor package and an interactive Shiny-based web algorithm which 

can be used to correct for spillover 251. Using polystyrene compensation beads, each conjugated 

antibody was added separately to these beads and then mixed together and acquired on the mass 

cytometer. The algorithm incorporates the non-negative least-squares (NNLS) approach which 

corrects for spillover that occurs in empty channels without changing the data structure and applies 

semi-automatic spillover corrections 251. Each bead is assigned to a specific population based on the 

dominant signal in the corresponding lanthanide channel and sample cut-offs are automatically 
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applied. A spillover matrix is generated based on the single stained populations and takes into 

account abundance sensitivity, oxidation and isotopic impurity 251. The spillover matrix is then 

applied to the beads and samples to correct for compensation (Figure 4-5 A and B). When applying 

the compensation matrix to the samples from this experiment, there was not much difference 

between uncompensated data and compensated data (Figure 4-6 A, B, C, D) as evidenced by manual 

gating in FlowJo. This was expected as compensation issues in mass cytometry are significantly 

reduced but as part of an optimised protocol for the analysis of this data, compensation correction 

was included.  

Designing the panel and assigning the metal lanthanide to each marker requires careful 

consideration to reduce the impact of factors affecting compensation. For metals that have multiple 

isotopes such as neodymium (Nd) which has 5 stable isotopes, markers should be carefully assigned 

where the expression pattern is well characterised. Furthermore markers which can have 

intermediate levels of expression such as HLA-DR should not be placed on channels that are more 

susceptible to oxidation or contamination as this could negatively influence the interpretation of the 

data. For this study, it was not a difficult task to assign markers to channels meaning that the data 

was largely unaffected by compensation issues. However, for studies that incorporate more markers 

which may require the use of channels which are more susceptible to oxidation, compensation 

becomes an essential part of the data clean up process. 
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Figure 4-5| Compensation matrix used to correct for metal spillover in adjacent channels. 

A Each lanthanide metal channel is plotted against all the other channels to determine the spillover coefficient shown by 

Chevrier et al in 2018 251 demonstrating the algorithm developed by the group is capable of quantifying spillover based on 

abundance specificity, isotope impurity and oxidation. The colour from light pink to red denote an increase in spillover in 

that channel (Y axis) recorded in the contaminating channel (X axis). A sum total of the compensation spillover adds the 

values in the row for the specific channel. 148Nd records the highest spillover rate at 8.6 mostly occurring from 

neodymium isotopes. B The spillover matrix generated for the dataset generated in this work using the CATALYST 

R/Bioconductor shows the spillover values in each channel as in A. 
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Figure 4-6|No difference can be observed between uncompensated and compensated channels 

The compensation matrix shown in the previous figure was applied through R studio to all the samples in this study. 

Compensation was performed by adding each antibody to OneComp compensation beads and pooling these together in a 

single tube and acquiring 10,000 events on the mass cytometer. The compensation matrix algorithm initially applied a 

semi-automatic spill over correction for mass cytometry created using the R/Bioconductor package, CATALYST 251. In this 

step, the FCS files are deconvoluted to identify the single antibody-positive beads and each bead is assigned to a specific 

population based on the dominant signal, and the purity of the bead populations is further increased by automatically 

applying sample-specific cutoffs 251. The second part of the algorithm looked at determining the spill over at the single-

bead level and by default it considers interference between channels expected to interact based on abundance sensitivity, 

metal impurity and oxidation but can also check for ad hoc spill over that has occurred during the acquisition. In the third 

and final step, the compensation matrix from the solved linear system and applies this to the bead and cell samples to 

remove unwanted signal spill over 251. To look at the effect of spill over on the channels, manual gating checks were 

performed. As an example, A and B show the uncompensated and compensated CD3 and CD19 channels respectively and C 

and D show the uncompensated and compensated CD4 and CD8 channels respectively. No differences can be detected in 

the expression profiles between uncompensated and compensated plots. This was expected as the panel was designed to 

minimise/avoid spill over including placing markers with different expression profiles (as informed by literature) on 

isotopes of the same metal. Furthermore, the lack of spill over supports the main advantage of using a mass cytometer in 

that compensation is a modest issue and large immunophenotyping panels can be successfully designed without the 

cumbersome task of compensation. 

4.2.1.4 Clustering algorithms show batch variation 

Before running the data set through further analysis for hypothesis driven testing, it was important 

to ensure that batch effects from variation of antibody staining were undetectable. 10 barcoded 

batches, washed, counted, stained and frozen on the same day were prepared with each plate 

containing a consistent internal batch control from the same healthy donor to account for variation. 

Using the cytofkit graphical user interface (GUI) through a new Bioconductor package in R Studio, 

which requires only two lines of code 252. Other software packages are available to visualise data 

from mass cytometry namely the cloud based platform Cytobank 253. However, as mentioned at the 

beginning of this chapter, Cytobank has limitations chiefly in terms of the limited number of events 

that can be processed simultaneously, inflexibility to tailor algorithms for the dataset in question 

and the need to purchase a license annually. Cytofkit allows for high dimensionality data to be 

clustered into cell populations based on similar antibody staining patterns and machine learning 

which trains the algorithm to recognise specific patterns and cluster a heterogeneous population of 

cells appropriately. The result is that these clusters are presented in a visual format which can be 

readily interpreted in terms of the cell populations present in a given sample.  

For comparison, two different unsupervised clustering algorithms were chosen in Cytofkit, 

Phenograph and FlowSOM (self-organising map). The initial analysis was to observe whether there 

was any batch variation as a direct consequence of antibody staining variability by observing the 

internal whole blood batch control (same donor) which was included in each barcoded batch 

(labelled 1-10) in Figure 4-7. The Phenograph algorithm uses a graph-based partitioning method 

which is efficient not only in detecting cell populations but also in identifying subpopulations 
252,254,255. The Phenograph algorithm initially constructs a nearest-neighbour graph which looks at the 

populations of cells and measures their phenotypic relatedness and accordingly applies a graph 

partition using the Louvain algorithm 252. FlowSOM is another unsupervised technique for clustering 

where similar cells are assigned to the same node thus creating a minimum spanning tree. These 

nodes are then grouped into metaclusters using hierarchical clustering effectively grouping the data 

into cell populations 256.   
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Figure 4-7|Batch variations are observed by two different clustering algorithms 

A semi-automated interface using the cytofkit GUI Shiny App in R Studio, clustering algorithms, A Phenograph and B 

FlowSOM clustering algorithms identify batch variations using the internal batch control which was present for each of the 

10 barcode batches. Different colours represent different cell populations where clustering of many single points (which 

represent a cell) create a cluster as determined by the staining intensity calculated by the algorithm. The main purpose of 

this figure is to convey that the batch control which was identically processed shows variation across the batches.  

Both Phenograph and FlowSOM clustering algorithms, using 10,000 cells from each batch control, 

showed that antibody staining variations were detectable across the batches, particularly in batch 1 

where the cell populations are vastly different compared to those in batches 2-10. All batches were 

prepared simultaneously and subsequently cryopreserved at -80°C so it is not considered that 

significant batch variation was introduced at these stages. However, due to the logistics of 

acquisition, each batch had to be thawed and acquired individually on the mass cytometer. Whilst 

the acquisition of the batches should not vastly differ, it was observed that during the acquisition of 
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batch 1, the sample loop consistently blocked, increasing acquisition time and intermittent sample 

collection due to the delay of unblocking the cytometer. This is a problem that is not uncommon in 

mass cytometry and anecdotally reported across research groups as a frustrating occurrence of the 

technology. Blockages during cytometry acquisition is also formally acknowledged with technical 

reports from expert cytometrists on how to reduce this occurrence 257. However, during the 

acquisition of this cohort, there was no obvious indication as to which batches would be susceptible 

to blocking the mass cytometer. The mass cytometer that was used to acquire this cohort was 

consistently maintained and calibrated prior to acquisition and recalibrated using normalisation 

beads when the machine became blocked. Although significant effort was made to minimise the 

effect of variation as much as possible, collection time, freezing, thawing, preparation and washing 

of samples, antibody staining and instrument-dependent effects can all have an impact on the data 

which would not be captured by normalisation beads. For the purpose of this analysis, all samples 

which were present in batch 1 were removed from further analysis, as this batch was deemed vastly 

different compared to those in batches 2-10. Removing batch 1 from this analysis did not mean that 

it could not be analysed at all, as batch 1 contained follow-up time points for patients with 

established RA which can be analysed independently. The variation observed in batches 2-10 

required correcting prior to further analysis to prevent false interpretation of the data. 

4.2.1.5 CytoNorm algorithm for normalising antibody staining across sample batches 

Variation in staining is an unavoidable occurrence in cytometry particularly if introduced by sample 

collection or machine signal drift. However, as this is a phenomenon experienced by other groups, 

algorithms to correct for variation have been developed. Van Gassen and colleagues have 

acknowledged the existence of staining variability and devised the CytoNorm normalisation script 

which can be run through the R Studio platform 258. The advantage of CytoNorm is that it is 

specifically developed for data obtained from mass cytometry and thus is appropriate for use on 

single cell data. With support from UCB Pharma, this CytoNorm script was adapted to use for this 

data set. CytoNorm ensures internal consistency between clinical samples based on shared controls 

across various batches and for this dataset, each internal batch control from batches 2-10 was used 

to initially train the normalisation algorithm and model the batch effects. The principle of the 

normalization is as follows. Initially, data from the shared controls (batch controls) is used to learn 

the appropriate transformations for each batch 258. These technical variations can be protein marker 

specific where certain cell populations express a higher level of the protein resulting in several 

population-specific transformations to normalize cells 258. Firstly 25,000 cells in each batch control 

sample was clustered with all 37 markers using the FlowSOM algorithm to identify cell populations.  

FlowSOM is a commonly used clustering tool and was used in identifying batch variations in section 

4.2.1.4 as it is fast and efficient in detecting populations of various sizes and shapes without being 

computationally expensive 256,258,259. Here, Van Gassen and colleagues made an assumption that 

whilst the variation across the batches exist, the differences between the cell populations is bigger 

and thus FlowSOM can distinguish cell populations without being detrimentally affected by batch 

variation. However, a cut-off point of a coefficient variation of ≤ 2 was considered to be acceptable, 

calculated by Van Gassen et al., with anything larger than this attributed to batch effect 258. 

Moreover, for this dataset, batch 1, where the biggest variation was identified in the cell populations 

was removed from this analysis which eliminated the possibility of confounding results. Once the 

FlowSOM algorithm run was completed, normalisation was applied per cluster and an overview of 

the distributions for each control sample per marker, per cluster was calculated. Once the 

distributions were determined for each batch control, modelling the transformation was calculated 
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to determine the actual distribution to the goal distribution 258. As defined in the paper detailing the 

CytoNorm algorithm, Van Gassen et al., modelled the transformation by using splines 258. A spline is 

a piece-wise defined function which is used to calculate the difference between given points in a 

dataset but still retains the structure of the data. In this instance, using splines allows for the 

translation of original marker values to the new marker values and thus be as close as possible to the 

goal distribution and results in an individual spline for each pair of clusters and markers per control 

sample 258. This pre-calculated FlowSOM model and splines were applied to the samples by mapping 

the new samples onto the training samples (controls) FlowSOM clusters and splines. Each sample 

that has been normalised by the CytoNorm algorithm is then converted into a .fcs file to use in the 

analysis pipeline. Each sample that has been normalised by the CytoNorm algorithm can be 

subsequently validated in FlowJo to assess the outcome of normalisation by aligning each marker in 

each sample.    

 

Figure 4-8|FlowSOM analysis shows that once normalisation through the CytoNorm script has 
been applied, batches control staining variation becomes consistent.  

A Prior to the application of CytoNorm to normalise the samples from all batches, the FlowSOM clustering analysis 

performed using the cytofkit GUI through the R Studio platform, shows that the cell populations in batch controls 2-10 

have a heterogeneous staining pattern (depicted by the colours observed which are specific for each batch) despite being 

from the same donor. The expectation here would be that all the cell populations would superimpose with little 

discrepancy between the batches but this was not observed. B After application of CytoNorm on the batch controls the 

staining pattern within the clusters across the batches are more consistent. However, batch 4 (green) still appears to not 

conform to the homogenous staining and therefore samples in batch 4 were analysed separately downstream of the 

analysis pipeline.  

As batch variation was apparent across the batch controls, it was important to assess whether 

normalisation could improve staining consistency without having detrimental impact on the final 

interpretation. The batch controls were used to train the algorithm and this was then applied to the 

batch controls. Figure 4-8 shows the batch controls before and after normalisation using FlowSOM 

clustering in cytofkit to initially observe how the batch controls align in terms of cell population 

clusters. In section 4.2.1.4, this was already identified but what becomes apparent is when 10,000 
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cells from each batch control were concatenated to create one FlowSOM plot, the batch controls do 

not form homogeneous clusters and each batch control (denoted by colour) sits distinctly apart. 

Although the batches form clusters in close proximity to one another, the expectation would be that 

as they are all derived from the same donor, processed on the same day and simultaneously 

prepared that the clusters should be close to if not exactly identical. However, once the batch 

controls have undergone normalisation, the cell populations clustered again using FlowSOM, are 

now more homogeneous in staining as each control now blends in with the other controls. Batch 4 

(depicted in green) however, can be observed to sit apart from the other batch controls. Due to this 

unresolved normalisation, batch 4 was thus removed from analysis downstream as it was decided 

that the inconsistencies observed even after normalisation would influence interpretation of the 

data and that batch 4 could be analysed separately so as to limit the affect of batch variation on data 

analysis.  

To achieve consistency in the interpretation of the data, samples were normalised through the 

CytoNorm in terms of the hypothesis in question. This was decided because inconsistencies in 

normalisation across donors from different batches became apparent when the samples were 

analysed in FlowJo. This inconsistency was particularly noticeable in the markers CD11b and CD16, 

where across the normalised samples, alignment was still vastly different. This could be either due to 

donor variation but this was thought to be unlikely as the staining profile for CD11b and CD16 were 

consistent within the batch but inconsistent even after normalisation across the batches. Certain 

markers have been shown by other groups including Van Gassen et al., observed that CD15 and 

CD66 fluctuated across the batches but not within the batches. Whilst Van Gassen et al., were able 

to resolve the problem of fluctuating expression by changing the spline function from a linear to a 

non-linear transformation. It is worth observing here that the markers in this data set CD11b and 

CD16 and the markers identified CD15 and CD66 are markers that are typically used to identify 

myeloid cells in particular the neutrophil population. The neutrophil population of cells that showed 

the most variation in this dataset. As neutrophils are generally a short lived cell population in the 

blood, it is likely that by the time the samples were processed, some cell loss had occurred due to 

the nature of the cells and the logistics involved between collection of sample to processing of 

sample. It is also accepted that variation in cell populations including within the neutrophils will 

occur due to donor variation but where the CD11b and CD16 expression deviated due to obvious 

batch effects which could not be corrected by the CytoNorm algorithm, these samples were 

removed. In doing so, it was felt that the samples included for data analysis downstream would be 

reliable and yield data that could be trusted to inform interpretation and draw conclusions. 

4.2.2 Validation of Diffcyt pipeline for mass cytometry data analysis 

4.2.2.1 Preparing the metadata and marker data frame to import into the Diffcyt pipeline 

Automated analytical pipelines are required to interrogate high dimensional cytometry data to 

analyse data in an efficient and replicable manner. Whilst many automated algorithms exist for 

analysing single cell transcriptomics data, this has not been the case for cytometry data until 

recently. Many of the algorithms developed for cytometry data have been informed by existing 

approaches in transcriptomics analysis and adapting these algorithms, or directly incorporating them 

for cytometry analysis has become a rapidly developing field in bioinformatics.   

Whilst clustering plots such as those performed in FlowSOM or Phenograph have become a familiar 
presence in conveying cytometry cell populations, an approach that can integrate both unsupervised 
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clustering and supervised statistical analyses to detect cell populations or functional states such as 
activation status to associate with a specific outcome would prove invaluable for cytometry data 
analysis. Weber et al., have provided a solution for this problem by developing a new computational 
framework known as Diffcyt, which incorporates FlowSOM clustering to define cell populations, and 
empirical Bayes moderated tests including edge R, limma and voom which have been adapted from 
differential analyses of transcriptomics data 166,176. Differential analyses testing in the Diffcyt 
workflow also includes alternative methods which have been adapted from the classic regression 
framework 166.  
 
The complexity of this dataset meant that a robust approach was required which could test several 
different hypotheses. Coupled with the complexity of having no prior bioinformatics experience 
meant that I had to decide on how best to answer the hypotheses with the Diffcyt framework whilst 
acknowledging time constraints. With significant help from UCB Pharma, I was able to adapt the 
script in R Studio to interrogate the data. Before commencing analysis using the Diffcyt pipeline, two 
Excel spreadsheets were prepared. The first spreadsheet details the sample file names to be read 
into the script pipeline and the conditions assigned to each sample e.g. health or RA. Applying the 
conditions to each sample allows for patterns (if any) to be observed easily without having to refer 
back to the identity of each individual sample. Patients and condition names do not bias the Diffcyt 
pipeline as the algorithms included assess staining patterns of the antibody markers and not labels 
included by the researcher. Each spreadsheet was designed to include samples that best answered 
the hypothesis in question. Although the Diffcyt algorithm should be able to handle multiple patient 
identifiers and conditions, this became difficult for statistical analysis so spreadsheets were 
simplified to include sample name and up to three conditions (e.g. health, early RA and established 
RA).  
 
The second spreadsheet contains the markers which were included in the panel to be analysed and 
the assignment of each protein marker to ‘lineage’ and/or ‘functional’ categories. Table 4-1 shows 
the markers used for analysis and how the markers were characterised for analysis through Diffcyt. 
Lineage refers to the markers that are associated with defining specific cell populations as identified 
by the literature and are well established for example CD3 as a marker for T cells and CD19 as a 
marker for B cells. Defining a lineage in the context of the Diffcyt script also includes protein markers 
which are not conventionally associated with a functional state of the cell for example activation 
status. Often markers however, have the ability to function as both lineage markers and functional 
markers and the definition of a lineage and functional marker can be oversimplistic. The Diffcyt 
pipeline anticipates this and therefore allows the researcher to assign protein markers as lineage 
and functional if deemed appropriate. Markers are denoted as ‘0’ if they are not lineage or 
functional and ‘1’ if they are lineage or functional in the appropriate column. Where markers are 
deemed to be both lineage and functional, this is represented by a ‘1’ in both columns and where 
markers are deemed as neither lineage or functional and therefore not included in the analysis, this 
is marked as ‘0’ in both columns. Lineage markers are used to define clusters which represent cell 
populations and can be tested for differential abundance represented as percentages of the number 
of cells analysed and presented as a boxplot. For analysis of functional states of the cell, the median 
expression of the signal per cluster are used to calculate differential states within populations. The 
differential state can only be used where the changes in expression are not subtle however, the 
advantage of this analysis is that the results can be directly associated with cell types or populations 
of interest 260.  
 
Three markers were excluded in the Diffcyt analysis pipeline including CD123 and CD56 where 
marker expression was absent due to no expression of these markers being detected. CD123 was 
primarily included to identify dendritic cells and CD56 to identify NK cells. This did not hinder the 
process of identifying dendritic and NK cells as the FlowSOM clustering algorithm was able to detect 
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both populations using additional markers and these cell populations automatically segregate. IgD 
was incorrectly labelled during acquisition as ‘1gd’ which was incompatible with the script due to 
incorrect notation, although expression can be analysed through traditional gating methods using 
software such as FlowJo. The exclusion of these markers can be observed in Table 4-1 where 0 has 
been placed under the column headings ‘lineage’ and ‘functional’. The assignment of markers to 
‘lineage’ or ‘functional’ was extensively optimised by multiple iterations of the FlowSOM algorithm 
to identify clusters and was applied to all the analysis runs in the same format each time to retain 
consistency.  

Table 4-1| Classification of lineage and functional protein markers for Diffcyt analysis 

0 denotes the marker is not classified as lineage and/or functional and 1 denotes that the marker is either lineage and/or 

functional. Protein markers which are canonical lineage markers as established by literature were assigned 1 in lineage and 

0 in the functional category. Lineage markers included: CD11b, CD161, CD127, TCRƴδ, CD11c, CD3, CD203c, CD14, FCεRI, 

CD19, va7.2, CD4, CD8a, CD16, CD138, CD25, CD45RA, CD45, and CD45RO.  Functional protein markers were assigned 1 

and 0 for lineage included: Granzyme B, NKp44, CD28, CTLA4, Perforin, TNFR2, PDL1 and CD80. Protein markers which 

were determined as both lineage and functional were assigned 1 to each column included: CD40, CD27, CD86, NKp46, 

CD38 and HLA-DR. These assigned labels were optimised prior to the final analysis.  

CD56, CD123 and IgD were not included in the phenotypical analysis.  

Antigen Lineage Functional 

CD11b 1 0 

CD161 1 0 

CD40 1 1 

CD127 1 0 

TCRƴdel 1 0 

CD11c 1 0 

CD27 1 1 

CD86 1 1 

CD3 1 0 

CD123 0 0 

Granzyme B 0 1 

NKp44 0 1 

CD203c 1 0 

CD28 0 1 

CD14 1 0 

FceRI 1 0 

CTLA4  0 1 

CD19 1 0 

va7.2 1 0 

NKp46 1 1 

CD4 1 0 

CD8a 1 0 

CD16 1 0 

Perforin 0 1 

TNFR2 0 1 

CD138 1 0 

CD25 1 0 

PD-1 1 1 
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IgD 0 0 

PDL1 0 1 

CD45RA 1 0 

CD45 1 0 

CD45RO 1 0 

CD38 1 1 

CD56 0 0 

HLA-DR 1 1 

CD80 0 1 

 

4.2.2.2 Equal number of events from each sample were analysed by downsampling 

Diffcyt is suited for complex experimental designs but both computing capacity and time placed a 
restraint on the analysis and it was decided that samples should be analysed according to which 
hypothesis they were best suited to answer therefore reducing the number of samples in each 
analysis. Run time took between 6-8 hours per day, with the most time attributed to FlowSOM 
clustering. Once the metadata and marker files had been read into the script, samples were 
downsampled equally to 27,000 events to accommodate run time and ensure that equal number of 
events were being analysed from each sample. Downsampling was done through R studio for each 
analysis run and new .fcs files were written out for subsequent analysis. 27,000 events were selected 
as this was the lowest number of events identified in one sample. Extensive optimisation was 
undertaken to ensure that 27,000 events was enough to capture any significant changes within the 
immune cell populations that may be taking place. Increasing the number of events to 86,000 (data 
not shown) did not affect the number of clusters as these were already set within FlowSOM. 
Another advantage of high resolution clustering is rare populations are easily identified and unlikely 
to be merged with larger clusters even with a low number of events. Once samples have been 
downsampled and new .fcs files produced, a bar graph is produced to represent and confirm the 
amount of cells included from each sample (Figure 4-9). This is useful especially to ascertain that an 
equal amount of cells have been taken from each sample and confirming the samples have been 
downsampled successfully. It was observed that downsampling did not negatively impact the final 
conclusion drawn in this investigation. 
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Figure 4-9|Bar graph shows 27,000 cells from each sample (3 synovial fluid (SF) and 3 peripheral 
blood (PB)) included in the Diffcyt analysis after downsampling in R Studio.  

4.2.2.3 Marker expression intensities and expression levels can be assessed across all 

samples  

Initial analysis through the Diffcyt script looks at expression levels of markers providing an 
opportunity for the researcher an opportunity to check staining expression is as anticipated. 
Observing expression profiles across the samples can help to identify any anomalous staining that is 
contrary to expectation. In this case, analysis for this dataset was stringent with batch effects 
already addressed and therefore only samples that gave complete confidence were included. 
Individual markers can be analysed in each sample and the variance can be observed by using a non-
redundancy score (NRS) principal component analysis (Figure 4-10). This can indicate the amount of 
diversity between samples with the most diverse marker in analysis of synovial fluid and peripheral 
whole blood as CD3 (Figure 4-10). The NRS plot shows markers in descending order of variability on 
the x-axis with va7.2 identified as the least variable marker in Figure 4-10.   
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Another check of marker expression globally across the samples is also performed using a smooth 
densities plot (Figure 4-11) which presents each marker as a ‘smoothed’ histogram plot with each 
sample overlaid to observe the profiles for lineage and functional markers. The samples are coloured 
according to the conditions they represent which in Figure 4-11 is peripheral whole blood and 
synovial fluid. Density refers to the visualisation of the distribution of the marker expression and can 
be useful if batch effects or unexpected staining have not been corrected for prior to analysis. These 
will stand out and affect downstream analysis where it becomes computationally expensive. Whilst 
the script provided an opportunity to double check the marker expression, this was performed 
extensively (as shown throughout this chapter) to ensure marker expression was optimum and 
corresponded with existing biological understanding.   

 

Figure 4-10|Non-redundancy score (nrs) plot shows the antigens defined as ‘lineage’ markers for 
each sample included in the analysis. 

The NRS calculates the variability of markers in each sample. The higher the nrs for a marker, the higher the variability with 

the CD3 marker showing the highest variability from analysis comparing 3 paired peripheral blood and synovial fluid 

samples. The nrs for synovial fluid is more variable compared to peripheral blood suggesting that heterogeneity of RA as a 

disease is better detected nearer to the site of pathology. The solid coloured circles represent peripheral blood (PB) and 

synovial fluid (SF) scores on the non-redundancy scale and the white circles indicate the mean nrs from all the samples. 

The markers on the X- axis were used to inform FlowSOM clustering to identify cell populations and are arranged in order 

of highest variability to lowest.  
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Figure 4-11|Smooth densities of marker expression for each sample is calculated for lineage and 
functional markers  

Lineage markers and functional markers were analysed in 3 paired peripheral blood and synovial fluid samples to assess 

the distribution of expression. Where lineage markers were also classified as functional markers, these have been labelled 

with .1. ‘b’ refers to Granzyme B.  

4.2.2.4 Multi-dimensional scaling plot measures similarities in marker differential 

expression across samples and between conditions 

Multi-dimensional scaling (MDS) plot analysis is similar to principal component analysis commonly 
used in transcriptomics, and allows for unsupervised analysis which assesses similarities in 
differential marker expression between samples and conditions to be explored before conducting 
formal statistical analysis. Samples can cluster well according to condition provided that there is 
enough difference in marker differential expression between the conditions and this is plotted in the 
first dimension (MDS1). If samples are similar, they will be in close proximity in terms of distance on 
the plot and samples which are not similar will be further apart. The second dimension, MDS2 looks 
at the difference between patients which can be assessed within a condition as well as between 
conditions.  
 

When initially optimising the Diffcyt pipeline, MDS analysis was applied to a small sample size. 11 

patients with early RA and 8 healthy donors were selected across different batches and the 

expectation was that early RA and health would separate into two distinct groups. On the MDS1 axis 

five healthy donors and 4 patients with early RA cluster cluster to the left and 7 patients with early 

RA and 4 healthy donors cluster to the right (Figure 4-12 A). Further analysis by FlowSOM clustering 

confirmed that batch effects existed within the neutrophil population (coloured green and red) 

where the red cluster varies across the individual samples. However, a distinct batch effect pattern 

can be observed within this cell population (Figure 4-12 B, red cluster), and thus driving the 

distinction between the two conditions. Samples which showed a prominent cell population (red 

cluster) were grouped to the left of the MDS1 axis and where samples had a reduced cell population 
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(red clusters highlighted by circles) were grouped to the right of the MDS1 axis. Whilst all the 

samples had been normalised using the CytoNorm algorithm, initially the algorithm did not work 

within the neutrophil population. The splines in the CytoNorm algorithm, split the neutrophil 

population into two populations: CD16lo CD11blo and a CD16high and CD11bhigh. The neutrophil 

population however, should be a single population but discrepancies in CD16 and CD11b marker 

staining shown by FlowSOM clustering demonstrates how this can bias data analysis. Therefore, the 

MDS plot was a useful visualisation plot when examining the relationship between conditions and 

determining whether this is an artefact of staining or to pursue further statistical analysis.  
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Figure 4-12|Optimising the Diffcyt pipeline identified batch effects across the neutrophil population when analysing health and early RA 

A Multi-dimensional scaling (MDS) analysis did not show health and early RA form two distinct groups when assessing similarities across median marker expressions. The MDS1 dimension 

calculates the similarity between conditions but this was not evident. B FlowSOM clustering performed within the Diffcyt workflow identified the neutrophil population (depicted by green 

and red colouring) had inconsistent staining within the population which influenced the MDS plot. The neutrophil population was split into two populations during the normalisation step 

which was not initially identified and this could be detected across the batches: batches 3-10 and demonstrates the benefit of marker expression analysis which is incorporated into the 

workflow.  
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4.2.2.5 FlowSOM clustering and identification of immune cell populations for statistical 

differential testing 

In section 4.2.1.4, clustering algorithms Phenograph and FlowSOM using the Cytofkit GUI Shinyapp 

were used to assess immune cell populations in the batch controls included in each of the barcoded 

batches in which batch effects were identified. Once batch effects were normalised by applying the 

CytoNorm algorithm, including those described in section 4.2.2.4, cell populations were defined by 

using the FlowSOM clustering algorithm and the Consensusclusterplus packages incorporated in the 

Diffcyt workflow as these were considered to have optimum performance when clustering high 

dimensional cytometry data 259. Interestingly, when experimenting with different clustering 

algorithms and options, FlowSOM was faster using the Cytobank cloud software compared to using 

the in built FlowSOM algorithm built into the Diffcyt script or in the Cytofkit GUI. However, within 

the Diffcyt script, I tested the FlowSOM algorithm by repeatedly running the clustering with different 

number of cells, and changing the seed to ascertain the robustness and replicability of the 

populations identified by FlowSOM analysis. Seed refers to the starting point of the analysis of all the 

cells to be analysed in a dataset. When the seed is set randomly, it means that each run begins at a 

different starting point of the dataset. A consistent seed was set at 1234, as already defined in the 

script and applied to each run to limit any inconsistencies and maintain reproducibility. FlowSOM 

can be run on a heterogeneous population of cells such as the samples used in this data and 

therefore individual cell subsets do not need to be subsetted prior to running in FlowSOM. To 

confirm this, analysis was performed on two subsetted populations of cells: CD3+ T cells and CD11b+ 

CD16+ neutrophils to determine whether an increased number of cells from one cell population 

gave more insight into that specific cell type or whether the results were comparable to a 

heterogeneous population of cells. Encouragingly, no difference could be observed in differential 

abundance of T cells or neutrophils in a heterogeneous population of cells or a single subsetted 

population of cells (data not shown).  

The FlowSOM algorithm performs clustering by using three main steps. The first step is to build a 

self-organizing map where cells are assigned according to similarities based on markers and features 

to 100 grid points. Based on where cells are assigned to within this grid, this forms the basis of a self-

organising map. From this initial grid based self organising map, a minimum spanning tree is created 

which is similar in appearance to a dendrogram. This minimal spanning tree clusters groups of cells 

resulting in metaclusters which are represented on a 2D FlowSOM plot on tSNE axes. The analysis 

clusters all cells from all samples which provides a consistent approach and in principle means that 

there is no need to downsample events from each sample. To ensure that the FlowSOM clustering 

has worked, individual markers can be checked to determine whether expression is as expected as 

with an example shown in Figure 4-13 for CD4 marker expression.     
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Figure 4-13|tSNE plot shows the expression level of the CD4 marker.  

To assess specificity of the FlowSOM clustering, each marker can be individually assessed to observe the staining 

expression in the clusters which are formed by pooling all the samples in the Diffcyt analysis and randomly selecting 1000 

cells from each sample (n=6). The orange-red cluster shows cells staining positive for CD4 as indicated by the colour scale 

where negative expression is 0 (blue) and positive expression ranges from 4-6 depending on intensity.  

FlowSOM is designed so that it over clusters. 40 clusters allowed for the identification of the main 

cell populations by observing median expression of all the markers categorised as ‘lineage’. Markers 

that have informed the cluster are shown by a colour scale where orange-red shows medium to high 

median expression intensity and blue/yellow show that those markers are not used to define that 

cluster. The FlowSOM algorithm has been deliberately designed so that the researcher takes the 

time to manually go through the heatmap and define and label the clusters. This provides an 

opportunity to double check that populations identified are biologically meaningful and not an 

artefact of the algorithm. The most time of running the script is spent here and for each dataset the 

cluster numbers change so need to be checked and relabelled for consistency particularly when 

making inferences from different analysis runs.   

In Figure 4-14, the heatmap from an analysis on peripheral blood is shown. The heatmap shows the 

40 clusters as defined by FlowSOM and after I analysed these clusters manually, cluster merging 

revealed 17 populations of immune cells. Percentage of cells for each cluster are shown in brackets 

next to the cluster number on the heatmap and as before, the colour scale measures the intensity of 

the marker expression: negative 0 (blue) through to positive red (8). The median expression is also 

quantified in each square. 

The dendrogram on the left of the heatmap helps to identify the hierarchy of similarity amongst the 

clusters and can assist in deciding which clusters are similar. For example, cluster 2 clearly has the 

largest abundance of cells (59.27%) and when observing the markers, they are characteristic of the 

neutrophil population: CD45, CD11b, CD16, CD38, CD11c and CD45RO. On further inspection, 
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clusters 1, 12 and 31 are very similar to cluster 2 but weakly express CD11c which the algorithm 

clustered separately. I chose to group these four clusters together and Figure 4-15 shows the 

heatmap of the immune cell populations after the clusters have been merged and their population 

percentage. One population called ‘cells’ was unable to be verified and was excluded from statistical 

analysis. The annotated populations can be visualised in a tSNE plot with cluster size proportional to 

the percentage of cells in each population. The markers used to define each population are listed in 

Table 4-2.   

 

Figure 4-14|Heatmap shows 40 clusters identified by FlowSOM and the merging of these clusters 
into defined cell populations. 

The FlowSOM algorithm is deliberately designed to be semi supervised during the clustering process. This means that 

whilst the clusters are computationally identified, it is for the researcher to define the immune cell populations. FlowSOM 

is designed to over cluster, and 40 clusters are presented with the percentage of cells that form that cluster in brackets. 

The number of clusters were estimated based on previous iterations of FlowSOM however, it is recommended with the 

FlowSOM algorithm to over estimate the number of clusters and afterwards combine clusters that are phenotypically 

similar, together. Based on median expression intensity for lineage markers, coded by a colour scale blue = 0 (no 

expression) to red = 8 (high expression) and quantified in cell of the heatmap, clusters can be merged. The hierarchy of 

similarity between the clusters is represented on the left of the heatmap by the dendrogram. 17 populations in peripheral 

whole blood were identified in this clustering analysis. One population labelled as ‘cells’ was unidentifiable and as a result 

was excluded from further analysis.  
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Figure 4-15|Heatmap of immune cell populations identified in peripheral whole blood after cluster 
merging 

Cluster merging analysis was performed by using the heatmap produced in Figure 4-14. Briefly, the heatmap in Figure 4-14 

showed the intensities of each marker within a particular cluster. Clusters were merged where marker expression was 

deemed similar across all the markers and referring to the tSNE plot to identify the location of these clusters. Merging the 

clusters provides a more accurate insight into the number of cell populations that are actually present within the biological 

sample without including the same populations multiple times due to slight changes in the marker expression. The immune 

cell populations identified in peripheral whole blood are shown with the percentage of cells in each cluster shown in 

brackets median expression intensity for lineage markers, coded by a colour scale blue = 0 (no expression) to red = 8 (high 

expression). The population labelled ‘cells’ was a non-specific population of cells which could not be identified and hence 

was not analysed further.  
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Figure 4-16|Immune cell populations, after clustering analysis can be visualised in a FlowSOM 
tSNE plot  

The FlowSOM plot shows the immune cell populations denoted by the colours on the right hand side of the image. The 

largest cell population is neutrophils. The visual size of the populations correlate with the amount of cells that make up the 

population.  

Table 4-2| Immune cell markers used to define cell populations in FlowSOM 

Each cell population and the protein markers used to define the individual populations were informed by the preceding 

heatmap (using the percentages of marker intensity) as shown in Figure 4-15 and the tSNE plot shown in Figure 4-16.  

Cell population 
name 

Protein markers used to define the population 

Basophils  CD45/CD11b/CD16/CD45RO/CD38/FCεRI/CD203c 

B cells CD45/CD19/CD45RA/HLA-DR/CD40 

CD8+ Natural 
killer cells 

CD45/CD3/CD8/CD11b/CD16/CD45RA/CD38 

Dendritic cells CD45/CD16/CD11c/CD45RA/HLA-DR/CD40/CD86 

FCεRI+ cells CD45/CD45RA/CD11c/HLA-DR/CD86/CD38/FCεRI 
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MAIT cells CD45/CD45RA/CD45RO/CD8/Va7.2/CD161 

Memory B cells CD45/CD19/CD16/CD45RA/CD27/HLA-DR/CD40/CD86/CD38 

Memory CD4+ T 
cells 

CD45/CD3/CD4/CD45RO/CD27 

Memory CD8+ T 
cells 

CD45/CD3/CD8/CD45RO/CD27 

Memory CD4+ PD-
1+ T cells 

CD45/CD3/CD4/CD45RO/CD27/HLA-DR/CD38/PD-1 

Memory CD8+ PD-
1+ T cells 

CD45/CD3/CD8/CD45RO/CD27/HLA-DR/CD38/PD-1 

Monocytes CD45/CD14/CD11b/CD16/CD45RA/CD45RO/CD11c/HLA-
DR/CD40/CD86/CD38 

Naïve T cells CD45/CD3/CD45RA/CD27/CD38 

Naïve CD4+ T cells CD45/CD3/CD45RA/CD27/CD38 

Naïve CD8+ T cells CD45/CD3/CD45RA/CD27/CD38 

Neutrophils  CD45/CD11b/CD16/CD45RO/CD11c/CD38 

Natural killer cells CD45/CD11b/CD16/CD45RO/CD11c/CD38/NKp46 

Plasmacytoid 
dendritic cells 

CD45/CD4/CD45RA/CD45RO/HLA-DR/CD40/CD38/FCεRI 

T cells CD45/CD3/CD45RA/CD45RO 

T regulatory cells CD45/CD3/CD4/CD25/CD45RA/CD45RO/CD27/HLA-DR 

4.2.2.6 Differential analysis and hypothesis testing 

Before differential testing is performed, the MDS analysis (discussed in 4.2.2.4) can initially indicate 

whether significant differences between sample conditions will be identified. If the samples show a 

strong separation based on condition, this should give a gain in power to detect differences during 

differential analysis 176.  

Diffcyt is a new computational framework that allows for high-resolution unsupervised clustering 

together with supervised statistical analyses to detect cell populations or states associated with an 

outcome variable in high-dimensional cytometry data 176. At its simplest, the null hypothesis for 

testing is that there is no difference in immune cell population frequency and immune cell function 

between the grouping of samples e.g. health compared to RA. To summarise this, essentially the null 

hypothesis is that there are no immunological differences (or at least within the scope of the protein 

markers selected in this investigation). Therefore the diffcyt methodology uses FlowSOM clustering 

to define cell populations, and empirical Bayes moderated tests which are adapted from 

transcriptomics analytical tools for differential analyses 176. The model within Diffcyt allows for 

cytometry-measured features which are cell population abundances and median expression of cell 

state markers within the user defined cell populations. These two features are referred to as 

response variables and enable analysis of complex experimental designs typically attributed to 
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patient cohort studies. These variables include batch effects, paired designs and continuous 

covariates with linear contrasts enabling testing of a wide range of hypotheses 176.Furthermore, the 

model considers batch effects and continuous covariates as fixed effects. Discovery of rare 

populations would be uncompromised as the framework is includes a high-resolution clustering 

algorithm that will ensure that the rare populations do not merge within larger lineage clusters 176.  

For testing, the Diffcyt workflow used mixed models methodology using the general linear 

hypotheses function for arbitrary hypotheses using t-tests 176. The p-value shows the probability that 

under the null hypothesis, the p-value calculated indicates the probability of observing as great, or 

greater difference between the two conditions 176.  

Differential testing is performed in two parts in Diffcyt. Differential abundance (DA) looks at each 

cluster and marker independently and based on this analysis, the proportion (percentage) of each 

immune cell population (as defined by cluster merging) is plotted on a boxplot, where condition is 

shown on the x-axis and percentage on the y-axis. The DA testing calculates the raw p -values and 

adjusts these p-values for each cell population. Significant populations are then presented in a 

heatmap. Differential expression (DE) looks at the functional markers, as identified at the beginning 

of the workflow, in each of the immune cell populations and again this is presented as a boxplot with 

functional markers on the x-axis and median expression on the y-axis. As with DA testing, 

significance in DE of functional markers within an immune cell population is presented in a heatmap. 

For both DA and DE boxplots, the y-axes are scaled to accommodate for the range of data plotted 

and the distribution of donors within a condition. To correct for multiple testing, the Benjamini-

Hochberg adjustment was applied to each analysis and a false discovery rate was set at 5% 176.   

4.3 Discussion 

The aim of this chapter was to describe the methodology for analysing mass cytometry data 

generated in this work. Analysing cytometry data has increasingly relied upon automated pipelines 

to improve the reliability of data, expedite analysis and ultimately attain a level of replicability and 

consistency across research groups 237,238.  

Bioinformatics is a complex field and can be difficult to navigate. A lot of time is required to develop 

basic scripting skills and become confident in troubleshooting and repairing the script when it 

‘breaks’ – a term used when the script has errors and further analysis cannot be conducted until the 

code is corrected. It is common practice in many research departments to have access to a 

bioinformatician/bioinformatics department which allows for data to be processed and returned to 

the researcher for further statistical analysis. Whilst a trained bioinformatician is indispensable, 

basic coding skills and ability to be able run scripts through the R Studio platform is becoming an 

important skill to develop. There are many advantages to becoming familiar with basic 

bioinformatics, chiefly allowing the researcher a certain autonomy in data analysis and not being 

reliant upon often inundated bioinformatics departments. However, the time required to familiarise 

with the algorithms described in this chapter should not be overlooked but it is hoped that 

researchers either looking for a prescribed methodology or direction for cytometry analysis can find 

some guidance from this chapter.  

4.3.1 Strengths and limitations of the Diffcyt workflow 

The Diffcyt workflow provided a unique opportunity to be able to visualise clustering of cell 

populations across different patient cohorts and also provide statistical quantification of cell 
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populations that were either decreased or increased between conditions and measure differential 

expression of functional markers stratified by immune cell populations. The Diffcyt workflow has 

incorporated many staining checks and the MDS plot in particular was useful in terms of identifying 

initial issues within the neutrophil population which influenced the grouping of samples. The 17 

populations identified by FlowSOM were consistently observed in multiple FlowSOM runs which as 

far as this dataset was concerned, provided confidence in the replicability of this data. To maintain 

replicability, the same seed number was used so that the clusters were not vastly different each 

time. Diffcyt is not specific for any one type of analysis making it an adaptive pipeline for a variety of 

different clinical cohorts and hypotheses to be analysed. This dataset makes full use of this 

opportunity which will be demonstrated in the next two chapters and it is this flexibility that 

primarily influenced the use of this workflow.   

The use of Diffcyt on data analysis from mass cytometry is not extensively reported as yet due to the 

pipeline being fully published in 2020 166. It is anticipated that this will change as research groups 

become more familiar with the script and its availability. The researchers who created the Diffcyt 

workflow were able to test the script on a clinical cohort of peripheral blood obtained from patients 

with melanoma treated with anti-PD-1 therapy identified a small subpopulation of monocytes, were 

detected at baseline and able to predict response status 166. This population of monocytes were at a 

low frequency and regarded as a rare population and was still able to be identified in the presence 

of batch effects, a strength of the Diffcyt pipeline as discussed by the authors 166. Separately, the 

principle of Diffcyt is based on the same statistical approach reported by another research group 

working on mass cytometry and RA 261. In the paper, Fonseka et al., approach data analysis using the 

‘Mixed effect modelling of Associations of Single cells’ which like Diffcyt uses ‘reverse association 

strategy’ where it looks at association between cell population clusters and disease status at the 

single cell level 261. The fact that two different approaches adopt the same statistical testing, is 

encouraging and data can be compared to see if similar results are obtained if a similar disease and 

immunophenotyping panel is being studied. Fortuitously, Fonseka et al., looked at peripheral blood 

from patients with RA and although the experimental approach is different, there is an overlap in 

the immunophenotyping panel and certain populations identified by Fonseka et al., have also been 

detected in this cohort, which will be discussed further in Chapter 5.   

The clustering step in Diffcyt is a challenging part of the script. It is the most important part of the 

whole workflow as it informs the differential statistics. Whilst the clustering process is automated to 

produce the heatmap it is up to the individual to define the clusters. FlowSOM can cluster 

populations that are the same but may have subtle marker expression changes either due to 

different conditions, donor variability and/or batch effects. Marker expression variability as a result 

of batch effects were stringently addressed in addition to removing IgD, CD56 and CD123 from the 

final analysis due to technical error. This in itself should increase confidence in the dataset and the 

analysis. To identify clusters, a consistent approach was adopted, where 17 cell populations were 

identified each time FlowSOM clustering was applied. To further reduce the variability in clusters, 

27,000 cells were analysed from each sample. This was selected based on the lowest amount of cells 

present in a sample and downsampling was performed on all samples. The merits of downsampling 

are mixed. Those who do not favour raise a valid point that by downsampling, rare populations of 

cells may be under represented or overlooked and incorporated into a larger (often more 

established) cell population. Another problem is that whilst automated clustering is robust and able 

to corroborate cell populations identified by manual gating approaches, clustering algorithms often 

do not hold up well across samples. For the Diffcyt workflow, cells from all samples are combined 

before clustering which does not bias the analysis further on. However, should there be a vast 
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discrepancy in the number of events analysed from each sample, this could bias the clustering as a 

sample containing more events would be disproportionately represented compared to a sample 

containing fewer events. Moreover whilst FlowSOM is generally thought to be fast, this should be 

put into context. To cluster 999,000 events from 37 samples, took just under 6.5 hours to run. 

Typically bioinformatics might require the use of higher computing power than the one used in this 

analysis but this is a true representation of analysis time and logistical situations meaning that 

higher computing power cannot be accessed in the given period of the research.  

With the above considerations, it is no surprise that new clustering algorithms continue to be 

developed. The development of the partition-assisted clustering and multiple alignments of 

networks is capable of capturing immune cell populations that would be identified manually and 

aligning populations across samples to account for conditions 262. Another clustering algorithm, 

QFMatch offers another solution to the problem of sample alignment in which it performs cluster 

matching in multiple samples post clustering 263. QFMatch also locates populations which are 

present in some samples and absent in others and measures the dissimilarity score between cluster 

pairs 263. 

Thus in my opinion the Diffcyt workflow has offered an unparalleled opportunity to analyse a large 

clinical cohort with an approach that acknowledges the high-dimensionality of the data. The Diffcyt 

workflow may not be appropriate for all cytometry analyses but it is ideal for discovery analysis 

which is the premise of this study. It has allowed for an unbiased approach to the data analysis and 

not driven by the preference of the researcher but by what is actually detectable within the data. 

The next two chapters will discuss the findings of cell populations in RA and the implications these 

populations have. Furthermore, the cell populations identified will be discussed in the context of 

findings shown by other groups using mass cytometry in particular in RA.  

4.3.2 Data pre-processing provides confidence for downstream differential 

analysis 

The best practice approach to guide data analysis was adopted 264. Automated gating using Gaussian 

parameters provided and subsequent application of compensation meant that a high quality single 

cell population was obtained. Considerable time was spent analysing the quality of the staining 

across the barcoded batches and despite best efforts to reduce and preferably avoid batch effects, 

these unfortunately were identified. The batch effects identified in the batch controls were an 

example of careful experimental design in this study which are often missing from other mass 

cytometry datasets 265. However, by identifying these early on in the data clean up and pre-

processing phase, it gave greater confidence in the final data set for analysis. In this case, had 

controls not been included in the experimental design, it would have become a lot harder to identify 

staining variability. CytoNorm was a useful algorithm and able to correct for the staining variabilities 

although it was decided after the normalisation, that batches 1 and 4 would be removed from 

further grouped analysis as the staining still did not align with the remaining batches. Furthermore, 

batches 1 and 4 can be included in future analysis as these datasets contain patients where follow 

up time points were collected. It should also be mentioned that when designing the experiment, 

considerable thought was given to how best group the samples for barcoding. Barcoding has the 

limitation of only 20 samples to be included and this was limited to 19 samples as a batch control 

was included. Thus it was decided to group follow up time points for the same patients in one batch 

so that these could be analysed independently if necessary. However, for the purpose of consistency 

in this data analysis approach, these two batches were excluded as it was preferred to look at many 
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samples as possible across the batches. It was observed that batch effects can affect certain 

populations more than other populations and this was particularly apparent in the granulocyte 

population, specifically the neutrophil population. The markers CD11b and CD16 were particularly 

influenced by staining inconsistencies and correcting these was important to achieve a consistent 

neutrophil population across the batches and within samples. This is an acknowledged limitation of 

CytoNorm where an assumption is made that the batch effects are small enough that they do not 

impact the clustering 258. When large batch effects do occur, biologically similar clusters across 

samples may become split as observed with the neutrophil population and as a result do not align, 

providing an opportunity for future normalisation pipelines to optimise the clustering step of the 

algorithm.  
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Chapter 5 Immunophenotyping whole blood across the stages of Rheumatoid 

Arthritis 

5.1 Introduction 

5.1.1 Recent findings of pathologically expanded immune cell subsets in RA by 

single cell technologies 

Immune dysregulation is apparent across all stages of RA and is a widely accepted concept amongst 

researchers within the field 56. Whilst extensive research has been directed towards understanding 

the chronic inflammatory interactions at the cellular and molecular levels that occur in established 

RA, the possibility to extend this research to detect RA at its earliest opportunity, inform 

stratification of treatment, and/or identify individuals who may become refractory to treatment are 

unmet clinical needs which need to be resolved.  

Flow cytometry has proven to be an invaluable tool for probing the immune cell populations and 

indeed continues to be the preferred tool as it is both widely accessible and an established 

technique. However, the major disadvantage of flow cytometry is the limited number of proteins 

markers which can be included thus restricting researchers to fully embrace the heterogeneity of 

cells present in biological samples. Therefore the need for new technologies that could incorporate 

multiple protein markers for comprehensive immune profiling was necessary to begin answering 

long-standing questions and indeed several reviews by experts encourage the adoption of novel 

single cell technologies to revolutionise and expedite discovery of pathological immune cell subsets 

in RA 152,266–268. Single cell technologies targeting transcriptomic and proteomic profiling have 

provided an opportunity to interrogate the immune landscape at a high dimensional level. Large 

collaborations such as the AMP RA and SLE network which spans government, industry and non-

profit organizations, aim to identify novel immune cell populations and molecular signatures which 

associate with RA pathology using cutting-edge single cell technologies 269.  

To date, significant immune cell populations have been reported by the AMP group including T 

peripheral helper (Tph) cells which were initially observed to be expanded in the rheumatoid joint 
157. The functions of Tph cells are discussed in detail in Chapter 6 but will be briefly mentioned here. 

Tph cells are characterised as PD-1hi CXCR5- memory CD4 T cells and do not display exhaustive traits 

but rather actively recruit T follicular helper cells and B cells to the inflamed synovium, through the 

production of chemokines IL-21 and CXCL13 157. Tph cells were characterised across the three most 

commonly assayed compartments in RA: peripheral blood, synovial fluid and tissue. Tph cells did not 

directly differentiate seropositive patients from seronegative although were found to be more 

robustly increased in seropositive patients. Tph cells did not significantly correlate with many clinical 

parameters including age, gender, disease duration or treatment although a separate cohort of 23 

seropositive patients were independently assessed before and after commencing new treatment 

and Tph cells were observed to decrease in frequency when disease activity reduced 157.  

The discovery of pathologically expanded Tph cells in RA demonstrates how high-dimensional 

immune profiling can reveal subtle immunophenotypic changes in the immune populations which 

can be overlooked by traditional approaches. However, in the case of Tph cells, they have also been 

identified in other autoimmune diseases including systemic sclerosis, IgG4, SLE, and psoriasis 
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vulgaris but not in seronegative RA and spondylarthritis which suggests a common mechanistic 

pathway shared by autoantibody mediated diseases  270–273. However, whilst mass cytometry is an 

excellent tool for detecting multiple immune cell populations it is less useful when discerning which 

of these populations are directly responding to autoantigens and which are non-specifically 

recruited to inflamed tissue 158. It is often postulated that by answering this question, eradication of 

RA may be possible but to date specific autoreactive T cells have proven difficult to identify. A 

landmark paper published in 2019 observed CD4+ T cells in multiple autoimmune disease settings 

including celiac disease which is an ideal model to study autoreactive T cells as it is directed towards 

one specific antigen, gluten 274. Antigen- specific lymphocytes can be specifically detected by using 

gluten-derived peptide-loaded MHC tetramers and Christophersen et al., demonstrated that gluten-

specific CD4+ T cells within the gut had a phenotype that closely resembled Tph cells identified in 

the RA joint 157,158,274. The Tph cells in celiac gut tissue expressed high levels of HLA-DR, PD-1 and 

CXCR3 and analysis by bulk RNA sequencing, showed that this T cell subset had increased expression 

of genes IL21 and CXCL13, important for B cell differentiation and chemoattractant, again consistent 

with the Tph cell phenotype 274,158.  

In a short Nature Rheumatology review article published in 2019, Rao puts forward a compelling 

explanation for the detection of Tph cells in other autoimmune settings including celiac disease 

suggesting a common mechanistic pathway in which Tph cells activate B cell function 158. In turn, the 

pathologic expansion of Tph cells may be numerically useful as it may reflect the degree of T cell-B 

cell interaction taking place in patients which may correlate with disease activity or severity 158. An 

intriguing follow up experiment would be to obtain RA gut tissue and observe whether Tph cells 

could provide a link between gut dysbiosis and onset of RA by assessing mucosal triggered antigen-

specific immunity which cross-react with joint antigens 275. Smiljanovic et al., showed that activated 

B and T cells in synovial tissue were associated with response to microbially activated monocytes 

and macrophages, with further analysis revealing elevated levels of CXCL13 protein expression in RA 

SF and serum 275. It is unclear whether these findings can directly suggest the involvement of Tph 

cells in RA pathology but consistencies such as the detection of CXCL13 in RA samples continue to 

make the Tph cells a compelling population to investigate further. 

In addition to the discovery and characterization of Tph cells, the AMP group have identified another 

CD4 memory T cell population defined as CD27- HLA-DR+ were expanded in RA and demonstrated 

effector functions including production of IFNγ and cytolytic factors which upon successful 

treatment, contracted 261. This population of cells will be further detailed in Chapter 6 however, it is 

important to note that this subset of cells were distinct from Tph cells and were not characteristic of 

functional exhaustion but did suggest that CD27- HLA-DR+ CD4 T cells were chronically activated 261.  

Mass cytometry and single cell transcriptomics have been particularly valuable when exploring 

populations within tissues. In RA, an increase in publications which focus on deep 

immunophenotyping of synovial tissue is becoming apparent. Excellent review articles on the 

progress being made in RA synovial research have been published highlighting the importance of this 

research 13,14,146,276–280. As RA is a disease which primarily manifests in the joints, it is both obvious 

and important that attention has returned to the synovium with the benefit of advanced technology 

for more robust immune profiling. Both Tph cells and CD27- HLA-DR+ CD4 T cells were identified in a 

small cohort of synovial biopsies (n=3 and 9 respectively). Presumably as both confidence in novel 

technology and clinical and laboratory techniques associated with these technologies become more 

established, larger biopsy cohorts are becoming possible as evidenced by Zhang et al., in 2018 161. 51 

RA and OA synovial tissue biopsies were comprehensively immunophenotyped to detect which cell 
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populations perpetuated joint inflammation, by using a combination of single cell and bulk RNA 

sequencing and mass and flow cytometry to immunophenotype single sorted cell populations 

including T and B cells, monocytes and fibroblasts from synovial tissues 161. The tissue architecture 

showed that OA tissue was largely composed of stromal fibroblasts and endothelial cells which was 

also observed in leukocyte poor RA tissue 161. Analysis showed an expansion of specific immune cell 

immunophenotypes that associated with RA 161. These included: IL1B+ proinflammatory monocytes, 

CD11c+ autoimmune B cells (which have also been detected in SLE 281), and granzyme B and K 

producing CD8 T cell subsets 161.  

Whilst traditionally CD4 T cells have been extensively studied in RA pathology, renewed interest in 

the CD8 T cells and their implication in RA is gaining traction. Single cell RNA sequencing has 

revealed that CD8 T cells in the inflamed RA synovium are prolific producers of IFNy and TNF 

transcripts but have reduced cytotoxic potential detected by lower granzyme B and perforin 

transcript expression in seropositive RA patients 161,282. Furthermore, when assessing the altered 

cytotoxic potential, it was observed that CD8 T cells had low expression of CD57 and CX3CR1 282. The 

authors of the study postulate that CD8 T cells in the RA joint signal to synovial fibroblasts to 

produce IL-6 and other inflammatory mediators which in turn suggests that these CDT cells produce 

IFNy in an antigen independent stimulation 282. It is also evident that regulation of CD8 T cells and 

their effector function is altered based on the upregulation of PD-1 on CD8 in the RA joint compared 

to peripheral blood. Contrary to expectation, these CD8+ PD-1+ cells in the joint were not 

considered exhausted but rather displayed a heightened proinflammatory state, indicating that 

checkpoint regulation within the joint is aberrant 283.   

Moreover, it was also observed that IL-6 producing THY1+ HLAhigh sublining fibroblasts were 

expanded in RA synovial tissue compared to OA which was elaborated upon by Mizoguchi et al. in 

2018 where fibroblast heterogeneity and subsets in RA synovial tissue were further detailed 161,284. 

5.1.2 Recent findings of pathologically expanded fibroblast subsets in RA by single 

cell technologies 

Findings by Mizoguchi et al., demonstrates how mass cytometry and single cell transcriptomics can 
be versatile and applied to non-immune cell populations. This has been particularly useful in the 
case of fibroblasts. Biologics used in RA treatment, target various aspects of the immune system, 
and whilst these are successful in reducing chronic inflammation, they fail to reverse or cure joint 
damage providing a compelling argument to investigate non-immune cells such as fibroblasts 285. 
Whilst fibroblasts have often been functionally type casted as structural cells, studies have revealed 
that they are capable of producing chemokines and cytokines in response to environmental cues 285. 
In their investigation, Mizoguchi et al., set out to thoroughly immunophenotype the fibroblast cell 
population by initially assessing the expression of four surface markers: podoplanin, THY1, cadherin-
11 and CD34 having been selected from a wider immunophenotyping panel 284. These markers were 
able to phenotypically distinguish 7 fibroblast subsets which was then further refined by single cell 
RNA sequencing to three major fibroblast subsets 284. In addition, fibroblast subsets localized to 
specific regions in the synovium, with CD34- THY1+ cells located deep in the sublining layer 284. 
Conversely CD34-THY1- fibroblasts were observed in the lining layer and CD34+ fibroblasts were 
found in both the lining and sublining layers of synovial tissue with the majority of fibroblasts 
expressing cadherin-11 284. This observation reflects a study previously conducted in mice where 
FAPα+ THY1+ immune effector fibroblasts were detected in the synovial sublining whereas FAPα+ 
THY1- destructive fibroblasts were restricted to the synovial lining layer 286. Further evidence in 
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support of fibroblasts specifically locating within the synovium was observed using an inexpensive 
technique known as droplet-based single-cell RNA in 5 RA synovial tissue biopsies 287. Here 
Stephenson et al., detected CD55+ fibroblasts locating in the synovial lining and THY1+ fibroblasts 
were localized to the sublining with THY1 capable of further segregating fibroblast populations into 
podoplanin+ and podoplanin- fibroblasts populations 287.  

When comparing fibroblast composition between RA and OA, CD34- THY1+ cells comprised a median 
of 22% of total fibroblasts compared to 8% in OA, however, CD34-THY1- cells were decreased in RA 
at 15% compared to 48% in OA tissue 284. These findings provide evidence that fibroblasts may be 
functionally altered in RA compared to OA, and lend support to previous observations in mice, 
where adoptive transfer studies of fibroblast subsets within the joint showed that FAPα+ THY1+ and 
FAPα+ THY1- fibroblast subsets had functionally different roles. FAPα+ THY1+ fibroblasts were 
implicated in chronic inflammation and had minimal effect on bone and cartilage destruction, 
whereas the inverse was true for FAPα+ THY1- fibroblasts 286. Therefore CD34- THY1+ cells may 
associate with worsening clinical outcomes and this was reflected by clinical correlative data 
showing that patients with swollen joints had increased CD34- THY1+ cells and CD34+ fibroblasts 284.  

Recent data has reported the expansion of preinflammatory mesenchymal (PRIME) cells in blood 

have been detected two weeks prior to an RA flare in a longitudinal cohort of patients collected at 

364 time points spanning over 4 years in four patients 288. RNA sequencing revealed the expansion of 

CD45-CD31-podoplanin+ PRIME cells which were also associated with an activated B cell profile prior 

to flare and in the presence of a flare PRIME cells were subsequently decreased 288. PRIME cells 

demonstrate characteristics similar to fibroblasts and are detectable in blood is intriguing, and may 

support the hypothesis that fibroblasts may traffic from the blood to the synovium, and potentially 

precede the inflammatory events that take place in the joint 288.  

Treatments targeting fibroblasts have become a focus as they may provide another option for 
treating RA, particularly for those patients who have become resistant or refractory to existing 
treatments. Seliciclib is an oral cyclin-dependent kinase inhibitor which is capable of suppressing 
synovial fibroblast proliferation 289. An initial clinical trial determining the maximum dose of seliciclib 
was conducted in 15 patients who were refractory to TNF blockade, showed no serious adverse 
events were observed thus paving the way for future clinical use 289. 

5.1.3 Aims  

The overall aim of this chapter is to chronicle the immunophenotypes across the different stages of 

RA with particular focus on the early RA cohort of patients using the Diffcyt script. In addition, the 

chapter will aim to validate the robustness and sensitivity of the Diffcyt script to interrogate the 

immune landscape within this cohort. This chapter aims to contribute to the conceptual framework 

of ‘stages’ within RA; that is the understanding that RA is not a uniform disease but more akin to a 

syndrome. Whilst this concept is widely accepted, no definitive biomarker or immune signature has 

been consistently identified/correlated with a stage of RA. To provide earlier intervention in RA and 

thus have better treatment efficacy, understanding what distinguishes and differentiates RA stages 

will help clinical management of RA and thus improved patient care. Using the combination of a 

diverse cohort that spans different stages of RA, mass cytometry and an automated pipeline, this 

analysis will aim to comprehensively phenotype the immune cell populations in blood and observe 

whether any differences between the stages are detectable.  
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5.2 Results 

The approach to analysis was designed to test both the validity of the Diffcyt script analysis pipeline 

and to explore the spectrums of the clinical stages within the RA cohort collected for this study. Due 

to batch variation as discussed in Chapter 4, not all samples were included for analysis and it was 

decided that only samples that successfully passed the data pre-processing steps should be included 

for analysis. Where possible, if samples originated from the same batch, these were analysed 

together, again removing inconsistent staining or signal during acquisition.  

5.2.1 Evidence of immune dysregulation in two pre-clinical RA patients  

The first aim of the analysis was to determine if any difference could be detected in any of the 

clinical stages within RA using whole blood. As these blood samples were not stimulated or activated 

in vitro, it was not known whether the mass cytometer and the panel designed, would both be 

sensitive enough to detect changes within RA and between RA and health. Therefore, Diffcyt analysis 

first looked at whether there was a difference between health, pre-RA and early RA and specifically 

whether immune dysregulation could be detected at the clinically earliest opportunity. Pre-RA refers 

to at risk patients identified by historical evidence and CCP+ titer but were not diagnosed with RA. 2 

patients formed the pre-RA cohort and were compared with 6 healthy donors and 7 early RA donors 

(with varied serology status – full clinical data in appendix) taken from different batches to ensure 

findings were not restricted to one batch and therefore applicable to patients in the same stages of 

RA. 

Analysis began in the Diffcyt script by downsampling 27,000 events from each sample and a new .fcs 

file was created for each sample containing the downsampled events. 27,000 events were selected 

as this was the lowest number of events in one healthy sample included in this analysis. Eliminating 

the one sample and increasing the number of events to 80,000 did not affect the number of cell 

populations that were identified downstream and it did not change the outcome of the findings. This 

demonstrated that the Diffcyt pipeline was capable of processing a small number of events and 

identifying differences. The metadata placed all the samples for analysis to into the three conditions 

pre-early RA, early RA and healthy. Evidence of a difference was initially observed in the MDS plot 

(Figure 5-1) which showed that pre-RA and early RA donors clustered together to the left of the 

MDS1 axis and were distinct from healthy donors. Interestingly both pre-RA donors were closer 

together on the MDS plot and were not within the early RA donors suggesting staining similarity. The 

MDS plot was calculated based on the median (arcsinh-transformed) marker expression of 26 

lineage markers and 15 functional markers (as identified in Table 4-1 in Chapter 4) across all cells 

measured for each sample. Change in median represents distance between samples in the plot with 

those samples with similar medians, in closer proximity on the plot and where median marker 

expression is different, these are further distanced.  
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Figure 5-1| Multi dimensional scaling (MDS) plot observes the staining similarity globally across all 
samples included for analysis using 27,000 events from each sample. 

2 pre-clinical RA (denoted in purple and marked as (p) whole blood samples were analysed with 7 early RA (denoted in 

orange and marked as (e) whole blood samples run in the same barcoded batch and 6 healthy (denoted in black and 

marked as (h) whole blood samples. The numbers correspond to the cohort study number assigned to these samples. The 

MDS1 and MDS2 axes depict similarity between the samples represented by a dot and the proximity of this indicates 

similar patterns of staining. The 2 pre-clinical RA patients are in close proximity to one another and also align on a negative 

MDS1 axis whereas health separates from both pre-clinical and early RA patients on the positive MDS1 axis.  

FlowSOM Clustering analysis detected 14 cell subsets. Differential abundance and differential 

expression of functional states testing did not reveal any significant differences although trends 

could be identified. Analysis of cell abundance across the populations revealed percentage increase 

in B cells in pre-RA compared to early RA and health (Figure ). Another interesting observation was a 

percentage increase in the neutrophil population in early RA compared to health and pre-RA (Figure 

) which was analysed further.  

5.2.1.1 Cell percentage increase in B cell population at the pre-clinical RA stage 

                 

Figure 5-2|Increase in percentage of B cells in pre-clinical RA in comparison to health and early RA.  
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A shows an increase in percentage of B cells in preclinical RA (n=2) compared to early RA (n=7) and health (n=5). B Increase 

in the neutrophil population in patients with early RA compared to health and preclinical RA. Results not significant after 

adjusted p values. This comparison shows that in the pre-clinical phase of RA, immune dysregulation is observed and thus 

supports the hypothesis that across disease stages of RA, a change in immune cells is detectable.  

5.2.2 Analysing MDS plots to determine immune relationship between health, 

early RA and established RA  

Due to the batch effects incurred during acquisition of the cohort on the mass cytometer, it was not 

possible to run all samples simultaneously through the Diffcyt script as the script would be 

influenced by the staining variation and not by the underlying biology. Therefore the analysis could 

not be performed completely unbiased. It is also worth mentioning that supercomputing power at 

the time of this analysis was not available and furthermore it is unlikely the Diffcyt script would be 

able to cope with the complex data set presented here. Furthermore, should all samples be analysed 

together, the many parameters to this data set aside from just the multi-marker aspect including 

patient demographics, underlying immunology affected by treatment/progression/stage of the 

disease complicates analysis and can overwhelm the process of identifying what is a true 

representation of the biology and what is an artefact.  

Each run performed through Diffcyt takes approximately 10-12 hours with the clustering step taking 

a significant amount of time. The clustering step can be considered as a two step process: the run 

time taken through FlowSOM to obtain the 40 clusters and the process of piecing together the 

information from the heatmap to make sense of the immune populations represented by the 

heatmap. This is time-consuming and requires careful judgement to decide whether to combine 

similar expression clusters together or whether these are bona fide phenotypes that represent a 

biological difference. This is much easier said than done particularly as each FlowSOM run changes 

the numbering of the cluster and can identify 40 different clusters each time FlowSOM runs. 

Therefore for this project, FlowSOM was run 5 times for each analysis to assess whether the same 

clusters were being detected with the same markers identifying the population. Another challenge is 

different clusters are identified in different patient cohorts even if the same lineage and functional 

markers have consistently been applied. Assessing which cell populations are common across all the 

analyses can therefore be another rate limiting step in the analysis process. 

The MDS plot can be considered a global overview of the staining expression across samples and so 

therefore may overlook subtle underlying differences in staining expression. Also the MDS does not 

look at defined immune cell populations but rather staining expression which when analysed after 

clustering may better contextualise findings. However for this analysis, the MDS plot proved to be an 

invaluable tool to quickly ascertain whether the downstream analysis was likely to reveal significant 

immunological changes between the different conditions. An example of this was when deciding 

whether health, early and established RA would form distinct groups calculated by the MDS plot. 

Donors from all three conditions were taken from across all batches and had passed data pre-

processing stages. Established RA referred to patients who had received treatment but did not 

discriminate in terms of type/amount of biologic/DMARDs received (full patient cohort details in the 

the Appendix). Figure 5-3 shows there was no clear distinction between healthy, early RA and 

established RA as determined by MDS plot however, when separated into health compared to early 

RA (Figure 5-4) and health compared to established RA (Figure 5-5), it is evident that the two groups 

are separated from health. An additional analysis which intended to observe whether early RA and 

established RA would separate into two distinct groups having removed the healthy controls. 
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Moreover, no distinction could be observed between early RA and established RA (Figure 5-6). For 

all comparisons the full Diffcyt script was run including the differential testing to ensure that no 

subtle differences were excluded but the MDS plots were informative. Therefore only early RA 

compared to health yielded significant results, which will be described further. The MDS analysis 

also suggested that whilst immune differences between RA irrespective of stage separate from 

health, this becomes less apparent between stages of RA. Given that early RA donors were newly 

diagnosed and had not received treatment and established RA patients included in the analysis were 

on treatment, it was thought that these two cohorts represented the polar ends of RA. However, 

whilst immunological differences may exist between these two groups of patients, the MDS analysis 

could not detect this and further downstream analysis did not identify significant changes between 

early RA and established RA.  

 

Figure 5-3|MDS plot analysis does not reveal 3 distinct groups of healthy, early RA and established 
RA 

Individual sample labels are removed to clearly see the relationship between the conditions. Multi dimensional scaling 

(MDS) plot does not show a clear separation of established RA (23), early RA (n=23) from health (n=14) by globally 

analysing the staining similarity across all samples using 27,000 events. 
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Figure 5-4|MDS analysis identifies early RA and health cluster into 2 distinct groups 

Multi dimensional scaling (MDS) plot shows separation of early RA (n=23) from health (n=14) by globally analysing the 

staining similarity across all samples using 27,000 events. 

 

Figure 5-5| Distinction between health and established RA can be visualised by MDS plot  
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Multi dimensional scaling (MDS) plot shows separation of established RA (n=23) from health (n=14) by globally analysing 

the staining similarity across all samples using 27,000 events. 

 

Figure 5-6|No clear distinction between early RA and established RA by MDS analysis  

Multi dimensional scaling (MDS) plot shows early RA (n=23) does not distinctly separate from established (n=23) by 

globally analysing the staining similarity across all samples using 27,000 events. 

To further stretch the polarity of the RA spectrum, another analysis was performed comparing early 
RA with refractory RA patients. Refractory RA patients for this analysis were defined using existing 
criteria 290 as those patients who had  failed two mechanistically different biologics e.g. TNF and IL-6 
blockade and were either in the ‘wash out’ phase before starting a third biologic or were already on 
treatment at the time of collection. MDS plot analysis revealed that no distinct separation between 
the two groups (Figure 5-7) was detectable suggesting that differences at the immune cell level 
become increasingly difficult to detect in more progressed RA. Another analysis comparing non-
refractory patients (commenced initial biologic treatment or were treated with two different TNF 
blockers and refractory patients did not reveal any underlying immunological differences (Figure 
5-8).  

Therefore the MDS plots were useful when determining differences between stages of RA and 

whether these differences were likely to lead to significant changes within the immune populations. 

Although differential testing was applied to all the conditions run through the Diffcyt script, the MDS 

plots gave an accurate indication of whether significant changes were likely to be detected. Section 

5.2.3 will detail the findings for differences between health and early RA. 
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Figure 5-7|Multi dimensional scaling (MDS) plot shows early RA (n=23) and refractory (REF) RA 
(n=23) are indistinguishable based on global staining similarity analysis. 

 

Figure 5-8|Distinction between non-refractory (NR) (n=11) and refractory (REF) (n=17) is not 
evident by multi dimensional scaling analysis 
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5.2.3 Distinct immune cell populations identify early RA from health 

5.2.3.1 MDS plot analysis that granulocytes influence distinction between early RA and 

healthy donors  

32 patients were collected in the early RA cohort, but only 23 were taken forward for analysis in 

Diffcyt to eliminate confounding results introduced by batch variations. As differences could be 

identified between pre-RA, early RA and health this provided evidence that differences were indeed 

present within the groups. To focus the analysis, healthy donors were compared with early RA 

donors to detect changes between the two groups. MDS analysis revealed that health and early RA 

donors broadly fall into two distinct groups when all immune cell populations are analysed (Figure 

5-4).  

To determine whether the absence/presence of immune cell populations impacted the MDS plot, it 

was first decided that only the granulocyte population would be included in the analysis. This was 

based on the analysis in Figure 5-2, where there is an indication that neutrophils are altered in early 

RA compared to health and pre-RA. However, this finding was in a small cohort of samples and it 

was not significant. Therefore to determine whether the granulocyte population were different in 

early RA compared to healthy donors, I gated just the granulocyte population using the markers 

CD11b and CD16. 15,000 granulocytes were analysed for 22 early RA donors and 12 healthy donors 

to determine and the MDS plot analysis showed that the granulocyte population was influencing the 

distinction between these two groups (Figure 5-9). Furthermore, the granulocyte population created 

a bipartite group within early RA patients, although it was indeterminate what could be driving this 

further division. The importance of granulocytes was further supported when all immune cell 

populations were included and the granulocyte population was removed as the distinction between 

health and early RA became blurred (Figure 5-10). This suggested that either phenotypically the 

granulocyte population were altered in early RA or were numerically altered in comparison to 

health. Although Diffcyt script was previously validated by Nowicka et al., 176 it was important to 

determine that the script was compatible with the data generated in this study. It also provided 

confidence that number of immune cells were not influencing the MDS plot as 27,000 cells from 

each sample is a small number. A final analysis to ascertain that number of cells and cell types did 

not affect outcome of findings was performed by taking a pure population of 10,000 CD45+ CD3+ T 

cells from early RA and healthy donors and despite this increase in T cells and no other cell 

populations, this did not reveal further immune cell subsets or significant changes in the T cell 

population between early RA and health (data not shown). Therefore, differential abundance and 

expression testing was performed in the Diffcyt script across all immune cell populations to ensure 

subtle changes in immune cell populations were not missed. 
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Figure 5-9|Granulocyte population influence distinction between health and early RA  

Analysis of the granulocyte population with all other immune cell populations removed, shows that granulocytes drive the 

distinction between health (n=12) and early RA (n=22) as represented by the multi dimensional scaling (MDS) plot.  
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Figure 5-10|Absence of granulocyte population results in a loss of distinction between early RA 
and health 

Inclusion of all other immune cell populations and removal of the granulocyte population no longer clearly distinguishes 

between health (n=11) and early RA (n=19) as represented by the multi dimensional scaling (MDS) plot. 

5.2.3.2 Differential abundance and expression testing reveals specific immune cell 

populations are dysregulated between early RA and health and span both 

adaptive and innate immune cell populations  

The key question to answer was which if any immune cell populations were influencing the 

distinction between early RA and health. Following FlowSOM clustering analysis (Figure 5-11), which 

identified 18  immune cell populations, differential abundance testing showed cell percentage 

decrease of MAIT cells (p=0.0000157), CD8 NK cells (p=0.005), pDCs (p=0.02) and NK cells (0.03) in 

early RA compared to healthy donors which was significant (Figure 5-12). The specific decrease of 

these cell populations suggested a migration of these myeloid cell populations from the blood to the 

joint and further still a selective recruitment of these populations to the joint microenvironment. 

Interestingly, the granulocyte population were not significantly expanded or decreased in 

percentage between early RA and health further suggesting that phenotypic differences were likely 

to drive the distinction between the two conditions. Figure 5-13 shows the boxplot distribution for 

percentage of cells in the neutrophil (health 42-82%, early RA 44-78%), plasmacytoid dendritic cells 
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(health 0.025-0.5%, early RA 0.02-0.13%), NK cells (health 1.2-6.5%, early RA 0.4-6.4%), CD8 NK cells 

(health 0.7-7.8%, early RA 0.2-3.2%) and MAIT cells (health 0.3-3.2%, early RA 0-0.7%). The decrease 

in cell populations in early RA did not further correlate with patient demographic factors including 

age, gender, serology, tender/swollen joint count or smoking history (full details in appendix) 

suggesting a common mechanism of cell migration to the joint occurring in early RA, a phenomenon 

that has been reported.  

 

Figure 5-11|FlowSOM clustering identifies 18 immune cell populations in early RA and health 
whole blood profiles  

Immune cell populations in early RA and healthy donors are summarised by FlowSOM clustering.  
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Figure 5-12|Differential abundance heatmap represents significant changes in immune cell populations between early RA (n=23) and health (n=14)   

Differential abundance testing to identify significant changes in specific immune cell changes revealed a decreased percentage of MAIT cells (p=0.0000157), CD8 NK cells (p=0.005), 

plasmacytoid dendritic cells (p=0.02) and NK cells (0.03) in early RA compared to health. Adjusted p value is given. Significance was calculated to be ≥0.05. Decrease in cell abundance is colour 

coded blue/black.  
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Figure 5-13|Differential abundance testing through the Diffcyt script shows percentage changes in specific cell populations between early RA (n=23) and 
health (n=14) 

Plasmacytoid dendritic cells, natural killer cells, CD8 natural killer cells and MAIT cells all significantly decreased in early RA compared to health where significance was defined by a p value 

≥0.05. Difference in the neutrophil population was not significant in terms of percentage cells between early RA and health as observed by MDS .   

Scales vary to represent percentage of cell population from 27,000 cells. 
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To further probe whether immunophenotypic changes occurred within the 18 identified immune 
populations, 15 functional markers as identified in the validation steps of this analysis, were 
examined by differential expression testing, stratified by the 18 cell populations. Differential 
expression testing detected that 8 immune cell populations had immunophenotypic changes. In 
total 14 immune cell phenotypes which had significantly changed between early RA and healthy 
donors represented in the heatmap (Figure 5-14) with significance p value reported next to the 
population. Table 5-1 shows the significant changes in median expression of functional markers in 
immune cell populations as identified by statistical testing in Diffcyt. Briefly, significantly increased 
median expression of activation markers in early RA were observed in CD27 and CD28 in memory 
CD4 T cells (p=0.003 and p=0.03 respectively), CD27 in memory CD8 T cells (p=0.03), CD38 in 
basophils and CD14+ monocytes (p=0.03 and 0.003) and HLA-DR in pDCs (p=0.04). Significantly 
decreased median expression of activation markers in early RA were observed in CD27 in neutrophils 
(p=0.0003), perforin in MAIT cells (p=0.01), CD86 and CD27 in NK cells (p=0.05 for both), NKp44 and 
CD28 in basophils (p=0.04 for both), CD27 and perforin in CD14+ monocytes (p=0.01 and p=0.04 
respectively). 

Table 5-1|Significant changes in functional protein marker median expression in immune cell 
subsets in early RA patients identified by differential expression testing in Diffcyt pipeline 

Immune cell subsets  Increased median 
expression of 
functional markers 

Decreased median 
expression of 
functional markers 

Basophils  CD38 NKp44, CD28 

CD14+ monocytes  CD38 CD27, perforin 

Plasmacytoid dendritic 
(pDCs) cells  

HLA-DR - 

MAIT cells  - Perforin  

Memory CD4 T cells CD27, CD28 - 

Memory CD8 T cells CD27 - 

Neutrophils  - CD27 

Natural killer (NK) cells - CD27, CD86 
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Figure 5-14|Differential expression heatmap represents 14 significant changes in functional activation markers across different immune cell populations 
between early RA (n=23) and health (n=14). 

Differential expression testing identifies significant changes in median expression of functional activation markers across immune cell populations in early RA compared with healthy donors. P 

value is shown in brackets next cell population. Significance was calculated to be ≤0.05. Decrease in median expression of functional activation marker is represented by blue/black and 

expression of functional activation marker is represented by orange/yellow. 
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(Figure legend on next page) 
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Figure 5-15| Differential expression testing through the Diffcyt script reveal significant changes in median expression of functional markers across 
different immune cell populations between early RA and health. 

A Plasmacytoid dendritic cells have an increased median expression of HLA-DR in early RA compared to health whereas B shows a decreased median expression of perforin in the MAIT cell 

population in early RA. C Median expression of CD27 and CD28 are increased in the memory CD4 T cell population of early RA and D CD27 is increased in early RA central memory CD8 T cells. 

E Median expression of CD27 is decreased in the early RA neutrophil population although in F CD38 is increased in the basophils of early RA patients. G Both CD27 and CD86 have a decreased 

expression in NK cells of early RA patients. H CD14+ monocytes have an increased median expression of CD38 in early RA but decreased median expression of CD27 and perforin.  
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7 of the 15 functional protein markers included for analysis were found to be differentially 
expressed in early RA compared to health but did not correlate with patient demographic data 
including age, gender, serology, tender/swollen joint count or smoking history suggesting that the 
immunological differences observed between early RA and health were driven by an overall immune 
dysregulation in early RA. As demonstrated in the MDS plot analysis, no significant 
immunophenotypic differences between early RA and established RA could be detected (data not 
shown). Interestingly however, the MDS plot had shown that established RA patients were distinct 
compared to 13 healthy donors (Figure 5-5) and although not statistically significant, the percentage 
of MAIT cells were decreased in 22 established RA donors compared to health (Figure 5-16) 
suggesting that immune differences observed in early RA (untreated) are still detectable in patients 
who had received biologics. The established RA patients included in the analysis were not 
discriminated by amount/type of biologics the patients were receiving as the analysis aimed to 
capture an overall snapshot of the treated stage of RA. Differential expression analysis showed 
similar trends to those observed in early RA, including increased median expression of both CD27 
and CD28 in memory CD4 T cells, decreased median expression of perforin in MAIT cells (Figure 
5-17). In addition, it was observed in the B cell population, PDL1 median expression was decreased 
whereas in contrast, both CD38 and HLA-DR median expression was increased in established RA 
compared to health. These subtle changes in protein expression suggest that there are detectable 
differences at the protein level between established RA and health. 

 

Figure 5-16|Percentage of MAIT cells decrease in established RA (n=23) (depicted in orange) 
compared to health (n=13).  
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Figure 5-17|Differential expression testing comparing established RA with health identifies trends 
in functional marker expression in B cells, memory CD4 T cells and MAIT cells. 

Differential expression testing using the Diffcyt pipeline did not reveal significant differences between established RA (n = 

23) and healthy (n = 13) however, differences could be detected within B, memory CD4 T and MAIT cell populations. 

Within the B cell population, PDL1 median expression was slightly decreased in established RA compared to health. In 

memory CD4 T cells, median expression of CD27 and CD28 were increased in established RA compared to health and in 

MAIT cells, perforin expression was slightly decreased in established RA compared to health.  
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5.3 Discussion  

5.3.1 Strengths and limitations of study design and analysis through Diffcyt 

pipeline 

A significant amount of time was invested in validating the Diffcyt analysis pipeline as this was both a 

new bioinformatics skill coupled with high-throughput data. The ability to use scripts to assist in the 

development of analysing cytometry data is becoming more prevalent with many options for 

automated becoming available for discovery analysis 166,291–293. As complexity of datasets increase 

due to patient demographics, multi-parametric experiments, and emerging bioinformatics softwares 

to analyse data continue to evolve, a robust analysis approach is required. This is a complex decision 

however, it is worth dedicating careful thought as to what questions/hypothesis are being asked of 

the dataset. This should be carefully considered before commencement of sample collection, 

something which may in theory sound obvious and straight-forward but may encounter logistical 

challenges in practice. Sample collection is both a fundamental yet arduous component of 

translational medicine research and well formulated hypotheses can be marred by practical 

consequences. To a certain extent, a degree of flexibility is required which means the initial 

hypotheses formed may need to be adapted during the course of the study. In a heterogeneous 

disease such as RA, evolving hypotheses can quickly become complex and confusing in terms of 

which variables are being measured. For example when formulating the hypothesis about 

treatment, this can very quickly become complicated in how to distinguish patients such as by 

type/duration/amount of treatment. If this question was to be analysed broadly, then any patient 

receiving treatment can be included for analysis however, if the question becomes more nuanced 

such as analysing patients who have only been treated with one biologic such as a TNF inhibitor then 

the number of patients suitable for that analysis will decrease. This study is no exception to suffering 

from sample size limitation (even though this was a larger cohort compared to previous mass 

cytometry reports) and it is recognised findings from this research would need to be further 

investigated in a larger cohort for confirmation. Despite the small cohort, it was not thought that 

this negatively impacted on the data interpretation and instead provided insightful analysis of the 

phenotypic profiles in the conditions measured.  

The Diffcyt pipeline provided a fantastic opportunity to explore cytometric data analysis through an 

automated approach and develop essential bioinformatics skills. UCB Pharma was instrumental in 

providing the bioinformatics training and at the time of analysis developing pipelines and scripts 

which could be used to explore this dataset. The scope of analysis in this study was wide however, 

due to time restraints it was practical to begin with broad questions such as differences between 

health and RA that could identify obvious changes between the conditions. The MDS analysis plot 

was especially helpful to determine whether immune similarities could be detected within a 

condition and whether this in turn would infer a difference between conditions. MDS analysis 

showed a strong staining similarity within healthy donors and a strong similarity within patients with 

early RA and these separated into two distinct groups based on condition. It was observed that 

those conditions that formed distinct groups by MDS analysis were a robust prediction for whether 

there was likely to be a statistically significant difference in immune cell populations for this analysis. 

MDS analysis that did not show distinct separation of conditions were accurate as downstream of 

the pipeline, no statistically significant changes were identified by differential testing. Whilst 

statistically relevant changes underpin the relevance of the findings, and provide a persuasive 
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argument and quantified justification to focus on certain immune cell populations, it is recognised 

that this study was not large enough to provide this justification. Instead the findings by the Diffcyt 

workflow serve as a proof-of-concept that automated bioinformatics pipelines can be successfully 

applied to analyse routine cytometry experiments and provide an additional option to manual 

gating.  

There are several limitations to the Diffcyt pipeline which were encountered during this analysis. A 

difficult decision occurs at the very beginning of the analysis - to downsample or not to 

downsample? The decision to downsample the event number for each sample to 27,000 events may 

be viewed as restrictive. It was noted in the F1000 publication in which Nowicka et al. describe their 

pipeline, the reviewer highlights the concern of whether a highly variable number of cells from 

different samples may influence the final clustering result 176. In response, Nowicka et al. 

acknowledge that downsampling itself can have two main negative impacts on the data analysis, 

firstly the loss of data that occurs as a result of downsampling and secondly the chances of detecting 

rare cell populations become compromised 176. Undoubtedly both viewpoints are valid and therefore 

careful consideration was applied when deciding what the best approach would be for this analysis. 

What ultimately underpinned the decision was that the data generated had to be reliable and as the 

number of events from each sample fluctuated, it was decided that downsampling would be the 

optimum approach. An advantage of downsampling was that it demonstrated the Diffcyt workflow 

was sensitive enough to find differences despite the small event number. This should provide 

reassurance for future studies in particular where cell number may be limited to begin with such as 

biopsy tissue, meaningful immunophenotypic changes can be detected. An unexpected 

disadvantage of downsampling was that it did not make much difference to run time. For each run 

conducted through the Diffcyt pipeline it took approximately 10 hours. The rate limiting step was 

easy to identify which was the FlowSOM clustering process and the annotating of cell populations. 

The fact that population location on a FlowSOM plot change with each run is both frustrating and 

time-consuming and consumed a significant amount of time. It is understood that this step has to be 

treated carefully as further analysis is based on the accurate identification of these cell populations 

and that this process cannot be entirely automated and require a second step to manually check 

these populations. It is anticipated however, that improved clustering tools continue to be 

developed and aim to streamline this process such as Phenotyping by Accelerated Refined 

Community-partitioning which can be used for large-scale, high-dimensional single-cell data in 

excess of 1 million cells 294.  

Due to a labelling error it was not possible to analyse the marker ‘IgD’ as it was incorrectly labelled 

as ‘1gd’. Whilst this error would not make a difference in softwares such as FlowJo, in scripts such as 

Diffcyt this error interferes with how the Excel file is read and is not recognised as it begins with a 

numerical digit as opposed to a letter. Whilst this did not negatively impact on the analysis as IgD 

expression can be analysed manually, it does mean it had to be excluded for automated analysis. 

The Diffcyt workflow was useful when faced with the overwhelming task of where to begin with 

multi-parametric mass cytometry data. There is no optimum approach for analysis as yet nor a 

prescribed workflow although papers are now emerging from experienced research groups about 

considerations to take into account when approaching cytometry analysis 164. What is especially 

encouraging is that these papers recommend a similar approach to the one described in this study 

giving confidence in the approach taken to analyse mass cytometry data.     
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5.3.2 Innate cell populations abundance are significantly decreased in early RA 

peripheral blood compared to health  

The Diffcyt analysis revealed that MAIT, CD8 NK cells, pDCs and NK cell populations were 

significantly decreased in early RA compared to health. Analysis did not reveal a significant change in 

abundance in B and T cell populations or myeloid populations for early RA. It is worth considering 

the abundance of each significant immune cell population in context to its relevance to RA. 

5.3.2.1 MAIT cells are decreased in early RA 

MAIT cells are innate-like T cells that recognise bacterial pathogens presented by MHC class-1 

related protein 1 (MR1) and were characterised as CD3+ CD8+ CD161+ Vα7.2+ cells in this study 

consistent with existing literature reporting changes in this population 295–299. MAIT cells have been 

observed to have an altered phenotype reported by Koppejan et al. in 2019 in early untreated RA 

stage in blood and SF and after bacterial stimulation had a diminished response in comparison to 

spondyloarthritis MAIT cells measured by a decrease in CD25 and CD69 expression 300. Koppejan et 

al. identified MAIT cells using an MR1 tetramer which they suggest is an accurate method to detect 

MAIT cells as CD161 expression can fluctuate on CD4 and CD8 T cells however, they did not observe 

a change in the frequency of MAIT cells in the blood. Numerous studies have reported the decrease 

in frequency of MAIT cells in RA and other pathologies providing further evidence to support the 

analysis in this work 295,296,298,299,301. Very few studies have observed CD4+ MAIT cells as they are not 

an abundant subset within the blood with the majority of MAIT cells identified as CD8+ and 

approximately 10% of MAIT cells are double negative CD4-CD8- 302. 

It should be mentioned that there are very few publications at present looking at the role of MAIT 

cells in early RA with many existing reports conducted in patients with established RA symptoms or 

receiving treatment so it remains uncertain whether MAIT cells have a reduced frequency in 

response to treatment or as a direct result of pathology. Moreover, MAIT cells are abundant at 

mucosal sites and also in the liver and lungs but the majority of studies including this study have 

observed their role in the blood where they account for 5% of CD3+ T cells 303. This could suggest 

why in nearly all pathologies, blood MAIT cells are decreased in frequency despite the heterogeneity 

across the diseases 299. In RA, high levels of TNF and IL-1β in SF which is thought to upregulate 

adhesion molecules encouraging the binding of MAIT cells to endothelial cells via sialyl-Lewis X 

motif. It was also observed that sialyl-Lewis X motif is expressed on fewer circulating MAIT cells in RA 

compared to health suggesting a migration of MAIT cells to SF 299. To date, MAIT cells have not been 

observed to correlate with disease activity in RA but have done so in ankylosing spondylitis 301.  

Several reports have suggested that MAIT cells may be chronically activated in RA by either MR1 or 

by cytokines including IL-12, IL-18, IL-6 or interferon-α which can lead to an exhausted state 

represented by PD-1 or IFN-γ and TNF secretion 304. Once activated, MAIT cells are capable of killing 

target cells through the Granzyme B/perforin pathway 304. In this analysis, an exhausted phenotype 

was not observed when assessing PD-1 expression levels on MAIT cells however, perforin expression 

was significantly decreased on MAIT cells in early RA suggesting that their cytolytic function is 

compromised. This is intriguing as it has not been previously reported in RA that MAIT cells have a 

reduced perforin function but it could be speculated that their ability to eliminate bacterially 

infected cells becomes compromised thus indicating an exhausted phenotype as their cytotoxic 

function declines. Future work will be required to determine the functional role of MAIT cells in RA 
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which should also include analysis of mucosal tissue to determine their tissue-specific 

immunophenotype.    

5.3.2.2 Early RA plasmacytoid dendritic cells do not display an activated phenotype  

pDCs are a distinct lineage of bone-marrow derived cells that reside mainly in blood and lymphoid 

organs in steady state and are functionally important for their rapid production of type I interferon 

in response to viral infection 305. pDCs were a distinct population of cells, separating from 

conventional dendritic cells and pDCS were phenotypically characterised as 

CD45+CD4+CD45RA+CD45RO+HLA-DR+CD40+CD38+FCεRI+. The phenotype would also include 

CD123 however, this marker was excluded from the analysis.  

The Diffcyt analysis revealed that pDCs were significantly reduced in peripheral blood of early RA in 

comparison to health which has been previously reported 306–312. Observation of a reduction in pDCs 

have been reported since 2004 by Van Krinks et al. in spondyloarthritis and RA peripheral blood and 

SF 308. It was observed that there were low numbers of dendritic cells in peripheral blood but higher 

levels in SF in both pathologies but particular higher in spondyloarthritis 308. This led to the authors 

to hypothesise that in RA, pDCs are trafficked in their immature form to synovial tissue as opposed 

to SF as the synovium provides the optimum environment for pDCs to mature through the 

expression of CCR7 which are present on mature pDCs 308. To support the claim that pDCs are 

present in RA synovial tissue, Cavanagh et al. observed pDCs in synovial tissue and noted their higher 

expression of HLA-DR (which was also significantly higher on early RA pDCs in this study) and their 

location in perivascular regions of synovial tissues more specifically in the blood vessels 306. In RA, 

pDCs are hypothesised to be activated by a viral pathogen such as influenza virus or CpG 

oligonucleotides lead to the production of cytokines including TNF, IFN-α/β which are capable of 

inducing DC differentiation and stimulation of activation function 306. Subsequent studies have also 

characterised the pDC population in the sublining of inflamed synovial tissue and observe that pDC 

number are specifically and significantly higher in comparison to myeloid DCs and were prolific 

producers of IFN-α/β 309. A proposed model for pDCs trafficking from the blood to the SF and finally 

to the synovium is thought to occur by CD83- and/or DC-LAMP- pDCs and mDCs which release 

proinflammatory cytokines which perpetuate the chronic inflammation 309,312. 

It appears that the role of pDCs can be perplexing to distinguish based on the environment in which 

they either originate or are studied in vitro. In 2018, Cooles et al. set out to investigate the 

frequency and phenotype of pDCs in early RA blood and identify whether immunology related genes 

were upregulated or downregulated using transcriptomics 311. Their findings revealed that peripheral 

blood pDCs have a tolerogenic phenotype which is in contrast to its function  

Lastly, mass cytometry analysis revealed pDC numbers were decreased in Primary Sjögren’s blood 

but did not correlate with numbers in labial salivary gland tissue 307. Despite the reduction, pDCs in 

blood produced comparable levels of IFN to that of tissue suggesting that pathology may result by 

activation through immune complexes, production of interferon and a subsequent induction of a 

negative feedback loop which disrupts pDCs homeostasis rather than as a result of tissue migration 
307. This somewhat conflicting evidence is also apparent in RA, where Cooles et al. reported that 

pDCs in early RA blood do not have an activated phenotype but perhaps instead demonstrate a 

tolerogenic phenotype 311. The analysis presented here supports this hypothesis as I did not identify 

pDCs to have an increased expression of activation markers compared to health. Transcriptomic 

analysisby Cooles et al. showed in early RA there was a downregulation of TNFRSF17 and 

upregulation of PRDM1 and CSF1R which is considered to be immunoregulatory in function. PRDM1 
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(also known as BLIMP-1) is increased in human pDCs in response to IFN-α and in turn is thought to 

suppress production of proinflammatory cytokines leading to a tolerogenic function 311. Both disease 

stage and microenvironment are considered to be central factors which determine the outcome of 

pDC function. This offers an explanation as to why the data is contradictory depending on the 

location in which pDCs are observed for example in SF, pDCs are capable of activating T cells and 

production of cytokines311. 

In summary, pDCs have been identified as a significant population in this analysis despite the modest 

number of events (27,000) from each sample and pDCs being a non-abundant population. It is hoped 

that this finding will provide justification to further explore the dendritic cell population with 

particular focus on pDCs to definitively establish their role in the periphery and synovium. 

5.3.2.3 NK and CD8 NK cells in early RA 

Diffcyt analysis revealed two populations of NK cells which were significantly decreased in early RA 

blood compared to health which has previously been identified 313,314. From this finding, it is 

hypothesised that MAIT cells, pDCs and NK cells have a common function in responding and 

eliminating bacterial/viral infected cells and secreting proinflammatory cytokines mainly IFN and 

TNF. The next observation is that all three cell populations are decreased in early RA compared to 

health suggesting that there is a common mechanism trafficking these cell types to the joint where 

they become influenced by the local microenvironment.  

The two populations of NK cells detected by FlowSOM clustering showed NK cells and CD8 NK cells 

cluster separately but in close proximity to one another which indicated that phenotypically these 

were two different populations. The marker CD56 was excluded from analysis which would have 

been used in conjunction with CD16 to initially characterise this population. However, FlowSOM was 

capable of phenotyping NK cells using a combination of other markers to define NK cell subsets. NK 

cells in this analysis were defined as CD45+CD11b+CD16+CD45RO+CD11c+CD38+NKp46+ and CD8 

NK cells were defined as CD45+CD3+CD8+CD11b+CD45RA+CD16+CD38+. It was uncertain whether 

CD8 NK cells. Without functional analysis of CD8 NK cells, it is difficult to state whether this cell 

population is similar to NKT cells although from just phenotypic analysis it does suggest that CD8 NK 

cells are similar in phenotype to these cells 315. Another study showed that activated NK cells were 

observed to be decreased in RA peripheral blood but the frequency was not altered in resting NK 

cells however, the patient cohort did not look at classifying patients according to treatment naïve or 

treated patients 316.    

Studies using the CIA mouse have shown that NK cells are capable of causing joint destruction and 

are abundantly present in the RA joint 317. In this analysis, both CD27 and CD86 expression levels 

were significantly decreased in early RA patients indicating an altered activated function. However, 

in the next chapter, I show that CD8 NK cells display a significantly altered phenotype which saw 

increased expression of inhibitory proteins CD80, NKp44 and PD-L1 and also suggestions of an 

activated phenotype including increased expression of CD27, CD28 and HLA-DR but an impairment 

in cytotoxic function demonstrated by a significant decrease in perforin. It is therefore hypothesised 

that the upregulation of inhibitory receptors results in deficient cytotoxic function and could be a 

possible mechanism which contributes to early RA pathogenesis. This altered phenotype in early RA 

has been observed in patients with seropositive RA where NK cells were decreased and had a 

reduced propensity for IFN-γ production 314. This decrease in numbers was noticeable only in 

seropositive patients and not in seronegative patients could be explained by apoptosis induced 

through FCγR triggered by IgG immune complexes 314. 
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The role of NK cells in RA is not fully understood and furthermore it is still uncertain whether they 

actively contribute to pathogenesis or whether they are capable of modulating homeostasis 318. A 

study using a CIA animal model, antibody-mediated NK cell depletion led to an aggravation of 

disease but conversely, another study showed depletion of NK cells suggested a resolving of CIA and 

prevented counterwork of bone loss upon NK cell depletion 319,320. Data from this study shows CD27 

and CD86 are decreased on NK cells, suggesting a deactivated phenotype whereas NK cells present 

in the inflamed synovium tend to have an activated phenotype 317. Therefore it is considered that 

CD8 NK cells may be closer to the NK cells found in the inflamed synovium as they have an activated 

phenotype and upregulate inhibitory receptors suggesting a pathological involvement in RA. It is 

evident that there is not enough evidence as yet from this work or other studies as to the specific 

phenotype of the pathologic NK cells however, I predict that CD8 NK cells would produce more TNF 

and IFN proinflammatory cytokines and induce the maturation of DCs 321.  

Finally, NK cells are thought to possess the ability to regulate autoimmune disorders by killing 

autoreactive immune cells. Although this study did not reveal a reduction in perforin or granzyme B 

cytotoxic molecules, it has been shown by another study that cytotoxic activity decreases in RA 

compared to health 322 and another study showed that perforin-positive NK cells was reduced in 

patients with RA 323. This presents an additional dimension to NK cells in terms of their role and 

whether their function is impaired as a consequence of pathology or whether their functional 

impairment precedes the onset of RA. Answers to these questions and verification of these findings 

will help to further elucidate the role of NK cells in RA. 

5.3.2.4 Neutrophils interact with innate immune cell populations in early RA 

Analysis in this study showed that neutrophil abundance did not significantly change between early 

RA and health and a striking phenotype could not be identified despite a significant decrease in 

CD27 in early RA peripheral blood. Despite the lack of specific phenotypes it is evident that 

neutrophils have an influential role on the immune system which goes beyond their ability to 

respond and eliminate pathogenic stimuli. Analysis depicted by the MDS plot was particularly 

informative as it suggested that functionally neutrophils were markedly distinct in early RA 

compared to health. The neutrophil population separated early RA from health and upon absence of 

neutrophils, this distinction between the two conditions became less prominent. This suggests that 

neutrophils are fundamentally altered in early RA compared to health supporting the concept of 

neutrophil heterogeneity and neutrophil plasticity 324. Heterogeneity of neutrophil subsets have 

been well characterised in autoimmune diseases including SLE where low-density neutrophils were 

identified based on their high expression of CD15 and low expression of CD14 and their ability to 

synthesise type I interferons 325. In addition, specific subsets of neutrophils have been characterised 

to have immunosuppressive functions where for example they can prevent the proliferation of T 

cells through macrophage-1 antigen and reactive oxygen species 326. 

It is the neutrophils ability to engage in cross-talk across the immunological spectrum that is 

especially fascinating and may provide an explanation for the data observed in this study. Evidence 

of this cross-talk is observed across numerous immune cell populations including DCs, NK cells and 

MAIT cells 324. Neutrophils are capable of both positive and negative modulation of DC subsets 

including monocyte-derived subsets and pDCs 327. Neutrophils can communicate with DCs through 

contact-dependent mechanisms or through the secretion of cytokines 327. In addition to these 

interactions, neutrophil extracellular traps (NETs) have provided another option for communication 

between neutrophils and DCs and this has been studied in type I diabetes and SLE 328,329. In a study 
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looking at the effects of NETs on patients with type 1 diabetes, it was observed that the composition 

of NETs was different compared to healthy donors 328. In a mixed peripheral blood mononuclear cell 

culture, type I diabetes NETs caused a strong shift towards IFN-γ-producing T lymphocytes 328. 

Further in vitro investigation using monocyte-derived DC cultures, demonstrated that type I diabetes 

NETs induced cytokine production, phenotypic change and IFN-γ production with RNA-sequencing 

further revealing downregulation of TGFβ and upregulation of IFN-α, thus skewing healthy 

monocyte-derived DC cultures towards a type I diabetes phenotype 328. In a separate study, 

neutrophil apoptotic microparticles were shown to increase the expression of CD40, CD80, CD83 and 

CD86 and the production of proinflammatory cytokines including IL-6, TNF and IFN-α by blood 

derived pDCs and mDCs from patients with SLE 329. Microparticles derived from SLE plasma were also 

capable of priming blood derived neutrophils for NETosis however, microparticles derived from RA 

did not show similar results 329. Taken together, these studies demonstrate that neutrophils may 

have an immunomodulatory effect on DCs affecting their phenotype and effector functions and 

further investigation into this interaction in the RA joint may demonstrate a mechanism in which 

neutrophils  perpetuate a proinflammatory microenvironment.  

There is evidence to suggest that neutrophils and NK cells interact with one another with data 

suggesting that activated NK cells can increase the longevity of neutrophils but can conversely 

induce neutrophil apoptosis as evidenced by in vitro cocultures 330. In contrast, neutrophils have 

been shown to immunomodulate NK cell survival and cytotoxic function in addition to being pivotal 

for NK cell development in human and mice 331.  

Lastly, in a recent study looking at the effect of neutrophils on MAIT cell activation and the effect of 

activated MAIT cells on neutrophils during bacterial infection 332. It was observed that neutrophils 

suppress the activation of MAIT cells by a cell-contact and H2O2 dependent mechanism and in turn 

highly activated MAIT cells were able to produce TNF that induced neutrophil apoptosis 332. This 

study suggests that neutrophils and MAIT cells are capable of negatively regulating each other in 

order to control inflammation 332.  

It is apparent from the findings within this study and other studies, that neutrophils play an integral 

role in orchestrating inflammation and capable of working synergistically with other immune cell 

populations. During the early, untreated phase of RA, it is apparent that neutrophils could be 

regarded as master regulators of inflammation. It will be important to further investigate the 

relationship of neutrophils with other immune cell populations within the RA joint to define the 

mechanism/s perpetuating the underlying chronic inflammation.  

5.3.3 Activation markers – a therapeutic target for RA? 

A recurring theme observed in differential expression analysis across immune cell populations was 
the fluctuating expression of CD27 and CD38 and to a lesser extent CD28. These markers are often 
associated with activation function of cells and as can be observed in this study are expressed on a 
broad selection of immune cell populations. On memory CD4 T cells, both CD27 and CD28 
expression was elevated and CD27 expression was elevated on memory CD8 T cells in early RA 
patients. This is in contrast to the chronic activated phenotype that is observed in the joint where T 
cells start to lose their CD27 and CD28 expression over time thought to be as a result of persistent 
antigenic stimulation result in T cells characterised by the loss of CD27 and CD28 333. However, in RA 
blood this phenomenon is reversed suggesting that during the early phase of RA, T cells are 
activated. Whilst knowledge surrounding the inflammatory cascade that occurs in established RA is 
well documented, the inflammatory events in early RA are less well understood. Thompson et al. 
assessed T cells in 25 patients with early RA and observed that CD8+ CD28- T cells percentage was 
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increased in patients who were also positive for cytomegalovirus and positively associated with CRP 
however, this was not observed in established RA patients 334. Although this finding differs from that 
presented in this work, it is known that T cells transition gradually from CD28+ to a CD28- T cells 
phenotype where they become chronically activated 335. CD27 expression was reduced on CD14+ 
monocytes in early RA compared to health and similarly perforin expression was also reduced again 
suggestive of a chronically activated phenotype. Lastly, CD38 expression is increased on basophils 
and CD14+ monocytes. CD38 is another marker associated with activation and involved in cell 
adhesion and signal transduction and associated with expression by plasma and B cells however, low 
expression levels have also been reported in additional cell types including lymphoid, myeloid and 
non-haematopoietic cells 336 . The results from this analysis coupled with existing reports have 
prompted an interest into whether activation markers would be an appropriate treatment target in 
RA due to their ubiquitous expression on a variety of cell populations and in particular during chronic 
inflammation 336–339. Cole et al. in 2018 observed through both RNA-sequencing analysis of synovial 
biopsies obtained from different stages of RA disease progression, that CD38 was one of the genes 
significantly upregulated at all stages of RA including early RA compared to health and osteoarthritis 
337. Moreover, through in vitro cell culture they demonstrated that daratumumab, a monoclonal 
inhibitor of CD38, plasma cells were successfully depleted in PBMCs from patients with early RA in a 
dose dependent manner ex vivo. These findings encourage further clinical evaluation for 
daramutumab to be used as therapeutic target for RA. Existing clinical trial studies multiple myeloma 
have demonstrated that CD38 is a good immunotherapeutic target in these patients as both a 
monotherapy and in conjunction with chemotherapy with clinical trials currently underway 338.  

Existing treatments used in RA have also been analysed to see if they can target chronically activated 
T cells in established RA where patients tend to display an expanded CD4+ CD28- T cell phenotype 
which is discussed further in the chapter 6. It is worth briefly mentioning however, that TNF 
inhibition has been shown to limit the expansion of CD4+CD28- T cells in unstable angina 340. In RA 
infliximab reinstated the expression of CD28 on T cells and methotrexate demonstrated a reduction 
in CD28- T cells suggesting that therapeutic targeting of activation markers may already be possible 
with existing treatment but not well understood mechanistically how this works 341.  

Finally, it will be important to comprehensively understand whether inhibiting activation markers 
expressed on a broad range of cells will be helpful without posing a risk to the patient. Would 
inhibition lead to the presence of malignant cells or a worsening of disease outcomes. How 
sustainable is it to target activation markers and to what degree? From this study, it would appear 
early inhibition of activation markers such as CD38, CD27 and CD28 might impede the progression of 
RA thus slowing joint damage. It seems logical that a broad target is initially used in early RA and it 
might be that existing treatments may already exist. Rather than inhibition would removing over-
activated cells be more impactful and if so which therapies could induce specific apoptosis of these 
cells populations and which protein marker would be the best target? These concepts will need to 
be explored in greater detail however, provide an opportunity for novel therapeutic targeting in RA. 

5.3.4 Significant changes in whole blood immune cell populations were not 

identified in established RA 

Diffcyt analysis did not reveal statistically significant changes when analysing patients with 

established RA despite the various comparisons that were performed. Initially, the analysis aimed to 

broadly group established RA irrespective of treatment, duration of disease or any other 

demographic or clinical factor to observe if there was an overall change in immune cell populations 

compared to early RA or health. MDS analysis did reveal that established RA patients did form a 

distinct group from health suggesting that underlying immune changes are driving this separation 
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but are not significant when comparing health to early RA. Early RA can be viewed as an authentic 

insight into chronic inflammatory events that occur prior to clinical intervention (i.e. treatment). A 

question to consider is which stage of RA is immunologically closest to health? This question is 

important as it questions how far from immune homeostasis each stage of RA represents and if we 

how best to intervene. The data from this analysis supports the view that early RA shows hallmarks 

of chronic activation as evidenced by the expression of CD27, CD28 and CD38 markers across 

numerous immune cell populations when compared to health. The fact that there is little difference 

between early RA and established RA when analysing blood immune cell populations suggests that 

immune dysregulation is comparable not distinct. Therefore to answer the question about which RA 

stage is further from health, it is difficult to confidently state which stage is furthest from health. 

And herein lies the problem – is blood a good immunological representative of RA? 

When analysing the established RA cohort, I aimed to observe whether a specific immune cell 

signature could distinguish non-refractory patients from refractory patients using the current 

definition which suggests refractory patients have failed two or more mechanistically different 

biologics and non-refractory defined as patients receiving 1 or 2 mechanistically similar biologics 290. 

However, this analysis did not show any specific immune cell populations that could predict or 

distinguish between non-refractory and refractory patients suggesting that resting blood is not a 

robust indication of discrepancies within the immune populations. Blood is often used in RA 

translational research studies as it is easier to obtain and because RA is a systemic disease, it is often 

thought that blood is a good proxy for reflecting the inflammatory events occurring at the joint. In 

reality it is recognised that any findings within the blood are an extrapolation of events in the joint 

and why there is currently no specific immune cell signature that can serve as a biomarker to define 

RA stage or treatment response. It may also go some way to explaining why treatment does not 

work in all patients as current treatments in RA focus on immune cells predominantly B and T cells or 

inhibition of cytokines and recently small inhibitors which aim to target signalling pathways 

upstream of cytokine production. It is apparent there are significant omissions in therapeutic targets 

including biologics which target innate immune cells and specifically cells that span both innate and 

adaptive immune functions including those of myeloid origin, NK cells and MAIT cells as identified in 

this study.  

Another consideration to make is that immune dysregulation may not be the only factor driving 

disease and the case for analysing non-immune cell populations including fibroblasts becomes more 

apparent. This will require access to synovial tissue to understand their role and already specific 

fibroblast subsets have been associated with RA 284–286,342. Whether fibroblasts can provide the 

distinction between refractory and non-refractory patients is an interesting hypothesis to pursue as 

it provides a logical alternative to understanding why certain patients do not respond to existing 

treatments. Clinical trials have already commenced to determine the optimum dose of Seliciclib 

which suppresses proliferation of synovial fibroblasts 289.  

In summary, to comprehensively interrogate the progression of patients with established RA, this 

study supports the current efforts directed towards synovial biopsy immunophenotyping to 

determine if there are specific immune signatures which associate with refractory patients and to 

better characterise stages of RA as evidenced by Pitzalis et al. when they reported specific RA clinical 

pathotypes (lympho-myeloid, diffuse-myeloid and pauci-immune) 170. This classification does not 

include innate immune cell populations or immune cells such as NK and MAIT cells which span both 

innate and adaptive immunity. Blood is a useful biomarker for early RA and although logistically 



175 

 

easier to obtain, may not hold valuable information as RA progresses within the joint and hence 

efforts have returned to the synovial joint.    
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Chapter 6 Immunophenotyping immune cell populations in paired RA 

synovial fluid and peripheral blood 

6.1 Introduction  

6.1.1 Synovial fluid in joint pathology 

The central site of RA pathology is at the synovial joint, where the focus of RA research has returned 

as a result of improved, minimally invasive techniques for sampling synovial biopsies in small and 

large joints guided by ultrasound 58,343,344. However, despite improved techniques, acquiring synovial 

biopsies remains a surgical procedure which requires a clinician trained in obtaining high quality 

biopsies which capture the inflammation occurring at the joint 344. Moreover, a dedicated biopsy 

unit needs to be organised to facilitate access to synovial biopsies for use in research which is not 

always logistically possible as was the case for this study. To address this, synovial fluid (SF) provides 

an opportunity to interrogate the immune microenvironment of the joint. Pathological joint fluid is 

readily obtainable in Rheumatology departments especially during arthrocentesis (also known as 

joint aspiration) from patients who have excess fluid in their joints. Furthermore, SF is in direct 

contact with the synovium and is secreted by a layer of connective tissue that lines the cavities of 

the joints.  

In health, SF is essential for maintaining joint homeostasis and present in small volumes, 

approximately 1-4mL in the knee joint 345. In the steady state, SF is typically acellular. The main 

functional properties of SF provide is to lubricate the joint by the secretion of large macromolecules, 

namely lubricin and hyaluronan 346. These molecules give rise to the viscous consistency of SF and 

contribute to the clear/pale yellow appearance. SF is also important for maintaining metabolic 

functions which include the transport of nutrients, waste products, and other metabolites to and 

from synovial tissues 346.  

In joint pathology, SF is significantly altered. Basic observations of pathological SF show it is cloudy in 

appearance and either a more viscous or thinner texture depending on the consistency of 

hyaluronan 347. Furthermore SF can be useful for identifying crystals such as monosodium urate 

monohydrate and calcium pyrophosphate dihydrate which can be useful for diagnosing gout or 

pseudogout 348. The most striking observation is the increase in volume of SF within the joints of 

patients with inflammatory arthritides including RA and psoriatic arthritis. For the patient, excess SF 

can cause immense discomfort and pain, which is alleviated when aspirated. This increase in volume 

can be directly attributed to an increase in cellular infiltrate including lymphocytes, macrophages, 

dendritic cells and neutrophils. It is precisely this cellular infiltrate that is of research interest, as 

understanding whether there is a specific cell population which is implicated in recruiting cells to the 

joint and in turn whether this is responsible for perpetuating disease. In the next section, recent 

research using single cell technology has revealed specific immune cell populations identified in RA 

SF which could serve as future therapeutic targets.   

6.1.2 Immune cell populations detected in RA SF 

6.1.2.1 Neutrophils 
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Neutrophils are the most abundant cell populations found in RA SF 349. In health, circulating 

neutrophils patrol the immune system, and upon injury or encountering a pathogen are capable of 

phagocytosis, and releasing cytotoxic granules to eliminate the pathogen 350. It is this functional role 

that has characterised neutrophils as having a short life span as once the neutrophil has 

encountered and eliminated a pathogen, it undergoes apoptosis within 24 hours 351. Initially it was 

considered that neutrophils in the joint were recruited for their cytotoxic ability and although they 

retain this function, neutrophils are observed to be altered in disease compared to health producing 

an array of proinflammatory cytokines and chemokines including GM-CSF, IL-6, TNF, IL-8 and IFN-γ 

which contributes to their enhanced survival in the joint 352. This proinflammatory environment 

primes other immune cells, thus perpetuating chronic inflammation in the joint. Immune complexes 

in the joint such as RF are observed to bind to FCγRs on neutrophils resulting in a large number of 

activated neutrophils detected in SF. The functional implications of neutrophils in RA has led to 

renewed interest and this is documented in detail in two excellent reviews 353,354.  

This renewed interest has encouraged researchers to interrogate neutrophils at the single cell level  

including a recent mass cytometry study where researchers immunophenotyped peripheral blood 

from 9 patients with RA and 5 healthy donors and identified a novel neutrophil subpopulation 

characterised by the phenotype CD11blow and CD16high which positively correlated with disease 

duration but not with disease severity measured by DAS28 355. Another recent study looked at 

transcriptomic profiling of a single cell neutrophil population isolated from paired RA blood and SF 

from three patients with active disease 356. Comprehensive profiling of the neutrophil transcriptome 

showed 772 genes were significantly different between peripheral blood and SF and revealed 

pathways associated with antigen presentation, role of NFAT in the regulation of the immune 

response and acute phase response were all upregulated 356. Chemokines IL-8, CXCL1 and CXCL2 

were also upregulated in RA SF which are associated with recruitment of cells to the joint including T 

cells, monocytes, macrophages, dendritic cells and NK cells in addition to neutrophils. To study the 

functional role of neutrophils in vitro, the researchers isolated healthy neutrophils from peripheral 

blood and subsequently cultured with RA SF demonstrated that RA SF decreased the rate of 

neutrophil apoptosis 356. This was similarly reported in 2006 where Raza et al. observed that early RA 

SF had lower levels of neutrophil apoptosis than patients with non-RA arthritis or resolved RA 357. 

The presence of anti-apoptotic cytokines identified in synovial joint including IL-2, IL-4, IL-15, GM-

CSF and G-CSF was proposed as the mechanism that prevented neutrophils and other leukocytes 

from undergoing apoptosis 357. As this phenomenon was detected in patients diagnosed with early 

RA for ≤ 3 months, it suggests that this priming of the joint microenvironment contributes to 

persistent RA 357.  

6.1.2.2 CD4+ T cell subsets 

T cells have been extensively studied in the joint microenvironment and specific subpopulations 

have been identified in SF mainly by cytokine expression studies. It is hypothesised by many of these 

studies that specific cytokine expression profiles within a subpopulation of cells can accurately 

correlate and thus stratify arthritis. In 2017, Penatti et al. set out to distinguish between 

inflammatory osteoarthritis (OA) and RA by assessing CD4 T cell subsets in SF, peripheral blood and 

synovial membrane 358. Assessment of RA SF showed an increase in the number of immune cells and 

a higher CD4:CD8 ratio compared to OA SF 358. T regulatory type 1 and CD25+ T regulatory cells were 

also observed to be enriched in RA SF. In addition, a high number of CCR6+ IL-7R+ Th17 cells and 

CXCR5+ ICOS+ T follicular helper (Tfh) cells were detected in many but not all RA SF. Tfh cells are a 

well characterised population of T helper B cells and support antibody production. During an 
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inflammatory response, expression of the chemokine receptor CXCR5, informs Tfh cells to migrate to 

the follicles within secondary lymphoid organs including the lymph node and spleen to help B cells 
359. This migration of Tfh cells is tightly regulated in health, however, in RA, this process becomes 

dysregulated as the anatomic distinction between the synovium and secondary lymphoid organs 

merges. The lymphoid aggregates that develop in the synovium are diverse in cellular composition, 

with histological analysis ranging from sparse lymphocytic clusters to fully developed organised 

follicles with germinal centres 159. Analysis of the RA synovium reveals the presence of activated B 

cells which would logically suggest that Tfh cells would be detected in the synovium. However, mass 

cytometry analysis of synovial biopsy tissue from patients with RA discovered a pathologically 

expanded subset Tph cells with a phenotype of PD-1hi CXCR5- CD4+ 157. Additional single cell analysis 

by flow cytometry with three paired RA SF and peripheral blood from seropositive patients revealed 

a large population of CD4+ PD-1+ T cells which co-expressed MHC II and accounted for 30% of CD4+ T 

cells which was similar to that observed in the joint 157. CD4+ T cells with a similar phenotype to Tph 

cells have been previously reported to be enriched in RA synovium in comparison to OA but lacked 

detailed functional analysis 283,360,361.  

A defining marker of Tfh cells is that they are CXCR5+, a characteristic that is not observed on Tph 

cells. However, Tph cells appear to retain their function as T cells that help B cells as evidenced by 

the B cell enabling factors identified in SF. Tph cells isolated from RA SF showed a 100 fold increase 

in mRNA expression of IL-21 and 1000 fold increase of CXCL13 157. IL-21 is a chemokine which 

promotes B cell proliferation in germinal centres and differentiation into plasma cells and CXCL13 is 

the chemokine ligand for the receptor CXCR5 159. CXCL13 and CXCR5 work together to coordinate the 

organization of B cells within the follicles of lymphoid tissue. Tph cells sorted from RA SF provided 

further evidence that Tph cells were capable of secreting IL-21 and CXCL13 after in vitro activation. 

Another characteristic feature of Tfh cells is the upregulation of transcription factor Bcl6 which was 

observed to be downregulated in Tph cells derived from RA SF. Instead Blimp1 which is a known 

antagonist of Bcl6 and capable of directly inhibiting Bcl6 expression in B cells, was elevated in Tph 

cells further underscoring the differences between Tfh and Tph cells 157,159,362. Rao et al. make a 

persuasive case to suggest that Tph cells are expanded in RA SF and tissue and thus have a direct 

association with RA prognosis 157. To strengthen this observation, Tph cells increased in patients with 

seropositive RA who also had moderate to high disease activity and subsequently decreased upon a 

reduction in disease activity thus providing a future therapeutic target for RA 157.  

Better understanding of CD4+ T cells and their subsets continues to be explored in RA and determine 

to what extent these cells are pathologically implicated with disease onset and progression. Whilst 

renewed interest has been piqued by the identification of Tph cells, other CD4+ T cell subsets have 

been identified in RA SF including Tregs 363–366. Immunophenotyping Tregs and having a clear 

distinction between the subsets has been extensively debated by established researchers in the field 

and in many of the flow cytometry immunophenotyping studies performed prior to 2010, Tregs have 

been characterised as CD4+ CD25+. It has been observed that T regulatory cells are present at a 

significantly higher number in RA SF compared to peripheral blood obtained from the same patient, 

which at first appears logical given the inextricable link between Tregs and their role in maintaining 

tolerance to self antigens and thus suppressing induction and proliferation of effector T cells 366,367. 

However, on closer inspection, elucidating the exact role of Tregs in the RA joint has proven to be 

ambiguous as despite their presence, inflammation continues to persist. Evidence showed that Tregs 

in the joint displayed an activated phenotype including upregulation of CD69, OX-40 and MHC II 366. 

Although CD4+CD25+ T cells from RA SF showed increased suppressive activity compared to 

CD4+CD25+ Tregs from peripheral blood, this suppressive activity was not enough to subdue 
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activated responder T cells 366. It is not well understood whether CD4+ CD25+ Treg cells with an 

immunosuppressive phenotype are lost during the progression of RA or whether their functional 

role becomes dysregulated in the joint microenvironment and thus induce/perpetuate progression 

of RA 366,91,368. Whilst naturally occurring Tregs are unable to inhibit the proinflammatory cytokine 

production present in the synovium, an elegant study by Beavis et al. indicated that ectopic 

expression of FoxP3 in human effector T cells derived from the synovium, were capable of 

converting them to a Treg phenotype and attenuate their pathological effector functions providing 

an alternative therapeutic approach 369.  

An enriched population of CD4+ HLA-DR+CD27- cytotoxic effector memory T cell subset were 

identified by mass cytometry and comprised 10% of the CD4+ T cell population in the synovium 261. 

Moreover, RA SF contained 5 fold higher frequencies of CD4+HLA-DR+CD27- T cells and gene 

expression analysis revealed an increase in CXCR3, CCR5, TBX21 and IFN-γ suggestive of a Th1 

skewed phenotype 261. CD4+HLA-DR+CD27- T cells also displayed a cytolytic function observed both at 

the transcriptomic and intracellular flow cytometry protein analysis by the increased expression o 

perforin, granzymes A and B. This cell population was reported by the same group who reported the 

expansion of Tph cells in the RA synovium however, the CD4+HLA-DR+CD27- T cell subset are a 

distinct population. Similar to Tph cells, CD4+HLA-DR+CD27- T cells are not exhausted despite 

displaying features of chronic activation evidenced by loss of CD27 and upregulation of HLA-DR. 

Patients commencing a new treatment were observed to have a decreased frequency of CD4+HLA-

DR+CD27- T cells and it is hypothesized that successful response to treatment reduces the expansion 

of the CD4+HLA-DR+CD27-  phenotype 261.   

6.1.2.3 Memory CD8+ T cell subsets  

Whilst considerable attention has been directed towards the role of CD4+ T cells due to implication 

of the HLA-DR locus observed from genetic studies, CD8+ memory T cells are beginning to receive 

recognition for their role in pathogenesis of RA. The subsetting of memory T cells into their effector 

and central memory phenotypes and thus identifying their role in pathology is gaining 

momentum
370. The basic definition of a memory CD8 T cell is that it has already responded to cognate antigen 

and persists long term as part of the immune defence. Compared to naïve CD8 T cells of the same 

antigen specificity, memory CD8 T cells are greater in number, have higher proliferation capacity, 

populate peripheral organs, perform cytotoxic functions and secrete effector cytokines when re-

encountering antigens and specific subsets have been functionally characterised by 

immunophenotyping and genetic studies 370. Historically, observing memory CD8 T cells in humans 

has been performed by peripheral blood as opposed to tissue which presents a challenge when 

determining the age of memory CD8 T cells after antigen encounter. Furthermore, memory CD8 T 

cells have typically been analysed as a bulk population which can overlook subtle differences within 

the population. Figure 6-1 outlines the current defined subsets of memory CD8 T cells and their 

function informed by Martin and Badovinac’s review focusing on heterogeneity of memory CD8 T 

cells 370. This continues to be an active area of research as more immunophenotyping studies 

emerge refining the existing definitions. 

Immunophenotyping RA SFMCs has also revealed effector CD8+ T cells which resemble tissue 

resident memory phenotypes including CD69+ CD103+CD45RA- CD8+ T cells identified by flow 

cytometry 371. These cells exhibited a cytotoxic phenotype and in RA SF, also expressed high levels of 

PD-1, CD101 and Eomes which are characteristic of a tissue resident memory phenotype which was 
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similarly observed in juvenile idiopathic arthritis 371,372. Perforin expression in CD69+ CD103+CD45RA- 

CD8+ T cells was higher in ACPA positive patients compared to those who were ACPA negative and 

stimulation with the cytokine IL-15, induced perforin-mediated histone citrullination and 

encouraged neutrophil extracellular traps formation 371. Intriguingly, Cho et al also identified an 

effector CD8+ CD45RA- T cell population however, these cells showed reduced levels of perforin and 

granzyme B but did upregulate PD-1, CD80 and CD86 373. This CD8+ CD45RA- T cell subset showed an 

activated phenotype in SF by the presence of CD27 and CD28 thought to be mediated by the 

cytokine milieu namely IL-15 and IL-21 373. The activated phenotype of CD8+CD45RO+ is further 

confirmed in a separate study that compared CD8 T cell phenotypes between paired RA peripheral 

blood and synovial fluid by observing upregulation of CD69 and CXCR4, suggesting the latter is 

involved in homing T cells to sites of inflammation 374. 

 

Figure 6-1|Heterogeneity of memory CD8 T cells outlining their phenotypic characterisation, 
function and where known, transcription factor profile 370 

6.1.2.4 NK cells and rare immune cell populations detected in RA SF  

Neutrophils and T cell subsets are the predominant immune cell populations found in RA SF but 

additional immune subsets have been reported. Paired analysis of peripheral blood and synovial 

fluid identified subsets of NK cells using the markers CD3-, CD56 and CD16 to define subsets. 

Synovial fluid analysis from inflammatory arthritis patients revealed approximately 16% of 

lymphocytes within the compartment were CD56bright NK cells and that an increased percentage of 

NK cells correlated with high DAS 317,375. Additional analysis suggested that NK cells present in SF 

were recruited from peripheral blood as evidenced by the expression of chemokine receptors CCR5 

and CXCR3375, and in another study CXCR3 and CCR1 were reported to be upregulated on SF NK cells 
317. Functional analysis of the CD56bright SF NK cell population demonstrated they had an enhanced 

capacity to produce IFN-γ in response to cytokines IL-12 and IL-15, which are both present in 

increased quantities in the joint microenvironment suggesting an immunomodulatory effect on the 
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NK cell population. Furthermore, 26% of SF NK cells were capable of producing IFNγ and this was 

especially pronounced in NK cells derived from patients with destructive RA in addition to increased 

secretion of TNF 317. Lastly, NK cells were considered to be in an activated state demonstrated by the 

expression of CD69 and NKp46 317.   

Less abundant immune cell populations including pDCs and γδ T cells have also been identified in RA 

SF but reported to a lesser extent in the literature. In RA SF, two subsets of dendritic cells have been 

detected: myeloid and plasmacytoid. pDCs were distinguished from myeloid DCs by their high CD123 

expression and lack of CD11c expression 308. Although the pDC population were detected in RA SF, 

they were present at a higher frequency in spondyloarthritis SF. It was hypothesised that pDCs were 

retained and mature in the RA joint and thus not trafficking through to the fluid. pDCs detected in 

the SF have shown to be activated in the joint but were not good APCs in the joint 

microenvironment. IFNγ, IL-10 and TNF production were observed when pDCs from RA SF were 

incubated with mixed lymphocyte reactions and thus contributing to an inflammatory environment 
306.  

Limited literature about γδ T cells in RA SF exists, however, there are reports suggesting that this 

subpopulation is present at an increased frequency in RA SF compared to paired peripheral blood 

and healthy controls suggesting that either γδ T cells are recruited to the joint from the blood or that 

there is a suppression of γδ T cells in peripheral blood 376,377. γδ T cells are functionally capable of  

secreting IL-2, IL-3, IL-4, IFNγ and GM-CSF suggesting that they contribute to the pathogenic 

environment 378,376. Whilst these findings were reported 30 years ago, recent research has focused 

on the increased IL-17 secretion in RA SF produced by γδ17 and Th17 cells and demonstrated when 

inhibited by RORγt antagonist, they reduced joint inflammation 379. A further study observed that 

γδ17 T cells were not as abundant as IFNγ producing γδ T cells suggesting that these cells play a 

dominant role in disease pathogenesis 380,381.  

6.1.3 Aims  

It is evident that extensive immunophenotyping studies have been conducted to elucidate the 

composition of cells in RA SF and furthermore to detect the function of these subsets. The 

limitations of these studies is that immunophenotyping panels have been designed to profile specific 

immune cell subsets as opposed to a global analysis of immune cell populations which can bias 

findings. Therefore the overall aim of this chapter was to broadly assess the immune cell subsets 

that are present in synovial fluid to determine whether recent novel subsets detected by mass 

cytometry could be observed in this modest sized cohort. Ultimately, consistency across 

immunophenotyping platforms will streamline biomarker discovery analysis and a consensus as to 

which immune cell populations in RA SF could be useful for assessing chronic inflammation, 

treatment response and/or disease prognosis would aid existing strategies and clinical management 

of RA. 

 The following aims in this chapter are as follows:  

1. To compare the differences in immune cell populations in paired RA blood and SFMCs and 

determine to what extent microenvironment influences this composition. 

2. To corroborate mass cytometry findings by Rao et al 157 and observe whether Tph cells are 

expanded in RA SF compared to paired peripheral whole blood. 

3. Identify additional effector T cell subsets and differential expression of activation/inhibitory 

markers to determine the functional status within the synovial microenvironment. 
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6.2 Results  

6.2.1 Comparison of immune cell populations present in paired whole blood and 

synovial fluid in RA 

6.2.1.1 MDS analysis shows global protein marker staining similarity is specific to 

biological microenvironment and not influenced by donor  

Paired RA SF and peripheral whole blood were obtained from three patients presenting for 

arthrocentesis at Chapel Allerton Hospital. SF was obtained from the swollen knee joint for each 

patient.  

The initial question for this analysis was assessing whether immune cell populations clustered 

according to the site from where they were obtained i.e. synovium and peripheral whole blood. 

Whilst the expectation was that different immune environments would influence which immune cell 

subsets were present and that these would also differ between the two compartments, it was still 

important to determine whether this assumption could be detected by the Diffcyt pipeline. 

Moreover, as these samples were paired, it was important to establish whether Diffcyt was not 

biased by donor label but driven by the underlying immunological differences. 

27,000 events from each sample were included in the Diffcyt analysis workflow. To observe the 

global similarity across the protein marker staining expression, unsupervised MDS analysis (Figure 

6-2) showed whole blood from all three patients clustered closely together towards the lower left 

quadrant of the plot indicating that the staining profiles are similar. Whilst the synovial fluid samples 

were not as close in proximity to one another on the MDS plot, it was observed that they are distinct 

from the peripheral blood profiles and are separated by the MDS 1 axis. MDS 1 refers to the first 

dimension of the scaling where the two conditions observed as to whether they can be separated. 

This initial analysis supports the expectation and well established concept that the rheumatoid 

microenvironment affects the immune cell landscape 382–384. Although this is a well established 

phenomenon, it was encouraging to observe that even at the broadest level of analysis and with a 

modest sample size, this distinction is evident.  
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Figure 6-2|Multi-dimensional scaling (MDS) analysis shows the distinction of three paired RA 
synovial fluid (SF) and peripheral whole blood (PB). 

Paired samples of SF and PB from three patients with RA were analysed by the MDS plot. It can be observed that there is a 

clear distinction between the biological microenvironments, however, the SF between the three patients are broadly 

distributed compared to that observed for PB suggesting that the SF is more representative of the heterogeneity of RA 

compared to blood. 

6.2.1.2 FlowSOM clustering shows the changes occurring at the immune cell level 

between paired RA peripheral whole blood and synovial fluid 

The distinct clustering of peripheral whole blood and synovial fluid as evidenced by MDS analysis 

encouraged further analysis to determine which underlying immune cell populations were driving 

this distinction. 

FlowSOM analysis shown in Figure 6-3 and heatmap (Figure 6-4) demonstrates the median 

expression of the lineage markers used to identify the main immune cell populations present in 

synovial fluid and peripheral whole blood (n=3 patients). Immune cells from each sample were 

pooled to represent each condition enabling a broad comparison between the two conditions. In 

total 15 immune cell populations were identified after heatmap analysis and each dot represents 

one cell on the two dimensional tSNE axes. As expected, neutrophils remain the largest population 

present in both peripheral blood and SF although further exploration of heterogeneity within this 

population was not possible due to limited neutrophil specific markers being included in the 

immunophenotyping panel. More immune cell populations were present in peripheral whole blood, 

including CD14+ monocytes, B cells, memory B cells and naïve CD4+ T cells whereas in SF, these 

populations were decreased in frequency or absent altogether. It is however evident, that memory 

CD8+ T cells are present at a higher frequency in SF compared to peripheral whole blood.  

The observation that naïve CD4 T cells are essentially absent in synovial fluid and that memory CD4 T 

cells form the most abundant T cell population suggests that this population is significantly 

expanded in SF compared to whole blood. Clustering analysis did not reveal specific subsets within 

the memory CD4 T population as described by Fonseka and Rao where CD4+CD27-HLA-DR+ memory T 
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cells and CD4+PD-1+HLA-DR+ Tph cells are two separate populations 157,261. In this analysis, these two 

subsets were indistinguishable with the lineage markers included and in order to keep findings 

consistent with those in the previous chapter, it was decided not to redefine the lineage and 

functional markers. An advantage for this approach is that it is inclusive and not biased by the 

findings of previous researchers whilst simultaneously providing further evidence and strengthening 

the replicability of the data if similar immunophenotypes are identified. 

The striking expansion of the memory CD4 T cell population in RA SF could have supported the 

decision to pursue analysis of the T cell population exclusively and remove additional populations 

thus increasing the number of CD45RO+ CD4+ T cells included in the Diffcyt pipeline. However, this 

would eliminate the prospect of observing functional differences across other immune cell 

populations. Moreover, should changes in the memory CD4 T cell subset be detected in a 

heterogeneous population of immune cells, this emphasises the importance of the cell population.   
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Figure 6-3|FlowSOM clustering comparing paired RA peripheral whole blood (PB) and synovial fluid (SF) immune cell populations. 
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Clustering analysis representative of 3 patients shows differences in the immune cell populations indicated by the black outlined circles. In whole blood, CD14+ monocytes, B cells, memory B 

cells and naïve CD4 T cells are present whereas in synovial fluid, these populations are notably absent or present at a decreased frequency. In synovial fluid clustering analysis, the central 

memory CD8 T cells have an increased frequency in synovial fluid compared to blood.
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Figure 6-4|Heatmap showing the lineage markers used to define immune cell subsets  

Immune cell populations identified in peripheral whole blood and synovial fluid are shown with the percentage of cells in 

each cluster shown in brackets. Median expression intensity for lineage markers, coded by a colour scale blue = 0 (no 

expression) to red = 6 (high expression)  
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6.2.1.3 Chronic activation of T cell subsets in RA SF 

Following high-dimensionality clustering, analysis of 15 functional protein markers stratified by 

immune cell populations revealed that within the memory CD4 T cell population, changes in 

functional marker median expression could be detected between matched peripheral whole blood 

and SF from patients with RA. This was calculated and presented as box plots depicting the 

minimum, interquartile range and maximum for each patient sample (Figure 6-5). A decrease in 

median expression in both CD27 and CD28 in RA SF suggests that these T cells in SF are chronically 

activated after continual exposure to autoantigens. Median expression changes were also observed 

in CTLA-4 and PD-1 checkpoint inhibitors where they were increased in SF compared to their 

matched peripheral whole blood. An increase in HLA-DR median expression in the memory CD4 

population was also observed supporting previous reports of Tph cells and memory CD4 HLA-DR+ 

CD27- T cells. From the FlowSOM clustering analysis it was not apparent that these two populations 

were separate.  

 

Figure 6-5|Box plot representation of median expression of functional protein markers within the 
memory CD4 T cell population reveal a distinct immune profile (PD-1+ CTLA4+ CD27- CD28- HA-DR+) 
in RA synovial fluid  

Median expression analysis of 15 functional protein markers CD40, CD27, CD86, Granzyme B (Gran B), NKp44, CD28, CTLA-

4, NKp46, Perforin, TNFR2, PD-1, PD-L1, CD38, HLA-DR and CD80 in order from left to right for RA matched whole blood 

(PB) and synovial fluid (SF) n=3. A distinct profile which phenotypically resembles T peripheral helper cells previously 

reported to be implicated in RA could be detected by the changes in the median expression of CD27, CD28, CTLA-4, PD-1 

and HLA-DR in SF. Median expression of CD27 decreased to 3.5 in RA SF whereas in matched whole blood median 

expression is 4.5. Similarly, CD28 median expression was decreased in RA SF with a median of 4.5 compared to 5 in in 

matched blood. Conversely, median expression of checkpoint inhibitor proteins CTLA-4 and PD-1 were markedly increased 

in RA SF (median expression 2.5 and 3.4 respectively) compared to matched peripheral whole blood. HLA-DR median 

expression levels were also slightly increased in RA SF at 2 whereas in blood median expression was 1.4.     
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To understand whether the Tph cells were indeed present in matched blood and SF, this was 
confirmed manually using FlowJo software and the gating strategy previously described by Rao et al 
157. In their paper, they describe the gating strategy for RA synovial tissue by mass cytometry and 
this gating strategy was adopted and applied to the samples. the gating strategy is shown for one 
patient using matched blood and SF and reveals that the Tph cell population are expanded in RA SF 
compared to blood providing further evidence that not only are the Tph cell population present in 
RA but are expanded in the joint microenvironment (represented by synovial tissue biopsy and SF) as 
shown in Figure 6-6. The gating strategy in Figure 6-6 B and C which correspond to blood and SF 
respectively, shows the sequential percentage of cells in each gate starting with 27,000 cells in the 
CD14/CD3 gate. The percentage of CD4+ MHC I+ (HLA-DR) PD-1+ cells were 2.75% in whole blood 
however, in synovial fluid this population increased to 9.3%. This was still less than 29% which was 
identified in synovial tissue by Rao et al but in a stringent population of just 27,000 cells, the 
evidence still robustly demonstrates that Tph cells are detectable particularly in the joint.  

The initial analysis conducted by FlowSOM clustering algorithm in Figure 6-3 was performed to 

observe the global immune landscape between RA peripheral blood and SF and secondly to identify 

if any differences were detectable between the two biological compartments or whether the 

immune cell populations were similar. Figure 6-3 did reveal that there were differences in immune 

cell populations present in peripheral blood and SF. To further interrogate this finding, FlowSOM 

clustering was re-run (Figure 6-7A and B) with 27,000 cells from each sample (n= 3 matched RA SF 

and peripheral blood) with particular focus on observing immunophenotypic subsets within the 

CD4+ T cell population (Figure 6-7A). Figure 6-7B shows four subsets identified in the CD4+ T cell 

population which were immunophenotypically defined as: CD4+CD27+CD45RA+ T cells, 

CD4+CD27+CD45RO+PD-1+ T cells, CD4+CD27+CD45RO+ T cells and CD4+CD45RO+PD-1+ T cells and 

FlowSOM detected these 4 subsets individually prior to labelling. The expansion of Tph cells 

(CD4+CD45RO+PD-1+ T cells) can be visually observed in RA SF compared to peripheral blood, which 

further confirms the presence and relevance of Tph cell in RA.  
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Figure 6-6|Gating strategy for identifying T peripheral helper cells by mass cytometry in RA 
synovial tissue and matched peripheral blood and synovial fluid.  

A Rao et al in 2017 157 identified the pathological expansion of T peripheral helper (Tph) cells in synovial tissue biopsies 

obtained from three patients by mass cytometry. The paper outlined the gating strategy applied to identify Tph cells by 

firstly gating on CD3+ CD14- T cells. A subsequent gate is drawn on the CD4+ CD8- T cell population and lastly a quadrant 

gate on a contour plot was drawn to identify the expansion of Tph cells. B The gating strategy outlined in A was applied to  

peripheral blood (RADAR BMC 4285) where the Tph cells are not expanded when compared to synovial tissue. C Synovial 

fluid taken from the same donor (RADAR BMC 4285) showed a similar Tph cell profile seen in synovial tissue suggesting the 

joint microenvironment is enriched for these cells. Percentages are shown of each sequential gate and in each quadrant 

the percentage is shown.  

Note that the gating axes in A are on logarithmic scales and in B and C are shown on linear scales due to automated gating 

applied to the dataset which transforms the scale. 
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Figure 6-7|FlowSOM clustering analysis shows the expansion of CD4+ CD45RO+ PD-1+ T cells in RA 
synovial fluid which immunophenotypically resemble T peripheral helper cells. 

A FlowSOM high-dimensional clustering shows the position of CD4+ T cells (coloured red/yellow) on a dimensionality 

reduction t-SNE 1 by t-SNE 2 axes. Signal intensity is depicted by a colour scale with blue – red indicating no expression to 

high expression of specific marker.  B shows the FlowSOM clustering analysis plot which summarises the cell populations 

from 3 patients where matched RA blood and synovial fluid was collected. 4 subsets within the CD4+ T cell population in 

peripheral blood (PB) and synovial fluid (SF) was identified by FlowSOM including CD4+CD27+CD45RA+ T cells which are 

present in PB but absent in SF. CD4+CD27+CD45RO+PD-1 and CD4+CD27+CD45RO+ T cell subsets were also identified. 

CD4+CD45RO+ PD-1+ T cell subset are observed to be increased in SF compared to PB.       
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6.2.1.4 PD-1 expression is increased in memory CD8 T cells in RA SF compared to 

matched peripheral blood  

To determine whether median expression changes in functional protein markers could be detected 
in other immune cell populations between matched blood and SF. Observation of the memory CD8 T 
cells (characterised as CD8+ CD45RO+ CD27+) showed an increased median expression in CD86, CTLA-
4, PD-1 and HLA-DR in RA SF compared to blood (Figure 6-8). 

 

Figure 6-8|Box plot representation of median expression of functional protein markers within the 
memory CD8 T cell population reveals higher median expression of checkpoint inhibitors CTLA-4 
and PD-1 in RA synovial fluid compared to matched peripheral whole blood     

Median expression analysis of 15 functional protein markers CD40, CD27, CD86, Granzyme B (Gran B), NKp44, CD28, CTLA-

4, NKp46, Perforin, TNFR2, PD-1, PD-L1, CD38, HLA-DR and CD80 in order from left to right for RA matched whole blood 

(PB) and synovial fluid (SF) n=3. A similar immunophenotypic profile that was observed in memory CD4 T cell population 

was similarly identified in this population including CTLA-4 which had a median expression of 1.8 compared to 0.8 in 

peripheral whole blood. PD-1 median expression was similarly increased in memory CD8 T cells in RA SF with a median 

expression of 3.4 and 2.4 in peripheral whole blood. HLA-DR was also showed an increase in median expression 2.6 in RA 

SF compared to 1.8 in peripheral whole blood. A slight increase in CD86 median expression can also be observed in RA SF.  

6.2.1.5 CD8 NK cells display a chronically activated functional immunophenotype in RA 

SF compared to matched whole blood  

Evidence of chronically activated CD8 NK cells in RA SF could be detected by the increase in median 

expression of CD27, NKp44, CD28, NKp46, PD-L1, HLA-DR and CD80 in RA SF compared to matched 

peripheral whole blood (Figure 6-9). Conversely, this activated immunophenotype suggests that CD8 

NK cells may have a diminished ability to induce apoptosis in the joint demonstrated by the decrease 

in median expression of both Perforin and granzyme B.  
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Figure 6-9|Box plot representation of median expression of functional protein markers within the 
CD8 natural killer (NK) cells population reveals a chronically activated immune phenotype but an 
incapability of inducing apoptosis through Granzyme B and Perforin 

Median expression analysis of 15 functional protein markers CD40, CD27, CD86, Granzyme B (Gran B), NKp44, CD28, CTLA-

4, NKp46, Perforin, TNFR2, PD-1, PD-L1, CD38, HLA-DR and CD80 in order from left to right for RA matched whole blood 

(PB) and synovial fluid (SF) n=3. Functional protein marker median expression was increased in CD27 (2.3), NKp44 (1.2), 

CD28 (2.5), NKp46 (2.6), PD-L1 (2.0), HLA-DR (2.0) and CD80 (1.25) in RA SF compared to matched peripheral whole blood. 

In contrast, Granzyme B (3.2) and Perforin (2.5) median expression decreased in RA SF compared to matched peripheral 

whole blood.    
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6.3 Discussion 

6.3.1 Strengths and limitations of the study 

It is recognised that this analysis was limited by the number of samples included. This can be directly 

attributed to the reduction of joint aspiration performed in clinic over the course of 18 months due 

to improved clinical management of RA. This can only be interpreted as positive progress in the 

clinical management of RA as a direct result of improved diagnosis and treatment and was thus 

considered fortunate to have been able to obtain 3 matched samples given this progress. This may 

then lead to the question of why pursue immunophenotyping within the blood and joint 

microenvironment if excessive inflammation is not apparent? But to an extent the question answers 

itself. The fact that large joint aspiration still occurs means that not all patients are prognostically 

identical. 40% of patients who fail initial biological treatment with a TNF inhibitor provides the 

biggest indication that subtle immune populations that do not constitute the majority of the 

immune cell landscape may contribute to treatment resistance and poor prognosis. The era of multi-

parametric, high throughput technology such as mass cytometry allows for either novel immune cell 

populations or subtle immune signatures to be identified and furthermore confirm previous findings 

in the literature which were limited by the current technology. If findings from novel technologies 

support these previous reports it strengthens and re-emphasises the importance of these 

populations in RA.  

Including all immune cells for analysis was deliberate to ensure that no major cell populations were 

overlooked. The panel design was designed in this approach so as to capture an overview and not to 

specifically interrogate a subset of immune cells. However, the panel design could be viewed as 

having a T cell focus especially with the inclusion of the checkpoint inhibitors. This was intentional as 

T cells are an abundant cell population and intrinsic to RA pathology and have been extensively 

explored by other research groups including the AMP 157,161,261. These markers were included to 

serve as a validation control to observe whether the same could be identified in this analysis. The 

observation that chronically activated phenotypes were observed within the memory CD4 T cell 

population underscores the relevance of this population. Therapeutics targeting checkpoint 

inhibitors and particularly the effect of PD-1 and CTLA-4 inhibition in RA are underway to establish 

whether any adverse effects are apparent 385–387.  

It is acknowledged that a limitation of this analysis is the extent to which it was performed. It is 

anticipated that the approach described here and the findings which have been reported can be 

extended upon further either by using the existing approach or additional approaches which are 

now emerging such as Flowct 165. Furthermore, comparison of these findings with SF obtained from 

other inflammatory arthritis in this analysis did not reveal any stark differences although it was 

noticed that PD-1 median expression levels were slightly higher in RA than other inflammatory 

arthritis (data not shown).  

The findings in this study are preliminary and it is accepted that further mechanistic studies would 

be required to understand the deeper relevance of these populations. It is also clear that synovial 

tissue would provide an added insight with an aim to perform whole tissue analysis as opposed to 

using disaggregated tissue. However, it is not thought that a larger cohort of SF is required despite 

the small number in this study and this is because logistically this is difficult to scale up. Moreover, 

as the findings from this analysis corroborate existing findings in the literature, this increases 

confidence in the relevance of memory CD4 T cells and CD8+ NK cells as populations of interest in RA 
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pathology. An interesting question would be to assess whether acellular RA SF has 

immunomodulatory properties on healthy T cells in vitro. Is RA SF potent enough that loss of CD27 

and CD28 expression can be detected in healthy T cells and are these cells chronically activated or 

anergic? Further mechanistic work should look at Tph cells in closer detail particularly in the context 

of treatment as this has not been fully established. Finally understanding the role of CD8+ NK cells in 

RA pathology by directly isolating them from patient blood/SF and characterising their functional 

role such as cytokine expression and their role in antigen presenting cells would be essential. 

Establishing the autoantigen/s that perpetuate chronic inflammation will be key and establishing 

how these antigens contribute to a dysregulated immune response continues to be extensively 

researched. Whilst this analysis cannot provide these answers, it is anticipated that this work will 

contribute to the existing efforts of pursuing functional characterisation of CD8+ NK cells and 

memory CD4 T cell populations especially in the joint and whether these populations and how these 

populations respond to existing treatment or whether they could be the target of future novel 

therapies.  

6.3.2 Immune cell populations differ between donor matched RA whole blood and 

synovial fluid  

The main aim of this chapter was driven by the over-arching question ‘is there a difference between 

synovial fluid and whole blood at the immune cell level or a specific immunophenotype which can 

distinguish between the two biological microenvironments?’ This was robustly supported by the 

MDS analysis in Figure 6-2 which showed that RA SFMCs and whole blood from the same donor 

formed two distinct groups driven by the underlying immunological differences between the 

biological samples. The validity of this finding was strengthened by the fact that both blood and SF 

were matched from the same donor, processed in the laboratory simultaneously and therefore 

provided a control for donor variation. The confidence in this initial finding was reflected by 

FlowSOM high-dimensional clustering which identified 15 main lineage immune cell populations 

present across whole blood and SF.  

6.3.3 Chronic pathologic activation within the memory CD4 T cell compartment in 

the RA SF 

The analysis conducted by the Diffcyt pipeline revealed that within the memory CD4 T cell 

population, a chronically activated functional phenotype could be observed. Memory CD4 T cells 

have been extensively reported to be enriched, both within RA blood and joint microenvironments 
157,160,261,388–393. Within RA, it is widely accepted that CD4 T cells are implicated in autoimmune 

disease as they recognise peptide antigens in the context of MHC II molecules and specific MHC 

alleles may increase predisposition to disease 27. This is evident in RA based on the shared epitope 

hypothesis which is supported by the observation that HLA-DRB1 alleles are strongly associated with 

susceptibility to severe arthritis 27,394. Indeed, a long held view is that as T cell stimulation is 

perpetuated by complex cytokine interactions, antigen stimulation and costimulatory signals, all of 

which are abundantly present in the joint microenvironment, this suggests that T cells migrating 

from the blood are influenced by the local environment within the joint 395. As only 27,000 events 

from each sample were included for the Diffcyt workflow it was decided to look at the memory CD4 

T cell population as a whole (CD4+ CD45RO+ CD45RA- T cells) and not split into subsets in order to 

observe the global expression of 15 functional markers as defined for this analysis. This was 
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considered to be an inclusive approach and reduce bias in the interpretation of the data that may be 

introduced through preferential analysis or existing findings in the literature. Although percentage 

abundance of memory CD4 T cells did not differ between whole blood and SF, further inspection of 

the functional markers defined within the Diffcyt workflow identified specific changes which suggest 

a chronically activated phenotype particularly visible in the joint. 

The first of these was detected in the decreased expression of CD27 in RA SF. CD27 is a member of 

the TNFR superfamily and is involved in both cell activation and receptor mediated apoptosis 396. 

CD27 is expressed on all naïve CD4 T cells and approximately 80% of memory CD4 T cells and can 

vary from high expression to dim expression intensity which can subsequently be used to determine 

subsets within lineage populations 397. In vitro T cell activation studies have shown that memory CD4 

CD45RO+ CD27- T cells are likely to emerge from CD27+ T cells as a result of prolonged stimulation 

which does not appear to be reversible 398. The decrease in CD27 within SF and synovial tissue 

compartments has been reported by Kohem et al. in 1996 where CD45RO+CD45RA- CD4 T cells were 

expanded and within this population a further insight revealed this population was enriched for 

differentiated CD4+ CD45RB+ CD27- T cells, a mature T cell population thought to have formed as a 

direct result of prolonged antigenic stimulation 398. This demonstrates that the enrichment of these 

cells in SF and synovial tissue are in part also due to these cells having an enhanced capacity to 

migrate from the vascular space into inflamed tissue 398. Indeed, this analysis revealed by FlowSOM 

clustering that the presence of naïve CD4 T cells are diminished in SF compared to whole blood 

which further supports the hypothesis that the local joint environment influences the 

immunophenotype of T cells. Specifically which antigens are responsible for perpetuating this 

chronic activation of T cells remains unknown.  

Since the findings of Kohem et al., many reports have detailed the expansion of CD45RO+ CD4 CD27- 

T cells in synovial fluid and whole blood from patients with RA 397,399–402. CD27 expression has been 

observed in the CD4+ CD25+ population in SF obtained from patients with juvenile idiopathic 

arthritis 401. The researchers used CD27 to distinguish between regulatory and effector T cells where 

CD4+CD25+CD27+ T cells expressed high levels of FoxP3 but did not produce IL-2, IFNγ or TNF 

however, the converse was observed in CD4+CD25+CD27- where effector cytokines were produced 

and failed to prevent T cell proliferation 401. In another study, gene expression profiling revealed that 

CD4+ CD27- T cells had an effector phenotype shown by the upregulation of transcription factors 

GATA-2 and T-bet and the chemokine receptor CX3CR1, chemokine RANTES and the activation 

marker HLA-DR 397. The gene profile was markedly different compared to CD27+ T cells thus 

supporting a different functional role for CD27- T cells. Tak et al. observed the differentiation of 

memory CD4 T cells into CD45RA+ CD27+ T cells which subsequently change into a CD45RO+ CD27+ 

which in turn become CD45RO+ CD27- phenotype 400. Within the synovial tissue compartment, 

infiltration of CD4+CD45RO+CD27+ T cells could be identified in the rheumatoid perivascular 

lymphocytic aggregates with a relative increase in the percentage of CD27- T cells in the diffuse 

lymphocytic infiltrate 400. Finally, the mixed effects association of single cells algorithm revealed the 

pathologic expansion of the memory CD4+CD27- HLA-DR+ subset in RA peripheral blood by mass 

cytometry, again confirming the importance of this subset in RA 261.  

Further analysis within this work observed that aberrantly activated T cells were detected by a 

decrease in CD28 and an increase in CTLA-4, PD-1 and HLA-DR. CD4 CD28null  T cells have received 

renewed interest due to their prevalence in autoimmune disease including multiple sclerosis and SLE 
403,404. Intriguingly, CD4 CD28null  T cells were first characterised and observed to be expanded in RA 

peripheral blood and later found to infiltrate the joint 391,392. Evidence suggests that CD4 CD28null  T 
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cells have an immunophenotype indicative of cells having evaded peripheral tolerance which result 

in them having an autoreactive response to autoantigens 392. Moreover, studies have shown that the 

presence of CD4 CD28null  T cells in RA can lead to the development of extra-articular manifestations 

suggesting these cells are systemically implicated. A recent review by Bano et al. directly links the 

expansion of CD4 CD28null T cells based on prior exposure to cytomegalovirus 333. This concept is 

further elaborated by the authors in the context of RA where they propose that cytomegalovirus- 

infected synovial fibroblasts present antigens indirectly to exosomes which are processed by 

professional and subsequently processed by antigen presenting cells which present to CD4 T cells via 

class II MHC. This interaction causes CD4 T cells to produce IFNγ and TNF and results in CX3CR1 

becoming upregulated on endothelial cells and synoviocytes which contributes to the recruitment of 

CD4 CD28null T cells to the inflamed synovium 333. This is an interesting stance as it detracts from the 

identification of a specific autoantigen such as type II collagen and instead refers to either an 

inappropriate immune response to a viral pathogen (Bano et al. propose cytomegalovirus 333) that 

results in the reprogramming of immune cells or insufficient recovery from a viral infection leading 

to persistent and chronic inflammation. It is likely that a combination of both processes have 

become dysregulated leading to the expansion of CD4 CD28null T cells. Evidence in support of the 

expansion of CD4 CD28null T cells in response to cytomegalovirus in RA has previously been reported 

including Thewissen et al. who identified CD4 CD28null T cells were reactive to cytomegalovirus 403.  

The loss of CD28 expression on T cells has been linked with ageing and immunosenescence 333,405–407. 

A study comparing centenarians with younger individuals, reported a noticeable reduction in 

peripheral blood CD28+ T cells in centenarians and further in vitro analysis revealed that a loss of 

CD28 expression was also observed in T cells that had been in long term culture 406. Until recently, 

immunosenescence was considered to be an irreversible process, that is once a cell reaches their 

maximum proliferative capacity this cannot be reset or reversed and this in part can be attributed to 

persistent chronic infection which contributes to accelerating the immune ageing of the cells 408. This  

The findings in this study also managed to identify the expansion of Tph cells in RA SF which was 

increased in abundance compared to peripheral blood, first reported in detail by Rao et al.157,158 In 

addition, the analysis also showed an increase of PD-1 expression on memory CD8+ T cells in RA SF 

cells. These findings are intriguing as although the cell populations are different, a common feature 

is the expression of markers commonly associated with exhaustion including PD-1. However, 

expression of markers associated with exhaustion including PD-1 and CTLA-4 do not instantly 

identify these T cells as exhausted and within the RA joint, these cell populations are referred to as 

being chronically activated as opposed to showing functional exhaustion 157,261. Whilst it is known 

that early senescence and exhaustion in T cells are both reversible, it is less certain whether this is 

the case after chronic, persistent infection. It will therefore be an important future research 

question to determine whether these populations can be therapeutically targeted leading to a 

potential reversal of these phenotypes and how this would affect the immune system long term. It is 

becoming apparent that the memory CD4 T cell compartment in RA are integral to pathology and 

understanding their role and attenuating their presence may offer a much needed therapeutic 

solution 405.  

6.3.4 CD8+ NK cells – the bridge between innate and adaptive immunity in RA? 

Although this analysis is not the first to observe NK cells with T cell properties, interrogation of the 

literature suggests that it is the first time CD8+ NK cells have been immunophenotyped in detail by 

mass cytometry in RA. A limitation of current immunophenotyping studies is that despite the 
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increase of markers that can be interrogated and thus ability to acknowledge the heterogeneity of 

the immune landscape, reports often focus on one immune cell population or specific subset 409. 

Examples of this can be observed in the initial reports that have been published regarding immune 

cell populations detected in RA by mass cytometry which has already been comprehensively detailed 

in earlier chapters 157,161,261. This limitation arises due to the complexity and nature of immunology in 

general and maybe a flawed attitude towards the data we anticipate from novel technologies. Many 

of the questions and approaches suggest that it is a specific immune cell subset that will be 

responsible for perpetuating RA or that immune signatures will distinguish a subset of patients e.g. 

distinguishing early RA from refractory RA. Moreover, there is a tendency to view immune cells using 

the binary classification of innate and adaptive and there is still a leaning towards 

immunophenotyping adaptive immune cells 157,161,261. Whilst one could support this bias towards B 

and T cells being the preferred cell populations to be studied in RA due to their inextricable 

association with autoantibody production, it is worth considering the wider implication of immune 

cell interaction and not overlooking innate cells or cells that do not fit this conventional 

classification. Whilst this creates a degree of complexity, it is necessary to view cell populations in 

context and not independently. 

The CD8+ NK cell population once again showed relevance to RA pathology and particularly in the 

joint. In chapter 5, comparison of early RA peripheral blood revealed that both NK cells and CD8+ NK 

cells were significantly decreased compared to health suggesting that they were either migrating to 

the joint or undergoing apoptosis. Although modest in number, this analysis supports the theory 

that CD8+ NK cells are present in the joint and furthermore develop a different phenotypic profile 

compared to that in the blood. The occurrence of CD8+ NK cells reaffirms their importance in RA and 

the observation that they are distinct population from T cells and NK cells as depicted by the 

FlowSOM clustering provides encouragement for future investigation into this population of cells.  

In this analysis, the CD8+ NK cell population appeared to have an activated phenotype in RA SF 

compared to blood, and this was evidenced by an increase in CD27, CD8+6, NKp44, CD28, NKp46, 

PDL1, HLA-DR and CD8+0 median expression. The expression of NKp44, PDL1 and CD8+0 suggest 

that CD8+ NK cells upregulate co-inhibitory receptors and develop an activated phenotype but have 

reduced cytotoxic potential as evidenced by the reduction of perforin and granzyme B expression. It 

is hypothesized that these cells are a hybrid of NK cells and T cells and have a heterogeneous 

phenotype 410. 

NK cells have a conflicting role in RA pathology and depending on the literature and interpretation of 

the data, NK cells could be interpreted as having a proinflammatory phenotype capable of mediating 

bone destruction and joint erosion and thus associated with a severely destructive RA progressing 

phenotype 317 or as cells that possess immunoregulatory functions by bridging the gap between T 

cell exhaustion and activation 391,411,412. The role of NK cells in RA becomes significantly more 

complex when discerning the functional role of subsets of NK cells 413. This study and the analysis 

presented is unable to comprehensively explain the role of CD8+ NK cells in RA, suffice to suggest 

that their role must be integral to RA pathology due to their significant reduction in early RA 

peripheral blood (observed in chapter 5) and their phenotype again being observed in RA SF. 

Analysis presented here cannot definitively confirm whether CD8+ NK cells are increased in SF, 

however, there it does suggest that there is an expansion of CD8+ NK cells in the joint 391. It is also 

thought that CD8+ NK cells display an intriguing phenotype that should not be ignored. Despite the 

limitations of this analysis, CD8+ NK cells should receive further attention as it is hypothesized here 

that they may serve as an important mediator of T cell interaction 391.   
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Warrington et al., in 2001 observed that a subset of CD4+CD28- T cells displayed NK cell features 

including CD158, p70, CD94, CD161, and CD8+α 391. Histology analysis suggested that NK receptor-

expressing CD4 T cells were present in follicular microstructures typical of rheumatoid synovitis 391. 

In this analysis, CD8+ NK cells clustered separately from the memory CD4 T cell population and it is 

likely that findings by Warrington et al., is restricted by the technology used (flow cytometry) and 

thus the number of parameters available for immunophenotyping. In addition, Warrington et al., 

used manual gating to analyze the data which could overlook this interpretation.  

It is hypothesized that CD8+ NK cells can mediate interactions with chronically activated and 

exhausted immune cell populations, particularly maintaining homeostasis between CD4+ CD28- T 

cells and exhausted CD8+ T cells 414. In the absence of cytokine data, it is uncertain whether CD8+ NK 

cells are proinflammatory but the phenotype that has emerged is an increase of activation and 

inhibitory receptors suggests that they are capable of activating immune cell populations by an 

escape mechanism i.e. not through the traditional CD28 activation pathway but rather through NK 

cell receptors which span both killer activation receptors, killer-cell immunoglobulin-like receptors 

and CD8+ MHC class I signaling 391. It could also be speculated that CD8+ NK cells are derived from 

CD4+ CD28- T cells, whereby CD28 is downregulated over time in response to chronic antigenic 

stimulation and acquires NK cell receptors as a mechanism to switch off T cell activation 391.   

The wider implication of CD8+ NK cells in autoimmune disease can be observed in multiple sclerosis 

(MS), where CD8+ NK cells were hypothesized to have an immunoregulatory role which limited 

recurrent T-cell driven demyelination in relapsing/remitting multiple sclerosis 412. The phenotype of 

CD8+ NK cells were CD3-CD8+CD56+ and RNA- sequencing on this subset showed that these cells 

were associated with reduced future relapse risk following an initial demyelinating event 412. To 

understand the underlying biological mechanism driving this immunoregulatory role, in vitro analysis 

of CD8+ NK cells was undertaken. CD8+ NK cells were incubated with CD4 or CD8 T cells derived 

from patients with MS to assess whether they had a suppressive effect 412. It was observed that 

CD8+ NK cells did have a significant suppressive effect on autologous CD4 T cells activation and 

proliferation but the same effect was not observed on CD8+ T cells 412. Considering this work, it is 

apparent that CD8+ NK cells may possess a multi-functional role capable of both immunoregulatory 

and pathologic functions in RA. 

Finally, it is uncertain at this stage to consider whether CD8+ NK cells would make a good 

therapeutic target let alone whether they could be therapeutically targeted. There is growing 

evidence that the CD8+ cell populations spanning across conventional and non-conventional subsets 

are becoming more prominent in autoimmune disease as immunophenotyping studies delve further 

into the populations present in any given biological sample 409. In terms of RA, an autoimmune 

disease characterized by its dysregulated memory CD4+ T cell populations, researchers are looking 

to identify other immune cell populations responsible for perpetuating the chronically activated 

phenotype resulting in downregulation of CD27 and CD28. It is not clear what would happen if these 

T cell subsets were directly targeted or whether balancing the homeostasis between 

immunosenescence and chronic activation can be targeted long term and what these implications 

would be. Hypothetically, CD8+ NK cells could be a therapeutic target by depleting their numbers in 

the joint. It would be anticipated that by depleting CD8+ NK cells, this would indirectly disrupt T cell 

activation. Further work that can build on these findings is encouraged as it is thought individuals 

who possess CD8+ NK cells may respond differently to exogenous as well as self antigens, resulting 

in chronic inflammation within the synovium, that may be resistant to existing therapeutic options in 

RA. 
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Chapter 7 General Discussion 

7.1 Summary of findings 

The main aim of this study was to understand whether mass cytometry could reveal specific changes 

within immune cell populations which corresponded with a specific ‘stage’ of RA or associated with 

specific biological compartments demonstrated by SF or peripheral blood. Alongside this main aim, it 

was important to ensure that validation of the methodology approach in this study was optimised, 

providing a template for future study designs which aims to take future researchers from conception 

of study design to data analysis and being able to draw informed conclusions. This study began in 

January 2017, where accessibility to a mass cytometer was not widely available to researchers. This 

is also reflected in this study, as it was done in collaboration with UCB Pharma as University of Leeds 

dis not have a mass cytometry facility. Since the commencement of this study, data generated from 

single cell immunophenotyping by mass cytometry has increased exponentially and becoming a 

more familiar topic in Immunology. The cytometry field continues to strive for best practice in data 

generation from cytometry experiments and this study was particularly attentive to these 

expectations. Clone validation of the antibodies used in this study, technical processing of samples 

for acquisition by mass cytometry and validation of automated bioinformatics scripts including the 

Diffcyt script pipeline took a significant amount of time however, this was necessary to ensure 

confidence in the data.  

Significant immune cell changes were detected in peripheral blood of patients with early RA when 

compared to healthy donors. Differential abundance testing showed MAIT cells, CD8 NK cells, pDCs 

and NK cells were reduced in early RA compared to health and further differential expression testing 

revealed that activation markers including CD27, CD28, CD38, HLA-DR were either significantly 

increased or decreased on both innate (basophils, CD14+ monocytes, pDCs and neutrophils) and 

lymphoid (memory CD4 and CD8 T cells and NK cells) populations in early RA. Interestingly, a specific 

early RA immune phenotype did not distinguish patients who had not received treatment compared 

to established RA (on treatment). It was evident that a specific immune signature did not further 

distinguish different demographic or clinical parameters within the established RA peripheral blood 

cohort. However, it was also detected by MDS analysis which observes global staining similarities 

between conditions that established RA patients (regardless of treatment, timepoint or clinical 

measurements) did separate from healthy donors which supported the established concept of 

atypical immune interactions in RA. However, it is obvious that progression of RA manifests in the 

joint and analysis of SF may reveal further specific phenotypes which contribute to the chronic 

inflammatory phenotype. Analysis of three matched RA peripheral blood and SF samples were 

analysed to reveal chronically activated T cells in the memory CD4 T population demonstrated by the 

increased median expression of checkpoint inhibitors CTLA-4, and PD-1, and an increase in HLA-DR in 

RA SF compared to blood. A decrease in median expression of CD27 and CD28 in RA SF further 

confirmed that memory CD4 T cells are aberrantly and chronically activated, an observation that has 

been previously reported in RA and in a wider context, a phenomenon that has been observed in 

other autoimmune diseases 333,415. Furthermore, PD-1 expression was notably increased on memory 

CD8 T cells in RA SF. Lastly, the CD8 NK cell population in RA SF revealed a distinct phenotype which 

showed an increased median expression of CD27, NKp44, CD28, PD-L1, HLA-DR and CD80 and a 

decrease in perforin median expression. CD8 NK cells had a phenotype that was distinctly different 

in the SF joint in comparison to peripheral blood providing evidence that the local joint 

microenvironment influences phenotype.  
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Therefore using mass cytometry, a novel and not widely available single cell technology, coupled 

with current bioinformatics analysis, this study has demonstrated that it is possible to discover novel 

immunophenotypes and replicate findings which have been previously reported 157,161,261.  

7.2 Limitations of the study 

It is recognised there are limitations to this work and thus the scope of the findings. Firstly, despite 

the sample size being larger than the studies typically reported for mass cytometry, it is accepted 

that the findings reported here, would need to be corroborated in a larger cohort. Furthermore the 

panel design would have benefited by inclusion of cytokine and chemokine markers. However, as 

the study consisted of unstimulated peripheral blood, including a cytokine and chemokine panel 

would not have been useful. However, if time permitted, protocols exist for processing stimulated, 

cryogenically preserved PBMCs on a mass cytometer. This would require extensive validation as is 

the case for flow cytometry however, it would provide further insight into which immune cell 

populations for example produce the highest amount of TNF which could in turn improve specificity 

of TNF inhibitors as opposed to existing TNF inhibitors which broadly inhibit TNF. Another limitation 

is that the immune cell populations identified as being statistically significant in early RA were not 

able to be pursued in more detail to characterise their functional properties. In section 7.3.2, it is 

outlined how this could be potentially addressed in future work.  

7.2.1 Critical appraisal of mass cytometry 

It is also acknowledged that new techniques such as mass cytometry are complex requiring 

comprehensive knowledge of both the technical and logistical aspects of cytometry. Coupled with 

complex bioinformatics analytical pipelines, this is a challenging study especially for those at a junior 

level (postgraduate) whose familiarity is not as extensive as a specialised cytometrist. Technical 

challenges in this study were encountered including batch effects as a result of variable staining but 

it is hoped that more barcodes for samples to be included in 1 batch will become available which will 

significantly reduce this inconsistency. In addition, two markers CD56 and CD123 were removed 

from the panel as they were inconsistently expressed and were removed from the analysis process. 

In terms of the bioinformatics pipeline used to analyse the data from mass cytometry in this study, it 

is apparent that there were limitations. Channel labelling is more specific and each script needs to 

be carefully studied to avoid encountering script discrepancies with the data as evidence with the 

marker IgD which was mistakenly labelled as ‘1gd’. The Diffcyt script calculated cell abundance 

which translates as percentage of cells included in the analysis from each sample. A criticism of this 

approach is that there is no absolute count of each cell population however, this study did not have 

scope to give an absolute count as samples were barcoded. As a follow up experiment, it would be 

worth providing absolute counts of cell populations particularly those populations which are 

pathologically expanded such as Tph cells.  

Considering some of the limitations encountered in this study, it is worth considering the merits of 

mass cytometry in the wider context of single cell technologies. Undoubtedly mass cytometry has 

pioneered the multi-parametric single cell technologies for protein analysis. Mass cytometry has 

pushed the boundaries of cytometry allowing for unparalleled deep immunophenotyping of 

biological analysis however, this has set precedent for existing technologies namely flow cytometry 

to develop better cytometers that can compete with mass cytometry. This trend has become a 

common sight at conferences and technology demonstrations where flow cytometers are 

demonstrated with increasing parameters due to improved and stable fluorescent dyes and more 
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channels. Compensation correction has also improved with many flow cytometers offering 

automated compensation software reducing time taken to construct marker panels and most 

importantly, reducing the amount of sample required for controls.  

Therefore, in an era where technology is advancing at a considerable pace, is mass cytometry worth 

it? In short, no. If existing flow cytometers were still limited to 20 markers, then mass cytometry 

would have a significant advantage but as already mentioned, flow cytometers are offering 40 colour 

channels and parameters. The cost of running a mass cytometer is not practical for many research 

budgets. The added complication of needing to adapt a single room for the running of the mass 

cytometer requires institutions to make considerable adaptations to existing facilities with an 

experienced and dedicated cytometrist to ensure smooth operation of the facility. From first hand 

experience, this is by no means a trivial problem but requires careful consideration if this is a 

technology that researchers would like access to in their research. The reason for this hesitancy is 

once again because multi-parametric flow cytometers are available that only require bench top 

space and no significant alterations to the existing laboratory structure 416. Furthermore flow 

cytometers can offer more than just identification of cells by immune protein markers. This is 

evidenced by technologies such as ImageStream which also provides morphometric and photometric 

features of the examined cells during acquisition 417. The company 10X Genomics offers multiomics 

phenotyping which combines single cell RNA sequencing with single cell immunophenotyping 418. 

Another limitation of mass cytometry is that it is slow during acquisition, with a maximum of 500 

events/second and cells are completely obliterated meaning there is no scope for cell sorting. With 

flow cytometry, cell sorting can be an option albeit that it is usually performed by an experienced 

cytometrist. If considering logistics, then flow sorting itself is an unduly complex procedure given the 

time taken to obtain a specific immune cell subset from a heterogeneous population of cells. There 

are technical kits which magnetically separate specific immune cells and can be independently 

performed by the researcher with minimal experience however, this approach does not always yield 

100% purity for downstream in vitro experiments. It is anticipated with the explosion and 

advancements of technology, fluorescence activated cell sorting technology will be simplified and 

robust, in turn expediting the process that can be performed by any researcher, thus emancipating 

the cytometrist.  

In an era of technological advancement it is accepted that researchers are faced with a daunting but 

equally generous prospect of choice when it comes to choosing the right technology for their 

research question. Naturally, as technologies evolve, some older technologies may fall out of favour. 

A technology that offers robust, specific data on a multi-omic level at a relatively inexpensive cost 

which is technically simple to operate will be favoured over most other technologies. Mass 

cytometry has undoubtedly raised the bar for multiparametric cytometry however, technologists 

developing flow cytometers have risen to the challenge. Imaging mass cytometry has also overcome 

the limitations of immunohistochemistry however, again other vendors are competing and providing 

alternative approaches which offer equivalent if not better results. Should a research institution 

already have mass cytometry as part of their facility then the use of this technology should continue 

as naturally the technology will itself be under continuous development to surpass its current 

offerings. The limitations of mass cytometry I have raised in this chapter are aimed for researchers 

who do not currently have access to a mass cytometer and are considering using this approach for 

their own research and/or contemplating the purchase of a mass cytometer. The limitations are 

stated to provide an honest evaluation of mass cytometry and not to actively discourage future 

researchers from using the technology. In essence, it is hoped that this discussion will encourage 

researchers to carefully consider their options, and explore the range of choices on offer without 
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being solely influenced by the popularity or novelty of the technology. This study has aimed to be 

transparent and informative about mass cytometry highlighting both its merits and disadvantages 

throughout however, given the progress made in single cell technologies, it is fair to summarise that 

mass cytometry no longer stands alone in a rapidly advancing field of multi-parametric single cell 

protein cytometry 419.  

7.3 Future direction  

This study aimed to open further opportunities for future research. I would like to propose a few 

suggestions which could guide future research for RA which have been influenced by the findings 

from this work. The suggestions proposed also take into consideration practical and logistical 

considerations of studies to provide novel and insightful data that would aim to answer unmet 

clinical needs that remain in RA.  

7.3.1 Imaging whole synovial biopsy tissue 

Interrogation of the immune landscape within the joint of a well characterised patient cohort may 

yield insightful findings than a blood cohort. If synovial biopsy tissue were obtainable, it would be 

better to immunophenotype whole biopsy tissue as opposed to disaggregating the biopsy. Whilst 

synovial biopsy immunophenotyping has been extensively performed by several groups including 

the AMP group and Pitzalis et al., 167,420 these have been performed in disaggregated tissue or by low 

resolution immunohistochemistry, leaving the opportunity for whole tissue deep 

immunophenotyping unexplored. Technologies now exist to accommodate whole tissue 

immunophenotyping including the CODEX platform and imaging mass cytometry 174,421,422 which 

allows the researcher to interrogate whether specific cell populations are infiltrating or tissue 

resident.  

Isolation of specific cell populations and here a first suggestion would be to isolate Tph cells as 

evidence suggests that there expansion in the RA joint correlates specifically with RA pathology. In 

addition hypotheses that should be interrogated is the effect of treatment on immune cell 

populations with particular focus on the Tph cells in synovial tissue. This would embellish our 

understanding of the effects existing treatment including a combination of DMARDs and biologics 

has on the local tissue microenvironment. Questions aiming to specifically understand what 

constitutes refractory RA and whether patients who are deemed refractory (after failing two 

mechanistically different biologics) can be better defined through specific immune signatures.    

The other aspect of characterising synovial biopsy is that it includes non-immune cell populations 

namely fibroblasts. Fibroblasts have received attention over the decades in particular from the 

research groups in Glasgow and Birmingham 135,342,423–425. Whilst subsets of fibroblasts have been 

characterised through transcriptional and proteomic single cell studies, it would be intriguing to 

observe whether refractory RA could be explained by fibroblast pathotypes 425.  

Finally, synovial biopsy research continues to evolve and develop current efforts in new precision 

medicine approaches in RA 426. The development of an organ-on-a-chip microfluidic culture device 

that simulates the microarchitecture and functions of living human organs offers hope to study 

whole organ functions. Fluidigm in collaboration with the FLAMIN-GO consortium have created 

synovia-on-a-chip that will aim to capture the complexities of the rheumatic joint with the aim of 

predicting treatment response and detecting biomarkers which ultimately would lead to improved 
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clinical management of RA 426. This research will undoubtedly yield breakthrough findings and 

overcome current limitations with animal models and biopsy tissue. 

7.3.2 Blood immunophenotyping early RA 

However, it is recognised that scaling up a synovial biopsy cohort is difficult in a short period of time 

(≤ 3 years) and SF is not routinely available in the clinic which means that a blood is still a useful and 

logistically viable biological sample. As this study highlighted, there may be more insight into 

aberrant immune subsets to be gathered at the earliest opportunity. The earliest opportunity 

without the study becoming implemented as community testing is when the patient presents 

symptoms such as persistent joint pain to the general practitioner. A blood sample at this timepoint 

would be useful to probe the immune landscape and understand which patients go onto a 

confirmed diagnosis of RA and which patients either spontaneously resolve symptoms or develop 

non-RA inflammatory arthritis. The intention of this would be to develop a comprehensive insight 

into the immune dysregulation that is occurring. This study has already identified specific immune 

cell population changes which occur in early RA however, these patients already have a clinically 

confirmed diagnosis of RA. The discovery of specific changes in immune cell populations serves as a 

proof-of-concept that interrogating the RA immune environment is prudent.  

Neutrophils are receiving renewed attention in terms of their functional contribution to RA 

pathology 427–429. It would be recommended to include more neutrophil markers to identify whether 

there are subsets of neutrophils that reveal pathologic immune dysregulation including CD66b, 

CD44, CD15 and CD62L which would refine the neutrophil population and help to understand the 

role of neutrophils in RA and health. Neutrophils have often been ignored due to the general 

assumption that they are short-lived in vivo and are difficult to study in vitro. Moreover, neutrophils 

are often overlooked as they are in abundance and often masks less abundant cell populations. 

However, our understanding of neutrophils has advanced and they are considered to be one of the 

most important effector cells of the innate immune system 430. From this work, neutrophils were 

seen to drive immunophenotypic distinction between early RA and health and it is thought that this 

distinction may be due to altered functional characteristics of neutrophils which could be further 

detected by in vitro assays for example which measure reactive oxygen species, neutrophil 

extracellular traps and apoptosis. This study did not show a significant change in the neutrophil 

phenotype within the joint although Wright et al. showed through transcriptomic analysis that 

neutrophils had an altered phenotype including raised reactive oxygen species and chemokine 

production 356. It is worth pursuing these findings in a larger cohort of patients to ensure they are 

replicable and if it is not possible to obtain SF then blood neutrophils would still provide a significant 

into their pathologic role. Raised ESR and CRP are included in the RA diagnostic criteria although 

they are not specific to RA. Identifying neutrophil subsets that could correlate with inflammation 

may provide an added dimension with the intention to capture RA at its earliest opportunity.  

7.3.3 Deep immunophenotyping mucosal tissue could provide new insight into 

pre-clinical RA  

It is also important to note that whilst immune dysregulation or a breakdown in tolerance are both 

concepts that are synonymous with RA, it is evident that this mechanism is only partially 

understood. It could be probable that before immune cells assume a permanent dysregulated 

phenotype, the cause of this imbalance could result from gut/oral microbiota dysbiosis, unresolved 

viral infection/pathology or other environmental factors such as dust inhalation or smoking 1. What 
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links these concept is that they all indicate a mucosal origin, a concept which is receiving more 

traction, particularly for patients with seropositive RA 431. A quick literature search suggests that RA 

mucosal tissue has not been deeply immunophenotyped by mass cytometry, offering both an 

insightful and novel approach in understanding overall immune dysregulation in RA. Nasal tissue 

biopsies have been successfully processed for acquisition by mass cytometry and offer an accessible 

tissue biopsy option 432. A pneumococcal challenge study consisting of 20 patients observed B cells 

and MAIT cells were higher in non-colonized participants compared to colonized participants which 

correlated with blood MAIT cells which suggest protection against infection 432. In this study, it was 

identified that MAIT cell abundance was decreased in RA compared to health however, additional 

analysis within RA SF did not show an increased number of MAIT cells within the joint 

microenvironment. This evidence therefore does not support the theory that MAIT cells from the 

blood are migrating to the joint and given that MAIT cells are native to mucosal sites, this future 

work would provide insightful data at the mucosal surface.  

7.3.4 Mutual pathways between RA and Covid-19? 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as Covid-19, is a virus 

that primarily affects the respiratory system which has disrupted the world and continues to pose a 

significant challenge to human health 433,434. Earlier data focused on understanding which cells were 

implicated by the virus and it was observed that airway epithelial cells, alveolar epithelial cells, 

vascular endothelial cells and macrophages were targeted by the virus as they all express angio-

tensin converting enzyme 2, the receptor targeted by the virus to gain entry into the host cell 435. It is 

apparent that Covid-19 has similarities with RA despite the two diseases differing in terms of their 

primary manifestation 436,437. Treatments used in RA also being effective in patients with Covid-19 in 

particular IL-6 inhibitors and dexamethasone which have improved survival outcomes for patients 

who were severely ill with Covid-19 438,439.     

Interrogating the immune landscape of Covid-19 has resulted in numerous publications however, 

there is still no specific biomarker or inflammatory endotype which is able to differentiate between 

mild and severe disease. It is possible to discern from the existing literature on Covid-19 that the 

innate immune system is dysregulated and within these innate immune cell populations, immune 

signatures are starting to emerge. Using mass cytometry, Chevrier et al. aimed to detect specific 

phenotypes in mild and severe Covid-19 compared to healthy donors 440. Chevrier et al. observed 

that CD169+ monocytes associated with a IFN-γ+ MCP-2 signature which rapidly followed after 

symptom onset and a persistent inflammatory phenotype in patients with severe disease, 

dominated by high CCL3 and CCL4 abundance which correlated with the re-appearance of CD16+ 

monocytes 440. Another study immunophenotyped Covid-19 post-mortem tissue from three patients 

by imaging mass cytometry revealed monocyte, macrophage and DC infiltration in the lung, kidney, 

intestine and liver 441. Of note was CD11b+ macrophages and CD11c+ DCs infiltrated the liver, lungs 

and intestine and overproduced the immunosuppressive cytokine IL-10 441. Furthermore CD11b+ 

macrophages and CD11c+ DCs in the lungs and intestines of patients did not express HLA-DR but did 

produce higher expression of TNF in lungs and intestine 441.  

It is evident that the monocyte/macrophage axis is implicated in Covid-19 and this has led to further 

investigation into whether there is an overlap in the immune subsets that perpetuate both Covid-19 

and RA. Single cell RNA sequencing of bronchoalveolar lavage fluid from 6 patients with severe 

Covid-19, discovered abnormally low numbers of resident alveolar macrophages although two 

specific macrophage subsets were increased immunophenotyped as FCNpos and FCNposSPP1pos and 
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shared the same pathogenic mechanisms with pro-inflammatory macrophage clusters that drive 

synovitis characterized as CD48high S100A12pos and CD48pos SPP1pos 442,443. Similar transcriptomic 

profiles were identified between healthy alveolar macrophages and healthy and remission synovial 

tissue lining layer macrophages providing additional evidence that mechanisms between Covid-19 

and RA overlap.  

Therefore, further exploration of innate immune cells and their role in Covid-19 pathology may also 

be useful in RA. Innate immune cell populations have often been overlooked which may explain why 

existing treatments in RA have limited efficacy. Questions that look to embellish our current 

understanding of innate immune cells and their implications in disease are desperately required and 

definitive answers about whether innate immune cells have functions that are assumed to 

traditionally be performed by adaptive immune cells need to be answered. It is not possible to 

provide a detailed discussion of current developments in Covid-19 as this is a rapidly evolving field. It 

is acknowledged that the unknown questions in Covid-19 strike a similar tone with RA. Questions 

such as being able to identify specific immune signatures that correlate with disease severity could 

apply to either disease and the effort to find specific, effective treatment remains a priority. The 

pathologic contribution of monocytes and macrophages is a central theme to both RA and Covid-19 

pathologies. Research into both innate and adaptive immune cells will be necessary but this binary 

classification is reductionist when evidence exists there is considerable overlap between innate and 

adaptive functions. A specific question that should be pursued is better understanding of trained 

immunity, which is the concept of memory in innate cells. The concept of ‘immune memory’ is that 

upon a second encounter with a pathogen, certain immune cells, and traditionally cells classified as 

adaptive, can mount a faster and efficient response to eliminate the pathogen. In the context of 

Covid-19, if it could be identified which innate immune cells possess trained immunity, vaccines 

should be developed targeting these cells and discussed in two reviews 444,445. Developing 

treatments in RA which target the innate immune cell population rather than their effector molecule 

production could improve specificity of treatment. Finally, if innate immune cells possess trained 

immunity, is this directed towards autoantigen recognition and thus contribute in chronic 

inflammation? There is insufficient evidence to draw any definitive conclusions at present and it is 

hoped that this discussion has identified some key areas which need further work.  

7.4 Concluding remarks 

This study aimed to go beyond existing studies performed by mass cytometry and use the most 

current bioinformatics analysis pipelines to analyse the data. Furthermore the identification of 

specific immune cell populations in early RA peripheral blood and future efforts should use these 

findings for functional characterisation. This study also confirmed the chronically activated 

phenotype within the memory CD4 T cell population in RA SF and it is hoped that this work will 

stimulate further research using multi-parametric single cell technologies.  
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Appendix A  

  

PATIENT INFORMATION SHEET & CONSENT FORM  
  

Investigator: Professor Paul Emery  

  

Study Title: RADAR:  Rheumatoid Arthritis DiseAse Research  

  

Protocol Number:  RR09/9134  

  

Study Sponsor: University of Leeds  

  

Subject No.:  ___________  Initials: _______  Date of Birth: _________________  

  

 
  

You are being invited to take part in a research study. Before you decide, it is important for 

you to understand why the research is being done and what it will involve. Please take time to 

read the following information carefully and discuss it with friends, relatives and your doctor 

if you wish. Ask us if there is anything that is not clear or if you would like more information. 

Take time to decide whether or not you wish to take part.  

  

You can find independent information on participating in clinical trials on the following web 

site: http://www.clinicaltrialsportal.co.uk/medical-volunteers-patients.html. If you do not 

have access to the internet, or prefer a hard copy of the information, please ask the study 

doctor or nurse, who will be happy to provide you with one.  

   

  

1. What is the purpose of the study?  

  

Inflammatory arthritis is a common condition and we would like to find out more about the 
very early stages. We know that early treatment of inflammatory arthritis gives better results 
than if treatment is delayed.  Unfortunately, it can be very difficult to catch patients in the early 
stage of the disease as often symptoms can be mild and can be atypical, such as initially just 
single joint involvement.    
  



245 

 

The University of Leeds aims to develop a comprehensive research program to investigate the 
clinical characteristics of inflammatory arthritis patients attending the Early Arthritis Clinic.  This 
would be of great benefit in providing further insights into the disease in order to assist with 
future treatments.  
  

The reason behind studying people at an early stage, when symptoms are new and may be 

associated with only small amounts of joint swelling, is that such individuals hold the key to 

understanding what makes some people develop a persistent arthritis and others go into 

remission.  By identifying the first changes of inflammatory arthritis using the most sensitive 

techniques available, our knowledge will be significantly advanced.  This ultimately will help 

improve early diagnosis and tailor treatment to the individual.  We therefore want to collect 

data on all patients with possible or probable or definite early inflammatory arthritis over 

time, producing a database from which we can address these important research questions.    

  

  

2. Why have I been chosen?  

  

You have been invited to participate in this study because you have been identified as having 

possible or probable or definite inflammatory arthritis.  We want to assess people like you 

over time to learn more about inflammatory arthritis.    

    

3. Do I have to take part?  

  

It is up to you to decide whether or not to take part in the study. If you decide to take part 

you will be given this information sheet to keep and be asked to sign a consent form. If you 

decide to take part you are still free to withdraw from the study at any time and without 

giving a reason. This will not affect the standard of care you receive.  

  

4. What will happen to me if I take part?  

  

  

Your arthritis will be treated according to our usual treatment guidelines.  This is NOT a study 

looking at new or experimental treatments and there will be little change in the care that you 

receive from your rheumatologist.  However, your answers and findings from the routine 

questions asked and examinations that occur within your normal consultation with your 

rheumatologist will be recorded into a secure database.  Results from any investigations you 

undergo will be recorded.  Retrospective data from your clinical notes may also be recorded.    

  

Only your initials and your unique study number and no other personal identifiers will be 

recorded on the database.  Access to the database will be protected by password and 

restricted to only those involved in the study.  
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Patients will be asked to return for outpatient visits approximately every 3 to 6 months and 

then annually thereafter, unless there is a clinical need to see you more or less often. This is 

the same number of visits as would happen in normal clinical care.    

  

Your doctor or nurse will carry out the following procedures which are over and above the 

standard clinical care you would receive if you were not taking part in the study:   

  

• If you decide to take part, you will have the opportunity to discuss in detail what 

participation means and you will then need to sign the consent form as part of your 

initial visit for the study.   

• You may also be asked to take part in one or more optional sub-studies. These include 

additional procedures which are over and above standard care. Each substudy has an 

additional patient information sheet which outlines the procedures. Your Doctor or 

Nurse will discuss these with you.  

  

At your study visits, we will capture clinical information that is part of routine care.  As part of 

your normal hospital visit your Doctor and Nurse will:   

  

• Ask questions about your medical history and medications you have been taking.  

• Conduct routine physical examinations including blood pressure, pulse rate, height 

and weight.   

• Take blood samples for routine arthritis tests, including fasting samples if applicable.   

• Assessments will be completed regarding your current symptoms, general wellbeing 

and ability to carry out everyday tasks.  

• X-rays of your hands and/or feet will be conducted at your initial visit and annually. 

An x-ray is a commonly used diagnostic procedure. The small dose of radiation you 

receive will be the same as any standard x-ray and should not be a significant health 

risk.  

• Ultrasound (US) of your hands, feet and other joints may be conducted when clinically 

relevant to your care.  Ultrasound is done frequently on patients in our early arthritis 

clinic and is standard practice in our clinic. An ultrasound scan involves placing special 

jelly on your joints (in this case over your hand and knee) and then a scanner, which is 

in the shape of a flat probe, is run over this will last approximately 30 minutes. This 

should not be painful or uncomfortable in any way.  

• Annual questions about your cardiovascular health:   

o The amount of exercise you do normally   

o Your dietary intake (including how much fruit and vegetables you eat) o 

Any family history of premature cardiovascular disease  o Chest pains (if 

you have them)  

  

5.  What do I have to do?  
  

There should be no reason to change your current way of life if you participate in this study. 

As with normal clinical appointments, if you decide to take part in the study you should:  

• Tell the Rheumatology doctor about any illness that you currently have or have had in the 

past.  
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• Tell your Rheumatology doctor about any other medications you are taking, as well as 

those supplied by your doctor.  

• Keep the appointments for your study visits.  

• Tell your Rheumatology doctor about any changes in your health that occurs during the 

study   

  

6. What if I do not wish to take part?  

  

All studies are always completely voluntary. If you do not wish to take part this will not affect 

the treatment or care you receive.  

  

7. What are the possible disadvantages and risks of taking part?   

  

Your care will not be greatly affected by consenting to this study.  You will not require any 

further procedures to those that you would already undergo routinely as part of your care 

within the rheumatology department.   

  

8. What are the possible benefits of taking part?  

  

It cannot be guaranteed that you will gain personal benefit from this study: however, 

beneficial information may be acquired for patients who develop rheumatoid arthritis and 

may help us to treat these future patients better.   

  

9. What if new information becomes available?  

  

Sometimes during the course of a research project, new information becomes available.  If 

this happens, your Rheumatology doctor will tell you about it and discuss with you whether 

you want to continue in the study. If you decide to withdraw, your Rheumatology doctor will 

make arrangements for your care to continue.  If you decide to continue in the study, you will 

be asked to sign an updated consent form after reading a new information sheet.  

  

Also, on receiving new information, your Rheumatology doctor might consider it to be in your 

best interests to withdraw you from the study.  He/she will explain the reasons and arrange 

for your care to continue.  

  

10. What happens when the research study stops?  

  

Once the study is over, your research doctor will decide whether you need to be continued to 

be monitored in the Rheumatology Unit or whether you can be followed by your GP.  

  

11. Other information  
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All your written and computer records will be kept strictly confidential at all times.  Data 

Protection Act regulations have been complied with to ensure confidentiality.   

12. What will happen to the results of the research study?  

  

The results from the study will be compiled on a database.  These results will be analysed at 

various stages by Statisticians to look into markers of diagnosis, prognosis and treatment 

response.  These results may be presented at Rheumatology meetings and published in the 

medical literature.  All data will be fully anonymised.  

  

13. Who has reviewed the study?  

  

The Leeds (West) Research Ethics Committee has reviewed this study.   

  

14. Contact for further information  

  

In the event of study related questions or problems, please contact the following telephone 

number:  

  

Chapel Allerton Hospital  

David Pickles (Lead Research Nurse)  

During working hours   

• Research room phone: 0113 3924729 After hours  

• Ward C2  phone: 0113 3924202  

  

  

  

Finally, thank you for taking the time to read the information and considering 

whether to take part in this study.  
  

    

 

 

  

 

 

 

 

 

 

 

 

 

 



249 

 

 

 

 

 

 

 

  

CONSENT FORM -  
                       

Title of Project: Rheumatoid Arthritis DiseAse Research (RADAR)    

   

  

SUBJECT INITIALS  

  
Name of Researcher:……………..…………        
                           Please initial line  

  

1. I confirm that I have read and understand the information sheet dated 19.01.15 (version 8.0) for the 
above study, and have had the opportunity to ask questions. I understand that my participation is 
voluntary and that I am free to withdraw at any time without my medical care or legal rights being 
affected.  I agree to take part in the study.   

  

2. I understand that my medical records may be looked at by authorised individuals from the Sponsor 
for the study, the UK Regulatory Authority or the Independent Ethics Committee in order to check 
that the study is being carried out correctly. I give permission, provided that strict confidentiality is 
maintained, for these bodies to have access to my medical records for the above study and any further 
research that may be conducted in relation to it. I also give permission for a copy of my consent form 
to be sent to the Sponsor for the study.  

  

3. I understand that even if I withdraw from the clinical study, the data and samples collected from me 
will be used in analysing the results of the study, unless I specifically withdraw consent for the 
laboratory study. I understand that my identity will remain anonymous.   

4. I consent to the storage including electronic and personal information for the purposes of this study. 
I understand that any information that could identify me will be kept strictly confidential and that no 
personal information will be included in the study report or other publication.   

5. I agree for any previous samples collected on me during previous ethically approved studies to be 

used for the purposes of the current study.     

6. I agree for the results from this study to be submitted to the Rheumatology department BioBank and 
for this to be updated from my medical and electronic records in order to support additional research 
activities.  

7. I consent for my GP to be informed of my participation in this study                                                          

  

  
__________________________      _______________       __________________  
Name of Patient  Date  Signature  

         SUBJECT NO.         SUBJECT DOB        
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(Please print your name and date your own signature)  
  

  
___________________________    ________________    ___________________  
Name of Person taking consent  Date  Signature  
 (Investigator/delegated medically – qualified sub investigator)  

  
Original copy – site file; 1 copy for patient; 1 copy to be kept with hospital notes  

 
  

  

PATIENT INFORMATION SHEET & CONSENT FORM  

  

Investigator: Professor Paul Emery  

  

Study Title: Rheumatoid Arthritis DiseAse Research - Biological Sub-study: RADAR  

  

Protocol Number:  RR09/9134  

  

Study Sponsor: University of Leeds  

  

Subject No.:  ___________  Initials: _______  Date of Birth: _________________  

  

 
  

You are being invited to take part in an additional research sub-study. Before you decide, it 

is important for you to understand why the research is being done and what it will involve. 

Please take time to read the following information carefully and discuss it with friends, 

relatives and your doctor if you wish. Ask us if there is anything that is not clear or if you 

would like more information. Take time to decide whether or not you wish to take part.  

  

You can find independent information on participating in clinical trials on the following web 

site: http://www.clinicaltrialsportal.co.uk/medical-volunteers-patients.html. If you do not 

have access to the internet, or prefer a hard copy of the information, please ask the study 

doctor or nurse, who will be happy to provide you with one.  

   

  

1.  What is the purpose of the sub-study?  
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To understand whether a person will develop inflammatory arthritis and, if they do, how 
severe it will be and how they will respond to treatment are very important questions.  To 
try and answer these questions involves the analysis of blood and urine tests of people with 
possible, probable or definite inflammatory arthritis.  
  

Biological tests (blood and urine):  

  

Many autoimmune, inflammatory and degenerative diseases are associated with the 

presence of specific changes in an individual’s immune or tissue repair systems, which may 

be a reflection of their genetic makeup. This can lead to alterations in the different 

components of the immune and tissue repair systems or in the proteins that are present in 

the blood or urine and produced by the tissues. We feel these changes may be important 

for the development of either the disease itself, specific disease features or complications 

or that they may even help us predict response to different treatments. We would like to 

perform some further research to gain a better understanding of the biology of your cells, 

proteins and genes to work out how they may contribute to these various diseases.  

  

Often research studies involve working with other national researchers in this field. 
Therefore, we would also like to store some of the components of your blood, such as the 
proteins and a sample of your DNA and urine. These samples will only be used in future 
studies that continue with this agreed line of research. In order to give us a permanent 
source of specific genes and proteins we or third parties in the UK, in Europe, Switzerland 
and/or USA may also like to make some cell-lines from specific proteins or cells from your 
blood in the laboratory.  
  

2. Why have I been chosen?  

  

You have been invited to participate in this sub-study because you have been identified as 

having symptoms that can be associated with inflammatory arthritis.  We want to assess 

people like you over time to learn more about inflammatory arthritis.    

  

3. Do I have to take part?  

  

It is up to you to decide whether or not to take part in the study. If you decide to take part 

you will be given this information sheet to keep and be asked to sign a consent form. If you 

decide to take part you are still free to withdraw from the study at any time and without 

giving a reason. This will not affect the standard of care you receive.  

  

4. What will happen to me if I take part?  

  

If you decide to take part you will asked to sign an informed consent sheet, and you will be 

given a copy of the information sheet to keep.  In addition to the standard clinical care 

described in the main study information sheet, as part of the sub-study, we would like to 

ask you to donate a urine sample and an additional blood sample (up to a maximum of 5 

tablespoons) at each study visit which will be taken at the same time as your routine clinic 
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blood tests. Sometimes, if a joint is inflamed and fluid is present, joint fluid may also be 

collected as part of your study visits. The samples will be stored solely for future laboratory 

based research. We might also ask your permission to obtain these samples at extra times 

to coincide with changes in your disease.   

  

 If you have donated any samples for one of our previous studies, we would now like to use 

those samples in this study.  

  

  

5. What do I have to do?  
  

There should be no reason to change your current way of life if you participate in this 

study. If you decide to take part in the study you will be asked to:  

• Tell the Rheumatology doctor about any illness that you currently have or have had in 

the past.  

• Tell your Rheumatology doctor about any other medications you are taking, as well as 

those supplied by your doctor.  

• Keep the appointments for your study visits.  

• Tell your Rheumatology doctor about any changes in your health that occurs during the 

study   

  

6.  What will happen to my samples?  

  

We will remove your personal details from all research samples after separation into their 
constituent parts. However, it will be possible to link the clinical and laboratory databases 
through a unique laboratory code to enable use to study long-term disease outcomes and 
response to future therapies you may receive.   

  

Your samples will be used in various research projects. Some of your samples and associated 
data may be transferred abroad, under confidentiality agreements, to other public or private 
research groups of which the results may be patented, published or used for commercial 
purposes.   
  

In the context of the present study, we will examine the cells in the blood and to study certain 
proteins involved in the control and activation of your immune or tissue repair systems. Your 
DNA will be isolated from your blood and will be used to help us find out which genes are 
important in inflammatory arthritis and in predicting the long-term disease outcome or 
response to treatment. Other components of your blood will be isolated, frozen and stored 
for subsequent studies.   
  

In genetic studies we compare how often the gene(s) of interest are found in people with a 
disease to individuals that don’t have it (“controls”). We would therefore like to store some 
of your DNA and other biological materials to form part of our “disease DNA bank” that we 
can use in our current and future studies. This is purely for research purposes and you will 
not be told the results of the tests on your samples. The information may be shared with 
other research groups conducting similar investigations. This is because large numbers of 
individuals are required to undertake such studies and they now need to be undertaken at 
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the National or International level. Insurance companies, however, may ask you whether you 
have previously had genetic tests. Should this situation arise, we advise you to answer “no” 
in your insurance policy application form, as the tests carried out have no relevance to 
insurance.  
  

If consent has been given, any samples that are not used at the end of this study will be 
transferred to a Research Tissue Bank and will be used in future studies within this research 
area.   

  

  

7. What if I do not wish to take part?  

  

All studies are always completely voluntary.  You do not have to consent to having blood 

taken for this purpose.  If you do not wish to have some or all of these tests, it will not 

affect your standard of care or your ability to enter the main study.   

  

If you decide to take part, you are still free to withdraw at any time and without giving a 

reason. This will not affect the standard of care you receive.  

  

You should be aware that if in the future you experience the loss of capacity (i.e. ability to 

agree to continue to take part in the study), the research team would retain tissue and 

personal data collected and continue to use it confidentially. This could include further 

research after the current project has ended.  

  

  

8. What are the possible disadvantages and risks of taking part?   

  

There are no additional health risks associated with donating specimens for research 

purposes if they are taken as part of a normal diagnostic procedure. If we are taking a 

blood sample at a different time from your routine tests, the only risks would be minor 

bruising. If you are a patient and anything in the procedure for obtaining your specimens 

were to go wrong, the normal complaint mechanisms of the NHS are open to you.   

  

9. What are the possible benefits of taking part?  

  

There is good evidence that treating patients with inflammatory arthritis is much better if it 

is done as early as possible.  As we are seeing you regularly in clinic we will be able to 

commence treatment at an early stage if this is needed.   

  

It cannot be guaranteed that you will gain any other personal benefit from this study.  

However, beneficial information may be acquired for patients who develop inflammatory 

arthritis and may help us to treat these future patients more effectively.   

  

10. What if new information becomes available?  
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Sometimes during the course of a research project, new information becomes available.  If 

this happens, your Rheumatology doctor will tell you about it and discuss with you whether 

you want to continue in the study. If you decide to withdraw, your Rheumatology doctor 

will make arrangements for your care to continue.  If you decide to continue in the study, 

you will be asked to sign an updated consent form after reading a new information sheet.  

  

Also, on receiving new information, your Rheumatology doctor might consider it to be in 

your best interests to withdraw you from the study.  He/she will explain the reasons and 

arrange for your care to continue.  

  

11. What happens when the research study stops?  

  

Once the study is over, your research doctor will decide whether you should continue to be 

monitored in the Rheumatology Unit or whether you can be followed by your GP.  

  

12. Other information  
  

All your written and computer records will be kept strictly confidential at all times.  Data 

Protection Act regulations have been complied with to ensure confidentiality.   

  

13. What will happen to the results of the research study?  

  

The results from the study will be compiled on a database.  These results will be analysed 

at various stages by Statisticians to look into markers of diagnosis, prognosis and treatment 

response.  These anonymised results may be presented at Rheumatology meetings and 

published in the medical literature.  They may also form part of a higher research degree 

being undertaken by one of the study doctors. Your clinical data will be stored within a 

planned secure BioBank and may be used for additional research activities. As part of this 

research we are additionally seeking your consent to update the clinical data from your 

medical records or other electronic data records.  Researchers undertaking this additional 

research will not be able to identify you and all projects will be reviewed by a Research 

Ethics Committee.  

  

14. Who is organising and funding the research?  

This sub-study is being funded by Arthritis Research UK. The University of Leeds are 
organising and responsible for the conduct of the study. The study doctor and nurse will not 
receive any payment for conducting this research study.  
  

15. Are there any other third parties involved in the research?  

Researchers may collaborate with other researchers and third parties in the UK, the 
EU, Switzerland and the USA. They may work in universities, hospitals or the private 
sector. Your tissue or other samples will not, however, be sold for profit. Scientific 
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investigation will be undertaken using the samples provided by study participants. 
We may share anonymised samples and clinical data collected in this study with 
regional, national and international collaborators who are conducting studies with 
similar research themes.  This will allow a greater range of technologies to be 
applied and help to facilitate specific research objectives.  

  

16. Who has reviewed the study?  

  

This study has been reviewed by the independent ethics committee called the Leeds West 
Research Ethics Committee. This committee is appointed to determine that research studies 
are ethical and do not impair the rights or well-being of patients. We have received approval 
by this committee to be able to do this research study.  
  

17. What if there is a problem?  

If you have a concern about any aspect of this study, you should ask to speak with the 

researchers who will do their best to answer your question.  If you remain unhappy and 

wish to complain formally, you can do this through the NHS Complaints Procedure.  Details 

can be obtained from the hospital.  

  

18. Contact for further information  

  

If you need any further information please do not hesitate to contact your study doctor or 

nurse.  You should also contact your GP for independent advice should you so desire.  
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CONSENT FORM   

                     

Rheumatoid Arthritis DiseAse Research – Biological Sub-study (RADAR)   

  

SUBJECT INITIALS  

                          

     Please initial line  

1. I confirm that I have read and understand the information sheet dated 24.02.2017 (version 6.0) 
for the above study, and have had the opportunity to ask questions. I understand that my 
participation is voluntary and that I am free to withdraw at any time without my medical care or 
legal rights being affected.  I agree to take part in the study.   

  

2. I understand that my medical records may be looked at by authorised individuals from the 
Sponsor for the study, the UK Regulatory Authority or the Independent Ethics Committee in order 
to check that the study is being carried out correctly. I give permission, provided that strict 
confidentiality is maintained, for these bodies to have access to my medical records for the above 
study and any further research that may be conducted in relation to it. I also give permission for a 
copy of my consent form to be sent to the Sponsor for the study.   

  

3. I understand that even if I withdraw from the clinical study, the data and samples collected from 
me will be used in analysing the results of the study, unless I specifically withdraw consent for the 
laboratory study. I understand that my identity will remain anonymous.   

4. I consent to the storage including electronic and personal information for the purposes of this 
study. I understand that any information that could identify me will be kept strictly confidential 
and that no personal information will be included in the study report or other publication. 

  

5. I consent to the transfer abroad, under confidentiality agreements, of my samples and associated 

data to other public or private research groups of which the results  may be patented, 

published or used for commercial purposes  

6. I agree to the samples being stored for future ethically approved research and for any remaining 

samples to be deposited in a Research Tissue Bank.   

7. I agree to have genetic tests done on samples for research purposes.   

8. I agree for any previous samples collected on me during previous ethically approved studies to be 

used for the purposes of the current study.     

9. I agree for the results from this study to be submitted to the Rheumatology department BioBank 
and for this to be updated from my medical and electronic records in order to support additional 
research activities.  

 

10. I consent for my GP to be informed of my participation in this study                                                          

         SUBJECT NO.         SUBJECT DOB        
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__________________________      _______________       __________________  
Name of Patient  Date  Signature  
(Please print your name and date your own signature)  
  

  
___________________________    ________________    ___________________  
Name of Person taking consent  Date  Signature  
 (Investigator/delegated medically – qualified sub investigator)  

Original copy – site file; 1 copy for patient; 1 copy to be kept with hospital 

notes  
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Chapel Allerton Hospital Laboratory- RESEARCH BLOOD REQUEST FORM  
Please contact laboratory staff on CAH ext 24730 to arrange collection, Thank you.  

*   

  

RADAR-BMC STUDY v 4.0  

 

ADDRESSOGRAPH LABEL (preferred) 

*Name  

  

*DOB  

  
Hospital no  
  
NHS no 

 

 

SAMPLE DETAILS  
(below to be filled in by Doctor)  

* Study number:  _ _ _ _ _   

* Date of sample collection:  _ _/ _ _ / _ _ (DD/MM/YY)  

** Time of blood collection:  _ _ / _ _     (HH/MM)  

  

Blood sample (select from below)     

Synovial fluid          

State joint aspirated   _ _ _ _ __ _ _ _ _  

Pre-biologic Synovial Biopsy?         

Post-Biologic Synovial Biopsy?       
 

 

Diagnosis please circle*  

RA         PsA   AS      Oligo  
OA      

Other (state):  _ _ _ _ _ _ _ _ _ _  

DMARD: please circle*  

MTX  SASP HCQ  Other (please state) 

bDMARD: please circle*  

TNFi: ADA  CZP  ETN  GLM  IFX  

ABT  

TCZ  

Tofacitinib   

Other:    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
RTX  

 

 

Visit  *  Please tick 

Baseline (Pre‐treatment)   

Week 12 (3 months)   

Week 24 (6 months)   

Week 48 (12 months)   

Flare  

If other, please specify   
   

* To be completed by the Doctor or Nurse.   ** To be filled in by the person taking the blood 

Research bloods  

INDICATE WHICH BLOODS ARE TO BE TAKEN  
IF ALL, THE TUBES SHOULD BE TAKEN IN THE FOLLOWING ORDER: RED, BLUE, PURPLE, GREEN, CLEAR  
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  Clotted 

Red Top  
Sodium  
Citrate  

Blue top  

EDTA  
Purple Top  

Lithium   
Heparin  

Green Top  

PAXgene  
Clear top  

URINE  
White top  

No. tubes/mls               

Max. total vol.    10mls  

  

  

I confirm that the patient has been appropriately consented to the biological sub-study for sample 

collection and storage.  
  

*Consent confirmed by  …………………………………………    ………………………  
                            (print name)                            (signature)  

  
*Samples collected by………………………………………...      (print name)  

RADAR_BMC_Research_Blood _Request_Form_ v4.0, 9_May_2017  

  
Chapel Allerton Hospital Laboratory- RESEARCH BLOOD REQUEST FORM  
Please contact laboratory staff on CAH ext 24730 to arrange collection, Thank you.  

RA cohort: EAC & BMC  

  

 Researcher   Contact 

details  

New onset  

RA  

  Pre/post 

biologic  

  

 

Additional instruction  

*Please identify patients who may be agreeable to have ultrasound-guided synovial biopsy.  

Iniitally, to prioritise patients commencing tocilizumab and tofacitinib  
  

** Please identify patients who may be agreeable to have ultrasound-guided synovial 

biopsy – irrespective of treatment being commenced; early and/or later RA.  

For patient attending joint aspiration, please also request bloods as indicated above  

Note: Synovial fluid can be collected in a sterilin tube (white top universal container).  
  

  

  

  

RADAR_BMC_Research_Blood _Request_Form_ v4.0, 9_May_201 
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Appendix B 

Automated clean-up gating for single cell 

population script 
##Script for automated clean up gating of cyTOF FCS using gaussian parametes in addition to DNA, CD45 and 
CD3 vs CD19 doublet removal 

##Script adapted from Camilla Pang August 2019 

##Edited by Emma Sutton 

 

#load libraries 

 

library(DT) 

library(readxl) 

library(rmarkdown) 

library(ggplot2) 

library(mixtools) 

library(flowCore) 

library(kza) 

library(dplyr)  

library(ggcyto) 

library(tidyverse) 

library(corrplot) 

library(tidyr)    

library( flowStats ) 

library( FlowSOM ) 

library(icesTAF) 

 

#set working directory to find FCS files 

 

setwd("Tejal/Batch_2_debarcoded/Test2") 

 

 

fnames <- list.files( pattern = 'fcs'  , full.names = TRUE , recursive = TRUE  )  
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fnames <- fnames[ !grepl( fnames , pattern = 'gated' , ignore.case = TRUE ) ] 

 

lapply( fnames , function( ifile ) {  

 

 

#make output directry with file name 

   

mkdir(paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  ))) 

 

#set output directory name   

output <- (paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  ))) 

 

 

#read FCS file into flowFrame 

 

file_name <- ifile 

fcs_raw <-read.FCS(ifile, transformation=FALSE, truncate_max_range = FALSE) 

 

 

#Map channels and epitopes 

 

fcs_channel_descr <- fcs_raw@parameters@data$desc %>% as.data.frame() 

fcs_channel_names <- fcs_raw@parameters@data$name %>% as.data.frame() 

fcs_channel <- data.frame(fcs_channel_descr, fcs_channel_names) 

 

# rename rows in data.frame using colnames. 

 

colnames(fcs_channel) <- c('Epitope','Channel') 

head(fcs_channel) 

 

#Transform data using ArcSinH cofactor of 5 (for cyTOF data) 

 

fcs_ch_name <- fcs_raw@parameters@data$name 

tf <- transformList(from = fcs_ch_name, tfun =asinh) 
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fcs_trans <- tf %on% fcs_raw 

 

## Automated cleanup 

 

#Gate 1: Remove beads and clean up width 

 

p <- ggcyto(fcs_trans, aes(x = 'Width', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste(output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_width_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

 

norm <- norm2Filter('Width', 'Ce140Di', scale = 4)  

 

fcs_norm1 <- Subset(fcs_trans, norm) 

p <- ggcyto(fcs_norm1, aes(x = 'Width', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste(output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_width.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

##Gate 2: Clean up on offset 

 

p <- ggcyto(fcs_norm1, aes(x = 'Offset', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 100) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_offset_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

norm2 <- norm2Filter('Offset', 'Ce140Di', scale = 2.8) # 1.35 works high intensity, but emma said 2. 
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fcs_norm2 <- Subset(fcs_norm1, norm2) 

 

p <- ggcyto(fcs_norm2, aes(x = 'Offset', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_offset.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

##Gate 3: Clean up on center 

 

p <- ggcyto(fcs_norm2, aes(x ='Center', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 100) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_center_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

norm3 <- norm2Filter('Ce140Di', 'Center', scale = 5) # CAN BE MORE GENEROUS 

fcs_norm3 <- Subset(fcs_norm2, norm3) 

 

p <- ggcyto(fcs_norm3, aes(x = 'Center', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_center.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

##Gate 4: Clean up on residual 

 

p <- ggcyto(fcs_norm3, aes(x ='Residual', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 100) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_residual_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 
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norm4 <- norm2Filter('Ce140Di', 'Residual', scale = 3)  

fcs_norm4 <- Subset(fcs_norm3, norm4) 

 

p <- ggcyto(fcs_norm4, aes(x = 'Residual', y =  'Ce140Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste( output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_residual.tiff" , sep = '' ), width = 
4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

 

##Gate 5: DNA1 vs CD45 

 

 

range2 <- rangeGate(fcs_norm4,'Y89Di', alpha="min", sd=4, plot= TRUE, borderQuant=0.1,absolute=TRUE, 
filterId="defaultRectangleGate", positive= TRUE,refLine= NULL) 

p <- ggcyto(fcs_norm4, aes(x = 'Ir191Di', y =  'Y89Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste( output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_DNA_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p + geom_gate(range2)) 

dev.off() 

  

fcs_range2 <- Subset(fcs_norm4, range2) #LATEST FILTRED DATA 

  

p <- ggcyto(fcs_range2, aes(x = 'Ir191Di', y =  'Y89Di')) 

p <- p + geom_hex(bins = 30) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_DNA.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

 

extradensity <- norm2Filter('Ir191Di', 'Y89Di', scale = 5)  
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fcs_range2 <- Subset(fcs_range2, extradensity) 

 

p <- ggcyto(fcs_range2, aes(x = 'Ir191Di', y =  'Y89Di')) 

p <- p + geom_hex(bins= 30) 

tiff(file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_CD45.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

##Gate 6: Live cell gate (if needed, define if rhodamine or cisplatin) 

 

#p <- ggcyto(fcs_range2, aes(x = 'Y89Di', y =  'Rh103Di')) 

#p <- p + geom_hex(bins = 30) 

#p 

 

#rhod_range <- norm2Filter('Rh103Di', 'Y89Di', scale = 8) # 1.35 works high intensity, but emma said 2. 

 

#subset FCS 

#fcs_range3 <- Subset(fcs_range2, rhod_range) 

 

#p <- ggcyto(fcs_range3, aes(x = 'Y89Di', y = 'Rh103Di')) 

#p <- p + geom_hex(bins= 30) 

#p 

 

#Gate 7: Gate for singlets (NB object name change as skipped Rh gate (fcs_range2 instead of fcs_range3) 

 

p <- ggcyto(fcs_range2, aes(x = 'Nd142Di', y =  'Er170Di')) 

p <- p + geom_hex(bins = 30) 

tiff(file = paste(output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_singlets_pregate.tiff" , sep = '' ), 
width = 4, height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

quad <- quadrantGate(fcs_range2, c("Nd142Di", "Er170Di"),alpha=c(0.5, 0.25), plot=TRUE) 
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# get quadrant value splits for each channel 

bounds <- quad@boundary %>% as.data.frame() 

CD19_threshold <-bounds$.[1] 

CD3_threshold <-bounds$.[2] 

 

bound_table <-data.frame(CD19_threshold, CD3_threshold) 

quadbounds <-bound_table %>% t() %>% as.data.frame() 

colnames(quadbounds) <- c("Threshold") 

quadbounds 

 

quad_fcs <-split(fcs_range2, quad, population=list(keep=c("142Nd_CD19-
170Er_CD3+","142Nd_CD19+170Er_CD3-", "142Nd_CD19-170Er_CD3-"))) 

 

p <- ggcyto(quad_fcs$keep, aes(x = 'Nd142Di', y =  'Er170Di')) 

p <- p + geom_hex(bins = 30) 

tiff(file = paste( output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_singlets.tiff" , sep = '' ), width = 
4, height = 4, units = "in", res = 300) 

plot(p + geom_gate(quad)) 

dev.off() 

 

full_gated_fcs <- quad_fcs$keep 

 

p <- ggcyto(quad_fcs$keep, aes(x = 'Nd142Di', y =  'Er170Di')) 

p <- p + geom_hex(bins = 30) 

tiff(file = paste( output,gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_final.tiff" , sep = '' ), width = 4, 
height = 4, units = "in", res = 300) 

plot(p) 

dev.off() 

 

# make a cell count table or each cleaning and gating step 

 

raw_cells <- nrow(fcs_raw) 

transformed_cells <-nrow(fcs_trans) 

width_clean <- nrow(fcs_norm1) 
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offset_clean <- nrow(fcs_norm2) 

center_clean <- nrow(fcs_norm3) 

residual_clean <- nrow(fcs_norm4) 

cd45_cells <-nrow(fcs_range2) 

singlets <- nrow(full_gated_fcs) 

 

gating_table <-data.frame(raw_cells, transformed_cells, width_clean, offset_clean, center_clean, 
residual_clean,cd45_cells, singlets) 

 

cell_counts <-gating_table %>% t() %>% as.data.frame() 

colnames(cell_counts) <- c("Cell Counts") 

cell_counts 

write.table(cell_counts, file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_counts.csv" 
, sep = '' )) 

 

## Write out fully gated FCS file 

 

write.FCS(full_gated_fcs,  file = paste(output, gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_gated.fcs" 
, sep = '' ) ,what = "numeric") 

 

 

}) 
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Automated compensation script 
#load libraries 

library(flowCore) 

library(CATALYST) 

 

 

fnames <- list.files( 'FCS_files' , pattern = 'fcs'  , full.names = TRUE , recursive = TRUE  )  

fnames <- fnames[ !grepl( fnames , pattern = 'bead' , ignore.case = TRUE ) ] 

fnames <- fnames[ !grepl( fnames , pattern = 'comp' , ignore.case = TRUE ) ] 

 

#read data (change file path to correspond to single stain bead data) 

data <- read.FCS('OneComp_141_176_EQ_01_1.fcs', transformation = FALSE, truncate_max_range = FALSE) 

 

#assign single stain bead channels  

channels <- 
c(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,165,166,
167,168,169,170,171,172,173,174,175,176) 

 

#determine single stain populations  

comp <- assignPrelim(x=data, y=channels) 

comp <- estCutoffs(x=comp) 

comp <- applyCutoffs (x=comp) 

 

#generate spill over matrix and plot 

SpillMat <- computeSpillmat(x=comp) 

na <- replace(SpillMat, is.na(SpillMat),0) 

plotSpillmat(bc_ms=channels, SM=na, plotly=FALSE) 

 

 

lapply( fnames , function( ifile ) {  

 

#read in cell data for compensation (change file path to choose data to be compensated) 

cells <- read.FCS(ifile ,transformation = FALSE, truncate_max_range = FALSE) 
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#apply compenstation based on spill matrix from single stain beads nnls 

cells_nnls <- compCytof(x=cells, y=na, method = "nnls") 

 

#apply compenstation based on spill matrix from single stain beads flow 

#cells_flow <- compCytof(x=cells, y=SpillMat, method = "flow") 

 

#write out compensated fcs file (change outpute path and file name as desired) 

write.FCS(cells_nnls,  file = paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_comp_nnls.fcs" , sep 
= '' ) ,what = "numeric") 

 

#write out compensated fcs file (change outpute path and file name as desired) 

#write.FCS(cells_flow,  file = paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_comp_flow.fcs" , 
sep = '' ) ,what = "numeric") 

 

}) 

#load libraries 

library(flowCore) 

library(CATALYST) 

 

 

fnames <- list.files( 'FCS_files' , pattern = 'fcs'  , full.names = TRUE , recursive = TRUE  )  

fnames <- fnames[ !grepl( fnames , pattern = 'bead' , ignore.case = TRUE ) ] 

fnames <- fnames[ !grepl( fnames , pattern = 'comp' , ignore.case = TRUE ) ] 

 

#read data (change file path to correspond to single stain bead data) 

data <- read.FCS('OneComp_141_176_EQ_01_1.fcs', transformation = FALSE, truncate_max_range = FALSE) 

 

#assign single stain bead channels  

channels <- 
c(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,165,166,
167,168,169,170,171,172,173,174,175,176) 

 

#determine single stain populations  

comp <- assignPrelim(x=data, y=channels) 

comp <- estCutoffs(x=comp) 

comp <- applyCutoffs (x=comp) 
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#generate spill over matrix and plot 

SpillMat <- computeSpillmat(x=comp) 

na <- replace(SpillMat, is.na(SpillMat),0) 

plotSpillmat(bc_ms=channels, SM=na, plotly=FALSE) 

 

 

lapply( fnames , function( ifile ) {  

 

#read in cell data for compensation (change file path to choose data to be compensated) 

cells <- read.FCS(ifile ,transformation = FALSE, truncate_max_range = FALSE) 

 

#apply compenstation based on spill matrix from single stain beads nnls 

cells_nnls <- compCytof(x=cells, y=na, method = "nnls") 

 

#apply compenstation based on spill matrix from single stain beads flow 

#cells_flow <- compCytof(x=cells, y=SpillMat, method = "flow") 

 

#write out compensated fcs file (change outpute path and file name as desired) 

write.FCS(cells_nnls,  file = paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_comp_nnls.fcs" , sep 
= '' ) ,what = "numeric") 

 

#write out compensated fcs file (change outpute path and file name as desired) 

#write.FCS(cells_flow,  file = paste( gsub( x = ifile , pattern = '\\.fcs' , replacement = ''  )  , "_comp_flow.fcs" , 
sep = '' ) ,what = "numeric") }) 
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Automated normalisation script 
## Load libraries NB requires updated version of FlowSOM in order to have GetClusters function. Install 
FlowSOM from github, remotes::install_github("saeyslab/FlowSOM) 

 

library(CytoNorm) 

library(FlowSOM) 

 

dir <- ("Tejal/CytoNorm") 

 

##data to be normalised has been downsampled so column names changed, need to change column names of 
batch controls to match - downsample batch controls to 25000 cells per file 

 

fnames <- train_data$Path 

fnames 

fnames <- fnames[ !grepl( fnames , pattern = 'downsample' , ignore.case = TRUE ) ] 

library(flowCore) 

 

#downsample each FCS file to desired cell number per file and write out new FCS 

 

 

for(i in fnames) { 

   

  #read in FCS file 

  fcs <- read.FCS(filename=i, transformation=FALSE)  

   

  #creat matrix  

  exprs <- fcs@exprs 

   

  #define marker names and remove metals 

  marker_names <- gsub(pattern = ".*_", replacement = "", x = as.vector(fcs@parameters@data$desc)) 

   

  #match colmames in matrix with marker names from original FCS 

  colnames(exprs)[which(!is.na(marker_names))] <- marker_names[which(!is.na(marker_names))] 
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  #downsample matrix to get desired number of cells 

  matrix_down <- exprs[sample(nrow(exprs), 25000),] 

   

  #create new flowFrame from downsampled matrix 

  new_fcs <- new("flowFrame", exprs=as.matrix(matrix_down)) 

   

  #write out downsampled FCS files to folder 

  write.FCS(new_fcs, file = paste(gsub( x = i , pattern = '\\.fcs' , replacement = ''  )  , "_downsample.fcs" , sep = '' 
) ,what = "numeric") 

} 

 

##Load in example data for CytoNorm package 

 

files <- list.files(dir, pattern = "fcs$") 

 

## create data frame of data 

data <- data.frame(File = files, 

                   Path = file.path(dir, files), 

                   Type = stringr::str_match(files, "([12]).fcs")[, 2], 

                   Batch = stringr::str_match(files, "batch[0-9]*")[, 1], 

                   stringsAsFactors = FALSE) 

 

#assign data as traning or validation  

data$Type <- c("2" = "Train", "1" = "Validation")[data$Type] 

 

train_data <- dplyr::filter(data, Type == "Train") 

validation_data <- dplyr::filter(data, Type == "Validation") 

 

## read in fcs files and transform channels  

ff <- flowCore::read.FCS(data$Path[1]) 

 

## set channels to use for flowSOM - used major lineage markers for flowSOM 

 



273 

 

channels <- 
flowCore::colnames(ff)[c(3,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39
,40,41,42,43,44,45,46,47,54)] 

 

## batch control not been transformed but healthy controls from run have - how to sort this? 

 

transformList <- 0 

transformList.reverse <- 0 

#tdff <- flowCore::read.FCS(train_data$Path[1]) 

#tdff$desc <- gsub("-","_", tdff$desc) 

 

##Build FlowSOM map on training data 

fsom <- prepareFlowSOM(train_data$Path, 

                       channels, 

                       nCells = 25000, 

                       FlowSOM.params = list(xdim = 10, 

                                             ydim =10, 

                                             nClus = 8, 

                                             scale = FALSE), 

                       transformList = NULL, 

                       seed = 1) 

 

## check cv values for different cluster number to evaluate appropriatness of clustering (only used if clusters 
are not effected by batch effects) 

## currently get error 'GetClusters' is not an exported object from namespace:FlowSOM 

 

cvs <- testCV(fsom, 

              cluster_values = c(4:8))  

 

##Training the model 

 

model <- CytoNorm.train(files = train_data$Path, 

                        labels = train_data$Batch, 

                        channels = channels, 

                        transformList = NULL, 
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                        FlowSOM.params = list(nCells = 25000,  

                                              xdim = 10, 

                                              ydim = 10, 

                                              nClus = 8, 

                                              scale = FALSE), 

                        normMethod.train = QuantileNorm.train, 

                        normParams = list(nQ = 101, 

                                          goal = "mean"), 

                        seed = 1, 

                        verbose = TRUE) 

 

 

##Normalising the data 

 

channels_validation <- 
flowCore::colnames(ff)[c(3,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39
,40,41,42,43,44,45,46,47,54)] 

 

transform_list_validation <- flowCore::transformList(channels_validation, 

                                                     cytofTransform) 

transformList.reverse <- flowCore::transformList(channels_validation, 

                                                 cytofTransform.reverse) 

 

CytoNorm.normalize(model = model, 

                   files = validation_data$Path, 

                   labels = validation_data$Batch, 

                   transformList = NULL, 

                   transformList.reverse = NULL, 

                   normMethod.normalize = QuantileNorm.normalize, 

                   outputDir = "Normalized_10012020", 

                   prefix = "Norm_", 

                   clean = TRUE, 

                   verbose = TRUE) 
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Diffcyt script 
#load libraries 

 

library(CATALYST) 

library(flowCore) 

library(diffcyt) 

library(readxl) 

library(caret) 

 

 

#set working directory 

setwd(" ") 

#setwd("") 

#getwd() 

 

 

fnames <- list.files( pattern = 'fcs'  , full.names = TRUE , recursive = TRUE  )  

fnames <- fnames[ !grepl( fnames , pattern = 'downsample' , ignore.case = TRUE ) ] 

 

#make output directry to save downsampled FCS used for analysis 

 

#mkdir("downsampled_files") 

 

#set output directory name   

#output <- ("downsampled_files") 

 

#downsample each FCS file to desired cell number per file and write out new FCS 

 

 

for(i in fnames) { 

   

  #read in FCS file 

  fcs <- read.FCS(filename=i, transformation=FALSE)  
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  #creat matrix  

  exprs <- fcs@exprs 

   

  #define marker names and remove metals 

  marker_names <- gsub(pattern = ".*_", replacement = "", x = as.vector(fcs@parameters@data$desc)) 

   

  #match colmames in matrix with marker names from original FCS 

  colnames(exprs)[which(!is.na(marker_names))] <- marker_names[which(!is.na(marker_names))] 

   

  #downsample matrix to get desired number of cells 

  matrix_down <- exprs[sample(nrow(exprs), 27000),] 

   

  #create new flowFrame from downsampled matrix 

  new_fcs <- new("flowFrame", exprs=as.matrix(matrix_down)) 

   

  #write out downsampled FCS files to folder 

  write.FCS(new_fcs, file = paste(gsub( x = i , pattern = '\\.fcs' , replacement = ''  )  , "_downsample.fcs" , sep = '' 
) ,what = "numeric") 

} 

 

 

#Import experiment metadata from excel file and format 

##update names in metadata file to reflect downsampled file names from above if needed and change to 
directory containing downsampled fies 

setwd(output) 

metadata_filename <- "metadata.xlsx" 

md <- read_excel 

md <- read_excel(metadata_filename) 

md 

md$condition <- factor(md$condition, levels = c("PB","SF")) 

color_conditions <- c("#6A3D9A", "#FF7F00") 

names(color_conditions) <- levels(md$condition) 

 

# Import fcs files into flowset 
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fcs_filename <- md$file_name # issue with ordering of FCS files if read in as list? Read in using names directly 
from metadata file 

#fcs_filename <- list.files(pattern = "\\.fcs") 

fcs_raw <- read.flowSet(fcs_filename, transformation = FALSE, truncate_max_range = FALSE) 

fcs_raw 

 

 

#Import information on experiment panel and format 

 

panel_filename <- "antibody.xlsx" 

panel <- read_excel(panel_filename) 

head(data.frame(panel)) 

panel$Antigen <- gsub("-","_", panel$Antigen) 

 

panel_fcs <- pData(parameters(fcs_raw[[1]])) 

head(panel_fcs) 

 

#rename markers in desc to conform with antigen names in panel DO NOT NEED FOR DOWNSAMPLED FILES 
AS METALS ALREADY REMOVED 

#panel_fcs$name <- sapply(strsplit(as.character(panel_fcs$name),"_"), .subset, 2) 

 

#clean up names in panel_fcs description 

##panel_fcs$desc replced with panel_fcs$name for downsampled files as do not contain info in $desc slot - 
revert back if not using 

panel_fcs$name <- gsub("-","_", panel_fcs$name) 

 

#define lineage markers 

 

lineage_markers <- panel$Antigen[panel$Lineage==1] 

lineage_markers 

 

#define functional markers 

 

functional_markers <- panel$Antigen[panel$Functional==1] 
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functional_markers 

 

#check markers in panel match description parameters in fcs files 

 

all(lineage_markers %in% panel_fcs$name) 

all(functional_markers %in% panel_fcs$name) 

 

#Would usually include arcsinh transforamtion here however already applied as data gated using auto-gating 
script  

 

fcs <- fsApply(fcs_raw, function(x,cofactor=5){ 

  colnames(x) <- panel_fcs$name 

  expr <- exprs(x) 

  expr <- (expr[,c(lineage_markers,functional_markers)]) 

  exprs(x) <- expr 

  x 

}) 

 

expr <- fsApply(fcs,exprs) 

dim(expr) 

 

sample_ids <- rep(md$sample_id, fsApply(fcs_raw, nrow)) 

 

#Normalisation, mean = 0 SD +/- 1 

 

library(matrixStats) 

#rng <- colQuantiles(expr, probs = c(0.01,0.99)) 

#expr01 <- t((t(expr - rng[,1]) / rng[,2] - rng[,1])) 

#expr01[expr01 <0] <- 0 

#expr01[expr01 >1] <- 1 

 

expr01 <- expr 

 

#plot figure of cell numbers in each fcs file 
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library(ggplot2) 

library(reshape2) 

 

#create table of cell  numbers  

 

cell_table <- table(sample_ids) 

cell_table 

 

#cell_table <- table(downsample) 

 

#plot cell counts 

 

ggdf <- data.frame(sample_id = names(cell_table), 

                   cell_counts = as.numeric(cell_table)) 

mm <- match(ggdf$sample_id, md$sample_id) 

ggdf$condition <- md$condition[mm] 

cell_count <- ggplot(ggdf, aes(x= sample_id, y=cell_counts, fill= condition)) +  

  geom_bar(stat = "identity") +  

  geom_text(aes(label = cell_counts), hjust = 0.5, vjust = 0.5, size = 2.5) +  

  theme_bw() +  

  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +  

  scale_fill_manual(values= color_conditions, drop=FALSE) +  

  scale_x_discrete(drop=FALSE) 

tiff("Cell_count.tiff", width = 8, height = 8, units = "in", res = 300) 

plot(cell_count) 

dev.off() 

 

#plot marker expression 

 

ggdf <- data.frame(sample_id = sample_ids, expr) 

ggdf <- melt(ggdf, id.var = "sample_id", 

             value.name = "expression", variable.name = "antigen") 

mm <- match(ggdf$sample_id, md$sample_id) 
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ggdf$condition <- md$condition[mm] 

 

marker_expression <- ggplot(ggdf, aes(x = expression, color = condition, 

                                      group = sample_id)) +  

  geom_density() +  

  facet_wrap (~antigen, nrow = 4, scales = "free") + 

  theme_bw() 

theme(axis.text.x. = element_text(angle = 90, hjust = 1), 

      strip.text = element_text(size=7), axis.text = element_text(size = 5)) + 

  scale_color_manual(values = color_conditions) 

tiff("Marker_expression.tiff", width = 14, height = 7, units = "in", res = 300) 

plot(marker_expression) 

dev.off() 

 

#plot MDS 

 

library(dplyr) 

 

expr_median_sample_tbl <- data.frame(sample_id = sample_ids, expr) %>%  

  group_by(sample_id) %>% summarise_all(funs(median)) 

 

expr_median_sample <- t(expr_median_sample_tbl[,-1]) 

colnames(expr_median_sample) <- expr_median_sample_tbl$sample_id 

 

library(limma) 

mds <- plotMDS(expr_median_sample, plot = FALSE) 

 

library(ggrepel) 

ggdf <- data.frame(MDS1 = mds$x, MDS2 = mds$y, 

                   sample_id = colnames(expr_median_sample)) 

mm <- match(ggdf$sample_id, md$sample_id) 

ggdf$condition <- md$condition[mm] 

mds <- ggplot(ggdf, aes(x = MDS1, y = MDS2, color = condition)) +  

  geom_point(size = 2, alpha = 0.8) +  
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  geom_label_repel(aes(label = sample_id)) +  

  theme_bw() +  

  scale_color_manual(values = color_conditions) +  

  coord_fixed() 

tiff("MDS.tiff", width = 8, height = 8, units = "in", res = 300) 

plot(mds) 

dev.off() 

 

 

#plot heatmap of median marker expression for each sample 

 

library(RColorBrewer) 

library(pheatmap) 

mm <- match(colnames(expr_median_sample), md$sample_id) 

annotation_col <- data.frame(condition = md$condition[mm], 

                             row.names = colnames(expr_median_sample)) 

annotation_colors <- list(condition = color_conditions) 

color <- colorRampPalette(brewer.pal(n=9, name = "YlGnBu"))(100) 

heatmap_samples <- pheatmap(expr_median_sample, color = color, display_numbers = TRUE, 

                            number_color = "black", fontsize_number = 5, annotation_col = annotation_col, 

                            annotation_colors = annotation_colors, clustering_method = "average") 

save_pheatmap_png <- function(x, filename, width=1024, height=1024, res = 300) { 

  stopifnot(!missing(x)) 

  stopifnot(!missing(filename)) 

  png(filename, width=width, height=height) 

  grid::grid.newpage() 

  grid::grid.draw(x$gtable) 

  dev.off() 

} 

save_pheatmap_png(heatmap_samples, "Heatmap_samples_res.png") 

 

#plot NRS of marker expression 

 

NRS <- function(x, ncomp = 3) {  
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  pr <- prcomp(x, center = TRUE, scale. = FALSE) 

  score <- rowSums(outer(rep(1, ncol(x)), 

                         pr$sdev[1:ncomp]^2) * abs(pr$rotation[,1:ncomp])) 

  return(score) 

} 

 

nrs_sample <- fsApply(fcs[, lineage_markers], NRS, use.exprs = TRUE) 

rownames(nrs_sample) <- md$sample_id 

nrs <- colMeans(nrs_sample, na.rm = TRUE) 

 

lineage_markers_ord <- names(sort(nrs, decreasing = TRUE)) 

nrs_sample <- data.frame(nrs_sample) 

nrs_sample$sample_id <- rownames(nrs_sample) 

 

ggdf <- melt(nrs_sample, id.var = "sample_id", 

             value.name = "nrs", variable.name = "antigen") 

ggdf$antigen <- factor(ggdf$antigen, levels = lineage_markers_ord) 

mm <- match(ggdf$sample_id, md$sample_id) 

 

ggdf$condition <- md$condition[mm] 

nrs_plot <- ggplot(ggdf, aes(x = antigen, y = nrs)) +  

  geom_point(aes(color = condition), alpha = 0.9,  

             position = position_jitter(width = 0.3, height = 0)) +  

  stat_summary(fun.y = "mean", geom = "point", shape = 21, fill = "white") +  

  theme_bw() +  

  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +  

  scale_color_manual(values = color_conditions) 

tiff("NRS_plot.tiff", width = 4, height = 4, unit = "in",res = 300) 

plot(nrs_plot) 

dev.off() 

 

 

#flowSOM clustering - increased SOM grid to 20 x 20 
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library(FlowSOM) 

fsom <- ReadInput(fcs, transform = FALSE, scale = FALSE) 

set.seed(123) 

som <- BuildSOM(fsom, colsToUse = lineage_markers, xdim = 20, ydim = 20) 

cell_clustering_som <- som$map$mapping[,1] 

 

#Build MST from SOM grid 

 

tsom_functional <- BuildMST(som, tSNE = TRUE) 

 

#Plot MST with starplots 

 

tiff("MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotStars(tsom_functional) 

dev.off() 

 

 

 

#Colour MST based on marker expression 

 

print(colnames(tsom_functional$map$medianValues)) 

 

tiff("CD19_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD19", main = "CD19") 

dev.off() 

 

tiff("CD3_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD3", main = "CD3") 

dev.off() 

 

tiff("CD4_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD4", main = "CD4") 

dev.off() 
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tiff("CD14_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD14", main = "CD14") 

dev.off() 

 

tiff("CD8a_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD8a", main = "CD8a") 

dev.off() 

 

tiff("CD11b_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD11b", main = "CD11b") 

dev.off() 

 

tiff("CD11c_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD11c", main = "CD11c") 

dev.off() 

 

tiff("CD16_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD16", main = "CD16") 

dev.off() 

 

tiff("CD161_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD161", main = "CD161") 

dev.off() 

 

tiff("CD127_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD127", main = "CD127") 

dev.off() 

 

tiff("CD45RO_MST.tiff", width = 8, height = 8, unit = "in",res = 300) 

PlotMarker(tsom_functional, "CD45RO", main = "CD45RO") 

dev.off() 

 

#Metaclustering 
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library(ConsensusClusterPlus) 

codes <- som$map$codes 

plot_outdir <- "consensus_plots" 

nmc <- 40 

mc <- ConsensusClusterPlus(t(codes), maxK = nmc, reps = 100, 

                           pItem = 0.9, pFeature = 1, title = plot_outdir, plot = "png", 

                           clusterAlg = "hc", innerLinkage = "average", finalLinkage = "average", 

                           distance = "euclidean", seed = 1234) 

 

 

code_clustering <- mc[[nmc]]$consensusClass 

cell_clustering <- code_clustering[cell_clustering_som] 

 

#Plotting - plotting heatmap of median marker expression for metaclusters  

 

color_clusters <- 
c("#E6E6FA","#483D8B","#D8BFD8","#00FFFF","#00FF7F","#800000","#008000","#000080","#000000", 
"#DC050C","#FB8072","#1965B0","#7BAFDE", "#882E72", "#B17BA6", "#FF7F00", "#FDB462", 
"#E7298A","#E78AC3","#33A02C","#B2DF8A","#55A1B1","#8DD3C7","#A6761D", "#E6AB02", "#7570B3", 
"#BEAED4", "#666666", "#999999","#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000", "#aeae5c", 
"#1e90ff", "#00bfff", "#56ff0d", "#ffff00", "#FF7F50") 

 

plot_clustering_heatmap_wrapper <- function(expr, expr01, cell_clustering, color_clusters, cluster_merging = 
NULL){ 

   

  #calculate median expression 

  expr_median <- data.frame(expr, cell_clustering = cell_clustering) %>% 

    group_by(cell_clustering) %>% summarise_all(funs(median)) 

  expr01_median <- data.frame(expr01, cell_clustering = cell_clustering) %>% 

    group_by(cell_clustering) %>% summarise_all(funs(median)) 

   

  #calculate cluster frequencies      

  clustering_table <- as.numeric(table(cell_clustering)) 

  clustering_prop <- round(clustering_table / sum(clustering_table) * 100, 2) 

   

  d <- dist(expr_median[, colnames(expr)], method = "euclidean") 
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  cluster_rows <- hclust(d, method = "average") 

   

  #sort cell clusters with hierarchical clustering      

  expr_heat <- as.matrix(expr01_median[, colnames(expr01)]) 

  rownames (expr_heat) <- expr01_median$cell_clustering 

   

  #colours for the heatmap      

  color_heat <- colorRampPalette(rev(brewer.pal(n=9, name = "RdYlBu"))) (100) 

  legend_breaks <- seq(from = 0, to = 10,  by = 2) 

  labels_row <- paste0(expr01_median$cell_clustering, " (", clustering_prop, "%)") 

   

  #annotation of original clusters      

  annotation_row <- data.frame(Cluster = factor(expr01_median$cell_clustering)) 

  rownames(annotation_row) <- rownames(expr_heat) 

  color_clusters1 <- color_clusters[1:nlevels(annotation_row$Cluster)] 

  names (color_clusters1) <- levels(annotation_row$Cluster) 

  annotation_colors <- list(Cluster = color_clusters1) 

   

  #annotation for merged clusters      

  if(! is.null(cluster_merging)) { 

    cluster_merging$new_cluster <- factor(cluster_merging$new_cluster) 

    annotation_row$Cluster_merging <- cluster_merging$new_cluster 

    color_clusters2 <- color_clusters[1:nlevels(cluster_merging$new_cluster)] 

    names(color_clusters2) <- levels(cluster_merging$new_cluster) 

    annotation_colors$Cluster_merging <- color_clusters2 

  } 

   

  pheatmap(expr_heat, color = color_heat, cluster_cols = FALSE, 

           cluster_rows = cluster_rows, labels_row = labels_row, 

           display_numbers = TRUE, number_color = "black", 

           fontsize = 12, fontsize_number = 6, legend_breaks = legend_breaks, 

           annotation_row = annotation_row, annotation_colors = annotation_colors) 

} 
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tiff("Heatmap_cluster_40.tiff", width = 8, height = 11, unit = "in",res = 300)  

plot_clustering_heatmap_wrapper(expr = expr[, lineage_markers_ord], 

                                expr01 = expr01[, lineage_markers_ord], 

                                cell_clustering = cell_clustering, color_clusters = color_clusters) 

dev.off() 

 

#wrapper function to plot distribution of markers intensities for flowSOM clusters 

 

library(ggridges) 

 

plot_clustering_distr_wrapper <- function(expr, cell_clustering){ 

  #calculate median expression 

  cell_clustering <- factor(cell_clustering) 

  expr_median <- data.frame(expr, cell_clustering = cell_clustering) %>% 

    group_by(cell_clustering) %>% summarize_all(funs(median)) 

   

  #sort cell clustering with hierarchical clustering 

  d <- dist(expr_median[, colnames(expr)], method = "euclidean") 

  cluster_rows <- hclust(d, method="average") 

   

  #calculate cluster frequencies 

  freq_clust <- table(cell_clustering) 

  freq_clust <- round(as.numeric(freq_clust)/sum(freq_clust)*100,2) 

  cell_clustering <- factor(cell_clustering, 

                            labels = paste0(levels(cell_clustering),"(",freq_clust,"%)")) 

   

  ##data organised by cluster 

  ggd <- melt(data.frame(cluster = cell_clustering, expr), 

              id.vars = "cluster", value.name = "expression", 

              variable.name = "antigen") 

  ggd$antigen <- factor(ggd$antigen, levels = colnames(expr)) 

  ggd$reference <- "no" 

  ## reference data 

  ggd_bg <- ggd 
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  ggd_bg$cluster <- "reference" 

  ggd_bg$reference <- "yes" 

   

  ggd_plot <- rbind(ggd,ggd_bg) 

  ggd_plot$cluster <- factor(ggd_plot$cluster, 

                             levels = c(levels(cell_clustering)[rev(cluster_rows$order)], "reference")) 

   

  ggplot() + 

    geom_density_ridges(data = ggd_plot, aes(x = expression, y=cluster, 

                                             color = reference, full = reference), alpha = 0.3) + 

    facet_wrap(~antigen, scales = "free_x", nrow = 2) + 

    theme_ridges() + 

    theme(axis.text = element_text(size = 7), 

          strip.text = element_text(size = 7), legend.position = "none") 

   

} 

 

tiff("Marker_dist_cluster.tiff", width = 8, height = 8, unit = "in",res = 300)  

plot_clustering_distr_wrapper(expr = expr[,lineage_markers_ord], 

                              cell_clustering = cell_clustering) 

dev.off() 

 

#tSNE analysis ( anaysis on 140,000 cells takes 40 minutes in R) 

 

library(Rtsne) 

 

dups <- which(!duplicated(expr[,lineage_markers])) 

inds <- split(1:length(sample_ids), sample_ids) 

 

tsne_ncells <- pmin(table(sample_ids), 10000) # downsampling 

set.seed(1234) 

tsne_inds <- lapply(names(inds), function(i) { 

  s <- sample(inds[[i]], tsne_ncells[i], replace = FALSE) 

  intersect(s,dups) 
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}) 

tsne_inds <- unlist(tsne_inds) 

tsne_expr <- expr[tsne_inds, lineage_markers] 

 

set.seed(1234) 

tsne_out <- Rtsne(tsne_expr, check_duplicates = FALSE, pca = FALSE) 

 

 

 

 

#color tsne by marker expression  

 

dr <- data.frame(tSNE1 = tsne_out$Y[,1], tSNE2 = tsne_out$Y[,2], 

                 expr[tsne_inds,lineage_markers]) 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD4)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD4", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD4_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD14)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD14", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD14_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <-ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD19)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 
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  scale_color_gradientn("CD19", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD19_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD15)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD15", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD15_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD8a)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD8a", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD8a_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD56)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD56", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD56_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = HLA_DR)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("HLA_DR", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("HLA_DR_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 
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plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD16)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD16", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD16_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD11c)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD11c", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD11c_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD45RO)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD45RO", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD45RO_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD68)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD68", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD68_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 
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test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD11b)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD11b", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD11b_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

test <- ggplot (dr, aes(x=tSNE1, y=tSNE2, color = CD161)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_gradientn("CD161", colors = colorRampPalette(rev(brewer.pal(n=11, name = "Spectral")))(50)) 

tiff("CD161_tSNE.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(test) 

dev.off() 

 

#plot tsne coloured by clusters 

 

dr$sample_id <- sample_ids[tsne_inds] 

mm <- match(dr$sample_id, md$sample_id) 

dr$condition <- md$condition[mm] 

dr$cell_clustering <- factor(cell_clustering[tsne_inds], levels = 1:nmc) 

 

ggp <- ggplot(dr, aes(x = tSNE1, y = tSNE2, color = cell_clustering)) + 

  geom_point(size = 0.8) +  

  theme_bw() + 

  scale_color_manual(values = color_clusters) + 

  guides(color = guide_legend(override.aes = list(size=4), ncol = 2)) 

 

tiff("tSNE_cluster.tiff", width = 6, height = 6, unit = "in", res = 300) 

plot(ggp) 

dev.off() 
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#tsne for each sample 

 

ggp_sample <- ggp + facet_wrap(~ sample_id) 

tiff("tSNE_sample.tiff", width = 8, height = 8, unit = "in", res = 300) 

plot(ggp_sample) 

dev.off() 

 

#tsne for each condition 

 

ggp_condition <- ggp + facet_wrap(~ condition) 

tiff("tSNE_condition.tiff", width = 8, height = 6, unit = "in", res = 300) 

plot(ggp_condition) 

dev.off() 

 

## investigate metaclusters 

 

code_sizes <- table(factor(som$map$mapping[,1], levels = 1:nrow(codes))) 

code_sizes <- as.numeric(code_sizes) 

 

#run tsne on cell codes 

 

library(Rtsne) 

set.seed(1234) 

tsne_out <- Rtsne(codes, perplexitiy = 5, pca = TRUE) 

 

#run pca on codes 

 

pca_out <- prcomp(codes, center = TRUE, scale = FALSE) 

 

codes_dr <- data.frame(tSNE1 = tsne_out$Y[,1], tSNE2 = tsne_out$Y[,2], 

                       PCA1 = pca_out$x[,1], PCA2 = pca_out$x[,2]) 

codes_dr$code_clustering <- factor(code_clustering) 

codes_dr$size <- code_sizes 
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#plot tsne based on codes 

 

gg_tsne_codes <- ggplot(codes_dr, aes(x = tSNE1, y = tSNE2, 

                                      color = code_clustering, size = size)) + 

  geom_point(alpha = 0.9) + 

  theme_bw() + 

  scale_color_manual(values = color_clusters) + 

  guides(color = guide_legend(override.aes = list(size = 4), ncol = 2)) 

tiff("tSNE_codes.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(gg_tsne_codes) 

dev.off() 

 

 

#plot pca based on codes 

 

gg_pca_codes <- ggplot(codes_dr, aes(x = PCA1, y = PCA2, 

                                     color = code_clustering, size = size )) + 

  geom_point(alpha = 0.9) + 

  theme_bw() + 

  scale_color_manual(values = color_clusters) + 

  guides (color = guide_legend(override.aes = list(size = 4), ncol = 2)) + 

  theme(legend.position = "right", legend.box = "vertical") 

tiff("PCA_codes.tiff", width = 4, height = 4, unit = "in", res = 300) 

plot(gg_pca_codes) 

dev.off() 

 

#wrapper function to plot median marker expression heatmap for metaclusters along with functional markers 

 

library(ComplexHeatmap) 

 

plot_clustering_heatmap_wrapper2 <- function(expr, expr01, 

                                             lineage_markers, functional_markers = NULL, sample_ids = NULL, 

                                             cell_clustering, color_clusters, cluster_merging = NULL, 

                                             plot_cluster_annotation = TRUE) { 
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  #calcualte median expression of lineage markers 

  expr_median <- data.frame(expr[, lineage_markers], 

                            cell_clustering = cell_clustering) %>% 

    group_by(cell_clustering) %>% summarize_all(funs(median)) 

  expr01_median <- data.frame(expr01[,lineage_markers], 

                              cell_clustering = cell_clustering) %>% 

    group_by(cell_clustering) %>% summarize_all(funs(median)) 

   

  #calculate cluster frequencies 

  clustering_table <- as.numeric(table(cell_clustering)) 

  clustering_prop <- round(clustering_table / sum(clustering_table) * 100, 2) 

   

  #sort the cell clusters with hierarchical clustering 

  d <- dist(expr_median[, lineage_markers], method = "euclidean") 

  cluster_rows <- hclust(d,method = "average") 

   

  expr_heat <- as.matrix(expr01_median[, lineage_markers]) 

   

  #Median expression of functional markers in each sample per cluster 

  expr_median_sample_cluster_tbl <- data.frame(expr01[, functional_markers, 

                                                      drop = FALSE], sample_id = sample_ids, cluster = cell_clustering) %>%  

    group_by(sample_id, cluster) %>% summarize_all(funs(median)) 

   

  #Colors for the heatmap 

  color_heat <- colorRampPalette(rev(brewer.pal(n=9, name = "RdYlBu")))(100) 

  legend_breaks <- seq(from = 0, to = 1, by = 0.2) 

  labels_row <- paste0(expr01_median$cell_clustering,"(",clustering_prop,"%)") 

   

  ##Annotation for the original clusters 

  annotation_rowl <- data.frame(Cluster = factor(expr01_median$cell_clustering)) 

  color_clustersl <- color_clusters[1:nlevels(annotation_rowl$Cluster)] 

  names(color_clustersl) <- levels(annotation_rowl$Cluster) 
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  ##Annotation of the merged clusters 

  if(!is.null(cluster_merging)){ 

    mm <- match(annotation_rowl$Cluster, cluster_merging$original_cluster) 

    annotation_row2 <- data.frame(Cluster_merging =  

                                    factor(cluster_merging$new_cluster[mm])) 

    color_clusters2 <- color_clusters[1:nlevels(annotation_row2$Cluster_merging)] 

    names(color_clusters2) <- levels(annotation_row2$Cluster_merging) 

  } 

   

  ## Heatmap for original clusters 

  ha1 <- Heatmap(annotation_rowl, name = "Cluster", 

                 col = color_clustersl, cluster_columns = FALSE, 

                 cluster_rows = cluster_rows, row_dend_reorder = FALSE, 

                 show_row_names = FALSE, width = unit(0.5, "cm"), 

                 rect_gp = gpar(col = "grey")) 

   

  ## Heatmap annotation for merged clusters 

  if(!is.null(cluster_merging)){ 

    ha2 <- Heatmap(annotation_row2, name = "Cluster \nmerging", 

                   col = color_clusters2, cluster_columns = FALSE, 

                   cluster_rows = cluster_rows, row_dend_reorder = FALSE, 

                   show_row_names <- FALSE, width = unit(0.5, "cm"), 

                   rect_gp = gpar(col = "grey")) 

  } 

   

  ## Cluster names and sizes - text 

  ha_text <- rowAnnotation(text = row_anno_text(labels_row, 

                                                gp = gpar(fontsize = 6)), width = max_text_width(labels_row)) 

  ###cluster sizes - bar plot 

  ha_bar <- rowAnnotation("Frequency (%)" = row_anno_barplot ( 

    x = clustering_prop, border = FALSE, axis = TRUE, 

    axis_gp = gpar(fontsize = 5), gp = gpar(fill = "696969", col= "696969"), 

    bar_width = 0.9), width = unit(0.7, "cm"), show_annotation_name = TRUE, 

    annotation_name_rot = 0, annotation_name_offset = unit(5, "mm"), 
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    annotation_name_gp = gpar(fontsize = 7)) 

  ## Heatmap for the lineage markers 

  ht1 <- Heatmap(expr_heat, name = "Expr", column_title = "Lineage markers", 

                 col = color_heat, cluster_columns = FALSE, cluster_rows = cluster_rows, 

                 row_dend_reorder = FALSE, heatmap_legend_param = list(at = legend_breaks, 

                                                                       labels = legend_breaks, color_bar = "continuous"), 

                 show_row_names = FALSE, row_dend_width = unit(2, "cm"), 

                 rect_gp = gpar(col = "grey"), column_names_gp = gpar(fontsize = 8)) 

   

  if(plot_cluster_annotation){ 

    draw_out <- ha1 

  }else{ 

    draw_out <- NULL 

  } 

  if(!is.null(cluster_merging)){ 

    draw_out <- draw_out + ha2 + ha_bar + ha_text 

  }else{ 

    draw_out <- draw_out + ht1 + ha_bar + ha_text 

  } 

   

  ##heatmaps for the signalling markers 

  if(!is.null(functional_markers)){ 

    for(i in 1:length(functional_markers)){ 

      #re arrange so the row represent clusters 

      expr_heat_fun <- as.matrix(dcast(expr_median_sample_cluster_tbl[, 

                                                                      c("sample_id", "cluster", functional_markers[i])], 

                                       cluster ~ sample_id, value.var = functional_markers[i])[,-1]) 

       

      draw_out <- draw_out + Heatmap(expr_heat_fun, 

                                     column_title = functional_markers[i], col = color_heat, 

                                     cluster_columns = FALSE, cluster_rows = cluster_rows, 

                                     row_dend_reorder = FALSE, show_heatmap_legend = FALSE, 

                                     show_row_names = FALSE, rect_gp = gpar(col = "grey"), 

                                     column_names_gp = gpar(fontsize = 8)) 
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    } 

  } 

  draw(draw_out, row_dend_side = "left") 

} 

 

tiff("lineage_heatmap_functional_PD-1.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "PD-1", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_b.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "b", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_pdl1.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "pdl1", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_perforin.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "perforin", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_ctla4.tiff", width = 10, height = 8, unit = "in", res = 300) 
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plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "ctla4", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_IL17a.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_17A", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_IL10.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_10", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_IL4.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_4", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

 

tiff("lineage_heatmap_functional_IL8.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_8", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 
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tiff("lineage_heatmap_functional_IL21.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_21", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_IL2.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_2", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_IL32.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "IL_32", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

tiff("lineage_heatmap_functional_Osteoactivin.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

                                 lineage_markers = lineage_markers, functional_markers = "Osteoactivin", 

                                 sample_ids = sample_ids, cell_clustering = cell_clustering, 

                                 color_clusters = color_clusters, cluster_merging = NULL) 

dev.off() 

 

#plot heatmap to visualise median marker expression for all clusters in SOM grid - not particularly helpful due 
to number of clusters in SOM 

 

#plot_clustering_heatmap_wrapper2(expr = expr, expr01 = expr01, 

#   lineage_markers = lineage_markers, functional_markers = "GM_CSF", 
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#   sample_ids = sample_ids, cell_clustering = cell_clustering_som, 

#   color_clusters = color_clusters, cluster_merging = NULL) 

 

#merging of metaclusters 

 

cluster_merging1_filename <- "cluster_merging1.xlsx" 

cluster_merging1 <- read_excel(cluster_merging1_filename) 

data.frame(cluster_merging1) 

 

#convert to factor with clusters in desired order 

levels_cluster_merged <- c("naïve CD4 CD27 CD38", "memory CD4 CD27", "naïve CD4", "CD3 NK cells", 
"Neutrophils", "naïve T cell CD27 CD38", "T cells", "naïve T cell", "naïve CD8", "memory CD8", "memory CD8 
PD-1", "cells", "MAIT cells", "CD8 NK cells", "NK cells", "basophils", "mast cells", "CD14 monocytes", 
"eosinophils", "plasmacytoid dendritic cells", "dendritic cells", "B cells", "memory B cells") 

cluster_merging1$new_cluster <- factor(cluster_merging1$new_cluster, 

                                       levels = levels_cluster_merged) 

 

#New clustering 

mm <- match(cell_clustering, cluster_merging1$original_cluster) 

cell_clustering1 <- cluster_merging1$new_cluster[mm] 

 

mm <- match(code_clustering, cluster_merging1$original_cluster) 

code_clustering1 <- cluster_merging1$new_cluster[mm] 

 

#Update tSNE with annotated cell populations 

dr$cell_clustering1 <- cell_clustering1[tsne_inds] 

tsne_cell_pop_cond <-ggplot(dr, aes(x = tSNE1, y= tSNE2, color = cell_clustering1)) + 

  geom_point(size = 0.8) + 

  theme_bw() + 

  scale_color_manual(values = color_clusters) +  

  guides(color = guide_legend(override.aes = list(size = 4))) 

tiff("tSNE_cell_populations_cond.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot(tsne_cell_pop_cond) 

dev.off() 
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#TSNE split by condition annotated with cell populations 

ggp_condition_2 <- tsne_cell_pop_cond + facet_wrap(~ condition) 

tiff("tSNE_condition_labels.tiff", width = 12, height = 4, unit = "in", res = 300) 

plot(ggp_condition_2) 

dev.off() 

 

#plot heatmaps showing cluster merging 

 

tiff("Heatmap_cluster_merging.tiff", width = 12, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper(expr= expr[, lineage_markers_ord], 

                                expr01 = expr01[, lineage_markers_ord], cell_clustering = cell_clustering,  

                                color_clusters = color_clusters, cluster_merging = cluster_merging1) 

dev.off() 

 

#heatmap of annotated cell pop 

 

tiff("Heatmap_annotated_cell_pops.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot_clustering_heatmap_wrapper(expr = expr[, lineage_markers_ord], 

                                expr01 = expr01[, lineage_markers_ord], cell_clustering = cell_clustering1, 

                                color_clusters = color_clusters) 

dev.off() 

 

#Differential analysis 

 

library(lme4) 

library(multcomp) 

#Model formula  

model.matrix(~condition, data = md) 

 

#create contrasts 

contrast_names <- c("earlyvshealthy") 

k1 <- c(0,1) 

K <- matrix(k1, nrow =1, byrow = TRUE, dimnames = list(contrast_names)) 
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K 

FDR_cutoff <- 0.05 

 

#Differential cell population abundance 

counts_table <- table(cell_clustering1, sample_ids) 

props_table <- t(t(counts_table) / colSums(counts_table))*100 

 

counts <- as.data.frame.matrix(counts_table) 

props <- as.data.frame.matrix(props_table) 

 

#plot relative abundance of cell populations in each sample 

 

ggdf <- melt(data.frame(cluster = rownames(props), props), 

             id.vars = "cluster", value.name = "proportion", variable.name = "sample_id") 

ggdf$cluster <- factor(ggdf$cluster, level = levels_clusters_merged) 

#add condition information 

mm <- match(ggdf$sample_id,md$sample_id) 

ggdf$condition <- factor(md$condition[mm]) 

 

proportion_PBMC <- ggplot(ggdf,aes(x=sample_id, y=proportion, fill=cluster)) + 

  geom_bar(stat = "identity") + 

  facet_wrap(~condition, scales = "free_x") + 

  theme_bw() + 

  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 

  #scale_fill_manual(values = color_clusters) 

  tiff("Proportion_PBMC.tiff", width = 10, height = 8, unit = "in", res = 300) 

plot(proportion_PBMC) 

dev.off() 

 

#box plots relative abundance PBMC 

 

ggdf$patient_id <- factor(md$patient_id[mm]) 

 

abundance_boxplot <- ggplot(ggdf) + 
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  geom_boxplot(aes(x= condition, y = proportion, color = condition, 

                   fill = condition), position = position_dodge(), alpha = 0.5, 

               outlier.color = NA) + 

  geom_point(aes(x = condition, y= proportion, color = condition 

  ), alpha = 0.8, position = position_jitterdodge()) + 

  facet_wrap(~cluster, scales = "free", nrow =2) + 

  theme_bw() + 

  theme(axis.text.x = element_blank(), axis.ticks.x = element_blank(), 

        axis.title.x = element_blank(), strip.text = element_text(size = 10)) + 

  scale_color_manual(values = color_conditions) + 

  scale_fill_manual(values = color_conditions) + 

  #scale_shape_manual(values = c(16,17,8,3,12,0,1,2,18,5,6)) 

  tiff("Box_plot_abundance_increase_font.tiff", width = 20, height = 8, unit = "in", res = 300) 

plot(abundance_boxplot) 

dev.off() 

 

#get median functional marker expression for each annotated cell population in each sample 

 

expr_median_sample_cluster_tbl <- data.frame(expr[, functional_markers], 

                                             sample_id = sample_ids, cluster = cell_clustering1) %>% 

  group_by (sample_id, cluster) %>% 

  summarize_all(funs(median)) 

 

expr_median_sample_cluster_melt <- melt(expr_median_sample_cluster_tbl, 

                                        id.vars = c("sample_id", "cluster"), value.name = "median_expression", 

                                        variable.name = "antigen") 

 

#rearrange so that rows represent clusters and markers 

expr_median_sample_cluster <- dcast(expr_median_sample_cluster_melt, 

                                    cluster + antigen ~ sample_id, value.var = "median_expression") 

rownames(expr_median_sample_cluster) <- paste0(expr_median_sample_cluster$cluster, 

                                               "_", expr_median_sample_cluster$antigen) 

 

#elimenate clusters with low frequency 
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clusters_keep <- names(which((rowSums(counts <1) == 0 ))) 

keep_lf <- expr_median_sample_cluster$cluster %in% clusters_keep 

expr_median_sample_cluster <- expr_median_sample_cluster[keeplf, ] 

##eliminate cases where there is 0 expression in all samples 

keep0 <- rowSums(expr_median_sample_cluster[, md$sample_id]) > 0 

expr_median_sample_cluster <- expr_median_sample_cluster[keep0, ] 

 

#plot marker expressions for cell populations 

ggdf <- expr_median_sample_cluster_melt[expr_median_sample_cluster_melt$cluster %in% clusters_keep, ] 

mm <- match(ggdf$sample_id, md$sample_id) 

ggdf$condition <- factor(md$condition[mm]) 

ggdf$patient_id <- factor(md$patient_id[mm]) 

func_marker_plot <- ggplot(ggdf) + 

  geom_boxplot(aes(x= antigen, y = median_expression, 

                   color = condition, fill = condition), 

               position = position_dodge(), alpha = 0.5, outlier.color = NA) + 

  geom_point(aes(x=antigen, y=median_expression, color = condition 

  ), alpha = 0.8, position = position_jitterdodge(), 

  size = 0.7) + 

  facet_wrap(~cluster, scales = "free_y", ncol = 2) + 

  theme_bw() + 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust =1, size = 12)) + 

  theme(axis.title.x = element_blank(), strip.text = element_text(size = 12)) + 

  scale_color_manual(values = color_conditions) + 

  scale_fill_manual(values = color_conditions) + 

  #scale_shape_manual(values = c(16,17,8,3,12,0,1,2,18,5,6)) + 

  #guides(shape = guide_legend(override.aes = list(size = 2))) 

  tiff("Functional_markers_cell_pop_increase_font.tiff", width = 12, height = 18, unit = "in", res = 300) 

plot(func_marker_plot) 

dev.off()     

write out csv file that can be used to view clusters and tsne in FlowJo 

 

mm <- match(dr$sample_id, md$sample_id) 

mm 
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dr$patient_id <- md$patient_id[mm] 

write.csv(dr, "seed60_HCvEarlyRA_cytnorm_analysis.csv") 

 

#attempt differential analysis significance testing 

 

library(lme4) 

library(multcomp) 

 

#create model matrix to include condition and batch information 

 

#model.matrix( ~condition + batch_id, data = md) 

 

#create contrast 

 

contrast_names <- c("earlyvshealthy") 

contrast_names 

k1 <- c(0,1) 

k1 

K <- matrix(k1,nrow = 1, byrow = TRUE, dimnames = list(contrast_names)) 

K 

FDR_cutoff <- 0.05 

 

#define generalized mixed model acounting for sample ID or sample ID and batch ID 

 

formula_glmer_binomial1 <- y/total ~ condition + (1|sample_id) 

#formula_glmer_binomial2 <- y/total ~condition + (1|sample_id) + (1|batch_id) 

#formula_glmer_binomial2 <- y/total ~condition 

 

#plot wrapper function to input data frame of cell counts and perform differential analysis specified in contrast 
matrix K for each population seperately 

 

differential_abundance_wrapper <- function(counts,md, formula, K) { 

  #Fit GLM for each cluster seperately 

  ntot <- colSums(counts) 
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  fit_binomial <- lapply(1:nrow(counts), function(i){ 

     

    data_tmp <- data.frame(y = as.numeric(counts[i, md$sample_id]), 

                           total = ntot[md$sample_id], md) 

    fit_tmp <- glmer(formula, weights = total, family = binomial, data = data_tmp) 

     

    ##Fit contrasts one by one 

    out <- apply(K, 1, function(k){ 

      contr_tmp <- glht(fit_tmp, linfct = matrix(k,1)) 

      summ_tmp <- summary(contr_tmp) 

      pval <- summ_tmp$test$pvalues 

      return(pval) 

    }) 

    return(out) 

  }) 

  pvals <- do.call(rbind,fit_binomial) 

  colnames(pvals) <- paste0("pval_", contrast_names) 

  rownames(pvals) <- rownames(counts) 

   

  #Adjust the p values 

  adjp <- apply(pvals, 2 , p.adjust, method = "BH") 

  colnames(adjp) <- paste0("adjp_", contrast_names) 

  return(list(pvals = pvals, adjp = adjp)) 

} 

 

differential_abundance_wrapper <- function(counts, md, formula, K){ 

  ## Fit the GLMM for each cluster separately 

  ntot <- colSums(counts) 

  fit_binomial <- lapply(1:nrow(counts), function(i){ 

     

    data_tmp <- data.frame(y = as.numeric(counts[i, md$sample_id]), 

                           total = ntot[md$sample_id], md) 

     

    fit_tmp <- glmer(formula, weights = total, family = binomial, 
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                     data = data_tmp) 

     

    ## Fit contrasts one by one 

    out <- apply(K, 1, function(k){ 

      contr_tmp <- glht(fit_tmp, linfct = matrix(k, 1)) 

      summ_tmp <- summary(contr_tmp) 

      pval <- summ_tmp$test$pvalues 

      return(pval) 

    }) 

    return(out) 

  }) 

  pvals <- do.call(rbind, fit_binomial) 

  colnames(pvals) <- paste0("pval_", contrast_names) 

  rownames(pvals) <- rownames(counts) 

  ## Adjust the p-values 

   

  adjp <- apply(pvals, 2, p.adjust, method = "BH") 

  colnames(adjp) <- paste0("adjp_", contrast_names) 

  return(list(pvals = pvals, adjp = adjp)) 

} 

 

da_out1_test <- differential_abundance_wrapper(counts, md = md, formula = formula_glmer_binomial1, K = 
K) 

 

apply(da_out1_test$adjp < FDR_cutoff,2, table) 

 

da_out1_test 

##result was FALSE = 18 TRUE = 3 

 

# repeat using contrast matrix accounting for batch 

## got same result as previous - good sign as data has been batch normalised 

 

#da_out2 <- differential_abundance_wrapper(counts, md = md, formula = formula_glmer_binomial2, K = K) 
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#apply(da_out2$adjp < FDR_cutoff,2, table) 

 

#da_out2 

 

da_output1 <- data.frame(cluster = rownames(props), props, da_out1_test$pvals, da_out1_test$adjp, 
row.names = NULL) 

print(head(da_output1), digits = 2) 

 

#Plot results of differential abundance analysis as heatmap 

 

#Define normalisation wrapper 

 

normalisation_wrapper <- function(expr, th = 2.5) { 

  expr_norm <- apply(expr,1, function(x){ 

    sdx <- sd(x, na.rm = TRUE) 

    if(sdx ==0) { 

      x <- (x - mean(x,na.rm = TRUE)) 

    } else { 

      x <- (x - mean(x, na.rm = TRUE)) / sdx 

    } 

    x[x > th] <- th 

    x[x < - th] <- -th 

    return(x) 

  }) 

  expr_norm <- t(expr_norm) 

} 

 

# wrapper to plot heatmap 

 

plot_differential_heatmap_wrapper <- function(expr_norm, sign_adjp, condition, color_conditions, th = 2.5){ 

  #order samples by condition 

  oo <- order(condition) 

  condition <- condition[oo] 

  expr_norm <- expr_norm[, oo, drop = FALSE] 
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  #create row labels with adjp values and other objects 

  labels_row <- paste0(rownames(expr_norm), "(", 

                       sprintf("%.02e", sign_adjp), ")") 

  labels_col <- colnames(expr_norm) 

  annotation_col <- data.frame(condition = factor(condition)) 

  rownames(annotation_col) <- colnames(expr_norm) 

  annotation_colors <- list(condition = color_conditions) 

  color <- colorRampPalette(c("#87CEFA", "#56B4E9", "#56B4E9", "#0072B2", 

                              "#000000", "#D55E00", "#E69F00", "#E69F00", "#FFD700"))(100) 

  breaks = seq(from = -th, to = th, length.out = 101) 

  legend_breaks = seq(from = -round(th), to = round(th), by = 1) 

  gaps_col <- as.numeric(table(annotation_col$condition)) 

   

  pheatmap(expr_norm, color = color, breaks = breaks, 

           legend_breaks = legend_breaks, cluster_cols = FALSE, cluster_rows = FALSE, 

           labels_col = labels_col, labels_row = labels_row, gaps_col = gaps_col, annotation_col = annotation_col, 
annotation_colors = annotation_colors, fontsize = 8) 

} 

 

##apply the arcsine squareroot transformation to the proportions 

 

asin_table <- asin(sqrt((t(t(counts_table)/ colSums(counts_table))))) 

asin <- as.data.frame.matrix(asin_table) 

##get significant clusters and sort them by significance 

sign_clusters <- names(which(sort(da_out1_test$adjp[,"adjp_earlyvshealthy"]) < FDR_cutoff)) 

## get the p values for significant clusters 

sign_adjp <- da_out1_test$adjp[sign_clusters, "adjp_earlyvshealthy", drop = FALSE] 

##normalise the transformed proportions to mean and sd =/- 1 

asin_norm <- normalisation_wrapper(asin[sign_clusters,]) 

 

mm <- match(colnames(asin_norm), md$sample_id) 

 

#plot differential abundance heatmap showing clusters with significantly different abundances in earlyRA or 
HC 
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tiff("Heatmap_differential_abundance_new_labels.tiff", width = 14, height = 8, unit = "in", res = 300) 

plot_differential_heatmap_wrapper(expr_norm = asin_norm, sign_adjp = sign_adjp, condition = 
md$condition[mm], color_conditions = color_conditions) 

dev.off() 

 

#Differential expression testing of functional markers 

 

 

differential_expression_wrapper <- function(expr_median, md, model = "lmer", formula, K){ 

  ## Fit LMM or LM for each marker separately 

  fit_gaussian <- lapply(1:nrow(expr_median), function(i){ 

    data_tmp <- data.frame(y = as.numeric(expr_median[i, md$sample_id]), md) 

    switch(model, 

           lmer = { 

             fit_tmp <- lmer(formula, data = data_tmp) 

           }, 

           lm = { 

             fit_tmp <- lm(formula, data = data_tmp) 

           }) 

    ## Fit contrasts one by one 

    out <- apply(K, 1, function(k){ 

      contr_tmp <- glht(fit_tmp, linfct = matrix(k, 1)) 

      summ_tmp <- summary(contr_tmp) 

      pval <- summ_tmp$test$pvalues 

      return(pval) 

    }) 

    return(out) 

  }) 

  pvals <- do.call(rbind, fit_gaussian) 

  colnames(pvals) <- paste0("pval_", contrast_names) 

  rownames(pvals) <- rownames(expr_median) 

  ## Adjust the p-values 

  adjp <- apply(pvals, 2, p.adjust, method = "BH") 

  colnames(adjp) <- paste0("adjp_", contrast_names) 
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  return(list(pvals = pvals, adjp = adjp)) 

} 

 

#create formula 

 

formula_lm <- y ~ condition 

formula_lmer <- y ~ condition + batch_id 

 

 

de_out1 <- differential_expression_wrapper(expr_median = expr_median_sample_cluster, 

                                           md = md, model = "lm", formula = formula_lm, K = K) 

 

 

 

## Repeat differential expression using sampleID as a random variable  

 

de_out2 <- differential_expression_wrapper(expr_median = expr_median_sample_cluster, 

                                           md = md, model = "lmer", formula = formula_lmer, K = K) 

 

#try to include batch information 

 

de_out3 <- differential_expression_wrapper(expr_median = expr_median_sample_cluster, 

                                           md = md, model = "lm", formula = formula_lmer, K = K) 

 

apply(de_out1$adjp < FDR_cutoff,2,table) 

 

de_output <- data.frame(expr_median_sample_cluster, de_out1$pvals, de_out1$adjp, row.names = NULL) 

print(head(de_output), digits = 2) 

 

##Keep the significant markers and group by cluster 

 

sign_clusters_markers <- names(which(de_out1$adjp[, "adjp_earlyRAvshealthy"] < FDR_cutoff)) 

oo <- order(expr_median_sample_cluster[sign_clusters_markers, "cluster"], 

            de_out1$adjp[sign_clusters_markers, "adjp_earlyRAvshealthy"]) 
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sign_clusters_markers <- sign_clusters_markers[oo] 

 

#get the significant adjust P values 

 

sign_adjp <- de_out1$adjp[sign_clusters_markers, "adjp_earlyRAvshealthy"] 

 

##normalise to mean 0 sd = 1 

 

expr_s <- expr_median_sample_cluster[sign_clusters_markers, md$sample_id] 

expr_median_sample_cluster_norm <- normalisation_wrapper(expr_s) 

 

mm <- match(colnames(expr_median_sample_cluster_norm), md$sample_id) 

 

tiff("differential_expression_heatmap.tiff", width = 14, height = 8, unit = "in", res = 300) 

plot_differential_heatmap_wrapper(expr_norm = expr_median_sample_cluster_norm, sign_adjp = sign_adjp, 
condition = md$condition[mm],color_conditions = color_conditions) 

dev.off() 
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Appendix C 

Patient cohort and demographic details 

Early RA 

Patient 
Study 
Number CRP ESR ACPA 

Rheumatoid 
Factor 

Swollen 
Joint 
Count 
28 

Tender 
Joint 
Count 
28 

VAS 
Global 
Health 

Smoking 
status 

Number 
smoked 
per day 

3486 NULL NULL Positive Negative 1 2 20 Current 15 

3549 NULL NULL Positive Positive 9 25 85 Current 15 

3611 NULL NULL Positive Negative 1 2 30 Previous 15 

3709 15.5 NULL Positive Negative 0 0 5 Previous 7 

3939 NULL NULL NULL NULL NULL NULL 40 Current 10 

3967 NULL NULL NULL NULL 1 7 60 Never NULL 

3968 NULL NULL NULL NULL 0 0 5 Never NULL 

4043 NULL NULL NULL NULL NULL NULL 30 Previous NULL 

3863 NULL 
Not 
done Positive Positive 1 0 NULL NULL NULL 

4123 <5 NULL Positive Positive 2 1 10 Never NULL 

4154 NULL NULL NULL NULL 10 21 85 Current 15 

5015 NULL NULL NULL NULL 2 5 100 Never NULL 

4153 NULL NULL Negative Negative 6 13 85 Never NULL 

4195 NULL NULL NULL NULL 24 28 80 Previous 20 

4202 11.3 NULL NULL NULL NULL NULL 10 Never NULL 

4196 36 NULL NULL NULL 18 20 30 Current 3 

4217 NULL NULL Negative Negative 8 10 7 Current 15 

4209 NULL NULL NULL NULL 14 9 30 Never NULL 

4212 NULL NULL NULL NULL 13 3 20 Previous 40 

4219 NULL NULL NULL NULL 6 0 5 Previous 10 

4226 NULL NULL NULL NULL 1 12 75 Previous 1 

4225 121 NULL Negative Positive 10 20 90 Never NULL 

4233 1 NULL Positive Positive 5 6 60 Previous 20 

4227 NULL NULL NULL NULL 3 2 50 Never NULL 

4229 NULL NULL NULL NULL 16 0 20 Never NULL 

4228 NULL NULL NULL NULL 2 3 10 Current 14 

4230 55 
Not 
done Positive Positive 2 16 80 Previous 20 

4247 NULL NULL NULL NULL 12 22 90 Previous 20 

4302 5.5 27 Positive Positive 11 21 80 Previous 15 

4331 5 NULL Positive Positive 1 0 20 Never NULL 

4333 42 NULL Negative Negative 19 27 70 Never NULL 

4334 10.2 30 Positive Positive 6 22 70 Previous 15 
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Established RA 

missing data denoted by dash (-) 

Sample ID DAS 

CRP  

DAS ESR TJC SJC VAS CRP ESR Serology results Erosions 

at 

baseline 

Previous targeted therapies 

RADAR BMC 

5013 

- - - - - - - - - - 

RADAR BMC 

1808 

- - - - - - - - - - 

RADAR BMC 

246 

- - - - - - - - - - 

RADAR BMC 

5014 

6.77 7.23 13 8 80 67 67 ccp+ RF+ y - 0 

RADAR BMC 

4078 

- - - - - - - - - - 

RADAR BMC 

805 

6.49 6.67 16 8 90 37 33 CCP+ RF+ y 5 (ADA, RTX, TCZ,CRT, ABT) 

RADAR BMC 

074 

5.85 5.55 13 13 60 16.2 11 CCP+ RF+ y - 0 

RADAR BMC 

5016 

4.7 5.05 5 3 65 20 31 CCP+ RF+ n 1 (ADA) 

RADAR BMC 

1044 

- - - - - - - - - - 

RADAR BMC 

3538 

- - - - - - - - - - 

RADAR BMC 

1996 

- - - - - - - - - - 

RADAR BMC 

4039 

5.08 5.31 16 1 55 9.1 18 CCP-RF+ n 1 (ETN) 

RADAR BMC 

3051 

- - - - - - - - - - 

RADAR BMC 

345 

- - - - - - - - - - 

RADAR BMC 

3024 

- - - - - - - - - - 

RADAR BMC 

4100  

5.77 6.02 15 4 78 14.4 23 CCP+ RF+ n 4 (ETN, ADA, TCZ, ABT) 

RADAR BMC 

3948 

5.96 6.4 14 7 80 17 33 CCP+ RF+ y 7 (ADA, ETN, RTX, ABT, CTZ, IFX, TOC) 

RADAR BMC 

5017 

5.06 5.99 11 6 70 <5 34 CCP+ RF+ DsDNA+ n - 

RADAR BMC 

4182  

- - - - - - - - - - 

RADAR BMC 

3208 

5.63 5.9 14 5 80 8.9 19 CCP-RF- n 1 (ADA) 

RADAR BMC 

5009 

7.3 7.58 19 13 90 92 60 CCP+ RF+ 
 

1 (Bari) 

RADAR BMC 

5007 

- - - - - - - - - - 
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RADAR BMC 

4185 

- - - - - - - - - - 

RADAR BMC 

3351 

3.91 4.29 4 4 20 14.6 28 CCP+ RF+ y 1 (ADA) 

RADAR BMC 

5020 

6.13 6.57 16 8 83 13.9 30 CCP+ RF+ n - 

RADAR BMC 

4100  

5.77 6.02 15 4 78 14.4 23 CCP+RF+ n 4 (ETN, ADA, TCZ, ABT) 

RADAR BMC 

2430 

6.1 6.51 18 11 90 <5 16 CCP+RF- y 3(RTX, ETN, ABT) 

RADAR BMC 

3593 

4.46 
 

2 3 60 45 
 

CCP+RF+ y 2( ADA, GOL) 

RADAR BMC 

2415 

5.39 4.62 16 5 70 <5 3 CCP+RF- n 2 (IFX, GOL) 

RADAR BMC 

2914 

5.85 6.95 22 6 50 10.5 66 CCP+RF+Ro+ y 3 (RTX, ABT, TCZ) 

RADAR BMC 

926 

5.81 6.13 6 11 80 52 48 CCP+RF- y 3 (ETN, TCZ, RTX) 

RADAR BMC 

407 

3.72 2.6 2 3 60 <5 2 CCP+RF+ n 3 (RXT, ETN, TCZ) 

RADAR BMC 

0072 (in this 

document 

defined as 

721) 

5.28 6.05 20 2 60 <5 27 CCP+RF+ n 1 (IFX) 

RADAR BMC 

3896 

5.31 3.77 15 3 80 <5 1 CCP-RF- y 1 (TCZ) 

RADAR BMC 

770 

2.93 2.52 3 1 10 <5 5 CCP+RF- y 1 (ADA) 

RADAR BMC 

5021 

4.11 4.27 0 14 60 32 30 CCP- RF+ n 2 (ADA, GOL) 

RADAR BMC 

4079 

5.39 6.15 12 5 70 10.5 41 CCP+ RF + y 5 ( ABT, TCZ, RTX, ETN, TOFA) 

RADAR BMC 

2888 

5.67 5.1 12 8 100 <5 4 CCP+ RF + y 3 (RTX, TCZ, ABT) 

RADAR BMC 

2576 

- - - - - - - - - - 

RADAR BMC 

2760 

5.98 6.16 8 3 90 110 57 CCP- RF- y 4 (ADA, ABT, TCZ, IFX) 

RADAR BMC 

0907 

2.31 3.03 0 0 20 18.5 51 CCP+ RF + n - 

RADAR BMC 

074 

1.61 1.05 0 0 5 <5 3 CCP+ RF+ y - 

RADAR BMC 

4237 

- - - - - - - - - - 

RADAR BMC 

2624 

3.7 4.94 6 0 80 <5 35 CCP+ RF + n 1 (CTZ, ETN) 

RADAR BMC 

4238 

- - - - - - - - - - 

RADAR BMC 

3562 

4.5 4.85 10 5 40 <5 15 CCP- RF- n - 0 
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RADAR BMC 

3407 

5.58 5.08 10 6 90 11.3 7 CCP+ RF+ n 3 ADA, TCZ, RTX 

RADAR BMC 

805 

6.51 6.41 13 9 99 37 22 CCP- RF- y 5 (ADA, RTX,TCZ, CTZ, ABT) 

RADAR BMC 

5009 

8.02 8.46 27 16 90 134 93 CCP+RF+ n 1 (Bari) 

RADAR BMC 

820  

5.18 5.38 7 4 70 27 29 CCP-RF- n 4 (ADA, RTX, TCZ, CTZ) 

RADAR BMC 

5014  

3.08 3.56 1 1 50 <5 18 CCP+ RF+ y 1 ETN 

RADAR BMC 

2047 

7.67 8.37 26 19 80 67 93 CCP+RF+ n 2 (IFX, RTX) 

RADAR BMC 

1963 

6.29 6.78 21 5 80 16.1 34 CCP+ RF- n 6 (IFX, ADA, ETN, RTX, TCZ, ABT) 

RADAR BMC 

5016 

4.26 4.61 5 5 60 <5 15 CCP+ RF+ n 1 (ADA) 

RADAR BMC 

3105 

4.4 4.31 5 5 70 <5 8 CCP+ RF+ n 4 (ETN, ADA,RTX, ABT) 

RADAR BMC 

1158 

4.15 2.61 10 4 20 <5 1 CCP-RF+ y 3 (ETN, RTX, TCZ) 

RADAR BMC 

5023 

- - - - - - - - - - 

RADAR BMC 

5023 

- - - - - - - - - - 

RADAR BMC 

4171 

- - - - - - - - - - 

RADAR BMC 

453 

5.01 4.44 12 6 60 <5 4 CCP-RF- n 1 (TCZ) 

RADAR BMC 

4039 

2.78 2.73 9 0 40 <5 2 CCP-RF+ n 1 (ETN) 

RADAR BMC 

4285 

- - - - - - - - - - 

RADAR BMC 

4285 

- - - - - - - - - - 

RADAR BMC 

3208 

3.44 2.39 7 0 30 <5 2 CCP-RF- n 1 (ADA) 

RADAR BMC 

4033 

4.33 4.33 5 5 65 <5 9 CCP+RF+ DsDNA+ y 2 (ADA, RTX) 

RADAR BMC 

579 

6.6 7.21 25 7 75 17.3 42 CCP+RF+Ro/La+ y 2 (ADA, RTX) 

RADAR BMC 

2518 

4.72 3.18 11 3 60 <5 1 CCP+RF- y 3 )ADA, RTX, TCZ) 

RADAR BMC 

2241 

6.15 6.53 16 13 80 8.8 22 CCP+RF- y 7 (IFX, ETN, ANA, TCZ, RYX, ADA, ABT) 

RADAR BMC 

3588 

6.39 6.47 14 9 75 55 35 CCP+RF+ y 6 (ETN enb, ABT,TCZ,RTX, TOFA, ETN ben) 

RADAR BMC 

407 

3.28 3.58 1 6 35 <5 14 CCP+RF+ n 3 (RXT, ETN, TCZ) 

RADAR BMC 

4288 

- - - - - - - - - - 
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RADAR BMC 

4288 

- - - - - - - - - - 

RADAR BMC 

3046 

5.81 4.76 16 6 96 <5 2 CCP+RF+ y 3 (IFX, RTX, TCZ) 

RADAR BMC 

4086 

5.9 6.04 20 7 80 <5 11 CCP+RF+ n - 

RADAR BMC 

5020 

2.21 2.41 0 0 2 29 30 CCP+ RF+ n - 

RADAR BMC 

2415 

3.4 3.29 1 1 60 7.3 10 CCP+RF- n 2 (IFX, GOL) 

RADAR BMC 

2878 

6.05 
 

17 10 40 40 
 

CCP- RF+ n 3 (RTX,TCZ,ABT) 

RADAR BMC 

3449 

4.11 4.1 4 2 75 <5 9 CCP+ RF+ y 2 (IFX, ADA) 

RADAR BMC 

3948 

5.96 6.4 14 7 80 17 33 CCP+ RF+ y 7 (ADA, ETN, RTX,ABT,CTZ,IFX,Tofa) 

RADAR BMC 

1484 

- - - - - - - - - - 

RADAR BMC 

5022 

6.23 6.89 10 10 80 63 85 CCP+ RF+ n 3 (ETN, ADA,RTX) 

RADAR BMC 

1746 

4.65   18 0 76 <5 
 

CCP-RF- n 1 ETN 

RADAR BMC 

3449 

4.11 4.1 4 2 75 <5 9 CCP+RF+ n 2 (IFX, ADA) 

RADAR BMC 

3449 

- - - - - - - - - - 

RADAR BMC 

4100  

4.85 5.29 12 1 67 6.7 21 CCP+RF+ n 4 (ETN, ADA, TCZ, ABT) 

RADAR BMC 

770 

2.47 2.67 2 0 10 <5 12 CCP+RF- y 1 (ADA) 

RADAR BMC 

1431 

5.66 6.03 12 6 75 16 29 CCP+RF+ n 1 (TCZ) 

RADAR BMC 

4310 

- - - - - - - - - - 

RADAR BMC 

926 

1.68 2.08 0 0 10 <5 16 CCP+RF- y 3 (ETN, TCZ, RTX) 

RADAR BMC 

2914 

4.5 6.05 4 5 60 6.9 104 CCP+RF+Ro+ y 3 (RTX, ABT, TCZ) 

RADAR BMC 

180 

4.01 4.08 10 4 10 < 5 10 CCP+ RF + ANA+ n 1 (IFX)  

RADAR BMC 

907 

3.77 4.6 5 3 12 12.3 49 CCP+ RF + n - 

RADAR BMC 

3593 

3.15 3.8 2 2 30 <5 23 CCP+RF+ y 2( ADA, GOL) 

RADAR BMC 

1020 

5.06 5.2 9 11 65 <5 11 CCP+RF+ y 5 (ETN, RTX, ADA,TCZ,ABT) 

RADAR BMC 

3887 

6.01 5.92 23 2 99 <5 8 CCP+RF- n - 

RADAR BMC 

074 

1.57 1.15 0 0 2 <5 5 CCP+ RF+ y - 
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RADAR BMC 

4312 

4.96 5.78 16 4 68 <5 18 CCP+RF+ n - 

RADAR BMC 

2514 

2.65 2.71 3 0 20 <5 8 CCP+RF+ y 1 (ETN) 

RADAR BMC 

3565 

3.56 4.1 5 0 10 28 48 CCP+RF+Sm/RNP+ y - 

RADAR BMC 

1740 

4.5 3.99 4 1 70 24 10 CCP+RF- y 4 (ADA, RTX, TCZ,ABT) 

RADAR BMC 

874 

4.49 3.92 11 2 50 < 5 4 CCP- RF+ n 1 (TCZ) 

RADAR BMC 

072 (in this 

document 

defined as 

722) 

5.22 5.47 12 6 75 <5 13 CCP+RF+ n 2 (IFX, ADA) 

RADAR BMC 

3896 

3.49 3.56 5 0 50 <5 10 CCP-RF- y 1 (TCZ) 

RADAR BMC 

2742 

- - - - - - - - - - 

RADAR BMC 

5016 

4.26 4.17 7 2 60 <5 8 CCP+ RF+ n 1 (ADA) 

RADAR BMC 

2430 

4.45 3.88 8 5 50 <5 4 CCP+RF- y 3(RTX, ETN, ABT) 

RADAR BMC 

4039 

3.03 2.59 4 1 30 <5 3 CCP-RF+ n 1 (ETN) 

RADAR BMC 

5021 

2.32 1.17 0 4 9 <5 2 CCP- RF+ n 2 (ADA, GOL) 

RADAR BMC 

4013  

4.03 4.65 4 1 50 13.9 38 CCP-RF- y 1 (ADA) 

RADAR BMC 

3329 

- - - - - - - - - - 

RADAR BMC 

3982 

4.74 4.74 10 2 74 <5 9 CCP- RF+ n 2 (ETN, RTX) 

RADAR BMC 

2067 

6.53 5.82 26 5 70 21 7 CCP- RF- n 2 (IFX, RTX) 

RADAR BMC 

3407 

3.94 4.31 5 2 60 9.9 8 CCP+RF+ y 3 (ADA,TCZ,RTX) 

RADAR BMC 

3351 

2.35 3.34 2 1 5 <5 23 CCP+ RF+ y 1 (ADA) 

RADAR BMC 

3208 

4.86 4.29 12 2 70 <5 4 CCP-RF- n 1 (ADA) 

RADAR BMC 

407 

2.87 3.01 1 4 15 <5 11 CCP+RF+ n 3 (RXT, ETN, TCZ) 

RADAR BMC 

4045 

6.72 7.18 28 2 90 23 39 CCP+RF- n - 

RADAR BMC 

424 

5.58 4.81 19 6 65 <5 3 CCP+RF+ n 4 (ETN, RTX,ABT,TCZ) 

RADAR BMC 

5017 

2.31 3.43 1 2 10 < 5 28 CCP+ RF+ DsDNA+ n - 

RADAR BMC 

2415 

5.01 4.02 8 2 56 35 6 CCP+RF- n 2 (IFX, GOL) 
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RADAR BMC 

2047 

5.19 5.02 16 6 52 <5 7 CCP+RF+ n 2 (IFX, RTX) 

RADAR BMC 

2711 

5.39 5.62 13 4 65 12.6 21 CCP+RF+ y 7 (ETN, ADA,RTX,TCZ,ABT,CTZ,TOFA) 

RADAR BMC 

1826 

- - - - - - - - - - 

RADAR BMC 

820 

4.01 4.32 2 1 75 12.2 23 CCP-RF- n 4 (ADA, RTX, TCZ, CTZ) 

RADAR BMC 

50 

4.99 3.43 10 3 85 <5 1 CCP+RF- y 3 (ETN,RTX,TCZ) 

RADAR BMC 

5020 

3.35 3.55 3 0 60 < 5 2 CCP+ RF+ n - 
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Appendix D 

Barcoded batches 1 -10 

Barcode batch 1 

Sample Identifier Barcode  

RADAR BMC 5014 27.2.2018 1 

RADAR BMC 5014 10.7.2018 2 

RADAR BMC 770 5.6.2018 3 

RADAR BMC 770 29.8.2018 4 

RADAR BMC 3948 17.3.2018 5 

RADAR BMC 3948 16.8.2018 6 

RADAR BMC 805 27.2.18 7 

RADAR BMC 805 10.7.18 8 

RADAR BMC 820 10.7.18 9 

RADAR BMC 820 30.10.18 10 

RADAR BMC 407 30.5.18 11 

RADAR BMC 407 3.8.18 12 

RADAR BMC 407 24.10.18 13 

RADAR BMC 074 27.2.18 14 

RADAR BMC 074 19.6.18 15 

RADAR BMC 074 20.9.18 16 

RADAR BMC 3861 healthy 17 

RADAR BMC 4264 10.7.18 18 

RADAR BMC 4275 17.7.18 

healthy 

19 

Batch control  20 

 

Barcode batch 2 

Sample Identifier Barcode  

RADAR BMC 4100 14.3.18 1 
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RADAR BMC 4100 10.4.18 2 

RADAR BMC 4100 29.8.18 3 

RADAR BMC 3208 20.3.18 4 

RADAR BMC 3208 31.7.18 5 

RADAR BMC 3208 16.10.18 6 

RADAR BMC 5009 20.3.18 7 

RADAR BMC 5009 10.7.18 8 

RADAR BMC 3449 14.8.18 9 

RADAR BMC 3449 24.8.18 10 

RADAR BMC 3449 SFMCs 

24.8.18 

11 

RADAR BMC 907 19.6.18 12 

RADAR BMC 907 19.9.18 13 

RADAR BMC 072 1.6.18 14 

RADAR BMC 072 2.10.18 15 

RADAR BMC 4266 16 

RADAR BMC 3982 17 

RADAR BMC 4283 healthy 18 

RADAR BMC 4284 healthy 19 

Batch control  20 

 

Barcode batch 3 

Sample Identifier Barcode  

RADAR BMC 3351 27.3.18 1 

RADAR BMC 3351 16.10.18 2 

RADAR BMC 4039 2.3.18 3 

RADAR BMC 4039 24.7.18 4 

RADAR BMC 4039 10.10.18 5 

RADAR BMC 5020 11.4.18 6 

RADAR BMC 5020 14.8.18 7 

RADAR BMC 5020 16.11.18 8 

RADAR BMC 5021 5.6.18 9 

RADAR BMC 5021 10.10.18 10 
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RADAR BMC 3407 6.7.18 11 

RADAR BMC 3407 16.10.18 12 

RADAR BMC 5016 2.3.18 13 

RADAR BMC 5016 17.7.18 14 

RADAR BMC 5016 10.10.18 15 

RADAR BMC 2430 10.4.18 16 

RADAR BMC 2430 10.10.18 17 

RADAR BMC 4265 healthy 

10.7.18 

18 

RADAR BMC 4276 healthy 

17.7.18 

19 

Batch control  20 

 

Barcode batch 4 

Sample Identifier Barcode  

RADAR BMC 5017 19.3.18 1 

RADAR BMC 5017 30.10.18 2 

RADAR BMC 3593 17.4.18 3 

RADAR BMC 3593 19.9.18 4 

RADAR BMC 2415 20.4.18 5 

RADAR BMC 2415 14.8.18 6 

RADAR BMC 2415 30.10.18 7 

RADAR BMC 926 9.5.18 8 

RADAR BMC 926 4.9.18 9 

RADAR BMC 2914 24.4.18 10 

RADAR BMC 2914 11.9.18 11 

RADAR BMC 3896 5.6.18 12 

RADAR BMC 3896 2.10.18 13 

RADAR BMC 2047 17.7.18 14 

RADAR BMC 2047 30.10.18 15 

BLANK 16 

BLANK  17 

RADAR BMC  4269 healthy 

11.7.18 

18 
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RADAR BMC 4270 healthy 

11.7.18  

19 

Batch control  20 

 

Barcode batch 5 

Sample Identifier Barcode  

RADAR 4153 1.3.18 1 

RADAR 4154 1.3.18 2 

RADAR 3846 25.4.18 3 

RADAR 5015 1.3.18 4 

RADAR 4123 25.4.18 5 

RADAR BMC 1808 21.2.18 6 

RADAR BMC 246 21.2.18 7 

RADAR BMC 2067 16.10.18 8 

RADAR 4302 12.9.18 9 

RADAR 4333 31.10.18 10 

RADAR 4334 31.10.18 11 

RADAR 4331 31.10.18 12 

NHS CCP 590 3.9.18 13 

NHS CCP 188 3.9.18 14 

RADAR BMC 3538 7.3.18 15 

RADAR BMC 1158 18.7.18 16 

RADAR BMC 5022 16.8.18 17 

RADAR BMC 4274 healthy 

17.7.18 

18 

RADAR BMC 3861 17.7.18 19 

Batch control  20 

 

Barcode batch 6 

Sample Identifier Barcode  

RADAR 4195 25.4.18 1 

RADAR 4196 9.5.18 2 

RADAR  4202 9.5.18 3 
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RADAR  4209 23.5.18 4 

RADAR  3709 23.5.18 5 

RADAR BMC 5013 21.2.18 6 

RADAR BMC 1826 30.10.18 7 

RADAR BMC 50 6.11.18 8 

RADAR BMC 2760 19.6.18 9 

RADAR BMC 1963 17.7.18 10 

RADAR BMC 3105 17.7.18 11 

RADAR BMC 3562 4.7.18 12 

RADAR BMC 453 24.7.18 13 

RADAR BMC 4086 14.8.18 14 

RADAR BMC 1746 21.8.18 15 

RADAR BMC 1431 30.8.18 16 

RADAR BMC 2514 25.9.18 17 

RADAR BMC 4268 healthy 

11.7.18 

18 

RADAR BMC 4281 healthy 

17.7.18 

19 

Batch control  20 

 

Barcode batch 7 

Sample Identifier Barcode  

RADAR 4212 23.5.18 1 

RADAR 4217 23.5.18 2 

RADAR 4219 6.6.18 3 

RADAR 3549 6.6.18 4 

RADAR 3863 20.6.18 5 

RADAR 2241 31.7.18 6 

RADAR BMC 3588 1.8.18 7 

RADAR BMC 2878 14.8.18 8 

RADAR BMC 1020 19.9.18 9 

RADAR BMC 3887 19.9.18 10 

RADAR 4312 20.9.18 11 

RADAR BMC 180 19.9.18 12 
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RADAR BMC 1740 25.9.18 13 

RADAR BMC 4045 25.10.18 14 

RADAR BMC 1044 7.3.18 15 

RADAR BMC 1996 7.3.18 16 

RADAR BMC 4266 healthy 

10.7.18 

17 

RADAR BMC 4271 healthy 

12.7.18  

18 

RADAR BMC 4263 healthy 

10.7.18 

19 

Batch control  20 

 

Barcode batch 8 

Sample Identifier Barcode  

RADAR 4226 20.6.18  1 

RADAR 4233 20.6.18  2 

RADAR 4227 20.6.18 3 

RADAR 3967 20.6.18 4 

RADAR 3939 20.6.18 5 

BLANK 6 

RADAR BMC 2711 30.10.18 7 

RADAR BMC 3726 .11.18 8 

RADAR BMC 3051 7.3.18 9 

RADAR BMC 345 14.3.18 10 

RADAR BMC 3565 25.9.18 11 

RADAR BMC 4033 31.7.18 12 

RADAR BMC 579 31.7.18 13 

RADAR BMC 2518 31.7.18 14 

RADAR BMC 3046 7.8.18 15 

RADAR BMC 4185 22.3.18 16 

RADAR BMC 874 25.9.18 17 

RADAR BMC 4273 healthy 

12.7.18 

18 

RADAR BMC 3849 healthy 

17.7.18  

19 
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Batch control  20 

 

Barcode batch 9 

Sample Identifier Barcode  

RADAR 4225 20.6.18 1 

RADAR 4228 28.6.18 2 

RADAR 4229 28.6.18 3 

RADAR 4230 4.7.18 4 

RADAR 3968 18.7.18 5 

RADAR 3611 18.7.18 6 

RADAR 4247 18.7.18 7 

RADAR BMC 4043 5.9.18 8 

RADAR BMC 5007 20.3.18  9 

RADAR BMC 2888 18.6.18 10 

RADAR BMC 2576 19.6.18 11 

RADAR BMC 4078 27.2.18 12 

RADAR BMC 3024 14.3.18 13 

RADAR BMC 4079 5.6.18 14 

RADAR BMC 424 28.10.18 15 

RADAR BMC 4013 10.10.18 16 

RADAR BMC 2742 8.10.18 17 

RADAR BMC 4267 healthy 

11.7.18 

18 

RADAR BMC 4262 healthy 

12.7.18  

19 

Batch control  20 

 

Barcode batch 10 

Sample Identifier Barcode  

RADAR BMC 4285 SFMCs 

30.7.18 

1 

RADAR BMC 4285 blood 

30.7.18  

2 

RADAR BMC 5023 SFMCs 

23.7.18  

3 
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RADAR BMC 5023 blood 

23.7.18 

4 

RADAR BMC 4288 SFMCs 

30.7.18  

5 

RADAR BMC 4288 blood 

6.8.18  

6 

RADAR BMC 4184 SFMCs 

22.3.18  

7 

TECSPA 27.2.18  8 

RADAR BMC 3329 SFMCs 

12.10.18 

9 

RADAR BMC 4310 SFMCs 

3.9.18 

10 

SF01 9.7.18  11 

SF02 9.7.18  12 

RADAR BMC 4171 SFMCs 

24.7.18 

13 

RADAR BMC 4238 SFMCs 

21.6.18 

14 

RADAR BMC 4237 blood 

21.6.18 

15 

RADAR BMC 2624 blood 

21.6.18 

16 

RADAR BMC 4182 blood 

20.3.18 

17 

RADAR BMC 4272 healthy 

12.7.18 

18 

RADAR BMC 4282 healthy 

10.7.18 

19 

Batch control  20 

 


