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Abstract

The environmental regulation of seed dormancy and germination by temperature is an

important process which allows the environmental conditions experienced by plants in

the following generation to be controlled. Coping with temperature effects during seed

maturation is essential for the consistent production of high quality seeds, but currently

temperature signalling pathways in seeds are poorly understood. Previous work has

shown that temperature during seed maturation regulates the levels of dormancy which

are induced in the seed, although a mechanism for this pathway is currently unknown.

Low temperature during imbibition promotes germination and although this is known to

involve alterations to GA metabolism, again a mechanism is missing. Therefore, the

aim of this study was to identify components of the mechanisms which regulate the

temperature control of dormancy and germination in the model plant Arabidopsis

thaliana.

Cool and warm seed maturation temperatures induce high and low levels of dormancy

respectively in Arabidopsis. These changes to dormancy levels are coupled with altered

ABA and GA levels and gene expression controlling hormone synthesis and

breakdown. Changes in maturation temperature do not appear to be linked to altered

seed coat morphology or embryo development.

During testing of cold-response mutants for dormancy phenotypes the expression of

CBFs, a group of transcription factors which were characterised through the study of

cold acclimation, was found to be necessary for dormancy. CBF RNAi and mutant

seeds display reduced dormancy when matured at low temperature. However, the

expression of CBFs is not promoted by exposure to low temperature in seeds,
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suggesting that this is not an important mechanism for the temperature control of

dormancy.

More strikingly, the E3 ligase HOS1 is absolutely required for high dormancy levels in

response to low maturation temperature. hos1 mutants show a complete loss of

dormancy when matured at any temperature and this phenotype is maternally inherited.

The germination of hos1 seeds in the presence of PAC or ABA does not differ from

wild-type, thus suggesting that sensitivity to GA and ABA is not altered in these seeds.

However, levels of GA are increased in hos1 mutant seeds, which could be important

for the reduced dormancy phenotype. The expression of TT genes, which are

responsible for the accumulation of anthocyanidins in the seed coat, is downregulated

in hos1 mutants and so could be involved in the regulation of dormancy by HOS1.

Therefore; HOS1 defines a novel essential maternal pathway that regulates dormancy

levels which involves the regulation of GA metabolism.

A forward genetic screen identified a number of cold stratification insensitive (cosi)

mutants. A thorough characterisation of these mutants revealed interesting phenotypes,

but phenotypic variation and a lack of robust segregation data meant that the cosi

mutants were not mapped.
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Chapter 1 Introduction

1.1 Temperature

Temperature acts as an important cue to allow plants to sense and respond to changes

in environmental conditions, enabling them to co-ordinate their life cycle with the

changing of the seasons. Temperature does not only change according to the season,

but also on a diurnal basis and it is important that plants are able to anticipate these

changes. The ability of plants to perceive both high and low temperatures is key to their

survival, but is also used to regulate a number of developmental processes (Penfield,

2008).

As plants are unable to move when conditions become unfavourable they have

developed the ability to readily adapt their growth and developmental processes to

changing conditions, i.e. developmental plasticity. Increases in mean global

temperature and extremes of temperature are predicted for the future and these

predictions are significantly larger than those that have occurred so far, suggesting that

there will be large disruptions to the behaviour of wild plants and crops (Kumar and

Wigge, 2010). It has been predicted that temperature alone could contribute to the

extinction of up to one third of all European plant species (Thuiller et al., 2005). The

importance of plant responses to temperature in terms of surviving climate change is

highlighted by Willis et al.,(2008). Evidence is presented to suggest that species which

are able to shift flowering time in response to temperature change are less prone to

extinction than those species which cannot.
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1.1.1 Molecular mechanisms of temperature
perception

To date, the majority of research investigating the molecular mechanisms that underlie

temperature perception has focused on the responses of plants to extreme

temperatures (i.e. low and high temperatures), such as the cold acclimation and

vernalisation pathways. However, more recently the mechanisms that regulate the

responses of plants to ambient temperatures are starting to be uncovered (Koini et al.,

2009, Saidi et al., 2009 Kumar and Wigge, 2010, Sidaway-Lee et al., 2010, Finka et al.,

2012, Gao et al., 2012, Kumar et al., 2012).

Relatively small changes to temperature in the ambient range have been shown to

have significant effects on plant development. For example, hypocotyl elongation is

much more prominent at 28°C in comparison to 22°C and this is mediated by

PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and involves the hormone auxin

(Franklin, 2009, Koini et al., 2009, Franklin et al., 2011). A role for PIF4 has also been

identified in the pathway that is responsible for the promotion of flowering under short

day conditions by increasing temperature (Kumar et al., 2012). The promotion of

flowering by increasing temperature from 22°C to 27°C in wild-type plants was

abolished in pif4-101 plants and this was due to a decrease in FLOWERING LOCUS T

(FT) expression. PIF4 binds to the FT promoter to activate expression in a temperature

dependent manner and this binding is thought to be regulated by H2A.Z nucleosome

dynamics (Kumar et al., 2012).

Ambient temperature sensing has been shown to involve changes in the H2A.Z

occupancy of nucleosomes (Kumar and Wigge, 2010). Increases in temperature lead to

a decrease in H2A.Z occupancy, allowing DNA to become less tightly wound and more
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accessible to RNA polymerase II. The transcriptome of the actin related protein (arp6)

mutant is constitutively ‘warm’ and this is due to a decrease in H2A.Z occupancy in

arp6 mutants in comparison to wild-type at 17°C.

Calcium signalling has been associated with temperature signalling in plants for a

number of years. Cold shock of Arabidopsis seedlings leads to an increase in cytosolic

Ca2+ levels (Knight et al., 1996). Tobacco plants which overexpress Arabidopsis

CATION EXCHANGER1 (CAX1) are Ca2+ deficient and show increased sensitivity to

cold shock (Hirschi, 1999). Building evidence suggests that Ca2+ permeable channels

could act as a temperature sensor (Monroy and Dhindsa, 1995, Plieth et al., 1999,

Saidi et al., 2009, Finka et al., 2012, Gao et al., 2012). Disruption to the Arabidopsis

CYCLIC NUCLEOTIDE-GATED ION CHANNEL2 (CNGC2) gene, which encodes a

component of a nucleotide gated Ca2+ channel, leads to the heat shock response at

milder temperatures (Finka et al., 2012). In another study, Arabidopsis CNGC6 was

shown to mediate heat-induced Ca2+ influx and regulates the expression of HEAT

SHOCK PROTEIN genes, which in turn leads to thermotolerance (Gao et al., 2012).

1.1.2 Cold Acclimation

The process of cold acclimation, which is used by plants to survive adverse conditions,

involves plants experiencing a period of exposure to low temperature that allows them

to survive subsequent exposures to freezing temperatures (Guy, 1990). Central players

in this pathway are a small group of APETALA2 (AP2) domain transcription factors

known as C-REPEAT BINDING FACTORS (CBFs) (Stockinger et al., 1997, Gilmour et

al., 1998) (Figure 1.1). This group comprises three genes; CBF1, CBF2 and CBF3

which have a large amount of homology (Medina et al., 1999). CBF expression

increases transiently in response to exposure to low temperature with peaks in
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expression occurring approximately one hour after transfer to 2.5°C and expression

diminishes after twenty four hours (Gilmour et al., 1998). The overexpression of CBFs

confers freezing tolerance in the absence of cold acclimation due to the increase in

expression of a suite of genes that are involved in metabolic and physiological changes

that aid resistance to freezing temperatures (Jaglo-Ottosen et al., 1998, Gilmour et al.,

2000, Vogel et al., 2005).

Figure 1.1: Schematic of cold acclimation pathway.
Constitutively expressed ICE1 is activated by low temperature through sumoylation and
phosphorylation, which is able to promote CBF3 expression and repress MYB15
expression. The ubiquitination of ICE1 by HOS1 targets it for proteolysis. CBF3
expression is negatively regulated by ZAT12 and MYB15. CBF1 expression is
promoted by ICE2. CBF2 negatively regulates the expression of CBF1 and CBF3. The
CBFs promote expression of the COR genes. ZAT10 is induced by the CBFs, which
may negatively regulate COR gene expression. Cold upregulation of LOS2 negatively
regulates ZAT10 expression. P, phosphorylation; U, ubiquitination; S, sumoylation.
Adapted from Chinnusamy et al., (2007).
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The CBFs bind to a low temperature responsive DNA regulatory element called C-

repeat (CRT)/ dehydration response element (DRE) in the promoters of COLD

RESPONSIVE (COR) genes (Yamaguchi-Shinozaki and Shinozaki, 1994, Stockinger et

al., 1997). These motifs contain the conserved CCGAC core sequence. CBF3

expression is promoted by the MYC-type basic helix–loop–helix (bHLH) transcription

factor INDUCER OF CBF EXPRESSION1 (ICE1) (Gilmour et al., 1998, Chinnusamy et

al., 2003). An ICE1 homologue, ICE2, is involved in regulating expression of CBF1

(Fursova et al., 2009). The ice1-2 mutant is incapable of inducing expression of CBF3

and plants are freezing sensitive as the cold acclimation pathway cannot be employed

(Chinnusamy et al., 2003).

The regulation of an optimal cold-induced transcriptome relies on feedback repression

of transcription factors that regulate cold-responsive gene expression (Chinnusamy et

al., 2007). Analysis of the cbf2 mutant showed that in the absence of CBF2 expression,

levels of CBF1 and CBF3 expression was elevated, thus suggesting that CBF2 acts as

a negative regulator of CBF1 and CBF3 expression (Novillo et al., 2004). CBF1 and

CBF3 have been shown to act additively in cold acclimation (Novillo et al., 2007).

An important negative regulator of cold induced gene expression is the transcription

factor MYB15, which represses CBF3 expression by binding to the MYB recognition

sequence in the promoter of CBF3 (Agarwal et al., 2006). myb15 mutant plants display

increased freezing tolerance, whilst the overexpression of MYB15 leads to increased

freezing sensitivity (Agarwal et al., 2006). Interestingly, ICE1 is able to negatively

regulate MYB15 and this is indicated by elevated MYB15 expression levels in the ice1-

2 mutant (Chinnusamy et al., 2003, Agarwal et al., 2006).
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A number of additional negative regulators of the cold acclimation pathway has been

identified. The cold induced C2H2 zinc finger protein ZAT12 has also been

demonstrated as a negative regulator of CBF expression (Vogel et al., 2005). Studies

using the los2 mutant identified another C2H2 zinc finger protein, ZAT10 as being a

negative regulator of CBF target gene expression (Lee et al., 2002a). LOS2 is a

bifunctional enolase which binds to the MYC recognition elements in the ZAT10

promoter in vitro (Lee et al., 2002a). LOS2 is a negative regulator of ZAT10, since the

los2 mutant displays increased levels of expression of ZAT10 (Lee et al., 2002a).

Post-translational regulation of cold acclimation is also important. In response to low

temperature, ICE1 is sumoylated by the SUMO E3 ligase SIZ1 (Miura et al., 2005)

which leads to the activation or stabilisation of the ICE1 protein (Miura et al., 2007).

Sumoylation is a post-translational protein modification whereby SUMO (a small

ubiquitin-related modifier) proteins are conjugated to protein substrates and this relies

on SUMO E3 ligases. The sumoylation of ICE1 allows it to bind to the MYC recognition

elements in the promoter of CBF3 to promote expression (Chinnusamy et al., 2003).

Another component of the cold acclimation pathway which is involved in post-

translational regulation is HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE

GENE 1 (HOS1). HOS1 encodes a Ring E3 ligase that is involved in the ubiquitination

of ICE1 (Lee et al., 2001, Dong et al., 2006a). The hos1-1 mutant allele was isolated

from a screen using Arabidopsis plants that expressed the Luciferase reporter gene,

which was driven by the RD29A promoter (Ishitani et al., 1998). The promoter of RD29

contains the CRT/DRE element and its expression is induced by cold, Abscisic Acid

(ABA), drought and salt (Gilmour and Thomashow, 1991). Luciferase luminescence

was greatly increased in hos1-1 plants in response to cold in comparison to wild-type,
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whereas there was only a small increase in luminescence in response to ABA (Ishitani

et al., 1998). Expression of a number of cold regulated genes, such as COR15A and

COR47 was increased in hos1-1 mutants and often the peak in expression of these

genes was earlier than in wild-type (Ishitani et al., 1998). The increase in expression of

cold-responsive genes is a consequence of elevated CBF expression in hos1-1 (Lee et

al., 2001). The hos1-1 mutant displayed increased electrolyte leakage in non-

acclimated plants, whereas freezing tolerance was unaltered in acclimated plants

(Ishitani et al., 1998). This result is surprising given the increase in expression of the

CBFs and downstream target genes and that overexpression of the CBFs leads to an

increase in freezing tolerance. In contrast, Dong et al., (2006a) found that plants

overexpressing HOS1 had decreased freezing tolerance, which was presumably due to

the decrease in expression of the low temperature regulon.

Expression of HOS1 was found to decrease quickly and transiently in response to low

temperature (Lee et al., 2001). HOS1 has been shown to physically interact with ICE1

and mediates the ubiquitination both in vitro and in vivo (Dong et al., 2006a). Plants

overexpressing HOS1 display increased levels of GREEN FLUORESCENT PROTEIN

(GFP)-ICE1 levels and a corresponding increase in CBF expression. Using HOS1-

GFP, HOS1 was found to be exclusively localised to the nucleus following cold

treatment, whereas under control conditions there was only very faint fluorescence that

was localised to the cytoplasm (Lee et al., 2001).

The overexpression of CBF3 leads to a dwarfed plant phenotype and stunted growth in

Arabidopsis (Liu et al., 1998, Gilmour et al., 2000). Achard et al., (2008) link the

dwarfed phenotype of 35S::CBF1 Arabidopsis plants to the phenotype of Gibberellin

(GA) deficient mutants described by Richards et al., (2001). Achard et al., (2008) show
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that the exogenous application of GA to 35S::CBF1 plants rescued the stunted growth

phenotype. Additionally, when GA INSENSITIVE (GAI) and REPRESSOR OF ga1-3

(RGA), genes encoding two members of the five DELLA proteins in Arabidopsis are

knocked down alongside overexpression of CBF1, growth is also restored to wild-type.

Therefore, CBFs restrain growth in a DELLA dependent manner via the effect on GA

metabolism (Achard et al., 2008). Additionally, expression of two genes involved in GA

catabolism, GA 2-oxidase3 (GA2ox3) and to a lesser extent GA2ox6 are upregulated in

CBF1-overexpressing plants and lead to a decrease in bioactive GA levels.

A recent microarray study revealed that CBF2-overexpressing plants showed an

increase in expression of genes associated with ABA biosynthesis and response genes

(Sharabi-Schwager et al., 2010). Increases in both CBF transcript and protein levels

have been observed in response to ABA treatment (Knight et al., 2004). Therefore,

there is evidence to suggest that CBFs have a role in the regulation of both ABA and

GA levels.

1.1.3 Vernalisation

The process of vernalisation involves the promotion of flowering in winter annuals in

response to prolonged cold, ensuring that flowering occurs in the spring. The MADS

box transcription factor FLOWERING LOCUS C (FLC) plays a central role in the

pathway and is responsible for the repression of the expression of the floral promoters

FT, SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and LEAFY (LFY). FT is

a floral promoter which integrates both photoperiod and temperature signals. FT is

produced in the leaves and moves through the vascular tissues to the shoot apex

where it induces flowering (Jaeger and Wigge, 2007).
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The requirement for the repression of flowering by FLC in winter annuals is conferred

by the presence of a dominant allele of FRIGIDA (FRI) (Michaels and Amasino, 1999,

Sheldon et al., 1999, Johanson et al., 2000). In contrast, summer annuals flower readily

without a requirement for vernalisation. This is due to the absence of an active FRI

allele or the presence of a weak FLC allele (Johanson et al., 2000, Gazzani et al.,

2003, Michaels et al., 2003). The flowering of winter annuals is promoted by the

epigenetic silencing of FLC, which is regulated by the transcriptional activation of

VERNALISATION INSENSITIVE3 (VIN3) in response to long periods of cold (Sung and

Amasino, 2004). VIN3 is able to distinguish the length of exposure to cold, since VIN3

is only expressed after a duration of cold that is effective for vernalisation (Sung and

Amasino, 2004). The repression of FLC remains stable when plants are transferred to

warm conditions (Sung et al., 2006).

1.1.4 Temperature regulation of growth

Temperature has been identified as a regulator of growth for a number of years (Briggs

et al., 1920, Grime and Hunt, 1975), although the genetic mechanism for this regulation

has only started to be identified recently (Sidaway-Lee et al., 2010). The bHLH

transcription factor SPATULA (SPT) has been shown to be important for reducing

growth rate in response to low ambient temperatures, since spt mutants show

increased growth at 15°C in comparison to wild-type (Sidaway-Lee et al., 2010). This

regulation of growth rate in response to temperature by SPT is thought to be

independent of GA signalling or Phytochrome B (PHYB). This study showed that only

the morning temperature contributes to the regulation of growth rate and the regulation

of growth rate by SPT is limited to the integration of morning temperature.
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1.2 Seed dormancy and germination

The Arabidopsis mature dry seed consists of an embryo which is surrounded by a

single layer of endosperm cells. A seed coat, which consists of five layers, surrounds

the endosperm cells and this structure is derived from two ovular integuments and is

therefore, maternal in origin (Beeckman et al., 2000). Cells of the seed coat in the dry

mature Arabidopsis seed are not living, since these cells die during the late maturation

stage following significant developmental changes. However, in other species, seed

coat cells remaining alive at maturity. In contrast, the endosperm cells are

physiologically active.

Freshly harvested mature Arabidopsis seeds can display primary dormancy. Primary

dormancy will be referred to as dormancy throughout this thesis. Although a number of

definitions for dormancy has been proposed, here it will be described simply as the

inability of a viable seed to germinate when conditions are favourable (Bewley, 1997).

Seed dormancy is an important adaptive trait that is used by plants to survive natural

catastrophes, avoid competition between individuals of the same species or prevent

germination out of season (Finkelstein et al., 2008). Not only does dormancy ensure

that seeds do not germinate when conditions are unfavourable, but it also enables

seeds be stored in the soil as a seed bank. The presence of seed banks in the soil

allows germination to occur over several seasons, thus maximising the chances of

long-term survival (Gubler et al., 2005).

Two forms of dormancy have been recognised. Firstly, dormancy in which the seed

coat or other surrounding structure prevents the germination of the embryo, although

the embryo is not dormant itself, is known as coat enhanced dormancy. Secondly,

embryos themselves can be dormant and this is known as embryo dormancy (Bewley,
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1997). Primary dormant seeds are able to enter into a second stage of dormancy

during imbibition if conditions for germination are unfavourable and this is known as

secondary dormancy (Bewley and Black, 1994). As an example, secondary dormancy

can be induced by prolonged exposure to low temperature during imbibition in a

number of accessions (Finch-Savage et al., 2007, Penfield and Springthorpe, 2012).

Secondary dormancy can also be induced if germination is prevented by darkness

during imbibition. Seasonal dormancy cycling occurs in seeds where dormancy is

continually gained and lost until seeds germinate or die.

Defining dormancy is a difficult task since dormancy levels can only be quantified by

analysing germination. The germination of a seed can be described as an all-or-nothing

event whereas the dormancy of a seed can be anywhere between all (maximum

dormancy) and nothing (non-dormancy) (Finch-Savage and Leubner-Metzger, 2006).

Therefore, the levels of dormancy of a population of seeds can only be interpreted by

measuring the germination frequency.

The germination of a seed begins with the uptake of water by imbibition of the dry seed,

which is followed by embryo expansion. This is followed by rupture of the endosperm

and seed coat and the emergence of the radical. The completion of germination is

characterised by the protrusion of the radical through the seed coat.

1.2.1 Economical and Agronomical importance of
dormancy and germination

Although low dormancy levels have been selected for in many domesticated plants to

ensure fast and uniform germination and seedling establishment to lead to good crop

yields, premature loss of dormancy can be problematic. Pre-harvest sprouting is a
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limiting factor affecting cereal production in areas of the world where harvest is

preceded by cool, damp conditions which can lead to germination before the crop is

harvested. In the UK, pre-harvest sprouting is the major cause of increased alpha-

amylase hydrolytic enzyme activity, which has a negative effect on wheat grain quality

and leads to large economic losses (Lunn et al., 2001). Therefore, dormancy at harvest

in cereals is a desirable trait to eliminate pre-harvest sprouting occurring. Additionally,

mutants that display reduced levels of seed dormancy in Arabidopsis have been shown

to have reduced seed longevity, which also has agricultural and horticultural

implications (Clerkx et al., 2003).

In crop species, equal dormancy levels are desirable in a population to ensure that

germination and seedling establishment occurs in synchrony. However, in the wild, it

may be advantageous for dormancy levels within a population to show some variance,

to reduce the amount of direct competition occurring between seeds. In the case of the

grasses Aegilops ovate and A. kotschyi, the upper and lower caryopses are dispersed

together, but the two grains germinate in different years due to differences in dormancy

levels, and so avoid direct competition with one another (Gutterman, 1980/1981).

In contrast to wheat, the opposite problem occurs in barley grains, whereby grains are

too dormant at harvest, preventing grains from germinating in the synchronous manner

that is required for the malting process (Gubler et al., 2005). Barley grains that are too

dormant must be after-ripened, and so extra costs associated with storage are incurred.

1.2.2 Regulation of dormancy by the seed coat

It is well established that the seed coat can contribute to dormancy in many plant

species. The seed coat not only functions to protect the embryo, but also acts as a
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physical barrier to embryo growth prior to germination. Additionally, the impermeability

of the seed coat to water and oxygen contributes to its function to prevent germination.

Seed coat thickening has been associated with increased dormancy in the past.

Chenopodium polyspermum L. seeds from mother plants grown in long days have

lower germination frequencies and thicker seed coats in comparison to seeds from

mother plants grown in short days (Pourrat and Jacques, 1975). Additionally, ABA-

deficient and ABA-insensitive mutants display reduced thickness of the mucilage layer

surrounding the seed coat (Karssen et al., 1983).

A group of seed coat mutants called transparent testa (tt) has thinner seed coats which

are more permeable to GA and the GA biosynthesis inhibitor Paclobutrazol (PAC)

(Debeaujon et al., 2000). This decrease in seed coat thickness is due to a reduction in

the accumulation of anthocyanidins, which affects the mechanical strength of the seed

coat. It is the polymeric nature of proanthocyanidins coupled with their ability to bind

proteins that confer the cell-cementing properties to the seed coat and allow it to act as

an impermeable barrier that prevents the uptake of water (Debeaujon et al., 2000).

Additionally, the tt mutants also display reduced dormancy phenotypes (Debeaujon et

al., 2000), suggesting that anthocyanidin accumulation is required for correct dormancy

levels. tt7-1 seeds show thermoinhibition (the repression of germination by high

temperatures) resistance at both 32°C and 34°C (Tamura et al., 2006). Other tt mutants

have been isolated from a screen for fast seed germination at 10°C (Salaita et al.,

2005). Together this evidence suggests that TT may have a role in regulating dormancy

and germination levels in response to both high and low temperatures.
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1.3 Hormonal regulation of dormancy and
germination

The two phytohormones ABA and GA are the main hormones that are involved in

regulating seed dormancy and germination (Figure 1.2), although roles for additional

hormones such as brassinosteroid (BR), ethylene, auxin and strigolactone have also

been described. ABA acts as a positive regulator of dormancy and negatively regulates

germination whilst GA has the opposite effect. It is thought that the actual ratio of ABA:

GA is what regulates these processes and not the absolute levels per se. Alterations to

the ratio of ABA: GA can lead to different dormancy levels. In many cases, changes in

environmental conditions that are important for seed dormancy or germination

regulation lead to alterations in the transcription of genes involved in ABA or GA

metabolism. This suggests that the regulation of ABA and GA levels are central to the

mechanism by which dormancy and germination are regulated.

BR is a positive regulator of seed germination and germination of BR signalling mutants

are more sensitive to ABA (Steber and McCourt, 2001). Overexpression of the BR

biosynthesis gene DWARF4 (DWF4) overcomes inhibition of germination caused by

exogenous ABA (Divi et al., 2010). Ethylene also acts a positive regulator of seed

germination (KeÇpczyński and KeÇpczyńska, 1997, Beaudoin et al., 2000). The

understanding of the role of auxin in germination regulation remained unclear for a

number of years; although more recent studies show it does have a role (Ogawa et al.,

2003). Strigolactone has been shown to act as a positive regulator of germination

during thermoinhibition by reducing the ABA:GA ratio (Toh et al., 2012).
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Figure 1.2: Regulation of seed dormancy and germination by ABA and GA.
The ambient environment regulates dormancy induction and dormancy breaking
through regulation of ABA and GA metabolism. ABA synthesis and GA catabolism
promote dormancy induction whilst GA synthesis and ABA catabolism promote
dormancy breaking. ABA and GA sensitivity is also regulated, with seeds becoming
less sensitive to ABA and more sensitive to GA as the seed looses dormancy on the
transition to germination. Adapted from Finch-Savage and Leubner Metzger (2006).
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ABA, which is derived from epoxycarotenoid cleavage, acts as an important stress

signal and is also involved in regulating a number of developmental and growth

processes under non-stressful conditions. During seed development, ABA levels peak

during mid-maturation and this coincides with the induction of dormancy levels

(Kermode, 2005). ABA which is synthesised during seed development can be of dual

origin, the embryo and/or the maternal tissues (Kucera et al., 2005). There are

contrasting opinions as to whether ABA synthesised in the embryo or endosperm is
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important for seed dormancy regulation. Finkelstein et al., (1994) argue that it is the

ABA that is synthesised in the embryo that is required to impose lasting dormancy. ABA

produced from the maternal tissues or by application of ABA (that mimics maternal

ABA) during seed development does not induce dormancy however, this ABA is

involved in other aspects of seed development (Finkelstein, 1994). In contrast, Lefebvre

et al., (2006) show that studies using nine-cis-epoxycarotenoid dioxygenase6 (nced6)

and nced9 mutants reveal that ABA synthesised in both the endosperm and embryo is

important for inducing dormancy.

The ABA biosynthesis pathway is now well understood and the germination phenotypes

of a large number of mutants in parts of the biosynthetic pathway have been

characterised. The ABA biosynthetic pathway has been extensively reviewed in

Nambara and Marion-Poll (2005) (Figure 1.3). Briefly zeaxanthin epoxidase catalyses

the synthesis of violaxanthin from zeaxanthin through an intermediate called

antheraxanthin. Through an unknown mechanism, violaxanthin is converted to

neoxanthin. NCED enzymes cleave the cis-isomers of violaxanthin and neoxanthin to

form xanthoxin. Xanthoxin is then converted by ABA DEFICIENT2 (ABA2) to abscisic

aldehyde, which is then oxidised to form ABA by abscisic acid aldehyde oxidase

(AAO3).

The germination of mutants that are deficient in ABA synthesis or signalling is generally

increased, which stems from the fact that dormancy is not induced in the absence of

detectable ABA. A number of aba mutants, which have lower levels of ABA show

reduced seed dormancy. aba1 mutants were isolated from a screen of revertents of

non-germinating GA-deficient mutants (Koornneef et al., 1982). Two additional ABA-

deficient mutants; aba2 and aba3 were isolated from a screen of an ethyl methane
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sulphonate (EMS) population for seeds that germinated in the presence of PAC (which

is characteristic of seeds with reduced ABA levels) (Léon-Kloosterziel et al., 1996).

Figure 1.3: Schematic of ABA biosynthesis pathway.
The synthesis of violaxanthin is catalysed by zeaxanthin epoxidase (ZEP) through the
intermediate antheraxanthin. cis isomers of neoxanthin and violaxanthin are cleaved by
9-cis-epoxycarotenoid dioxygenases (NCED) to form xanthoxin. Xanthoxin is converted
to abscisic aldehyde by a short-chain alcohol dehydrogenase (ABA2). AOO3, an
abscisic aldehyde oxidase cataylses the oxidation of abscisic aldehyde to abscisic acid.
The AOO3 protein contains a molybdenum cofactor which is activated by MoCo
sulpherase. Adapted from Nambara and Marion-Poll (2005).
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During seed development the NCED family members NCED5, NCED6 and NCED9

have been shown to be important regulators of ABA synthesis and are involved in

regulating dormancy (Tan et al., 2003, Seo et al., 2004, Lefebvre et al., 2006, Frey et

al., 2012, Martínez-Andújar et al., 2012). nced6nced9 double loss-of-function mutants

have reduced ABA content and decreased levels of seed dormancy (Lefebvre et al.,

2006). The NCED genes, NCED2, NCED5 and NCED9, have been shown to contribute

to the thermoinhibition of germination by high temperatures by increasing ABA levels

(Toh et al., 2008). NCED4 expression is upregulated in a DELAY OF GERMINATION1

(DOG1) near isogenic line (NIL), one of a number of DOG NILs which were derived

from crosses between the reference accession Landsberg erecta (Ler) and accessions

from different world regions (Bentsink et al., 2010).

In contrast to biosynthetic mutants, mutants of genes involved in ABA catabolism show

increased dormancy, since ABA levels are elevated. CYP707A1 and CYP707A2

encode 8’- hydroxylases which is considered to be the key enzyme involved in ABA

catabolism (Kushiro et al., 2004, Saito et al., 2004).

A number of abscisic acid insensitive (abi) mutants were isolated based on their ability

to germinate in the presence of ABA, suggesting that they were insensitive to ABA

(Koornneef et al., 1984, Finkelstein, 1994). ABI3, ABI4 and ABI5 encode B3, AP2, and

basic leucine zipper (bZIP) domain families respectively and regulate a similar sub-set

of genes during seed development (Giraudat et al., 1992, Finkelstein et al., 1998,

Finkelstein and Lynch, 2000, Lopez-Molina and Chua, 2000). abi3 mutant seeds

display seed development defects including reduced seed dormancy and storage

reserve proteins (Finkelstein and Somerville, 1990, Nambara et al., 1992). Embryos of

abi3 seeds are morphologically normal, although seeds remain green and do not
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develop desiccation tolerance (Nambara et al., 1992). Together this suggests that ABI3

is a central regulator of the late maturation phase of seed development (Parcy et al.,

1994). In contrast to abi3 mutants, abi4 and abi5 mutants do not display dormancy

defects but are necessary for the inhibition of germination by ABA (Brocard-Gifford et

al., 2003).

1.3.2 GA

Evidence from GA-deficient mutants such as ga1-3 and ga2-1, which are defective in

seed germination, show that GA is absolutely required for germination, as seeds fail to

germinate without exogenous GA (Koornneef and Veen, 1980). The biochemical

pathway for GA biosynthesis is well characterized and the majority of genes encoding

enzymes in the pathway has been identified (Sun, 2010).

The activation and deactivation of GA has been extensively reviewed by Yamaguchi

(2008). Briefly, terpene synthase and P450 enzymes are involved in early stages of GA

biosynthesis, which leads to the production of GA12. GA12 is then converted to a

bioactive form, GA4 by GA 20-oxidase (GA20ox) and GA3ox. Key enzymes in the GA

deactivation pathway are encoded by the GA2ox genes which use C-19 and C-20-GAs.

The DELLA family of GRAS proteins, which are characterised by two leucine rich areas

flanking a VHIID motif, are negative regulators of plant growth and have been shown to

have a role in seed germination (Lee et al., 2001, Tyler et al., 2004, Cao et al., 2006,

Penfield et al., 2006). In Arabidopsis there are five DELLA proteins, RGA, GAI, RGA

LIKE1 (RGL1), RGL2 and RGL3. DELLA proteins are nuclear transcriptional regulators,

which repress GA signalling by causing transcriptional reprogramming (Sun, 2010). The

GA signal targets DELLAs for degradation via ubiquitination and the 26S proteasome
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pathway, releasing the plant from the DELLA-mediated growth constraint (Silverstone

et al., 2001). This targeting of DELLAs for degradation occurs when GA binds to its

soluble receptor, GA INSENSITIVE DWARF1 (GID1). The GID1-GA complex then

causes the binding to DELLA and consequently degradation (Hirano et al., 2007).

The increased germination capacity of loss-of-function della mutants suggests that they

have a role in negatively regulating germination (Cao et al., 2006, Penfield et al., 2006).

A loss-of-function mutation in RGL2 was able to rescue the germination defect in ga1-3

mutant seeds, leading to the conclusion that RGL2 acts as a negative regulator of GA

responses in the control of seed germination (Lee et al., 2002b). Cao et al., (2006)

suggest that light promotes seed germination in part by inactivating or destabilising GAI

and RGA proteins and this is likely to be mediated through the regulation of GA

metabolic genes.

1.3.3 ABA and GA crosstalk

In the ga1-3 mutant, ABA biosynthetic genes are activated and ABA deactivation genes

suppressed, suggesting that GA regulates ABA metabolism (Oh et al., 2006).

Additionally, RGL2 is responsible for promoting ABA synthesis when GA levels are

reduced. The increase in ABA levels in turn forms a positive feedback loop by

promoting RGL2 expression (Piskurewicz et al., 2008). Following transfer of imbibed

seeds to 4°C and then 20°C, a decrease in ABA content occurs before germination (Ali-

Rachedi et al., 2004). This decrease in ABA levels is also apparent upon imbibition at

warm temperatures (Chiwocha et al., 2005), suggesting that the promotion of

germination by cold stratification does not require a reduction in ABA levels.
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1.4 After-Ripening

The dry storage of freshly harvested dormant seeds is known as after-ripening (Bewley,

1997). After-ripening integrates both time and environmental factors to regulate the

germination potential of seeds (Carrera et al., 2007). The speed at which dormancy is

lost in response to after-ripening is dependent on a number of factors which include

environmental conditions during seed maturation, seed storage and germination

(Donohue et al., 2005). The molecular mechanism through which after-ripening reduces

dormancy levels is not well understood. After-ripening is thought to be associated with

a loss of sensitivity to ABA and an increase in sensitivity to GA and ethylene (Finch-

Savage and Leubner-Metzger, 2006). Increased expression of genes associated with

ABA biosynthesis, such as NCED6, NCED9 and ABA1 is found in primary dormant

seeds in comparison to after-ripened seeds (Cadman et al., 2006). The expression of

CYP707A2, which is involved in ABA catabolism, is higher in after-ripened seeds than

primary dormant seeds (Cadman et al., 2006). The regulation of GA levels also

appears to be important for after-ripening since the expression of GA3ox2, which is

involved in GA biosynthesis, is higher in after-ripened seeds in comparison to primary

dormant seeds (Cadman et al., 2006).

Additionally, a microarray approach was taken to investigate genes whose expression

was altered in response to after-ripening in Cape Verde Islands (Cvi) seeds (Cadman

et al., 2006, Finch-Savage et al., 2007). Thirty genes were identified as being

downregulated in response to after-ripening and this included the dormancy regulating

gene DOG1 (Finch-Savage et al., 2007). Although the expression of DOG1 is reduced

during after-ripening, DOG1 protein levels remain stable, but undergo an alteration to

the structure of the protein which may render it non-functional (Nakabayashi et al.,
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2012). Another recent transcriptome analysis revealed a specific gene set associated

with the after-ripened state (Carrera et al., 2008). Although ABA was able to repress

the germination of after-ripened wild-type seeds, it did not have an effect on the

expression of genes associated with after-ripening (Carrera et al., 2008).

1.5 Genetics of dormancy and germination

1.5.1 DOG1

Using natural variation studies and forward genetic screens, a number of loci has been

identified that have an important role in dormancy regulation, most notably DOG1 and

REDUCED DORMANCY 4 (RDO4) (Leon-Kloosterziel et al., 1996, Peeters et al., 2002,

Bentsink et al., 2006). DOG1 was isolated from a natural variation study using a

number of Arabidopsis accessions (Bentsink et al., 2006). Expression of DOG1 is seed

specific and peaks during late seed development, which coincides with the period

during which seed dormancy is initiated. DOG1 expression was found to be greater in

the highly dormant accession Cvi than in the Ler accession, which shows low levels of

dormancy (Bentsink et al., 2006). DOG1 expression has been shown to require ABA to

induce dormancy (Bentsink et al., 2006) and DOG1 expression is induced by an ABA

mediated sugar signalling pathway (Teng et al., 2008).

A recent study investigated the potential of using DOG1 expression as a marker for

dormancy (Chiang et al., 2011). The results showed that DOG1 expression in

developing siliques acted as a good indicator of dormancy levels. However, in contrast

DOG1 expression does not correlate with dormancy levels in after-ripened seeds

(Nakabayashi et al., 2012). Orthologues of DOG1 have been identified in wheat and

barley (Ashikawa et al., 2010). Although theses orthologues show little sequence
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similarity to Arabidopsis DOG1 and the seed specific expression is not conserved, the

function does appear to be conserved. Ectopic overexpression of either of these DOG1

orthologues leads to an increase in seed dormancy levels in Arabidopsis. The authors

suggest that DOG1 homologues could be important transgenes for reducing pre-

harvest sprouting in wheat (Ashikawa et al., 2010).

1.5.2 RDO

Four rdo mutants were isolated from mutagenesis screens of Ler seeds to determine

low dormancy loci (Leon-Kloosterziel et al., 1996, Peeters et al., 2002). These four

mutants all display reduced dormancy phenotypes but do not have altered levels or

sensitivity to ABA and rdo4 shows no difference in its requirement for GA (Peeters et

al., 2002). The reduced dormancy phenotype of rdo4 mutants has been described to be

partly due to its reduced expression of DOG1 and other dormancy associated genes

(Liu et al., 2007).

RDO4 is a C3HC4 RING finger protein and is thought to act as the E3 ligase that is

responsible for the monoubiquitination of histone H2B, which leads to changes in

histone H3 methylation (Liu et al., 2007). In turn, this regulation of the ubiquitination of

histone H2B is thought to lead to regulation of gene transcription efficiency. The

phenotypes of rdo4 mutants are not restricted to dormancy, as the mutant displays a

number of pleiotropic phenotypes associated with plant architecture and flower

morphology, suggesting that its regulation of transcription is important for the control of

many developmental pathways (Liu et al., 2007).

Recent work has identified RDO2 as a homologue of Transcription Factor S-II (TFII-S)

which is involved in overcoming transcription arrest by RNA- Polymerase II (Liu et al.,
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2011). A role for TFII-S in the regulation of seed dormancy has been described

(Grasser et al., 2009) and this involves the expression of DOG1 (Mortensen et al.,

2011). There is currently little information about the function of RDO1 and RDO3 in

regulating dormancy.

1.5.3 MFT

MOTHER OF FT is a homologue of the phosphatidylethanolamine-binding proteins

(PEBP) FT and TERMINAL FLOWER1 (TFL1), which have opposite roles in the

promotion of flowering (Bradley et al., 1997, Kardailsky et al., 1999, Kobayashi et al.,

1999). MFT has been shown to have a role in regulating the germination of after-

ripened seeds, as mft loss-of-function seeds are hypersensitive to ABA (Xi et al., 2010).

Expression of MFT is directly regulated by ABI3 and ABI5 and upregulated by DELLA

proteins (Xi et al., 2010). An MFT homologue has been identified in wheat which is

upregulated in embryos matured at 13°C in comparison to 25°C, suggesting that it is

responsible for promoting or maintaining dormancy (Nakamura et al., 2011). The

overexpression of MFT in immature embryos leads to a reduction in precocious

germination that occurs in wild-type. The repression of germination by MFT could be

overcome by the application of exogenous GA, suggesting that MFT may function to

repress GA synthesis (Nakamura et al., 2011). High expression of MFT was also found

to correlate with increased dormancy levels in Cvi seeds that had been buried in the

soil (Footitt et al., 2011).

1.5.4 FLC

A role for the floral repressor FLC in regulating dormancy has been proposed (Chiang

et al., 2009). These authors showed that dormancy levels were reduced in seeds
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expressing high levels of FLC that were matured at 10°C. This phenotype was however

reliant on imbibition also occurring at low temperature. Expression levels of FLC were

found to positively correlate with germination levels when seeds were imbibed at low

temperature. The increase in germination was linked to increased expression of

CYP707A2 and GA20ox1 expression, suggesting that levels of ABA and GA may be

altered in these seeds. Another study analysed the effect of FLC-deficiency on

dormancy levels during after-ripening and found that flc-101 seeds germinated to wild-

type levels (Liu et al., 2011). This suggests that an alternative pathway must also be

important for the regulation of dormancy in response to low temperature.

1.6 Temperature regulation of dormancy and
germination

1.6.1 Temperature regulation of dormancy

Temperature signalling pathways in vegetative tissues are well understood, whereas in

seeds, the knowledge is much more limited. The germination of different species of

plants responds to temperature in different ways. Cold may promote germination in one

species, whilst warm temperatures promote germination in other species. In many

summer annual plants, dormancy is usually lost during winter and germination occurs

the following spring or summer and, therefore, the exposure to cold during imbibition is

required. Conversely, the germination of winter annuals often requires exposure to

warm temperatures during imbibition, reflecting the loss of dormancy over summer and

germination in autumn (Baskin and Baskin, 2004). In the seed bank, winter

temperatures promote dormancy whilst spring temperatures alleviate it (Footitt et al.,

2011). This suggests that if seeds have not germinated before the onset of winter, the
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low temperatures experienced during the winter induce secondary dormancy, which

delays germination until the spring.

In Arabidopsis, temperature is known to be an important factor in determining the levels

of dormancy that are induced in the seed during maturation and this is extensively

reviewed in Fenner (1991). Observations linking maturation temperature to dormancy

have been made in a number of different species since the 1950s. In Rosa, a positive

correlation was found between germination frequencies and the mean average daily

temperature for the last thirty days of seed ripening (VonAbrams and Hand, 1956).

Stellaria Media seeds which were collected from the field throughout the year displayed

increased levels of dormancy when seeds were matured in the winter in comparison to

the spring (van der Vegte, 1978). Additionally, links have been made between the pre-

anthesis temperature and dormancy levels in both tobacco and wild oat (Thomas and

Raper, 1975, Sawhney et al., 1985). This suggests that not only the environment which

is directly experienced by the developing seed is important, but the parent plant is able

to transmit signals that provide the seed with vegetative environmental information

(Fenner, 1991).

In Arabidopsis low temperature during seed maturation also promotes high dormancy

levels (Schmuths et al., 2006, Donohue et al., 2008, Chiang et al., 2009), but the

mechanism that regulates this process is currently unknown. Elwell et al., (2011)

analysed the effect of different parental environments on development throughout the

plant lifecycle, showing that the parental environment had the potential to affect

germination, root growth, gravitropism and the time to produce the first floral bud. The

dormancy levels which are induced in seeds affect the timing at which germination

occurs and this in turn affects the environmental conditions which are experienced by
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the plant in the following generation. Therefore, it is important that the correct levels of

dormancy are induced to ensure that environmental conditions are optimal for growth

and development.

1.6.2 Low temperature regulation of germination

In Arabidopsis, the germination of dormant seeds is promoted during imbibition by

exposure to a period of cold and in the laboratory this process is known as “cold

stratification”. Exposure to cold is thought to promote germination by reducing

dormancy levels, although it is difficult to determine whether factors are indeed

breaking dormancy or promoting germination. Finch-Savage and Leubner-Metzger

(2006) propose that any factor that widens the environmental requirements for

germination should be regarded as a dormancy release factor.

The mechanism through which low temperature breaks dormancy is not well

understood, although it has been shown that increases in GA3ox1 and GA20ox3

expression, which are both involved in the promotion of GA synthesis at 4°C in

comparison to 22°C are important (Yamauchi et al., 2004). Additionally, there is also a

reduction in GA2ox2 expression, which is involved in GA catabolism in response to cold

stratification (Yamauchi et al., 2004). Together these alterations to expression of genes

regulating GA metabolism contribute to an increase in bioactive GA levels in cold

stratified imbibed seeds. A reduction in ABA levels is apparent upon imbibition at both

warm (22°C) and cold (4°C) temperatures (Chiwocha et al., 2005). This suggests that

the promotion of germination by cold stratification does not require a reduction in ABA

levels. There is also little difference in levels of auxin and cytokinins during imbibition at

warm and cold temperatures (Chiwocha et al., 2005), so a central role for these

hormones can be discarded.
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A recent transcriptome analysis of Arabidopsis Columbia (Col) seeds at ten time points

from freshly harvested seed through to post-germinated seeds is the first study to

include a global analysis specifically aimed at identifying genes which are differentially

regulated by cold stratification (Narsai et al., 2011). This study revealed that more than

ten thousand genes are differentially expressed during forty eight hours exposure to

low temperature (Narsai et al., 2011). The greatest number of differentially expressed

genes which change occurs between twelve hours and forty eight hours of cold

stratification. Genes encoding proteins involved in ethylene signalling including

ETHYLENE RESPONSE FACTOR1(ERF1), ERF2 and ERF5 are induced at the onset

of cold stratification, whereas between twelve hours and forty eight hours of cold

stratification, there is an over-representation of genes involved in RNA processing,

protein synthesis and nucleotide metabolism. The increase in expression of ERF family

members is unsurprising given that ethylene promotes seed germination through

endosperm weakening and rupture in both Lepidium sativum and Arabidopsis and via

an antagonistic effect on ABA signalling (Finkelstein et al., 2008, Linkies et al., 2009).

ethylene resistant 1 (er1) mutants show an increase in ABA sensitivity and synthesis

along with an increase in seed dormancy (Beaudoin et al., 2000, Chiwocha et al.,

2005). However, the mechanism by which ethylene regulates seed germination is less

well understood in comparison to ABA and GA.

Additional transcriptional analyses have been carried out to try and identify key genes

which are important for the promotion of germination by low temperature (Yamauchi et

al., 2004, Finch-Savage et al., 2007). A comparison was made to identify overlapping

genes between these two studies and this comparison revealed twenty three common

genes which were upregulated and twenty common genes which were downregulated

in response to low temperature (Finch-Savage et al., 2007). These studies were carried
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out in two different ecotypes and the small number of common genes may reflect

differences in the way in which low temperature promotes germination in different

ecotypes.

1.6.3 High temperature regulation of germination

High temperatures during imbibition often suppress germination, through a process

known as thermoinhibition, which appears to rely on a finite regulation of ABA and GA

levels (Toh et al., 2008). Application of fluridone, an inhibitor of ABA synthesis

increases the germination of dormant seeds imbibed at 27°C, but has no effect on

seeds imbibed at 13°C (Ali-Rachedi et al., 2004). This suggests that in contrast to

thermoinhibition, ABA is not central to the mechanism that regulates the promotion of

germination by low temperature. In Arabidopsis higher expression of the ABA

biosynthesis genes NCED2, NCED5 and NCED9 is observed in seeds imbibed at 34°C

in comparison to 22°C, thus suggesting that they contribute to enhanced ABA

biosynthesis at high temperature (Toh et al., 2008). Expression of the ABA catabolic

genes CYP707A1, CYP707A2 and CYP707A3 is significantly reduced at 34°C. In

addition to regulation of ABA in response to high temperature, GA also plays an

important role. Levels of both GA1 and GA4, which are bioactive forms of GA, are

reduced in seeds imbibed at high temperature and this is due to a reduction in

expression of GA biosynthesis genes. This suppression requires ABA since aba2-2

mutants display increased expression of these genes at high temperature. Similarly, in

lettuce (Lactuca sativa L.), LsNCED4 mRNA levels are increased in response to

imbibition at high temperature; whereas mRNA levels of LsGA3ox1 are decreased thus

leading to higher ABA and lower GA levels (Schwember and Bradford, 2010).
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1.6.4 Alternating temperature regulation of
germination

In contrast to the requirement of cold for germination in Arabidopsis, the seed

germination of some species is promoted by alternating temperatures and this process

is very poorly understood. The requirement for alternating temperatures for germination

was identified in studies using Musa balbisiana (Stotzky and Cox, 1962). An

observation was made that the germination of seeds was lower in the winter when

artificial heating was provided to maintain a constant temperature (Stotzky and Cox,

1962). Alternating temperatures have been shown to promote the germination of

dormant Arabidopsis seeds (Ali-Rachedi et al., 2004)

1.7 Light regulation of germination

In addition to temperature, light is another key regulator of dormancy and germination.

The photoperiod during seed maturation, like temperature is able to regulate dormancy

levels, whereby short days induce high dormancy levels and long days induce low

levels of dormancy ((Munir et al., 2001),Penfield group, unpublished). The control of

seed germination by light has been shown to rely largely on the activity of

phytochromes. Phytochromes are photochromic biliproteins which absorb red light and

far red light. In Arabidopsis five phytochromes have been identified (PHYA-E).

Phytochromes are synthesised in an inactive red-light absorbing form and then undergo

photo conversion to a biologically active far-red light absorbing form. Arabidopsis seed

germination is regulated in a reversible manner by red and far-red light and this is

determined by the phytochromes (Shinomura et al., 1994, Hennig et al., 2002). In

particular, it is PHYA and PHYB which have been shown to mediate the control of seed

germination by light; although a role has also been suggested for PHYE (Shinomura et
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al., 1996, Hennig et al., 2002). PHYB is the only phytochrome which has been shown to

have a role in dark regulation of germination. long hypocotyl3 (hy3) mutant seeds,

which lack functional PHYB are not able to germinate in the dark (Shinomura et al.,

1994).

The promotion of germination by light is associated with an increase in GA biosynthesis

(Koornneef and Veen, 1980, Hilhorst and Karssen, 1988, Ogawa et al., 2003) and this

is due to an increase in expression of GA biosynthetic enzymes such as GA 3β-

hydroxylase (Yamaguchi et al., 1998). Light has been shown to promote germination by

inhibiting the function of PHYTOCHROME INTERACTING FACTOR3- LIKE5 (PIL5),

which is a negative regulator of germination (Oh et al., 2006). pil5 mutant seeds are

shown to germinate constitutively under non-inductive light conditions. The role of PIL5

in regulating germination has been shown to involve the regulation of GA and ABA

through modulating expression of their metabolic genes (Penfield et al., 2005, Oh et al.,

2006). Additionally, Penfield et al., (2010) have suggested that another PIF family

transcription factor, PIF6 has a role in the regulation of germination in dormant seeds

and it is the alternatively spliced variant of PIF6 that confers this role. PIF6 expression

is high during seed development and, therefore, the important time for PIF6 action is

during seed development and not in the imbibed seed, where PIF6 expression

declines.

1.7.1 Light and temperature crosstalk

The bHLH transcription factor SPT, which has been shown to have a role in ambient

temperature responses (Sidaway-Lee et al., 2010) was originally identified due to its

‘spatula’ shaped siliques and was shown to be involved in carpel development (Heisler
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et al., 2001). Later, a role for SPT in seed germination was revealed. SPT acts as a

light-stable repressor of GA3ox1, which regulates seed responses to both cold

stratification and light (Penfield et al., 2005). Germination of the spt-2 mutant is

repressed in response to cold stratification, but germination is permitted in response to

other stimuli such as light and after-ripening. This suggests that responses of the PIF

family of transcription factors to temperature can be independent of responses to other

signals and stimuli (Penfield, 2008). Interestingly, the role of phytochromes during

imbibition appears to be temperature dependent (Heschel et al., 2007). PHYE

contributes to germination at low temperatures, whereas PHYA is important for

germination at warm temperatures. PHYB on the other hand is important for

germination over a range of temperatures (Heschel et al., 2007). This therefore,

suggests that the phytochromes are not only important for responding to light signals

but temperature signals also.

1.8 Thesis Aims

The main aim of this thesis was to further the understanding of the role of temperature

in regulating seed dormancy and germination. To meet this aim, work will be executed

through two main projects. Firstly the effect of temperature during seed maturation on

regulating dormancy levels will be investigated. An important aim of this project was to

try and identify components of the mechanism through which temperature regulates

seed dormancy. The ability of a number of mutants to alter dormancy levels in

response to different maturation temperatures will be investigated. It is hoped that

these experiments will reveal a gene or genes which plays a role in the pathway

through which temperature regulates seed dormancy. Additionally, RNA-Seq will be

carried out to investigate how maturation temperature affects the developing seed
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transcriptome. Secondly, a forward genetic screen will be used to isolate mutants that

show a defect in the promotion of germination by cold stratification. The

characterisation of a number of selected mutants from the forward genetic screen will

be carried out to reveal additional information about the low temperature promotion of

germination.
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Chapter 2 Materials and Methods

2.1 Seed preparation

Following dehiscence, seeds were harvested from plants. Seeds were ready to harvest

from the plant when siliques readily opened when touched. Poorly filled seeds were

excluded from germination trials using a 250µm sieve (Fisher Scientific). Freshly

harvested seeds (used within twenty four hours from harvest) were used for

germination assays. Seeds for after-ripening studies were stored in glass vials in the

dark at room temperature.

2.2 Seed sterilisation

A bleach solution was prepared by dissolving six Klorsept tablets in 100ml sterile water.

1ml 100% ethanol was pipetted onto the seeds and the tubes were inverted to mix. The

ethanol was removed and 1ml ethanol bleach (5% bleach in 1ml 100% ethanol) was

pipetted onto the seeds. Tubes were inverted and left to stand for ten minutes. The

ethanol bleach was removed and 1ml 100% ethanol was pipetted onto the seeds. This

ethanol was removed and a final ethanol wash was carried out. Any remaining ethanol

was removed by evaporation in a sterile flow hood.

2.3 Plant growth media

2.3.1 Water-agar medium

0.9% water-agar medium was used for dormancy assays. Medium was autoclaved

before use.
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2.3.2 Murashige and Skoog medium

Half strength Murashige and Skoog (MS) (Duchefa Biochemie) medium was used to

germinate seeds for plant growth. The pH was altered to 5.7 using KOH and 9g/L agar

was added. Medium was autoclaved before use.

2.3.3 Supplements to water-agar

ABA (Sigma Aldrich), Paclobutrazol (Greyhound Chromatography), GA4 (Sigma

Aldrich) or Norflurazon (Greyhound Chromatography) was dissolved in 100% Methanol

to a concentration of 1mM. The stock solutions were then added to 50ml water-agar to

produce the desired concentration. The control for experiments was produced by

adding methanol to water-agar to produce the desired concentration.

2.4 Germination

2.4.1 Germination for plant growth

Sterilised seeds were cold stratified in the dark in a Sanyo MIR-154 incubator for three

days. Seeds were germinated on MS plates under a twelve hour white light (80μmol.m-

2.s-1), twelve hour dark light regime at 22°C in a Sanyo MLR growth chamber.

2.4.2 Germination for dormancy assays

Sterilised freshly harvested seeds were cold stratified in the dark in a Sanyo MIR-154

incubator for the desired length. Seeds were germinated on water-agar plates under a
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twelve hour white light (80μmol.m-2.s-1), twelve hour dark light regime at 22°C in a

Sanyo MLR growth cabinet for seven days. In one experiment seeds were germinated

at four different temperatures (12°C, 17°C, 22°C and 27°C). Following this, germination

was scored as the emergence of the radicle through the seed coat using a Leica MZ6

stereomicroscope. For dormancy assays, a minimum of twenty seeds from five

individual seed batches, each from independent plants were used. Germination

frequency (%) was calculated as the percentage of seeds germinating in each

individual seed batch.

2.4.3 After-ripening assays

Seeds for after-ripening assays were stored within twenty four hours of harvest in

sealed glass vials at room temperature in the dark. Seeds were germinated on water-

agar plates on a weekly basis under a twelve hour white light (80μmol.m-2.s-1), twelve

hour dark light regime at 22°C in a Sanyo MLR growth cabinet for seven days.

2.5 Plant growth

2.5.1 Plant growth for dormancy assays

Ten day old seedlings were transferred from MS plates to John Innes seed compost

(Levington) in P40 trays. Plants grown for seed production for dormancy assays were in

most cases grown to flowering in a Sanyo MLR growth cabinet at 20°C under a long

day light regime (sixteen hours white light (70μmol.m-2.s-1), eight hours dark). First

flowering was defined as the anthesis of the first flower. Plants were then shifted to a

second Sanyo MLR growth cabinet running at the same conditions, but with the

indicated seed maturation temperature. For one particular experiment, a temperature

regime which included a daytime temperature of 20°C and night time temperature of
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16°C with the long day light regime was used. Plants for this experiment were grown

constantly under these conditions. A list of all mutant seeds used in this thesis is

provided in Table 2.1.

Table 2.1: Information for all mutant lines used in this thesis.

Mutant line Background Mutation Source
dog1-2 Col γ irradiation (Bentsink et al., 2006)

rdo1 Ler EMS
Marten Koornneef and
Wim Soppe

rdo2 Ler EMS
Marten Koornneef and
Wim Soppe

rdo3 Ler EMS
Marten Koornneef and
Wim Soppe

rdo4 Ler EMS
Marten Koornneef and
Wim Soppe

gai-t6 rga-t2 rgl2-1
rgl1-1 Ler Transposon (Achard et al., 2006)
aba1-1 Ler EMS NASC - N21
aba1-6 Ler EMS NASC - N3772
aba2-3 Col EMS NASC - N3834
aba3-1 Col EMS NASC - N157
cyp707a2-1 Col T-DNA (Kushiro et al., 2004)
ago4-1 Ler T-DNA (Zilberman et al., 2003)
dcl3-1 Col T-DNA (Xie et al., 2004)
rdr2-1 Col T-DNA (Xie et al., 2004)
ros1-4 Col T-DNA (Penterman et al., 2007)
drm1-2 drm2-2 Col T-DNA (Agorio and Vera, 2007)
linc1-2 Col T-DNA NASC - N653787
cbf1 RNAi Col RNAi (Novillo et al., 2007)
cbf2 Col T-DNA (Novillo et al., 2004)
CBF3 RNAi Col RNAi (Novillo et al., 2007)

CBF1 ox WS CaMV 35S

(Jaglo-Ottosen et al.,
1998, Gilmour et al.,
2000)

CBF2 ox WS CaMV 35S

(Jaglo-Ottosen et al.,
1998, Gilmour et al.,
2000)

CBF3 ox WS CaMV 35S

(Jaglo-Ottosen et al.,
1998, Gilmour et al.,
2000)

ice1-2 Col EMS
(Chinnusamy et al.,
2003)
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2.5.2 Plant growth in glasshouse and growth rooms

Ten day old seedlings were transferred from MS plates to John Innes seed compost

(Levington) in P40 trays. Under glasshouse conditions, natural light was supplemented

with white light to maintain a long day light regime (sixteen hours white light

(150μmol.m-2.s-1), eight hours dark). The temperature ranged from approximately 13°C

to 32°C.

In the growth room, the temperature was maintained at 20°C with a long day light

regime (sixteen hours white light (70μmol.m-2.s-1), eight hours dark).

2.6 Forward genetic screen

An EMS forward genetic screen was carried out by Steve Penfield prior to the start of

this project. Briefly, EMS mutagenised freshly harvested Col seed was exposed to cold

stratification (three days at 4°C, dark) and then transferred to twelve hour light, twelve

hos1-1 C24 EMS (Ishitani et al., 1998)
hos1-3 Col T-DNA NASC - N569312
hos1-4 Col T-DNA NASC - N631629
hos1-5 Col T-DNA NASC - N552108
los4-1 C24 EMS (Gong et al., 2005)
nup160-2 Col T-DNA NASC - N660612
tfl2-1 Col Fast neutrons NASC - N3796
tfl2-2 Col Fast neutrons NASC - N3797
arp6-1 Col T-DNA Phil Wigge
phya-211 Col γ irradiation (Reed et al., 1994)
phyb-9 Col γ irradiation (Reed et al., 1994)
cry1-301 Col Fast neutrons (Mockler et al., 1999)
hy1-1 Ler Fast neutrons NASC - NW67
hy2-1 Ler EMS NASC - N68
tt4-1 Ler EMS NASC - N8605
tt5-1 Ler Fast neutrons NASC - N86
tt6-1 Ler EMS NASC - NW67
ft-10 Col T-DNA (Yoo et al., 2005)
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hour dark light regime at 22°C. After one week, germination was analysed and any

seeds which did not germinate were taken forward to the next part of the screen where

they were dried and then after-ripened for one month. Seeds that germinated following

after-ripening for one month were taken through to the next generation and the

resulting progeny was re-tested. Fourteen mutants which did not germinate in response

to cold stratification were selected by Steve Penfield for further characterisation.

2.7 Physiology methods

2.7.1 Exogenous GA application

2.7.1.1 Spraying of plants

Sterilised seeds were sown on MS plates. Seeds were cold stratified for three days at

4°C. Seeds were germinated under a twelve hour white light (80μmol.m-2.s-1), twelve

hour dark light regime at 22°C. Ten day old seedlings were transferred to soil and

grown under long day conditions with a temperature regime of 20°C/18°C. Plants were

sprayed with either 100µM GA (Sigma Aldrich) in 2% Methanol or 2% Methanol on a

weekly basis. After five weeks, photographs were taken of the plants.

2.7.1.2 Seedling growth on GA medium

Sterilised seeds were germinated on water-agar plates that were supplemented with

either 100µM GA (Sigma Aldrich) or 100 µM Methanol and cold stratified for three days

Seeds were germinated under a twelve hour light (80μmol.m-2.s-1), twelve hour dark

light regime at 22°C. After fourteen days photographs were taken of seedlings.
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2.7.2 Flowering time

Plants were grown in a growth cabinet at 15°C under a long day light regime

(70μmol.m-2.s-1). The number of rosette and cauline leaves that were produced were

recorded as well as the number of days until first anthesis. This experiment was carried

out by Natalie Palmer, an undergraduate project student.

2.7.3 Hypocotyl elongation

Sterilised seeds were sown on MS plates and cold stratified for three days at 4°C.

Plates were then transferred to a growth cabinet at 22°C and exposed to two days

constant white light. Plates were then exposed to continuous monochromatic red LEDs

(PEAK 660nm, 10µmol.m-2
.s

-1), far-red LEDs (PEAK 756nm, 10µmol.m-2
.s

-1), blue

(PEAK 439 and 455nm 10µmol.m-2
.s

-1) or white light provided by fluorescent tubes

(PEAK 434, 455, 631 and 707nm 10µmol.m-2
.s

-1) for seven days. Hypocotyls of

approximately twenty seedlings were then measured using digital callipers (Draper).

2.7.4 Growth rate

Plants were grown in a growth cabinet at 15°C under a long day light regime

(70μmol.m-2.s-1). Growth rate was recorded on a weekly basis by imaging plants using

a CreativeLive webcam. At the growth stages that were measured, there is very little

overlap between leaves and so the measurement of leaf area can give an accurate

measure of total leaf area. Total rosette area was calculated for approximately ten

plants per genotype and analysed using ImageJ. This experiment was carried out by

Natalie Palmer, an undergraduate project student.
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2.8 Seed coat morphology analysis

Seeds were imbibed in water for approximately two hours and seed coats were

dissected. Seed coats were fixed by Meg Stark (Technology facility, University of York)

over-night in 2.5% glutaraldehyde, 4% formaldehyde in 100mM phosphate buffer,

washed in buffer then post-fixed in 1% osmium tetroxide for an hour, washed in buffer

then dehydrated through an acetone series. They were then infiltrated and embedded

in Spurr resin. Sectioning was performed by Meg Stark (Technology facility, University

of York) using a Leica ultramicrotome. Sections (0.5µm) were stained with 0.6%

toluidine blue in 0.3% sodium carbonate. Seed coat morphology was observed using

an Invent Flu + CCD light microscope using an x40 objective lens.

2.9 Embryo morphology analysis

Dry mature seeds were imbibed in water for approximately two hours. Embryos were

then dissected from seeds and photographed using a Leica MZ16F stereomicroscope

with a Spot RT3 CCD camera.

2.10 ABA and GA analysis

70mg of seed was flash frozen in liquid nitrogen and ground using a pestle and mortar.

Samples were immediately weighed and transferred to a tube with 1.9ml extraction

solvent (99:1 Isopropanol: acetic acid) and 10µl 5µg/ml internal standard (d2-GA1, d2-

GA4 (Law Mander (ANU) and d6-ABA (ICON Isotope))). Samples were shaken in the

dark at 4°C over-night. The supernatant was collected following centrifugation for five

minutes at 4°C. The sample was re-extracted with 1.1ml extraction solvent for two

hours on a shaker in the dark at 4°C. The supernatant was collected following

centrifugation for five minutes at 4°C. The supernatant was then dried in a speed-vac.
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The dried supernatant was re-suspended in 50µl methanol and 2µl injected and

analysed on an ultraperformance liquid chromatography (UPLC)-Mass Spectrometry

(MS) system consisting of an Acquity UPLC system (Waters) coupled to a Finnigan

LTQ ion trap mass spectrometer (Thermo Electron) by Anuja Dave and Anja Hellwege.

Chromatographic separation of the phytohormones was performed on a Waters Acquity

UPLC BEH C18 1.7 mm, 50 3 2.1-mm column using a gradient of mobile phases water

+ 0.1% acetic acid and acetonitrile + 0.1% acetic acid with a flow rate of 1 mL/minute.

Eluted compounds were ionised on the mass spectrometer using a HESI source, and

MS data were collected in full scan mode over the mass range m/z 100 to 500 in

negative ionization mode. Ions at m/z 263.1 for ABA, 269.1 for d6-ABA, 347.2 for GA1,

349.2 for d2-GA1, 331.2 for GA4, and 333.2 for d2-GA4 were used for quantification.

ABA, GA1, and GA4 were quantified using response factors calibrated between internal

standards and phytohormone standards ABA, GA4 (Sigma Aldrich) and GA1 (Peter

Hedden, Rothamstead Research) by Anuja Dave and Anja Hellwege.

2.11 Oxylipin analysis

70mg of seed was flash frozen in liquid nitrogen and ground using a pestle and mortar.

Samples were immediately weighed and transferred to a tube with 1.9ml extraction

solvent (70:30 Acetone: citric acid) and 10µl 2µg/ml internal standard (Prostaglandin A1

in methanol (Sigma Aldrich)). Samples were shaken in the dark at 4°C for three hours.

The acetone was then evaporated overnight. The remaining aqueous layers were

extracted three times with diethyl ether. Briefly, 500µl diethyl ether was added and the

ether phase was removed following centrifugation for two minutes. The extracts were

dried using a speed-vac. The dried extracts were re-suspended in 50µl 60:40 methanol:

water in a tapered vial. Oxylipin analysis was carried out by Anuja Dave using a LCQ
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mass spectrometer (Thermo Separation Products). Separation was achieved on a

LUNA 5 mm C18(2) 150 mm 32 mm column (Phenomenex) using a gradient of mobile

phases water + 0.2% formic acid and methanol + 0.2% formic acid with a flow rate of

0.4 mL/minute. LC-MS data were collected in full MS scan mode over the mass range

m/z 150 to 500 in positive ionisation mode. Oxylipins were then quantified using

response factors calibrated between prostaglandin A1 and authentic oxylipin standards,

including JA, OPDA (Larodan), and JA-Ile (gift from Paul Staswich) by Anuja Dave.

2.12 Fatty Acid Methyl Ester (FAME) analysis

FAME extractions and analyses were carried out by Anja Hellwege. 100mg of seed was

flash frozen in liquid nitrogen and ground using a pestle and mortar. The ground seed

sample was added to a glass vial with 10µl 15:0 TAG (5µg/ml in chloroform) added as

an internal standard, 500µl 1M methanolic HCL in methanol and 200µl hexane. Vials

were vortexed gently and incubated at 85°C for two hours. 250µl 0.9% KCl was added

to the cooled tubes and the layers were allowed to separate. 100µl of the upper hexane

layer containing the FAMEs was removed for analysis. FAME content was determined

by gas-chromatography with flame ionization detection (FID) (GC Trace Ultra,

Thermoquest Separation Products). A 1µL aliquot of the hexane layer was injected into

a 3mm internal diameter FocusLiner containing glass wool (SGE, Milton Keynes, UK) at

230°C in programmed flow mode with H2 as carrier gas. The H2 flow program was as

follows: initial: 0.3mL/min for 0.1min then ramp at 5mL/min/min to 0.5mL/min for the

remainder of the run. The split ratio was maintained at 1:250 and a gas saver slow of

20 mL/min was initiated at 1.5min into the run. Separation was achieved using a

narrow-bore cyanopropyl polysilphenylene-siloxane capillary column (BPX70; 10m

length x 0.1mm internal diameter 0.2µm film thickness; SGE). FAMEs were separated
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using the following temperature program: initial:150°C 0.1 min, then ramp at 16°C/min

to 220°C, followed by cool-down to initial conditions at 120°C/min. The FID was run at

300°C with air, H2, and make-up N2 gases flowing at 350, 35, and 30 mL/min,

respectively. The signal was collected and peaks detected and integrated using

ChromQuest 4.2 software (Thermo Electron Corporation). FAMEs were identified and

quantified relative to the Supelco 37 component FAME mix (Sigma Aldrich).

2.13 DAPI staining

Embryos were dissected from seeds that had been imbibed in water for two hours and

placed on a slide. 2µl 2µg/ml 4’, 6-diamidino2-phenylindole (DAPI) (New England

Biolabs) in MS-glucose (4.4% MS salts, 5% MES and 475mM glucose) was added to

the mount. Mounts were dried on a hot plate. A further 30µl 2µg/ml DAPI in MS-glucose

was added.

2.14 Confocal microscopy

Nuclei that were stained with DAPI were visualised on a Zeiss LSM 510 meta on an

Axiovert 200M using a x60 objective lens with an excitation wavelength of 358nm.

Images were obtained with a constant set of microscopic and image-intensity

parameters. Images were analysed using the Zeiss LSM Image Browser software.

2.15 Nuclear volume analysis

Nuclear volume was calculated using DAPI stained nuclei using the following formula:

4/3πr3 which assumes nuclei to be spherical. An average of approximately two hundred

nuclei from five biological replicates was analysed.
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2.16 Molecular biology methods

2.16.1 RNA extractions from seeds

RNA was extracted from approximately 10mg of dry, developing or imbibed (dry seeds

placed on water-agar plates for twenty four hours) seeds. Seed material was snap

frozen in liquid nitrogen and ground with 150ml of XT buffer (0.2M sodium borate, 30

mM EGTA, 1% SDS, 1% sodium deoxycholate, 2% polyvinylpyrollidone,10 mM DTT,

and 1% IGEPAL [pH 9.0]) using a pestle and mortar. This was allowed to thaw and

treated with 6µl of proteinase K (PCR grade, Roche) at 42°C for ninety minutes.

Precipitation then followed on ice for sixty minutes with 12µl of 2M KCl. The

supernatant was collected following centrifugation at 4°C for twenty minutes. RNA was

precipitated from the supernatant overnight at -20°C with 54µl 8M LiCl. This RNA was

collected by centrifugation at 4°C for twenty minutes. This RNA was cleaned up further

using the clean-up protocol of the RNEasy Plant RNA Isolation kit (Qiagen) according

to the manufacturer’s instructions. RNA concentration was quantified using a Nanodrop

ND-1000 Spectrophotometer (Thermo Scientific) at 260 nm.

2.16.2 RNA Extractions from seedlings

100mg of two week old seedlings were harvested and snap frozen in liquid nitrogen.

Tissue was homogenised in liquid nitrogen using a pestle and mortar to prevent

thawing. RNEasy Plant RNA Isolation kit (Qiagen) was used to extract RNA from the

tissue according to the manufacturer’s instructions. RNA concentration was quantified

using a Nanodrop ND-1000 Spectrophotometer (Thermo Scientific) at 260 nm.
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2.16.3 cDNA synthesis

First strand cDNA was synthesised from 2µg of total RNA. The RNA and 1µl 10mM

oligo-dT (Invitrogen) were incubated at 70°C for ten minutes. A mix of 4µl reaction

buffer, 2µl 0.1M DTT, 2µl 10µM dNTP mix and 1µl Superscript Reverse Transcriptase

were added and incubated at 42°C for one hour. Samples were diluted to 200µl with

sterile water.

2.16.4 Real-Time PCR

Real-Time (quantitative) PCR was used to compare the expression levels of different

genes. cDNA produced from RNA was used in Real-time PCR reactions. For all

reactions, the experiment was performed using an ABI Prism 7000 Sequence Detection

System (Applied Biosystems). Reaction mixes contained 2 μL of cDNA, 1 μL of primers

(each primer at 10 μM), 10.5 μL of nuclease free water and 12.5 μL of Power SYBR

green PCR master mix (Applied Biosystems). An exception to this was the

determination of CBF1 levels, and this used the Taqman detection system. This system

was used as an alternative to the SYBR green detection system as a probe is also

used in addition to primers, which increases the specificity. This reaction mix contained

5 μL of cDNA, 2 μL of primers (each primer at 10 μM), 2.5µl Taqman probe, 3 μL of

nuclease free water and 12.5 μL of Taqman master mix (Applied Biosystems). A list of

all primers used is provided in Table 2.2.

Reactions were carried out in a sealed ninety six well plate which were centrifuged at

5000 x g for two minutes. All Real-Time PCR reactions were carried out with the

following cycle conditions; two minutes at 50 °C, ten minutes at 95 °C, followed by forty

cycles of 95 °C for fifteen seconds and 60 °C for one minute. Transcript levels were
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detected in two biological replicates for each sample using a standard curve derived

from one reference sample with an arbitrary value set to one.

The expression of genes of interest was normalised to the expression of two control

genes, and the control genes used differed with experiments. In Figures 3.16, 3.18, 4.3

and 4.8 ACTIN2 and AT3G06240 were used because the expression of these genes

did not change with maturation temperature (Kendall et al., 2011) or developmental

stage (eFP browser (Bassel et al., 2008)). In Figure 4.10, TUBULIN9 and AT3G06240

were used because the expression of these genes did not change with the three

different developmental stages tested (eFP browser (Bassel et al., 2008)). In Figures

5.24 and 5.25 TUBULIN9 and AT3G06240 were also used and this was because the

expression of these genes was unaffected by temperature and the hos1 mutation

(RNA-Seq results).



Chapter 2: Materials and Methods

48

Table 2.2: Primers used for Real-Time PCR.
F and R after the primer names denote the forward and reverse primers respectively.
All primers were ordered from Sigma Aldrich.

Primer Sequence 5’-3’
CBF1 F TGGCTGAAGGCATGCTTTTA
CBF1 R ACAAAAATGGAAACGACTATCGAAT
CBF1PROBE [6FAM]CGCCGCCGTCTGTTCAATGGA[TAM]
ACT2 F TGAGAGATTCAGATGCCCAGAA
ACT2 R TGGATTCCAGCAGCTTCCAT
AT3G06240 F GCGAAGATTCACCTCGATCTG
AT3G06240 R TTATGTGAAGACACAATGAGCTTACG
TUBULIN9 F GCGGCGAGCACGGTATT
TUBULIN9 R TTGATCCTTTCAAGCTGTAGATCTGT
DOG1 F TCTCGAGTGGATGAGTTTGCA
DOG1 R CGTGAGATCGTCGTTGAGCTAA
GA2ox6 F CCACGCAAATCCGACAGC
GA2ox6 R GCCAAATCTCTAACCGTGCGT
NCED4 F GCTTCCTCCAACAGACTGTGAA
NCED4 R CGGATGTAAGCGCCGTTAA
GA2ox3 F ATCAACTTCTTTGCTTTGCATCAC
GA2ox3 R TCCAATCCTTTTAGTACCGTAACCA
COR15B F CGTTGCTCAGCGCAAGAA
COR15B R CGAGGATGTTGCCGTCACT
FT F GATATCCCTGCTACAACTGGAACA
FT R GAATTCCTGCAGTGGGACTTG
GA2ox2 F (Achard et al.,
2008)

GGACCAAACGGTGACGTTG

GA2ox2 R (Achard et al.,
2008)

GTACTCCTCCACCGACTCACG

CYP707A2 F (Barrero et al.,
2009)

AAATGGAGTGCACTCATGTC

CYP707A2 R (Barrero et al.,
2009)

CCTTCTTCATCTCCAATCAC

MFT F ATCACTAACGGCTGCGAGAT
MFT R CGGGAATATCCACGACAATC
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2.16.5 RNA-Sequencing

Wild-type green cotyledon seeds which were matured at 20°C and 15°C and hos1-3

green cotyledon seeds which were matured at 15°C were dissected from siliques

between five to seven hours after dawn. RNA was extracted from these seeds using

the method outlined in 2.16.1. The RNA was tested for integrity using an Aligent 2100

bioanalyser by Celina Whalley in the Technology Facility (University of York). The

bioanalyser uses a capillary electrophoresis based separation method, which separates

the RNA molecules depending on their size into the three RNA components present;

mRNA, tRNA and rRNA. cDNA was synthesised from the RNA samples in the

Sequencing Laboratory (University of Exeter). Preliminary analyses of the data were

performed by Konrad Paszkiewicz in the Sequencing Laboratory (University of Exeter).

The analysis was carried out using the Tophat and Cufflinks programmes, which is

based on the protocol published by Trapnall et al., (2012). Firstly, reads are mapped to

the Arabidopsis genome. The resulting alignment files are then provided to Cufflinks to

generate a transcriptome assembly which are then merged using the Cuffmerge

package. Cuffmerge is able to use the merged assembly to calculate expression levels,

test the statistical significance of observed changes and then identify differentially

expressed genes.

Expressed genes were described as being differentially expressed between

temperatures or genotypes if the expression was twofold or more different and the

expression was significantly different (P≤0.05 by student’s t-test). The expression of

genes of interest was confirmed using Real-Time PCR.
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2.17 Statistics

To determine whether the differences between means were statistically significant, a

two-tailed Student’s t-test was performed. Means are described as being significantly

different throughout the thesis when P≤0.05. Statistical tests were not carried out on

Real-Time PCR data because only two biological replicates were used.



Chapter 3: Characterisation of temperature regulation of seed dormancy

51

Chapter 3 Characterisation of temperature
regulation of seed dormancy

3.1 Introduction

To date the understanding of temperature signalling in seeds is extremely limited. The

effect of low temperature in promoting the germination of seeds is probably the

temperature signalling pathway that is best understood in seeds. In contrast, the

situation in vegetative tissues is different. Cold sensing is known to take place through

at least two mechanisms, the cold acclimation pathway and the vernalisation pathway.

On a molecular level, both of these pathways are now well characterised, although

work is still dedicated to understanding these mechanisms more thoroughly. However,

mechanisms which sense temperatures in the ambient range are also present and are

now starting to be characterised.

Previous studies have shown that the temperature during seed maturation can affect

dormancy levels, with cool maturation temperatures leading to high dormancy levels

(Schmuths et al., 2006, Donohue et al., 2008, Chiang et al., 2009). However, the

mechanisms that control the temperature regulation of dormancy are not well

understood. A role for the involvement of phytochromes in the temperature regulation of

dormancy has been suggested (Donohue et al., 2008). Here, functional PHYB and

PHYD expression is required for the germination of seeds that have been matured at

low temperature. In addition, a recent transcriptomic analysis showed that expression

of PHYB and PHYE are downregulated in dry seeds that have been matured at low

temperature (Kendall et al., 2011). Together these data suggest that temperature is

able to affect the light requirement for germination by acting directly on phytochrome

levels. Additionally, a role for FLC in regulating dormancy which is induced by low
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temperature has been suggested, since seeds expressing high levels of FLC are

unable to induce strong dormancy levels when seeds are matured at 10°C (Chiang et

al., 2009).

In response to cold temperatures, the plant increases endogenous levels of ABA (Chen

et al., 1983) and exogenous application of ABA is sufficient to induce genes involved in

cold and drought responses (Shinozaki et al., 2003). ABA is thought to play a central

role in regulating the induction and maintenance of dormancy. The action of ABA is

antagonised by GA and the finite balance between these two hormones is thought to be

important to determine seed dormancy levels. Response to GA is also necessary for

proper cold signalling as the DELLA proteins have been shown to be components of

the CBF1-mediated cold stress response (Achard et al., 2008). Therefore, these two

hormones are likely to play an important role in transmitting the environmental sensing

to changes in seed dormancy.

The aims of this chapter were to determine the way in which maturation temperature

controls dormancy, with a focus on ABA and GA. Additionally, the dormancy

phenotypes of a number of mutants in response to different maturation temperatures

are presented in order to start to determine a molecular mechanism.

3.2 Results

3.2.1 Development of an assay to investigate the
effects of maturation temperature on seed
dormancy

To try and understand the mechanism by which temperature regulates dormancy

levels, a system was developed in which plants were grown during the vegetative
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phase under standard laboratory conditions and then switched to either warm or cool

temperatures from first flowering until the end of seed maturation (Figure 3.1). This is

referred to from now onwards as the seed’s ‘maturation temperature’. Warm

temperatures were either 20°C or 22°C. Cool temperatures included a range of

temperatures from 10°C to 17°C. These different temperatures were chosen to sample

the range of likely behaviours of seed set under natural conditions. Using this range

avoids undue emphasis being placed on the behaviour observed only at one particular

temperature. Dormancy regulates the time at which germination occurs, which

consequently affects the timing of all subsequent developmental stages of a plants

lifecycle and, therefore, the environmental conditions which are experienced at each

stage. Consequently, different seed maturation temperatures, such as those tested

here, have the potential to affect the whole lifecycle of the plant by inducing different

levels of dormancy. All other variable conditions, such as photoperiod, light quality and

humidity were kept constant throughout the lifecycle of the plant, regardless of the

temperature at which they were growing.

Figure 3.1: Schematic of the system used to investigate the effect of maturation
temperature on dormancy.
Plants are grown at a warm temperature during the vegetative phase. At first anthesis,
plants are then switched to a different temperature until the end of seed maturation.
Seeds are then harvested from the plants.
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3.2.2 Characterisation of the effects of maturation
temperature on seed dormancy

3.2.2.1 Germination response to cold stratification

To quantify the effect of different maturation temperatures on dormancy levels, Col and

Ler seeds were matured at four different temperatures (10°C, 15°C, 17°C and 20°C).

Decreases in maturation temperature led to an incremental increase in primary

dormancy (referred to hereafter as dormancy) levels in Col (Figure 3.2A). In general

little or no dormancy is induced when Col or Ler seeds are matured at 20°C, suggesting

that these conditions are favourable for germination and, hence, no dormancy is

required to be induced in these seeds. In contrast, when seeds are matured at 10°C,

strong dormancy is induced and three days of cold stratification only had a small effect

on reducing dormancy levels in both ecotypes.

The results show that Ler seeds display increased sensitivity to the decrease in

maturation temperature in comparison to Col (Figure 3.2B). A reduction in temperature

from 20°C to 17°C had a large effect on dormancy levels and germination was

significantly reduced from approximately 100% to 10% in Ler seeds. Germination of

seeds matured at 15°C was similar to germination of seeds matured at 17°C, although

they did germinate to slightly higher levels following two days of cold stratification.

When matured at 10°C, cold stratification was unable to promote the germination of Ler

seeds, which remained at 0%. In contrast, germination of Col seeds matured at 10°C

was promoted by cold stratification, although germination levels still remained low.

These results show that by reducing maturation temperature the levels of dormancy

induced are increased. It appears that the sensitivity and or response to maturation
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temperature may differ between ecotypes and this is in line with previously published

data (Schmuths et al., 2006, Chiang et al., 2011, Penfield and Springthorpe, 2012).

Figure 3.2: Germination of seeds matured at different temperatures in response
to cold stratification.
Col (A) and Ler (B) freshly harvested seeds matured at 10°C, 15°C, 17°C or 20°C were
cold stratified for up to three days. Germination was scored as radical protrusion
following seven days at 22°C in twelve hour white light/dark cycles. Data points are the
average of five individual seed batches and error bars represent standard error.

3.2.2.2 Germination response to after-ripening

In addition to characterising the dormancy of the seeds in response to cold

stratification, the response to after-ripening was also analysed. This was tested using

Col and Ler seeds that were matured at either 20°C or 10°C. Freshly harvested Col and

Ler seeds that were matured at 20°C showed high germination indicative of low

dormancy levels. Since germination was almost maximal in these seeds, after-ripening

could not lead to a significant increase in germination (Figure 3.3). Germination of Col

and Ler seeds matured at 10°C was extremely low, meaning that, in contrast to the

seeds matured at 20°C, there was potential for after-ripening to significantly increase

germination. However, after-ripening had a very small effect on Col germination, whilst

it had no effect on Ler germination, which remained at 0% (Figure 3.3). This suggests
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that the dormancy levels induced by low temperature (10°C) are extremely strong and

cannot be broken by this standard dormancy breaking treatment.

Figure 3.3: Germination of seeds matured at 20°C and 10°C in response to after-
ripening.
Freshly harvested seeds were after-ripened for up to eight weeks at room temperature.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points represent the average of five individual seed
batches and error bars represent standard error.

3.2.3 Characterisation of the viability of seeds
matured at low temperature

As after-ripening had very little or no effect on breaking the dormancy induced by low

temperature in seeds (Figure 3.3), it was possible that there could be viability issues

with these seeds. To test whether the seeds were indeed viable or not, Col seeds that

were matured at 10°C, 15°C and 20°C and after-ripened for approximately eight weeks

were germinated on water-agar plates or MS plates. Water-agar is used as a growth

medium to germinate seeds for dormancy analysis as it contains significantly lower
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levels of nitrate than MS, and nitrogen is sufficient to promote germination. The

germination of Col seeds matured at 20°C was approximately 90% and this was

independent of the growth medium that was used. In contrast, the germination of Col

seeds matured at 15°C on water-agar plates was approximately 60% following three

days of cold stratification (Figure 3.4) and this was increased to approximately 90%

when the seeds were germinated on MS (Figure 3.4). When the maturation

temperature was reduced to 10°C, germination levels were very low when seeds were

germinated on water-agar plates. However, the germination was significantly increased

to approximately 90% when the seeds were germinated on MS and this reflected the

germination levels of warm matured seeds. Therefore, these results suggest that the

reason why seeds do not germinate following after-ripening is not due to a loss of

viability.
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Figure 3.4: Germination of low temperature induced dormant seeds on water-
agar and MS.
Col seeds matured at 20°C, 15°C or 10°C were after-ripened for approximately eight
weeks and cold stratified for three days. The seeds were germinated on plates
containing either water-agar or MS. Germination was scored as radical protrusion
following seven days at 22°C in twelve hour white light/dark cycles. Data points
represent the average of five individual seed batches and error bars represent standard
error. * Indicates significant difference to water-agar when P≤0.05 by students t-test.

3.2.4 Characterisation of seed coat and embryo
morphology

It has previously been shown that changes in seed coat morphology is linked to altered

dormancy levels (Debeaujon et al., 2000). The authors show that mutants with defects

in seed coat pigmentation or structure have reduced dormancy levels and positive

correlations were made between seed coat thickness and dormancy levels (Debeaujon

et al., 2000). Therefore, the regulation of seed coat thickness could be a possible

mechanism by which temperature regulates dormancy levels. If this is the case then

seeds matured at 10°C would be expected to have thicker seed coats in comparison to

those matured at 20°C. To investigate this hypothesis seed coat morphology was
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examined in seeds matured at 20°C and 10°C to determine if any differences were

present. Cross sections of seed coats were stained with toluidine blue and then

examined under a light microscope looking for changes in seed coat morphology. The

results show that seeds matured at 20°C and seeds matured at 10°C have very little

difference in their seed coat structure (Figure 3.5). Therefore, cool temperatures during

seed maturation do not appear to be altering dormancy levels by increasing seed coat

thickness.

Additionally, it was possible that the maturation temperature may have effects on

embryo development which could lead to differences in dormancy levels. Therefore,

embryo morphology was compared between seeds matured at 20°C and 10°C.

Embryos were dissected from seeds that had been imbibed for approximately two

hours and embryo morphology was examined using a light microscope. No obvious

differences in morphology were observed between the embryos matured at the two

temperatures (Figure 3.6). These results show that low temperature induced dormancy

does not involve perturbations to seed coat or embryo morphology and, therefore,

normal embryo and seed coat development is not altered by low temperature.

Figure 3.5: Seed coat morphology of seeds matured at
20°C and 10°C.
Seed coats were removed from freshly harvested Ler
seeds matured at 20°C and 10°C following two hours of
imbibition, fixed and embedded in Spurr resin. Samples
were stained with toluidine blue and visualised using an
Invent Flu + CCD microscope using an x40 objective lens.
Scale bar represents 10µM.
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Figure 3.6: Mature embryo morphology of seeds
matured at 20°C and 10°C.
Embryos were dissected from freshly harvested Col seeds
matured at 20°C and 10°C which had been imbibed for two
hours. Embryos were photographed using a using a Leica
MZ16F stereomicroscope with a Spot RT3 CCD camera
Scale bar represents 100µM.

3.2.5 Analysis of the involvement of hormones in
temperature regulation of dormancy

3.2.5.1 Measurement of ABA and GA levels

A role for ABA in regulating dormancy levels is well established, however the

importance of GA in inducing and maintaining dormancy is less clear (Bewley, 1997). It

has been suggested that GA is simply involved in promoting germination in seeds with

no dormancy (Bewley, 1997). The regulation of ABA and GA levels could be an

important component of the mechanism by which temperature regulates dormancy

levels. Therefore, to determine if ABA and GA levels are altered by maturation

temperature and to assess whether these levels corresponded with the amount of

dormancy induced in the seeds, ABA and GA levels were measured in Col and

Wassilewskija (WS) freshly harvested dry seeds that were matured at either 22°C or

15°C. Col and WS seeds that were matured at low temperature showed a significant

increase in ABA levels in comparison to seeds matured at 22°C (Figure 3.7A). The

opposite was true for GA levels whereby levels were significantly lower in seeds
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matured at 15°C in comparison to 22°C (Figure 3.7B). These results suggest that ABA

and GA levels are temperature regulated in seeds and that the normal negative

correlation between the two hormones is unaffected by temperature. High ABA and low

GA levels correlate with high dormancy and low maturation temperature whereas warm

temperature induced low dormancy levels are coupled with low ABA and high GA

levels.

Figure 3.7: Measurement of ABA and GA levels in seeds matured at different
temperatures.
ABA (A) and GA (B) measurements were made in freshly harvested dry seeds matured
at 22°C and 15°C. * Indicates significant difference to 22°C when P≤0.05 by students t-
test.

3.2.5.2 Measurement of OPDA levels

The Jasmonic Acid (JA) precursor 12-oxo-phytodienoic acid (OPDA) has been shown

to be a key negative regulator of germination (Dave et al., 2011) and so it was

hypothesised that levels of OPDA may differ with maturation temperature and hence

dormancy levels. The prediction to be tested was that seeds matured at low

temperature, which are highly dormant and, therefore, have low levels of germination,
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temperatures. OPDA levels were measured in Col and Ler freshly harvested dry seeds

that were matured at 12°C, 17°C and 20°C. OPDA levels were significantly lower in Col

seeds that were matured at 17°C and 20°C in comparison to 12°C (Figure 3.8A).

Similarly levels of OPDA were significantly lower in Ler seeds matured at 17°C in

comparison to 12°C (Figure 3.8B). In contrast to Col seeds, OPDA levels were similar

for Ler seeds matured at 20°C and 12°C. These results highlight that there is no linear

correlation between OPDA levels and the maturation temperature and hence dormancy

levels.

Figure 3.8: Measurement of OPDA levels in seeds matured at different
temperatures.
Measurements were made in freshly harvested Col (A) and Ler (B) dry seeds matured
at 20°C, 17°C and 15°C. * Indicates significant difference to 12°C when P≤0.05 by
students t-test.

3.2.5.3 Germination response to exogenous GA and NOR

High dormancy levels are induced by low temperature (Figure 3.2) and GA and ABA

levels are temperature regulated in seeds (Figure 3.7). To extend the understanding of
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exogenous GA or Norflurazon (NOR), an ABA biosynthesis inhibitor. Germination of

seeds matured at 22°C showed low dormancy levels and, therefore, the effect of GA,

NOR and GA with NOR was extremely minimal since the germination of these seeds

could not be increased further (Figure 3.9). Seeds that were matured at 15°C

germinated to significantly lower levels than those matured at 22°C. When these seeds

were treated with NOR, there was no significant increase in germination (Figure 3.9). In

contrast, the addition of GA caused a significant increase in germination to

approximately 65% however; this was still lower than the germination of the warm

matured seeds. When GA and NOR were added together germination of the low

temperature matured seeds was the same as warm temperature matured seeds. These

results suggest that an increase in GA levels has a greater capacity to increase

germination in comparison to a decrease in ABA levels caused by NOR treatment, but

that exogenous GA alone is insufficient to promote germination of low temperature

matured seeds to its full capacity.
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Figure 3.9: Germination of low temperature induced dormant seeds in the
presence of GA or NOR.
Germination of Col seeds matured at 22°C and 15°C in response to control conditions
(100µM Methanol) or in response to applied GA (100µM), NOR (50µM) or both (GA +
NOR). Seeds were cold stratified for three days before being transferred to 22°C in
twelve hour white light/dark cycles for seven days. Data points are the average of five
individual seed batches and error bars represent standard error. * Indicates significant
difference to control treatment when P≤0.05 by students t-test.

3.2.5.4 Characterisation of dormancy phenotypes of hormone synthesis and
signalling mutants

To determine if dormancy levels are determined by endogenous ABA or GA levels, the

dormancy levels of ABA biosynthesis mutants (aba1-1 and aba2-3) and GA-signalling

repressor proteins DELLA mutants (della) that were matured at warm and cool

temperatures was analysed. These mutants have significantly reduced levels of

endogenous ABA (Koornneef et al., 1982, Laby et al., 2000) and have constitutive GA-

signalling (Achard et al., 2006) respectively.
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When matured at 20°C these mutants, like wild-type, had low levels of dormancy

(Figure 3.10, 3.11A). Since wild-type germinated to high levels it was difficult to

determine whether these mutants have a role in inducing dormancy at this temperature.

However, when the maturation temperature was reduced to 10°C the quadruple della

loss-of-function mutant was compromised in low temperature induced dormancy and

germination was significantly higher than wild-type (Figure 3.10). Similarly, the aba1-1

mutant (in the Ler background) also had significantly lower levels of dormancy in

comparison to wild-type (Figure 3.11B). However, when the dormancy of the aba2-3

mutant, which is in the Col background, was tested, the results showed that dormancy

could be induced in response to low maturation temperature and the response to cold

stratification was not dissimilar to wild-type (Figure 3.11B). The induction of dormancy

in this mutant may indicate that this mutant is not a complete null or that ABA is less

important for inducing dormancy in Col in comparison to Ler. These results suggest that

DELLAs play an important role in maintaining high dormancy levels in response to low

temperature. However, the situation with ABA appears to be more complex, with

contrasting phenotypes being found for the different alleles analysed here.
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Figure 3.10: Germination of della seeds.
Freshly harvested seeds matured at 15°C or 20°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.

Figure 3.11: Germination of aba seeds.
Freshly harvested seeds matured at 20°C (A) or 10°C (B) were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.
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To confirm the role of ABA in low temperature regulation of dormancy, the dormancy of

additional ABA-deficient mutants in the Col background was analysed. The results

showed that like wild-type, low dormancy levels were induced in aba1-6 and aba3-1

seeds matured at warm temperatures (Figure 3.12). In contrast to wild-type seeds

which were highly dormant in response to maturation at 15°C, both aba1-6 and aba3-1

seeds displayed significantly lower levels of dormancy when matured at this

temperature (Figure 3.12). Therefore, wild-type levels of endogenous ABA are required

to enter into the dormant state promoted by maturation at cool temperatures. Together

these results suggest that the regulation of ABA and GA levels is central to the

mechanisms regulating the induction of dormancy in response to low temperature with

endogenous ABA and GA-signalling being required to promote dormancy.

Figure 3.12: Germination of additional aba seeds.
Freshly harvested seeds matured at 15°C or 20°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.
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The CYP707A2 gene encodes an enzyme involved in ABA catabolism (Kushiro et al.,

2004). Therefore, to determine whether CYP707A2 has a role in regulating dormancy in

response to temperature, the dormancy phenotype of the cyp707a2-1 loss-of-function

mutant was tested in response to maturation at 20°C, 17°C and 15°C. When matured at

20°C, the germination of cyp707a2-1 seeds was very similar to wild-type (Figure 3.13).

However, when the maturation temperature was reduced to 17°C, the germination of

cyp707a2-1 seeds was reduced in comparison to wild-type, although this difference

was only significant following two days of cold stratification. When the maturation

temperature was reduced further to 15°C, germination of cyp707a2-1 seeds was

significantly reduced in comparison to wild-type following three days of cold

stratification. Therefore, when matured at low temperature, dormancy levels are

increased in the cyp707a2-1 seeds, suggesting that CYP707A2 is a negative regulator

of dormancy in response to low temperature.
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Figure 3.13: Germination of cyp707a2-1 seeds.
Freshly harvested seeds matured at 15°C, 17°C or 20°C were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.

3.2.6 Characterisation of dormancy phenotypes of
additional mutants

Previous mutant screens and natural variation studies to identify genes required for the

induction of dormancy have identified several genes necessary for this response (Leon-

Kloosterziel et al., 1996, Peeters et al., 2002, Bentsink et al., 2006). To determine if

these genes also play a role in dormancy induction in response to low temperature, the

dormancy phenotypes of dog1-2 (Bentsink et al., 2006) and the four rdo mutants (Leon-

Kloosterziel et al., 1996, Peeters et al., 2002) was analysed in response to different

maturation temperatures. These mutants were all selected on the basis that they have

reduced dormancy phenotypes. The dormancy levels that were induced during

maturation at 20°C were low for all seeds tested (Figure 3.14, 3.15A).
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Figure 3.14: Germination of dog1-2 seeds.
Freshly harvested seeds matured at 20°C or 10°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.
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dormancy levels in response to low maturation temperature (Figure 3.15B). This was

especially prominent for rdo4 mutant seeds, where approximately 60% of the seeds

germinated following three days of cold stratification, which was significantly higher

than wild-type. The germination of rdo1 seeds did not increase in response to cold

stratification, but germination was significantly higher than wild-type. Therefore, these

results suggest that DOG1 and RDO4 are important for high dormancy levels in

response to low temperature and to a lesser extent; RDO1 may also have a role. In

contrast, RDO2 and RDO3 do not appear to be involved in the regulation of dormancy

by low temperature.

Figure 3.15: Germination of rdo seeds.
Freshly harvested seeds matured at 20°C (A) or 10°C (B) were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o
n

F
re

q
u
e

n
c
y

(%
)

0

20

40

60

80

100
A

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o

n
F

re
q

u
e

n
c
y

(%
)

0

20

40

60

80
Ler

rdo1

rdo2

rdo3

rdo4

B



Chapter 3: Characterisation of temperature regulation of seed dormancy

72

3.2.7 Transcriptional analysis of key dormancy
regulating genes

3.2.7.1 Analysis in wild-type seeds

Previous results in this chapter have indicated important roles for ABA, GA and DOG1

in regulating dormancy levels in response to low temperature. A transcriptional

approach was then taken to investigate how expression of GA and ABA metabolic

genes differed with maturation temperature. Since dormancy levels are initiated during

seed development, a developmental time course was sampled, which included torpedo,

walking stick, green cotyledon and dry seed stage Col and WS seeds. Seeds were

sampled based on embryo morphology as opposed to time since there are differences

in developmental rates between the seeds matured at the two temperatures.

The expression of DOG1 was highly upregulated in dry seeds that had been matured at

low temperature (Figure 3.16A). In warm matured seeds, the expression of DOG1

decreases from the green cotyledon to dry seed stage, whereas when seeds are

matured at low temperature, this expression either shows a slight increase (Col) or a

large increase (WS). The persistence of DOG1 expression in the dry seed may be

important for the maintenance of high dormancy levels in these seeds.
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Figure 3.16: Expression of dormancy regulating genes in wild-type seeds.
Expression of DOG1 (A), GA2ox6 (B), NCED4 (C) and CYP707A2 (D) in freshly
harvested Col and WS seeds. Developmental stages are Torpedo (T), Walking Stick
(WS), Green Cotyledon (GC) and Dry Seed (DS). Data points are the average of two
biological replicates and expression is normalised to the average of two control genes
ACTIN2 and AT3G06240. Error bars represent standard error.

Expression of GA2ox6 and NCED4 was highest in dry seeds and expression was

considerably higher in the seeds matured at 15°C in comparison to 22°C (Figure 3.16B,

C). At earlier developmental stages there was little difference in expression between

the two temperatures. The expression of CYP707A2 was also analysed and the results

show that CYP707A2 was expressed to higher levels in warm matured seeds than low

temperature matured seeds (Figure 3.16D). Again, the expression of this gene was
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regulation of genes involved in ABA and GA metabolism by low temperature are an

important part of the mechanism regulating dormancy. The regulation of GA2ox6,

NCED4 and CYP707A2 expression in response to temperature probably contributes to

the differences in hormone levels that are observed (Figure 3.7).

3.2.7.2 Analysis in mutant seeds

As shown in Figure 3.16, the transcription levels of important dormancy regulating

genes are altered by temperature during seed maturation. To further understand the

roles of DOG1, ABA and GA in the regulatory network that leads to high dormancy

levels in response to low maturation temperatures the expression of DOG1, NCED4,

CYP707A2 and GA2ox6 was analysed in dog1-2, aba2-3 and della dry mutant seeds

that were matured at 17°C. The dormancy levels of these seeds can be observed in

Figure 3.17. aba2-3 and della mutants show approximately 50% fold decreases in

DOG1 expression, showing that endogenous ABA and GA are required for correct

DOG1 expression (Figure 3.18A). dog1-2 mutants showed a tenfold decrease in

expression of GA2ox6 in comparison to wild-type, indicating that one role of DOG1 is

the promotion of GA catabolism (Figure 3.18B). There appeared to be no striking

differences in the expression of NCED4 and CYP707A2 in dog1-2, aba2-3 and della

mutants seeds (3.17C, D). These results show that the temperature regulation of ABA

metabolism is largely independent of both DOG1 and DELLAs.
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Figure 3.17: Germination of mutants matured at 17°C.
Freshly harvested seeds matured at 17°C were cold stratified for up to seven days.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points are the average of five individual seed batches
and error bars represent standard error.

Cold Stratification Length (days)

0 3 7

G
e
rm

in
a
ti
o
n

F
re

q
u
e
n
c
y

(%
)

0

20

40

60

80

100
Col

aba2-3

dog1-2

Ler

della



Chapter 3: Characterisation of temperature regulation of seed dormancy

76

Figure 3.18: Expression of dormancy regulating genes in mutant seeds.
Expression of DOG1 (A), GA2ox6 (B), NCED4 (C) and CYP707A2 (D) in freshly
harvested dry seeds that were matured at 17°C. Data points are the average of two
biological replicates and expression is normalised to the average of two control genes
ACTIN2 and AT3G06240. Error bars represent standard error.

3.2.8 Analysis of GA and ABA levels in dog1-2 seeds

Since functional expression of DOG1 is required for normal levels of GA2ox6

expression in seeds matured at low temperature (Figure 3.18B), which is important for

GA catabolism, it was important to determine if this led to an increase in bioactive GA

levels. GA and ABA levels were measured in dog1-2 and wild-type dry seeds that were

matured at 17°C. Surprisingly, GA levels in dog1-2 seeds were significantly lower than

wild-type (Figure 3.19), suggesting that promotion of GA2ox6 expression is not the only
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way in which DOG1 regulates GA levels in the seed. In contrast, ABA levels were found

to be the same as wild-type in dog1-2 seeds, suggesting that DOG1 is not involved in

contributing to the regulation of ABA. Therefore, it appears that the regulation of

hormone levels in the dog1 -2 mutant seeds do not correlate with its reduced

dormancy, since GA levels are decreased and there is no change to ABA levels.

Figure 3.19: Measurement of GA and ABA levels in dog1-2 seeds.
Measurements were made in freshly harvested dry seeds matured at 17°C. Data points
represent the mean measurements in seeds from five individual plants and error bars
represent standard error. * Indicates significant difference to wild-type when P≤0.05 by
students t-test.
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rna-dependent rna polymerase2-1 (rdr2-1) (Jones Lab, unpublished) and a number of

overlapping genes was found (Figure 3.20). The largest number of overlapping genes

was identified when genes that were upregulated by low maturation temperature were

compared to those upregulated in ago4-1 mutant seedlings. This prompted an

investigation to determine whether DNA methylation could have an important role in

regulating dormancy in response to temperature.

Figure 3.20: Comparison of the temperature regulated transcriptome in seeds
and the transcriptomes of three DNA methylation mutants.
Transcriptome analysis in seeds from Kendall et al., 2011. Number of genes represents
those genes that are differentially regulated by three-fold or more. Note the large
overlap between genes differentially regulated by temperature and ago4.
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3.2.10 Characterisation of dormancy phenotypes of
DNA methylation mutants

To identify if DNA methylation has a role in regulating dormancy in response to

temperature, a number of DNA methylation mutants which included rdr2-1, dcl3-1,

repressor of silencing1-4 (ros1-4), domains rearranged methylase1-2 (drm1-2) drm2-2-

and ago4-1 was matured at warm and low temperatures and the dormancy levels that

were induced were analysed. The rdr2-1, dcl3-1, ros1-4 and drm1-2drm2-2 mutants

were in the Col background, whilst ago4-1 was in the Ler background. In this

experiment, when Col was matured at 20°C, dormancy was induced in these seeds,

and this was in contrast to the dormancy levels that had been obtained for Col matured

at warm temperatures in previous experiments (Figure 3.21A). In contrast to Col, the

dormancy levels induced in the Ler seeds were extremely low and this was consistent

with other experiments. Therefore, this should be taken into account when analysing

the mutant phenotypes. When ago4-1 was matured at warm temperature, significantly

higher dormancy levels were induced in comparison to the dormancy levels present in

wild-type (Figure 3.21A). The dormancy levels of the remaining DNA methylation

mutants did show some altered dormancy phenotypes, but these were generally quite

subtle. One exception to this was the germination of dcl3-1, which showed a

significantly larger increase in germination in response to cold stratification in

comparison to wild-type. However, since Col germinated to lower levels than has

previously been shown in this experiment, the germination of dcl3-1 may not really be

different to wild-type.

When the temperature during maturation was reduced to 15°C, the germination of

ago4-1 seeds was higher than wild-type, following three days of cold stratification but

the difference was not significant (Figure 3.21B). However, the germination response of
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dcl3-1, ros1-4, rdr2-1 and drm1-2drm2-2 to cold stratification was not significantly

different to wild-type.

Figure 3.21: Germination of DNA methylation mutants.
Freshly harvested seeds matured at 20°C (A) or 15°C (B) were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.

Based on these results it was decided to analyse the dormancy phenotype of ago4-1

mutant seeds further. ago4-1 and wild-type seeds were matured at 20°C, 17°C and

15°C. The germination of ago4-1 was reduced when the seeds were matured at 20°C,

although this phenotype was greatly reduced in comparison to what was observed

previously (Figure 3.21A). When the seeds were matured at 17°C and 15°C, no

differences between the germination of wild-type and ago4-1 were observed (Figure

3.22). Based on these findings, it can be concluded that none of the DNA methylation

mutants that was analysed showed consistent dormancy phenotypes and, therefore, it

is unlikely that changes in DNA methylation are required for the induction of dormancy

in response to low maturation temperature.
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Figure 3.22: Germination of ago4-1 seeds.
Freshly harvested seeds matured at 20°C, 17°C and 15°C were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.
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3.3 Discussion

The experiments presented in this chapter were designed to provide a more thorough

understanding of the way in which low temperature promotes seed dormancy. Previous

work has shown that lowering the temperature during seed maturation leads to an

increase in seed dormancy (Schmuths et al., 2006, Donohue et al., 2008, Chiang et al.,

2009) but a mechanism for this process is yet to be described. Therefore, this chapter

focussed on investigating whether ABA or GA played a role in how temperature

promotes seed dormancy. The results show that levels of ABA and GA are altered

(Figure 3.7) and this corresponds with the temperature regulation of genes involved in

ABA and GA metabolism (Figure 3.16).

3.3.1 Low temperature matured seeds are viable

The results show that low temperature during seed maturation promotes high dormancy

levels and as the temperature is reduced, the induced dormancy levels increase

(Figure 3.2). In general, the maturation of seeds at 20°C or 22°C leads to the induction

of very low levels or dormancy. However, in one experiment only 40% of freshly

harvested Col seed germinated (Figure 3.21A). Although in the same experiment Ler

seeds germinated to high levels and so it is unlikely that the environmental conditions

were promoting the higher dormancy levels in Col. It is possible that these seeds were

harvested too early and this could account for the increase in dormancy that was

observed.

A number of treatments are able to break dormancy, although results presented in this

chapter show that they are less effective when seeds have been matured at low

temperatures. The effect of cold stratification on breaking dormancy decreases as
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maturation temperature is reduced from 20°C to 10°C. Even three days of cold

stratification had little effect on the germination of seeds that had been matured at 10°C

in both Col and Ler (Figure 3.2). It is possible that these seeds required an increased

length of cold stratification to reduce the dormancy levels of seeds matured at low

temperature. It has recently been shown that by increasing cold stratification to two

weeks the germination of dormant seeds can be increased (Penfield and Springthorpe,

2012). However, prolonged cold stratification also has the potential to promote entry of

a seed into secondary dormancy (Finch-Savage et al., 2007, Penfield and

Springthorpe, 2012). Therefore, it is difficult to predict how seeds matured at low

temperatures will respond to increased length of cold stratification. The amount of cold

stratification required to break dormancy and induce secondary dormancy appears to

be dependent on maturation temperature and the effect is accession specific (Penfield

and Springthorpe, 2012). The imbibed seed must be able to determine how many ‘cold

days’ have accumulated, much like what is required during vernalisation. The

mechanism by which seeds can determine this accumulation of cold will be an

interesting question to answer in the future.

The high dormancy levels that were induced by low temperature were not broken by

two months of after-ripening (Figure 3.3). This analysis was only carried out using

seeds that were matured at either 20°C or 10°C. After-ripening may have had a

dormancy breaking effect if seeds matured under other temperatures (15°C or 17°C). It

is known that strongly dormant ecotypes such as Cvi require extensive lengths of after-

ripening to break dormancy (Alonso-Blanco et al., 2003, Ali-Rachedi et al., 2004) and,

therefore, a response to after-ripening may have been observed if the after-ripening

time had been extended.
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The germination of low temperature matured seeds could be greatly increased when

germinated on MS instead of water-agar (Figure 3.4). This highlighted that the reduced

germination that is observed in freshly harvested seeds matured at low temperature

does not represent a loss of viability and is instead an active process initiated by the

plant to keep seeds from germinating. It is possible that the 10% of seeds that did not

germinate in this experiment were inviable and this could be tested by scarifying the

seed coats or by germinating in the presence of tetrazolium. Taken together, it can,

therefore, be confirmed that the reduced germination observed in low temperature

matured seeds is in fact a dormancy phenomenon (i.e. these seeds have the capacity

to germinate but are programmed not to).

3.3.2 ABA and GA metabolism is important for
dormancy regulation in response to temperature

The potential roles for the two phytohormones, ABA and GA, in the regulation of

temperature effects on dormancy have been investigated in this chapter. In the past a

role for GA in dormancy regulation has been contended, with some believing that GA

only has a role in the promotion of germination in non-dormant seeds (Bewley, 1997).

Penfield et al.,(2006) provided evidence to contest this hypothesis, where they showed

that della mutants fail to enter dormancy when grown under glasshouse conditions

even in the absence of GA synthesis. The data that are presented in this chapter

clearly show that GA is an important regulator of dormancy in response to low

temperature and, therefore, helps to settle this debate. Levels of GA decrease when

the maturation temperature is reduced and this corresponds with alterations to

expression of GA2ox6 and a corresponding increase in dormancy levels (Figure 3.7B ,

3.16B). della mutants have also been shown to be compromised in their ability to enter

the highly dormant state when matured at low temperature (Figure 3.10). The lack of
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dormancy in the della mutants matured at low temperature suggests that the repression

of GA levels through targeted degradation via the ubiquitin-proteasome pathway is

important for the mechanism regulating the promotion of dormancy. Additionally,

expression of GA2ox6 is greatly reduced in dog1-2 dry seeds which also show reduced

dormancy levels in response to low temperature, although a decrease in GA levels in

dog1-2 seeds was not observed (Figure 3.18B, 3.19). Expression levels of GA

biosynthetic genes have been shown to be upregulated in imbibed dog1-1 seeds which

contributes to elevated levels of GA in these seeds (Nakabayashi et al., 2012).

Therefore, it is possible that although GA levels are not elevated in dog1-2 dry seeds

which were matured at low temperature, they could be elevated during seed

development or imbibition.

Although it was beyond the scope of this work, it will be important to test the dormancy

phenotypes of ga2ox6 and nced4 loss-of-function mutants in response to low

maturation temperature to understand the contribution of ABA and GA to inducing

dormancy further. One would expect that these mutants would be compromised in their

ability to induce dormancy in response to low maturation temperature because of their

negative and positive regulation of GA and ABA levels respectively. Although it is

possible that redundancy may be present between other members of the GA2ox and

NCED group of genes and as a consequence low dormancy phenotypes may not be

seen. For example GA2ox2 is also upregulated by low temperature, but to a lesser

extent (Kendall et al., 2011) and, therefore, obvious phenotypes may be absent.

Both ABA and GA are involved in regulation of the DOG1 transcript, since della and

aba2-3 mutants show a 50% reduction in DOG1 expression in comparison to wild-type

(Figure 3.18A). The fact that DOG1 expression is reduced to similar levels in both
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mutants suggests that ABA and GA may regulate DOG1 through a common

intermediary. There is no difference in NCED4 or CYP707A2 expression levels in dog1-

2 dry seeds in comparison to wild-type and this corresponds with wild-type levels of

ABA (Figure 3.18C, D). However, in contrast a recent study has investigated the

expression profile of imbibed dog1-1 seeds which were matured at a warm temperature

and shows that expression of NCED2 and NCED5 is downregulated and there was a

corresponding decrease in ABA levels in both dry and imbibed seeds (Nakabayashi et

al., 2012). The effect of temperature may influence the target genes which are

regulated by DOG1 to control dormancy and may explain why differences in expression

of NCED genes and ABA levels are found.

DOG1 represents an important component of the mechanism that regulates dormancy

in response to low temperature since dormancy is alleviated in dog1-2 seeds following

cold stratification. However, there must also be DOG1-independent mechanisms

involved in the regulation, since the dog1-2 mutant does not display a complete lack of

dormancy (Figure 3.14).

The analysis of ABA biosynthetic mutant seeds that were matured at low temperature

shows that ABA1 and ABA3 are necessary for high dormancy levels whereas the

situation with ABA2 is less clear (Figure 3.11, 3.12). The aba2-3 mutant shows wild-

type levels of dormancy, although it is possible that this mutant is not a complete null

and this may explain the phenotype. The analysis of the dormancy phenotype of the

cyp707a2-1 mutant showed that CYP707A2 is a negative regulator of low temperature

induced dormancy since dormancy levels were increased in this mutant (Figure 3.13).
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When applied together, exogenous GA and NOR were capable of increasing the

germination levels of seeds matured at low temperature to match the germination of

seeds matured at warm temperatures, suggesting a synergistic effect (Figure 3.2).

However, exogenous GA was much more effective at increasing germination than

NOR. Therefore, together this leads to the suggestion that GA may be more important

in regulating dormancy in response to low temperature than ABA.

In contrast to ABA and GA, the results show that temperature did not regulate OPDA

levels in dry seeds, suggesting that this is not an important component of the

mechanism (Figure 3.8). However, measurements of OPDA levels were made using

dry seeds and so if measurements had been made during seed development have a

relationship between maturation temperature and OPDA levels may have been

observed.

3.3.3 RDO4 and DNA methylation are not involved in
the regulation of dormancy by temperature

The analysis of dormancy levels of the four rdo mutants revealed that rdo4 and to a

lesser extent rdo1 mutants were unable to induce high levels of dormancy in response

to maturation at low temperature (Figure 3.15). However, strong dormancy could be

induced in both rdo2 and rdo3 mutant seeds in response to low temperature (Figure

3.15). A recent analysis of the rdo4 and rdo2 transcriptomes in mature siliques revealed

a common gene set and DOG1 was found to be downregulated in both rdo4 and rdo2

seeds (Liu et al., 2011). Since it is likely that RDO4 and RDO2 are both involved in

regulating transcription efficiency (Liu et al., 2007, Liu et al., 2011), it was surprising to

find that strong dormancy was induced in rdo2 mutants and not rdo4 mutants (Figure

3.15). This suggests that the regulation of DOG1 transcript levels by RDO4 cannot be
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completely responsible for the low dormancy phenotype since rdo2 seeds would be

expected to also contain lower DOG1 expression levels.

A recent transcriptome study revealed that RDO4 expression was upregulated in

seeds matured at warm temperature (Kendall et al., 2011). However, this increase in

expression of RDO4 with increasing temperature does not correspond with the fact that

rdo4 mutants matured at low temperature have low levels of dormancy (Figure 3.15).

Thus, it is likely that RDO4 may have a role in regulating dormancy through a general

mechanism and is not involved in the temperature aspect of the regulation. It would be

useful to determine whether other environmental factors known to increase dormancy

levels during maturation such as short day photoperiods also fail to induce dormancy in

rdo4. In contrast to the understanding of how RDO4 and RDO2 effect dormancy

regulation, the role of RDO1 in regulating dormancy is not well characterised.

RDO4 is responsible for the monoubiquitination of histone H2B, which leads to changes

in histone H3 methylation (Liu et al., 2007). A role for chromatin remodelling in

regulating dormancy has also been suggested by an analysis of the kryptonite-2 (kyp-2)

mutant which shows increased seed dormancy that is linked to ABA sensitivity (Zheng

et al., 2012). KYP is required for histone H3 lysine 9 methylation (Jackson et al., 2002).

The increased seed dormancy that is observed in the kyp-2 mutant has been linked to

increases in DOG1, ABI3 and ABI4 expression (Zheng et al., 2012).

Another example of the importance of chromatin remodelling in seed dormancy control

comes from a study using the histone deacetylase19 (hda19) mutant and HDA6 RNAi

seeds. Germination of hda19 and HDA6 RNAi seeds was hypersensitive to ABA and

this is linked to alterations in expression of ABA responsive genes (Chen et al., 2010,
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Chen and Wu, 2010). Taken together, there is a growing body of evidence to suggest

that chromatin remodelling could be an important part of the mechanism regulating

dormancy. However, evidence is lacking to support a role for chromatin remodelling in

the temperature regulation of dormancy.

The comparison of genes regulated by temperature and DNA methylation suggests that

DNA methylation may act as a negative regulator of a number of genes that are

upregulated by low temperature (Figure 3.20). Although making comparisons between

the transcript data sets of maturation temperature and DNA methylation mutants

revealed some interesting relationships, it is noteworthy that the DNA methylation

mutant microarray was carried out using genetic material collected from seedlings and,

therefore, it is possible that the number of overlapping genes may have been higher if

the samples had been made from seeds. The largest overlap between genes

differentially regulated by temperature and DNA methylation mutants was found in

ago4-1 mutants, and this could be due to the fact that ago4-1 is in the Ler background,

whereas the other mutants were in the Col background. The temperature regulated

gene list was also generated in Ler.

The results show that in one experiment, the DNA methylation mutant ago4-1 was

compromised in its ability to induce dormancy in response to low temperature during

maturation (Figure 3.21A, B). However, when this experiment was repeated, the results

suggested that normal dormancy levels were induced in the ago4-1 seeds matured at

15°C and 17°C (Figure 3.22). Interestingly, ago4-1 mutants displayed the opposite

phenotype when matured at warm temperatures, whereby higher levels of dormancy

were induced in comparison to wild-type. Therefore, it appears that this experiment

must be repeated to determine whether or not ago4-1 mutants do have a role in
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regulating dormancy. Based on the current evidence available, it appears that DNA

methylation does not appear to be the mechanism used in Arabidopsis for inducing

dormancy in response to low temperature.

AGO4 is required for the initiation of CG methylation and gene silencing (Chan et al.,

2004), and so levels of methylation are reduced in ago4 mutants. A reduction in DNA

methylation has been linked to dormancy loss in potato (Solanum tuberosum L.);

whereby transient decreases in methylation at 5-CCGG-3 sequences during

progression of tubers through dormancy precede the resumption of sprout growth (Law

and Suttle, 2003). This decrease in DNA methylation may contribute to the permanent

increase in transcription rates that occurs after fifty days of post-harvest storage,

although other mechanisms must be involved in the regulation of transcription (Law and

Suttle, 2003).

The Polycomb repressive complex 2 (PRC2) catalyses trimethylation of lysine twenty

seven on histone H3 (H3k27me3). A mutation to the PRC2 component FIE, leads to

enhanced dormancy and this could be due an upregulation of DOG1 expression

(Bouyer et al., 2011). DOG1 was identified as an H3k27me3 target in this study,

suggesting that its expression may be regulated by this repressive chromatin mark

(Bouyer et al., 2011). As transcription of DOG1 decreases from the transition from

dormancy to germination, there is a dynamic switch from the predominant presence of

trimethylation of lysine four on histone H3 (H3k4me3) to the repressive H3k27me3

modification (Muller et al., 2012).

Therefore, evidence is present in the literature to suggest that chromatin remodelling

and DNA methylation could be important regulators of dormancy induction and
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maintenance in response to temperature. It would be interesting to determine whether

the levels of H3k4me3 and H3k27me3 at DOG1 chromatin differ with maturation

temperature. It may be hypothesised that low maturation temperatures may decrease

the levels of H3k27me3, thus leading to an increase in transcription of DOG1. Of

course the deposition of H3k27me3 is unlikely to be the only histone modification that is

involved in regulating DOG1 transcription. Therefore, it would be useful to analyse

other chromatin markers during seed dormancy and germination.

3.3.4 Conclusions

Taken together the results in this chapter have provided a thorough characterisation of

the effect of maturation temperature on the dormancy levels induced. ABA and GA

levels are temperature regulated in dry seeds and this correlates to changes in

expression of genes associated with metabolism of these hormones. Functional

expression of DOG1, DELLA and RDO4 has been shown to be required for the

induction of high dormancy levels in response to low temperature. A role for chromatin

remodelling and DNA methylation in regulating dormancy in response to temperature

has been investigated, and the evidence presented in this chapter suggests that the

involvement is limited.
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Chapter 4 The role of CBFs in temperature
regulation of seed dormancy

4.1 Introduction

The results presented in chapter three show that reducing seed maturation temperature

leads to an increase in the dormancy levels that are induced (Figure 3.2). The results

showed that the regulation of ABA and GA metabolism is an important part of the

mechanism that regulates the promotion of dormancy by low temperature (Figure 3.16).

To establish additional components of the pathway by which low temperature promotes

dormancy during seed maturation the analysis of dormancy phenotypes was extended

further.

Expression of the three C-REPEAT BINDING FACTORS (CBFs) is promoted in a

transient manner in response to low temperature in vegetative tissues (Gilmour et al.,

1998) and, therefore, it is possible that CBFs may also have a role in temperature

signalling in the seed. Similarities between the way in which cold acclimation and seed

dormancy are regulated prompted the investigation as to whether CBF-dependent

pathways have a role in low temperature regulation of dormancy levels. Firstly, the

expression of the three CBFs is inducible by ABA (Knight et al., 2004), which is a key

regulator of dormancy and germination. Additionally, the CBFs are also involved in the

regulation of GA metabolism, and overexpression of CBF1 leads to an increase in

GA2ox3 expression and a decrease in bioactive GA levels (Achard et al., 2008).

Finally, both dormancy and the expression of the CBFs are regulated by the circadian

clock (Fowler et al., 2005, Penfield and Hall, 2009).
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The analysis of available microarray data using the eFP browser (Bassel et al., 2008)

revealed that CBFs are expressed to relatively high levels during seed maturation

(Figure 4.1) and so potentially could be involved in regulating dormancy induction.

Figure 4.1: Expression of CBFs during seed development.
Created using publicly available data from the eFP browser (Bassel et al., 2008). Seed
stage numbers represent torpedo (3) through to green cotyledon (10) stage seeds.
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4.2 Results

4.2.1 Characterisation of dormancy phenotypes of
CBF-deficient seeds

The results presented in chapter three showed that by decreasing the temperature

during seed maturation the dormancy levels that are induced increase (Figure 3.2). To

investigate whether CBF-dependent pathways are involved in regulating the dormancy

response to temperature, loss-of-function lines were subjected to different seed

maturation temperatures. The CBF loss-of-function lines that were used to investigate

this were CBF1 and CBF3 RNAi lines and a cbf2 mutant (Novillo et al., 2004, Novillo et

al., 2007). When matured at 20°C, no differences in dormancy levels were apparent

between the CBF loss-of-function and wild-type seeds (Figure 4.2A). However, when

the maturation temperature was reduced to 15°C, high primary dormancy levels were

initially present in all CBF-deficient lines, which was similar to wild-type (Figure 4.2B).

When seeds were treated with cold stratification, a significant increase in germination

was observed in the CBF-deficient lines; whereas cold stratification had little effect on

the germination of wild-type. This suggests that lower levels of dormancy were induced

in the CBF-deficient seeds. When the maturation temperature was reduced further to

10°C, strong primary dormancy was induced in both wild-type and the CBF loss-of-

function seeds, and cold stratification had little effect on increasing the germination

(Figure 4.2C). Together these results show that CBFs are required for the induction of

normal levels of dormancy (i.e. the dormancy levels required when seeds are matured

at 15°C); however a CBF-independent mechanism must be required for the induction of

stronger levels of dormancy, which are induced by lower temperatures as the CBF-

deficient seeds showed similar levels of dormancy to wild-type.
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Figure 4.2: Germination of CBF-deficient seeds.
Freshly harvested seeds matured at 20°C (A), 15°C (B) and 10°C (C) were cold
stratified for up to three days. Germination was scored as radical protrusion following
seven days at 22°C in twelve hour white light/dark cycles. Data points are the average
of five individual seed batches and error bars represent standard error.

4.2.2 Transcriptional analysis in CBF-deficient seeds

To investigate whether the inability of CBF-deficient seeds to enter dormancy when

matured at low temperature was coupled with changes in the expression of genes

shown to be important for dormancy regulation, Real-Time PCR was used. Gene

expression was analysed in wild-type seeds matured at 20 °C or 10°C and CBF-

deficient seeds that were matured at 10°C. Previous results (Figure 3.16) showed that

the expression of GA2ox6, DOG1 and NCED4 was upregulated and the expression of

CYP707A2 was downregulated in wild-type seeds matured at low temperature. These

alterations to the expression of genes associated with hormone metabolism by

maturation temperature in wild-type seeds could be confirmed here (Figure 4.3).
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Figure 4.3: Expression of dormancy regulating genes in CBF-deficient seeds.
Expression was measured in freshly harvested dry seeds matured at 20°C and 10°C.
Expression of DOG1 (A), GA2ox6 (B), GA2ox2 (C), CYP707A2 (D), NCED4 (E) and
GA2ox3 (F) is shown. Data points are the average of two biological replicates and
expression is normalised to the average of two control genes ACTIN2 and AT3G06240.
Error bars represent standard error.

The expression of DOG1 was downregulated in the CBF RNAi seeds in comparison to

wild-type matured at 10°C (Figure 4.3A); however expression was unaltered in cbf2
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CBF-deficient seeds. There was a slight decrease in expression of CYP707A2 and

NCED4 in the CBF-deficient seeds in comparison to wild-type (Figure 4.3D, E). The

expression of GA2ox3 was analysed as this had been shown to be upregulated in

seedlings overexpressing CBF1 (Achard et al., 2008). Expression of GA2ox3 was not

altered by maturation temperature in wild-type however, there appeared to be

increased levels of expression of GA2ox3 in cbf2 and CBF3 RNAi seeds in comparison

to wild-type (Figure 4.3F). Therefore, the decreased expression of DOG1 and GA2ox6

could be important for the reduced dormancy phenotype of the CBF-deficient seeds.

Conversely alterations in the expression of genes associated with ABA metabolism are

much smaller in the CBF-deficient seeds, suggesting that alterations to ABA levels may

be less important.

4.2.3 Measurement of ABA and GA levels in CBF-
deficient seeds

The expression of GA2ox6 was found to be decreased in the CBF-deficient seeds

(Figure 4.3B). Therefore, to determine whether the altered expression of GA2ox6

resulted in different levels of GA, comparisons of endogenous GA levels were made

between CBF-deficient and wild-type seeds. Results presented in chapter three have

shown that ABA and GA levels are altered by maturation temperature and the ratio

between these hormones correlates with dormancy levels (i.e. high ABA and low GA in

seeds with low dormancy) (Figure 3.7). ABA levels were measured in the CBF-deficient

seeds and the results show that ABA levels were elevated in the three CBF-deficient

lines in comparison to wild-type. Specifically, CBF1 RNAi and CBF3 RNAi seeds

contained approximately three times the amount of ABA in comparison to wild-type,

which was significantly higher, whereas ABA levels were approximately double in cbf2

mutant seeds in comparison to wild-type (Figure 4.4A). When the CBF-deficient seeds
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were matured at 10°C, GA levels in the CBF1 RNAi and CBF3 RNAi seeds were very

similar to wild-type, whilst cbf2 mutant seeds contained significantly higher levels of GA

(Figure 4.4B). Therefore, the results show that ABA levels are increased in CBF1 and

CBF3 RNAi seeds, whilst GA levels are unaltered. In contrast, both ABA and GA levels

are increased in the cbf2 mutant. It is of course possible that levels of ABA and GA may

be different in CBF-deficient developing seeds in comparison to dry seeds, which could

be important if the CBFs are acting during seed development to regulate dormancy.

Figure 4.4: Measurements of ABA and GA levels in CBF-deficient seeds.
Measurements of ABA (A) and GA (B) were made in freshly harvested seeds matured
at 10°C. Data points represent the mean of measurements from five seed batches from
individual plants and error bars represent standard error. * Indicates significant
difference to wild-type when P≤0.05 by students t-test.

4.2.4 Characterisation of dormancy phenotypes of
CBF-overexpressing seeds

To analyse the role of the CBFs in regulating the effect of temperature on seed

dormancy further, the dormancy of CBF-overexpressing seeds was analysed. Seeds

overexpressing each of the CBFs in the WS background under the control of the CaMV

35S promoter were used for this analysis (Jaglo-Ottosen et al., 1998, Gilmour et al.,
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2000). The overexpression of the CBFs led to an increase in dormancy levels in

comparison to wild-type when seeds were matured at 20°C and this dormancy

phenotype persisted following cold stratification (Figure 4.5). The effect of cold

stratification on the promotion of germination was considerably stronger for CBF1-

overexpressing seeds than for CBF2 or CBF3-overexpressing seeds, which showed

significantly higher levels of dormancy than WS (Figure 4.5).

Figure 4.5: Germination of CBF-overexpressing seeds in response to cold
stratification.
Freshly harvested seeds matured at 20°C were cold stratified for up to three days.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points are the average of five individual seed batches
and error bars represent standard error.
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temperature could not be tested since plants grew very poorly and produced very little

seed under these conditions. These results show that the seeds overexpressing the

CBFs display the opposite dormancy phenotype to the CBF-deficient seeds and that

CBF transcripts are necessary for and sufficient to induce increased dormancy.

Figure 4.6: Germination of CBF-overexpressing seeds in response to after-
ripening.
Seeds matured at 20°C were after-ripened for up to six weeks. Germination was scored
as radical protrusion following seven days at 22°C in twelve hour white light/dark
cycles. Data points are the average of five individual seed batches and error bars
represent standard error.
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at 20°C, was analysed in response to exogenous GA, NOR, GA and NOR or a control

(methanol). Germination of seeds overexpressing the three CBFs was low in

comparison to wild-type when germinated on control plates (Figure 4.7). The increased

dormancy of the CBF-overexpressing seeds could be rescued by the addition of

exogenous GA, but not by the addition of NOR, an ABA biosynthesis inhibitor. An

exception to this is the germination of CBF1-overexpressing seeds, which require both

exogenous GA and NOR to obtain wild-type levels of germination. CBF1-

overexpressing seeds respond differently to cold stratification in comparison to CBF2

and CBF3-overexpressing seeds (Figure 4.5) and this may explain the different

response to GA. This result suggests that GA is sufficient to increase the germination of

the CBF-overexpressing seeds. Since NOR alone was unable to significantly increase

the germination, it seems that the misregulation of GA levels is likely to be the

predominant cause of the high dormancy phenotype.
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Figure 4.7: Germination of CBF-overexpressing seeds in response to exogenous
GA and NOR.
Germination of seeds matured at 20°C in response to control conditions (100µM
methanol) or applied GA (100µM), NOR (50µM) or both (GA + NOR). Seeds were cold
stratified for three days before being transferred to 22°C in twelve hour white light/dark
cycles for seven days. Data points are the average of five individual seed batches and
error bars represent standard error. * Indicates significant difference to wild-type when
P≤0.05 by students t-test.

4.2.6 Transcriptional analysis in CBF-overexpressing
seeds

To further establish the reason why CBF-overexpressing seeds displayed increased
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dry seeds that were matured at 20°C using Real-Time PCR. This analysis focussed on

genes found to be misregulated in the CBF loss-of-function seeds and those known to
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deficient seeds show a decrease in expression of DOG1 and GA2ox6 (Figure 4.3A,B),

this experiment tested the hypothesis that CBF-overexpressing seeds are more
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However, the results show that generally no increases in DOG1 and GA2ox6

expression were observed in the CBF-overexpressing seeds, which is the opposite to

what is observed in CBF-deficient seeds and, therefore, does not support the original

hypothesis (Figure 4.8A,B). There is an increase in DOG1 expression in CBF1-

overexpressing seeds (Figure 4.8A). However, a decrease in DOG1 expression is

present in CBF2 and CBF3-overexpressing seeds (Figure 4.8A). Seeds overexpressing

each of the three CBFs show a decrease in expression of GA2ox6 (Figure 4.6B).

However, there was an increase in expression of GA2ox2 in CBF-overexpressing

seeds (Figure 4.6C). In terms of expression of genes associated with ABA metabolism,

the expression of CYP707A2 appeared to be higher in CBF1-overexpressing seeds in

comparison to wild-type, whereas expression was lower in CBF2 and CBF3-

overexpressing seeds when compared to wild-type (Figure 4.8D). The expression

levels of NCED4 in CBF-overexpressing seeds was found to be very similar to wild-type

(Figure 4.8E). The upregulation of GA2ox3 expression that is observed in CBF1

overexpressing vegetative tissue (Achard et al., 2008) is also seen in dry seeds (Figure

4.8F). In contrast to CBF-overexpressing seeds, a decrease in expression of GA2ox3 in

the CBF-deficient seeds was not observed (Figure 4.3). Since the expression of DOG1,

GA2OX6, GA2OX2, CYP707A2 and NCED4 shows a large amount of variability

between the different CBF-overexpressing seeds, it is unlikely that their expression

levels are important for the increased dormancy phenotype. However, GA2OX3 is

upregulated in all CBF-overexpressing seeds, and so may be important for the

increased dormancy phenotype.
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Figure 4.8: Expression of dormancy regulating genes in CBF-overexpressing
seeds.
Expression was measured in freshly harvested dry seeds matured at 20°C. Expression
of DOG1 (A), GA2ox6 (B), GA2ox2 (C), CYP707A2 (D), NCED4 (E) and GA2ox3 (F) is
shown. Data points are the average of two biological replicates and expression is
normalised to the average of two control genes ACTIN2 and AT3G06240. Error bars
represent standard error.
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loss-and gain-of-function seeds it appears that dormancy is affected through two

distinct pathways.

4.2.7 Measurement of GA and ABA levels in CBF-
overexpressing seeds

Bioactive GA levels in vegetative tissues have been shown to be lower in plants

overexpressing CBF1 in comparison to wild-type (Achard et al., 2008). Since the

increased dormancy phenotype of CBF-overexpressing seeds can be rescued by

exogenous application of GA (Figure 4.7), levels of ABA and GA were measured to

determine whether or not levels of these hormones were altered in comparison to wild-

type. Levels of ABA were found to be generally similar to wild-type for CBF2 and CBF3-

overexpressing seeds (Figure 4.9A). In contrast, CBF1-overexpressing seeds contain

significantly higher levels of ABA when compared to wild-type. Surprising, very little

difference in levels of GA was found between wild-type and the CBF1 and CBF2-

overexpressing seeds (Figure 4.9B). Levels of GA were higher in CBF3-overexpressing

seeds, although this difference was not significant (Figure 4.9B). This was surprising

since expression of GA2ox3 is upregulated in CBF-overexpressing seeds (Figure 4.8F),

suggesting that other pathways in addition to the regulation by GA2ox3 must be

involved in controlling GA levels in these seeds. Therefore, these results show that the

high dormancy phenotype of the CBF-overexpressing seeds cannot be attributed to

altered endogenous levels of GA and ABA in dry seeds because GA is either not

different or backwards from what was predicted and ABA levels were not different or

not different enough to be responsible for the altered dormancy levels.
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Figure 4.9: Measurements of ABA and GA levels in CBF-overexpressing seeds.
Measurements of ABA (A) and GA (B) were made in freshly harvested dry seeds
matured at 20°C. Data points represent the mean of measurements from five seed
batches from individual plants and error bars represent standard error. * Indicates
significant difference to wild-type when P≤0.05 by students t-test.

4.2.8 CBF1 and COR15b expression is not
temperature regulated in seeds

CBF expression has been shown to be upregulated transiently by exposure to low

temperature in vegetative tissues (Gilmour et al., 1998). To understand if CBF

expression is temperature regulated in seeds, CBF1 expression was determined using

a time-course experiment in which developing seeds (green cotyledon stage), twenty
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4°C in seedlings (Figure 4.10A). Expression of CBF1 was extremely low in imbibed

seeds and cold had no effect on promoting transcript abundance.

Figure 4.10: Expression of CBF1 and COR15b in response to low temperature.
Expression of CBF1 (A) and COR15b (B) in response to a sudden cold shock at 4°C in
seedlings, imbibed seeds and developing seeds. Data points are the average of two
biological replicates and expression is normalised to the average of two control genes
TUBULIN9 and AT3G06240. Error bars represent standard error.

The expression of COR15b, a CBF target gene, was also analysed and the increase in

expression that was observed in seedlings was similar to the expression pattern of

CBF1 (Figure 4.10B). Low temperature did not increase expression of COR15b in

imbibed seeds and this is consistent with the low levels of expression of CBF1 (Figure

4.10B). There was a small increase in COR15b expression following three hours at 4°C

in developing seeds, but again levels were much lower than those observed in

seedlings (Figure 4.10B). Therefore, the results show that expression of CBF1 and

COR15b is not temperature regulated in imbibed or developing seeds.

4.2.9 Measurement of fatty acid levels

It is well documented that changes in temperature can lead to alterations to the fatty

acid composition within the plant (Wallis and Browse, 2002, Falcone et al., 2004).
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Higher temperatures lead to increases in saturated and monounsaturated fatty acids,

whilst low temperature promotes the increase in polyunsaturated fatty acids (Wallis and

Browse, 2002, Falcone et al., 2004). Therefore, to investigate the potential effect of

temperature during seed maturation on the fatty acid composition of dry seeds, the fatty

acid profiles of Col and WS, along with CBF3-overexpressing and CBF1 RNAi seeds

that were matured at 22°C and 15°C, were analysed using ultraperformance liquid

chromatography (UPLC)–mass spectrometry. For all of the genotypes tested, the total

fatty acid levels were higher in seeds matured at 15°C in comparison to 22°C, however

this difference was insignificant in the CBF3-overexpressing seeds (Figure 4.11).

Figure 4.11: Measurement of total fatty acid levels.
Measurements were made in freshly harvested dry seeds matured at 22°C or 15°C.
Data points represent the mean of measurements from five seed batches from
individual plants and error bars represent standard error. * Indicates significant
difference to 22°C when P≤0.05 by students t-test.
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To understand the nature of these increases in fatty acid content in low temperature

matured seeds the fatty acid composition profiles were analysed in more detail. The

fatty acid profiles for WS (Figure 4.12A) and Col (Figure 4.12C) seeds which were

matured at 22°C and 15°C were very similar. Significant increases 18:2n6c, 18:3n3 and

20:1n9 were present in wild-type seeds matured at low temperature in comparison to

seeds matured at warm temperature (Figure 4.12A, C). These major changes were

also present in CBF1 RNAi seeds (Figure 4.12D), whereas the increases in 18:2n6c,

18:3n3 and 20:1n9 were smaller in CBF3-overexpressing seeds (Figure 4.12B).

Figure 4.12: Fatty Acid compositions of seeds.
Measurements were made in freshly harvested dry WS (A), CBF3-overexpressing (B),
Col (C) and CBF1 RNAi (D) seeds matured at 22°C or 15°C. Data points represent the
mean of measurements from five seed batches from individual plants and error bars
represent standard error. * Indicates significant difference to 22°C when P≤0.05 by
students t-test.
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Regulation of levels of 18:1n9c appears to be temperature independent in Col and WS,

whereas a significant increase in levels in CBF1 RNAi seeds and a significant decrease

in CBF3-overexpressing seeds at the cool maturation temperature is observed (Figure

4.13). These changes stem from CBF3-overexpressing and CBF1 RNAi seeds having

significantly higher and lower levels of 18:1n9c respectively when matured at 22°C

compared to the wild-type. This suggests that the CBF1 and CBF3 could be important

regulators of 18:1n9c levels in seeds.
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Figure 4.13: Measurement of 18:1n9c levels.
Measurements were made in freshly harvested dry seeds matured at 22°C or 15°C.
Data points represent the mean of measurements from five seed batches from
individual plants and error bars represent standard error. * Indicates significant
difference to 22°C when P≤0.05 by students t-test.
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were matured at 20°C (Figure 4.14). When seeds were matured at 10°C, dormancy

was induced in the ice1-2 seeds, although this dormancy was alleviated significantly

faster than wild-type by cold stratification. The dormancy phenotype of ice1-2 seeds

matured at 10°C was similar to that displayed by the CBF-deficient seeds (Figure 4.2).

This result suggests that ICE1 could play a role in regulating dormancy levels, which

could be independent of the CBFs.

Figure 4.14: Germination of ice1-2 seeds.
Freshly harvested seeds matured at 20°C or 10°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.
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4.3 Discussion

4.3.1 CBFs are not involved in temperature regulation
of dormancy

In this chapter the dormancy phenotypes of CBF loss-and gain-of-function seeds and

ice1-2 mutant seeds have been analysed. The results show that there is a requirement

for CBF expression to induce high dormancy levels in response to low temperature

(15°C) (Figure 4.2). However, when this temperature was reduced to 10°C, high

dormancy levels could be induced in CBF-deficient lines, suggesting CBF-independent

mechanisms are also involved. Additionally, no increase in expression of CBF1 was

observed in response to low temperature in developing seeds (Figure 4.10A).

As described in section 1.1.2, post-translational regulation is important for correct

employment of the cold acclimation pathway. Although not characterised in vegetative

tissues, it is possible that mechanisms of post-transcriptional regulation such as

alternative splicing, RNA processing and RNA silencing and post-translational control

based on phosphorylation, ubiquitination and sumoylation which modify activity, sub

cellular localisation and stability of proteins may be important for controlling the effect of

CBFs in seeds. Therefore, although CBF expression is unaltered by temperature in

seeds, temperature may still be involved in regulating CBFs in seeds.

The dormancy phenotype of ice1-2 mutant seeds which were matured at 10°C was

analysed and this mutant showed a dormancy phenotype which was similar to the CBF-

deficient dormancy phenotype of seeds matured at 15°C (Figure 4.14). This result

suggests that ICE1 may have a role in regulating dormancy that is independent of the

CBFs. The fact that the three CBFs could be acting redundantly cannot be ruled out

and analysis of the triple mutant would be required to determine this. The creation of
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this triple mutant would be difficult given that the three CBFs are tandemly linked in a

10kb region of chromosome four.

There is a large number of additional components of the cold acclimation pathway

(MYB15, SIZ1, ZAT10, ZAT12 and LOS2) (Section 1.1.3) whose dormancy levels have

not been analysed but could potentially be important regulators of this pathway. An

analysis of microarray data using the eFP browser (Bassel et al., 2008) shows that

ZAT10, ZAT12 and LOS2 are expressed during seed development and expression of

ZAT10 peaks during seed maturation (the time at which dormancy is being induced)

(Figure 4.15). In contrast SIZ1 and MYB15 are not expressed to high levels during seed

development, although it is noteworthy that SIZ1 expression does peak in dry seeds.

The plants for these experiments were grown at 23°C and so it is possible that the

expression patterns could be very different when plants are grown at lower

temperatures. However, the results presented in this chapter show that the expression

of CBF1 is not upregulated in developing seeds matured at low temperature, thus

suggesting prolonged cool temperatures do not lead to an increase in CBF transcripts.

Therefore, it is also possible that these cold acclimation components may not be

regulated by temperature in seeds.
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Figure 4.15: Expression of genes involved in cold acclimation in developing
seeds.
Expression of MYB15, SIZ1, ZAT10, ZAT12 and LOS2. Created using publicly
available data from the eFP browser (Bassel et al., 2008). Seed stage numbers
represent torpedo (3) through to green cotyledon (10) stage seeds.
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Additionally, the dormancy phenotypes of cor mutants in response to different

maturation temperatures could also be tested to determine if they had a role in

regulating dormancy in response to temperature. Expression of COR15a, COR15b and

COR47 in seeds is not high in comparison to other areas of the plant (Figure 4.16). In

contrast, expression of COR78 is relatively high in walking stick stage seeds.

Therefore, there are a number of cold acclimation pathway mutants whose dormancy

phenotypes could be analysed in the future to potentially increase the understanding of

the way in which temperature regulates dormancy.

Figure 4.16: Expression of COR genes in developing seeds.
Expression of COR15A, COR15B, COR47 and COR78. Created using publicly
available data from the eFP browser (Bassel et al., 2008). Seed stage numbers
represent torpedo (3) through to green cotyledon (10) stage seeds.
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4.3.2 CBF expression is not promoted by low
temperature in imbibed seeds

CBF expression has been shown to increase transiently in response to low temperature

in vegetative tissues (Gilmour et al., 1998, Liu et al., 1998). Exposure of imbibed seeds

to cold stratification breaks dormancy and, therefore, promotes germination in

Arabidopsis. Given that CBF-overexpression leads to an increase in dormancy levels

(Figure 4.5), it was not surprising that the expression of CBF1 in imbibed seeds did not

increase in response to low temperature. For this reason, the upregulation of CBF1

expression in response to cold must be different in seedlings than the regulation that

occurs in seeds. Although it has been shown that overexpression of CBF1 in vegetative

tissues leads to a decrease in bioactive GA levels (Achard et al., 2008), no decrease in

GA levels was observed in freshly harvested dry seeds (Figure 4.9B). However, it could

be possible that the overexpression of CBFs could lead to a decrease in GA levels in

imbibed seeds, which was not measured in this study.

Therefore, it may be hypothesised that the repression of CBF expression in imbibed

seeds is required for the promotion of germination by cold stratification, which requires

an increase in GA levels (Yamauchi et al., 2004). This leads to the proposal that a seed

specific repressor must be involved in preventing CBF expression in response to low

temperature during seed imbibition. Perhaps the partial repression of CBF expression

in response to cold during seed development represents the initial steps of this

mechanism.

In contrast to Arabidopsis, the germination and establishment of seeds of some

species, such as maize and soybean is chilling sensitive (Guan et al., 2009).

Homologues of the Arabidopsis CBFs have been isolated in maize. The expression of
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ZmDREB1A, ZmCBF3 and ZmDBP3 is upregulated in response to low temperature

(Qin et al., 2004, Wang et al., 2008, Wang and Dong, 2009). ZmDREB1A and ZmCBF3

encode the same protein however they have different 3’ Untranslated Regions (UTRs)

(Wang et al., 2008). ZmCBF3, like the Arabidopsis CBFs is expressed throughout seed

development, peaking at twenty three days post pollination (Wang et al., 2008).

Additionally, CBF homologues have been isolated in soybean and their expression is

also induced by low temperature (Li et al., 2005, Chen et al., 2009). It would be

interesting to determine whether expression of these CBF homologues in response to

low temperature differs in maize seeds from Arabidopsis seeds; i.e. are the CBF

homologues upregulated in response to low temperature in imbibed seeds and could

this upregulation explain why the germination is chilling sensitive in these seeds?

Understanding how low temperature represses germination in these species will be

important for future improvements in crop establishment.

4.3.3 ABA and GA levels do not correlate with
dormancy levels in CBF-deficient and
overexpressing seeds

GA and ABA levels were measured in CBF-deficient seeds and the results show that

GA levels are unchanged in the CBF1 and CBF3 RNAi seeds, whilst levels are

elevated in cbf2 mutant seeds (Figure 4.4B, 4.9B). The increased level of GA in cbf2

seeds is coupled with reduced expression of GA2ox6, a GA catabolic enzyme, in

comparison to wild-type (Figure 4.3B). However, expression of GA2ox6 and GA2ox2

was also reduced in CBF1 and CBF3 RNAi seeds in comparison to wild-type (Figure

4.3B, C). Therefore, another level of regulation must be important for controlling GA

levels in addition to GA2ox expression and subsequent catabolism of GA. It is possible

that there is a decrease in DELLA protein levels via the ubiquitin-proteasome pathway
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in response to the increased GA levels in the cbf2 mutant, and so this may in turn effect

the expression of additional GA metabolic genes which are regulated by DELLAs. It

would be useful to characterise expression of the DELLA genes and determine DELLA

protein levels in the cbf mutant seeds.

ABA levels are also elevated in the CBF-deficient seeds (Figure 4.4A), which is

surprising given their reduced dormancy phenotype and the fact that there are only

small changes to expression of CYP707A2 and NCED4 in these seeds (Figure 4.3D,

E). It is interesting that the expression of both NCED4 and CYP707A2 is slightly

downregulated in the CBF-deficient seeds, since these genes contribute to opposite

regulation of ABA levels. NCED4 promotes ABA synthesis, whilst CYP707A2 promotes

ABA catabolism.

However, as mentioned earlier, the dormancy phenotype of the CBF-deficient seeds

that were matured at 10°C was not as strong as when the seeds were matured at 15°C

(Figure 4.2). The dormancy phenotypes at 15°C and 10°C were observed in three

independent experiments and are therefore, robust phenotypes, accurately

representing the biology. The transcript and hormone measurements were carried out

on seeds matured at 10°C and as a consequence these experiments may have been

more informative if the seeds had been matured at 15°C. When seeds were matured at

10°C, only cbf2 mutant seeds germinated to higher levels than wild-type, and so it may

be unsurprising that levels of ABA are elevated in comparison to wild-type (Figure

4.4A). One would predict that if this analysis was repeated with seeds that were

matured at 15°C, ABA levels would be reduced in comparison to what is observed in

CBF-deficient seeds matured at 10°C. This may also explain why differences in

transcription of genes known to be involved in dormancy are not observed in the CBF-
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deficient seeds that were matured at 10°C. It is also possible that the dry seed stage

which was selected for the hormone measurements and transcriptional analysis was

the incorrect stage and so, if the analysis was repeated on developing seeds, more

information may be gained.

ABA and GA levels were also measured in the CBF-overexpressing seeds, and

although these seeds display the opposite dormancy phenotype to the CBF-deficient

seeds (Figure 4.5), the opposite levels of these hormones was not observed (Figure

4.9). However, it is possible that if ABA and GA measurements had been made in

imbibed seeds then levels may have correlated with the dormancy levels that are

observed. CBF-overexpressing seeds also displayed elevated levels of ABA and this

was surprisingly coupled with an increase in expression of CYP707A2 (Figure 4.8D)

and no change in expression of NCED4 (Figure 4.8E). Therefore, the alteration in

expression of CYP707A2 in the CBF-overexpressing seeds would be predicted to lead

to a decrease in ABA levels, which is the opposite to what is observed.

The expression of NCED4 and CYP707A2 does not appear to correlate with the

dormancy levels which are induced in CBF-overexpressing seeds and the increase in

ABA levels. However, it is possible that a range of post-transcriptional and post-

translational mechanisms could also be important for modulating NCED4 and

CYP707A2 protein abundance and function. The regulation of ABA metabolism has

been studied mostly at the transcriptional level (Nambara and Marion-Poll 2005),

although mechanisms of post-transcriptional and post-translational regulation have

been identified. Genetic analysis of the supersensitive to ABA and drought1 (sad1)

mutant indicated that ABA biosynthesis is controlled at the level of mRNA stability

(Xiong et al., 2001, Nambara and Marion-Poll 2005). SAD1 encodes a peptide which is
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required for mRNA processing (Xiong et al., 2001). At the post-translational level, ABI5

protein accumulation, phosphorylation, stability and activity is regulated by ABA during

germination (Lopez-Molina et al., 2001).

Levels of GA2ox3 expression were upregulated in CBF-overexpressing seeds,

although there was no difference in GA levels for CBF1 and CBF2-overexpressing

seeds and an increase in GA levels in CBF3-overexpressing seeds (Figure 4.8F, 4.9B).

Therefore, the regulation of GA2ox3 expression is not important for the regulation of

GA levels in CBF-overexpressing dry seeds. The expression of GA2ox6 was reduced in

CBF-overexpressing seeds in comparison to wild-type; whilst the expression of GA2ox2

was slightly upregulated in the CBF-overexpressing seeds in comparison to wild-type

(Figure 48B, 4.8C). Again, the post-translational regulation of DELLA proteins by the

ubiquitin-proteasome pathway could play a role in controlling GA metabolic gene

expression, and alterations to some of the genes tested here could be a result of

altered DELLA protein levels.

Therefore, it appears that the regulation of ABA and GA levels in the CBF-deficient and

overexpressing seeds by genes involved in hormone metabolism is complex, and

suggests that post-transcriptional and post-translational mechanisms could also be

important. The levels of ABA and GA in the CBF-deficient and overexpressing seeds do

not correlate with the dormancy levels, suggesting that hormone independent pathways

will also be important for the regulation of dormancy.
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4.3.4 Fatty acid composition is altered by maturation
temperature

The results presented in this chapter have shown that the fatty acid composition of

seeds is altered when the maturation temperature is reduced from 22°C to 15°C (Figure

4.12, 4.13). There were a number of changes to the amounts of individual fatty acids in

response to maturation temperature in wild-type seeds (Figure 4.13A, C). However, a

number of these changes to individual fatty acid levels were altered in the CBF3-

overexpressing and CBF1 RNAi seeds (Figure 4.13B, D). Although levels of 18:1n9C

remained similar between the two maturation temperatures for wild-type seeds, levels

of this fatty acid were altered in the CBF loss-and-gain-of-function seeds (Figure 4.13).

A decrease in oleic acid (18.1) in response to a reduction in temperature has been

described in soybean (Lanna et al., 2005). Increases in polyunsaturated fatty acids

(PUFAs) have been linked with decreases in temperature in soybean, rape and

sunflower (Werteker et al., 2010). In the Werteker et al (2010) study, a link is made

between changes in linolenic acid (18.3) levels and temperature and this link is stronger

in rape than in soybean, which they suggest explains why rape is better adapted to cold

climates than soybean. In contrast, the results presented in this chapter show the

opposite, in that levels of linolenic acid increase with a reduction in temperature.

It is possible that seeds which have higher dormancy levels may require increased

storage reserves and so this may explain why total fatty acid levels increase in seeds

matured at low temperature (Figure 4.11). Long chain fatty acids have been shown to

be inducible by ABA in Brassica napus (Finkelstein and Somerville, 1989). Results

shown in chapter three demonstrate that ABA levels are higher in seeds matured at low

temperature (Figure 3.7A) and, therefore, this could represent an important mechanism

for increasing fatty acid levels in the seed.
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Microarray studies investigating the low temperature transcriptome in seeds showed

that FATTY ACID DESATURASE3 (FAD3) is upregulated in seeds matured at low

temperature in comparison to warm temperature (Kendall et al., 2011). FAD3 is a

desaturase that converts linoleic acid to linolenic acid by inserting a double bond at the

ω-3 position (Zhang et al., 2012). Results in this chapter show that levels of linolenic

acid (18:3n3) are higher in low temperature matured seeds, but this was not coupled

with a decrease in the levels of the precursor, linoleic acid (18.2n6c) (Figure 4.12). As a

consequence, it may be that the increase in FAD3 expression at low temperatures is

responsible for the increased conversion of linoleic acid to linolenic acid observed and

that the increased linolenic acid is important for the altered dormancy. It would be

interesting to test this hypothesis by analysing the dormancy levels of fad3 loss-of-

function mutants. Levels of eicosenoic acid (20:1n9), which is the major storage form of

triglyceride, were higher in wild-type seeds which were matured at low temperature

(Figure 4.12). Interestingly, abi3 mutants have reduced levels of eicosenoic acid

(Finkelstein and Somerville, 1990), yet ABI3 is downregulated in low temperature

matured seeds (Kendall et al., 2011), thus suggesting that ABI3 cannot be responsible

for the increased in eicosenoic acid levels observed here.

4.3.5 Conclusions

The results discussed in this chapter contribute to the understanding of how low

temperature during seed maturation contributes to increasing dormancy levels.

Functional expression of the CBFs is required for the induction of normal dormancy

levels, but when the maturation temperature is dropped considerably, a CBF-

independent mechanism is also involved. The transcriptional analysis in CBF-loss and

gain-of function seeds suggests that although they have opposite dormancy
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phenotypes, the processes that are controlling these differences are caused by

different pathways. The results also suggest that an increase in storage reserves may

be another consequence of reduced maturation temperature, and that the CBFs may

have a role in regulating the fatty acid composition of the seed.
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Chapter 5 The role of HOS1 in temperature
regulation of seed dormancy

5.1 Introduction

Strong dormancy levels could be induced in CBF-deficient seeds matured at 10°C

(Figure 4.2), and so the search for cold acclimation pathway components that have a

role in the regulation of dormancy by temperature was extended. This chapter will focus

on the characterisation of the dormancy phenotype of hos1 mutants in response to

different maturation temperatures and experiments designed to understand the

mechanism by which HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1

(HOS1) regulates dormancy. The hos1 mutant was selected for investigation based on

its involvement in temperature signalling and the regulation of flowering time. The role

of HOS1 in these processes and additional evidence suggesting that HOS1 may act

within the nuclear pore complex (NPC) will be discussed in this introduction.

HOS1 is an E3 ligase that targets ICE1, the positive regulator of CBF3 expression for

ubiquitination and is consequently, a negative regulator or cold acclimation (Figure 5.1)

(Lee et al., 2001, Chinnusamy et al., 2003, Dong et al., 2006a). hos1 mutants show

elevated levels of CBF expression and as a consequence also display elevated levels

of expression of CBF target genes (Lee et al., 2001). Although HOS1 was originally

identified as a regulator of cold acclimation, the mutant also displays a flowering time

phenotype which has recently been investigated in more detail (Ishitani et al., 1998,

Lee et al., 2001, Lazaro et al., 2012).
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Figure 5.1: Schematic of HOS1 post-translational regulation of ICE1.
Phosphorylated and sumoylated ICE1 is targeted for proteolysis following ubiquitination
by the E3 ligase HOS1. The consequence of this is that ICE1 can no longer promote
expression of CBF3, which therefore, prevents expression of the COR genes. P,
phosphorylation; U, ubiquitination; S, sumoylation. Adapted from Chinnusamy et al.,
(2007).

Lazaro et al., (2012) propose a role for HOS1 in the integration of temperature and

photoperiod signals to regulate flowering time. The early flowering phenotype of hos1

plants has been linked to decreased expression of FLC (Lee et al., 2001, Lazaro et al.,

2012). However, hos1-2 mutant plants do flower earlier in an flc-deficient background,

suggesting that a FLC-independent mechanism must also be important (Lazaro et al.,

2012). The early flowering phenotype of hos1-2 requires functional CONSTANS (CO),

SOC1 and FT expression (Lazaro et al., 2012).

The effect of the hos1-2 mutation on the expression of the flowering time genes FT and

CO revealed that HOS1 is required to repress morning expression of FT during long

days, whereas HOS1 does not appear to be an important regulator of CO expression
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(Lazaro et al., 2012). HOS1 interacts with CO in vivo and is thought to regulate FT

expression through its modulation of CO protein levels (Lazaro et al., 2012).

Another recent study has proposed a role for HOS1 as a component of the NPC

(Tamura et al., 2010). The NPC is a large protein complex, comprising at least thirty

nucleoporins, which spans the nuclear envelope and is responsible for mediating the

traffic of molecules in and out of the nucleus (Eckardt, 2010). In the Tamura et al.,

(2010) study, a proteomic analysis using GFP-tagged nucleoporins showed that HOS1

immunoprecipitated with two nucleoporin constructs; RNA EXPORT FACTOR1

(RAE1)-GFP and Nup43-GFP (Tamura et al., 2010). RAE1-GFP and Nup43-GFP

coimmunoprecipitate with at least thirteen nucleoporins each, indicating that both of

these proteins are components of the Arabidopsis NPC (Tamura et al., 2010).

The HOS1 protein contains a region with homology to the vertebrate nucleoporin

EMBRYONIC LARGE MOLECULE DERIVED FROM YOLK SAC (Elys) (Tamura et al.,

2010), which is involved in initiating and targeting nuclear pore assembly to the

chromatin (Rasala et al., 2006). ELYS depletion in Xenopus egg extracts leads to a

strong reduction in chromatin binding by a large number of nucleoporins (Davis and

Blobel, 1987, Meier et al., 1995, Walther et al., 2002). This suggests that ELYS is

required for the association of chromatin with the Nup107-160 complex and for correct

NPC formation (Gillespie et al., 2007). ELYS depleted extracts contained smaller nuclei

than the control extract and DNA replication is abolished (Gillespie et al., 2007). ELYS

contains an AT hook DNA binding domain which is known to mediate a protein’s direct

interaction with DNA or chromatin (Reeves and Nissen, 1990, Metcalf and Wassarman,

2006). This AT hook domain allows ELYS to directly interact with chromatin (Gillespie

et al., 2007, Rasala et al., 2008), however a second chromatin binding domain is also
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present (Rasala et al., 2008). This AT hook domain is not present in the HOS1 protein,

yet it is possible that HOS1 could share homology with the so far uncharacterised

second chromatin binding domain of the ELYS protein.
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5.2 Results

5.2.1 Characterisation of dormancy phenotypes of
hos1 mutants

5.2.1.1 Characterisation of mutant alleles in the Col background

Figure 5.2: Location of the three T-DNA inserts in HOS1.
Location of the T-DNA inserts in hos1-3, hos1-4 and hos1-5 as hypothesised using
Seqview.

To investigate whether HOS1 has a role in regulating dormancy in response to low

temperature, three T-DNA insertion mutants, which were named hos1-3

(SALK_069312), hos1-4 (SALK_131629) and hos1-5 (SALK_052108) (Figure 5.2),

were exposed to maturation temperatures of 20°C, 17°C and 15°C. Dormancy levels

were low in seeds matured at 20°C for both wild-type and the three hos1 mutant alleles

(Figure 5.3A). When the maturation temperature was reduced to 17°C, dormancy was

induced in wild-type seeds however; no dormancy was induced in hos1 seeds (Figure

5.3B). When seeds were matured at 15°C, significantly lower dormancy levels were

induced in hos1 seeds in comparison to wild-type (Figure 5.3C). Even when the

maturation temperature was reduced to 10°C a complete lack of dormancy was still

observed in hos1-3 seeds (Figure 5.4). Therefore, seeds lacking functional HOS1 gene

expression are incapable of inducing dormancy levels in response to low temperature.
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Figure 5.3: Germination of hos1 seeds.
Freshly harvested seeds matured at 20°C (A), 17°C (B) or 15°C (C) were cold stratified
for up to three days. Germination was scored as radical protrusion following seven days
at 22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error.

Figure 5.4: Germination of hos1-3 seeds.
Freshly harvested seeds matured at 20°C and 10°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.
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5.2.1.2 Characterisation of mutant allele in the C24 background

It was possible that the reduced dormancy phenotype of hos1 mutants was not a

specific response to temperature and instead a more general effect on dormancy. To

investigate this, the dormancy levels of hos1-1 mutant seeds, which are in the C24

background was analysed. Unlike Col and Ler seeds, dormancy is induced when C24

seeds are matured at warm temperatures and so hos1-1 and C24 seeds were matured

at 20°. High dormancy levels were induced in C24 and this dormancy was alleviated

when the seeds were cold stratified (Figure 5.5). In contrast, significantly lower

dormancy levels were induced in hos1-1 seeds. This result suggests that HOS1 must

be involved in a general mechanism regulating seed dormancy and not specifically in

response to temperature.
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Figure 5.5: Germination of hos1-1 seeds.
Freshly harvested seeds matured at 20°C were cold stratified for up to three days.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points are the average of five individual seed batches
and error bars represent standard error.
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5.2.2 Expression of HOS1 in response to different
maturation temperatures

Figure 5.6: Expression of HOS1 in developing seeds.
Seeds were matured at 22°C and 15°C. Developmental stages are Torpedo (T),
Walking Stick (WS), Green Cotyledon (GC) and Dry Seed (DS). Data points are the
average of two biological replicates and expression is normalised to the average of two
control genes ACTIN2 and AT3G06240. Error bars represent standard error.

The expression of CBF1 does not increase in response to low temperature in

developing seeds (Figure 4.10A). To test whether HOS1 expression is temperature

regulated in developing seeds, Real-Time PCR was used to analyse HOS1 expression

at two maturation temperatures (22°C and 15°C) in Col torpedo, walking stick, green

cotyledon and dry stage seeds, which were harvested five hours after dawn. HOS1

expression appears to be higher in walking stick stage seeds matured at 15°C in

comparison to 22°C (Figure 5.6). Seeds sampled at other stages did not show large

differences in HOS1 expression between the two temperatures. This suggests that

HOS1 expression at walking stick stage is altered by temperature, but since the low
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dormancy phenotype is not specific to low temperatures (Figure 5.5) it is unlikely that

this is important in the dormancy regulation.

5.2.3 Characterisation of dormancy phenotypes of
seeds overexpressing HOS1

To understand the role of HOS1 in regulating dormancy further, the effect of

overexpression of HOS1 on dormancy levels was investigated. Using a number of lines

overexpressing HOS1 with a translational fusion to Cyan Fluorescent Protein (CFP) in

a hos1-3 background (Dana MacGregor and Susannah Bird, Penfield Lab), an analysis

was carried out to determine if the mutant dormancy phenotype could be rescued.

When the seeds were matured at 20°C, dormancy levels were low in all of the

overexpressing lines and wild-type (Figure 5.7A). Line 3.2 did show slightly higher

dormancy levels than the other lines, but the difference was not significant following

cold stratification. When the seeds were matured at 15°C, the low dormancy phenotype

of hos1-3 could be confirmed, whereas high dormancy levels were induced in wild-type

(Figure 5.7B). In contrast, seeds overexpressing HOS1 had intermediate dormancy

levels. Following cold stratification, lines 4.5, 4.6 and 5.1 and 5.5 germinated to

significantly higher levels than wild-type, whereas germination of 3.2 and 5.6 were not

significantly different to wild-type. This result suggests that the overexpression of HOS1

in the hos1-3 background leads to partial complementation of the dormancy phenotype.

The fact that there was only partial complementation could be due to an indirect effect

of the CFP tag that is also present in this line.
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Figure 5.7: Germination of HOS1-overexpressing seeds.
Freshly harvested seeds matured at 20°C (A) or 15°C (B) were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.

5.2.4 Characterisation of the maternal effect of HOS1
on dormancy

The Arabidopsis seed is made up of both maternal and zygotic structures and,

therefore, it is possible that the effect of HOS1 on dormancy could be through a

maternal or zygotic pathway. Maternal signals are known to control dormancy levels,

for example the photoperiod experienced by plants during the vegetative phase has an

effect on the levels of dormancy that are induced (Penfield lab, unpublished) and in this

example, the maternal signal must come from a vegetative tissue and not a seed

tissue.

To test whether HOS1 is acting through a maternal pathway, reciprocal crosses were

made between hos1-3 and Col and the F1 seeds were matured at 15°C. The dormancy

of freshly harvested F1 seeds was then analysed. When hos1-3 was crossed with Col

pollen, the germination was significantly higher than wild-type, suggesting that the
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hos1-3 mutation could be acting in a dominant or maternal manner (Figure 5.8).

However, when Col was crossed with hos1-3 pollen, dormancy levels were high and

this was similar to what was observed for homozygous Col seeds (Figure 5.8), thus

suggesting that the effect of the hos1-3 mutation was recessive. Therefore, the results

from the analysis of the dormancy of the seeds from the reciprocal crosses suggest that

HOS1 effects seed dormancy through a maternal pathway.

Figure 5.8: Germination of seeds from F1 reciprocal crosses between hos1-3 and
Col.
Freshly harvested F1 seeds matured at 15°C were germination for seven days at 22°C
in twelve hour white light/dark cycles. Germination was scored as radical protrusion.
Data points are the average of seeds from five independent crosses and error bars
represent standard error. * Indicates significant difference to wild-type when P≤0.05 by
students t-test.
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5.2.5 Characterisation of dormancy phenotypes of
HOS1 interacting proteins

A yeast two-hybrid screen identified potential proteins that interact with HOS1 (Dana

MacGregor, unpublished). These include ABRE BINDING FACTOR1 (ABF1), ABF3

and an unknown protein which was named HOS1 INTERACTING PROTEIN1 (HIP1).

ABF1 and ABF3 share overlapping effects to ABI5 and these three proteins

antagonistically regulate each other’s expression (Finkelstein et al., 2005). To

investigate whether any of these proteins that interact with HOS1 are involved with

HOS1 in the regulation of dormancy, mutants for these proteins were included in the

low seed maturation temperature screen. The hypothesis that was being tested was

that if HOS1 regulates dormancy through these proteins then they too would display

dormancy phenotypes.

When the seeds were matured at 20°C, some dormancy was induced in wild-type, but

this was quickly reduced when the seeds were cold stratified (Figure 5.9A). A number

of the mutants showed higher initial dormancy levels, but these differences were not

significant when compared to wild-type and, again cold stratification led to a large

increase in germination. When the seeds were matured at 15°C, initial results following

short cold stratification lengths revealed no apparent phenotype for the mutant seeds,

with dormancy levels appearing similar for all the hip and abf mutant lines (Figure

5.9B). This cold stratification time course was extended to four weeks to see whether

any phenotypes were revealed for hip1-1, hip1-2, hip1-3, hip1-4, abf1-1 and abf3-1

during this prolonged cold. The responses to this extended cold stratification were more

varied, with hip1-1 entering secondary dormancy significantly quicker than wild-type

(Figure 5.9B). The three other hip1 alleles showed high secondary dormancy following
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twenty eight days of cold stratification, but this was only significantly different to wild-

type for hip1-2 and hip1-4. The secondary dormancy levels in the abf1-1 and abf3-1

mutants showed no significant difference to wild-type. Although differences are

apparent in response to extended periods of cold, there is no real apparent difference

in primary dormancy levels, thus suggesting that HOS1 does not act through HIPs and

ABFs to regulate dormancy in response to low temperature.

Figure 5.9: Germination of hip1, abf1 and abf3 seeds.
Freshly harvested seeds matured at 20°C (A) or 15°C (B) were cold stratified for up to
three days (A) or twenty eight days (B). Germination was scored as radical protrusion
following seven days at 22°C in twelve hour white light/dark cycles. Data points are the
average of five individual seed batches and error bars represent standard error.

5.2.6 Measurement of ABA and GA levels

Results presented in chapter three showed that ABA and GA levels were temperature

regulated in seeds (Figure 3.7) and these levels were positively and negatively

correlated with dormancy levels respectively. Therefore, it was hypothesised that hos1

mutant seeds may contain reduced levels of ABA and increased levels of GA, which

would contribute to the low dormancy phenotype. To investigate whether ABA or GA

levels are altered in hos1 seeds levels were measured in freshly harvested dry seeds.
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Levels of GA were significantly higher in hos1 seeds in comparison to wild-type (Figure

5.10A). hos1-5 seeds showed the lowest levels of GA out of the three mutant lines.

ABA levels were found to be slightly higher in hos1-3 and hos1-4 seeds than wild-type

and levels were significantly higher in hos1-5 seeds (Figure 5.10B).

The increase in GA levels that is observed in hos1 seeds correlates with low dormancy

levels (Figure 5.10A, 5.3). In contrast, the increases in ABA levels were not expected

since increased ABA levels do not correlate with low dormancy, although this may

reflect a feedback loop between the two hormones. Together it seems that the low

dormancy phenotype of hos1 mutant seeds could be due to alterations in GA

metabolism.

Figure 5.10: Measurement of ABA and GA levels in hos1 seeds.
GA (A) and ABA (B) measurements were made in freshly harvested dry seeds matured
at 15°C. Data points are the average of five individual seed batches and error bars
represent standard error. * Indicates significant difference to wild-type when P≤0.05 by
students t-test.
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5.2.7 Characterisation of sensitivity of hos1 seeds to
ABA and PAC

A number of low dormancy mutants, such as dog1-2, shows defects in ABA or GA

sensitivity or signalling (Bentsink et al., 2006). Reduced sensitivity to ABA or increased

sensitivity to GA could explain the low dormancy phenotype of hos1 seeds. Therefore,

to determine whether ABA and GA sensitivity is altered in hos1 mutant seeds, seeds

were germinated in the presence of increasing concentrations of ABA and PAC, the GA

biosynthesis inhibitor. Germination of all three hos1 mutant alleles in response to PAC

was very similar to wild-type (Figure 5.11A). Similarly, the response of hos1 seeds to

ABA was comparable to wild-type, with the only exception being in response to 1µM

ABA, where hos1 seeds were mildly hyposensitive (Figure 5.11B). Therefore, it

appears that defective ABA and GA sensitivity is not responsible for the lack of

dormancy in hos1 seeds.

Figure 5.11: PAC and ABA sensitivity of hos1 seeds.
Seeds matured at 20°C were after-ripened for approximately two months. Cold
stratified seeds were germinated in the presence of increasing concentrations of PAC
(A) and ABA (B) and germination was scored as radical protrusion following seven days
at 22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error.
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5.2.8 Characterisation of dormancy phenotypes of
additional early flowering mutants

The dormancy process is believed to be an adaptive event which occurred late in

evolution and, therefore, genes which are involved in other phase transitions, such a

reproduction, may have been co-opted to regulate dormancy (Bassel et al., 2011).

Flowering time and dormancy both require precise environmental sensing and

responses to multiple seasonal cues so that developmental timing can be accurately

matched to seasonal conditions (Chiang et al., 2009). A number of mutants which

display flowering time phenotypes also exhibit altered dormancy phenotypes (Kurup et

al., 2000, Gómez-Mena et al., 2001, Chiang et al., 2009, Penfield and Hall, 2009). For

example, the late elongated hypocotyl (lhy) circadian clock associated1 (cca1) double

mutant has an early flowering phenotype and seeds display reduced dormancy

(Penfield and Hall, 2009). Since hos1 mutants display such a strong low dormancy

phenotype (Figure 5.3) and are early flowering (Ishitani et al., 1998, Lee et al., 2001,

Lazaro et al., 2012), an experiment was carried out to determine whether other early

flowering mutants may also display a similar low dormancy phenotype.

To investigate this, the dormancy phenotypes of arp6-1 and two tfl2 mutant alleles, tfl2-

1 and tfl2-2 were tested in response to maturation at 20°C and 15°C. These mutants

were selected for this analysis given that they share a suite of phenotypes with hos1

mutants, which include early flowering. arp6 mutants display a number of constitutive

warm phenotypes and these phenotypes are linked to the inability to remove H2A.Z

deposition from the chromatin, which has an effect on the expression of the

temperature transcriptome (Kumar and Wigge, 2010). The early flowering phenotype of

tfl2 is attributed to an increase in FT expression (Kotake et al., 2003). Increased FT

expression is also seen in hos1 seedlings (Lee et al., 2001, Lazaro et al., 2012).
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Low dormancy levels were induced in tfl2-1 and tfl2-2 when matured at 20°C (Figure

5.12). When this temperature was reduced to 15°C, the tfl2 mutants had a very similar

striking low dormancy phenotype to hos1 seeds, with seeds germinating significantly

higher than wild-type. This result suggests that TFL2 is required for the induction of

high dormancy levels. These results suggest that the low dormancy phenotype of hos1

seeds is shared by tfl2 mutant seeds.

Figure 5.12: Germination of tfl2 seeds.
Freshly harvested seeds matured at 20°C or 15°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.

arp6-1 mutants also displayed low dormancy levels when matured at a warm

temperature (Figure 5.13). The germination of arp6-1 was slightly higher than wild-type.

When the maturation temperature was reduced to 15°C dormancy was induced in arp6-

1 seeds, although germination of these seeds was higher than wild-type seeds.

However, when arp6-1 seeds were cold stratified, the dormancy was quickly reduced,
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as seeds germinated to 100% following three days of cold stratification and this was

significantly higher than wild-type. Therefore, this result suggests that arp6-1 mutants

also display reduced dormancy, but this phenotype is not as strong as the reduced

dormancy phenotypes displayed by hos1 and tfl2 mutants.

Figure 5.13: Germination of arp6-1 seeds.
Freshly harvested seeds matured at 20°C or 15°C were cold stratified for up to three
days. Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.

5.2.9 Nuclear morphology as a regulator of dormancy

5.2.9.1 Characterisation of dormancy phenotypes of linc1-2 seeds

A recent study has revealed a potential role for HOS1 as a component of the NPC

(Tamura et al., 2010). LITTLE NUCLEI (LINC) are involved in regulating nuclear size

and morphology and linc1 and linc2 nuclei are smaller than wild-type (Dittmer et al.,

2007). Expression of LINC1, LINC2 and LINC3 is greater in dry seeds matured at 20°C
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in comparison to those matured at 10°C (Kendall et al., 2011). A recent study has

shown that dormancy levels are not correlated with nuclei size (van Zanten et al.,

2011b). However, the effect of maturation temperature was not analysed in this study

and so it is possible that temperature may have an effect on nuclear morphology.

Therefore, the ability to induce dormancy in linc1-2 loss-of-function seeds was tested to

determine whether dormancy induction in response to low temperature was

compromised in linc1-2 mutant seeds. Germination of linc1-2 seeds was found to be

high in response to maturation at 20°C, and this was higher than wild-type (Figure

5.14A). In this particular assay, germination of wild-type increased to approximately

50% when seeds were matured at 15°C and cold stratified for three days, whereas the

germination of linc1-2 seeds remained significantly lower (Figure 5.14B). The

germination of wild-type seeds reached approximately 90% following seven days of

cold stratification and secondary dormancy was induced in response to fourteen days

of cold stratification or more (Figure 5.14B). In contrast, the germination of linc1-2

seeds was promoted to a maximum of 20% in response to fourteen days of cold

stratification and the germination decreased in response to further lengths of cold

stratification (Figure 5.14B). Together these results suggest that LINC1 may act as a

negative regulator of dormancy in response to low temperature.
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Figure 5.14: Germination of linc1-2 seeds.
Freshly harvested seeds matured at 20°C (A) or 15°C (B) were cold stratified for up to
three days (A) or twenty eight days (B). Germination was scored as radical protrusion
following seven days at 22°C in 12 hour white light/dark cycles. Data points are the
average of five individual seed batches and error bars represent standard error.

5.2.9.2 Characterisation of nuclear volume in embryo and endosperm cells

5.2.9.2.1 Measurements in wild-type seeds

Following on from the observation that linc1-2 mutant seeds show increased dormancy

in comparison to wild-type when matured at low temperature (Figure 5.14B), the

prediction that alterations to nuclear size could be part of the mechanism by which

temperature regulates dormancy was investigated. Very little is known about how

nuclear size and shape is regulated. Studies on fission yeast reveal that nuclear size is

independent of DNA content but is highly proportional to cell size (Neumann and Nurse,

2007). DAPI was used to stain nuclei in wild-type embryo and endosperm cells from

seeds matured at 20°C and 15°C and hos1-3, hos1-4 and hos1-5 embryo and

endosperm cells from seeds matured at 15°C. Nuclear volume was calculated using 1D

images and it was assumed that nuclei were spherical and so, the calculations are

estimates.
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The results showed that nuclei volume was unchanged by maturation temperature in

embryo cells (Figure 5.15A, 5.16). In endosperm cells, nuclei from seeds matured at

low temperature were significantly larger than nuclei from seeds matured at warm

temperature (Figure 5.15B). Additionally, a comparison was made between nuclei

circumference and cell circumference to determine if a positive correlation is present,

as suggested by Neumann and Nurse (2007). The results show that there is no positive

correlation between embryo nuclei circumference and embryo cell circumference in this

experiment (R2=0.160) (Figure 5.17). Therefore, the results suggest that nuclei volume

is not regulated by maturation temperature in embryo cells. However, in endosperm

cells temperature did have an effect on nuclei size.

Figure 5.15: Measurements of nuclear volume.
Nuclear volume was calculated in DAPI stained wild-type and hos1 mutant embryo root
tip cells (A) and endosperm cells (B). Data points are the average of approximately two
hundred nuclei from five biological replicates and error bars represent standard error. *
Indicates significant difference to wild-type when P≤0.05 by students t-test.
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5.2.9.2.2 Measurements in hos1 seeds

Since a potential role for HOS1 as a component of the NPC has been proposed

(Tamura et al., 2010), it was possible that the hos1 mutation was compromising the

NPC and so it was hypothesised that nuclear volume could be altered in hos1 seeds.

Although the results showed no changes to nuclei volume by temperature in wild-type

embryo cells, there were alterations in endosperm cells (Figure 5.15A, B). The data

presented in Figure 5.5 show that the low dormancy phenotype of hos1 seeds is

temperature independent and, therefore, it may not be surprising that the mechanism

by which HOS1 acts through doesn’t show changes in response to temperature. When

nuclei volume was measured in hos1 seeds that were matured at 15°C, the findings

showed hos1-3 and hos1-4 embryo cells contained larger nuclei, but the difference was

only significant for hos1-3 (Figure 5.15A, 5.16). The nuclei of hos1-5 cells were not

different to wild-type. The situation with endosperm cells was different to embryo cells,

with hos1-4 nuclei being larger than wild-type and hos1-5 nuclei being smaller, but

these differences were not significant (Figure 5.15B). There was no difference in size of

hos1-3 nuclei in comparison to wild-type. Together, these results show that there are

alterations in nuclear volume in the hos1 mutants, but these aren’t consistent for all

three alleles. For this reason, the mechanism through which HOS1 affects seed

dormancy is unlikely to involve the regulation of nuclei volume.
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Figure 5.16: DAPI staining of embryo nuclei in root top cells.
Embryo root tip cells from Col matured at 20°C (A), Col matured at 15°C (B), hos1-3
(C), hos1-4 (D) and hos1-5 (E) matured at 15°C. Scale bar represents 5µm.

Figure 5.17: Comparison of nuclei size and cell size.
Nuclei and cell circumferences measured in DAPI stained Col embryo root tips.

5.2.10 Characterisation of dormancy phenotypes of
NPC mutants

The proposal of HOS1 as a component of the NPC prompted the investigation into

whether other NPC mutants display a low dormancy phenotype similar to hos1 seeds.
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al., 2005, Dong et al., 2006b), and this is important given the role of the CBFs in

regulating dormancy levels. The nup160-1 mutant, which displays defective mRNA

transport, has increased freezing sensitivity (Dong et al., 2006b). Mutation to the DEAD

box RNA helicase, LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 4

(LOS4), also leads to a reduction in mRNA transport and decreased freezing tolerance

(Gong et al., 2005). Together the role for NPCs in freezing tolerance suggests that RNA

export may have a critical role in cold stress responses and, therefore, could also be

involved in regulating dormancy in response to temperature.

Seed of the los4-1 mutant, which is in the C24 background, did not exhibit reduced

dormancy when matured at 20°C in comparison to wild-type (Figure 5.18). There was

no requirement to test the dormancy phenotype of los4-1 seeds matured at low

temperature since dormancy can be induced in the C24 background at warm

temperatures. Next the dormancy phenotype of nup160-2 was also tested. The

dormancy levels of wild-type and nup160-2 seeds were low when seeds were matured

at 20°C (Figure 5.19). When the maturation temperatures were reduced to 17°C and

15°C, the nup160-2 seeds displayed slightly higher levels of dormancy than wild-type,

but the difference was not significant (Figure 5.19). Consequently, it can be concluded

that the reduced dormancy phenotype of hos1 is not characteristic of other NPC

mutants.
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Figure 5.18: Germination of los4-1 seeds.
Freshly harvested seeds matured at 20°C were cold stratified for up to three days.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points are the average of five individual seed batches
and error bars represent standard error.
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Figure 5.19: Germination of nup160-2 seeds.
Freshly harvested seeds matured at 20°C, 17°C and 15°C were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.

5.2.11 Transcriptome analysis of hos1 seeds

To gain an understanding of the genes that are involved in regulating dormancy by

HOS1, a transcriptome analysis was carried out using RNA-Sequencing (RNA-Seq).

RNA-Seq is a technique which deep sequences cDNA fragments to create short reads

that can then be aligned against a reference sequence (Wang et al., 2009b). The data

obtained from RNA-Seq can give an indication of genes whose expression is

differentially regulated between different experimental conditions or genotypes.

RNA was extracted from Col green cotyledon seeds that were matured at 15°C and

20°C and hos1-3 seeds that were matured at 15°C which were harvested five to seven

hours after dawn. RNA from these seed samples was run on a bioanalyser system to

assess the quality of the RNA. As can be seen in Figure 5.20, distinct bands are
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present which indicate that the RNA integrity had been kept during the extraction

procedure. This was further confirmed by studying the fluorescence of the samples

(Figure 5.20). The nine samples that were tested showed good integrity. Had the

samples had lower integrity, the RNA would have been more fragmented. The RNA

was subsequently converted to cDNA and the samples were run on an Illumina HiSeq

2000 by Konrad Paszkiewicz at the University of Exeter.

Figure 5.20: Bioanysler data for samples for RNA-Seq.
Quality control of RNA extracted from Arabidopsis plants to check for RNA integrity
using an Aligent 2100 bioanalyser.
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Lists of genes that were significantly differentially expressed by two-fold or more

between the different genotypes/temperatures were obtained. A temperature reduction

from 20°C to 15°C during seed maturation resulted in alterations in the transcription of

a large number of genes. One thousand, two hundred and ninety two genes were

upregulated at 15°C in comparison to 20°C in wild-type seeds (Figure 5.21A), whereas

only two hundred and eighty three genes were down regulated (Figure 5.21B). There

were one thousand, five hundred and sixty three genes that were downregulated in

hos1-3 seeds (Figure 5.21C), whereas three hundred and forty genes were upregulated

(Figure 5.21D). Over a third of the genes that were upregulated in hos1-3 seeds were

upregulated in wild-type seeds matured at 20°C (Figure 5.22), thus suggesting that the

expression of a large number of genes expressed in the hos1-3 mutant represents

warm conditions.

Figure 5.21: Comparison of differentially expressed genes by temperature and
hos1-3.
Genes upregulated by low maturation temperature (A), downregulated by low
maturation temperature (B), downregulated in hos1-3 seeds (C) and upregulated in
hos1-3 seeds (D). Genes are significantly differentially expressed by two-fold or more.

To compare these data to the situation in Ler dry seeds, a comparison was made to a

data set in which seeds were matured at 20°C and 10°C (Kendall et al., 2011). An

overlap of only sixty seven genes was found between the seeds matured at low

temperature in the two experiments (Figure 5.23A). Only nineteen common genes were
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upregulated in response to warm maturation temperature in the two experiments

(Figure 5.23B). Therefore, there appeared to be a relatively small overlap in

differentially regulated genes between the two datasets.

Figure 5.22: Comparison of genes upregulated in hos1-3 and genes upregulated
by warm maturation temperature.
Genes are significantly differentially expressed by two-fold or more.

Figure 5.23: Comparison of transcript data from RNA-Seq and published
microarray data.
Microarray data from Kendall et al., (2011) (genes are differentially expressed by three-
fold or more). Overlapping genes upregulated in response to low temperature (A) and
overlapping genes upregulated in response to warm temperature (B) determined by the
two transcriptome studies.

The list of genes that were differentially expressed by temperature and differentially

expressed in hos1-3 seeds was scanned for genes known to be involved in regulating

dormancy, germination and flowering time (Table 5.1, 5.2). Expression of GA2ox6,
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which is involved in GA catabolism and NCED6, which is involved in ABA biosynthesis,

were found to be upregulated in low temperature matured seeds in comparison to warm

temperature matured seeds (Table 5.1). The expression of GA2ox6 was also

downregulated in hos1-3 seeds (Table 5.2) and this is consistent with the reduced

dormancy of these seeds (Figure 5.3). The expression of GA2ox2, which also catalyses

GA deactivation, was unchanged in response to maturation temperature (Table 5.1).

Table 5.1: Differentially expressed genes between wild-type seeds matured at
20°C and 15°C.
Genes which are significantly up or down regulated by at least two-fold are shown at
the top and bottom of the table, respectively. In between, selected genes with no
significant change in expression or a fold change of less than two are listed. Values
represent mean of the three replicates. The Q-value indicates the expected frequency
of false positives present in a list of differentially expressed genes, and values of 1% or
below are considered significant.

Locus
Gene
Name

Average
expression

at 15°C

Average
expression

at 20°C
Fold Change
15°C/20°C P-Value

Q-Value
(%)

Upregulated

AT5G57380 VIN3 6.15918 0.126774 48.58393677 0 0

AT3G55120 TT5 112.926 24.1423 4.677516227 1.15E-14 3.48E-12

AT1G02400 GA2OX6 1.91669 0.41299 4.641008257 0.000125 0.002096

AT5G15840 CO 3.62505 0.800287 4.529687475 1.60E-05 0.00039

AT1G01060 LHY 44.1467 11.1621 3.955053261 0 0

AT5G07990 TT7 321.291 93.4604 3.437723357 1.02E-06 3.91E-05

AT1G20440 COR47 49.775 17.2951 2.877982781 8.86E-09 6.57E-07

AT2G46830 CCA1 27.3566 9.85738 2.77524048 2.31E-11 3.41E-09

AT4G34000 ABF3 4.11895 1.49047 2.763524257 0.000165 0.002624

AT3G24220 NCED6 31.9766 11.8152 2.706395152 1.05E-07 5.62E-06

AT5G13930 TT4 475.424 197.222 2.41060328 0.001903 0.017334

AT1G18100 MFT 386.254 182.381 2.117841222 0.004771 0.033894

Unchanged

AT1G65480 FT 13.6982 7.42611 1.844599663 0.009436 0.055204

AT4G09820 TT8 53.4041 30.0437 1.777547373 0.002057 0.018399

AT4G26080 ABI1 26.8916 15.9211 1.689054148 0.005237 0.036199

AT5G10140 FLC 72.5969 43.3498 1.6746767 0.00517 0.035848

AT2G39810 HOS1 6.76475 5.95877 1.135259458 0.503007 0.677755

AT4G36930 SPT 28.6195 27.9981 1.022194363 0.905043 0.947982

AT1G30040 GA2OX2 6.04581 5.9946 1.008542688 0.969272 0.983592

AT5G45830 DOG1 138.973 143.107 0.971112524 0.886918 0.938838

AT1G79460 GA2 21.6836 23.9832 0.904116215 0.582301 0.738936
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AT5G35550 TT2 2.1431 2.39622 0.894366961 0.72998 0.843196

AT5G15960 KIN1 165.696 197.992 0.836882298 0.379439 0.574358

AT2G06050 OPR3 5.57344 10.0681 0.55357416 0.002503 0.021389

Downregulated

AT5G51810 GA20OX2 14.2261 29.4936 0.482345322 0.000186 0.002888

AT1G78390 NCED9 15.9157 36.5788 0.435107221 2.33E-05 0.000529

AT1G03790 SOM 16.2984 47.5461 0.342791522 6.83E-07 2.77E-05

AT4G25470 CBF2 4.72285 13.8165 0.341826801 2.90E-05 0.000641

AT4G25490 CBF1 3.87814 11.6065 0.334135183 5.05E-05 0.001004

AT3G23250 MYB15 5.30086 17.8952 0.296216863 3.08E-08 1.94E-06

AT5G61270 PIF7 0.963196 3.77433 0.255196551 4.15E-05 0.000852

AT4G19170 NCED4 1.43605 6.2559 0.229551304 1.59E-08 1.08E-06

Table 5.2: Differentially expressed genes between wild-type and hos1-3 seeds
matured at 15°C.
Genes which are significantly up or down regulated by at least two-fold are shown at
the top and bottom of the table, respectively. In between, selected genes with no
significant change in expression or a fold change of less than two are listed. Values
represent mean of the three replicates. The Q-value indicates the expected frequency
of false positives present in a list of differentially expressed genes, and values of 1% or
below are considered significant.

Locus
Gene
Name

Average
expression

at 15°C

Average
expression
in hos1-3

Fold Change
15°C/hos1-3 P-Value Q-Value

Upregulated

AT1G65480 FT 13.6982 1.22789 11.1558853 4.82E-14 1.28E-11

AT5G15840 CO 3.62505 0.522175 6.94221286 1.54E-06 5.46E-05

AT2G39810 HOS1 6.76475 1.02855 6.576977298 2.44E-15 8.39E-13

AT5G57380 VIN3 6.15918 1.23311 4.9948342 2.16E-10 2.55E-08

AT5G13930 TT4 475.424 128.142 3.71013407 1.15E-06 4.30E-05

AT5G15960 KIN1 165.696 44.939 3.687131445 8.31E-10 8.30E-08

AT5G35550 TT2 2.1431 0.634688 3.376619693 0.002752 0.022914

AT4G34000 ABF3 4.11895 1.30202 3.163507473 4.69E-05 0.000942

AT2G06050 OPR3 5.57344 1.83081 3.044248174 8.27E-05 0.0015

AT5G07990 TT7 321.291 119.298 2.693180104 9.85E-05 0.001728

AT5G10140 FLC 72.5969 27.1568 2.673249426 2.88E-07 1.32E-05

AT1G18100 MFT 386.254 146.748 2.632090386 0.00017 0.002688

AT1G02400 GA2OX6 1.91669 0.734638 2.609026487 0.007824 0.048203

AT4G09820 TT8 53.4041 21.4555 2.48906341 1.99E-06 6.78E-05

AT3G55120 TT5 112.926 48.3722 2.334522722 1.22E-05 0.000312

AT1G20440 COR47 49.775 23.3119 2.135175597 6.09E-05 0.001171

Unchanged

AT1G30040 GA2OX2 6.04581 3.30401 1.829840103 0.013448 0.070743

AT1G79460 GA2 21.6836 12.3737 1.752394191 0.002745 0.022866



Chapter 5: The role of HOS1 in temperature regulation of seed dormancy

157

AT4G36930 SPT 28.6195 16.595 1.724585719 0.003968 0.029789

AT2G46830 CCA1 27.3566 17.4527 1.567470936 0.001983 0.017883

AT5G51810 GA20OX2 14.2261 9.42033 1.510148795 0.044977 0.158312

AT4G26080 ABI1 26.8916 19.4275 1.384202805 0.087424 0.239639

AT1G01060 LHY 44.1467 33.0168 1.337098083 0.016813 0.082271

AT3G24220 NCED6 31.9766 25.2364 1.267082468 0.210507 0.406245

AT4G25490 CBF1 3.87814 4.16576 0.930956176 0.810091 0.892651

AT5G45830 DOG1 138.973 164.82 0.843180439 0.421062 0.611218

AT1G78390 NCED9 15.9157 21.129 0.753263287 0.144809 0.324844

AT3G23250 MYB15 5.30086 8.37845 0.632677882 0.06461 0.198573

Downregulated

AT4G25470 CBF2 4.72285 9.59845 0.492042986 0.007377 0.046254

AT5G61270 PIF7 0.963196 3.64907 0.26395657 6.85E-05 0.001296

AT4G19170 NCED4 1.43605 7.65366 0.187629187 1.75E-10 2.11E-08

AT1G03790 SOM 16.2984 170.968 0.09533012 0 0

In contrast, CYP707A2, which is involved in ABA catabolism, is downregulated in low

temperature matured seeds (Table 5.1) and this is consistent with what is observed in

Ler dry seeds (Kendall et al., 2011). The alterations to these genes which are involved

in hormone metabolism is consistent with the increased ABA and decreased GA levels

that are present in seeds that are matured at low temperature (Figure 3.7).

Interestingly, DOG1 expression was not differentially expressed in response to low

temperature or in hos1-3 seeds (Table 5.1, 5.2).

The expression of a number of TT genes was found to be upregulated by low

maturation temperature (Table 5.1) and this is consistent with what was observed in dry

Ler seeds (Kendall et al., 2011). TT4,TT2,TT7,TT8,TT5 expression was downregulated

in hos1-3 seeds in comparison to wild-type and this is consistent with the fact that these

seeds show reduced dormancy (Figure 5.3). This suggests that the expression of TT

genes may be important regulators of dormancy by temperature and HOS1.
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The expression of both CBF1 and CBF2 was found to be downregulated, whereas

expression of COR47 was upregulated in low temperature matured seeds in

comparison to warm temperature matured seeds (Figure 5.1). Consistent with the role

of HOS1 as a negative regulator of cold acclimation, the hos1-3 seeds display elevated

expression of CBF2, whereas expression of COR47 and KIN1 is downregulated in

these seeds (Table 5.2). In contrast, expression of CBF1 remains unchanged in hos1-3

seeds (Table 5.2). These results suggest that prolonged low temperature does not

promote expression of the CBFs in seeds and that the regulation of CBFs in seeds is

different to seedlings.

Of notable interest was the downregulation of FT in hos1-3 seeds (Table 5.2). In

contrast, expression of FT appeared to be unchanged in response to maturation

temperature (Table 5.1) ft-1 mutants in the Ler background show an increase in

dormancy levels in comparison to wild-type in response to short day photoperiods and

low temperature, both of which promote dormancy (Penfield lab, unpublished). The

downregulation of FT in hos1-3 green cotyledon stage seeds could be confirmed using

Real-Time PCR (Figure 5.24A). The expression of FT was normalised to the

expression of an average of TUB9 and AT3G06240 expression. These control genes

were selected since their expression was unchanged in the RNA-Seq analysis. The

analysis of FT expression in hos1-3 seeds was extended to investigate if FT expression

was also downregulated in hos1-3 seeds at additional seed stages. This analysis was

carried out using wild-type and hos1-3 seeds matured at 15°C. A small decrease in FT

expression is observed in walking stick stage seeds, whereas there is a large decrease

in expression at the green cotyledon stage (Figure 5.25A). In contrast, expression of FT

could not be detected in hos1-3 and wild-type dry stage seeds.
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Another interesting gene that was found to be differentially regulated in hos1-3 seeds

was MFT. MFT has been shown to have a role in regulating germination (Xi et al.,

2010). MFT expression was found to be upregulated in wild-type seeds matured at low

temperature and downregulated in hos1-3 seeds (Table 5.1, 5.2). Real-Time PCR was

used to confirm these results (Figure 5.24B). The analysis of MFT expression in hos1-3

and wild-type seeds that were matured at 15°C was extended to include walking stick

stage and dry seeds. There was a slight increase in expression of MFT in hos1-3

walking stick stage seeds in comparison to wild-type, whereas expression was

decreased in hos1-3 green cotyledon stage seeds in comparison to wild-type (Figure

5.25B). There appeared to be no difference in MFT expression in dry seeds between

the two genotypes.

Figure 5.24: Confirmation of RNA-Seq results.
Expression of FT (A) and MFT (B) in green cotyledon stage wild-type seeds matured at
20°C and 15°C and hos1-3 seeds matured at 15°C was measured using Real-Time
PCR. Data points are the average of two biological replicates and expression is
normalised to the average of two control genes TUBULIN9 and AT3G06240. Error bars
represent standard error.
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Figure 5.25: Expression of FT and MFT during seed development.
Expression of FT (A) and MFT (B) in wild-type seeds matured at 20°C and 15°C and
hos1-3 seeds matured at 15°C. Developmental stages are Walking Stick (WS), Green
Cotyledon (GC) and Dry Seed (DS). Data points are the average of two biological
replicates and expression is normalised to the average of two control genes TUBULIN9
and AT3G06240. Error bars represent standard error.

To further the understanding of the role of ABA in regulating dormancy, the presence of

the ABA RESPONSE ELEMENT (ABRE) motif element in the promoters of genes that

were differentially regulated between the genotypes/conditions was analysed. This

analysis revealed that a number of genes did contain the ABRE motif in their promoters

(appendix 1, 2) suggesting the potential regulation of these genes by ABA.

5.2.12 Characterisation of dormancy phenotype of ft-10
seeds

FT expression is downregulated in hos1-3 seeds (Figure 5.24A, 5.25A) and so it was

hypothesised that HOS1 could regulate dormancy levels through FT. To begin to

understand the role played by FT in regulating dormancy the dormancy phenotype of ft-

10 mutant seeds (in the Col background) in response to maturation at 20°C, 17°C and

15°C was analysed (Figure 5.26). ft-10 mutant seeds showed low levels of dormancy
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maturation temperature was reduced to 17°C, dormancy was induced in the ft-10 seeds

and the levels were similar to wild-type (Figure 5.26). When the maturation temperature

was reduced further to 15°C, the initial levels of dormancy induced in ft-10 seeds were

higher than wild-type. However, when cold stratification was applied, the dormancy

levels of ft-10 were similar to wild-type (Figure 5.26). These results suggest that HOS1

does not regulate dormancy levels solely through FT given the lack of apparent

dormancy phenotype.

Figure 5.26: Germination of ft-10 seeds.
Freshly harvested seeds matured at 20°C, 17°C or 15°C were cold stratified for up to
three days. Germination was scored as radical protrusion following seven days at 22°C
in twelve hour white light/dark cycles. Data points are the average of five individual
seed batches and error bars represent standard error.
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5.2.13 Characterisation of dormancy phenotypes of tt
seeds

The results from the transcriptome analysis showed that expression of TT genes is

differentially regulated in hos1-3 seeds in comparison to wild-type (Table 5.2)

Additionally, a number of the TT genes is upregulated in seeds that were matured at

low temperatures in comparison to warm temperatures (Table 5.1). To investigate the

potential role of TT in regulating dormancy in response to temperature tt4-1, tt5-1 and

tt6-1 loss-of-function seeds were matured at 20°C and 15°C and the dormancy levels

were analysed.

When matured at 20°C, tt4-1 and tt5-1 showed very low dormancy levels and their

germination was like wild-type (Figure 5.27A). Germination of tt6-1 was slightly lower

initially, but following two days of cold stratification it reached wild-type levels. When the

seeds were matured at low temperature, a clear low dormancy phenotype was

observed for tt5-1, which germinated to significantly higher levels than wild-type (Figure

5.27B). In contrast, only slightly lower dormancy levels were observed for tt6-1 in

comparison to wild-type however, germination was significantly increased when seeds

were cold stratified for two days or more in comparison to wild-type. Dormancy levels in

tt4-1 were higher than tt5-1 and tt6-1, although seeds did germinate slightly higher than

wild-type at some time points. Taken together these results show that TT5, and to a

lesser extent, TT6 have important roles in defining dormancy levels in response to low

temperature. Since the expression of a number of TT genes is downregulated in hos1-3

mutant seeds (Table 5.2) and loss-of-function of a number of tt mutants leads to

reduced dormancy, the results suggest that HOS1 may function through TT to regulate

dormancy.
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Figure 5.27: Germination of tt seeds.
Freshly harvested seeds matured at 20°C (A) or 15°C (B) were cold stratified for up to
three days (A) or up to twenty eight days (B). Germination was scored as radical
protrusion following seven days at 22°C in twelve hour white light/dark cycles. Data
points are the average of five individual seed batches and error bars represent
standard error.
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5.3 Discussion

5.3.1 HOS1 regulation of dormancy is not temperature
specific

The results presented in this chapter have shown that hos1 mutant seeds have a

striking reduced dormancy phenotype (Figure 5.3, 5.4, 5.5). The inability of hos1

mutants to induce dormancy was shown to be independent of the maturation

temperature (Figure 5.5), thus suggesting that HOS1 has a role in regulating dormancy,

but its effect is downstream of the input of temperature into the mechanism. Based on

this observation, it is likely that hos1 mutant seeds would be deficient in inducing high

dormancy levels in other situations that promote high dormancy such as a short day

photoperiod. When HOS1 expression was measured in seeds matured at low and high

temperatures, differences were only identified at the walking stick stage (Figure 5.6).

This result suggested that HOS1 expression is not generally temperature regulated, but

also that HOS1 expression does not correlate with dormancy levels. However, it cannot

be ruled out that there may be differences in HOS1 protein levels between the two

temperatures, and this would be important to confirm in the future.

These results show that a lack of functional HOS1 expression in two ecotypes, Col and

C24, leads to the inability of the seeds to enter the highly dormant state (Figure 5.3,

5.4, 5.5). It will be interesting to determine whether introgressing the hos1 mutation into

additional highly dormant ecotypes, such as Cvi, will result in the same reduced

dormancy phenotype. Additionally, it would also be interesting to determine if variation

in HOS1 expression or protein levels occurs between different ecotypes.
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5.3.2 Additional flowering time mutants have
dormancy phenotypes

The dormancy phenotypes of tfl2 and arp6 mutants were analysed because they

display early flowering phenotypes which are similar to hos1 mutants (Larsson et al.,

1998, Deal et al., 2005, Lazaro et al., 2012). The analysis of dormancy phenotypes of

the tfl2 mutants revealed that these mutants were also unable to induce high dormancy

levels in response to maturation at low temperature and this phenotype was similar to

hos1 mutants (Figure 5.11, 5.2). A dormancy phenotype was also displayed by arp6,

although this was not as striking as that of hos1 or tfl2 (Figure 5.13). Given the suite of

phenotypes shared between hos1, tfl2 and arp6 it is perhaps unsurprising that these

genes could also be important for the regulation of dormancy. To address this further,

crosses could be made between hos1, arp6 and tfl2. Although it will be difficult to

assess if these mutants have an additive effect on the dormancy phenotype of hos1

given that this mutant germinates highly. It will also be important to determine if the

effect of TFL2 and ARP6 in regulating dormancy is through a maternal pathway like

HOS1.

5.3.3 Regulation of GA levels is important for the
hos1 dormancy phenotype

The results in this chapter showed that there was no difference in the sensitivity of hos1

seeds to either ABA or PAC in comparison to wild-type (Figure 5.11). Other reduced

dormancy mutants also display wild-type sensitivity to ABA and GA (Peeters et al.,

2002). However, levels of both GA and ABA were found to be altered in hos1 mutants

(Figure 5.10). The levels of GA were significantly higher in hos1 mutants and this

correlates with the low dormancy phenotype (Figure 5.10A, 5.3). Surprisingly, levels of

ABA were also increased in seeds of one of the hos1 mutant alleles (Figure 5.10B) and
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this result does not correspond with the reduced dormancy phenotype. However, it is

possible that the increase in ABA levels is part of a feedback loop in response to the

highly elevated levels of GA.

To investigate the mechanism by which HOS1 affects dormancy it will be necessary to

determine the nature of these increases in GA levels and whether they are sufficient for

the low dormancy phenotype. The effect of the hos1 mutation on dormancy has been

shown to be through a maternal pathway (Figure 5.8). Therefore, the site of GA

synthesis could be in the maternal plant or in the maternal tissues of the seed. To

identify where the increased GA is synthesised, GA levels could be measured in the

different tissues. Another way in which this could be investigated would be to alter GA

levels by adding exogenous PAC. Developing hos1 siliques could be dipped with PAC,

and this would prevent the synthesis of GA in the developing seed and siliques. If

germination was reduced in these seeds, then it would suggest that the GA is being

produced in the silique or seed coat and that GA is necessary for the hos1 mutant

dormancy phenotype.

To determine whether GA is sufficient for the reduced dormancy of hos1 seeds the

hos1 ga1 double mutant should be created and the dormancy analysed. If increased

GA levels are important for the hos1 mutant phenotype then one would expect

dormancy levels to be increased in this double mutant in comparison to hos1 seeds.

5.3.4 Nuclear size is not a regulator of dormancy in
response to temperature

The results presented in this chapter show that maturation temperature had no effect

on nuclei volume in embryo cells, whereas there was a negative correlation between
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temperature and nuclei volume in endosperm cells (Figure 5.15, 5.14). The results also

showed that cells from a number of the hos1 mutant alleles contained larger nuclei

however, the alterations are not consistent between embryo and endosperm cells

(Figure 5.15). Together these results suggest that dormancy levels do not consistently

correlate with alterations to nuclei volume. This is somewhat surprising given that

expression of LINC genes is higher in seeds matured at 20°C (Kendall et al., 2011),

and so one might have expected the size of the nuclei of seeds matured at warm

temperatures to be greater. Additionally, the results presented in Figure 5.14 show that

linc1-2 seeds do display an increased dormancy phenotype, suggesting a potential role

for LINC1 in the regulation of dormancy. To investigate this further, alternative

measures of nuclear morphology such as chromatin condensation could be examined

between the two maturation temperatures.

A recent study also showed that changes in dormancy levels did not correlate with

alterations to nuclei size (van Zanten et al., 2011b). Nuclear size was analysed in the

highly dormant ecotype Cvi and dog1 and rdo2 mutants and no differences were

observed between these different genotypes. However, changes to nuclei size and

chromatin condensation were shown to be important parts of the seed development

programme associated with desiccation tolerance. A reduction in nuclear size during

seed maturation was identified and this was dependent on ABI3. During germination, a

further reduction in nuclear size was determined and this was shown to require LINC1

and LINC2 (van Zanten et al., 2011a).

The dormancy phenotypes of two NPC mutants; los4-1 and nup160-2 were tested and

no differences were found in comparison to wild-type (Figure 6.17, 6.18). This result

shows that the reduced dormancy phenotype of hos1 seeds is not common to all NPC
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mutants. However, there are a large number of additional NPC mutants that could be

tested to confirm this. Therefore, together these results suggest that there is no role for

the control of nuclear morphology or the NPC in regulating the temperature regulation

of dormancy.

5.3.5 Transcriptome analysis reveals differential
expression of FT in hos1 seeds

A transcriptome analysis was carried out using RNA-Seq to determine genes that are

important for the temperature regulation of dormancy. A small number of overlapping

genes which were differentially expressed by temperature in seeds could be identified

by comparing the RNA-Seq and a previously published microarray data set (Kendall et

al., 2011). The fact that only a small number of genes was found to overlap between

the two data sets was somewhat surprising (Figure 5.23). However, there were number

of differences between the experimental designs of the two analyses. Firstly the seed

stages that were sampled differed between the two experiments, with this analysis

using green cotyledon seeds and the published data set used dry seeds. The green

cotyledon stage was chosen as dormancy is induced during seed maturation, and by

sampling the dry seed stage genes involved in this induction may have been missed.

Additionally, there was a 5°C maturation temperature difference between the two low

temperature treatments. A drop in temperature from 15°C to 10°C during seed

maturation has large effects on the seed dormancy levels that are induced (Figure 3.2)

and, therefore, it is likely that the expression of different genes would be important for

this. Lastly, the ecotypes which were used differed. This analysis was carried out using

Col seeds whereas the published data set was based on Ler seeds.
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The expression of CYP707A2 has been shown to be downregulated by low

temperature during seed maturation in both transcriptome studies and was confirmed

independently by Real-Time PCR (Figure 3.16D). Additionally, GA2ox6 was found to be

differentially upregulated by low maturation temperature in both transcriptome

analyses. However, this upregulation of GA2ox6 was more difficult to detect in green

cotyledon seeds by Real-Time PCR as expression levels appeared to be very low

(Figure 3.16B).

A notable difference between the two data sets was the expression of NCED4. In the

Ler dry seed data set NCED4 expression was upregulated in seeds matured at 10°C in

comparison to 20°C, whereas in the Col green cotyledon dataset, NCED4 expression is

the opposite, with higher levels of expression at the warm maturation temperature

(Table 5.1). Since NCED4 functions in ABA biosynthesis and ABA levels are higher in

low temperature matured seeds, the upregulation of NCED4 by low maturation

temperature is consistent. However, there is an upregulation of NCED6 by low

temperature in the Col green cotyledon seed data set and this could be the

predominant NCED gene involved in ABA biosynthesis in this ecotype. The analysis of

NCED4 expression in green cotyledon stage seeds using Real-Time PCR showed that

there was little difference in expression of NCED4 in Col, whereas in WS there was a

slight decrease in expression in response to low temperature (Figure 3.16C).

Additionally, expression of DOG1 was found to be unchanged in response to low

maturation temperature in the RNA-Seq dataset (Table 5.1), whereas expression was

upregulated in dry Ler seeds (Kendall et al., 2011). Analysis of DOG1 expression in

green cotyledon stage seeds using Real-Time PCR showed that there was an

upregulation of DOG1 expression in Col seeds, whereas in WS there was a slight
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decrease in expression in response to low temperature (Figure 3.16A). The

transcriptome analysis using RNA-Seq used seeds which were matured at 15°C and

20°C, whereas the Real-Time PCR was carried out on seeds which were matured at

15°C and 22°C. Therefore, the smaller temperature range used for the transcriptome

analysis could have had an effect on the differential expression of DOG1.

A number of TT genes were found to be upregulated in low temperature matured seeds

in comparison to wild-type seeds matured at warm temperature and hos1-3 seeds

(Table 5.1, 5.2). This result suggests that seed coat morphology could be altered in

these seeds. However, when seed coat morphology was analysed the results showed

no difference between seeds matured at warm and low temperatures (Figure 3.5). Yet,

the results from an experiment analysing the dormancy of tt4-1, tt5-1 and tt6-1 showed

that TT5 is important for the induction of dormancy in response to low temperature

since tt5-1 mutants were unable to enter highly dormant states (Figure 5.27). However,

it is possible that altered seed coat morphology could be part of the mechanism by

which HOS1 regulates dormancy levels. To investigate this, sections of seed coat from

hos1 and wild-type should be analysed to identify if there are differences in seed coat

thickness or structure.

FT was identified as being downregulated in hos1-3 seeds and this reduction in

expression was confirmed by Real-Time PCR (Figure 5.24, 5.25). This differential

regulation of FT in hos1-3 seeds is interesting given the involvement of FT as a positive

regulator of flowering. A recent study investigated the role of HOS1 as an integrator of

temperature and photoperiod signals in the regulation of flowering time (Lazaro et al.,

2012). This study found that HOS1 interacts with CO to regulate FT expression (Lazaro

et al., 2012).



Chapter 5: The role of HOS1 in temperature regulation of seed dormancy

171

The reduced expression of FT in hos1-3 seeds is in contrast to what is observed in

vegetative tissues, where hos1 seedlings showed an upregulation of FT (Lazaro et al.,

2012). The downregulation of FT in hos1-3 seeds was somewhat surprising given the

fact that the ft-1 mutant shows increased seed dormancy in response to low maturation

temperature and short-days (Penfield lab, unpublished). This would suggest that in the

Ler background FT is a negative regulator of dormancy and, therefore, a decrease in

expression of FT in hos1 would lead to an increase in dormancy levels. Of course, the

opposite is true in hos1 mutants, which display a reduced dormancy phenotype (Figure

5.3). However, when the dormancy phenotype of the ft-10 mutant was analysed, the

seeds showed wild-type levels of dormancy in response to the three maturation

temperatures tested (Figure 5.26). This result suggests that HOS1 cannot be acting

solely through FT to regulate dormancy levels. Dormancy levels should now be

investigated in the hos1 ft-10 double mutant in response to low maturation temperature

to try and understand this relationship more thoroughly.

MFT expression was found to be upregulated by low maturation temperature in

comparison to warm maturation temperature and downregulated in hos1-3 seeds in

comparison to wild-type (Table 5.1, 5.2). These results could be confirmed by Real-

Time PCR (Figure 5.24B, 5.25B). This temperature regulation of MFT in green

cotyledon seeds is consistent with the results of a study which analysed the effect of

temperature on the dormancy levels of seeds in the soil bank (Footitt et al., 2011). This

study showed that MFT expression is increased by low temperature in Arabidopsis

seeds in the soil bank. Additionally, a study investigating the effect of low temperature

during seed development of wheat also found that the wheat MFT homologue was

upregulated in response to low temperature (Nakamura et al., 2011). In contrast, MFT
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expression was not upregulated in Arabidopsis Ler dry seeds which were matured at

10°C (Kendall et al., 2011).

Although MFT has been shown to have a positive effect on promoting germination in

after-ripened seeds (Xi et al., 2010), freshly harvested mft loss-of-function mutants

show reduced dormancy (Graham lab, unpublished). Thus, the dormancy phenotype of

mft mutant seeds should be investigated in response to low maturation temperature.

One may predict that mft mutant seeds may show a reduced dormancy phenotype in

response to maturation at low temperature. Additionally, the dormancy levels of the

hos1 mft double mutant should be analysed in response to low maturation temperature

to identify if HOS1 affects dormancy levels through MFT.

5.3.6 Conclusions

Experiments in this chapter have demonstrated that hos1 mutants display highly

reduced dormancy phenotypes in situations when high dormancy levels are induced in

wild-type. The data suggest that HOS1 defines a novel essential maternal pathway that

controls seed dormancy that involves the regulation of GA levels in the mature seed,

but not sensitivity to ABA or GA in the imbibed seed. A transcriptome analysis using

RNA-Seq reveals that expression of FT, MFT, and TT is different and, therefore, could

be involved in dormancy regulation with HOS1.
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Chapter 6 Characterisation of cold
stratification insensitive mutants

6.1 Introduction

Germination of Arabidopsis is promoted by exposure to a period of low temperature

during imbibition and in the laboratory situation this is known as “cold stratification”.

Cold stratification is used to ensure the germination of a population of seeds occurs in

synchrony, which is important in both laboratory and horticultural situations. Uniform

germination is important to ensure that the emergence of the plant and hence the

different stages of a plants lifecycle (i.e. flowering) occur simultaneously within a

population. Coordination between plants in a population is particularly important in

crops such as cereals where the majority of the seeds must be at the same stage of

maturity when harvested.

Low temperature can have both positive and negative effects on Arabidopsis

development. While cold temperatures promote seed germination and winter annual

flowering through vernalisation they can also repress plant growth and induce seed

dormancy in the subsequent generation. Although low temperature during imbibition

promotes germination, seedling establishment at low temperature can result in chilling

injury and seed maturation at low temperatures represses germination. The

understanding of how the low temperature signal is able to promote germination is

limited however, the regulation of GA metabolism through changes in GA3ox1

expression is important (Yamauchi et al., 2004).

Here, a forward genetic screen was used to isolate Arabidopsis mutants which do not

respond to the germination promoting effects of low temperature. Forward genetic
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screens can be carried out by either chemical treatment or physical damage which

leads to alterations in the DNA. Commonly EMS is used as a chemical mutagen. EMS

is a base modifying agent which works by adding an ethyl group to the hydrogen-

bonding oxygen in guanine, which leads to a G/C to A/T transition. Approximately 5% of

the mutations created by EMS will result in the creation of a stop codon. In addition,

approximately 65% and 30% of mutations will be missense or silent changes

respectively (McCallum et al., 2000). Therefore, it is likely that the majority of mutations

in a screen created by EMS will be loss-of-function mutations rather than gain of

function mutations.

By isolating mutants incapable of germinating in response to low temperature it was

hoped that more could be learnt about the mechanisms that regulate the process of

cold stratification. A characterisation of five of these mutants is presented in this

chapter along with some preliminary genetic analyses.
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6.2 Results

6.2.1 Description of mutant screen

A forward genetic screen was used to isolate mutants that were unable to germinate in

response to cold stratification during imbibition (Figure 6.1). Briefly, EMS mutagenised

freshly harvested Col seed was exposed to cold stratification (three days at 4°C, dark)

and then transferred to a twelve hour light, twelve hour dark light regime at 22°C. After

one week, germination was analysed and any seeds which did not germinate were

taken forward to the next part of the screen where they were dried and then after-

ripened for one month. Seeds that germinated following after-ripening were taken

through to the next generation and the resulting progeny was re-tested. Through this

selection process fourteen mutants were isolated, named cold stratification

insensitive1-14 (cosi1-14), which showed a strong insensitivity to the cold stratification

treatment but were able to germinate following after-ripening. The mutant screen and

isolation of fourteen cosi mutants was carried out by Steve Penfield, prior to the start of

this project.
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Figure 6.1: Schematic of forward genetic screen.
Freshly harvested EMS mutagenised Col seeds were cold stratified for three days and
moved to twelve hour light, twelve hour dark light regime at 22°C. After one week,
germination was analysed and seeds which did not germinate were taken forward to
the next part of the screen where they were dried and after-ripened for one month.
Seeds that germinated following after-ripening were taken through to the next
generation and the resulting progeny was re-tested.

6.2.2 Characterisation of cosi mutant phenotype in
response to cold stratification

To test the robustness of the phenotype of each cosi mutant, the response of the

fourteen selected mutants to cold stratification was analysed further. Freshly harvested

seed (harvested from plants grown in glasshouse conditions) was exposed to up to

three days of cold stratification and then transferred to light/dark conditions at 22°C.

Germination of the fourteen different cosi mutants was highly variable and the mutants

could be split into three broad classes; those that showed a low, intermediate and high

insensitivity to the cold stratification (Figure 6.2). cosi11 and cosi12 germinated to wild-

type levels or above and so, showed no insensitivity to cold stratification. cosi6, cosi8,

cosi10 and cosi13 also showed low insensitivity to cold stratification. cosi5, cosi7, cosi9

and cosi14 all showed germination which was highly insensitive to cold stratification.

These six mutants which showed a low or medium insensitivity to the cold stratification
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were removed from further characterisation. Eight mutants that showed high

insensitivity to cold stratification remained and the five mutants with the strongest

phenotypes (cosi1-5) were selected for further analysis based on their strong

insensitivity to cold stratification.

Figure 6.2: Germination of mutants isolated from forward genetic screen.
Freshly harvested seeds generated under glasshouse conditions were cold stratified for
up to three days. Germination was scored as radical protrusion following seven days at
22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error.

The initial characterisation of the fourteen cosi mutant cold stratification phenotypes

that have been described was carried out using seed generated from plants that were

grown under glasshouse conditions (Figure 6.2). However, after testing multiple

generations of seeds, which were generated in both glasshouse and growth room

conditions, it was observed that variability in environmental conditions was affecting the

phenotypes observed (Figure 6.3A, B). The data presented in Figure 6.2, 6.3A and

6.3B represent seed from independent increasing generations. Problems with insect

infestation meant that not enough seed was produced by cosi3 to analyse the
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germination and hence germination data for only four cosi mutants is presented in

Figure 6.3A. In some cases the cold stratification insensitive phenotype of the mutant

disappeared over generations, whereas in other cases the phenotypes were extremely

dependent on the environmental conditions in which the mother plant was grown and

the seeds matured. In December the temperature range experienced by plants in the

glasshouse was 13.8°C to 24.8°C, whereas in July the range was 17.7°C to 31.6°C.

Similarly large differences in the total amount of light were observed between winter

and summer. The growth of cosi1 plants generated under glasshouse conditions was

found to be poor and seed production was vastly reduced in comparison to wild-type.

The reduction in the number of seeds produced by cosi1 meant that germination

experiments were difficult to carry out as the seed number was limiting. Therefore, to

eliminate the effect of differences in environmental conditions, such as temperature and

light, on the mutant phenotype all plants for further experiments were grown in growth

cabinets where conditions were tightly regulated. It was also hoped that the growth and

seed production of cosi1 could be improved by growing the plant in more controlled

conditions.
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Figure 6.3: Germination of five selected cosi mutants.
Freshly harvested seeds generated under glasshouse conditions (A) or in a growth
room (B) were cold stratified for up to three days. Germination was scored as radical
protrusion following seven days at 22°C in twelve hour white light/dark cycles. Data
points are the average of five individual seed batches and error bars represent
standard error. Problems with insect infestation resulted in low seed production for
cosi3 meaning that the dormancy assay (A) could not be carried out for this mutant.

6.2.3 Response of cosi mutants to extended cold
stratification

The results have shown that the five selected cosi mutants show reduced germination

in response to a relatively short exposure to low temperature (Figure 6.2, 6.3). It is

possible that the cosi mutants are able to respond to low temperature but they require a

longer period of exposure for germination to be promoted. This could be due to the

seeds having a higher chilling requirement and so a greater threshold of exposure to

cold must be met for dormancy to be overcome. Secondly, there could be a lag in the

response to cold stratification. Seeds with high dormancy levels which are induced in

response to low temperature during seed maturation show an increase in germination

when exposure to 4°C is extended from three days to fourteen days (Penfield and

Springthorpe, 2012) and further extension of cold stratification can often induce seeds

into secondary dormancy (Finch-Savage et al., 2007, Penfield and Springthorpe, 2012).
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To investigate if extended cold stratification can promote higher levels of germination in

the cosi mutants an experiment was carried out where cold stratification was extended

to twenty eight days (Figure 6.4). Seeds for this experiment were generated in a growth

cabinet. Three days of cold stratification promoted high germination levels in wild-type

seeds (Figure 6.4). The germination of wild-type seeds could not be increased with

further exposure to low temperature as the germination had already reached maximum

levels in response to three days of cold stratification. Long exposure to cold (i.e. twenty

one/twenty eight days) did not lead to a reduction in germination in wild-type and hence

entry into secondary dormancy was not promoted (Figure 6.4). In this experiment cosi5

responded like wild-type to the cold stratification, germinating to approximately 90%

following three days cold stratification, suggesting that the phenotype that this mutant

had been selected for was highly variable (Figure 6.4). Since the seeds for this

experiment were generated in a growth cabinet, it is unlikely that environmental effects

were the cause of the increased germination. Germination of cosi5 was increased to

almost 100% when seeds were exposed to further cold (Figure 6.4). The increase in

cold stratification was able to promote high germination levels in cosi2 seeds, although

low germination levels were still observed in response to short cold stratification times

for this mutant (Figure 6.4). Extended cold stratification did promote increased

germination for cosi3 and cosi4 seeds, but germination remained significantly lower

than wild-type (Figure 6.4). After seven days of cold stratification cosi4 seeds exhibited

reduced germination indicating seeds had entered secondary dormancy. After twenty

eight days of cold stratification germination levels of cosi3 had reached approximately

60%, a marked increase from the 20% observed following three days of cold

stratification. This suggests that cosi3 does require an increased amount of cold in

comparison to wild-type. In contrast to the other cosi mutants, cosi1 seeds showed no



Chapter 6: Characterisation of cold stratification insensitive mutants

181

significant increase in germination in response to the increased cold stratification

treatment.

Together these results suggest that by extending cold stratification the germination of

cosi2 and cosi5 can be increased to wild-type levels, although levels of germination of

cosi5 were high in comparison to previous experiments (Figure 6.2, 6.3A, 6.3B). On the

other hand, the cold stratification extension failed to increase the germination of cosi1,

cosi3 and cosi4 to wild-type levels.

Figure 6.4: Germination of cosi mutants in response to extended cold
stratification.
Freshly harvested seeds generated in a growth cabinet were cold stratified for up to
twenty eight days. Germination was scored as radical protrusion following seven days
at 22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error.
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6.2.4 Involvement of cosi mutants with hormones

6.2.4.1 Germination response of cosi mutants to ABA and PAC

The phytohormones, ABA and GA, are known to play an important role in regulating

germination and, therefore, an experiment was carried out to determine whether

sensitivity to ABA or GA is altered in the cosi mutants. To examine this hypothesis, the

sensitivity of cosi mutants to ABA and PAC, a GA biosynthesis inhibitor was analysed.

Altered sensitivity to ABA and PAC is a common phenotype for a number of seed

germination mutants such as dog1-2, (Bentsink et al., 2006). The results from the ABA

and PAC sensitivity experiment would also contribute to the understanding of how the

pathway in which germination is promoted in response to low temperature interacts with

ABA and GA signalling pathways.

cosi mutant seeds which were generated under glasshouse conditions were after-

ripened for approximately three months and germinated in the presence of varying

concentrations of ABA, PAC or a control (methanol). Seeds were after-ripened to

ensure high levels of germination were obtained in response to control conditions so

the effect of ABA and PAC on reducing germination could be observed. The five cosi

mutants showed a varied response to both ABA and PAC, although the majority of

mutants appeared to show hypersensitivity in comparison to wild-type (Figure 6.5).

Hypersensitivity to both ABA and PAC is consistent with the reduced germination

phenotype which is observed, i.e. the seeds are more sensitive to the negative effects

of ABA and PAC. Specifically, cosi2, cosi4 and cosi5 were significantly sensitive to

intermediate concentrations of ABA, whereas cosi3 showed a similar response to wild-

type (Figure 6.5A). cosi1 showed high sensitivity to low concentrations of ABA, but a

similar response to wild-type in response to high levels of ABA. Unfortunately, the
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sensitivity of cosi1 to ABA and PAC was only tested using one individual seed batch,

rather than the usual five as there were problems with seed production.

In response to PAC, cosi1 was significantly hypersensitive, although it should be noted

that the germination of this mutant was low (only approximately 40%) in response to the

control treatment (Figure 6.5B). Consequently, the extreme hypersensitivity observed in

cosi1 may be a reflection of the general high dormancy. cosi4 also showed significant

hypersensitivity to PAC at the mid range concentrations, although increases in

concentration from 0.1µM to 1µM ABA appeared to have little effect on the germination

of this mutant. cosi5 showed significant hypersensitivity to PAC at concentrations of

1µM and 5µM PAC. cosi2 and cosi3 also showed significant hypersensitivity to PAC at

concentrations of 0.5µM to 5 µM in comparison to wild-type. Germination of all five cosi

mutants and wild-type in response to 20µM PAC was approximately 0%.

Therefore, there is a high amount of variability in the responses of the different cosi

mutants to ABA and PAC, but most mutants do show a hypersensitive phenotype,

which is consistent with the reduced germination phenotype of the cosi mutants.
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Figure 6.5: ABA and PAC sensitivity of cosi mutants.
Seeds generated in glasshouse conditions were after-ripened for approximately three
months. Cold stratified seeds were germinated in the presence of increasing
concentrations of ABA (A) and PAC (B) and germination was scored as radical
protrusion following seven days at 22°C in twelve hour white light/dark cycles. Data
points are the average of five individual seed batches and error bars represent
standard error. An exception to this is cosi1 and data points represent one single seed
batch.

6.2.4.2 Germination response of cosi mutants to GA and NOR

Results presented in chapter three showed that the germination of highly dormant wild-

type seeds can be increased with the addition of endogenous GA or NOR, an inhibitor

of ABA biosynthesis (Figure 3.9). Therefore, an experiment was carried out to

determine whether the addition of exogenous GA or NOR would increase the

germination of unstratified and cold stratified cosi mutant seeds which were generated

in a growth cabinet.

Germination of unstratified wild-type seeds was significantly increased with the addition

of GA to approximately 85%, whereas the addition of NOR only increased germination

to approximately 25% (Figure 6.6). For these seeds the combined addition of GA and

NOR significantly increased the germination further to approximately 90% (Figure 6.6).

Germination of wild-type cold stratified seeds in response to the control reached the
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same level as unstratified seeds treated with GA, thus suggesting the exogenous

application of GA can replace the action of cold in promoting germination.

In unstratified seeds, the application of GA led to an increase in germination of cosi2-5

and this increase was significant for cosi4 and cosi5. In contrast, the application of GA

to unstratified cosi1 seeds had little effect on promoting germination. In cold stratified

seeds, the application of GA significantly increased the germination of cosi1, and cosi4,

whilst it had no significant effect on the germination of cosi2, cosi3 and cosi5. The

reason for the inability of GA to promote germination in these seeds may be due to the

fact that cold stratification did increase the germination of these seeds. However, the

effect of the application of GA on germination of cosi seeds did not lead to wild-type

levels of germination.

In contrast to the effects of the application of GA, the germination of unstratified seeds

was not significantly increased by the application of NOR. An exception to this was the

response of cosi3 seeds to NOR, which led to a significant increase in germination that

was greater than the response to applied GA. In cold stratified seeds, the application of

NOR only led to a significant increase in germination for cosi1 seeds. Again, NOR had

a greater effect on promoting germination in cosi3 cold stratified seeds in comparison to

GA, but neither of these treatments were significantly different to the control treatment.

The application of both GA and NOR led to a significant increase in germination of cosi

mutant unstratified seeds that was greater than the effect of GA or NOR alone. An

exception to this was the germination of cosi3 unstratified seeds, where NOR alone did

have a greater effect on germination. The synergistic effect of GA and NOR is most

striking on cosi1 unstratified seeds, which show low germination in response to either



Chapter 6: Characterisation of cold stratification insensitive mutants

186

GA or NOR alone, but wild-type levels of germination in response to both GA and NOR.

Germination of cold stratified cosi mutant seeds is promoted to wild-type levels in

response to both GA and NOR. An exception to this is germination of cosi2 stratified

seeds, as the application of GA and NOR did not significantly increase the germination

further than the control treatment.

These results reveal that the cosi mutants cannot be deemed GA insensitive since

germination responds to GA in all cases. The results show that generally GA has a

greater effect on promoting germination than NOR. However, promotion of wild-type

levels of germination for cosi mutants generally requires the synergistic effect of both

GA and NOR. Consequently, the results suggest that GA may have a more important

role in promoting germination in response to low temperature, although there is also a

role for ABA.
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Figure 6.6: Germination of cosi mutants in response to GA and NOR.
Seeds generated in a growth cabinet were cold stratified for zero or three days (COLD)
and germinated in the presence of GA (100µM), NOR (50µM), GA + NOR or control
(100µM methanol). Germination was scored as radical protrusion following seven days
at 22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error. * Indicates significant
difference to the control treatment when P≤0.05 by students t-test.

6.2.4.3 Response of cosi3 growth to exogenous GA application

cosi3 mutants show reduced germination in response to cold stratification (Figure 6.2,

6.3A, 6.4B, 6.5). Germination of this mutant is increased in response to extended

lengths of cold stratification (Figure 6.4). In addition to these phenotypes cosi3 mutant

plants also display a dwarfed phenotype and are dark green in colour, which is similar

to the phenotypes displayed by the GA-deficient mutant ga1-3 (Koornneef and Veen,

1980). Exogenous application of GA reverses the dwarf phenotype in ga1-3 to that of

wild-type (Koornneef and Veen, 1980). Therefore, to determine whether the dwarfed

appearance of cosi3 plants could also be reversed by the exogenous application of GA,

cosi3 seeds were germinated on medium containing GA and seedling growth was
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analysed (Figure 6.7). Additionally, the cosi3 plants were directly sprayed with GA

(Figure 6.8). Application of GA to both cosi3 seeds and plants may have had a slight

promotional effect on the size of seedlings and plants, but the dwarfed phenotype was

not completely rescued to wild-type as would have been expected if cosi3 were a GA-

deficient mutant like ga1-3. Wild-type seedlings and plants showed a similar response

whereby treated plants were slightly bigger than control plants (Figure 6.8). This

suggests that the GA treatments were effective and that the small response of cosi3 to

the GA confirms the result that cosi3 is not insensitive to GA which is shown in Figure

6.6.

Figure 6.7: Seedling growth of cosi3 in response to exogenous GA.
Wild-type and cosi3 seedlings were germinated on water-agar with 100µM Methanol
(control) or 100µM GA. Seeds were given three days cold stratification and then
transferred to 22°C in twelve hour white light/dark cycles. Fourteen day old seedlings
were photographed. Scale bar indicates 2.5mm.

Col (Control) cosi3 (Control) Col (GA) cosi3 (GA)
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Figure 6.8: Exogenous application of GA to cosi3 plants.
Wild-type and cosi3 plants were grown in long day conditions with a temperature
regime of 20°C/18°C. Control plants were treated with 2% Methanol and +GA plants
were treated with 100µM GA in 2% Methanol. Plants were sprayed on a weekly basis
from seventeen days old. Five week old plants were photographed.

6.2.5 Analysis of additional cosi mutant germination
phenotypes

6.2.5.1 Response of cosi mutants to different imbibition temperatures

The aim of this screen was to identify mutants that were unable to respond to low

temperatures, specifically during imbibition. However, it is possible that cosi mutants

may show a more general inability to respond to a range of temperatures and not just to

low temperature. To test this hypothesis freshly harvested seeds, which were

Col Col cosi cosi3
(Control) (GA) (Control) (GA)



Chapter 6: Characterisation of cold stratification insensitive mutants

190

generated in a growth cabinet, were imbibed at four temperatures; 12°C, 17°C, 22°C

and 27°C and germination after seven days was analysed (Figure 6.9). In wild-type

seeds, low imbibition temperatures promote high levels of germination whereas at

higher imbibition temperatures the process of thermoinhibition prevents germination.

Seeds of winter annual ecotypes of Arabidopsis are shed during the spring, but their

germination is prevented by high temperature during summer, meaning these seeds

germinate in the autumn.

Figure 6.9: Germination of cosi mutants in response to different imbibition
temperatures.
Seeds generated in a growth cabinet were imbibed at 12°C (A), 17°C (B), 22°C (C) and
27°C (D). Germination was scored as radical protrusion following seven days at 22°C in
twelve hour white light/dark cycles. Data points are the average of five individual seed
batches and error bars represent standard error.

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o

n
F

re
q

u
e

n
c
y

(%
)

0

20

40

60

80

100 A

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o

n
F

re
q

u
e

n
cy

(%
)

0

20

40

60

80

100 C

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o

n
F

re
q

u
e

n
cy

(%
)

0

20

40

60

80

100

Col

cosi1

cosi2

cosi3

cosi4

cosi5

B

Cold Stratification Length (days)

0 1 2 3

G
e

rm
in

a
ti
o

n
F

re
q

u
e

n
c
y

(%
)

0

5

10

15

20
D



Chapter 6: Characterisation of cold stratification insensitive mutants

191

When wild-type seeds were exposed to increasing days of cold stratification before

imbibition at 12°C, 17°C or 22°C, the negative effect of increasing imbibition

temperature was reduced. Following three days cold stratification, the germination of

seeds imbibed at 12°C and 22°C was no longer significantly different (Figure 6.9A, C).

In contrast, although cold stratification promoted germination when seeds were imbibed

at 27°C, germination was still significantly suppressed by high temperature following

three days of cold stratification in comparison to seeds imbibed at 22°C (Figure 6.9D).

These results suggest that increases in temperature in the ambient range do not

influence the germination potential of seeds. Seeds are, however, still respondent to

the negative effect of imbibition at high temperatures.

The five different cosi mutants showed a large amount of variation in their responses to

different imbibition temperatures. Most noticeably is the response of cosi3 to different

imbibition temperatures. The results for this mutant are shown alone with wild-type for

an easier comparison (Figure 6.10). Germination of cosi3 seeds do not show any

significant differences in response to an increase in imbibition temperature from 12°C to

27°C (Figure 6.10B). cosi1 and cosi5 also show a similar phenotype to cosi3, but cold

stratification does promote some germination when seeds are imbibed at 22°C and

germination is suppressed significantly when seeds are imbibed at 27°C. Germination

of cosi4 is significantly lower than wild-type at the four imbibition temperatures and

some promotion of germination by cold stratification is observed. In contrast to the

other cosi mutants, cosi2 shows a similar phenotype to wild-type when imbibed at 12°C

and 17°C (Figure 6.9A, B). Even when cosi2 was imbibed at 22°C, it still germinated to

approximately 60% following three days of cold stratification. In addition, cold

stratification did not promote any significant increase in germination of cosi2 at all four

imbibition temperatures tested (Figure 6.9). Therefore, the results highlight cosi3 as
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being particularly interesting since it displays an imbibition temperature insensitivity

phenotype. However, this does suggest that the temperature sensing defect of this

mutant may not be specific to low temperature.

Figure 6.10: Germination of cosi3 in response to different imbibition
temperatures.
Wild-type (A) and cosi3 (B) seeds generated in a growth cabinet were imbibed at 12°C,
17°C, 22°C and 27°C. Germination was scored as radical protrusion following seven
days at 22°C in twelve hour white light/dark cycles. Data points are the average of five
individual seed batches and error bars represent standard error. The data in this Figure
is taken from Figure 6.9.

6.2.5.2 Response of cosi mutants to after-ripening

The five cosi mutants were selected on the basis that although they do not germinate in

response to cold stratification, a period of after-ripening was able to reduce dormancy

levels such that seeds were able to germinate. These selection criteria meant that the

selected mutants show a specific germination defect in the response to cold

stratification. Results presented in chapter three show that seeds which have high

levels of dormancy are in some cases unresponsive to a short period of cold

stratification (i.e. three days) and also show little response to relatively short periods of

after-ripening (approximately two months) (Figure 3.2, 3.3). Since the selected mutants

should germinate in response to after-ripening, it can be ruled out that the mutants are
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simply ‘more dormant’ and so don’t respond to the cold stratification. Therefore, it was

important to quantify the response to after-ripening and so germination of cosi mutant

seeds, which were generated in a growth cabinet, in response to increasing lengths of

after-ripening was analysed.

The response of cosi3 seeds to after-ripening was significantly quicker than that of wild-

type seeds (Figure 6.11). The fact that this mutant responds well to after-ripening

suggests that the observed germination defect is a specific response to cold

stratification. cosi1 seeds showed no significant response to after-ripening and,

consequently, this suggests that although after-ripening had promoted germination in

the initial screen, the mutation may cause a more generalised germination defect that is

not specific to the cold stratification response. Similarly, after-ripening had little effect

on the germination of cosi4 seeds, whose germination reached a maximum of

approximately 20% following fourteen weeks of after-ripening, which was significantly

lower than wild-type. Again this indicates that the defect in this mutant is likely to be

part of a broader mechanism regulating germination as a whole and not specific to the

temperature response during imbibition. Initially, cosi2 showed a quicker response to

after-ripening in comparison to wild-type, although after six weeks of after-ripening,

wild-type germinated to higher levels. Interestingly, cosi5 did respond to after-ripening,

but germination began to decrease following nine weeks of after-ripening. This could be

due to a loss of viability within the tested seed batches. Or conversely this result could

suggest that dormancy cycling is occurring in these seeds. Therefore, responses of the

cosi mutants to after-ripening shows variation and the results from this experiment

highlight mutants whose phenotypes are not specific to a defect in responding to cold

stratification (i.e. cosi1 and cosi 4). It is surprising that these mutants are unable to

germinate in response to after-ripening since this was one of the criteria of the original
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screen however, the seeds for this experiment and the original screen were generated

under different environmental conditions.

Figure 6.11: Germination of cosi mutants in response to after-ripening.
Seeds generated in a growth cabinet were after-ripened for up to fourteen weeks.
Germination was scored as radical protrusion following seven days at 22°C in twelve
hour white light/dark cycles. Data points are the average of five individual seed batches
and error bars represent standard error.

6.2.6 Characterisation of cosi growth phenotypes

6.2.6.1 Analysis of cosi mutant hypocotyl elongation

Light is a key regulator of germination, and is known to regulate a number of other

processes in the plant including the inhibition of hypocotyl elongation (de-etiolation),

stimulation of cotyledon expansion and regulation of flowering time. cosi1 displayed a

number of phenotypes that are typical of light signalling mutants, including early

flowering, long hypocotyl and long petioles and, therefore, to quantitate whether cosi1

along with the other cosi mutants displayed any abnormal responses to light, hypocotyl
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elongation in response to white, red, far red and blue light was investigated in

comparison to light signalling mutants (Figure 6.12). phyB mutants are unable to

repress hypocotyl elongation in response to red light, phyA mutants to far red light and

cry1 mutants to blue light (Koornneef et al., 1980, Whitelam et al., 1993). For these

reasons, these mutants have been included in the seedling growth assays.

Both cosi3 and cosi4 have significantly shorter hypocotyls in response to far red light

(Figure 6.12D) but respond like wild-type to white and blue light (Figure 6.12A, C).

cosi3 also has a significantly shorter hypocotyl in response to red light (Figure 6.12B).

cosi2 and cosi5 have significantly longer hypocotyls in response to white, red and blue

light, but respond like wild-type to far-red light (Figure 6.12 A,B, C, D). The response of

cosi2 to the different light regimes is very similar to what is observed for phyB;

however, the hypocotyls of cosi2 under white and red light were significantly shorter

than phyB (Figure 6.12A, B). This suggests that cosi2 may have some involvement in a

light signalling pathway perhaps specifically through red light.

The long hypocotyl phenotype of cosi1 that had been observed when growing these

plants was confirmed, and this phenotype was apparent under each light regime tested.

In comparison to phyA and phyB in the red and far red light treatments respectively,

cosi1 had significantly increased hypocotyl elongation (Figure 6.12B, D). However, in

response to blue light, the hypocotyl elongation of cosi1 did not exceed that of cry1

(Figure 6.12C), thus suggesting that altered responses of multiple phytochromes but

not cryptochromes are likely to be the basis of the hypocotyl elongation phenotypes

that are observed in cosi1. Therefore, again a variety of phenotypic responses is

displayed by the cosi mutants with regards to the de-etiolation process. cosi1 shows a
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long hypocotyl phenotype in response to all light treatments and this suggests that the

gene that is mutated in cosi1 may be a key component of a light signalling pathway.

Figure 6.12: Hypocotyl elongation of cosi mutants.
Seeds were cold stratified for three days, transferred to a growth cabinet at 22°C with
constant white light for two days and then the light was switched to the appropriate light
treatment for a further seven days. Light treatments were white light (A), red light (B),
blue light (C) and far-red light (D). Data points are the average of approximately twenty
seedlings and error bars represent standard error. * Indicates significant difference to
wild-type when P≤0.05 by students t-test.

6.2.6.2 Analysis of cosi mutant growth rate

Growth rate has been shown to be tightly coupled to temperature and a mutation in

SPT, which is a repressor of seed germination, shows an increased growth rate

phenotype at low temperature but no difference at warmer temperatures (Sidaway-Lee
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et al., 2010). Additionally, phyAphyBphyDphyE plants show slow rosette leaf production

in comparison to wild-type at 16°C (Halliday et al., 2003). Therefore, an experiment was

carried out to understand if any of the cosi mutations were involved in growth regulation

in response to temperature. To investigate this, plants were grown at 15°C and total

rosette leaf area was used as a measure of growth rate. cosi1 and cosi5 plants showed

significantly increased growth rate phenotypes after seven weeks of growth in

comparison to wild-type (Figure 6.13). After seven weeks of growth, total rosette area

of cosi5 was 50% larger than wild-type. This increase in growth rate is not dissimilar to

that of spt-2 (Sidaway-Lee et al., 2010). Conversely, cosi3 and cosi4 showed a

significantly reduced growth rate after seven weeks of growth in comparison to wild-

type. It was not surprising that cosi3 displayed such a phenotype, since this plant is

dwarfed (Figure 6.8). In contrast, the growth rate of cosi2 was largely similar to wild-

type, although a small decrease in growth rate was observed at seven weeks. Together

these results suggest that growth rate is altered in a number of the cosi mutants.
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Figure 6.13: Growth rate of cosi mutants.
Growth rate was based on total rosette leaf area of approximately ten plants grown at
15°C under a long-day light regime. Photographs of plants were taken on a weekly
basis from one week to seven weeks. Data points are the average of ten plants and
error bars represent standard error.

6.2.6.3 Analysis of cosi mutant flowering time

Since a number of mutants which have roles in regulating germination have been

shown to have altered flowering time phenotypes (Penfield and Hall, 2009), an

experiment was carried out to determine whether any of the cosi mutants was involved

in regulating flowering time. The flowering time of plants grown at 15°C was measured

by analysing the number of rosette and cauline leaves produced at first anthesis

(Figure 6.14). The reduced growth rate of cosi4 (Figure 6.13) was coupled with

significantly later flowering in comparison to wild-type (Figure 6.14). This mutant

flowered twenty five days later than wild-type and had approximately ten more rosette

leaves that wild-type. On the other hand, cosi3 displayed a wild-type flowering
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phenotype, with the total days to flowering and number of rosette leaves being

extremely similar to wild-type. cosi2 flowered with a similar number of rosette leaves,

but had a significantly greater number of cauline leaves and took eight more days to

flower than wild-type. The increase in days to flowering of cosi2 could reflect the slightly

lower growth rate towards the end of the experiment (Figure 6.13). Although cosi5

flowered with a larger number of leaves than wild-type, the days to flowering was

shorter and this is likely to be due to its increased growth rate phenotype that is

observed (Figure 6.13). cosi1 was also early flowering (in terms of days and rosette leaf

number) (Figure 6.14). These results suggest that the germination phenotype of some

of the cosi mutants can be coupled with altered flowering time. In a number of cases,

altered flowering time can be correlated with an altered growth rate. It is also possible

that these two phenotypes are unrelated.

Figure 6.14: Flowering time of cosi mutants.
Plants were grown at 15°C under a long-day light regime. Flowering time was
measured by number of rosette leaves, cauline leaves, and days post germination
(above bars) until first anthesis. Data points are the average of ten plants and error
bars represent standard error.
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6.2.7 Genetic analyses of cosi mutants

6.2.7.1 Identification of cosi1 as hy2

cosi1 displays a significantly longer hypocotyl in response to all light treatments in

comparison to wild-type suggesting the mutant is incapable of inhibiting hypocotyl

elongation (Figure 6.12). The long hypocotyl phenotype of cosi1 in response to the

various light treatments is much more striking than that of any single phytochrome

mutants (Figure 6.12), suggesting that cosi1 is not allelic to a single phytochrome

mutant. Additionally, the ability to flower early in low temperature conditions suggests

that multiple phytochromes must be absent or altered in this mutant (Figure 6.14). The

long hypocotyl phenotype of cosi1 can be likened to the hy1, hy2 and hy6 mutants

(Koornneef et al., 1980, Chory et al., 1989), which have reduced levels of all

phytochromes and exhibit an inability to inhibit hypocotyl elongation. A diallel cross was

performed between cosi1 and hy1-1 and hy2-1. Hypocotyl elongation in response to

red light was measured in the resulting F1 progeny and these phenotypes confirmed

that cosi1 is allelic to hy2 (Figure 6.15). Therefore, it is likely that the insensitivity to cold

stratification that is observed in cosi1 may not reflect a specific defect in the response

to the low temperature, but more so that dormancy levels cannot be overcome by the

positive effects of light, since no active phytochromes are present.
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Figure 6.15: Alleism test of cosi1 with hy1-1 and hy2-1.
Hypocotyl elongation was measured in response to red light. All crosses were at the F1

stage. Seeds were cold stratified for three days before being moved to constant light at
22°C for two days. Light was then changed to constant red light for seven days. Data
points represent the average of seeds from five independent crosses and error bars
represent standard error.

6.2.7.2 Reciprocal backcrossing of cosi mutants

Backcrossing of the cosi mutants to Col was carried out to determine the Mendelian

segregation of the five cosi mutants that had been selected. Freshly harvested

independent F2 seed batches were cold stratified for up to three days and germination

was analysed after seven days. A number of mutants had morphological phenotypes

(such as the long hypocotyl of cosi1) that could be identified in the population and

segregated with the cold stratification phenotype. However, for other mutants, such as

cosi3, morphological phenotypes (dwarfing) did not segregate with the cold stratification

insensitive phenotype. Although homozygous mutants could be identified for cosi1

(Figure 6.16A), this mutant has already been identified as an allele of hy2 and so no
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further analysis was required. Identifying homozygotes in the backcrossed populations

was particularly difficult for cosi2 and cosi5 (Figure 6.16B, E). cosi2 itself didn’t show a

particularly strong cold stratification insensitive phenotype in this experiment and none

of the backcrossed seed batches germinated to a lower level than wild-type (Figure

6.16B). Similarly, all cosi5xCol seed batches showed germination that was higher than

wild-type (Figure 6.16E). Germination data for cosi3 and cosi4 looked as though the

mutations were segregating in a dominant and recessive fashion respectively (Figure

6.16C, D).

Since cosi3 appeared to have the most interesting and robust phenotype throughout

the analyses presented in this chapter, the dominant nature of the mutation needed to

be confirmed and so, the experiment was repeated. However, when this was repeated,

cosi3 germinated to approximately 60%, which was considerably higher than had

previously been observed (Figure 6.17A). Consequently, it was difficult to determine

homozygous mutants in this population. To try and avoid problems associated with

identifying homozygotes, the F3 seed was matured at either 12°C or 17°C before being

swapped to 20°C approximately two weeks before harvest to try and accentuate the

mutant phenotype. However, there was variation in the germination response of the

cosi3 backcrossed population and so again this made the identification of homozygotes

within the population problematic (Figure 6.17B, C). When matured at 17°C, only two

seed batches germinated to less than 90% (Figure 6.17B). Whereas when matured at

12°C, a large number of seed batches showed germination that was similar to cosi3

(Figure 6.17C). The germination responses of seed batches that were matured at 12°C

could be split into three groups, but did not reflect a sensible segregation pattern. It is

extremely important to understand the way in which a mutation is segregating in order
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to map it correctly. Since robust data could not be obtained for any of the cosi mutants

map based cloning could not be carried out.
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Figure 6.16: Germination of backcrossed cosi mutants to wild-type.
Germination of approximately forty cosi1xCol F2 (A), cosi2xCol F2 (B), cosi3xCol F2 (C),
cosi4xCol F2 (D) and cosi5xCol F2 (E) freshly harvested seed batches. Seeds were cold
stratified for three days. Germination was scored as radical protrusion following seven
days at 22°C in twelve hour white light/dark cycles.

Figure 6.17: Germination of cosi3xCol F3 seed batches.
Seeds were generated at the following temperatures: 20°C/16°C (A), 12°C (B) and
17°C (C). Freshly harvested seeds from approximately forty plants were cold stratified
for three days. Germination was scored as radical protrusion following seven days at
22°C in twelve hour white light/dark cycles.
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6.3 Discussion

6.3.1 Growth conditions affect cosi mutant
phenotypes

A thorough characterisation of five Arabidopsis mutants, which were selected from a

group of fourteen mutants that showed low germination in response to cold

stratification, has been presented in this chapter. Initially, seeds were harvested from

plants grown under glasshouse conditions; however, after testing multiple generations,

phenotypes of these mutants were found to be highly variable between different

experiments (Figure 6.2, 6.3). One reason for this could be due to the fluctuating

environmental conditions that are experienced by plants grown in glasshouse

conditions. Both light and temperature levels differ greatly between different times of

year in the glasshouses.

When plants were grown in a growth room the mutant phenotypes could be reproduced

to an extent, although some cosi mutants still germinated to approximately 70% (Figure

6.3B). Although conditions in the growth room are much more controlled than in the

glasshouse, there are still instances where environmental fluctuations may occur.

Therefore, it was decided that all future plants would be grown in a growth cabinet

where conditions could be carefully controlled. Although it was now more certain that

the environmental conditions remained the same for each experiment carried out, large

variability in the phenotypes observed between experiments was still observed. For

example, cosi5 seeds germinated to approximately 90% following three days of cold

stratification in the extended cold stratification experiment (Figure 6.4), whereas cosi5

germinated to only approximately 10% in the imbibition temperature experiment (Figure

6.9). This is a difference of 80% between the two experiments. It is also possible that
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the cosi mutants are not homozygous mutants and that the variation in the cold

stratification insensitive phenotypes which are observed between experiments could be

due to the mutants being heterozygotes.

6.3.2 cosi3 shows ambient temperature insensitivity
during imbibition

An interesting question that this chapter aimed to address was whether cosi mutants

were insensitive to low temperature specifically during imbibition or whether they were

insensitive to a range of different temperatures as a part of a broader temperature

sensing defect. To investigate this, cosi mutant seeds were imbibed at 12°C, 17°C,

22°C and 27°C (Figure 6.9). Strikingly, cosi3 displayed a lack of a germination

response to these different imbibition temperatures, (Figure 6.9, 6.10) which suggests

that this mutant may have defects in detecting differences in temperature correctly. It

would have been interesting to determine whether the insensitivity to temperature of

cosi3 seeds is only during the imbibition period or occurs throughout plant

development. This could have been analysed by looking at growth rate or flowering

time in response to differing temperatures, however the time constraints of this work did

not enable these experiments to be performed.

Germination of cosi3 seeds did increase in response to extended cold stratification

(Figure 6.4), which can be used to break strong primary dormancy (Penfield and

Springthorpe, 2012). This suggests the low temperature signal may be sensed in cosi3,

but the amount of cold required to cross the threshold at which germination is promoted

is increased in this mutant. It is possible that germination of cosi3 seeds could be

increased further by extending cold stratification length past twenty eight days. On the

other hand however, cosi3 seeds may have been simply responding to the extended
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‘time’ of imbibition in the dark and not in actual fact to temperature. Therefore, cosi3

may be able to sense severe temperatures (i.e. 4°C) but is not able to detect

temperatures in the range of 12°C to 27°C.

6.3.3 cosi mutants show altered hormone signalling

Since ABA and GA are known to be important regulators of germination, sensitivity of

the cosi mutants to ABA and PAC were tested. Although there was variation in the

response of the different cosi mutants to ABA and PAC, there were a large number of

mutants that displayed hypersensitivity to ABA. The dwarfed appearance and dark

green colouration of cosi3 was typical of phenotypes displayed by GA biosynthesis

mutants (Koornneef and Veen, 1980). Therefore, an experiment was carried out to

investigate whether the dwarfed phenotype could be rescued by adding exogenous GA

and showed that the growth could not be rescued to wild-type (Figure 6.8). Germination

of cosi3 seeds in the presence of GA was increased, and so the mutant was not

insensitive to GA (Figure 6.6). Mutants that display a dwarfed phenotype are not limited

to being involved in the GA pathway. BR mutants also display a dwarfed phenotype,

and this can be reversed by the application of BR (Jang et al., 2000). BR is a positive

regulator of germination and germination of the BR biosynthetic mutant deetiolated2-1

(det2-1) and the BR insensitive mutant brassinosteroid insensitive1-1 (bri1-1) is

hypersensitive to ABA (Steber and McCourt, 2001).Therefore, cosi3 could play a role in

BR signalling, and germination responses of cosi3 to exogenous BR could be tested in

the future.

Lower germination levels of cosi mutants following cold stratification could reflect

reduced expression of GA3ox, which are involved in the promotion of GA biosynthesis

and is upregulated in response to cold stratification (Yamauchi et al., 2004). This
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increase in GA3ox1 expression contributes to an increase in bioactive GA levels. The

addition of exogenous GA is potentially able to overcome the reduced germination of

the cosi mutants and hence high germination levels can be promoted (Figure 6.6).

Since exogenous GA generally has a greater effect on germination than NOR (Figure

6.6), this may suggest that the increase in GA biosynthesis during cold stratification

may be more important than the decrease in levels of ABA i.e. higher GA levels

promote higher germination than lower ABA levels do.

6.3.4 cosi1 is allelic to hy2

The phenotype that cosi1 was selected because it appeared to become stronger with

increasing generations. Germination of cosi1 did not increase in response to after

ripening (Figure 6.11), although germination was promoted to high levels in the

presence of exogenous GA and NOR (Figure 6.6). This confirms that the seeds are

viable, but the seeds do not respond to other germination promoting effects (e.g.

prolonged cold stratification). The results have shown that cosi1 was early flowering

(Figure 6.14) and this is similar to hy2 plants, which contain reduced levels of all

phytochromes and exhibit an inability to inhibit hypocotyl elongation (Koornneef et al.,

1980, Chory et al., 1989). hy2 mutants flower with a reduced number of rosette leaves

in comparison to wild-type in both short and long days (Koornneef et al., 1995). Low

temperature (16°C) abolishes the early flowering phenotype of the phyAphyBphyD

triple mutant. In contrast, the phyAphyBphyDphyE quadruple mutant does flower early

at 16°C and thus suggests a role for phyE in temperature-dependent regulation of

flowering (Halliday et al., 2003). The prominent role of PhyE at low temperature is also

important for germination, whereby PhyE is required for promotion of germination

specifically at low temperature (Heschel et al., 2007). The early flowering phenotype of
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cosi1 at low temperature suggests that cosi1 must lack several phytochromes

(including PHYE), as when only the other phytochromes are absent (i.e. wild-type

levels of PHYE), plants display a wild-type flowering time (Halliday et al., 2003). By

making reciprocal crosses to hy2-1, cosi1 could be identified as a novel allele of hy2.

Germination of hy2-1 seeds is reduced in response to five days of cold stratification

(Donohue et al., 2008), although germination of hy2-1 seeds is considerably higher

than the germination of cosi1 which has been shown in these experiments. These two

mutants are in different ecotypes (hy2-1 is in the Ler background) and so this could

explain the differences in germination responses observed.

6.3.5 Identification of homozygotes of backcrossed
mutants is not robust

Unfortunately the segregation data that were produced from backcrossing the cosi

mutants to Col were not robust and we were unable to identify the types of mutations

(i.e. recessive or dominant) present in the mutants. cosi3 had some particularly

interesting phenotypes, but when backcrossed, it was difficult to identify homozygous

mutants from the resulting population (Figure 6.17). It was, therefore, unfeasible to

continue with further characterisation of the cosi mutant phenotypes as map based

cloning would not have been able to be used to identify the location of the mutations.

The importance of the COSI genes in the role of regulating temperature-dependent

germination had to be questioned since there was a large amount of phenotypic

variation and high dependence on certain environmental conditions observed

throughout the experiments. Some growth conditions (i.e. long days at 20°C) induce

such low levels of dormancy that germination can be as high as 100% without any cold

stratification for wild-type seeds. Therefore, in these growth conditions the pathway

involved in promoting germination in response to low temperature is not required to
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promote germination since dormancy levels are low. So, it is important that the plant

growth conditions in which seeds are generated induce enough dormancy so that cold

stratification is required to promote germination. The plant growth conditions (in the

growth cabinet) were long days with a day time temperature of 20°C and a night time

temperature of 16°C. The lower night time temperature of 16°C appeared to promote

the induction of dormancy levels, as germination of wild-type seeds generated under

this temperature regime had higher dormancy levels than those generated at only 20°C

(Figure 6.3B, 6.4). These dormancy levels induced by a lower night time temperature

required cold stratification for germination promotion (Figure 6.4).

6.3.6 Conclusions

The data presented in this chapter have provided a thorough characterisation of five

mutants that were isolated from a forward genetic screen that identified mutants whose

germination was not increased in response to cold stratification. The results presented

in this chapter highlight the importance of regulating the environmental conditions for

seed production. One of the mutants, cosi1 was found to be allelic to hy2. The genetic

location of the remaining mutants could not be identified due to the inability to identify

homozygotes when crossed to Col.
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Chapter 7 General Discussion

The aims of this study were to increase the understanding of the role of temperature in

regulating two important developmental processes: seed dormancy and germination in

Arabidopsis. Although the importance of temperature as a key regulator of dormancy

and germination has been known for many years, the mechanisms through which

temperature controls these processes is not well understood. Thus, this study aimed to

try and determine components of these mechanisms, primarily by identifying genes

which have important roles in the regulation of dormancy and germination through the

analysis of mutant dormancy phenotypes and a forward genetic screen.

A forward genetic screen was carried out to isolate mutants whose germination was not

promoted by cold stratification and therefore to identify genes which have a role in this

process. Understanding the way in which germination is regulated is of imperative

importance as future temperature change has the potential to alter the germination of

agricultural and horticultural plants. This screen revealed a number of interesting

phenotypes for the five selected cosi mutants, especially for cosi3. However, the

segregation of these mutants (based on the germination phenotype), when

backcrossed to Col could not be robustly identified, and so mapping was not

performed. In addition to the different germination phenotypes investigated, a number

of the cosi mutants had flowering time and growth phenotypes which could be

investigated further. It is possible that these phenotypes may be easier to detect in the

backcrossed populations, and therefore mapping could be carried out on these

mutants.

The experiments carried out to characterise the cosi mutants highlighted the

importance of environmental effects on dormancy phenotypes and directed studies to
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understanding how temperature regulates dormancy during seed maturation.

Specifically, the roles of components of the cold acclimation pathway and the hormones

ABA and GA in regulating dormancy in response to temperature was investigated. A

summary of the results from this work which indicates pathways through which

temperature regulates dormancy is shown in Figure 7.1.
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Figure 7.1: Proposed pathways mediating the effect of seed maturation
temperature on dormancy.
Cold induction of CBF transcription is inhibited by an unknown seed-specific repressor
of CBF expression (SSR), although CBFs are still required for normal dormancy levels.
Cold induces high levels of dormancy through more than one mechanism, which
includes the elevation of DOG1 expression and the action of DOG1 in the promotion of
GA2ox6 expression. GA2ox6 expression is also promoted by ABA during seed
maturation (Seo et al., 2006). GA represses expression of DOG1, whilst ABA promotes
its expression. Cold promotes expression of NCED4 and represses expression of
CYP707A2, which may require regulation by FLC (Chiang et al., 2009). ABA promotes
dormancy whilst GA represses it. Cold and HOS1 promote expression of TT genes.
Although HOS1 is not involved in the temperature regulation of dormancy, it may feed
into the pathway downstream of the cold signal, where it induces expression of
GA2ox6. The role of HOS1 in regulating dormancy may involve MFT and FT.

The results presented in this study show that a reduction in temperature during seed

maturation leads to an increase in dormancy levels (Figure 3.2). Increases in dormancy

levels delay germination, thus shifting the time frame of development due to differences

in environmental conditions. In agricultural situations it is important that correct
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dormancy levels are induced, to ensure germination occurs at the right time (i.e. avoid

pre-harvest sprouting but attain uniform germination in the field). In the future it will be

important to analyse the effect of higher temperatures (such as 25°C/27°C) on

dormancy levels, as temperatures during seed maturation are beginning to increase in

response to climate change. Given that thermoinhibition represses germination at high

temperatures during imbibition, one may predict that high maturation temperatures may

induce higher dormancy levels.

Increases in dormancy levels in response to temperature are coupled with an increase

in the levels of ABA and a reduction in GA levels in dry seeds (Figure 3.7), suggesting

that the regulation of ABA and GA metabolism is important for the mechanism that

controls the temperature regulation of dormancy. Altered levels of ABA and GA by

temperature are coupled with the promotion of DOG1, GA2ox6 and NCED4 expression

and repression of CYP707A2 expression by low maturation temperature in dry seeds

(Figure 3.16). cyp707a2-1 mutant seeds showed increased dormancy when matured at

17°C and 15°C (Figure 3.13), whilst dog1-2 seeds display decreased dormancy levels

when matured at low temperature (Figure 3.14). Roles for DOG1 and CYP707A2 in

regulating dormancy have been shown in the past (Kushiro et al., 2004, Bentsink et al.,

2006, Nakabayashi et al., 2012). A recent study investigating the role of DOG1 in

dormancy regulation also showed that expression of DOG1 was upregulated by low

temperatures during seed maturation and that DOG1 protein levels were elevated in

response to the low temperature (Nakabayashi et al., 2012).

NCED4 expression was found to be upregulated in DOG1 NIL seeds, one of a number

of DOG NILs which were derived from crosses between Ler and accessions from

different world regions (Bentsink et al., 2010). However, the dormancy phenotypes of
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nced4 mutants are yet to be tested. Knock down and overexpression of GA2ox6 leads

to a reduction and increase in the dormancy levels which are induced respectively

(Wang et al., 2004). ga2ox6-1 mutant seeds show decreased sensitivity to low

concentrations of PAC and the increased dormancy of seeds overexpressing GA2ox6

cannot be rescued by the application of exogenous GA (Wang et al., 2004), which

suggests that the reduction in GA levels is not the sole contributor to the dormancy

phenotype of these seeds. The dormancy phenotypes of loss-of-function ga2ox6 and

nced4 mutants in response to low temperature during maturation have not been

characterised in this study. One may predict that these mutants would display reduced

dormancy phenotypes in response to maturation at low temperature. This would need

to be tested to fully understand the role played by NCED4 and GA2ox6.

CBF-deficient seeds show a decrease in the dormancy levels that are induced when

seeds are matured at 15°C (Figure 4.2). Loss of functional CBF expression primarily

results in a decrease in DOG1 and GA2ox6 expression (Figure 4.3). Given the reduced

expression of GA2ox6 in dog1-2 mutant seeds (Figure 3.18B), one may hypothesise

that the CBFs principally regulate DOG1 expression alone and the reduced GA2ox6

expression in CBF-deficient seeds is a consequence of reduced DOG1 expression.

However, GA levels were found to be either unaltered or higher in CBF-deficient seeds

in comparison to wild-type (Figure 4.4B) and dog1-2 seeds display reduced levels of

GA in comparison to wild-type (Figure 3.19). This suggests that the regulation of GA

levels by the CBFs cannot solely be through regulation of GA2ox6 expression by

DOG1. In seedlings, overexpression of CBF1 leads to the upregulation of GA2ox3 and

to a lesser extent GA2ox6 (Achard et al., 2008). Results from this study show that

GA2ox3 is also upregulated in CBF-overexpressing seeds, but there is not a

corresponding downregulation in CBF-deficient seeds (Figure 4.8F, 4.3F). In fact for
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cbf2 and CBF3 RNAi seeds, expression of GA2ox3 is upregulated in comparison to

wild-type (Figure 4.3F).

Although maturation at 15°C reveals a dormancy phenotype for the CBF-deficient

seeds, the CBFs do not regulate dormancy through the temperature regulation of their

expression (Figure 4.10). Consistent with this is the fact that the results from the

transcriptome analysis suggest that only COR47 expression is upregulated by low

maturation temperature in wild-type seeds (Table 5.1). Conversely the expression of

both CBF1 and CBF2 is downregulated in low temperature matured wild-type seeds

(Table 5.1). Together, these results suggest that the expression of CBFs is not

promoted by either short or long exposure to low temperature in seeds. Therefore, the

regulation of CBF expression by temperature in seeds is different to what is observed in

seedlings, where exposure to low temperature promotes expression of CBFs (Gilmour

et al., 1998). The promotion of CBF expression by low temperature is essential for cold

acclimation, since CBF1 and CBF3 RNAi plants display increased sensitivity to freezing

temperatures (Novillo et al., 2007). However, cbf2 mutant plants display increased

freezing tolerance and this is due to increased expression of CBF1 and CBF3 (Novillo

et al., 2004, Novillo et al., 2007). Consequently, these results suggest that the

temperature regulation of CBF expression is not involved in the regulation of dormancy

levels by low temperature.

In vegetative tissues, HOS1 is a negative regulator of the cold acclimation pathway as it

targets ICE1, which promotes CBF3 expression, for ubiquitination (Ishitani et al., 1998,

Lee et al., 2001, Chinnusamy et al., 2003, Dong et al., 2006a, Lazaro et al., 2012).

hos1-1 seedlings display increased expression of RD29A, CBF2 and CBF3 (Lee et al.,

2001) however, in seeds only expression of CBF2 was upregulated in comparison to
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wild-type in hos1-3 seeds (Table 5.2). CBF1 was also found to be downregulated in

hos1 seeds, but the differential expression was not significant (Table 5.2). As

mentioned, there is evidence to suggest that CBF2 acts as a negative regulator of

CBF1 and CBF3 expression (Novillo et al., 2007) and, therefore, this increase in CBF2

expression could be involved in a negative feedback loop with CBF1 and CBF3. High

levels of CBF expression would not correspond with the low dormancy phenotype of

hos1 seeds and so this may suggest that the regulation of CBF expression by HOS1 is

quite different in seeds to seedlings.

Of course it is possible that another negative regulator of CBF expression, a

transcription factor called MYB15 (Agarwal et al., 2006), could be responsible for lack

of temperature regulated CBF expression in seeds. Expression of MYB15 peaks during

the later stages of seed development (Figure 4.15). If loss-of-function myb15 seeds

contained elevated levels of CBF expression, one may hypothesise that the dormancy

levels of these seeds would be elevated. Loss-of-function ice1-2 seeds matured at

10°C appear to be less dormant than CBF-deficient seeds matured at 10°C (Figure

4.14, 4.2), thus suggesting that ICE1 may be a more important regulator of dormancy.

In contrast to its role in promoting CBF3 expression in vegetative tissues, it is possible

that ICE1 may have additional targets in seeds. Therefore, it is possible that the

regulation of CBFs in seeds may not involve components of the cold acclimation

pathway and this is possible given that temperature transcriptomes of seeds and

seedlings are very different (Kendall et al., 2011).

Since low temperature during imbibition promotes germination, and the overexpression

of CBFs leads to an increase in dormancy levels (Figure 4.10), one hypothesises that

inhibition of CBF expression by low temperature during imbibition could be part of the
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mechanism by which low temperature promotes germination. CBF-overexpression in

vegetative tissue represses growth through a decrease in bioactive GA levels due to

increased expression of GA2ox3 and to a lesser extent GA2ox6 (Achard et al., 2008).

The promotion of germination of dormant seeds by low temperature during imbibition

would not be predicted to occur in the presence of strong cold regulated CBF

expression, as this requires an increase in GA levels (Yamauchi et al., 2004). Thus, the

repression of CBF expression by low temperature in seeds is likely to represent an

essential component of the pathway by which low temperature promotes germination.

The fact that CBF1 and CBF2 were found to be downregulated by low maturation

temperature (Table 5.1) suggests that the inhibition of CBF expression by low

temperature may be initialised during seed development.

Seeds are able to cycle in and out of dormancy until the environmental conditions are

favourable for seedling establishment. Although expression of CBF1 was found to be

very low in imbibed seeds (Figure 4.10A), it would be interesting to determine if

expression of CBFs is induced by environmental conditions which would promote the

transition to secondary dormancy. For example, is CBF expression promoted by

prolonged exposure to low temperature during imbibition which can promote entry into

secondary dormancy (Finch-Savage et al., 2007, Penfield and Springthorpe, 2012)?

The mechanism that regulates the promotion of secondary dormancy by low

temperature during imbibition must involve a component which is able to act upon

crossing the threshold of ‘cold days’ required for the induction of secondary dormancy.

This mechanism could share components with the vernalisation pathway by which an

accumulation of cold days promotes flowering due to the silencing of FLC, which

involves upregulation of VIN3 expression (Sung and Amasino, 2004).
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The regulation of dormancy by HOS1 has been determined as being through a

maternal pathway (Figure 5.8). However, the nature of the regulation of dormancy by

the CBFs has not been determined, given the fact that there was variation in both CBF-

deficient and wild-type dormancy phenotypes when the seeds were matured at low

temperature, although the data which are presented in this study are representative of

a large number of experiments. However, it is possible that the CBFs could also act

maternally to control seed dormancy. Since CBF expression is not temperature

regulated in seeds, it is possible that CBF expression could be temperature regulated in

vegetative tissue, which could be transmitted to the developing seed through

downstream signalling.

Other genes have been identified that are involved in the maternal control of seed

dormancy and germination. Two zinc finger transcription factors DOF ACTIVATING

GERMINATION (DAG1) and DAG2 act as negative and positive regulators of

germination respectively (Papi et al., 2000, Gualberti et al., 2002, Papi et al., 2002).

Although seed coats of dag1 seeds are structurally unaltered, they are more permeable

and mucilage is released quicker following imbibition, which suggests that the seed

coat could be weaker than wild-type (Papi et al., 2002) and this would be consistent

with the fact that these seeds show increased germination. The seed coat acts as an

important regulator of dormancy, by acting as a mechanical constraint for radicle

protrusion and by regulating the permeability for water and oxygen uptake. DAG1 and

DAG2 are not expressed in developing seeds but exclusively in the vasculature of

vegetative tissues (Papi et al., 2000, Gualberti et al., 2002, Papi et al., 2002), which

suggests that the DAG1 protein may re-locate from the vasculature to the seed to

regulate dormancy during seed development.
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There is evidence for signals which are involved in regulating flowering time moving

from their site of synthesis to their site of action. The floral promoter FT is an example

of a mobile signal which acts over a long range (Jaeger and Wigge, 2007). The FT

protein is synthesised in the vasculature of the leaves, but moves to its site of action,

the shoot apical meristem (Jaeger and Wigge, 2007). The TFL1 protein is another

example of a mobile signal which is synthesised in the inner cells of mature shoot

meristems and moves to the outer cells to repress flowering (Conti and Bradley, 2007).

Additional evidence for the maternal control of seed dormancy comes from the study of

mutants of the TT group of genes which have reduced flavonoid pigmentation and

show reduced dormancy levels (Debeaujon et al., 2000). The results in this study also

implicate a role for TT in regulating dormancy in response to low temperature. A

number of TT genes are upregulated in response to low maturation temperature and

are downregulated in hos1-3 seeds in comparison to wild-type (Table 5.1 and 5.2).

Additionally, tt5-1 and tt6-1 show a reduced ability to induce high dormancy levels in

response to maturation at low temperature (Figure 5.27). However, when seed coat

morphology was analysed in wild-type seeds matured at 20°C and 10°C, no differences

were observed (Figure 3.5). However, a more thorough analysis of the seed coat

should be carried out to determine if differences in temperature or the hos1 mutation

lead to alterations in permeability and colour.

A number of flowering time genes has been shown to have dormancy phenotypes. In

this study, the dormancy phenotypes of arp6-1 and tfl2 mutants have been

characterised. Dormancy induction by low temperature is abolished in tfl2 mutants,

whilst some dormancy is still induced in arp6-1 mutants (Figure 5.12, 5.13).

Additionally, the lhycca1 double mutant and the early bolting in short days (ebs) mutant
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which are also early flowering display reduced dormancy phenotypes (Gómez-Mena et

al., 2001, Penfield and Hall, 2009). Therefore, these results suggest that in a number of

examples early flowering is coupled with reduced dormancy. Genes which are involved

in regulating flowering time could be part of a common mechanism to regulate

dormancy, although the analysis of dormancy phenotypes of double mutants would

need to be carried out to determine this. On the other hand, the link between early

flowering and reduced dormancy may be a consequence of altered expression of target

genes which are involved in regulating dormancy, which would suggest that the

flowering time genes do not have a direct role in regulating dormancy.

This work has highlighted a number of genes which are likely to have important roles in

regulating dormancy. In the future, improving the understanding of the role of HOS1 in

the maternal control of dormancy will be important. In particular, determining whether

GA is required for the low dormancy phenotype of hos1 mutants will be key to this.

Additionally, further characterisation of the role of TT in regulating dormancy in

response to temperature will aid the understanding of the function of the seed coat.

Understanding how CBFs are regulated by low temperature during seed development

and imbibition, and how this contributes to the regulation of dormancy and germination

is another area of work that should be continued. This should also be followed up with

determining the role of CBFs in crops such as maize and soybean whose germination

is sensitive to chilling.

The work carried out in this thesis has focussed on understanding how dormancy is

regulated by temperature at the transcriptional level. In the future it will also be

important to extend this to understanding post-transcriptional and post-translation

mechanisms that may have a role in regulating this process.
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The depth of dormancy and timing of germination has the potential to effect the time at

which various developmental processes occur and the environmental conditions which

are experienced during these processes. The data in this thesis has shown that

temperature is a key regulator of dormancy, and the dormancy levels which are

induced control when germination occurs. Future temperature changes have the

potential to alter the environment in which seeds are matured on the plant, thus altering

dormancy levels and leading to implications for seed quality, viability and germination

timing. Therefore to ensure that quality seeds which germinate in a uniform manner can

be consistently produced it will be important for the implications of temperature to be

well understood. Additionally, it is possible that some of the important dormancy

regulating genes which have been identified in this study could be used as targets for

breeding programmes.

To summarise, the results in this thesis have shown that temperature is an important

regulator of the levels of dormancy that are induced during seed maturation. The

regulation of dormancy by temperature involves regulation of ABA and GA metabolism

through expression of GA2ox6, NCED4 and CYP707A2. This work has also revealed

roles for the CBFs and HOS1 in regulating dormancy through a temperature

independent mechanism. HOS1 acts through a maternal pathway to regulate dormancy

and this involves alterations in GA levels. Finally, a forward genetic screen was carried

out to investigate how cold stratification promotes germination, and although none of

the characterised mutants could be mapped, the screen did identify some interesting

phenotypes.
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Abbreviations

ABA Abscisic Acid

BR Brassinosteroid

CFP Cyan Fluorescent Protein

cDNA Complementary DNA

DAPI 4’,6-diamidino2-phenylindole

dNTP Dinucleotide triphosphate

DTT Dithiothreitol

EGTA Ethylene Glycerol Tetraacetic Acid

EMS Ethyl Methyl Sulphonate

FAME Fatty Acid Methyl Esther

GA Gibberellin

GFP Green Fluorescent Protein

HCl Hydrochloric Acid

JA Jasmonic Acid

KCl Potassium Chloride

KOH Potassium Hydroxide

LC-MS Liquid Chromatography – Mass Spectrometry

LiCl Lithium Chloride
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M Molar per Litre

Mm Millimole

mm Millimetre

mm2 Millimetre squared

µM Micromole

µm Micrometre

µl Microliter

MES 4-Morpholineethanesulfonic acid

MS Half strength Murashige and Skoog medium

mRNA Messenger RNA

NASC National Arabidopsis Stock Centre

NOR Norflurazon

NPC Nuclear Pore Complex

OPDA 12-oxo-phytodienoic acid

PAC Paclobutrazol

PCR Polymerase Chain Reaction

rRNA Ribosomal RNA

SDS Sodium dodecyl sulphate

T-DNA Transfer DNA

tRNA Transfer RNA

UPLC-MS Ultraperformance Liquid Chromatography-Mass Spectrometry
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