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Abstract

Interacting with pedestrians remains challenging for autonomous vehicles (AVs).
In most current AVs, for safety and legal reasons, pedestrians are considered as
obstacles, such that the AVs always stop for them. But their highly safe nature
may lead pedestrians to take advantage over them and slow their progress.

When a pedestrian wishes to cross the road in front of the vehicle at an
unmarked crossing, the pedestrian and AV must compete for the space, which
may be considered as a game-theoretic interaction in which one agent must yield
to the other. Game theoretic approaches have been used for decades to model the
interactions between rational decision-makers, but have run in parallel streams
with psychology research on human proxemics and trust. Results from game
theory and psychology studies have yet to be operationalised for autonomous
vehicles, this thesis thus aims to bridge the gap between these separate fields.

We first contribute with a comprehensive review of the literature in which we
propose a new unifying taxonomy of pedestrian models required for autonomous
driving, linking the low-level and high-level models of behaviour for the first time.
We find that the low-level models are mature enough to be deployed in the real
world but the high-level models such as game theory approaches still require more
research and development. We therefore proceed with the evaluation of pedestrian
interaction preferences with a game theoretic AV in a virtual reality experiment.
Knowledge of such preferences could then be used by future AVs to predict and
control for pedestrian behaviour. However, game theory approaches require the
use of credible threats such as crash probabilities in order to make AVs progress
on the roads, but another possible and more friendly solution that is explored
in this work is Hall’s theory of proxemics. Hence we propose a novel Bayesian
method to infer pedestrian proxemic utility functions and the concept of physical
trust requirement (PTR) for game theoretic AV interactions. We show how this
PTR model can accurately generate Hall’s empirical zone sizes, and then extend
it to more general human-human and human-robot interactions. Finally, operat-
ing and deploying pedestrian behaviour models require the use of a physical AV
platform, we hence introduce OpenPodcar, a low-cost, open source hardware and
software platform developed for real-world AV research experiments with pedes-
trians. Thus, the present thesis forms a step towards the first operational game
theoretic autonomous vehicles with pedestrian proxemic and trust behaviour.
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Chapter 1

Introduction

“Why did the chicken cross the road?”

1 Background

Autonomous vehicles (AVs), also called self-driving cars, intelligent/automated vehicles or
autonomous driving systems (ADS), are appearing on the roads [35], thanks to huge im-
provements on Simultaneous Localisation And Mapping (SLAM) algorithms [5, 33] together
with new, cheap sensors and computation technologies [14] and also thanks to huge public
and private investments. For instance, in 2015, the UK government alone invested £100
million in research and development (R&D) for the deployment of Connected Autonomous
Vehicles (CAV) technologies [22] and the global market is estimated to be worth £907 billion
in 2035 [7]. Self-driving cars can navigate safely on roads, promising a future society with a
better mobility system with fewer accidents and traffic in cities [21], less energy consumption
[15, 36] and air pollution [3].

The Society of Automation Engineers (SAE) defined five levels of automation for these
autonomous vehicles [31], as shown in Fig. 1.1. Many automotive companies currently claim
having developed level 3 automated vehicles, the race is now towards the full automation [29].
But after decades of development and despite the global enthusiasm around AVs and the big

Figure 1.1: SAE levels of driving automation (source: sae.org)
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investments, some major challenges still remain [16]. In fact, before the fully autonomous
vehicle revolution happens, AVs will have to share space with and will be challenged by human
drivers and pedestrians, who are much harder to model and act upon than passive environ-
ments. Navigating around humans in dynamic environments requires the understanding of
human social behaviour and remains an active research question [32].

Unlike static environments, pedestrians are complex interactive agents having their own
goals, utilities, and decision making systems, and interactions with them must take these into
account in order to predict their actions and plan accordingly. This is critical in environments
where traffic rules do not clearly define priority, such as at unmarked intersections, where
AVs and pedestrians have to negotiate over who will pass the other [27]. The ability of human
drivers to read the intention of other road users and predict their future behaviour and then
interact with them is currently missing on autonomous vehicles [28, 29]. Brooks identifies the
need for these higher levels of interaction as ‘the big problem with self-driving cars’ [4].

Currently AVs are designed to be as safe as possible, and must always yield to other
road users in competition with them. But recent real-world autonomous vehicle studies have
shown that pedestrians may then take advantage of their predictable behaviour [8, 19, 21],
pushing in front of them for priority eventually in every negotiation, so that the vehicles
will hence make zero progress in busy areas, this has been known as the ‘freezing robot
problem’ [34]. Similar difficulties arise with Autonomous Ground Vehicles (UGV) on high
street pedestrianized areas. AVs thus need better prediction and decision-making models.

To address this problem in this thesis, we argue that AVs, like human-driven vehicles,
may thus sometimes need to maintain a credible threat of colliding with or otherwise causing
some smaller negative utilities to pedestrians in order to sometimes obtain priority over them
and make progress. Autonomous vehicles hence need to actively infer and predict pedestrian
utilities and decisions in order to control interactions with them and navigation around them.
This requires an understanding of human negotiation strategies and social behaviour, which
have long been studied in game theory and psychology but mainly in parallel streams. Results
from these fields have not yet been translated into robotic control systems, and leave many
questions still unanswered. In this thesis, we thus attempt to bridge the gap between these
separate fields and we propose methods and solutions to bring them to an operational level
for fully automated vehicles’ interactions with pedestrians.

2



2 Research Gaps and Objectives

2 Research Gaps and Objectives

In this thesis, our aim is to create bridges between game theory and psychology approaches
in order to enable and improve real-time pedestrian behaviour inference and operation for
autonomous vehicles. For this purpose, we split our work into small steps, and in particular,
we identify several key research gaps and a set of objectives to address them.

The first research gap is that the above SAE levels of automation define the ultimate
behaviour that autonomous vehicles should have, but they do not provide a clear guidance
about the types of pedestrian behaviour models required to reach a specific level of auto-
mation. Previous literature reviews have focused on specific topics from a specific field of
research, such as detection [9] and tracking [18] from machine vision community, pedestrian
crossing behaviour [20, 24] from transport studies or human nonverbal communication [30]
from robotics. This thus leads to the first objective, which is to write a comprehensive review
of the literature that identifies the existing pedestrian models from these different fields and
propose a suitable framework that can connect and classify them into the relevant SAE levels.
For instance, a model defined at level 1 should be able to pass its outputs to the model used
at level 2, whose output should then pass to the model at level 3, and so on. Defining this
framework is not only needed to connect game theory and psychology models together but is
also necessary to connect them with the rest of the AV software stack. Chapter 2 will focus
on the low-level models of pedestrian behaviour and Chapter 3 will address the high-level
models of the stack.

The second gap is that there is a lack of a clear tractable decision-making model for real-
time AV control. Interaction is recursive and complex: the AV’s own actions will affect the
pedestrian’s actions and vice versa over time. This is most critical in environments where
traffic rules do not clearly define priority for any of the participants, such as at unmarked
intersections, where AVs and pedestrians have to negotiate with one another for priority.
Conflict rates at unsignalized intersections are much higher than in other types of intersections
[17] because the priority is not defined, and each agent acts based on their own interpretation.
As a first step, the objective is to identify a suitable decision-making model which would
address the ‘Freezing Robot Problem’ and allow the AV to make some progress during its
interactions. Also, when drivers speed up and slow, these are not just ways to control their
progress but also send information about their risk preferences to pedestrians engaged in
negotiations for priority. Hence, the AV decision-making model should take pedestrian risk-
taking preferences into account. The chosen AV decision-making model will be introduced in
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Chapter 3 and detailed further in Chapter 4.
The third research gap that we identify is the lack of suitable methods and data to infer

pedestrian interaction preferences with vehicles. To address this, the objective is to run
empirical studies with human participants and use the data to fit parameters to the AV
decision-making model. This could be done using lab experiments data or in a virtual reality
environment for more realism. These studies should validate the AV interaction control
model and provide specific parameter values that measure pedestrian behaviour preferences.
We should also explore ways to unveil pedestrian preferences from different AV driving styles
in different environments in order to find out interaction preferences for the AV behaviour
itself. Chapter 4 will detail the methods and experiments used in this work.

Another gap in this field is that social norms dictate pedestrian behaviour [28, 32], hence
the AV decision-making model needs to integrate psychology results but these are often
provided in the form of qualitative or discrete data, which cannot be easily operationalised
onto autonomous vehicle control software. The objective is then to perform a review of
human nonverbal cues, which would allow us to assess the different forms of reading and
giving nonverbal cues between agents, whilst keeping the interactions safe. In particular,
we should identify pedestrian nonverbal cues and explore methods to integrate them into
the AV decision-making model. Also, understanding human psychology and cognitive pre-
cesses is a topic of great interest in general human-human and human-robot interactions, we
should therefore explore ways to generalize our models to dual agent interactions. Chapter
3 will review psychology-based interaction cues, their quantitative development and possible
integration to the AV decision-making will be introduced in Chapter 5.

Further, we identify another research gap, and not the least, that is the clear lack of an
experimental platform on which to operate pedestrian behaviour models for AV research. To
make autonomous driving a reality, it is not sufficient to test algorithms in simulation or
virtual reality, but testing them on a physical and realistic platform is of utmost importance.
However, autonomous vehicles are composed of many different sensors and components, it is
therefore very expensive to own or develop such a vehicle in every research lab. It is rare to
test one’s own algorithms on a real AV platform, because most of the autonomous vehicle
platforms for research belong to big research labs or automotive companies, and these are
often used to collect datasets that are then shared with the rest of the community, such as
nuscenes [6] from Motional part of Hyundai Motor Group or ApolloScape [37] from Apollo
part of Baidu. Moreover, most open source AV research platforms are RC-scaled car projects
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such as F1Tenth [1], AutoRally [11] and MIT Racecar [2], which are not large enough for
realistic pedestrian interactions. Bigger open source hardware platforms exist such as PixBot
[26] and Tabby EVO [23], but these are too complex and require expert skills and potentially
dangerous processes for replication. The medium-sized AV research vehicles, SMART [25]
and iCab (Intelligent Campus Automobile) [12], that could have facilitated the evaluation of
pedestrian models are not open source. Therefore the objective in this work is to propose
a low-cost and open source solution that is large and safe enough for realistic pedestrian
interactions, and which would make AV testing more accessible to the wider community.
Such an AV platform would be useful to implement and validate the work produced in this
thesis. Chapter 7 will present our solution to that problem.

3 Thesis Outline and Contributions

This section presents the outline and contributions of this thesis.

Chapter 2 presents a paper entitled “Pedestrian Models for Autonomous Driving Part I:
Low-Level Models, From Sensing to Tracking”. This paper focuses on reviewing the exist-
ing pedestrian models required for the SAE low levels 0 to 2. We propose a novel unifying
taxonomy of pedestrian models based on probability theory to provide possibilities for quant-
itative computational interfaces for the different levels. The models for levels 0 to 2 are found
to mainly come from the machine vision and robotics fields, and we show that pedestrian
modelling requirements increase as the SAE levels increase. We map pedestrian sensing meth-
ods to SAE level 0, detection methods to SAE level 1 and recognition and tracking mehtods
to SAE level 2. We find that pedestrian models at these low levels are mature, hence we
find and suggest several standard software implementations for these models, and we discuss
the current state and future directions of research in these areas. This Chapter lays the
foundations for the models required in Chapter 3.

Chapter 3 presents a paper entitled ‘Pedestrian models for autonomous driving Part II:
high-level models of human behavior’. This paper builds upon the unifying taxonomy started
in Chapter 2 but focuses here on the high-level models of pedestrian required for SAE levels
3 to 5. The models reviewed here are found to come from various fields of research such as
machine vision, robotics, data science, transport studies, psychology and game theory. We
map pedestrian prediction methods to SAE level 3, and we show that pedestrian interaction,
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game theory and signalling methods are all mapped to both SAE levels 4 and 5. This is
because in practice the AV functioning is exactly the same at both levels, since no human
intervention is required, except in very rare cases. In particular, we identify a mathematical
model for the game of chicken, a discrete sequential game theory model, called the Sequen-
tial Chicken Game [10], for negotiation between autonomous vehicles and pedestrians at an
unsignalized intersection. This model shows that not only the first agent to yield is more
likely to lose the game but also if the AV only uses its position to signal its intent, there must
exist a small probability for a collision to occur. This collision probability can be used as
a threat for the pedestrian, preventing them from stepping intentionally in front of the AV,
thus avoiding the freezing robot problem. We also identify a form of nonverbal cue called
proxemics or interpersonal distancing. It is based on Hall’s theory [13] that people experience
a psychological sense of comfort or discomfort in interactions, depending on specific discrete
spatial zones around them. We then discuss the current state and future directions for pedes-
trian models required at these high levels and we find that these are still premature and not
yet operational for fully autonomous vehicles. This motives the rest of the work presented
in this thesis, especially the development and testing of the Sequential Chicken game theory
model detailed in Chapter 4.

Chapter 4 presents a paper entitled ‘Evaluating Pedestrian Interaction Preferences with
a Game Theoretic Autonomous Vehicle in Virtual Reality’. This paper focuses on the im-
plementation of a game theoretic model on a autonomous vehicle and the inference of its
parameters from human experiments. We implement the mathematical model for Sequen-
tial Chicken Game identified in Chapter 3 on an AV in a virtual reality (VR) environment.
Simulation results of the Sequential Chicken model previously showed that the AV must be
programmed with a small crash probability, i.e. a very high negative utility, that is used as
a credible threat in order to make the AV progress on the roads, hence the virtual AV was
designed not to stop in its interactions. To test this approach, we performed road-crossing
experiments with human participants interacting with this virtual AV and evaluated their
crossing behaviour. We then show how game-theoretic predictive parameters can be fit into
pedestrians’ natural and continuous motion during these road-crossings, and how predictions
can be made about their interactions with AV controllers in similar real-world settings. This
providing a more realistic, empirical understanding of the human factors intelligence required
by future autonomous vehicles. We make use of dynamic programming to compute the op-
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timal game theoretic solution form, then find pedestrian behavioural parameters via a Gaus-
sian Process regression analysis. We also evaluate pedestrian preferences for the AV driving
style using a gradient descent approach in two virtual environments using two vehicles sizes.
We show that pedestrian utility preferences are more realistic using the VR setup compared to
previous empirical lab experiments and that pedestrian behaviour is similar in different envir-
onments and with different vehicle sizes. We finally discuss the limitations and future work.
The legal and ethical implications of this work suggest that an alternative must be found for
the engineered crash probability in order to operate this game theoretic approach in the real
world. This motivates the development of the novel proxemic model introduced in Chapter 5.

Chapter 5 presents a paper entitled ‘Space Invaders: Pedestrian Proxemic Utility Func-
tions and Trust Zones for Autonomous Vehicle Interactions’. This paper focuses on the math-
ematisation of pedestrian proxemics and trust, and link them quantitatively in the limited
case of pedestrian-autonomous vehicle interactions. The game theory model used in Chapter
4 suggested that the large negative utility of a collision could be replaced with more fre-
quent but smaller negative utilities inflicted on pedestrians and progress still be made by AVs
without having to hit any pedestrians. We here explore the use of an alternative and phys-
ically harmless solution for this credible threat required by the Sequential Chicken model,
this is provided by the theory of proxemics reviewed in Chapter 3. Proxemics offers this
nice alternative, because invading someone’s personal space without actually touching them
creates a psychological discomfort equivalent to a small negative utility, which is currently
not quantified. We hence propose a novel Bayesian approach to infer pedestrian proxemic
utility in the form of continuous functions in order to be operational with the chicken model.
We then develop a new concept and mathematisation of ‘physical trust requirement’ (PTR)
for pedestrian–AV interactions, which can numerically generate and explain Hall’s empirical
proxemic zones within 4% error. We then evaluate this method on two public datasets and
find empirical results of pedestrian proxemic utility functions and trust zones. We finally
discuss the limitations of this work, its legal implications and potential applicability to other
human-robot interaction scenarios.

Chapter 6 presents a paper entitled ‘Extending Quantitative Proxemics and Trust to
HRI’. This paper addresses some of the limitations mentioned in Chapter 5 and generalizes
the PTR model to include more general human-human and human-robot interactions (HRI).
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We present new results comparing the extended model’s predictions to empirical data and
find that this new model can explain Hall’s empirical proxemic zones within 1% error. These
links could enable research to be shared and operational between models of proxemics, trust,
and robotic interactions for the first time. We finally discuss the limitations of this work and
the different applications that could benefit from more quantitative models of proxemics and
trust.

Chapter 7 presents a paper entitled ‘OpenPodcar: an Open Source Vehicle For Self-
Driving Car Research’. This paper introduces OpenPodcar, a light-weight, low-cost, easy-to-
build and robust open source hardware and software autonomous vehicle platform. OpenPod-
car was developed with the aim to enable the rapid development and testing of AV algorithms
including the interaction and decision-making models introduced above. We explain the build
steps and tests carried out to convert a mobility scooter into an autonomous (self-driving)
podcar. We open source the hardware and software designs of this platform in order to give
the opportunity to other researchers to reproduce this work, have their own autonomous
vehicle platform, test their algorithms and run experiments in conditions similar to the real
world. The platform is large enough to transport one person or delivery containers at speeds
up to 15km/h. It is small and safe enough to be parked in a standard research lab and be used
for realistic and real-world human-vehicle interaction studies. The OpenPodcar has several
layers of safety features and its total build cost (∼USD7,000 in 2022) is also low enough to
be reproduced by a large number of researchers. It thus provides a good balance between
real world utility, safety, cost and research convenience. We show how this platform could
be used for different use cases such as general self-driving car or HRI research. The platform
includes a simulator for initial testing, and has a lower-level and a higher-level ROS stack
such as GMapping and move base with Timed-Elastic Band planner for SLAM and path
planning, respectively. Further models could be plugged into this higher-level stack such as
the work presented in Chapters 4, 5 and 6 but with a real physical vehicle and in real-world
conditions this time. We finally discuss plans for possible extensions and future work using
this platform.
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Jingyuan Wu, Johannes Ruenz, André Dietrich, Charles Fox. Pedestrian Models for
Autonomous Driving Part I: Low-Level Models, From Sensing to Tracking, in IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 6131-6151,
Oct. 2021, doi: https://doi.org/10.1109/TITS.2020.3006768.

• Fanta Camara, Nicola Bellotto, Serhan Cosar, Florian Weber, Dimitris Nathanael,
Matthias Althoff, Jingyuan Wu, Johannes Ruenz, André Dietrich, Gustav Markkula,
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itan University, 2018.
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Larsen, S. A.; Markkula, G.; Lee, Y. M.; Garach, L.; Merat, N. & Fox, C.Filtration
analysis of pedestrian-vehicle interactions for autonomous vehicles control. Proceed-
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Chapter 2

Pedestrian Models for Autonomous Driving Part I: Low-Level
Models, From Sensing to Tracking

Abstract

Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases
such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles nav-
igating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians
are active agents with complex, interactive motions. Planning AV actions in the presence
of pedestrians thus requires modelling of their probable future behaviour as well as detect-
ing and tracking them. This narrative review article is Part I of a pair, together surveying
the current technology stack involved in this process, organising recent research into a hier-
archical taxonomy ranging from low-level image detection to high-level psychology models,
from the perspective of an AV designer. This self-contained Part I covers the lower levels of
this stack, from sensing, through detection and recognition, up to tracking of pedestrians.
Technologies at these levels are found to be mature and available as foundations for use in
high-level systems, such as behaviour modelling, prediction and interaction control.

1 Introduction

Many organisations are vigorously developing autonomous vehicles (AVs). The technology
for vehicles moving in static environments – localising, mapping, planning, and controlling
– is well developed [219] and is now available as open-source software [116]. However, in
real-world driving environments, human drivers regularly make decisions involving social
decision-making that are harder to automate. Autonomous vehicles need additional social
intelligence to operate in these complex social environments.

Interacting with pedestrians is a particular type of social intelligence. Autonomous
vehicles will need to utilize many different models of pedestrians, each addressing different
aspects of perception and intelligence from low-level machine vision detection to high-level
psychological and social reasoning. Each of these models can be based on empirical science
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1 Introduction

Sensing

Detection

Recognition

Tracking

Prediction

Interaction

Game
Theory

Signalling

Level 0: No Automation

Level 1: ‘Hands on’

Level 2: ‘Hands off’

Level 3: ‘Eyes off’

Level 5: Full Automation
Level 4: ‘Mind off’

Figure 2.1: Main structure of the review.

results or obtained via machine learning. So far, the required models have typically been
developed by different research communities, so their integration is currently premature.

At the lower levels of the technology stack, pedestrian modelling requires perceptual
methods to detect pedestrians, track their positions and velocities over time, and predict
their movements to avoid colliding with them. These methods mostly originate from computer
vision and robotics.

At the higher-levels, as researched by psychologists and taught in advanced driver train-
ing programmes, drivers may infer the personality of other humans, predict their likely be-
haviours, and interact with them to communicate mutual intentions. At the higher levels,
researchers infer psychological information from perceptual information, for example recog-
nizing pedestrian body language, gestures, and demographics information, to better predict
their likely goals and behaviours. Despite the importance of bridging the research between
the higher and lower levels, their connection is still thin, both conceptually and in terms of
implementations.

A promising method to bridge the higher and the lower levels is probability theory, provid-
ing possibilities for quantitative computational interfaces: for example, a pedestrian detector
can pass a detection probability to a gesture recognizer, which computes probabilities of par-
ticular gestures based on this information, which in turn can be passed to a psychological or
game-theoretic behaviour predictor, before the information is finally used to probabilistically
compute optimal steering and speed values. Such a unified probabilistic stack requires models
at all levels to realise quantitative, probabilistic inferences and predictions. Besides surveying
the required building blocks, we also examine the maturity of each required level.

Many papers have been published presenting pedestrian models at various levels, but no
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1 Introduction

Table 2.1: Proposed mapping from SAE levels to pedestrian model requirements.

SAE

LEVEL

DESCRIPTION MODEL REQUIREMENTS SECTION

0 No Automation. Automated sys-
tem issues warnings and may mo-
mentarily intervene, but has no sus-
tained vehicle control.

Sensing Sec. 2

1 Hands on. The driver and the
automated system share control of
the vehicle. For example, adapt-
ive cruise control (ACC), where
the driver controls steering and the
automated system controls speed.
The driver must be ready to resume
full control when needed.

+Detection Sec. 3

2 Hands off. The automated sys-
tem takes full control of the vehicle
(steering and speed). The driver
must monitor and be prepared to
intervene immediately. Occasional
contact between hand and wheel
is often mandatory to confirm that
the driver is ready to intervene.

+Recognition
+Tracking

Sec. 4
Sec. 5

3 Eyes off. Driver can safely turn
attention away from the driving
tasks, e.g. use a phone or watch
a movie. Vehicle will handle situ-
ations that call for an immediate
response, like emergency braking.
The driver must still be prepared to
intervene within some limited time.

+Unobstructed Walking Models,
Known Goals
+Behaviour Prediction, Known Goals
+Behaviour Prediction, Unknown
Goals

Part II Sec. 2.1
Part II Sec. 2.2
Part II Sec. 2.3

4 Mind off. No driver attention is
required for safety, except in lim-
ited spatial areas or special circum-
stances.Outside of these areas or
circumstances, the vehicle must be
able to safely abort or transfer con-
trol to the human.

+Event/Activity Models
+Effects of Class on Trajectory
+Pedestrian Interaction Models
+Game Theory and Signalling Models

Part II Sec. 2.4
Part II Sec. 2.5
Part II Sec. 3
Part II Sec. 4

5 Full automation. No human inter-
vention is required at all.

+Extreme Robustness and Reliability

Note: ‘+X’ means that ‘X’ is required in addition to the requirements of the previous level.
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1 Introduction

Figure 2.2: Structure of the paper.

unifying theory to connect them has yet been produced. The present study is Part I of a
linked pair which together survey and unify the stack of required skills from engineered low-
level aspects up to high-level aspects involving social decision-making. This Part I reviews
the lower-level parts of the stack from sensing, through detection and recognition, to tracking,
which together create the required inputs for higher-level AI systems to control interactions
reviewed in Part II [29].

Together, these two reviews contribute steps towards such a theory by bringing together,
and organising into a new taxonomy (presented via the structure of the papers), research from
different fields, including machine vision, robotics, data science, psychology and game theory.
We suggest how models from these fields could be linked together into a single technology
stack by probability theory. We support this goal by summarizing methods for translating
qualitative concepts into simple quantitative statistical models.

Fig. 3.1 provides an overview of the main structure of the review and links the struc-
ture to five levels of driving automation defined by the Society of Automotive Engineers
(SAE), ranging from simple driver assistance tools to full self-driving [190]. In our taxonomy,
we approximately map requirements for pedestrian modelling to each of these levels, with
requirements increasing as levels increase. Table 3.1 gives an overview of SAE levels and
requirements mapping.

To reach level 0, no automation is required, but some basic sensing is needed to inform
the human driver. Very simple sensors can be used, such as the ultrasonic reverse parking
sensors currently available commercially, together with very basic signal processing such as
distance thresholds causing an audible signal. More complex concepts from our reviews may
also be added to inform the driver of higher-level information, such as the identity of the
particular pedestrian they are about to hit, but this is not necessary to reach level 0.

To reach level 1, the AV needs to provide driving assistance tools, such as lane keeping
and adaptive cruise control (ACC). To do this, it needs to detect the road structure and the
surrounding objects to help the driver. The AV needs to detect these objects in order to
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1 Introduction

avoid them, but does not yet need to recognise them as specific individuals because this is
not necessarily needed for obstacle avoidance.

To reach level 2, the AV and the driver must share the driving task, with the vehicle
taking full control of the vehicle at certain times. To take full control, it is not sufficient to
only detect objects, but it is also necessary to recognize and track them over time in order
to make short-term predictions of their motion and safely avoid them, possibly often passing
control to the human, when these simple predictions do not work.

To reach level 3, drivers can turn their attention away from the driving task, but must be
prepared to take control occasionally within a certain time. This requires better prediction of
pedestrian motion than level 2 in order to reduce take-over requests to humans. For example,
adding concepts of likely routes and destinations to pedestrian models reduces the human
take-over requests.

Finally, to reach levels 4 and 5, we believe that the AV must understand the driving
task as good as a good human driver. Human drivers use complex psychology of pedestrian
behaviour as well as their negotiating and signalling behaviours, so these must be replicated
by the AV.

This Part I begins at the lowest levels of machine vision with sensing (SAE level 0) and
detection (SAE level 1), and considers recognition and tracking (SAE level 2) based on them.
This Part I is intended to lay the foundations for Part II [29], which then moves up the
technology stack to consider SAE levels 3-5. Part II also reviews data sources and other
experimental resources useful for building and testing models at all levels.

Pedestrians are here defined as humans moving on and near public highways including
roads and pedestrianised areas, who walk using their own locomotive power. This excludes,
for example, humans moving on cycles, wheelchairs and other mobility devices, skates and
skateboards, or those transported by other humans. This review does not cover interactions of
traffic participants without pedestrians: a survey on trajectory prediction of on-road vehicles
is provided in [133] and a survey on vision-based trajectory learning is provided in [154].

The organization of the review serves as a new taxonomy from relatively well understood
quantitative engineering methods at the lower levels, towards less clear qualitative psycholo-
gical theories of behaviour and interaction. It summarizes some progress in translating these
qualitative concepts into simple quantitative statistical models, and identifies a strong need
for this process towards quantifying psychological, social, group and interactive models into
algorithms for real-world AV control. Each section has an introduction and discussion, which
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2 Pedestrian Sensing

should be readable by researchers from other, especially neighbouring, fields who would like
to get an overview of the state of the art and consider how their own field could connect
both conceptually and computationally to it. Statistics on included papers are shown in
the supplementary material Sect. 1. The remainder of this Part I is organized as shown in
Fig. 3.2.

2 Pedestrian Sensing

Any pedestrian modelling system must begin by collecting sensor data about pedestrians.
Detection, tracking and higher-level models may all depend on what information is present
at this low-level, so a brief review is provided here. More details on automotive sensors
are available in [85]. We classify our review into passive and active sensors. Active sensors
actively send pulses into the environment that are reflected and detected while passive sensors
detect physical phenomena already present in the environment. A summary of common AV
sensors with their range and accuracy is provided in Table 2.2.

2.1 Passive Sensors

Manual Detection and Labelling The most basic method of sensing pedestrians is to
use human perception, which is often used in offline studies, such as for conducting on-street
surveys or annotate recordings of such surveys made with other sensors [30, 28]. Humans
still have advantages over automated systems since they can use their full intelligence to
subjectively annotate otherwise difficult events, such as the meanings of body language,
emotions, and gestures. In particular, manual detection of pedestrians is needed and used
as ground truth data for machine learning algorithms as in [247] where human experts were
asked to detect people as a baseline for a comparison against machine algorithms.

Video Cameras One of the most commonly used sensors is the video camera, because it is
cheap and easy to install. For example, [75] proposed a survey and experiments on pedestrian
detection using monocular cameras. In [253] the shadow of moving objects is removed from
the foreground images in order to improve the accuracy of the detection. In [107], shadows
are automatically removed from the images in HSV color space. On the contrary, Wang
and Yagi [226] treated shadow as helpful information for their appearance-based pedestrian
detector.
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2 Pedestrian Sensing

Stereo Pair Video Cameras Traditionally, 3D machine vision was a less-developed re-
search field than 2D image processing [102]. It uses two (or more) images from cameras,
placed some distance apart, to estimate the stereo disparity between them and, ultimately,
the distance in 3D space. Disparity describes the difference in location of corresponding fea-
tures seen by the left and right cameras [212, ch. 11]. Disparity estimation methods fall into
two classes: pixel-based methods (similar to optical flow), which estimates disparity at each
pixel based on colour similarity to its neighbours; feature-based methods, which find a smaller
number of statistically interesting points in the image (such as corners) and compute only
their disparities. In recent years, these algorithms have become standard and very fast hard-
ware implementations have enabled both real-time use and integration into consumer-style
camera products [112]. Hence, it is now possible to consider a stereo camera as a single device
at the sensor level for detecting humans. For example, in [117], pedestrians are detected us-
ing dense (i.e. pixel-based) stereo camera images. Ess et al. [76], instead, implemented a
stereo vision-based detection algorithm that extracts visual features and performs pedestrian
detection from a mobile platform.

Passive Infrared Imaging Pedestrians’ bodies radiate heat in the infrared (IR) spectrum,
which may be easier to detect than the visible one. For example, Xu et al. [82] developed
a pedestrian detection and tracking method using a night-vision camera. [209] proposed a
pedestrian detection method using infrared images. Cielniak et al. [48] presented a technique
that combines color and thermal vision sensors data to track multiple people. Unlike visible
light, IR does not allow to distinguish a single body from a group of pedestrians, but this
technology can be useful for detecting and identifying objects in foggy conditions [143].

Passive Ultrasonic Sensors When a moving object enters and then leaves the detection
area, the sound energy increases and then decreases: the role of a passive ultrasonic sensor is
to measure the produced acoustic energy [72]. This technique is not very reliable, as it might
not be able to detect single moving objects from groups, and it is also dependent on weather
conditions.

Piezoelectric Sensors A review on tactile sensor detection of humans is provided in [218].
Piezoelectric sensors generate an electric impulse on touch contact, such as pedestrians step-
ping onto a sensed ground region, or making contact with an AV itself. This can become
very expensive because it requires the installation of many piezoelectric sensors in the study
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2 Pedestrian Sensing

area, for instance on the floor of the pedestrian infrastructure. It is useful as a last-resort
sensor to detect actual collisions when other sensors have failed. In some limited (small but
very high density) environments, it may be useful to monitor pedestrian movements around
a sensor-filled floor, e.g. in a heavily pedestrianized area shared with last mile robots.

ID Sensors These devices are attached to or carried by pedestrians and they transmit
unique identifying tags as well as simplifying localisation, and include infrared and RFID
(Radio-Frequency IDentification) badges. Schulz et al. [198] developed a tracking system
which combines ID sensor information with anonymous ones, such as lidar (see Sect. 2.2),
in order to improve tracking accuracy. Versichele et al. [223] proposed to use Bluetooth for
person tracking based on unique MAC (Media Access Control) addresses emitted continually
by many personal devices already carried by pedestrians, such as mobile phones. In [94],
camera images are fused with an omnidirectional RFID detection system using a particle
filter in order to enable a mobile robot to track people in crowded environments.

2.2 Active Sensors

Lidar (Light Imaging Detection And Ranging) This sensor is mainly used for loc-
alisation and detection of traffic participants, such as pedestrians, cars, bicycles, etc. It
makes use of laser beams and calculates the distance to obstacles (objects, walls, people)
by measuring the time gap between sending and receiving impulses; some lidar have a 360
degrees detection range. It can be used to determine the direction, speed and trajectory of
moving objects. For instance, Dewan et al. [67] presented a model-free detection and track-
ing of dynamic objects with 3D lidar data in complex environments. Objects are detected
and segmented thanks to multiple motion cues, then their estimated motion model is used
for tracking. Arras et al. [6] proposed a similar supervised classifier to detect people using
a 2D lidar. In this case, AdaBoost (Adaptive Boosting), a binary boosting algorithm that
combines a set of weak classifiers into a strong classifier, is used to detect features of the
laser beams corresponding to peoples’ legs in different environments. Gonzalez et al. [97]
combined lidar and RGB camera data for pedestrian detection. Lidars can be used in any
weather conditions, but they can be quite expensive, especially when a range of more than
30m is needed [15]. Fig. 2.3a shows the working principle of lidar and Fig. 2.3b shows the
detection of road users using a lidar.
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2 Pedestrian Sensing

(a) The working principle of a lidar (b) Detection of road users with a 2D lidar

Figure 2.3: The working principle of a lidar and its detection of road users.

Radar (Radio Detection And Ranging) This sensor was first used during World War
II. Radars emit a radiation from their antenna, which receives back the radiation reflected
by passing objects. There are two types of radar: one which transmits a continuous wave of
constant frequency to determine the speed of moving objects based on the Doppler principle,
where objects with no relative motion are not detected [122]. The second type, frequency
modulated continuous wave (FMCW), transmits a continuous changing frequency, which can
detect static and moving objects [45].

Active Infrared Sensors These sensors are composed of a transmitter that emits infrared
light, a receiver that captures the reflected light, and a data collection unit that measures
the time of flight of the emitted infrared light. Objects’ speed can be detected by sending
over two or more beams of infrared light. Their range varies from a few to tens of meters.
The Kinect sensor [250], a popular RGBD (red, green, blue, depth) camera, is a particular
example of an active infrared sensor. It uses a complex known pattern of thousands of rays
and measures their movement in the reflected image to infer distance, similarly to a lidar. A
review of computer vision techniques based on the Kinect sensor is proposed in [101].

Active Ultrasonic Sensors They emit sound waves and a detector senses the sound waves
reflected by passing objects. This low-cost sensing method is immune to lighting conditions
and does not require significant maintenance. However, it can be seriously affected by weather
conditions and it is typically not accurate enough in certain areas [36].
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Table 2.2: Range and Accuracy for common AV sensors.

SENSOR RANGE ACCURACY

STEREO CAMERAS From 0.5m up to several tens of meters [19] Disparity error of 1/10 pixel (corres-
pond to about 1m distance error if
the object is 100m far away) [169]

INFRARED From a few cm to several meters [85, 108] Temperature accuracy of +/-1◦C,
can measure temperatures up to
3,000◦C [85]

ULTRASONIC From 2cm to 500cm [36, 195] About 0.3mm [36, 195]

RFID Several meters [256, 84] A few centimeters [256, 84]

LIDAR Up to 300m [251, 193] Up to 2cm[62, 193]

RADAR
• Short range: 40m, angle 130◦ [160, 103, 100]

• Middle range: 70m to 100m, angle 90◦ [160, 103]

• Long range automotive radar from less than 1m to up to 300m (opening
angle up to +/-30◦, a relative velocity range of up to +/-260km/h)
[62, 160, 204]

• Short range: Less than 0.15m or
1% [160, 103, 100]

• Middle range: Less than 0.3m or
1% [160, 103]

• Long range: 0.1m e.g. Bosch
LRR3 77 GHz, range 250m [62]
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3 Pedestrian Detection Models

2.3 Discussion

Most autonomous vehicles today are using a mix of lidar, radar, and stereo vision. Visual
RGB images are most commonly used as the base for detection, and feature-based localisation
and mapping. Lidar or radar provide more reliable, but more expensive sensing capabilities
for safety-critical aspects such as collision avoidance. While stereo cameras and radar are
already used in commercially-available vehicles – for example in lane departure and adaptive
cruise control systems, respectively – we expect that lidars will be used as well due to expected
drops in prices. In recent years, lidar has been the main source of point cloud localisation and
mapping in high-precision sensing for research work, but developments in millimeter radar
and stereo cameras are making them increasingly competitive for this purpose. Manual
annotation of image data remains necessary for recognition of difficult detailed features such
as pedestrian eye contact and body language meanings, but for other tasks even including
the creation of training sets for machine learning, is now replaced by automated methods,
including semi-supervised approaches which allow quite small manual training sets to be
bootstrapped with much larger unannotated data.

3 Pedestrian Detection Models

A previous review of pedestrian detection is presented in [71]. Here we summarize some of
the key detection methods that are particularly relevant to AVs. Different techniques are
used for detection, which can be classified into six main categories: visual appearance-based
detection, motion-based detection, spatio-temporal feature detection, 3D feature detection
models, deep learning methods and attention-windows detection. In computer vision, the
detection problem can be viewed as a special case of image classification: given a candidate
image window, the detection seeks to classify the latter as a pedestrian or non-pedestrian.
The same concept applies to other types of sensors with their own detection windows. Fig 2.4
summarizes the sensing technologies and the pedestrian detection techniques described in this
section.

3.1 Visual Appearance-Based Detection

Unlike motion-based methods, feature-based methods can operate with a single still image,
as they look only for static patterns rather than changes over time.
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Figure 2.4: Pedestrian sensing and detection techniques.

(a) Pedestrian (b) Face

Figure 2.5: Examples of HOG features [60].

HOG-SVM One of the most commonly used pedestrian detectors is based on the com-
bination of HOG (Histogram of Oriented Gradients) and SVM (Support Vector Machine).
HOG [60] is a technique that was invented for the purpose of human detection. After train-
ing, a classifier can determine whether a proposed HOG corresponds to a pedestrian or not
(Fig. 2.5). The OpenCV vision library [24] has a generic implementation of an object detector
based on this method, which can be applied to pedestrian detection.
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3 Pedestrian Detection Models

Alternative Features Sometimes used in place of HOG, alternative features including
point descriptors, e.g. BRISK (Binary Robust Invariant Scalable Keypoints) and SIFT (Scale
Invariant Feature Transform), are used to detect characteristic features of an image, such as
corners or edges [192] [20]. Other forms of gradient features and edge detectors [33] are
less sensitive to illumination compared to color descriptors. Texture features, such as Local
Binary Patterns (LBP), assign a class to each local window. Groups of classes in nearby
windows can then be classified as pedestrians or non-pedestrians. For example, [3] proposed
a face recognition method based on the LBP feature descriptor. [163] used LBP with spatial
pooling for a robust pedestrian detection.

Cascade-based Detection The detector proposed by [224] is composed of a sequence of
classifiers, trained using Haar-like visual features, where each classifier can pass or not a
sub-region to the following one. Zhu et al. [258] proposed a person detection method using
a cascade (40 levels) of HOG-SVM detectors combined with Adaboost for feature selection.
In [41], Chen et al. developed a person detection approach using a cascade classifier based
on Adaboost with rectangle features and edge orientation histogram (EOH) features.

Segmentation Methods These include methods such as the Mean-Shift clustering [27],
watershed, and grab-cut, which divide the image into regions typically having similar or
smoothly changing colour and texture characteristics. These regions can then be tested
directly for pedestrians presence through shape, texture and other statistics as in [188],
where people were detected and segmented based on a probabilistic method that describes
the shapes of their different postures.

Deformable Part Model Deformable Part Model (DPM) is a popular detection model.
It has been originally proposed for the Pascal VOC challenge for object (including pedes-
trian) detection and recognition [77]. DPM splits an object into several parts arranged in a
deformable configuration and can be used for pedestrian classification as in [79]. This method
can deal with significant variations in shape and appearance. A fast implementation of DPM
applicable for person detection is proposed in [233].

3.2 Motion-based Detection

Frame Differencing This method consists in computing the difference between the current
frame and a reference one (usually the first frame). In [74], a person detector was developed
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using optical flow computed on regions selected by frame differencing on camera data recorded
from a vehicle. Selected regions are then passed to a wavelet-based features classifier combined
with template matching. Park et al. [165] proposed an approach that uses coarse-scale optical
flow to stabilize camera frames with temporal difference features for pedestrian detection and
human pose estimation, and tested on the Caltech pedestrian benchmark [70].

Optical Flow This technique assigns a direction and a velocity of motion to each pixel of
two consecutive frames, as in [225]. Fernández-Caballero et al. [83] used optical flow and
frame differencing for human detection on infrared camera images for a security mobile robot
platform. Another use of optical flow for detection and tracking is proposed in [67] using 3D
lidar data.

Background Subtraction This method builds a background model used as a reference
model in order to detect moving objects. This modelling is based on the assumption that
the background is static. It consists in extracting an estimate of the background from the
rest of the image by using some methods such as mean filter, running Gaussian average, etc.
Background modelling has two variants: the recursive algorithm, which updates each frame
with the estimate of the background, and the non-recursive algorithm, which stores a buffer
with the previous frames and the background estimated from them. In [201], Sheikh et al.
developed a background subtraction model that can detect humans and objects in moving
camera images. Their method builds background and foreground appearance models based
on the background trajectory estimated by a RANSAC algorithm.

3.3 Other Detection Models

Spatio-Temporal Features These are commonly used in video codecs, such as Theora
and H.264, because they are statistically efficient summary descriptors of natural video. As
such, they are also candidates for informative classification features. Oneata et al. [162] used
these features with a supervoxel method for human detection in videos.

3D Feature Detection These models rely on 3D sensors, such as depth cameras and
3D lidars. Depth information enables more robust detection algorithms. For example, the
authors in [234] proposed an online learning method based on a 3D lidar cluster detector, a
multi-target tracker, a human classifier and a sample generator. The cluster detection starts
by removing the ground plane, then point clusters are extracted from the point clouds using
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the Euclidean distance in 3D space and finally a human-like volumetric model is fitted to
the clusters for filtering. Yan et al. [235] took advantage of multiple (2D and 3D) sensor
detectors to train an online semi-supervised human classifier for a mobile service robot. A
depth-based person detector is presented in [151]. This detector applies template matching
on depth images. To reduce the computational load, the detector first runs a ground plane
estimation to determine a region of interest, which is the most suitable to detect the upper
bodies of a standing or walking person. In [58], a mobile robot equipped with an RGB-D
camera is used to detect people. Munaro and Menegatti [156] proposed a real-time detection
and tracking system based on RGB-D camera data capable of detecting people within groups
or standing near walls.

Attention Windows In their basic forms, the classifier-based detection methods above
may assume that every possible location and size window of a 2D or 3D image will be tested
for pedestrian detection. Such ‘sliding windows’ can be computationally slow, unless the tests
are performed in parallel (e.g. on a GPU) or some form of attention model is used to restrict
the search. It is common to use a simple, fast, and inaccurate detector set to have many false
positives and few false negatives, to decide whether a window should be explored further or
not [200]. In this case, a more advanced but slower method would be applied to test the most
interesting windows. Prokhorov [173], for example, developed a road obstacle detector based
on attention windows with potential application to pedestrian detection.

Neural networks (‘deep learning’) Neural networks [98] are hierarchical-in-the-parameters
regression models which seek to minimise an error function E between N desired vector out-
puts c(n) for n ∈ {0, N − 1} and a function F of input vectors x(n) (including an element
which is always 1) with parameters θ,

E =
∑
n

‖c(n) − F (x(n); θ)‖2, (2.1)

where F is comprised of layers of ‘node’ functions,

yj = f(aj), aj =
∑
i

wjiyi, (2.2)

and f is any nonlinear function, wji ∈ θ are weights from any node i in a lower layer to any
node j in the layer above it, and yi for the lowest layer are elements of the input vector x(n)

i .
The vector formed from yl for all nodes l in the top layer is the value of F . E is then locally
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minimised by computing backpropagation terms ∆i for each node,

∆i = f ′(ai)
∑
j

∆jwji, (2.3)

beginning by setting for the top layer nodes l,

∆l = c
(n)
l − F (x(n); θ)l, (2.4)

then updating the parameters wji along the direction,

− δE

δwji
= −∆jyi. (2.5)

Neural networks date from at least the 1970s [229], but have returned to popularity due
to falls in prices of parallel hardware (specifically, graphics cards) which has enabled the use
of ‘deep’ networks having more layers; together with the algorithmic improvements of sharing
weights (convolutional neural networks, CNN), pooling [130] and dropout [125] which exploit
statistical regularities found in most natural data.

The classifier-based detectors presented so far rely on a two-stage process of feature ex-
traction followed by classification. Neural networks can be used in this way as classifiers
given input vectors of features. But increased computing power now enables the raw image
to be given directly as input to neural networks having more layers, which can learn their own
feature sets in the lower layers, enabling features to be learned, rather than manually chosen,
to optimise performance in specific tasks. For example, [5] proposed a real-time pedestrian
detector using ‘deep network cascades’.

Like other classifier-based detectors, neural networks themselves only learn a mapping
from input to output vectors, so to apply them to detection of objects in images, some
scheme like the attention windows of section 3.3 is needed to propose regions of interest. R-
CNN [96] computes region proposals with any non-neural method such as ‘selective search’.
It computes features for each proposal region using a large CNN, then classifies these features
sets using class-specific linear SVMs and also uses linear regression to refine the region from
the features. Faster R-CNN [181] extends a CNN with layers for region proposals and layers
for classification, using them to propose then classify regions. YOLO [178, 177, 179] similarly
extends a CNN with layers for both region proposal and classification, but runs them at the
same time with classification based on approximate rather than finally proposed regions. It
is able to detect about twenty different classes such as people, cars, bicycles and trucks in
real time video. Mask R-CNN [104] finds segmentations as well as rectangular regions, by
extending Faster R-CNN with layers predicting masks for regions.

30



3 Pedestrian Detection Models

3.4 Discussion

Traditionally, a wide variety of image features have been developed by hand and matched with
a wide variety of classifiers, to find good performance in pedestrian detection. Until recently,
the HOG-SVM method was the best known [16]. Pedestrian detection, like most classification
tasks, has however recently been revolutionized by price falls in parallel hardware such as
GPUs, which have enabled classical neural network algorithms with small modifications (‘deep
learning’) to outperform hand-crafted methods for the first time. It seems likely that neural
network methods will completely replace all others. The same GPU hardware also enables
pixel-wise algorithms, such as optical flow, to be massively accelerated. They might not be
necessary though if neural networks alone achieve the required performance.

The implementation of a person detection method for an AV is one of the major practical
challenges. OpenCV1 library provides open-source implementation of many computer-vision
algorithms (in C++ and Python), mainly aimed at real-time processing. It contains feature
extraction methods such as HOG, SIFT, BRISK. It also includes a C++ implementation of
DPM. In addition, LibSVM2 is a popular implementation of SVM classification algorithm.
The lidar-based leg detector in [6] is implemented as a Robot Operating System (ROS)
module3. Again, the ROS implementation of the depth-based detector in [151] is available4.
In addition, an offline version of the 3D lidar-based approach in [234] is implemented as a
ROS module5. The authors of the RGBD-based detector in [156] provide the implementation
of their algorithm6. Many DL-based approaches provide their code for reproducibility and
comparison: YOLO7, R-CNN8, Faster R-CNN9 and Mask R-CNN10.

High performance of deep learning models comes at a price: they require larger training
data (sometimes several millions of examples), longer training times (up to several days),
and their computational cost is more important than for simpler detectors [248]. In some
cases, DL methods cannot reach real-time performance [5] and are outperformed by simpler

1https://opencv.org/
2https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
3https://github.com/wg-perception/people
4https://github.com/strands-project/strands_perception_people/
5https://github.com/LCAS/FLOBOT
6http://pointclouds.org/documentation/tutorials/ground_based_rgbd_people_

detection.php
7https://pjreddie.com/darknet/yolo/
8https://github.com/rbgirshick/rcnn
9https://github.com/rbgirshick/py-faster-rcnn

10https://github.com/facebookresearch/Detectron
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Figure 2.6: Pedestrian attributes for recognition models.

methods such as HOG [221].

4 Pedestrian Recognition Models

While detection refers to finding the presence or absence of pedestrians at locations and scales
in images, recognition here refers to the recognition of attributes of pedestrians given by such
detections. Recognition takes as input the localised window of visual or other sensor data
forming the detection, and yields as output some information about the particular pedestrian
detection. In some cases, this could include their actual identity – identity recognition – but
our use of the term here also includes recognition of attributes such as their body pose and
facial features. Recognition refers to these tasks, while classification here refers to processes
that perform recognition specifically by mapping inputs into discrete rather than continuous
output classes. Figure 2.6 presents a set of attributes used for pedestrian recognition and
a summary of the recognition models and papers reviewed in this paper is given in the
supplementary material Sect. 2.

4.1 Recognition of Body Pose

While full-body tracking is discussed below, some methods may attempt to classify from
single images some basic information on pose, such as the head direction of the pedestrian
into facing AV/not facing AV. Where the pedestrian body state is known – as resulting from
skeleton and other body tracking – it may contain useful information about pedestrians’
goals and intentions, which may be extracted by classifiers operating at a higher-level – on
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the tracked body configurations rather than on the raw images or other sensor data. Cao et
al. [34, 35] presented OpenPose, a real-time multi-person pose estimation software that uses
CNNs to detect people in 2D images and Part Affinity Fields (PAF) is used to associate body
parts to the detected people. Shotton et al. [203] developed 3D human pose estimation based
on body parts representation. Their method relies on depth features, randomized decision
trees and forest algorithms for classification, and outputs a proposal position for each detected
body part. The method was tested on motion capture and synthetic data.

Iqbal et al. [110] proposed a graphical model optimized by a integer linear programming
(ILP) to estimate and track multiple people in videos; the used data is made available as a
new dataset called PoseTrack. Tompson et al. [220] combined a deep CNN with a Markov
Random Field to estimate human pose from monocular images. Fragkiadaki et al. [89] pro-
posed a method using recurrent neural networks with an Encoder-Recurrent-Decoder (ERD)
architecture to predict body joint displacements. ERD is an extension of LSTMs. Martinez
et al. [144] proposed a method using RNN with Gated Recurrent Unit (GRU) architecture
without requiring a spatial encoding layer and allows to train a single model on the whole
human body. Tang et al. [214] proposed a model that extends the work in [89] and [144].
Their work is based on the observation of human skeleton sequences and uses deep neural
networks (Modified High-way Unit (MHU)) to remove motionless joints, estimate next moves
and perform human motion transfer. Gosh et al. [95] used a Dropout Autoencoder LSTM
(DAE-LSTM) to extract structural and temporal dependencies from human skeleton data.
Manual annotations are not needed because a tracker gives the actual direction of movement.
Kohari et al. [123] used a CNN model to estimate human body orientation for a service
robot.

4.2 Recognition of Head Direction

The primary use of extracting the head direction in pedestrian-AV interaction is epistemolo-
gical: a pedestrian facing the AV – and/or establishing direct eye contact with it – is a good
indicator that the pedestrian has seen the AV and knows it is there, and therefore will be
planning their own behaviors on the assumption that they will have to interact with it. In
contrast, a pedestrian who has not seen the AV, unless relying on auditory cues, may just step
into the road with no idea that a potentially dangerous interaction is about to occur [230]
[12]. Darrell et al. [61] developed a real-time human tracking and behaviour understanding
system, called Pfinder. The system converts human head and hands into a statistical model
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of color and shape in order to deal with different viewpoints. Schulz and Stiefelhagen [197] es-
timated pedestrian head pose using multi-classifiers for different monocular grayscale images;
depth information within the detection bounding box is also taken into account. Flohr et al.
[86] proposed a model that can detect pedestrian body and head orientation from grayscale
images based on a pictorial structure method.

4.3 Recognition of Gaze Direction and Eye Contact

Algorithms for gaze tracking and eye contact detection are not yet robust, and in laborat-
ory eye tracking experiments require expensive precision equipment to be installed on the
subjects’ heads. Benfold and Reid [17] proposed a method which infers the gaze direction
from a head pose detector based on HOG and colour features. The head pose is classified
using randomised ferns, i.e., similar to decision trees, and the tracking is done frame-by-frame
based on the head detector using multiple point features. Baltrusaitis et al. [9] developed the
open-source OpenFace, running in real-time with a simple webcam. It is suitable for facial
behavior analysis, in particular for facial landmark detections, head pose estimation, facial
action recognition and eye-gaze estimation.

4.4 Emotion Recognition

Pedestrian emotion recognition might be useful to inform about their crossing intention. For
example, an angry pedestrian might be more likely to behave more assertively in crossing
the road in front of an AV. Cornejo et al. [56, 55] developed a facial expression recognition
method that is robust to occlusions. The occluded facial expression is reconstructed with
a robust principal component analysis (PCA) method, facial features are extracted using
Gabor wavelets and geometric features in [56] and using CENTRIST features in [55], recog-
nition is performed with KNN and SVM as classifiers. Cambria et al. [32] proposed a new
categorization model for emotion recognition systems and [31] reviewed sentiment analysis
methods. Poria et al. [171] developed a CNN model with a convolutional recurrent multiple
kernel learning that can extract features from multimedia data such as audio, videos, and
text. The method has been tested on Youtube videos and ICT-MMMO dataset. Den Uyl
and Van Kuilenburg [65] developed the FaceReader, an online facial expression recognition
system, which is robust to the head pose, orientation and lighting conditions.
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4.5 Recognition of Pedestrian Identity for Re-Identification

Person re-identification (re-ID) is the problem of recovering the identify1 of the same person
with different clothing across different images, under different camera views, weather, lighting,
and other environmental conditions. Ahmed et al. [2] developed a deep convolutional network
that solves the re-identification problem by computing a similarity value between two image
pairs. Their method has been tested on CUHK01, CUHK03 and VIPER datasets. Zheng
et al. [252] proposed a person re-identification method based on the Bag-of-Words (BoW)
model which extracts Color Names (CN) descriptor features from the input image, a Multiple
Assignment (MA) is then used to find neighboring local features and finally TF-IDF finds the
number of occurrences of visual words. Their method was tested on the Market1501 dataset.
In [254], a CNN model with unlabeled images is used to re-identify people. Li et al. [134]
proposed a filter pairing neural network (FPNN) model for person re-identification, capable
of handling challenging conditions such as occlusions.

4.6 Gesture Recognition

Deliberate gestures are the most obvious form of communication from body pose. For ex-
ample, a pedestrian may wave a vehicle on to show that they intend to give it priority in a
crossing. A previous review on hand gesture recognition is provided in [150] and more recently
Rautaray and Agrawal [176] presented a survey for interactions with a computer. Chen et al.
[40] used a real-time tracker with hidden Markov models (HMM) to recognize hand gestures.
Freeman and Roth [90] used orientation histograms for gesture recognition. Their real-time
method can recognize about 10 different hand gestures. Ren et al. [182] developed a robust
hand gesture recognition system for active infrared (Kinect) sensors. Their method is based
on template matching for part-hand gesture recognition and a new distance metric called
Finger-Earth Mover’s Distance (FEMD) is used to measure the similarity between two hand
shapes. Other gesture recognition methods based on HMMs are proposed in [23] [132].

4.7 Body Language Recognition

In addition to deliberate gestures, unconscious body language, including stance and gait
(walking style), may also be a predictor of pedestrian assertiveness in interactions, and of
other behaviours. As with gesture recognition, body language recognition relies on recognition

1Identity here is distinct from ‘personal information’ as defined by privacy laws such as the EU General
Data Protection Regulation (GDPR).
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of body pose, followed by classification of this pose. Quintero et al. [174] proposed a hidden
Markov model for pedestrian intention recognition based on 3D positions and joint displace-
ments along the pedestrian body. In [227], a human gait recognition method is proposed,
combining background subtraction with PCA for dimensionality reduction. A supervised
pattern classification is finally performed to recognize the gait.

4.8 Activity Recognition

Pedestrian activity recognition is of particular importance for autonomous vehicles. A lot
of work is ongoing for service robots and AVs. A more complete review on human activity
recognition methods is proposed in [68]. Chaaraoui et al. [37] used contour points of hu-
man silhouette to recognize human actions for real-time scenarios. Doll’ar et al. [69] used
spatio-temporal features for both human and rodent behaviour recognition. Vail et al. [222]
compared hidden Markov models to conditional random fields for human activity recognition.
In [138], a coupled conditional random field is used with RGB and depth sequential inform-
ation. Coppola et al. [54] developed one of the first RGBD-based social activity recognition
methods for multiple people. Their method learns spatio-temporal features from skeleton
data, which are fused using a probabilistic ensemble of classifiers called Dynamic Bayesian
Mixture Model (DBMM).

4.9 Discussion

AVs need to recognize pedestrian attributes including pose and possibly identity to help
them make more accurate predictions about pedestrians’ likely future behaviours. Detection
of pedestrians is now mature technology, but recognizing the attributes of these pedestrians
within these detections, such as body pose, is a harder and still open research area. Eye
direction and eye contact remain particularly difficult as it requires very precise estimation
of the positions of small pupils and irises at a long distance. Humans have evolved to be
particularly good at recognizing gaze direction for social purposes, but it is hard to replicate.
Recognition of emotions may be useful to inform predictions of pedestrians’ likely behaviours
(e.g. an angry pedestrian may be more likely to push in front of us), and progress has been
made in this area in non-real time systems, such as social networks’ processing of photographs.
But again, recognition from far distances and speeds travelled by AVs for real-time encounters
remains challenging and open. It is likely, in the future, that neural network approaches will
come to dominate this area as with detection.
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Open-source implementations of pedestrian recognition models include Openpose1 for
pose estimation, OpenFace2 for head pose and eye-gaze estimation and OpenTrack3 for head
tracking. To our knowledge, there is no generally accepted benchmark for pedestrian re-
cognition models. Future research should thus explore the performance and computational
efficiency of pedestrian recognition models in the context of autonomous driving.

Recognition of any attribute which enables recovery of a pedestrian’s name or other formal
identification will fall under data protection laws in most jurisdictions, such as the GDPR
across the EU. While re-identification (re-ID) might be particularly useful, for example for
use in delivery robots to confirm recipients’ identities, the usage of this technology should be
carefully assessed with respect to data privacy. The other recognition and tracking algorithms
mentioned in this section extract features anonymously, i.e., extracted data does not allow
the identification of individuals. Re-ID on the other hand can be used to record and store
sensitive personal data, which yields the potential to be misused for public surveillance.
For AVs, centralized re-ID might be useful to link individual traffic participants to their
previously-observed behavior in traffic enhancing long-term path prediction, but at the cost
of severe intrusion into the privacy of road users. This will raise a host of ethical and legal
issues when such accuracy is reached by rapidly accelerating machine vision research, such as
selling data of individual’s locations and behaviours to insurance and advertising companies,
or use by local authorities or law enforcement agencies [88].

5 Pedestrian Tracking Models

Pedestrian tracking is the process of updating the belief about a pedestrian’s location from a
temporal sequence of data. More specifically, tracking consists in determining the position and
possibly orientation or velocity of a given object over time. A pedestrian track is a sequence
of their locations over time. A pedestrian pose track is a sequence of a pedestrian’s body
pose states over time. When multiple pedestrians are present, tracking requires separating
the pedestrians from each other and associating the identities of the pedestrians with tracks.
This is a challenging problem for humans if their tracks overlap or disappear behind obstacles,
and appears to require high-level social intelligence and knowledge to guess what most likely
happened when tracks are temporarily hidden.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2https://cmusatyalab.github.io/openface/
3https://github.com/opentrack/opentrack

37

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://cmusatyalab.github.io/openface/
https://github.com/opentrack/opentrack


5 Pedestrian Tracking Models

Single
Pedestrian
Tracking

Extended Kalman Filter

Unscented Kalman Filter

Particle Filter

Simple Template Matching

Mean Shift Method

Layering-based Tracking

Contour Matching Tracking

Region-based Tracking

Shape-based Tracking

Skeleton Tracking

Point Tracking

Kernel-based
Tracking

Tracking Pedestrian
Body State

Figure 2.7: Single pedestrian tracking models.

Pedestrian tracking consists of two steps: (1) a prediction step to determine several likely
next possible pedestrian states, (2) a correction step to check each of these predictions and
select the best one. It often requires the estimation of non-linear, non-Gaussian problems
due to the nature of human motion, pedestrian sizes, and posture changes [15]. Pedestrian
tracking is a challenge for AVs because of the multiple uncertainties (e.g. occlusions) ori-
ginating from complex environments. Many techniques have been employed for pedestrian
tracking, see e.g. [239, 206]. Bar-Shalom et al. [11] presented state estimation algorithms
and how they could be applied to tracking and navigation problems. Figure 2.7 summarizes
single pedestrian tracking models.

Previous reviews on tracking methods for pedestrians can be found in [239, 152]. In this
section, we first review two classes of methods for single pedestrian location tracking relevant
to autonomous vehicle interactions (as previously classified by Yilmaz et al. [239]): point
tracking and kernel-based tracking. We then review recent work in the more challenging
tasks of body pose tracking and multiple pedestrian tracking. A summary of the tracking
methods and papers reviewed in this Part I is provided in the supplementary material Sect.
3.
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5.1 Single Pedestrian Point Tracking

Point tracking typically relies on probabilistic methods based on Bayes filtering [43, 191, 208].
Based on Bayes rule (2.6), the filter is composed of an initial state, a prediction step and a
correction step. The initial state x0 (2.7) presents the initial belief about the state x. The
prediction step (2.8) consists in updating the belief using information about how the target
typically moves around. Finally, the correction step (2.9) updates the state estimate with
sensor measurements z, to give posterior beliefs bel(xt) about the state at each discrete time
t, with a normalizer η, [186, 219].

p(xt | zt) = p(zt | xt)p(xt)
p(zt)

(2.6)

bel(x0) = p(x0) (2.7)

b̂el(xt) =
∫
p(xt | xt−1) · bel(xt−1)dxt−1 (2.8)

bel(xt) = η · p(zt | xt) · b̂el(xt) (2.9)

The transition probability p(xt|xt−1) is of crucial interest as it provides the mathematical
bridge from low to high-level pedestrian behavior models. In its lowest form – the standard
Kalman filter – it may simply be a Gaussian with zero mean and variance set to model the
scale of a (literal) random walk by the pedestrian. But we may have much more predictive
information θ about the pedestrian behavior to form p(xt|xt−1, θ). Here θ could include mid-
level information such as the pedestrian’s pose, heading, and location on a map. For example,
if the pedestrian is standing at the edge of the road, he/she is more likely to wait and cross.
Information about the pedestrian’s origin and destination could also help to predict the future
trajectory. Further information about beliefs, intentions and desires of the pedestrian will
also modify the trajectory probability. The transition probability thus provides the interface
where all higher-level models, discussed later in Part II [29], will link to low-level pedestrian
models. The following are some of the most popular variants of Bayesian Filtering used for
pedestrian point tracking:

Kalman Filter (KF) A KF is a Bayes filter applied to linear systems with continuous
states and Gaussian noise εt,

xt = Atxt−1 +Btut + εt, (2.10)
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where At is the system matrix and Bt is the control matrix.
The measurement probability also depends on a linear model Ct with Gaussian noise δt,

zt = Ctxt + δt (2.11)

where Ct is the measurement matrix.
The prediction step (control update step) increases the uncertainty in the robot’s belief,

while the measurement update step decreases it.

Extended Kalman Filter (EKF) An EKF is an extension of the Kalman Filter and
approximates non-linear models via Taylor expansion. EKF is a tracking technique well
performed in scenarios where there are few changes but it has a computational cost that could
be not neglectable for large state and measurement vectors due to the linearization process,
which can involve the calculation of big Jacobian matrices. One of the limitations of EKF
is that the linearization decreases the accuracy of the system and therefore the pedestrian
tracking performance [14]. For example, in [63], the authors try to solve this problem with
a CNN detector combined to a Multi-Hypothesis Extended Kalman Filter (MHEKF) for
vehicle tracking using low-resolution lidar data.

Unscented Kalman Filter (UKF) The UKF avoids the linearization problem by a
second-order approximation, called the Unscented Transformation. It approximates a prob-
ability distribution with chosen weighted points called sigma points and estimates its mean
and covariance. This leads to better performance in pedestrian tracking, as the Jacobian
computation is not necessary anymore, with no or minimum increase of the computational
cost [14].

Particle Filter This is a sample-based estimator widely used for pedestrian tracking, based
on Monte Carlo methods [80, 145, 231]. Unlike EKF, which deals with Gaussian and linearized
distributions, it performs state estimation of non-linear and non-Gaussian distributions. It
represents the target distribution by a set of samples, called particles. An important step
in particle filtering is the resampling, which consists in withdrawing ‘weak’ particles with
low weights from the sample set, and increasing the number of ‘strong’ particles with high
weights [219]. Particle Filtering demands high computation capabilities, when using many
particles. A tutorial for implementing particle filters for detection and tracking purposes can
be found in [7]. Moreover, Bellotto and Hu [14] evaluated different Bayesian filters, such as
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EKF, UKF and Sequential Importance Resampling (SIR) particle filter, for people tracking
and analysed the trade-off between performance and computational cost of each method.

5.2 Single Pedestrian Kernel-based Tracking

Simple Template Matching This is a brute force method. The goal is to compare a
region of an image to a reference template image by minimizing the sum-of-square-difference
(SSD). For example, in [113], a template matching is proposed for real-time people tracking,
which is robust to occlusions and variations of the illumination. In the approach proposed by
Lipton et al. [137], moving objects are detected in camera images using frame differencing.
By combining temporal differencing and template matching, the classified objects are then
tracked in real-time on video. In [115], a feature selection method in image sequences is
proposed to improve the performance of template matching tracking.

Mean Shift Method This is a visual tracking technique trying to match objects in suc-
cessive frames, where each track is represented by a histogram. The histogram of the region
of interest is compared to the histogram of the reference model. The technique iteratively
clusters data points to the average of the neighbouring points using a kernel function, similar
to k-means clustering [44]. In [52], the authors proposed a real-time object tracking using the
mean-shift algorithm and the Bhattacharyya coefficient to localize the targets. This method
is applied to non-rigid objects tracking observed from a moving camera. Collins [50] applied
the mean-shift algorithm to 2D blob tracking and proposed a method to select the kernel scale
for an efficient tracking of blobs. In particular, a difference of Gaussian (DOG) mean-shift
kernel is chosen to efficiently track blobs through space.

Layering-based Tracking Layering consists in splitting an image into several layers by
compensating the background motion to estimate the state of a moving object with a 2D
parametric model [164]. Each layer is represented by its shape, motion, and appearance
(based on intensity) [257]. For instance, in [215], the authors proposed a dynamic layering-
based object tracker exploiting spatial and temporal information from its shape, motion and
appearance. Their estimation is done using a Maximum-A-Posteriori (MAP) approach with
the Expectation Maximisation (EM) algorithm. Layering-based trackers can handle multiple
moving objects and occlusion. In [232], a layering-based method is combined with optical
flow. A Bayesian framework is used to estimate the layers’ appearance and a mixture model
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is used to segment the image into foreground/background regions. Other layering-based
tracking methods applied to imaging sensors can be found in [73, 127].

5.3 Body Pose State Tracking

Tracking the whole state of a pedestrian’s body – including skeleton pose, head direction,
feet and walking directions – may provide useful information about the pedestrian’s state
and intention. These silhouette tracking methods are based on an accurate shape description
of the pedestrian object. The general technique consists in finding the pedestrian region in
each frame with an object model computed from the previous frames. The advantage is that
it can cope with different types of shape, occlusion problems, etc.

Contour Matching Tracking Tracking is performed considering the contours of objects,
which are dynamically updated in successive frames. Geiger et al. [93] proposed a contour
tracking method that is based on Dynamic Programming (DP) to detect and track the contour
of multiple shapes and provide the optimal solution to the problem. Techmer [217] developed
a real-time approach to contour tracking relying on the distance transformation of contour
images and tested it on real-world images. Baumberg and Hogg [13] proposed a method that
combines dynamic filtering (Kalman filter) with an active shape model to track a walking
pedestrian in real-time. However, this tracking technique is very sensitive to the initialization,
so other solutions have been developed to overcome that issue [240].

Region-based Tracking This technique is based on the color distribution of objects. In [1],
a tracking algorithm is proposed based on multiple fragments of object images, creating a
histogram of the current frame that is compared to the histogram of the patches. Their
method is able to handle occlusion and pose changes in an efficient manner. Other methods
have employed depth, probabilistic occupancy maps and gait features to estimate a region’s
features, but in some cases (e.g. depth features) this requires the computation of multiple
views of the same scene. Meyer and Bouthemy [146] developed a method to track objects
over a sequence of images using a recursive algorithm based on image regions information,
such as their position, shape and motion model.

Shape Matching Tracking Shape matching tries to match silhouettes found in two con-
secutive frames. Performed with Hough transform, it can handle occlusion problems. For
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instance, in [51], a silhouette-based model is used to identify people from their body shape
and gait.

Skeleton Tracking for Body Language and Gesture Recognition Skeleton tracking,
based on tracking human body parts, is a popular technique [92, 238, 196, 153]. Schwarz et
al. [199] presented a full-body tracker using depth data from a Kinect sensor. 3D data is
represented by a graph structure which can deal with variations in pose and illumination. A
skeleton is then fitted to the 3D data by constrained inverse kinematics and geodesic distances
between body parts. Sinthanayothin et al. [205] reviewed skeleton tracking methods using
Kinect sensors. Make Human Community1 is an open-source project building parametric
models of humans based on realistic skeleton structures, mainly targeted at video games
users, but also used as a generative machine vision and tracking model for 3D sensor data.

5.4 Multiple Pedestrian Tracking

Multiple pedestrian tracking (a form of MTT, Multi-Target Tracking) names the task of
(rather than specific algorithm for) tracking the poses of several pedestrians at the same
time. The pedestrians may be close, overlapping, or obstructing one another, and they may
be indistinguishable from one another other than by their pose. This is required for AV
interactions with multiple pedestrians, ranging from two well-separated pedestrians, to small
groups of pedestrians (often crossing roads together) and to dense crowds. MTT creates a
data association problem: how to know which pedestrian detection belongs to which track?
A probabilistic MTT model would maintain beliefs at each time step about the state of
every track and consider every possible association of detections to tracks; then, it would
perform inference accordingly. However, the number of associations grows exponentially with
the number of pedestrians, so this approach is unlikely to work in very crowded scenarios.
Standard approximations then include making hard ‘winner-take-all’ assignments at each
time step; maintaining search trees of recent possible assignments; and pruning association
hypotheses. There are many possible variations on these approximations, all making use of
basic individual-pedestrian trackers as components.

Leal-Taixé et al. [129] presented a benchmark for Multiple Object Tracking that was
launched in 2014 and called MOTchallenge. This benchmark provides a framework for eval-
uating the performance of state-of-the-art MTT algorithms. About 50 methods have been

1http://www.makehumancommunity.org/
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Figure 2.8: MTT data association and advanced techniques.

tested up to now on this benchmark. However, [129] does not describe these algorithms,
while Fan et al. [78] only presents a survey on visual methods. A previous review on multiple
object tracking was proposed in [142]. The remainder of this section will therefore extends
their work for multiple person tracking and try to give an overview of the main methods,
challenges and future directions of MTT techniques, which intelligent transportation systems
heavily rely upon. Figure 2.8 summarizes the techniques described in this section.

5.4.1 Categories of MTT methods

The following paragraphs will develop the different categories of multi-target tracking meth-
ods that are defined according to their initialization method used, the processing method, or
the tracking output.

Initialization Method The first category is characterised by the detection technique used
before tracking. The most commonly used method is Detection-Based Tracking (DBT) where
a program is trained in advance to detect the target object in the input data (e.g. images)
[111]. This technique can deal with a variable number of target objects, but it cannot track
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unknown objects that were not part of the training. The other initialization method is
Detection-Free Tracking (DFT), which requires manual initialization, i.e., an operator labels
manually the target objects. In this case, the object detection is error-free but the tracking
can usually only deal with a fixed number of target objects. Neiswanger et al. [157] proposed
a method to track multiple people in video sequences without any pre-defined person detector.
A Dirichlet process is used to find the clusters in the images and then a Sequential Monte
Carlo (SMC) method with local Gibbs iterations and a Particle Markov Chain Monte Carlo
(PMCMC) are used to infer the posterior of targets. Lin et al. [135] developed a detection-free
multiple target tracking method which relies on video bundle representation and a spatio-
temporal graphical model to infer the trajectories of people.

Processing Model This second category refers to the information processing mode: online
or offline tracking. Online tracking [120] is a sequential tracking, which relies on up-to-date
information. It is a causal method where only past and current observations are used. Off-
line tracking [118] instead uses information both from past and future observations, therefore
it is not causal. In order to estimate the output, offline tracking needs to evaluate all the
observations from all the frames, which requires a high computation cost. The manual assign-
ment guarantees a tracking process free of false detections, but is not suitable for real-time
applications. Both online and offline tracking methods are proposed in [242].

Tracking Output MTT methods can be grouped according to output. Output results are
fixed for MTT methods relying on deterministic optimization, i.e., there is no randomness
when these methods are run many different times, whereas for probabilistic optimization
methods, output may vary for several trials cf. section 5.4.3.

5.4.2 Challenges of MTT Approaches

There are multiple challenges with the tracking of multiple objects. Here we summarise the
most important ones.

Similarity Measurement The first problem is how to measure the similarity between
objects in different frames. Different models have been proposed to deal with the similarity
measurement between objects. The most commonly-used technique in visual tracking relies
on the object’s appearance, i.e., its visual features. There are local features, which can be
obtained by the KLT algorithm or optical flow (if we treat each pixel as the finest local range)
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to get information about object motion patterns [202]. Region features are extracted from
an image and represented by a bounding box. Three main types of region features exist:
zero-order, first-order and up-to-second-order type. The zero-order type represents region
features as color histogram or raw pixel templates. Although color is a common similarity
measure, the problem is that it does not take into account the spatial layout of the object
region. A first-order type uses gradient-based representations or level-set formulation to deal
with region features [47]. Gradient-based representation is a robust technique because it
describes well the shape of the object and it is less dependent to illumination conditions, but
it cannot handle occlusion problems. An up-to-second-order type computes region covariance
matrices to model the observed features [172]. This is a robust strategy but it requires a high
computation capability.

Track Identification The second problem consists in recovering the identity of objects
from the similarity measurement across frames. Different strategies compute the similarity
between objects. A survey on similarity measures for probability density functions is provided
in [249]. In case of a single cue, a distance measure is computed from two color histograms
and then transformed into similarity using the exponential function or an affinity measure
such as the Normalized Cross Correlation (NCC). When multiple cues are available, there
are several strategies used to fuse the information [26]. Boosting, for example, consists in
selecting the most representative features from a large set of proposed features using a ma-
chine learning algorithm such as AdaBoost [236]. Concatenation uses features from different
cues and concatenates them for computation. Summation takes affinity values from different
features and adds a weight to each value. Product strategy assumes independence between
affinity values and computes their weighted product. Cascading uses diverse visual repres-
entations and tries to determine the finest model appearance [224]. To improve tracking
prediction, exclusion models can be used to prevent physical collisions, assuming that two
distinct pedestrians cannot be at the same place at the same time. Two types of constraints
can be applied to the trajectory hypotheses: detection-level exclusion and trajectory-level
exclusion [142]. Detection-level exclusion assumes that two detections in a frame cannot be
assigned to the same target. Trajectory-level exclusion means that two trajectories cannot
be too close to each other. In order to avoid that, a penalty is assigned to two hypotheses
that are too close and which have different trajectories, to suppress one of them.

46



5 Pedestrian Tracking Models

Occlusion The third problem is how to handle occlusions of tracking targets. Three major
strategies are employed to face this challenge. Part-to-whole divides the object into sev-
eral parts and then computes an affinity for each part. When an occlusion occurs, only
the unoccluded parts are taken into account for estimation [210, 237]. In hypothesize-and-
test, detection hypotheses are generated for two objects with different levels of occlusion,
which are then tested for example using MAP or a multi-person detector [213]. The buffer-
and-recover technique keeps the states of objects over several frames, before and during an
occlusion. When it ends, the states of objects are recovered using the observations on the
frame buffer [189].

5.4.3 Multi-Tracks and Data Association Methods

Probabilistic or deterministic optimization are the common methods to deal with multiple
tracks and data association problems. Data association is about the uncertainty related
to measurements, it aims at associating observed measurements with current known tracks
or generate new tracks. Deterministic optimization methods are usually suitable for offline
tracking, as they require observations from several or all the frames in advance [142], whereas
probabilistic methods are commonly used for online or real-time tracking. Bar-Shalom and
Li [10] presented several data association algorithms, such as Nearest Neighbors (NN), Multi-
Hypothesis Tracking (MHT), Joint Probabilistic Data Association Filter (JPDAF), or Prob-
ability Hypothesis Density (PHD), and evaluated their performances.

Global Nearest Neighbour (GNN) GNN [22] is one of the simplest methods for data
association. At every new time step, it ‘hardly’ assigns each current observation to a single
best object without revising the past. In [124], GNN is described as a 5-step algorithm: (1)
receive data for each scan; (2) each track is first defined as a cluster and if common obser-
vations are found for two tracks, they are merged into a ‘super cluster’; (3) observations are
assigned to each cluster using Munkres algorithm [126]; (4) tracks’ states are updated using
some estimation technique such as Kalman filter; (5) observations which are not associated
to any existing tracks are used to create new tracks. The work in [8] developed a multiple
person tracker where GNN is used for data association with a new distance function and a
Kalman filter for state estimation. The proposed method is suitable for occlusion issues.

Multiple Hypothesis Tracking (MHT) This filter, originally proposed by Reid [180],
is an iterative algorithm which can handle multiple tracking targets, with occlusions, and
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give optimal solutions. It makes predictions on each hypothesis for the succeeding frame.
Each hypothesis represented a group of mutually separate tracks [219]. The aim of MHT
is to overcome the wrong data association problem by representing the posterior belief with
a mixture of Gaussians, where each Gaussian component is considered to be a track and
relies on a unique data association decision. MHT is a more complex approach than GNN: it
propagates assignment probabilities over time as a tree of the future observations in order to
resolve past ambiguities. Luber et al. [141] proposed a model that uses social force model as a
motion model for MHT. Motivations, principles and implementations of MHT are presented
in [21]. MHT is generally considered to be too slow and memory-expensive for multi-target
tracking methods as pruning and priming have to be applied in order to keep the size of the
tree manageable [121]. Amditis et al. [4] proposed examples of MHT implementation for
MTT using laser scanner data.

Joint Probabilistic Data Association Filter (JPDAF) This method has been pro-
posed by [87]. It generates multiple tracks-to-measurement hypotheses and calculates the
hypotheses probabilities. Then, it gives hard, unrevisable assignment of hypotheses that are
merged to each track at each time step. This is more complex than GNN because the latter
is greedy and just assigns each observation individually to its nearest object, while JPDAF
allows some entanglement over space. In contrast, MHT filter allows some entanglement over
time [4], considering all the joint data-object assignments and picking the best. JPDAF runs
faster than MHT [255], but it requires a fixed number of targets. Chen et al. [42] proposed
the use of a JPDAF to compute hidden Markov models transition probabilities for a contour-
based human tracking method performing in real-time. Liu et al. [139] proposed a person
tracking method combining JPDAF and multi-sensor fusion. [106] implemented a tracking
method based on JPDAF and capable of tracking about 400 persons in real-time. Rezatofighi
et al. [183] presented a JPDAF-based tracker for challenging conditions, such as observations
from fluorescence microscopy sequences or surveillance cameras.

Probabilistic Hypothesis Density (PHD) This filter was introduced by [49]. It can
track a variable number of tracks, estimating their number and their locations at each time
step. There are different types of PHD filters, such as the Sequential Monte Carlo PHD
filter (SMC-PHD) [187], the Gaussian Mixture PHD filter (GM-PHD) [244] and the Gaus-
sian Inverse Wishart PHD filter (GIW-PHD) [99]. Zhang et al. [246] used a GMM-PHD
(Gaussian Mixture Measurement PHD) tracker to tackle problems with bearing measure-

48



5 Pedestrian Tracking Models

ments. Khazaei et al. [119] developed a PHD filter in distributed camera network where each
camera fuses its track estimates with its neighbors. Feng et al. [81] proposed a variational
Bayesian PHD filter with deep learning update to track multiple persons. In [57], a PHD
filter is used to track in real-time multiple people in a crowded environment. Yoon et al. [241]
used hybrid (i.e. local and global) observations in a PHD filter, where the filter observations
are combined with local observations generated by on-line trained detectors. This method
allows to handle missed detections and it assigns an identity to each person.

Markov Chain Monte Carlo Data Association (MCMCDA) Introduced first by [168],
this filter is an approximation of the Bayesian filter, derived from MCMC, which draws a
set of samples and builds Markov chains over the target state space. A sampler moves from
its current state to the next following the proposal distribution. The new state is accepted
with an acceptance probability, otherwise the sampler stays at its current state. Oh et al.
[159, 158] proposed an MCMCDA algorithm known as Metropolis-Hastings, where single-scan
and multi-scan MCMCDA algorithms are used for known and unknown number of targets,
respectively. A bipartite graph is used to represent possible associations between observa-
tions and targets. Their simulation results show a better performance than MHT algorithms
and their method has been tested on tracking people from video sequences. Yu et al. [243]
proposed a data-driven MCMC (DD-MCMC) approach for sampling and incorporating a
person’s motion and appearance information, using a joint probability model. Their method
was tested in simulations and on real videos.

Bipartite Graph Matching This uses two sets of graph nodes representing existing tra-
jectories and new detections in online tracking, or two sets of tracklets (components of tracks)
in offline tracking. The weights of nodes model affinities between trajectories and detections.
The Bipartite assignment algorithm or optimal Hungarian algorithm is used to find matching
nodes in the two sets. A review on graph matching is presented in [53]. Chen et al. [109]
used a dynamical graph matching method to track multiple people in order to dynamically
change the graph nodes with the tracks movements.

Dynamic Programming This method solves the data association problem by linking
several detections over time. Pirsiavash et al. [170] used a greedy algorithm based on dynamic
programming to find the global solution in a network flow. Another method is presented
in [18] which can follow up to six people over several frames.
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Min-Cost Max-Flow Network Flow This is a popular method, which models the net-
work flow as a directed graph. A trajectory is represented by a start node and an end node
(sink), and it corresponds to one flow path in the graph. The global optimal solution is
obtained with the push-relabel algorithm. Zhang et al. [245] used a min-cost flow algorithm
combined with a recursive occlusion model to deal with occluded people. Their method does
not require pruning. Chari et al. [38] proposed a new approach to the min-cost max-flow
network flow optimization using pair-wise costs, which can deal with occluded people.

Conditional Random Field (CRF) A graph G = (V,E) is defined as a set of nodes
V and a set of edges E. Nodes represent observations and tracklets. A label is used to
predict which track observations are linked to. Sutton and McCallum [211] presented a
CRF tutorial. Taycher et al. [216] proposed a person tracking method learning from data,
based on a CRF state-space estimation and a grid-filter with real-time capabilities. Milan
et al. [148] developed a CRF-based MTT, detecting people using a HOG-SVM detector, and
defining two unary potentials for detection and superpixel nodes. Milan et al. [147] proposed
a CRF-based multiple person tracker using discrete-continuous energy minimization, whose
goal is to assign a unique trajectory to each detection.

Maximum-Weight Independent Set (MWIS) The MWIS graph is defined as G =
(V,E,w). As in the CRF, the nodes V represent the pairs of tracklets in successive frames,
which are given a weight w indicating the affinity of the tracklet pair. If two tracklets share
the same detection, then their edges E are connected together. Brendel et al. [25] proposed a
multi-target tracker based on MWIS data association algorithm. Their approach is as follows:
(1) detection of multiple targets in all frames using different object detectors; (2) detections
are considered as distinct tracks, with the assumption that one detection can only be one
track; (3) a graph is built to match tracks over two consecutive frames; (4) an MWIS algorithm
is used to perform the data association with guaranteed optimal solution; (5) statistical
and contextual properties of objects are learnt online for their similarity measurement using
Mahalanobis distances; steps (2) to (5) are repeated over the frames to handle long-term
occlusions by merging or splitting tracks. In [105], a multi-person tracker is used with data
association modelled as a Connected Component Model (CCM) based on MWIS. A divide-
and-conquer strategy is used to solve the Multi-Dimensional Assignment (MDA) problem.
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5.4.4 Advanced MTT Techniques

Here Advanced MTT refers to multi-target tracking that is performed at a higher-level, sim-
ultaneously with other tasks.

MTT with Video Adaptation MTT approaches rely on an object detector that is trained
offline, so its performance can be totally different from a video to another. A possible solu-
tion is to create a generic detector adapted for a specific video by tuning some parameters.
Previous works for multiple people tracking include [91, 39].

MTT with Deep Learning Deep learning has proven to be a high performance method
for classification, detection and many computer visions tasks. Applied to MTT, deep learning
could provide a stronger observation model which could increase the tracking accuracy [242,
131]. In [161], Ondruska et al. introduced deep tracking, an end-to-end human tracking
approach, based on recurrent neural network, using unsupervised learning on simulated data
without dealing with the data association problem. In [66], Dequaire et al. used a similar
method for static and dynamic person tracking in real-world environments. In [149], Milan et
al. proposed a complete online multiple people tracking method based on recurrent neural
networks.

MTT under Multiple Cameras Also called Multi-Target Multi-Camera (MTMC), this
type of systems can be used to improve large tracking problems. Wang et al. [228] presented
a survey on the challenges of MTMC. One problem would be overlapping cameras, in which
case it is necessary to find a good way to fuse multiple information. But if the camera angles
do not overlap, then the data association problem becomes an identification problem. In [184],
Ristani et al. proposed different performance measures to test MTMC methods. In [185],
they used neural networks to learn features from MTMC systems and for re-identification.
In [140], Generalized Maximum Multi-Clique optimization – a graph-based method – is used
for the MTMC problem. Munaro et al. [155] developed an open-source software, called
OpenPTrack, for multi-camera calibration and people tracking using RGB-D data.

Multiple 3D Object Tracking This method could provide better position accuracy, size
estimation and occlusion handling. The major problem for this technique is the camera
calibration. Park et al. [167] applied 3D object tracking from a monocular camera for
augmented reality applications. Some other works on 3D visual tracking include [59, 166, 194],
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which used a single camera with a multi-Bernoulli mixture tracking filter. Some works with
3D lidar sensors include [114, 207, 234], which proposed online classification of humans for
3D lidar tracking. In [175], both camera and lidar data are used to improve people tracking.

MTT with Scene Understanding Scene understanding can provide contextual informa-
tion and scene structure for the tracking algorithm, especially in crowded scenes. Leal-Taixé
et al. [128] developed a model that decomposes an image and extracts features from the
observed scene called ‘interaction feature strings’. These features are then used in a Random
Forest framework to track human targets [64].

MTT with Other Computer Vision Tasks Information from image segmentation or
human pose estimation could not only improve the performance of multiple-people tracking
but also the computation of the tracking algorithm. For example, in [148], tracking is done
with image segmentation and in [47] people are tracked for group activity recognition.

5.5 Discussion

Single pedestrian tracking is now a fully mature area with widely available open-source and
commercial implementations. Body pose tracking has made strong recent progress, likely to
soon bring it to maturity, through the use of larger data sets and computer power.

Tracking multiple pedestrians requires additional algorithms which were major research
areas until recently, but have largely matured in the last few years with methods such as
MHT becoming standard. Tracking multiple pedestrians in the presence of occlusion by one
another or by other objects remains a serious research problem, which requires the use of other
data or prior information to compensate for the lack of purely visual data. We suggest that
the higher-level models from psychology and sociology discussed in the Part II of this review
[29] should be used to provide such priors. Traditionally, tracking was a clearly separate task
from both lower (detection) and higher (behaviour modelling) layers of pedestrian modelling,
but a current trend is to merge it with nearby layers through neural network and probabilistic
methods in this fashion to improve performance.

Practical implementation of tracking algorithms may be found in the Bayes Tracking lib-
rary1 which provides open-source implementation of EKF, UKF and SIR Particle Filters with
NN and JPDA data association algorithms. In addition, a detection and tracking pipeline2

1https://github.com/LCAS/bayestracking
2https://github.com/sbreuers/detta
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contains an implementation of MHT. Choi et al. [46] proposed a fast tracker TRACA1 with
a deep feature compression approach for single target tracking.

In terms of computational efficiency, Bellotto and Hu [14] have shown that Kalman-based
people tracking is much faster than particle-based, and in particular that UKF was faster
and still almost as reliable as particle filter. Linder et al. [136] proposed a comparison
(computation speed and other metrics) of various people tracking methods, including NN
trackers, MHT and others. A common heuristic for some mobile robots is to run at 10Hz or
more, i.e. if the robot moves at 1m/s, a people tracker running at 10Hz will estimate the
position of humans every 10cm, which is usually considered safe. But with cars moving much
faster such as 10m/s (36km/h), the computational requirements would be greater, such as
operating 100Hz to obtain the same 10cm accuracy.

6 Conclusions

Autonomous vehicles must interact with pedestrians in order to drive safely and to make
progress. It is not enough to simply stop whenever a pedestrian is in the way as this leads to
the freezing robot problem and to the vehicle making no progress. Rather, AVs must develop
similar interaction methods as used by human drivers, which include understanding the be-
haviour and predicting the future behaviour of pedestrians, predicting how pedestrians will
react to the AVs movements, and choosing those motions to efficiently control the interaction.

This Part I review has surveyed the state of the art in the lower levels of machine percep-
tion and intelligence needed to enable such interaction control, namely: sensing, detection,
recognition, and tracking of pedestrians. It has found that the level of maturity of these
fields is high at the lowest levels, but fades into current research areas at the higher-levels.
Sensing technology has progressed to maturity over the last decade so that lidars and ste-
reo cameras are now reliable and cheap enough for use in research and even by hobbyist
systems. Similarly, GPUs have fallen in price to enable both stereo camera processing and
deep learning recognition to be run in these systems. Deep learning recognition has largely
replaced classical feature-based methods for detection. Open-source software is mature and
freely available for these tasks. Beyond detection are areas with successful, open-source, par-
tial implementations but which require further research to become fully mature. Recognition
of body pose and head direction are almost mature, including via deep learning methods.

1https://github.com/jongwon20000/TRACA
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But recognition of higher-level states, such as gestures used for explicit signalling, body lan-
guage used as implicit signalling, actions as sequences of poses, and recognition of underlying
emotional state, remain research areas.

Tracking is mature for single pedestrians, but remains challenging for multiple pedestrians
in the presence of occlusion. Algorithms to solve this task are known but require the use of
extensive prior knowledge to predict behaviour in the absence of sensory information, which is
not yet fully available. This includes information from recognition of poses, gestures, actions,
and emotions, but also feedback information from very high-level models of behaviour and
psychology which will be studied in Part II of this review [29].
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Chapter 3

Pedestrian Models for Autonomous Driving Part II: High-Level Models
of Human Behavior

Abstract

Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases
such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navig-
ating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are
active agents with complex, interactive motions. Planning AV actions in the presence of ped-
estrians thus requires modelling of their probable future behaviour as well as detecting and
tracking them. This narrative review article is Part II of a pair, together surveying the cur-
rent technology stack involved in this process, organising recent research into a hierarchical
taxonomy ranging from low-level image detection to high-level psychological models, from
the perspective of an AV designer. This self-contained Part II covers the higher levels of this
stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’
likely destinations and paths, to game-theoretic models of interactions between pedestrians
and autonomous vehicles. This survey clearly shows that, although there are good models
for optimal walking behaviour, high-level psychological and social modelling of pedestrian
behaviour still remains an open research question that requires many conceptual issues to
be clarified. Early work has been done on descriptive and qualitative models of behaviour,
but much work is still needed to translate them into quantitative algorithms for practical AV
control.

1 Introduction

To operate successfully in the presence of pedestrians, autonomous vehicles require input from
a huge variety of models that have to work seamlessly together. These models range from
simple visual models for detection of pedestrians, to predicting their future movements using
psychological and sociological methods. Part I of this two-part survey [35] covered models
for sensing, detection, recognition, and tracking of pedestrians. Part II here reviews models
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Figure 3.1: Main structure of the review.

for pedestrian trajectory prediction, interaction of pedestrians, and behavioral modelling of
pedestrians, and also experimental resources to validate all the types of models. Interacting
with pedestrians is a particular type of social intelligence. Autonomous vehicles will need
to utilize many different levels of models of pedestrians, each addressing different aspects of
perception and action. Each of these models can be based on empirical science results or
obtained via machine learning. In contrast to the models of Part I, Part II requires models
from higher levels of the technology stack, as researched by psychologists and taught in ad-
vanced driver training programmes. For instance, drivers often try to infer the personality
of other humans, predict their likely behaviours, and interact with them to communicate
mutual intentions [102]. Between the high level surveyed in this Part II and the low levels
of Part I, researchers infer psychological information from perceptual information. As an ex-
ample, researchers build systems to recognize the body language, gestures, and demographics
information of pedestrians to better predict their likely goals and behaviours. Despite the
importance of bridging the research between the higher and lower levels, their connection is
still thin, both conceptually and in terms of actual implementations.

While prediction of likely future pedestrian trajectories is becoming increasingly well
understood, models for actively controlling pedestrian interactions – including game-theoretic
models – are still in their infancy. Active control here means that the vehicle’s own future
actions are taken into account in predicting how the pedestrian will respond, and vice versa.
One reason is that sufficient data to rigorously study interaction between pedestrians has only
recently become available as presented in Sec. 5 on experimental resources. Another reason is
that one first has to be able to reliably sense, detect, recognize, and track pedestrians in order
to gather enough data for modelling interaction and game-theoretic models. A third reason is
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Table 3.1: Proposed mapping from SAE levels to pedestrian model requirements.

SAE

LEVEL

DESCRIPTION MODEL REQUIREMENTS SECTION

0 No Automation. Automated system issues
warnings and may momentarily intervene,
but has no sustained vehicle control.

Sensing Part I Sec. 2

1 Hands on. The driver and the automated
system share control of the vehicle. For
example, adaptive cruise control (ACC),
where the driver controls steering and the
automated system controls speed. The
driver must be ready to resume full con-
trol when needed.

+Detection Part I Sec. 3

2 Hands off. The automated system takes
full control of the vehicle (steering and
speed). The driver must monitor and be
prepared to intervene immediately. Occa-
sional contact between hand and wheel is
often mandatory to confirm that the driver
is ready to intervene.

+Recognition
+Tracking

Part I Sec. 4
Part I Sec. 5

3 Eyes off. Driver can safely turn atten-
tion away from the driving tasks, e.g. use
a phone or watch a movie. Vehicle will
handle situations that call for an immedi-
ate response, like emergency braking. The
driver must still be prepared to intervene
within some limited time.

+Unobstructed Walking Models, Known
Goals
+Behaviour Prediction, Known Goals
+Behaviour Prediction, Unknown Goals

Sec. 2.1
Sec. 2.2
Sec. 2.3

4 Mind off. No driver attention is re-
quired for safety, except in limited spatial
areas (geofenced) or under special circum-
stances, like traffic jams.Outside of these
areas or circumstances, the vehicle must
be able to safely abort or transfer control
to the human.

+Event/Activity Models
+Effects of Pedestrian Class on Traject-
ory
+Pedestrian Interaction Models
+Game Theoretic and Signalling Models

Sec. 2.4
Sec. 2.5
Sec. 3
Sec. 4

5 Full automation. No human intervention
is required at all, fully automated driving.

+Extreme Robustness and Reliability

Note: ‘+X’ means that ‘X’ is required in addition to the requirements of the previous level.
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Figure 3.2: Structure of the paper.

that interaction and game-theoretic models are only relevant in crowded environments, while
many situations do not require much interaction. However, crowded environments are those
that are typically most relevant for autonomous driving. Fig. 3.1 shows the review structure.

To assess the maturity of the methods presented, the level of autonomy is used, as defined
by the Society of Automotive Engineers (SAE) – the same measure has already been used in
Part I [35]. For the convenience of the reader, the five SAE levels are briefly presented, ranging
from simple driver assistance tools to full self-driving [183]. Requirements for pedestrian
modelling increase with each level, with lower levels typically requiring lower and more mature
levels of pedestrian models, such as detection and tracking, while higher levels require models
for psychological and social understanding to fully interact with pedestrians in a human-like
way [30]. Table 3.1 gives an overview of SAE levels and requirements mappings.

While many papers propose pedestrian models at various levels, no unifying theory has
yet been produced which would make it possible to easily transfer results across all levels
from detection to prediction. This review uncovers bottlenecks in transferring results to fa-
cilitate closing existing research gaps. Also, many existing studies only consider results from
empirical science or those obtained via machine learning. This survey provides an overview
considering both possibilities. While machine learning results work particularly well for de-
tection and recognition, they are not yet performing so well for prediction. Some reasons
are that prediction is a more high-dimensional problem, with dimensions including goals,
obstacles, various state variables of pedestrians, and road geometry. A further reason is that
less labelled data is available for training prediction models. A promising future direction
is to combine empirical science results with machine learning to better safeguard techniques
using machine learning and to avoid over-fitting.

While similar concepts apply to modelling human drivers and their vehicles for interac-
tions with AVs, this article presents a review of the state of the art specifically in modelling
human pedestrians for social decision-making. In some cases it goes beyond modelling aspects
to also cover more conceptual aspects or empirical psychological findings, when the studies
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in question are judged to have very direct applicability to mathematical models. Results
from human driving cannot be directly translated to pedestrians due to the variability in
locomotion, the differences in shape, the changes in postures and the less-structured envir-
onment.

Pedestrians are defined as humans moving on and near public highways including roads
and pedestrianised areas, who walk using their own locomotive power. This excludes, for
example, humans moving on cycles, wheelchairs and other mobility devices, skates and skate-
boards, or those transported by other humans. This review does not cover interactions of
traffic participants without pedestrians: a survey on trajectory prediction of on-road vehicles
is provided in [123] and a survey on vision-based trajectory learning is provided in [146].

This Part II is organized as shown in Fig. 3.2. In Sec. 2, methods for predicting the
movements of pedestrians are reviewed. In particular, we consider models and methods for
unstructured environments, for prediction around obstacles, to estimate destinations, and for
the prediction of events such as crossing the road. These methods are enhanced in Sec. 3 for
groups of pedestrians interacting with each other. This section considers the complete variety
of researched models from macroscopic models only considering flow of people to microscopic
models that consider individual pedestrians. In many situations, interaction models do not
require game theory, because pedestrians often have different goals. However, there are also
many situations, where pedestrians have competing goals, e.g., when several pedestrians have
to pass a narrow passage. In such situations, the game theoretic models presented in Sec. 4
can be very useful. Finally, Sec. 5 surveys available resources: datasets and simulators, both
for pedestrians and vehicles.

2 Behaviour Models without Interaction

The tracking models reviewed in Part I are kinematic in that they assume that pedestrians
move in physical and/or pose space in motion described by kinematic models. This is a very
basic assumption – human drivers typically have much more complex understandings and
hence predictions of pedestrian behavior which they use to drive safely in their presence [102].
These range from slightly more advanced kinematic understandings such as ‘pedestrians tend
to walk in straight lines’ to models of how they are likely to interact with static objects in
their environment, and predictions of pedestrians’ likely destinations from reading the street
scene.

This section reviews such models starting from simple unobstructed path models to uncer-
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Figure 3.3: Pedestrian behaviour prediction and interaction models.

tain destination models and more advanced event/activity models. These models do not yet
consider interaction with other agents. Figure 3.3 summarizes the classes of models presented
in this section. A previous review was proposed by Ridel et al. [172], which mainly considered
pedestrian crossing intent and offered a restricted view of the different models developed for
trajectory prediction.

2.1 Unobstructed Walking Models with Known Goals

Given a start location and orientation, and a goal location, humans do not typically turn
towards the goal on the spot (which would waste time) and then walk in a straight line,
but rather set off walking in their initial heading and adjust their orientation gradually as
they walk, resulting in smooth, curved trajectories from origin to destination [72]. Models
from optimal control theory as also used in robotics [50] define cost functions for travel time,
speed, and accelerations, to reproduce these characteristic curved trajectories. The model
in [72] instead achieves curved trajectories by modelling the rate of turning of the pedestrian
as a function of the visual angle and distance to the goal. A simple kinematic model consists
in considering human locomotion as a nonholonomic motion [161], using the unicycle model
(3.1) where the pedestrian walking trajectory is represented by the trajectory of their center

84
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of gravity, 2D coordinates (x, y) and by the angle θ,

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2

(3.1)

where u1 is the forward velocity and u2 is the angular velocity. Assuming known origin and
destination with inverse optimal control, one can reliably predict human walking paths using
this model [9] [155].

2.2 Behaviour Prediction with Known Goals

Here, the likely behaviour of a pedestrian in a static environment is considered, given a map.
Pedestrians are likely to route around obstacles, and to stop at the edges of roads before
crossing. This section does not consider social effects of other agents – this is presented later
in Sec. 3.

2.2.1 Dynamic Graphical Models

Dynamic Graphical Models (DGM) are Graphical Models of a particular topology, containing
some Markovian sequence of variables over time. DGMs include simple Markov and Hidden
Markov Models and also more complex models. The method in [145] used tracking in a
DGM based on particle filter approximation to infer beliefs over future pedestrian trajectories
and combined this with a GNSS (Global Navigation Satellite System) module that provides
information about the hazardous areas and people.

2.2.2 Gaussian Process Methods

Habibi et al. [88] proposed a context-based approach to pedestrian trajectory prediction using
Gaussian Processes [166]. This model incorporates context features such as the pedestrian’s
distance to the traffic light, the distance to the curbside, and the curbside orientation in
the transition learning phase to improve the prediction. A context-based augmented semi
non-negative sparse coding (CASNSC) algorithm is used to predict pedestrian trajectories.
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2.2.3 Deep Learning Methods

Bock et al. [24] developed a Recurrent Neural Network (LSTM) model to learn pedestrian
behaviour patterns at intelligent intersections using camera data from the onboard vehicle
and the infrastructure. The model can predict trajectories for a horizon of 5s.

2.2.4 Other Methods

Kruse et al. [121] was one of the first attempts to statistically infer human motion patterns
from data and incorporate them in a robot motion planner for obstacle avoidance. Garzón
et al. [77] presented a pedestrian trajectory prediction model based on two path planning
algorithms that require a set of possible goals, a map and the initial position. It then
computes similarities between the obtained and observed trajectories into probabilities. This
model is run along with a pedestrian detector and tracker. Tamura et al. [198] proposed a
pedestrian behaviour model that is based on social forces and takes into account the intention
of the pedestrian in the trajectory prediction by defining a set of subgoals. In [171] the
uncertain goals are used as latent variables to guide the motion prediction of pedestrians.
Their positions are predicted by combining forward propagation of a physical model with
local a priori information (e.g., obstacles and different road types) from the start position,
and by planning the trajectory from a goal position. The distribution over the destinations
is modeled with a particle filter.

In [209], Vasishta et al. presented a model based on the principle of natural vision that
incorporates contextual information extracted from the environment to the pedestrian beha-
vior and it especially tries to predict hazardous behavior such as crossing in non authorized
areas. The aforementioned model in [72] considers goals and obstacles as distance-dependent
attractors and repellers in heading angle space. The contributions from the goal and obstacles
are linearly combined, yielding a momentary rate of acceleration of heading, which results in
human-like trajectories for simultaneous goal-seeking and obstacle avoidance. In [57], Dias
et al. developed a model simulating pedestrian behaviour around corners, using minimum
jerk theory and one-thirds power law concept. Their model uses Monte Carlo simulation to
generate pedestrian trajectories with turning maneuvers, which were comparable to empirical
trajectories.
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2.3 Behaviour Prediction with Unknown Goals

Many of the above models assume known probable destinations for pedestrians, which enable
routing to act not just around local obstacles, but to predict entire long-term trajectories, such
as for pedestrians intending to cross the road. However, in reality a pedestrian’s destination
is rarely given.

2.3.1 Dynamic Graphical Models

Ziebart et al. [233] presented a pedestrian trajectory prediction model that takes into account
hindrance due to robot motion, as is required in off-carriageway interactions such as last mile
AVs in pedestrianized areas. A maximum entropy inverse optimal control technique, intro-
duced in [232], is used and is equivalent to a soft-maximum version of Markov decision process
(MDP) that accounts for decision uncertainty into the trajectories distribution. The cost func-
tion is a linear combination of the features (e.g obstacles) in the environment. People’s motion
can be modeled by an MDP and by choosing a certain path, there is an immediate reward.
The model is conditioned on a known destination location but the model reasons about all
possible destinations and the real destination is not known at the prediction time. The des-
tination is inferred in a Bayesian way, by computing the prior distributions over destinations
using previous observed trajectories. When there is no previous data, features (door, chair
etc.) in the environment are used to model the destination. In [113], Kitani et al. extended
[232, 233] by incorporating visual features to forecast future activities and destinations. The
observations provided by the vision system (e.g. tracking algorithm) are assumed to be noisy
and uncertain therefore they used a hidden variable Markov decision process (hMDP) where
the agent knows its own states, action and reward but observes only noisy measurements.
Negative Log-Loss (NLL) is used as a probabilistic metric and Modified Hausdorff Distance
(MHD) as a physical measure of the distance between two trajectories. Vasquez [210] extends
the work of Ziebart [233] and Kitani [113] while reducing computational costs.

Bennewitz et al. [18, 17] proposed a learning method for human motion recognition
using the expectation maximization (EM) and a hidden Markov model (HMM) for clustering
and predicting human trajectories and incorporating them into a robot path planner. In
[221], Wu et al. presented a model that uses Markov chains for pedestrian motion prediction
(able to deal with non-Gaussian distribution and several constraints). A heuristic method is
proposed to automatically infer the positions of several potential goals on a generic semantic
map. It also incorporates policies to predict the pedestrian motion direction and takes into
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account other traffic participants by incorporating a collision checking approach. Borgers et
al. [29] presented a model that predicts pedestrians’ route choice based on Markov chains.
Similarly, Bai et al. [11] presented a real-time approximate POMDP (Partially Observable
Markov Decision Process) controller, DESPOT, for use in high-street type environments. The
method is intention-aware in the sense of inferring pedestrian destinations and route plans
from their observed motion over time, and accounting for the value of this information against
the value of making progress while planning a robot’s own route around them. Karasev et
al. [110] presented a long-term prediction model that incorporates environmental constraints
with the intent modeled by a policy in a MDP framework. The pedestrian state is estimated
using a Rao-Blackwellized filter and pedestrian intent by planning according to a stochastic
policy. This model assumes that pedestrians behave rationally.

2.3.2 Deep Learning Methods

Hug et al. [98] proposed a LSTM-MDL model combined with a particle filter method for
multi-modal trajectory prediction, and tested on Stanford Drone Dataset (SDD) [176]. Re-
hder et al. [170] proposed a method to infer pedestrian destinations. The trajectory prediction
is computed as a goal-oriented motion planning. The whole system is based on deep-learning
and trained via inverse reinforcement learning. A general introduction on reinforcement learn-
ing in robotics can be found in [115]. Deo et al. [56] presented a framework for multi-modal
pedestrian trajectory forecasting in structured environments. They used a convolutional
neural network to compute both the reward maps of the path states and the possible goal
states for MDPs. The derived policy information is then fed into a recurrent neural network,
combined with track history, to generate possible future trajectories. Goldhammer et al. [81]
developed a Multilayer Perceptron (MLP) neural network with polynomial least square ap-
proximation to predict pedestrian trajectories based on camera data. A long-term prediction
model using RNNs is proposed in [22].

2.3.3 Other Methods

Cosgun et al. [52] presented a person-following service robot with a task dependent motion
planner. The robot can track and predict the future trajectory of the person by maximizing
its reward at future steps while avoiding entering into the human’s personal space. Koschi
et al. [117] proposed a set-based method to predict all possible behaviours of pedestrians
using reachability analysis [5] for pedestrian occupancy. Pedestrians are described as point
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mass with a certain maximum velocity and maximum acceleration. A rule-based occupancy
is applied that does not allow a pedestrian to obstruct traffic, e.g. pedestrians are given
priority at crosswalks and their trajectory is assumed to be evasive.

2.4 Event/Activity Models

Pedestrian event models consider stereotypical sequences of behaviours of individual pedes-
trians. These may give additional information about route choice, beyond that available from
static classification of the pedestrian. For example, a commuter, or class of commuters, who
engage in similar actions every day, such as road crossing in a certain way then checking
their phone, may reveal information about their identity to enable re-identification1 which is
in turn predictive of their future destinations. These models look for features predictive of
route choice in static environments and do not consider social factors.

2.4.1 Dynamic Graphical Methods

Duckworth et al. [65] [64] developed on a mobile robot an unsupervised qualitative spatio-
temporal relations (QSR) model to learn motion patterns using a graph representation and
is able to predict people’s future behaviour. Dondrup et al. [63] presented a ROS-based
real-time human perception framework for mobile robots using laser and RGB-D data and
tracking people with a Kalman filter approach. Human trajectories are converted into QSR
(Qualitative Spatial Relations) and used for a Hidden Markov Model (HMM) to classify the
behaviour of the different people encountered [62]. In [187], Schneider and Gavrila presented
a comparative study on Bayesian filters (EKF and IMM) for short-term (<2s) pedestrian
trajectory prediction, in particular they used stereo camera images to apply these methods
to four different types of behaviour: crossing, stopping, bending in and starting.

Body heading is used above in basic path planning models, but head-turning events are
distinct from body heading, and are discrete events which occur when a pedestrian turns their
head to look around rather than to orient their body. Such an activity model is used in [116]
to enhance path prediction of pedestrians while intending to cross a street. For low-level
occupancy prediction, a dynamic Bayesian network (DFBN) is used on top of a switching
linear dynamic system (SLDS) anticipating the changes of pedestrian dynamics. As in [116],

1Identity here is distinct from “personal information” as defined by privacy laws such as the EU General
Data Protection Regulation (GDPR).
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studies [189, 190] also model head orientation by an event/activity model to enhance the
underlying prediction approach.

2.4.2 Gaussian Process Methods

Quintero et al. [162] [163] proposed a pedestrian path prediction method up to 1s ahead based
on balanced Gaussian Process dynamical models (B-GPDMs) and näıve Bayes classifiers.
GPDM is used to transform a sequence of timed feature vectors into a low dimensional latent
space and it can predict the next position based on the current one. The näıve Bayes classifiers
are used to classify pedestrian actions based on 3D joint positions.

2.4.3 Feature Selection Methods

Bonnin et al. [27] proposed a generic context-based model to predict pedestrians behavior
according to features describing their local urban environment. To learn about interactions
between autonomous vehicles and pedestrian interactions, in [33], Camara et al. collected
data from real-world pedestrian-vehicle interactions at an unsignalized intersection. The ac-
tions of pedestrians and vehicles were ordered into sequences of events comprising descriptive
features and the study revealed the most predictive features in a crossing scenario such as the
head direction, the position on the pavement, hand gestures etc. In [40], these features were
filtered over time to predict whether the pedestrian would first cross the intersection or not.
Völz et al. [213] [214] proposed a model that can predict whether or not a pedestrian will
cross the street with a set of features learnt from a database of LIDAR pedestrian trajectories
that are used as inputs for a support vector machine (SVM).

2.5 Effects of Pedestrian Class on Trajectory

The models reviewed so far consider all pedestrians to be alike, but human drivers interacting
with pedestrians may consider their attributes as members of stereotypical classes. Member-
ship of various demographic and psychological state classes may be predictive of their beha-
viour. This section first reviews findings from the psychological literature suggesting what
such classes could be usefully predictive of behaviour, if it was possible to classify them auto-
matically from autonomous vehicles. Rasouli and Tsotsos reviewed pedestrian demographics
for interactions with autonomous vehicles and argued that knowing such information could
help AVs, cf. Sec. III. 1. in [167]. Figure 3.4 presents a set of pedestrian attributes used for
behaviour modelling.
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Pedestrian Attributes

Age Gender Distraction Social Group Membership Cultural Membership Road Safety Adaptation

Figure 3.4: Pedestrian behaviour attributes.

Effects of Age and Gender Wilson et al. [219] performed a large-scale study on adult
pedestrian crossing behavior and concluded that elderly people take more time and have
more head movements during the crossing. Evans et al. [71] used the Theory of Planned
Behavior (TPB) [1] via a questionnaire to predict adolescents’ intentions during a hazardous
road-crossing scenario. Their results show that older and male adolescents had stronger
intentions to cross and that moral norms do not have any influence on crossing decisions.
Pedestrians who considered themselves as safe pedestrians were less likely to cross and the
anticipated affective reactions were important. Bernhoft and Carstensen [21] compared the
crossing preferences and behaviour of elderly pedestrians and cyclists (age 70+) to younger
people aged 40-49. It was found that elderly people have a preference for road facilities that
they consider to be safer such as pavements, pedestrian crossings, signalized intersections,
cycle paths. The differences between the two groups are said to be related to health and
physical abilities of the people rather than their differences in age and gender.

Several studies have shown that older pedestrians have a larger accident rate than younger
people [219]. Gorrini et al. [83] also found differences in adults and elderly people crossing
behaviour. The study of Oxley et al [153] showed that older pedestrians have more risky
crossing behavior in complex traffic environments than younger people. Not surprisingly,
many authors have found decreasing crossing speeds with age [10] [130], [202], compensated
for by requiring larger time gaps in traffic before commencing crossing [130]. In addition,
Avineri et al. [10] found lower crossing speeds for female than male pedestrians, and that the
fear of falling in elderly pedestrians has an effect on the number of downward head pitches
during crossing. Holland and Hill [96] used the TPB for pedestrians’ intention analysis while
crossing the road. The results showed that women perceived more risk and were less likely to
cross than men. In [95], they also studied the effect of gender on pedestrian crossing behaviour
and showed that men with a driving experience make safer crossings than non-drivers and

91



2 Behaviour Models without Interaction

that older women were found to make more unsafe crossing decisions than younger women.

Distraction Distraction of pedestrians from traffic environments would ideally be defined
via their mental state i.e., thinking about a problem unrelated to their environment; or
approximated in practice via observable proxies. While it is possible that mental distraction
might be measurable via hard-to-observe proxies such as gaze direction or high-level body
language, it may be more practical to look instead for known causes of distraction. Schwebel
et al. [191] performed a study in a semi-immersive virtual pedestrian street with college
students, finding an impact of talking on mobile phones on crossing behaviour. Walker et
al. [215] showed that male pedestrians using a personal music device were more cautious in
crossing than those who were not distracted. In [200], the effects of personal electronic device
usage on crossing behavior is studied. The results show a third of the observed pedestrians
were distracted by their mobile phone and that distracted pedestrians are more likely to have
unsafe crossing behaviour and walk much faster than undistracted pedestrians.

Social Group Membership Group membership can affect road crossing. Three strangers
in a group are less likely to assert in a crossing than three friends. In particular, group size
influences a lot crossing behavior [167]. Zeedyk et al. [226] performed a study with adult-
child pairs while crossing the road at a pedestrian crossing. They found that adults were
more likely to hold girls’ hands than boys’.

Cultural Membership In contrast to the above membership of short-term, physically
present groups, it is also possible to consider ‘cultural membership’ of a pedestrian to any
long-term, non-physically present group that may be usefully predictive of behaviour. For
example, it might be possible for a human driver or autonomous vehicle to classify pedestrians
as members of religious, sporting, or musical (sub)cultures as a probabilistic function of
features of their clothing such as shape and colour of garments or symbols displayed on them;
and that members of such groups show statistically significant differences in assertiveness,
politeness, and other road interaction behaviours (cf. [167]). In Sociology, classifications
of individuals into cultures is notoriously problematic and politicised. But for the purpose
of predicting road interactions, any classification derived from observable features may be
usefully considered if it improves predictions.
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Road Safety Adaptation Related to the possible predictiveness of cultural clothing is
the effect of road safety clothing on behaviour. Human drivers are more likely to yield
to pedestrians wearing high-visibility clothing [92], so it is also possible that knowing this
fact will make a pedestrian wearing such clothing more likely to behave assertively. This
is an example of risk compensation adaptation, a well-known effect in road safety in which
the owners of safety improvements make economic decisions whether to use them to reduce
accidents or alternatively to gain some other advantage at the cost of retaining the original
accident rates [180].

2.6 Discussion

Single pedestrian unobstructed walking path and behaviour prediction around obstacles for
known origins and destinations has well-established solutions. Their main strength lies in
their simplicity and ease of implementation but their applicability to solve real AV problems
is very limited due to the strong assumptions (e.g static obstacles, known origin-destination of
pedestrians) which are not easily verified in the real world. But when – as is usual in real-time
systems – the destinations of pedestrians are not known in advance, trajectory prediction is
harder and remains an open research area.

Uncertain destination models may use known destination models as a subcomponent and
average over them weighted by predictions about what the destination is. To predict what
a pedestrian’s destination will be, many medium and high-level sources of information may
be relevant and useful, if suitable models can be found. These models split roughly into
short-term models for prediction horizons around 1-2s and long-term models predicting for a
horizon of around 5-6s. Event-based models of activity assume that behaviour often contains
repeated stereotypical chunks of behavior, which once recognised in early stages can predict
their later stages. The major emerging long-term prediction methods rely on neural network
(‘deep learning’) methods. There is a need to verify how the data-driven methods such as [6]
can be actually applied online for real-time systems. These models can help AVs to more
accurately predict single pedestrian behaviour for shorter or longer time horizons, e.g. to
know precisely whether a pedestrian’s trajectory would interfere with the AV’s own path.
But their main challenges lie in their computational cost, which increases significantly with
the number of destination guesses, with longer time horizons and the amount of data needed
for learning pedestrian motion patterns. Moreover, deep learning models are sometimes
referred to as ‘black-box models’, in the sense that AI developers cannot fully explain some
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decisions (e.g. feature selection) made by the neural networks, rendering them potentially
problematic for investigating the causes of incidents involving AVs and for determining their
liabilities [43][85].

Single pedestrians’ destinations and behaviours may be informed by their class member-
ships, including their demographics and other visible features, such as clothing types. There
are many recent sociological studies giving evidence of these effects, but they have not yet
been translated into algorithms suitable for autonomous vehicle use, which would be a prom-
ising new research area. It is conjectured that additional information about pedestrians’
emotion states would be similarly informative (e.g. angry pedestrians more likely to assert
themselves in competitions for road space), but no studies were found in this area. Tradition-
ally, emotional state has been difficult to capture and record, so that manually annotation
of data sets are too small for machine learning to use. But as machine vision for face and
body language recognition continues to improve (cf. Part I [35] Sect. 4), they are expected to
produce big data sets which will enable machine learning to operate and inform destination
and behaviour predictions.

3 Pedestrian Interaction Models

So far, only path prediction models for single pedestrians in static environments ignoring
interactions with other pedestrians have been reviewed. This section will consider models
of interaction between pedestrians. In Social Science, pedestrian behavior models have been
studied for a long time: a survey is provided in [42] [201]. These models can be classified
in two categories, namely microscopic models and macroscopic models, as reviewed in [211].
Microscopic models model only each pedestrian individually. Macroscopic models do not
model individual pedestrians and instead model the behaviour of a single aggregate entity
such as a “crowd” or a “flow”. Papadimitriou et al. [154] presented a review on pedestrian
behavior models and a study on pedestrian and crowd dynamics was proposed by Vizzari
and Bandini in [212]. Bellomo et al. [15] reviewed mathematical models of vehicular traffic
and crowds while Duives et al. [66] surveyed pedestrian crowd simulation models. Figure 3.5
presents a summary of pedestrian microscopic and macroscopic models.
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Pedestrian Micro & Macro Models

Microscopic Models

Macroscopic Models

Proxemics

Physical Models

Cellular-based Models

Queuing Networks

Figure 3.5: Pedestrian microscopic and macroscopic models.

3.1 Microscopic Models

This section first describes pedestrian behaviour models at the microscopic level. It then
presents pedestrian interaction models using these behaviour models for two agents’ interac-
tions and group behaviour modelling.

3.1.1 Behaviour Models

Microscopic models are divided into three main groups: physical models, cellular-based mod-
els and queuing network models. Each model is generally structured by two terms: one term
that represents the attractive effects of pedestrians toward their goal and the other repulsive
effects among and between pedestrians and the obstacles [42]. Proxemics is first described in
this section.

Proxemics The Psychology theory of Proxemics [91] studies human preferences (utilities)
for having other humans in their proximity. Proxemics typically identifies four radial comfort
zones, whose radii differ between cultures, for intimate, personal, social, and public space.
These zones can be described by eight dimensions [91]:

1. postural-sex identifiers

2. sociofugal-sociopetal orientation (SFP axis)

3. kinesthetic factors

4. touch code

5. retinal combinations

6. thermal code

7. olfaction code
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8. voice loudness scale

This model has been empirically tested with participants [217]. The theory is of great
interest to pedestrian interaction models because it provides a possibly hard-wired negative
utility not just for actual collisions with pedestrians but also for simply feeling too close
to them. In particular, this provides a method for an AV to inflict a real negative utility
on a pedestrian without touching them or risking their physical harm. Binary proxemics is
the simplest case used in simple models, in which a negative utility is assigned to actually
hitting someone, and zero utility is assigned to not hitting anyone. Zonal proxemics is more
subtle, it relies on the eight proxemic dimensions defined above. It assigns different utilities
to the presence of a person in four different zones around an individual which are defined
as the intimate distance, the personal distance, social distance and the public distance [90].
Gorrini et al. [82] studied the proxemics behaviour of groups of pedestrians in interaction
and showed that it has negative effects in walking speed for evacuation scenarios. Manenti
et al. [139] presented an agent-based pedestrian behaviour model that takes into account
proxemics and group behaviour. Their model was tested with groups of people and in a
simulated environment. A detailed review on proxemics models for robot navigation among
humans is proposed in [173].

Physical Models These are splitted into three sub-categories. The utility maximization
model, as used in [114], assumes that pedestrian behaves such as to maximize their utility,
for example their speed of motion and approach or avoidance of some objects or persons. In
the magnetic force model proposed by [151], the pedestrian behavior is determined by the
equation of motion of the magnetic field. Pedestrians are positive poles and their destinations
are negative poles. In the social force model, introduced by Helbing [93], each pedestrian has a
desired velocity, a target time and a target destination which are affected by social forces such
as the interaction with other pedestrians and the effects of the environment. In [134] social
forces are described as individual forces (fidelity, constancy) and group forces (attraction,
repulsion, coherence). Most of the time, social forces are modeled such that to minimize an
energy objective which include terms for individual and group forces.

Cellular-based Models These represent a cost model such as Blue and Adler’s cellular
automata model [23] and used for motion prediction. Cellular Automata (CA) is a discrete,
time based modelling formalism on a regular cell grid. It describes the walk of a pedestrian
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according to rules of a cell occupancy, e.g. a cell can be occupied only if it is free and
a pedestrian can have three possible movements: lateral, longitudinal or mitigation of the
conflicts. The benefit cost model, developed by Gipps and Marksjo [79], is a discrete and
deterministic model where the space is divided into a grid of cells and each agent is described
as a particle in a cell. A benefit value, equivalent to the pedestrian utility, is arbitrarily
assigned to each cell. In [60] a cellular automata model simulates multi-agent interactions.

Queuing Network Models They have been developed for studies of evacuation dynam-
ics [131]. These are evaluated by Monte Carlo simulation methods for discrete events. Each
pedestrian is represented as an individual flow entity interacting with other objects, facil-
ities are modeled as a network of arches for openings and of nodes for rooms. In [13], a
queuing network model is compared to a social force model for pedestrian crossing movement
prediction.

3.1.2 Two Agents’ Interaction

These models are those involving only two agents with mutually influencing behaviours, rather
than larger groups of agents. They may be simpler than larger group models but sometimes
provide a foundation for extension to larger group models, hence they are here presented
first.

Dynamic Graphical Models The method in [31] uses POMDPs (Partially Observable
Markov Decision Processes) with a time-indexed state space to model interactions and they
used the example of an elevator-riding task to test the model. In [179], Rudenko et al.
proposed a method that uses MDPs with a joint random walk stochastic policy sampling
algorithm to predict motion and social forces to model interactions. The model in [120] learns
features from observed pedestrian behaviors using a Markov Chain Monte Carlo (MCMC)
sampling and performs a Turing test with human participants to validate the human-like
behavior of the model. Chen et al. [48] used an extended Kalman filter to predict future
motions of pedestrians and estimate the time-to-collision range (TTCR) for collision risk level
identification.

Gaussian Process Methods Kawamoto et al. [112] proposed a method to learn pedes-
trian dynamics with kriging, the most traditional form of Gaussian Processes. Their work
can predict pedestrian movement using spatial kriging and spatio-temporal kriging. Social
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interaction is modeled by spatio-temporal correlation of pedestrian dynamics and correlation
is estimated by kriging.

Deep Learning Methods Alahi et al. [2] predicted pedestrian trajectories in crowded
spaces using a social LSTM, a variant of recurrent neural network model that can learn
human movement (velocity, acceleration, gait...) taking into account social human motion
conventions and predict their future trajectories. This technique is opposed to traditional
social forces methods and outperforms most the state-of-art methods on public datasets (ETH
and UCY). Long Short-Term Memory (LSTM) can learn and reproduce long sequences, it is a
data-driven technique. One LSTM is used for each person and the interaction among people
is modeled by a social pooling layer which allows the share of states between neighboring
LSTMs. Although group behavior is not modeled, the social LSTM can predict it very
well. Similarly to the previous method, Chen et al. [49] developed a long-term pedestrian
prediction model using RNNs for pedestrian trajectory prediction.

Road Crossing Models This section extends the event-activity models from section 2.4 by
adding interaction between pedestrians and vehicles. When microscopic models of pedestrian
movement are included in larger-scale traffic simulations together with vehicles, they are
typically extended with specific provisions to account for pedestrian’s decisions on where and
when to initiate road crossing, when this is needed for the pedestrians to reach their goals.
Other, so called gap acceptance models, have instead described probabilities of pedestrians
crossing in a certain gap between vehicles, using generalised linear models, with predictors
including both the available gap itself, as well as other factors such as age and gender of the
pedestrians, number of pedestrians waiting to cross, and time spent waiting [195, 188].

Markkula et al. [140] proposed another type of model for pedestrian’s road crossing
decision, modelled as the result of a number of perceptual decisions concerning the available
gap, but also car yielding, explicit communicative signals from the car, and eye contact with
the driver. These decisions were described as several interconnected evidence accumulation
processes, and it was shown that empirically observed bimodal distributions of pedestrian
waiting time were qualitatively reproduced by the model. In [34], Camara et al. proposed
a heuristic model for pedestrian crossing intention estimation. Their method is based on a
distance ratio model that computes the pedestrian crossing probability over time until the
curbside. Their results showed that this heuristic model is sufficient for most of the crossing
scenarios present in the dataset used and that the remaining scenarios would require higher
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level models such as game theory.

Other Methods Discrete choice models [8, 28] offer a framework to model pedestrian
walking along link levels, where their paths are composed of a sequence of straight lines in
absence of obstacles. For example, the model in [28] predicts pedestrian behaviour in the
presence of other people in shopping street areas.

3.1.3 Group Interaction

A group is here considered to be a collection of more than two pedestrians, but smaller and
more cohesive than a crowd. These models are developed primarily for use by non-carriageway
autonomous vehicles, such as delivery robots, navigating through crowded pedestrianized
areas, needing to cut their way between groups.

Dynamic Graphical Models In [19] a real-time pedestrian path prediction is performed
in cluttered environments without making any assumption on pedestrian motion or pedes-
trian density. Pedestrian motion and movements patterns are learnt from 2D trajectories.
Bera et al. used sparse and noisy trajectories data from indoor and outdoor crowd videos. By
combining local movements (microscopic and macroscopic motion models) and global move-
ments (movement flow), the patterns help improve the accuracy of the long-term prediction.
An ensemble Kalman filter (EnKF) was used to predict the next state based on current
observation and EM algorithm to maximize the likelihood of the state. Pedestrian clusters
are computed based on their positions, velocities, inter-pedestrian-distances, orientations etc.
Global movement patterns are the past movement and intended velocity of pedestrians. Local
movement patterns are obtained by fitting the best motion model to pedestrian clusters and
individual motions. In [20], the same authors implemented a tracking algorithm built on top
of [19]. Deo et al. in [55] uses VGMMs to model pedestrian trajectory using pedestrian origins
and destinations. Their model is tested on a dataset of a crowded unsignalized intersection
in a university campus. Pellegrini et al. [156] introduced a linear trajectory avoidance (LTA)
model which has similarities with the social force model. In [157], the same authors extended
the LTA model with a stochastic version taking into account group behavior and allows mul-
tiple hypotheses about the pedestrian position. Zhou et al. [231] proposed a mixture model
of dynamic pedestrian-agents (MDA) for pedestrian trajectory prediction in crowds.
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Gaussian Process Methods Henry et al. [94] used inverse reinforcement learning (IRL)
to learn human-like navigation behavior in crowds. The model estimates environmental
features using Gaussian Processes and extends Maximum Entropy Inverse Reinforcement
Learning (MaxEnt IRL) of [232] by assuming that features in the environment are partially
observable and dynamic. The proposed approach was developed for mobile robot motion
planning, but it could be used for human motion prediction. In [203], Trautman and Krause
proposed to solve the freezing robot problem, where a robot motion planner gets stuck and
cannot find any proper move to perform, by a model based on Gaussian Processes, a statistical
model that is able to estimate crowd interaction.

Deep Learning Methods The subsequent models may not explicitly consider interaction,
but they learn interaction implicitly through machine learning techniques. The model in [196]
implemented a real-time Temporal 3DOF-Pose Long-Short-Term Memory using 3D lidar data
from a mobile robot. Shi et al. [193] developed a long-term pedestrian trajectory prediction
model for crowded environments using LSTM. In [224], Yi et al. proposed a deep neural
network model called behavior-CNN that is trained with crowded scenes video data. A
pedestrian behavior model is encoded from the previous frames and used as an input for the
CNN model to predict their future walking path and destination as well as a predictor for a
tracking system. Radwan et al. [164] presented an interaction-aware TCNN, a convolutional
neural network model that can predict interactive motion of multiple pedestrians in urban
areas.

Amirian et al. [6] predicted the motion of pedestrians over a few seconds, given a set of
observations of their own past motion and of those of the pedestrians sharing the same space,
using a Generative Adversarial Network (GAN)-based trajectory sampler. The reason for this
choice is that such a method naturally encompasses the uncertainty and the potential multi-
modality of the pedestrian steering decision, which is of great importance when using this
predictive distribution as a belief in higher level decision-making processes. Lee et al. [122]
developed DESIRE a trajectory prediction framework for multiple interacting agents based on
deep neural networks. A conditional variational auto-encoder is used to generate hypothetical
future trajectories. An RNN is then used to score and rank those features in an inverse
optimal control manner and taking into account the scene context. Gupta et al. [86] proposed
a socially-aware GAN with RNNs for pedestrian motion sequence prediction in dynamic
environments. However, their model assumes that people influence each other uniformly. A
detailed analysis and improvement of this GAN method is proposed in [118]. With a similar
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method, called SoPhie, Sadeghian et al. [181] developed a GAN-based trajectory prediction
model that focuses on the most important agents’ for each interacting agent.

Other Methods Moussaid et al. [148] presented a heuristics-based model to predict ped-
estrian behavior in crowded environments. Based on the idea that visual information is very
important for pedestrians [12, 204], they found that two simple heuristics can model the
interaction among people: the desired walking direction and speed of pedestrians are suffi-
cient. Bonneaud and Warren [26] proposed a related type of model, extending the behavioral
dynamics model by [72] to goal-seeking and obstacle avoidance in crowds, and found that the
model was able to reproduce qualitative crowd phenomena like lane formation. The model
in [101] learns behavioral patterns from pedestrian trajectories in a mall. It assumes that
a robot can model interactions using social forces and segment pedestrian trajectories into
sub-goals to estimate their future positions.

3.2 Macroscopic Models

In macroscopic models, the crowd is modeled as a single ontological object, replacing and
simplifying the representation of multiple microscopic pedestrians. The crowd behaves as a
continuous fluid with a flow average speed [199].

The first macroscopic models of pedestrians are due to Hughes and Henderson [99]. The
fluid dynamic model classifies pedestrians into groups which are characterized by average
features, their position, speed and intended velocity. In [14], pedestrian flows are modeled in
simulations for crowded environments. Crowd modelling has also an established community
focused on models for evacuation, as reviewed in [184]. In [4] Ali et al. used Lagrangian
Particle Dynamics to segment high density crowd flows. This method, based on Lagrangian
Coherent Structures (LCS) from fluid dynamics and particle advection, is capable of detecting
instabilities in the crowd.

Smooth Particle Hydrodynamics (SPH) is a hybrid of microscopic and macroscopic mod-
els. Pedestrians are considered individually, but at each time they are aggregated into a
density where each particle is moved according to the macroscopic velocity. Etikyala et al.
[70] reviewed smooth particle hydrodynamics pedestrian flow models while [225] proposed a
generic SPH framework for modeling pedestrian flow.
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3.3 Discussion

The theory of proxemics has been well studied in psychology and now being more and more
used for VR experiments [152] [58] and computer scientists are just beginning to apply it to
make more detailed models of the utility of pedestrian’s personal space than simply collisions
and non-collisions. In general, microscopic models are preferred to macroscopic models, in
particular the social force model is very popular for pedestrian interaction modelling, while
macroscopic models are more suited for crowd behaviour modeling, especially in the special-
ised domain of emergency evacuation modeling. Physical models bring interesting results
when there are a lot of interactions, e.g. modelling pedestrian movement in cities [177].
Cellular-based models are useful for modelling pedestrians with minimal movement choices
and when representing their collisions is not required. Two agents’ and group interaction
models offer more precise pedestrian models but they require more computational resources,
in particular dynamic graphical, Gaussian Process and deep learning models. More compu-
tational research is needed in interaction modelling: psychology/human factors studies and
theories are more mature, but their results have not yet been quantified to the extent of
enabling translation into algorithms for AVs.

4 Game Theoretic and Signalling Models

4.1 Game Theory Interaction Models

The models in section 2 predict the behavior of a single pedestrian X from the point of view
of an external observer O (i.e. the experimenter), when no other pedestrians are present. We
call this a first-order model of pedestrian behaviour.

The models in section 3 all further allow O to also model X’s own first-order model
of another pedestrian Y ’s behaviour, which X can use to plan to avoid Y . We call this a
second-order model of behaviour.

We could then imagine third and higher order models. For example, O might model X’s
belief about Y ’s belief about X’s belief about Y ’s belief, as both agents try to ‘out-think’
each other during their planning. This would lead to an infinite computational regress.

Game theory provides an alternative and stronger framework which can compute the
infinite limit of these higher order models directly, via analytic solutions.

Isaacs [106] introduced vehicle-pedestrian interactions as the famous ‘homicidal taxi driver
problem’ which considered the inverse of the modern AV interaction problem: how an AV
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controller should act in order to hit a pedestrian1. Game theory is in common use in de-
scriptive road user modelling as reviewed in [67], where applications include modelling of
lane changes and merging onto motorways, route selection and departure time in congested
networks, and socio-economic choices such as purchasing large vehicles or using conventions
such as headlight dipping. It has been applied to AV-vehicle interactions in [165] though here
only pedestrian models are considered.

The use of game theory for active control of AVs is less common. Descriptive models may
be incomplete as active controllers, in particular by allowing for multiple Nash Equilibria to
exist without selecting between them. A Nash equilibrium is a set of probabilistic strategies
to be played by each of the players, such that no player would change their strategy if they
knew the strategies of the other players. It is generally agreed in Game Theory that it is not
optimal for players to employ strategies which are not Nash equilibria, though there is still
philosophical debate over what strategy is optimal when multiple equilibria exist.

4.1.1 Two Agents’ Game Theory Interactions

Hoogendoorn and Bovy [97] give a purely theoretic construction (left as an exercise to the
reader) for a continuous (‘differential’) game theory solution to pedestrian interactions, based
on similar control theory models to those reviewed in Sec. 2.1. They also provide an imple-
mentation of a second-order truncation of this model which is found to be sufficient to pro-
duce flows of pedestrians in crowded environments similar to those observed in some Japanese
crossings.

The methods in [141] and [205] predict selection of pedestrian trajectories from a finite
set as a higher-order model. For a small set of known origins and destinations, optimal free
space trajectories are computed from control theory, and actual trajectories from a video set
are compared to them and assigned costs according to their deviations from them. These
models assume that the choice of the entire continuous trajectory is drawn from a finite set of
previously observed and costed trajectories as a single decision at the start of the interaction
and does not model responses to the other agent during the interaction. They are used only
as descriptive models rather than as real-time control because they require each pedestrian’s
final goal location to be known in advance to form the cost matrix – which is only obtainable
by looking ahead in the data to see what happened post hoc. The authors state that (in

1The application to pedestrians was accidental as the taxi scenario was used initially as a declassification
technique to publish missile-defence algorithms, requiring control of one missile to hit another
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the context of AV control), ‘few researchers have considered interaction between (pedestrian)
objects, thus neglecting that humans give way to each other’. Turnwald et al. [206] add
an alternative model where one player chooses their trajectory first then the second chooses
theirs in response to seeing their initial motion.

Ma et al. [135] proposed a long-term game-theoretic prediction of interacting pedestrian
trajectories from a single starting image. For each future time in the prediction sequence,
fictitious play is used to converge the probabilities of each pedestrian’s actions to one (of
possibly many) Nash equilibrium. The fictitious play assumes that each pedestrian has a
known destination goal, some known visual features (age, gender, initial body heading etc)
and a known utility function. The utility function scores vectors of word-state features which
contain all of (1) the pedestrian’s own future trajectory (which may include control theory
style costs); (2) probabilistic beliefs about the other agents’ trajectories; (3) the pedestrian’s
own visual features (age, heading etc); (4) proximity to static obstacles; (5) the pedestrian’s
distance to their goal. Unusually, the utility functions are learned entirely automatically
from video data of actualized trajectories, rather than set by theories. Where theory-like
behaviours such as proxemics and social forces are observed in simulations, they arise entirely
from this learning process. The functions are assumed to be a weighted linear function
of the features and a reinforcement-learning-style model is used to obtain per-state values
from the full trajectories during learning. A (deep learning) classifier is used to obtain the
visual demographic and heading features from annotated training examples. Performance is
degraded when the pedestrian’s goal locations are not known and are set to be completely
uncertain in the feature vectors.

In [75], Fox et al. presented a version of the game-theoretic ‘game of chicken’ for autonom-
ous vehicle-pedestrian interactions at unsignalized intersections. The obtained discrete model
called the ‘sequential chicken’ model allows two players to choose a set of two speeds: deceler-
ate or continue. A new method to compute Nash equilibria is presented, called ‘meta-strategy
convergence’, used for equilibrium selection. Camara et al. [41, 36] evaluated the model [75]
by fitting one parameter θ to controlled laboratory experiments where pedestrians were asked
to play sequential chicken. This behavioural parameter θ was found to be a ratio between
the utility of avoiding a collision and the utility of saving time. A summary of the work using
the sequential chicken model is provided in [39].
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4.1.2 Small Group Game Theory Models

Vascon et al. [208] proposed a game theory model for detecting conversational groups of
pedestrians from video data, based on the socio-psychological concept of an F -formation and
the empirical geometries of these formations. Johora and Müller [109] proposed a three-layer
trajectory prediction model composed of a trajectory planner, a force-based (social force)
model and a game theoretic decision model. The game theory model is based on Stackelberg
games, a sequential leader-follower game where pedestrians have three different possible ac-
tions: continue, decelerate and deviate and the car has two possible actions: continue and
decelerate. This model is able to handle several interactions at the same time.

4.1.3 Crowd Game Theory Models

Mesmer et al. [143] modelled pedestrians’ decision-making and interactions during evacu-
ations with game theory. In [192] a model of pedestrian behavior in an evacuation used game
theory and showed that pedestrians get greater benefits by cooperating.

4.2 Signalling Interaction Models

Signalling models extend interaction models by allowing both the pedestrian and the AV to
model and predict each other’s actions of giving and receiving pure information, rather than
communicating only through their physical poses.

Nathanael et al. [149] has proposed a stratified model of mutual awareness between ped-
estrians and vehicles including AVs. The actor’s awareness is divided into three levels, i.e.,
(1) unaware of the others, (2) factually aware of the other, or (3) aware and actively attend-
ing to the other. When one of the two agents is unaware of the other, the interaction may
be as simple as collision avoidance by the one aware, relying only on bodily and kinematic
cues. When both agents are aware of each other, the interaction takes the form of mutual
coordination through implicit cues, whereas when both agents are attentive to each other
(as evidenced through eye contact between human actors), the interaction may involve direct
communication through explicit signals, such as gestures, nodding etc. In addition attent-
iveness, as opposed to mere awareness, designates that any physical action from an attentive
agent is a response explicitly addressed to the agent at the focus of attention (i.e. it also has
a signalling function).

This line of research raises an epistemological question about signalling-based interaction.
Some of the models above involve the concepts not just of an agent (1) knowing that the
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other agent is there, and (2) acting to show the other agent that they are present; but also
higher-order knowing and showing these facts. This includes (3) knowing that the other
knows they are there and (4) showing the other that they know that the other knows they
are there. But also includes arbitrarily higher orders, such as ‘knowing that the other has
showed that they know that they know that the other knows’ and so on. There appears
to be a potentially infinite regress here, though intuitively most humans find it difficult to
comprehend many more levels than the four mentioned here. But it is difficult to argue for
why any cut-off should occur at this or other specific level. Intuitively: when two agents
make eye contact, they assume that they both then come to know the infinite stack of such
statements about each other.

4.2.1 Signals from Pedestrian to Vehicle

The need for precise eye contact as opposed to simple head direction or gaze towards the
vehicle is controversial. Considering gaze or head orientation towards vehicles, there is evid-
ence that pedestrians who initiate crossings without looking at the oncoming vehicle tend
to make drivers more attentive to them by keeping larger safety margins [111]. On the
other hand, eye contact between pedestrian and driver tends to increase the probability of
the vehicle yielding for pedestrians [84]. The apparent controversy between these findings
may be attributed to profound differences in the function of these two behavioural traits.
While head orientation towards vehicles typically signifies pedestrian situational awareness
to drivers, eye contact most probably signifies driver awareness of the pedestrian to the latter
[169]. In addition, eye contact is reported to play a non-trivial role in the social dynamics
between the two. Nathanael et al. [149] in a naturalistic study of driver pedestrian inter-
action reported that pedestrian head turning towards a vehicle was sufficient for drivers to
confidently infer pedestrians intent in 52% of interaction cases observed. In retrospective
think-aloud sessions of their interaction with pedestrians, drivers mentioned pedestrian act-
ive head movement and orientation as an important indication of pedestrian awareness of
their vehicle. Mutual eye contact between driver and pedestrian was observed only in 13%
of interaction cases, accompanied by explicit signalling in 2% of total cases. This is consist-
ent with recent research [168] that reported head orientation/gaze towards vehicles as the
most prominent cues for predicting pedestrian intent. In addition, computational models
have shown that head direction is a useful trait for pedestrian path prediction and state of
situation awareness such as in [33] which argued that if a pedestrian looks at the vehicle,
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they are less likely to cross the road.
Matthews et al. [142] studied pedestrians’ behavior with an autonomous goal car equipped

with an Intent Communication System (ICS) based on Decentralized MDP to model the
uncertainty associated with pedestrian’s behavior. Another important factor to take into
account is the poor pedestrian signal settings. It has been proven that signal indication and
timing affect significantly pedestrian behavior and their crossing decisions [3] [104] [105]. Ped-
estrians can have sudden speed change while crossing, and such sudden behavioral changes
may not be expected by conflicting vehicles, which may lead to hazardous situations. In [105],
Iryo-Asano and Alhajyaseen proposed a discrete choice model and Monte Carlo simulation
for generating pedestrian speed profiles at crosswalks. In [103], the same authors modelled
pedestrian behaviour after the onset of pedestrian flashing green (PFG) via a Monte Carlo
simulation. Their results showed a higher probability of pedestrian stopping at longer cross-
walks and a significant difference in pedestrian speeds.

Some early steps have however been taken towards modelling at least some levels of
explicit knowing and showing of beliefs about each other via signalling behaviour.

4.2.2 Signals from Vehicle to Pedestrian

Beyond understanding pedestrian’s signalling behavior, game theoretic models may also en-
able the AV to give signals to the pedestrians, creating a higher level information game with
both players communicating through both their physical actions and also their signals. The
full game theory of such interactions has not yet been worked out, and will form part of
a complex socio-technical system [175], but there has been notable activity – especially via
company patents – in researching displays and other mechanisms for the signalling itself.

Lundgren et al. [133] showed that the lack of two-way communication between driver and
pedestrian may reduce pedestrians’ confidence to cross the street and their perceived feeling of
safety, when crossing. Lichtenthäler et al. [129] reviewed robot trajectories among humans,
including identifying needs for additional gestures or motion information such as gaze to
communicate intention, which is relevant for last mile delivery. Researchers are currently
conducting studies to better understand exactly which information needs to be transferred
when interacting with an AV. Schieben et al. [185] propose the following information to be
considered by the design team.

• Information about the vehicle automation status

• Information about next manoeuvres
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• Information about perception of environment

• Information about cooperation capabilities

To transfer the relevant information, two means of communications can be used for shap-
ing the communication language of an AV. First, pedestrians might benefit from direct com-
munication through the means of external human machine interfaces (eHMIs) [133], [178].
Secondly, also careful design of vehicle movement can be used to explicitly communicate.
Risto et al. introduced the term ‘movement gestures’ and found ‘advancing’, ‘slowing early’
and ‘stopping short’ as commonly used gestures [175]. Consistent with this, Portouli et al.
[160] in the context of driver-driver interaction have shown that ‘edging’ was explicitly used
by drivers trying to enter a two-way street as a sign of their intent to inform oncoming
cars. Studies of human robot interaction have shown that allowing humans to anticipate
robot movements by explicit communication through movements of the robot’s head raises
perceived intelligence of the robot even if it did not succeed completing it’s intended tasks
[197], thus overcoming potential machine error through the means of explicit communication.
These studies might suggest similar devices such as head-like and eye-like displays for AVs.

While Clamann et al. [51] found mixed influences of explicit communication through
novel eHMI on crossing behavior in dynamic traffic situations and argued that pedestrians
will largely rely on legacy behavior and not on eHMIs, Habibovic et al. [89] found that
traffic participants feel calmer, more in control and safer when an eHMI was present on
an AV. Petzoldt, Schleinitz, and Banse [158] found that an eHMI can help to convey the
intention of a vehicle to give priority to a pedestrian. They also observed that pedestrians
needed more time to understand the intention of a vehicle without eHMI in mixed traffic
situations [158]. Communicating the intent and awareness of automated vehicles has been
considered in a positive way [137] [138]. Habibovic et al [89], [7] argued that, for safety
reasons, communication should never be command-based. The vehicle should communicate
solely its intentions.

Communication can be directed or undirected. Pedestrians usually assume that any
AV’s communication is referring to themselves, hence using eHMIs with multiple pedestrians
present has to be carried out in a way that minimizes miscommunication (i.e. either letting
all pedestrians pass or not displaying a signal at all). Directed signalling minimizes this
risk as other road users do not visually perceive the signal of the eHMI. Dietrich et al. [59]
found that pedestrians were not able to distinguish whether an undirected light signal was
addressed to themselves or other traffic participants.Therefore, AVs should either use directed
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communication in ambiguous situations involving multiple pedestrians or no communication
at all, as pedestrians will base their crossing decision on the approaching vehicle’s kinematics
if no eHMI is present. The color of the visual eHMI stimulus may be of importance [218].

The most common eHMI display types are projection, high resolution displays and dir-
ect light. Semantics used include animations, concrete iconography, or text. For instance,
Habibovic et al. developed a communication concept based on external light signals on the
top of the windshield [89]. Using various light animations, the intention of the AV as well
as the current driving mode such as ‘I’m about to yield’, ‘I’m resting’, and ‘I’m about to
start’ are displayed on the LED light bar. Clamann et al. [51] empirically examines similar
models’ efficacy for giving signals to pedestrians. Further eHMI concepts include mimicking
eye contacts by adding visible ‘eyes’ to AVs – based on the well-known tendency for humans
to perceive and design faces in cars– which can communicate detection and awareness of ped-
estrians through eye contact [44], as well as a virtual driver’s mimicking furthermore facial
expressions or hand signals. In addition to the pure visual-based communication between
AVs and other TPs, some concepts also consider a combination of light and audio signals, as
in the Google, Uber concepts and Mercedes-Benz concept car F015.

4.3 Discussion

Game Theory has a long history of use in V2V (vehicle to vehicle) interactions in classical
transport studies, as microscopic models underlying simulations of traffic flows and infra-
structure design. Also multi-robot game theory systems are quite mature in robotics. These
two streams have not generally been unified or applied to AV-pedestrian modelling, though
this is beginning to emerge as an early research area. Like other sophisticated methods,
game theoretic models can be computationally expensive and it remains unclear which of
their theoretical solutions will have computationally tractable algorithms.

Signalling models remain a distant research frontier. Physical actuators for eHMI sig-
nalling are currently being investigated by car manufacturers and recent years have seen
much patent activity in the area. But how to best use them to transmit information is not
understood. There are currently no game-theoretic models using knowing and showing with
explicit signalling but this would appear to be a fruitful area for future research. Eye contact
is a particular form of signalling, but even in high level psychology research there remains
an ongoing and lively debate about whether it is relevant or useful. The signalling methods
reviewed here are mainly from qualitative studies, some work is still needed to implement
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their findings in algorithms for AVs.
Most of the eHMI concepts presented here do not yet include detailed user studies and

thus there remains a need for thorough evaluation including the behavioral and emotional
responses of pedestrians in realistic environments. Different findings might be due to different
eHMI concepts, diverse traffic scenarios, as well as different communication strategies. While
research is still lacking in full understanding of the effects of eHMI on traffic, a large number
of conceptual solutions have been proposed. Their influence on pedestrians, regarding their
safety, experience and acceptance remains unclear. Most of these conceptual solutions are
proposed by industry and involve some form of visual communication as the visual channel
is the currently most used channel of communication in traffic as well as the best suited for
communication at larger distances in busy environments.

5 Experimental Resources

5.1 Pedestrian Datasets

Large data sets are important resources for training and testing models at all levels, especially
when they are annotated with ‘ground truth’ information by humans. Their use has been
common for low-level models such as detection and tracking, though there is currently a
shortage of high quality annotated data for the higher-level models such as social interactions.

Major visual pedestrian datasets include the Caltech Pedestrian Benchmark [61], ETH
[69], TUD-Brussels [220], Daimler [68], Stanford Drone Dataset [176], UCY Zara pedestrian
dataset [125] and INRIA [53]. CityPersons [228] is a large dataset for pedestrian detection.
Town Center Dataset [16] is a video dataset composed of 71.5k annotations.

Datasets used for pedestrian re-identification, i.e. having many images of the same people
with identifiers include for example CUHK01 [128], CUHK02 [127] and CUHK03 [126], collec-
ted at a university campus and composed of thousands of bounding boxes of unique people.
DUKEMTMC [174] and DUKEMTMC-reID [230] datasets have been developed in the Duke
university campus and are used for tracking and re-identifying multiple people with multi-
camera systems. MARKET-1501 [229] dataset provides 35k images of 1500 individuals but
also comes with a 500k dataset of non-pedestrian street window distractors for training clas-
sifiers. Multi-Object Tracking Benchmark [144] collects diverse datasets and publishes new
data. Several releases have already appeared: MOT15, MOT16 and MOT17.

PETA benchmark [54] is a mixture of several public datasets (e.g VIPER, SARC3D,
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PRID, MIT, I-LID, GRID, CAVIAR4REID, 3DPES), which has been used to recognize ped-
estrian attributes at far distance. The benchmark has been tested with an SVM method.
Social ground truth annotations are much rarer. [40] and [33] collected high quality human
annotations of physical and social events during pedestrian-vehicle interactions, including
the presence and timings of the agents communicating with each other via eye contact, hand
gestures, positions and speeds, and the final ‘winners’ of interactions which compete for road
space during crossings.

Yang et al. [223] pointed out that in mixed urban scenarios, intelligent vehicles (IVs)
have to cope with a certain number of surrounding pedestrians. Therefore, it is necessary
to understand how vehicles and pedestrians interact with each other. They proposed a
novel pedestrian trajectory dataset composed of CITR dataset and DUT dataset, so that
the pedestrian motion models can be further calibrated and verified, especially when the
vehicle’s influence on pedestrians plays an important role. In particular, the final trajectories
of pedestrians and vehicles were refined by Kalman filters with linear point-mass model and
nonlinear bicycle model, respectively, in which xy-velocity of pedestrians and longitudinal
speed and orientation of vehicles were estimated.

Zhan et al. proposed INTERACTION dataset [227] which contains naturalistic motions
of various traffic participants in a variety of highly interactive driving scenarios. Trajectory
data was collected using drones and traffic cameras, containing data from multiple countries
(USA, China, Germany and Bulgaria). There are four different driving scenarios, with their
semantic maps provided: roundabouts, un-signalized intersection, signalized intersection,
merging and lane changing. Chang et al. proposed Argoverse [45] containing two datasets
and HD maps recorded from a self-driving car. Argoverse 3D Tracking is for 3D object
annotations, it contains a collection of 11,052 tracks, and Argoverse Motion Forecasting is a
curated collection of 324,557 scenarios, each 5 seconds long, for trajectory prediction. Each
scenario contains the 2D, birds-eye-view centroid of each tracked object. ApolloScape dataset
[216] was recorded in urban areas in China using various sensors. The dataset contains
different road road users (vehicles, pedestrians, bicycles). The ApolloScape LeaderBoard
shows the ranking and performance of the models tested on the dataset for different tasks, such
as scene parsing, detection/tracking, trajectory prediction, self-localisation. The Intersection
Drone (InD) dataset [25] contains naturalistic vehicle trajectories recorded using a drone
at four German intersections. It provides the trajectories for thousands of road users and
their types (e.g car, pedestrian, bicycle, truck), and can be used for example for road user
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prediction.
Person detection in off-road agricultural vehicle environments has become popular in re-

cent years. Results from these studies are not well known in transport research but may
transfer to on-carriageway and on-pavement AVs as they deal with similar types of pedes-
trian interactions. The National Robotics Engineering Center (NREC) Agricultural Person
Detection Dataset [159] consists of labeled stereo video of people in orange and apple orch-
ards taken from a tractor and a pickup truck, along with vehicle position data. The dataset
combines a total of 76k labeled person images and 19k sampled person-free images. Gabriel
et al. [76] present a dataset that focuses on action/intention recognition problems for human
interactions with small robots in agriculture, including ten actors performing nine gestures
and four activities. Stereo camera images, thermal camera images and Lidar point cloud
data are recorded on grassland, under varying lighting conditions and distances. Kragh et
al. [119] presents a multi-modal dataset for obstacle detection in agriculture containing 2h of
raw sensor data from a tractor-mounted sensor system in a grass mowing scenario, including
moving humans scattered in the field.

A summary of pedestrian datasets is given in the supplementary material Sect. 3 Table
B.2.

5.2 Vehicle Datasets

To train and test models of pedestrians interacting with vehicles, it is most likely useful to
provide similar big data about vehicles as well as about pedestrians. This may include ground
truth information on vehicle location and motion, but also high level social annotations to use
in studies of interaction with pedestrians. Visual data available includes the Berkeley Deep-
Drive Video (BDDV) dataset [222], currently the largest vehicle dataset publicly available
with 10k hours of driving videos around the world. KITTI dataset [78] provides a one hour
video of a vehicle driving in an urban environment. Caesar et al. [32] presented nuScenes a
dataset for autonomous driving composed of multiple sensor data (RGB, LIDAR, RADAR)
from two cities and containing 1k scenes. A summary of vehicle datasets is given in the
supplementary material Sec. 3 Table B.3.

5.3 Pedestrian and Driving Simulators

Three types of relevant simulation research work exist: pedestrian, vehicle, and combined
pedestrian-vehicle. Hardware designs and source code for commonly used simulators are
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often not made public, making it difficult for others researchers to investigate and replicate
experiments. So there remains a clear need for more open-source simulators. The open source
Godot game and VR engine1 has recently matured so may soon be used for this purpose. A
summary of the simulators is included in the supplementary material Sec. 3 Table B.4.

Pedestrian Simulators Pedestrian simulators are VR (Virtual Reality) based environ-
ments where pedestrian participants encounter virtual vehicles in order to study pedestrian
perception and decision making subject to various oncoming vehicle behaviors [186]. For
example, Camara et al. [37, 38] used a HTC Vive VR headset for pedestrians interacting
with a game theoretic autonomous vehicle. Results showed that VR is a reliable setup for
measuring human behaviour for the development and testing of AV technology. Mahadevan
et al. [136] presented OnFoot, a VR pedestrian simulator that studies pedestrian interac-
tions with autonomous vehicles in a mixed traffic environment. The Technical University of
Munich also developed a pedestrian simulator [73] composed of a head-mounted display, a
motion capture system and a driving simulator software. This setup could be connected to a
driving simulator enabling multi-agent studies while extracting the participant’s gait during
the crossing process. The current setup utilizes Unity (with a VIVE HMD) and is sometimes
coupled with VIVE Trackers for a virtual self-representation to create an immersive virtual
environment enabling fast implementations and evaluation of eHMI concepts [59]. PedSim
[80] is a free crowd simulation software.

Vehicle Simulators Vehicle simulators are physical platforms where drivers encounter vir-
tual pedestrians (dummies) in order to study driver yielding behaviors in specific interaction
scenarios. Simulators such as [150] studied driver-pedestrian interactions in mixed traffic
environments using a driving simulator (DriveSafety’s DS-600c Research Simulator). JARI-
ARV (Augmented Reality Vehicles) [108] is a road running driving simulator and JARI-OVDS
(Omnidirectional View Driving Simulator is a driving simulator with 360-degree spherical
screen and a rocking device. The University of Iowa [207] has developed a driving simulator.
A previous review on driving simulators is presented in [194].

Pedestrian-Vehicle Simulators Micro or macro simulations model both pedestrian and
vehicle behavior. Most of these simulations rely on sets of behavioral rules for both agents.
These simulators are primarily used for road design purposes and for policy decisions such as

1www.godotengine.org
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the cellular automata-based simulators proposed in [74] and [132] where vehicle-pedestrian
crossing behaviour is studied at crosswalks. Feliciani et al. [74] further evaluated the necessity
of introducing a new crosswalk and/or switching to a traffic light. Chao et al. [46] developed
a microscopic-based traffic simulator based on a force model to represent the behaviour and
interactions between the road users, and aimed for autonomous vehicle development and test-
ing. Chen et al. [47] proposed a simulation platform composed of several behaviour models
at crosswalks for vehicle-pedestrian conflicts assessment. Gupta et al. [87] developed a simu-
lation model, using Matlab and the open-source SUMO (Simulation of Urban Mobility), for
autonomous vehicle-pedestrian negotiations at unmarked intersections, considering different
pedestrian behaviours. Commercial products include STEPS [147] software for and Legion
[124] simulating pedestrian dynamics. VirtuoCity is an example of physical vehicle-pedestrian
simulators. It is composed of a pedestrian simulator, HIKER [182], which is a virtual real-
ity ‘CAVE-based’ environment for pedestrian behavior analysis, a driving simulator [107]
and a truck simulator for driver behaviour understanding. IFSTTAR [100] also possesses
a pedestrian simulator and developed a driving simulator for driver behavior analysis and
human-machine interactions, an immersive simulator for cars, motorcycles and pedestrians
behavior simulation, a driving simulator with human assistive devices and a bicycle simulator.

6 Conclusions

Pedestrian sensing, detection and kinematic tracking are now well understood and have ma-
ture models as reviewed in Part I [35]. Moving from simple kinematic tracking and prediction
of pedestrian motions can however depend on extremely high-level models of the state trans-
ition required by tracking and prediction. Going far beyond simple random velocity walk
models, the present review has shown that there is much scope here to integrate models of
pedestrians as intelligent, goal-based, psychological, active, and interactive agents at several
levels.

Unlike the more mature methods reviewed in Part I, this review does not recommend par-
ticular software implementations for algorithms at these levels, because they remain active
research areas rather than completed and standardizable tools. This review finds that many
conceptual issues first need to be cleared, before mathematical interfaces – such as probab-
ilities – can be created to link models at these layers, and only then standardized software
development can become a reality. (The only exception to this would be for entirely end-to-
end machine learning systems, which are not generally considered to be safe or practical due
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to their lack of transparency.)
At the level of single pedestrian modelling, there now exist good control theoretic models

of optimal walking behaviour from known origin to known destination. Here, pedestrians do
not usually walk in straight lines, but optimise gradual turning during walking to move in
smooth curves. There has been some recent research success in inferring likely destinations
from historical data and partial trajectories.

When interaction with other agents is included, models of pedestrians rapidly become
more complex and much less well understood. Suboptimal models include only finite or-
ders of epistemological models of pedestrians beliefs, raising the open question of how to
handle higher order beliefs about beliefs. Recent game theory approaches have just begun to
find optimal behaviours in these higher-order belief cases but only under various simplifying
assumptions.

There has been a general shift away from psychology-informed models, using empirical
findings such as demographics predicting behaviours, to purely big-data-driven models which
learn aspects of such theories internally as black boxes, usually aiming only to predict the
behaviour rather than give theoretical explanations of it.

The role of signalling between pedestrians and vehicles during interactions has been stud-
ied qualitatively, but is not yet understood at the algorithmic level. Psychologists and road
safety designers have evaluated and commercialised many signalling mechanisms, such as
flashing of headlights, use of horns, and custom communication light signals. Finding al-
gorithmic strategies to make optimal use of them, and to process information from receiving
signals from others, suitable for real-time AV control, remains an open and important ques-
tion.
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Chapter 4

Evaluating Pedestrian Interaction Preferences with a Game Theoretic
Autonomous Vehicle in Virtual Reality

Abstract

Localisation and navigation of autonomous vehicles (AVs) in static environments are now
solved problems, but how to control their interactions with other road users in mixed traffic
environments, especially with pedestrians, remains an open question. Recent work has begun
to apply game theory to model and control AV-pedestrian interactions as they compete for
space on the road whilst trying to avoid collisions. But this game theory model has been
developed only in unrealistic lab environments. To improve their realism, this study em-
pirically examines pedestrian behaviour during road crossing in the presence of approaching
autonomous vehicles in more realistic virtual reality (VR) environments. The autonomous
vehicles are controlled using game theory, and this study seeks to find the best parameters for
these controls to produce comfortable interactions for the pedestrians. In a first experiment,
participants’ trajectories reveal a more cautious crossing behaviour in VR than in previous
laboratory experiments. In two further experiments, a gradient descent approach is used
to investigate participants’ preference for the AV driving style. The results show that the
majority of participants were not expecting the AV to stop in some scenarios, and there was
no change in their crossing behaviour in two environments and with different car models
suggestive of car and last-mile style vehicles. These results provide some initial estimates for
game theoretic parameters needed by future AVs in their pedestrian interactions and more
generally show how such parameters can be inferred from virtual reality experiments.

1 Introduction

The widely predicted arrival of autonomous vehicles (AVs) on the roads poses several con-
cerns regarding their future interaction with other road users, in particular with pedestrians.
Unlike static objects in the environment which can be mapped and routed around by an AV,
pedestrians are active and interactive agents, who move around to actively obtain their own
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Figure 4.1: Two agents negotiating for priority at an intersection

goals and also interactively in response to the AV’s own actions. Pedestrians can now be
detected and tracked quite reliably [4] but modelling and controlling interactions with them
remains an open question [5].

Recent trials of autonomous minibuses in European cities [28]1 has shown that pedestrians
can easily take advantage over AVs: these autonomous minibuses were programmed to stop
when any pedestrian stepped in front of them. After a few days observing the AV’s behaviour,
some pedestrians appeared to learn this safety feature and started stepping intentionally in
front of the AV, with instances of this behaviour occurring around once every three hours.
Human drivers would not allow this to occur and would instead usually control their vehicles
in ways to suggest some threat to such pedestrians, interacting with them to encourage
them to get out of their way. This inability of current AVs to similarly control this type
of interaction is one of their biggest problems, known as the ‘freezing robot problem’ or
‘the Big Problem with self-driving cars’ [2]. To make progress towards creating suitable AV
interaction controllers, we thus recently proposed a game theory model, called ‘sequential
chicken’ for such interactions [19], where a pedestrian encounters an autonomous vehicle at
an unsignalized intersection, as shown in Fig. 4.1. Game theory offers a framework to model
decision-making between rational agents, it has been widely used, for example, in Economics
[33] and for coordinating multi-robot systems [31]. We do not use conventional statistical
analyses because they rely on a separation of cause and effect, or controlled and observed

1https://www.youtube.com/watch?v=PUr8ljfb2Cg
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variables. But when studying interactions between agents, we inherently have both agents
taking both roles, affecting one another, which is a better fit to game theoretic models than
statistical methods.

After finding mathematical solutions to the model in terms of its free parameters, we
then showed how the numerical values of its parameters can be fitted from empirical data.
Unrealistic laboratory experiments were used to demonstrate this method. We first asked
participants to simulate interactions in a board game in [9]. Secondly, participants were asked
to play the game in person moving on squares with a set of two speeds (SLOW, FAST) [6].
Finally, participants played the game by moving continuously towards each other at their
preferred pace [7]. While providing a proof of concept of the method for finding parameters,
these laboratory experiments showed unrealistic results, with participants preferring to save
time rather than avoiding collisions in order to win what they perceived as games against the
other player rather than protect their safety as they may value more in real life.

The present study aims to extend these experiments by applying the same parameter
fitting method to new more realistic interaction scenarios. The new scenarios use virtual
reality (VR) to enable a subject to interact with a game theoretic autonomous vehicle in the
same road crossing scenario. VR offers the opportunity to experiment on human behaviour
in simulated real world environments that can be dangerous or difficult to study, such as
pedestrian road crossing, in which experiments need to explore human behaviour leading up to
and during actual collisions between vehicles and pedestrians [12, 21]. Virtual reality provides
a much greater realism than the previous laboratory experiences, including a real sense of
fear from being hit by the vehicle due to its apparent physical presence. These experiments
are intended to show how more realistic game theory parameters can be recovered from VR
interactions. These parameters could then be built into future AV software to help control
their interactions with pedestrians, as well as providing interesting insight into pedestrian
behaviour itself.

AVs are on their way not only to roads, but also to pavements in the form of autonomous
last-mile robots used for urban delivery tasks [22, 11]. Last-mile delivery vehicles are usually
smaller than road vehicles, share the same pavements as pedestrians, and drive at lower
speeds. To better understand this new and important use-case for AV interaction control, we
also investigate participants’ behaviour with these last-mile type vehicles to test if humans
prefer to interact with them differently from on-road cars.
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2 Related Work

This section gives an overview of related studies on pedestrian crossing behaviour and pedestrian–
AV interactions using virtual reality, showing that previous work does not yet provide the
game theoretic parameters of interest and thus motivating the new experiments.

2.1 Pedestrian crossing behaviour in virtual reality

In recent years, pedestrian crossing behaviour has been studied using virtual reality envir-
onments. In particular, VR has been used for teaching safe crossing behaviour to child
pedestrians [44, 29, 46]. For example, [46] studied child and young adults crossing behaviour
in VR, and recommended the use of VR for future studies in this domain. Other studies have
focused on hazardous crossing situations such as [30] where an investigation was carried on
child and adult pedestrians’ ability to detect dangerous situations while crossing in a virtual
environment. The study showed that the awareness of hazardous situations increases with
the age. [52] studied older and younger adults crossing behaviour in a virtual environment.
They recorded pedestrian behavioural data, such as their head and eye movement. Their
results showed a safer crossing behaviour from younger adults and that older adults tend
to look at the ground rather than the other side of the street. [15] investigated pedestrian
crossing behaviour and risk acceptance in a virtual environment. Their results suggest that
VR creates realistic simulations and allows to test pre-crash events without injuries. [16]
studied pedestrian behaviour in critical crossing scenarios using presence questionnaires for
gap acceptance analysis. Their results showed no significant difference between the crossing
behaviour in their different scenarios. [45] investigated distracted pedestrian behaviour in
VR and at a real intersection. Their results showed that pedestrians self-reported a behavi-
oural change but no significant difference has been observed in the real world. [51] studied
pedestrian crossing decisions at roundabouts, mainly evaluating pedestrian gap acceptance
between moving vehicles in a virtual environment. Their results were consistent with real-
world data. [1] studied pedestrian crossing behaviour in virtual and real environments for
different tasks. Their results showed no difference in most tasks except for the vehicle speed
estimation and pedestrian’s presence.
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2.2 Pedestrian–AV interactions in virtual reality

Some VR studies have also specifically begun to study autonomous vehicle interactions with
pedestrians. [50] developed five different behaviours for an autonomous vehicle. The vehicle
behaviour was successfully tested in different simulated traffic scenarios such as at intersec-
tions and for lane changing, in a simulated city and highway road networks. [23] studied
autonomous vehicles interactions with pedestrians in a virtual environment. In one of their
experiments, participants were asked to cross a road in front of them while a vehicle is ap-
proaching. Their experiment differs from ours in that the AV stops and shows (or not) a stop
intent to pedestrians. This study aimed to show the importance of substituting communica-
tions between pedestrians and drivers by some explicit communication forms for self-driving
cars. [37] performed an experiment with participants on their crossing behaviour using vir-
tual reality. They used task analysis to divide pedestrian–vehicle interaction as a sequence
of actions giving two outcomes, either the vehicle passes first or the pedestrian crosses. [21]
proposed a testing procedure for studying safety critical systems, e.g. autonomous vehicles
interacting with pedestrians, using VR techniques. This test bed can take into account dif-
ferent factors that could influence pedestrian behaviour such as their understanding of the
environment, their body movement and their personality. [43] investigated social cues in
pedestrian–AV interactions in a VR environment. Their study showed that VR is a powerful
tool for studying pedestrian–AV interactions but also that social cues could be manufactured
through the vehicle trajectory. [47] validated the use of virtual reality for pedestrian–AV in-
teractions. Moreover, their study showed that explicit HMI improves the interactions between
autonomous vehicles and pedestrians. [13] investigated pedestrian preferences for external
features on a fully autonomous vehicle in VR. Their results showed a significant change in
pedestrian crossing due to the external displays. [14] showed that facial communication cues
such as eye contact do not play a major role in pedestrian crossing behaviour, and that the
motion pattern and behaviour of vehicles are more important. The field study in [42] showed
similar results with an “unmanned” vehicle, suggesting that the same results could be found
with autonomous vehicles. [41] also showed that vehicle movement is sufficient for indicating
the intention of drivers and presented some motion patterns of road users such as advancing,
slowing early and stopping short. [10] developed an AV prototype with “eyes” in a VR study.
Their results showed that pedestrians were quicker at making their crossing decision and
they feel safer knowing that the AV has seen them. [3] studied pedestrian reactions (trust,
safety) to different AV manoeuvres in a virtual environment. Their results showed that VR is
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realistic for studying pedestrian behaviour. [36] studied pedestrian–vehicle interactions using
recorded 360◦ videos displayed in VR. Their results showed that pedestrians may change their
crossing behaviour based on an AV appearance. In [35], the same authors studied pedestrian
crossing behaviour in VR. Pedestrian trust levels were measured and they showed a higher
crossing intention. No crossing difference was found between vehicle types. The authors used
a mixed-model binomial logistic regression and found that the presence of a zebra crossing
and large gaps between vehicles lead to more pedestrian crossing.

2.3 Game theory for pedestrian–AV interactions

Game theory has been widely used for various applications in transportation, such as vehicle
to vehicle (V2V) communications [48, 24, 49], freight transportation [17], driver-AV inter-
actions [34, 18]. The few game theory models that focused on pedestrian–AV interactions
are very recent. For example, [32] proposed two variants of a game theory model for AV in-
teractions with cyclists and pedestrians. [39] developed a game theory model for pedestrian
motion and walking behaviors. [38] then extended this model and built upon it a game theor-
etic framework for pedestrian–vehicle and pedestrian–pedestrian interactions. [26] proposed
a level-k game theory model for autonomous vehicle controller at unsignalised intersections,
based on a discrete time, set of actions and a reward function. The game theory model in
this work called the sequential chicken model was proposed in [19], it is based on the famous
game of chicken. The model is detailed in Sec. 3.2.

Summary of the contributions:
The above related work has shown that virtual reality is a reliable tool for studying human

behaviour. Despite these numerous studies, it finds no previous study with a game theoretic
vehicle interacting with human pedestrians in a VR environment. The present study fills this
gap and uses VR to run the game theoretic model proposed in [19] on a virtual autonomous
vehicle and then evaluates the behavioural preferences of human participants. Thus, this
paper:

• shows the first attempt to quantitatively evaluate pedestrian behaviour during interac-
tion scenarios with a game theoretic autonomous vehicle in a virtual reality environ-
ment;

• proposes a new method sufficient to infer specific numerical values for use in AV inter-
action control software;
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• demonstrates the importance of VR for pedestrian behaviour study and for the devel-
opment and testing of autonomous vehicle algorithms.

3 Methods

Our method consists in controlling an AV in VR using the game theory model, then measuring
human subjects’ behaviour during, and their responses after road crossing interactions with
the AV under varied parameter settings of the game theory controller. In our previous work,
we inferred game theory parameters to describe human behaviours, but here in contrast it
is the parameters of the AV which are varied and studied. We seek the best parameters for
the AV controller, which could for example then be built into real vehicles as part of their
control.

3.1 VR Setup

The study was conducted using an HTC Vice Pro head mounted display (HMD). Participants
did not use the HTC Vice controllers, as no interactions other than walking were required.
The HMD was used with the HTC wireless adapter in order to facilitate easier movement
during the simulation. We used an area of approximately 6 m by 3 m to conduct the simulation
(as shown in Fig. 4.2), which was mapped using the usual HTC Vive room mapping system.
The size of this area slightly exceeds that recommended by the manufacturer; however, we
experienced no technical problem with tracking or system performance. The start position on
the floor was marked with an “X” using floor tape, so that participants knew where to stand
at the start of each simulation, prior to placing the HMD on their head. The simulation was
created using the Unity 3D engine1, and was run under Windows 10 on a PC based on an
Intel Core i7-7700K CPU, with 32GB of RAM, and an Nvidia GeForce GTX 1080 GPU.

3.2 Game-theoretic AV behaviour model

The virtual AV was designed to drive using the sequential chicken model [19]. In this model,
two agents (e.g., pedestrian and/or human or autonomous driver) called Y and X are moving
towards each other at an unmarked intersection. This process occurs over a discrete space
(the path is formed of squares) as in Fig. 4.3 and discrete times (‘turns’) during which the
agents can adjust their discrete speeds. Here a turn corresponds to one discrete time step,

1https://unity.com/
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Figure 4.2: VR Lab

Figure 4.3: Sequential Chicken Model
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i.e. the time offered to the agents to make a new decision. They simultaneously select their
speed of either 1 square per turn (SLOW) or 2 squares per turn (FAST), at each turn. Space
and time are discrete to keep the model simple and computationally tractable. Both agents
want to pass the intersection as soon as possible to avoid travel delays, but if they collide,
they are both bigger losers as they both receive a negative utility, Ucrash. Otherwise if the
players pass the intersection, each receives a time delay penalty, −TUtime, where T is the
time from the start of the game and Utime represents the value of saving one turn of travel
time.

The model assumes that the two players choose their actions (speeds) aY , aX ∈ {1, 2}
simultaneously then implement them simultaneously, at each of several discrete-time turns.
There is no lateral motion (positioning within the lanes of the roads) or communication
between the agents other than via their visible positions. The game is symmetric, as both
players are assumed to know that they have the same utility functions (Ucrash, Utime), hence
they both have the same optimal strategies. These optimal strategies are derivable from
game theory together with meta-strategy convergence, via recursion. Sequential chicken can
be viewed as a sequence of one-shot sub-games, whose payoffs are the expected values of new
games resulting from the actions, and are solvable by standard game theory.

The (discretised) locations of the players can be represented by (y, x, t) at turn t and
their actions aY , aX ∈ {1, 2} for speed selection. The new state at turn t + 1 is given
by (y + aY , x + aX , t + 1). We define vy,x,t = (vYy,x,t, vXy,x,t) as the value (expected utility,
assuming all players play optimally) of the game for state (y, x, t). As in standard game
theory, the value of each 2× 2 payoff matrix can then be written as,

vy,x,t = v(


v(y − 1, x− 1, t+ 1) v(y − 1, x− 2, t+ 1)

v(y − 2, x− 1, t+ 1) v(y − 2, x− 2, t+ 1)

), (4.1)

which can be solved using dynamic programming assuming meta-strategy convergence equi-
librium selection. Under some approximations based on the temporal gauge invariance de-
scribed in [19], we may remove the dependencies on the time t in our implementation so that
only the locations (y, x) are required in computation of vy,x and optimal strategy selection.

The virtual car model was imported from Unity Asset Store. The AV began driving
40 meters away from the intersection. The vehicle moved and adapted its behaviour to
participants’ motion. Every time step, the AV observed the current position of the pedestrian
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and made its decision based on the game theory model. The AV was designed not to stop
completely for any pedestrian, rather it was designed only to slow to a lower but nonzero speed
if necessary to yield to them. This was because a complete stop could potentially last forever,
while ensuring a positive speed at all times guarantees a finite length interaction, which is
required by the finite mathematics of the game theory model. In fact, in the sequential
chicken model, if the two players play optimally, then there must exist a non-zero probability
for a collision to occur. Intuitively, if we consider an AV to be one player that always yields,
it will make no progress as the other player will always take advantage over it, hence there
must be some threat of collision.

3.3 Human experiment

We invited members of staff and students from the University of Lincoln to take part in our
study composed of three experiments, under the University of Lincoln Research Ethics. A
few participants did the three experiments at different moments, some did two experiments
and some others did only one experiment. Participants were not informed about the virtual
vehicle behaviour, so they did not know that it was an autonomous vehicle nor that it had a
game theoretic behaviour.

3.3.1 Experiment 1

We had 11 participants, 10 males and 1 female aged between 19 and 37 years old, who took
part in this first experiment, seven of them had previous experience with VR. Participants
were asked to cross a road in front of them as they would do in everyday life. They should
stop moving on the other side of the road, when they reach a yellow cube used as a VR
obstacle which people would avoid. The cube was located there for safety reasons, so the
participants do not walk into a wall in real life, as shown in Fig. 4.2. A vehicle approaches
from their right hand side. The AV’s full speed was 30km/h, its lowest speed was 15km/h and
it updated its decision every 0.02s. Participants began walking about 4 meters away from
the intersection. Prior to the experiment, participants were introduced to the experimental
setup and trained on walking within the VR environment with the VR headset. There were
6 trials per participants in the virtual environment with the first trials considered as practice
runs in order to get the subjects comfortable with the setup before the actual data collection.
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(a) Top view of the scene used for Experiments 1
and 2

(b) Virtual Autonomous Vehicle (c) Participant taking part in the study

Figure 4.4: VR Experiment
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3.3.2 Experiment 2

Nine participants, 7 males and 2 females, aged from 21 to 39 years old took part in the
study. Seven participants had previous experience with VR. Participants were given the
same instructions as in Experiment 1, the environment and the AV’s speed were also the
same. The particularity here is that participants were asked, after each interaction, whether
they preferred their last interaction with the vehicle or the previous one, in the sense of
whether they found the vehicle behaviour more “natural” and more “realistic”. Note that
this is different from asking for a preference based on their own utility such as whether
they managed to cross quickly. At each new interaction, the parameters were adjusted by
the experimenter using a manual gradient descent, to seek parameters for the autonomous
vehicle that were the most preferred by the participant. Two parameters were changed, the
first one being about the spatial motion i.e. the number of discrete cells used in the sequential
chicken model and the second parameter was about the time delay i.e. the amount of time
that would elapse between two decisions made by the AV. There were 8 proposed parameters
in the spatial axis {3 cells, 5 cells, 10 cells, 15 cells, 20 cells, 25 cells, 30 cells, 40 cells} and
3 proposed in the temporal axis {0.02s, 0.5s,1.0s}. The experimenter would ideally move
one step along each axis per interaction, but the experimenter’s subjective intuition was also
allowed to hypothesize other parameter changes to try to speed up the gradient descent. This
is an acceptable use of experimenter subjectivity because the aim of gradient descent is only
to find the best parameters, so any form of proposal is acceptable if it gives better results
than previous ones.

3.3.3 Experiment 3

This experiment investigated pedestrian interactions with a last-mile type delivery vehicle.
The protocol was exactly the same as in Experiment 2, except that here, the environment
was designed to look more like a park or a garden, by replacing the wide tarmac road with
a narrower pathway without markings as shown in Fig. 4.5a. This was to test whether this
type of environment alters pedestrian behaviour. The type of vehicle used was also different,
it was smaller, with a different colour and looked like a single person podcar, as shown in
Fig. 4.5b, and for this reason, the AV’s lowest speed was set to 4km/h, to show a significant
deceleration. The 3D car model was imported from Unity Asset Store. Six participants, 5
males and 1 female, aged from 21 to 39 years old took part in the study, with 5 participants
having had previous experience with VR.

149



3 Methods

(a) Top view of the scene (b) Small virtual vehicle

Figure 4.5: Experiment 3

3.4 Gaussian process parameter posterior analysis

We used Gaussian process (GP) regression [40] to fit the posterior belief over the behavioural
parameters of interest, θ = (Ucrash, Utime) from the observed data, D. Under the sequential
chicken model, M , these are,

P (θ|M,D) = P (D|θ,M)P (θ|M)∑
θ′ P (D|θ′,M)P (θ′|M) . (4.2)

We assume a flat prior over θ so that,

P (θ|M,D) ∝ P (D|θ,M), (4.3)

which is the data likelihood, given by,

P (D|θ,M) =
∏
game

∏
turn

P (dgame,turnX |y, x, θ,M ′), (4.4)

where dgame,turnplayer are the observed action choices, and y and x are the observed player
locations at each turn of each game. Here M ′ is a noisy version of the optimal sequential
chicken model M , which plays actions from M with probability (1−s) and maximum entropy
random actions (0.5 probability of each speed) with probability s. This modification is
necessary to allow the model to fit data where human players have made deviations from
optimal strategies which would otherwise occur in the data with probability zero. Real
humans are unlikely to be perfectly optimal at any time as they may make mistakes of
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perception and decision making. This is a common method to weaken psychological models
to allow non-zero probabilities for such mistakes if present [27, 9, 6].

For a given value of θ, we may compute the optimal strategy for the game by dynamic
programming as shown in Algorithm 1. Optimal strategies are in general probabilistic, and
prescribe the P (dgame,turnX |y, x, θ,M) terms to compute the above data likelihood. We then
use a Gaussian process with a Radial Basis Function (RBF) kernel to smooth the likelihood
function over all values of θ beyond a sample whose values are computed explicitly. In
practice, this is performed in the log domain to avoid numerical computation problems with
small probabilities. The resulting Gaussian process is then read as the (un-normalized, log)
posterior belief over the behavioural parameters θ = {Utime, Ucrash} of interest.

To fit parameters of the discrete sequential chicken model to the continuous pedestrian
trajectory data, it was discretised assuming an average speed of 1m/s and sampled every 3
time steps; a similar approach was used in [7].

Algorithm 1 Optimal solution computation
for Ucrash in range(Ucrashmin

, Ucrashmax) do
2: for Utime in range(Utimemin , Utimemax) do

S← strategy matrix(NY ×NX × 2) for P (player X chooses speed 2|y, x)
4: loglik = 0

for each game in data do
6: for each turn in game do

loglik =
∏
game

∏
turn

(1− s)P (dgame,turnX |y, x, θ,M) + s(1
2)

8: end for
end for

10: Store loglik(Ucrash, Utime)
end for

12: end for
maxloglik ← max of loglik(Ucrash, Utime)
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Table 4.1: Statistics about pedestrian crossing choices

Pedestrian Action Experiment 1 Experiment 2 Experiment 3

Crossing 6 12 30

Stopping 49 118 58

Total 55 130 88

(a) Pedestrian–AV trajector-
ies: stopping

(b) Pedestrian–AV trajector-
ies: crossing

(c) Pedestrian behavioural
preference

Figure 4.6: Results Experiment 1

4 Results

4.1 Statistics

Table 4.1 shows some statistics about pedestrian crossing choices in the three experiments.
We observe that very few pedestrians decided to cross in Experiments 1 and 2, about 10%
crossings in each, whereas in Experiment 3, participants were more assertive and crossed in
34% of the interactions. This result is not surprising, in fact, this can be easily explained by
the difference in the AV’s slow speed, 15km/h (Experiments 1and 2) versus 4km/h (Exper-
iment 3), showing that pedestrians adapt their behaviour to the vehicle’s behaviour rather
than on its appearance, as found in [14, 41].
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(a) AV parameters =(5 cells,
1s)

(b) AV parameters = (25 cells,
0.02s)

(c) AV parameters = (10 cells,
0.5s)

(d) AV parameters = (15 cells,
0.5s)

(e) AV parameters = (30 cells,
0.02s)

(f) AV parameters = (10 cells,
1s)

(g) AV parameters = (5 cells,
0.02s)

(h) AV parameters = (15 cells,
0.5s)

(i) AV parameters = (25 cells,
1s)

Figure 4.7: Examples of pedestrian–AV trajectories from Experiments 2 and 3
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4.2 Pedestrian behaviour in Experiment 1

In total, 55 pedestrian–vehicle interactions were recorded. Among those interactions, ped-
estrians managed to cross the road before the AV reached the intersection only 6 times.
These crossings usually happened after the first trials, by pedestrians who felt more con-
fident after evaluating/gauging the AV driving style. Most interactions looked similar to
Figs. 4.6a (pedestrian stopping) and 4.6b (pedestrian crossing), which show the trajectories
of the human participant and the virtual autonomous vehicle. In particular, the trajectory
profile in Fig. 4.6a shows that pedestrians were slowing down very quickly after seeing the
AV, they were not playing optimally the game of chicken, so that the AV could cross most
of the time.

Using Algorithm 1 for Experiment 1 trajectories, we obtain a behavioural parameter θ =
Ucrash/UT = −330/0, for participants, as shown in Fig. 4.6c. This reveals that pedestrians
valued the avoidance of a crash 330 times more than a 0.02s time saving per turn, resulting
in pedestrians being less assertive in crossing the road. In comparison, previous laboratory
experiments found that participants valued time saving more than collision avoidance [9, 6].
Thus, the use of virtual reality has made the interactions much more realistic.

4.3 Pedestrians’ evaluation of the virtual AV behaviour using gradient
descent (Experiments 2 and 3)

Fig. 4.7 shows examples of pedestrian–AV trajectories from Experiments 2 and 3. Examples
are presented in Fig. 4.8 from four participants’ interactions with the virtual AV for finding
their most preferred AV parameters using the gradient descent approach. The results for
pedestrians’ most preferred parameters are summarized in Fi.g. 4.9a for Experiment 2 and
in Fig. 4.9b for Experiment 3. The mean parameter values for the experiments {mean exp2 =
(16 cells, 0.34s), mean exp3 = (19 cells, 0.35s)}, are found to be quite similar. That suggests
that pedestrians had similar preferences for the AV behaviour in both environments but also
that they behaved in the same way.
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(a) Preferred AV parameters = (3 cells, 0.02s) (b) Preferred AV parameters = (5 cells, 0.02s)

(c) Preferred AV parameters = (10 cells,
0.02s) (d) Preferred AV parameters = (25 cells, 1s)

Figure 4.8: Examples of gradient descent approach for pedestrian most preferred AV para-
meters selection
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(a) Experiment 2 (b) Experiment 3

Figure 4.9: Results of pedestrian most preferred AV parameters using gradient descent

4.4 Evaluation of pedestrian crossing behaviour using Gaussian process
regression (Experiments 2 and 3)

After applying Gaussian process regression and optimising s to maximise the likelihood at the
Maximum A Posteriori (MAP) point of θ, the posterior distribution over θ = {Ucrash, Utime}
are shown in Figs. 4.10a and 4.10b. The MAP estimate of the parameters is found to be
the same for Experiments 2 and 3, it is around Ucrash = −330, Utime = 0, at s2 = 0.32,
and s3 = 0.2057, respectively. Unsurprisingly, the same parameter estimate was found in
Experiment 1. The 330 : 0 ratio in the utilities means that assuming the noisy model M ′

the subjects valued the avoidance of a crash 330 times than saving any time. And the si
value , i ∈ {2, 3}, means that the subjects make mistakes from optimal behaviour in 32% and
20.57% of actions in Experiments 2 and 3, respectively. Significance of the results can be seen
by inspection of the thin standard deviation widths of 1D slices through the 2D posterior as
shown in Figs. 4.10c and 4.10d. The finding of the same MAP estimate for both experiments
shows that participants behaved similarly within the two environments and with the different
car models.

5 Discussion

The results provide new estimates for specific numerical parameters which AV controller
software could use in the sequential chicken model to control interactions with pedestrians.
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(a) Gaussian process regression for Experiment 2 (b) Gaussian process regression for Experiment 3

(c) GP slice for Experiment 2 (d) GP slice for Experiment 3

Figure 4.10: Pedestrian behavioural preferences for Experiments 2 and 3: Figs. 4.10a and
4.10b show the Gaussian process log-posterior over behavioural parameters. Figs. 4.10c and
4.10d show the slices through the Gaussian process showing standard deviation log-posterior
confidence.
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The result in study 1 is important as it shows that virtual reality makes pedestrian crossing
behaviour more realistic than in the previous laboratory experiments [9, 6]. Pedestrians
had a higher preference for avoiding collisions in VR, which gives confidence that the VR
environment is more realistic than the previous laboratory experiments and therefore that
the numerical parameters found next are good.

The other two experiments then showed that when interacting with an autonomous
vehicle, pedestrians care more about the vehicle behaviour than its appearance, i.e. whether
it should slow down, keep driving or completely stop for them, as found with the gradient
descent method and in [14, 42, 41]. An interesting point to raise here is that the gradient
descent method provided numerical results that could be inserted into future experiments or
even practical vehicles.

The results from the Gaussian process regression also showed that participants behave
similarly in different environments and with different car models, similar to the results in [35].
In particular, in Experiment 3, it appeared that the smaller car and the park environment did
not make much difference in pedestrian crossing behaviour. These VR studies also confirm
that pedestrian behaviour can be represented by one parameter θ and that there is a linear
mapping between Ucrash and Utime, a similar result was found in [9, 6].

There are some limitations with these experiments. The gradient descent takes a long time
to run and it was hard for the experimenter to hypothesise which direction to follow, because
after several interactions, participants sometimes rejected a set of preferred parameters that
they approved several times before. It was also confusing and confounding to infer parameters
for both pedestrians’ own behaviour and their preferred AV behaviour. Hence, other methods
of learning the best behavioural parameters for the autonomous vehicle will be explored
in future studies. At first, we plan to simplify the protocol by replacing the virtual game
theoretic AV by a human participant driving a virtual vehicle, so that to learn the behavioural
parameters of participant drivers and used them for the game theoretic AV. Future work will
also further investigate pedestrian crossing behaviour with different car models and within
different environments with a larger number of participants.

The GP results from a previous laboratory experiment showed that Utime = 45 was bigger
than Ucrash = −30 [6], which is unrealistic, here instead we obtain an absolute measure of
Ucrash = −330 that is much bigger than Utime = 0, meaning that participants valued collision
avoidance much more than saving time. However, the statistics may not be powerful enough
to distinguish between values of Ucrash → − inf and Ucrash = -330, this is shown in Figs. 4.10c
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and 4.10d with the curve becoming more and more horizontal for Ucrash < −300. We believe
that collecting larger data would help make the distinction and measure the parameters more
accurately.

The results of these experiments should be consistent if moved from the VR lab to the
real world (UK), because subjects were asked to behave as in real life and they are not
incentivised to do otherwise. However, moving from one country to another, the numbers
may vary because of different cultural norms [25]. The statistically implied values of travel
times and human lives, and risk appetites, are well-known to vary between cultures and the
sequential chicken analysis might help to better model and understand these relationships
from data in the future.

Previous work [20] has shown that pedestrian–driver interactions at semi-crosswalks are
different when the road changes from one way to a two-way street. For instance, it was
observed that drivers tend to decelerate or stop more on the two-way setting. Thus, future
work should investigate the effects of road settings on pedestrian–AV interactions.

Potential policy implications of this work include better understanding and regulating
autonomous vehicle interactions with pedestrians. The sequential chicken model shows that
unless AVs are able to inflict some kind of negative utility onto pedestrians, then pedestrians
can always push in front of them to win interactions and impede the AV’s progress. A
collision is an obvious but extreme form of negative utility which policy obviously wishes to
avoid. By understanding and quantifying how the tradeoff between time saved and risk of
collision works, as in the present study, the game theory mathematics could then be used
to replace the rare but extreme risk of collision with some other, more common but less
extreme negative utility. One possible solution, proposed in [8], is to use humans’ sense of
psychological discomfort when their personal space is invaded by other agents (proxemics)
as such a negative utility. Without this replacement, policy would either have to tolerate
occasional actual, deliberate collisions by AVs, or risk them making no progress. With the
replacement, AVs can operate safely and efficiently but within existing regulations which
prevent collisions.
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Chapter 5

Space Invaders: Pedestrian Proxemic Utility Functions and Trust
Zones for Autonomous Vehicle Interactions

Abstract

Understanding pedestrian proxemic utility and trust will help autonomous vehicles to plan
and control interactions with pedestrians more safely and efficiently. When pedestrians cross
the road in front of human-driven vehicles, the two agents use knowledge of each other’s
preferences to negotiate and to determine who will yield to the other. Autonomous vehicles
will require similar understandings, but previous work has shown a need for them to be
provided in the form of continuous proxemic utility functions, which are not available from
previous proxemics studies based on Hall’s discrete zones. To fill this gap, a new Bayesian
method to infer continuous pedestrian proxemic utility functions is proposed, and related to a
new definition of ‘physical trust requirement’ (PTR) for road-crossing scenarios. The method
is validated on simulation data then its parameters are inferred empirically from two public
datasets. Results show that pedestrian proxemic utility is best described by a hyperbolic
function, and that trust by the pedestrian is required in a discrete ‘trust zone’ which emerges
naturally from simple physics. The PTR concept is then shown to be capable of generating
and explaining the empirically observed zone sizes of Hall’s discrete theory of proxemics.

1 Introduction

Autonomous vehicles (AVs) are claimed by many organisations to be close to commercial
reality, but their lack of human behaviour understanding is raising concerns. While robotic
localisation and navigation in static environments [76] and pedestrian detection [9] are well
understood, AVs do not yet have the social abilities of human drivers – who can read the
intentions of other road users, predict their future behaviour and then interact with them
[10]. Pedestrians, unlike other road users such as cyclists, do not usually follow specific traffic
rules, in particular when crossing the road at unsigned crossing points, making them especially
difficult to model, predict, and interact with. Pedestrians and human drivers communicate
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Figure 5.1: Road-crossing scenario

and interact with one another via nonverbal signals including their positions and speeds,
which are used to transmit intent information as well as to make progress on the road [66].
For example, a vehicle which drives deliberately close to a pedestrian to scare them is telling
them to yield, while a vehicle which maintains a larger distance from them is inviting them
to cross.

Recent trials of autonomous minibuses in La Rochelle (France) and Trikala (Greece)
[52], highlighted the major drawback of perfectly safe self-driving cars: it was found that
pedestrians were intentionally stepping in front of the AV several times in a day, delaying
their progress in the knowledge that they would always yield to the pedestrian. This abuse
of perfect safety systems is known as the ‘big problem with self-driving cars’ [8], and in the
limiting case of optimal pedestrian behaviour and large crowd size becomes the ‘freezing robot
problem’ of vehicles making no progress at all, as they are constantly forced to yield in every
interaction [78].

To make progress towards such understanding, we recently proposed and solved a game-
theoretical mathematical model of the road-crossing scenario represented in Fig. 5.1, based
on the famous game of ‘chicken’ and called ‘sequential chicken’ [27]. In this model, the
pedestrian and vehicle compete for space in the road as they move towards one another and
threaten to collide with one another, by making a temporal series of game theoretic decisions
to advance or yield. The model’s utility parameters for collisions and value of time were
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fit to human behaviours in a series of laboratory experiments [16] [11] [12] [13]. We also
analysed real-world pedestrian–vehicle interactions through sequence analysis [15] to learn
the most important features and how their ordering could be predictive of the outcome of an
interaction [14]. The simplest mathematical solution of this game theoretic model was found
to require the AV to deliberately hit the pedestrian with a small probability, in order to create
a credible threat which discourages other pedestrians from taking advantage of it in the rest
of the interactions [27]. This is not an ethical or legal arrangement for programming AVs in
practice [79]. But the model then also suggested the possibility of an alternative solution: if
the rare, large penalty of collisions could be replaced with more frequent but smaller negative
utilities inflicted on pedestrians, then the same average penalty could be created and progress
made by AVs without having to hit any pedestrians.

This motivates a new search for ways in which an AV could inflict small negative util-
ities onto pedestrians. Humans have evolved a sense of comfort and discomfort around one
another as part of their social interaction mechanisms, which could provide a convenient and
legal source of small negative utilities. For example, two pedestrians who actually collide
with one another while trying to reach their destinations will obviously experience a real,
physical negative utility, but it is found empirically that they also experience discomfort –
a purely internally generated, psychological negative utility – when they are close but not
actually touching. The study of this relationship was named proxemics by Hall [30]. Hall
classified four discrete distance zones between people – intimate, personal, social and public
– corresponding to distances where most people feel distinct levels of comfort or discomfort
during interactions. If humans have evolved to feel real psychological negative utilities in the
presence of only a possibility of collision, without it actually having to take place, then simply
invading their personal space could be sufficient to penalise them enough to satisfy the game
theory requirements.

It is not necessary for the reader of the present study to understand the game theory
model, which provides only the motivation for the present study rather than any methods.
The key motivation, taken only from its conclusions, is that it requires a utility function to
directly assign numerical utilities to agents as a function of their positions. Positions are in
general continuous values so a continuous proxemic utility function is required. Section 2
reviews the proxemic literature and finds that this is not yet available, which motivates the
present study to develop new methods to infer it in the required form.

The method in section 3 then forms a first step towards inferring pedestrian behaviour
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preferences for autonomous vehicle interaction control. It consists in directly inferring the
continuous proxemic utility function of pedestrians from offline data from human driver–
pedestrian interactions. This is the function that could then be programmed into autonomous
vehicles using the sequential chicken game theory model to provide small negative utilities.

To link continuous proxemic utility functions to the more conventional views and models
of proxemics from this literature, which are mostly based on Hall’s discrete zones, section
4 then introduces a new concept: ‘physical trust requirement’. We show that this concept
partitions the set of possible states of the world during interactions into three subspaces, for
each agent. In the first, a negative utility such as a collision will happen and there is nothing
either agent can do to prevent it. In the second, the negative utility may happen but only the
other agent can choose to act to prevent it – this is the ‘trust zone’. In the third, the negative
utility may happen but the pedestrian themself can act to prevent it, without needing to
trust the other agent. This definition of physical trust requirement may be general to many
human–robot interactions in physical or abstract state spaces, but in the case of autonomous
vehicle interactions with pedestrians, we provide results showing that it maps cleanly and
numerically to Hall’s physical proxemic zones, offering an explanation for why they emerge
as discrete zones even when the proxemic utility function itself is continuous.

Section 5 finally applies both the proxemic utility function inference and physical trust
requirement concept to existing public datasets, to report a real world continuous proxemic
utility and physical trust requirements for the first time.

2 Related Work

This section gives a survey of related work, to search for any existing reports of numerical
proxemic functions, or for any related results which might be used to infer such functions
without the need for a new experiment. In particular, Hall’s influential work has encouraged
most studies to measure and report results in terms of discrete zones, discarding the continu-
ous distance information which we now require. This motivates the present study to infer
continuous proxemic utility functions for the first time.

2.1 Proxemics in Social Sciences

Measuring interpersonal distances during social interactions is a well-studied topic in the
social sciences since the introduction of the concept by Hall [30]. For example, it was found
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for human–human interactions that the intimate space is up to 0.45cm, the personal space is
up to 1.2m, the social space is up to 3.6m, and the public space is beyond this [45]. Thompson
et al. [75] measured individuals’ interaction preferences via the rating of videotapes. This
study showed that people have a distance where they feel comfortable during their interactions
and when the distance is smaller or greater than that, they feel more discomfort. Hayduk
[31] showed via a study with university students that personal space is a two-dimensional
noncircular and flexible space that can vary in shape and size. Hecht et al. [32] performed
two laboratory experiments (including one in a virtual environment) with subjects and found
that personal space has a circular shape with about a 1-meter radius. However, we believe
that personal space can be modelled using only one dimension in the present road-crossing
scenario. Stamps [72] [73] whose work is based on the theory of permeability, i.e. how people
perceive (e.g. their safety) and make preferences within an environment, studied the effects
of distance on participants’ perception of threat. These results showed that the perceived
threat decreases with larger distances.

2.2 Proxemics in Human–Robot Interactions

Proxemics is also an active research area in human–robot interaction (HRI), as shown in
the review proposed by Rios-Martinez et al. [65] which focuses on social cues, signals and
proxemics for robot navigation. A recent review on nonverbal communication for human–
robot interaction was proposed in [69].

Walters et al. [81] proposed a framework that shows how to measure proxemic features in
HRI. Their study involved participants interacting with different robots and their preferences
were measured. It is explained that factors that may change human proxemics even by 20mm
to 150mm can be significant. In [3], a mobile robot was developed with an autonomous
proxemic system that could approach and avoid people using the distances from [81]. Koay
et al. [42] measured participants’ proxemics preferences using comfort level device during an
HRI task.

Mead et al. [55] proposed an automatic method for annotating spatial features from 3D
data of indoor human–robot interactions. In [56], the same data was used to train a Hidden
Markov Model (HMM) to classify the interactions either as initiating or terminating based on
the extracted physical Mehrabian’s metric [59] or psychophysical Hall’s metric [30]. In [57],
the same authors studied the interaction between a robot and more participants, one by one.
The interactions consisted in moving the robot towards the participants and backwards sev-
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eral times. The results showed that individuals’ pre-interaction proxemic preference (mean
= 1.14m, std = 0.49m) was consistent with previous studies. With a uniform performance in
the robot behaviour, the proxemic preference reached a mean = 1.39m and a std = 0.63m, the
participants adapted their proxemic preferences to improve the robot performance. Mead et
al. [58] also investigated the influence of proxemics on human speech and gestures and meas-
ured how that impacts on the robot speech and gesture production. Their study consisted
in recruiting 20 participants interacting by pairs (10 in total) who didn’t know each other
and each participant had to interact with the robot (PR2). Their results for human–human
interactions (HHI), with a mean = 1.44m and a std = 0.34m, was consistent with previous
studies but the HRI result (mean = 0.94m, std = 0.61m) was much larger than in previous
studies, which could be explained by the presence of robot gestures.

Heenan et al. [33] used proxemics and Kendon’s greeting observations [40] for a Nao
robot interacting with human encounters. They applied Takayama and Pantofarou’s [74]
empirical results for proxemics, which are 0.4m to 0.6m (average interpersonal distances)
with a 1.35m robot’s height. They observed a larger distance between women participants
and the robot, while men kept the same distance in HHI and HRI. In these experiments,
the researchers found an improvement of the robot’s social skills thanks to the proxemic
behaviour and its greeting manner. Warta et al. [83] measured levels of social presence
in HRI in a hallway. Participants were given a questionnaire to complete after interacting
with a robot for a navigation task. In [39], Joosse et al. used a coding system to detect
a set of attitudinal (likeability, human-likeness, trust) and behavioural attributes including
non-verbal behaviour (eye-gaze, proxemics, emotion etc.) from participants interacting with
a robot. The study showed some strong human reactions to a robot invading their personal
space.

Kostavelis et al. [44] proposed a dynamic Bayesian network on top of an interaction
unit to model human behaviour for a robot. Their method takes proxemic distances into
account, allowing the robot to approach people at different distances depending on their
current activity. Torta et al. [77] performed two psychometric experiments with subjects
interacting with a small humanoid robot and proposed a parametric model of the personal
space based on the results of these experiments. The model takes into account the distance
and the direction of approach, and was evaluated with a user study where subjects are sitting
and approached by the robot.

Henkel et al. [35] evaluated two predefined proxemic scaling functions (linear and log-
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arithmic) for human–robot interactions. Their approach is different from ours in that the
robot computes a gain value based on the proxemic distance with the human and then moves
accordingly. Their experiments with participants in a search and rescue scenario and fol-
lowed by a questionnaire showed a preference for a logarithmic proxemic scaling function.
Patompak et al. [63] developed an inference method to learn human proxemic preferences.
Their method is based on the social force model and reinforcement learning. They argued
that proxemic spaces can be limited to two zones, the first being the quality interaction area
where a robot could go without creating discomfort, and the private area which is the personal
space. In addition, we believe that one more area is needed to model the trust relationship
between humans and robots.

2.3 Proxemics in Pedestrian–AV Interactions

A comprehensive review on pedestrian models for autonomous driving is proposed in [9] [10],
ranging from low-level sensing, detection and tracking models [9] to high-level interaction and
game theoretic models [10]. In the context of autonomous vehicles, more work has been fo-
cused on pedestrian crossing behaviour [53], trajectory prediction [84] and for eHMI (external
Human–Machine Interface) [20][54][50][29]. Very few studies have investigated interpersonal
distances for pedestrian-vehicle interactions.

Risto et al. [66] studied the use of drivers’ movement to signal intent and how these signals
were understood by other road users. They video recorded pedestrian–vehicle interactions at
different intersections and observed that pedestrian discomfort can be created by the vehicle
approaching very close to the crosswalk boundary, which leads the pedestrian to slightly
change their trajectory towards the other edge of the crosswalk. It was also noted that
drivers tend to stop short, i.e. those who intended to stop used to do so much earlier than
required by the law (i.e. at the white line for stop or crosswalk). Interview responses and
observations showed that pedestrians use to understand ‘some forms of movement from the
vehicle as communicating a message’. For example, [15] and [47] showed evidence that such
implicit signalling through speed and positioning are the main form of signalling used in
road-crossing interactions, as explicit forms of signalling such as hand gestures and facial
expressions are not often used.

Domeyer et al [24] investigated the quantitative parameters (i.e. time) of pedestrian–
vehicle interactions at four pedestrian crossings, using annotated videos. In particular, the
authors were interested in the effects of vehicle stopping short time (i.e. their proximity with
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the pedestrians). Their results showed that the median short stop time was around 1s. They
also found that vehicles, that had higher short stop times, were creating more safety margins,
thus were more delayed. However, it was found that the stopping short time did not increase
the overall time that the vehicle and the pedestrian would spend at an intersection.

2.4 Trust in Human–Robot Interactions

Various definitions of trust have been used for human–robot interactions. This section intro-
duces some of these definitions and reports findings from several studies.

For instance, Lee and See [46] reviewed the concept of trust in automation. They defined
trust as an ‘attitude that an agent will help achieve an individual’s goals in a situation charac-
terised by uncertainty and vulnerability’. In [71], Smithson described trust as ‘a psychological
state that entails the willingness to take risks by placing oneself in a vulnerable position with
respect to the trustee’. He described uncertainty as being prevalent to a trust relationship,
there is no trust without any risks. Henschke [36] described trust as a ‘key value’ in the
development of autonomous systems. This paper discussed the ethical issues with autonom-
ous systems but also referred to trust in these systems as a complex concept which could be
defined as either reliability, predictability, goodwill, affect or public trust.

Floyd et al. [26] introduced the idea of inverse trust. It proposed a mathematical decision
model for an autonomous system to measure the level of trust of a human team-mate and
then adapts its own behaviour accordingly. Devitt et al. [23] described that with complex
and intelligent autonomous systems, humans could become ‘overly trusting or overly skep-
tical’, especially when robots become intelligent enough and could manipulate their trust.
Agrigoroaie and Tapus [2] focused their work on human informal behaviour and proxemics.
The study showed that autonomous systems that are capable of understanding the processes
behind human decision-making can have better interactions with them and are more likely
to be trustworthy.

In [80], van den Brule et al. argued that not only the robot performance is important but
also its behavioural style can have some influence on people’s level of trust. Their experiments
in video and in VR showed that task performance is key for trustworthiness but that the robot
behavioural style was also significant in the videos. Lewis et al. [48] explained that trust is
dynamic (i.e. changing over time), and in [62] trust towards automation is directly related
to reliance.
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2.5 Trust in Human–AV Interactions

The study of pedestrian trust in AVs is a recent research topic. Previous work has mainly
investigated the concept of trust for passengers of autonomous vehicles during shared-driving
mode [4] [19]. More often, pedestrian trust in AVs has been investigated via the design and
testing of external Human–Machine Interfaces [20] [54]. Rothenbuecher et al. [67] found that
pedestrians lacked trust when interacting with a vehicle ‘disguised’ into an AV because they
could not see a human driver inside, but at the same time they expected to trust more the AV
because of its algorithmic capabilities. Deb et al. [22] performed a study using questionnaires
to evaluate pedestrian receptivity towards autonomous vehicles, showing that males trust AVs
more than females. The authors also warn that pedestrians could take advantage of perfectly
safe autonomous vehicles.

Saleh et al. [68] proposed a framework that relies on social cues, e.g. intent understanding,
to model trust between vulnerable road users and autonomous vehicles. Reig et al. [64]
studied pedestrian trust in autonomous vehicles via interviews, showing for example that
participants who were favourable to AVs were more likely to trust them and that the lack
of knowledge about AV technology leads to mistrust. Using the definition of trust in [46]
introduced above, Jayaraman et al. [38] studied pedestrians’ trust in autonomous vehicles
in a VR experiment followed by a questionnaire using a Likert scale. It is argued that
human trust increases with the increase of available information, and found that AV’s driving
behaviour and the presence of light can influence the trust of pedestrians. This study also
showed correlations between pedestrian behaviour (distance to collision, gaze and jaywalking
time) and their trust towards the AV.

2.6 Research Aims

Despite the numerous reviewed studies on proxemics and trust from the social science and
human–robot interaction research communities, many works rely on qualitative or discret-
ized findings from human experiments using questionnaires, interviews and video analyses.
Pedestrian proxemics and trust are very recent topics in the context of autonomous vehicles
research. No found studies have inferred continuous valued human proxemic utilities as now
required by AV controllers, or linked these to trust concepts. There is little agreement on the
definition of trust and new trust concepts are regularly proposed, which are mostly informal
rather than directly implementable as mathematics and software for autonomous vehicles.
Thus, the rest of the paper will contribute towards filling these gaps.
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Summary of contributions This paper proposes:

• A novel Bayesian approach to infer proxemic utility functions;

• A new concept and mathematisation of ‘physical trust requirement’ for pedestrian–AV
interactions, and also applicable to more general human–robot interactions which can
numerically generate and explain Hall’s proxemic zones;

• Empirical results of our method on two public datasets to infer pedestrian proxemic
utility functions and trust zones.

3 Proxemic Utility Modelling

Our method consists in inferring the proxemic utility function of pedestrians from existing
public datasets from interactions between human drivers and pedestrians. No new empirical
experiments are performed in this study. Bayesian theory is used to fit parameters and
compare competing models. The approach is first validated on simulated data whose ground
truth correct answer is available, before running on empirical data from two public datasets
in section 5.

3.1 Proxemic Utility Definition

It is possible to measure the utilities (i.e. perceived costs and/or benefits) which humans
assign to states of the world, by asking for or otherwise observing their preferences between
states. Such preference orderings for rational agents can be shown to be mathematically
equivalent to the assignment of a single number to each state, which is defined as the utility.
This mapping from states to numbers is called the utility function [6].

We consider utility functions U as models M with parameters θ = {a0, .., an},

U = M(X, a0, .., an), (5.1)

that assigns a real value U to the state X.
We assume that human proxemic utility can be described by such a parametric model

with the state X being the physical distance between the two agents. Based on our prior
knowledge from Hall’s theory, we expect the size of the negative utilities to roughly reduce
with distance, so we choose several candidate parametric models, M , with a variable number
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of parameters, θ, including a hyperbolic function (5.2), a Gaussian function (5.3) and different
degrees of polynomials (5.4),

Mhyperbolic(X, θ) = a0X
−1, (5.2)

MGaussian(X, θ) = N(X, a1 = µ, a0 = σ2), (5.3)

Mpolynomial(n)(X, θ) = anX
n + an−1Xn−1 + ...+ a1X + a0. (5.4)

We chose these candidate functions via three considerations. First, if we assume very
little about the form of the function – just that it is reasonably smooth – then we need to
have at least one highly flexible generic model which is able to fit to any smooth function.
This is delivered by the polynomial candidate. Second, we have a prior scientific intuition
– a hypothesis to test – that the function will be roughly hyperbolic shaped, starting high
and falling off with distance. We include a hyperbolic model for this reason. Finally, the
Gaussian is included just because it is a common function which often emerges in solutions
of physical processes and easy to include. If additional candidates are proposed in the future,
they can also be tested against the ones included here.

Throughout this paper, we assume that all agents are rational and that utility can be
measured in units of seconds (roughly equivalent to ‘time is money’). Human pedestrians
and drivers assign a value of travel time in their journeys [82] [17] [37] [5] [1], and using this
as the unit will simplify the analysis. We do not model the negative utility of a crash as
an additional explicit term because the proxemic model is already able to include it as the
utility of a zero distance contact.

3.2 Proxemic Utility Inference Method

A Bayesian inference method is used to infer the proxemic utility functions from observed
data. It consists in fitting different parametric models to the data in order to obtain the best
parameters for each model. The observations are the distances between the two agents,
X, their speeds, v and vped, and the outcomes of the interactions (pedestrian crossing
or stopping). We used nonlinear least squares optimisation (implemented via the Python
Scipy.optimize package) for the model fitting. At each optimisation iteration, we used the
candidate model parameters proposed by the optimiser to compute optimal actions for the
pedestrian for every possible distance X. These optimal actions are compared against the
actual actions seen in the data, for the particular distances in the data, and this comparison
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is used to compute the probability that given the model, the proposed parameters are the
true ones.

This is done using Bayes’ theorem as follows: under a given model, M , with parameters
θ and data D, we have,

P (θ|M,D) = P (D|θ,M)P (θ|M)∑
θ′ P (D|θ′,M)P (θ′|M) . (5.5)

We assume a flat prior over θ so that,

P (θ|M,D) ∝ P (D|θ,M), (5.6)

which is the data likelihood, given by,

P (D|θ,M) =
∏
i

P (Ai|xi, xpedi, v, vped, θ,M
′), (5.7)

where Ai is the pedestrian observed action choice, e.g. crossing or stopping, xi and xpedi are
observed car and pedestrian locations at the start of an interaction and v and vped are observed
car and pedestrian speeds. M ′ is a noisy version of the optimal model M , which plays actions
from M with probability (1 − s) and maximum entropy random actions (0.5 probability of
each speed) with probability s. This is a standard noise modification, used for example in
psychological Bayesian data analysis [49] [16][11], which allows the model to fit data where
agents have made deviations from perfectly optimal strategies. Without this noise term, the
model would assign probability zero to any deviation from perfect behaviour. But humans
– and most other objects modelled using statistics – rarely behave exactly according to any
mathematical model, so the noise term enables the models to fit approximate behaviours.

3.3 Model Comparison

To select the best fitting proxemic utility function from the set of candidate models Mi, we
would like to compute and take the maximum of P (Mi|D). This is computationally hard due
to a required integral over the parameters of the models,

P (Mi|D) = P (Mi)
∫
θi

P (D|Mi, θi)P (θi|Mi)θi. (5.8)

We instead compute and use the Bayesian Inference Criterion, (BIC) [70] which is a
standard approximation to this integral,

BIC = log(n)K − 2 log(L) ≈ P (Mi|D). (5.9)
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Figure 5.2: Pedestrian–Vehicle Interaction Simulation

The integral, and the BIC approximation to it, are able to correctly compare competing mod-
els Mi in cases where the models have differently (K) sized parameter spaces, by combining
the likelihood L = P (D|Mi, θ̂i) of n observations in data D under the model Mi with the
Occam factor arising from the prior over the model’s parameter space, P (θi|Mi), assuming
a flat prior on the models themselves, P (Mi) = P (Mj). This automatically and correctly
penalises models with many parameters for potentially overfitting to data [70].

3.4 Validation via a Simulation Study

To validate our proxemic utility inference method, we developed a simulation with a simple
crossing scenario with a pedestrian and a car on a road with a width w, as shown in Fig. 5.2.
We simulate the internal reasoning of a pedestrian based on a known (ground-truth) proxemic
utility function and the vehicle time utility for a crossing decision. Simulated pedestrian
behaviour data is generated, and used to infer back the proxemic function. Validation occurs
if the inferred proxemic function matches the input proxemic function used to generate the
behaviour.

3.4.1 Assumptions

The purpose of the simulation is only to validate that the system is able to recover the ground
truth (i.e. infer the ground truth values used as inputs to the simulation back from the output
of the simulation). It does not matter which particular ground truth is used for validation.
So to create the simulated data, we choose the following arbitrary settings: the car moves at
a constant speed (2m/s) and the pedestrian is standing at the edges of a crosswalk, ready
to cross. The pedestrian also moves at constant speed, 1m/s. The pedestrian is assumed to
have an internal reasoning about the utility of crossing and avoid a potential crash with the
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car. They compare the negative utility (effects) caused by the proximity with the car with
the time delay that would occur if they wait for the car. If the proximity cost (measured in
seconds, assuming time is a currency) is less than the time delay, i.e. if they are able to cross
before the car reaches the intersection, then they are incentivised to do so.

3.4.2 Data Generation and Inference Results

We generated data from a pedestrian–vehicle interaction simulation, using a predefined prox-
emic utility function. We defined random starts for the vehicle, to create 1000 different
pedestrian–vehicle interactions. We then used the data collected to implement and test our
inference method to recover the original proxemic utility function. Examples of functions
that we tested are shown below.

Hyperbolic Function Firstly, we evaluated our inference method with a ground truth
hyperbolic proxemic function,

Mhyberbolic(X, a0) = a0X
−1, (5.10)

with a0 = 1, as shown in Fig. 5.3a along with the time utility function and the crossing
decision for the interactions. As we can see in the results of the model fitting, in Fig. 5.3b,
the best model is the hyperbolic function with the maximum likelihood (loglik = −105.36)
and the lowest BIC value (BIC = 217.629). All other models have a lower likelihood and
a higher BIC value, for example, the second best model is the quadratic function with a
likelihood of −107.55 and a BIC equal to 235.839.

Quadratic Function Secondly, we used an arbitrary quadratic function,

Mquadratic(X, a2, a1, a0) = −X2 + 5X + 25, (5.11)

as the ground truth. Fig. 5.4a shows the ground truth quadratic proxemic and time utility
functions with the pedestrian crossing decisions. As shown in Fig. 5.4b, the best model is
the quadratic function with the maximum likelihood (loglik = −1089.72) and the lowest BIC
value (BIC = 2200.158). All other models have a lower likelihood and a higher BIC value,
for example, the second best model is the cubic function with a likelihood of −1109.49 and
a BIC equal to 2246.615.
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(a) Ground truth utility functions

0 2 4 6 8 10
DISTANCE (m)

0

2

4

6

8

10

PR
O

XE
M

IC
 U

TI
LI

TY

PROXEMIC UTILITY GRAPH  -- SIMULATION
Hyperbolic fit: a=1.000 
    --- loglik =-105.360516 --- BIC=217.629
Gaussian fit: a=1.008, b=0.564 
    --- loglik =-162.488355 --- BIC=338.792
Septic fit: a=0.000, b=-0.001, c=0.015, d=-0.151, e=0.781, f=-1.969, g=1.655, h=0.744 
    --- loglik =-116.346639 --- BIC=287.955
Quartic fit: a=-0.001, b=0.007, c=0.023, d=-0.487, e=1.281 
    --- loglik =-120.741088 --- BIC=276.021
Cubic fit: a=-0.005, b=0.098, c=-0.655, d=1.364 
    --- loglik =-125.135537 --- BIC=277.902
Quadratic fit: a=0.028, b=-0.372, c=1.119 
    --- loglik =-107.557740 --- BIC=235.839
Linear fit: a=-0.086, b=0.607 
    --- loglik =-122.938312 --- BIC=259.692

(b) Model fitting results

Figure 5.3: Simulation with a hyperbolic proxemic function
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(a) Ground truth utility functions
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PROXEMIC UTILITY GRAPH  -- SIMULATION
Hyperbolic fit: a=1.000 
    --- loglik =-1353.384076 --- BIC=2713.676
Gaussian fit: a=4.132, b=1.550 
    --- loglik =-1529.162042 --- BIC=3072.140
Septic fit: a=-0.000, b=0.001, c=-0.021, d=0.154, e=-0.572, f=1.020, g=-0.727, h=1.120 
    --- loglik =-1135.858842 --- BIC=2326.980
Quartic fit: a=0.001, b=-0.030, c=0.190, d=-0.386, e=1.159 
    --- loglik =-1120.478270 --- BIC=2275.495
Cubic fit: a=-0.003, b=0.019, c=-0.008, d=0.977 
    --- loglik =-1109.492148 --- BIC=2246.615
Quadratic fit: a=-0.029, b=0.186, c=0.816 
    --- loglik =-1089.717126 --- BIC=2200.158
Linear fit: a=-0.109, b=1.316 
    --- loglik =-1135.858842 --- BIC=2285.533

(b) Model fitting results

Figure 5.4: Simulation with a quadratic proxemic function
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Quartic Function Thirdly and lastly, we evaluated our method with an arbitrary quartic
function, (i.e. polynomial function of degree 4),

Mpolynomial(4)(X, a4, a3, a2, a1, a0) = −0.08X4 −X3 + 3X + 0.5, (5.12)

as the ground truth as shown in Fig. 5.5a along with the time utility function and the crossing
decision for the interactions. The results of the model fitting are shown in Fig. 5.5b. The
quartic and septic functions have the maximum likelihood (loglik = −122.93) but the quartic
function is ranked as the second best model according to the BIC values with a BIC equal
to 280.415. Instead, the Gaussian model (loglik = −129.52, BIC = 272.875) is selected as
the best model due to its lower number of parameters. However, we can note here that the
shape of the ground truth function shown in Fig. 5.5a looks very similar to a Gaussian, so
the selection of the Gaussian model for this case is perfectly understandable.

The above results show that our proposed method for inferring proxemic utility function
works on simulated data and with different ground utility functions.

4 Physical Trust Requirement

4.1 Trust Definition

Refining Lee and See’s concept of trust [46] reviewed above, where trust is defined as an
attitude in ‘a situation characterised by uncertainty and vulnerability’, we define a new related
concept: physical trust requirement (PTR), a Boolean property of the physical state of the
world (not of the psychology of the agents) with respect to one agent during an interaction,
true if and only if the agent’s future utility is affected by an immediate decision made by
another agent.

We thus measure the need for trust from pedestrian behaviour in uncertain situations.
The PTR divides the proxemic function into three zones as shown in Fig.5.6, as the PTR is
true in the trust zone and false in the crash and escape zones. We made some assumptions
and used numerical values to obtain specific equations and numbers for the three zones in
our road crossing case:

1. Crash zone: This is the region very close to the human agent, where they will be
affected by negative consequences and no-one can prevent them from occurring, so no
trust is involved. In the road-crossing case, this occurs when the pedestrian is in the
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(a) Ground truth utility functions
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Gaussian fit: a=0.815, b=0.473 
    --- loglik =-129.529986 --- BIC=272.875
Septic fit: a=0.000, b=-0.002, c=0.038, d=-0.308, e=1.333, f=-2.838, g=2.053, h=0.681 
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    --- loglik =-122.938312 --- BIC=280.415
Cubic fit: a=-0.006, b=0.121, c=-0.735, d=1.352 
    --- loglik =-131.727211 --- BIC=291.085
Quadratic fit: a=0.028, b=-0.357, c=1.034 
    --- loglik =-155.896681 --- BIC=332.517
Linear fit: a=-0.083, b=0.580 
    --- loglik =-144.910558 --- BIC=303.637

(b) Model fitting results

Figure 5.5: Simulation with a quartic proxemic function
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Figure 5.6: Proxemics–Trust relation in pedestrian–vehicle interaction

road and the car is very close, with neither able to run or brake to prevent the collision.

The crash zone, {d : 0 < d < dcrash}, is the region delimited by the reaction and braking
distances of the vehicle, given by the standard stopping distance equation [51],

dcrash = vtdriver + v2

2µg , (5.13)

where the first term depends on the human driver’s psychological thinking reaction
time, tdriver, and the second term represents the physical braking distance (depending
on the physical friction between tyres and tarmac, and equal to the length of any phys-
ical skid marks left by the vehicle after the driver begins to apply the brakes), v is the
vehicle speed, µ the coefficient of friction and g the gravity of Earth.

2. Escape zone: This defines the area where the human agent is able to choose their own
action to avoid the negative utility, rather than relying on the other agent. As such, it
does not need to trust the other agent. In our road-crossing case, this occurs when the
vehicle is further away from the pedestrian, so that the pedestrian has time to act and
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save themself without trusting the vehicle to yield.

The escape zone, {d : descape < d}, is the set of distances beyond which pedestrians do
not fear any potential danger from the vehicle. In this zone, pedestrians can complete
their crossing before the vehicle arrives. The escape distance descape is the minimum
distance at which this is the case. Consider the time tcross = w/vped it takes for the
pedestrian to cross, during this time, the vehicle moves by distance wv/vped, where
vped is the pedestrian speed and w is the width of the road. When we also add the
distance moved by the vehicle during tped, the human pedestrian’s reaction time to
make their crossing decision before starting to walk or not walk, then we obtain the
escape distance,

descape = vtped + vtcross

= vtped + w
v

vped
.

(5.14)

This escape distance then defines the start of the escape zone.

3. Trust zone: We define the trust zone as the region of the proxemic function where
the PTR is true. The other agent (e.g. the car) can choose (e.g. by slowing down) to
prevent them from receiving negative effects (e.g. collision), but the human is incapable
of making any action to affect the utility outcome themself. In the road crossing case,
this occurs when the pedestrian cannot get out of the car’s way in time to avoid collision,
but the car is able to brake and yield to prevent the collision if it chooses to do so. This
excludes the crash zone in which neither agent has any available choice to avert collision,
and also excludes the escape zone. So the trust zone is {d : dcrash < d < descape}, the
intermediate space between the crash and escape zones.

When the pedestrian is in the crash zone, the vehicle has no possibility to avoid an
accident, whereas in the escape zone the pedestrian can always cross safely. When the
pedestrian is in the trust zone, the vehicle has the sole power to decide if a collision will
occur. It is thus in the trust zone that it would be important to study whether and how
people do or should trust autonomous vehicles or not.
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(a) At lower speeds.
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(b) At higher speeds.

Figure 5.7: Distances and zones predicted by the PTR model for different car speeds v (5.7a
is a close-up of 5.7b)

4.2 Zones Analysis – Comparison with Hall’s Zones

We here derive some mathematical results from our zone definitions and link them to previous
results on Hall’s proxemic zones. Fig. 5.7 shows the distances dcrash and descape and the zones
defined by equations 6.1 and 5.14, for variable vehicle speeds v. We here assume: w = 2m
for the road width, tdriver = 1s as the driver reaction time [28] [21], vped = 1.1m/s as the
average walking speed of the pedestrian [25] [41] [60], tped = 1.5s as the pedestrian reaction
time (chosen to be similar to the driver reaction time but a little larger because drivers may
be more focussed on their task than pedestrians) [18], µ = 1 for the coefficient of friction [34]
[61] and g = 9.8m/s2 for the gravity of Earth.

By comparison, the related work review found that Hall zones for human–human interac-
tions are usually reported to be around: intimate up to 0.45cm, personal up to 1.2m, social
up to 3.6m, and public beyond this [45].

The vertical line in Fig. 5.7 shows the case v = 1.1m/s in which the vehicle has the same
speed as the pedestrian, i.e. the vehicle is behaving as if it was a second pedestrian interacting
with the first. In this case, the size of the Hall personal zone, 1.2m, closely matches that of
our crash zone in Fig. 5.7a, dcrash = 1.16m when v = 1.1m/s (as would be the case when
the other is another human rather than a vehicle) and retaining other parameters (including,
quite unrealistically, retaining the friction model and coefficient walking rather than wheels).
The size of the Hall social zone, 3.6m, also closely matches our descape = 3.65m from the
graph.
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We also note that Fig. 5.7a predicts that social human–robot interactions in which the
robot is slower than a human, as is the case for most humanoids, will have smaller crash
and trust zones, which matches the related work reviewed in which personal and social zones
were found to reduce compared to human–human proxemics. Also, the trust region in Fig
5.7b gets smaller with speed, reaching zero width when linear and quadratic curves meet at
around 45m/s = 162km/h. This is quite close to official and unofficial speed limits on most
countries’ motorways/freeways.

If we further define and consider R, the zone ratio given by the width of the trust zone
relative to the speed of the car,

R = Descape

Dcrash
= vtped+v(w/vped)

vtdriver+v2/2µg = tped+(w/vped)
tdriver+v/2µg . (5.15)

Then we see that as vehicle speed increases, the effect of tdriver becomes negligible, and the
zone ratio tends to zero, meaning that the crash zone’s size comes to dominate the others:

v →∞⇒ R→ 2µg(tped + (w/vped))
v

→ 0, (5.16)

and as vehicle speed decreases, the zone size ratio converges to a constant:

v → 0⇒ R→ tped + (w/vped)
tdriver

, (5.17)

which shows that if the ratio of zone sizes is considered rather than their absolute size, then
all dependency on friction and gravity has vanished in the high and low speed limits. Thus,
all road and car specific concepts have vanished to leave a more general proxemic relationship
which may be of interest in general human interaction cases rather than only road-crossings.
Fig. 5.8 shows the variation of R relative to the speed of the car, and that the value of R in
Eq. (5.17) tends to the constant 3.5.

5 Empirical Data Study

To demonstrate the inference of empirical pedestrian proxemic utility functions, we then apply
the method to data from real-world pedestrian interactions with manual driven vehicles.
We used two public datasets containing tracking data from multiple road users. We only
considered the interactions where the pedestrian crosses or stops for utility, i.e. when the
gap is greater than the safety distance so that we can learn how the pedestrian adjusts their
comfort zone. We then compute the PTR zones for these datasets.
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Figure 5.8: The ratio of escape zone size to crash zone size, R, decreases as the car speed v

increases, showing that the crash zone dominates at high speeds.

5.1 Datasets

5.1.1 Daimler Pedestrian Benchmark

The Daimler dataset [43] contains 58 pedestrian–vehicle trajectory data and annotations, such
as pedestrian crossing decisions. The dataset was not collected from real-world interactions,
the pedestrians and drivers were actors. The authors created these interaction scenarios
for their work, 44 of these were pedestrian crossing scenarios and the other 14 interactions
were stopping scenarios. Fig. 5.9 shows a dash cam image of one interaction scenario. The
distribution of vehicle and pedestrian speeds in the dataset is shown in Fig. 5.10.

5.1.2 inD (Intersection Drone Dataset)

The inD dataset [7] is a newly released dataset which provides road users (cars, trucks,
cyclists, pedestrians) tracking data. There are 32 videos recording data from 4 different in-
tersections in the dataset, which contains thousands of real-world interactions. But as the
videos were not released with the trajectory data, we decided to focus on one intersection,
where there is clearly a pedestrian crosswalk, thus pedestrians crossing the road would ne-
cessarily interact with the upcoming vehicles. Twelve recordings (n◦18 to n◦29) contain data
from the crosswalk shown in Fig. 5.11. The distribution of vehicle and pedestrian speeds in
the dataset is shown in Fig. 5.12.

188



5 Empirical Data Study

Figure 5.9: Pedestrian intention with a vehicle, from its dashcam, in the Daimler dataset
[43].

Figure 5.10: Histograms of vehicle and pedestrian speeds in Daimler dataset, showing that
average speeds v ≈ 5.25m/s and vped ≈ 1.60m/s are good approximations.
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Figure 5.11: Crosswalk in inD dataset [7]

Figure 5.12: Histograms of vehicle and pedestrian speeds in inD dataset, showing that average
speeds v ≈ 4.79m/s and vped ≈ 0.99m/s are good approximations.
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5.1.3 Criteria for interactions’ selection

As inD dataset contains multiple classes of road users but we were interested in pedestrian–
vehicle interactions only, we extracted them from the rest of the data in a semi-automatic
manner and annotated them. For each given pedestrian, we find the car that appeared a
few frames earlier and then we select the frames where they both appear together. We only
kept interactions where the vehicle and the pedestrian were encountering somewhere near
the coordinates (x = 62, y = -27), to make sure the pedestrians cross at the crosswalk, not
any other locations, where they would jaywalk and we would have no possibility to know
the hidden factors behind that decision. We selected trajectories where cars and pedestrians
followed a straight path until their encounter, in order to match with our simulation model.
We kept pedestrians walking from the bottom right, we didn’t consider pedestrians coming
from the top right because most of them were not crossing, as there was a car park.

In total, we used the 58 interactions from the Daimler dataset and we collected 48 more
interactions from inD dataset, with 24 where the car came from the top right of the image,
and the other 24 where cars came from the bottom left of the image. Fig. 5.13 shows some
examples of pedestrian–vehicles trajectories from both datasets.

5.2 Proxemic Utility Model Selection

5.2.1 Proxemic Utility Implementation

First, we applied our proxemic utility inference method on the two datasets, similar to the
simulation study in section 3.4, except that here we would not know the ground truth function
for final comparison. The goal here is thus to infer the unknown proxemic utility function
from the data and select the best model with the lowest BIC value.

5.2.2 Proxemic Utility Results

Results of the proxemic utility inference method on the Daimler and inD datasets are shown
in Fig. 5.14 and 5.15, respectively. They show that a hyperbolic function best describes
pedestrian proxemic behaviour in both cases, with the lowest BIC values (Daimler BIC =
174.482, inD BIC = 62.325). The proxemic utility costs increases with shorter proxemic
distances, and with a steep growth near the collision point. These results are consistent
with the human experiments in [72] [73], where participants’ perception of threat (negative
utilities) increases at shorter distances and decreases at longer distances.
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Figure 5.13: Examples of interactions from the datasets
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Figure 5.14: Model fitting results for Daimler dataset

Figure 5.15: Model fitting results for inD dataset
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5.3 Zones Computation

5.3.1 Zones Implementation

Second, we computed two different estimates of the zone distances, called ‘theoretical’ and
‘empirical’ zones. Both estimates make use of the data. The theoretical estimate makes
use only of average speeds from the data, and the empirical estimate makes use of extreme
individual behaviours from the data.

We define theoretical zones as the solutions of the equations in section 4.1 given by as-
suming that all vehicles move at the average speed of the vehicles in the dataset, and all
pedestrians move at the average speed of pedestrians in the dataset. This assumption is
justified approximately by the histograms of these speeds in the datasets, as shown in Figs.
5.10 and 5.12, which show that vehicles are all moving at similar urban speeds of 0–30km/h
and pedestrians are all moving at similar walking speeds. The average speed of vehicles in
Daimler was v ' 5.25m/s; and in inD: v ' 4.79m/s. The average speed of pedestrians was
in Daimler: vped ' 1.60m/s; and in inD: vped ' 0.99m/s. We here use the same constants
as in section 4.2, with w = 2m for the road width, tdriver = 1s as the driver reaction time,
tped = 1.5s, µ = 1 for the coefficient of friction and g = 9.8m/s2 for the gravity of Earth.

We define empirical zones by finding in the datasets the maximum distance below which
pedestrians always stop and the minimum distances above which they always cross. This
is intended to provide only an exploratory measure. It is not a true statistical estimator,
because its error increases rather than decreases with sample size due to its dependency on
only the most extreme individuals.

5.3.2 Zones Results

Results of the theoretical zone experiments are shown in dark blue in Fig. 5.14 for Daimler
dataset and in Fig. 5.15 for inD dataset. The empirical zones are shown in dark red in
Fig.5.14 for Daimler dataset and in Fig. 5.15 for inD dataset.

For the Daimler dataset, the theoretical trust zone is between 7–15m and the empirical
trust zone is between 14–45m. For the inD dataset, the theoretical trust zone is between
6–17m and the empirical trust zone is between 10–31m.

The theoretical and empirical zones for the two data sets are roughly in agreement which
suggests the effect of the actors in Daimler is not important. The boundaries of these zones,
both theoretical and empirical, would change if the vehicle drives at a higher or lower speed.
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The width of all of our theoretical (crash, trust and escape) zones are smaller than the
empirical zones. We found that our theoretical zones were underestimated relative to the
empirical zones, by about three times in Daimler dataset and by two times in inD dataset.
We compute these coefficients by iteratively updating by increments the theoretical crash and
trust zone boundaries. This underestimation of the theoretical zones is expected because we
computed them under many simplifying assumptions, including using average speeds across
the datasets and guessed other parameters such as the driver reaction time (tdriver), the
pedestrian reaction time (tped) and the coefficient of friction (µ). If all the interactions were
performed with these average speeds and parameters (tdriver, tped and µ), then the theoretical
zones might match the empirical zones. In fact, Fig. 5.16 and 5.17 show the time utilities
and outcomes (pedestrian crossing decisions) for each interaction in the Daimler and inD
datasets, respectively. In particular, the time utility graphs show the variations of vehicle
speeds across the interactions. This may explain why our theoretical trust zones do not
match the empirical trust zones. Moreover, if we had computed the theoretical zones for
each interaction (with their corresponding speeds), it would not be possible to analyse and
to make a general discussion on these zones with respect to the proxemic utility function,
which was drawn from all the interactions in each dataset.

For this reason, we will base the rest of our analysis of trust on the empirical zones. We
can see that the trust zone is the area of the proxemic utility function where the gradient
changes more. This reflects the high uncertainty that lies in the trust zone. The decision
of a pedestrian to cross is uncertain here because the pedestrian has to rely on the vehicle
to make a decision. In contrast, in the crash and escape zones, we see that the gradient
of the proxemic utility function changes less, this is due to the more deterministic outcome
in these areas. In the crash zone, the distance and the speed of the vehicle give enough
information to the pedestrian for not crossing and in the escape zone, the vehicle behaviour
does not interfere into their crossing decision because the danger cannot be perceived by the
pedestrian as found in [72] [73], therefore they will cross.

Finally, for the actual average car speeds in the two datasets, equation 5.15, computed
by the ratios of the theoretical zones Descape/Dcrash from Figs. 5.14 and 5.15, gives for
Daimler R = 15/7 = 2.1, and for inD R = 17/6 = 2.8. Using the empirical zone boundaries
from the same figures, we obtain Daimler empirical R = 45/14 = 3.2; and inD empirical
R = 31/10 = 3.1. These results closely match the ratio found for Hall’s zones in section 4.2.
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Figure 5.16: Time utility and ground truth interaction outcomes for Daimler dataset

Figure 5.17: Time utility and ground truth interaction outcomes for inD dataset
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6 Discussion

Although the proxemic utility inference method has proven successful on simulation and
real-world interactions, several simplifying assumptions were made in order to present and
test the basic principles of the method, from which future work should try to move away
in order to obtain more reliable results. In particular, we assumed that all vehicles move at
an average vehicle speed rather than their individual speeds, which is a likely cause of the
observed discrepancy between the theoretical and empirical trust zones. This discrepancy is
a useful self-test of the model’s assumptions, so if future work brings them closed that would
give some confidence in the proxemic utility results.

The basic premise of this study, as taken from the game theory model conclusions, was
that a proxemic function captures the feeling of discomfort from space invasion by vehicles.
However, speed considerations might be extended into the utility function itself: a pedestrian
might feel comfortable standing 10m from a car if it is moving towards them at 1m/s, but not
at 10m/s. Including the speed of the vehicle as an additional parameter in the pedestrian’s
utility function would formally move future models from being proxemic functions to include
a kinesic component (i.e. involving speed as well as proximity) as suggested in [24] and this
may further improve interaction control.

We assumed that the pedestrian and the vehicle were solely interacting with each other,
ignoring simultaneous interactions with other individuals. We also assumed that the agents
always moved along straight, orthogonal paths as in the game theory model, thus we did not
include the interactions where pedestrians were not crossing straight away. We used only
parametric models to infer the proxemic utility function, future work could explore the use
of non-parametrics such as Gaussian Processes and compare their performance against the
present models, which is possible via the BIC. Reviewed previous work on proxemics has
shown that demographics, social, cultural and environmental factors can have an influence
on the proxemic distances [55], therefore it would be important to incorporate some of this
additional information and to build a more precise inference model on them. Reviewed
previous work on human–robot interactions has shown that the physical size such as height
of the other agent also affects proxemics zone sizes, which suggests a similar role for physical
car sizes in modifying proxemic utilities. In particular, it provides a further explanation
for how buying expensive sports utility vehicles (SUVs) can be rational via their infliction
of stronger proxemic penalties onto other road users, thus allowing the driver to win more
interactions and reduce their own journey times [27].
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Additional future work could look into testing our method on human–AV interactions in
virtual reality experiments, and demonstrates its effectiveness on a real autonomous system
for better interactions with people. In these settings, it would be possible to collect causal
data rather than the passive data used in the present study, as the vehicle can be actively
controlled as an independent variable in order to measure the dependent behaviour of the
pedestrian, more clearly separating the causal logic between the two agents during their
interaction.

We have mainly focused on pedestrian–vehicle interactions, but the concepts and methods
here could be applied to other human–robot interaction tasks. For example, human factory
workers collaborating with a robot arm could be modelled by a trust zone in which the arm
is able to hit them without time or space to escape.

We have merged Hall’s intimate and personal zones to map jointly into our collision zone,
and did not attempt to explain any theory of intimacy within this zone. In general proxemics,
our collision zone would be the distance at which a physical attack such as a punch or grab
(analogous to the vehicle collision) may (a) have already happened or (b) be in unstoppable
progress. Possibly this would subdivide with (a) as Hall’s intimate zone and (b) as Hall’s
personal zone, with the width of the intimate zone being the collision area width w.

Using space invasion to inflict small negative utilities via discomfort on members of the
public may still be considered unethical or illegal in some cases. In many jurisdictions, such
as in the UK, this is an ongoing dilemma under active debate by authorities [79]. We hope
the present study will contribute to this debate, by showing how this option trades off against
other possible negative utilities, including those inflicted on passengers of such vehicles whose
journeys would be delayed by overly assertive pedestrians pushing in front of them. Human
drivers already use many such credible threats to encourage pedestrians to get out of the way.
In many cases, these threats result in actual collisions. Replacing these threats by automated
systems which only invade space rather than potentially collide would improve safety.

7 Conclusions

A previous game theoretic model has suggested that autonomous vehicles must either risk
making no progress at all by yielding to all road-crossing pedestrians to stay safe, or maintain
a credible threat of actually colliding with them to encourage them to yield. Neither of these
are desirable outcomes. The new method developed in the present study now enables the
inference of continuous pedestrian proxemic utility functions from pedestrian–driver interac-
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tion data. The game theory model shows that this can be used to make their interactions
both safe and efficient. This can be done by de-escalating the severe threat of collision to
much milder and legally permissible threat of merely invading their personal space to create
discomfort as a weaker but still effective penalty for non-collaboration in interactions.

We also defined and mathematically formalised a new concept of trust based on the
proxemic function for human–autonomous vehicle interactions. These new, quantitatively
defined, zones for the physical trust requirement may assist autonomous vehicle designers in
understanding what is meant and required by the concept of trust. The mathematical and
empirical results of section 4.2 are evidence that our concept can explain the existence of the
classic Hall intimate-personal, social and public zones, quite precisely generating their sizes
and ratios, which emerge as a special case for two low speed agents interacting.

Our concept generalises these Hall zones beyond their usual use in human–human in-
teractions to allow for larger zones as the speed of the other agent increases from human
to vehicle speed, and shows how trust zones become relatively smaller at higher (e.g. free-
way/motorway) speeds. It also generalises to interactions with agents moving slower than
humans and predicts smaller zones in these cases, which is consistent with the human–robot
proxemics studies previously reviewed.
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Chapter 6

Extending Quantitative Proxemics and Trust to HRI

Abstract

Human-robot interaction (HRI) requires quantitative models of proxemics and trust for ro-
bots to use in negotiating with people for space. Hall’s theory of proxemics has been used for
decades to describe social interaction distances but has lacked detailed quantitative models
and generative explanations to apply to these cases. In the limited case of autonomous vehicle
interactions with pedestrians crossing a road, a recent model has explained the quantitative
sizes of Hall’s distances to 4% error and their links to the concept of trust in human inter-
actions. The present study extends this model by generalising several of its assumptions to
cover further cases including human-human and human-robot interactions. It tightens the
explanations of Hall zones from 4% to 1% error and fits several more recent empirical HRI
results. This may help to further unify these disparate fields and quantify them to a level
which enables real-world operational HRI applications.

Figure 6.1: Autonomous vehicle entering pedestrian’s social zone, which can also be viewed
and quantified as a trust region.
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1 Introduction

Autonomous robotics including autonomous vehicles (AVs) and service robots are now a
reality, spreading from research to real-world social environments around humans [40]. Such
environments raise new questions about how humans can trust robots, and how they should
share their physical social spaces during human-robot interactions (HRI).

Social interaction is an important factor in making humans and robots acceptable and
trustworthy to the humans they assist [4], and has been identified as one of ten major robotics
challenges [43]. Two major challenges within Social Robotics were defined as modelling social
dynamics, and learning social and moral norms [43]. Robots may be more accepted by people
if they are socially aware, i.e. able to understand and reproduce these social norms and
conventions. Within these norms, trust is essential for building relationships [26, 35]. Two
important factors which influence the acceptance of humans and robots and are used to assess
their social abilities are proxemics (i.e. interpersonal distances) and trust.

Robots need a better understanding and models of human social behaviour, especially
nonverbal communication which plays an important role in human interactions. For instance,
it was shown that people have strong ‘social expectations’ towards robots’ nonverbal cues [5].
This raises concerns: are robots’ social abilities good enough to interact with humans? Are
they safe? Can we trust them?

Most current models of human social behaviour are based on qualitative studies and de-
scriptive statistics. These are appropriate for reporting scientific findings, but they cannot be
easily operationalised into engineered, robotic decision-making algorithms. More quantitative
and computational models are thus needed to better understand and prescribe human-robot
interactions, because numerical probabilities and utilities are needed by most robotics control
systems.

The present paper briefly reviews proxemics, trust, and the recent PTR model [7] which
links them quantitatively in the limited case of pedestrian-autonomous vehicle interactions.
It then extends the PTR model to new, generalised cases of human-human and human-robot
interactions and presents new results comparing the extended model’s predictions to empirical
data. These links could enable research to be shared and operationalised between models of
proxemics, trust, and robotic interactions for the first time.
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2 Review of Previous Work

2.1 Review of Proxemics and Trust

This section presents a review of previous work on proxemics and trust for HRI, an extensive
review of these topics was introduced in [7].

Proxemics was proposed in the 1960’s by Hall [14], defining four distinct zones for hu-
man interactions: the intimate, personal, social and public zones. Psychology studies then
measured these zones for human-human interactions, finding that the intimate zone goes up
to 0.45m, the personal ranges from 0.45m to 1.2m, the social between 1.2m to 3.6m, and the
public beyond 3.6m [21]. These numbers are sometimes inserted into costmaps for robotic
interaction planning algorithms. But we have lacked a theory to generate and explain these
empirical values. Social roboticists have found these proxemic zones change in size when
humans interact with robots of different heights, appearances, speeds, voices, and also for
different HRI activities [30]. For example, for a short, 1.35m height, humanoid robot ap-
proaching or being approached by a human, the personal zone shrinks to the range 0.4m to
0.6m [36].

Trust is commonly defined as ‘trusting a person means believing that when offered the
chance, he or she is not likely to behave in a way that is damaging to us’ [11, 3]. A question
is whether humans can build trust with robots as they do with other people and through
which means. For instance, a set of questionnaire metrics was designed in [42] to assess
users’ acceptance and use of robots via five HRI attributes, such as team configuration, team
process, context, task, and system, where trust in automation is defined as depending on
the level of autonomy of a system and also on its level of intelligence. Thus most HRI trust
experiments have studied only humans’ qualitative acceptance of robots [12, 25, 34]. But
these qualitative models do not provide enough information to directly implement them as
quantitative control systems for robotics.

2.2 The PTR Model: Linking Proxemics and Trust

Links between proxemics and trust have been proposed via a quantitative model, intended
for use in the limited case of an autonomous vehicle, Agent2, interacting with a pedestrian,
Agent11, crossing its path [7] as in Fig. 1. In this model, Physical Trust Requirement (PTR)

1Terminology: In the original model, Agent1 was called ‘the pedestrian’ and Agent2 called ‘the vehicle’.
The terms Agent1 and Agent2 are used throughout the present study to emphasise new generalities.
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is defined as a Boolean property of the physical state of the world (not of the psychology of
the agents) with respect to Agent1 during an interaction, true if and only if Agent1’s future
utility is affected by an immediate decision made by Agent2.

The model assumes that the two agents are approaching each other at a right angle, as is
the case where one crosses the other’s path, as in Fig. 6.1. It then defines the following three
zones based on the PTR:

Crash zone is the region close to Agent1, {d : 0 < d < dcrash},

dcrash = v2t2 + v2
2

2µ2g
, (6.1)

in which a crash is guaranteed and neither party can prevent it. v2 is Agent2’s speed. The
first term depends on Agent2’s thinking reaction time, t2, and the second term represents the
physical braking distance, µ2 is the coefficient of friction between Agent2’s tyres and tarmac,
and g is gravity [23].

Escape zone is the area where Agent1 is able to choose their own action to avoid the
collision, without needing to trust Agent2 to behave in any particular way. If w2 is the width
of Agent2, which Agent1 must cross at speed v1 if they wish to pass first, the escape zone is
then {d : descape < d} with

descape = v2t1 + w2
v2
v1
. (6.2)

Trust zone is the region {d : dcrash < d < descape} where the PTR is true. Agent2 can
here choose to slow down to prevent collision, but Agent1 is incapable of making any action
to affect this outcome themselves. This occurs when Agent1 cannot get out of Agent2’s way
in time to avoid collision, but Agent2 is able to slow and yield to prevent the collision if it
chooses to do so.

The zone ratio R = descape/dcrash is a measure of how much trust (in the PTR sense) is
involved in an interaction.

Zones are not symmetric between Agent1 and Agent2. They describe when Agent1 must
trust Agent2. Their roles must be swapped and the zones recomputed to see when Agent2

must trust Agent1. The crash, escape, and trust zones were mapped to Hall’s personal, public,
and social zones respectively, for Agent1 [7], cf. Fig 6.1. The trust/social zone is the region
in which physical trust is required. This may be a prerequisite for some types of interactions,
with physical trust being useful to enable the content of the interaction. The evidence for
this mapping came from the observation that if an autonomous vehicle Agent2 is set to drive
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at the same speed as a pedestrian Agent1, the model generates Hall’s proxemic social zone
to within 4% quantitative accuracy. This unexpected result, found only by studying how an
AV should interact with road-crossing pedestrians, is suggestive that this scenario may be a
special case of a more general HRI theory of proxemics and trust.

2.3 Limitations of the PTR Model

The PTR model made three key assumptions which limit its application to general HRI:
Assumption 1: Agent2 is a wheeled vehicle, having momentum and a braking time.

These dynamics are not appropriate for other types of Agent2 such as walking humans and
humanoids.

Assumption 2: The width of Agent2 is much larger than that of Agent1, so it treated
Agent1 as a point and Agent2 as a rectangle, because a vehicle is bigger than a pedestrian
and most vehicles are rectangular. These geometric assumptions are not appropriate for two
human-like agents of similar size.

Assumption 3: The pedestrian has a goal: to cross the road. The road crossing is
orthogonal to the road. Thus the pedestrian’s velocity is orthogonal to the vehicle’s. This
is a strong constraint which is not appropriate to general HRI scenarios. Agent2 might
in general approach Agent1 from any direction, not just at right angles to Agent1’s initial
heading. We are now only interested in explaining the size of the trust zone which we assume
is independent of any goal for Agent1 other than avoiding a collision.

3 New Extensions to the PTR Model

The original PTR model was intended only for pedestrian road-crossing interactions with
vehicles. We here expand its relevance to explain and predict new types of agents and
scenarios, including human-human and human-humanoid robot interactions with approaches
from arbitrary rather than orthogonal directions. We extend and generalize the model to
address each of the above assumptions as follows.

Assumption 1: The second term on the right of Eq. (6.1) is only applicable to wheeled
vehicles as it models their braking time. If Agent2 is a walking agent, we will now assume
this second term is omitted, as walkers are always in static equilibrium so can stop instantly
once a decision is made. Models for running agents [20] or finer detailed models of walkers
[28] could insert different braking terms here.
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Figure 6.2: New assumed geometry for the two agents.

Assumption 2: To allow for interactions between similarly sized agents, we now modify
Eq. (6.2) to:

descape = v2t1 + (w1 + w2) v2
v1
, (6.3)

where w1 + w2 is the total distance that Agent1 must travel in front of Agent2 in order to
avoid contact with Agent2. These widths may now be mapped to Hall’s intimate/personal
zones of the agents, i.e. the ranges at which actual contact may occur between the agents.
Justification for this modification can be seen in Fig. 6.2, which shows how Agent1 must
move its center point by half its own width at the start and end of the path as well as passing
by the width of Agent2, to avoid the minimal possible collision.

Assumption 3: As our focus is now purely on understanding proxemic and trust zones,
we now drop the assumption that Agent1 has a goal location, and consider that they simply
want to avoid being hit by Agent2. We thus want to allow Agent2 to approach Agent1 from
any heading θ, measured relative to Agent1’s own initial heading as in Fig. 6.3. The previous
change from rectangular to circular agents is a first step towards enabling this. We then need
to consider the direction in which Agent1 moves to escape from Agent2. The best way to
escape is always by moving orthogonal to the heading of Agent21. There are at least four
different modelling options for whether and how this is possible:

1Moving towards Agent2 is obviously useless. Moving away from Agent2 is useless if v1 < v2, but if v1 > v2

then there are no zones at all as it is trivial to escape. Any other direction is a linear combination of an optimal
orthogonal escape plus one of these useless directions.

214



4 Results

• Option 1: Assume that Agent1 can turn on the spot instantly to face any direction. In
this case, the optimal strategy is to first turn to a heading orthogonal to that of Agent2,
then walk at speed v1 to escape. This makes Agent1’s initial heading irrelevant and
reduces the model back to the original assumption of orthogonal velocities.

• Option 2: Assume that Agent1 can only walk in the direction of their initial heading.
They cannot rotate at all. By substituting v1 in Eq. (6.3) for its component orthogonal
to Agent2’s heading, v1| sin(θ)|,

descape = v2t1 + (w1 + w2) v2
v1| sin(θ)| (6.4)

• Option 3: Assume Agent1 can turn on the spot or twist during forward travel, where
turning takes place at up to maximum angular velocity θ̇. If θ̇ is very fast then it will
behave like Option 1. If θ̇ is very slow then it will behave like Option 2. Options 1 and
2 are thus special, limiting cases of Option 3.

• Option 4. Extending Option 3, further available motions such as sidesteps and stepping
backwards could be added and optimised.

4 Results

The present section shows some validations of the extended model by comparing its predic-
tions to data from a selection of previously published empirical studies of interest. Option
2 is chosen to model the direction of Agent1. This is because it includes some consideration
of the initial heading, unlike option 1, but without requiring a full solution of option 3 or 4
which may form extensive future work.

4.1 Two Walking Humans

We first show that the extended model can numerically reproduce and explain Hall’s original
observations of proxemic zone sizes for interactions between two walking humans (unlike
the previous study’s [7] with a walking human and autonomous vehicle). By choosing the
realistic parameters: t1 = t2 = 1.1s, v1 = 1.1m/s, w1 = w2 = 1.19m, found by optimisation,
the extended model then generates values dcrash = 1.21m and descape = 3.59m, matching
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Figure 6.3: Possible interaction geometries. Green=Agent1; Purple= different possible posi-
tions and headings for Agent2. (θ is the angle of Agent2’s approach from Agent1’s perspect-
ive.)

Hall’s data, as shown by the vertical line in Fig. 6.4a, where v1 = v2 = 1.1m/s [21]. This
result from the extended model shows a better fit to Hall zones, with an error of less than
1% compared to the previous model’s 4% error [7]. The zone ratio is found to be RH−H = 3
[7]. This will serve as a comparator for the following experiments.

4.2 Distracted Walking Human Interactions

We next model the effect of distraction on the walking humans – such as attending to head-
phones, phones, or billboards – by increasing their reaction times in the model by 1s [10].
With both distracted, Fig. 6.4b shows that their crash zone size then increases from 1.21m
to 2.31m and the escape zone is also increased from 3.59m to 4.69m, therefore the zone ratio
RH−H reduces to 2.03. With only one distracted, Fig. 6.4c shows that the crash zone size
increases from 1.21m to 2.31m but the escape zone starts at 3.59m as in Sect. 4.1, leading
to a smaller trust zone size in this case. The zone ratio, RH−H ≈ 1.55, is much smaller than
the comparator. These findings are consistent with and explain empirical data that there is
more distance, less trust, and hence less social interactions between distracted people [37].
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(a) No distraction: t1 = t2 = 1.1s. (b) Both distracted: t1 = t2 = 2.1s.

(c) One distracted: t1 = 1.1s and t2 = 2.1s.

Figure 6.4: PTR distance and zone predictions for two walking humans at normal speed with
different reaction times.
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(a) Human - Humanoid interaction. (b) Reaction time.

(c) Coefficient of friction.

Figure 6.5: Human-robot interactions. (6.5a) shows the PTR distance and zone predictions
for a walking human interacting with humanoid robots at different speeds. (6.5b) and (6.5c)
show the implied parameters for an interacting robot.

218



4 Results

Figure 6.6: Example of predicted escape distance for different interaction angles between
Agent1 and Agent2.

4.3 Walking Human vs Humanoid Robot

We now consider human-robot interactions. Fig. 6.5a shows predicted zone sizes for a human
walker interacting with two different humanoids, NAO (∼0.6m tall) and PR2 (∼1.4m tall).
The parameters used are: t1 = 1.1s, t2 = 0.5s, v1 = 1.1m/s, w1 = 1.19m, w2 = 0.4m.
With NAO at speed v2 = 0.3m/s, the model predicts zone sizes: dcrash = 0.15m and
descape = 0.76m. For PR2, having speed v2 = 1.0m/s, zone sizes are: dcrash = 0.5m and
descape = 2.54m. The sizes found for these human-robot interactions are much smaller
than for human-human interactions, which is consistent with and matches closely results
from previous empirical experiments with humanoid robots [18, 36, 39]. The zone ratios
RH−NAO = 5.06 and RH−PR2 = 4.62 are much bigger than the comparator from above.
This explains existing empirical results that humans may be more sociable and friendly with
humanoids than human strangers [16], and that people might not perceive robots as ‘social
entities’ having an intimate zone [38].

4.4 Effects of Different Approach Headings

Fig. 6.6 shows the predicted escape distance for different approach headings between Agent1

and Agent2. In the HRI case, the prediction matches the previous result for a PR2 robot at 90◦

with descape = 2.54m, assuming the following parameters: t1 = 1.1s, t2 = 0.5s, v1 = 1.1m/s,
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v2 = 1m/s, w1 = 1.19m and w2 = 0.4m. In the HHI scenario, the parameters are as follows:
t1 = t2 = 1.1s, v1 = v2 = 1.1m/s, = 1m/s and w1 = w2 = 1.19m, and the prediction at
90◦ closely matches Hall’s zone, with descape = 3.59m. The results of this extended model
match and explain recent empirical data that descape i.e. public zone may be noncircular [15]
while dcrash i.e. personal zone is always circular [29]. This is because descape is a function of
v1 (Eq. 6.3) and v2 while dcrash depends only on v2 (Eq. 6.1). The escape distance goes to
infinity as θ → 0◦ and θ → 180◦ because it is impossible for Agent1 to escape if their heading
is constrained to be the same as Agent2’s.

4.5 Measuring Human Beliefs About Robots

It is possible to measure human’s beliefs about robots’ proxemic behaviour via implied para-
meters from the model and experimental data. For example by optimising the reaction time
of the robot (Fig. 6.5b) or its coefficient of friction (Fig. 6.5c) to best fit results from human
interaction. Assuming v1 = v2 = 1.1m/s, t1 = 1.5s, w1 +w2 = 2m, µ = 1.0 and g = 9.8m/s2,
as in Fig. 6.5b, the best reaction time for this case would be t2 ≈ 1.075s if the robot wants
to behave like a human and reproduce Hall’s empirical zones. Similarly the coefficient of
friction is found by keeping the previous parameters except µ which becomes unknown and
by now setting t1 = t2 = 1.1s. Fig. 6.5c shows that the best coefficient of friction for the robot
would then be µ = 0.6. This should enable roboticists to learn and program their robots with
the best parameters, with the possibility to vary the parameters for different people and in
different environments. Current HRI proxemics results may suggest that humans have this
natural ability to measure a robot’s parameters and thus adapt their behaviour accordingly.

5 Discussion

The new extensions generalise the unification of proxemics and trust previously presented in
the special case of AV-pedestrian interactions, to more general HRI interactions. This was
achieved by modifying the assumptions to allow interactions between agents of similar sizes,
approaching at arbitrary angles, and by removing the need for a goal location. The new
model was validated by successfully fitting and explaining varied classical recent empirical
proxemics and trust results.

We have here simulated two identical walking agents, but in the real world it is unlikely
that two humans will share the same exact behavioural parameters. This new model could
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help to better understand proxemics and trust dynamics by simulating agents with differing
parameters, without the costs or hazards associated with human experiments. The model for
two walkers at normal walking speed is also valid for walkers at higher speeds e.g. 2.2m/s
because the form of the equations scale, though for runners new dynamic equilibrium terms
may be needed to model their stopping distance. In some cases, such as interactions with
large cars, the old rectangular vehicle geometry may have to be restored and more complex
equations used to compute shape overlaps and collisions. Future work should replace the use
of Option 2 with a full solutions to Option 3 then 4.

Some possible applications for this work include:
Social Robotics: People are ‘the big problem with self-driving cars’ [6]. AVs are one case of

social robots, which must understand social dynamics and norms, especially in crowded and
mixed pedestrian-vehicle areas, in order to negotiate for space safely [33]. These negotiations
are typically competitive rather than collaborative, with the aim of each agent being to get to
their own destination quickly rather than to specifically interact with the other. Other forms
of Social Robotics such as interactions with service and assistive robots may also benefit from
quantitative understanding of proxemics and trust [17, 22, 24]. Unlike AVs, interaction with
these robots is often cooperative.

Gaming & Extended Reality (XR) seeks to understand human proxemics in simulations of
crowds, both for improving realism of video games and movie special effects, and for serious
games such as simulations of evacuations, human locomotion in obstructed environments or
group interactions in immersive virtual environments [1, 9, 31, 32].

Behavioural & Social Sciences: As trustors, humans are known to be more trusting (and
gullible) depending on personality and environmental factors, and neuroscientific factors such
as oxytocin hormones which may be physically transmitted through physical proximity [19].
As trustees, humans also maintain different reputations for trustworthiness, as studied by
social network theorists [2, 41]. Hall zones are known to change in size across different human
cultures [13]. Future work may need to take account of and replicate these factors for different
human cultures. The Covid-19 pandemic has put a focus on human-human physical social
interactions via the concept of social distancing. This is the encouragement or enforcement of
a minimum proxemic distance between people when meeting. This requires hard numerical
distance limits to be decided but there is a debate about what this distance should be. If
the distance is too small, infections may be transmitted. A meta-review [8] found that 1m
distance reduces transmission risk by 86%; 2m by 93%; and 3m by 96%. Others argue that
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if social distance is too large, trust will be harder to build [27]. An analogous debate to
human-robot trust exists here, with arguments that physical proximity is sometimes needed
to build human-human trust which may be jeopardized through social distancing and remote
working. For example many workers are happy to hold technical meetings online but want
to meet physically and closely to make contacts and deals which require trust.
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Chapter 7

OpenPodcar: an Open Source Vehicle for Self-Driving Car Research

Abstract

OpenPodcar is a low-cost, open source hardware and software, autonomous vehicle research
platform based on an off-the-shelf, hard-canopy, mobility scooter donor vehicle. Hardware
and software build instructions are provided to convert the donor vehicle into a low-cost and
fully autonomous platform. The open platform consists of (a) hardware components: CAD
designs, bill of materials, and build instructions; (b) Arduino, ROS and Gazebo control and
simulation software files which provide standard ROS interfaces and simulation of the vehicle;
and (c) higher-level ROS software implementations and configurations of standard robot
autonomous planning and control, including the move base interface with Timed-Elastic-
Band planner which enacts commands to drive the vehicle from a current to a desired pose
around obstacles. The vehicle is large enough to transport a human passenger or similar load
at speeds up to 15km/h, for example for use as a last-mile autonomous taxi service or to
transport delivery containers similarly around a city center. It is small and safe enough to be
parked in a standard research lab and be used for realistic human-vehicle interaction studies.
System build cost from new components is around USD7,000 in total in 2022. OpenPodcar
thus provides a good balance between real world utility, safety, cost and research convenience.
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1 Overview

Metadata Overview

Main design files: https://github.com/OpenPodcar/OpenPodcar

Target group: researchers and hobbyists interested in autonomous vehicle research and
robotics.
Skills required: Mechanical assembly – intermediate (drilling steel); electrical assembly –
intermediate (PCB soldering); Software – easy (Linux command line).
Replication: The current OpenPodcar is being used by some of the authors for
human-robot interaction experiments and a second copy will be built from the
documentation to improve its accuracy. The design is currently being forked for a
courier-type manually-driven platform by a commercial UK vehicle manufacturer.

Keywords

Autonomous vehicle, automation, self-driving car, mobility scooter, open source platform.

1 Overview

1.1 Introduction

Autonomous Vehicles (AVs, also known as ‘self-driving cars’), is a fast-moving research field
in both academia and the industry. Open source software (OSS) for localisation, mapping
and control of AVs is available [25] but hardware vehicle platforms remain expensive and
proprietary, making it difficult for researchers with low resources to develop algorithms or
reproduce complete research systems. There is thus a need for a standard, low-cost, repro-
ducible hardware platform, compatible with the standard open source software stack.

Open source hardware (OSH) allows for more effective and accessible sharing and col-
laboration among researchers [16]. By combining OSH and OSS, a standard platform can
be produced for use by all members of a research community, who may then reproduce
each others work in full, and contribute their new research as functional system components
rather than only as reports. Such platforms may evolve from research into development and
real-world applications.
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1 Overview

To create an OSH platform for the autonomous vehicle research community, several re-
quirements must be met: low cost and easy to build to enable the community to reproduce and
use it; consumer levels of safety and reliability are not required, though research standards of
safety and reliability are required; the system should be designed to enable easy modification
so that it can be forked to operate with similar but different vehicles; the system should
be physically light-weight to ease experimentation and reduce risks of damage, though large
enough for human transport so that it can be used in real-world applications and in research
requiring realistic interactions with other human road users [10, 17].

1.2 Related Systems

SMART [36] is a design to modify an existing donor golf cart vehicle for automation research,
this is of a similar size and power to OpenPodcar. Similarly, iCab (Intelligent Campus Auto-
mobile) [22] is a research golf car with a ROS (Robot Operating System)-based architecture
and that has been tested with Timed-Elastic Band planner [28]. However, these vehicle
designs are not open source hardware.

Complete and built mechanical OSH designs for on-road, person-carrying cars exist, in-
cluding PixBot [37] and Tabby EVO [33]. Building these full size cars is a large task for experts
and may require dangerous processes such as welding, purchase of expensive components, and
considerable storage space. OpenPodcar is based on a proprietary but commodity mobility
scooter which is cheaper and easier to convert than performing these builds.

Several OSH RC-scale cars have been completed and built such as F1Tenth [1], AutoRally
[21], BARC [23], MIT Racecar [2], MuSHR [3], [31], and [46]. These platforms are not large
enough to drive on public roads or to transport people or goods like OpenPodcar. Open
Source Ecology (OSE) [24] is an ambitious programme of projects which ultimately aims to
develop fully OSH vehicles including a car and tractor. OSE is optimised for reliability and
for users in developing countries so it uses hydraulic power rather than electric as used in
OpenPodcar. But its vehicle designs are not yet complete.

Autoware [25] is a heavyweight open source software project to construct a full ROS-based
automation stack for on-road cars. Apollo [4] is an open source self-driving software stack and
an open hardware interface which may be implemented on vehicles, as done in [26]. These
systems could be software interfaced to run with OpenPodcar.

Some AV research can be done in simulation without the need for hardware, hence open
source simulation platforms are widely available such as SUMMIT [5], Gym-Duckietown [15],
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CARLA [18], DEEPDRIVE [39], LGSVL Simulator [41], AirSim[43], and FLOW [47]. The
USA state of Georgia provides a level 3 open-source autonomous vehicle based on a Ford-
Edge[35], which can be used gratis in their Peachtree Corners’ Curiosity Lab smart city
environment by researchers needing a vehicle but not wanting to build or buy one.

2 Overall Implementation and Design

2.1 Donor vehicle

A Pihsiang TE-889XLSN hard-canopy scooter (branded in UK as Shoprider Traverso, [44])
is used as a donor vehicle. It is an Ackermann-steered [30], hard-canopy, electric mobility
scooter. It is powered by two 12V batteries connected in series to provide 24V operating
voltage and containing 75Ah. In its standard configuration, its steering is controlled by a
human-operated loop handle bar. The speed and braking systems are both powered by an
electric motor and an electric brake via the trans-axle assembly, controlled by an AC2 digital
controller receiving different voltage signals to drive forward or brake. The manual speeding
and braking systems are controlled by three buttons connected in series on the handle bar.
A toggle switch in parallel with a resistor (10kΩ) selects speed mode from high (max 8mph)
or low (max 4mph); a speed dial knob via a variable resistor (20kΩ) sets a maximum limit
speed within the mode. A throttle lever connected with a 5kΩ potentiometer is used to select
the speed within the mode and limit.

2.2 Mechanical Modification for Steering

To automate steering, a linear actuator (Gimson GLA750-P 12V DC) with position feedback
is mounted between an anchor on the underside of the chassis and the car’s front axle via
bearings. This actuator has a 8mm/s full load (750N) speed and 250mm stroke length
(installation length is 390mm). To access the underside of the vehicle, two axle stands are
used as shown in Fig. 7.1a. There is an existing hole in the right front wheel axle. The linear
actuator is mounted via a rear hole to the left side of the front chassis and connected through
the front hole of the actuator with the hole in the car’s right front wheel axle via bearings as
shown in Figs. 7.1b and 7.2.
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(a) Tilting the vehicle using two axle stands,
to enable access to the underside. (Note also
lidar mounted to roof.)

(b) Underside with linear actuator added for
steering.

Figure 7.1: Vehicle mechanical modification

2.3 Electronics

The new vehicle electronics, which various different voltage power supplies (cf. Fig. 7.3),
are packaged on a single new PCB (Printed Circuit Board), as shown in Figs. 7.5a and 7.5b.
This is convenient as it reduces the number of small wires between the components by having
them directly drawn on the board, and packages them together.

As an OSH design, the PCB hosts several daughter PCBs, mounted using headers. The
physical structure of the large PCB comprised of these smaller PCBs reflects the OSH design
itself. There are two DC-DC Buck converters with an XL4016 regulator, an Arduino Uno, an
MCP4725 DAC (Digital-Analog Converter), a Pololu Jrk 21v3 motor controller with position
feedback for the linear actuator, two resistors (10kΩ and 100kΩ) for the potential divider and
two terminal blocks. 3D-printed parts support the mounting of the LCD and the 3D lidar to
the board. A 3D printed enclosure mounts and protects the PCB board, as shown in Fig. 7.4.

2.4 Steering Automation System

The front wheels are steered by a Pololu Jrk 21v3 PID controller-driver, which takes serial
port desired positions as input. It also takes feedback position information as an analog
voltage from the linear actuator as an input. It outputs analog high-power voltages to the
linear actuator. A gratis, closed-source, Windows program from Pololu is required once, at
build time, to set the PID parameters for the linear actuator.

The relationship between the required central turning angle θ of the pair of front wheels

231



2 Overall Implementation and Design

Figure 7.2: Underside view of front wheels’ steering relationship including geometric coeffi-
cients

and extending length l of linear actuator as in Fig. 7.2 is given by,

θ = α− arctan( W2H ) (7.1)

β = α− π

2 (7.2)

x = r1 cos(β) (7.3)

y = r1 sin(β) (7.4)

l =
√

(x0 − x)2 + (y0 − y)2 − L+ l0 (7.5)

where r1, x0, y0, W , H and L are the geometric coefficients shown in Fig.1. Among them, the
value of y0 is negative. l0 is the initial value of the linear actuator position feedback. Table
7.2 specifies the acceptable serial port commands for the linear actuator. Sending commands
outside this range may mechanically destroy the system.

2.5 Speed Controller Automation System

An Arduino UNO [34] is used to send electric signals to the vehicle’s motor controller in place
of the donor vehicleâ€™s paddle controllerâ€™s potentiometer. An Adafruit MCP4725 DAC
is connected to the Arduino as in Fig. 7.3, and is used to send clean analog speed command
voltages to the donor vehicleâ€™s internal controller.

Arduino firmware source, and upload instructions, are supplied in the repository. When
uploaded to the Arduino (using the standard Arduino IDE running on the laptop), the
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Figure 7.3: Circuit diagram for electronic modifications.

firmware provides a simple serial port API running at 112,000 baud. It receives ASCII
commands of the form ‘FA:210’ as speed commands. Table 7.3 summarises the range of
speed commands and their corresponding output voltages.

To start the ignition, the car safety system requires the control voltage to be in the dead
range. A problem is that this doesnâ€™t correspond precisely to any fixed speed bytes, due
to floating USB power level issues. But if we pick a number solidly in the center of the dead
zone, such as 164, this will work for most USB supplies. (i.e. when the vehicleâ€™s battery
is flatter, the voltages provided to USB power by it are lower. For example, we might send
164 and get 1.9V instead of the usual 2.26V.) This may result in the vehicle not starting and
producing an audible warning beep instead.

Also due to floating voltages from the battery, the Arduino typically receives a lower power
e.g. 4.9V instead of its ideal 5V, which gets divided by the DAC value in some calculations.

To deal with these instabilities, a potential divider is added to the battery to monitor its
voltage and compensate the podcar control accordingly, as in Fig. 7.6. A “BV” command is
provided in the Arduino serial protocol which allows callers to request this current battery
voltage. This can then be used by higher-level (Python) systems to decide what speed bytes
to sent, including compensating for the floating dead zone.
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Figure 7.4: PCB enclosure mounted on the vehicle (top left, white box).

(a) PCB Design. (b) PCB assembly currently used.

Figure 7.5: Electronics with PCB board design and assembly

Table 7.2: Linear actuator acceptable command ranges.

FA:cmd Effect

2500 turn max right i.e ∼ -45 deg

1900 center wheels i.e ∼ 0 deg

1000 turn max left i.e ∼ +45 deg
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Table 7.3: Speed commands and their corresponding output voltages.

Command Voltage Effect

FA:0 0 very fast reverse

FA:80 ∼ 0.9 fast reverse (ROS limit)

FA:132 ∼ 1.5 slowest reverse motion

dead zone - allows ignition

FA:170 1.9 stop - zero/home position

FA:201 ∼ 2.3 slowest forward motion

FA:240 ∼ 2.7 fast forward (ROS limit)

FA:255 ∼ 3.0 very fast forward
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Figure 7.6: Potential divider linked to the battery

2.6 Software Interface (ROS)

A ROS interface to and from the physical vehicle is provided as described below. ROS is an
open source operating system for robots based on a publish-subscribe pattern [38], which is
the robotics communityâ€™s standard interface. The ROS core and software all run on a
consumer laptop computer mounted on-board the vehicle, and that could be powered from a
DCDC converter from the vehicle battery, running Xubuntu 16.04 (Xenial) and ROS Kinetic.

The system expects to hear two incoming ROS control messages: /speedcmd meterssec
and /wheelAngleCmd, which contain single floats representing the desired speed in meters per
second, and the desired front wheel orientation in radians respectively. These two messages
are received by ROS nodes speedm2arduino and wheelAngle2Pololu, which are ROS drivers
for the Arduino speed controller and the Polulo steering controller respectively. Converters
from a standard ROS USB joystick driver node to the speed and angle command interface
messages are provided, by joystick2speedms and joystick2wheelAngle. These use the y axis
of a joystick for speed and x for steering.
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2.7 3D Lidar Sensor

A Velodyne VLP-16 lidar sensor is mounted on the vehicle roof using a Manfrotto Black Digi
Table Tripod 709B. It is mounted at a 10 degree tilt downwards (to allow pedestrians to be
most clearly seen in the 16 scan lines). The lidar has a ROS driver.

2.8 High-Level Automation Software

Fig. 7.7 shows an overview of the ROS components used in high level automation, including
localisation and mapping, path planning and control, and pedestrian tracking as discussed in
the following sections.

Figure 7.7: ROS nodes used in the autonomous driving mode.

2.8.1 Localisation and Mapping System

Simultaneous Localisation and Mapping (SLAM) [45] is the robotic task of inferring the
robotâ€™s location at the same time as building a map of its environment, which is a classic
‘chicken and eggâ€™ problem as the two subtasks depend on one another. Solving SLAM
is an NP-hard problem but many standard approximations exist. GMapping [49] is a ROS
implementation of a Rao-Blackwellized Particle Filter (RBPF) in which “each particle carries
an individual map of the environment”. The information carried by each particle overlaps, and
an estimation of a map can be built based on these relationships. As the robot moves around
the environment, these estimations are stored, and when a â€˜feedback loopâ€™ is closed,
the estimations cascade into a portion of the completed map. These maps take the form
of 2D occupancy grids, and can be used later by the navigation stack to plan paths around
the environment. To provide reliable odometry data for GMapping, ROS laser scan matcher
package is used as a stand-alone odometry estimator that matches consecutive laserscans.
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(a) Physical simulation of vehicle. (b) Default Gazebo simulation world

Figure 7.8: OpenPodcar 3D simulation

2.8.2 Path Planning and Control

Path planning is the autonomous selection of an entire desired trajectory for a robot to get
from a current pose to a desired pose. Path control (or path following) is then the real-time
process of executing a path plan by interactively monitoring the robotâ€™s state and sending
commands to motors, to make the actualized path close to the desired path. The OpenPodcar
software includes path planning and control with the standard ROS tool move base and Timed
Elastic Band (TEB) [42] plugin. These tools implement the requirement geometry of Dubins
paths [19] and Ackermann steering. The values for parameters such as minimum turning
radius have been calculated from the technical specifications of the base vehicle [44].

2.8.3 Pedestrian Detection and Tracking

A pedestrian detector and tracker ROS package are included in the system. The lidar-based
detections are classified by a SVM (Support Vector Machine) classifier, then a Bayesian multi-
target tracker is used to track pedestrians over time. These modules re-use OSS from the EU
FLOBOT project [48], merged into the repository.

2.9 Simulation

A physical simulation of the vehicle is provided for use in Gazebo 7 [27] under ROS Kinetic and
Ubuntu 16.04 (Xenial). The simulation implements the same ROS interface as the physical
vehicle system to enable plug and play inter-operability between them. The physics model
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(a) University of Lincoln 3D world (b) University of Leeds 3D world

Figure 7.9: OpenPodcar additional Gazebo 3D simulation worlds

Figure 7.10: OpenPodcar in Lincoln world

239



3 Quality Control

is based on a simplified vehicle geometry with two large cuboids containing the vehiclesâ€™
mass, as shown in Fig. 7.8a. Wheel geometry, friction, and motor driver parameters were
measured from the physical vehicle. A detailed graphical mesh model of the vehicle is provided
for display, rather than physical simulation, purposes. The main difference with the real
vehicle is that the effects of the linear actuator are represented by a tracking rod, where is
mounted the Kinect sensor used in place of the lidar, as found in Fig. 7.8b.

A basic 3D world containing the podcar and various test objects from Gazebo libraries
is provided by default as shown in Fig. 7.8b. Fig. 7.11 shows the complete ROS node
configuration used during simulation, under manual joystick control. Moreover, the open
source Blender 3D add-on, called MapsModelsImporter [29], was used to create further 3D
worlds representative of the University of Lincoln, the testing area for the OpenPodcar, and
the University of Leeds campuses, shown in Fig.7.9. Fig. 7.10 shows the OpenPodcar in
Lincoln campus environment.

Figure 7.11: ROS nodes used in simulated, manual joystick control mode.

3 Quality Control

3.1 Safety

Autonomous vehicles can present a significant hazard to humans and to the environment in
which they operate. Damage to surroundings and possible injury to operators and bystanders
could result from inappropriate use or malfunction. A particular risk arises from the speed
controller on the donor vehicle being of ’wigwag’ style, as is common in mobility scooters.
This means it is an analog signal in the range 0-5V, including a dead zone around 2.5V
corresponding to no motion. Above the dead zone and up to 5V are forward speed control
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Figure 7.12: Steering console showing the newly added relay (with lit LED)

commands of increasing speeds, below the dead zone to 0V are reverse control commands
of increasing speeds. Wigwag control is potentially dangerous because a 0V signal might
appear due to component failure rather than as a desired max-speed reverse command. Also,
if the vehicle batteries run low, the scaling of this signal may be altered resulting in the dead
zone position floating and leading to further undesired motion. The following layered safey
systems are included to fully mitigate these risks:

Fusing As shown in Fig. 7.3, a 10A fuse is inserted between the vehicle’s original 24V
battery and the switch to the new electronics. This is in addition to original fusing and other
safety features provided by the donor vehicle, which all remain in tact.

Dead Man’s Handle It is essential that a suitable emergency stop system is implemented
in all autonomous vehicles. Given the research nature of the OpenPodcar, a safety mechanism
which stops the vehicle under fault conditions is an especially important part of the design.
A wired dead-man’s handle (DMH) is included which is required to be pressed by a human
experimenter at all times, in order for a hardware relay to actively continue to supply power
from the vehicleâ€™s batteries to all other systems. The relay connects to the donor vehicle’s
keyed ignition switch and will naturally cut out if these signals are absent for any reason,
including failures in the safety systems themselves. A photograph of the installed system is
shown in Fig. 7.12.

Heartbeat Signal The serial protocol linking the Arduino to ROS includes a heartbeat
signal, in which the Arduino code will shut down the motors unless a correctly formatted
and timestamped serial command is received within 0.1 seconds. This requires ROS code to
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actively check and confirm its own status and to send positive confirmation, for example if
ROS or Linux go down then this heartbeat will cut off.

Steering Control System Limiter Limitations are placed on the steering controller for
the linear actuator commands, to only allow the vehicle to accept and execute input values
within the range that will keep the mechanical mounting safe.

3.2 General Testing

A series of sub-component (e.g. Pololu, DAC) acceptance tests, component (e.g. PCB, lidar)
hardware unit tests, and system integration tests are defined and included as formal, non-
optional steps in the build instructions. The structure of the tests is designed to enable build
problems to be immediately localised, so that passing one test means that a failure of the
next one must be due to build steps that have occurred between them. Below is a summary
of these tests.

At component level, an external power supply, a multi-meter, a clamp meter and a bread-
board with some wires are frequently used to recreate smaller electronic circuits in order to
check the voltages, currents and the correct functioning of each component during the build.
For instance, a circuit with an external power supplying 5V to the Arduino connected to the
DAC is temporally created to test the Arduino code and its communication with the DAC.
Similarly, another test circuit is created with an external power supplying 12V to the Pololu
connected to the linear actuator to send direct commands via the Windows program used to
fix the PID parameters. These hardware unit tests are essential to the success of components’
integration to the vehicle and make things easier later.

At system integration level, udev rules are used to facilitate testing with the creation
of simlinks, i.e. dynamic assignments for the laptop USB ports connected to the Arduino
and the Pololu, using their respective product and vendor IDs. This helps in being able to
physically interchange the USB ports without having any impact at the software level. For
the speed control, the vehicle wheels are lifted from the ground using jacks to stop them
from driving off. This technique helps to test and fix the Arduino and ROS speed control
code whilst staying in the same place. Vehicle steering is first tested using the Windows app
that allows direct commands to be directly sent to the linear actuator. This helps verify
and fix the linear actuator mounting as desired. Similarly, using Pololu’s C++ API, direct
commands are sent from a terminal to the linear actuator, but this time for testing at the
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software level.
Driving tests are initially performed in the manual joystick control mode in order to

ensure that both hardware and software stack work well together. In particular, the LCD on
the PCB board helps with checking in real-time the voltage received for each speed command
and the LEDs colors displayed on the Pololu also give useful indications about the steering
control.

The autonomous driving tests with move base and TEB are performed with the vehicle
speed controls dial know set to ‘5’, corresponding to about 0.2m/s. This relatively low speed
is chosen because these tests may be performed in a shared and cluttered research lab around
people. Also, a large inflation distance is set in the planner to prevent the vehicle from close
contacts with both static and dynamic obstacles. At first, simple and short goals are sent
to move base such as “drive one meter forward and keep your current orientation” or “drive
three meters forward and keep your current orientation”. Once the vehicle is able to execute
and reach these simple goals, more complex goal commands are sent. Once a goal is reached,
it is possible to resend immediately another goal without having to turn off the system, which
is very convenient for example when one wants to ask the vehicle to return to its starting
position or go somewhere else.

Setting a very high accuracy for goals such as 1mm and 0.01rad is achievable on the
vehicle and is tested for short drives in the lab. However, in these cases, the short drives may
end up taking a lot of time, for example it can take up to three minutes to simply reach a
one meter forward goal. This is due to the planner’s oscillating behaviour around the goal.
To fix this, more tolerance should be given for the goal accuracy, for example, 150mm and
0.15rad give an acceptable vehicle behaviour. During these driving tests, ROS topics and
RViz (ROS visualization tool) are particularly monitored to get informed about the vehicle
behaviour in real-time.

OpenPodcar was developed, and our own build was heavily tested, between March 2018
and March 2022. With its first automated test drives taking place since summer 2018 and an
estimated 100km or more driven to date, the vehicle design has thus proven robust enough
for autonomous vehicle research.
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Figure 7.13: OpenPodcar test drive with GMapping SLAM, ROS move base with TEB plan-
ner and obstacle avoidance.

4 Application

4.1 Use Cases

4.1.1 Self-Driving Research

Many AV researchers cannot currently afford the acquisition of a self-driving hardware plat-
form for their work. The OpenPodcar is primarily designed for this purpose, as a low-cost
and an all-in-one, software and hardware platform for researchers and hobbyists. Thus, giv-
ing them not only the opportunity to reproduce, develop and test algorithms on a physical
hardware platform but also to extend its capabilities with new features.

The Related Systems section found that there are many open source software stacks
without related open hardware platforms. OpenPodcar thus fills this gap, offering the op-
portunity not only to deploy Autoware or other types of AV software but also to extend
the hardware capabilities to the point where OpenPodcar could become a standard test bed
for the AV research community. For example, this platform could be useful to test different
SLAM and planning algorithms, parallel and valet parking methods. The objective being that
both hardware and software can be tested regularly in real-world conditions and contribute
towards the deployment of AVs. The OpenPodcar can avoid both static and dynamic obstacle
using the integrated feature in move base and TEB planner. Fig. 7.13 shows the OpenPod-
car test drive with GMapping, move base and TEB planner in action when it encounters an
obstacle on its path.
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Figure 7.14: Pedestrian detection and tracking output from RViz.

4.1.2 Human-Robot Interaction Research

Understanding human behaviour and interaction strategies are of upmost importance nowadays
for autonomous systems. There is a general growing interest from the robotics and autonom-
ous vehicle research communities to tackle the numerous challenges posed by human interac-
tions. Social robots as well as autonomous vehicles need better models of human behaviour
[6, 7]. Some of the authors (FC and CF) are particularly interested in improving autonomous
vehicles’ decision-making using a game theoretic approach for road-crossing scenarios [20].
Several empirical studies e.g. [8, 9, 14], were performed in highly safe lab environments and
found that human participants were not interacting realistically with the other agent. A sim-
ilar experiment performed in a VR environment showed a more realistic behaviour from the
participants [10, 11]. An additional model of human proxemics (i.e., interpersonal distances)
has been developed and is being combined with the game theory model [13, 12]. In future
work, the OpenPodcar will be used to extend these human experiments using a real phys-
ical platform and demonstrate the operation of game theoretic behaviour on a autonomous
vehicle for the first time. The pedestrian detection and tracking feature will be particularly
useful for this task, since the AV needs to track the pedestrian in order to make a decision.
Fig. 7.14 shows an example output of the pedestrian detection and tracking integrated in the
OpenPodcar.

4.1.3 Practical Transportation

OpenPodcar can carry at least 76kg of payload, such as a person or parcels, making it
potentially useful for real-world as well as research applications.

Last mile delivery of parcels could replace human workers for e-commerce deliveries.
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Figure 7.15: OpenPodcar test drive in remote control mode.

Urban center retail environments may also be improved by replacing the last mile of supply
to retail outlets. Instead of driving to a shop to deliver goods, heavy goods vehicles could
instead park a mile outside the urban center and transfer the goods to OpenPodcar or similar
electric autonomous vehicles to take to the shop, reducing local pollution. The Covid-19
pandemic emphasised a specific need for autonomous last-mile delivery: to reduce the need
for human contact and potential disease transmission at the point of delivery.

OpenPodcar is able to transport a human passenger, as shown in Fig. 7.15, as it is based
on an COTS mobility scooter. For instance fleets of OpenPodcars might one day transport
people over the last mile from the train station to their office, as a low cost electric taxi
service. This will require more automation software to operate in busy urban environments.

4.2 Reuse Potential and Adaptability

The OpenPodcar design is intended so that the mechanical, electronics and software com-
ponents can be easily ported to other vehicles/platforms and only require small changes on
the software side to adapt it and fix some parameters specific to the new vehicle require-
ments. This could include future deeper OSH vehicles as well as additional commercial donor
vehicles. Cheaper sensors such as depth cameras or stereo cameras could be used instead of
the 3D lidar. Such modifications would typically require an advanced rather than intermedi-
ate designer/builder.
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5 Build Details

5.1 Availability of Materials and Methods

The design is made under the CERN-OSH-W licence which allows for the use of commercially
available proprietary components such as the off-the-shelf donor vehicle. However the design
is intended to be easily modifiable for transfer to other base vehicles, including those which
are OSH at lower levels. The PCB can be manufactured by many online PCB manufacturers.
The additional mechanical and electronics used are common parts available from standard
online vendors.

5.2 Ease of Build

The vehicle modification requires the use of common hand tools for assembly: spanners,
screwdrivers, and pliers. Additionally, a 3D printer is needed to fabricate some components.
Basic soldering skills are needed for assembling the PCB.

5.3 Operating Software and Peripherals

The system requires open source software: Arduino IDE, Ubuntu 16.04, ROS Kinetic, Gazebo,
KiCad (PCB Design), ROS GMapping, ROS move base, and Velodyne lidar driver. It also
requires the Pololu Configuration Utility Manager software which is available gratis from the
manufacturer website. The on-board laptop should have minimal specifications of amd64
3GHz quad-core, 8GB RAM, 250Gb hard-disc, USB and Ethernet ports. The system might
also work on lower specifications. Step-by-step instructions for installation of these software
dependencies, and the new system software components, are provided in the repository.

5.4 Hardware Documentation and Files Location:

Archive for hardware documentation, build files and software
Name: GitHub
Project repository: https://github.com/OpenPodcar/OpenPodcar

Licence: CERN-OHL-W for hardware design and build instructions; GPL for software
source code.

Date published: 09/05/2022
The hardware is structured as two separate formal OSH designs, each licenced as CERN-

OSH-W. The first covers all components which are easily transferable to other vehicles without
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modification. The second contains all components which are specific to the mobility scooter
donor vehicle. This structure enables the first design to be used as sub-component of closed
products while also preventing closed modifications of it.

6 Discussion

6.1 Conclusions

OpenPodcar is a multi-purpose hardware and software platform for autonomous vehicle re-
search. It provides the required hardware and software tools to carry out research in this
field. The platform has a lower-level stack, a higher-level stack and a simulator for initial
testing. It has several safety features to prevent hazards. The general testing carried on the
vehicle shows a robust and safe design. Several use cases have been identified and success-
fully tested. OpenPodcar is open source to allow further improvements and extensions of its
capabilities from the community. The replication of this work on a second and later vehicles
will help identify build issues and continually improve the documentation.

6.2 Future Work

OpenPodcar is designed to be extensible and modular, both at the hardware and software
levels. As well as improving the current design, the community is warmly invited to create
forks such as replacing the mobility scooter with other donor vehicles – including deeper OSH
vehicles – or extending the ROS stack to more complex on-road self-driving systems such as
Autoware.

In the current setup, the lidar has limited perception of obstacles that are too close and
not as high as the lidar. This is generally fine, because people or objects would be seen before,
but this can be problematic with objects such as desks and chairs that are not detected by
the laserscans and can create unexpected collisions. For example, a low-cost alternative to
lidar is to use a stereo camera for point cloud sensing. In this option, a StereoLabs ZedCam
is mounted similarly on the vehicle roof.

The design currently uses ROS1 but the robotics community is slowly shifting to ROS2
for its security, real-time control and increased distributed processing features. OpenPodcar
could join this shift when all of its ROS dependencies have themselves completed it.

The donor vehicle currently used it not itself OSH, and it would be interesting and useful
to replace it with a more deep OSH vehicle. Such vehicles would be based on OSH motor
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drivers and controllers such as the brushed OSMC [40] or brushless ODrive v3.5 [32].
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Chapter 8

Discussion and Conclusions

“I dream of a better tomorrow, where chickens can cross the road and not be questioned
about their motives.” Ralph Waldo Emerson (1803–1882)

1 Summary

In this thesis, we have shown how to infer and operate pedestrian behaviour on autonomous
vehicles, basing this work on the research gaps identified in the introduction (cf. Chapter
1). In Chapters 2 and 3, the two narrative reviews found that low-level pedestrian models
are mature enough to be operational but highlighted the need for the development and
operation of more high-level pedestrian models such as game theoretic models. In Chapter
4, we implemented the Sequential Chicken game theoretic model on an autonomous vehicle
in a VR environment for road-crossing experiments with human participants. We inferred
pedestrian interaction preference parameter values from these experiments using Gaussian
Process regression. The results were found to be more realistic than previous empirical
experiments and the parameter values could be inserted into future experiments or real-world
AV controllers. In Chapter 5, we proposed novel quantitative approaches for proxemics and
physical trust requirement (PTR) for operation into game theoretic AV controllers. We found
that a hyperbolic function best describes pedestrian proxemics utility and showed that our
PTR results closely match Hall’s empirical zone sizes. In Chapter 6, we addressed some
limitations of the PTR model and extended it to model more general human-human and
human-robot interactions. Finally, in Chapter 7, we developed OpenPodcar, a low cost and
open source hardware and software self-driving platform providing SLAM, path planning
and pedestrian detection and tracking algorithms on-board, for the operation of real-world
pedestrian interaction models including the models proposed in Chapters 4 to 6.
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2 Limitations and Future Work

2 Limitations and Future Work

There are some limitations with this work. First, the literature reviews presented in Chapters
2 and 3 need to be updated regularly in order to take into account the latest models intro-
duced in the fast-moving autonomous driving field. For example, since the publication of
the reviews, recurrent and graph neural networks have recently been applied to tracking,
benefiting from the recent availability of GPU computing and outperforming probabilistic
methods in many cases [9, 13, 14]. Moreover in these reviews, only a selected number of
papers have been reviewed and we did not go into the implementation details of the mod-
els including possible and different data types available from sensors like lidar. However,
it is worth noting that a survey on human motion prediction [11], that appeared on arXiv
shortly after our reviews were submitted, corroborated our main findings and highlighted the
need for game theoretic approaches and human social cues to improve autonomous systems’
decision-making.

The experimental data used is relatively small for the VR experiments with just a few
participants and less than a hundred of distinct pedestrian-vehicle interactions in the prox-
emics work, therefore future work should consider a much larger number of participants and
interaction data in order to make the results more robust. This work has mainly focused on
a pair of interacting agents, but pedestrian behaviour can be affected by that of other road
users, similar to human drivers, so methods to manage multiple and simultaneous interactions
should be explored, similar to [6, 7]. This will require the model to become more complex
and will also need a lot more computation but this is necessary in order to embed more
human intelligence into autonomous vehicles. Also, faster methods to compute pedestrian
preferences could be useful, because the Gaussian Process regression and the gradient descent
approach used in the VR experiments can take some time to compute, so newer and faster
methods should be explored in the future, and to estimate the AV driving parameters which
may be learned directly from human drivers and then insert into the AV controller.

The proxemic utility functions used in this work may need in the future to include speed
considerations, because an AV driving at 1m/s that invades someone’s personal space won’t
be perceived in the same way as an AV driving at 10m/s. We assumed that agents move along
straight paths, but the game theory and proxemics models should allow lateral movements,
as was hinted in Option 4 from Chapter 6, but this will need to be fully implemented. Also,
this work was undertaken from a UK point of view, but it was shown that cultural differences
affect driving, crossing and proxemic behaviours, therefore the results may not translate
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2 Limitations and Future Work

directly from a country to another [4].
In this thesis, we mainly focused on inferring and operating pedestrian behaviour from

positional data, i.e. there was no communication between the agents, we thus did not consider
pedestrian visual features such as age, head orientation or hand gestures, which have been
shown to influence crossing decisions, so they should form part of future work to improve
the accuracy of the predictions, similar to the approach used by Ma et al. [5]. We may also
consider signalling methods such as using flashing headlights and horns reviewed in Chapter 3
to communicate the AV’s intent to pedestrians, similar to the approach used by [15] for inter-
pedestrian signalling. Some of our work [1, 2] excluded from this thesis focused on interaction
sequence analysis, where observed pedestrian-vehicle interactions were decomposed into a set
of discrete actions or features, and we looked at how each feature could be predictive of a
crossing behaviour. Integrating this into the game theory model could take the form of an
online feature tracker and pedestrian behaviour predictor. For instance, a hand gesture would
represent a feature with a specific utility value, and when the AV observes such a feature,
this would give some hints about the pedestrian crossing intention and the AV may then take
some actions in response, such as slowing down or speeding up. However, such utility values
would first need to be inferred and measured from real-world pedestrian-vehicle interactions
or experiments.

Furthermore, we aim to integrate all the models described in this thesis into a single
and operational model for autonomous vehicle control. This would consists in combining the
game theory model with the PTR model and using the OpenPodcar platform to test the
overall performance of this approach as well as testing advanced open source software such as
Autoware [3] in real-world settings. Even further, we plan to make the OpenPodcar platform
more open source, i.e. it currently relies on a proprietary mobility scooter with some closed
parts such as the motor driver and controller, which could be replaced by the brushed open
source motor controller (OSMC) [10] or brushless ODrive v3.5 [8]. Also, OpenPodcar should
move from using ROS1 to ROS2 for its secure, real-time and distributed features, and the
open source nature of the OpenPodcar allows anyone who is interested to contribute to and
tailor the project to the general needs of the community.

Finally, the work presented in this thesis forms a step towards the concrete operation of
game theoretic autonomous vehicles with pedestrian proxemics and trust behaviour. This
may have some policy implications. For example, operating autonomous vehicles with a
collision probability may be considered as unethical or illegal and is under debate [12]. Hence
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3 Concluding Remarks

we hope that the approach used in this thesis, that replaces the large negative utility of
a crash by human natural proxemic behaviour to inflict a much smaller negative utility,
contributes to this debate and may make autonomous vehicles safer and more efficient on the
roads. Future work should therefore investigate the ethical and legal considerations as well
as societal impacts of such models.

3 Concluding Remarks

The use of game theory and human nonverbal cues is emerging in transport and robotics
research. For this reason, we restate the key contributions from this thesis:

• a comprehensive review of pedestrian behaviour models for autonomous driving;

• a new unifying taxonomy based on probability theory linking pedestrian models to SAE
levels of automation for the first time;

• the operation of the Sequential Chicken game theoretic model on a autonomous vehicle
in a VR environment;

• methods to infer pedestrian interaction preferences;

• a novel Bayesian method to infer pedestrian proxemic utility functions;

• a novel concept of physical trust requirement (PTR) linking proxemics and trust for
the first time;

• results of the PTR model closely matching Hall’s empirical proxemic zone sizes;

• the extension of the PTR model to include more general human-human and human-
robot interactions;

• OpenPodcar, an open source hardware and software platform for autonomous vehicle
research providing a higher-level stack where pedestrian models could be integrated to.

• a set of experiments, simulations and use cases to test this work.

We hope that the new links that this work creates between game theory and nonverbal
behaviour will contribute to their use more widely and make them mature enough for safe
operation in autonomous vehicles. We also hope that other fields such as social robotics,
gaming, behavioural and social sciences will benefit from these new bridges.
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Appendix A

Appendix to Chapter 2

1 Quality of Citations

These linked papers (Part I and II) review over 450 papers from high quality journals and con-
ferences such as CVPR, ICRA, PAMI, IROS, ITSC, ECCV, IV. It is common in Computer
Science fields including machine vision and machine learning for conferences to be considered
higher quality or similar quality to journals, while psychology and sociology fields typically
consider journals to be more authoritative. The following figures give some ideas about the
quality of the cited papers.

Figure A.1: Number of citations per paper
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1 Quality of Citations

Figure A.2: Number of citations per paper and per year of publication

Figure A.3: Number of citations per paper
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2 Summary of Pedestrian Recognition Models

2 Summary of Pedestrian Recognition Models

Table A.1: Summary of the recognition models

Study/Paper Input/Evaluation Method Recognition
Models

Additional Info SAE Level

Cao et al. [28]
[29]

Images CNN model with
Part Affinity
Fields (PAF)

Pose estimation OpenPose:
open-source
software

Level 2

Shotton et al.
[92]

Motion capture
and synthetic
data

Body parts
representation
model

3D human pose
estimation

Level 2

Iqbal et al. [57] Video data Graphical model Pose estimation
and tracking

Release of
PoseTrack a new
dataset

Level [2,3]

Tompson et al.
[98]

Monocular
images

Deep CNN model
with Markov
Random Field

Pose estimation Level 2

Fragkiadaki et al.
[48]

Motion capture
data: H3.6M
dataset [Ionescu
et al. 2014]

Encoder-
Recurrent-
Decoder
(ERD)

Body pose
estimation

Level [2]

Martinez et al.
[73]

Motion capture
data: H3.6M
dataset [Ionescu
et al. 2014]

Recurrent neural
network with a
gated recurrent
unit (GRU)

Body pose
estimation

Level 2

Tang et al. [94] Motion capture
data: H3.6M
dataset [Ionescu
et al. 2014]

Deep neural
network (modified
High-way Unit
(MHU))

Pose estimation Level 2

Ghosh et al. [52] Motion capture
data: datasets in
[Ionescu et al.
2014] and [Holden
et al. 2016]

Dropout
AutoEncoder
LSTM
(DAE-LSTM)

Pose estimation Level 2

Ma et al. [72] Images CNN model Body heading No annotations
needed

Level 2

Kohari et al. [62] Video CNN model Body orientation Service robot Level 2

Darrell et al. [41] Images Statistical model Head direction From a mobile
robot

Level [2,3]

Schulz et al. [90] Grayscale images Multi-classifiers Head pose Level 2

Benfold et al. [23] Video HOG and colour
features

Gaze tracking Level 2

Baltrusaitis et al.
[20]

Video Deep learning
model

Head pose and
eye-gaze
estimation

Openface: open
source software

Level 2
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2 Summary of Pedestrian Recognition Models

Cornejo et al.
[39] [40]

Images Principal
Component
Analysis + Gabor
wavelets or
CENTRIST
features

Emotion
recognition

Level 2

Cambria et al.
[27] [26]

Images Review paper Sentiment
analysis

[Level 2,3]

Poria et al. [83] Videos CNN model with
recurrent
multilayer kernel
learning

Emotion
recognition

Level 2

Horng et al. [54] Video Dynamic
template
matching

Driver fatigue
detection

Level 2

Denuyl et al. [43] Video Face expression
recognition

FaceReader:
commercial
product

Level 2

Ahmed et al. [17] Images Deep neural
networks

Re-identification Level 2

Zheng et al. [108] Images Bag of Words
model

Re-identification Level 2

Zheng et al. [109] Images CNN model Re-identification Unlabeled images Level 2

Li et al. [66] Images Filter airing
neural network
(FPNN) model

Re-identification Occlusion
handling

Level 2

Chen et al. [32]
[24] [65]

Images Hidden Markov
model (HMM)

Gesture
recognition

Level 2

Freeman et al.
[49]

Images Orientation
histograms

Gesture
recognition

10 different hand
gestures
recognition

Level 2

Ren et al. [86] Images Template
matching with
Finger-earth
Mover’s Distance
(FEMD)

Gesture
recognition

Level 2

Quintero et al.
[84]

Images Hidden Markov
models (HMM)

Body language
Recognition

Level [2,3]

Wang et al. [100] Images Background
subtraction +
PCA

Body language
Recognition

Level 2

Chaaraoui et al.
[30]

Videos Contour points Activity
recognition

Real-time method Level 2

Dollár et al. [45] Spatio-temporal
features

Activity
recognition

Level 2

Vail et al. [99] Videos Hidden Markov
models and
Conditional
random field

Activity
recognition

Level 2
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3 Summary of Pedestrian Tracking Models

Liu et al. [68] RGB data Coupled
conditional
random field

Activity
recognition

Level 2

Coppola et al.
[38]

RGB-D data Dynamic
Bayesian mixture
model (DBMM)

Activity
recognition

Level 2

3 Summary of Pedestrian Tracking Models

Table A.2: Summary of pedestrian tracking models

Study/Paper Input/Evaluation Method Tracking
Models

Additional Info SAE Level

Del Pino et al.
[42]

Low resolution
LiDAR data

Multi-Hypothesis
EKF (MHEKF)

Point Tracking Level 2

Bellotto et al.
[22]

Robot with laser
and camera

EKF, UKF, SIR
Particle filter

Point Tracking Trade-off
between
performance and
computation cost

Level 2

Arulampalam et
al. [18]

Example Particle filter
implementations

Point Tracking Level 2

Fen et al. [46] Video data Color histogram
based particle
filter

Point Tracking Level 2

Jurie et al. [58] Video data Template
matching with
SSD

Kernel-based
Human Tracking

Real-time
method and
robustness to
occlusions and
illuminations

Level 2

Lipton et al. [67] Video data Frame
differencing +
Template
matching

Kernel-based
Human Tracking

Real-time
method

Level 2

Kaneko et al. [59] Image sequences Template
matching with a
feature selection
method

Kernel-based
Human Tracking

Level 2

Comaniciu et al.
[37]

Moving camera
data

Mean-shift
algorithm with
Bhattacharyya
coefficient

Kernel-based
Human Tracking

Level 2

Collins et al. [35] Video data Mean-shift
algorithm with
2d blob tracking

Kernel-based
Human Tracking

Level 2
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3 Summary of Pedestrian Tracking Models

Tao et al. [95] Airborne vehicle
tracking system

Dynamic layering
method + MAP
using EM
algorithm

Kernel-based
Human Tracking

Level 2

Yalcin et al. [101] Image sequences Layering method
with optical flow

Kernel-based
Human Tracking

Level [2,3]

Geiger et al. [51] Image sequences Contour
matching method
based on
Dynamic
programming

Tracking
pedestrian body
state

Level 2

Techmer et al.
[97]

Real-world
images

Contour tracking
with distance
transformations
of contour images

Tracking
pedestrian body
state

Level 2

Baumberg [21]

Yilmaz [103]
Image sequences Dynamic Kalman

filter with active
shape model

Tracking
pedestrian body
state

Method sensitive
to initialization

Level 2

Adam et al. [16] Image sequences Region color
histogram
method

Tracking
pedestrian body
state

Occlusion and
pose changes
handling

Level 2

Meyer et al. [74] Image sequences Recursive
algorithm using
image regions
information

Tracking
pedestrian body
state

Level 2

Collins et al. [36] Gait databases:
CMU, MIT,
UMD, USH

Silhouette based
model

Tracking
pedestrian body
state

To identify
people from their
body and gait

Level 2

Schwarz et al.
[91]

Kinect data Graph method
with skeleton
fitting

Tracking
pedestrian body
state

Full-body tracker Level 2

Sinthanayothin et
al. [93]

Kinect data Skeleton tracking Tracking
pedestrian body
state

Review paper Level 2

Konstantinova et
al. [63]

5 test matrices Global Nearest
Neighbor with
Munkres
algorithm

Multi-Target
Tracking (MTT)

Level [2, 3, 4]

Azari et al. [19] IBM, PETS2000
and PETS2001
databases

Kalman filter
with Global
Nearest Neighbor
(GNN)

Multi-Target
Tracking (MTT)

Occlusion
handling

Level [2,3,4]

Reid et al. [85] Monte Carlo
simulation

Iterative
algorithm with
Multi-Hypothesis
Tracking(MHT)

Multi-Target
Tracking (MTT)

Occlusion
handling

Level [2,3]
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3 Summary of Pedestrian Tracking Models

Luber et al. [71] Two datasets
collected in
indoor and
outdoor
environments

Social force with
Multiple
Hypothesis
Tracking (MHT)

Multi-Target
Tracking (MTT)

Level [3,4]

Kim et al. [61] PETS and
MOTChallenge
benchmarks

Multiple
Hypothesis
Tracking (MHT)

Multi-Target
Tracking (MTT)

Level [2,3]

Zhou et al. [110] Computer
simulations

Joint
probabilistic data
association filter
(JPDAF) with a
depth-search
approach

Multi-Target
Tracking (MTT)

Level [2,3]

Chen et al. [33] Video data Contour based
tracker with
JPDAF and
HMM

Multi-Target
Tracking (MTT)

Real-time
method

Level [2,3]

Liu et al. [69] Simulations and
real robot

Sample-based
JPDAF and
multi-sensor
fusion

Multi-Target
Tracking (MTT)

Real-time
method

Level [2,3]

Horridge et al.
[55]

Simulations JPDAF based
tracker

Multi-Target
Tracking (MTT)

400 tracks in
real-time

Level [2,3,4,5]

Rezatofighi et al.
[87]

Fluorescence
microscopy
sequences and
surveillance
camera data

JPDAF based
tracker

Multi-Target
Tracking (MTT)

Level [2,3]

Zhang et al. [107] Simulations Gaussian Mixture
Measurement
PHD tracker
(GMM-PHD)

Multi-Target
Tracking (MTT)

Handle bearing
measurements

Level [2,3]

Khazaei et al.
[60]

Data from a
distributed
network of
cameras

Probabilistic
Hypothesis
Density (PHD)
filter based
tracker

Multi-Target
Tracking (MTT)

Level [2,3]

Feng et al. [47] Simulations with
sequences from
CAVIAR dataset

Variational
Bayesian PHD
filter with deep
learning updates

Multi-Target
Tracking (MTT)

Level [2,3]

Correa et al. [40] Tested on a
real-time
crowded
environment

PHD filter Multi-Target
Tracking (MTT)

Level [4, 5]

Yoon et al. [104] ETH dataset Sequential Monte
Carlo PHD filter
(SMC-PHD)

Multi-Target
Tracking (MTT)

Can handle
missing
detections

Level [2,3]
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3 Summary of Pedestrian Tracking Models

Oh et al. [79] [78] Simulations Markov Chain
Monte Carlo
Data Association
(MCMCDA)
Metropolis-
Hastings
method

Multi-Target
Tracking (MTT)

Level [2,3]

Yu et al. [105] Simulations and
video data

Data-driven
Markov Chain
Monte Carlo data
association
(DD-MCMCDA)

MTMulti-Target
Tracking (MTT)

Level [2,3]

Chen et al. [56] Video data Dynamical graph
matching

Multi-Target
Tracking (MTT)

Tracker can deal
with interactions

Level [2,3]

Pirsiavash et al.
[82]

Video data Greedy algorithm
based on
Dynamic
Programming

Multi-Target
Tracking (MTT)

Level [2,3]

Zhang et al. [106] CAVIAR and
ETHMS datasets

Min-Cost Flow
algorithm with
an explicit
occlusion model
(EOM)

Multi-Target
Tracking (MTT)

Occlusion
handling

Level [2,3]

Chari et al. [31] PETS and TUD
datasets

Min-Cost
Max-Flow
network
optimization with
pair-wise costs

Multi-Target
Tracking (MTT)

Occlusion
handling

Level [2,3]

Taycher et al.
[96]

Video data Conditional
Random Field
(CRF) state
estimation and
grid filter

Multi-Target
Tracking (MTT)

Real-time
capability

Level [2,3]

Milan et al. [76] PETS 2010
Benchmark and
TUD-Stadtmitte
dataset

CRF-based
multiple tracker
with HOG-SVM
detector

Multi-Target
Tracking (MTT)

Level [2,3]

Milan et al. [75] PETS, TUD,
ETHMS datasets

CRF-based
multi-target
tracker using
discrete
continuous
minimization

Multi-Target
Tracking (MTT)

Trajectory
estimation of
targets

Level [2,3,4]

Brendel et al.
[25]

ETHZ Central,
TUD Crossing,
i-Lids AB, UBC
Hockey and
ETHZ Soccer
datasets

Maximum-weight
independent set
(MWIS) based
tracker

Multi-Target
Tracking (MTT)

Long-term
occlusion
handling

Level [2,3]
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He et al. [53] PETS09, TUD
Statmitte, TUD
Crossing and
ETHMS datasets

Connected
component model
with MWIS

Multi-Target
Tracking (MTT)

Level [2,3]

Gaidon et al. [50] KITTI
Benchmark and
PASCAL-to-
KITTI
dataset

Online Domain
Adaptation for
Multi-Object
Tracking

Multi-Target
Tracking (MTT)

Generic detector
and video
adaptation fro
tracking

Level [2,3]

Ondruska et al.
[80]

Simulated data End-to-end
recurrent neural
network (RNN)
tracker

Multi-Target
Tracking (MTT)

No data
association
required

Level [2,3]

Dequaire et al.
[44]

Real-world
environment

End-to-end
recurrent neural
network (RNN)
tracker

Multi-Target
Tracking (MTT)

Level [2,3]

Milan et al. [77] MOTChallenge
2015 benchmark

Online recurrent
neural network
(RNN) tracker

Multi-Target
Tracking (MTT)

Level [2,3]

Ristani et al. [88] Multi-cameras
system data

Neural networks Multi-Target
Tracking (MTT)

Features learnt
multi-cameras
and
Re-identification

Level [3, 4]

Liu et al. [70] Multi-camera
systems data

Generalized
Maximum
Multi-Clique
optimization

Multi-Target
Tracking (MTT)

Level [2,3]

Park et al. [81] Monocular
camera data

3D object
tracking

Multi-Target
Tracking (MTT)

3D object
Tracking for
augmented
reality
applications

Level [2,3]

Scheidegger et al.
[89]

Single camera
data

Multi-Bernoulli
mixture tracking
filter

Multi-Target
Tracking (MTT)

Level [2,3,4]

Yan et al. [102] Lidar data 3D LIDAR based
tracking with
Support Vector
Machine (SVM)
classifier

Multi-Target
Tracking (MTT)

Online
classification of
humans

Level [2,3]

Leal-taixe et al.
[64]

Camera data Interaction
feature strings
with Random
Forest method

Multi-Target
Tracking (MTT)

Scene
understanding

Level [2,3]

Choi et al. [34] Video data Discriminative
model

Multi-Target
Tracking (MTT)

Group activity
recognition

Level [2,3]
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Appendix B

Appendix to Chapter 3

1 Quality of Citations
These linked papers (Part I and II) review over 450 papers from high quality journals and conferences such as CVPR,
ICRA, PAMI, IROS, ITSC, ECCV, IV. It is common in Computer Science fields including machine vision and machine
learning for conferences to be considered higher quality or similar quality to journals, while psychology and sociology
fields typically consider journals to be more authoritative. The following figures give some ideas about the quality of
the cited papers.

Figure B.1: Number of citations per paper
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1 Quality of Citations

Figure B.2: Number of citations per paper and per year of publication

Figure B.3: Number of citations per paper
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2 Pedestrian Trajectory and Interaction Models

2 Pedestrian Trajectory and Interaction Models

Table B.1: Summary of pedestrian trajectory prediction and interaction models

Study/Paper Input/Evaluation Method Trajectory
Prediction Models

SAE Level

Hoogendoorn et al.
[162]

Simulated trajectories Optimal control theory Unobstructed walking
paths

Level [4,5]

Antonini et al. [114] Pedestrian movements
(video sequence)

Discrete choice model
Unobstructed walking paths

Two agents’ interaction
Level 3

Borgers et al. [126] Pedestrian movements
(manual)

Discrete choice Unobstructed walking
paths

Level 3

Puydupin-jamin et al.
[200]

Pedestrian trajectories dataset

[115]
Unicycle model with
inverse optimal control

Unobstructed walking
paths

Level 3

Habibi et al. [159] Pedestrian trajectories
dataset from two
intersections [159]

Gaussian Process with
a Transferable ANSC
algorithm

Route prediction around obstacles

Gaussian Process methods
Level [3,4]

Kitani et al. [171] 92 videos (80% for
training)

Inverse reinforcement
learning with inverse
optimal control theory

Uncertain destination models

Dynamic graphical models
Level [3,4]

Ziebart et al. [240] Predicted trajectories
used in an incremental
motion planner

Maximum entropy
with inverse optimal
control

Uncertain destination models

Dynamic graphical models
Level [3,4]

Vasquez et al. [226] 14 pedestrian
trajectories dataset
[171]

Markov decision
process (MDP) with a
Fast Marching Method
(FMM)

Uncertain destination models

Dynamic graphical models
Level 4

Gockley et al. [154]

Topp et al. [218]
Laser data Direction-following and

Path-following with
Curvature velocity
method

Route prediction
around obstacles

Level 3

Bennewitz et al.
[119, 118]

Laser range data from
Pioneer robots

Clustering with
Expectation
Maximization (EM)
algorithm

Uncertain destination models

Dynamic graphical models
Level 3

Wu et al. [230] Pedestrian trajectories
from Rutesheim
dataset

Markov chains with an
heuristic method

Uncertain destination models

Dynamic graphical models
Level 3

Karasev et al. [168] Pedestrian dataset
[168]

Markov decision
process (MDP) with
Rao-Blackwellized
filter

Uncertain destination models

Dynamic graphical models
Level [4,5]

272



2 Pedestrian Trajectory and Interaction Models

Bai et al. [116] Autonomous golf car Partially observable
Markov decision
process (POMDP)

Uncertain destination models

Dynamic graphical models
Level [4,5]

Rehder et al. [206] Pedestrian trajectories
(stereo video dataset)

Inverse reinforcement
learning

Uncertain destination models

Deep learning methods
Level [4, 5]

Garzon et al. [150] Simulations and
real-world data

Fast Marching Method
(FMM) and A Star
(A*) algorithm

Uncertain destination
models

Level 4

Kooij et al. [172] Pedestrian trajectories
dataset [172]

Dynamic Bayesian
network (DBN) with a
switching linear
dynamic system
(SLDS)

Event/activity models

Dynamic graphical methods
Level [4,5]

Schulz et al. [213] Pedestrian dataset
[212]

Interacting Multiple
Model (IMM) with a
latent-dynamic
conditional random
field (LDCRF)

Event/activity models

Dynamic graphical methods
Level [4,5]

Dondrup et al. [142] Laser and RGB-D data Qualitative Spatial
Relations (QSR) with
Hidden Markov model
(HMM)

Event/activity models

Dynamic graphical methods
Level [4,5]

Bonnin et al. [124] Pedestrian datase [124] Inner-city model with
’Context Model Tree’
approach

Event/activity models Level [4,5]

Borgers et al. [125] Pedestrian dataset
from the city of
Maastricht

Discrete Choice Model Event/activity models Level 3

Camara et al. [131]
[130]

Pedestrian-vehicle
interactions dataset
[131]

Regression models

Filtration analysis
Event/activity models Level [4,5]

Völz et al. [227] LIDAR pedestrian
trajectories

Support vector
machine (SVM)

Event/activity models Level 3

Duckworth et al.
[143]

[144]

Pedestrian dataset from a mobile robot

[144]
Qualitative Spatial
Analysis (QSR) with a
graph representation

Event/activity models Level [4,5]

Mögelmose et al. [192] Pedestrian trajectories
from a monocular
camera

Particle filter
Route prediction around obstacles

Dynamic graphical methods
[Level 3,4]

Schneider et al. [212] Pedestrian dataset
[212]

Extended Kalman
filter (EKF) and
Interacting Multiple
Model (IMM)

Event/activity models

Dynamic graphical methods
Level [3,4]
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Quintero et al.
[202, 201]

CMU Dataset with 129
video sequences

Balanced Gaussian
process dynamical
models (B-GPDMs)
and Naive Bayesian
classifiers

Event/activity models

Dynamic graphical methods
Level[3,4,5]

Goldhammer et al.
[155]

Camera data Multilayer perceptron
(MLP) with
polynomial least
square approximation

Uncertain destination models

Deep learning methods
Level [4,5]

Kruse et al. [176] Camera data Statistical analysis Route prediction
around obstacles

Level [3]

Cosgun et al. [137] Real robot Motion planning with
curvature velocity
method

Uncertain destination
models

Level [3,4]

Koschi et al. [173] Real world data from a
moving vehicle

Set-based method

Reachability analysis
Uncertain destination
models

Level [4,5]

Bock et al. [123] Dataset in [123] LSTM
Event/activity models

Deep learning methods
level 5

Hug et al. [163] Synthetic test
conditions

LSTM with a mixture
density output layer
(LSTM-MDL) model
and particle filter
method

Uncertain destination models

Deep learning methods
Level [4,5]

Cheng et al. [135] Pedestrian datasets:
ETH [197] and UCY
[179]

Social-Grid LSTM
based on RNN
architecture

Uncertain destination models

Deep learning methods
Level 5

Bhattacharyya et al.
[122]

CityScapes dataset
[136]

Two-stream recurrent
neural network (RNN)

Uncertain destination models

Deep learning methods
Level [4,5]

Broz et al. [127] Simulated data Time-state aggregated
partially observable
Markov model
(POMDP)

Two agents’ interaction Level 4

Rudenko et al. [210] Simulated and real
data

Markov decision
process (MDP) with a
joint random walk
stochastic policy
sampling

Two agents’ interaction

Graphic dynamical models
Level 5

Kretzschmar et al.
[175]

Turing test with
human participants

Markov chain Monte
Carlo (MCMC)
sampling

Two agents’ interaction

Graphic dynamical models
Level [4,5]

Kawamoto et al. [170] Pedestrian datasets:
ETH [197] and [117]

Kriging (Gaussian
process) model

Two agents’ interaction

Gaussian Process methods
Level [3,4]
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Alahi et al. [111] Pedestrian datasets:
ETH [197] and UCY
[179]

Social LSTM
Two agents’ interaction

Deep learning methods
Level [4,5]

Hoogendoorn et al.
[161]

Simulations Optimal control theory Two agents’ interaction Level [4,5]

Ikeda et al. [164] Shopping mall data Social force and
sub-goal concept

Two agents’ interaction Level [3,4]

Chen et al. [134] Experimental vehicle
ALSVIN

Extended Kalman
filter (EKF)

Two agents’ interaction

Graphic dynamical models
Level [3,4]

Bera et al. [121] [120] Indoor and outdoor
crowded videos

Ensemble Kalman
filter (EnKF)

Group interaction

Graphic dynamical models
Level [4,5]

Deo et al. [140] [228] Crowded unsignalized
intersection dataset

Variational Gaussian
mixture models
(VGMM)

Group interaction

Graphic dynamical models
Level 5

Pellegrini et al. [197]
[198]

Pedestrian dataset
with birds-eye view
images [197]

Linear Trajectory
avoidance model (LTA)

Small
Group interaction

Graphic dynamical models

Level [4,5]

Sun et al. [217] L-CAS Pedestrian
dataset [217]

Temporal 3DOF-pose
LSTM (T-pose LSTM)

Group interaction

Deep learning methods
Level [4,5]

Yi et al. [235] Crowded scenes video
data

Behaviour
convolutional neural
network (CNN)

Group interaction

Deep learning methods
Level [4,4]

Radwan et al. [203] 6 public datasets
comprising ETH,
UCY, L-CAS

Interaction-aware
trajectory
convolutional neural
network (IA-TCNN)

Group interaction

Deep learning methods
Level [4,5]

Moussaid et al. [193] Pedestrian trajectories
[193]

Heuristic model Group interaction Level 5

Turner et al. [220] Simulations Exosomatic visual
architecture

Group interaction Level [4,5]

Vasishta et al. [225] Real world scenes
dataset [225]

Natural vision model Group interaction Level [4,5]

Zhou et al. [239] Pedestrian dataset
from New York Central
station

Mixture model of
dynamic
pedestrian-agents
(MDA)

Group interaction

Graphic dynamical models
Level [4,5]

Shi et al. [215] 2D laser sensor dataset LSTM
Group interaction

Deep learning
Level[4,5]

Amirian et al. [113] Synthetic dataset GAN based method
with hand-desgined
interaction features

Group interaction

Deep learning
Level [4,5]
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Lee et al. [178] KITTI [151][152] and
Stanford Drone
Dataset [209]

GAN and RNNs
Group interaction

Deep learning
Level[4,5]

Gupta et al. [156] ETH and UCY
datasets

GAN and RNNs
Group interaction

Deep learning
Level[4,5]

Sadeghian et al. [211] ETH and UCY GAN
Group interaction

Deep learning
Level[4,5]

Henry et al. [160] Crowd flow simulator Inverse reinforcement
learning (IRL) and
Gaussian process (GP)

Crowd behaviour
models

Level 5

Trautman et al. [219] Pedestrian dataset:
ETH [197]

Gaussian process (GP)
Group interaction

Gaussian Process methods
Level 5

Ali et al. [112] Video from Google
videos and National
Geographic
documentary

Lagrangian particle
dynamics model

Macroscopic models

Crowd behaviour models
Level 5

Mehran et al. [189] Dataset of escape
panic scenarios and
web videos

Particle advection with
social force model

Macroscopic models

Crowd behaviour models
Level 5

Ma et al. [184] UCY Zara Dataset, the
Town Centre Dataset
and the LIDAR
Trajectory Dataset.

Fictitious game and
reinforcement learning

Game theoretic models

Two agents’ interaction
Level 5

Isaacs [166] / Homicidal taxi driver
problem

Game theoretic models

Two agents’ interaction
Level 5

Turnwald et al. [221]
[222] [188]

Pedestrian trajectories
from motion capture
system [221]

Finite set of single-shot
games

Game theoretic models

Two agents’ interaction
Level 5

Fox et al. [148] [129] Simulations and
dataset in [131]

Game of Chicken
Game theoretic models

Two agents’ interaction
Level 5

Vascon et al. [224] Public datasets Game theory
Game theoretic models

Small group interaction
Level 5

Johora et al. [167] Simulations Stackelberg games
Game theoretic models

Small group interaction
Level 5

Mesmer et al. [190] Experiments Game theory with
velocity vector

Game theoretic models

Crowd interaction
Level 5

Shi et al. [214] Experiments Modified lattice model
Game theoretic models

Crowd interaction
Level 5

Dimitris et al. [195] Video data Two-dimensional
classification model

Signalling models Level 5

Katz et al. [169] Controlled experiment Statistical analysis Signalling models Level 5
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Guéguen et al. [158] Controlled experiment Statistical analysis Signalling models Level 5

3 Datasets

Table B.2: Summary of pedestrian datasets

Dataset Data type Viewpoint Applications Quantity of data

The Caltech
Pedestrian Benchmark
[141]

Urban video
data
(Resolution:
640x480)

Moving car Detection, Tracking,
Trajectory Prediction

10 hours of 30Hz video
with 250,000 annotated
frames, 350,000 labeled
bounding boxes and 2300
unique pedestrians

ETHZ Benchmark
[146]

Urban video
data using a
stereo pair of
cameras
(Resolution:
640x480)

Children’s
stroller

Detection, tracking,
Trajectory prediction

2,293 frames with 10958
annotations

TUD-Brussels [229] Image pairs Hand-held
camera and
Moving car

Detection Training set: 1,092
positive image pairs
(resolution: 720x576) with
1,776 annotations and 192
negative image pairs
(resolution: 720x576).
Additional 26 image pairs
with 183 annotations
Test set: 508 image pairs
(resolution: 640x480) with
1,326 annotations

Daimler Benchmark
[145]

Grayscale
camera images

Moving car Detection Training set: 15,660
positive samples
(resolution: 72 pixels
height) and 6,744 negative
samples
Test set: 21,790 images
with 56,492 annotations
including 259 trajectories
of fully visible pedestrians

INRIA Pedestrian
Dataset [138]

Camera images Any Detection 1805 images (resolution:
64x128)

CityPersons [236] Camera images Moving car Detection 5k images with 35k
bounding boxes of
pedestrians and 20k
unique persons
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Edinburgh Informatics
Forum pedestrians
overhead dataset [187]

Pedestrian
Trajectories

Surveillance
camera

Trajectory prediction Over 92k pedestrian
trajectories

ETHZ BIWI Walking
Pedestrian dataset
[197]

Video Bird-eye
view

Detection, Tracking
and Trajectory
prediction

650 tracks over 25 minutes

UCY Zara pedestrian
dataset [179]

Synthesized
crowd data

Bird-eye
view

Tracking and
Trajectory Prediction

1 video 2-min long with
5-6 persons per frame
1 video with 40 persons
per frame
Trajectories

Town Center Dataset
[117]

Video data Bird-eye
view

Detection, Tracking
and Trajectory
Prediction

Video (resolution:
1920x1080) with 71500
annotations

MARKET-1501 [237] Camera images Moving car Detection and
Re-identification

32k bounding boxes with
1,501 individuals and 500k
non-pedestrian (street
windows)

VIPER Benchmark
[207]

Video data Moving car Optical flow, semantic
instance segmentation,
object detection and
tracking, object-level
3D scene layout, visual
odometry

250k video frames

CUHK01 [181] Camera images Surveillance
camera

Detection and
Re-Identification

971 persons with 2 camera
views

CUHK02 [180] Camera images Surveillance
camera

Detection and
Re-Identification

1,816 unique persons with
5 pair of camera views

CUHK03 [182] Camera images Surveillance
camera

Detection and
Re-Identification

13k images with 1,360
pedestrians

DUKEMTMC dataset
[208]

Video and
trajectories

Surveillance
camera

Detection, Tracking,
Trajectory Prediction,
Re-Identification

6,791 trajectories for 2,834
unique persons over 85
minutes video per camera
(8 cameras in total)
(resolution: 1080p)

DUKEMTMC-reID
dataset [238]

Video and
bounding boxes

Surveillance
camera

Detection and
Re-Identification

Over 36k bounding boxes
of 1,812 unique individuals

MOTChallenge
Benchmark [177] [191]

Video Any Detection, Tracking,
Re-Identification,
Trajectory Prediction

Composed of parts of
other datasets and new
data (videos, bounding
boxes)
website:
motchallenge.net/

Daimler Pedestrian
Benchmark [172]

Annotations Moving car Trajectory prediction
[crossing, stopping]

58 annotated
pedestrian-vehicle
interactions data

PETA dataset [139] Images Any Detection and
Recognition

19,000 images with 8,705
persons
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L-CAS 3DOF
Pedestrian Trajectory
Prediction Dataset
[217]

Pedestrian
trajectories

Mobile
robot

Trajectory prediction 50 trajectories

L-CAS 3d-point-cloud-
people-dataset
[232]

3D LiDAR point
clouds

Mobile
robot

Pedestrian detection
and tracking

5,492 annotated frames
with 6,140 unique persons
and 3,054 groups of
peopleâ€<

IAS-Lab People
Tracking dataset [194]

RGB-D video
sequences +
ground truth
given by a
motion capture
system

Mobile
Pioneer
P3AT
robot

People detection and
tracking

4,671 frames with 12,272
persons

Porch experiment
dataset [115]

Motion capture
system

Any Trajectory prediction 1,500 person trajectories

UCLA Pedestrian
dataset [168]

Video data Moving car Trajectory Prediction 17 annotated video
sequences, ranging from
30 to 900 frames, and
containing 67 pedestrian
trajectories

LIDAR Trajectory
dataset [184]

Lidar data Top view Trajectory Prediction 20 interacting person
trajectories

Joint Attention in
Autonomous driving
(JAAD) [205]

Videos and
annotations

Moving car Detection, Tracking,
Trajectory Prediction

346 video clips with
annotations extracted
from 240 hours of driving
videos

MoCap database [216] Motion capture
system

Any Detection, Recognition 500k frames with persons
in many different poses

The Multi-Person
PoseTrack Dataset
[165]

Video data Any Detection,
Recognition, Tracking

60 videos with 16k
annotated persons with
different poses

CMU dataset [171] Video data Any Detection, Tracking,
Trajectory Prediction

92 videos

Pedestrian-Vehicle
Interactions dataset
[131] [130]

Annotations Human
observers

Trajectory Prediction
(crossing, stopping)

204 annotated
pedestrian-vehicle
interactions at an
unsignalized intersection

CITR adn DUT
datasets [233]

Trajectories Top view Trajectory prediction
and interaction

over 2k

NERC Agricultural
Person Detection
Dataset [199]

stereo video Mobile
platforms

Detection and
Tracking

76k labelled person images
and 19k person-free
images

Action Recognition
Dataset [149]

Stereo camera
and thermal
images + Lidar
point clouds

Mobile
robot

Action and gesture
recognition

10 actors performing 9
gestures and 4 acivities
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Table B.3: Summary of vehicle datasets

Dataset Data type Applications Quantity of data

Berkeley DeepDrive
Video dataset (BDDV)
[231]

Video and GPS/IMU data Detection, Tracking,
Identification

10k hours of driving
videos around the world

EPFL multiview car
database [196]

Images Detection, Identification 2k images with 20
different car models

KITTI dataset [151] [152] Video data Detection, Tracking,
Identification,
Localisation

About 1 hour in one city
in daytime

Cityscape [136] Video data Detection, Tracking,
Identification

About 100 hours videos
in multiple cities in
daytime

Commai.ai [234] Video data Detection, Tracking,
Identification

7.3 hours videos in
highway during daytime
and night

The Oxford RobotCar
Dataset [185]

Video data Detection, Tracking,
Identification

214 hours videos in
Oxford in daytime

Princeton TORCS
DeepDriving [133]

Synthetic video data Detection, Tracking,
Identification

13.5 hours videos in
highways

Honda Research
Institute Driving Dataset
(HDD) [204]

Video data Detection, Tracking,
Identification

104 hours videos in one
city

Udacity [223] Video data Detection, Tracking,
Identification

8 hours of videos

nuScenes [128] RGB, LIDAR and RADAR data Scene understanding 1k different scenes form 2
cities

Fieldsafe dataset [174] Multiple sensors Obstacle detection 2h raw sensor data from
a mobile platform

Table B.4: Summary of pedestrian and vehicle simulators

Simulator Type Applications

Technical University of Munich
(TUM) • Pedestrian simulator:

Head-mounted display with a
motion capture system

• Driving Simulator software

• Pedestrian behaviour
understanding

• Driver behaviour analysis
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Institute for Transport Studies
(ITS), University of Leeds • HIKER Lab : pedestrian

simulator

• Driving Simulator

• Truck Simulator

• Pedestrian behaviour
understanding

• Pedestrian interaction with
the environment

• Driver behaviour
understanding

Japan Automobile Research Institute
(JARI) • JARI-ARV (Augmented

Reality Vehicle)

• JARI-OVDS (Omni
Directional View Driving
Simulator)

• Road running driving
simulator

• Driving simulator with
360-degree spherical screen
and rocking device

French Institute of Science and
Technology for Transport,
Development and Networks
(IFSTTAR)

• Driving Simulator

• Immersive Simulator

• Driving Simulator with
human assistive devices

• Bicycle Simulator

• Driver behaviour analysis

• Road user behaviour
understanding

University of Iowa Driving Simulator Driver behaviour understanding

Pedsim [153] Synthetic simulator Crowd behaviour understanding

OnFoot [186] VR pedestrian simulator Pedestrian behaviour understanding

Vehicle-Pedestrian simulators [147]
[183]

Cellular automata models Vehicle-pedestrian interactions

Macroscopic traffic simulator [132] Force model Traffic and road user behaviour
understanding

AV-Pedestrian negotiations simulator
[157]

Different pedestrian behaviour
models

Pedestrian behaviour understanding
for AVs
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