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1. The first chapter consists of a general introduction and background provided for each result 

section of the thesis.  
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Abstract 
 

Advances in TRIB1 protein research reveal its potential as a biomarker for various disease 

diagnoses, including cancer and atherosclerosis. TRIB1 is also known as  highly unstable transcript 

with a half-life of less than one hour, making its functional regulatory network study difficult and 

therefore, remains unexplored. The first part of thesis focused on understanding the regulatory 

network of TRIB1. In 28 different cancer datasets coexpression analysis, revealed  approximately 65% 

of genes coexpressed with TRIB1 belong to the immediate-early response (IER) gene family. EGR1 and 

FOS known IER genes were present in the coexpression module in 18/28 datasests. Furthermore in-

vitro analysis suggested a relationship between EGR1, FOS and TRIB1. RNA-seq analysis from early 

response gene stimulated TRIB1 OE prostate cancer and control (DU145) at different time-points 

showed effects on many of the coexpressed IER genes, Differentially expressed genes were involved 

in cell signaling, cell proliferation and apoptosis. Further suggested, TRIB1 could be responsible for 

activating genes involved in several different cellular pathways, particularly the IER pathway 

andTRIB1 as a member of the early response gene family,  

Further study focused on understanding the post-transcriptional regulation of TRIB1 by 

identifying variants in the 3’ UTR and their effect on miRNA binding sites The results suggests that 

variants in 3’ UTR of TRIB1 are responsible in creating new miRNA binding sites, but they were not 

linked to the allele-specific expression, as would be expected if they were regulatory. The potential 

reasons being expression pattern of TRIB1: TRIB1 expression follows an IER pattern and degrades 

after one hour of cell-stress condition. In addition, novel binding sites for miRNAs generated in the 

TRIB1 UTR as variants are not mostly expressed in unstimulated and M1-like macrophages (LPS+ifg 

treated). We do however identify multiple other cases of gene variants in the 3’ UTR displaying allelic 

imbalance in their expression.  

Further study focused on understanding the role of miRNAs in macrophage polarization, nine 

hub miRNAs found to play an important role. For further validation, the expression of miR-125a-3p 

and miR-186-5p, with positive 13 control miR-155-5p were stimulated in unstimulated macrophages. 

RNA-seq analysis from miRNAs experiments reveals that target genes of miR-186-5p were more 

downregulated than the non-target ones unlike miR-125a-3p. The alternative polyadenylation 

analysis shows the unchanged length of 3’ UTR of target genes of miR-125a-3p between unstimulated 

and M1-like macrophages; stating no evidence of alternative polyadenylation phenomenon for miR-

125a-3p target genes and miR-125a3p has less impact on degrading its target genes.  

Together these results shows that TRIB1 could a part of IER response gene network or TRIB1 

is regulated by IER genes which in turn regulates the genes involved in cell-signaling, cell polarization 
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pathways. Next, variants in 3’ UTR of TRIB1 are not linked to ASE, however, they are responsible in 

altering miRNA binding sites. That could be the reason of changes in expression level of TRIB1 in 

different cell-type. However, this needs to be investigated further. Furthermore, not all differentially 

expressed miRNAs between unstimulated and M1-like macrophages are important in macrophage 

polarization but the subset of those miRNAs i.e., nine (hub) miRNA plays an important role in 

macrophage polarization. 
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Chapter 1 

Introduction 
 

The central dogma of biology has long been commonly known as DNA → RNA → Protein, a 

two-steps process involing transcription and translation. Transcription is the conversion of genetic 

information stored as DNA into RNA, with the maturation of messenger RNA (mRNA) transcripts being 

the most definitory stage of transcription. Translation is the production of the final and functional  

protein product from RNA, during which the ribosome scans the mRNA and uses transfer RNAs 

(tRNAs) to generate long peptide chains (Atkinson and Halfon 2014). (Figure 1.1) Moreover, the 

process of passing information from genes to proteins is responsible for an individual's phenotype 

(Alberts et al. 2017), and the complexity of gene regulation increases from single cellular to 

multicellular organisms (Vinogradov and Anatskaya 2007). 

 

 

 

Figure1. 1- Gene expression. DNA molecule is processed by RNA-polymerase II to 
generate pre-mRNA (Transcription). The pre-mRNA further undergoes various steps of 
adding poly A tail,5’ capping and finally splicing to remove introns. mRNA molecule is 
exported to cytoplasm from nucleus. mRNA molecule is read by ribosome to produce 
polypeptide chain known as protein (Translation) (Created with BioRender.com). 
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Regulation of gene expression has been found to occur during both transcription and 

translation, with mRNA transcripts containing binding sites for many regulatory elements, such as 

microRNAs (miRNAs) and RNA binding proteins (RBPs), which can regulate transcripts’ translation, 

localization and stability, alike. What is more, changes in DNA sequences enhance genetic variation, 

can generate single nucleotide polymorphisms (SNPs) and can lead to the destruction or creation of 

miRNA binding sites. These can ultimately result in differences in gene expression, which has been 

associated with numerous diseases, including immunity-related conditions and cancer.  

Thus, both miRNA and variant analyses are important for the study of the genetic architecture 

of complex traits. In addition, co-expression network analysis identifies interactions between genes 

at both genetic and protein levels (described in more detail in Section 1.6), and it can enable the 

understanding of specific genetic pathways directly involved with particular phenotypes and/or 

conditions. What is more, the use of all these analyses for the investigation of individual genes could 

help improve our knowledge on poorly-studied transcripts and/or genes. For example, Trib1 is a 

pseudo-kinase protein that has been found to be involved in macrophage polarization and 

differentiation, but very little is yet known about it’s cellular demand, regulation and expression.  

The aims of this PhD project are 1) to investigate the genomic characteristics and regulation 

network of Trib1;  2) to investigate the effects of SNPs in 3’UTR of TRIB1 on miRNA binding sites and 

their correlation with potential allelic imbalance in TRIB1, as well as at whole-genome scale; and 3) 

to study the role of miRNAs and their expression in macrophage differentiation. 

1.1 Transcription 

Transcription is the first step of gene regulation and although it has been found to be more 

complex in eukaryotes compared to prokaryotes, the process is divided into three well-defined 

stages: initiation, elongation, and termination. The initiation process begins with the binding of 

transcription factors (TFs) to the promoter region, which has a consensus sequence that occurs across 

different genes, which is recognized by TFs. Before initiation can take place, a pre-initiation complex 

(PIC) must form on the promoter and this is composed of the RNA Polymerase II and the well-known 

general TFs: TF-IIA, TF-IIB, TF-IID. (Figure 1.1) (Cooper and Hausman 2007) 

After the PIC is formed, the RNA-polymerase II is activated through phosphorylation to start 

the elongation step, after which other TFs such as DSIF, TFEb, and TF-IIS guide the RNA polymerase, 

thus starting the synthesis of the pre-mRNA from 5’ to 3’ direction. This is completed by adding 

ribonucleoside monophosphate residues to the free hydroxyl group at the 3’ end of the elongated 

RNA chain. After elongation, the CPSF (Cleavage and polyadenylation specificity factor) binds the pre-

mRNA at the poly-A (AAUAAA) region and recruits the CstF (cleavage and stimulation factor), which 

binds the U/GU rich region downstream of poly-A signals. CPSF and CstF interact with each other and 
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lead to the cleavage of the fully-matured mRNA. Further on, the XRN-2nuclear enzyme degrades the 

nascent mRNA to stop Pol II from synthesizing mRNA further, and thus, transcription is terminated. 

(Figure 1.1) ) (Cooper and Hausman 2007). 

1.1.1 RNA processing 

When transcribed, an intermediary RNA known as pre-messenger RNA (pre-mRNA) is formed, 

which undergoes a series of processing steps, including splicing, 5’ capping, and 3’ polyadenylation. 

Splicing is mediated by the RNA-protein complex known as the spliceosome, which recognizes exons 

and introns' boundaries. Introns are further removed by endonucleolytic activity, and exons are 

joined together to form the mature mRNA. Studies have shown that transcription does not generate 

only one mRNA for each gene, as there are, for example, more than 75,000 mRNA encoded by 20,000 

genes in the mouse genome annotation (GRCm38.p4). The process of producing multiple mRNA 

isoforms for the same gene is controlled by alternative splicing (AS) events, resulting in a different 

number of exons being included in the final mRNAs (Xu et al. 2014).  

Furthermore, mRNA processing involves 5’ capping, during which the terminal phosphate of 

the nucleotide from the transcript is removed, and guanosine triphosphate (GTP) is added at the 5’ 

end, consisting of 7-methyl guanosine or 7 mG, a structure called 5’ cap. Next, adenine residues (poly-

A) are added to the 3’ end of the transcript. 5’ capping and poly-A tail facilitate the transfer of mRNA 

to the cytoplasm from the nucleus, and are also responsible for mRNA stability, as well as assisting in 

mRNA recognition by the translation machinery. Similarly, mRNA stability, transport and expression 

are regulated through miRNAs and RBPs, which can bind transcripts at different efficiencies and lead 

to variations in gene expression. (Wise and Lou 2021)  

1.2 MicroRNAs (miRNA) 

miRNAs are short, genome-derived non-coding RNAs with a role in regulating gene 

expression in different conditions, such as stress, infection, development etc. More than 1800 miRNA 

sequences have been identified in humans since the first discovery of lin-4 in Caenorhabditis elegans 

in 1993 (Hicks and Middleton 2016). Most of these regulatory elements bind to miRNA binding sites 

in the 3’ untranslated region (3’UTR), but miRNA target binding sites have also been identified in the 

5’UTRs and coding regions, although they are less effective than in 3’UTRs (Fang and Rajewsky 2011). 

The following sections will present an overview on the canonical pathway of miRNA biogenesis and a 

description of miRNA mechanism of action, particularly in regulating gene expression. 

1.2.1 miRNA biogenesis 

The biogenesis of a miRNA starts with the transcription of a primary miRNA (pri-miRNA), 

which is transcribed by RNA Pol II in the nucleus and then processed by the Drosha-DGCR8 complex 

that cleaves the pri-mRNA (of 100-120 nt), releases its hairpin structures, and converts it into a pre-
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miRNA (70-80 nt long). The pre-miRNA is transported to the cytoplasm by Exporting-5 enzymes, 

where it is further processed by the Dicer-TRBP complex to double-stranded miRNA aka 

miRNA:miRNA star duplex (15-25 nt long). The miRNA duplex further pairs with RISC (RNA 

interference silencing complex), which contains argonaute protein, RNA-activator, RNA binding 

protein (TRBP) and DICER. Argonaute protein has two domains PIWI, which can break the RNA strand, 

and PAZ – the RNA-binding domain, which binds to the 3’ end of the guide strand of the miRNA 

duplex. The PIWI domain cleaves the other strand known as the passenger strand, further degrading 

it during the RNA-induced silencing complex process. (O’Brien et al. 2018) (Figure 1.2) 

 

 

1.2.2 Gene regulation by miRNAs 

 Target recognition by miRNAs has been shown to be primarily focused on the pairing with 

the “seed” region of a binding site within the 3’UTR of a gene, which can vary in length, between 2–

7 nucleotides and is usually binding the 5’ end of the miRNA on the guide strand, ultimately inducing 

translation repression, mRNA deadenylation, and decapping (Huntzinger and Izaurralde 2011). Once 

target sites are identified, RISC recruits GW182, which in turn recruits other proteins, such as poly(A)-

Figure1. 2- miRNA biogenesis pathway. miRNA is transcribed by Pol II into pri-miRNA and it is 
further processed by DROSHA/DGCR8 complex to generate pre-miRNA. Pre-miRNA is exported 
from nucleus to cytoplasm by the export 5 enzyme (XP05 and RanGTP).  Further, DICER in complex 
with TRBP crops the hair loop structure of miRNAs and miRNA:miRNA* duplex is generated (~20-
25 nt). Duplex miRNA is loaded in RISC complex with argonute protein. RISC cleaves the passenger 
strand, which is further degraded by RISC complex. The guide strand pairs with the target mRNA to 
induce translation repression, deadenylation and decapping of target genes. (Created with 
BioRender.com).  
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deadenylase complexes PAN2-PAN3 and CCR4-NOT (Christie et al. 2013; Jonas and Izaurralde 2015). 

GW182 further interacts with PABP – a poly-A binding protein present on the poly-A tail of the target 

genes (O’Brien et al. 2018), while PAN2-PAN3 initiates the poly(A) deadenylation of the target genes 

until PABP can no longer bind. Subsequently, remaining adenine residues in the “terminal 

deadenylation” are removed by CCR4-NOT (Jonas and Izaurralde 2015), which triggers rapid mRNA 

degradation. The decapping of target genes is processed by the decapping protein 2 (DCP2) and 

associated proteins. It is then followed by the degradation of a target gene from 5’ to 3’ by the enzyme 

exoribonuclease 1(O’Brien et al. 2018) (Figure 1.3).  

 

 

1.3 Bioinformatics tools for identification of miRNA targets 

Although the regulation and impact of miRNAs on their targets have been well documented, 

their exact targeting mechanism has not yet been fully elucidated. For example, how RISC elements 

are recruited and how they interact to silence a target gene remains unknown. One way of studying 

the role of miRNAs in gene regulation is by studying the expression of both miRNAs and of their target 

genes. In this sense, recent advancements in next-generation sequencing technologies have proven 

Figure1. 3- Gene regulation by miRNAs. a) target mRNA in close loop conformation formed by the 
interaction of cytoplasmic poly(A) with eukaryotic translation initiation factor 4F, which is further bound to 
eukaryotic cap binding protein (elF4E). b) The guide strand of miRNA partially binds the 3’ UTR of mRNA, 
where RISC factor recruits GW182 that interacts with AGO.  c) RRM motif of GW182 protein then interacts 
with PABMC and PAN2-AN3 complex, starting deadenylation, d) which is continued by CCR4-NOT complex. 
e) This is followed by the decapping of target genes via decapping protein 2 (DCP2) and f) target mRNA 
degradation by XRN1 protein (Created with BioRender.com) 
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useful in capturing expression profiles with greater sensitivity, even for the lowest expressed genes 

and/or miRNAs. However, one of the most challenging and important aspect remains the 

identification of the bona fide mRNA targets of miRNAs, which needs to be carefully considered. 

In the last ten years, numerous efforts have been made to improve miRNAs' target 

identification, but only a few of these have been experimentally validated. One reason for this 

drawback is the imperfect sequence complementarity between miRNAs and their targets, leading to 

incorrect identification of hundreds of genes bound by each miRNA, most of which have been later 

found to be false positives (not true targets) (Martin et al. 2014). However, available prediction 

algorithms have been developed to address this issue by applying stringent thresholds, such as using 

conserved miRNAs across the species, the thermodynamics stability of mRNA-miRNA interaction 

(Grimson et al. 2013) and seed pairing stability (Garcia et al. 2010), most importantly miRNA binding 

position in the 3’ UTR of target genes (Grimson et al. 2013). 

a)  miRanda algorithm 

miRanda was one of the first algorithms applied for the identification of miRNA targets in  D. 

melanogaster and it was later used on the Homo sapiens genome (Enright et al. 2003). miRanda is 

based on local alignment, an adaptation of the Smith-Waterman algorithm to match the miRNA 

sequence at the 3’UTR of the target. It also uses an alignment scoring matrix for assigning scores and 

penalties for each base complementarity. miRanda also implements the Vienna package for 

calculating the thermodynamics folding energy of the interaction between miRNAs and the UTR 

(Lorenz et al. 2011). The overall false-positive rate for this algorithm was estimated at 24%, and it 

proved efficient in identifying 9 out of 10 currently characterized target genes (Min and Yoon 2010). 

b) TargetScan 

 TargeScan was developed by Bartel and Burge labs at MIT in 2003, being the first algorithm 

to predict miRNA targets in vertebrates (Lewis et al. 2003). It requires a perfect seed complementarity 

between at least 6-mers of the seed sequence and 3’UTR of the target gene and its output is based 

on the predicted efficiency of targeting (context + scores) and the probability of conserved targeting 

(PCT). Thus, target conservation is first determined, followed by specific k-mer (6-mer,8-mer, 7-mer-

1A) analysis. However, a 3’ UTR can have multiple target sites; hence, the probability of conserved 

targeting (PCT) is aggregated (Riffo-Campos, Riquelme, and Brebi-Mieville 2016) and the probability 

of a given target being effectively bound is shown in a context+ score format. Context+ score is also 

based on local AU content (i.e. the AU content of a transcript), 30 nt upstream and downstream of 

the predicted site, position contribution (i.e. the distance to the nearest end of an annotated target 

UTR), the 3’ pairing with the seed sequence and the miRNA-target complementarity outside the seed 
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sequence (Grimson et al. 2007). The false-positive rate for TargetScan was estimated between 21% 

and 31% (Agarwal et al. 2015). 

c) PicTar 

PicTar was developed by Rajewsky’s group in 2005 (Krek et al. 2005) and compared to 

miRanda and TargetScan, it focused mainly on 7nt long sequences as seed sequences, starting from 

position 1 or 2 of the 5’ end of a miRNA. It also allows one mismatch, one deletion, or one insertion 

for base pairing between miRNAs and 3’ UTR  of the target gene. The algorithm starts by retaining all 

targets conserved across species, followed by a calculation of the free energy for the entire 

miRNA:mRNA duplex, after which the target sites are filtered based on a free energy threshold 

provided. Lastly, the PicTar score – a maximum likelihood score is computed from the hidden Markov 

Model (HMM). This algorithm has not been updated since its development, but it has proven efficient 

in identifying true miRNA targets, with a false positive rate of about 30% (Min and Yoon 2010).  

In addition to above several other miRNA prediction tools or webservers are available to 

identify miRNA target genes such as miRanalyzer (Hackenberg et al. 2009), Sylamer (van Dongen, 

Abreu-Goodger, and Enright 2008), Co-expression Meta-analysis of miRNA Targets (CoMeTa) 

(Gennarino et al. 2012), miRTarCLIP (Wang et al. 2013),TarPmiR (Ding, Li, and Hu 2016). 

For the purpose of this project we implemented widely used algorthims such as miRanda and 

TargetScan algorithm. 

1.4 Regulatory genetic variation  

The differences in DNA sequences within the genomes of different individuals of the same 

species are known as genetic variations (Ku et al. 2010). These, together with variations in gene 

expression can be associated with disease onset, progress and severity, hence understanding the 

correlation between gene expression and gene variants can improve our knowledge on the genetic 

architecture of complex traits. Generally, it has been observed that most genetic variations have little-

to-no impact on any disease or trait, with many neutral mutation changes in DNA sequences not 

affecting an organism ‘s chance of survival or fitness.  

A silent mutation is a change in DNA sequence without a subsequent change in the amino 

acid, but some of the resulting transcript variants may lead to disease, such as in the cases of 

melanoma (Gartner et al. 2013) , schizophrenia (Duan et al. 2003). In contrast, certain variants may 

provide a positive advantage in changing environments: for example, CCR5 gene – the primary co-

receptor used by HIV envelope protein gp120 sequentially with CD4, located on chromosome 3 carry 

the Δ32 mutation (Galvani and Slatkin 2003), which was found to be responsible for generating a 

premature stop codon that produces a non-functional protein (Ni, Wang, and Wang 2018). Individuals 

homozygous for this mutation (with a Δ32/ Δ32 allele) in CCR5 show no expression of this protein on 
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T-cell receptors. This leads to a loss in the target/binding site of HIV glycoprotein 41 on the T-cell 

receptor, making these individuals resistant to HIV1 infection (Lopalco 2010).     

1.4.1 Genetic variants in microRNA (miRNA) binding sites 

Due to the specificity of miRNA binding on mRNAs, introducing a single SNP in the 3’UTR of 

its target may lead to functional changes. For example, SNPs in the seed sequence can either 

completely remove existing miRNA binding sites, or can create novel ones, ultimately affecting gene 

expression. More than that, SNPs in the seed sequence may also affect the efficiency of miRNA and 

mRNA pairing, which in turn may increase or decrease post-transcriptional regulation of target genes. 

Given the number of SNPs in Homo sapiens, it comes as no surprise that SNPs in the seed sequence 

of miRNA binding sites have shown an effect on protein expression and its association to disease.  

1.4.2 SNPs in the seed sequence and the creation of miRNA binding sites 

Numerous SNPs in seed sequences of miRNA binding sites have been found to be responsible 

for creating new binding sites. For example, Clop et al. found that a variant in the 3’ UTR of GDF8  in 

sheep presented a point position from G to A and thus created a new binding site for mir-1 and mir-

206. These, in turn, reduced the GDF8 gene expression, leading to Muscle Hypertrophy (Clop et al. 

2006). Similarly, studies have shown an A>C SNP (rs4245739) in the Mdm4 3’ UTR, where C in the 

minor allele created a new binding sites for miR-191 and/or miR-887-3p, which ultimately led to a 

decreased protein expression (Che, Shao, and Li 2014; Lin et al. 2014; Yang et al. 2017). This was 

particularly important, as overexpression of Mdm4 was previously associated with cancer 

development, by negatively regulating the p53 tumor suppressor protein (Wade, Wang, and Wahl 

2010).   

Another example of variation in tumour suppressor proteins is the identification of two 

isoforms of TP63: TAp63 and ΔNp63, which result from alternative splicing and the use of different 

promoters(Westfall and Pietenpol 2004). TP63: TAp63 was shown to be a tumour suppressor, while 

ΔNp63 an oncogene (Park et al. 2013). A study from Wang et al. identified a C>T SNP (rs35592567) in 

the 3’UTR of ΔNp63 that created a binding site for miR-140-5p, which decreased protein levels and 

thus lowered the risk of bladder cancer  (Wang et al. 2016).  

APOC3 gene encodes for C3 protein that is involved in triglyceride metabolism along with 

lipoprotein lipase (LPL) and apolipoprotein C2 (APOC2) (Hu et al. 2016), and the overexpression of C3 

was found to increase the risk of coronary heart disease (CHD). However, individuals with a G>T SNP 

(rs4225 ) in the 3’ UTR of the APOC3 gene showed a decrease in the risk of CHD and further 

investigation revealed that  a T on the minor allele created a miRNA binding site for miR-4271, leading 

to decreased translation of APOC3  (Caussy et al. 2014; Hu et al. 2016). 
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1.4.3 SNPs in the seed sequence and the loss of existing miRNA binding sites 

Numerous SNPs in seed sequences of miRNA binding sites have also been shown destroy 

already-existing binding sites. For example, a A T>C SNP (rs10719) in the Drosha 3’ UTR, located close 

to the binding site of miR-27b, affected the pairing efficiency of miR-27b and the Drosha transcript, 

which increased its expression (Yuan et al. 2013). The Drosha enzyme plays an essential role in miRNA 

biogenesis: it cleaves the pri-miRNA and liberates the hairpin structure, converting it into pre-miRNA 

and its overexpression was found to increase the risk of bladder cancer (Zhang et al. 2015).  

Another well-known example of SNPs degrading miRNA binding sites was found in Cluster of 

Differentiation 86 (CD86 or B7-2), which is present on the surface of antigen-presenting cells and acts 

as a key mediator of T-cell identity (Geng et al. 2014). It plays an essential role in autoimmunity, 

transplantation, tumour immunity, and it was found to lead to dysfunctional immune cell populations 

when expressed at high levels. Such variations in CD86 were are also proven responsible for T-cell 

deactivation, unresponsiveness to tumour cells, and increasing the production of the pro-

inflammatory cytokine interleukin 4 (IL4), which was associated with high risk of colorectal cancer 

(Kwasniak et al. 2019). A G>C SNP (rs17281995) in the 3’ UTR of CD86 was predicted to disrupt five 

miRNA binding sites, out of which miR-582 was found to be less efficient in binding to the minor allele, 

leading to an increase of CD86 expression levels (Geng et al. 2014).  

Similarly, the HIF-1α protein, encoded by the HIF1A gene, is a transcriptional factor activated 

in response to oxygen deprivation and influences cell metabolism and cell survival, and it plays an 

important role in ischemic diseases and tumour angiogenesis. The SNP (rs2057482) T>C in 3’UTR of 

HIF1A was found to reduce the binding efficiency of miR-199a, thus increasing its gene expression. 

More than that, pancreatic ductal adenocarcinoma patients with a CC (alternate) genotype in  HIF1A 

were observed to have larger tumour sizes, followed by those with heterozygous CT and homozygous 

TT genotypes (Guo et al. 2015). 

Another representative example is the T>C SNP (rs4937333) detected in the 3’UTR of EST1, 

which impaired the binding of miR-5003-3p, enhances the differentiation of B cells into plasma cells 

(Zhang et al. 2019). This was particularly important, as aberrant innate immune responses 

dysregulate cytokine production, and aberrant activation of B cell differentiation into plasma cells 

plays an important in the pathogenesis of Systemic lupus erythematosus (SLE, or lupus)  (Choi, Kim, 

and Craft 2012). A Genome-wide association study (GWAS) has identified genetic alterations in many 

genes associated with SLE (Mohan and Putterman 2015), with EST1 being one of the most 

preponderant one, which was found to be responsible for reducing peripheral blood mononuclear 

cells (PBMCs) in SLE patients (Yang et al. 2010).  
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1.5 Bioinformatics tools for detection of regulatory variants 

As described above, detecting SNPs and/or transcript variants with regulatory potential is 

useful in accurately associating specific genes and their expression with particular disease or 

phenotypes. Different strategies have been developed in this sense, with identification of expression 

quantitative trait loci aka eQTL being a widely used method for studying the impact of variation within 

a genomic region on transcript regulation (Figure 1.4). An eQTL identifies the loci that affect the 

expression level of mRNA, by studing the genomic variants and transcriptomic data from the same  

 

individual (Jung et al. 2020). One of the first studies performed by Goring et al. in 2007, using 

peripheral blood lymphocytes, identified an eQTL located in the promoter region of the vanin1 

(VNN1) gene, which was found to influence high-density lipoprotein (HDL) cholesterol 

concentrations. This study demonstrates the use of eQTL for associating a potential gene with an 

affected human traits (Göring et al. 2007).  

eQTLs are divided into two types: cis-eQTL or local eQTLs, in which a genetic variant is present 

within one megabase (Mb) from the transcription start site (TSS) of affected genes; and trans-eQTL,  

where a genetic variant is located on a different chromosome or away from the affected genes (Qin, 

Liu, and Xie 2021).  

Cis-eQTLs can regulate gene expression by affecting several steps in the gene expression 

process, including mRNA splicing, TF binding, DNA methylation and miRNA binding. For example, a 

cis-eQTL can be a variant present in the promoter region or enhancer, affecting transcription factor 

binding. A two base pair deletion in the promoter sequence of the ERG28 gene is such an example,  
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Figure1. 4- Example of eQTL. Violin plot showing a linear 
relationship between dependent variable i.e., gene expression on 
y-axis and independent variable i.e. genotype on x-axis, where A is 
a reference allele and G is an alternate allele. The horizontal line 
represents a linear relationship between three genotypes.  
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which reduced the binding affinity of two TFs – SOK2 and MOT3, ultimately decreasing the expression 

of EGR28 in yeast (Chang et al. 2013). Many studies have identified cis-eQTLs across the whole 

genome, such as the one performed by Urmo Vosa et al. on 3186 blood samples, which reported 88% 

of genes (16,989) have an associated cis-eQTL (Võsa et al. 2018). Moreover, GTEx – probably the 

biggest eQTL study to date, reported that 94.4% of protein-coding genes and 67.7% of lincRNA genes 

have at least one cis-eQTL in at least one of 49 tissues (François Aguet, Kristin G. Ardlie 2020).  

Trans-eQTLs are variants located in different genes, but disturbing the expression of multiple 

genes across the chromosomes. What is more, many studies have shown that trans-eQTL can also be 

associated with nearby genes, including with cis-eQTLs. For example, Bryois et al. used 869 

lymphoblastoid cell lines from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort 

and identified cis-eQTLs for TFs BATF3 and HMX2 that disturbed multiple trans-genes across different 

chromosomes  (Bryois et al. 2014). Such eQTLs are called eQTL hotspots, and they are mostly present 

near major regulators or master TFs (Breitling et al. 2008).  

Another example is the trans-SNP rs1215608 located within the NUAK1 gene in skin cells, 

shown to be associated with three different genes MO6P, PPM1F, LECT1. Such trans-SNPs are also 

known as multi-gene regulators  (Grundberg et al. 2012), and unlike cis-eQTLs, these are often 

present across tissues, while trans-eQTLs tend to be cell-specific (Dimas et al. 2009). For example, Raj 

et al. performed eQTL profiling of CD4+ T cells and monocytes derived from blood of 461 individuals 

with ancestry from different continents. They found 32% of cis-eQTLs are specific to monocytes, 8% 

to T cells and 62% were shared between two cell types. In contrast, 482 trans-eQTLs were associated 

with 55 genes specific to monocytes, 31 genes specific to T-cells and only four genes were shared 

between the cell types (Raj et al. 2014). 

Although eQTL analysis can be used to successfully identify variants affecting gene 

expression, it is very expensive, and it requires a large number of samples, ranging from hundreds to 

thousands, as well as matched whole-genome and transcriptome sequencing data. It may be 

challenging to achieve such a large data set, specifically for tissues obtained via surgical procedures 

(e.g. atherosclerosis plaques). It is also worth mentioning that for measuring the genotype and gene 

expression to perform eQTL mapping requires excellent expertise and many in vitro experiments, 

which are also time-consuming.  

1.5.1 Allele-specific expression (ASE) 

 Another approach to identifying the impact of genetic variation on gene expression is allele-

specific expression (ASE). Diploid organisms carry two alleles for each gene, inherited from each 

parent and the expression of these alleles is responsible for an individual's phenotype  (Buckland 

2004). The ratio of expression between the two alleles is usually balanced at 50:50 for an expressed 
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gene, but in few instances it was found that the expression of one allele is relatively higher than that 

of the other, which led to allelic imbalance, also known as differential allelic expression (Maia et al. 

2009) or allele-specific expression  (ASE)  (Liu, Dong, and Li 2018a) (Figure 1.5).  

Unlike traditional eQTL mapping, ASE analysis has greater statistical power for detecting cis' 

genetic elements, even with small sample numbers (Harvey et al. 2015). For example, Liu et al. aimed 

to identify the allele-specific expression responsible for tumour initiation and progression, and they 

used normal and cancer tissue samples from 59 individuals with Colorectal Cancer (CRC). They 

identified 50 tumor-specific ASEs that contributed to the somatic events in the genes' regulatory 

regions and in significantly enriched cancer-driving genes. This study demonstrates that allele-specific 

expression events can be captured with relatively few samples (Liu, Dong, and Li 2018b).1 

  

In the past decade, there has been a consistent progress in the study of allele-specific 

expression using high throughput sequencing such as RNA-seq (Mortazavi et al. 2008), which enables 

the measurement of individual gene expression in various tissues, with greater sensitivity and 

specificity than the micro-array technique (Rao et al. 2019). RNA-seq also allows capturing ASE 

instances by quantifying the difference between one parental allele's expression over the other 

(Castel et al. 2015). Asymmetric expression of two alleles of the same gene is the potential evidence 

of cis-regulatory expression, or cis-eQTL and signature of an allele-specific expression. However, in 

order to identify allele-specific expression, RNA-seq data needs to have an adequate read depth, 

sufficient heterozygous sites, and to be aligned correctly to the respective genome.  

Figure1. 5- Example of allelic imbalance.  a.b,c showing an expression of each allele, a and c 
representing 50:50 ratio of expression from each allele, b) A/C has a heterozygous genotype, the 
expression of two alleles being different. d) Violin and box-whisker plots depicting gene expression on 
the y-axis and genotype on the x-axis, the horizontal line representing a linear relationship between 
three genotypes. 
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1.5.1 Tools for allele-specific expression analysis 

A number of pipelines and software, designed using different platforms and approaches have 

been developed for the detection, evaluation and analysis of allele-specific expression, some of the 

most widely used being described below. 

a) Alleleseq 

 Alleleseq was developed by the Gerstein Lab at Yale University for the study of ASE. This 

software requires both the individual’s RNA-seq or ChIP-seq data and phased variation information 

(box 3), including SNPs and CNVs of each parent obtained from trio-sequencing. Using this method, 

a personalized diploid genome is constructed based on phase information used to map the 

individual’s sample. The next step is the number of reads mapping to each maternal variant being 

compared to the paternal variant via a binomial test. Multiple testing correction is then applied to 

eliminate false positives. However, the statistical test does not take into account the replicate 

information  (Rozowsky et al. 2011).  

b) Allim 

Allelic imbalance meter (Allim) requires both RNA-seq data from offspring, as well as genomic 

information, SNP information, DNA-seq or RNA-seq of the parents. Based on the parent genomic 

information, it generates a diploid genome that is then used for mapping the individual’s RNA-seq 

sample. ASE is counted based on the reads that are uniquely mapped to either of the parent genomes. 

It is observed that some genes have more reads mapped to one of the parents, which leads to 

mapping bias. Hence, to remove the bias, a similar number of reads are randomly generated for both 

parents, and mapping bias is further estimated for each gene and corrected for allelic expression. The 

statistical test (no biological replicates: G-test and replicates: ANOVA test) is then used to remove 

false-positive results (Pandey et al. 2013).  

c) MBASED 

 Meta-analysis based allele-specific expression detection (MBASED) uses only RNA-seq data 

to identify allele-specific gene expression, and it is predominantly implemented using R programming 

language. To identify ASE at gene level, it combines allelic frequency information of heterozygous 

SNPs within a gene across multiple individuals. If prior haplotype information is not provided, then 

MBASED uses the pseudo-phasing approach, in which the larger read count of the allele at each SNP 

is assigned as a major haplotype. However, when haplotype phasing information is present, it 

increases the power of ASE detection. MBASED combines the allelic frequency across individual 

heterozygous SNPs within a gene and detects deviation within the sample. The advantages of using 

this tool is its fast speed compared to other tools,  the requirement for less memory and it capacity 

to handle SNPs across a whole transcriptome with multiple samples.(Mayba et al. 2014) 
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d) ASEP 

 Allele-specific expression analysis in a population (ASEP) tool identifies gene-based allele-

specific expression under one condition and differential ASE between two conditions, using only RNA-

seq data from a given population of individuals. This approach can be applied to samples with 

unknown haplotype information, but read depth should be high for haplotype phasing 

reconstruction. If read depth is low, then using known haplotype information increases ASE 

detection's power. ASEP uses the same approach as MBASED for constructing haplotype phasing 

information, but using a higher number of SNPs increases the memory requirement. (Fan et al. 2020) 

e) QuASAR 

The Quantitative allele-specific analysis of reads (QuASAR) tool was also developed using R 

language and it was initially implemented for RNA-seq data, but it can also be applied on DNA-seq, 

ChIP-seq, ATAC-seq. In this method, heterozygous SNPs are identified and ASE is counted accurately 

by considering base-calling errors and overdispersion in the ASE ratio. QuASAR is the first method in 

identifying genotypes and ASE from the same sequencing data (Harvey et al. 2015).  

For the purpose of this current project only MBASED and QuASAR were used, which will be 

described in more detail in Chapter 3. 

 

1.6 Co-expression analysis 

One of the objectives in biological studies is to identify molecules present in each system and 

to determine their interaction at both genetic and protein levels. The function of many genes is yet 

to be understood, but a common assumption is that genes involved in the same cellular pathway may 

be co-expressed and co-regulated. One of the strategies often used to investigate such interaction 

networks between genes is guilt-by-association, which implies that genes associated with or 

interacting are more likely to share functional characteristics (Cui and Churchill 2003). However, for 

this technique to be successfully applied, the functions of many other proteins need to be known.  

Before RNA-seq or microarray technologies, researchers used to carry multiple experiments 

on various cell lines to understand the regulatory network of a particular disease or an unknown 

gene’s function. Although this approach has successfully identified the regulatory mechanism of 

many diseases and functions of several novel genes, it remains expensive and time-consuming (Yu et 

al. 2012). Since the cost of RNA-seq has significantly decreased, it has become an increasingly popular 

technique for measuring gene expression across multiple conditions/phenotypes at the same time.  

However, the RNA-seq technique is often used to identify differentially expressed genes 

between two states, e.g. diseased and control, by calculating  changes in the mean level of expression 
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of each gene (Cui and Churchill 2003). It is assumed that genes with a shift in their mean levels are 

associated with a given disease phenotype, but most of the information in the gene expression 

dataset is ignored. Moreover, sometimes genes known to be involved in a particular disease are not 

statistically significantly altered between conditions (Hudson, Dalrymple, and Reverter 2012). This 

could be due to the disease state being caused by a change in function (e.g. via a mutation in either 

the coding or untranslated region), without an actual effect on its gene expression.  

As an alternative, co-expression analysis approaches can handle many of the above 

limitations (Brazhnik, De La Fuente, and Mendes 2002), the two most well-known methods being 

clustering-based and network-based co-expression analysis. 

1.6.1 Clustering-based co-expression analysis 

In the late ’90s microarray techniques became popular for studying the expression pattern of 

thousands of genes in different conditions simultaneously (Do and Choi 2008), several different 

clustering methods being developed to represent groups of genes with similar expression patterns 

(Belacel, Wang, and Cuperlovic-Culf 2006). It was assumed that genes clustering together based on 

their expression patterns would often share biological functions.  

Wen and colleagues performed one of the first co-expression analyses, testing this 

hypothesis by generating mRNA expression data from 112 rat cervical spinal cord tissue, using reverse 

transcription-coupled PCR. They then clustered genes based on their expression patterns, identifying 

5 main clusters, with genes in each cluster share indeed similar biological functions (Wen et al. 1998). 

In another independent study of the same year, M. Eisen and colleagues analysed 8,600 transcripts 

from human fibroblasts cells, with and without serum starvation, using microarray technology. They, 

too, observed that genes were grouped by their expression patterns in 5 different clusters, and each 

cluster contained genes with similar biological functions (Eisen et al. 1998).  

Furthermore, Spellman and colleagues combined time-series expression data from yeast, 

also obtained via DNA-microarray technology, with the genes’ promoter sequences. They also 

observed genes clustering together were coregulated, and they identified many common regulatory 

factors related to cell cycle. (Spellman et al. 1998). In addition, H. Lee and colleagues analysed 60 

different human datasets containing 3924 microarrays, on which they performed a correlation 

analysis between each pair of genes, ultimately identifying a high-confident network of 8805 genes, 

which were then confirmed to correlate with functional relatedness, through further functional 

analysis (Lee et al. 2004).  

As co-expression and co-regulation analysis became more common in high-throughput 

sequence analyses, numerous new clustering methods were proposed, including self-organized map 

clustering (SOM) (Kohonen 1982), hierarchical clustering (Eisen et al. 1998), k-means clustering 
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(MacQueen 1967) and bi-clustering (Pontes, Giráldez, and Aguilar-Ruiz 2015). It is worth mentioning 

that the clustering-based approach identifies or formulates clusters based on expression patterns, 

without considering biological relevance. This increases the chances of forming a cluster with a set of 

co-expressed genes and not co-regulated, e.g. the different conditions could trigger the expression 

of genes that can show a similar expression to different groups of genes with diverse biological 

functions (Pirim et al. 2012). 

1.6.2 Network-based co-expression analysis 

 In biology, networks can be classified based on the compounds and interactions represented, 

e.g. in co-expression networks, the compounds are genes, and the interactions show shared 

expression patterns, whereas in protein-protein interaction networks, the compounds are proteins 

and interactions represent physical interactions. In the co-expression network, genes are considered 

nodes, and the edges are determined by their correlation (Serin et al. 2016). Network-based co-

expression analysis is usually performed in three steps, detailed below, in Box 1. 

Box 1: Network analysis or co-expression network analysis procedure is as follows: 

➢ First step: Similarity score (explained in box 2) is calculated by comparing gene expression 

patterns in pairs;  

➢ Second step: The result list of gene pairs is filtered using the similarity score threshold; 

➢ Third step: The remaining pairs form nodes and corresponding edges to construct a 

network. Genes with similar similarity scores form a sub-network or modules, or cluster. 

According to the guilt by association principle, genes sharing a biological function tend to 

have similar expression patterns (Wolfe, Kohane, and Butte 2005). Known genes can 

predict the function of an unknown gene in the same module  (Rhee and Mutwil 2014). 

 

The values in a co-expression-based co-regulation network are usually between +1 and -1. An 

unsigned network is based on the absolute value of correlation, so the pairs of strong-negatively 

correlated genes are considered to be co-expressed or highly connected. This approach treats the 

positive and negatively correlated genes equally. In contrast, for the signed network only correlation 

values between 0 and 1 are used. Hence, the pairs of strong-negatively correlated genes are 

considered not connected or not co-expressed, as their connection strength is very close to or zero. 

Biologically-relevant modules are often identified via the signed method  (Mason et al. 2009). 

 A weighted network assumes all genes are connected in the network, and the connection 

between genes is assigned a continuous value between 0 and 1. The higher the value, the stronger 

the strength of co-regulation between the genes. In contrast, an unweighted network assumes that 

genes are either connected or unconnected, as the interaction between them is binary (0 or 1) (Zhang 

and Horvath 2005).  
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For the purpose of this current project, we focused on signed weighted co-expression 

network, by using Weighted gene co-expression network analysis (WGCNA) tool, also known one of 

the most widely used computational tools for constructing and analyzing co-expression networks. As 

mentioned above, it uses soft thresholding to build a network, and a topological overlap matrix aka 

TOM (Box 2) is applied with hierarchical clustering on the correlated gene expression values, to create 

co-expression modules (Langfelder and Horvath 2008). These modules are further refined by cutting 

the branches given at certain heights, and co-expressed genes and the hub genes can be inferred 

without prior knowledge of their structure or function. Hub genes are a set of genes with high 

correlation to the largest number of the other members of the module. WGCNA was the first method 

to be applied on RNA-seq datasets and has since been considered the most efficient tool for 

identifying biologically relevant associations between phenotypes and modules (Kogelman and 

Kadarmideen 2014).  
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1.6.3 Weighted gene co-expression network in transcriptomic data 

 Network-based co-expression analysis has been implemented in many gene expression 

studies  (Wu et al. 2019), such as the one performed by M.S. Cao and colleagues, who analysed mRNA 

expression data of normal, gastric carcinogenesis and adenocarcinoma samples from the GEO 

database (GSE24375), and generated a regulatory network for each condition. Thus, they identified 

16 hub genes and hypothesized the role of GATA6, ESRRG and their signaling pathways in gastric 

cancer development (Cao et al. 2015).   

Similarly, in a study by Yi Lio and colleagues WGCNA was applied to generate the co-

expression network on mRNA expression data for lung adenocarcinoma (LUAD) samples obtained 

from The Cancer Genome Atlas (TCGA) database. Overall, they identified five hub genes CHEK1, 

RAD51, KIF18B, KIFC1, FEN1, and RAD54L that strongly influence LUAD stem cell maintenance, and 

were  involved in cell cycle and DNA replication pathways. These hub genes were further validated 

by analysing six more expression data sets of LUAD patients and healthy individuals (controls) 

obtained from the GEO database. They again observed that all six hub genes were highly expressed 

in LUAD tissues and tumor recurrence patients, but none of these were validated experimentally (Liao 

et al. 2020). 

Box 2 
 
Similarity score: 
 
A similarity score is calculated on the log2 transformed value of gene expression. There are 
number of methods available for calculating similarity scores. E.g., Simple Pearson or Spearman 
rank correlation are widely used methods. Although Pearson assumes data is normally disturbed 
and has linear relationship. Spearman rank correlation is more robust but less powerful (Ballouz, 
Verleyen, and Gillis 2015). Another method often used is mutual information (MI), which can be 
applied to non-linear datasets (Meyer, Lafitte, and Bontempi 2008). However, a comparison 
between MI and Pearson correlation shows no difference in results (Song, Langfelder, and Horvath 
2012). 

Threshold values: 

A user-specified threshold similarity value is used in practice, which is considered connected and 
the remaining unconnected, i.e., hard thresholding (Zhang and Horvath 2005). E.g., In the signed 
network, values less than 0.5 could demonstrate a negative correlation. In contrast, values greater 
than 0.5 would be associated with positively correlated genes (Mason et al. 2009). While 
(Langfelder and Horvath 2008) propose to use soft thresholding implemented in the WGCNA 
model. The idea behind soft thresholding is raising correlation to a power (user-defined) will 
reduce the correlation's noise.  
 
Topological overlap matrix (TOM): 
 
TOM measure is a matrix product of adjacency matrix with itself. In addition, TOM normalize the 
results of adjacency matrix between 0 to 1. Adjacency matrix considers pairs of genes only 
connected to each other, while TOM pairs of genes are connected to other set of genes in the 
network (Yip and Horvath 2007). 
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Components linked to diabetes-associated cardiovascular disease were also investigated 

through network analysis by W. Liang and colleagues, who also used corresponding tissue data sets  

from the GEO database (GSE13760). Statistically significant genes were used to construct a co-

expression network using WGCNA, and they identified a total of 15 hub genes that were present in 

all modules. The hub genes were further screened against the GWAS database (cardiovascular 

disease catalog), and three genes, HLA-DRB1, LRP1 and MMP2 were identified, which were found to 

play an essential role in antigen-presenting and phagosome pathways,  intracellular signalling and  

lipoprotein metabolism associated with cardiovascular disease, inflammation, tissue remodeling 

(Liang et al. 2020). 

1.7 Macrophage differentiation 

Humans are surrounded by toxic and allergenic pathogens such as bacteria, fungi and viruses, 

which can attack and replicate inside the human body, leading to tissue damange and affecting 

beneficial, commensal microbes. The host immune system is, however, well equipred for eliminating 

foreign biological threats via two major interacting responses: the innate (non-specific response) and 

adaptive (specific response) immunity (Chaplin 2010). 

Innate immunity is the first line of host defense against harmful pathogens by initiating a 

protective inflammatory response, which aims to destroy any infectious microorganisms and remove 

dead or dying cells and damaged extracellular matrix materials. It is also involved in repairing 

damaged tissues and restoring them to a healthy condition (Matzinger 2007). On average, the innate 

immunity is activated between 4-96 hours from infection or tissue stress, and it continues untill the 

infection is cleared or an adaptive response is activated (Kaur and Secord 2019).   

The mononuclear phagocyte system (MPS) plays an important role in the inflammatory 

response, removing infected dead cell debris, and repairing damaged tissues. The MPS consists of 

different cell types, such as monocytes, tissue residential macrophages and dendritic cells (DCs) 

(Hume, Irvine, and Pridans 2019). Growth factors and different types of cytokines, such as interleukins 

regulate the function of MPS cells, help maintain homeostasis (tissue morphology and tissue 

function), drive proliferation and are involved in differentiation (Hume and MacDonald 2012). 

1.7.1 Macrophage differentiation 

Monocytes are a group of cells circulating in blood that can be mobilized to the spleen or 

lungs on-demand, and they are approximately 10% of the total nucleated cell. (Ginhoux and Jung 

2014). They originate in the bone marrow from hematopoietic stem cells (HSCs) and can circulate in 

the blood stream for 1-2 days if no danger is identified (Italiani and Boraschi 2014). Upon infection 

with foreign pathogens, monocytes can differentiation into dendritic cells or un-stimulated (M0) 

macrophages. The latter can be subdivided into three categories, based on the expression of CD14 
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and CD16 surface markers (Ziegler-Heitbrock et al. 2010): a) 90% of total cell count are made up of 

monocytes with high expression of CD14 and no expression of CD16 (CD14++CD16-), which is known 

as classical macrophage, while the remaining 10% represent a minor population of monocytes, 

further divided into b) intermediate, characterized by high CD14 and low CD16 levels (CD14++CD16+) 

and c) monocytes with relatively low CD14 and high CD16 expression levels (CD14+CD16++), also 

termed as a non-classical subset (Ziegler-Heitbrock et al. 2010). The classical and intermediate subset 

of human monocytes exhibit a pro-inflammatory phenotype, also known as M1 macrophages, while 

non-classical monocytes have an anti-inflammatory phenotype / an M2 polarisation state.  

 Initially, macrophages were hypothesised to differentiate from monocytes circulating in 

blood in response to injury (Tauber 2017), but it was later found that monocyte-derived macrophages 

are originated from bone marrow, while lineage-tracing studies have shown that tissue-resident 

macrophages are derived from embryonic yolk sac progenitor and Langerhans cells (Hoeffel et al. 

2012). These tissue-resident macrophages are named based on their location, as described in Table 

1.1, and despite their different origins and locations, they all have similar functions, such as in 

homeostatic maintenance and tissue repair after injury.  

 

 Table 1 1 Different types of macrophages 

 

 

 

       

 

 

Monocytes differentiate into pro-inflammatory macrophages upon detection of infectious 

microorganisms by pattern recognition receptors (PRRs) such as Toll-like receports (TLRs) (Nau et al. 

2002). Thus, they enter an M1 polarisation state and release specific cytokines, such as  IL12, TNF, IL-

6, and chemokines like CCL2, CXCL10, CXCL11, TNF- α, IL-1α. Also, they produce chemicals such as 

reactive oxygen species (ROS) and nitrogen radicals (caused by upregulation of inducible NO synthase 

iNOS), which enhances their ability to kill pathogens. M1 macrophage genes are regulated by 

transcription factors such as NF-kB, STAT1, STAT5, IRF3 and IRF5 (Murray 2017). M1 macrophages are 

also important antigen-presenting cells (APC), and after killing the infectious pathogens, they display 

Resident macrophages Location 

Kupffer cells Liver 

Sinus histiocytes Lymph nodes 

Microglia Central nervous sysem 

Hofbaur cells Placenta 

Osteoclasts Bone 

Epithelioid cells Granulomas 
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major histocompatibility complex (MHC)  class I and II antigens, further activating the acquired  

immune system.  

 Monocytes can also differentiate into M2 or anti-inflammatory macrophages, which are 

induced by cytokines like IL4 and IL13 and are specific cells of adaptive immunity (Viola et al. 2019). 

They also have a high expression of CD206, IL-R (decoy receptor), and IL-1R antagonist, which 

stimulate pro-fibrotic factors, such as TGF-β and IGF-1 and in turn reduce inflammation and promote 

tissue repair (Mantovani et al. 2013). Additional genes expressed in M2 macrophages are STAT6, 

GATA3, CD163, FIZZI1, MMPs, PPARϒ and ARG1 (de Groot and Pienta 2018), whose increased 

expression leads to the production of polyamines and promotes tissue remodeling and healing. 

Moreover, M2 macrophages are known to induce angiogenesis (growth of blood vessels from the 

existing vasculature) and lymphangiogenesis (growth of lymphatic vessels from the existing 

lymphatic vessels), by stimulating the vascular endothelial growth factor A an IL-8  (Corliss et al. 

2016). Given their various properties and characteristics, M2 macrophages can be divided into 

different groups, as described in Table 1.2.  

Table 1 2- Types of resident macrophages and their locations 

 

 

 

 

Macrophage Stimulation Cytokines Markers Function 

M1 LPS+IFN-ϒ IL6,IL12,IL23 CD80,CD86,MHC-II Pro-inflammatory activity 

M2a IL4, IL13 TGF-β, IGF-1 CD206,CD36 Anti-inflammatory activity,  

M2b TLR IL10,IL6,TNF-

α 

CD86, MHII Tumour progression, T-
helper cell response. 

M2c IL10 IL10,TNF-β CD163,TLR1 Removal of dead cells, 

tissue remodeling 

M2d TL3 IL10, VEGF CD206,CD204 Angiogenesis, 

lymphangiogenesis, tissue 

remodeling 
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1.8 Tribbles 

 Pseudo-kinases are proteins containing kinase-like domains, but lacking one or more 

conserved motifs required for efficient ATP binding and/or catalysis in their canonical counterparts 

(Taylor and Kornev 2010). They are known to be involved in cell signaling by mediating protein-

protein interactions (Boudeau et al. 2006), and have been associated with various human diseases, 

including auto-immune diseases (Ribeiro et al. 2019), metabolic and neurological disorders and 

different types of cancer (Bailey et al. 2015).  

Tribbles are a family of serine/threonine pseudo-kinases consisting of 3 members – TRIB1, 

TRIB2, and TRIB3, which are involved in numerous regulatory pathways in eukaryotic cells. TRIB2 was 

the first member to be characterized and was initially known as C5FW. It was first identified in dogs 

and linked to an upregulated thyroid response to mitogens (Wilkin et al. 1997). TRIB3 was first 

described by Mayumi-Matsuda et al. in 1999, and its increased levels were linked to neuronal cell 

death induced by nerve growth factor depletion. TRIB1 (C8FW) was subsequently described as a close 

homolog of TRIB2 by Wilkin’s group. The sequence similarity of Tribbles protein is shown in Table 1.3.  

 

 

 

  

 

 

1.8.1 Structural features and function of Tribbles protein 

Evolving from a common ancestor, all members of the tribbles family contain three common 

domains: N-terminal PEST domain, central kinase-like domain, and C-terminal protein-binding 

domain. The protein's central domain resembles a serine/threonine kinase domain, but it lacks three 

major key motifs of kinase catalytic activity: 1) a VAIK motif, known to interact with α and β phosphate 

of ATP, 2) a central HRD domain, which contains the catalytic aspartic acid residue known for base 

acceptor required for protein transfer, and 3) a DFG domain, which binds MG2+ to coordinate β and 

ϒ phosphate of ATP in binding (Hegedus, Czibula, and Kiss-Toth 2006). Therefore, Tribbles have been 

classified as pseudokinases, with TRIB2 and TRIB3 having low ATP affinity and phosphotransferase 

capacity, while TRIB1 lacks the ability to bind ATP and exert phosphotransferase activity.  

Pairwise protein sequence similarity %  similarity 

TRIB1 and TRIB2 71.3% 

TRIB1 and TRIB3 53.3% 

TRIB2 and TRIB3 53.7% 

Table 1 3- Sequence similarity between Tribbles proteins 
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The C-terminal domain has two conserved motifs: 1) an HPW[F/L] motif, which contains 

binding sites for MEK1 and MAPKK that, in turn, mediate the binding of kinase 3 (MLK3) which is 

involved in c-Jun N-terminal kinases (JNKs)-signaling pathways, and the p53 mitogen-activated 

protein kinase (MAPK) signaling pathway  (Humphrey et al. 2010; Yokoyama et al. 2010); and 2) the 

DQXVP[D/E] motif, which allows binding of E3 ubiquitin ligase COP1 (Figure 1.6) (Keeshan et al. 2010). 

TRIB1 and TRIB2 recruit COP1 to degrade CEBPα and β, responsible for developing acute 

myelogenous leukemia in murine models (Keeshan et al. 2010), and for inhibiting the AKT protein 

responsible for suppressing adipocyte differentiation (Naiki et al. 2007). TRIB3 also recruits COP1, 

resulting in the degrading of acetyl coenzyme carboxylase (ACC) in adipose tissues (Qi et al. 2006).  

 

All three homologus Tribbles members Trib1, Trib2 and Trib3 play important roles in various 

cellular processes, including inflammation, cellular stress, apoptosis and tumorigenesis. They have 

also been found to be involved in the differentiation of macrophages (Satoh et al. 2013), muscle cells 

(Kato and Du 2007), adipocytes (Sathyanarayana et al. 2008) and osteoblast (Chan et al. 2007).  

1.8.2 TRIB1 

The TRIB1 mRNA transcript is considered an unstable transcript, with a half-life of less than 1 

hour, whereas the average median half-life of most stable human transcripts is at least 7 hours 

(Sharova et al. 2009). However transcript half-life depends on its physiological conditions (Newbury 

2006), e.g most of the housekeeping genes have long mRNA transcript half-lives, while proteins 

required for a limited period of time or involved in different stages of the cell cycle, cell differentiation 

or growth have shorter half-lifes (Sharova et al. 2009). The expression of TRIB1 is highly variable and 

cell-type specific, which suggests that TRIB1 might be subjected to post-transcriptional regulation 

(Soubeyrand, Martinuk, Lau, et al. 2016). What is more, the length of 3’UTR of TRIB1 is approximately 

three times longer than that of its coding region (Figure 1.7), which means there is a larger genetic 

Ser/Thr kinase-like domain C-terminal 

domain 

 

Pseudo-kinase domain  

 

MEK1 COP-1 binding 

 Catalytic loop 

 

PEST-like 

domain 

Pro & Ser-rich N-
terminal domain 

Figure1. 6- Basic structure of Tribbles. All three members of this protein family contain variable N-terminal 
PEST domain, psedokinase doman lacking metal binding motif (DGF motif) and C-termain domain 
containing two key regulatory elements: HPW[F/L] motif interacting with MAPK/MEK family proteins, and 
DQXVP[D/E] conserved motif, binding E3 ubiquitin ligase COP1.  
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space in which mutations can occur and can, for example, lead to alteration of miRNA binding sites 

and affect transcript’s stability. 

 

 

 

 

 TRIB1 is primarily expressed in antigen-presenting and endothelial cells (Ashton-Chess et al. 

2008), while in HeLa cells it was identified as a mediator of gene expression and a regulator of the 

Toll/IL-1 receptor in innate immunity (Kiss-Toth et al. 2004). Moreover, TRIB1 plays a vital role in the 

polarization of vascular smooth muscle cells via inhibition of the MAPK–JNK pathway (Hye et al. 

2007). In addition, the expression of TRIB1 was found to be increased in patients with atherosclerotic 

arteries compared to control individuals (Johnston et al. 2019). Another study, performed by E. 

Dugast et al., suggests that in T-regulatory cells TRIB1 shows binding affinity to FOXP3 (Dugast et al. 

2013) , which is a TF important in regulating T-cells (T-regs), promoting long-term survival of organ 

transplant patients (Li and Turka 2010), while deficiency of FOXP3 has been associated with auto-

immune diseases and inflammation. 

Furthermore, TRIB1 was also shown to have roles in fatty acid metabolism, as hepatic over-

expression of TRIB1 in mice resulted in increased fatty acid oxidation, decreased plasma triglyceride 

and cholesterol, by reducing very low-density lipoprotein production (Bauer et al. 2015). Another 

complementary study in  TRIB1 knockout mice recorded an increased expression of triglyceride and 

cholesterol (Soubeyrand, Martinuk, Naing, et al. 2016). Other studies have emphasised additional 

roles of Trib1, such as the 8q24 GWAS locus containing TRIB1, which has been associated with 

coronary artery disease (Jadhav and Bauer 2019), and TRIB1 expression was found to be upregulated 

in LPS-induced white adipose tissues (Ostertag et al. 2010). What is more, heterozygous knockout 

TRIB1 mice have impaired cytokine (IL-6 and IL-1β) production in white adipose tissues and are 

protected from weight gain and adiposity when fed with a high-fat diet (Ostertag et al. 2010).  

i) Role of TRIB1 in macrophages 

 As discussed above, TRIB1 shows binding with FOXP3 TF, which is a master regulator of T 

cells’ activation, and TRIB1 deficiency impairs cytokine gene expression in white adipocytes. 

Moreover, Arndt and colleagues reported that TRIB1 play an essential role in the differentiation of 

tissue-resident M2-like macrophages, as they aimed to understand the impact of TRIB1 deficiency on 

macrophage function and polarisation. They also observed that bone marrow-derived macrophages 

from TRIB1-deficient mice showed a reduced expression of both M1 (IL6, ILb, and Nos2) and M2 

markers (Cd206, Fizz1, and Arg1)  upon LPS/IFNϒ and IL-4 stimulation, respectively. Ultimately, they 

3’ UTR 

Figure1. 7- Genomic view TRIB1 
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found a reduction in pro-inflammatory cytokine, nitric oxide, and reactive oxygen species levels 

(Arndt et al. 2018). In addition, TRIB1 was also found to be involved in macrophage migration through 

interaction with C/EBPβ and TNF-α, while in TRIB1 knockout samples, TNF-α, IFN-γ and/or TLR2 

ligands were recorded at high levels (Liu et al. 2013).  

Another study performed on mice lacking TRIB1 in hematopoietic cells reported reduced 

adipose tissue mass and increased lipolysis, even when fed a normal diet. However, this condition 

was rescued after injecting the mice with M2-like macrophages. In contrast, when the mice were fed 

a high-fat diet, they developed hypertriglyceridemia and insulin resistance (Satoh et al. 2013). Despite 

the numerous studies focused on TRIB1, the mechanisms leading to impaired macrophage 

polarisation or the exact genetic and/or protein-protein interactions involving TRIB1 have not yet 

been elucidated. 

ii) Role of TRIB1 in cancer 

In addition to its role in macrophage differentiation and polarisation, TRIB1 has also been 

identified as an oncogene in acute myeloid leukemia (AML). As discussed above, TRIB1 recruits E3 

ligase COP1 to degrade target C/EBPα and it interacts with MEK1, enhancing ERK phosphorylation  to 

promote cell proliferation and inhibition of apotosis, processes that have been associated with 

pathogenesis of adult acute myeloid leukemia (AML)  (Yokoyama et al. 2010) . It was also observed 

that overexpression of TRIB1 is responsible for increasing Hoxa9-induced leukemia, by modifying the 

activity of a super-enhancer of the oncogene Erg, which is achieved through the degradation of 

C/EBPα  p42 by TRIB1. BRD1 inhibitor JQ1 has been shown to inhibit the same super-enhancer, thus 

impairing the growth of TRIB1-expressing AML cells (Yoshino et al. 2020). Moreover, TRIB1 is located 

on chromosome 8q24, 1.5 Mb away from c-MYC, a known oncogene associated with AML, which was 

detected in low levels in previous studies, while TRIB1 was concomitantly overexpressed. This led to 

the hypothesis that TRIB1 may also have a cooperative role with c-MYC. (Storlazzi et al. 2006).  

In addition, TRIB1 was found responsible for inhibiting the tumor suppressor protein p53 

(Miyajima, Inoue, and Hayashi 2015), a TF with vital role in regulating genes involved in cell-cycle 

progression and apoptosis (Kruse and Gu 2009). What is more, a study by Ying Ye and colleagues 

suggested that TRIB1 might be a target for miR-23a, which is positively regulated by p53. In the 

absence of miR-23a, TRIB1 expression is increased, which would further inhibit p53. They also 

suggested that hepatocellular carcinoma (HCC) cell migration (Pérez et al. 2020) and EMT activation 

are promoted by ectopic expression of Trib1 via upregulating β-catenin, which is responsible for 

upregulation of c-Myc and MMP-7. They further reported that the effect of TRIB1 on β-catenin was 

p-53 dependent and the overal results indicated a potential role of Trib 1 in wound healing and 

initiation of metastasis in cancer progression (Das et al. 2019; Ye et al. 2017). 
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 TRIB1’s association with different types of cancer has been documented in numerous 

studies, the most prominent ones linking TRIB1 overexpression in prostate cancer (Niespolo et al. 

2020; Shahrouzi et al. 2020), thyroid cancer (Puskas et al. 2005), ovarian cancer (Puiffe et al. 2007) 

and colorectal cancer (Liang et al. 2013). However, the expression pattern of TRIB1 in different cancer 

datasets (different no. of cancer and control samples – Table 1.4) is variable, as shown in Figure 1.8. 

 

 

 

 

 

 

 

 

 

 

Figure1. 8- Variation of TRIB1 in different cancer datasets. Box-whisker plot showing the TRIB1 mRNA 
expression (RSEM) in different types of cancer (red) and their respective normal samples (blue) . The  
number of samples for each tissue-specific dataset are shown in Table 1.4 (Firehose Broad GDAC (Broad 

GDAC Firehose (broadinstitute.org)   

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
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Cancer type Abbreviation Number of 
cancer samples 

Number of 
normal samples 

Adrenocortical carcinoma ACC 79 NA 

Bladder urothelial carcinoma BLCA 408 19 

Breast invasive carcinoma BRCA 1100 112 

Cervical and endocervical cancers CESC 306 3 

Cholangiocarcinoma CHOL 36 9 

Colon adenocarcinoma COAD 459 41 

Colorectal adenocarcinoma COADREAD 656 51 

Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma 

DLBC 48 NA 

Esophageal carcinoma ESCA 185 11 

Glioblastoma multiforme GBM 166 5 

Glioma GBMLGG 696 5 

Head and Neck squamous cell carcinoma HNSC 522 44 

Kidney Chromophobe KICH 66 25 

Pan-kidney cohort (KICH+KIRC+KIRP) KIPAN 891 129 

Kidney renal clear cell carcinoma KIRC 534 72 

Kidney renal papillary cell carcinoma KIRP 291 31 

Acute Myeloid Leukemia LAML 173 NA 

Brain Lower Grade Glioma LGG 530 NA 

Liver hepatocellular carcinoma LIHC 373 50 

Lung adenocarcinoma LUAD 517 59 

Lung squamous cell carcinoma LUSC 501 51 

Mesothelioma MESO 87 NA 

Ovarian serous cystadenocarcinoma OV 307 NA 

Pancreatic adenocarcinoma PAAD 179 4 

Pheochromocytoma and Paraganglioma PCPG 184 3 

Prostate adenocarcinoma PRAD 498 52 

Rectum adenocarcinoma READ 167 10 

Sarcoma SARC 263 2 

Skin Cutaneous Melanoma SKCM 472 NA 

Stomach adenocarcinoma STAD 415 35 

Stomach and Esophageal carcinoma STES 600 46 

Testicular Germ Cell Tumors TGCT 156 NA 

Thyroid carcinoma THCA 509 59 

Thymoma THYM 120 NA 

Uterine Corpus Endometrial Carcinoma UCEC 546 35 

Uterine Carcinosarcoma UCS 57 NA 

Uveal Melanoma UVM 80 NA 

Table 1 4- Number of cancer and control samples for each tissues-specific dataset 
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iii) Overview of TRIB2 and TRIB3 

Compared it its other members of the Tribbles family, TRIB2 has more diverse actions, being 

highly expressed in kidney mesenchymal cells, and considered responsible for suppressing adipocyte 

differentiation by inhibiting AKT and C/EBPβ (Naiki et al. 2007). In contrast, downregulation of TRIB2 

was found to regulate LPS-induced IL-8 production via the MAPK pathway (Eder et al. 2008).   

TRIB3 is the most studied isoform of the Tribbles family, being reported in high levels in liver 

samples, and relatively elevated levels in the small intestine, stomach, kidney, lung and white adipose 

tissue (Okamoto et al. 2007). The expression of TRIB3 was shown to be upregulated in response to 

cellular stress, including oxidative stress, hypoxia,  glucose excess and essential amino acid deficiency  

(Ord and Ord 2017). What is more, the proximal promoter region of TRIB3 has a C/EBP–ATF composite 

binding sites that mediates binding of C/EBP, CHOP, C/EBPβ, and C/EBPγ, leading to TRIB3 

upregulation in cellular stress response (Huggins et al. 2016). TRIB3 is also regulated by other 

transcriptional factors such as PPARα, FoxO1 (Koo et al. 2004; Matsumoto et al. 2006), the former 

being a significant regulator of hepatic fatty acid, which binds to the TRIB3 promoter region and 

regulates its expression in liver, while FoxO1 is identified to bind to the promoter region of TRIB3 and 

alter its expression in murine samples ((Ord and Ord 2017).   

 

Box 3 

Early response genes 

Regulation of gene expression is an important process used by cells to control the end products of 

genes. Specific group genes are known to respond quickly to internal or external stimuli such as 

cell stress conditions like viral or bacterial infections. These group genes are known as immediate 

early response genes (IEGs). Hence, they are known as first responders having a peak expression 

within 30 minutes after external or internal stimuli. The main function of IEGs is to regulate cell 

growth and involve different cellular processes (Bahrami and Drabløs 2016). 

 

Haplotype phasing 

 

With the increase in technology vast amount of genotype data is being generated; these data 

identify alleles co-located on the chromosome. However, we can’t observe which of the 

chromosomes or haplotypes belong to either of the parents. Identifying the alleles belonging to 

either of the parents is known as haplotype phasing  (Browning and Browning 2011). 
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1.9 Aims and Objectives 

In the following chapters, both computational analyses, using methods like the ones 

described above, as well as experimental validation (where applicable and available) will be 

presented for each of the three main sub-projects, focused on investigating: 1) the genomic 

characteristics and regulation network of Trib1;  2) the effects of SNPs in 3’UTR of TRIB1 on miRNA 

binding sites and their correlation with potential allelic imbalance in TRIB1, as well as at whole-

genome scale; and 3) the role of miRNAs and their expression in macrophage differentiation. 

 The genomic characteristics and regulation network of Trib1 chapter focuses on 

understanding the regulatory network of TRIB1 through coexpression analysis and hypothesizing the 

function of TRIB1. As discussed above variations in expression level of TRIB1 led it difficult to 

understand its function and regulatory network. From the published literature, we understand that 

TRIB1 is involved in different types of cancer and involved in cell signaling such as MAPK signaling 

pathways, this function makes TRIB1 biologically important gene. In order to understand the function 

and regulation of TRIB1, we have analysed 28 different cancer datasets using (WGCNA). We observed 

that 65% of genes co-expressed with TRIB1 are early response genes, these genes were further 

validated using RNA-seq dataset. From RNA-seq data we found that TRIB1 is regulated by early 

response genes (box 3) and it play a role in regulating cellular response in stress  

  The effects of SNPs in 3’UTR of TRIB1 on miRNA binding sites and their correlation with 

potential allelic imbalance in TRIB1, as well as at whole-genome scale chapter focuses on 

understanding the effect of mutations in 3’ UTR of TRIB1 on miRNA binding sites, also we expanded 

this analysis to identify if these SNPs in 3’ UTR of TRIB1 are linked to the allele-specific expression of 

TRIB1. As discussed in the introduction, the length of 3’ UTR of TRIB1 is three time longer than its 

coding region and 3’ UTRs are more prone to mutations, which could led in the alteration in miRNA 

binding sites or different MRE factors such as  RNA-Binding proteins (RBPs), translational repressors, 

splicing factors, and riboswitches. This could be the reason for variations in expression level of TRIB1. 

In order to investigate the mutation in TRIB1 responsible in alteration in miRNA binding sites, we 

analysed unstimulated macrophage datasets and identified that mutations in 3’ UTR (using 

haplotypecaller GATKS’s tool) are responsible for change in expression level of TRIB1, however, they 

were not responsible in alteration of miRNA binding sites expressed in macrophages, but could be 

altering binding sites of other MRE factors. In addition to this, we also investigated if mutation in 

3’UTR of TRIB1 linked to allele-specific expression, we developed allelic specific expression pipeline, 

implementing QuASAR for identifying SNPs linked to ASE and MBASED to allele specific expressed 

genes. From our results, we did not find any SNPs of TRIB1 linked to ASE. 
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The role of miRNAs and their expression in macrophage differentiation chapters focuses on 

understanding the role in miRNA in polarizing M0 to M1 macrophages. micro-RNAs (miRNAs) are 

small, non-coding RNA sequences binding to un-translated regions (UTRs) of protein-coding genes 

and are responsible for regulating transcript expression, stability and transport. In order to 

understand the role of miRNA in macrophage differentiations, we performed integrated miRNA-

mRNA analysis between resting (M0) macrophages and M1-polarized macrophages. Differential 

expression analysis of miRNA and mRNA were performed independently using DESeq2 R package. We 

found that up-regulated target genes of down-regulated miRNAs are involved in inflammatory related 

pathways and downregulated target genes of upregulated miRNAs plays an important role in cell-

cycle related pathways. Moreover, we identified 5 upregulated miRNA and 4-downregulated miRNAs 

targeting more than 500 genes and these genes are enriched in inflammatory and cell-cycle related 

pathways. We further validated our results, analysing RNA-seq data, obtained from downregulated 

hub miRNAs in M0 macrophages. In addition to this, we also investigated alternative polyadenylation 

sites of differentially expressed genes using DaPars algorithm and we observed that upregulated 

genes undergo APA process to avoid the binding sites of upregulated miRNAs. 
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Chapter 2 

Co-expression analysis of TRIB1 
 

2.1 Introduction 

Over the past decade, the application of massively parallel sequencing at large scales has led 

to an increase in research and reporting of new information on cancer genomics. One such project 

that benefited from these technological advances has been the one studying TRIB1, as one of the 

members of the Tribbles pseudokinase family. As mentioned in the Introductory Chapter 1, TRIB1 

was recorded as upregulated in many different cancer datasets (Niespolo et al. 2020; Puskas et al. 

2005; Wang et al. 2017; Yoshino et al. 2021) and it was also associated with cell-cycle-related 

pathways, which control cell polarization, mobility, differentiation, and other cellular functions 

relevant to cancer biology (Eyers, Keeshan, and Kannan 2017). Despite the clinical significance of 

TRIB1, its only relationship validated experimentally, through TRIB1 knockdown in mice, is that with 

COP1 and CEBPα (Yoshida et al. 2013) . Until now, the genomic regulatory network and full extent of 

TRIB1 functions have remained unexplored. Therefore, this study focuses on understanding the 

genomic regulation and targets of TRIB1 through co-expression network analysis.  

 Continuous advancements in RNAseq technologies have improved the understanding of the 

complexity of the human genome and have enabled the identification of differentially expressed 

genes between two states/conditions (e.g. disease and control, or gene knockdown and over-gene 

expression). However, studies on the genome-wide immunity response in TRIB1-knockout mice, 

carried out by collaborators in the TRAIN consortium failed to find large transcriptional effects linked 

to TRIB1 in resting, steady-state cells (data not shown). Therefore, we implemented a co-expression 

network based approach to identify the regulatory network of TRIB1.  

This method clusters genes in different modules, based on their correlation between their 

gene expression values across samples, and builds networks that can be used to understand the 

interaction between these genes. Using this strategy, possible roles of unknown genes can be inferred 

based on similar biological functions of the known genes present in the same module (Eisen et al. 

1998). More than that, after identifying a module of interest, gene enrichment, pathway analysis and 

Gene Ontology (GO) analysis can help unravel the entire module's biological function. Ultimately, a 

set of co-expressed genes can be further validated experimentally, in order to understand and/or 

confirm the relationship between known and unknown genes. Furthermore, in order to determine 

the direction of relationship and causality between genes, which cannot be inferred from co-

expression networks alone, in vitro and in vivo validation are essential (Figure 2.1). 
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Aims and objectives 

In this study, we harvested network modules generated by the weighted co-expression 

method (WGCNA) in order to identify genes co-expressed with TRIB1 in macrophages across 28 

different cancer datasets. We aimed to investigate the regulatory network of TRIB1 through co-

expression analysis, and to generate a hypothesis on its function. Based on the co-expression network 

results, we then hypothesized that TRIB1 could 1) be an early response gene, 2) regulate early 

response genes, or 3) be regulated by early response genes, which we further tested in vitro. 

  

B 

A C 

A B C 

B 

A C 

X 

A 

B 

C 

Figure 2. 1 - Differences between co-expression network and regulation network. a) Network 
built from co-expression analysis, b) Possible causal relationships 

a) b) 
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2.2 Materials and Methods 

Declaration 

Stable DU145 cell lines overexpressing TRIB1 and PC-3 cell lines with TRIB1 knockdown were 

generated by our collaborator, Dr. Swapna Satnam, under the supervision of Dr. Natalia Pellegata 

(Helmholtz Institute, Munich, Germany) and Prof. Endre Kiss-Toth (IICD, University of Sheffield, 

Sheffield, UK). She also performed the time-series experiments on the DU145 cells. Dr.  

Chiara Niespolo performed qPCR of EGR1 and FOS in TRIB1 knockdown conditions in PC-3 cells. All 

other experiments on HEK293T cells, computational analyses, and interpretation of results were 

performed by myself.  

 

2.2.1 In vitro methods 

i) Generation of stable cell lines, with TRIB1 overexpression or TRIB1 

knockdown 

TRIB1-overexpressing and TRIB1-knockdown cells were derived through transformations 

using lentivirus encoding a TRIB1 expression cassette. HEK293T, DU145 and PC-3 cells were grown 

overnight, in Dulbecco’s Modified Eagle Media (DMEM) + 10% Foetal Bovine Serum (FBS), but without 

antibiotics, to a concentration of 1 X 106 cells/well in 6-well plates. The following day, cells were 

transduced with lentivirus and supplemented with 8 μg/ml Polybrene. After 6 hours, culture medium 

without antibiotics was added to the cells and these were incubated for another 24 hours. The 

following day, Puromycin-containing media was added and then subsequently changed every 2-3 

days. Stable cell lines were frozen and stored for further processing.  

For immediate-early response stimulation experiments, cells were serum-starved for 12 

hours, in just 0.5% FBS. To stimulate early response genes, 20% FBS was added, and cells were 

collected at 0, 30, 60, 90, 120 and 180 mins time points. 

ii) Total RNA-extraction  

Total RNA from HEK293T cells was extracted using RNAeasy Mini kit (Qiagen), according to 

the manufacturer’s instructions, and RNA quality was assessed by NanoDropTM Spectrophotometer 

(A260/A280 ratio of 1.8-2.0) (ThermoFisher Scientific). Total RNA from DU145 was isolated using 

RNA-tissue kit (Promega) and Maxwell® and RNA quality was tested using Nanodrop 2000, checking 

for an A260/280 ratio of 1.8-2.2. 
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iii) cDNA synthesis and qPCR 

cDNA synthesis for HEK293T and PC-3 cell line was performed using iScript cDNA synthesis 

kit (Bio-Rad) according to manufacturers instructions, and for DU145 High-Capacity RNA-to-cDNA™ 

Kit (Thermo Fisher Scientific) was used.  

Quantitative Real-time PCR (qPCR) was performed using PrecisionPLUS SYBR-Green master 

(Qiagen) mix (for HEK293T and PC-3 cells) or TaqMan (for DU145 cells), and EGR1, FOS, and TRIB1 

primers (Table 2.1). All experiments were performed with technical replicates and analysed on 

CFX384 C1000 Touch Thermal Cycler (Biorad), values being normalized to the housekeeping gene 

GAPDH. For analysis, the below steps were followed: 

1. The average technical replicate Ct value was calculated for each sample 

2.  The Ct value of GAPDH was subtracted from those of individual genes, to calculate ΔCt 

3.  ΔCt of control samples was further subtracted from test samples, ΔΔCt 

4. 2-ΔΔCt was calculated, by raising 2 to the power of negative ΔΔCt 

 

 

iv) siRNA transfection 

2,50,000/well HEK29T and PC-3 cells were seeded in 6-well plates, 12 hours prior to 

transfection, and grown in standard growth medium (DMEM + 10% FBS), and cells were then serum-

starved for further 12 hours by replacing 10% FBS containing media with media without FBS. Uniform 

distribution of cells and healthy cell density were confirmed prior to transfection for both cell lines 

using microscopy, and Viromer Blue (Lipocalyx) (Protocol is discussed in box 1) was used to transfect 

siRNAs. After 24 hours of siRNA transfection, PC-3 cells were collected, while for the H2K293T cells, 

20% FBS was first added, and cells were collected after 1 hour.  

 

Table 2. 1 - qPCR primers used 
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v) RNAseq from time-series experiment on DU145 cells overexpressing TRIB1 

DU145 cells were seeded for 48 hours at 1 X 106 cells/well in 6-well plates and incubated at 

37°C and 5% CO2. They were then serum-starved for 12 hours in 0.5% FBS. To stimulate early response 

genes, 20% FBS was added, and cells were collected at 0, 30, 60 and 90 mins. Total RNA was isolated 

using RNA-tissue kit (Promega) and Maxwell® cDNA synthesis was carried out using high capacity 

RNA-to-cDNA™ Kit (Thermo Fisher Scientific), followed by TaqMan qPCR analysis (Primer sequence 

shown in Table 4.1). All experiments were performed with technical replicates and values were 

normalized using housekeeping genes GAPDH. Post that RNA from each biological replicate was sent 

to for mRNA sequencing by Novogene Co. Ltd (https://en.novogene.com). The samples were 

sequenced using the Illumina platform, in a paired end, read length 150 BP and stranded  

 

2.2.1 Bioinformatics methods 

i) Datasets used for co-expression analysis 

RNAseq expression data for 27 cancer types was downloaded from the FIREHOSE Broad GDAC 

(https://gdac.broadinstitute.org/), with each cancer dataset having between 60-1000 samples. 

RNAseq of MDMs (accession number GSE81046) was obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/), and the associated raw counts files were downloaded. The 

dataset included 169 control samples (from healthy individuals). 96 of these were infected in-vitro 

with Salmonella typhimurium, and 92 infected in-vitro from Listeria monocytogenes. In order to avoid 

problems of stratification, we used only samples of European descent.  

ii) Differential expression analysis of MDMs dataset 

Genes with < 10 counts across all samples were filtered, raw counts were normalized using 

the R package edgeR, and samples were then grouped based on conditions (controls vs infection 

states). Differential expression analysis was performed using limma-voom, with a cutoff FDR < 0.05, 

Box 1: 

1. 350000 cell/well were seeded 24 hours prior to transfection in a 6 well plate. 

2. 20µM stock of dilute siRNA and negative control were prepared (5.6 µl of siRNA and 

14.4 µl buffer blue) 

3. Viromer and buffer blue were mixed in the 1:90 µl i.e., 2µl+180µl per sample 

4. Next, 180µl of transfection mix of siRNA/Negative control added in tube. 

5. Tube was further vertex and incubated for 15 mins at room temperature. 

6. Aspirate the old cell-culture and change into fresh one (1800 ml fresh medium) 

7. After incubation, add the reaction mixture (200µl) to each cell of 6 well-plate 

8. Cells were incubated in 37®c @5% of C02 for 24 hours. 

 

 

Box 1: 

9. 350000 cell/well were seeded 24 hours prior to transfection in a 6 well plate. 

10. 20µM stock of dilute siRNA and negative control were prepared (5.6 µl of siRNA and 

14.4 µl buffer blue) 

11. Viromer and buffer blue were mixed in the 1:90 µl i.e., 2µl+180µl per sample 

12. Next, 180µl of transfection mix of siRNA/Negative control added in tube. 

13. Tube was further vertex and incubated for 15 mins at room temperature. 

14. Aspirate the old cell-culture and change into fresh one (1800 ml fresh medium) 

15. After incubation, add the reaction mixture (200µl) to each cell of 6 well-plate 

16. Cells were incubated in 37®c @5% of C02 for 24 hours. 
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and a fold change cut of 2.0 between controls and Salmonella typhimurium-infected samples, control 

and Listeria monocytogenes-infected samples, as well as Listeria monocytogenes-infected and 

Salmonella typhimurium-infected samples 

(https://github.com/srmeetd/Macrophage_transcriptomic_analysis/blob/main/diff_infection_datas

et.R).  

iii) Differential expression analysis on time-series data of TRIB1 OE DU145 

 Data quality of raw reads was checked with FastQc tool implemented in the CGAT pipeline 

readqc (https://github.com/cgat-developers/cgat-

flow/blob/master/cgatpipelines/tools/pipeline_readqc.py). Low-quality reads and adapter 

sequences were removed using the Trimmomatic algorithm (Supplementary figure 1). It is worth 

mentioning that overall data quality was good, but we could see two set batches, based on GC content 

distribution. Clean reads were then mapped against the human genome hg38, using pseudo-aligner 

Salmon, with parameter “--gcBias”, which handles GC-biased generating batches in the 

dataset. Output files generated by Salmon were further passed to tximport R package, to retrieve 

count information. Counts were then normalized using R package edgeR, and samples were grouped 

based on time points, for both TRIB1-overexpressed and control conditions. Differential expression 

analysis was ultimately performed using limma-voom between WT different timepoints vs DU145 

TRIB1 overexpressed cell-line. Moreover, we also removed the effect of different timepoints using 

limma and differential expression was performed between WT and TRIB1 overexpressed DU145 cell-

line to counter the effect of TRIB1. And FDR correction cutoff of 0.05 and a log fold change cut off 

±1 were applied (https://github.com/srmeetd/Co-

expression_analysis_scripts/blob/main/Coexpression_analysis.Rmd).  

iv) Steps for generating Co-expression network  

 mRNA seq raw counts for cancer datasets were downloaded from TCGA Firehose 

(https://gdac.broadinstitute.org/) and were further processed to generate CPM counts, by using the 

limma R package. The top 5000 highest expressed genes in each cancer dataset and for MDM 

condition were selected and used to construct the co-expression network for each dataset, using the 

WGCNA R package. First, flashClust R package (included in WGCNA) was used to construct the 

hierarchical clustering, which helped remove outlier samples from the provided datasets. Next, 

correlation analysis was performed amongst genes between samples within a dataset, and a default 

soft threshold was applied to select the positively and negatively correlated genes. Finally, a 

Topological overlap matrix (TOM) was used as a distance matrix (1-(TOM)), and DynamicTree cut 

algorithm was used to generate a dendrogram, to cluster highly similar modules and to merge them, 

with a cutoff of 0.25. Thus, different modules with co-expressed genes were generated through 

https://github.com/srmeetd/Macrophage_transcriptomic_analysis/blob/main/diff_infection_dataset.R
https://github.com/srmeetd/Macrophage_transcriptomic_analysis/blob/main/diff_infection_dataset.R
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
https://github.com/srmeetd/Co-expression_analysis_scripts/blob/main/Coexpression_analysis.Rmd
https://github.com/srmeetd/Co-expression_analysis_scripts/blob/main/Coexpression_analysis.Rmd
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weighted co-expression network analysis, and we further investigated the module that contained 

TRIB1 (https://github.com/srmeetd/WGCNA_coexpression).  

v) Structural superimposition of TRIB1 

 In order to test whether there are any structural similarities between Trib1 and an E2 ligase 

– UBE2D3, their protein structures were downloaded from Protein Data Base (PDB) (PDB Ids 5CEM 

and 2FUH, respectively) and then superimposed using the online PDB tool.  

vi)  Gene ontology analysis  

Gene ontology enrichment analysis was performed using GOseq (Young et al. 2010) R package. 

Next, FDR was calculated on the ‘over_represented_pvalue’ column output obtained from GOSeq. 

The reason for using the ‘over_represented’ column is that it represents more DE genes in the present 

categories than expected at any given size of category and length distribution; hence, these are 

considered enriched DE genes in that category  (Young et al. 2010). Gene ontology passing the 

threshold of FDR < 0.05 were then selected for further analysis. 

2.3 Results 

2.3.1 TRIB1 co-expresses with genes of different functions in macrophages 

 We began our investigation of TRIB1 networks by examining a dataset of monocyte derived 

macrophages (MDMs) from 169 individuals. As well as control samples (from healthy individuals), 96 

samples were infected in-vitro with Salmonella typhimurium, and 92 samples with Listeria 

monocytogenes. We selected the 5000 most highly expressed genes in each condition, and built three 

co-expression networks. These had 65 modules for uninfected, 68 for Salmonella typhimurium-

infected and 62 for Listeria monocytogenes-infected macrophage datasets. The modules containing 

TRIB1 had 107, 57 and 136 genes, respectively (Supplementary Table 1 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table1.xlsx), and 

we observed that TRIB1 co-expresses with different genes in each condition, with no overlap between 

the three datasets. (Figure 2.2)  

 

https://github.com/srmeetd/WGCNA_coexpression
https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table1.xlsx
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As mentioned in Introductory Chapter 1.7.2, TRIB1 is involved in the polarization of M2-like 

macrophages, and Listeria monocytogenes has also been shown to stimulate an M2-like phenotype 

in macrophages upon infection (Thiriot et al. 2020). Therefore, to better understand TRIB1’s role in 

this type of macrophages, we focused our further analyses on Listeria monocytogenes-infected 

dataset. Thus, out of 136 genes found to co-express with TRIB1 in this condition, 30 were significantly 

up-regulated and only 2 were down-regulated upon Listeria monocytogenes infection, compared to 

unstimulated MDMs (Figure 2.3, Supplementary Table 2 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table2.xlsx).  

Figure 2. 3- Venn diagram showing number of genes co-expressed with TRIB1 in all 
conditions 

 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table2.xlsx
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As discussed in Chapter 1.7.2, TRIB1 has previously been observed to recruit the E3 ligase 

COP1, for the ubiquitination of CEBPA. Similarly, one of the significantly up-regulated genes co-

expressing with TRIB1 in Listeria monocytogenes-infected samples is UNKL (Table 2.2), which is also 

an E3 ubiquitin ligase, playing a role in phagosome formation. This suggests TRIB1 is often involved 

in the recruitment of E3 ligases. E2 ubiquitin-conjugating enzymes are proteins known to be involved 

in the recruitment of E3 ligases. One could hypothesise that TRIB1 might act as an E2 ligase. Upon 

superimposing Trib1 protein structure with that of an E2 ligase, UBE2D3, an overlap of at least 76% 

was observed (Figure 2.4), which supports our hypothesis that Trib1 could have an E2 ligase domain. 

Figure 2. 5- Venn diagram showing genes co-expressed with TRIB1 in Listeria 
monocytogenes, up-regulated and down-regulated, with fold change ±2 and FDR 
< 0.05 

Figure 2. 7- Super-imposed 3D structure TRIB1 (blue) and UBE2D3 (brown) 
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However, further study is required to understand about the overlapping domains and conclude the 

significance structural similarities.  

Another significantly up-regulated gene co-expressing with TRIB1 is TMEM181 (Table 2.2), a 

transmembrane protein with important role in cell signalling, particularly upon pathogen infections. 

What is more, looking at the protein network of TMEM181, it is often co-expressed with SYTL3 gene 

obtained from STRING database (Figure 2.5), whose role is to bind calcium ions (Fukuda and 

Mikoshiba 2001), and together, they are involved in vesicular trafficking and signal transduction. 

However, Listeria monocytogenes is known to sequester calcium ions, which can no longer be bound 

by SYTL3, thus leading to a lower demand for this protein. This is consistent with our data, as SYTL3 

was observed to be down-regulated in Listeria monocytogenes-infected samples, suggesting it can no 

longer ensure a proper signalling with TMEM181. Therefore, the co-expression of TRIB1 with 

TMEM181 could indicate that Trib1 might mitigate the lower abundance of SYTL3, as well, supporting 

the signalling pathway through TMEM181 and helping the cells activate their adaptive immunity 

specific to an M2 phenotype, to fight off the bacterial infection. 

The above examples of TRIB1 co-expressing with different types of proteins indicate that 

Trib1 could have multiple functions, including roles in macrophage polarisation, ubiquitination and 

cell signalling, thus improving our understanding on TRIB1’s potential activity. 

 

 

 

2.3.2 TRIB1 co-expresses with immediate-early response (IER) genes 

Considering TRIB1 is known to be upregulated in many different types of cancer (see 

Introduction 1.7.2 ii)), we generated co-expression networks of TRIB1 for different cancer datasets, 

and then looked at whether the genes identified to co-express with TRIB1 in any of these datasets 

were overlapping with those detected in macrophages. Thus, we obtained a separate set of modules 

Table 2. 2- log fold change of genes co-expressed with 
TRIB1 in Listeria monocytogenes, either upregulated or 
downregulated, with fold change threshold ±2 
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for each cancer type, containing between 20-80 genes co-expressed with TRIB1 per cancer type. In 

order to narrow down the list of potential interactomes, we selected only the genes co-expressing 

with TRIB1 in at least eight cancer datasets, finding only 28 such genes (columns in Figure 2.6).  

 

These 28 genes were coexpressed with TRIB1 in upto 18 different cancer types, and in general 

TRIB1 would either co-expressed with many or none of these genes in a given cancer type. In 9 out 

of the 28 cancer datasets analysed, TRIB1 co-expressed with few or none of these genes, but instead 

a different set of genes were co-expressed with TRIB1 (rows in Figure 2.6). Out of the 28 genes 

mentioned above (columns in Figure 2.6), 19 are known to be immediate-early response genes (IER) 

(Table 2.3). These IER genes were not co-expressed in the 9 outlier cancer datasets (rows in Figure 

2.6). These 17 IER genes were lowly expressed in these 9 cancer data sets (in which they did not co-

express with TRIB1), compared to the other 21 data sets (in which they were co-expressed with TRIB1) 

(Figure 2.7, Wilcox test p-value = 0.02). In contrast, TRIB1’s expression was not significantly different 

between samples in which IER genes were co-expressed with it and those in which they weren’t 

(Figure 2.8, Wilcox test p-value = 0.96). These results show that TRIB1 is co-expressed with a high 

number of IER genes in 19 out of 28 cancer data sets, suggesting it could potentially be an IER gene 

itself, regulate an IER gene or be regulated by an IER gene. 

Figure 2. 9- Interaction network of proteins, obtained from genes co-expressed with 
TMEM181; yellow – text-mining evidence; black – co-expression evidence 
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Genes No. of cancer 
datasets 

References 

EGR1 19 (Duclot and Kabbaj 2017) 

FOS 19 (Sng, Taniura, and Yoneda 2004) 

IER2 17 (Neeb et al. 2012) 

JUN 17 (Hernandez et al. 2008) 

JUNB 17 (Hernandez et al. 2008) 

ATF3 17 (Epanchintsev et al. 2020) 

DUSP1 16 (Horita et al. 2010) 

NR4A1 16 (Tullai et al. 2007) 

PPP1R15A 16 (Uhlitz et al. 2017) 

ZFP36 16 (Uhlitz et al. 2017) 

FOSB 14 (Tullai et al. 2007) 

Figure 2. 11- Genes co-expressed with TRIB1 in different cancer datasets.  x-axis – gene names; y-axis – 
cancer data sets. blue = co-expressed with TRIB1; white not co-expressed with TRIB1. 

 

Table 2. 3- List of early response genes co-expressed with TRIB1 
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Genes No. of cancer 
datasets 

References 

MAFF 13 (Kannan, Solovieva, and Blank 2012) 

MCL1 13 (Tullai et al. 2007) 

DUSP 11 (Horita et al. 2010) 

JUN 11 (Hernandez et al. 2008) 

RHOB 11 (Huelsenbeck et al. 2007) 

ZFP36L 10 (Uhlitz et al. 2017) 

DUSP5 8 (Horita et al. 2010) 

DUSP6 8 (Horita et al. 2010) 

Wilcox test p-value → 0.02 

IER genes co-expression 
with TRIB1 in cancer 

datasets 

 

Figure 2. 13- Box-violin plot showing the expression of IER genes co-expressed (green)  
or not (orange) with TRIB1 in cancer datasets 
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Table 2. 4- List of early response genes co-expressed with TRIB1 
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WGCNA generated modules can contain genes either positively or negatively correlated with 

each other between samples. We examined the Pearson correlation between genes in the TRIB1 

module to observe the direction of correlation between IER genes and TRIB1. We found that IER 

genes were positively correlated with TRIB1 in ~90% of cancer datasets (Figure 2.9), meaning that 

when the expression levels of either TRIB1 or these IER genes go up/down then the expression of the 

others also goes up/down. 

2.3.3 TRIB1 co-expresses with genes involved in different pathways in cancer 

 As mentioned before, TRIB1 has been associated with a number of signalling pathways and 

biological processes involved in cancer, but its exact role is yet to be elucidated. In order to better 

understand the network interactions of TRIB1, we investigated the genes co-expressed with it in both 

Listeria monocytogenes-infected and cancer samples. For this, we used the GOseq and KEGGREST R 

package for KEGG-pathway enrichment analysis, and we observed that genes co-expressed with 

TRIB1 in Listeria monocytogenes dataset were not significantly enriched for any KEGG pathways. In 

contrast, genes recorded in co-expression modules with TRIB1 for each different cancer type were 

found to be involved in MAPK signalling pathways in 20 out of 23  cancer datasets, which was 

consistent with previously-published findings of TRIB1 involved activating MAPK pathways (Zhang et 

Figure 2. 15- Box-violin plot showing the expression of TRIB1 in cancer 
samples where it is co-expressed with IER 
(green) genes or or not (orange) 
 
 

 

Wilcox test p-value → 0.96 
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al. 2021). Other well-supported pathways were B cell receptors, followed by cytokine, T-cell signaling 

pathways, and Toll-like receptor pathways (Figure 2.10). Therefore, for further validation, we focused 

on analysing genes co-expressed with TRIB1 in cancer. 

 

2.3.4 TRIB1 co-expresses and interacts with IER genes EGR1 and FOS 
The protein-protein interactions of genes co-expressing with TRIB1 in more than ten cancer 

datasets were analysed using the STRING database. The network generated recorded a larger number 

of edges than the expected random network of the same size (Szklarczyk et al. 2021), with a p-

value ≤ 10−16, which meant the nodes were connected and that the interactions observed were not 

at random. Overall, only nine protein-protein interactions with Trib1 were identified in STRING, 

among which the Fos, Dusp1, and Junb proteins, also found in the co-expression network, were found 

to interact with Trib1 directly (Figure 2.11).  

  

Correlation value 

Figure 2. 17- Correlation of IER genes with TRIB1 in different cancer types 
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Figure 2. 19- Protein-protein interaction network of genes co-expressed with TRIB1 in 
cancer datasets. purple – experimental evidence; green – gene neighbourhood; blue – 
gene co-occurrence database evidence; yellow – text-mining evidence; black – co-
expression evidence.   

2. 21- Heatmap representing top 10 pathways of co-expressed genes present in different 23 cancers  

 

Cancer datasets 
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2.3.6 TRIB1 has an IER expression pattern in HEK293T cells 

In order to test our hypothesis that TRIB1 may be an early response gene, we examined its expression 

pattern in HEK293T cells in which early response was stimulated through serum supplementation 

after starvation (The reason to use this method was to restrict the cell growth to G0 phase and create 

a cell-stress like condition and adding the fresh serum activates mitogenic growth factors responsible 

for cell proliferation). We observed that TRIB1 expression increased for up to 90 minutes post-

stimulation with 20% FBS and then gradually decreased (Figure 2.12, Supplementary Table 3 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table3.xlsx). This 

was consistent with the pattern of known IER genes like EGR1 and FOS, which were also shown to co-

express with TRIB1. Although the difference in expression between the time points was not as 

significant as for EGR1 and FOS, these results support our hypothesis and the possibility of an 

interaction between these genes.  

 

2.3.5 Expression of TRIB1, EGR1 and FOS in PC-3 and DU145 cell-line 

 As mentioned in the Introductory Chapter 1, TRIB1 has been associated with different types 

of cancer, particularly with prostate cancer pathogenesis, and it was also reported to be over-

expressed in prostate cancer cells (Niespolo et al. 2020). The two IER genes we demonstrated above 

to be co-expressed with TRIB1, EGR1 and FOS, have also been shown to be involved in prostate 

cancer: EGR1 is a known to trigger apoptosis in prostate cancer cells, by increasing the expression of 

tumour necrosis factors (Gitenay and Baron 2009); FOS has roles in cell growth and apoptosis, and its 

expression levels were found elevated in prostate cancer, as well (Shankar et al. 2016). Considering 

such past studies were performed on both samples from cancer patients and prostate cancer cell 

lines (e.g. PC-3), in order to test our preliminary computational results on the relationship between 

Figure 2. 23- qPCR - mRNA expression of TRIB1, EGR1 and 
FOS in HEK293T cells, normalized to GAPDH. Data is 
represented as mean ± SEM (3 bioreps). 
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https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table3.xlsx
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TRIB1, EGR1 and FOS, we also conducted further in vitro experiments on prostate cancer cell lines 

PC3 and DU145.  

In order to further understand the possible relationship between TRIB1, EGR1 and FOS mRNA 

expression, we analysed the mRNA expression data for both DU145 and PC3 cell lines from the CCLE 

database of gene expression in cancer cell lines. Plotting strip charts for the CPM counts of TRIB1, 

EGR1 and FOS, we observed that TRIB1 is higher in PC-3 cells than in DU145, while the opposite was 

observed for both EGR1 and FOS, whose expression levels were elevated in DU145, compared to PC-

3 cells (Figure 2.13). These indicate that TRIB1 may actually be lowly expressed in DU145 compared 

to PC3 cell-line. Also, the expression of FOS is more in DU145 compared to PC3, but the expression 

of EGR1 is slightly higher in DU145 compared to PC3.  This data also suggests the possible relationship 

between TRIB1 , EGR1 and FOS.  

 

Figure 2. 25- Strip chart showing relative expression values between DU145 and PC-3 cell lines. ) 
TRIB1, b) FOS c) EGR1  
 

 

a) 
b)

c) 
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2.3.6 TRIB1 may regulate early response of EGR1 and FOS 

We tested this connection between TRIB1, EGR1 and FOS, by overexpressing TRIB1 in DU145 

cells and knocking it down in PC-3, as well as in HEK293T cells. qPCR analysis results showed an 

obvious increase in EGR1 expression in TRIB1 knockdown conditions in both PC-3 and HEK293T cell 

lines, while FOS levels were only slightly higher (Figure 2.14, Supplementary Table 4 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table4.xlsx). In 

agreement with Figure 2.13, this would suggest TRIB1 could inhibit IER genes like EGR1. If so, it would 

be expected that in cells overexpressing TRIB1, EGR1 levels would significantly decrease. However, 

when TRIB1 was overexpressed in DU145 cells, both EGR1 and FOS were significantly upregulated 

(Figure 2.14), contrary to our initial predictions. One possible reason for this could be that 

overexpression of TRIB1 in DU145 cells (which in WT conditions it was observed to be lower in DU145 

than in PC-3 cells – Figure 2.13) could have resulted in TRIB1 levels similar to those recorded when it 

was knocked down in HEK293T and PC-3 cells. This suggests there could be a particular threshold or 

cellular demand for TRIB1 that needs to be maintained and when dysregulated, IER genes are 
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Figure 2. 27- qPCR - mRNA expression of EGR1 and FOS in TRIB1 knock down in a) PC-3 and b) HEK293T 
cells, normalized to the housekeeping gene GAPDH. Data is represented as mean ± SEM (3 tech reps). 
TRIB1’s expression was only measured in PC-3 cells (top). 
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positively stimulated. However, it is important to note that because of the COVID-19 related 

lockdowns, the data in Figure 2.14 represents only a single biological replicate.  

2.3.6 Change in expression level of TRIB1 upon stimulating IER genes 

The above experiments took place in resting cells. In order to test whether TRIB1 has any 

effect on activation of EGR1 and FOS in conditions triggering early response, the abundance of both 

genes was analysed at different time points of serum supplementation of DU145 cells overexpressing 

TRIB1. qPCR analysis results showed a significant increase in EGR1 expression at 30 mins in TRIB1 

overexpressed cell-lines (Figure 2.16), similar to that recorded in DU145 overexpressing TRIB1 grown 

in normal media (Figure 2.15). However, EGR1 levels started to decrease comparative to WT DU145 

cells after 90 minutes post-stimulation (Figure 2.16), suggesting TRIB1’s overexpression could have 

an early impact on EGR1. In contrast, although FOS levels were recorded to be higher in DU145 cells 

overexpressing TRIB1 and grown in normal media, when early response was serum stimulated in the 

same cells, the expression of FOS was drastically reduced at and after 30 mins in TRIB1 overexpression 

cell-line (Figure 2.16), again indicating that TRIB1 may have an early effect on these genes. 

Further overexpression studies in HEK293T and PC-3 cells, as well as knockdown of TRIB1 in 

DU145 cells would help elucidate whether this behaviour is cell line specific and whether there is a 

direct effect of one gene over the other(s). 
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Figure 2. 29- mRNA expression of TRIB1, EGR1 and FOS in DU145 cells over-expressing 
TRIB1 (Data is represented as mean ± SEM). 
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2.3.6 Expression of TRIB1 is negatively correlated with that of EGR1 and FOS in 

DU145 and PC-3 cell lines 

We tested the abundance of TRIB1 in DU145 cells at different time points of post-starvation 

stimulation with 20% FBS, which replicated the conditions in which IER genes would be expressed. 

qPCR analysis was performed on two different sets of samples, one collected at 6 time points (0, 30, 

60, 90, 120 and 180 mins), and the other at only 4 time points (0, 30, 60 and 90 mins). The qPCR 

results showed a similar relative abundance of TRIB1 mRNA between the different time points in shc 

control cell lines with increase in TRIB1 expression at 90 minutes. However, in TRIB1 OE DU145 cell 

lines TRIB1 at different time-points, we do not observe the much variation. (Figure 2.17 and 2.18). 

This could be because TRIB1 is already OE in DU145 cell-line, hence it is not further regulated by IER  

Figure 2. 31- : mRNA expression of a) EGR1 and b) FOS at different time-points 

in DU145 cells overexpressing TRIB1, normalized to the housekeeping gene 

GAPDH Data is represented as mean ± SEM (3 biological replicate) (Shc → 

Scrambled control)  

 

a) 

b) 
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genes. Moreover, we observed the different in expression level in Figure 2.17 and 2.18, although the 

direction of expression is similar. These could be due to a number of factors, such as technical error, 

efficiency of qPCR primers, differences in detection/sensitivity of the machine on different days etc. 

Despite this, it can be observed there was small amount of increase in the expression levels of TRIB1 

between the different time points, suggesting TRIB1 may not in fact act like an early response gene 

in DU145 prostate cancer cells. The most possible reason could be TRIB1 is overexpressed in DU145 

cell lines therefore it is not further activated after stimulating IER genes.  
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Figure 2. 33- qPCR - mRNA expression of TRIB1 in DU145 cells at 0, 30, 60, 90, 120 and 

180 mins post-starvation for 12 hours and stimulation with 20% FBS (Data is 

represented as mean ± SEM) (Shc → Scrambled control) 

. 
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2.3.8 TRIB1 overexpression leads to differential expression of many genes 

 In order to validate our computational results obtained from analysing samples available on 

online databases, as well as our experimental findings, WT DU145 cells and DU145 cells 

overexpressing TRIB1 were collected at different time points after serum stimulation and sent for 

mRNA sequencing. The same conditions were described in section 4.3.6, but the RNA amount left 

from those initial tests was not sufficient for RNAseq. Thus, new cells were thawed and a different 

batch of DMEM media was used to replicate the previous set of experiments. The expression of EGR1 

and FOS was again tested using qPCR (Figure 2.19), and the results obtained were different than those 

reported above in Figure 2.16. Although we could not confirm whether the new batch of cells or 

media were responsible for the different results, the samples were still sent for sequencing.  

 

 shc 

Figure 2. 37-  qPCR - mRNA expression of a) EGR1 and b) FOS at different time-points in DU145 cells 

overexpressing TRIB1, normalized to the housekeeping gene GAPDH. Data is represented as 

mean ± SEM (3 biological replicate) 

  

TRIB1 OE 

Figure 2. 35- mRNA expression of TRIB1 in DU145 cells at 0, 30, 60 and 90 mins 

post-starvation for 12 hours and stimulation with 20% FBS (Data is represented 

as mean ± SEM). (shc → Scrambled control, TRIB1 – TRIB1 OE). 
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Alignment of the RNAseq data resulted in approximately 80% of reads mapping to the human 

genome hg38 (Appendix table 7). Downstream analysis of the rlog values calculated through DESEQ2 

R package was visualized through a PCA plot (Figure 2.20), in which we could observe that samples 

were separated by both time points (0, 30 and 60 minutes – principal component 1 - PC1) and 

condition (control vs. TRIB1 overexpression – principal component 2 – PC2). 

 

  To investigate the effect of TRIB1 on early response gene stimulation in DU145 cells at 

different time points, we used DESeq2 to perform differential expression analysis between control 

DU145 and cells with TRIB1 OE (Supplementary Table 5 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table5.xlsx). We 

found 85 differentially expressed genes (FDR < 0.05) at time point 0, out of which 48 were 

upregulated and 37 were downregulated, followed by 30 genes (15 upregulated and 15 

downregulated) at time point 30 min, and  21 (12 upregulated and 9 downregulated) at 60 minutes 

post-stimulation. However, none of the genes identified belonged to the early response genes class. 

Furthermore, to understand the overall effect of TRIB1 overexpression, we performed differential 

expression analysis between DU145 controls and cells with TRIB1 OE, irrespective of their time points, 

accounting for the replicate. As a result, we found 1214 differentially expressed genes (FDR < 0.05), 

out of which 638 were upregulated and 576 downregulated.  

As shown in Figure 2.21, there is a clear clustering of genes differentially expressed between 

DU145 controls and cells with TRIB1 OE, regardless of the 3 time points post-stimulation. Overall, 

Figure 2. 39- Global PCA plot based on rlog values from RNAseq, performed on GFP 

control and TRIB1-overexpressed mRNA. Different colours represent the biological 

replicates, and shapes represent time points in both TRIB1 and control samples. 

 

 

https://github.com/srmeetd/Coexpression_chapter/blob/main/Supplementary_Table5.xlsx
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there is a larger number (638 upregulated and 576 downregulated) of genes being upregulated than 

downregulated in TRIB1 OE condition, compared to controls, suggesting a positive regulatory effect 

of TRIB1.  

 

Figure 2. 41- Heatmap of differentially expressed miRNAs in TRIB1-overexpressed and control 

samples, at different time points. Heatmap is generated from the distance matrix on Pearson 

correlation, using rlog normalized values 
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2.3.9 TRIB1 co-expresses with DE IER genes involved in cell signalling and cell 

cycle related pathways 

Although there were a large number of genes differentially expressed between DU145 

controls and cells with TRIB1 OE, there was only a small overlap between genes differentially 

expressed overall and at different time points post-stimulation (only 100 common genes). Therefore, 

in order to understand whether these genes were involved in different biological processes, gene 

ontology enrichment was applied. The analysis showed that most of the genes differentially 

expressed between controls and TRIB1 OE, irrespective of the time points, were involved in various 

metabolic and catabolic processes (Figure 2.22a). In contrast, genes with significantly altered 

expression at individual time points were associated with cell signalling and cell-related biological 

functions, such as cell migration, mobility and differentiation (Figure 2.22b).  

In order to better understand the potential interaction of TRIB1 with these DE genes in prostate 

cancer, the genes recorded as differentially expressed between DU145 controls and cells with TRIB1 

OE were compared with the genes identified through co-expression analysis of RNAseq data for 

DU145 cells.  Thus, we observed that 18 out of 80 genes co-expressing with TRIB1 in prostate cancer 

were also differentially expressed between DU145 controls and TRIB1 OE. Most of these genes were 

found to be early response genes involved in cell signalling-related pathways, including BCL6, CLDN4, 

ELF3, FURN, GADD45B, VEGFA, PHLDA1, RASD1 and TSC22D1 (Figure 2.23). In addition, aiming to 

identify the proportion of differentially expressed genes also co-expressing with TRIB1 in different 

cancer datasets, we found that 14 out of 28 genes co-expressed with TRIB1 in more than five cancer 

datasets were also differentially expressed between DU145 controls and TRIB1 OE, at different time 

points. These are DUSP1, DUSP5, DUSP6, JUN, JUNB, MCL1, PPPP1R15A, RHOB, NFKBIZ,AG1, GPX3, 

TNFAIP3, RRAD and SNHG1 (Figure 2.24), all early response genes associated with cell signalling and 

cell cycle-related pathways, similar to the ones identified in prostate cancer cell lines.  

These results support previous reports of TRIB1 being involved in processes linked to cell fate, 

and they suggest that TRIB1 may indeed be an early response gene or in direct/close interaction with 

early response genes. Moreover, these findings strongly indicate that TRIB1 is involved in cell 

signalling, in line with our above reports of TRIB1 co-expressing with transmembrane protein 

TMEM181, also known to regulate cell signalling processes upon bacterial infections. 
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Figure 2. 43- Gene ontology enrichment analysis of DE genes. a) GO analysis on DEG between 
TRIB1-overexpressed and control samples, irrespective of their time points. b) GO analysis of 
DEG between TRIB1-overexpressed and control samples, at different time points. Dot plot 
represents top 20 gene ontology annotations; x-axis – the number percentage of differentially 
expressed genes present in particular ontology function, y-axis – GO annotations; dot size 
represents the number of differentially expressed genes present in corresponding GO function, 
and colour represents the FDR score. 
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2.4 Discussion 

In this chapter, we reported that TRIB1 co-expresses with genes with a variety of different 

functions in macrophages. In 21 of 28 cancer, Trib1 co-expresses with a coherent set of genes involved 

with the immediate early response. Thus we suggest that TRIB1 could be regarded as a that it may in 

fact be an IER gene. This hypothesis was supported through analyses and results showing that TRIB1 

co-expresses, interacts at protein level with and may regulate IER genes EGR1 and FOS; TRIB1 has an 

IER expression pattern in HEK293T cells, and that TRIB1’s overexpression in DU145 cells leads to 

differential expression of many genes, some of which were identified as early response genes also co-

expressing with TRIB1 in prostate cancer.  

Co-expression analysis of control macrophages and cells infected with either Salmonella 

typhimurium or Listeria monocytogenes showed that TRIB1 co-expressed with different sets of genes 

between conditions. This could be due to the variations in expression of TRIB1, as TRIB1 was found to 

be lowly expressed in Salmonella typhimurium, compared to control and Listeria monocytogenes-

infected samples. Considering Trib1 has been previously shown to be involved in macrophage 

differentiation into an anti-inflammatory M2 phenotype, we investigated the co-expression network 

of TRIB1 in control MDMs and samples infected with Listeria monocytogenes, as infection with this 

Gram positive bacteria has been found to stimulate an M2-like phenotype in macrophage (Mège, 

Mehraj, and Capo 2011). Thus, we found TRIB1 to co-express with transmembrane protein TMEM181. 

This is an interesting finding because TMEM181 together with TRIB1 may regulate the cell signalling 

pathways and help the cells activate their adaptive immunity.  However, the interaction between 

TMEM181 and TRIB1 needs to be studied. Our analysis is based on the co-expression model and 

available information in GeneCards (https://www.genecards.org/) of both the genes. 

In addition, TRIB1 was also found to co-express with E3 ligase UNKL, and considering past 

studies have already demonstrated that Trib1 recruits E3 ligase COP1 for the ubiquitination of CEBPA, 

an interesting possibility is that TRIB1 also interacts may also recruit or sequester UNKL. Indeed, we 

hypothesise that Trib1 may potentially act as an E2-conjugating enzyme. In support of this, when we 

analysed the protein structural similarity between Trib1 and E2 ligase UBE2D3, we found a 76% 

overlap (Figure 2.4). This supported our hypothesis but to further validate this relationship, co-

immunoprecipitation studies could be performed. 

We also investigated the expression of TRIB1 in 28 different cancer datasets and found that 

19 of the 28 genes co-expressing with TRIB1 in 18 cancer datasets were early response genes (Figure 

2.9). We found a interaction between these IER genes and TRIB1 that was at a higher probability than 

at random, especially for genes co-expressed in at least 10 cancer types. What is more, most of the 

https://www.genecards.org/
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co-expressed genes were enriched in cell-signalling pathways, particularly in MAPK signalling, Toll-like 

receptor pathway and B-cell receptor signalling (Figure 2.10). Moreover IER genes like JUN and FOS 

are known to form the dimeric transcription factor AP-1 (Van Dam and Castellazzi 2001), which has 

been linked to cancer and was found to regulate gene expression in response to various stimuli, 

including cytokines, growth factors, stress, bacteria, or viral infections (Wang et al. 2013). 

Furthermore, DUSP1, FOS and JUN show a direct interaction with EGR1, which is widely considered to 

play an important role in promoting differentiation of macrophages and primary myeloid precursors 

(Barbieri et al. 2018), and has also been found to activate inflammatory enhancers in mature and 

developing macrophages (Trizzino et al. 2021). This observation supports published role of TRIB1 to 

regulate AP1 dimer. (Kiss-Toth et al. 2004). This our result illuminates the role of TRIB1 in cell-

proliferation, cell signalling by regulating early response genes and also supports our hypothesis that 

TRIB1 may be involved in early cell fate decisions and responses, and that it could indeed be a member 

of the IER gene family . This could the reason why TRIB1 is not coexpressed with IER genes in 

macrophages as the data was collected after 2 hours of salmonella and Lister sp. Infection.   

Out of the early response genes co-expressing with TRIB1, EGR1 and FOS were found in 19 out 

of the 28 cancer datasets, they have been previously reported to interact with Trib1 at protein level 

(Ancuta Jurj et al. 2020) (Figure 2.11), and they were also recorded to be positively correlated with 

TRIB1 in the TCGA Firehose RNAseq dataset. In contrast, both EGR1 and FOS were negatively 

correlated with TRIB1 in DU145 and PC-3 cell lines, as their expression levels were more elevated in 

DU145 than in PC-3, while the opposite was observed for TRIB1, which was more abundant in PC-3 

than in DU145 cells (Figure 2.13). Although cell-lines are considered an important tool in studying the 

molecular biology, despite of their advantages they do not capture the heterogeneity, tissue 

complexity due to the homogenous group of the cells and their cultivation in controlled environment 

that lacks the interaction with other cell-types.  Also it has been reported other factors that could 

influence/shows difference of gene expression between cell-lines and tissue is regulation of TF (Pan 

et al. 2009). 

In order to investigate the relationship between these three genes, TRIB1 was overexpressed 

in DU145 cells and knocked down in PC-3 and HEK293T cells, and the expression of EGR1 and FOS was 

measured. qPCR analysis results showed an obvious increase in EGR1 expression in TRIB1 k/d 

conditions in both PC-3 and HEK293T cell lines, while FOS levels were only slightly higher (Figure 2.14). 

This suggested that TRIB1 could inhibit IER genes like EGR1, but this hypothesis was then rejected, 

because when TRIB1 was overexpressed in DU145 cells, both EGR1 and FOS were again significantly 

upregulated (Figure 2.15), suggesting a more complex regulatory circuit.  

https://pubmed.ncbi.nlm.nih.gov/?term=Jurj+A&cauthor_id=32619350
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In DU145 cells overexpressing TRIB1, EGR1 was significantly increased 30 minutes after early 

response stimulation with serum, compared to wildtype DU145 cells. It then decreased more rapidly 

in the overexpressing cells, from 90 minutes onwards. Similarly, FOS was initially elevated in TRIB1 OE 

condition, but its expression started to significantly plunge earlier, after just 30 minutes of IER 

stimulation (Figure 2.16). These results indicate that Trib1 may have an early effect on early response 

genes like EGR1 and FOS. 

What is more, upon stimulation of IER genes in HEK293T cells by serum, we observed that 

EGR1 and FOS expression increases from time-point 0 to 60 mins and then starts to gradually decrease. 

Although the decrease is not as sharp, TRIB1’s expression seems to follow a similar pattern, as it goes 

up for 90 mins post-stimulation and then it is slowly lowered (Figure 2.12). This result suggests that 

TRIB1 could itself be a member of the early response genes family.  

Overall, because of the consistent change in EGR1 and FOS levels in response to changes in 

TRIB1’s expression, we cannot completely rule out a regulatory role of TRIB1 over them. However, 

considering the tests were done in different cell lines, we also cannot conclude on the direction of 

regulation and the exact mechanism between these three genes. 

In addition to its effect on early response genes like EGR1 and FOS, TRIB1’s overexpression 

was also found to lead to the differential expression of several genes at different time points post-

stimulation. There were 85 DE genes at time point 0, followed by 30 genes at time point 30 min and 

21 DE genes identified at 60 minutes after serum stimulation. However, none of these genes were 

found to be early response genes, but most were enriched in cell signalling pathways and cell-related 

biological functions, such as cell migration, mobility and differentiation. In contrast, a larger number 

of DE genes (1214) was recorded between controls and cells with TRIB1 OE, irrespective of the 3 time 

points, and they were involved in various metabolic and catabolic processes, as well as responses to 

stress. These DE genes showed a clear clustering, with more genes being upregulated than 

downregulated in TRIB1 OE condition compared to DU145 controls (Figure 2.21). 

Comparing differentially expressed genes detected in TRIB1 OE conditions with genes co-

expressed with TRIB1 in the same DU145 cells, we found 18 out of 80 co-expressed genes in prostate 

cancer (Figure 2.23), and 14 out of 28 (Figure 2.24) co-expressed in more than 5 cancer datasets 

excluding prostate cancer were also DE between TRIB1 OE and controls. Most of these genes are early 

response genes, including DUSP1, DUSP5, DUSP6, JUN, JUNB, MCL1, PPP1R15A, RHOB, TSC22D1, while 

others play are involved in inflammatory pathways, such as NFKBIZ, TNFAIP3, JAG1, BCL6, VEGFA, 

ELF3, PHLDA1, FURIN, and few of them have roles in cell proliferation or differentiation, such as RRAD, 

STC1, MCL1 and GADD45B. 
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Overall, the above results strongly indicate that Trib1 may regulated by IER genes, and that it 

is actively involved in regulating cell signaling-related pathways. Also, it suggests that TRIB1 OE may 

trigger and/or employ distinct transcriptomic behaviours, but further validation in other cell lines 

could elucidate the exact role of TRIB1, and investigation on the interaction between these 

differentially expressed genes and TRIB1 could help determine whether there is a direct or indirect 

effect of TRIB1. 
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Chapter 3 

The role of SNPs altering miRNA binding sites in ASE 

genes 
 

3.1 Introduction 

 TRIB1 is known to have a 1.5 kilobase pair (Kbp) partly-conserved 3’ UTR, which undergoes 

miRNA regulation (Lin et al. 2014). Previous studies have shown it is a highly unstable transcript and 

evidence was also found to suggest transcriptional regulation of TRIB1. For example, S. Soubeyrand 

and colleagues challenged HepG2 cells with a short pulse of a low concentration of oligomycin, after 

which they observed an increase in the expression of TRIB1 mRNA. However, despite the mRNA 

upregulation, the levels or stability of Trib1 protein did not increase, which led to the conclusion that 

TRIB1 is post-transcriptionally regulated (Soubeyrand et al. 2013; Soubeyrand, Martinuk, Naing, et al. 

2016). In a separate study, Schwanhäusser and colleagues measured the expression of more than 5000 

mRNA and their protein levels in mammalian cells. They found that a random gene's mRNA level 

correlates with its protein level by 40%, emphasizing that protein expression is controlled by post-

transcriptional regulation (Schwanhüusser et al. 2011).  

According to the GWA studies, a large number of variations linked to human disease and 

evolutionary traits were linked to variations in the 3’ UTR (Griesemer et al. 2021), and the correlation 

between genetic variations in these regions and the alteration of miRNAs binding sites has been 

studied extensively in recent years (Ghanbari et al. 2015). For example  Ana Jacinta-Fernandes  and 

collegues reported a variation of approximately 25% in miRNA binding sites between individuals, and 

part of this variation was also associated with SNPs and correlated with differences in gene expression 

(Yuan and Weidhaas 2019). What is more, SNPs altering miRNA binding sites can also lead to allelic 

imbalances, known as allele-specific expression (Jacinta-Fernandes et al. 2020). 

All these highlights the importance of studying variations causing alteration in miRNA binding 

sites. Therefore, this current work aims to provide a more comprehensive view on post-transcriptional 

regulation of TRIB1 by identifying the effect of variations in 3’UTR on miRNA binding sites and 

investigating if these variations are linked to allele-specific expression of TRIB1.  
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3.1.1 Methodological considerations 

Over the last decade, there has been a vast improvement in the analysis of SNPs and their 

effect on gene expression, with many tools being developed for analysing ASE. However, most of the 

tools available either require known genotype information or trio sequencing, which is expensive and 

not feasible at large scale. To overcome this difficulty,  we developed a pipeline for identifying variants 

linked to ASE and genes with ASE, without the need of prior genotype information. The pipeline was 

further applied to analyse the effect of these variants on miRNA binding sites of TRIB1 

(https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE). 

i) Variant discovery and filtering of RNA editing events 

The inputs for our pipeline are reference-aligned bam files and raw un-mapped fastq files. The 

first step includes filtering of the bam files, removing PCR duplicates and splitting the reads based on 

the mapped exons. Then variants are called using the GATK’s Haplotype caller method, which 

performs de-novo assembly of haplotypes and calls SNPs and indels simultaneously. In other words, 

when the Haplotype caller finds the discrepancy between reads and the reference due to the variants 

in the read sequence, it discards the existing mapping information and re-assembles the reads in that 

region. Moreover, it also corrects the mapping errors made by the original aligner (Poplin et al. 2017).  

Next, RNA-editing sites (RES) are identified from RNA-seq bam files and filtered, using the SNP-free 

RNA editing IdeNtification Toolkit (SPRINT) (Zhang et al. 2017).  

RNA-editing is a modification of RNA molecule, which includes a change in the RNA sequence 

(i.e. adenosine to inosine and cytosine-to-uracil), with the most common RNA-editing event recorded 

in humans being adenosine to inosine (Ramaswami et al. 2012, Bahn et al. 2012). A limitation of 

traditional RNA-editing identification methods is that they depend on DNA-seq to identify the true 

variants, or they require using a database of SNPs, such as dbSNPs, to identify RNA-editing sites. 

However, sequencing both DNA and RNA from the same individual is expensive, and some of the SNPs 

deposited in dbSNPs have already been reported as RNA-editing sites (Wang et al. 2021), which can 

make identifying new sites difficult. Traditional methods usually follow the below steps to detect RNA 

editing sites: 

1. Aligning RNA-seq files to the respective genomes 

2. Identifying SNPs from the aligned files 

3. Filtering true SNPs either by DNA-sequencing, or by removing those present in SNPs databases 

 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE
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Unlike the traditional method, SPRINT identifies RE sites without filtering the SNPs, and 

instead, it distinguishes SNPs from RNA-editing sites by clustering variants duplets (two consecutive 

SNPs having the same variations: A→G or A→C mutation). This approach was developed taking into 

account that adenosine deaminases acting on RNA (ADARs) bind to RNA and are responsible for the 

adenosine to inosine RNA-editing editing event. In addition, RNA editing enzyme apolipoprotein B 

(ApoB), binds to single-stranded RNA, leading to cytosine-to-uracil editing (Zipeto et al. 2015). 

Although there are more than 150 RNA modifications, both ADARs- and AID/APOBEC-mediated RNA 

editing events belong to a subset of modifications particular to mRNAs. These are important for RES 

identification. Moreover, both RES and SNPs events are very unlikely to happen in the same genome 

location, and it has been observed that adenosine to inosine editing tends to be clustered (Ramaswami 

et al. 2012). On the other hand, other types of SNPs’ distribution on the genome is known to be 

independent (Zhang et al. 2017). Therefore, we incorporated the SPRINT tool into our pipelines, as it 

identifies the RES events by investigating the distribution of SNP duplets.  

Two of the most used approaches for identifying ASE are the binomial method, implemented 

by Rozowsky and colleagues in the Alleleseq tool (Rozowsky et al. 2011), and the analysis of variance 

(ANOVA) algorithm implemented in the Allim tool (Lu et al. 2015). Both these methods, as detailed in 

Introductory Chapter 1 – sections 1.5.1 a) and b), are based on the difference in read counts between 

the two alleles. However, depending on the sequencing depth, genes can also have low read counts, 

which means these methods may ignore genes with true ASE.  Therefore, in order to identify ASE, we 

have implemented two methods based on the Bayesian approach, which share gene information 

across samples and improve the average on gene-related inferences: first, the QuASAR method 

determines ASE for each SNP (Harvey et al. 2015), followed by the MBASED algorithm, which combines 

the ASE of each SNP present and identifies ASE at gene level (Mayba et al. 2014).  

As mentioned in the Introductory Chapter 1 – section 1.5.1, ASE is the imbalance of allelic 

expression between the diploid copies at the same locus (Salavati et al. 2019). The ASE study's biggest 

challenge in a diploid organism is mapping bias, i.e. reads are more likely to map to the reference 

allele/haplotype, and reads covering heterozygous loci tend to be erroneously mapped (Hodgkinson 

et al. 2016), which may lead to false-positive results for ASE discovery (Salavati et al. 2019). To 

overcome this challenge, we constructed the maternal and paternal genomes based on the haplotype 

phasing information. First, we reconstructed the haplotype information for each SNP by using the 

Readbackphasing tool from GATK, which is one of the few tools that support vcf files as an input 

and output. It uses the physical read information, as reads are considered with a Bayesian framework 

and the algorithm then constructs the haplotype for each SNP based on its probability (number of 

reads observed for particular SNP) (Depristo et al. 2011) (Figure 3.1). 
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ii) Predicting effects of variation on miRNA binding sites 

In order to predict miRNAs targeting transcript variants with SNPs in their 3’UTRs, we used 

miRanda, which first takes into consideration the sequence complementarity between the mature 

miRNA and the target site. Next, it predicts the binding energy of the miRNA–target duplex, and it 

then (optionally) looks for conserved 6-8 seed sequences of miRNA binding sites in 3’UTR of the 

homologous gene target. (Betel et al. 2010)  
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Figure 3. 1: Schematic representation of Readbackphasing 
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3.2 Materials and methods  

3.2.1 Datasets 

As we aimed to identify sequence variants in the 3' UTRs, their effect on miRNA binding sites 

and their correlation to allelic imbalance, and considering that commonly available exome sequencing 

data does not include 3' UTRs, we turned to RNA-seq data for our analyses.  

RNA-Seq (Human) dataset (accession number GSE81046) was obtained from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) and the associated fastq files were downloaded. The 

dataset included 169 samples prepared from monocyte-derived macrophages (MDMs) of control 

individuals and 96 samples challenged with Salmonella typhimurium infection (Nédélec et al. 2016). 

The reason we selected a Salmonella typhimurium-related dataset was because this type of infection 

is usually associated with an M1 pro-inflammatory phenotype in macrophages (Lathrop et al. 2018), 

which is also triggered by LPS-IFNγ stimulation that we used in our in vitro experiments. 

To check the ASE pipeline's efficiency and accuracy, we downloaded NA12878 cell line (Only 

cell line with known genotype information as per my knowledge) RNAseq from the GEO database 

(accession number GSE30400).  

3.2.2 Quality check and mapping  

FastQC (Andrews S, 2010) was used to check the quality of raw reads. Adapter sequences 

were trimmed using the Trimmomatic tool (Bolger, Lohse, and Usadel 2014) using the following 

parameters: 

 

 

 

 Raw files were then mapped to the human genome (hg38) using STAR with default 

parameters (Dobin et al. 2013).  
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3.2.3 ASE pipeline 

 

 

 

Figure 3. 2- Schematic representation of ASE pipeline 

 



83 
 

i) Reprocessing aligned reads for variant detection    

Picard (http://broadinstitute.github.io/picard/) was used to mark duplicate reads 

generated by PCR amplification during library preparation. Next, reads mapping to different exons  

were split, using SplitNCigarReads from the GATK toolkit (Figure 3.3). Then, the mapping 

quality score was recalibrated with ReassignOneMappingQuality parameter, as STAR 

alignment assigns a good alignment score (MAPQ) of 255, a value that GATK does not recognize. 

 

 

 

 

 

Exon Exon Intron 

Figure 3. 3- Schematic representation of DNA->mRNA->Reads mapping to reference genome. 

DNA 

pre-mRNA 

mRNA 

short reads 

Reference 

mapped read 

Reference 

   SplitNCigarReads 

TAGTATNNNNGATCTA 

exon_1 exon_2 

TAGTAT GATCTA 

http://broadinstitute.github.io/picard/
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ii) Variant calling  

The final aligned file generated from the previous step was then parsed to call variants, using 

the GATK HaplotypeCaller (Poplin et al. 2017), with the parameters below, which considers the 

minimum Phred-scaled confidence equal or greater of 20: 

 

For diploid organisms (e.g. human), GATK assigns  0 for reference allele and 1 for the alternate 

allele (non-reference) and the resulting genotypes can be heterozygous (0/1 or 1/0 – carrying both 

reference and alternate allele) or homozygous alternate (1/1).  

iii) Filtering RNA-editing sites 

In order to identify RNA-editing sites, we use the SPRINT method, with the following steps: 

1. Different reference genomes were created by replacing T → C  and A → G, for identifying  

A → G and T → C RNA editing sites from RNA-seq reads  

2. A genome index was separately generated for each reference genome, using Burrows-

Wheeler Aligner (Li and Durbin 2009)  

3. RNA-seq reads were mapped to all the genomes using BWA, and output as .sam files  

4. Aligned sam files were converted to bam files with samtools (v1.2) (Li and Durbin 2009) 

5. Duplicates were marked using Picard-tools ( http://broadinstitute.github.io/picard/)  

6. Reads with mapping quality > 20 were considered as mapped reads  

7. SNVs were called on mapped reads, and RNA editing sites were identified based on the 

SNV duplets clustering method  

8. Unmapped reads were masked by replacing A → G and remapped to the masked genome 

(Wang et al. 2021)  

9. The final output was a text file containing the RNA-editing sites, as shown in Table 3.1  

 

 

 

 

 

-dontUseSoftClippedBase\ 

stand_call_conf = 20 

 

http://broadinstitute.github.io/picard/
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SPRINT's output was further passed to a custom R script (Convert_bed_rnaediting.R, 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-

ASE/blob/main/Convert_bed_rnaediting.R) to convert it into a bed format. RNA-editing sites were 

then filtered from the vcf file generated in the previous step using bedtools (Quinlan and Hall 2010): 

 

Next, indels and multiallelic SNPs were filtered using bcftools (Narasimhan et al. 2016): 

 

The haplotype was then reconstructed from the filtered .vcf files, as explained below.  

 

 

 

 

 

Chrom Start End Type 
Supporting 

reads 
Strand 

chr1 1608103 1608104 AG 10 + 

chr1 1608104 1608105 AG 22 + 

chr1 1608106 1608107 AG 23 + 

chr1 1608108 1608109 AG 1 + 

Table 3 1- Output produced by SPRINT toolkit. . Column: 1 – chromsome name, 2 & 3 – start and 
end of the genomic location for the RE sites, 4 – type of RNA-edit (A → G ot T → C), 5 - number of 
reads at the site, 6 – strand  

bedtools subtract -a vcf file \ 

                  -b outfile_from_STRINT \ 

                  -header -s > vcffile  

 

bcftools view --max-alleles 2 \ 

              --exclude-types indels \ 

              input.vcf.gz > filtered.vcf 

 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/Convert_bed_rnaediting.R
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/Convert_bed_rnaediting.R
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iv) Phasing 

Haplotype information for each SNP was reconstructed with the Readbackphasing tool from 

GATK, using the following command: 

 

v) Constructing personalized genomes 

A custom Python script (https://github.com/srmeetd/Pipeline_Allele-specific-expression-

ASE/blob/main/generate_split_genomes.py) was then used to generate two genome sequences for 

each individual. The inputs required for the Splitgenome.py script are the 

reference_genome.fasta and the phased .vcf file. Based on the phasing information from the .vcf file, 

Splitgenome.py then generates the personalized genome of parents for each sample.   

vi) Remapping to the personalized genome 

The original .fastq files were re-mapped to the personalized genome using STAR, with 

stringent parameters, which allowed only one mismatch per read:  

 

 Next, an alignment file was generated that retained only the reads where the best mapping 

results from either one of the personalized genomes or the other. This was done through another 

Python script,filter_bam.py (https://github.com/srmeetd/Pipeline_Allele-

specific-expression-ASE/blob/main/filter_bam.py). 

java -jar GenomeAnalysisTK.jar -T ReadBackedPhasing \ 

-R reference_file \ 

-I Aligned_file \ 

--variant variant_calling file \ 

-L variant_calling file \ 

-o output.vcf \ 

--phaseQualityThresh 20.0 \ 

--allow_potentially_misencoded_quality_scores \ 

-allowPotentiallyMisencodedQuals 

--outFilterMultimapNmax 1 \ 

-- outFilterMismatchNoverLmax 0.05 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/generate_split_genomes.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/generate_split_genomes.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/filter_bam.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/filter_bam.py
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vii) Identifying the genotype for each genomic position and minor allelic 

frequency (MAF) 

Variant calling was performed with the GATK’s HaplotypeCaller and then Freebayes 

(Garrison and Marth 2012) was used to identify the genotype for each SNP in each sample (as GATK 

doesn’t return genotypes for reference homozygous positions): 

Next, multiple .vcf files were merged using bcftools with command : 

Finally, minor allelic frequency was calculated for each sample set using the bcftools plugin 

fill-tags, with the following  parameters:  

where AF is Allelic frequency, HWE is p-value from a chi-squared test against Hardy-Weinberg 

equilibrium, MAF is minor allelic frequency, and the formula for calculating MAF by bcftools is 

explained in Table 3.2. 

 

 

 

 

 

 

 

 

viii) Input for ASE analysis 

The number of reads mapping to the reference allele, alternate allele, or any other nucleotide 

positions were retrieved using a customized Python script 

(https://github.com/srmeetd/Pipeline_Allele-specific-expression-

ASE/blob/main/base_count.py).  The Python script required an input filter vcf file (section 

SNPs Sample1 Sample2 Sample3 

SNP1 0/0 0/1 1/1 

SNP2 1/1 0/1 0/1 

Table 3 2- Theoretical example of MAF calculation. 0/0 =  homozygous reference (counted as 0); 0/1 = 
heterozygous (counted as 1); 1/1 = homozygous alternative (counted as 2); Every SNP has 2 copies of each allele 
and we have a total of 3 samples for SNP1, therefore MAF calculation is: (0+1+2)÷6 = 0.5 

 

Freebaye  -f standard reference genome \ 

          -@ Filtered_varaiant_calling file \ 

            Aligned_bam_file >  output_file.vcf 

 

bcftools merge (all_vcf_files) > merged.vcf 

 

bcftools +fill-tags infile.vcf -o output.vcf -- \ 

-t AF, HWE, MAF 

 

vcftools --vcf %(infile)s --hwe 0.01 --recode --out %(output)s 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/base_count.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/base_count.py
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3.2.3 iii) Filtering RNA-editing sites), personalized genome fasta file, filtered bam file (section 3.2.3 v) 

Constructing personalised genome), and vcf file with a minor allelic frequency (section 3.2.3 ii) Variant 

calling at each genomic position and nominal allelic frequency) and the output generated as a bed file, 

with an example shown in Table 3.3.   

 

 

 

ix) ASE at SNP and gene levels 

QuASAR R package was employed for calculating ASE at the SNP level using  R script 

Quasar_output.R, (https://github.com/srmeetd/Pipeline_Allele-

specific-expression-ASE/blob/main/Quasar_output.R)  , which took as input the 

bed file generated in the previous step (Table 3.3) and then generated an output file for every sample. 

To determine SNPs with a reproducible effect, P-values for the same SNP across only those samples 

with that were heterozygotes for the SNP were combined using Fisher’s method, and multiple testing 

correction for the combined P-value was then calculated with Benjamin-Hochberg procedure.  

 In order to identify ASE at gene level, we used MBASED, with input files generated as follows: 

a. Gene transfer format (GTF) files hold genomic information in tab-delimited format, such as 

genes, gene IDs, transcript IDs, protein names, strand and genomic features (exon, intron, 

START and STOP codons) etc. GTF files were converted into a bed format, using gtf2bed 

from BEDOPS tools (Neph et al. 2012), and the first four columns containing the gene names, 

coordinates (start and end positions) and chromosome names  were extracted, generating a 

bed_gtf_file.bed as an output: 

 

Chr1 16494 16495 G C rs3210724 0.5 18 52 0 

Chr1 184990 184991 G A rs1219494595 0.16 409 76 0 

Chr1 185794 185795 G T rs1271744271 0.5 56 338 0 

Table 3 3- Example of input bed file for allelic-specific expression tool.; column 1 – chromsome 
number, columns 2 and 3 – SNP genomic position, columns 3 and 4 – nucleotide at reference and 
alternate positions, column 6 – dbSNP id, column 7 - Minor allelic frequency, columns 8,9 and 10 – 
number reads mapping  to reference, alternate and or any other nucleotide. 

gtf2bed < GTF_file | cut -f1-4 > outfile 

 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/Quasar_output.R
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/Quasar_output.R


89 
 

b. The bed_gtf_file.bed file generated from the previous step and the bed file generated in the 

previous section (bed_input_ASE used as an input for allele-specific expression) were merged 

using bedtools as follows:  

 

c. The R script gene_levelMBASED.R (https://github.com/srmeetd/Pipeline_Allele-

specific-expression-ASE/blob/main/gene_levelMBASED.R) was then used to call the MBASED 

function on each sample separately  

To identify the effect of ASE on genes, we combined the p-values for the same gene across all  

samples using Fisher’s method, and multiple testing correction for the combined P-value was 

calculated using Benjamin-Hochberg. 

3.2.4 Validation of the ASE pipeline 

We tested the performance of our ASE pipeline against the known genotype information for 

NA12878 RNA-seq data set (Rozowsky et al. 2011) by using the Alleleseq script to generate genotype 

as mentioned in their paper, as it is one of the few tools with a complete workflow for identifying ASE.  

Hence, the RNAseq data was processed according to the Alleleseq approach and it was mapped to the 

human genome (hg38).  Each sample's parental genome was generated using the vcf2diploid 

function of Alleleseq, requiring the phased genotypic information from parents, which was 

downloaded from 1000 genome project databases.  

We then mapped the NA12878 RNA-seq samples to the personalized genomes generated, and 

the aligned files were processed via a customized Python script 

(https://github.com/srmeetd/Pipeline_Allele-specific-expression-

ASE/blob/main/base_count.py) to count the reads mapped to the reference and alternate 

alleles of the SNPs. These were further used as inputs for QuASAR to identify the ASE at SNP level and 

the gene information was added to the SNP file generated. These files were further passed to MBASED 

to identify gene-level ASE.   

bedtools intersect -a bed_input_ASE \ 

-b bed_gtf_file \ 

-w ab > MBASED_input_format 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/gene_levelMBASED.R
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/gene_levelMBASED.R
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/base_count.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/base_count.py
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3.2.5 Identification of altered miRNA binding sites 

We downloaded mature miRNA sequences from the miRbase database (Kozomara, Birgaoanu, 

and Griffiths-Jones 2019), and a bed file with whole-genome 3' UTRs locations was downloaded from 

the UCSC table browser (Karolchik et al. 2004).  Next, RNA editing sites for each individual were filtered 

to keep only true variants in 3' UTRs, using bedtools subtract: 

The bed file obtained from the UCSC browser was also used to retrieve the corresponding fasta 

sequences using bedtools getfasta: 

 

 

A customPython script (https://github.com/srmeetd/Pipeline_Allele-specific-expression-

ASE/blob/main/generate_split_genomes_utr.py) was then used to mutate the wildtype fasta 

sequences generated in the previous step, taking the filtered vcf file for each individual mentioned 

above as inputs. This script mutates the wildtype fasta sequences by replacing reference nucleotides 

with the alternate at the particular genomic positions present in the vcf file.  

Using both the reference and the mutated fasta files, putative miRNA binding sites were then 

predicted with the miRNA binding site prediction algorithm miRanda (Betel et al. 2010), using the 

parameters en -20 –strict, where en is energy score and strict is alignment with only 7-

nucleotides seed sequences. For achieving this, miRanda queries both wildtype 3’ UTR and mutant 3’ 

UTR fasta sequences and scans them against miRNAs downloaded from the miRbase database. Next, 

we developed an R script (compare_miRNAsBS.R, 

https://github.com/srmeetd/miRNA_bindingsites)  to compare the miRNA binding sites between 

wildtype and mutant, which looks at wild-type and mutant miRNAs binding site coordinates, miRNA 

names, and transcripts generated by the miRanda algorithm. It then compared the miRNAs binding 

between wildtype and mutant for each transcript, and reported the novel miRNA binding sites created 

and/or the existing miRNA binding sites destroyed. 

 

bedtools subtract -a vcf_file \ 

-b outfile_from_STRINT > vcffile 

Bedtoools getfasta -fi reference genome \ 

-bed bedfile > wildtype sequence 

https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/generate_split_genomes_utr.py
https://github.com/srmeetd/Pipeline_Allele-specific-expression-ASE/blob/main/generate_split_genomes_utr.py
https://github.com/srmeetd/miRNA_bindingsites
https://github.com/srmeetd/miRNA_bindingsites
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3.2.6 Gene ontology and Linkage disequlibrium analysis 

First, we extracted 3’UTR sequences from hg38 GTF file, calculated their length and then 

removed length biased 3’UTRs. Gene ontology enrichment analysis was performed using GOseq 

(Young et al. 2010) R package. Next, FDR was calculated on the ‘over_represented_pvalue’ column 

output obtained from GOSeq. The reason for using the ‘over_represented’ column is that it represents 

more DE genes in the present categories than expected at any given size of category and length 

distribution; hence, these are considered enriched DE genes in that category (Young et al. 2010).  Gene 

ontology passing the threshold of FDR < 0.05 were then selected for further analysis. We then 

calculated SNPs in LD with an R2 ≥ 0.6 and 200 kb distance threshold with the SNPs linked to allelic 

imbalance using the LDlink webtool (Machiela and Chanock 2015).  

 

3.3 RESULTS 

3.3.1 Variation in the 3’ UTR of TRIB1 

3.3.1.1 Sequence variants were identified in TRIB1 3'UTR 
 Quality control analysis on RNAseq from 169 samples of unstimulated monocyte-derived 

macrophages showed raw reads were of good quality, which were directly mapped to the human 

genome, without further processing. On average, 94% of reads were uniquely mapped. After 

performing deduplication, variant calling and filtering indels, multi-allelic variants and RNA-editing 

events, 58,661 genotype variants were identified, with 24,201 heterozygous (carrying both reference 

and alternate alleles), 11,764 homozygous reference and 22,696 homozygous alternate. 60 of these 

variants were located in the TRIB1 3’UTR and at least one variant was detected in 156 patients. 

 Furthermore, in order to identify the half maximal number TRIB1 variants detected in most 

individuals, we used the below formula:  

(𝑚𝑖𝑛. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑚𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒)  / 2 

Overall, we observed that the highest number of variants detected in any given sample was 

13, and the minimum was 1, leading to an half-maximal value of 7 variants of TRIB1 (Figure 3.4, Table 

3.4). This value was then used as a threshold to count the number of individuals with more than the 

half maximal number of variants. As we can observe in Table 3.4, there are significantly less samples 

with more than 7 variants, which can help identify sample-specific SNPs. More than that, higher 

number of SNPs is also more likely to cause alterations in miRNA binding sites, which can ultimately 

lead to a change in gene expression levels. 
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Figure 3.5 shows the expression of TRIB1 in samples with more than 7 variants, sample with 

more than one and less than seven variants, samples with only one variant and samples with no 

variants. Our results indeed suggest that the expression of TRIB1 could increase with the number of 

variants, which could be due to the alteration in miRNA binding sites in TRIB1 3’UTR, and it motivated 

further down investigation of the relationship between SNPs and miRNA binding sites. Alternatively, 

it may also mean more variants can be discovered in samples with higher expression of TRIB1. 

  

 

 

 
 

 

 

 

Figure 3. 4- Bar plot showing TRIB1 3’UTRs variants shared in different number of samples 
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3.3.1.2 Variants in 3’UTR of TRIB1 alter miRNA binding sites  
 After scanning miRNA sequences from miRbase database against both wild-type and mutant 

TRIB1 3’UTR sequences (as described in section 3.2.5 Identification of altered miRNA binding sites), 

we found a total of 1237 predicted miRNAs binding sites present in 3’ UTR of TRIB1, out of which 11 

variants destroyed 20 miRNA binding sites across 24 samples (Figure 3.6), while 18 variants created 

novel binding sites for 38 miRNAs across 39 samples (Figure 3.7).   

 

 

 

 

 

 

No. of variants No. samples 

1 26 

2 18 

3 18 

4 24 

5 22 

6 15 

7 9 

8 7 

9 5 

10 8 

11 3 

12 1 

13 1 

Table 3 4-  Number of TRIB1 3’UTR variants detected in a given set 
of samples 
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Figure 3. 6- Relative expression of TRIB1 in samples with and without more than average variants 
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Figure 3. 5- Heatmap of SNPs (y-axis) leading to degradation of miRNA binding sites (x-axis) 
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Moreover, the expression of miRNAs whose binding sites were altered by SNPs in TRIB1 3’ 

UTR was also investigated in small-RNAseq from unstimulated and LPS+Ifg challenged (M1-like) 

macrophages (discussed in Chapter 4). Nine (9) miRNAs – 3 with destroyed binding sites and 6 with 

novel binding sites created, were detected in the macrophage small-RNA sequencing dataset, which 

suggests that SNPs in 3’UTR are more likely to create new putative miRNA binding sites than to destroy 

existing ones. However, very few miRNAs were expressed in macrophages and only one of them was 

found to be differentially expressed between unstimulated and M1-like macrophages, miR-29a-3p.  

 

3.3.1.3 rs62521034 SNP creates a novel binding site for miR-29a-3p  
To validate our computational method's accuracy for detecting the effect of SNPs on miRNA 

binding sites, one of our collaborators, Dr. Chiara Niespolo in  the IICD department of the University 

of Sheffield performed the relevant, corresponding in-vitro experiments. She used a TRIB1 mutant 

containing a T to C base change in the 3'UTR sequence (rs62521034), which was predicted to create a 

binding site for hsa-miR-29a-3p miRNA, which does not target WT TRIB1. This variant sequence was 

then expressed in HEK293T cells, together with a miR-29a-3p mimic and their expression was tested 

via a dual-luciferase reporter assay. The results showed a decrease in luciferase intensity for the 

Figure 3. 7- Heatmap of SNPs (y-axis) creating novel miRNA binding sites (x-axis) 
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mutant 3'UTR compared to the WT, thus confirming the creation of a novel binding site for this 

particular miRNA (Figure 3.8). 

 

 

 

3.3.2 The effect of miRNA binding site variation on Allele-Specific Expression 

(ASE). 

In order to further investigate if SNPs in 3’ UTR of TRIB1 are linked to ASE, We/I developed a CGAT 

pipeline. Our pipeline identified ASE events at gene and SNP levels using RNA-seq and DNA-seq, even 

when prior phasing information is unavailable. Moreover, our pipeline also identifies SNPs linked to 

ASE responsible for altering miRNA binding sites. 

 

Figure 3. 8- Relative luciferase activity in HEK293T cells transfected with the WT and rs62521034 
mutant TRIB1 3’UTR-reporter. Cells were overexpressed for 24h with miR-29a-3p and a miRNA 
negative control (scrambled miRNA). (mean ± SEM, * p<0.05, One Way ANOVA, n = 5) 
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3.3.2.1 Our ASE pipeline was successfully validated 

  To test our pipeline's effectiveness, we implemented the vcf2diploid function of Alleleseq, 

which is only currently published and well-cited method to generate parental genome to identify ASE 

events is to our knowledge. The limitation of vcf2diploid function is it requires phased genotypic 

information. Therefore, we used NA12878 RNA-Seq data as it’s true phased genotypic information is 

available on 1000G project datatabase.  Each sample of NA12878 RNA-seq dataset was mapped to the 

personlozed genome generated using vcf2dipploid (Table 3.5). Next, parental genome were 

generated through ASE pipeline and each sample of NA12878 were mapped.  We observed a 

comparable results between our own ASE pipeline (no prior phasing) and the vcf2diploid (Prior 

phasing), such as similar mapping percentages, as recorded in Table 3.5. 

 

  

  

  

 

The major differences in approach of two pipelines  are described in Table 3.6, with the two 

most striking ones being 1) the variant calling step integrated in the ASE pipeline, but not required for 

Alleleseq, and 2) the DNA phasing information which is not needed for our ASE pipeline, but is essential 

for Alleleseq 

 

 

 

 

 

 

RNA-seq mapping 

Reference (hg38) 79.65% 

 ASE pipeline Known genotype 

Parent 1  78.64% 76.66% 

Parent 2 78.65% 76.65% 

 ASE pipeline Alleleseq tool 

Data (RNA-seq and DNA-seq) Yes Yes 

Variant calling Yes No 

DNA Phasing info required No Yes 

Diploid genome creation Yes Yes 

Table 3 6- Major difference between ASE pipeline and the Alleleseq tool 

 

 

Table 3 5 - RNA-seq mapping percentages obtained from ASE pipeline and vcf2diploid 
from known genotype (used in Alleleseq) 
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Next, we detected 1692 SNPs by QuASAR using prior genotype information (Figure 3.9a), out 

of which 36 were significant, with an FDR < 0.05, thus being linked to ASE (Figure 3.9b). What is more, 

a total of 256 genes showed > 1 heterozygous loci, out of which 180 were associated with ASE, having 

passed the cutoff of FDR 0.05 set in MBASED, also part of our ASE pipeline. By comparison, using 

QuASAR in our ASE pipeline, but without prior genotype information, we found 2032 SNPs, out of 

which 39 were significant, with an FDR < 0.05, thus being linked to ASE. Similarly, by implementing 

MBASED, 302 genes were found to have > 1 heterozygous loci, but only 139 passed the cutoff  FDR < 

0.05, being linked to ASE.  (Figure 3.9) 

The overlapped results at both SNP and gene levels recorded through our ASE pipeline with 

and without prior genotype information are shown in Figure 3.9 and Supplementary Table 1 

(https://github.com/srmeetd/ASE_supplemantry_DATA/blob/main/Supplemantry_table_1.xlsx). As 

observed, without prior genotype information, our pipeline has identified 33% of SNPs and 60% of 

genes also detected with prior genotype information. While our pipeline identified 30% of SNPS and 

77% of genes also detected with prior genotype. The remaining SNPs and genes not being detected 

could be attributed to data limitation, as DNAseq has more accurate information on variants, 

compared to RNAseq. This is because the distribution of RNAseq to reads is often non-uniform and 

ambiguous reads corresponding to alternatively spliced variants are often mismapped and ultimately 

d) c) 

a) b) 
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genotype  

info 

590 

  known  

  genotype 

  info 

  256 

1442 

no prior 

genotype  

info 

27 

  known  

  genotype 

 24 

12 

Figure 3. 9- VENN diagram showing overlap of allelic imbalance between ASE pipeline with unknown 
(right side of VENN diagram) and known genotype (Left side of VENN diagram).  a) SNPs identified 
by QuASAR, b) SNPs identified with an FDR < 0.05 in QuASAR, c) Total genes identified by MBASED 
method, d) ASE genes passing FDR cut off 0.05 
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https://github.com/srmeetd/ASE_supplemantry_DATA/blob/main/Supplemantry_table_1.xlsx
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lost. Thus, other tools like Alleleseq identify variants from DNA-seq and phase them using Trio 

sequencing, while our ASE pipeline identifies variants from RNA-seq and phases them without prior 

haplotype information.                                                                                

3.3.2.2 ASE pipeline helps to identify immunity-related genes in macrophages 
 By applying our ASE pipeline at gene-level mode (MBASED) to the previously described 

macrophage RNA-seq dataset from 169 healthy individuals and 96 Salmonella typhimurium-infected 

patients without any prior haplotype information, allelic-specific genes were detected separately for 

unstimulated and Salmonella typhimurium-infected samples. In total, 12640 genes were analysed and 

found to have > 1 heterozygous position in unstimulated macrophages, and 10058 in Salmonella 

typhimurium-infected samples, with 9305 being common between the two conditions. Out of these, 

3150 genes had an FDR < 0.05 and major haplotype fraction > 0.6 in unstimulated macrophages, and 

2828 in Salmonella typhimurium-infected samples. Overall, 1519 were common between the two 

conditions, while 1631 were present only in unstimulated samples and 1309 only in Salmonella 

typhimurium-infected samples (Figure 3.10).  

  

 Next, we compared our ASE genes list to 2586 eGenes (eGenes are genes whose expression 

levels are associated with genetic variants) identified by by S. Hellmut and colleagues through an eQTL 

study performed on monocyte-derived macrophages and LPS muramyl-dipeptide (MDP) treated 

macrophages (M1) (Kim-Hellmuth et al. 2017). Thus, we found 417 genes out of the 3150 ASE genes 

observed in unstimulated macrophages, and 409 out of 2828 seen in Salmonella typhimurium-infected 

samples. In total, there were 1519 common ASE genes between unstimulated and S.typhimurium-

infected samples, with 255 of these being recorded as eGenes.  

 In order to test the statistical significance of this overlap, Fisher’s exact test was applied, and 

the odds-ratio was calculated between the overall significant and not-significant allelic-expression 

genes overlapped with eGenes. The results, also shown in Table 3.7, recorded a p-value of 0.045 for 

Figure 3. 10- Significant ASE genes with FDR < 0.05 in unstimulated and 
Salmonella-infected samples 

169 96 
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unstimulated macrophages, with an 0.89 odd ratio, while Salmonella typhimurium-infected samples 

had a p-value of 0.39 and an odds ratio of 0.95. The p-value for the overlapping ASE genes between 

unstimulated and S.typhimurium-infected was 0.298, with an odds ratio of 0.92. These results show 

there is no significant overlap between unstimulated macrophages' ASE genes with eQTLs in this set 

of study.  

 

 

 

 

 

 

 

  

Unstimulated 
Significant 
ASE 

Non-significant 
ASE 

Fischer exact test 

eGenes 417 1394  

Not-eGenes 2733 8096  

   0.045 

Salmonella 

typhimurium 

Significant 
ASE 

Non-significant 
ASE 

Fischer exact test 

eGenes 410 1098  

Not-eGenes 2418 6132  

   0.39 

Common 
Significant 
ASE 

Non-significant 
ASE 

Fischer exact test 

eGenes 225 1238  

Not-eGenes 1294 6548 0.21 

 

Table 3 7- Input for Fischer exact test. between Unstimulated macrophages significant FDR < 0.05 
and not significant FDR < 0.05  a) unstimlated macrophages b) salmonella-infected samples c) 
common ASE genes between unstimulated and salmonella infected samples  

 

a) 

b) 

c) 



101 
 

 In order to understand whether there is a pattern of biological relevance among the genes 

detected, a random selection was performed for the ASE genes overlapping with eGenes. One of the 

ASE genes with an FDR of 0.004 is CASP8 and FADD-like apoptosis regulator (CFLAR), which is known 

to have a significant role in inflammatory response and fibrosis (Xiaohong et al. 2019); FCN1 (FDR 0), 

which is a member of the complement system that plays an important role in the innate immunity 

system, as overexpression of FCN1 in peripheral blood mononuclear cells was found to lead to 

Takayasu arthritis (Okuzaki et al. 2017); APOE (FDR 0), which codes for protein apolipoprotein E and 

is associated with cardiovascular diseases and Alzheimer's disease (Rowczenio et al. 2011); and the 

NLRP2 gene (FDR 0.00004), part of the nucleotide-binding family and known to significantly impact 

the activation of immune responses during infection and tissue injury (Komada and Muruve 2019). 

Genes belonging to this family play an important role in regulating the IL-1β, NF-κB production for 

positive regulation of inflammatory responses (Rossi et al. 2019). Overall, our analysis's this selection 

of filtered genes suggests that most have important immunity-related functions. A full list of genes is 

given in supplementary table 2 

(https://github.com/srmeetd/ASE_supplemantry_DATA/blob/main/Supplemantry_table_2.xlsx). 

3.3.2.3 miRNA binding sites are altered in ASE genes 
 In addition to the above analysis, we also investigated SNPs altering miRNA binding sites in 

ASE genes in Salmonella typhimurium-infected samples, which could be responsible leading to allelic 

imbalance. We detected 2003 SNPs across 3’UTRs of 773 ASE genes that created 1403 novel miRNA 

binding sites, and 2106 SNPs across 3’UTR of 805 ASE genes destroying 1355 binding sites in MDMs. 

Also, in Salmonella typhimurium-infected samples, we observed that 2342 SNPs present in 3’UTRs of 

901 ASE genes created 1511 novel miRNA binding sites, while 2428 SNPs across 917 ASE genes were 

responsible for degrading 1416 existing miRNA binding sites.  

 As we can observe, there was no difference between the number of SNPs present (~2000), 

the number of miRNA binding sites either creater or destroyed (~1400), or the number of ASE genes 

with modified 3’UTRs (~700-900) in one condition over the other. This suggests that there are number 

of SNPs altering miRNA binding sites in ASE genes, but we cannot conclude that higher or lower 

number of altered miRNA binding sites leads to more or less ASE, respectively. More than that, we do 

not know if these miRNAs would actually have an impact on their targets just by having altered  binding 

sites, as we do not know whether these miRNAs are in fact expressed in the two conditions. 

  In this sense, we next grouped all miRNAs by their expression in both MUN and MLPS+INFγ 

(detailed explained in chapter 4) macrophages, and we divided these into three quartiles: low, 

medium and upper quartile. The latter set contained highly expressed miRNAs in both MUN and 

https://github.com/srmeetd/ASE_supplemantry_DATA/blob/main/Supplemantry_table_2.xlsx
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MLPS+INFγ, which were further investigated if their binding sites in 3’UTRs of ASE genes were altered by 

SNPs. Overall, we found that 183 genes with only destroyed binding sites for 158 highly expressed 

miRNAs caused by 247 SNPs, while 218 targets had only novel binding sites created for 162 miRNAs, 

caused by 275 SNPs. On the other hand, 204 ASE genes were seen to have both degraded and created 

binding sites for highly expressed miRNAs on the same 3’UTR, with 364 SNPs destroying 193 of these 

binding sites and 366 SNPs creating 161 novel ones in the same 3’UTR, across the 204 targets. (Table 

3.8). This result suggests that although genes shows Allelic imbalance, but approximately only 10% of 

ASE genes shows alteration of miRNA binding sites due to the variants in there 3’UTR.  

 

 

3.3.2.4 SNPs altering miRNA binding sites in 3’UTRs lead to ASE of target genes 

The analysis described above was performed by selecting ASE genes (thus at gene level), and 

then selecting SNPs in these genes to investigate. In contrast, the following investigation was 

performed to identify SNPs linked to allelic imbalance (hence at SNP level), and to assess how many 

of these are located in and alter miRNA binding sites in 3’UTRs. This analysis was done only on RNAseq 

from the 169 MDMs.  

All SNPs present in all genes were first filtered through the QuASAR tool integrated in our ASE 

pipeline, which returned a total of 81,913 SNPs across 20,136 genes, out of which 10,466 SNPs were 

present in 3’UTRs of 4,549 genes and were responsible for the creation of 2,120 novel miRNA binding 

sites. Similarly, 10,960 SNPs across 3’UTRs of 4,627 genes destroyed 2,100 miRNA binding sites. Setting 

a cutoff of FDR < 0.05, we found 644 SNPs present in 3’UTRs of 261 genes that showed allelic 

imbalance (linked to ASE), out of which 81 SNPs created 130 novel miRNA binding sites in 80 genes. 

Table 3 8 - Number of genes in which SNPs a) created and degraded miRNA binding sites of highly 
expressed miRNAs in the same 3’UTR, or b) either created or degraded miRNA binding sites. 
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Similarly, 155 SNPs in 3’UTRs of 128 genes destroyed 220 miRNA binding sites, taking into account the 

direction of the beta score (Box 3.1). 

 

Furthermore, upon investigating SNPs linked to ASE (with an FDR < 0.05) that were present in 

and altered miRNA binding sites in 3’UTRs of previously identified ASE genes in MDMs, we found 644 

SNPs linked to allelic imbalance from QuASAR , out of which 83 SNPs were detected in 3’UTRs of 43 

ASE targets and disrupted 122 existing miRNA binding sites, while 39 SNPs created 61 novel binding 

sites in 25 ASE genes. However, none of these SNPs destroyed or created binding sites for miRNAs 

highly expressed in MUN samples, but the expression of miRNAs whose binding sites were altered in 

ASE genes was discussed in the above section 1.4.1 

In addition, we also looked at the highest number of SNPs linked to ASE that were present on 

single ASE genes, irrespective of their alteration of miRNA binding sites. Thus, we observed that the 

highest number of SNPs linked to ASE by QuASAR, and placed on ASE targets identified by MBASED 

method were 61 in the 3’UTR of HLA-DQB1 ASE gene, followed by 44 SNPs in the 3’UTR of HLA-DQA1 

and 18 on HLA-DRB1’s 3’UTR (Table 3.9). However, HLA genes have been previously found to have 

high genomic variations (T Shiina et al. 2009), including in their 3’UTRs (A Sabbagh 2014), hence these 

were eliminated from our further analyses, in order to avoid biases. In addition to that, we also 

disregarded ASE genes with 0 SNPs in their 3’UTRs, as we were only interested to investigate the 

potential correlation between SNP-derived variations and allelic imbalance.  

Thus, upon filtering out HLA genes, we found 17 SNPs in the 3’UTR of XIAP gene, followed by 

11 SNPs in the 3'UTR of GREM1 and MDM2, and 7 SNPs in APOL1 and SERPINB9 genes. All these genes 

have been previously shown to have variations leading to allelic imbalance (M M Gerber et al. 2012; J 

Box 3.1: Beta Score 

The beta score shows the strength and direction of ASE, with scores > 0 showing bias towards the 

reference allele, and vice versa for < 0. Creating a new miRNA binding site would mean reduced 

expression of the mutant variant and thus, its associated beta score would be negative. Otherwise, 

if the existing miRNA binding is degraded, the alt allele is considered protected, and the beta score 

would be positive. What is more, a beta score of 0 indicates there is no change in the SNP, and it 

can be considered a false-positive result. Therefore, we rejected any SNPs with a positive beta 

score that created new miRNA binding sites and any SNPs that degraded existing binding sites and 

had a negative beta score. This method offered high confidence in detecting SNPs altering miRNA 

binding sites and being responsible for the allelic imbalance.  
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Heighway et al. 1994), thus increasing the confidence in our detection of SNPs and genes linked to 

ASE. We observed that a minimum of 1 SNP was identified in 85 ASE genes, 2 SNPs were present in 27 

ASE genes, and a maximum of 17 SNPs were present in just one ASE target, the XIAP gene (Table 3.9). 

Therefore, we can observe that the number of ASE genes with increasing number of SNPs is drastically 

reduced even starting from just 2 SNPs present.  This result suggests that as small as 1 variant could 

be responsible in allelic specific expression of genes.  

Table 3 9- Number of SNPs linked to ASE detected in different number of ASE genes 
 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.5 ASE genes in M1 phenotype are enriched in inflammatory pathways 

 In order to observe whether ASE genes are involved in macrophage polarisation, we further 

overlapped the 3,150 ASE genes identified in 169 MDMs (controls), and the 2,175 ASE genes found in 

96 Salmonella typhimurium-infected samples (Figure 3.10) with 5,681 differentially expressed genes 

between 8 MUN and 8 MLPS+INFγ from RNAseq data generated by our lab. We found that out of 3,150 

significant ASE genes in MDMs, 833 were differentially expressed between MUN and MLPS+INFγ (FDR < 

0.05), with 473 being downregulated and 360 being upregulated in MLPS+INFγ. Similarly, out of 2175 ASE 

genes detected in Salmonella typhimurium-infected samples, 601 were differentially expressed 

between MUN and MLPS+INFγ, 272 being downregulated and 329 upregulated in MLPS+INFγ. 

 Furthermore, gene enrichment analysis showed that ASE genes obtained from MBASED from 

Salmonella typhimurium-infected samples that were also upregulated in MLPS+INFγ were mainly involved 

in inflammatory-related biological function (Figure 3.11). This result indicates that genes playing 

No. of SNPs Number of ASE genes 

1 85 

2 27 

3 13 

4 10 

5 5 

6 4 

7 2 

11 2 

17 1 

18 1 

44 1 

61 1 
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important roles in maintaining and/or regulating immune responses within cells may have allele-

specific expression. In contrast, the ASE genes in MDMs that were upregulated in MUN compared 

MLPS+INFγ  treatment to did not seem to be enriched in any particular biological processes. We observed 

the same for downregulated ASE genes, which also did not return any particular GO terms related to 

any specific functions.  

 Moreover, to understand the function of the genes for which SNPs in their 3’ UTR were linked 

to allelic imbalance and were predicted to alter miRNA binding sites, we performed Gene Ontology 

(GO) enrichment analysis (Figure 3.12). Thus, we observed that these genes are mainly involved in 

signalling, inflammatory-related and apoptosis-related pathways. Similarly, we also investigated the 

relationship between SNPs showing ASE and altering miRNA binding sites with coronary heart disease 

(As discussed in introduction SNPs in TRIB1 have been identified to bed associated with coronary heart 

disease) identified by GWAS analysis. However, we found that none of the SNPs were directly linked 

Figure 3. 11- Top 20 GO terms observed for ASE genes in Salmonella typhimurium-infected samples and 

upregulated in MLPS+INFγ  (M1 phenotype). Dot plot represents top 10 gene ontology annotations, x-
axis shows the percentage of differentially expressed genes present in particular ontology function, 
y-axis represents gene ontology annotations, dot size represents the number of differentially 
expressed present in corresponding gene onotology function and color represents the FDR score. 
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with coronary heart diseases, but some SNPs were in linkage disequilibrium with the SNPs associated 

with several other GWAS diseases/trait (Table 3.10). 

 

 

 

 

 

 

 

 

 

 

Figure 3. 12- Gene Ontology for genes with SNPs linked to ASE. Dot plot represents top 10 gene ontology 
annotations, x-axis shows the percentage of differentially expressed genes present in particular 
ontology function, y-axis represents gene ontology annotations, dot size represents the number of 
differentially expressed present in corresponding gene onotology function and color represents the 
FDR score. 
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Query GWAS Trait RS Number R2 D' Risk 
Allele 

Effect Size 
(95% CI) 

P-value 

rs1513890 Coronary artery calcified 
atherosclerotic plaque in type 
2 diabetes 

rs6829172 1 1 NR 0.347 8.00E-06 

rs17162846 Systolic blood pressure rs1014988 0.6158526 0.994812 0.4781 0.2039 2.00E-09 

rs17162846 Electrocardiogram 
morphology  

rs17162854 0.608614973 0.969478 0.500138 0.0304694 4.00E-08 

rs17162846 Diastolic blood pressure rs7546498 0.614363109 0.989666 NA 0.147 5.00E-10 

rs17162846 Systolic blood pressure rs7546498 0.614363109 0.989666 NA 0.257 3.00E-11 

rs13427770 Colorectal cancer rs11903757 0.688274016 0.992438 0.16 1.16 4.00E-08 

rs1050450 Coronary artery disease rs11718165 0.921396736 0.986141 NR 0.0327978 6.00E-08 

rs1050450 Chronic inflammatory diseases  rs3197999 0.875274178 0.985657 NR NA 7.00E-55 

rs8005 Triglycerides rs709822 0.943841228 0.99026 0.7117 0.0212 5.00E-13 

rs8005 Triglyceride levels rs3947 0.816313807 1 0.25 0.022 3.00E-09 

rs2287367 Prostate cancer rs12634 0.946956188 1 NR 1.058 4.00E-14 

rs2287367 Prostate cancer (early onset) rs1182 0.881708292 1 NR 1.13 1.00E-07 

rs2287367 Prostate cancer (advanced) rs1182 0.881708292 1 NR 1.09 1.00E-07 

rs582452 HDL cholesterol rs56959712 0.792315372 0.979026 0.2159 NA 7.00E-13 

rs582452 HDL cholesterol levels rs113740515 0.78410937 0.965175 0.79055 0.0377999 1.00E-58 

rs582452 Triglyceride levels rs580063 0.781039957 0.972035 NR 0.0233 4.00E-13 

rs582856 HDL cholesterol  rs56959712 0.798504657 0.992891 0.2159 NA 7.00E-13 

rs61955033 HDL cholesterol levels  rs2454703 0.979816277 0.991867 NR 0.005388 4.00E-13 

rs1060314 Systemic mastocytosis rs9937881 0.880489696 1 0.2089 2.286 3.00E-08 

rs3211567 White coat effect  rs2292954 0.888128296 0.970139 0.11 6.2 2.00E-06 

rs3211567 Type 2 diabetes rs12932337 0.970640273 0.985211 0.8301 0.034 8.00E-11 

Table 3 10- List of SNPs in linkage disequilibrium with SNPs associated with GWA study; Query – ASE SNPs altering 
miRNA binding sites, GWAS Trait – Disease name, RS number – linkage disequlibrium SNPs associated with disease 
trait, R2 – R square a measure of correlation of alleles of query, RS – number where 0 means alleles are independent 
and 1 means allele in one variant predict the allele in another variant , D’ – an allelic segration between two variants 
(Query and Rs-number), values ranging 0-1, higher value indicates tight linkage of alleles, Risk allele – Minor allele 
frequency, Effect Size – Effect size 95% confidence interval, P-value – P-value of significance obtained from GWAS 
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3.4 Discussion 
In this chapter, we investigated the post-transcriptional regulation of TRIB1, especially SNPs 

in its 3’UTR responsible for altering miRNA binding sites, and whether or not these SNPs are linked to 

allelic imbalance. We found that sequence variants existed in TRIB1 3’UTR and that  several of these 

alter miRNA binding sites; for example, rs622521034 SNP created a novel binding site for miR-29-3p. 

Furthermore, SNPs in TRIB1 3’UTR were associated with traits by GWAS. Our ASE pipeline was 

successfully validated and we observed that miRNA binding sites are altered in ASE genes, that SNPs 

linked to allelic imbalance alters miRNA binding sites in 3’UTRs, and that ASE genes in M1 phenotype 

of macrophages are enriched in inflammatory-related pathways. 

Overall, we found 60 variants in 3’UTR of TRIB1, out of which at least one was detected in 156 

MDM control samples. The maximum of variants was identified in one patient TRIB1 was 13, and the 

minimum was one. More than that, we observed that the number of TRIB1 3’UTR variants increased 

with an increase in their expression level (Figure 3.6), which could be due to SNPs destroying miRNA 

binding sites that would downregulate its expression. Upon investigating the alteration of such miRNA 

binding sites by SNPs in 3’UTR  of TRIB1, we found that 11 variants degraded 20 binding sites across 

24 samples, while 18 SNPs were responsible for creating novel miRNA binding sites for 39 samples 

(Figures 3.5 and 3.7).   

In order to validate our computational analyses, we chose one SNP, rs62521034, that created 

a novel miRNA binding site for miR-29a-3p.  The variants containing this SNP rs62521034 led to a lower 

expression of TRIB1, as measured by luciferase reporter, when miR-29a-3p was overexpressed, 

confirming that the creation of a binding site for this miRNA enabled its targeting of TRIB1 (Figure 3.7). 

These results suggest that a variant in TRIB1 created a new miRNA binding, which reduces the 

expression of TRIB1. Moreover, it confirmed that our pipeline successfully identifies putative miRNA 

binding site changes. However, considering bioinformatics analyses detect a large number of 

candidate SNPs, more examples would need to be experimentally validated in order to test and prove 

the accuracy of our strategy.  

Out of all the miRNAs whose binding sites were altered by SNPs in 3’UTR of TRIB1, only nine 

were expressed in both unstimulated and M1-like small-RNA-seq datasets. Six of these miRNAs had 

novel binding sites created in the 3’UTR of TRIB1, while three had existing sites degraded. However, 

among the nine miRNAs, only one miR-29a-3p was differentially expressed between the two 

conditions, Mun and MLPS+IFN, and upregulated in MLPS+IFN, which could be one of the reasons for the low 

expression of TRIB1 in M1-like macrophages; moreover, it was also a reason for validating this miRNA 

in HEK293T cell line by creating a mutant in 3’ UTR of TRIB1. Overall, we observed no difference 
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between the number of miRNA binding sites created and destroyed by SNPs in 3’UTR of TRIB1. 

However, the SNPs detected may regulate the expression of TRIB1 by altering the binding of other 

MRE factors, such RNA-Binding proteins (RBPs), translational repressors, splicing factors, and 

riboswitches, or in other cell types.  

Our analyses described above showed that SNPs in 3’UTRs are responsible for altering miRNA 

binding, which we then investigated further whether these may also lead to allele-specific expression 

(ASE). In this sense, we developed our own cgat-based ASE pipeline, which was designed to accept 

inputs of RNA-seq, DNA-seq and Chip-seq data sets as both unaligned and aligned files. The advantage 

of our ASE pipeline over other available tools/frameworks is that it does not rely on prior known 

phasing or trio sequencing for detecting ASE events, being capable of identifying variants and then 

phasing them on its own. More than that, it also deals with sequencing errors by generating parental 

genomes from the phased variants as it helps to differentiate between real varaints and sequencing 

error. Despite being able to detect variants and ASE events even without the need of any prior 

haplotype information, our pipeline has been tailored to also accept and use this, when available. 

Other important features of our pipeline are listed below: 

1. RNA editing events can be filtered when RNAseq files are provided as input  

2. It calculates Minor allelic frequency for each sample set 

3. It offers a threshold option for Hardy-Weinberg's equation (which considers that 

“genotype frequencies in a population remain constant between generations in the 

absence of disturbance by outside factors”) (Ryckman and Williams 2008). 

4. Identifies ASE on both SNP and gene levels 

5. It detects whether ASE SNPs are responsible for altering miRNA binding sites 

For validating our pipeline, we applied it to the NA12878 RNAseq data, with and without 

known genotype and haplotype information (derived trio DNA seq of both the sample, and its 

parents), and we recorded a 1.98% increase in mapping percentages when no prior haplotype 

information was used (Table 3.6). This increase may be due to reads being mismapped to SNPs 

location identified by GATK, as the pipeline relies on predictions when not using prior genotype 

information. All in all, these confirm the success of our pipeline in generating results without the need 

of prior genotype information, comparable to those obtained with known genotype information, as 

approximately 60% of ASE genes detected with known genotype information were also accurately 

identified with no prior information and 77% of ASE genes detected with no prior information (Figure 

3.9). However, MBASED was used in both cases, and these values are to be considered valid only to 

the extent of how accurate MBASED is.  
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Out of a total of 3150 significant ASE genes (FDR < 0.05) detected in MDM control samples 

and 2828 in Salmonella typhimurium-infected samples (Figure 3.10), only 417 and 225 ASE genes, 

respectively, were found to be eGenes (Table 3.7). In contrast, there was a higher overlap between 

non-significant ASE genes and eGenes set observed, which could be because the ASE analysis 

considers genetics driven changes in expression levels of alleles within individuals, while eQTL 

mapping considers these changes between individuals. More than that, eQTL analysis counts all RNA 

reads from genes, whereas the ASE analysis considers only reads mapping to SNP regions. Another 

reason could also be that one allele may be higher expressed than the other, which leads to a feedback 

mechanism limiting the expression of the highly expressed one. Thus, total gene expression is then 

recorded as similar, irrespective of SNP genotype. Such genes are not linked to allelic imbalance in ASE 

analysis, but they may be identified as eGenes via eQTL mapping.  

Furthermore, we identified a large number of SNPs altering miRNA binding sites in 3’UTRs of 

ASE genes in both control MDMs and Salmonella typhimurium-infected samples, but no difference in 

either the number of SNPs, miRNA binding sites nor ASE genes between the two conditions. While our 

observations do suggest that altered miRNA binding sites can be linked to allelic imbalance, we could 

not conclude whether a higher number of these lead to an increase in ASE genes. Moreover, the 

degradation or creation of a miRNA binding site is not enough to suggest that those particular miRNAs 

would indeed bind and affect their targets, as these miRNAs may not even be expressed in certain 

conditions. In this sense, we looked at the expression of miRNAs in the two respective macrophage 

polarisation states (M0 and M1) and we observed that the number of ASE genes with altered binding 

sites for highly expressed miRNAs was lower than those reported above, without taking expression 

into account. However, we detected both ASE genes with 3’UTR variants with either degraded or 

created binding sites, as well as ASE genes with 3’UTRs containing both degraded and created miRNA 

binding sites (Table 3.8).  

Next, we observed that 85 ASE genes had only 1 significant SNP identified by QuASAR in their 

3’UTR, and only 1 gene had as many as 61 significant SNPs (Table 3.9). These results suggest that a 

minimum of 1 SNP could be responsible for the allelic imbalance of gene. Moreover, the number of 

SNPs, altered miRNA binding sites and ASE genes was further reduced when looking only at 

individually significant SNPs and significant ASE genes (FDR < 0.05), as identified by QuASAR. Thus, we 

found that out of 3150 significant ASE genes, only 43 had one of 83 significant SNPs that created 61 

novel miRNA binding sites, and only 25 ASE genes presented 39 significant SNPs that  destroyed 122 

miRNA binding sites. Moreover, this filtering step improved our confidence in predicting SNPs and 

genes linked to allelic imbalance, especially through the impact on miRNA binding sites, as genes with 
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the maximum number of significant SNPs identified have already been found to show allele-specific 

expression.  

Despite the multiple genes and SNPs we identified and predicted to be linked to ASE, there 

were no significant SNPs in the 3’UTR of TRIB1 that could be linked to ASE, not even SNP rs62521034, 

whose reads mapped approximately equal in both reference and alternate alleles (ref allele – 26 reads 

and alternate allele – 27 reads mapped). The effect of this SNP was also tested in vitro in HEK293T 

cells, but it did not lead to any significant difference in TRIB1’s expression in MDMs. This could be 

because miR-29a-3p, whose binding site was altered by this SNP, was too lowly expressed in Mun . 

More than that, the expression of TRIB1 itself was found to be low in both MDM controls and 

Salmonella typhimurium-infected samples, which are similar conditions to MUN and MLPS+INFγ. This is 

not the case in the test in HEK293T cells, where both target and miRNA are over expressed.  

In conclusion, we have developed a successful pipeline for detecting thousands of SNPs from 

RNAseq data sets and for identifying allelic-specific events at both gene and SNP levels. More than 

that, the detection of SNPs without prior genotype information was compared to those found using 

known genotype information from DNA-seq, and we identified a large number of SNPs from our 

RNAseq datasets, previously reported by DNA sequencing, as well (e.g. for TRIB1 we found 90% of 

SNPs previously annotated). However, one limitation of our pipeline is that it does not take into 

consideration multi-allelic sites and indels, and currently, only the miRanda algorithm is implemented 

for the detection of miRNAs targeting the binding sites altered by the SNP identified. Incorporating 

other tools or scanning more databases, such as TargetScan, could improve the confidence and 

accuracy of our ASE pipeline. Despite this, we consider our pipeline to be the first complete framework 

to detect allelic imbalance at both gene and SNP levels using solely RNAseq data, as well as identify 

altered miRNA binding sites. Moreover, our pipeline has improved power of interpretation to detect 

ASE genes and SNPs as compared to traditional ASE method.  

 

 

 

 

 



112 
 

Chapter 4 

Role of miRNAs in macrophage polarisation 
 

4.1 Introduction 

Inflammation is an immunity response triggered by the body in fighting pathogen infections 

and healing physical injuries (Mantovani et al. 2013), and it involves the recruitment of multiple 

components, such as macrophages (described in detail in Introductory Chapter ), which play an 

important role in host defense mechanism and tissue repair (Curtale, Rubino, and Locati 2019). The 

inflammatory response mediated by macrophages is initiated by the recognition of microbial 

structures known as pathogen-associated molecular patterns (PAMPs), or various endogenous signals 

from damaged tissues or cells, known as a damaged-associated molecular pattern (DAMPS). This is 

enabled through the activation of germline-encoded pattern-recognition receptors (PRRs), such as 

Toll-like receptors (TLRs)  (Chen et al. 2018), leading to the production of chemokines, cytokines, 

reactive oxygen and nitrogen species, which help trigger pro- or anti-inflammatory responses (Turner 

et al. 2014).  

The efficiency of inflammatory responses mediated by macrophages depends on the 

coordination of proteins involved in macrophage polarization, whose expression is regulated at the 

transcriptional and post-transcriptional level (Chen et al. 2018). miRNAs are a class of such mRNA 

regulatory elements (MREs) involved in gene regulation, which have been extensively researched in 

order to understand their importance and role in immune and inflammatory responses (Liu and 

Abraham 2013). Most of these studies have been performed in the context of cancer and metabolic 

diseases (Essandoh et al. 2016), but none of these has considered the influence of alternative 

polyadenylation (APA) on miRNA binding sites.  

In eukaryotes, many genes often have more than one polyadenylation sites, which leads to 

multiple isoforms being generated by cleavage at different location, a process known as alternative 

polyadenylation (APA). It frequently occurs in 3’UTRs of mRNA transcripts as a final step in mRNAs 

maturation, through the cleavage of 3’ UTR at polyadenylation sites of pre-miRNAs and the addition 

of a poly-A tail. This is important for the stability, localization, and translation efficiency of mature 

miRNAs, and I can also lead to further changes in mRNAs half-life or translation, by creating or 

destroying miRNA binding sites. (Tian and Manley 2016). 

In this current project, we present a first-of-its-kind project to investigate the link between 

miRNAs and macrophage polarization, through transcriptomic and miRNA studies. This study will shed 
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light on miRNAs and their target genes involved in macrophage polarization and the effect of the APA 

process in regulating these genes. Furthermore, our study aims to identify differentially expressed 

(DE) hub miRNAs targeting more than the average number of differentially expressed genes, between 

unstimulated (MUN) and LPS+INFγ (MLPS+INFγ) challenged macrophages.  

 

4.2 Materials and Methodology 

Declaration 

Dr. Chiara Niespolo performed all in vitro work under the supervision of Prof. Endre Kiss-Toth 

(IICD, University of Sheffield, Sheffield, UK) and I performed all the computational analysis and 

interpretation of results. 

4.2.1 Isolation and culture of human monocyte-derived macrophages (MDMs) 
Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood from healthy 

donors by Ficoll–Paque Plus (GE Healthcare) density centrifugation; CD14+ monocytes were selected 

by positive magnetic separation using CD14 human microbeads (Miltenyi Biotec). Monocytes were 

then cultured in complete media for 7 days: RPMI-1640 (Gibco), 10% (v/v) low–endotoxin heat-

inactivated FBS (PanBiotech), 1% (v/v) L–glutamine (Gibco) and 1% (v/v) penicillin/streptomycin 

(Gibco). 100 ng/mL of human recombinant M–CSF (Peprotech) was added to the media to 

differentiate monocytes into macrophages (monocyte-derived macrophages, MDMs). 

4.2.2 Macrophage polarisation 
After 7 days of isolation and differentiation, MDMs were treated with 100ng/mL LPS (Serotype 

R515 TLR grade TM, Enzo Life Sciences) and 20ng/mL of human recombinant INF-γ (Prepotech) to 

generate M1-like phenotype, and 20ng/mL of human recombinant IL-4 to generate M2-like 

macrophages. Cells were collected after 24 hours for RNA extraction.  

i) Transient transfection 

Transient transfections were carried out on MDMs on day 7 post isolation and differentiation. 

A total of 50nM of miR-155-5p, miR-125a-3p, miR-186-5p previously synthesised mimics and non-

targeting control (Horizon Discovery) were transiently transfected using Viromer Green (Lipocalyx, 

Cambridge Bioscience), according to manufacturer’s instructions. Cells were collected 24 hours post 

transfection for RNA extraction.  

 



114 
 

ii) Total RNA extraction  

Total RNA was isolated using the miRNeasy Mini Kit (QIAGEN). RNA concentration and purity 

were assessed by NanoDropTM Spectrophotometer (A260/A280 ratio= 1.8-2.0) (ThermoFisher 

Scientific). Before the small-RNA sequencing and the mRNA sequencing, RNA integrity and 

concentration were also determined using Agarose Gel Electrophoresis (Gel Con: 1%; voltage: 180v; 

Run Time: 16min) and Bioanalyzer Agilent 2100 (RNA Integrity Number ≥ 7.5).  

iii) Real-time quantitative PCR (RT-qPCR) 

cDNA synthesis and RT-qPCR were carried out using the miRCURY LNA RT Kit and miRCURY 

LNA miRNA PCR Assay Kit, based on SYBR Green chemistry (QIAGEN) manufacturer’s instructions. 

Results were analyzed upon a CFX384 C1000 Touch Thermal Cycler (Biorad), using the 2-ΔCt method. 

PCR primers for miR-155-5p, miR-125a-3p, miR-186-5p, miR-149-5p, miR-1343-4p, miR-766-3p were 

purchased from QIAGEN and diluted according to manufacturer’s instructions.  

iv)  Viability assay  

Viability assay was carried out on supernatants collected from MDMs, 24 hours post-

transfection with miRNA mimics/control, using the kit RealTime-Glo™ MT Cell Viability Assay 

(Promega) manufacturer’s instructions. 

4.2.3 Small-RNA and mRNA sequencing  
The genome sequencing company Novogene Co. Ltd (https://en.novogene.com) performed 

small RNA for the 8 unstimulated (MUN) and 8 M1-like macrophages (MLPS+INFγ), using the Illumina 

platform with single-end 50 bp and RNA-seq for 6 for hubm-RNA (miR-125a, miR-155,miR-186 and 

control) using the illumunia platform with 20M paired-end 150 bp.  

4.2.4 Macrophage polarized small-RNA-seq bioinformatics analysis 

i) Quality check and mapping 

The quality of reads was checked by FastQC implemented in cgat-pipeline readqc 

(https://github.com/cgat-developers/cgat-

flow/blob/master/cgatpipelines/tools/pipeline_readqc.py).  Reads with poor quality (reads with 

quality score <30) were removed and adapter sequences were trimmed using cutadapt with default 

parameters, implemented in cgat-pipeline readqc (https://github.com/cgat-developers/cgat-

flow/blob/master/cgatpipelines/tools/pipeline_readqc.py) (Supplementary Figure 2). Clean reads 

were mapped against human small-RNA sequences downloaded from the RNAcentral database 

(Sweeney et al. 2019), using bowtie2  (Langmead et al. 2009) local alignment option with default 

parameters. RNAcentral was used instead of the whole human genome sequence (hg38), because it 

https://en.novogene.com/
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
https://github.com/cgat-developers/cgat-flow/blob/master/cgatpipelines/tools/pipeline_readqc.py
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contains only small-RNA sequences, while hg38 also includes information on protein coding genes. 

Hence, small-RNA reads of approximately 50 base pairs could map to multiple locations in hg38, 

including to protein coding sequences, and may produce false-positive results, while by using 

RNAcentral, these were only mapped to small-RNA sequences. Raw counts were then obtained from 

samtools (Li and Durbin 2009). The RNA-central database was also used to annotate small RNAs, and 

only miRNAs were considered for further analysis.  

ii) Principle component analysis 

 To observe whether samples are clustering based on different conditions, we performed 

principal component analysis (PCA). To generate PCA components, we passed rlog normalized data 

through DESeq2 R package to procomp R package. Next, the ggplot2 R package was used to visualize 

components 1 and 2 of PCA. 

iii) Differential expression analysis  

Differential expression analysis was performed between MUN and MLPS+INFγ using the DESeq2 R 

package. miRNAs with < 0.05 FDR and log fold change cutoff |≥1| were considered for further analysis, 

they were further visulzied in heatmap generated using Complexheatmap R package. Target genes of 

differentially expressed miRNAs were identified using the TargetScan  (Lewis, Burge, and Bartel 2005) 

(https://github.com/srmeetd/miRNA-

mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd).  

4.2.5 Macrophage polarized mRNA-seq bioinformatics analysis 

i) Dataset 

A previously published RNA-seq dataset (Baidžajevas et al. 2020) from our laboratory was re-

analyzed, focussing on differential gene expression between MUN and MLPS+INFγ conditions. The dataset 

included 16 samples, including 8 MUN and 8 MLPS+INFγ (resulting in an M1-like phenotype).  

ii) Quality check, mapping and differential expressed analysis 

Reads were checked for quality using FastQC software implemented in cgat-pipeline readqc . 

Low-quality reads were removed and adapters were trimmed using trimmomatic algorithms with 

default parameters using the readqc pipeline. Samples were further processed and quantified with 

Salmon (Patro et al. 2017), using the Ensemble 93 human reference transcriptome. Next, R package 

tximport (Soneson, Love, and Robinson 2015) to generate gene level expression. Differential 

expression of genes was conducted using DESeq2 (Love, Huber, and Anders 2014) R package, and 

genes with an FDR < 0.05 and logFC cutoff |>1| were selected for further analysis 

file://///uosfstore.shef.ac.uk/shared/immunity_metabolism1/Shared/Thesis_final_draft/(https:/github.com/srmeetd/miRNA-mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd
file://///uosfstore.shef.ac.uk/shared/immunity_metabolism1/Shared/Thesis_final_draft/(https:/github.com/srmeetd/miRNA-mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd
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((https://github.com/srmeetd/miRNA-

mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd). 

iii) Putative target identification of miRNAs 

In order to investigate the function of differentially expressed miRNAs, we selected their 

corresponding target mRNAs with only 6-8 seed sequences of 74 conserved and non-conserved 

miRNAs, using TargetScan database. The predicted target mRNAs were further filtered and only those 

that were differentially expressed in the mRNA transcriptome data were retained for further analysis. 

iv) miRNA-mRNA integrated analysis 

Pathway and gene ontology enrichment analysis was performed using GOseq (Young et al. 

2010) R package. First, we extracted 3’UTR sequences from hg38 GTF file, calculated their length and 

then removed length biased 3’UTRs. Next, names of KEGG pathways were identified using KEGGREST 

(Tenenbaum 2020) R package. Further, FDR was calculated on the ‘over_represented_pvalue’ column 

output obtained from GOSeq. The reason for using the ‘over_represented’ column is that it represents 

more DE genes in the present categories than expected at any given size of category and length 

distribution; hence, these are considered enriched DE genes in that category (Young et al. 2010).  

Pathways passing the threshold of FDR < 0.05 were then selected for further analysis. 

Common target genes between up and downregulated sets of miRNAs were further identified 

by using the Jaccard index. Jaccard index represents the number of target genes common in pairwise 

miRNAs over the total number of target genes of a miRNA.  

Alternative polyadenylation (APA) analysis 
 APA site usage was estimated by identifying changes in 3’UTR lengths of a gene between MUN 

and MLPS+INFγ macrophages. The DaPars (Xia et al. 2014) method with the following parameter was 

used to identify the genes whose 3’UTR length changed between the two conditions.  

 

 

 

 

 

 

 

 

Num_least_in_group1=1 \ 

Num_least_in_group2=1 \ 

Coverage_cutoff=30 \ 

FDR_cutoff=0.05 \ 

PDUI_cutoff=0.5 \ 

Fold_change_cutoff=0.59 \ 

file://///uosfstore.shef.ac.uk/shared/immunity_metabolism1/Shared/Thesis_final_draft/(https:/github.com/srmeetd/miRNA-mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd
file://///uosfstore.shef.ac.uk/shared/immunity_metabolism1/Shared/Thesis_final_draft/(https:/github.com/srmeetd/miRNA-mRNA_integrative_analysis/blob/main/small_RNA_modified.Rmd
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4.3 Results 

In order to investigate the role of small RNAs (miRNAs) in MDMs in pro-inflammatory M1 

polarisation states, we conducted small RNA seq on 8 MUN and 8 MLPS+INFγ samples, as previously 

described. The analysis results showed that more than 70% of the sequences recovered mapped to 

miRNAs (Appendix table 6), with ribosomal RNAs being the next largest single category (Figure 4.1a). 

Looking at miRNA expression levels separating treated from untreated samples on the first two 

principal components, (Figure 4.1b)  we found that 102 miRNAs were least two-fold up or 

downregulated, with a 5% false discovery rate (Figure 4.1c, supplementary Table 1 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_tabl

e1.xlsx). These differentially expressed miRNAs were very clearly separated between the stimulated 

from unstimulated macrophages (Figure 4.1d).  

Furthermore, to study the effect of these changes in miRNAs expression on their target genes, 

we performed differential expression analysis on mRNA-seq data of a separate set of 8 MUN and 8 

MLPS+INFγ samples (Alignment: Appendix table 7).  Similar results as above were recorded, with mRNA 

expression profile also being clearly separated between stimulated and unstimulated macrophages, 

with 5,681 genes being identified at least two-fold up or downregulated, at a 5% FDR threshold  (Figure 

4.2, supplementary Table2, 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_Tabl

e2.xlsx). 

Thus, these results show that pro-inflammatory stimulation is accompanied by a major shift 

in both the long (mRNA) and short (miRNA) RNA transcriptomes of primary human macrophages. 

 

4.3.1 Differentially expressed miRNAs preferentially target genes involved in pro-

inflammatory pathways 
By investigating the role of 102 differentially expressed miRNAs in regulating macrophage 

polarisation to and between M0 and M1 states, we identified a number of miRNAs whose target genes 

recorded a significant change in expression, but in a different direction of that for miRNAs, upon 

LPS+INFγ stimulation (e.g. downregulated targets of upregulated miRNAs and vice-versa). Thus,  we 

found 1531 upregulated putative target genes of 44 downregulated miRNAs, and 1767 downregulated 

putative target genes of 26 upregulated miRNAs. 

Furhermore, KEGG and Gene Ontology (GO) enrichment analysis helped us understand more 

about the biological function of differentially expressed miRNAs on their predicted mRNA targets. 

Thus, we observed that significantly upregulated targets of downregulated miRNAs were involved in 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_table1.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_table1.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_Table2.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantery_Table2.xlsx
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pathways responsible for immune responses and activation of inflammatory-related cascades, such 

as MAPK signalling, in cytokine and chemokine signalling, the JAK/STAT pathway, toll-like receptor 

(TLR) signaling pathway, as well as apoptosis and T-cell receptor signalling pathways. In contrast, 

targets of upregulated miRNAs are enriched for genes involved in the cell cycle and DNA replication 

(Figure 4.3, supplemantry table 3 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_dat

a3.xlsx). 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data3.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data3.xlsx
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d) 

Figure 4. 1- Small non-coding RNA seq in human polarised macrophages: Mun vs MLPS+IFNγ a) 

Average percentage of reads mapping to different small RNAs classes, from the small non-coding 

RNA-se; x-axis represents different catgories of small RNAs: miR – miRNAs, ribosomal - ribosomal 

RNA, piR - Piwi-interacting RNA (piRNA), Y RNA - Y RNA; tRNA - transfer RNA; others - lncRNA, long 

non-coding RNA, small nuclear RNA, antisense small RNA; y-axis shows average percentage of 

small RNAs across libraries. b) PCA plot of small RNA seq based on log2 (CPM+1) values; dots 

represent different samples, large dot represents the centroid position c) Volcano plot showing 

differentially expressed RNAs (purple) (FDR<0.05, abs(log2 Fold Change>1)) d) Heatmap of 

differentially expressed miRNAs in M0 and M1 macrophages, illustrating the relative expression 

levels and clustering for two genotypes (MO and M1-like macrophages). Each colored cell in the 

heat map represents the standardized relative gene expression value for samples in each 

condition. The largest gene expression values are displayed in red color, intermediate values in 

shades of red and blue and the smallest values in darkblue. 

a) b) 

c) 

 Mun 

 MLPS+IFNg
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The above analysis results suggest that miRNAs may play an important role in the cell cycle 

progression, and may also enable the production of inflammatory cytokines and activation of immune 

responses in macrophages challenged by pathogen infections. Similar patterns were observed 

through Gene-ontology analysis (Figure 4.4), which showed that upregulated target genes of 

downregulated miRNAs showed an enrichment in regulators of cytokine/chemokine receptor activity. 

In contrast, the downregulated targets of upregulated miRNAs are connected to the cell cycle 

regulation, particularly regulation of mitosis.   

4.3.2 Hub miRNAs regulate genes enriched in inflammatory pathways  
In addition, by counting the minimum and maximum number of targets for the DE miRNAs, 

we found as few as 9 and as many as 740 genes being targeted by the same miRNA. We hypothesized 

that miRNAs targeting a high number of genes with an altered expression between Mun and MLPS+IFNγ 

might play important roles in macrophage polarization. Thus, we identified 9 miRNAs that target more 

than 500 DE genes and we termed these as “hub miRNAs” (Figure 4.5, supplemantry table 4 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_dat

a4.xlsx). Out of these, 5 were upregulated and 4 were downregulated (Table 4.1)., but all 9 hub 

Figure 4. 2- mRNA seq in human polarised macrophages: Mun vs MLPS+IFNγ.  a) PCA plot of mRNA 
seq based on log2 (CPM+1) values; dots represent different samples, large dot represents the centroid 
position . b)  Differential gene expression with fold expression difference (x-axis) between log 
normalized expression values in 8 Mun samples and 8 MLPS+IGNg samples, plotted version -log10 FDR value 
(y axis).  Purple dots represent the genes showing significant differential expression selected by using 
dual threshold of FoldChange and FDR values.  
 

a) b) 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data4.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data4.xlsx
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miRNAs were predicted to bind 79% of all the DE genes targeted by any differentially expressed 

miRNA, reinforcing their importance.  

 

 

 

 
 

 

miRNAs 

Genes 

Figure 4. 3- Highly enriched KEGG enrichment pathway analysis of genes differentially expressed 
between M0 and M1 macrophages (FDR<0.05) 
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Figure 4. 4-  Highly enriched GO terms in genes differentially expressed between M0 
and M1 macrophages (FDR<0.05). MF → Molecular function, CC → Cellular 
components. BP → Biological process  
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Figure 4. 5- Number of differentially expressed genes, potentially regulated by 
differentially expressed miRNAs (M0 vs M1) 

 

Table 4. 1- The number of target genes of 9 “hub miRNAs” and the positive control miR-
155-5p, shown in the last row 
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Gene enrichment analysis of target genes for both downregulated and upregulated hub 

miRNAs proved successful in identifying potential biological functions of both of these classes of 

miRNAs. Thus, we observed that the ten most significantly enriched pathways amongst 

downregulated targets for each upregulated miRNA were involved in chromosome assembly and 

condensation factors (Figure 4.6). Similarly, most upregulated targets of downregulated hub miRNAs 

had roles in cytokine, T cell and INF signaling pathways alike (Figure 4.7).  

We further tested our prediction by looking at miR-155-5p as a positive control for our 

analysis, which is an miRNA conserved across vertebrates and known to regulate inflammatory 

responses in macrophages (Curtale et al. 2019). As expected, we found it to be significantly 

upregulated in MLPS+INFγ and predicted it to bind 363 downregulated targets. While enrichment of 

“DNA-dependent DNA replication” amongst targets was not significant for miR-155-5p, a non-

significant 3.1 fold enrichment was present. We believe the lack of significance is probably due to the 

smaller total set of targets.   

Figure 4. 6- GO enriched terms (FDR<0.05) of hub upregulated miRNAs target genes. 
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We also observed that upregulated target genes involved in INF signaling pathways were 

shared by 3 of the 4 downregulated hub miRNAs. Upon a more in-depth analysis, we found that 

downregulated hub miRNAs share approximately 30-35% of their targets (Figure 4.8). In contrast, 

upregulated miRNAs shared overall fewer targets, between 20-25% of them (Figure 4.9). Similarly, 

looking at GO enrichment profiles, we saw that upregulated genes of downregulated hub miRNAs 

share more than downregulated genes of upregulated hub miRNAs, but they all have distinct GO 

profiles, and only “DNA-dependent DNA replication” being common across all 5 hub miRNAs. 

Outcomes of these analyses were consistent with our previous pathway analysis for the 

putative targets of DE miRNAs, suggesting that the hub miRNAs may play an important role in shaping 

the inflammatory response and polarisation of macrophages. 

 
 

 

Figure 4. 7- GO enriched terms (FDR<0.05) of downregulated hub miRNAs’ target 
genes. 
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Figure 4. 8- Common target genes between hub upregulated miRNAs, showed 
in pairs and calculated using the Jaccard Index. 

 

Figure 4. 9- Common target genes between hub downregulated miRNAs, showed in pairs 
and calculated using the Jaccard Index. 
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4.3.3 Three hub miRNAs were confirmed to target genes involved in cell-cycle regulatory 

pathways 
As described above, through our computational analyses we observed that a number of hub 

miRNAs were significantly up and downregulated in M1 compared to M0 macrophages. We further 

validated these results, by testing the expression of 3 hub miRNAs through RT-qPCR, miR-125a-3p, 

miR-186-5p and miR-155-5p considered as control. Our results showed that miR-155-5p and miR125a-

3p were significantly upregulated in MLPS+INFγ compared to MUN samples (p-value < 0.0001 and p = 0.003 

respectively), but not in  IL-4 treated macrophages (p-value = 0.5 and p =0.9 respectively). The 

expression of miR-186-5p was also high in MLPS+INFγ cells compared MUN, but it was not at all detected 

in IL-4 treated macrophages (M2 macrophages) (Figure 4.10). 
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Figure 4. 10 - Confirmation of hub selected miRNAs in macrophages by log2(CPM) values 
and RT-qPCR. Relative levels of a) miR-155-5p (control), b) miR-125a-3p and c) miR-186-5p,  
normalised to the housekeeping gene U6 (n=4, paired T-test). 

 

a) b) c) 
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Similarly, RT-qPCR values showed a successful overexpression of the mimics synthesised for 

all the three hub miRNAs, miR-125a-3p, miR-186-3p and miR-155-5p (control), which were 

substantiated in MUN samples, in order to further test the role of these hub miRNAs in triggering an 

inflammatory phenotype in macrophages (Figure 4.11).  

 

Furthermore, RNAseq analysis of the samples overexpressing the 3 hub miRNAs mimics and 

subsequent  PCA analysis revealed that samples were separated based on self-reported sex (Figure 

4.12). In fact, response to some miRNAs was consistent between self-reported sexes, e.g. samples 

overexpessing miR-155-5p were skewed up and to the left of the negative controls for a donor. 

However, the transcriptomic response to the other mimics was different, e.g. samples overexpressing 

miR-186-5p appeared below for donors a,c and f, but above for donors b,d,e compared to negative 

control. Unfortunately, we did not have a sufficient sample size to analyze this effect further. 

Looking at the the direction of change for target genes, we observed there were more 

downregulated than upregulated targets for miR-155-5p and miR-186-5p, upon overexpression of the 

cognate miRNAs, with 280 of 362 being downregulated for miR-155-5p, and 413 out of 739 for miR-

186-5. However, for miR-125a-3p only 219 of 555 targets were downregulated, thus only slightly more 

targets were upregulated, 336 out of 555. (Figure 4.13) 

What is more, the targets of both miR-155-5p and mir-186-3p were significantly 

downregulated compared to non-targets, upon transfection with the mimics (p<3 x 10-16 and, p<0.004 

for miR-155-5p and miR-186-2p respectively, Wilcoxon test), demonstrating the validity of our 

predictions, that miRNAs are directly downregulating those target genes. However, our predicted 

Figure 4. 11- Figure 4.11: Confirmation of expression of miRNAs in control and 
unstimulated/mimics by RT-qPCR. Relative levels of a) miR-155-5p, b) miR-125a-3p and c) miR-
186-5p normalised to the housekeeping gene U6 in unpolarised MDMs transiently transfected 
with miRNA mimics/control (n=4, paired T-test)  

a) b) c) 
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targets for miR-125a-3p were not downregulated by mimic transfection, which indicates miR-125a-3p 

may not have a direct impact on these target genes in unstimulated macrophages, but it remains 

unclear if this is also true in their polarised counterparts. (Figure 4.14) 

In addition, gene enrichment analysis showed that downregulated targets of miR-155-5p were 

enriched for genes involved in regulating G2/M transition and DNA replication. In contrast, 

upregulated targets of this miRNA were involved in B cell activation, proliferation, and chemokine 

signaling pathway. Downregulated targets of miR-186-5p had roles in chromosome and DNA-

packaging, while upregulated ones were linked to positive regulation of lipid kinase activity. Genes 

downregulated by miR-125a-3p were found to be involved in antigen processing and presentation, 

while upregulated targets were associated with inositol phosphate metabolism (Figure 4.15, 

supplementary table 5, 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_t

able_5.xlsx ) 

Figure 4. 12- Global PCA plot based on log2 (CPM+1) values from RNA-seq 
performed on unpolarised MDMs transiently transfected with miRNA performed 
on unpolarised MDMs transiently transfected with miRNA mimics/control. Circles 
separates the self-declared sex. 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_table_5.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_table_5.xlsx
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Figure 4. 14- Bar plot showing number of predicted target genes and there regulation 

 

Figure 4. 13- Violin plot showing the change in the expression (log2 Fold Change) 
level between target and non-target genes of each miRNA, overexpressed in 
MDMs. 
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a) 

b) 

c) 

Figure 4. 15- GO enriched terms for genes dysregulated in response to a) miR-155-5p (b), miR-
125a-3p (c) miR-186-5p, overexpression (FDR<0.05): first panel shows the enrichment for 

downregulated genes, second panel shows upregulated genes. 
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4.3.4 Loss of miRNA binding sites through APA processing can help regulate gene expression 
All the above analyses were performed on 3’UTR sequences of standard length (without APA 

processing).  As mentioned in this chapter’s introduction, APA can increase 3’UTR diversity and affect 

transcript expression by altering miRNA binding sites. Therefore, the following analysis was focused 

on changes in 3’UTR lengths caused by APA events in both Mun and MLPS+INF. Overall, 6188 transcripts 

of 2395 genes showed a change in their 3’UTR lengths, out of which 2661 had their 3’UTRs shortened. 

431 of these (16%) were uregulated in MLPS+INF compared to Mun, while 206 (7%) were downregulated. 

The density plot in Figure 4.16 (supplemantry table 6, 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_dat

a6.xlsx) shows the change in percentile of 3'UTR lengths in macrophages, generated by DaPars as sites 

usage, with the positive number representing shorter 3’UTR sites/site usage in MLPS+INF, and negative 

values showing an increase in 3’UTR sites usage in Mun.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change in 3’ UTR usage 

Figure 4. 16- Density plot representing changes in 3'UTR length/site usage in Mun 
and MLPS+IFG. Positive numbers represent shorter 3’UTR sites/site usage in 
stimulated cells, and negative values show an increase in 3’ UTR sites usage in 
unstimulated. 

https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data6.xlsx
https://github.com/srmeetd/Macrophages_transcriptomic_analysis/blob/main/Supplemantary_data6.xlsx
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In order to understand if miRNAs are involved in macrophage polarisation, we hypothised that 

when miRNAs are upregulated, their targets would be downregulated and viceversa – downregulated 

miRNAs would lead to upregulated target genes. Moreover, we also think that upregulated miRNAs 

whose binding sites are degraded would also lead to an upregulation in their target genes. One way 

miRNA binding sites could be removed would be through 3’UTR shortening via APA processing.  

In this sense, we observed that binding sites for 17 out of 26 upregulated miRNAs were lost in 

a total of 108 out of 1460 up-regulated genes in MLPS+INF due to APA events, with 20% of these 108 

upregulated target genes being shared between the 17 miRNAs (Figure 4.17). In addition, out of 17 

miRNAs, 5 miRNAs were found to be hub-miRNAs, responsible for downregulating genes involved in 

cell-cycle-related pathways. This result supports our hypothesis and, considering the majority of these 

target genes are involved in cell signalling and inflammatory-related pathways specific to an M1 

phenotype (Figure 4.18), their 17 miRNAs may also play an important role in macrophage polarization. 

More than that, genes involved in signaling pathways important in polarizing M1-like macrophages 

may, in fact escape post-transcriptional regulation by shortening their 3’UTRs.  

 

Figure 4. 17- Common target upregulated genes that have APA between upregulated miRNAs, 
showed in pairs and calculated using the Jaccard Index. 
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 As described above, in M1 phenotype, loss of binding sites (via APA processing) of upregulated 

miRNAs can lead to upregulation of their target genes. In order to test whether the same can be 

observed in M0 macrophages, we looked at miR-125a-3p as one of the five hub miRNAs identified 

(Chapter 4.3.3). Compared to two other miRNAs, also tested in vitro (miR-155-5p and miR-186-5p), 

miR-125a-3p was the only one whose target genes were not downregulated compared to its nontarget 

genes, in unstimulated cells.  

Moreover, its putative target genes were observed to not be affected by this miRNA in 

unstimulated macrophages transfected with a miR-125a-3p mimic (Figure 4.14). We believe the 

reason for this could be that its target genes were lacking the binding sites for miR-125a-3p in the 

unstimulated samples. To test this hypothesis, we looked at the changes in length of 3’UTRs of miR-

125a-3p putative target genes (Figure 4.19) that rose from degradation of miRNA binding sites upon 

APA processing, including those of miR-125a-3p. In total, we found that out of 555 downregulated 

Figure 4. 18- GO enriched terms for upregulated genes in MLPS+IFNγ  lost binding sites of 
upregulated miRNAs due the APA process. Dot plot represents top 10 gene ontology annotations, 
x-axis shows the percentage of differentially expressed genes present in particular ontology 
function, y-axis represents gene ontology annotations, dot size represents the number of 
differentially expressed present in corresponding gene onotology function and color represents the 
FDRscore. 
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genes, 35 presented APA events, but only 14 of these did not have binding sites for miR-125a-3p. Our 

hypothesis was thus rejected, as the results suggested that miR-125a-3p has, in fact, little to no impact 

on negatively regulating the expression of its putative target genes in M0 condition. 

 

4.4 Discussion 

In this chapter, we described the role of miRNAs in macrophage polarization, particularly in 

M0 and M1 phenotypes, the latter being specific to pro-inflammatory responses. What we found was 

that a) Differentially expressed miRNAs preferentially target genes involved in pro-inflammatory 

pathways and that b) Hub miRNAs regulate genes enriched in inflammatory pathways. c) Three hub 

miRNAs were also confirmed to target genes involved in cell-cycle regulatory pathways and d) Loss of 

miRNA binding sites through APA processing was shown to help regulate gene expression.  

 Differential expression analysis of miRNAs between Mun and MLPS+IGNg showed a clear 

separation between samples in the two conditions, which strengthens the belief that miRNAs are 

important factors for macrophage differentiation. However, this result is yet insufficient to 

understand specifc roles of miRNAs in cell polarisation. Therefore, by also selecting only differentially 

expressed target genes of miRNAs (Figure 4.2), we found 1767 downregulated targets of 26 

upregulated miRNAs, and 1531 upregulated targets of 44 downregulated miRNAs. What is more, gene 

enrichment analysis on these targets (Figures 4.3 and 4.4) showed that upregulated genes are mainly 

involved in cytokines-related pathways, such as JAK/STAT, Toll-like receptor, chemokine signaling 

Figure 4. 19- Density plot representing change in 3' UTR usage of  a genes 
Mun and MLPS+IFG. Positive number represents less UTR usage in 
MLPS+IFG samples and negative sites represents less UTR usage in Mun 
samples  
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pathways and NOD-like receptor pathways. This result further confirms the involvement of miRNAs in 

polarising unstimulated macrophages towards an M1 phenotype, and offers a better insight into what 

particular processes they are most likely to regulate transcriptionally. 

On the other hand, gene enrichment analysis on downregulated targets of upregulated 

miRNAs showed these genes are mostly responsible for activating cell-cycle pathways. However, their 

expression being downregulated by miRNAs suggest the cell-cycle pathways they are involved in may 

actually be arrested, which are often important for controlling inflammation upon pathogen 

infections. All in all, these results imply that one miRNA has multiple targets, which raises another 

question – are all miRNAs important in macrophage polarisation, or is there just a set of miRNAs 

targeting genes that play key roles in polarising macrophages?  

In this sense, we counted the number of targets for each miRNA and identified a set of 9 

miRNAs binding 79% of all the DE genes, which we named “hub-miRNAs”. Out of these 9 hub miRNAs, 

5 were upregulated and 4 were downregulated (Figure 4.5, Table 4.1), and gene ontology enrichments 

revealed that targets of all the 9 hub miRNAs are mostly involved in inflammatory pathways and cell 

cycle-related pathways, being a subset of pathway enrichment shown in Figures 4.6 and 4.7. 

Moreover, we observed that approximately 30-35% of upregulated target genes are shared between 

the 4 downregulated hub miRNAs and 20-25% of downregulated targets shared by the 5 upregulated 

miRNAs (Figure 4.8 and 4.9).  

Therefore, our results described above show that not all differentially expressed miRNAs are 

important in macrophage polarisation, but the network of 9 hub miRNAs and their targets do play an 

important role in this process. Future work could focus only on hub miRNAs, in order to  understand 

the mechanism of macrophage plasticity, and it would be interesting to see the effect of such 

macrophage plasticity on the knockdown of upregulated miRNAs in MLPS+IFNγ phenotype.  

What is more, these results were based on putative target genes obtained from the 

TargetScan database, and in order to further validate our computational observations, we selected 

three upregulated miRNAs and overexpressed them in Mun macrophages, one of which being the hub 

miRNA miR-155-3p, well known for its role in macrophage polarisation. In vitro validation of these 

three miRNAs confirmed that their target genes were more downregulated compared to non-target 

genes, except those of miR-125a-3p (Figure 4.14). A possible reason for this could be that this miRNA 

may have low to no impact on the expression of its targets, or that target genes may in fact skip post-

transcriptional regulation by undergoing APA processing, which can remove the binding site for miR-

125a-3p through 3’UTR shortening.  
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Moreover, by showing that the downregulated targets of these three miRNAs are involved in 

cell-cycle-related pathways (Figure 4.15), we confirmed that our methodology used for an integrated 

miRNA-mRNA analysis and previous interpretations were accurate. However, all the above analysis 

was performed on standard 3’UTRs of genes recorded in TargerScan database. Therefore, we further 

looked at the effect of 3’UTR shortening through APA processing on miRNA binding sites, and we 

observed that 3’UTRs of DE genes in MLPS+IFNγ were indeed shorter than in Mun. More of these target 

genes were found to be required in immunity-related pathways and our results show that they may 

undergo APA events in order to shorten their UTRs and avoid the binding of RNA-binding proteins or 

miRNAs that could downregulate their expression.  

In total, we identified 17 upregulated miRNAs binding sites being removed by APA processes 

across 108 upregulated genes in MLPS+IFNγ. What is more, KEGG pathway analysis confirmed that these 

108 genes were involved in both cell signaling and inflammatory pathways (Figure 4.18).  All in all, the 

above results also atested that APA processing can be important in regulating the expression of genes 

important in immunity-related pathways. However, only 14 out of 555 downregulated targets of miR-

125a-3p were found to undergo APA processing in Mun samples. This hints that miR-125a-3p has less 

or no impact on the expression of its targets, but this could be an isolated example observed, and in 

order to formulate a clear conclusion, further analysis could be performed on larger sample sizes. 
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Chapter 5  

Conclusions and Future Work 
  

TRIB1 has been shown to have various biological functions, for example in cell polarization, 

migration and signalling pathways, and it has also been associated with a number of affections, such 

as different types of cancer, atherosclerosis, diabetes and cardiovascular diseases (Johnston et al. 

2019; Kathiresan et al. 2008; Liang et al. 2013; Niespolo et al. 2020). Despite its therapeutic potential, 

TRIB1’s variation in expression levels across different tissue types continues to pose a challenge for 

understanding its genomic network. This variation in expression has been observed at both gene and 

protein levels, which were often found not to correlate with each other and poses another challenge 

in identifying the exact requirement for TRIB1 protein within the cells (Soubeyrand et al. 2016). 

Because of these limitations, the co-expression and interaction network of Trib1 have not be fully 

characterised and so far, studies have only validated TRIB1’s relationship with CEBPα and COP1.  

For the scope of this project, we first described the importance of miRNAs in macrophage 

polarization and the role of SNPs altering miRNA binding sites in both Trib1, as well as across the whole 

genome in allele-specific expression (ASE). In this sense we developed and validated a new pipeline 

for detecting ASE variants, without prior genotypic information. In addition, we have further 

investigated Trib1’s expression, regulation and function, and we presented our findings on the 

genomic network of TRIB1 in cancer and macrophages. Thus, we observed that variations in Trib1’s 

3’UTR, as well as in the miRNA binding sites are directly associated with changes in its expression 

levels. We also reported Trib1 co-expresses with early response genes and we proposed a novel 

hypothesis of Trib1 potentially being an early response gene, even acting as an E2 ligase.  

o Role of miRNAs in macrophage polarisation  

When studying the transcriptional regulation during macrophage polarisation, we found 73 

differentially expressed miRNAs between Mun and MLPS+IFNγ targeting 79% of the differentially 

expressed genes between the two conditions. Out of these, we identified 9 hub miRNAs (targeting 

more than 500 genes) – 4 downregulated (miR-335-3p, miR-766-3p, miR-1343-3p, miR-4709-3p) and 

5 upregulated (miR-186-5p, miR-4773, miR-3614, miR-125a, miR-7-5p). KEGG pathways revealed 

upregulated targets of downregulated miRNAs are involved in pro-inflammatory-related pathways, 

while downregulated genes of upregulated miRNAs were linked to cell-cycle progression. 

Furthermore, we found that 17 upregulated miRNAs lost their binding sites on 108 upregulated targets 

due to alternative polyadenylation (APA). These genes are involved in cell-signalling and Chapter 5: 
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Conclusions and Future Work 137 inflammatory pathways, and our results suggest that APA might be 

an important step in regulating genes of immunity-related processes. In order to confirm our 

computational results, 3 miRNAs previously identified as upregulated in MLPS+IFNγ (miR-155-5p, miR-

186-5p and miR-125a-3p) were validated in vitro, being overexpressed in Mun. RNAseq analysis of 

these samples showed that target genes of miR-155-5p and miR-186-5p were significantly 

downregulated compared to non-target genes, but those of miR-125a-3p were not. What is more, 

only 14 out of the 555 downregulated targets of miR-125a-3p were found to have undergone APA 

processing, which ruled this out as the possible reason for its targets not being significantly affected 

compared to the overall non-target gene pool. Therefore, we concluded that miR-125a-3p may have 

low to no impact on the expression of its targets, or that its target genes may in fact skip post-

transcriptional regulation through other means or target genes might not be expressed in MLPS+IFNγ 

. Future work would require more in vitro testing of the miRNAs identified through RNAseq analyses, 

in order to validate the efficiency of our computational tools and confirm our observations. These 

should be performed in both Mun and MLPS+IFNγ , in order to understand the biological effect of 

these miRNAs on inflammatory-related target genes. Moreover, experiments could be replicated in 

other cell types, to investigate whether regulation through these miRNAs is universal or tissue specific, 

and to identify those linked to particular types of cells or processes, such as differentiation. RNAseq 

would need to be analysed for all these conditions, as well, to compare results with our previous ones, 

to further test our tools and ensure reproducibility and consistency.  

o  The role of SNPs altering miRNA binding sites in ASE  

When investigating the post-transcriptional regulation of TRIB1, we identified 60 SNPsderived 

variants in its 3’UTR, and we observed that the gene expression levels of TRIB1 increased with the 

number of 3’UTR transcript variants. Upon closer look, miRNA binding sites were altered by these 

SNPs, with more binding sites being created than degraded in both Mun and MLPS+IFNγ . This suggests 

that TRIB1’s expression could also be regulated through variants with altered binding sites of other 

mRNA regulatory elements, such as RNA-binding proteins, translational repressors, splicing factors 

and riboswitches. However, if these variations were affecting TRIB1 expression, we would expect their 

presence to lead to ASE. Our study of the 60 SNPs detected in the 3’UTR of TRIB1 showed, however, 

that no significant SNPs in this region were linked to ASE events, but a number of these were 

associated with disease traits through the Genome-Wide Association Studies (GWAS). This finding 

suggests that there is link between TRIB1 and different disease trait especially cardio-vascular diseases 

and auto-immune disease. However, direct link between TRIB1 and disease trait still needs to be 

explored. Chapter 5: Conclusions and Future Work 138 Although ASE was not detected for any TRIB1 

variants, we further tested for SNPs in the 3’UTR of genes across the entire genome that could be 
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linked to ASE. In this sense, we developed our own pipeline for identifying ASE at both SNP and gene 

levels, which we validated against different RNAseq datasets. Thus, we observed that SNPs linked to 

allele specific expression are also responsible in altering miRNA binding sites. More than that, our ASE 

pipeline helped identify ASE genes in M1 macrophages that were enriched in inflammatory-related 

pathways. Overall, we observed that a minimum of 1 SNP could be responsible for the allelic imbalance 

of a given gene, and that genes with the maximum number of significant SNPs identified through our 

pipeline have already been linked to ASE. This demonstrates the high accuracy of our pipeline (e.g. for 

TRIB1 we found 90% of SNPs previously annotated) and suggests that in order to maximise the chance 

of finding true ASE events, both SNPs and genes associated with ASE should be considered. Therefore, 

we consider our pipeline to be the first complete framework to detect allelic imbalance at both gene 

and SNP levels, as well as identify altered miRNA binding sites, all without the requirement of prior 

genotypic information. Future developments could be sought to increase the robustness of our 

pipeline, for example through validation against different sequencing data types (e.g. DNAseq, 

ChIPseq). In addition, improvements could be made to reduce the computational power and time 

requirements, as currently, processing 170 samples in parallel, on an HPC server takes approximately 

16 hours. Furthermore, alongside our Readbacked-phasing algorithm, several others could be 

incorporated as additional options, such as HapTree-x and phASER.  

o Co-expression analysis of TRIB1  

In order to better understand the biological function of Trib1, we investigated its genomic 

network in both macrophages and cancer cell lines, and we found that TRIB1 co-expresses with 

completely different sets of genes in these different conditions. This was also observed even for 

different types of macrophages, which could also be linked to variations in gene level expression of 

TRIB1 between control MDMs, Salmonella typhimurium and Listeria monocytogenes-infected 

samples. A more in-depth analysis of the co-expression network of TRIB1 in Listeria 

monocytogenesinfected samples, representative of an M2 phenotype, indicated a potential dual role 

of Trib1 protein. Firstly, TRIB1 was found to co-express with E3 ligase UNKL and to have a 76% overlap 

with the structural domain of UBE2D3 E2 ligase. Considering that Trib1 has been previously shown to 

recruit E3 ligase COP1 for the ubiquitination of CEBPα, these results led to the hypothesis that Trib1 

may act as an E2-conjugating enzyme itself. Secondly, TRIB1 also co-expressed with transmembrane 

protein TMEM181, which is found to be upregulated after bacterial infection, that brings to 

hypothesize that TRIB1 recruits E3 ligase to ubiquitinate TMEM181 co-expressed genes like SYLT3 to 

activate the cell- Chapter 5: Conclusions and Future Work 139 signalling pathways, which further 

activates adaptive immunity specific to an M2 phenotype. However, this hypothesis requires further 

validation. On the other hand, co-expression analysis performed on different types of cancer showed 
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that TRIB1 co-expressed with 28 different immediate-early response (IER) genes in 19 out of 28 cancer 

datasets interrogated. Amongst all, EGR1 and FOS were the only two genes to co-express with TRIB1 

in all 19 cancer datasets, which were also tested through in vitro experiments in different cancer cell 

lines, in order to validate our initial computational observations. Overall, we found that TRIB1’s 

expression was negatively correlated with that of EGR1 and FOS in both DU145 and PC-3 cell lines (i.e. 

TRIB1 was higher in PC-3 cells than in DU145, while the opposite was observed for both EGR1 and FOS, 

whose expression levels were elevated in DU145, compared to PC-3 cells). Further on, EGR1 and FOS 

were detected to be up-regulated in TRIB1 overexpressed DU145 cells, compared to controls, which 

suggested TRIB1 may regulate these two IER genes. Moreover, upon stimulating IER genes in HEK293T 

cells, we observed that TRIB1’s expression pattern was similar to that of IER genes which, together 

with the above results indicate that TRIB1 could also be a member of IER gene family. What is more, 

TRIB1 co-expressed with differentially expressed IER genes involved in cell signalling and cell cycle 

related pathways, which highlighted yet another potential role for TRIB1, as a positive regulator of cell 

polarization and cell migration. Considering many observations were recorded from different types of 

cell lines, performed at different times and in slightly varying conditions, future tests could include 

replicates of the same conditions across all cell lines, in order to ensure a more appropriate 

comparison. For example, both TRIB1 knock-down and overexpression can be induced in the two 

cancer cell lines DU145 and PC-3, as well as in non-cancerous HEK293 cells and macrophages cell-lines. 

This would enable us to further investigate the variation in expression levels of TRIB1 between 

different conditions, which was previously observed computationally. Moreover, by studying the 

expression levels of all TRIB1, EGR1 and FOS in these samples, we would better understand the 

interaction and direction of regulation between these 3 genes, as well as whether these are cell-type 

specific. In addition, RNAseq and coexpression analyses of all these conditions would help us confirm 

our preliminary results, as well as find other genes of interest that would further highlight the genomic 

network of TRIB1. All in one, our results suggests that SNPs in 3’ TRIB1 are not linked to allele-specific 

expression. However, they are responsible in altering miRNA binding. More that that, we have shown 

that expression level of TRIB1 increases with increase in number of SNPs in it’s 3’ UTR, which suggests 

that miRNAs are not only responsible in altering the expression of TRIB1, but other factors such as 

RNA-Binding proteins (RBPs), translational repressors, splicing factors, and riboswitches sites altered 

due the SNPs could also regulate the expression of TRIB1. Moreover, we also shown that TRIB1 is 

Chapter 5: Conclusions and Future Work 140 coexpressed with IER genes in 18 out of 28 cancer 

datasets, which led us to hypothesize that TRIB1 could be a member of IER genes. This might explain 

the reason why studies on the genome-wide immunity response in TRIB1-knockout mice, carried out 

by collaborators in the TRAIN consortium failed to find large transcriptional effects linked to TRIB1 as 
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these were carried out in resting, steadystate cells. Furthermore, it also explains the reason of SNPs 

in 3’ UTR of TRIB1 is not linked to ASE, as TRIB1 was found low expressed in unstimulated and M1-like 

macrophages because the RNA data was collected post 2 hours from Salmonella typhimurium infected 

macrophages (M1-like macrophages). Furthermore, we found SNPs in 3’ UTR altered binding sites of 

9 miRNAs, which were expressed in Mun and MLPS+IFNϒ small RNA-seq dataset out of which 6 of 

these miRNAs had novel binding sites created in the 3’UTR of TRIB1, while 3 had existing sites 

degraded. As the expression of TRIB1 was found to be low in Mun and MLPS+IFNϒ RNA-seq datasets, 

that could be why these miRNAs could have no effect on regulating TRIB1. Considering all above 

observations, the future experiment could be stimulating IER genes in unstimulated, M1-like and M2-

like macrophages to record the changes in expression at different time points of TRIB1 and IER genes 

and change in expression of miRNAs targeting TRIB1 and IER genes in macrophages 
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Software/tool Version 

R 4.1 

Python 3.1 

Limma 3.48.3 

EdgeR 3.34.1 

DESeq2 1.32.0 

GOSeq 1.46.0 

BioMart 2.48.3 

Keggrest 1.32.0 

WGCNA 1.70.3 

Ggplot2 3.3.5 

gplots 3.1.1 

CompleaxHeatmap 2.8.0 

QuASAR 1 

SPRINT 1 

GATK 4.2 

Picard 2.0.1 

miRanda 3.3a 

TargetScan 7.1 

FastQC 3 

Trimmomatic 0.38 

Bedtools 2.28.0 

Bcftools 1.14 

Freebayes 1.35 

Vcftools 0.1.13 

MBASED 3.14 

Samtools 1.14 

RNAcentral 19 

Procomp 3.6.2 

tximport 4.1 

DaPars 0.9.1 

BWA 0.7.17 

STAR  2.7.9a 

Salmon 1.6.0 

Table A. 1- list of Software’s/Tools and their version 
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a b 

Supplementary figure 1. 1- FastQC box plots of quality scores per read position of macrophage RNA-seq data; a) 
Before adapter trimming, b) After adapter trimming 

a b 

Supplementary figure 1. 2- Supplementary figure 1. 1- FastQC box plots of quality scores per read position of 
macrophages mi-RNA-seq data; a) Before adapter trimming, b) After adapter trimming 
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Sample Raw Reads Q30(%) GC(%) 

GFP_0_mins1 45095138 94.07 50.59 

GFP_30_mins1 44472354 94.56 50.69 

GFP_60_mins1 41591016 94.64 50.58 

TRIB1_OE_0_mins1 42337430 94.63 50.35 

TRIB1_OE_30_mins1 46249706 94.05 50.98 

TRIB1_OE_60_mins1 47084062 94.81 50.74 

GFP_0_mins2 44145900 94.72 50.38 

GFP_30_mins2 43026548 94.45 51.99 

GFP_60_mins2 57479166 94.73 51.96 

TRIB1_OE_0_mins2 41941084 94.72 52.31 

TRIB1_OE_30_mins2 48779126 94.44 52.2 

TRIB1_OE_60_mins2 44614126 94.74 52.14 

GFP_0_mins3 45652396 94.58 51.51 

GFP_30_mins3 44209144 94.82 51.07 

GFP_60_mins3 44829780 94.23 51.77 

TRIB1_OE_0_mins3 40845944 94.7 51.69 

TRIB1_OE_30_mins3 46091602 94.54 51.93 

TRIB1_OE_60_mins3 44716110 94.74 51.96 

Table A. 2- Quality table summary of TRIB1 OE and control RNA-Seq data; 
Raw reads  - total amount of reads of raw data, each four lines taken as one 
unit. For paired-end sequencing, it equals the amount of read1 and read2, 
Q30 - Base count of Phred value >  30) / (Total base count), GC content: (G & 
C base count) / (Total base count) 
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Sample Raw Reads Q30(%) GC(%) 

d5a 22776488 93.14 50.42 

d5b 26134056 94.86 50.77 

d5c 27155122 92.78 50.63 

d5d 22566917 93.34 50.62 

d7a 21827616 93 50.34 

d7b 26869493 92.54 49.66 

d7c 28342110 92.9 49.44 

d7d 24411898 93.19 49.71 

d12a 27706647 92.39 50.86 

d12b 27768686 93.31 50.03 

d12c 27073927 93.03 50.39 

d12d 24034943 93.08 50.19 

d14a 26708208 94.37 50.55 

d14b 21870461 93 49.77 

d14c 22143558 92.71 49.97 

d14d 22625692 93.27 50.54 

d16a 23165588 93.4 50.75 

d16b 24611795 92.75 50.7 

d16c 27877058 93.12 50.7 

d16d 27727354 93.12 50.79 

d17a 22425135 93.37 50.64 

d17b 24008424 94.65 50.97 

d17c 27833959 94.78 50.75 

d17d 22313814 94.88 50.7 

 

 

 

 

 

 

 

 

 

 

 

Table A. 3- Quality table summary of miRNA OE in unstimulated 
macrophages RNA-seq data; Raw reads  - total amount of reads of raw 
data, each four lines taken as one unit. For paired-end sequencing, it 
equals the amount of read1 and read2, Q30 - Base count of Phred 
value >  30) / (Total base count), GC content: (G & C base count) / 
(Total base count) 
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Sample Mapping percentage 

RHM5411 91% 

RHM5412 87.75% 

RHM5417 91.53% 

RHM5418 90.66% 

RHM5423 91.74% 

RHM5424 91.32% 

RHM5429 85.20% 

RHM5430 89.40% 

RHM5435 90.94% 

RHM5436 88.82% 

RHM5441 90.40% 

RHM5442 87.43% 

RHM5447 90.43% 

RHM5448 88.78% 

RHM5453 90.08% 

RHM5454 90.36% 

Table A. 4-  Mapping percentage of small non-coding RNA seq 
in human polarised macrophages: Mun vs MLPS+IFNγ 

Table A. 5- Mapping percentage RNA seq in human 
polarised macrophages: Mun vs MLPS+IFNγ 
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Table A. 6- Mapping percentage of RNA-seq on 
unpolarised MDMs transiently transfected with 
miRNA mimics/control 
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Table A. 7- Mapping percentage of RNAseq, performed on GFP 
control and TRIB1-overexpressed mRNA 


