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Abstract  

 There is a continuing need to make new antitubercular drugs due to 

development of resistance towards present drugs. To do this, series of pyruvate 

hydrazones (PVAHs) and their respective Cu(II) complexes and Zn(II) complexes were 

synthesized and fully characterised. Variable temperature NMR studies of PVAHs 

indicate the presence of E and Z isomers in the solution. Determination of the obtained 

single crystal X-ray structures reveals that Cu(II) ion binds to PVAH ligand in 1:1 ratio 

resulting in square pyramidal geometry in most of the Cu(II) complexes, whereas Zn(II) 

ion binds to two PVAH ligands in 1:2 ratio giving rise to octahedral geometry. The 

electrochemical studies of Cu(II) complexes of PVAH performed using cyclic 

voltammogram indicate the presence of quasi-reversible behaviour assigned to a 

Cu2+/Cu1+ peak potential. This indicates structural reorganisation of Cu(II) square 

pyramidal geometry towards Cu(I) tetrahedral geometry. The tetrahedral geometry of a 

synthesized Cu(I) complex of PVAHs was confirmed by  X-ray crystal structure.  

The stability studies of selected PVAH ligands and their metal complex indicate 

that the investigated compounds were stable in extreme basic conditions, but they 

were unstable in extreme acidic conditions due hydrolysis of azomethine bond. 

However, stability of these compounds in physiological conditions, i.e. in PBS buffer, 

reveals that ligand hydrolyses slowly over a period of time, whereas the Cu(II) complex 

remains quite stable over a monitored period of 120 hours. Interestingly, dihydrazide 

analogue of PVAH was fairly stable in PBS buffer. EPR studies of investigated Cu(II) 

complexes in DMSO indicate that PVAHs remains strongly coordinated to Cu(II) centre. 

The evaluation of the antimycobacterial activity showed that the anionic PVAHs 

and Zn(II) complexes are essentially inactive. Some of the corresponding neutral Cu(II) 

complexes, however, exhibit promising antimycobacterial activities if tested under high 

iron (8 µg Fe per mL) conditions. As observed for the related antimycobacterial agent 

isoniazid, the activity of the complexes decreases if the M. tuberculosis cells are grown 

under low iron (0.02 µg Fe per mL) conditions. The Cu(II) complexes may thus have a 

similar mode of action and may require an iron-containing heme-dependent peroxidase 

for activation.  

A series hydrophobic cinnamaldehyde hydrazones (CAHs) and their Cu(II) 

complexes were also synthesized and tested for their antitubercular activity under 

similar conditions to that of PVAH series. But they failed to show any inhibitory activity 

due to their poor cellular uptake owing to their limited solubility in aqueous buffer. 
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1.0 Introduction 

1.1 Overview 

Tuberculosis (TB) is a globally significant disease that has led to billions of 

deaths worldwide. Although the current methods of treating TB are effective, the 

persistence of bacilli and the widespread emergence of resistance against current 

antibiotics is a significant cause of concern. The broad goal of this bio-inorganic 

project was to design an array of novel metal-based antitubercular agents using 

simple yet potent organic ligands, such as hydrazones.  

1.2 A brief introduction to tuberculosis 

Tuberculosis is one of the most serious infectious airborne diseases, 

affecting one third of the world’s population. Statistics from 2009 indicate that 

around 9.2 million people develop TB every year, while 2 million people succumb to 

the disease (WHO, 2009). As indicated in figure 1.1, TB has severely affected Asian 

and African countries1 and if the spread of the disease is not contained, it could 

pose a worldwide threat with an estimated 1 billion people affected by 2020.2  

 

Figure 1.1: Map indicating TB affected areas.1 

TB generally affects the respiratory system but may also spread to other 

parts of body such as the brain, spleen, bones and gastrointestinal tract. The 

symptoms of TB are a persistent dry cough for more than 3 weeks and in later 

stages coughing up of blood, loss of appetite, anaemia and diarrhoea. If not treated 
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in time TB can eventually lead to death in certain cases.3 TB is caused by a 

bacterial species known as Mycobacterium tuberculosis (Mtb), which is generally 

characterised as an aerobic, slow growing and non-motile species. The majority of 

mycobacterial species replicate freely in the natural ecosystem, but only a small 

number of them are able to successfully inhabit the intracellular environment of 

mononuclear phagocytes in higher vertebrates. These species include 

Mycobacterium leprae, Mycobacterium lepraemurium, Mycobacterium avium subsp. 

Paratuberculosis, and the members of the Mycobacterium tuberculosis complex.4  

The cell wall of Mtb consists of a lipid bilayer made up of peptidoglycans and 

complex lipids such as mycolic acid, as shown in figure 1.2. The extraordinary 

structure of the cell wall allows the bacteria to lie dormant in latent infections for 

many years.5  

 

Figure 1.2: Schematic representation of the mycobacterial cell wall5 

Due to the  lipophilic nature of the cell wall, hydrophilic molecules cannot 

cross the cell wall efficiently, which is a major concern as this can lead to drug 

resistance.6  Directly Observed Therapy-Short course (DOTS) therapy is used to 

treat TB, which is a combination of widely used first line drugs such as isoniazid, 

rifampin, ethambutol and pyrazinamide prescribed for 2 months, followed by 

isoniazid and pyrazinamide for the next 4-5 months.7 The mechanism of these four 

widely used drugs is discussed in detail in the following section. 
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1.3  Mechanism of action of few antitubercular drugs 

 The complex lipid bilayer of the cell wall, arising from the extensive long 

chain fatty acid framework, acts as a barrier against chemical damage. Most of the 

antitubercular drugs, which include isoniazid8, pyrazinamide9, ethionamide10 and 

thiacetazone11 (figure 1.3) act on the fatty acid biosynthesis mechanisms. The 

suggested mode of action for these antibiotics involves the inhibition of enzymes, 

such as InhA, FabH, MabA, Kas B involved in the fatty acid synthesis pathways.12-14 
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Figure 1.3: Structure of fatty acid pathway inhibitors a) isoniazid, b) pyrazinamide, c) 

ethionamide and d) thiacetazone 

 1.3.1 Isoniazid  

Isonicotinic acid hydrazide, commonly called isoniazid (INH), discovered in 

1952, was a major breakthrough in antitubercular drug design as it is a highly active 

and inexpensive that does not possess serious side effects. Since its discovery, 

isoniazid is the most commonly used drug worldwide for treating TB infections. This 

frontline anti-TB drug has a remarkably low minimum inhibitory concentration (MIC) 

of 0.1-0.7µM in the human body and is very specific to Mtb.15  This has encouraged 

several researchers to investigate the mechanism of action of INH. 

INH inhibits mycolic acid biosynthesis,8 however, it has been proposed that 

the molecule itself does not possess any inhibitory action15 but instead acts as a 

pro-drug, which was thoroughly investigated by Rozwarski et al.16 Once inside the 

bacterial cell, INH is converted into its activated form, the INH radical or anion with 

the help of Mtb catalase-peroxidase (KatG), as indicated in figure 1.4.  
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Figure 1.4: Formation of active species of INH via step a) INH radical and step b) 

INH anion16 

The resulting active species of INH form a covalent bond with nicotinamide 

adenine dinucleotide (NADH) to produce an isonicotinic acyl (INA)-NADH adduct, 

which then inhibits the InhA enzyme.15-17 InhA is an enoyl-acyl carrier protein (ACP) 

reductase that is known to catalyse the NADH dependent reduction of an alkene 

bond within a fatty acid chain. The resulting products of the InhA catalysis are used 

by Mtb to generate mycolic acids, which are long chain fatty acids, and are 

considered to be essential components of the bacterial cell wall. The INA-NADH 

adduct occupies the active site of the InhA enzyme, as indicated by crystal structure 

analysis (figure 1.5) and binds to the neighbouring amino acid side chains.16 

 

Figure 1.5: Crystal structure of active site of InhA with bound INA-NADH adduct16 
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The molecular representation of the active site of InhA with the bound INH-

NADH adduct is illustrated in figure 1.6. The INA moiety of the INA-NADH adduct is 

shown in red, whereas the NADH is shown in blue and the amino acid side chains 

are shown in green. Numbers indicated in black are in Å units and represents the 

atomic spacing between the selected atoms. The conformational difference between 

the active site of the native enzyme and that of bound INA-NADH adduct is the 

orientation of Phe149 amino acid side chain. In the native form of the enzyme, the 

side chain of Phe149 lies directly above the nicotinamide ring. In the bound INA-

NADH adduct, however, the side chain of Phe149  is rotated away from the 

nicotinamide ring, thus allowing space for INA group, as indicated in figure 1.6.16 

Upon blocking the active site of InhA the enzyme fails to produce the fatty acid 

chains, which form the integral part of the cell wall. This may eventually lead to 

bacterial cell death. Ser94 indicated in magenta (figure 1.6), is responsible for INH 

resistance which is converted into Ala in resistant strains. 

 

Figure 1.6: Molecular representation of active site of InhA with bound INA-

NADH adduct16 
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1.3.1.1 Pharmacokinetics of INH metabolism in the human body 

A detailed investigation of the pharmacokinetics of INH in the human body 

was performed by Ellard and Gammon.18 The analysis of blood and urine samples 

suggests that INH is eventually metabolised into a series of metabolites by the 

human body, as indicated in figure 1.7. Some of these metabolites may inactivate 

INH and hence prove an obstacle in the mechanism of its action on Mtb. Depending 

on the rate at which these metabolites are produced, they can be classified as slow 

and fast inactivators of INH. Hence, the therapeutic dose and length of the 

treatment may vary in different individuals. 
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Figure 1.7: Proposed metabolic pathway and metabolites of INH in the human 

body18 
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Ellard and Gammon proposed that INH can be converted directly into its acid 

form in human body as indicated in the figure 1.7. Although it was also hypothesized 

that isonicotinic acid can be formed via the intermediate acetyl isoniazid. This 

intermediate product is caused by the enzymes known as acetylators present in the 

human body. The acetylators which can be classified as fast and slow acetylators 

determine the rate of formation of acetyl isoniazid. The calculated values indicate 

that fast acetylators acetylate the INH three to four times faster than the slow 

acetylators. Furthermore, it was observed that in slow acetylators, the rate of 

formation of isonicotinic acid and isonicotinyl glycine was increased when compared 

to that of fast acetylators. Isonicotinyl glycine, another metabolite of INH, is a result 

of conjugation of amino acid glycine with isonicotinic acid.18  

Subsequently, hydrazine and its other analogues, which include mono-acetyl 

and di-acetyl hydrazine, are also produced as by-products of these metabolites. An 

enzyme that catalyses the hydrolysis of acetyl isoniazid to give isonicotinic acid and 

mono-acetyl hydrazine that undergoes further acetylation resulting in the formation 

of di-acetyl hydrazine, which is excreted from the body as evident from the urine 

samples of INH administered individuals. The amount of di-acetyl hydrazine 

excreted also depends on the rate of the acetylation process, which can be 

accredited to the fast and slow forms of these enzymes.  

INH is also known to form Schiff base conjugates with pyruvic acid and α-

ketoglutaric acid in the body to give the respective hydrazones, as shown in figure 

1.7.  This could prove to be a drawback as it could conjugate with carbonyl-

containing compounds that might be essential for normal metabolic processes. For 

example, INH is known to combine with vitamin B6 (figure 1.8) resulting in patients 

suffering from the effects of B6 deficiency.19 Hence, TB patients who are being INH 

are given additional supplements of vitamin B6. 
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Figure 1.8: Schiff base of conjugate of INH and vitamin B6 
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1.3.2 Pyrazinamide 

Pyrazinamide (PZA), which is one of the drugs used in DOTS therapy, has 

shortened the original treatment regime of TB from the original 9-12 months to the 

current 6 months course. The mechanism of action of PZA is not completely 

understood despite it being a structural analog of INH and also acting as a prodrug. 

It is found to inhibit fatty acid synthase-I, thereby disrupting the cell wall 

biosynthesis.9 In its active from, pyrazinoic acid (POA) is formed by the bacterial 

pyrazinamidase (PZase) enzyme in a lower pH cellular environment.20-21  

Interestingly, PZA is known to kill mycobacteria which lie in a semi-dormant 

state, residing in the acidic environment. However, other antitubercular drugs fail to 

eradicate these bacteria, which is one of the main reasons so as to why PZA helps 

in shortening the TB therapy. PZA is only active against mycobacteria in a low 

acidic environment, whereas other bacteria are insensitive to PZA. It was found that 

even though POA is produced in acidic environments, it fails to accumulate in 

certain strains of mycobacteria due to highly active POA efflux mechanisms. Those 

bacteria which were deficient in this efflux pump are highly susceptible to PZA, 

whereas those for example M. smegmatis are natural resistant of PZA due to 

extremely active POA efflux.20 Studies by Bamaga et al. have illustrated that 

mutations in the pncA gene encoding PZase have led to the development of PZA 

resistant bacteria.22 

1.3.3 Ethambutol 

 Ethambutol inhibits Mtb by targeting the arabinogalactam and 

peptidoglycan biosynthesis pathway of the bacterium.23 Other drugs that inhibit this 

pathway include cycloserin24 and amoxicillin25 (figure 1.9). Ethambutol is known to 

inhibit arabinofuranosyl transferase(s) of arabinogalactam.  Moreover, Häusler et al. 

have shown that even small changes in the parent pharmacophore decreased the 

antitubercular activity exhibited by ethambutol.26 
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Figure 1.9 : Arabinogalactam and peptidoglycan biosynthesis inhibitors a) 

Ethambutol b) Cycloserin c) amoxicillin 

1.3.4 Rifampin 

Rifampin as depicted in figure 1.10, binds to the β-subunit of the DNA-

dependent polymerase thereby inhibiting bacterial RNA synthesis.27-29 
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Figure 1.10: Rifampin 

1.3.4 Fluoroquinolone 

Fluoroquinolones, as depicted in figure 1.11, are the second line of 

antitubercular agents used in targeting resistant strains of mycobacteria. These 

compounds target the bacterial DNA gyrase enzymes, viz. topoisomerase II (topoII) 

and DNA topoisomerase IV (topoIV) in Gram-negative and Gram-positive bacteria. 

Fluoroquinolones block the ligation step of the cell cycle, producing single and 

double stranded breaks, which consequently leads to cell death.30-31 
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Figure 1.11: Fluoroquinolone antibiotics a) ciprofloxacin and b) levofloxacin 

1.4 Drawback of present antitubercular drugs 

The length of the DOTS therapy (6-12 months) has resulted in patient non-

compliance and eventually led to the emergence of multidrug resistant TB (MDR-

TB)  in some patients.32 The major drawback of the drugs presently used to treat TB 

infections is that they only typically target the actively growing bacteria, while there 

is a notable absence of drugs which can target latent infections.33 These latent 

infections could lead to the reactivation of the disease in patients with compromised 

immune systems. This is most notably seen in HIV patients, with TB being a major 

cause of death in AIDS patients7. Drug related adverse side effects can cause 

significant morbidity, arising from serious conditions such as drug-induced hepatitis 

and severe gastrointestinal distress. Most common side effects of TB drugs include 

fever and rashes.34  

As a consequence, there is an urgent need for the development of new 

antitubercular compounds to overcome these drawbacks. The new antitubercular 

agent must be effective against resistant and persistent strains of the bacteria, 

whilst keeping the side effects to a minimum. In order to design more efficient 

antitubercular drugs, it will be useful to understand the mechanism involved in 

resistance and persistence. 
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1.5 Cause for the resistant state of mycobacteria 

The increasing number of resistance cases is a major concern amongst the 

health organisation throughout the world. A survey done by the WHO in 2008 has 

found that around half a million people develop MDR-TB worldwide. In addition,  

10,000 new cases of extensive drug resistant TB (XDR-TB) emerged in 2008. XDR 

is a term used when a bacterial species is resistant against most, or all, antibiotics 

capable of threating such infections.35 

1.5.1 The lipophilic cell wall of mycobacteria 

One of the limitations for certain types of antimicrobial agents is the ability to 

cross the lipid membrane of the bacterial cell, failing to do so may result in the 

resistance of a drug. Rastogi et al. succeded in overcoming this mycobacterial 

resistance by synthesizing an amphipathic derivative of the drug isoniazid, as 

indicated in figure 1.12.36 These amphipathic analogs of INH exhibited promising 

activity against mycobacteria which were 100 % resistant to INH.  
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Figure 1.12: Amphipathic derivatives of INH36 

It was porposed that the lipophilic part of the molecule acts as a carrier of 

the INH drug, which allows it to cross the lipid membrane of the bacterial cell wall. 

Once inside the cell, the INH part of the molecule is resposible for the inhibitory 
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action against mycobacteria. INH is a very hydrophilic and polar molecule, which 

prevents effective absorption by the cell but it is a very potent drug. Hence attempts 

could be made to modify the drug to overcome the resistance problem caused by its 

inability to cross the lipid barrier effectively.  

1.5.2 Mutation in the katG gene 

Resistance can also develop through mutations in the katG gene, which is 

responsible for converting INH into its active form. Bernadou et al.,37-39 have made 

synthetic analogs of truncated INH-NADH (minus the ADP moeity), where the the 

isonicotinic ring was substituted with a benzoyl ring (BH-NADH). These analogs can 

directly bind to the active site of InhA, inhibiting the enzyme, hence bypassing the 

KatG dependent step. However, these truncated adducts lead to very poor activity 

against InhA, due to the lack of an ADP moiety. To overcome this problem, they 

synthesised a bisubstrate analogue of BH-NADH adduct. A representative example 

from the series is shown in figure 1.13. 
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Figure 1.13: Synthetic analogue of the BH-NADH adduct39 

This analogue is more likely to accurately mimic the bonding profile of the 

InhA substrate and would be recognised by the active site of InhA. This will provide 

more affinity and selectivity towards the catalytic site of InhA. Interestingly, some of 

these derivatives not only inhibit the InhA enzyme, but also exert promising MIC 

values against active strains bacteria of Mtb. However, the possibility that an 

additional hydrophobic moeity might be responsible for the increased uptake of the 

benzoyl hydrazone across the lipid cell membrane cannot be discounted. Morover, 

the compound depicted in figure 1.13 did not inhibit InhA but exhibited potential 

antimycobacterial activity. This suggests that some of the synthesized BH-NADH 
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derivatives may not inhibit InhA actively and act against Mtb through a different 

mechanism of action.  

While the compounds above may have future potential as antitubercular 

drugs, they could also prove active against the KatG mutant resistant strains. These 

studies also suggest that hydrazides other than INH can also act as potential 

inhibitors of InhA and thus could be a useful strategy in antitubercular drug design. 

Moreover, impairment of KatG may also result from a lack of redox active 

species in the environment, leading to INH resistance.40 KatG appears to utilize 

superoxide anions to activate INH, as the INH turnover by the purified enzyme is 

completely abolished in the presence of a catalytic quantity of superoxide dismutase 

(SOD).41   

1.5.3 Acetylation of the hydrazinic chain (-NH-NH2) 

INH can undergo acetylation in the body through the action of N-

acetyltransferase (NAT) enzymes. NAT enzymes have been able to acetylate 

various substrates including INH- and sulfonamide-based antibacterial drugs. 

Acetylation of the amine functionality of INH, as indicated in figure 1.14, may result 

in poor antimycobacterial activity. Different forms of NAT enzymes are not only 

present in the human body but also in Mtb. The effective therapeutic doses of INH 

have to be taken into account, depending on the effect of fast and slow 

acetylators.18,42 
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Figure 1.14: Acetylation of INH by NAT enzymes18 

In order to avoid the acetylation of potent hydrazine drugs, an effective 

strategy would be to block the amine group with an appropriate moiety, possibly a 

biologically active pharmacophore, which could enhance the activity. For example, 

as previously discussed, INH can be conjugated to hydrophobic molecules that 

would allow passive diffusion through the lipid cell wall of the mycobacteria. 
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1.6 Persistent/ latent bacteria 

 One of the major drawback of drugs presently used to treat Mtb is the failure 

to target the persisent/latent bacteria present in the host organism, hence TB cannot 

be completely eradicated. Various research groups are working in this field in order 

to understand the mechanisms responsible for the persistent state of bacteria. One 

of the well known processes is the glyoxylate shunt pathway (GSP).43-46 

1.6.1 Role of the glyoxylate shunt pathway in persistent bacteria 

The glyoxylate shunt pathway (GSP) has been determined to be important 

for bacterial survival in the activated macrophage and for persistent infections of 

Mtb in the host organism. The majority of the microorganisms growing on fatty acids 

for their carbon source utilise the glyoxylate bypass for the biosynthesis of cellular 

material. In Mtb, isocitrate lyase activity is increased when the bacilli are in an 

environment of low oxygen tension or in a transition from an actively replicating to a 

non-replicating state.  The GSP bypasses the loss of two carbon dioxide molecules 

from the tricarboxylic acid (TCA) cycle, thereby permitting the net incorporation of 

carbon into cellular structure, as illustrated in figure 1.15. The vital enzymes of the 

GSP are isocitrate lyase (ICL) and malate synthase. ICL converts isocitrate into 

succinate and glyoxylate as indicated in scheme 1.1, whereas malate synthase 

condenses glyoxylate with acetyl coenzyme A (acetyl-CoA) to give malate and 

coenzyme A (CoA) respectively.43-46  
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Scheme 1.1: Conversion of isocitrate to glyoxylate and succinate36 
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Figure 1.15: Isocitrate lyase pathway46 

The GSP has been found in most prokaryotes, lower eukaryotes and plants, 

but there is no evidence thus far of this pathway being present higher vertebrates, 

hence its inhibition will not interfere with the human metabolic pathways, thus 

allowing specific targeting of the bacterial survival pathways.47 

1.6.1.1  ICL inhibitors 

A number of ICL inhibitors (figure 1.16) have been investigated to date, 

including 3-nitropropionate, 3-bromopyruvate, phosphoenolpyruvate, 3-

phosphoglycerate and itaconate.48-52 Since the most common structural motif 

observed in the known ICL inhibitors is the pyruvate moiety, as highlighted in figure 

1.16, incorporation of this moiety may provide an effective route for targeting the ICL 

enzyme, thereby inhibiting persistent bacteria. 
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Figure 1.16: Isocitrate lyase inhibitors (a-e) 

Sacchettini et al.53 investigated the mode of inhibition of 3-bromopyruvate 

and 3-nitropropionate. It was established that both inhibitors showed activity against 

bacteria grown on acetates but have no effect on bacteria grown on glucose. In 

order to gain further insight into the mechanism of action, the inhibitors were co-

crystallised with the ICL enzyme and orthorhombic shaped crystals were obtained. 

The binding of glyoxylate was examined at the active site of ICL which is located at 

the C-terminal ends of the β-strands, as shown in figure 1.17. It was determined that 

the carboxylate group or the nitro group of 3-nitropropionate hydrogen bonds with 

the side chains of residues Asn313, Glu285, Arg 228, His193, Ser317, Thr347  and Gly192 of 

the protein, as shown in figure 1.18. The glyoxylate binds by coordination to the 

active site Mg2+ (indicated as yellow sphere, figure 1.18) and forms hydrogen bonds 

with amino acid residues such as Ser910, Gly92, Trp93 and Arg228 of the protein. 
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Figure 1.17: Active site of the of the ICL C191S mutant with glyoxylate (GA) and 3-

nitropropionate bound.53 Generated using CCP4mg software (PDB code 1F8I) 

 

Figure 1.18: Schematic diagram of the interactions of ICL with glyoxylate and 

succinate53 

Moreover, similar co-crystallisation studies with 3-bromopyruvate reveal that 

it acts as an inhibitor of ICL by forming a covalent adduct with nucleophile Cys191 in 

the active site, achieved by dehalogenation of the inhibitor. As can be seen in figure 
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1.19 the pyruvyl moiety forms hydrogen bonds with the side chains of His193, Asn313, 

Ser315, Ser317, Thr347 and to a solvent molecule (water). 

 

 

Figure 1.19: Active site of ICL (pyruvyl moiety (purple) attached to the thiolate of 

Cys191).53 Generated using CCP4mg software (PDB code 1F8M) 

Kumar and Bhakuni54 investigated the role of metal salts in the ICL enzyme 

mechanism. Mg2+ is vital for the activity of the enzyme, exhibiting almost 100% 

activity whereas Mn2+ yielded around 45% activity. Cd2+ and Zn2+ inhibited the 

enzyme, as these metal ions led to the unfolding of the catalytic domain. However, 

Mg2+ and Mn2+ did not significantly affect the structure of the enzyme, as such the 

zinc and cadmium complexes could be explored for any effect the ions could have 

on the inhibitory action of ICL. 

ICL inhibitors containing non-pyruvyl moieties have also been explored. Shin 

et al. and his group isolated seven sesterterpene sulfates from the tropical sponge 

Dysidea sp. and evaluated their inhibitory activity against ICL from Candida 

albicans. Amongst them, the compound as shown in figure 1.20 was found to be 

most active having an IC50 value of 16.9 µM.55  
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Figure 1.20: Sesterterpene sulfate55 

5-hydroxy type alkaloids from the tropical marine sponge Hyrtios sp. were 

also investigated. The inhibitory properties of these compounds were investigated 

using ICL enzyme obtained from Candida albicans. The compound as shown in 

figure 1.21, was the most active of this type of compounds, having an IC50 of 89.0 

µM.56 
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Figure 1.21: Hyrtiosin B56 

Synthetically-derived inhibitors have also been investigated in inhibition 

studies of ICL. Shin et al. synthesized a new series of bromophenol derivatives, 

where the compound as shown in figure 1.22 exhibited the most potent inhibitory 

activity against ICL from Candida albicans.57  
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Figure 1.22: (3-Bromo-4,5-dihydroxyphenyl)-(2,3-dibromo-4,5-dihydroxy-phenyl)-

methanone57 

From these literature studies, it can be concluded that ICL is an attractive 

target to eradicate persistent bacterial strains. Pyruvate-containing molecules have 

shown to inhibit the ICL enzyme, however, non-pyruvate containing ICL inhibitors 

have also been explored. 

Furthermore, recent studies  by Shi et al.58 show that PZA is known to inhibit 

ribosomal protein S1 (RpsA), an important protein involved in trans-translation 

process. This process is essential in non-replicating or latent bacteria; therefore 

PZA may be useful in eradicating persistent mycobacteria. 
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1.7 Hydrazones and metal complexes as antitubercular agents 

Hydrazones and their metal complexes represent an important class of 

compounds, as they are not only good antitubercular agents59-60 but also have other 

biological applications, as indicated in figure 1.23. These include anticonvulsant61-62, 

analgesic62, anti-inflammatory63-64, anticancer65-66, antiviral67-68 antimalarial69, 

antigout70, antidiabetic71, antifungal72 antiplatelet73 and vasodilator74 applications.  

Antitubercular

Anti-gout
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Anticancer
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Antidiabetic

Vasodilator

Antifungal
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Figure 1.23: Biological applications of hydrazones 

Owing to their various pharmacological applications, there has been a 

growing interest in hydrazones. Various reviews are available in the literature, which 

have covered various aspects of these compounds, including biological and non-

biological applications.75-77 
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1.7.1 Hydrazones as antitubercular agents 

 Pavan et al. synthesised 20 different substituted thiosemicarbazones (figure 

1.24), semicarbazones, dithiocarbazates  and hydrazide/hydrazones  that were then 

evaluated against Mtb. One interesting result arising from the study is that the 

compounds bearing more hydrophobic moieties (R groups) were shown to be more 

active than those containing hydrophilic groups. This could be attributed to the more 

facile diffusion of the hydrophobic molecules across the lipid-rich bilayer78.  
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Figure 1.24: a) Thiosemicarbazones (X=S)  b) Dithiocarbazates c) Semicarbazones                                            

   One other possible mechanism by which these type of ligands may act as 

antitubercular agents is due to the presence of N, O, S donor binding sites. It is well 

established that sequestering intracellular iron can cause bacteria to starve, as iron 

is essential for mycobacterial survival.79 Whilst donor atoms such as N, S, O have 

the ability to coordinate to metal ions in various combinations (such as NNO, ONO, 

ONS, NNS), the organic framework forms stable 5- or 6-membered chelate rings. 

Once iron is coordinated to the ligand, it is no longer available for use by the 

bacteria, thus leading to iron starvation.  

A similar observation was made by Vigorita et al.,80-81 through their 

investigation of isoniazid related hydrazones, hydrazides and cyanoboranes as 

shown in figure 1.25.  
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Figure 1.25: Isoniazid derivates a) hydrazone b) Cyanoborane adduct of hydrazone 

R = H, CH3; R’ = CF3, Ph 

Amongst these hydrazones, the ones bearing fluoro- and trifluoro-

substituents on the benzene ring were proven to be most active. The cyanoborane 

adducts, however proved to be more active than the corresponding hydrazones. 

They displayed EC99 (EC99 is the lowest concentration effecting 99% reduction in 

colony forming units) of 1.14 and 0.116 µg ml-1, respectively, against  Mtb Erdman 

growing within mouse bone marrow macrophages, which is between 10-100 times 

more when compared with the same strain in culture medium, (MIC= 12.5 µg ml-1). 

The increase in the activity was attributed to the increase in lipophilicity. It was also 

observed that the cyanoborane-containing phenyl group was more potent than the 

trifluoromethyl-group. Interestingly, the tested compounds were found to be active 

against ethambutol and rifampin resistant strains of Mtb. 

Further to this, Vavříková et al.82 synthesized, fluoro- and tri-fluoromethyl-

substituted hydrazones derived from second-line antitubercular drugs including 

para-amino salicylic acid (PAS), norfloxacin (Nrf) and ciprofloxacin (Cpf). These 

compounds exhibit greater activity on MDR-TB strains (resistant to at least INH and 

RIF), when compared to their parent compounds - PAS, Nrf and Cpf, however, did 

not show any improved activity over normal Mtb. These compounds were further 

tested for cellular cytotoxicity against human cell lines using the MTT assay. 

Interestingly, these compounds were relatively non-toxic to human hepatocellular 

carcinoma cells HepG2, PBMC (Peripheral Blood Mononuclear Cells) and human 

SH-SY5Y neuroblastoma cells within the MIC range of their antitubercular activity. 

Most of the tested compounds exhibited similar MIC values against MDR-TB cells, 

however, one of the para-substituted fluorohydrazone analogues of Cpf (4FH-Cpf) 

as indicated in figure 1.26, displayed the highest selectivity index (SI) of 1268.58 as 

compared to Cpf (110.37).  Values of selectivity index (SI) indicate rate between 
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IC50 (mmol L-1) of HepG2 cytotoxicity and MIC (µg mL-1). Higher values indicate a 

greater level of selectivity, which means they possess a higher level of toxicity 

towards mycobacteria while being less toxic to human cells.  

As 4FH-Cpf (figure 1.26), is highly selective towards TB cells, it was chosen 

for stability studies in rat plasma and in aqueous buffer at varying pH. The HPLC 

results obtained indicate that 4FH-Cpf undergoes decomposition at a faster rate in 

acidic buffer solutions. The half life was found to be 2.9 and 11.8 hours in pH 3 and 

5 buffer solutions, respectively. The compound is relatively stable at  pH 7.4, as no 

significant decomposition was observed when monitored over 48 hours. Similar 

results were obtained when the stability of 4FH-Cpf was investigated in rat plasma. 

Even after 96 hours, the compound appears to be stable, suggesting no enzymatic 

degradation of the compound in rat plasma. The rate of degradation was very slow 

and is similar to the decomposition rate when studied in pH 7.4 buffer.82 
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Figure 1.26: Cpf conjugate of fluoro-substituted hydrazone (4FH-Cpf)82 

 Hence, the above studies by Vavříková and Vigorita suggests that fluoro- 

and trifluoromethyl-substituted compounds could be useful in the design of  novel 

antitubercular agents. 

Interestingly, hydrazones have also been proven to inhibit ICL enzyme. 

Sriram et al.83 synthesized a combinatorial library of novel pthalazinyl hydrazones 

(figure 1.27) for use as ICL enzyme inhibitors. The compounds were evaluated in 

vitro and in vivo against 8 mycobacterial strains and Mtb ICL. The compound shown 

in figure 1.27 a) inhibited all 8 species of mycobacteria with MICs (minimum 

inhibitory concentrations) ranging from <0.09-12.25 µM. A structure activity 

relationship (SAR) analysis reveals that electron withdrawing groups, such as nitro- 

and halo-substituents, improved activity whereas electron donating groups, such as 

methoxy-, methyl-, hydroxyl- and dimethylamino- substituents reduced activity. The 

compounds that displayed high activity were further screened against Mtb cells that 
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had been grown for six weeks under carbon-deprived conditions. The compounds 

exhibited %-inhibition values in the range of 45.1-61.6% at 10 µM concentration and 

the inhibitor as shown in the figure 1.27 b displayed the highest inhibition of 61.6%. 
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Figure 1.27: Phthalazinyl hydrazone83 a) R-H, R1-4- NO2Ph 

b) R-H, R1-3- NO2Ph 

Recently, docking studies reported by Padhye’s et al.;84 illustrated that the 

hydrazones derived from pyruvic acid can bind to the active site of ICL. The 

hydrazones form hydrogen bonds with surrounding amino acid side chains and the 

binding energy lies between -7.51 and -8.89 kcal mol-1, where as the parent pyruvic 

acid shows a binding energy of -8.36 kcal mol-1. Ligand L4, as indicated in figure 

1.28, exhibited highest binding energy of -8.89 kcal mol-1, where the amide proton 

forms a hydrogen bond with the oxygen atom of amino acid Gly287. Moreover, it is 

also observed with other ligands that the oxygen atom of carboxylate and/or 

carbonyl functional groups also participates in hydrogen bonding with amino acids 

such as His, Ser, Asn, which are in close vicinity of the active site. 
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L1: Y=H, X1,X2 = C 

L2: Y=OH, X1,X2 = C 

L3: Y=H, X1= N, X2 = C 

L4: Y=H, X1=C, X2 = N 

 

L4 docked at active site of ICL enzyme 

Figure 1.28: Structures of pyruvic acid hydrazones (L1-L4) (left) investigated by 

docking studies involving ICL, L4 binding in the ICL active site84 

 Interestingly, these ligands and their respective Cu(II) complexes are also 

known to inhibit actively growing Mtb H37RV.  

 The literature studies performed on hydrazones conclude that this class of 

compounds can be considered as useful for the discovery of novel antitubercular 

agents. Moreover, a number of the mentioned hydrazones are also able to inhibit 

the ICL and can thus serve a dual purpose of eradicating actively growing and 

persistent bacteria. 

1.7.2 Metal complexes as antitubercular agents 

Metal complexes can offer certain advantages over organic ligands as they 

have been reported to possess excellent antimycobacterial activity and are also 

effective against resistant strains.85-87 Reactive oxygen radicals initiate the 

transcription of the katG gene resulting in the activation of INH drug, therefore, in 

order to overcome the problem of resistance, redox active species can be 

introduced along with INH. For example, redox active metal cations, such as Cu(II) 

or Fe(II) can be considered, as they can cause oxidative stress within the bacterial 

cell. Oxidative stress caused by metal ions may also be helpful, as it may exert 

damaging effects on bacterial cells, eventually leading to their death. This could 

happen due to the Fenton reaction occurring in the cells. Redox active metal ions, 

such as Fe(II), can react with endogenous hydrogen peroxide to give rise to 

hydroxyl radicals, as shown in equation 1.1. The resultant reactive oxygen species 
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can be lethal to the cell by damaging its DNA.88 To confirm this theory, Imlay et al.89 

investigated the action of hydrogen peroxide on Escherichia coli (E. coli). They 

found that micromolar concentrations of hydrogen peroxide inactivate the 

isopropylmalate isomerase (IPMI) enzyme, which belongs to the class of iron-sulfur 

cluster proteins. Inhibition of IPMI prevents the biosynthesis of the amino acid 

leucine.  

Fe(II) + H2O2 → HO· + OH
-
 + Fe(III)    ------------ equation 1.1 

Cu(II), which can also undergo redox reactions, is also believed to generate 

hydroxyl radicals through similar Fenton-like reactions, thus eventually causing 

toxicity to cells. However, further work carried out by Imlay et al.90-91 illustrates that 

copper(II) does not cause DNA damage. It was suggested that intracellular 

glutathione may chelate free copper, hence it is unavailable to undergo redox 

reactions producing free radicals. Therefore, in order to investigate the mechanism 

underlying the Cu toxicity, Cu(I) was incubated with iron-cluster enzyme and it was 

found that copper displaces iron from the enzyme and binds to sulphur-containing 

ligands, subsequently leading to enzyme inhibition. 

Several researchers are working on metal-based antitubercular compounds, 

a selection of which is discussed in this section. In order to support the theory of 

activation of INH by metal ions, Basso et al.92-94 coordinated INH to redox active 

metal ions, including Fe(II) ([Fe(III)(CN)5(NH3)]
2-) and Fe(III) ([Fe(II)(CN)5(NH3)]

3-). 

The study suggests that the Fe ions bind to INH through the heterocyclic nitrogen 

atom as indicated in figure 1.29. It was proposed that the electron transfer involving 

the Fe-INH complex takes place via an inner sphere mechanism, resulting in an 

oxidised species of INH (INHox), ([Fe(III)(CN)5(INHox)]2-). INHox is the product of the 

oxidation process involving isonicotinic acid or isonicotinamide, as indicated in 

figure 1.30. These oxidative products or activated INH can give rise to the INH 

radical, which is known to bind the active site of Inh A, leading to inhibition of the 

enzyme as discussed previously on page 4 and 5.  
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Figure 1.29: Iron complex of INH, ([Fe(III/II)(CN)5(INHox)]2-/3-)92-93 
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Figure 1.30: Scheme illustrating the mode of action of self-activating antitubercular 

metallodrugs of INH, (X= OH, NH2) i) Failed activation of INH by mycobacteria due 

to KatG mutations, ii) Intramolecular electron transfer within the metal complex iii) 

electron transfer kinetics (KET) 92 
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The synthesised iron complex of INH proved to be active against INH-

resistant and INH-sensitive strains of bacteria. It was hypothesized that KatG is not 

required for INH activation if there is a redox active metal present in close vicinity of 

the drug. The electron transfer mechanism associated with Fe-INH complex can 

bypass the KatG activation step by self activating the INH drug. This strategy can be 

useful in designing novel antitubercular drugs, which can overcome  drug resistance 

caused by KatG mutations. Inhibition of Inh A proved to be unsuccessful with 

([Fe(III)(CN)6]). This proves that INH is an essential pharmacophore required to 

inhibit the InhA enzyme. 

Furthermore, other redox active metal ions, such as ruthenium(II) was also 

coordinated to INH in order to support their theory. However, [Ru(II)(CN)5(INH)]3- 

and [Ru(II)(NH3)5(INH)]2+ failed to show any inhibitory action against Inh A. The 

reason was attributed to the difference in their electrochemical potential. The 

oxidation potential of ([Fe(II)(CN)5(INH)]3- was found to be 305 mV vs. SCE, 

whereas Ru(II)(CN)5(INH)]3- exhibits a significantly low E1/2 value of 112 mV and 

[Ru(II)(NH3)5(INH)]2+ has  an extremely high oxidation potential (~750 mV). Hence, 

this suggests that intramolecular electron transfer reactions, which are associated 

with electrochemical behaviour of metal complexes, may play a vital role in the 

design of antitubercular metallodrugs. 

Similar studies carried out by Bodiguel et al.,95 suggest that addition of Mn2+ 

ions to a mixture of INH and KatG, increase the rate of formation of the active 

species isonicotinic acid as indicated by HPLC results. However, in order to achieve 

noticeable results a ratio of Mn2+: KatG enzyme of 20:1 had to be used. It was 

hypothesized that both the process of INH oxidation by enzymatic peroxidation and 

Mn2+ auto-oxidation may occur simultaneously. 

Likewise in human beings there are number of metal ion transport proteins 

present in bacteria in order to transport metal ions like Fe, Cu and Zn across the cell 

membrane. Depending upon the organism these types of proteins are either 

involved in uptake or efflux of certain metal ions. For example, ferric uptake 

regulator (Fur) imports the extracellular essential metal ions such as Fe inside the 

mycobacteria. Free Cu ion, which is toxic to certain bacterial species is exported out 

of the cells using copper transporting ATPases.96 It has been proposed that the Fur 

A protein which is a member of ferric uptake regulator family is co-expressed along 
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with KatG.97-98 The furA gene encoding Fur A protein is located upstream of the 

katG gene as indicated in figure 1.31.  

 

Figure 1.31: Schematic representation of the function of Mtb. FurA98 

Once inside the bacterial cell, Fe(III) gets reduced to Fe(II) by proteins 

belonging to iron reductase family. The reduced Fe is associated with the activation 

of fur A gene which inturn co-transcribes katG gene. The increased levels of KatG 

helps in boosting the activation of INH drug, hence helps in increasing its 

antitubercular activity. 

As FurA plays a vital role in controlling the activity of KatG, it has attracted 

considerable attention in the development of novel antitubercular drug design, which 

could potentially enhance KatG levels thus enhancing INH potency. 
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Extensive work is being carried out by Yangzhong Liu et al.99-101 on metal-

based inhibitors of the RecA intein enzyme, which is responsible for protein splicing 

in Mtb. The investigation of the inhibitory effect of some of the first row transition 

metal ions on RecA intein suggests that Cu2+ and Zn2+ have high affinity towards the 

enzyme, whereas Co2+, Ni2+, Mn2+ and Cd2+  show weak inhibition and Mg2+ and  Ca2+ 

ions fail to exert any inhibitory activity against recA. 

One of the mutants of the RecA enzyme of Mtb (∆I-SM) was isolated and co-

crystallised with Zn2+. The crystal structure in which zinc is binding to the active site 

of ∆I-SM is depicted in figure 1.32. Zinc (indicated in blue spheres) coordinates to 

four amino acid residues in a tetrahedral manner. The amino acids involved in the 

coordination are His349, His429, Asn440 and Glu424. These studies also suggest that 

the binding of zinc to ∆I-SM, results in conformational changes leading to the 

dimerisation of the protein. Additional NMR spectroscopic studies were carried out 

in order to confirm these results. Interestingly, the addition of the strong chelating 

agent EDTA reverses the inhibition of the enzyme by Zn2+, indicating that the 

binding affinity of zinc is stronger for EDTA than the protein active site.  

 

Figure 1.32: Crystal structure of ∆I-SM co-crystallised with Zn2+ (blue sphere)99 
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Continuing this work, they also examined the interaction of Cu(II) and Cu(I)  

with ∆I-SM. Although the crystal structure with copper bound to the enzyme could 

not be obtained, UV/Vis, atomic absorption spectroscopy (AAS), NMR spectroscopy 

and extended X-ray fine structure (EXFAS) techniques were used to investigate the 

mechanism. The studies revealed that Cu(II)  gets reduced to Cu(I) and in turn 

oxidises the thiol group of intein. Moreover, the copper binds to intein in a 1:1 ratio 

and it coordinates to cysteine and histidine side chains. The binding site of the two 

copper ions Cu(I) and Cu(II) varies as Cu(I) prefers tetrahedral coordination and 

Cu(II) prefers square planar geometry. Interestingly, it was observed that Cu(II)  

coordinates to the sulfur donor of cysteine, whereas this was not observed with 

Cu(I). This observation violates the HSAB principle, which suggests that Cu(I) 

favours sulfur coordination. 

Surprisingly, Liu et al. also found that the inhibition of RecA intein can be 

achieved using the well known anticancer drug cis-platin (figure 1.33). A range of 

platinum(II) compounds were tested and it was found that cis-platin exhibits the 

lowest IC50 of 2.5 µM, whereas the trans-isomer has a significantly high IC50 > 200 

µM. This is also true for anticancer activity, where trans-isomer is inactive against 

cancer cells. 

Pt
ClH2N

H2N Cl 

Figure 1.33: Structure of cis-platin 

Vigorita et al.87 also studied the in vitro antimycobacterial activity of Co2+ and 

Cu2+ complexes of fluorinated INH-hydrazones, as can be seen in figure 1.34. It was 

observed that all metal complexes exhibit excellent activity and two of the lead 

compounds displayed EC99 values lower than that of the parent drug INH, whilst all 

of the tested metal chelates significantly inhibited the growth of single-drug-resistant 

Mtb strain. 
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Figure 1.34: Metal complex of fluorinated INH-hydrazones (M= Co2+, Cu2+)87 

Schiff bases and their copper complexes as antibacterial agents have also 

been explored by Padhye et al.85 Copper complexes of carboxiamidrazone, as 

shown in figure 1.35, exhibited a 32 to 64-fold activity enhancement when compared 

to their respective ligands and displayed MICs in the range 2-4 µM. As the metal 

conjugates are more lipophilic than their organic counter parts, it allows complexes 

to easily permeate through the mycobacterial cell wall. In addition, the intracellular 

reduction of Cu(II) to Cu(I), leads to the generation of reactive oxygen species which 

can be deleterious  to bacterial cells.102-104 
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Figure 1.35: Copper complex of carboxyamidrazone85 

Other first row transition metal complexes have also been investigated for 

their antitubercular activity, including vanadium, iron, cobalt, nickel and zinc 

complexes.86,105-110 

Additionally, metal complexes of second and third row transition metals, 

such as Pd, Pt, Ru, Ag, Au have been investigated.111-114  Palladium(II) and 

platinum(II) complexes of various fluoroquinolones (ciprofloxacin, levofloxacin, 

ofloxacin, sparfloxacin, and gatifloxacin) have been synthesisied by Fonts et 

al..Based on the results obtained, it was proposed that Pd binds to the ligands 

through the planar β-diketo system of the fluoroquinolone, as shown in figure 1.36. 
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The complexes display MIC values in the range of 0.31-1.25 µg/ml against Mtb 

strain H37Rv.115 
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Figure 1.36: Palladium complex of ciprofloxacin115 

1.8 Project Aims 

 In order to address the problem of persistence and resistance in Mtb, there 

is a need for the development of new novel antitubercular drugs. This can be 

achieved by either designing new chemical entities or modifying the existing TB 

drugs in order to overcome their inherent drawbacks. 

The aim of the project was to synthesise analogs of the currently available 

antitubercular drug isoniazid and the Cu(II) and Zn(II) complexes of the analogues 

obtained. In addition, the stability of the synthesised compounds was to be 

investigated, under near physiological conditions and in different pH environments. 

Furthermore, the redox behaviour of the Cu(II) complexes was to be studied using 

cyclic voltammetry. In order to investigate structural aspects of the compounds, 

especially the metal complexes, single crystal X-ray diffraction studies were carried 

out. The results obtained informed the structure activity relationship (SAR) analysis 

of the compounds with respect to their antitubercular activity. 
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2.0 Synthesis and Characterisation 

2.1 Introduction: 

Schiff base ligands have been extensively studied for their role in biological 

fields, as well as in coordination chemistry. Apart from their important role in 

studying the coordination chemistry of metal complexes, 116-120 Schiff base ligands 

have also played a major role in the development of bioinorganic chemistry for the 

past few years, 121-124. In addition to the growing interest in using Schiff base ligands 

for mimicking metalloenzymes, their metal complexes have also been investigated 

for their activity against various biological disorders including cancer, 125-126 

tuberculosis, 82,127-129 inflammation130-131 and diabetes132-133.  

Hydrazones (figure 2.1) are widely studied due to their chelating ability. 

Depending on the metal ion, hydrazones can exhibit bidentate, 134 tridentate135 

tetradentate136 or multidentate137-138 coordination modes depending on the 

geometric arrangement of the neutral and anionic donor atoms present. Hydrazones 

(figure 2.1) contain two nucleophilic nitrogen atoms; with the amino nitrogen being 

the more nucleophilic than the azomethine nitrogen. The C=N double bond, 

generally called azomethine bond, is conjugated with the lone pair of electrons on 

the terminal nitrogen atom77. The physical and chemical properties of hydrazones 

depend on these structural fragments. The carbon atom of the hydrazone group has 

both electrophilic and nucleophilic character which makes it useful in organic 

synthesis, especially in the synthesis of heterocyclic compounds139 

N
N

R2

R1R3

R4

Nu

E

E

E  

Figure 2.1: Hydrazone, E = electrophile, Nu = nucleophile77 

The synthesis of hydrazones involves condensation of hydrazine or a 

hydrazide with an aldehyde or ketone, resulting in the elimination of a water 

molecule, as shown in scheme 2.1. These types of reactions are classified as 

reversible acid-catalysed reactions and proceed best at around pH 4.5.140  
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Scheme 2.1: Hydrazone formation140, hydrazine (R - H), hydrazide (R - O=C-R) 

  It is well established that hydrazones can form E/Z isomers141 and/or keto-

enol tautomers142 in solution. This allows hydrazones to be present as the different 

isomers (E or Z) as well as neutral, monoanionic, dianionic species depending on 

pH, medium, reaction conditions and the coordinating meta.l143-145 Derivatives of 

hydrazones such as thiosemicarbazone, dithiocarbazate and acyl hydrazones can  

provide both hard and soft donor atoms, such as oxygen (O), nitrogen (N) and 

sulphur (S). Various combinations of these donor atoms such as ONO, 146 ONS, 147 

NNS148 have been studied, especially with transition metal ions. Moreover, changing 

the donor atoms can help to tune the redox property of the metal ion.149  

Chapter-2 is divided in two sections; section A describes synthesis and 

characterisation of pyruvate hydrazones (PVAHs) and their respective metal 

complexes. Section B deals with synthesis and characterisation of cinnamaldehyde 

hydrazones (CAHs) and their respective Cu(II) complexes 

Section A: 

In section A, synthesis and characterisation of twenty pyruvate hydrazones 

(PVAHs) and their Cu(II) and Zn(II) complexes along with Cu(I) complexes of 

selected ligands is discussed. In addition, synthesis and characterisation of a di-

hydrazide analogue of a pyruvate hydrazone is also described. 
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2.2 Synthesis of pyruvate hydrazones (PVAHs) 

 The synthesis of a Schiff base through the reaction of sodium pyruvate with 

a hydrazide is a one step condensation reaction, as given in scheme 2.2. PVAH 

(pyruvate hydrazone) ligands NaHL1-NaHL20, were synthesized according to a 

reported procedure.135 Commercially available hydrazides were used in the 

syntheses, except for NaHL20. The starting hydrazide for NaHL20, pyrazinoyl 

hydrazide, was synthesized by condensing methyl pyrazine 2-carboxylate and 

hydrazine hydrate using standard literature procedures.150 The details of the 

preparation of pyrazinoyl hydrazide and PVAHs can be found in the experimental 

section (chapter -7).   

N
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PVAHs

RR

Hydrazide  

Scheme 2.2: General synthetic scheme for the preparation of PVAHs a) MeOH:H2O 
(7:3), reflux, 2 hours, water 

The detailed mechanism for the formation of Schiff bases and hydrazones is 

given in Scheme 2.3. The carbonyl group and the amine group of two biologically 

active pharmacophores, sodium pyruvate and the respective hydrazide are 

combined and the azomethine bond is formed via the loss of a water molecule. The 

reaction begins with the nucleophilic attack of the lone pair on the amine nitrogen 

onto the electrophilic carbon centre which gives rise to a hemiaminal intermediate. 

The intermediate then reacts with a proton and the subsequent loss of a water 

molecule yields the PVAH. These reactions are known to proceed best around pH 4 

– 5, as strongly acidic conditions favour the formation of the protonated amine, 

which cannot behave as a nucleophile (step a). Strong basic conditions do not 

favour the protonation of the hemiaminal intermediate (step c), hence it cannot act 

as a good leaving group (step d). 140  
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Scheme 2.3: General mechanism for the formation of PVAHs140 

A range of hydrazides bearing different R-groups; such as electron-

withdrawing, electron-donating, hydrophilic, hydrophobic and heterocyclic groups 

containing nitrogen have been used to synthesize a series of structurally related 

PVAHs. Lists of R groups along with their compound codes are provided in table 

2.1. The rationale behind using the different substituents or the same substituent at 

different positions on the aromatic group is that it allows for an analysis of structure 

activity relationships (SARs) with regards to antitubercular activity. Schiff base 

compounds have always been a popular choice amongst medicinal chemists, as it 

is generally a one step reaction with high yields and also the starting materials are 

mostly inexpensive. Once the biologically active lead compounds are known they 

can be further modified to improve their efficacy. 
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Table 2.1: Library of PVAHs with their compound codes and yields 
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  R (X = C) Yield  

1 NaHL1 H 82 % 

2 NaHL2 o-OH 89 % 

3 NaHL3 m-OH 87 % 

4 NaHL4 p-OH 83 % 

5 NaHL5 o-Cl 83 % 

6 NaHL6 p-Cl 90 % 

7 NaHL7 m-CH3,  p-NO2 82 % 

8 NaHL8 p- NO2 95 % 

9 NaHL9 p-CH3 86 % 

10 NaHL10 m-Br 86 % 

11 NaHL11 p-Br 96 % 

12 NaHL12 m-OCH3 81 % 

13 NaHL13 p-OCH3 83 % 

14 NaHL14 p-CF3 89 % 

15 NaHL15 m-F 80 % 

16 NaHL16 p-(CH3)3C 96 % 

17 NaHL17 o-OH, p-OCH3 92 % 

 Heterocyclic compounds 

(R = H) 

 

18 NaHL18 X1 = N, X2, X3 

= C 

89 % 

19 NaHL19 X2 = N, X1, X3 

= C 

82 % 

20 NaHL20 X1 = C, X2, X3 

= N 

80 % 
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2.3 Synthesis of Cu(II) complexes of PVAHs  

The syntheses of the Cu(II) complexes of the PVAHs were performed in a 

1:1 metal-to-ligand ratio. The details of the synthetic procedures used can be found 

in the experimental section. The X-ray crystal structures (discussed in chapter 4) 

and elemental analysis data, which can be found in experimental section, indicate 

that most of the copper complexes are isolated as 1:1 complexes. Initially, the 

reaction was tried in methanol, according to a procedure reported in the literature 

that gave crystalline solids upon slow evaporation,151 but this resulted in overall low 

yields. The low yields isolated are likely due to the high solubility of the Cu(II)-PVAH 

complexes in methanol. In order in improve the overall yield, the reactions were 

attempted in water as reported by Turta et al152. The combination of the aqueous 

solutions of the reactants gave rise to green precipitates, which were isolated by 

filtration and washed with water in order to remove any salt impurities. A selection of 

reactions with different ligands was repeated in water and it was found that the yield 

increased 2-fold in most of the complexes. ESI-MS confirmed the formation of 1:1 

complex and purity was confirmed using elemental analysis.  

The ligands behave as tridentate, dianionic ligands and bind to the Cu-

centre as shown in Scheme 2.4. The remaining coordination sites on the Cu-centre 

can be occupied by anions or neutral solvent molecules, such as H2O or methanol. 

The negatively charged oxygen donors balance the charge of the positively charged 

Cu(II) centre, whereas the nitrogen atom donates its lone pair of electrons, allowing 

the formation of an overall neutral complex. 
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         X= H2O/CH3OH 

Scheme 2.4: Synthesis of Cu(II) complexes of PVAHs a) CuCl2.2H2O 
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As reported earlier, pyruvate hydrazones can either form square planar,152 

square pyramidal84 or octahedral complexes.153 In octahedral complexes, two 

ligands bind to a single copper centre. Both the octahedral and square pyramidal 

forms have been observed in the crystal structures of some of the Cu(II) complexes 

of pyruvate hydrazones but most complexes exist as square pyramidal complexes. 

One exception is the crystal structure of the octahedral Cu(II) complex of ligand 

NaHL7, although the elemental analysis supports the formation of a square 

pyramidal complex. More on the structural aspects of the copper complexes is 

discussed in chapter-3. 

2.3.1 ESI-MS of Cu(II) complexes   

According to elemental analysis data and single crystal X-ray structures, the 

expected molecular ion peak in the ESI-MS positive mode for copper complexes, 

should either correspond to the [[Cu(II)LX(H2O)2]+H]+ or [[Cu(II)LX(H2O)2]+Na]+ ions. 

For example, the sodiated molecular ion peak for [Cu(II)L9(H2O)2] is expected at 

m/z 340.0096 for [M+Na]+. However, this was not found, instead the mass spectrum 

of Cu(II)L9(H2O)2] exhibits a molecular ion peak one mass unit higher than 

expected. The ESI-mass spectrum of [Cu(II)L9(H2O)2] was recorded in acetonitrile 

and is shown in figure 2.2. The positive ion peak observed at m/z 341.0434 can be 

assigned to [M+H+Na]+ The additional large peak at m/z 363.0249 corresponds to 

[M+2Na]+, whereas the peak at 323.0349 corresponds to [M-H2O+H+Na]+.  

 

Figure 2.2: Positive high resolution ESI-mass spectrum of [Cu(II)L9(H2O)2] 
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Since the higher molecular ion peak has only one positive charge, it could be 

due to addition of one hydrogen atom or one proton, which is likely to be associated 

with the reduction of Cu(II) to Cu(I). The reduction of Cu(II), in the positive ion mode 

in the gas phase has been reported in the literature, where the reduction can be due 

to the transfer of an electron from a solvent molecule to Cu(II) centre in the gas 

phase.154-155 The reduction of a Cu(II) complex in presence of solvent molecule, 

especially a coordinated or non-coordinated water molecule, can be explained with 

the help of theory proposed by Frański. The water molecule undergoes an 

electrochemical oxidation, most likely at the ESI source, subsequently giving rise to 

electrons and protons as given in equation 2.1. These resulting electrons can 

reduce Cu(II) to Cu(I) as indicated in equation 2.2. Additionally, Frański observed 

that addition of water increased the formation of Cu(I) species over Cu(II) 

species.154  

2H2O → O2 + 4H+ + 4e- ………….equation 2.1154 

  Cu(II) + e- → Cu(I) ........................equation 2.2 

Oxidation of a water molecule in the gas phase can result in an addition of a 

proton as indicated in Scheme 2.5. This would then result in reduction of Cu(II) to 

Cu(I) and with an addition of Na ion it would give rise to [M+H+Na]+ molecular ion 

peak. 
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Scheme 2.5: Reduction of Cu(II) to Cu(I) complex with an addition of H+ and 

Na+ ESI-mass spectrometer 
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The molecular ion peak at 323.0349, corresponding to [M-H2O+H+Na]+, 

could be due to the loss of a weakly bound water molecule from the coordination 

sphere of Cu(II) complex. Longer distances of the apically bound water molecules, 

as expected according to the Jahn-Teller distortion, have been observed in the 

crystal structure of Cu(II) complexes of PVAHs (chapter - 3). Hence, the bond 

strength of the apical water molecule is weak as compared to those of the equatorial 

bonds which results in fragmentation of [Cu(II)L9(H2O)2] in the gas phase arising 

from the loss of a water molecule. Similar behaviour is observed in other Cu(II) 

complexes of PVAHs and the details can be found in the experimental section. 

However, [Cu(II)L7(H2O)2] does not seem to undergo this reduction in the ESI 

mode.  

The simulations for the corresponding peaks are given in figure 2.3. There is 

a relatively large difference observed between the calculated (341.0169) and 

experimental (341.0434) values. As the Cu(II) complex does not ionise very well in 

the ESI-MS, it gives only a low intensity peak and is thus difficult to measure 

accurate values at high resolution.  
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Figure 2.3: Measured (top) and simulated (middle, bottom) positive ion high 

resolution ESI-MS spectrum of [Cu(II)L9(H2O)2] 

 However, the observed and simulated isotopic pattern of the 

investigated copper complexes of PVAHs matches reasonably well as displayed in 

the  ESI-MS spectrum [Cu(II)L9(H2O)2]  displayed in figure 2.3. The ESI-MS spectra 

of [Cu(II)L7(H2O)2], [Cu(II)L8(H2O)2], [Cu(II)L9(H2O)2], [Cu(II)L14(H2O)2], 

[Cu(II)L15(H2O)2], [Cu(II)L16(H2O)2], [Cu(II)L20(H2O)2] can be found in  Appendix 1. 

2.4 Synthesis of Zn(II) complexes of PVAHs 

 Unlike Cu(II), Zn(II) forms 1:2 metal : ligand complexes with PVAHs, as 

shown in scheme 2.6. The composition of the complexes was confirmed by X-ray 

crystallography, elemental analysis and ESI-mass spectrometry. Most of the 

mixtures of PVAHs and ZnSO4 in aqueous solution yielded white precipitates. Good 

quality crystals suitable for X-ray diffraction were obtained from the NMR samples of 

[Zn(HL7)2], [Zn(HL8)2], [Zn(HL9)2], and [Zn(HL13)2] in d6-DMSO. The details of the 

synthetic and characterisation procedures can be found in experimental section, 

whereas the crystal structures can be found in chapter-3. The NMR-spectra of the 

zinc complexes are discussed in the following section. 

N
H

O

N

O

CH3

ONa

R
O

N

H
N O

O

CH3
R

Zn

O

N
N
H

O

O

CH3

R

2+

a

 

Scheme 2.6: Synthesis of Zn(II) complexes of PVAHs a) ZnSO4.7H2O 
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2.5 Nuclear magnetic resonance (NMR) studies: 

All the NMR studies described in this chapter were done in d6- DMSO. 

A detailed analysis of a representative example of the ligand NaHL9 by 1H and 13C 

NMR spectroscopy is discussed in this chapter. Full characterisation data of ligands 

NaHL1 - NaHL20 is given in chapter-7. 

2.5.1  1H NMR spectroscopic analysis of NaHL9 

The 1H NMR spectrum of NaHL9 along with the structure and its atom 

numbering scheme is illustrated in figure 2.4. The spectrum shows two sets of 

signals suggesting two different types of species present in the solution. These 

major and the corresponding minor peaks observed in the spectra can be attributed 

to the isomers of NaHL9 present in the solution.  

 

Figure 2.4: 1H NMR spectrum of NaHL11 recorded in d6-DMSO 

Before investigating the structure of two isomers, assigning of the peaks will 

be done. Two sharp singlets of relative integration three are observed at 1.98 and 

2.36 ppm and can be assigned to the two CH3 groups. The peak at 2.36 can be 

attributed to the aromatic CH3 group as it is more deshielded than the methyl group 

C10. These assignments were further confirmed by a 2D COSY experiment. The 
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NH peak is observed 10.90 ppm and is deshielded if compared to the parent 

hydrazide (9.69 ppm) owing to the conjugation with the C=N bond. The equivalent 

peak for the major isomer appears at 16.2 ppm. The aromatic protons of the major 

isomer give rise to two doublets at 7.30 ppm and 7.70 ppm with a coupling constant 

of  JH-H = 8.0 Hz which is consistent with the para-substituted aromatic protons. The 

aromatic protons corresponding to the minor isomer appear at 7.34 ppm and 7.84 

ppm and the coupling constant (JH-H = 8.0 Hz) is the same as that of the major 

isomer. However, the JH-H for the resonance at 7.34 ppm cannot be calculated 

accurately as the resonances of two isomers merge. 

2.5.2 E/Z isomerisation of pyruvate hydrazone ligands: 

It is well established that hydrazones exhibit keto/enol tautomerism and/or 

E/Z isomerism in solution and that the ratio of the isomers depends upon the nature 

the compounds and the solvent used.141,156-157 The NMR spectra of PVAHs exhibited 

additional minor peaks in addition to the expected major peaks, suggesting two 

types of species present in the d6-DMSO solution. A representative example of 

NaHL9 showing its 1H NMR spectrum in the aromatic region 7.20 – 7.90 ppm is 

illustrated in figure 2.5.  

Ha or Hb
(major isomer)

Ha or Hb
(minor isomer)

 

N
H

O

N

O

CH3

ONaH3C

Hb

Ha

Ha

Hb

 

NaHL9 

Figure 2.5: 1H NMR spectrum (7.20 – 7.90 ppm) of a solution of NaHL9 in d6-DMSO 

showing major and minor peaks in the aromatic region 

In order to gain further insight, variable temperature (VT) 1H NMR studies 

were performed on NaHL9 and NaHL13. The stacked NMR spectra of NaHL9 

recorded at different temperatures are shown in figure 2.6. In the aromatic region 
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between 7.20 and 7.90 ppm, it is observed that the relative integration of the minor 

peak decreases with an increase in the temperature, whereas the integrals of the 

isomeric equivalents increase. Likewise, the resonances of the protons of both 

methyl-groups display a similar behaviour.  

The rate of isomerisation is slow at room temperature, due to high activation 

barrier of the rotation around the azomethine double bond and much slower than 

the NMR timescale. This gives rise to two distinct NMR resonances for the protons 

as indicated protons in figure 2.6. The major and minor peak can be assigned to E 

and Z isomers.141   

 

Figure 2.6: Stacked NMR spectra of NaHL9 in d6-DMSO recorded at the indicated 

temperatures 

 16  14  12  10  8  16  14  12  10  8  
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The rate of isomerisation can be increased by heating the solution of 

isomers to a higher temperature. Heating to high temperatures overcomes the 

activation energy required to convert the E form present in the solution to the Z 

form. As the Z form is more stable than the E form, the ligand remains in the Z form 

even after cooling the solution back to 298 K (figure 2.6 d). Similar VT results were 

obtained for ligand NaHL13 and can be found in the Appendix 2.   

The structures of the Z and E isomers of pyruvate hydrazones are illustrated 

in figures 2.7 a/b and 2.7 c, respectively. The reason for the prevalence of the Z 

isomer in solution could be attributed to the strong intramolecular hydrogen bond N-

H---O, as depicted in figure 2.7 a, which makes it a more stable species than the E 

isomer. The resonances at 16.2 and 10.9 ppm can be assigned to the N-H proton of 

Z and E isomer, respectively. Owing to the fact that the strong hydrogen bond 

deshields the amide proton, the (N-H) in the Z isomer resonates at higher frequency 

as compared to the E isomer.156-157 Extreme downfield shift of the proton at 16.2 

ppm can also be attributed to the O-H signal of the imine tautomer as indicated in 

figure 2.7 b.   
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Figure 2.7: a) Z- amide form and b) Z- imine form and c) E isomers of 

PVAHs 

Extensive studies done by Landge et al.158 on hydrazones as depicted in 

figure 2.8, suggests that the Z → E isomerisation process takes places through 

rotation (around C=N bond) pathway rather than inversion pathway via the 

formation of polar transition state. Moreover, the energy of activation (Ea) and 

energy of enthalpy (∆H≠) lies in the range 6.7 – 11.2 kcal mol-1 and 6.1 – 10.6 kcal 

mol-1 respectively, depending on the substituent attached to aromatic ring and NMR 

solvents (d8-toluene, CD3CN) used for the study. These values can be related to 

breaking of O---H bond and/or rotation around C=N bond. Furthermore, the negative 

entropy (∆S≠ = -38.0 to -56.6 cal mol-1 K -1) values, suggests the formation of a 
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polarised transition state in Z → E isomerisation process leading to a rotation 

pathway. Inversion pathway for Z → E isomerisation involves non-polarised 

transition pathway.  

N

N

O

O

N

R

H

 

Figure 2.8: Structure of  investigated hydrazone/s (Z isomer shown in 

figure)for Z → E isomerisation process158 

2.5.3 Trends in the  1H NMR data 

Different substituents on the aromatic ring can influence the electronic 

properties of Schiff base ligands. The 1H NMR chemical shifts for the major Z 

isomers in ligands NaHL1-NaHL20 are listed in table 2.2. Generally, the aromatic 

protons in PVAHs are more deshielded where there is an electron withdrawing 

group (EWG) as compared to ligands with electron donating groups (EDG). The 

same effect is observed for the amide (N-H) proton; however, the aromatic 

substituents had no or little effect on the resonances of the CH3 protons. The amide 

proton resonance for PVAHs exhibits a large range of chemical shifts between 

15.48 and 16.77 ppm, which can be correlated with the properties of the different 

substituents on the aromatic ring. The trend observed in 1H NMR resonance of the 

amide protons is discussed in detail below. 
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Table 2.2: 1H NMR chemical shifts (in ppm) for the indicated PVAH protons, 

recorded in d6-DMSO (NaHL1-NaHL20) 

X1

X2

X3

O

N

H
N

CH3

R

Na OO

 

  R (X = C) Ar-H CH3 N-H Ar-R 
(CH3/ 
OCH3) 

 Sodium 
pyruvate 

 - 2.07 - - 

1 NaHL1 H 7.52, 7.82 2.01 16.17 - 

2 NaHL2 o-OH 6.87, 7.18, 7.38,  

7.69 

2.05 16.02 - 

3 NaHL3 m-OH 6.97,7.26 2.02 15.92 - 

4 NaHL4 p-OH 6.88, 7.68 2.01  15.75 - 

5 NaHL5 o-Cl 7.31-7.57 2.04 15.48 - 

6 NaHL6 p-Cl 7.58, 7.81 2.01 16.48 - 

7 NaHL7  m-CH3,  p-
NO2 

7.78, 7.87, 8.10 2.00 16.61 2.56 

8 NaHL8 p- NO2 8.02, 8.34 2.02 16.69 - 

9 NaHL9 p-CH3 7.70, 7.30 1.98 16.12 2.35 

10 NaHL10 m-Br 7.48, 7.78, 7.92 2.01 16.46 - 

11 NaHL11 p-Br 7.73 2.01 16.36 - 

12 NaHL12 m-OCH3 7.13, 7.39 2.00 16.21 3.80 

13 NaHL13 p-OCH3 7.03, 7.77 1.99 16.09 3.80 

14 NaHL14 p-CF3 7.89, 7.99 2.01 16.60 - 

15 NaHL15 m-F 7.51 2.01 16.41 - 

16 NaHL16 p-(CH3)3C 7.51,7.73 1.97 16.17 1.30 

17 NaHL17 o-OH, p-
OCH3 

6.47, 6.88, 7.62 2.05 15.81 3.76 

Heterocyclic compounds  (R = H)    

18 NaHL18 X1 = N, 
X2,X3 = C  

7.69, 8.75 2.03 16.46 - 

19 NaHL19 X2 = N, 
X1,X3 = C 

7.55, 8.14, 8.74, 
8.97 

2.02 16.46 - 

20 NaHL20 X1 = C,  
X2, X3 = N 
 

8.73, 8.86, 9.22 2.02 16.77 - 



  Chapter-2                 

 51

The data for the substituent-induced chemical shift (SCS) is given as a 

proton shift for N-H relative to those of the unsubstituted ligand L1. Positive and 

negative ∆ SCS values indicate shielding and deshielding, respectively and the data 

is provided in table 2.3.  

Table 2.3: 1H substituents-induced chemical shifts of N-H (indicated in red) of the Z 

isomer for ligands NaHL1 - NaHL20 

O

N

H
N

CH3

R

Na OO

 

 R H-N    (∆ 

SCS) 

 R H-N (∆ 

SCS) 

NaHL1 H 0 (16.17 ppm) NaHL12 m-OCH3 +0.04 

NaHL5 o-Cl -0.69 NaHL11 p-Br +0.19 

NaHL4 p-OH -0.42 NaHL15 m-F +0.24 

NaHL17 o-OH, p-

OCH3 

-0.36 NaHL10, 

NaHL18, 

NaHL19 

m-Br/ one 

heterocyclic N 

+0.29 

NaHL3 m-OH -0.25 NaHL6 p-Cl +0.31 

NaHL2 o-OH -0.15 NaHL14 p-CF3 +0.43 

NaHL13 p-OCH3 -0.08 NaHL7 m-CH3, p-NO2 +0.44 

NaHL9 p-CH3 -0.05 NaHL8 p-NO2 +0.52 

NaHL16 p-

(CH3)3C 

0.00 NaHL20 Two heterocyclic 

N 

+0.66 

In the proton NMR experiment, the NaHL1 N-H proton resonates at 16.17 

ppm and is used for comparison with other substituted PVAHs. PVAHs containing 

electron donating hydroxyl substituent viz NaHL2, NaHL3, NaHL4 and NaHL17 give 

negative ∆ SCS values as compared to NaHL1. This may be due to their shielding 

properties which in turn makes the amide proton electron rich. The hydroxyl group 

also known as strongly activating group gives rise to more negative values as 

compared to weakly activating groups, such as H (NaHL1), CH3 (NaHL9) and tert-

butyl (NaHL16). In addition, a negative value is also observed for NaHL13, 
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possessing an electron donating p-OCH3 group. m-OCH3, however, exhibits a 

slightly positive value. 

On the other hand, PVAHs possessing weakly deactivating groups, such as 

the halogens F (NaHL15), Cl (NaHL6) and Br (NaHL11) exhibit positive values. This 

indicates that a halogen group renders the amide proton electron deficient resulting 

in a deshielding of the N-H resonance. p-Cl (NaHL6) is the most deshielding as 

compared to p-Br (NaHL11), m-F (NaHL15) and m-Br (NaHL10).  

Moreover, within the series with the same substituent (hydroxyl, methoxy, 

and bromo), the N-H resonances in meta-substituted PVAHs are more deshielded 

as compared to the para substituted ones. Owing to the fact that the resonance 

effect of certain substituents is much more dominant in para position compared with 

meta position. Interestingly, N-H proton of o-Cl (15.48 ppm) substituted PVAH is far 

less deshielded than p-Cl (16.48 ppm) as can be seen from the table 2.2. This could 

be attributed to the intramolecular hydrogen bonding between the partially negative 

o-Cl- ion and the N-H proton. 

A strong electron withdrawing group or strongly deactivating group, such as 

NO2, has a very large deshielding effect which is reflected in its ∆ SCS value of 

+0.52 ppm in NaHL8. In comparison, electron donating groups, such as hydroxyl, 

methoxy and methyl groups have negative values. This is in good agreement with 

literature reports that describe the effect of electron withdrawing and electron 

donating groups on azomethine protons (N-H) within a series of para-substituted 

aroylhydrazone ligands159. However, in the di-substituted NaHL7 ligand, the electron 

donating CH3 group in meta-position in addition to the para-substituted NO2 group 

lowers the ∆ SCS positive value observed for the mono-substituted p-NO2 group in 

NaHL8. This shows the less electron deficient nature of N-H proton in NaHL7 over 

NaHL8. 

PVAHs containing a heterocyclic nitrogen atom show positive ∆ SCS values 

indicating their strong electron withdrawing nature which results in an electron poor 

amide proton. The deshielding effect increases with the number of heterocyclic 

nitrogen atoms. For example, NaHL20 with two heterocyclic nitrogen atoms has the 

highest ∆ SCS value of +0.66 ppm as compared to NaHL18 and NaHL19 

possessing, one heterocyclic nitrogen atom. NaHL18 (N at 4th position) and NaHL19 

(N at 3rd position) both exhibit a value of + 0.29 ppm, which implies that the position 
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of the heterocyclic nitrogen within the aromatic ring is less important with regards to 

the deshielding effect on the amide proton. 

Hammett plots were used in order to further investigate the trend observed 

for the chemical shift of the amide proton of PVAHs with respect to the substituent 

parameter or commonly called Hammett parameter. The influence of different para- 

and meta-aromatic substituents on the chemical shift of the N-H proton resonance 

can be correlated with the Hamett constant (σ). Hammett reported the quantitative 

relationship between the rate of a reaction and the substituents present in systems 

containing substituted benzene rings in 1937160. Since then ‘Hammett values’ are 

used as a practical method of measuring electron withdrawing/donating effects of 

substituents161-163. The Hammett parameter (σ) is obtained by comparing the 

hydrolysis of benzoic acid with the hydrolysis of the appropriate meta- or para-

substituted benzoic acid. Ortho-subsituted compounds are avoided, because the 

steric effects of such substituents prevents an accurate analysis of the reaction 

rates. The sign of the σ parameter indicates the electronic nature of the substituent, 

with a positive value for electron withdrawing substituents and negative value for 

electron donating substituents.  

For compounds NaHL1-NaHL20, a reasonable correlation of the chemical 

shifts of the N-H protons with the respective Hammett parameter is observed, as 

can be seen from figure 2.9. PVAHs containing heterocyclic nitrogen(s) or ortho and 

di-substituted aromatic rings are not included in the correlation, hence thirteen 

ligands were used for Hammett plot. The chemical shifts for the N-H resonances of 

the Z-isomer NaHL1-NaHL20 are listed in table 2.1.  

Electron withdrawing groups (EWGs) cause a downfield shift, indicating 

increased deshielding of the amide proton, which is also involved in strong 

intramolecular hydrogen bonding with the carboxylate group. Most of the values lie 

quite close to the linear fit and are consistent with trend expected for the obtained 

experimental values. However, the values for para- and meta- hydroxyl-substituted 

PVAHs do not correlate as well to the proposed line of best fit, which may be due to 

intermolecular hydrogen bonding effects.  
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Figure 2.9: Plot of the 1H NMR chemical shifts of the N-H proton of the Z isomer of 

thirteen indicated PVAHs in d6-DMSO vs σ (R2 = 0.77). 

A similar trend is observed in the Hammett plot, where strong electron 

withdrawing groups, for instance NO2, have a significant deshielding effect which is 

reflected in the chemical shift of the amide proton, whereas electron donating 

groups, such as CH3 and (CH3)3 are shielding.  

2.5.4 13C NMR spectra of PVAHs 

The 13C NMR spectrum of NaHL9 along with its structure and the atom 

numbering scheme is shown in figure 2.10. In the 13C NMR spectrum of sodium 

pyruvate the resonance observed at 205.4 ppm can be attributed to the carbonyl 

(Cii) carbon of the keto-group. Upon conjugation as in NaHL9, the resonance is 

shifted to 150.5 ppm (figure 2.10) and can be assigned to the azomethine carbon 

(C-2). The carbon atom is less electron-deficient in the azomethine than in the keto 

group, which can be attributed to the difference in the electronegativities of nitrogen 

and oxygen, respectively. A similar effect is observed for the resonance of the Ci 

carbon, where the azomethine bond formation causes a upfield shift of the 

carboxylate carbon (Ci → C1).  



  Chapter-2                 

 55

 

Figure 2.10: 13C NMR spectrum of NaHL9 in d6-DMSO 

The resonance observed at 166.3 ppm can be assigned to the carboxylate 

(C1) carbon, whereas the peak at 161.9 ppm is due to the carbonyl carbon (C3). 

The peaks observed at 127.0 and 129.3 ppm can be assigned to the aromatic 

carbons (5, 9/ 6, 8), whereas the peaks at 130.9 and 141.7 ppm can be assigned to 

either C7 or C4. The resonance at 141.7 ppm is likely to be due to the C4 carbon as 

it is close to the electronegative carbonyl group. The peaks at 21.06 and 21.02 ppm 

can be assigned to the protons of the CH3 (C10) or Ar-CH3 (C11) groups. The 

quaternary carbon atoms were detected using a 13C-DEPT experiment.  

The resonances at 13.9, 21.1, 128.3 and 128.9 ppm for the minor E isomer, 

disappeared when heated to higher temperatures, as observed in the 1H NMR 

spectra. When compared with the parent hydrazide, 4-methyl-benzoic acid 

hydrazide, and sodium pyruvate, the carbons which are in the close vicinity of the 

azomethine bond (C1,2,3,10) show a considerable upfield shift, whereas the 

carbons which belong to the hydrazide (C4,5,6,7,8,9,11) show only little downfield 

shift in the spectrum of NaHL9, except for C3.  

Additionally, in the 13C NMR spectrum, the resonances due to the methyl 

carbon (C10) of the major Z isomer and minor E isomer are observed at 21.0 and 

 



  Chapter-2                 

 56

13.9 ppm respectively. Turner et al observed 13C NMR chemical shifts for the CH3 

group of methyl pyruvate hydrazones at 13.0 and 20.1 ppm for the Z and E isomers, 

respectively.157 Hence, from the NMR studies, it can be confirmed that the observed 

major and minor resonances observed for NaHL9 correspond to its Z and E isomer, 

respectively. 

Previously, correlations between the 13C NMR chemical shifts of azomethine 

(C=N) carbons and Hammet parameters for Schiff bases have been studied in order 

to compare the electronic environment of imines and hydrazones.164  As indicated in 

figure 2.11, a linear correlation is observed in 13C NMR chemical shifts of the 

azomethine carbon against the Hammett parameter. It is observed that EWGs 

cause a downfield shift, whereas electron donating groups (EDGs) cause an upfield 

shift when compared with the ligand NaHL1, in which there are no substituents on 

the aromatic ring.  
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Figure 2.11: Plot of the 13C NMR chemical shift of the C=N carbon of indicated 

thirteen PVAHs in d6-DMSO versus σ (R2 = 0.92) 

EWGs increase the π-electron density on azomethine carbon which in turn 

makes it electron deficient causing a downfield shift of carbon resonance. Hence, 

the PVAHs containing strong EWGs such as p-NO2, p-CF3 cause the carbon 

resonance of azomethine bond to shift downfield. Whereas, PVAH possessing 
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EDGs such as p-CH3, p-(CH3)3 have an inverse effect on the carbon shift, indicating 

their electron rich nature of the azomethine carbon which is in consistent with the 

literature.163,165 

2.5.5 NMR analysis of the Zn(II) complexes of PVAHs : 

As Zn(II) has d10 configuration and is diamagnetic, the Zn(II) complexes of 

PVAHs give rise to well-resolved proton NMR spectra with chemical shifts in the 

same frequency range as those of the free ligands. The NMR experiments were 

performed in the same solvent as used for the ligands (d6-DMSO) in order to be 

able to compare the results directly. The composition of the 1:2 (LX:Zn) zinc 

complexes is evident from the elemental analysis data and X-ray crystal structure. 

However, it cannot be derived conclusively from the NMR spectrum of [Zn(HL9)2] 

whether the species in solution is a 1:1 or 1:2 complex because the environment of 

the two coordinated PVAH ligands around the Zn(II) centre may be equivalent on 

the NMR timescale resulting in equivalent protons for both ligands. 

As representative example of the 1H NMR spectra obtained, the spectrum of 

[Zn(HL9)2] is shown in figure 2.12. The resonance observed at 2.38 ppm is due to 

both Ar-CH3 and CH3. The two doublets which are typical of a para-substituted 

aromatic ring appear at 7.35 and 7.90 ppm.  In comparison to free ligands, there is a 

very slight downfield shift observed for the resonances of the aromatic protons and 

Ar-CH3 whereas the CH3 proton resonance exhibits a downfield shift of 0.25 ppm. 

As a result of the coordination of the azomethine nitrogen to Zn(II), the adjacent 

amide proton observed at 12.69 in [Zn(HL9)2] shifts considerably downfield by 1.79 

ppm as compared to that of free ligand (10.90 ppm, E isomer). 
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Figure 2.12: 1H NMR spectrum of mer-[Zn(HL9)2] in d6 DMSO shown in the range 

from 2.0 to 13.0 ppm 

Some line broadening is observed in the spectra of the 1H NMR spectra of 

zinc complexes when compared to those of the free ligands. These line broadening 

in turn gives rise to inaccurate coupling constant values as similar to observed by 

Bell et al for zinc complexes of hydrazone ligand.166 It is evident that the two sets of 

signals observed in the case of the ligands are due to the presence of E/Z isomers, 

where the Z isomer is present as the major form. In the case of [Zn(HL9)2] the ligand 

exists in only one form, the E form which allows for tridentate metal coordination.  

The stacked NMR spectra of NaHL9 and [Zn(HL9)2] shown in figure 2.13 

indicate the presence of one form as the minor peaks observed in the aromatic 

region of the ligand are absent. In order to bind to Zn(II) in a tridentate manner 

NaHL9 adopts E configuration, as observed in the X-ray crystal structure of 

[Zn(HL9)2]. The resonance at 16.02 ppm assigned to the hydrogen bonded amide 

proton in the Z-conformer of the sodium salt of the HL9_ is absent in the Zn(II)-

complex; no resonance is observed in the region 14-18 ppm. There is, however, a 

significant peak at 12.69 ppm which can be attributed to the non-hydrogen-bonded 
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N-H proton. In case of NaHL9, the N-H proton of the E-isomer resonates at 10.90 

ppm.  
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Figure 2.13: Stacked NMR spectra of NaHL9 in d6 DMSO (top) and mer-[Zn(HL9)2] 

(bottom) in the region 7- 16.5 ppm 

The quaternary carbons were not observed in the 13C NMR spectrum of the 

Zn(II) complexes of PVAHs even after an increased number of scans and longer 

relaxation delay time (10 sec). Hence, only the secondary and tertiary carbons were 

used for analysis. The signals appearing at 13.5 ppm and 21.2 ppm can be 

assigned to the CH3 and Ar-CH3 carbons, respectively, whereas the aromatic 

carbons resonate at 128.8 ppm and 129.2 ppm. The fact that the CH3 carbon 

resonates at 13.5 ppm suggests that the ligand adopts E conformation in order to 

bind to Zn(II).157 For the ligand NaHL9, the resonance of the CH3 carbon of the E-

isomer appears at 13.9 ppm, whereas it is observed at 21.06 for the Z-isomer. 
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2.6 Infrared spectroscopic (IR) study of PVAHs and their Cu(II) and 

Zn(II) complexes: 

The solid state analyses of PVAHs and their metal complexes were 

performed using infrared (IR) spectroscopy. IR spectra were recorded from 4000 to 

400 cm-1 using KBr discs. As representative example NaHL9 and its respective 

Cu(II) and Zn(II) complexes are discussed in detail here. For comparison, the IR 

spectra of the starting materials 4-methyl benzoic acid hydrate and sodium pyruvate 

are also discussed. The IR data for the rest of the investigated PVAHs and their 

metal complexes can be found in experimental section (chapter-7).  

An overlay of the IR spectra of sodium pyruvate, 4-methyl benzoic acid 

hydrazide and NaHL9 along with their structures is illustrated in figure 2.14. The 

strong (s) band at 1708 cm-1 (figure 2.14, red IR spectrum) in the IR spectrum of 

sodium pyruvate can be assigned to the ketone (C=O) stretch vibration. This band 

is absent in the IR spectrum of NaHL9 indicating successful formation of the 

azomethine (C=N) bond, the stretch vibration of which appears as medium (m) 

intensity band at 1610 cm-1. A strong band due to the asymmetrical stretch vibration 

(νsym) and a weaker band due to the symmetrical stretch vibration (νasym) of the 

carboxylate group of sodium pyruvate is observed at 1634 cm-1 and 1405 cm-1, 

respectively167.  

The strong band observed at 1660 cm-1 in 4-methyl benzoic acid hydrazide 

(figure 2.14, blue IR spectrum) can be assigned to the carbonyl stretching frequency 

which shifts towards lower wavenumber 1649 cm-1 in NaHL9 (figure 2.14, magenta 

IR spectra). The shift towards a lower wavenumber can be accounted for by the 

resonance forms of the conjugated system, which increase the single bond 

character of the carbonyl group, as indicated in scheme 2.6.168 However, there is no 

significant difference in the carboxylate stretching frequencies of sodium pyruvate 

and the conjugated hydrazone. 
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Figure 2.14: Overlaid IR spectra of NaHL9 (magenta), sodium pyruvate (red) and 4-

methyl benzoic acid hydrazide (blue) in the region 1500-1750 cm-1 (bottom) and 

their corresponding structures (top) 

Electron withdrawing groups on the aromatic ring cause the ν(C=O) to shift 

towards higher frequencies, whereas electron donating groups have the opposite 

effect.168 This trend can be explained with the help of resonance forms. Electron 

donating groups in para-position of the aromatic ring stabilise the positive charge on 

the aromatic ring which in turn favours the formation of resonance form II (scheme 

2.7).169 Whilst the change in the azomethine stretching frequency of PVAHs is in the 

range 1580 - 1612 cm-1, the variation in the stretching frequency of the carbonyl 

group ranges from 1640 – 1690 cm-1. The values are consistent with literature 

values reported for aroyl-type hydrazones.170 
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Scheme 2.7: Resonance forms of PVAHs 

 The coordination of PVAHs to metal centres is also reflected in their IR 

stretching frequencies. The overlaid IR spectra of NaHL9 and its Cu(II) and Zn(II) 

complexes in the region 1000 – 1700 cm-1 and 1550 – 1670 cm-1  are shown in 

figures 2.15 and 2.16, respectively. The carboxylate asymmetrical stretching 

frequency of NaHL9 appears at 1632 cm-1. The band merges either with the 

carbonyl band in [Cu(II)L9(H2O)2] or the azomethine (C=N) band in [Zn(HL9)2], 

indicating the involvement of the carboxylate group in complexation. However, in 

other Cu(II) complexes of PVAHs, for example [Cu(II)L8(H2O)2], all three bands 

merge together resulting in a strong broad band at 1639 cm-1. 

In addition, the copper complexes lack the medium intensity broad band at 

3284 cm–1, assigned to the NH vibration and the band at 1649 cm–1 due to the C=O 

stretch vibration, an observation that is consistent with the deprotonation of the –NH 

group and subsequent coordination of the oxygen of the amide carbonyl to the 

metal ion via enolization.171 The C=O and C=N stretching frequencies are 

summarised in table 2.4.  
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wavenumber (cm-1)  

Figure 2.15: Overlaid IR spectra of NaHL9 (blue), [Cu(II)L9(H2O)2] (green) and 

[ZnH(L9)2] (red) shown in the region 1000 – 1700 cm-1 

Moreover, the broad (br) bands of medium intensity located at around 3400 

cm–1 in the case of the copper complexes can be attributed to the presence of 

coordinated water molecules172. In case of the sodium salts of the ligands, this can 

be due to the hydrogen bonding of water to the sodium cation as observed in the 

crystal structures of PVAHs. The elemental analysis and single crystal X-ray 

structure of ligand confirms the presence of water molecules in the pyruvate 

hydrazones. 
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Figure 2.16: Overlaid IR spectra of ligand NaHL9 (blue), [Cu(II)L9(H2O)2] (green) 

and [Zn(HL9)2] (red) in the region 1550 – 1670 cm-1 

Table 2.4: Selected vibrational frequencies for NaHL9, [Cu(II)L9(H2O)2] and 

[Zn(HL9)2] 

Compound (ν) C=O1 (cm-1) 
(carbonyl) 

(ν) O-C=O2 

(cm-1) 
(carboxylate) 

(ν) C=N (cm-1) 
(azomethine) 

NaHL9 (blue 

spectrum) 

1649 1632 1610 

[Cu(II)L9(H2O)2] 

(green 

spectrum) 

1653 1637 1609 

[Zn(HL9)2]  (red 

spectrum)  

1649 1623 1611 

 Hence, the IR studies indicate the successful formation of PVAHs 

and its coordination to Cu(II) and Zn(II) centres is reflected in their stretching 

frequencies. 
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2.7 Synthesis of Cu(I) complexes 

In order to gain further insights into structural aspects of the Cu(I) centre, the 

Cu(I) complexes of NaHL8 and NaHL9 were synthesised. The synthesis was carried 

out using the Cu(I) precursor [Cu(I)(CH3CN)4]PF6, which was synthesised using a 

literature procedure173. The reaction was carried out under a nitrogen atmosphere 

using Schlenk techniques with dry solvents. Initially, the reaction mixture consisting 

of the precursor and the hydrazone ligand were stirred in methanol and then the 

product was precipitated using an excess of diethyl ether. The yellow solid that was 

formed was isolated by filtration and dried under vacuum. The NMR spectrum of the 

product confirmed the formation of a diamagnetic Cu(I) complex. However, the Cu(I) 

complex could not be crystallised as it was unstable when left in solution for a long 

time. Upon air exposure, the yellow colour of the Cu(I) complex turned green 

indicating the oxygen sensitivity of complex.  

To stabilise the soft Cu(I) centre it was necessary to introduce soft donor 

atoms, such as P or S. After stirring the reaction mixture consisting of 

[Cu(I)(CH3CN)4]PF6
 (2 mmol) and hydrazone (1 mmol) ligand for 10 minutes, 

triphenylphosphine (PPh3) (5 mmol) was therefore added to the reaction mixture, 

yielding a clear solution. The product was precipitated using an excess of diethyl 

ether, which also helped in removing unreacted PPh3 due to its high solubility in 

diethyl ether. The PPh3 ligand not only provides the soft donor phosphorus atom, 

but also additional steric bulk that helps to stabilise the 4-coordinate tetrahedral 

environment around the Cu(I) centre. Interestingly, Samuelson et al illustrated that 

the stability of Cu(I) complexes when coordinated to a mixture of soft and hard 

donor atoms is greater than when binding to only soft donor atoms.174-175 The 

general scheme for the synthesis of the Cu(I) complexes is given in scheme 2.8. 

Details of the synthetic procedure can be found in chapter-7.  
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Scheme 2.8: Synthesis of Cu(I) complexes - [HLRCu(I)2(PPh3)5]PF6 

Single crystals for X-ray analysis were obtained from MeOH and diethyl 

ether. The X-ray crystal structure revealed the presence of two Cu(I) centres, within 

the Cu(I) complexes of NaHL8 and NaHL9, as indicated in final product shown in 

scheme 2.8. The Cu(I) crystals obtained from MeOH ([Cu(I)2HL8(PPh3)5]PF6, 

[Cu(I)2HL9(PPh3)5]PF6) indicate that NaHL8 and NaHL9, act as bidentate ligands, 

coordinating through oxygen and nitrogen atoms instead of ONO, due to the rigidity 

of the planar ligands. The bidentate coordination mode of PVAHs allow the Cu(I) 

centre to adopt the preferred tetrahedral geometry which is predicted for a Cu(I) 

complex. The remaining two tetrahedral coordination sites are occupied by two 

PPh3 groups, in a similar way to the structure observed in the case of a recently 

published Cu(I) hydrazone complex.176 As expected for Cu(I) complexes, 

NaHL8/NaHL9 and two PPh3 groups forms a tetrahedral coordination sphere 

around one the Cu(I) centre. The second Cu(I) centre also exhibits tetrahedral 

geometry, where the oxygen atom of the carboxylate group of NaHL8/ NaHL9 binds 

to the copper centre. The remaining three tetrahedral coordination sites are 

occupied by PPh3 groups. The overall positive charge on the overall complex is 

balanced by a hexafluorophosphate anion. 
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Interestingly, crystals obtained from diethyl ether for the Cu(I) complex of 

NaHL9, [Cu(I)2HL9(PPh3)4]PF6], show coordination of two PPh3 groups, instead of 

three around the second Cu(I) centre. This allows the copper centre to adopt a 3-

coordinate geometry. On the other hand, tetrahedral coordination site of the other 

Cu(I) centre remains the same. The crystal structures are discussed in detail in 

chapter-3. 

2.7.1 1H NMR analysis of the Cu(I) complexes 

Figure 2.17 shows the proton NMR spectrum of [Cu(I)2HL9(PPh3)5]PF6 and 

its chemical structure is provided in figure 2.18 b (right). Two singlets of relative 

integration three are observed at 1.89 and 2.43 ppm and correspond to the two CH3 

groups. The resonance at 2.42 ppm is attributed to the Ar-CH3 group as it is more 

deshielded than the methyl group which is next to the azomethine bond. The 

aromatic protons give rise to two doublets at 7.35 and 7.72 ppm as indicated in 

figure 2.18 a (left). These assignments were made by comparison with the ligand 

NaHL9. There is no significant shift in these resonances of the Cu(I) complexes as 

compared to the free ligand.  Multiplets in the aromatic region 7.22 - 7.30 ppm and 

7.38 – 7.45 ppm can be assigned to the five PPh3 groups on the two different Cu(I) 

centres.  
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Figure 2.17: 1H NMR spectrum of [Cu(I)2HL9(PPh3)5]PF6 in d4-MeOH in the range 
1.5 – 8.0 ppm. 
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Figure 2.18: a) 1H NMR spectrum of [Cu(I)2HL9(PPh3)5]PF6 in d4-MeOH in the range 
7.1 – 7.8 ppm (left) b) Structure of [Cu(I)2HL9(PPh3)5]PF6 (right). 

The peaks appearing at 3.30 ppm (d4-MeOH), 3.35 ppm (MeOH) 4.89 ppm 

(water), are due to the solvent peaks. The presence of the solvent molecule, MeOH, 

in the compound is also evidenced from the elemental analysis data and the single 

crystal X-ray structure. 

2.7.2 31P {1H}   NMR analysis of [Cu(I) 2HL9(PPh 3)5]PF6 

In order to gain more insight into the behaviour of the investigated Cu(I) 

complexes in solution, detailed 31P {1H} NMR experiments were carried out on 

[Cu(I)2HL9(PPh3)5]PF6. All the 31P spectra referred to in this chapter are proton-

decoupled. The 31P NMR spectrum of PPh3 recorded in d4-MeOD exhibits a sharp 

singlet at -5.0 ppm, whereas the spectrum of the [Cu(I)2HL9(PPh3)5]PF6 complex 

displays a broad resonance at 0 ppm at room temperature, as indicated in figure 

2.18 a. The 31P chemical shift of PPh3 in [Cu(I)2HL9(PPh3)5]PF6 appears downfield 

compared to free PPh3 (figure 2.19 c), which is likely due to the decrease in 

shielding caused by metal centre and is generally known to occur in σ-donor 

ligands like phosphine.177 When the solution is cooled down to 200 K, the broad 
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peak resolves into two peaks as indicated in figure 2.19 b.178 The two peaks can be 

attributed to the PPh3 ligands bound to the two different Cu(I) centres in the dimeric 

complex.  

  

Figure 2.19: Stacked 31P {1H} NMR spectra of a) [Cu(I)2HL9(PPh3)5]PF6 at 298 K b) 

[Cu(I)2HL9(PPh3)5]PF6 at 200 K c) free PPh3 at 298 K in d4-MeOH 

The broad nature of the resonance indicates the fluxional nature of the 

complex in solution, which is likely due to ligand exchange processes.177,179 In order 

to gain more insight into possible ligand exchange processes, free PPh3 was added 

to the solution of the Cu(I) complex. In the resulting spectrum, the resonance 

broadens further with increasing amounts of free PPh3, as indicated in figure 2.20 a-

c. This observation confirms that ligand exchange processes are occurring. 

Moreover, even with seven equivalents of PPh3 added (figure 2.20 c) there is no 

separate resonance observed that corresponds to free PPh3 (figure 2.20 d) 

indicating the fast exchange of the ligands on the NMR timescale.  

a 

b 

c 
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Figure 2.20: Stacked 31P {1H} NMR spectra of a) [Cu(I)2HL9(PPh3)5]PF6 b) 

[Cu(I)2HL9(PPh3)5]PF6 with added four equivalents PPh3  c) [Cu(I)2HL9(PPh3)5]PF6 

with added seven equivalents of PPh3 d) free PPh3 in d4-MeOH 

Hence, from above 31P {1H} NMR experiments it can be concluded that, 

there is a ligand exchange process occurring either at the Cu(I) centres which is 

evident from the broad 31P NMR peak of PPh3.  

The 13C NMR spectra showed no quaternary peaks and the primary and 

secondary peaks were not very distinctive even in spectra with higher scan rates, as 

observed for the Zn(II) complexes of PVAHs. Hence the carbon NMR spectra were 

not used in the analysis. 

b 

a 

c 

d 
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2.7.3 Infrared analysis of the Cu(I) complexes 

In order to gain further insight into the solid state structure of the Cu(I) 

complexes, IR spectra were recorded using KBr discs. The stretching frequencies of 

the carbonyl and azomethine groups in the Cu(I) complexes tend to merge giving 

rise to a single broad band, indicating their involvement in complexation. 

[Cu(I)2HL8(PPh3)5]PF6 bearing the EWG nitro-group exhibits a band at 1632 cm-1, 

whereas the corresponding band for [Cu(I)2HL9(PPh3)5]PF6  with the EDG methyl-

group appears at a lower wavenumber of 1617 cm1. Similar behaviour for 

EWG/EDG groups is observed and discussed in the previous section for PVAHs. In 

addition, the C=C ring stretching vibrations at 1475 cm-1 observed in free PPh3 

indicate a shift towards higher frequency in both the Cu(I) complexes. 

Hence the IR analysis of investigated Cu(I) complexes of PVAHs confirms 

the coordination of the ligand to the Cu(I) centre. 
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2.8 Synthesis of a di-hydrazide analogue of PVA 

As discussed earlier, the Schiff base condensation reaction is a reversible 

process and the products obtained can undergo hydrolysis. The stability of these 

types of compounds under different conditions have been explored in the past by 

several researchers.180-181 It is evident that the azomethine bond undergoes rapid 

hydrolysis under extreme acidic and basic conditions, and hydrolysis at a reduced 

rate at neutral pH. Kalia and Raines have proposed the detailed mechanism for its 

hydrolysis under acidic conditions as shown in scheme 2.9. The  azomethine bond 

hydrolyses, when it comes in contact with water, as the resultant protonated species 

is highly susceptible to attack due to the enhanced electrophilicity of the carbon 

atom.182 The base hydrolysis may result from the attack of OH- on electrophilic 

azomethine carbon followed by generation of negative charge on nitrogen. The 

nucleophilic nitrogen then deprotonates a water molecule resulting into the cleavage 

of C=N bond via hemiaminal intermediate.  
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Scheme 2.9: Suggested mechanism for the acid hydrolysis of hydrazones and 
oximes182

 

Hence, in order to increase the stability of PVAHs, reduction of the C=N 

bond to form a secondary amine was attempted in order to gain more stability. The 

resultant C-N bond would then be less susceptible to nucleophilic attack by H2O. 

2.8.1 Attempted reduction of a PVAH 

Initially, the reduction was attempted using sodium borohydride (NaBH4) with 

NaHL9 according to literature procedures.183  Subsequently, a palladium catalyst 

was used under an atmosphere of hydrogen.184 Both reactions failed to give the 

reduced product indicated in scheme 2.10. The reactions were monitored using TLC 

and the identity of the isolated product was confirmed by ESI-MS. The molecular ion 
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peak remained unchanged from the starting compound NaHL9. The expected 

product would result in an increased mass due to the addition of two hydrogens 

across the C=N bond.  
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Scheme 2.10: Attempted reduction of the azomethine (C=N) bond of NaHL9 a) 

NaBH4, refluxing under water for 24 hr, MeOH or H2, Pd/C (10%), 24 hr, MeOH 

NaBH4 is a mild reducing agent, however, the reducing power of NaBH4 can 

be improved by adding reagents such as NiCl2, TiCl3, TiCl4, CoCl2, I2, ZrCl4.
185-186  

As previously described in chapter-1, 3-bromopyruvate is known to inhibit  

M. tuberculosis ICL, an enzyme found to implicated in the persistent state of the 

bacteria. This was illustrated with the help of co-crystallisation studies, which 

revealed that 3-bromopyruvate forms a covalent adduct with the active site of ICL 

achieved by dehalogenation of the inhibitor.53 In an attempt to target the ICL, the 

Schiff base condensation of 3-bromopyruvate with a hydrazide was performed. 

However, the resultant product (step a) of the reaction was found to have 

undergone an alkylation reaction (step b) to form the di-hydrazide analogue 

NaH3D1, as shown in scheme 2.11. 
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Scheme 2.11: General synthetic scheme for NaH3D1 a) NaHCO3, reflux in methanol 
for 4 hours 
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 The di-hydrazide analogue possesses a C-N single bond on one 

side of the molecule which may provide the hydrolytic stability of the molecule. This 

type of ligand may thus help to overcome the issues of both hydrophilicity and 

hydrolysis. Hence, further attempts to reduce the azomethine bond of PVAHs to 

make them hydrolytically stable were discontinued. 

2.8.2 Synthesis and characterisation of NaH 3D1 

The proposed mechanism for the formation of NaH3D1 is given in scheme 

2.12.  In the first step (i), single molecule of hydrazide attacks the carbonyl carbon 

to give the bromopyruvate hydrazone, this Schiff base mechanism is similar to 

discussed in detail for PVAHs in previous section (page 38). This is followed by 

attack of second molecule (ii) of hydrazide at the adjacent carbon of bromine to 

undergo alkylation. The intermediate formed undergoes deprotonation of amine 

proton giving rise to final product (iii).   Attack of two molecules of hydrazides on 3-

bromopyruvate could also be simultaneous giving rise to the final product or it could 

be other way round, where alkylation first takes places followed by hydrazone 

formation.  
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Scheme 2.12: Proposed mechanism for the formation of the di-hydrazide analogue; 
NaH3D1 
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 Successful formation of the dianalogue NaH3D1 is evident from 

ESI-MS and is further confirmed by NMR analysis. The positive and negative mass 

spectrum of NaH3D1 shows a peak at m/z 369.1543 corresponding to [M-Na+2H]+,  

and 367.1409 corresponding to [M-Na]- respectively. NaH3D1 also exhibits isomers 

in solution, most likely due to E/Z isomerisation, as observed for PVAH (NaHL9). 

This is evident from the  1H NMR spectrum recorded in d6-DMSO and the two 

isomers are roughly in the ratio 3:2, as calculated from the integration values. Figure 

2.21 displays the full 1H NMR spectrum in the region 2.0 to 17.0 ppm. 
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Figure 2.21: 1H NMR spectrum of NaH3D1 in the region 1-18 ppm in d6-DMSO 

Figure 2.22, shows three singlets in the region 2.30 – 2.40 ppm (right 

spectrum) due to the two Ar-CH3 groups labelled a and j in the two isomers. There 

are actually 4 singlets, the peak at 2.37 ppm is a result two peaks merging, giving 
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rise to a broad singlet. The protons of two aromatic rings resonate in the region 7.2 

– 7.8 ppm (figure 2.22, left). 
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Figure 2.22: 1H NMR spectrum of NaH3D1 in the region 2.20 – 2.40 ppm (right) and 
7.20 – 7.80 ppm (left) in d6-DMSO 

The proton resonances of the methyl and aromatic protons do not provide 

conclusive information on the isomerisation of NaH3D1, however the NMR 

resonances of the NH and CH2 protons can help to gain more insight. For instance, 

the carboxylate oxygen atom can hydrogen bond with the amide proton, as shown 

in figure 2.23 a (Z isomer, left), whereas in the other isomer the same oxygen atom 

can form a hydrogen bond with the amine proton, as shown in figure 2.23 b (E 

isomer, right). In the Z isomer, the NH proton of the amine group labelled as e1 

resonates at 5.70 ppm with a relative integration of one showing an apparent 

quartet (ideally should be dt) arising from coupling to adjacent the CH2 protons (f1) 

and the amide proton (d1) as indicated in figure 2.24. The 1H-1H COSY spectrum of 

NaH3D1 displayed in figure 2.25 confirms the coupling of the amine proton to the 

CH2 and amide protons. The doublet at 3.68 is due to the CH2 protons and the 

amide proton also appears as doublet at 10.11 ppm with coupling constants of 6.8 

Hz and 6.4 Hz, respectively, in line with the proton splitting pattern of the amine 

proton. 
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Figure 2.23: a) Structure of NaH3D1 showing Z isomer (left) and E isomer (right) 

with respect to azomethine bond (C=N) indicated in red  
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Figure 2.24: 1H NMR spectrum of NaH3D1 in the region 3.60 – 5.80 ppm in d6-
DMSO 
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Figure 2.25: 1H-1H COSY spectrum of NaH3D1 in the selected region in d6-DMSO 
showing coupling of N-H (e1) with CH2 (f1) and N-H (d1) 

However, in the E form, when the amine proton (e2) forms a hydrogen bond 

with the oxygen atom, it shifts considerably downfield to either 16.38/ 16.43 ppm 

and appears as a singlet (figure 2.26, right). Whereas the CH2 (f2) and amide proton 

(d2) also appears as a singlet at 3.88 (figure 2.24) and 16.38/ 16.43 ppm (figure 

2.26, right) respectively. Due to rapid exchange of the amine proton (e2) with the 

carboxylate oxygen atom, the spin-spin coupling constant with adjacent methyl and 

amide proton is difficult to observe. The other amide proton (g2) appears as singlet 

at 9.83 ppm, while in Z form (g1) it exhibits significant downfield shift at 16.38/ 16.43 

ppm as indicated in figure 2.26. 
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Figure 2.26: 1H NMR spectrum of NaH3D1 in the region 9.70 – 10.20 ppm (left) and 
16.30 – 16.40 ppm (right) of selected region in d6-DMSO 

Hence, it can be concluded from this section that, the attempted reduction of 

azomethine bond of NaHL9 was unsuccessful. The formation of a di-hydrazide 

analogue of PVAH, NaH3D1, was achieved using 3-bromopyruvate and 4-methyl 

benzoyl hydrazide in an attempt to make bromopyruvate hydrazones. Due to the C-

N single bond character of NaH3D1, it can overcome some of the issues of 

hydrolysis, thus further attempts to reduce azomethine bond were discontinued.  As 

for the NMR spectrum of NaHL9, the 1H NMR spectrum of NaH3D1 also indicates 

the presence of E/Z isomers in d6-DMSO solution. Full characterisation data can be 

found in the experimental section. In order to explore the stability of NaH3D1 

towards hydrolysis, its absorption spectrum was monitored under physiological 

conditions; these studies can be found in chapter-5.  
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Section B: 

Section B mainly focuses on synthesis and characterization of fourteen 

cinnamaldehyde hydrazone ligands and their respective Cu(II) complexes. Single 

crystal X-ray structures, stability studies and biological studies will be discussed in 

subsequent chapters. 

 Cinnamaldehyde and their derivatives have been extensively studies for 

their antitubercular properties.187-190 It has been proven that cinnamaldehyde is 

known to inhibit the bacterial cell division protein FtsZ.191 Several studies have 

proven that lipophilic molecules are advantageous over hydrophilic molecules as 

they can effectively diffuse through the mycobacterial cell wall.189 In order to explore 

a lipophilic library of antitubercular compounds, a series of compounds was 

synthesized by Schiff base condensation of cinnamaldehyde and a selection of 

substituted hydrazides. In addition to the free ligands, their Cu(II) complexes were 

also synthesised. 

2.9 Synthesis of cinnamaldehyde hydrazones (CAHs)  

The synthesis of the cinnamaldehyde hydrazones  HCA1-HCA14 was 

carried out according to literature procedures.135 The detailed synthetic procedure 

can be found in the experimental section and the general synthetic scheme is given 

in scheme 2.13. CAHs were obtained in good yields and are indicated in table 2.5, 

along with their compounds codes and substituents.  

X1

X2

N
H

O

NH2

R
O X1

X2

N
H

O

R

N

i

Hydrazide Cinnamaldehyde

HCA1 - HCA14

 

Scheme 2.13: Synthesis of cinnamaldehyde hydrazones i)  EtOH, 4h heated under 

reflux 
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Table 2.5: Compound codes of CAHs along with their respective substituents and 

yields 

X1

X2

N
H

O

R

N

 
Compound R (X=C) Yield 

HCA1 H 70% 

HCA2 p-Cl 77% 

HCA3 p-CH3 79% 

HCA4 p-OCH3 71% 

HCA5 p-NO2 84% 

HCA6 p-CF3 83% 

HCA7 p-(CH3)3C 79% 

HCA8 p-OH 72% 

HCA9 m-F 79% 

HCA10 m-OH 80% 

HCA11 o-OH 71% 

HCA12 m-CH3, p-NO2 81% 

Heterocyclic Compounds  (R=H)  

HCA13 X1=N, X2=C 73% 

HCA14 X1=C, X2=C 69% 

 The formation of the ligands was confirmed using HR-ESI MS, 1H and 13C 

NMR spectroscopy and the purity of a few hydrazones was confirmed using 

elemental analysis. The details of the full characterisation can be found in chapter-7. 

2.10 NMR analysis of CAHs 

 1H NMR spectra of CAHs were recorded in d6-DMSO. As a representative 

example, the 1H NMR spectrum of HCA3 is given in figure 2.27. The proton 

resonance observed at 2.37 ppm can be attributed to the protons of the aromatic 

methyl substituent. The most deshielded signal observed at 11.67 ppm can be 

assigned to a N-H proton. As indicated in the inset of figure 2.27, the signals 

observed in the region 7.0 – 8.3 ppm are part of either the aromatic or the 

conjugated system (except N-H), where the most downfield proton signal can be 

attributed to the azomethine proton (H9) 
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Figure 2.27: 1H NMR spectrum of HCA3 in d6-DMSO 

The 13C NMR spectrum of HCA4Me exhibits a downfield signal at 162.7 ppm 

which can be assigned to the carbonyl carbon (C10), whereas the azomethine 

carbon (C9) is observed at 149.3 ppm. Other carbon signals fall in the range 125.0 

– 142.0 ppm, except the aromatic methyl (C17) which appears at 21.5 ppm. The 

quaternary carbons C6/11/14 were assigned with the help of a DEPT 1350 scan 

which was also performed on all CAHs along with 13C NMR.  

Unlike PVAHs, only a few CAHs, HCA13, HCA14 and HCA5, exhibit distinct 

major and minor peaks in the NMR spectra, which could possibly due to E/Z 

isomers. 

Hammett plots for the amide proton (N-H) and the azomethine proton 

(HC=N) vs substituent parameter (σ) are indicated in figure 2.28 and 2.29, 

respectively. For compounds HCA1-HCA14, a reasonable correlation is observed 

between the amide proton and σ, as can be seen from figure 2.28. CAHs containing 

heterocyclic nitrogen, ortho and di-substituted are not included in the correlation.  

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5 ppm

2
.
3
7
7

2
.
4
9
1

2
.
4
9
6

2
.
5
0
0

2
.
5
0
5

2
.
5
0
9

3
.
3
3
3

7
.
0
5
1

7
.
0
6
9

7
.
3
1
5

7
.
3
2
7

7
.
3
3
5

7
.
3
4
5

7
.
3
7
7

7
.
3
9
6

7
.
4
1
4

7
.
6
1
8

7
.
6
3
6

7
.
8
0
3

7
.
8
2
3

8
.
2
2
7

8
.
2
4
5

1
1
.
6
6
8

3.
42

3.
96

2.
32

3.
48

2.
37

2.
21

2.
00

0.
94

0.
60

7.47.67.88.08.2 ppm

7
.
0
6
9

7
.
3
1
5

7
.
3
2
7

7
.
3
3
5

7
.
3
4
5

7
.
3
7
7

7
.
3
9
6

7
.
4
1
4

7
.
6
1
8

7
.
6
3
6

7
.
8
0
3

7
.
8
2
3

8
.
2
2
7

2.
32

3.
48

2.
37

2.
21

2.
00

0.
94

 



  Chapter-2                 

 83

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

11.5

11.6

11.7

11.8

11.9

12.0

H

p-OH

δδ δδ H
(H

-N
)/

pp
m

   σ

p-CH
3

p-OCH
3 p-tert-butyl

m-OH

p-Cl

m-F

p-CF
3

p-NO
2

 

Figure 2.28: Hammett plot of the 1H NMR chemical shifts of the amide (N-H) proton 

of ten indicated CAHs in d6 DMSO vs σ (R2 = 0.90). 
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Figure 2.29: Hammett plot of the 1H NMR chemical shifts of the azomethine proton 

(HC=N) proton of ten indicated CAHs in d6 DMSO vs σ (R2 = 0.55). 

It is observed that EWGs cause a downfield shift of the amide proton, 

whereas EDG groups cause an upfeild shift when compared with the ligand HCA1, 
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where there are no substituents on the aromatic ring. A similar Hammett plot is 

obtained from the 1H NMR chemical shifts for the N-H proton for the PVAHs ligands 

in d6 DMSO versus σ. 

However, the azomethine proton shows very little or no shift, as can be seen 

from figure 2.29. This signifies that the EWG/EDG do not have a significant effect on 

the azomethine proton. The reason for this might be the larger distance from the R 

group. Similarly observed for PVAHs, where there is no considerable shift observed 

for methyl protons.  

2.11 Synthesis of Cu(II) complexes of CAHs 

Cu(II) complexes of CAHs were synthesized using copper(II) acetate and the 

respective CAH in a 1:2 (M:L) ratio, as indicated in scheme 2.14. 

X1

X2

N

O

R

N

X1

X2

N

O

R

N

Cu

X1

X2

N
H

O

R

N

HCA1 - HCA14

�
 

Proposed structure of Cu(II) 

complexes of HCA1 – HC14 

Scheme 2.14: Synthesis of Cu(II) complexes of CAHs i) copper acetate dehydrate, 

MeOH, 2h 

The binding of CAHs to the Cu(II) centre in a 2:1 ratio was confirmed using 

ESI MS and elemental analysis data. Unfortunately, single crystal X-ray structures 

of the copper complexes could not be obtained. Owing to the fact that CAHs have 

two donor atoms, N and O, it is most likely to prefer bidentate mode of binding. 

Hence, a square planar geometry as expected for four coordinate Cu(II) 

complexes.192 This will allow it to maintain an overall neutral charge by binding to 

two anionic oxygen atoms from two ligands, as indicated in scheme 2.14. Cu(II) 

complexes of cinnamaldehyde hydrazones are not reported elsewhere. The Ni(II) 

complex of cinnamaldehyde salicylhydrazone shows a bidentate mode of binding. 
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The nickel complex achieves octahedral geometry by coordinating to two 

cinnamaldehyde hydrazones in the equatorial plane, whilst the apical sites are 

occupied by two solvent molecules.193  

Interestingly, the positive ESI-MS spectra of Cu(II) complexes of CAHs 

exhibit peaks at [M+2H]+, suggesting the reduction of Cu(II) to Cu(I), as observed for 

the Cu(II)-complexes of PVAHs. Details of the characterisation of the Cu(II) 

complexes of CAHs can be found in chapter-7. 

2.11 Infrared (IR) analysis of CAHs and their Cu(II ) complexes 

In order to gain more insight into the solid state structures of CAHs and their 

respective Cu(II) complexes, IR spectra were recorded using KBr disc. 

A representative example of overlaid IR spectra in the region 1400 – 1700 

cm-1 is displayed in figure 2.30. The intense band at 1636 cm-1 in HCA3 (blue 

spectrum) can be assigned to the carbonyl (C=O) bond and the band at 1623 cm-1 

can be attributed to the azomethine (C=N) bond.  

C=O stretch

C=N stretch

 

Figure 2.30: Overlaid IR spectra of ligand, HCA3 (blue) and its Cu(II) complex 

[Cu(II)(CA3)2] (magenta) in the region 1100 – 1700 cm-1 
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The carbonyl and the azomethine stretching frequencies shifts to lower 

frequencies. 1611 cm-1 and 1587 cm-1 respectively, in [Cu(II)(CA3)2] indicating the 

coordination of donor atoms O and N. This is similar to what is observed in PVAH 

compounds. The lowering of the frequency can be attributed to a lengthening of the 

bond which is due to the shift of the double bond nature of the carbonyl towards 

single bond character indicating enolisation of C=O bond.171 

As expected, CAHs bearing electron withdrawing groups on the aromatic 

ring have higher frequencies for the ν(C=O) band, while those containing electron 

donating groups have decreased frequencies.  The coordination of Cu(II) to HCA3 is 

also evidenced from the fact that the N-H stretching frequency observed around 

3200 cm-1 in CAH ligands disappears in copper complexes. Although the crystal 

structures of Cu(II) complexes of CAHs are not available, similar examples of metal 

complexes indicate the formation of monoanionic ligands through the loss of amide 

proton (N-H).  

2.12  Reduction of azomethine (C=N) bond 

Attempts at reducing the azomethine (C=N) bond of HCA1 failed, as 

observed for PVAHs. The reduction was first attempted using the reducing agent 

NaBH4 but the reaction failed, hence a palladium catalyst under an atmosphere of 

hydrogen was used. The reduction was confirmed using TLC and ESI-MS 

(consistent with addition of two hydrogen atoms). However, instead of the 

azomethine bond getting reduced (product B, scheme 2.15), the olefin bond was 

reduced to give product C, RHCA1 as indicated in scheme 2.15.  
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Scheme 2.15: Reduction of C=C bond i) H2, Pd/C (10%), 18 hours 
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The reduction of the C=C bond was confirmed through 1H, 13C, DEPT and 

2D NMR experiments. The proton resonances of the reduced olefin bond labeled as 

b and a, appear at 2.59 ppm and 2.83 ppm, respectively, each with a relative 

integration of two. Their corresponding carbon atom peaks appear at 32.5 ppm and 

34.3 ppm, respectively. The stability of the reduced compound, RHCA1 is studied 

for comparison with HCA1, which will be further discussed in chapter-6                                                                                                                                                                                       

2.13 Summary of Chapter – 2  

A series of sodium pyruvate hydrazones with aromatic substituents, ranging 

from electron withdrawing to electron donating groups were synthesised and 

characterised by 1H NMR spectroscopy, 13C NMR spectroscopy, high resolution ESI 

mass spectrometry, infrared spectroscopy, elemental analysis and melting point 

analysis. Variable temperature 1H NMR studies indicate that PVAHs exist as a 

mixture of E and Z isomers in solution, with the Z form predominating owing to the 

strong hydrogen bond formed between amide N-H and carboxylate oxygen atom 

Furthermore, the Cu(II) and Zn(II) complexes of the PVAHs and Cu(I) 

complexes of NaHL8 and NaHL9 were synthesised and characterised using the 

above mentioned techniques, except for the NMR characterisation of the Cu(II) 

complexes due to their paramagnetic nature. Elemental analysis indicates the 

formation of 1:1 and 1:2, M:L complexes for Cu(II) and Zn(II) which is further 

confirmed by the single crystal X-ray structures. The 1H NMR spectra of the Cu(I) 

complexes indicate their diamagnetic nature, whereas 31P NMR spectra indicate 

ligand exchange processes in solution. 

Attempts to reduce the azomethine bond using sodium borohydride and 

palladium catalysts were unsuccessful. The synthesis of a di-hydrazide analogue of 

pyruvate with 4-methyl benzoyl hydrazide was achieved using bromopyruvate and 

the product was fully characterised using the above mentioned techniques.  

Fourteen cinnamaldehyde hydrazones (HCA1-HCA2) and their respective 

Cu(II) complexes were synthesised and characterised. Studies indicate a Cu(II):L 

ratio of 1:2 with possible bidentate mode of binding allowing for a square planar 

geometry. Reduction of the azomethine bond of HCA1 was unsuccessful, instead 

the olefinic bond was reduced, as indicated by ESI-MS and NMR analysis. 
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3.0 Structural investigation in the solid state by single crystal X-ray 
crystallography  

3.1  Introduction 

As discussed in chapter - 2, hydrazones can exist in different forms in solution 

for example neutral, anionic and dianionic, which allows them to bind to different metal 

ions, resulting in various geometries around the metal centre.194-195 Due to their 

versatile nature, they have been considered as important ligands in the field of 

coordination chemistry.196 The geometry adopted by a metal complex of a hydrazone 

depends on the type of metal and its oxidation state. For example, various geometries 

of Cu(II) complexes of hydrazones ranging from 6-coordinate octahedral, 5- coordinate 

square pyramidal and trigonal bipyramidal and 4-coordinate square planar geometry 

have been reported in the literature,134,143,197-198 depending on the ligand donor system. 

It is well known that, Jahn-Teller distortion is observed for Cu(II) d9 systems, resulting 

in distorted octahedral and 5-coordinate geometries.199 Whereas the ligand mostly 

binds to Cu(I), d10 , in a tetrahedral manner, 176 Zn(II) d10 complexes are known to exist 

in trigonal pyramidal, square pyramidal and octahedral geometry.200-202 Apart from 

mononuclear metal complexes, di-, tri- and polynuclear metal complexes of Schiff 

bases have also been reported as hydrazone/s are also present as a part of a 

polydentate ligand system.196,200,203-205  

Ketcham et al., investigated the binding of 2-pyridineformamide 3-piperidyl 

thiosemicarbazone (HAmpip) (Figure 3.1) to first row transition metal ions, such as 

Cu(II), Fe(III) and Zn(II). The crystal structures of the metal complexes reveal that 

HAmpip acts as a tridentate ligand and binds through the thione sulphur, imine nitrogen 

and pyridyl nitrogen atoms. The compound depicted in figure 3.1 is a good example, as 

it shows how the same ligand can be part of different geometries when coordinated to 

different metal ions.  

N

N
N

NH2

N

S
H

 

Figure 3.1: Structure of 2-pyridineformamide 3-piperidyl thiosemicarbazone 

(HAmpip)206 
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The Cu(II) and Zn(II) complexes, as shown in figure 3.2 a and 3.2 b 

respectively, exhibit square pyramidal geometry but the Zn(II) complex shows 

considerable distortion towards trigonal geometry. However, in the case of the Fe(III) 

complex, as indicated in figure 3.2 c, an octahedral geometry is obtained through 

coordination to two ligands206.    
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Figure 3.2: Structure of a) [Cu(HAmpip)Cl2], b) [Zn(HAmpip)Br2], c) [Fe(Ampip)2]
206 

Since, Cu(II) and Zn(II) ion binds to HAmpip with 1:1 and Fe(III) in 1:2 

stoichiometry, this coordination behaviour can be used as a useful tool in bioinorganic 

drug design. This, then would allow the metal ion, to facilitate the transport of two 

biologically active pharmacophores across the cell membrane. 

3.1.1 Geometries of copper and zinc centres present in biological 
systems 

 

 The biological function of several metalloenzymes is closely related to the 

geometric and electronic properties of the metal sites, influenced by the coordination 

environment of the enzyme.207 Various coordination geometries of copper and zinc 

metalloenzymes are present in biological systems. Most of the copper-containing 

metalloenzymes have a  4-coordinate geometry around the copper centre, for e.g. type 

I blue copper proteins such as azurin, plastocyanin possess distorted tetrahedral 

geometry208 and type II copper proteins such as superoxide dismutase have a square 

planar geometry.209 These Cu centres are surrounded by N, O and S donor atoms 
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provided by amino acid side chains, such as histidine (N), cysteine (S), methionine (S), 

aspartate (O) and glutamate (O). The donor atoms from these amino acids are also 

known to form Zn(II) tetrahedral sites in proteins, such as superoxide dismutase, 

carbonic anhydrase, ß-lactamase, metallothionein and zinc fingers. Superoxide 

dismutase (CuZnSOD), shown in figure 3.3, possesses two metal centres; the Cu(II) 

ion is coordinated to histidine molecules via nitrogen atoms whereas Zn(II) binds to 

three histidine residues and one aspartate residue. Cu(II) adopts square planar 

geometry with tetrahedral distortion, whereas Zn(II) has a distorted tetrahedron 

geometry. 

 

Figure 3.3:  Schematic representation of superoxide dismutase209 
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3.2  Structural aspects of pyruvate hydrazone ligand s 

 As discussed in Chapter-2, the investigated pyruvate hydrazone ligands 

(PVAHs) are present in the general molecular formula of NaHLx, predominantly 

existing in the Z form in solution. In order to establish the molecular structure of the 

ligand in the solid state, crystals of selected ligands were isolated from concentrated 

solutions of the ligands in ethanol. Crystal data and their refinement data of single 

crystal X-ray structures described in this chapter can be found in chapter-7 and all 

other related crystallographic data can be found in Appendices 3-22. Detailed 

discussions of the crystal structures of ligands NaHL9, NaHL11 and H2L20 will be given 

in the following section. 

3.2.1 NaHL9.2H2O 

NaHL9.2H2O crystallises in a rhombohedral R-3 space group and the 

corresponding ORTEP plot is shown in figure 3.4.  Unless otherwise mentioned, 

ORTEP plots of the crystal structures described in this chapter have 50 % ellipsoid 

probability. The ligand is essentially planar with Z (syn) conformation with respect to 

the imine C=N bond. This is revealed by the torsional angle (C(1)-C(2)-N(1)-N(2)) of 

2.06(2)°.210 The molecule is nearly planar with the exception of the Na+-counterion, 

which lies in a different plane with a interplanar angle of 48.09°. Since the hydrazones 

possess hydrogen bond acceptors as well as donors, the ligand has the opportunity to 

form hydrogen bonds in the crystal lattice.  

 

Figure 3.4: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

NaHL9.2H2O 
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Intramolecular hydrogen bonds observed involve N(2)-H bonding to the O(1) of 

the carboxylate group with  a distance of 2.5772(14) Å  and an angle of 141.7(16)°. 

Also, O(1) is ionically bonded to Na+ with a distance of 2.3427(15) Å. Moreover, N(1) 

forms a hydrogen bond with one of the water molecules (O(5)) bonded to sodium. It is 

also interesting to note that the carbonyl (C(3)-O(3)) oxygen atom is ionically bonded to 

Na with a distance of 2.3482(10). The C=O bond length is 1.234(2) Å which strongly 

suggests that ligand exist predominantly in the keto form in the solid state.  

3.2.2 NaHL11.2H2O 

NaHL11.2H2O crystallises in trigonal R-3 space group, as indicated in the figure 

3.5. Ligand NaHL11.2H2O  show similar characteristics to that of NaHL9.2H2O. As 

expected, the ligand NaHL11 is nearly planar except for the Na+ ion and exhibits Z-

conformation with respect to the imine (C(2)-N)(1)) bond with a torsional angle (C(1)-

C(2)-N(1)-N(2)) of 2.58( 3).  

 

Figure 3.5: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

NaHL11.2H2O 

3.2.3 Packing diagram of NaHL9.2H 2O and NaHL11.2H 2O 

The packing diagram showing the Na+ coordination environment and the 

separation between two planes for NaHL9.2H2O and NaHL11.2H2O are shown in 

Figures 3.6 a, 3.6 b, 3.7 a and 3.7 b, respectively. Mercury software version 2.4 is used 

in this chapter, to show the packing diagrams and the planes passing through the 

atoms. 
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                                                                    a 

 

                                                      b 

Figure 3.6: a) Crystal structure packing. b) planes showing separation between two 

crystallographically equivalent ligands NaHL9.2H2O. Colours of the atom: purple - Na, 

grey - C, brown - Br, blue - N, red - O 

 

                                                                            

a                   

 

   b  

Figure 3.7: a) Crystal structure packing. b) planes showing separation between two 

crystallographically equivalent ligands NaHL11.2H2O. Colours of the atom: purple - Na, 

grey - C, blue - N, red - O 
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3.2.4 Interaction of NaH9.2H 2O and NaHL11. 2H 2O with sodium 

In the solid state structures of both, NaHL9.2H2O and NaHL11.2H2O, the 

sodium counter ion interacts with the hydrazinic carbonyl oxygen O(3) and the 

carboxylate donor atom O(1) of an adjacent ligand. The two adjacent ligands are 

crystallographically equivalent and lie in different planes separated by 3.539 and 3.537 

Å for NaHL9.2H2O and NaHL11.2H2O, respectively. The Na centre completes its 

octahedral coordination sphere by binding to four water molecules, with the oxygen 

atoms bridging between two sodium cations. Three water molecules and carbonyl 

oxygen lie in one plane, whereas the carboxylate and water molecule occupy the apical 

positions. General schematic representation showing the Na+ coordination sphere is 

depicted in figure 3.8. The bond lengths and bond angles of NaHL9.2H2O and 

NaHL11.2H2O involving the Na atom are given in table 3.1.  

Na
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O
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f
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c

e

b

a

NaNa
g

 

Figure 3.8: Schematic representation of the Na+ octahedral complex 

Table 3.1: Comparison of selected bond lengths (Å) and bond angles (°) for the 

octahedral Na+ environment in NaHL9.02H2O and NaHL11.2H2O  

Bonds NaHL9 NaHL11 

a 2.3482(10) 2.3427(15) 

b 2.4222(11) 2.4214(15) 

c 2.3162(11) 2.3207(16) 

d 2.3952(11) 2.3915(17) 

e 2.4232(11) 2.4193(17) 

f 2.3459(11) 2.3516(16) 

g 3.3864(6) 3.3896(8) 

d-Na-c 90.86(4) 90.68(5) 

e-Na-f 89.40(4) 89.33(6) 

a-Na-b 88.03(3) 87.94(6) 

a-Na-f 160.98(4) 159.81(6) 
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As seen from table 3.1, both structures exhibit similar bond lengths and bond 

angles and are in good agreement with literature values211. The Na-O bond distances 

fall in the range 2.31 - 2.43 Å and two of the neighbouring sodium ions (Na---Na) 

distance measures 3.38 Å. The bond angles, especially a-Na-f, indicate a slight 

distortion from a perfect octahedral geometry. Furthermore, one of the water molecules 

participates in hydrogen bonding with N(1), with an O(4)-H(4A)----N(1) bond distance of 

3.1579(16) Å and bond angle of 162(2)°.  

3.2.5 H2L20.H2O 

H2L20.H2O (figure 3.9) crystallises in the triclinic space group P-1. The ligand 

crystallised out of a methanolic solution of the corresponding zinc complex, suggesting 

that the ligand is labile. H2L20.H2O adopts   E (anti) conformation with respect to the 

imine bond similar to the reported crystal structures of pyruvic acid hydrazones.212-213 

This is further confirmed by the torsional angle (C(6)-C(7)-N(4)-N(3)) of 179.65(11)º 

which is typical for the E isomer of hydrazones.145 The dissimilarity of geometric 

isomers, E and Z present in the ligands may be due to the presence of sodium ion in 

the crystal lattice and intramolecular hydrogen bonding, which stabilises the Z 

conformation in sodium pyruvate hydrazone.  

 

Figure 3.9: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

H2L20.H2O 

Moreover, H2L20.H2O is essentially planar with the mean plane of deviation of 

1.73° as compared to the sodium salts of the deprotonated ligands (5.84 and 7.25°). 

This can be attributed to the Na+ cation, which results in the distortion of the molecule. 
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Due to the presence of a water molecule in the crystal lattice, the hydrogen bonding 

interactions differ from those observed for NaHL9.2H2O and NaHL11.2H2O.  

Although, no intramolecular hydrogen bonding interactions were observed, the 

nitrogen atom of the imine forms an intermolecular hydrogen bond with water with a 

bond distance (N(4)- H(4a)-O4) of 3.1579(16) Å. The intermolecular H-bond distance is 

slightly longer than the intramolecular H-bond distance observed for NaHL9.2H2O and 

NaHL11.2H2O with 2.5772(14) and 2.933(3) Å, respectively. On a similar note, the 

same water molecule is involved in hydrogen bonding with pyridyl nitrogen N(1), 

carboxylate oxygen O(3) and carbonyl oxygen O(1) with bond distances of 2.8656(17), 

3.082(2) and 2.9683(16) Å, respectively. These hydrogen bonds are absent in 

NaHL9.2H2O and NaHL11.2H2O as the respective oxygen atoms are ionically bonded 

to Na+ as described earlier. The crystal packing of H2L20.H2O illustrating hydrogen 

bonds is shown in figure 3.10.  

 

Figure 3.10: Crystal packing diagram of H2L20.H2O showing intermolecular hydrogen 

bonding interactions (indicated with dotted lines). Colours of the atom: grey - C, blue - 

N, red - O, white – H. 

3.2.6 Comparing PVAHs with the  literature data 

The selected bond lengths and bond angles of NaHL9.2H2O, NaHL11.2H2O  

and H2L20.H2O  and their comparison with literature data are given in table 3.2. A 

general schematic representation of PVAH with atom numbering scheme is given in 

figure 3.11. To our best knowledge, crystal structures of sodiated pyruvate hydrazones 

do not exist in the literature, hence the ligands are compared to the pyruvic acid 
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hydrazones. In order to make a direct comparison of equivalent bonds, the numbering 

system in the schematic representation is not in accordance with the ORTEP plots. The 

ORTEP plot indicates that the oxygen atom of the hydrazinic carbonyl (C(3)-O(3)) in 

sodiated ligands (NaHL9.2H2O  and NaHL11.2H2O) are ionically bonded to the Na+ 

cation. This makes the carbonyl bond length slightly longer than the corresponding 

bond in H2L20 and similar bonds reported in the literature. This might be due to the 

involvement of lone pairs on oxygen in interactions with the sodium cation. Similarly, 

the bond lengths observed for C(1)-O(2) of the carboxylate moiety for sodiated ligands 

were slightly longer than the non-sodiated counterpart.  

X

X
N

N CH3

O

H
O O1

224 3

1

1 2

3

5

6

7

8

9 10

R

Y
 

                  R                  X                Y 

NaHL9.2H2O       p – Me          C                 Na 

NaHL11.2H2O     p – Br           C                 Na 

H2L20.H2O         H                  N                 H 

Lit ref212      p – Me          C                 H 

Lit ref213      p – Cl            C                 H 

 

Figure 3.11: General structure of pyruvate hydrazones with atom numbering scheme 

Table 3.2: Selected bond lengths (Å) for NaHL9.2H2O, NaHL20.2H2O, H2L20.H2O  and 
two examples from the literature 
 
Bonds  NaHL9.2H2O NaHL11.2H2O H2L20.H2O Lit ref 212 Lit ref 213  

C(1)-O(2) 1.2380 (16) 1.234(2) 1.2151 (17) 1.213 (3) 1.219 (2) 

C(1)-O(1) 1.2743 (16) 1.278(2) 1.3163 (17) 1.312 (3) 1.3161 (19) 

C(2)-N(1) 1.2897 (17) 1.290(3) 1.2831(18) 1.277 (3) 1.281 (2) 

C(3)-O(3) 1.2330 (15) 1.234(2) 1.2209 (17) 1.222 (2) 1.220 (2) 

C(3)-N(2) 1.3522 (16) 1.348(3) 1.3616(18) 1.369 (3) 1.379 (2) 

N(1)-N(2) 1.3835 (15) 1.383(2) 1.3745 (16) 1.377 (2) 1.360 (2) 

N(2)-H 0.916(18) 0.827() 0.83(3) 0.87 (2) 0.878 (9) 

O(1)-H - - 0.93(2) 0.83 (2) 0.829 (10) 

O-Na 2.4223(11) 2.3427(15) - - - 

 
In contrast to H2L20.H2O  and compounds listed from references, the bond 

distances for C(1)-O(1) observed for NaHL9.2H2O and NaHL11.2H2O were significantly 

shorter than for the other ligands. Comparing with  typical bond lengths  of C-O (1.42 

Å) and C=O (1.23 Å), this indicates that the electron density is delocalised in case of 
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the carboxylate group (O(1)-C(1)-O(2)) in order to make it resonance stabilised. The 

fact that in NaHL9 and NaHL11  the C(1)-O(1) bond is slightly longer than the C(1)-

O(2) bond reflects the interaction of O(1) with the sodium counter ion. The imine bond 

remains unaffected and is very similar in the protonated and deprotonated ligands. This 

is seen from the (C(2)-N(1)) bond length, which has a double bond character,  typical of 

Schiff base ligands.210 

Selected bond angles are given in table 3.3. Owing to the fact that oxygen 

donor atoms of NaHL9.2H2O and NaHL11.2H2O, which include O(3) and O(1), are 

associated with Na+, the N(2)-C(3)-O(3) bond angles were slightly larger than in H2L20 

and literature ligands. Likewise, the N(1)-C(2)-C(1) bond angle observed for sodiated 

ligands were 126.4 o and for non-sodiated ligands it ranges from 114.0 – 116.0 o.  

Table 3.3: Selected bond angles (°) of NaHL9, NaHL11, H2L20 and two examples from 
the literature 
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                               R                  X                Y 

NaHL9.2H2O       p – Me          C                Na 

NaHL11.2H2O     p – Br           C                 Na 

H2L20.H2O          H                  N                 H 

Lit ref212              p – Me          C                 H 

Lit ref213              p – Cl            C                 H 

Bonds  NaHL9.2H2O NaHL11.2H2O H2L20.H2O Lit ref 212 Lit ref 213  

N2-C3-O3 123.37(12) 123.39(17) 121.55(13) 121.82 (19) 121.63 (16) 

N2-C3-C4 115.55(11) 115.79(16) 115.10(12) 117.06 (17) 116.93 (13) 

C3-N2-N1 119.46(11) 119.59(16) 117.71(12) 116.00 (17) 116.41 (12) 

N1-C2-C1 126.45(11) 126.48(16) 115.74(12) 113.55(17) 114.38(13) 

C2-C1-O1 118.72(11) 118.46(16) 113.30(12) 118.40(18) 121.04(14) 

C(1)-C(2)-

N(1)-N(2) 

(torsional 

angle) 

2.06(2) 2.58(3) 179.65(11) 176.43(17) 177.31(11) 

The other bond angles are more or less similar and the small differences can be 

attributed  to crystal packing effects and hydrogen bonding. It is also noted that the R 

group on the aromatic ring does not have a significant effect on the bond lengths or 

bond angles of the PVAHs. 
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3.3 Structural aspects of cinnamaldehyde hydrazone l igands 

The crystals of cinnamaldehyde hydrazone ligands (CAHs), which will be  

discussed further in this section were obtained from ethanolic solutions of the ligands. 

HCA2 and HCA5 crystallise in the triclinic space group P-1 and the monoclinic space 

group P21/c, respectively. The ORTEP plots for the corresponding crystal structures 

are displayed in figures 4.12 a and 4.12 b. The crystal structures indicate that both 

ligands are protonated at N1, indicating the presence of predominantly the keto from in 

the solid state, as observed for pyruvate hydrazone ligands. 

 a 
       b 

Figure 3.12: ORTEP plot (50% probability ellipsoids) of the molecular structure of a) 

HCA2 and b) HCA5 

The ligands adopt Z conformation with respect to imine (C(8)-N(2)) bond , with 

the two aromatic rings lying in two different planes, which allows them to remain in the 

lower energy conformation by experiencing less steric hindrance. The torsional angle 
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(C(9)-C(8)-N(2)-N(1)) of 177.16(12) and 177.09(14) for HCA2 and HCA5 further 

confirms the Z form. Unlike PVAHs, CAHs crystal structures, are non-planar with a 

interplanar angle of 57.64 (HCA2) and 53.83 (HCA5), as can be seen from figure 3.13 

a and 4.13 b respectively. The interplanar angle is measured by passing the planes 

through the two aromatic rings. The small difference in the interplanar angle of HCA2 

and HCA5 may be attributed to their packing effect of the crystal in the unit cell. 

          

                                                            a 

 

 
 

b 

Figure 3.13: Asymmetric unit cell of a) HCA2 and b) HCA5 showing the two planes 

passing through the aromatic rings 

Although, no intramolecular hydrogen bonding was observed for HCA2 and 

HCA5, the ligands exhibit some interesting intermolecular hydrogen bonding  and π-

interactions, as displayed in figures 3.14 a and 3.15 a, respectively. The imine proton 

on N(2)-H forms intermolecular hydrogen bonds with symmetry generated carbonyl 

O(1) oxygen lone pairs which is indicated in figures 3.14 b and 3.15 b. In addition, C-H-

--π interactions are also observed, which allow the molecule to pack in a bilayer array. 

The proton on the aromatic ring interacts with the π electron density of another phenyl 

ring of adjacent symmetry generated molecule and vice versa. The C-H---π interactions 

for HCA4Me and HCA5 are illustrated in figures 3.14 c and 3.15 c, respectively. The C-

H----π interactions for both the ligands range from 2.7 to 2.9 Å214. These C-H----π 

interactions are not observed in the solid state structures of PVAHs, which could be 

due to presence of only one aromatic ring. 



       Chapter –  3                      
    

 
 

101 

 

Figure 3.14 a:  Crystal structure packing diagram showing interactions for CA4Cl 

(indicated with dotted lines). Colours of the atom: grey - C, blue - N, red - O, white - H, 

green-Cl 

b          c 

Figure 3.14: b) Intramolecular hydrogen bonding interactions c) C-H---π interactions for 

HCA2 (indicated with dotted lines).Colours of the atom: grey - C, blue - N, red - O, 

white - H, green-Cl 
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Figure 3.15:  a) Crystal structure packing diagram showing interactions for CA4NO2 

(indicated with dotted lines). Colours of the atom: grey - C, blue - N, red - O, white - H 

 
 

Figure 3.15: b) Intramolecular hydrogen bonding interactions c) C-H---π interactions for 

HCA5 (indicated with dotted lines). Colours of the atom: grey - C, blue - N, red - O, 

white – H. 
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Additionally, weak π-π interactions are also observed for the ligands leading to 

the formation of π stacks of the molecules. In HCA5, the molecules are also interlinked 

amongst themselves via C-H---Onitro interactions between aromatic proton on the para-

position of C(14) carbon with two oxygen atoms of nitro group on two different 

molecules. Whereas in CA4Cl, chlorine does not take part in any kind of interactions, 

but delocalised π-electrons on C(10) – C(11) C-H---π interactions with one of the proton 

on aromatic ring. Selected bond lengths and bond angles for HCA2 and HCA5 can be 

found in table 3.4. 
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   R = p-Cl (HCA2), R = p-NO2 (HCA5) 

Figure 3.16: General structure of CAH with atom numbering scheme 

Table 3.4: Selected bond lengths (Å) and bond angles (°) for HCA2 and HCA5 

Bonds  HCA2 HCA5 

C(4)-C(7) 1.4974(19) 1.499(2) 

C(7)-O(1) 1.2259(18) 1.228(2) 

C(9)-C(8) 1.442(2) 1.436(2 

C(7)-N(1) 1.3548(19) 1.353(2) 

C(8)-N(2) 1.288(2) 1.286(2) 

N(1)-N(2) 1.3838(17) 1.382(2) 

N(2)-H 0.88(2) 0.86(2) 

O(1)-C(7)-N(1) 123.97(13) 124.07(16) 

C(7)-N(1)-N(2) 119.96(12) 120.67(15) 

N(2)-C(8)-C(9) 119.50(14) 120.63(16) 

C(9)-C(10)-C(11) 126.97(16) 126.25(14) 

C(1)-C(2)-N(1)-N(2) 

(torsional angle) 

177.16(12) 177.09(14) 

As expected, both ligands show similar bond lengths and bond angles for 

equivalent bonds suggesting that the R group on the aromatic ring has little or no 
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influence on the bond distances, as observed for PVAHs. The keto form of ligand is 

present in the solid state which is confirmed by the presence of the double bond 

character of the carbonyl C(7)-O(1) moiety, with bond lengths of 1.2259(18) and 

1.228(2) Å for HCA2 and HCA5, respectively. The imine, C(8)-N(2) bond lengths 

observed for ligands HCA2 (1.288(2)) and HCA5 (1.286(2)) is indicative of a double 

bond  and is characteristic of aroyl hydrazones.215 Similar lengths for equivalent bonds 

were observed for both the series of compounds. 

3.4 Significance of hydrogen bonding in medicinal chemi stry  

From the X-ray crystal structures, it is evident that PVAHs and CAHs participate 

in intra and/or intermolecular hydrogen bonding. Hydrogen bonding interactions play a 

crucial role in medicinal chemistry, as they can affect drug uptake, distribution, 

metabolism and excretion (ADME). The importance of the hydrogen bond acceptor and 

donor properties of a drug is reflected by the Lipinski’s rule of five.216  One of the rules 

states that there should be a considerable number of hydrogen bond donor and 

acceptor atoms, but no more than five H-bond donors (including OHs, NHs and SHs) 

and no more than ten H-bond acceptors. This is because a large number of hydrogen 

bond donor atoms can affect the drug permeability through cell membrane.  

The LogP value gives an indirect measure of hydrogen bond donor/acceptor 

properties of a molecule, and it should be below five, in line with the Lipinski’s rule of 

five. A LogP value greater than five could lead to poor drug absorption and can be 

calculated theoretically and determined experimentally. The ClogP for PVAHs and 

CAHs were calculated theoretically using OSIRIS Property Explorer.217 The ClogP 

values lie between -1.03 to 2.74 and 2.58 to 5.18 for PVAHs and CAHs respectively 

depending on the R group attached to the aromatic group, whereas for the well known 

antitubercular drug isoniazid the calculated value is -0.78. It is evident from the crystal 

structures that the PVAHs form a greater number of hydrogen-bonding interactions 

than the CAHs investigated. Hence, the ClogP values are larger for the CAH series as 

compared to the PVAH series, which implies that CA hydrazones have a  more 

lipophilic character. However, greater ClogP values of active pharmacophores can be 

useful in antitubercular drug design, since increased lipophilicity would facilitate the 

passage of the molecule through the lipid bilayer of the waxy mycobacterial cell 

wall.189,218 

Hydrogen bonding interactions are not only vital for the drug delivery 

mechanism, but also known to determine interactions with the active site of enzymes, 
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thereby affecting the activities of certain enzymes. For example, the pyruvate moiety 

which is a resultant of dehalogenation of 3-bromopyruvate is known to form hydrogen 

bonds with amino acids of the active site of isocitrate lyase (ICL) thus blocking the 

enzymatic activity. ICL is found in Mycobacterium tuberculosis and allows the bacteria 

to remain in the latent state.53 Furthermore, it has been shown that hydrogen bonding 

with the active site of catalase peroxidase helps to stabilise the active pharmacophore 

of isoniazid219. 

3.5  Structural investigation of Cu(II) complexes of PVA Hs 

3.5.1 Monomeric square pyramidal Cu(II) complexes 

3.5.1.1 [Cu(II)(L9)(H 2O)2] 

 Most of the Cu(II) complexes of PVAHs described in this chapter were obtained 

from slow evaporation of methanolic solutions. [Cu(II)(L9)(H2O)2] crystallizes in the 

triclinic space group P-1  and the ORTEP plot is shown in figure 3.17. Interestingly, the 

crystal structure of [Cu(II)(L9)(H2O)2] possesses two crystallographically independent 

molecules in the same unit cell.  

 

 

Figure 3.17: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L9)(H2O)2]. Hydrogen atoms apart from water molecules, H9 and H20 are 

omitted for clarity 
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The Cu(II) centre is penta-coordinated with three coordination sites occupied by 

the tridentate ligand L9, which forms two stable 5-membered chelate rings. The other 

two sites of coordination are occupied by neutral aqua ligands. While the equatorial 

positions of the Cu(II) centre are occupied by the hydrazinic carbonyl oxygen (O3), the 

imine nitrogen (N2) atom, one carboxyl oxygen (O3) , and one water oxygen (O4), the 

apical position is taken by oxygen atom (O5) of another  water molecule, which is 

typical of Cu(II) tridentate hydrazone complexes.135 Loss of the N(2)-H proton imparts a 

negative charge on the O(3) atom resulting in a dianionic ligand, which helps stabilise 

the two positive charges on the Cu(II) centre. The ligand, L92- remains nearly planar 

when coordinated to the Cu(II) centre. 

It is known that 5-coordinate metal complexes exhibit an extensive range of 

geometries ranging from regular trigonal bipyramidal to square pyramidal, with most of 

displaying structures that are intermediate between the two ideal geometries. Hence,  

the angular structural parameter τ, which was first defined by Addison et al. can be 

applied to describe these kind of geometries. τ is calculated according to equation, τ =  

(β-α)/60 and angles are as indicated in figure 3.18. For a perfect square pyramidal 

geometry τ = 0 and for a trigonal bipyramidal geometry τ = 1.220 

                                                                                                                                                                                                                                                                                                                                                                                                                 

 

 

 

Figure 3.18: Addison’s model to calculate τ values220 

 

The two crystallographically independent complexes present in the unit cell of 

[Cu(II)(L9)(H2O)2] exhibit different τ values. For complex 1, the basal angles N(4)–Cu–

O(1) and N(1)–Cu–Cl(1) are 157.41° and 166.42°, resp ectively, giving a  τ value of 

0.04, whereas for complex  2, this value  is 0.2. Hence, the geometry around the Cu(II) 

centres of both the complexes of [Cu(II)(L9)(H2O)2] can be best described as slightly 

distorted square pyramidal. Other examples of two crystallographically independent  

Cu(II) complexes within the same unit cell exhibiting different τ values are known to 

exist in the literature.184 
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As discussed in section 3.2, the corresponding ligand NaHL9 adopts Z 

conformation with a torsional angle of 2.06(2)° involving the imine bond (C(1)-C(2)-

N(1)-N(2)). However, in order to bind to the Cu(II) centre  in a tridentate manner, the 

ligand changes confirmation from Z to E, which is indicated from the torsional angles of 

177.69(19) and 177.85(19)145 for the two complexes, respectively. It can be noted that 

the torsional angles are similar to that of the protonated ligand H2L20. Moreover, the 

two chelating rings consisting of O(1)-C(1)-C(2)-N(1)-Cu and N(1)-N(2)-C(3)-O(3)-Cu 

are nearly coplanar with a interplanar angle of 3.48 and 3.77° for the two complex, 

respectively. 

3.5.1.2 [Cu(II)(L11)(H 2O)2].H2O 

 

Similar characteristic features were observed for [Cu(II)(L11)(H2O)2].H2O as can 

be seen from the ORTEP plot (figure 3.19). The complex also crystallises in the  

triclinic space group P-1.   

 

Figure 3.19: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L11)(H2O)2] .H2O. Hydrogen atoms apart from water molecules and H5 are 

omitted for clarity 
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3.5.1.3 Comparing [Cu(II)(L9)(H 2O)2] and [Cu(II)(L11)(H 2O)2].H2O 

Although no intramolecular hydrogen bonding was observed for 

[Cu(II)(L9)(H2O)2] and [Cu(II)(L11)(H2O)2].H2O, the coordinated  aqua ligands were 

involved in intermolecular hydrogen bonding. In [Cu(II)(L11)(H2O)2].H2O the water 

molecule in the equatorial position in complex 1, forms a hydrogen bond with carbonyl 

oxygen (O(5)-H----O(8))  with a bond distance of 2.805(3) Å. The apical water molecule 

is involved in hydrogen bonding with O(2) of the carboxylate group of the symmetry 

generated molecule.  

Whilst the free ligand NaHL11 adopts a  Z conformation with a torsional angle 

of 2.58(3)°, the coordinated ligand has an E conformation which is revealed from the 

torsional angles of 179.3(2) and 179.6(2)145 for the two complexes, respectively. In 

addition, the two chelating rings in the corresponding complexes, consisting of O(1)-

C(1)-C(2)-N(1)-N(2)-C(3)-O(3)-Cu are nearly planar with a interplanar angle of 4.51 

and 2.61°. Selected bond lengths and bond angles for complex 1 and 2 of 

[Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2].H2O are tabulated in table 3.5. The general 

schematic representation of Cu(II) square pyramidal complexes with atom numbering 

scheme displayed in figure 3.20. will be used throughout this chapter to represent 

square pyramidal Cu(II) complexes. In order to directly compare the bond lengths and 

bond angles of different copper complexes, the numbering system may not match with 

the atom numbers in the ORTEP plots.  
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Figure 3.20: Schematic representation of square pyramidal Cu(II) complexes, showing 

the atom numbering scheme used in this chapter. 

Table 3.5: Selected bond lengths (Å) of [Cu(II)(L9)(H2O)2] and [Cu(II)(L11)(H2O)2].H2O 

Bonds [Cu(II)(L9)(H2O)2] [Cu(II)(L11)(H2O)2].H2O 

 Complex-1 Complex-2 Complex-1 Complex-2 

C(1)-O(1) 1.291(3) 1.282(3) 1.297(3) 1.294(3) 

C(1)-O(2) 1.226(3) 1.244(3) 1.2393(3) 1.248(3) 

C(3)-O(3) 1.301(3) 1.295(3) 1.295(3) 1.302(3) 

C(3)-N(2) 1.326(3) 1.328(3) 1.321(3) 1.332(3) 

N(1)-N(2) 1.372(2) 1.371(2) 1.372(3) 1.375(3) 

C(2)-N(1) 1.286(3) 1.289(3) 1.289(3) 1.290(3) 

Cu-O(1) 1.9877(16) 1.9940(16) 2.0056(17) 2.0075(18) 

Cu-O(3) 1.9873(16) 1.9939(16) 1.9941(18) 1.9945(17) 

Cu-O(4) 1.958(2) 1.971(2) 2.001(2) 1.9379(18) 

Cu-O(5) 2.218(2) 2.152(2) 2.147(2) 2.289(2) 

Cu-N(1) 1.8988(19) 1.9065(19) 1.905(2) 1.902(3) 

 

The bond lengths for crystallographically independent molecules are almost 

identical, except for the Cu-OH2 distances. The equatorial bond distances involving the 

Cu(II) centre (Cu-O/N) are very similar; however the apical bond distances are 

significantly longer which is due to Jahn-Teller distortion, as expected for Cu(II) 

complexes.199,221 It is noteworthy that the C(3)-O(3) carbonyl bond distances for 

[Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2].H2O  range from 1.29-1.30 Å , whereas in 

the respective ligands the bond distances range from 1.20-1.23 Å. The expected 

lengthening of carbonyl bond distance in copper complexes indicates that the C(3)-

O(3) bond changes from a double bond to a bond with more  single bond character due 

to deprotonation at N(2). This clearly indicates that the ligand undergoes keto-enol 

tautomerisation in order to allow it to attain its dianionic form,  making the overall 
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complex neutral. Selected bond angles, distortion angle and τ values are given in table 

3.6.  

Table 3.6: Selected bond angles (°) and τ values for complexes 1 and 2 of 

[Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2].H2O 

O

N
N O

O

CH3
R

Cu

1

2
34

1

13

2 2

H2O OH2

45

 

Bonds [Cu(II)(L9)(H2O)2] [Cu(II)(L11)(H2O)2].H2O 

 Complex-1 Complex-2 Complex-1 Complex-2 

O(1)-Cu-O(3) 161.11(7) 160.22(7) 160.38(7) 160.65(7) 

N(1)-Cu-O(4) 156.67(9) 152.75(9) 147.52(9) 163.62(9) 

O(4)-Cu-O(5) 93.73(9) 95.72(9) 96.26(10) 89.98(8) 

N(2)-C(3)-O(3) 124.6(2) 124.1(2) 124.8(2) 124.4(2) 

C(2)-C(1)-O(1) 114.82(19) 116.03(19) 115.7(2) 116.0(2) 

N(2)-C(3)-C(4) 115.9(2) 116.4(2) 115.2(2) 116.1(2) 

C(3)-N(2)-N(1) 107.91(18) 107.53(18) 108.12(19) 107.85(19) 

N(1)-C(2)-C(1) 111.9(2) 111.5(2) 111.8(2) 111.4(2) 

C(1)-C(2)-N(1)-N(2) 
(torsional angle) 

177.69(19) 177.85(19) 179.3(2) 179.6(2) 

τ 0.075 0.125 0.214 0.050 

The dianionic nature of the ligand is also reflected in the carbonyl C(3)-O(3) and the 

carboxylate C(1)-O(1) bond lengths, as they have nearly similar bond distances in case 

of copper complexes. A similar effect was observed for the bond distance C(3)-N(2), 

where the bond length is shortened (1.32-1.33 Å) as compared to that of the free 

ligands (1.34-1.36 Å), indicating the delocalisation of π- electrons over the N(2)-C(3)-

O(3) bonds. Additionally, the N(1)-N(2) bond lengths are also slightly shortened, 

whereas the imine bond C(2)-N(1) remains relatively unaffected. The τ value is 

calculated using the basal plane angles O1-Cu-O3 and N1-Cu-O4. Amongst the listed 

values, the ligand based bond angles are more or less similar for equivalent bonds of 

[Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2]. The basal angles, N(1)-Cu-O(1) are 

different for the complexes, hence resulting in dissimilar τ values. Moreover, a 
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distortion of the square pyramidal geometry is indicated by the O4-Cu-O5 bond angle 

as for perfect square pyramidal geometry it should be 90°. The larger the τ value, the 

greater is the deviation from 90°.  

The bond angles O1-C1-C2 and N2-C3-O3 suggest that the two 5-membered 

rings are not identical. It is interesting to note that in CuL9, the two crystallographically 

independent complexes lie nearly in the same plane as shown figure 3.21 a, whereas 

the two complexes in CuL11 lie in two different planes as shown in figure 3.21 b, with a 

distance of 4.875 Å between two Cu centres.  

 

a   b   

 

Figure 3.21: Planes passing through the copper complexes of two crystallographically 

independent molecules a) [Cu(II)(L9)(H2O)2], b) [Cu(II)(L11)(H2O)2].H2O 

3.5.1.4 Comparing [Cu(II)(L8)(MeOH) 2], [Cu(II)(L13)(H 2O)(MeOH)], 

[Cu(II)(L17)(H 2O)2] and [Cu(II)(L7)(MeOH) 2] 

The Cu(II) complexes of other ligands, including L82-, L132-, L172- and L72- also 

crystallised with similar square pyramidal geometries, with the apical/equatorial 

positions occupied by H2O and/or  MeOH.  The Cu(II) complex of L82- crystallises in the 

monoclinic space group P2(1)/n with a molecular structure [Cu(II)(L8)(MeOH)2], as 

indicated in the ORTEP plot (figure 3.22). The Cu(II) ion is coordinated in the plane by 

the tridentate ligand and a coordinated methanol molecule instead of water, as 

observed for [Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2]. A weakly bound methanol 

completes the coordination sphere in the axial position, indicating appreciable Jahn-

Teller distortion. The τ value of 0.05 indicates a slight distortion from the ideal square-

pyramidal geometry.  
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Figure 3.22: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L8)(MeOH)2] 

The coordinated methanol molecules in [Cu(II)(L8)(MeOH)2] are involved in 

intermolecular hydrogen bonding with adjacent symmetry-generated molecules, with 

the mercury plot of the crystal lattice showcasing hydrogen bonds shown in figure 3.23.  

 

 

 

Figure 3.23: Crystal packing of [Cu(II)(L8)(MeOH)2] showing intermolecular hydrogen 

bonds with the symmetry generated molecules. Colours of the atom: grey - C, blue - N, 

red - O, white - H, brown - Cu 
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The equatorial methanol molecule forms hydrogen bond with one of the 

symmetry generated carboxyl O(1) atom (O(5)-H---O(1)) with a bond distance of 

2.7072(15) Å. The apical methanol is involved in hydrogen bonding with O(1) atom 

(O(4)-H---O(2)) of another symmetry generated molecule with a bond distance of 

2.7085(15) Å. 

The Cu(II) complex of L72- crystallises in the monoclinic space group P21/n with 

a molecular structure of [Cu(II)(L7)(MeOH)2]. The ORTEP plot of the corresponding 

complex is shown figure 3.24. The copper complex shows similar characteristics to 

[Cu(II)(L8)(MeOH)2].  

 

 

Figure 3.24: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L7)(MeOH)2] 

 

The Cu(II) complexes of L132- and L172- crystallise in the triclinic space group 

P-1 and the monoclinic space group P21/n with the molecular structures 

[Cu(II)(L13)(H2O)(MeOH)] and [Cu(II)(L17)(H2O)2], respectively. The ORTEP plots of 

the corresponding Cu(II) complexes are shown in figures 3.25 and 3.26. The methoxy 

group in [Cu(II)(L13)(H2O)(MeOH)]  is disordered over two positions. 
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Figure 3.25: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L17)(H2O)2] 

 

 

Figure 3.26: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(II)(L13)(H2O)(MeOH)] 

It is interesting to note that the  methoxy group on the aromatic ring takes part 

in C-H---π interactions and are displayed in figures 3.27 and 3.28 for 

[Cu(II)(L13)(H2O)(MeOH)] and [Cu(II)(L17)(H2O)2], respectively. For both the methoxy 

containing complexes, the proton on OC(11)H3 and the  delocalised π electrons of the 

neighbouring aromatic ring  give rise to C-H---π interactions with distance ranging from 

2.60-2.90 Å. The adjacent symmetry generated molecules stack almost coplanar to 

each other with an average distance of 3.67 Å and 3.91 Å for [Cu(II)(L13)(H2O)(MeOH)] 

and [Cu(II)(L17)(H2O)2], consistent with C-H---π interactions. The distance is measured 
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between the two oxygens (O(4)) of methoxy group for [Cu(II)(L17)(H2O)2], whereas for 

[Cu(II)(L13)(H2O)2] it is measured between between oxygen (O(4)) of methoxy and 

C(3) of carbonyl carbon.  

 

Figure 3.27: Crystal packing of [Cu(II)(L17)(H2O)2] showing C-H---π and intramolecular 

hydrogen bonding interactions (indicated with dotted lines). grey - C, blue - N, red - O, 

white - H, brown - Cu 

 

 

Figure 3.28: Crystal packing of [Cu(II)(L13)(H2O)(MeOH)] showing C-H---π and 

intramolecular hydrogen bonding interactions (indicated with dotted lines). grey - C, 

blue - N, red - O, white - H, brown - Cu 

  Furthermore, intermolecular hydrogen bonding is observed for the coordinated 

solvent molecules in both complexes. Due to the presence of the OH group in ortho 

position, [Cu(II)(L17)(H2O)2]  exhibits intramolecular hydrogen bonding between N-H 

and the OH group present in ortho-position. The N-H----O bond distance is 2.576(2) Å. 

Selected bond lengths and bond angles for the copper complexes [Cu(II)(L8)(MeOH)2], 



       Chapter –  3                      
    

 
 

116 

[Cu(II)(L13)(H2O)(MeOH)], [Cu(II)(L17)(H2O)2] and [Cu(II)(L7)(MeOH)2] are given in 

figure 3.7 and 3.8, respectively.  The torsional angle including the imine bond, (C(1)-

C(2)-N(1)-N(2)) as well as the τ value are provided in the same table. 

The listed bond lengths of all four copper complexes of equivalent bonds are 

similar to the monomeric copper complexes, [Cu(L9)(H2O)2] and [Cu(L11)(H2O)2].H2O. 

This implies that the electron-withdrawing or electron-donating group on the aromatic 

ring has little or no effect on the listed bond lengths. As expected the equatorial 

coordinate bonds (Cu-N(1)/O(1)/O(3)/O(4)) are similar, whereas Jahn – Teller distortion 

affects the apical bond distance (Cu-O(5)), making it longer than the equatorial bonds. 

A change of the coordinating solvent molecule from aqua to methanol does not 

significantly affect the bond distances. This shows that the Cu(II) centre plays an 

important role in controlling the immediate bond lengths surrounding it. 

Table 3.7: Selected bond lengths (Å) for [Cu(II)(L8)(MeOH)2], 

[Cu(II)(L13)(H2O)(MeOH)], [Cu(II)(L17)(H2O)2] and [Cu(II)(L7)(MeOH)2] 

O

N
N O

O

CH3
R

Cu
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13

2 2

H2O OH2
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                         R 

[Cu(L8)(MeOH)2]                p-NO2 

[Cu(L7)(H2O)(MeOH)]      m-Me, p-NO2 

[Cu(L13)(H2O)(MeOH)]      p-OMe 

[Cu(L17)(H2O)2]                 o-OH, p-OMe 

Bonds [Cu(L8) 

(MeOH)2] 

[Cu(L7)(H 2O) 

(MeOH)] 

[Cu(L13)(H 2O) 

(MeOH)] 

[Cu(L17) 

(H2O)2] 

C(1)-O(1) 1.2970(17) 1.3008(17) 1.300(4) 1.289(2) 

C(1)-O(2) 1.2322(17) 1.2296(18) 1.230(4) 1.242(2) 

C(3)-O(3) 1.2862(17) 1.2896(18) 1.277(4) 1.299(2) 

C(3)-N(2) 1.3355(18) 1.3305(19) 1.343(4) 1.341(2) 

N(1)-N(2) 1.3724(16) 1.3791(16) 1.381(3) 1.371(2) 

C(2)-N(1) 1.2852(18) 1.2829(19) 1.278(4) 1.286(2) 

Cu-O(1) 2.0033(10) 1.9988(12) 1.989(2) 2.0061(12) 

Cu-O(3) 1.9688(11) 1.9725(11) 1.973(2) 1.9755(12) 

Cu-O(4) 1.9285(11) 1.9506(11) 1.933(2) 1.9357(13) 

Cu-O(5) 2.2824(11) 2.2138(14) 2.284(2) 2.2227(14) 

Cu-N(1) 1.9128(12) 1.9130(13) 1.910(3) 1.9129(14) 
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  Similarly, the bond angles of equivalent bonds are little affected by the R 

group on the aromatic ring. The τ values indicate a slight distortion from the perfect 

square pyramidal geometry. Although the differences in the values of the  basal angle 

O(1)-Cu-O(3), are insignificant, the differences in the basal angle N(1)-Cu-O(4), 

contribute to the small differences in the τ value. The dissimilarity of the bond angles, 

comprising of two chelate rings, especially O(3)-Cu-N(1) and O(1)-Cu-N(1) signifies 

that the two 5-membered ring are not exactly the same. The distortion angle reveals 

that the ligand binds to the Cu(II) centre in a E confirmation with respect to the imine 

(C=N) bond, and are in agreement with the Cu(II) complexes of PVAHs described 

before. 

Table 3.8: Selected bond angles (°) for [Cu(II)(L8)(MeOH)2], [Cu(II)(L13)(H2O)(MeOH)], 

[Cu(II)(L17)(H2O)2] and [Cu(II)(L7)(MeOH)2] 

O

N
N O

O

CH3
R

Cu

1

2
34

1

13

2 2

H2O OH2

45

 

         R 

[Cu(L8)(MeOH)2]              p -NO2 

[Cu(L7)(H2O)(MeOH)       m -Me, p -NO2 

[Cu(L13)(H2O)(MeOH)      p -OMe 

[Cu(L17)(H2O)2]                o -OH, p -OMe 

Bonds [Cu(L8) 

(MeOH)2] 

[Cu(L7)(H 2O) 

(MeOH)] 

[Cu(L13)(H 2O) 

(MeOH)] 

[Cu(L17) 

(H2O)2] 

O(1)-Cu-O(3) 161.64(4) 160.24(5) 161.10(9) 161.06(5) 

N(1)-Cu-O(4) 164.51(5) 171.44(5) 166.59(11) 166.52(6) 

O(4)-Cu-O(5) 96.62(5) 90.04(5) 98.63(10) 93.16(6) 

O(3)-Cu-N(1) 80.06(5) 79.88(5) 79.58(10) 79.99(5) 

O(1)-Cu-N(1) 81.87(5) 82.12(5) 82.12(9) 81.35(6) 

N(2)-C(3)-O(3) 125.75(13) 125.69(13) 124.1(3) 122.78(15) 

C(2)-C(1)-O(1) 116.51(12) 116.24(12) 116.0(3) 116.34(14) 

C(3)-N(2)-N(1) 106.74(11) 106.71(12) 107.4(2) 109.02(14) 

N(1)-C(2)-C(1) 111.65(12) 111.74(13) 111.6(3) 111.23(14) 

C(1)-C(2)-N(1)-N(2) 

(torsional angle) 

179.43(12) 177.71(12) 179.6(2) 179.36(14) 

τ 0.05 0.18 0.09 0.09 
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3.5.2 The dimeric Cu(II) square pyramidal complex [ Cu(II)2(HL9)2Cl2] 

Interestingly, the Cu(II) complex of ligand L9 also crystallises as a dimer with 

molecular structure [Cu(II)2(HL9)2Cl2] in monoclinic space group P2(1)/n. The ORTEP 

plot is shown in figure 3.28. The asymmetric unit contains one half of the dimeric 

molecule and the other half of the complex if generated by a centre of inversion. The 

ligand binds to the Cu centre in a tridentate manner as described for the monomeric 

[Cu(II)L9(H2O)2]  complex, whereas the other two coordination sites of the square 

pyramidal complex are occupied by bridging chloride ions. The τ value of 0.18 indicates 

distortion from the perfect square pyramidal geometry.  However, the ligand 

coordinates in its monoanionic form, contrary to the dianionic coordination mode 

observed in the monomeric square pyramidal Cu(II)complexes. This is evident from the 

fact that N(2) remains protonated allowing the overall copper complex to remain 

neutral.  

Moreover, the carbonyl C(3)-O(3) has more of a double bond character as the 

bond distance is 1.254(2) Å as compared to the [Cu(II)L9(H2O)2] complex (1.301(3) Å), 

which suggest that O(3) is neutral when coordinated to the Cu centre. Due to Jahn-

Teller distortion, the apical Cu-Cl bond distance is larger than the basal Cu-Cl distance. 

The intramolecular Cu-Cu bond distance is 3.332 Å, typical of chloride-bridged dimeric 

copper complexes, but reported values vary slightly depending on the ligand 

system.222-223 

 

a 
b 

 

Figure 3.29: a) ORTEP plot and  b) crystal packing diagram of [Cu(II)2(HL9)2Cl2] 

 

Furthermore, the crystal lattice of the complex displays a two dimensional array 

of a ladder-like zig-zag structure, as shown in figure 3.15 b, where the Cu2Cl2 core is 
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planar. In addition, Cu2Cl2 is almost perpendicular to the two basal 5-membered ring 

with a interplanar angle of 88.40°. Each unit of the complex forms an intermolecular 

hydrogen bond involving the proton on N2, and O(2) of the other symmetry-generated 

copper complex unit. The distance observed for N(2)-H---O(2) is 2.819(2) Å. Selected 

bond lengths and bond angles are given in Table 3.9 and are in agreement with the 

literature values.223-224 The τ value calculated using basal angles O(1)-Cu-O(3) and 

N(1)-Cu-Cl(1) is equal to 0.18 and indicates distortion of square pyramidal geometry, 

similarly observed for the monomeric Cu(II) square pyramidal complexes of PVAHs.  

 

Table 3.9: Selected bond lengths (Å) and bond angles (°) of [Cu(II)2(HL9)2Cl2]  

 

Bonds Å Bond angles ° 

C(1)-O(1) 1.274(2) O(1)-Cu-O(3) 159.50(6) 

C(1)-O(2) 1.239(2) N(1)-Cu- Cl(1) 170.55(5) 

C(3)-O(3) 1.254(2) Cl(1)-Cu- Cl(1)#1 94.718(18) 

C(3)-N(2) 1.368(2) N(2)-C(3)-O(3) 119.53(17) 

N(1)-N(2) 1.377(2) C(2)-C(1)-O(1) 116.78(16) 

C(2)-N(1) 1.281(2) N(2)-C(3)-C(4) 121.31(16) 

Cu(1)-O(1) 1.9562(14) C(3)-N(2)-N(1) 111.96(15) 

Cu(1)-O(3) 1.9967(13) N(1)-C(2)-C(1) 110.17(16) 

Cu(1)-Cl(1) 2.2198(5) O(1)-C(1)-C(2) 116.78(16) 

Cu(1)-Cl(1)#1 2.6737(6) Cu(1)-Cl(1)-Cu(1) #1 85.282(18) 

Cu(1)-N(1) 1.9545(16) C(1)-C(2)-N(1)-N(2) 179.42(17) 

N(2)-H 0.87(2) τ 0.18 

 Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1 

The apical bond distance, Cu(1)-Cl(1)#1 (2.6737(6) Å) is quite long as 

compared to other Cu(II) complexes of square pyramidal complexes of PVAH. The 
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bond length is too long to be considered as a true coordinate bond.  Hence, the 

monomeric unit containing one Cu(II) centre of [Cu2(HL9)2Cl2]  (structure shown in table 

3.9) can be best described as pseudo square pyramidal complex or can be 

alternatively designated as square planar complex, if the apical coordinate bond is not 

taken into consideration. 

3.5.3 Cu(II) octahedral complex of PVAH 

 Interestingly, the Cu(II) complexes of L152- crystallise with octahedral geometry, 

having the molecular formulae [Cu(HL15)2] and Na[Cu(HL15)(L15)]. The copper 

complexes crystallise in the triclinic space group P-1 with two crystallographically 

independent molecules present in the unit cell. As indicated in the ORTEP plot (figure 

3.30), each ligand is coordinated as a tridentate ONO ligand around the Cu(II) centre, 

giving rise to octahedral geometry. The ligands coordinate meridonially because of the 

planarity of the conjugated hydrazone ligand system.225-226  

 

Figure 3.30: Ortep plot of the molecular structure [Cu(HL15)2] 

Na[Cu(HL15)(L15)] 

The two crystallographically independent molecules differ due to their charge on 

the overall complex. One of the copper complexes is neutral, whereas the other 
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complex carries one negative charge overall, making it anionic. This is evident due to 

the fact that in one of the ligands the proton on N-H is lost upon coordination, making it 

dianionic, whereas the other ligands attain monoanionic nature by retaining the N-H 

proton. Hence, in order to balance the negative charge, a Na+ cation is present in the 

crystal lattice.  

The sodium counterion exhibits octahedral geometry, as observed for NaHL9 

and NaHL11, although the coordination around the Na ion is slightly different for [Cu 

(HL15)2] Na[Cu(HL15)(L15)] as can be seen in figure 3.31. In the dimeric complex, the 

two sodium cations are bridged by two water molecules, whereas the rest of the 

coordinating sites are occupied  by two more water molecules, neutral methanol and 

O(2) of the neutral  [Cu(HL15)2] complex. The other sodium cation is associated with 

the symmetry-generated neutral complex in a similar fashion. While Na+ is directly 

bonded to O(2), the coordinated water molecules on the Na+ atom are involved in 

hydrogen bonding with the carboxylate O(1) atom. At the same time, intermolecular 

hydrogen bonding is also observed between N-H of one complex and carbonyl O(3) 

atom of other crystallographically independent molecule. The N(2)-H-----O(3) bond 

distance is 2.884(3) A. One of the phenyl rings is disordered over two positions and 

also the  F atom is disordered over two meta-positions. 

.  

Figure 3.31: Mercury plot of [Cu(HL15)2] Na[Cu(HL15)(L15)] showing the 

coordination around the sodium cation and intermolecular hydrogen bonding 
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The coordination plane around the Cu(II)-centre which includes Cu-C(1)-C(2)-

O(1)-N(1)-N(2)-C(3)-O(3) is essentially planar. On the other hand, the deviation of the 

mean plane of the 5-membered ring and the aromatic ring is considerably larger. The 

deviations for the anionic complex are 8.93º and 20.77º for each ligand, whereas for 

the neutral complex the deviation is 11.73º and 27.68º Å. The loss of planarity of the 

ligand may be due to the steric repulsion caused by two ligands when coordinating to 

the copper centre, since in the square pyramidal complex the ligand remains almost 

planar. The distortion angle suggests E conformation for both ligands with respect to 

the imine bond and the values fall in the range 176.0 – 180.0° and are similar to the 

square pyramidal complexes. The bond angles of 173° consisting of the basal angle, 

N(1)-Cu-N(3) for both the complexes suggests a distortion from idealised octahedral 

geometry as perfect octahedral geometry requires this angle to be 180°.227-228  

In order to evaluate the differences in the geometric parameters of the two 

complexes, selected bond lengths and bond angles are given in table 3.10. 

Subsequently, these were then compared to a similar Cu(II) complex of 2-[2-(2-

hydroxybenzoyl)hydrazone]propanoic acid synthesized by Feng Liu and group as 

shown in figure 3.32.229  
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Figure 3.32: Numbering scheme for [Cu(HL15)2] showing immediate bonds surrounding 

the Cu(II) centre, R= Ar-3-F, Feng Liu’s copper complex R= Ar-2-OH229 

Table 3.10: Selected bond lengths (Å) and bond angles (°) of neutral [Cu(HL15)2] and 

anionic Na[Cu(HL15)(L15)]  in comparison with an example described in the 

literature229 

Bonds Complex 1 (neutral) Complex 2 (anionic) Lit ref229 

 (HL1)- (HL2)- (HL1)- (L)2- (HL1)- (HL2)- 

Cu-O(1) 2.1956(18) 2.0008(18) 2.2574 

(18) 

2.0059 

(18) 

2.047(2) 2.092(3) 

Cu-O(3) 2.2820(19) 2.0277(18) 2.3696 

(19) 

2.0397 

(18) 

2.208(3) 2.281(3) 

Cu-N(1) 2.013(2) 1.949(2) 2.015(2) 1.911(2) 1.942(3) 1.982(3) 

C(3)-O(3) 1.232(3) 1.251(3) 1.227(3) 1.301(3) 1.246(4) 1.228(4) 

C(1)-O(2) 1.225(3) 1.228(3) 1.225(3) 1.233(3) 1.279(4) 1.264(4) 

C(3)-N(2) 1.372(3) 1.361(3) 1.371(3) 1.324(3) 1.352(4) 1.358 

(14) 

C(1)-O(1) 1.276(3) 1.284(3) 1.270(3) 1.290(3) 1.279(4) 1.264(4) 

C(2)-N(1) 1.283(3) 1.278(3) 1.281(3) 1.281(3) 1.281(3) 1.282(4) 

O(1)-Cu-N(1) 76.98(8) 80.65(8) 75.29(7) 81.83(8) 78.90 

(11) 

75.37 

(10) 

O(3)-Cu-N(1) 73.98(8) 79.17(8) 73.22(7) 78.87(8) 77.76 

(11) 

74.94 

(10) 

O(1)-Cu-(O3) 150.34(7) 147.99(6) 156.66(10) 

N(1) (L1)-Cu-

N(1) (L2) 

173.68(9) 173.59(9) 175.97(12) 
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The coordination characteristics of Feng Liu’s copper complex are identical to 

the neutral complex of [Cu (HL15)2Cu(HL15)(L15)]. 

The comparison of bond lengths is done in three ways, which are as follows 

i. Comparison between the ligands on the same Cu(II ) centre 

The coordinate bonds especially Cu-O(1) and  Cu-O(3) are significantly 

and Cu-N(2) moderately longer in one of the ligands, this may be 

accounted to the steric repulsion caused by two ligands in order to form 

octahedral environment around the metal centre. As a consequence, 

C(1)-O(1) and C(3)-O(3) show similar trend, although the differences are 

small. This may also be accounted to Jahn-Teller distortion of the axial 

ligands. Feng Liu’s copper complex show similar behaviour, however 

the differences are not large. The reverse trend was noticed for the bond 

angles, O(1)-Cu-N(1) and O(3)-Cu-N(1), which signifies that ligand 

having greater coordinate bond lengths have shorter chelate bond 

angles comprising of the Cu(II) centre. 

ii. Comparison between neutral and anionic complex 

As a result of deprotonation of N(2) proton of one of the ligand, the C(3)-

O(3) ((1.301(3) bond distance  is significantly greater than other ligand 

(1.227(3) Å)Å), similarly observed for monomeric square pyramidal 

complex of pyruvate hydrazones. The bond distance has partial single 

bond character making it negatively charged, hence dianionic in nature. 

iii. Comparison with the Feng Liu’s Cu(II) complex.  

Although most of the bond lengths and bond angles of equivalent bonds 

don’t show significant differences, it is observed that the Cu-O(1), Cu-

N(1) bond distances are slightly longer as compared to Feng Liu’s 

complex. The complex also indicates that C(1)-O(2) has more single 

bond character when compared with the copper complexes of PVAHs.  
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3.6 Structural investigation of Cu(I) complexes of PVAHs  

Cu(I) complexes of NaHL8 and NaHL9 were synthesized in order to investigate 

the coordination behaviour of PVAHs around the Cu(I) centre. As discussed in chapter-

2, PPh3 were introduced in order to stabilise the soft Cu(I) centre. As expected for Cu(I) 

complexes  both the ligands form a tetrahedral environment around the copper 

centre.230  

3.6.1 Structural aspects of [HL9(PPh 3)5]PF6 and [Cu(I) 2HL8(PPh 3)5]PF6 

Both the Cu(I) complexes crystallise as dimeric structures and the two crystal 

structures show a similar kind of environment around the Cu(I) centre. [Cu(I)2HL9 

(PPh3)5]PF6] crystallises in a monoclinic space group P21/n, and the ORTEP plot is 

displayed in figure 3.33. Due to the rigidity of the PVAHs, HL8- and HL9- can only act 

as bidentate ligands, coordinating through O and N donor atoms to form a tetrahedral 

arrangement around the Cu(I) centre. The remaining two coordination sites are 

occupied by two PPh3 ligands, similar to the structure observed for a related Cu(I) 

hydrazone complex synthesized by Krishnamoorthy and group176. The O atom of the 

carboxylate group of the ligand binds to the other Cu(I) centre and the other three 

tetrahedral coordination sites are occupied by PPh3 ligands. The overall positive charge 

of the complex is balanced by a PF6
- anion.  

 
Figure 3.33: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(I)2HL9(PPh3)5]PF6 
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As seen from the ORTEP plot, the hydrazide part of the pyruvate hydrazone 

binds to one of the Cu(I) centre, whereas the pyruvate moiety acts a bridge, connecting 

the other copper centre. Similar bridging by dicarboxylates between two Cu(I) centres 

has been investigated by Lang and group.179 The complex [Cu(I)2HL8(PPh3)5]PF6 

crystallises in the monoclinic space group P21/n with two crystallographically 

independent molecules in the same unit cell. The ORTEP plot of the corresponding 

complexes is shown in figure 3.34. It is important to note that the ligand prefers to 

remain in the Z confirmation, when coordinating to the Cu(I) centre which is revealed 

from the torsional angle (C(1)-C(2)-N(1)-N(2)). The torsional angles values are 

provided in table 3.11 and are similar to the sodiated PVAHs. 

 
Figure 3.34: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(I)2HL8(PPh3)5]PF6 

3.6.3 Structural aspects of [Cu(I) 2HL9(PPh 3)4]PF6.2Et2O.H2O 

Interestingly, the Cu(I) complex of HL9-, which crystallised out of Et2O has three 

coordinate geometry around the Cu(1) centre with one less PPh3 group. It is surprising 

to notice that, changing the solvent system from polar MeOH to non-polar Et2O can 

change the geometry around the copper centre. However, the coordination behaviour 

around the Cu(2) centre remains the same as can be seen from the ORTEP plot as 
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indicated in figure 3.35. The crystal structure crystallises in the triclinic space group P-

1. Eventhough three-coordinate copper complexes are rare, a few examples of three-

coordinate Cu(I) and Cu(II) complexes are known to exist in the literature.177,231-232 

There is an increasing interest, towards making of low coordinate copper complexes, 

as they are known to exist in the biological systems.233-234 Moreover, the crystal 

structure of a linear, two- coordinate Cu(I) complex, is also reported in the literature235.  

 

Figure 3.35: ORTEP plot (50% probability ellipsoids) of the molecular structure of 

[Cu(I)2HL9(PPh3)4]PF6.2Et2O.H2O 

The details of the bond lengths and angles of [Cu(I)2HL8(PPh3)5]PF6, 

[Cu(I)2HL9(PPh3)5]PF6 and [Cu(I)2HL9(PPh3)4]PF6.2Et2O.H2O are provided in tables 

3.11 and 3.12, respectively and are consistent with the literature. The proton on the N 

atom of  the hydrazide is not lost during coordination, which is also reflected in the 

bond length of the (C(3)-O(3) carbonyl group. In case of the Cu(I) complex, the 

carbonyl C(3)-O(3) bond length is more towards a double bond (1.23 - 1.24 Å), 

whereas in case of the monomeric square pyramidal Cu(II) complex, the same bond 

length is more towards a single bond (1.3 Å).229 
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3.6.3 Comparison of [Cu(I) 2HL9(PPh 3)5]PF6, [Cu(I) 2HL9(PPh 3)4]PF6.2Et2O.H2O and 

[Cu(I) 2HL8(PPh 3)5]PF6 
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Figure 3.36: General structure of the Cu(I) complex showing the atom numbering 

scheme, R = 4-Me for [Cu(I)2HL9(PPh3)5]PF6, R= 4NO2 for [Cu(I)2HL8(PPh3)5]PF6 

Table 3.11: Selected bond lengths (Å) [Cu(I)2HL9(PPh3)5]PF6, [Cu(I)2HL9(PPh3)4]PF6. 

2Et2O.H2O, [Cu(I)2HL8(PPh3)5]PF6 

 [Cu(I)2HL9(PPh

3)5]PF6 

[Cu(I)2HL9(PPh

3)4]PF6. 

2Et2O.H2O 

[Cu(I)2HL8(PPh3)5]PF6 

   Complex 1 Complex 2 

C(1)-O(1) 1.256(4) 1.256(4) 1.252(4) 1.256(4) 

C(1)-O(2) 1.250(4) 1.251(4) 1.257(4) 1.247(4) 

C(3)-O(3) 1.238(4) 1.241(4) 1.238(5) 1.236(4) 

C(3)-N(2) 1.339(4) 1.353(4) 1.341(5) 1.336(4) 

N(1)-N(2) 1.385(3) 1.384(3) 1.377(4) 1.377(4) 

C(2)-N(1) 1.293(4) 1.288(4) 1.295(5) 1.298(4) 

N(2)-H(1) 0.83(4) 0.88(3) 0.87(4) 0.90(5) 

Cu(2)-N(1) 2.052(3) 2.081(3) 2.092(3) 2.072(3) 

Cu(2)-O(3) 2.175(2) 2.162(2) 2.142(3) 2.205(2) 

Cu(1)-O(1) 2.024(2) 2.024(2) 2.131(2) 2.108(2) 

Cu(1)-O(2) 3.530(2) 2.756(2) 3.424(2) 3.434(2) 

Cu(2)-P(4) 2.2253(8) 2.2176(12) 2.2127(12) 2.2242(10) 

Cu(2)-P(5) 2.2602(9) 2.2676(12) 2.2656(12) 2.2614(11) 

Cu(1)-P(1) 2.2981(8) 2.2289(11) 2.3056(9) 2.3292(9) 

Cu(1)-P(2) 2.3013(9) 2.2417(11) 2.3446(10) 2.3596(9) 

Cu(1)-P(3) 2.3299(8) - 2.3288(9) 2.3285(9) 
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The electron donating methyl group and the electron withdrawing nitro group fail 

to have any significant effect on the Cu(I) centre, similar to the observation made for 

the Cu(II) complexes. The small differences in bond lengths and bond angles may be 

due  to packing effects in the crystal lattice. This is evident from the fact that,small 

differences are observed for the two crystallographically independent molecules of 

[Cu(I)2HL8(PPh3)5]PF6 which crystallise in the same unit cell.  

Within the Cu(I) complex, the Cu(1)-O(1) bond distance is slightly shorter than 

Cu(2)-O(3). Furthermore, the Cu-P bond distances on the Cu(2) centre are shorter than 

those coordinated to the Cu(1) centre except for [Cu(I)2HL9(PPh3)4]PF6. 2Et2O.H2O. 

This may be attributed to the steric repulsion caused due to three PPh3 ligands on the 

Cu(1) centre, hence longer bond lengths. It is interesting to note that in case of the 

three-coordinate complex of [L9Cu2(PPh3)4]PF6. 2Et2O.H2O the Cu(1)-O(2) non 

bonding distance is significantly smaller than in the other Cu(I) complexes, which are 

provided in table 3.3. The bond distances taken from the mercury software indicate that 

there might be considerable interaction of O(2) with the Cu(I) centre. Therefore the 

Cu(I) centre in the corresponding complex can be described as pseudo tetrahedral 

complex as indicated figure 3.37.  

 

Figure 3.37: Mercury plot of [Cu(I)2HL9(PPh3)5]PF6 illustrating the strongly asymmetric 

didentate carboxylate coordination to Cu(1) and intramolecular hydrogen bonding 

(indicated with dotted line). Colour of the atom: grey - C, white – H, red – O, blue – N,  

brown – Cu, yellow – P, green – F. 
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As the Cu(I) centre is coordinatively unsaturated, with one missing PPh3 

molecule with respect to other Cu(I) complexes, the other Cu-P coordinating bond 

distances are affected accordingly. This is reflected by the Cu(1)-P(2) and Cu(1)-P(2) 

bond distances, which  have shorter bond lengths as compared to other Cu(I) 

complexes and also Cu(2)-P distances within the same molecule. Fujisawa and group 

observed a similar behaviour when they isolated a three-coordinate Cu(I) crystal 

structure bearing one PPh3 along with other ligand containing pyrazole rings as shown 

in figure 3.38. In fact, the isolated Cu(I) complex exhibited  an even shorter  Cu-P  bond 

distance of 2.1726 Å. This is due to the fact that it has only PPh3 molecule, which 

results in less sterical hindrance and hence, a shorter bond length. 

N
N

N
N

Cu
PPh3

 

Figure 3.38 : Fujisawa three-coordinate Cu(I) complex177 

All the Cu(I) complexes of PVAHs described in this chapter participate in 

intramolecular hydrogen bonding which involve the N(2)-H and carboxylate O(2) atoms 

as can be seen from figure 3.37. The selected bond angles of all the three Cu(I) 

complexes are provided in table 3.12. The ligand-based angles of equivalent bonds 

remains unaffected, which signifies that the bond angles are not affected by electron 

withdrawing and donating groups or the Cu(I) coordination geometry. Although the 

crystal packing of the molecule might have little influence on values of ligand based 

bond angles, but it considerably affects the angles comprising of Cu(I) centre. Hence, 

two crystallographically independent molecules for [Cu(I)2HL8(PPh3)5]PF6 are 

observed, where the bond angles, especially N(1)-Cu(2)-P(5) show significant 

differences in complex 1 and 2, respectively, as can be seen from the values in table 

3.12.  

In addition, there is considerable deviation from regular tetrahedral angle 109°, 

which is reflected from the bond angles of O-Cu-P of both Cu(I) centres within the 

molecule236, hence the obtained Cu(I) complexes can be described as distorted 
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tetrahedral geometry. It can be noted that in the three-coordinate Cu(I) complex, 

[L9Cu2(PPh3)4]PF6.2Et2O.H2O, the Cu(1)-O(1)-C(1) bond angles is substantially smaller 

than other Cu(I) complexes. This can be explained on the basis that, the carboxylate 

O(2) donor atom is inclined  towards Cu(1) atom in order to form pseudo tetrahedral 

geometry around the Cu(1) centre which makes the bond angle shorter.  

Table 3.12: Selected bond angles (°) for [Cu(I)2HL9(PPh3)5]PF6, [Cu(I)2HL9(PPh3)4]PF6. 

2Et2O.H2O and [Cu(I)2HL8(PPh3)5]PF6 

N

O

N

CH3

O

O
Cu Cu

Ph3P
PPh3

PPh3

Ph3P
PPh3

R

2 1 1

11

2

3

3

3
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2

2

2
5

4

H

 

 [Cu(I)2HL9 

(PPh3)5]PF6 

[Cu(I)2HL9(PPh3)

4]PF6.2Et2O.H2O 

[Cu(I)2HL9(PPh3)5]PF6 

   Complex  1 Complex 2 

Cu(1)-O(1)-C(1) 133.7(2) 107.9(2) 129.4(2) 131.1(2) 

O(1)-C(1)-O(2) 127.8(3) 125.1(3) 126.4(3) 126.3(3) 

C(1)-C(2)-N(1) 124.3(3) 124.5(3) 124.4(4) 124.7(3) 

C(2)-N(1)-N(2) 116.3(3) 118.4(3) 116.6(3) 117.1(3) 

N(1)-N(2)-C(3) 118.3(3) 118.0(3) 118.2(3) 118.4(3) 

N(2)-C(3)O(3) 122.2(3) 121.6(3) 122.6(4) 122.5(3) 

C(3)-O(3)-Cu(2) 110.39(19) 110.9(2) 109.8(3) 109.7(2) 

O(3)-Cu(2)-N(1) 78.00(9) 77.61(9) 77.97(12) 76.94(10) 

N(1)-Cu(2)-P(4) 104.65(7) 102.48(8) 100.41(10) 105.05(8) 

N(1)-Cu(2)-P(5) 116.19(7) 121.88(8) 129.51(10) 119.38(8) 

O3-Cu(2)-P(4) 109.98(6) 97.51(7) 100.14(10) 95.30(7) 

O3-Cu(2)-P(5) 102.59(6) 117.63(7) 115.87(3) 112.97(7) 

P(4)-Cu(2)-P(5) 131.65(3) 127.12(4) 122.11(5) 131.06(4) 

O(1)-Cu(1)-P(1) 92.90(6) 118.68(8) 92.36(8) 87.77(7) 

O(1)-Cu(1)-P(2) 100.77(7) 111.46(8) 104.80(7) 100.44(7) 

O(1)-Cu(1)-P(3) 110.47(6) - 113.83(7) 117.41(7) 

C(1)-C(2)-N(1)-

N(2) (torsional 

angle) 

5.6(4) 2.3(5) 0.2(5) 1.6(5) 
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3.7 Structural diversity observed in copper complex es pyruvate 
hydrazones 

 As discussed in the introduction (section 3.1), copper complexes of hydrazones 

adopt a wide variety of structures. This is also observed in the crystal structures of 

Cu(II) and Cu(I) complexes of the PVAHs. However, Cu(II) complexes mostly adopt a 

mononuclear square pyramidal geometry in the solid state, but dinuclear square 

pyramidal complexes and complexes with octahedral geometry were also isolated. The 

reduction of Cu(II) to Cu(I), changes the coordination geometry to distorted tetrahedral 

around the Cu(I) centre, whereas three-coordinate Cu(I) complexes are also isolated. 

In order to compare the different types of copper complexes obtained from 

ligand L9, selected bond length and bond angles of each representative geometry are 

tabulated in figure 3.13. The copper complexes include [Cu(II)(L9)(H2O)2] (monomeric 

square pyramidal), [Cu2(HL9)2Cl2] (dimeric square pyramidal), [Cu(II)(HL15)2] 

(octahedral) and [Cu(I)2HL9(PPh3)5]PF6 (tetrahedral). Although, all the copper 

complexes used for comparison are of same ligand except [Cu(II)(HL15)2], as it is the 

only complex which crystallises out as an octahedral complex. Also, it is observed that 

the R-group does not have much influence on the bond lengths and bond angles in 

direct vicinity of the Cu centre, hence [Cu(II)(HL15)2] can be used to compare the 

octahedral complex with the other copper geometries 

As discussed in section 3.2, NaHL9 binds to two Na+ ions in a monodentate 

manner as shown 3.39 a and same ligand binds to Cu(II) in a tridentate fashion (3.39 

b) 
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Figure 3.39: Schematic representation of different coordination modes of PVAH 

hydrazones 

Furthermore, two ligands can bind to Cu(II) centre in a similar binding mode 

resulting in octahedral geometry (figure 3.39 c). However, in the Cu(I) complex the 
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binds to two different Cu(I) centres in a bidentate and monodentate manner, 

respectively (figure 3.39 d). Furthermore, the Cu(II) complex is stable with the O and N 

donor atoms, whereas the Cu(I) complex prefers soft P donors. 

In square pyramidal complexes, the ligand can acts as a dianionic donor, which 

involves deprotonation of N(2)-H in order to make the overall complex neutral. In the 

case of the dimeric square pyramidal copper complex, where the Cu(II) is coordinated 

to chloride ion, N(2)-H remains protonated which allows the ligand to remain in its 

monoanionic form. Similarly, the ligand remains in monoanionic form in the case of the 

neutral octahedral complex, [Cu(II)(HL15)2]. In addition, the ligand behaves as a single 

negatively charged molecule when coordinated to Cu(I). This eventually affects the 

C(3)-O(3) bond length as indicated in table 3.13. In the ligand, dimeric, octahedral and 

tetrahedral complexes, this bond length ranges from 1.23 to 1.25 Å, which signifies 

more of a double bond character. Whereas in the case of the mononuclear square 

pyramidal complex, the bond length (1.295 (3)) indicates partial single bond character. 

As indicated in table 3.13, the coordinate bond lengths around the Cu(I) centre 

(M-N, M-O) are significantly longer than those observed in the Cu(II) complexes. This 

may be attributed to the filled d shell of Cu(I) centre, resulting in  weaker interactions 

than in d9 Cu(II) complex.  As the electron density is contributed from donor atoms of 

both ligands, the coordinate bonds are not significantly longer in case of octahedral 

complex. C(1)-O(1) and C(1)-O(2) bond distances are similar in the Cu(I) complex as 

compared to the ligand and Cu(II) complexes, indicating the delocalisation of π - 

electrons over O(1)-C(1)-O(2) bond. Although, the metal centre does not have much 

appreciable contribution towards imine C(2)-N(1) bond distance. 

The O(3)-Cu-N(1) bond angle which is  part of one of the five-membered rings 

ranges from 78.0 – 81.6 °, indicating the rigidity of the ring. On the other hand, the 

X(1)-Cu-X(2) bond distances vary considerably and it defines the geometry of the 

copper complexes. The highest value observed is 159.64(7) for the octahedral 

complex, whereas the lowest observed is for the square pyramidal complex. 
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[Cu(II)(L9)(H2O)2]             OH2      OH2        - 

[Cu2(HL9)2Cl2]                  Cl         Cl            -   

[Cu(II)(HL15)2]                 O(L2)     N(L2)     O(L2)    

[Cu(I)2HL9(PPh3)5]PF6            PPh3        PPh3        - 

(Cu-O(1) absent)         

Figure 3.40: General structure showing numbering scheme for copper complex of 

PVAHs, dashed line indicates the presence or absence of bond depending on 

geometry 

Table 3.13: Selected bond lengths (Å) and bong angles (°) of NaHL9, 
[Cu(II)(L9)(H2O)2], Cu(II)(HL9)2Cl2, Cu(II)(HL15)2, [Cu(I)2HL9(PPh3)5]PF6 

 

Cu(II)(HL15)2 
(Octahedral) 

Bonds NaHL9 
(ligand) 

Cu(II)L9(H2

O)2 
(Monomeric 
Square 
pyramidal) 

Cu(II)(HL9)2Cl2 
(Dimeric 
Pseudo-Square 
pyramidal) L91 L92 

[Cu(I)2HL9 
(PPh3)5]PF6 

(Tetrahedral) 

C(1)-O(1) 1.2743 
(16) 

1.282(3) 1.274(2) 1.276(3) 1.284(3) 1.256(4) 

C(1)-O(2) 1.2380 
(16) 

1.244(3) 1.239(2) 1.225(3) 1.228(3) 1.250(4) 

C(3)-O(3) 1.2330 
(15) 

1.295(3) 1.254(2) 1.232(3) 1.251(3) 1.238(4) 

C(3)-N(2) 1.3522 
(16) 

1.328(3) 1.368(2) 1.372(3) 1.361(3) 1.339(4) 

C(2)-N(1) 1.2897 
(17) 

1.289(3) 1.281(2) 1.283(3) 1.278(3) 1.293(4) 

Cu-O(1) - 1.9940(16) 1.9562(14) 2.1956(18) - 2.024(2) 

Cu-O(3) - 1.9939(16) 1.9967(13) 2.2820(19) - 2.175(2) 

(Cu(2)) 

Cu-X(1) - 1.971(2) 2.2198(5) - 2.0008(18) 2.2253(8) 

Cu-X(2) - 2.152(2) 2.6737(6) - 2.0277(18) 2.2602(9) 

Cu-N(1)  1.9065(19) 1.9545(16) 2.013(2) 1.949(2) 2.052(3) 

O(3)-Cu-
N(1) 

- 81.66(7) 78.81(6) 73.98(8) 79.17(8) 78.00(9) 

X(1)-Cu-
X(2) 

- 95.72(9) 94.718(18) 159.64(7) 131.65(3) 

C(1)-
C(2)-
N(1)-N(2) 
(torsional 
angle) 

2.06 

(2) 

177.69(19) 179.42(17) 176.6(2) 178.4(2) 5.6(4) 
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The torsional angle (C(1)-C(2)-N(1)-N(2)) for the Cu(II) complexes lie in the 

range 176.0 – 180.0°, revealing E conformation with respect to the imine (C=N) bond, 

irrespective of different geometries. In contrast, the Cu(I) complex 

[Cu(I)2HL9(PPh3)5]PF6 exhibits a torsional angle of 5.6(4) °, which is similar to the 

sodiated ligand NaHL9 (2.06(2) °) indicating Z-conformation. 

3.8 Structural investigation of Zinc(II) complexes of PVAHs 

The crystals of Zn(II) complexes of PVAHs suitable for X-ray crystallography 

were successfully isolated from the NMR solvent, DMSO-d6. Unlike Cu(II) complexes of 

PVAHs, Zn(II) complexes failed to produce diffraction quality crystals from the reaction 

solvent MeOH, indicating the instability of the Zn(II) complex in the solution as 

compared to the Cu(II) complexes. This may be attributed to the acidic environment 

due to MeOH as compared to DMSO. Ligand binds to Zn(II) in 2:1 manner forming an 

octahedral complex, with the coordination around the zinc centre being similar to Cu(II) 

octahedral complex of HL15-.  

3.8.1 Structural aspects of [Zn(II)(HL7) 2] ] .H 2O.DMSO, [Zn(II)(HL8) 2] and 

[Zn(II)(HL9) 2].H 2O.CH3OH 

Zn(II) complexes of HL7-, HL8- and HL9- crystallise in the triclinic space group 

P-1. The ORTEP plots for [Zn(II)(HL7)2].H2O.DMSO, [Zn(II)(HL8)2].H2O and  

[Zn(II)(HL9)2].H2O.CH3OH are shown in figure 3.41a, 3.42 and 3.43, respectively. As 

indicated from the ORTEP plots of the corresponding Zn(II) complexes, N(2)-H remains 

protonated on both ligands. This allows the ligand to attain monoanionic form, hence 

forming an overall neutral Zn(II) complex. As expected, the two ligands are coordinated 

meridonially to the Zn(II)-centre.225-226 The crystal structures of the Zn(II) complexes of 

PVAHs mentioned in this chapter have meridonial arrangement, unless otherwise 

mentioned. The structure of a representative example, [Zn(II)(HL7)2] ] .H2O.DMSO, is 

displayed in figure 3.41 b. Two perpendicular planes are pass through the chelate rings 

of the two ligands coordinated to the same Zn(II) centre. The interplanar angle of the 

two planes measures 81.45°.  
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                   a 

 

                                                             b 

Figure 3.41: a)  ORTEP plot (50% probability ellipsoids) of the molecular structure of 

mer-[Zn(II)(HL7)2].H2O.DMSO b) planes showing the meridonial arrangement of the 

ligands around the Zn(II) centre 

 
Figure 3.42: ORTEP plot (50% probability ellipsoids) of the molecular structure of mer- 

[Zn(II)(HL8)2].H2O 
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Figure 3.43: ORTEP plot (50% probability ellipsoids) of the molecular structure mer- 

[Zn(II)(HL9)2].H2O.CH3OH 

 As indicated in the ORTEP plots, the zinc complexes crystallise with solvent 

molecules, such as H2O, MeOH, and DMSO in the case of [Zn(II)(HL7)2].H2O.DMSO. 

Hydrogen bonding between the solvent molecules and the coordinated ligand atoms 

helps in stabilising the crystal lattice. In addition to the intermolecular hydrogen-

bonding network, weak π interactions also occur in the crystal lattice with adjacent 

symmetry generated molecules. The Mercury plot of a representative example, 

[Zn(II)(HL7)2].H2O.DMSO is shown in figure 3.44. The π-π aromatic interactions, 

which are in the range of 3.31-3.5 Å allow the molecules to stack coplanar to each 

other. Similarly, weak electrostatic interactions between the electronegative chloride 

ion and electron deficient carbon atoms (C-Cl---C) C(1) (3.41 Å) and C(2) (3.37 Å) are 

also seen. 
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Figure 3.44: Mercury plot of mer- [Zn(II)(HL7)2].H2O.DMSO showing π interactions 

3.8.2 Comparison of [Zn(II)(HL7) 2].H 2O.DMSO, [Zn(II)(HL8) 2].H2O and 

[Zn(II)(HL9) 2].H 2O.CH3OH 

Selected bond lengths and bond angles of [Zn(II)(HL7)2].H2O.DMSO,  

[Zn(II)(HL8)2].H2O and [Zn(II)(HL9)2].H2O.CH3OH are given in table 3.14. The bond 

lengths and bond angles are in agreement with the literature values.237  The tridentate 

ligand binds to the zinc centre resulting in a distorted octahedral geometry which is 

indicated by the equatorial bond angles. As indicated in the table, the equatorial angles 

for N1(HL1)-Zn-N1(HL2) are not exactly 180° but lie in the range 168-170°, hence 

indicating distortion from perfect octahedral geometry.238 A general schematic 

representation of Zn(II) octahedral complex coordinating to the same ligands HL1 and 

HL2 along with the numbering scheme is shown in figure 3.45. In order to make the 

comparison easier, the numbering scheme may not be in accordance with the ORTEP 

plot numbering system. 
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                                              R 

mer-[Zn(II)(HL7)2].H2O.DMSO                 Ar-p-Cl 

mer-[Zn(II)(HL8)2].H2O                         Ar-p-NO2 

mer-[Zn(II)(HL9)2].H2O.CH3OH          Ar-p-CH3 

Figure 3.45: Numbering scheme for zinc complexes showing immediate bonds around 

the Zn(II) centre, mer- [Zn(II)(HL7)2].H2O.DMSO, mer- [Zn(II)(HL8)2].H2O, mer- 

[Zn(II)(HL9)2].H2O.CH3OH  

Table 3.14: Selected bond lengths (Å) and bond angles (°) of selected Zn(II) complexes 

of PVAHs 

Bonds mer-[Zn(II)(HL7)2] 

.H2O.DMSO 

mer-[Zn(II)(HL8)2]. 

H2O 

mer-[Zn(II)(HL9)2] 

.H2O.CH3OH  

 (HL1)- (HL2)- (HL1)- (HL2)- (HL1)- (HL2)- 

Zn-O(1) 2.1965 
(14) 

2.1588 
(14) 

2.0596 
(12) 

2.0502 
(12) 

2.091(2) 2.039(2) 

Zn-O(3) 2.0238 
(14) 

2.1014 
(14) 

2.1919 
(12) 

2.2975 
(12) 

2.169(2) 2.138(2) 

Zn-N(1) 2.0667(1
6) 

2.0728 
(16) 

2.0635 
(13) 

2.0673 
(13) 

2.048(2) 2.079(3) 

C(3)-O(3) 1.239(2) 1.227(2) 1.235(2) 1.232(2) 1.240(3) 1.242(3) 

C(1)-O(2) 1.236(2) 1.238(2) 1.230(2) 1.238(2) 1.221(4) 1.249(4) 

C(3)-N(2) 1.369(2) 1.371(3) 1.358(2) 1.359(2) 1.370(4) 1.372(4) 

C(1)-O(1) 1.272(2) 1.280(2) 1.278(2) 1.269(2) 1.290(4) 1.264(3) 

C(2)-N(1) 1.280(2) 1.279(2) 1.278(2) 1.282(2) 1.274(4) 1.273(4) 

O(1)-Zn-N(1) 73.07(6) 74.04(6) 77.30(5) 77.68(5) 77.24(9) 77.60(8) 

O(3)-Zn-N(1) 78.17(6) 76.59(6) 74.02(5) 72.56(5) 74.62(8) 73.70(9) 

O(1)-Zn-(O3) 150.37 

(5) 

150.54 (5) 151.13(5) 150.05(5

) 

151.83 

(8) 

150.05() 

C(1)-C(2)-
N(1)-N(2) 
(torsional angle)      

179.5(2) 179.8(2) 177.49 
(13) 

174.74 
(13) 

177.49 174.74 

N(1) (L1)-Zn-
N(1) (L2) 

168.87(6) 165.03(5) 169.75(9) 

O(1) (L1)-Zn-
O(1) (L2) 

90.67(6) 95.75(5) 98.21(8) 

O(3)(L1)-Zn-
O(3) (L2) 

92.40(6) 87.53(5) 91.38(8) 
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The R group on the aromatic ring does not have a significant effect on bond 

distances and bond angles in  direct vicinity of Zn(II) centre. The ligand based bond 

lengths are more or less similar for corresponding bonds of [Zn(II)(HL7)2].H2O.DMSO, 

[Zn(II)(HL8)2].H2O, [Zn(II)(HL9)2].H2O.CH3OH. On comparison of the coordinate bond 

Zn-O(3) bond distances are appreciably longer than Zn-O(1) and Zn-N(1) bonds. The 

Zn-O and Zn-N bond distances are consistent with literature values. Although, some of 

the literature values slightly differ, depending on the surrounding ligand system.239-241 

While it was observed in Cu(II) octahedral complex that coordinate bonds (M-O/N) 

show significant difference between the two ligands binding to same Cu(II) centre,  in 

the case of Zn(II) complexes the difference between the two ligands is quite small. 

Also, the equivalent bonds of the M-O/N distances in d10 Cu(I) and Zn(II) are slightly 

longer than in d9 Cu(II) complex. In [Zn(II)(HL7)2].H2O.DMSO, carboxylate O(2) atom 

of  HL1 forms intermolecular hydrogen bond with water. Whereas in [Zn(II)(HL8)2].H2O 

and [Zn(II)(HL9)2].H2O.CH3OH the N-H proton (N(5), N(2)) hydrogen bonds with non 

coordinating water.  

Each ligand bound to the Zn(II) centre looses its planarity in order to form  

stable zinc complexes, similar to observations made for octahedral complex of Cu(II) 

complex. The interplanar angle for each ligand in [Zn(II)(HL8)2].H2O is 5.07 and 10.29°, 

whereas for [Zn(II)(HL9)2].H2O.CH3OH this deviations are 3.38 and 17.33°, 

respectively. The values are obtained by measuring the angles between two planes, 

passing through the aromatic ring, and the two pentacoordinate rings surrounding the 

metal centre. Furthermore, [Zn(II)(HL8)2].H2O exhibits the greatest mean plane of 

deviation with 40.34 and 56.12°, which is likely due to the bulkier NO2 group. The 

torsional angle (C(1)-C(2)-N(1)-N(2)) indicates that both the ligands bind to the Zn(II) 

centre in E conformation, as observed for Cu(II) complexes and the values are not 

significantly different within the molecule. 

3.8.3 Structural aspects of [ Zn(II)(HL13) 2] 

 The crystal structure of Zn(II)(HL13)2 was also obtained. The zinc complex 

crystallises in the terragonal space group P43212 with two crystallographically 

independent molecules in the unit cell. The ORTEP plot for corresponding molecule is 

given in figure 3.46. The molecules differ slightly in their bond lengths and bond angles, 

which may arise from the crystal packing effect. The mean plane of deviation of each 

ligand is 5.64 and 8.47° for complex 1 and is similar to complex 2 (5.07, 8.53°).  The 
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bond lengths and bond angles listed in table 3.15 are similar to the other zinc 

complexes.  

 
Figure 3.46: ORTEP plot (50% probability ellipsoids) of the molecular structure of mer-

Zn(II)(HL13)2 

Table 3.15: Selected bond lengths (Å) and bond angles (°) of mer-Zn(II)(HL13)2 

 
Bonds Complex-1 Complex-2 

 (HL1)- (HL2)- (HL1)- (HL2)- 

Zn-O(1) 2.101(3) 2.109(3) 2.111(3) 2.104(3) 

Zn-O(3) 2.096(3) 2.117(3) 2.111(4) 2.102(3) 

Zn-N(1) 2.080(4) 2.076(3) 2.081(4) 2.084(3) 

O(1)-Zn-N(1) 76.23 (14) 75.99(12) 76.28(14) 75.94(12) 

O(3)-Zn-N(1) 75.01(14) 74.57(12) 74.42(14) 74.87(12) 

O(1)-Zn-(O3) 149.86(13) 149.09(12) 149.10(13) 149.47(12) 

N(1) (L1)-Zn-
N(1) (L2) 

168.81(14) 167.64(14) 

C(1)-C(2)-
N(1)-N(2) 

178.5(4) 176.9(4) 176.5(4) 178.4(4) 
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3.9 Summary of Chapter - 3 

 PVAHs and CAHs crystallise predominantly in the keto form. The PVA ligands 

are essentially planar, although the two phenyl rings in CA hydrazones lie in a different 

plane with the an angle ranging from 53.0 – 58.0°. Under the synthetic conditions 

chosen, ligands NaHL9 and NaHL11, HCA5, HCA2 coordinate in their monoprotonated 

form. In the sodium salts NaHL9 and NaHL11, the negative charge on the carboxylate 

group present in the pyruvate hydrazones is balanced by the Na+ counter ion. On the 

other hand, H2L20 was crystallised in its di-protonated form. The sodium cation in 

NaHL9 and NaHL11 is surrounded by six ligands completing the octahedral geometry. 

Ligands HL9- and HL11- acts as monodentate ligand towards the Na ion and the rest of 

the octahedral coordination site is completed by water molecules. PVAHs show 

extensive intra and intermolecular hydrogen bonding, in contrast to cinnamaldehyde 

hydrazones. Hence, calculated CLogP values are greater for CAHs, whereas some of 

the PVAHs have even negative values.  The greater CLogP values may lead to poor 

oral drug absorption but may prove to be advantageous in promoting permeation 

through the lipid bilayer of the mycobacterial cell wall. 

 The torsional angles suggest that the sodiated ligands adopt Z confirmation, 

whereas the non-sodiated PVAH crystallises in E conformation. All the isolated crystals 

of Cu(II) and Zn(II) complexes of PVAHs exhibit E confirmation, whereas Cu(I) 

complexes prefer to remain in Z confirmation in the solid state. Pyruvate binds to Cu(II) 

and Zn(II) in a tridentate fashion, forming two stable five membered rings around the 

metal centre. Cu(II) complexes of PVAHs mostly adopt monomeric square pyramidal 

geometry, although a dimeric complex of similar geometry is also observed for L9. In 

the case of monomeric complexes, one ligand is bound to the Cu(II) with ONO donor 

atoms, whereas solvent (water/methanol) molecules occupy the remaining coordination 

sites. In the dimeric copper complex, the two Cu(II) centres are bridged by two chloride 

ions. The apical bond distances are significantly longer than the equatorial bond 

distances, indicating an appreciable Jahn - Teller distortion. In the monomeric square 

pyramidal complexes, the ligand is dianionic giving rise to an overall neutral complex .  

In the case of [Cu(II)(L9)(H2O)2]  and [Cu(II)(L11)(H2O)2].H2O, the complexes 

crystallise as two crystallographically independent molecules in one unit cell, which is 

relflected in their different τ values. The τ value indicates slight distortion from a perfect 
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square pyramidal geometry. The other copper complexes of L8-, L13-, L17- and L7- 

exhibit similar structural characteristics. Bond lengths and bond angles are comparable 

with literature values and the R group on the aromatic rings have little or no influence 

on the bond distances in the direct vicinity of metal centre. The ligand remains 

essentially planar when bound to Cu(II) centre.  

 In the dimeric complex, the ligand is coordinated in its monoanionic form 

with the positive charge of Cu(II) centre balanced by an additional chloride ion. 

Similarly, the ligand remains with a single positive charge in case of octahedral Cu(II) 

and Zn(II) complex. Two ligands bind to the metal centre making the overall complex 

neutral. The two ligands are organised in a meridonially around the metal centre due to 

the rigidity of the planar ligand. However, the copper complex of HL15 crystallises as 

two crystallographically independent molecules, one neutral and one anionic. In the 

latter, one of the ligands bound to the Cu(II) centre is dianionic, making the overall 

copper complex negatively charged which is balanced by a sodium counter ion. In the 

case of octahedral complexes, the coordinating ligand loses its planarity in order to 

reduce the steric repulsion caused by two ligands bound to the same metal centre. This 

is evident from the mean plane of deviation, which varies from 5.0 to 56.1° . It is also 

found that  the deviation for one ligand is smaller than for the other ligand bound to the 

same metal centre. Greater values are obtained for the [Zn(II)(HL8)2].H2O, as it bears a 

bulkier NO2 at para-position on the aromatic ring The distorted octahedral geometry is 

indicated by the bond angles. 

The PVAH ligand binds to one of the Cu(I) centre partially in a bidentate 

manner, thus allowing the Cu(I) complex to adopt a tetrahedral geometry. Whereas, the 

other part of the PVAH coordinates in a monodentate manner to the second Cu(I) 

centre. PPh3 occupies the rest of the tetrahedral sites. The overall copper complex is 

positively charged, hence PF6
- is also present in the crystal lattice in order to balance 

the charge. Soft P donors provided by PPh3 stabilise the crystal structures of the Cu(I) 

complexes. The bond angles indicate distortion from perfect tetrahedral geometry. A 

three-coordinate Cu(I) complex is also isolated along with the dimeric complex of 

[Cu(I)2HL9(PPh3)4]. 2Et2O.H2O. 
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4.0    Electrochemistry and Electron paramagnetic resonance studies  

4.1 Introduction 

 Electrochemistry (Echem) is a useful technique, as it allows studying the 

redox processes of molecules. It has various applications, such as 

electrosynthesis242-243, evaluation of redox potential of metal complexes and 

enzymes containing redox active metal centres.244-246 Furthermore, in bioinorganic 

chemistry, the model complexes mimicking metalloenzymes have also been 

explored with the help of electrochemistry. This allows the study of electron / proton 

transfer processes associated with the metal centre, hence can be useful in 

elucidating mechanistic aspects of catalytic activities of certain enzymes.247 

Moreover, the redox potentials of metal complexes can be tuned by employing 

appropriate ligand systems which can be useful in effective drug design.248  

The electrochemistry of transition metal complexes has been extensively 

studied in the last two decades owing to their various redox states.249 Out of the 

various metal ions present in biological systems, copper, iron and molybdenum are 

preferred for redox processes.250  Copper is known to exist in oxidation states Cu(0), 

Cu(I), Cu(II) and Cu(III) depending on the conditions.251-253 Since the redox potential 

for Cu3+/Cu2+ is normally very high, the Cu(III) oxidation state is generally not found 

in biological systems.251 Applying an electric potential to copper complexes in 

solution allows the copper centre to be present in different oxidation states at certain 

electric potentials, ranging from 0 to 3.  These can be monitored using different 

electrochemical techniques, but linear-sweep cyclic voltammetry (LSCV or CV) is 

most commonly used to study transition metal complexes. 

As discussed in chapter - 3, the Cu-centre reorganises its coordination 

sphere while changing from one oxidation state to another. Whereas Cu(II) mainly 

prefers a 5-coordinate square pyramidal geometry, Cu(I) adopts a 4-coordinate 

tetrahedral geometry. This type of structural reorganisation is known to be hindered 

in copper-containing metalloproteins. In order to lower the activation energy during 

electron transfer processes, the coordination geometry in blue copper proteins is a 

compromise between Cu(I) and Cu(II) (entatic state), which can be considered as 

opposing Jahn-Teller distortion.254-255  

Solomon et al. have performed extensive studies on the blue copper protein 

plastocyanin which displays such a compromised geometry, as explained in figure 
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4.1. As indicated in figure 4.1a, a normal Cu(II) complex exhibits strong σ-bonding 

and weak π-interactions as a lobe of the  dx2-y2 orbital is oriented along the metal-

ligand bond which give rise to a high energy σ charge transfer transitions . However, 

in case of plastocyanin (fig 4.1b) the dx2-y2 lobes are rotated by 45° which results in 

weak σ and strong π interactions. Thus, the unusual geometry prevents the protein 

to undergo drastic geometric change upon oxidation, hence allowing rapid electron 

transfer. 

  

a)  (Normal Copper(II)) 

 

b) (Plastocyanin) 

Figure 4.1: a) Normal Cu-S (cysteine) bonding interactions b )Cu-S (cysteine) 

bonding interaction in plastocyanin.255 

Hence, most of the redox processes in biological systems are reversible, 

whereas in synthetic coordination chemistry, especially in copper complexes of 

Schiff bases, redox processes tend to exhibit either quasi-reversible or irreversible 

behaviour.256-257 This can be due to the major change of the geometry upon 

reduction of Cu(II) to Cu(I). As a result, the dissociation of partially or fully 

coordinated rigid molecules in order to attain the desired coordination geometry 

around the metal centre is often observed. However, McMaster and group, 

successfully synthesized Cu(I) and Cu(II) complexes of di-imidazole containing 

ligands (shown in figure 4.2) which are similar in structure.  
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Figure 4.2: Bis(1-methyl-4,5-diphenylimidazol-2-yl) ketone258 

Both complexes adopt a geometry that lies in between tetrahedral and 

square planar, as confirmed by X-ray crystallography.The redox behaviour of the 

Cu(II) complex is completely reversible which implies that there is no significant 

structural change at the copper centre upon reduction to Cu(I).258 

As discussed earlier, electrochemical properties of metalloenzymes or their 

model complexes have been helpful in elucidating the mechanistic aspects of 

catalytic properties of the metal centres. Furthermore, Echem in combination with 

other techniques, such as electron paramagnetic (EPR) spectroscopy, NMR and X-

ray crystallography can be useful in investigating the electronic and structural 

properties of metalloenzymes.246,259-260 Moreover, Echem and EPR can be 

employed to investigate the behaviour of metal complexes in solution containing 

paramagnetic centres. Nonetheless, EPR has been widely used by several 

researchers in the past to predict the potential geometries and nature of Cu(II) 

centres in solution.261-262  

For example, Solomon and group also explored the Cu(II)-containing blue 

copper protein plastocyanin with the help of EPR. Figure 4.3 indicates the EPR 

spectra of the protein (top) and normal copper (bottom). From the EPR studies, 

especially, the 2-fold reduction in A║ values of plastocyanin indicates a distortion 

from tetrahedral geometry.255 
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Figure 4.3: X-band EPR spectrum of plastocyanin (top) and D4h CuCl4
2- (bottom)255 

In this chapter, CV is used to explore the redox behaviour of the Cu(II) and 

Cu(I) complexes of selected pyruvate hydrazones. The investigated copper 

complexes have different substituents on the aromatic ring, ranging from electron 

withdrawing NO2 to electron donating CH3. This allowed the examination of the 

influence of different substituent on the redox properties of the copper complexes. 

Furthermore, to elucidate the behaviour of Cu(II) complexes of PVAHs in the 

electrochemical solvent (DMSO), selected copper complexes were also examined 

using EPR spectroscopy.  
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4.2  Redox properties of pyruvate hydrazones and their copper 

complexes 

Cyclic voltammetry (CV), was employed to investigate the redox properties 

of the sodium salts of the ligands, NaHL3, NaHL8, NaHL9, NaHL12, the Cu(II) 

complexes [Cu(II)L1(H2O)2], [Cu(II)L3(H2O)2], [Cu(II)L8(H2O)2], [Cu(II)L9(H2O)2], 

[Cu(II)L10(H2O)2], [Cu(II)L12(H2O)2], [Cu(II)L21(H2O)2] and the Cu(I) complexes 

[Cu(I)2HL8(PPh3)5)] and [Cu(I)2HL9(PPh3)5)].  

The CV studies were carried out at room temperature using a standard three 

electrode configuration, consisting of a platinum working electrode, platinum wire as 

auxiliary electrode and a Ag/AgCl reference electrode. The supporting electrolyte 

used was 0.1 M tetra-butyl ammonium hexafluorophosphate in DMSO. The solution 

was purged with N2 gas prior to use. The details of the procedure can be found in 

the chapter-7. The concentrations of the ligands and complexes were approximately 

1 mM and the cyclic voltammograms were scanned within the potential range of 

+1.0 to –1.0 V. DMSO decomposes beyond the potentials +1.0 and –1.0 V, hence 

only processes observed within these two limits were assigned in the present study.  

The redox potential (E1/2) of the ferrocene/ ferrocenium (Fe2+/Fe3+) couple in 

DMSO was observed at 0.45 ± 0.2 V versus standard calomel electrode (SCE), 

consistent with literature values within the error limits.263 In order to compare with 

literature values, potentials monitored with respect to the Ag/AgCl reference 

electrode were converted into SCE as per equation A.249 

Evs SCE = Evs Ag/AgCl – 0.0450 V ----------equation A249 

In case of the pyruvate hydrazone (PVAH) ligands and their Cu(II) 

complexes the potential is recorded from  voltage E1 at +1.0 V to voltage E2 (-1.0) 

and then back to E1. This scan direction will subsequently be called forward scan. 

For Cu(I) complexes, a reverse scan was employed due to the different oxidation 

state. 



                                                                                                        Chapter – 4   

 
 

149 

4.2.1  Electrochemical investigation of PVAHs 

As discussed in chapter-2, Cu(II) complexes of PVAHs were synthesized 

using one equivalent of NaHLx and CuCl2 as shown in Scheme 4.1  
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Scheme 4.1: Synthesis of Cu(II) complex of PVAHs 

In order to examine the redox behaviour of starting material, before 

investigating the Cu(II) complexes, selected PVAH ligands and CuCl2 were also 

studied using CV. A representative example, NaHL3, is shown in figure 4.4. The CV 

indicates that the ligand does not show any redox activity. 

 

Figure 4.4: CV of NaHL3 in DMSO over the potential range from +1.0 to -1.0 in the 

forward sweep at the scan rate of 100 mV s-1 (the arrow represents the direction of 

the potential sweep) 

Other ligands, including NaHL9, NaHL12, NaHL15 exhibited similar 

characteristics and no redox peaks were observed. However, the ligand bearing an 

NO2 substituent on the aromatic ring (NaHL8) shows redox activity in the region -

0.06 to -0.1 V. This can be attributed to the redox activity of NO2 and will be 
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discussed further in detail when comparing with its respective Cu(I) and Cu(II) 

complexes. 

4.2.2 Electrochemical investigation of copper complexes 

In order to understand the behaviour of the Cu(II) complexes in 

electrochemical DMSO and in particular to investigate potential ligand exchange 

reactions in this co-ordinating solvent, the CV of free Cu(II) was recorded. CuCl2 

was used as source of Cu(II) as it was used as the starting material in the synthesis 

of the  Cu(II) complexes of PVAHs. If there is complete dissociation of the ligand, 

then it is likely that the copper complexes would exhibit similar behaviour to CuCl2 in 

DMSO (Cu-DMSO complex). It can be observed from figure 4.5, that CuCl2 in 

DMSO gives well defined symmetrical waves Epc (A) and Epa (B), which can be 

attributed to the Cu2+/ Cu1+ redox couple. The potentials for Epc and Epa are 0.22 V 

and 0.53 V at 100 mV s-1, respectively. 

A

B  

Figure 4.5: CV of scan rate dependence for CuCl2 in DMSO over the potential range 

from +1.0 to -0.5 in the forward sweep at the scan rate of 100, 200, 300, 400 mV s-1 

(inner-outer) (blue arrows represents the direction of the potential varied) 

 Ukpong and coworkers, studied the electrode potential of CuCl2 in different 

solvents against a Pt working electrode and SCE as reference electrode. The 

observed Epc and Epa values in DMSO at 0.25 mV s-1 are 0.20 V and 0.40 V 
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respectively. Furthermore, it was also observed that the  electrode potential shifts 

towards more positive potential while going from DMSO < DMF < Acetonitrile (AN) 

This is likely due to the fact that, DMSO stabilises the Cu(II) species in solution.264  

Similar behaviour was observed for ferrocene in different solvents by Tsierkezos, 

although the shift is not as significant as observed for CuCl2. 
265    

4.2.2.1 Electrochemical investigation of Cu(II) complexes of 

PVAHs                                                                                                                                              

[Cu(II)L9(H2O)2] 

The CV of [Cu(II)L9(H2O)2] (figure 4.6) exhibits cathodic waves at 0.26 V (A) 

and -0.64 V (B), whereas anodic waves are observed at 0.18 V (C) and 0.56 (D) at 

a scan rate of 10 mV s-1. This potential was monitored in a forward scan ranging 

from +1.0 to -1.0 V. The cathodic waves (A and B) and the corresponding anodic 

waves (C and D) can be assigned to metal-based redox processes. The peak A 

may be assigned to the reduction of Cu2+ to Cu1+ (equation 4.1), whereas the peak 

D may be attributed to the oxidation of Cu1+ to Cu2+ (equation 4.2). Moreover, the 

cathodic peak B can be assigned to the formation of Cu0 (equation 4.3), where the 

metallic copper starts depositing on the electrode. And the anodic peak C might be 

due to the redissolution of Cu0 (equation 4.4)  

start point

A

B

D C

 

Figure 4.6: CV of [Cu(II)L9(H2O)2] in DMSO over the potential range from +1.0 to -

1.0 in the forward sweep at the scan rate of 10 mV s-1 (the arrow represents the 

direction of the potential sweep) 
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Cu2+ + e-    → Cu1+ ………………. (4.1) Reduction process (A) 

Cu1+  → Cu2+ + e-  ……………….. (4.2) Oxidation process (D) 

Cu1+ + e-   → Cu0   …………………(4.3) Reduction process (B) 

Cu0  → Cu1+ + e-    …………………(4.4) Oxidation process (C) 

Going towards higher scan rates also leads to broadening and shifting of the 

peak D towards more positive potentials resulting in the merging of C and D peaks. 

The broadening of peaks can also be due to the presence of intermediates at higher 

scan rate. The intensity of peaks increases as scan rate increases, which can be 

observed from the scan rate dependence spectra as shown in figure 4.7. It is 

observed that the peak D increases in greater intensity as compared to peak A after 

repeated scanning. The greater intensities of anodic peaks might be due to the 

redissolution of elemental copper (Cu0) (equation 4.4). 

 

Figure 4.7: CV for [Cu(II)L9(H2O)2] recorded at different scan rates in DMSO over 

the potential range from +1.0 to -0.5 V in the forward sweep at scan rates of 10 - 

300 mV s-1 (blue arrows represent the direction of the potential sweep). 

These assignments were made according to similar work reported by 

Darchen et al for [Cu(NH3)4]
2+. They observed a redox couple due to Cu2+/Cu1+, 

whereas the cathodic and anodic peak potential observed due to Cu1+/Cu0 occurs at 

a slower rate, due to the redissolution of copper electrodeposited which leads to the 

higher value of the peak current. [Cu(NH3)4]
2+ exhibits similar CV spectra to that of 
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[Cu(II)L9(H2O)2] and the electrode potential for the equivalent peaks were observed 

at -0.22 V (A), -0.84 V (B), -0.32 V (C), -0.15 V (D) in aqueous solution at a vitreous 

carbon electrode with respect to SCE. 266 The difference in the potentials observed 

may be attributed to 1) different ligand system, 2) electrochemical solvent and the 3) 

working electrode.      

When [Cu(II)L9(H2O)2] was scanned in the limited potential range between 

+1.0 and -0.5 V, peaks B and C disappeared, giving more well defined A and D 

peaks. The CV was recorded at different scan rates (from inner to outer) of 10, 30, 

50, 70, 90, 100, 150, 200, 250, 300 mV s-1 as indicated in figure 4.8. The peak 

separation (∆E) of A and D peaks along with ferrocene redox peaks are provided in 

table 4.1. 

A

D

start
point

 

Figure 4.8: Scan rate dependence for [Cu(II)L9(H2O)2] in DMSO over the potential 

range from +1.0 to -0.5 V in the forward sweep at the scan rate of 10 – 300 (inner- 

outer) mV s-1 (blue arrows represents the direction of the potential varied). 
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With the increase of the sweep rate the value of ∆E (Eox – Ered) also 

increases, as evident from table 4.1, which is indicative of quasi-reversible 

behaviour. The ∆E observed for one electron reversible process for ferrocene at 10 

mVs-1 is 0.08 V. While, 0.18 V for [Cu(II)L9(H2O)2] at the same scan rate associates 

with  slow electron transfer kinetics which indicates quasi-reversibility. For an ideal 

one electron reversible process (fast electron transfer) it is 0.06 V and independent 

of the scan rate.267 

Table 4.1: ∆E values of [Cu(II)L9(H2O)2] and ferrocene at different scan rate 

 

 

 

 

 

 

 

 

 

ν (mVs-1) ∆E (V) 

[Cu(II)L9(H2O)2] 

∆E (V) 

ferrocene 

10 0.18 0.08 

30 0.20 0.08 

50 0.24 0.08 

70 0.26 0.09 

90 0.27 0.09 

100 0.27 0.09 
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[Cu(II)L8(H2O)2] 

NaHL8 studied under similar conditions exhibited reversible peak potential, 

which is indicated in figure 4.9.  

start point

 

Figure 4.9: CV of NaHL8 in DMSO over the potential range from +1.0 to -1.0 in the 

forward sweep at the scan rate of 10 mV s-1 (the arrows represents the direction of 

the potential sweep). 

 

The CV wave corresponds to the redox process of NO2 is given by equation 

4.5.268 The cathodic peak at -0.86 V corresponds to the reduction of the NO2 

subsituent to NO2
- , whereas the anodic peak at -0.76 V can be attributed to the re-

oxidation of NO2
- with a  E1/2 value of -0.81 V. The peak separation (∆E) is 0.089 V 

at 10 mV s-1 and is independent of increased scan rates, which is indicative of 

reversibility. 

R-NO2 R-NO2
-

+ e-

- e-
(4.5)

 

The copper complex of NaHL8 displays a rather complicated CV as 

indicated in figure 4.10. The copper complex [Cu(II)L8(H2O)2] with R = NO2 exhibits 



                                                                                                        Chapter – 4   

 
 

156 

cathodic peaks at +0.27 V (A), -0.56 V (B) and -0.84 V (C) at a scan rate of 10 mV 

s-1. In addition, the anodic peaks are observed at -0.76 V (D), -0.16 V (E), +0.07 V 

(F), +0.06 V (G), +0.35 V (H). C and D can be attributed to the redox processes 

occurring due to NO2. Whereas, the rest of the peaks can be attributed to the metal 

based redox peaks and can be related to Cu2+/Cu1+  and Cu1+/Cu0 (equation 4.1-4.4, 

page-168) as assigned for [Cu(II)L9(H2O)2].  

A

C

H D

B

G F E

start point

 

Figure 4.10: CV of [Cu(II)L8(H2O)2]  in DMSO over the potential range from +1.0 to -

1.0 V in the forward sweep at the scan rate of 10 mV s-1 (the arrow represents the 

direction of the potential sweep) 

 The additional anodic and cathodic peaks observed for 

[Cu(II)L8(H2O)2] might be due to the presence of more than one species of copper 

complex in the DMSO solution. This may due to structural reorganisation of the 

coordination sphere taking place while going from one oxidation to different 

oxidation state.  

  [Cu(II)L8(H2O)2] was also scanned for different scan rates, similar to that of 

[Cu(II)L9(H2O)2]. As observed for later complex, the former complex displays similar 

behaviour, where the peaks tend to broaden which result in merging of bands as 

indicated in figure 4.11. Interestingly, certain species exists only at lower scan rate, 

which results in complete disappearance of peak E at higher scan rates 
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E

 

Figure 4.11: CV of scan rate dependence for [Cu(II)L9(H2O)2]  in DMSO over the 

potential range from +1.0 to -1.0 V in the forward sweep at the scan rate of 10- 300 

(inner-outer) mV s-1 (the arrows represent the direction of the potential varied) 

 Moreover, when [Cu(II)L8(H2O)2] was scanned in the limited range from +1.0 

to -0.5 V better defined A and H peaks were observed as indicated in figure 4.12. 

These peaks may be assigned as shown in equations 4.1 and 4.4, similarly 

observed for [Cu(II)L9(H2O)2] 

Cu2+ + e-    → Cu1+ ……………….. (4.1) Reduction reaction (A) 

Cu1+  → Cu2+ + e-…………………(4.4) Oxidation reaction (H) 

It can be noted that, when both the complexes are scanned in the potential 

range from +1.0 to -0.5 V, the cathodic and anodic peaks exhibit nearly symmetric 

peak heights as compared to the spectra ranging from +1.0 to -1.0 V. This can be 

due to fact that, as there is no process occurring due to Cu1+/Cu0 hence no Cu(0) 

deposition takes place which allows Cu2+/Cu1+ to take place at similar rate. However, 

the large ∆E (V) which rises with increase in the scan rate indicates quasi-reversible 

behaviour. 
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A

H

start
point

 

Figure 4.12: CV of scan rate dependence for [Cu(II)L8(H2O)2]  in DMSO over the 

potential range from +1.0 to -0.5 V in the forward sweep at the scan rate of 10 - 300 

(inner-outer) mV s-1 (arrows represent the direction of the potential varied) 

 The quasi-reversible behaviour of copper complexes observed for Cu2+/Cu1+ 

is likely to be due to the change in the coordination environment of the Cu(I) centre. 

In case of PVAH copper complexes, Cu(II) adopts either square pyramidal or 

octahedral geometry whereas Cu(I) prefers tetrahedral geometry269. Upon reduction 

to Cu(I), the rigid ligand either partially dissociates to form a Cu(I) complex as 

shown in Figure 4.13 or fully dissociates to form a Cu(I)-DMSO complex. 

Cu
O

N

O

NO

2+ Cu
OH

N

O

NO

1+

R
R

+ e-

 

Figure 4.13: Structural reorganisation from Cu(II) → Cu(I)  complex of 

PVAHs. 

It has been confirmed by X-ray crystal crystallography, as described in 

chapter-3, that Cu(I) complexes of PVAHs adopt tetrahedral geometry and are more 

stable in presence of soft donor atoms like P, whereas Cu(II) complexes mainly 

adopt square pyramidal geometry and are stable with O,N donor atoms. The 
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structural reorganisation of the coordination sphere can account for the quasi-

reversible behaviour of the investigated Cu(II) complexes of PVAHs.  

In order to compare the electrochemical behaviour of Cu(I) complexes, 

[HL8Cu2(I)(PPh3)5]PF6 and [HL9Cu2(I)(PPh3)5]PF6 were also investigated under 

similar conditions. 

4.2.2.2 Electrochemical investigation of Cu(I) complexes of PVAHs  

 Synthetic scheme for Cu(I) complexes of PVAHs which is discussed in detail 

in chapter-2 is shown in scheme 4.2. 

 

Scheme 4.2: Synthesis of Cu(I) complex of PVAHs 
 

Likewise, PVAHs ligands were investigated for their redox behaviour, PPh3 is 

also examined using CV, as it is also part of the coordination sphere of Cu(I) 

complex. The cathodic and anodic peak potentials of PPh3 are observed at -0.45 V 

and -0.37 V respectively as indicated in figure 4.14. The peaks can be assigned to 

the redox potential of the PPh3 group as indicated in equation 4.6. The ∆E value is 

N
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O
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PPh3

Ph3P
PPh3

R

PF6
 

 
 R 
L8   =  p-NO2 
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88 mV at 50 mV s-1 but increases slightly with the rise in the scan rate which is 

indicative of quasi-reversibility.  

PPh3
+ e-

- e-

(4.6)PPh3
 

start point

 

Figure 4.14: CV of PPh3 in DMSO over the potential range from +0.5 to -0.5 V in the 

forward sweep at the scan rate of 30 mV s-1 (the arrows represents the direction of 

the potential sweep) 

The CV for [Cu(I)2HL9(PPh3)5]PF6 recorded at a scan rate of 10 mV s-1 is 

shown in figure 4.15. The reverse scan direction is followed for Cu(I) complexes, 

hence the start and end potential (E1) is -1.0 V and the turning potential E2 is +1.0 V. 

The CV of the copper complex [HL9Cu2(I)(PPh3)5]PF6 exhibits two cathodic peaks at 

+0.24 V (A) and -0.67 V (B), whereas the anodic peak is observed at +0.52 V (C), 

when scanned in the range from –1.0 to +1.0 V. 
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start point
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C

B

 

Figure 4.15: CV of [Cu(I)2HL9(PPh3)5]PF6 in DMSO over the potential range from -

1.0 to +1.0 V in the forward sweep at the scan rate of 10 mV s-1 (arrows represent 

the direction of the potential sweep) 

Peaks A and C can be assigned to the metal centred redox process of the 

complex. The peak A may be assigned to the reduction of Cu(II)  to Cu(I) (equation 

4.1), whereas the peak C may be attributed to the oxidation Cu(I) to Cu(II) (equation 

4.2). The irreversible cathodic peak B can be assigned to the formation of Cu(0) 

(equation 4.3). 

Cu(II) + e-    → Cu(I) ……………….. (4.1) Reduction reaction (A) 

Cu(I) → Cu(II) + e- ………………….. (4.2) Oxidation reaction (C) 

Cu(I) + e-   → Cu(0)…………………..(4.3) Reduction reaction (B) 

Similar results were obtained for the Cu(I) precursor complex, 

[Cu(I)(CH3CN)4]PF6
 and the Cu(I) complex synthesized by Ouali and group.270 The 

Cu(I) complex shown in figure 4.16 displayed a quasi-reversible behaviour for 

Cu1+/Cu2+  and the cathodic peak corresponding to the oxidation of  Cu1+→ Cu2+ (C)  

was observed at 0.44 V, whereas the irreversible reduction process for Cu1+→ Cu0  

occurs at -1.35 V (B). Furthermore, Ouali and group also observed that 

corresponding processes for the precursor complex, [Cu(I)(CH3CN)4]PF6
  was 

observed towards more positive potential, at +1.10 V (C) and -0.80 V (B), 

respectively, versus SCE in acetonitrile.270  
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Figure 4.16: Ouali’s Cu(I) complex270 

The intensity of the peaks of [HL9Cu2(I)(PPh3)5]PF6 increases as the scan 

rate increases, which can be observed from the scan rate dependence plots, as 

shown in figure 4.17. Going towards higher scan rates leads to shifting of the peak 

C towards more positive potentials and also leads to the broadening of the peaks, 

similarly observed for Cu(II) complexes. This might also be due the presence of 

intermediate at higher scan rates resulting from the structural reorganisation taking 

place while going from Cu1+→ Cu2+. 

 

Figure 4.17: CV of scan rate dependence for [HL9Cu2(I)(PPh3)5]PF6 in DMSO over 

the potential range from +1.0 to -1.0 in the forward sweep at the scan rate of 10- 

300 mV s-1 (arrow represents the direction of the potential varied) 

Figure 4.18 shows a comparison between the CVs of the Cu(I) complex 

[HL9Cu2(I)(PPh3)5]PF6 (blue spectrum, peaks with suffix a) and Cu(II) (red spectrum, 

peaks with suffix b) complex [Cu(II)L9(H2O)2]. As the ∆E in these complexes are 

quite high (0.22 V), the electron transfer processes in these complexes are  quasi-

reversible. Figure 4.18 also indicates that the metal based peaks corresponding to 
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Aa/Ab, Ba/Bb and Ca/Cb, of Cu(I) and Cu(II) complexes occur at nearly similar 

potentials. The peak potentials for [Cu(I)2HL9(PPh3)5]PF6 and [Cu(II)L9(H2O)2] 

reported versus SCE are listed in table 4.2. 

start point for
blue spectra

start point for
red spectra

Aa Ab

Bb

Cb

Ba

Ca
Db  

 

Figure 4.18: Comparison of the CVs of [Cu(II)L9(H2O)2] (-) and 

[Cu(I)2HL9(PPh3)5]PF6 (-) in DMSO over the potential range from +1.0 V to -1.0 V at 

the scan rate of 10 mV s-1 (the arrows represent the direction of the potential varied) 

Table 4.2: Electrode peak potentials [Cu(I)2HL9(PPh3)5]PF6 and [Cu(II)L9(H2O)2] 

reported versus SCE, (a measured versus Ag/AgCl) 

 Peaks [Cu(I)2HL9(PPh3)5]

PF6  (V)  

Peaks Cu(II)L9(H2O)2 

(V) 

Aa +0.24 (0.29a) Ab +0.26 (0.31a) Cathodic peaks in 

mV Ba -0.67 (-0.62a) Bb -0.64 (-0.59a) 

Ca +0.52 (0.56a) Ca +0.56 (0.61a) Anodic peaks in 

mV   Da +0.18 (0.22a) 

Electrochemical studies were also performed on the Cu(I) and Cu(II) 

complexes of NaHL8 under similar conditions. The overlaid CV spectra of 

[HL8Cu2(I)(PPh3)5]PF6 (red spectrum with suffix a) and [Cu(II)L8(H2O)2]  (blue 

spectrum with suffix b) are shown in figure 4.19 and the peak potentials are listed in 
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table 4.3. The metal based peaks can be assigned to the oxidation and reduction of 

the Cu centre as described earlier. There are additional peaks as compared to the 

copper complexes of NaHL9. The peaks Ca/Cb and Da/Db in case of Cu(I)/Cu(II) 

complex can be assigned to the ligand based NO2 redox peaks. Electrode peak 

potentials of [HL8Cu2(I)(PPh3)5]PF6 and Cu(II)L8(H2O)2 reported versus SCE are 

listed in table 4.3. 

start point of 
blue spectrum

start point of 
red spectrum

Aa

Da

Ea Gb

Cb

Bb

Ab

Fb

Eb

Ba Ca

Db

 

Figure 4.19: Overlaid CV of Cu(II)L8(H2O)2 (-) and [Cu(I) 2HL8(PPh3)5]PF6 (-) in 

DMSO over the potential range from +1.0 V to -1.0 V at the scan rate of 10 mV s-1  

(blue/red arrow represents the direction of the potential varied) 

Table 4.3: Electrode peak potentials [Cu(I)2HL8(PPh3)5]PF6and Cu(II)L8(H2O)2 

reported versus SCE, (a measured versus Ag/AgCl) 

 Peaks [Cu(I)2HL8(PPh3)5]

PF6PF6 (V) 

Peaks Cu(II)L8(H2O)2 

(V) 

Aa +0.26 (0.31a) Ab +0.27 (0.32a) 

Ba -0.47 (-0.43a) Bb -0.56 (-0.52a) 

Cathodic peaks in 

mV 

Ca -0.91 (-0.86a) Cb -0.84 (-0.79a) 

Da -0.83 (-0.79a) Db -0.76 (-0.71a) 

Ea +0.45 (0.50a) Eb +0.35 (0.40a) 

  Fb +0.07 (0.18a) 

Anodic peaks in 

mV 

  Gb -0.16 (-0.18a) 
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When the voltammogram was scanned in the limited potential range 

between –1.0 and +0.5 V, it gave more well defined Aa/Ca and Aa/Ea peaks for 

[Cu(I)2HL9(PPh3)5]PF6 and [Cu(I)2HL8(PPh3)5]PF6, respectively, similarly observed 

for their respective Cu(II) complexes. As expected, with the increase in the scan 

rate, the value of ∆E also increases significantly, strongly suggesting quasi-

reversibility. The values are given in table 4.4. 

Table 4.4: ∆E values for [Cu2(I)HL9(PPh3)5]PF6and [[Cu2(I)HL8(PPh3)5]PF6reported 

versus SCE, (a measured versus Ag/AgCl) 

 Scan rate 

ν (mVs-1) 

∆E (V) 

[Cu(I)2HL9(PPh3)5]PF6 

∆E (V) 

[Cu(I)2HL8(PPh3)5]PF6 

1 10 0.224 0.220 

2 30 0.275 0.292 

3 50 0.279 0.308 

4 70 0.309 0.330 

5 90 0.317 0.335 

6 100 0.334 0.335 

 

The overlaid spectra of [Cu(I)2HL8(PPh3)5]PF6 (red spectrum), 

[Cu(II)L8(H2O)2] (blue spectrum) and NaHL8 (purple spectrum) in the region -0.2 V 

and -1.0 V are shown in figure 4.20. All the spectra were scanned in the forward 

sweep in order to compare the NO2 reduction potential and the redox peak 

potentials for NO2–subsituent are listed in table 4.5. 
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Figure 4.20: Overlaid CVs of [Cu(I)2HL8(PPh3)5]PF6 (-), [Cu(II)L8(H2O)2]  (-) and 

NaHL8 (-) in DMSO over the potential range from -0.2 V to -1.0 V at the scan rate of 

10 mV s-1 (arrow represents the direction of the potential varied) 

Table 4.5: Redox peak potentials of NO2 reported versus SCE, (a measured versus 

Ag/AgCl) 

 NO2 in 

[Cu(I)2HL8(PPh3)5]PF6 

(V)    

NO2 in 

Cu(II)L8(H2O)2 

(V) 

NO2 in NaHL8 

(V) 

Ferrocene (V)  

Ec  - 0.91 (-0.86a) - 0.84 (-0.79a) - 0.91 (-0.86a) + 0.47 (0.51a) 

Ea  - 0.83 (-0.79a) - 0.76 (-0.71a) - 0.82 (-0.77a) + 0.39 (0.43a) 

∆E  0.071 0.078 0.089  0.079 

E1/2  - 0.87 (-0.04a) - 0.80 (-0.75a) - 0.87 (-0.76a) + 0.43 (0.47a) 

 

The ∆E value suggests that the aromatic NO2–substituent undergoes a one 

electron reduction process to give NO2
- 271. In Cu(I) complex, the E1/2  for NO2 is 

similar to that of NaHL8. Whereas, in case of Cu(II) complex they are shifted 

towards positive potentials, implying that the NO2 is more easily reduced in the 

Cu(II) complex than in the Cu(I) complex.  

It is noteworthy, that the two Cu(I) centres in the dimeric copper complex 

appear to exhibit identical redox properties, as no distinguishable redox processes 
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could be observed. The higher ∆E value for Cu(I) complex of NaHL9 (0.22 V) and 

Cu(I) complex of NaHL8 (0.22 V) can be due to the quasi-reversible behaviour 

and/or presence of more than one Cu(I) centres. Furthermore, when compared with 

investigated Cu(II) and Cu(I) complexes, it is observed that the CVs of the Cu(I) 

complexes have fewer redox waves than the corresponding Cu(II) complexes. This 

may indicate that the Cu(I) complexes are less flexible in adopting intermediate 

geometries in the solution as compared to the Cu(II) complexes. This is perhaps 

likely due to bulkier PPh3 groups surrounding Cu(I) centre, making it difficult to 

change geometry drastically during structural reorganisation of the copper centre. 

Hence, the metal based redox waves observed in Cu(I) complexes are more well 

defined as compared to the  broad peaks of Cu(II) complexes. 

Both the Cu(I) complexes of NaHL8 and NaHL9 show similar behaviour as 

can be seen from figure 4.21, when scanned in the limited potential range of +1.0 

and 0.5 V. The voltammogram in red corresponds to free PPh3 and the peaks can 

be assigned to the processes related to PPh3 cation (equation 4.6).272-273 The 

cathodic and anodic peak potentials of PPh3, observed at -0.45 V and -0.37 V, 

respectively, are absent when the phosphine is coordinated to the Cu(I) centre.  

 

 

Figure 4.21: Overlaid CV of [Cu(I)2HL8(PPh3)5]PF6 (-), [Cu(I)2HL9(PPh3)5]PF6 (-) and 

TPP (-) in the DMSO over the potential range from +1.0 V to -0.6 V at the scan rate 

of 50 mV s-1 
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4.2.2.3 Comparing electrode potentials of Cu(II) complexes of PVAHs 

The Cu(II) complexes of the other ligands NaHL1, NaHL3, NaHL10, 

NaHL12, NaHL16, NaHL21 displayed electrochemical behaviour similar to 

[Cu(II)L8(H2O)2] and [Cu(II)L9(H2O)2].  

Anodic and cathodic peak potentials of selected Cu(II) complexes of PVAHs 

along with CuCl2 are listed in table 4.6. The anodic peak potential and the cathodic 

potential for the pyruvate hydrazone copper complexes are observed in the range of 

0.23 V-0.25 V and 0.41-0.52 V at a scan rate of 100 mV (table 4.6). However, in 

case of CuCl2, the potentials are observed at 0.22 V and 0.53 V, respectively. The 

larger range for cathodic peak potentials (0.41-0.52 V) is due to the broadness of 

the peak associated with Cu2+→ Cu1+. The anodic peak potential assigned to Cu1+→ 

Cu2+ for CuCl2 in DMSO falls below 0.20 V when compared with pyruvate hydrazone 

copper complex. Hence, it is quite evident that the ligand environment around the 

Cu(II) centres in free Cu ion (CuCl2) and the Cu(II) complexes of PVAHs is not 

same.                                                                                                                                                                                                                            

 Most of the studied copper complexes give similar Epa values at a particular 

scan rate and these differ significantly from that of CuCl2. Hence, the redox 

potentials of the Cu(II) complexes of investigated PVAHs are similarly affected by 

their surrounding ligand system and the different substituents on the aromatic ring of 

the PVAHs does not have significant influence on the electrode potentials. Similar 

observations were reported by Tas and group, where the E1/2 values of copper 

Schiff base complexes were independent of substituents on the aromatic ring, falling 

in the range 0.86 - 0.88 V vs SCE in DMSO.274  
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Table 4.6: Epa and Epc values for copper complexes at a scan rate of 100 mV s-1 

reported versus SCE 

Molecular 

formula 

R Epa (V) Epc (V) 

Cu(II)Cl2.2H2O  0.18 0.49 

[Cu(II)L1(H2O)2] H 0.23 0.39 

[Cu(II)L3(H2O)2] m-OH 0.23 0.41 

[Cu(II)L10(H2O)2] m-Br 0.23 0.41 

[Cu(II)L12(H2O)2] m-OCH3 0.23 0.44 

[Cu(II)L21(H2O)2] Heterocyclic N at 2,5 0.23 0.39 

[Cu(II)L8(H2O)2] p-NO2 0.23 0.42 

[Cu(II)L9(H2O)2] p-CH3 0.25 0.52 

On the other hand, Chen and group found that the electron withdrawing nitro 

group and the electron donating methyl group significantly affects the copper centre 

electrode potentials. The electrochemical properties of square pyramidal Cu(II) 

Schiff base complexes containing 2-aminopyridine-2-aminobiphenyl (N3O-mpy) 

ligand (figure 4.22)  were investigated against in acetonitrile Ag/AgCl electrode. The 

E1/2 values for the quasi-reversible peak potentials for the Cu2+/ Cu1+ wave for 

complex-1 (with CH3)  0.24 V, whereas for complex -2 (NO2) it is 0.54 V against 

SCE .275 While, the E1/2 values for Cu(II) complexes of PVAHs are 0. 32 V (CH3) and 

0.38 (NO2). The smaller change observed in case of Cu(II) complexes of PVAHs as 

compared to Cu(II) complexes of N3O-mpy can be attributed to ligand system or 

electrochemical solvent used. 

N

N

H
N

X

OH
 

X= CH3, NO2 

Figure 4.22: Structure of 2-aminopyridine-2-aminobiphenyl (N3O-mpy) 275 
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Due to the similarity of the Cu-centred redox processes in the complexes 

under investigation, further studies were required to ascertain the identity and 

confirm the stability of the complexes in DMSO solution. Hence, electron 

paramagnetic resonance (EPR) studies were carried out on selected Cu(II) 

complexes of PVAHs which will be discussed further in the following section. 
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4.3 Electron Paramagnetic Resonance (EPR) studies: 

Cu(II) contains one unpaired electron in the 3d shell, with S = ½, hence it is 

suitable for EPR spectroscopy.  The spectra discussed below were recorded in 

frozen DMSO at 77K and were referenced against the standard 

diphenylpicrylhydrazyl (DPPH) radical at a concentration of 1 mM. The EPR data of 

frozen solutions of selected complexes, [Cu(II)L8(H2O)2], [Cu(II)L13(H2O)2], 

[Cu(II)L16(H2O)2], [Cu(II)L14(H2O)2] were compared with the spectra of CuCl2 and 

CuSO4  recorded under the same conditions. 

4.3.1 EPR spectra of CuSO4 and [Cu(II)L14(H2O)2] 

63,65Cu(II), has nuclear spin quantum number (I) of  3/2, hence it should give 

rise to 4 hyperfine splittings, as given by 2nI+1.276 This is true for Cu(II) complexes 

when there are no interactions with the neighbouring atoms and is observed for 

CuSO4 and CuCl2. The EPR spectrum of CuSO4 is given in Figure 4.23. Whereas, 

in case of the studied Cu(II) complexes of PVAHs the spectra only show three lines. 

The EPR spectrum of [Cu(II)L14(H2O)2] is shown as a representative example in 

figure 4.24. The spectrum indicates coordination of the Cu(II) centre to the donor 

atoms of PVAHs. 
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Figure 4.23: X-band EPR spectrum of a frozen solution of CuSO4 in DMSO 
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Figure 4.24: X-band EPR spectrum of a frozen solution of [Cu(II)L14(H2O)2] in 

DMSO 

4.3.2 Comparison of EPR spectra of investigated Cu(II) complexes of PVAHs 

The overlaid spectra of Cu(II) complexes of ligands NaHL8, NaHL13, 

NaHL14 and NaHL16 are shown in figure 4.25. It is evident that electron donating or 

electron withdrawing substituents do not have a significant effect on the Cu(II) 

centre, resulting in similar EPR spectra. [Cu(II)L16(H2O)2] gives a less intense 

spectrum as compared to other three complexes. This can be due to the 

precipitation of the complex in the polar aprotic DMSO solution as it possesses 

hydrophobic tertiary group on the aromatic ring. 

The EPR parameters g║ and g⊥ can be calculated using the equation, g = 

hν/ (ßH), where h is the Planck constant, ν is the microwave frequency at which the 

EPR machine operates , H is the resonance magnetic field (G) and ß is the Bohr 

magneton. A║ is the distance between two parallel peaks as shown in figure 4.24, 

whereas A⊥ cannot be determined as the peaks were not very well resolved for 

perpendicular lines.   
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Figure 4.25: Overlaid X-band EPR spectra of [Cu(II)L8(H2O)2], [Cu(II)L13(H2O)2], 

[Cu(II)L16(H2O)2], [Cu(II)L14(H2O)2] 

The EPR parameters (A║, g║ and g⊥ value) are listed in table 4.7. It can be 

seen that both CuSO4 and CuCl2 have a value of g║ ≥ 2.3, whereas for the 

complexes under study the value g║ < 2.3. Kivelson and co-workers have reported 

that the compounds having g║ ≥ 2.3 are ionic in nature, while those with g║ < 2.3 

have covalent character277. In addition the EPR parameters for CuSO4 and CuCl2 

are very similar, which might be due to formation of CuXDMSO (X=Cl/ SO4) 

solvated species in DMSO278.  

It is established that, the hydrazones hydrolyse under extreme acidic 

conditions, which may lead to decomplexation of the copper. This was also reflected 

in the EPR spectra of [CuL13(H2O)2] at acidic pH < 1.5. In acidic pH, the spectra 

started to shift towards free Cu (CuSO4) as indicated in figure 4.26. Furthermore, 

the g and A values are similar to those of CuCl2 and CuSO4, which indicates that the 

DMSO coordinates to the free Cu(II) ion once its released from the ligand. In order 

to throw more light on the stability of the copper complexes, detailed investigation of 

selected PVAHs and their copper complexes at different pH conditions is discussed 

in chapter-5. 
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Figure 4.26: Overlaid X-band EPR spectra of CuSO4 (red), [Cu(II)L13(H2O)2] 

(green), and [Cu(II)L13(H2O)2] at pH < 1.5 (black) 

 

The EPR parameters of Cu(II) complexes listed in table 4.7 are in consistent 

with the reported literature values for Cu(II) Schiff base complexes.279-280 The 

expected g value for a free unpaired electron is 2.0023. Deviation of g value from 

2.0023 in metal complexes indicates the coupling of metal orbital’s containing 

unpaired electron with either filled or empty ligand orbitals involved in molecular 

orbitals. 
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Table 4.7: EPR data for selected for selected Cu(II) complexes of PVAHs 

Complex R g⊥ g║ A║ x 10-4 

cm-1 

f(α) 

cm 

[CuL8(H2O)2] p-NO2 2.062 2.273 159 143 

[CuL16(H2O)2] p-tert-

butyl 

2.077 2.293 161 142 

[CuL14(H2O)2] p-CF3 2.068 2.275 159 143 

[CuL13(H2O)2] p-OCH3 2.064 2.279 160 142 

[CuL13(H2O)2] at 

pH >1.5 

p-NO2 2.083 2.360 132 179 

CuSO4 - 2.083 2.400 129 186 

CuCl2 - 2.090 2.400 127 189 

Furthermore, g║ > g⊥ > 2 indicates a tetragonally elongated Cu(II) complex 

which is expected due to Jahn-Teller distortion along the z axis.281 X-ray crystal 

structures of square pyramidal Cu(II) complexes discussed in chapter-3 gives a 

evidence in the solid state structure, where the apical coordinate bond distance is 

considerably longer than the basal Cu-O/N bond distances. In addition, g and A can 

also be useful in elucidating the degree of tetrahedral distortion of square planar 

complexes in solution. The degree of distortion is given by the equation 4.7. 

f(α) = (g║/ A║)……..(4.7) 

For ideal square planar complexes the values lies in the range 110-120 cm, 

while 130-150 cm indicates slight to moderate distortion and 180-250 cm signifies 

large distortion. The values for Cu(II) complexes PVAHs is around 150, which 

indicates that, there is a moderate distortion from the planar complex due to rigidity 

of the tridentate hydrazone ligand. However, for copper salts (CuSO4 and CuCl2) it 

is ∼ 200 cm-1 which implies that the copper salts show considerable distortion which 

may be accounted to the flexibility of monodentate ions (Cl-, SO4
2-, solvent).282  
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4.4 Summary of Chapter 4 

The investigated PVAH ligands are redox inactive except for NaHL8, which 

exhibits reversible redox peaks corresponding to the -NO2 subsituent. The 

electrochemical studies indicate that there are copper centred redox processes 

corresponding to the conversion of Cu(II) to Cu(I) and vice-versa. Peaks 

corresponding to Cu1+/Cu0 have also been observed, where the investigated Cu(II) 

complexes are reduced to Cu(0), through the Cu(I) intermediate. The redissolution 

of Cu(0) deposited on the electrode surface leads to higher anodic peak current as 

compared to its corresponding cathodic peak current. The corresponding peaks are 

observed in both the Cu(I) and Cu(II) complexes, but they are more well defined in 

case of the Cu(I) complexes.  

The ∆E value of Cu(I) and Cu(II) complexes corresponding to Cu2+/Cu1+ 

indicates quasi-reversible behaviour and also the additional multiple peaks 

observed may be accounted to the presence of more than one species present in 

solution. This is likely due to structural reorganisation taking place within the 

coordination sphere whilst changing from a Cu(II) square-pyramidal to a tetrahedral 

Cu(I) complex geometry. The Epa values of Cu(II) complexes indicate that the PVAH 

ligand affects the metal-based redox peaks, irrespective of subsituent on the 

aromatic ring. 

Similarly, the EPR parameters, A║, g║ and g⊥ are similar for studied Cu(II) 

complexes of PVAHs, but distinct from ‘free’ Cu(II) ions (CuCl2, CuSO4). Hence, it 

can be concluded from the EPR studies that the ligands remain bound to the Cu(II) 

centre, even though there is large excess of DMSO present in solution.  

 

 



 
 

 
 

 
 

Chapter-5 
Stability studies and 

Antitubercular studies 

  

 

 

 

 

 

 

 

 

 



                                                                               

 

 



  Chapter – 5    

 177 

5.0 Stability studies and Antitubercular activity 

5.1 Introduction 

 Pyruvate hydrazones (PVAHs) and their metal complexes have been 

extensively studied in the past for their coordination properties,227,229,283-285 however, 

little is known about their antitubercular activity. Recent computational studies have 

illustrated that pyruvate hydrazones may inhibit the active site of isocitrate lyase of 

M. tuberculosis (Mtb).84 As discussed in chapter-1, several hydrazones derived from 

other aldehydes/ketones and their respective metal complexes have previously 

been investigated for their potential activity against Mtb.78,80-81,85-87  

The presence of O, N and S donor sites in these hydrazone ligands allows 

the chelation to essential metal ions thereby disrupting physiological processes 

relying on these essential metal ions in bacteria. For example sequestration of 

Fe(III) or Fe(II) can lead to iron starvation in bacteria.79 Metal-containing 

antitubercular agents have been reported to possess excellent antimycobacterial 

activity, with some complexes even retaining activity against resistant strains.286 

Since certain bacterial resistance mechanisms are modulated by intracellular 

oxidative stress,41 the redox activity of the metal centres of metallodrugs is 

significant. 

This chapter describes the testing of pyruvate hydrazones (PVAHs) and their 

Cu(II) and Zn(II) complexes against Mtb. grown in Middlebrook 7H9 medium. All the 

antitubercular studies discussed in this chapter were done by Dr. Manjula 

Sritharan’s research group at the Department of Animal Sciences, University of 

Hyderabad, India. Furthermore, the compounds exhibiting promising antitubercular 

activities in terms of low minimum inhibitory concentration (MIC) values were further 

screened under high iron (8 µg Fe(II)/mL) and low iron (0.02 µg Fe(II)/mL) 

conditions.  

As discussed in chapter-2, the azomethine bond in hydrazones is more 

prone to hydrolysis under extreme acidic and basic conditions. In acidic conditions, 

the nitrogen of the azomethine bond becomes protonated, which makes the carbon 

more susceptible to the attack by a water molecule and in turn cleaves the C=N 

bond. In basic conditions, the electrophilic azomethine carbon can be attacked by a 

nucleophile (OH-) which makes it prone to hydrolysis. In order to gain insight into the 

stabilities of the compounds in aqueous solution, their UV-visible spectra were 
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recorded at a range of pH values. Moreover, the stability of the compounds was 

also examined in PBS (phosphate buffered saline) whilst maintaining the solution at 

37 ° C and at the biological pH of 7.4, which could po ssibly allow a comparison with 

physiological conditions in human plasma. 287 

5.2 Stability studies of PVAHs and CAHs and their metal complexes 

at different pH 

A drug can be administered into the body using different routes, including 

oral, injection, epithelial and inhalation. The preferred method is usually oral 

administration of a drug, which involves passing the drug through the 

gastrointestinal tract (GIT) consisting of mouth, throat, stomach and intestines. The 

pH varies at different parts of the body, for example in the mouth the pH of saliva is 

slightly acidic to neutral (pH 6.5 to pH 7.5). In the lower stomach it is extremely 

acidic (pH 1.5), whereas in the intestines the pH ranges from pH 5 – 7. Oral 

bioavailability then refers to the fraction of the orally taken drug reaching the blood 

(pH 7.4). Bioavailability is the term used in drug pharmacokinetics, which implies the 

concentration of a drug reaching the blood supply after absorption, distribution, 

metabolism and excretion, collectively abbreviated as ADME.288 Hence, the stability 

of a compound at different pH plays an important role in drug discovery.  An orally 

effective drug should be stable at the extremely low pH of the stomach; hence the 

stability of a compound under different pH conditions plays a vital role in deciding 

the mode of administration of a drug.  

Hydrazones of biological relevance have been investigated before in order to 

determine their pKa values and stability towards hydrolysis in basic and acidic 

conditions. UV-Vis studies conducted by Richardson et al. indicate that the rate of 

hydrolysis of pyridoxal isonicotinic hydrazone (PIH) and pyridoxal benzoyl 

hydrazone (PBH) occurs at a faster rate in extreme acidic and basic conditions, 

whereas it is very slow in neutral pH.289 Potentiometric titrations revealed that the 

pKa of the amide proton of these hydrazones varies from 9.94 to 11.40, depending 

on the R group present in the respective hydrazone.290 These type of ligands can 

strongly bind to Cu(II), for example the formation constant (Kc) of the Cu(II)-

salicaldehyde acetylhydrazone complex is reported to be 16.2, as expected for a 

Cu(II) complex of a tridentate ligand.291    
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PVAHs, CAHs and their metal complexes are designed for their 

antitubercular potential, hence it is essential to investigate the stability of these 

compounds. Therefore, the behaviour of selected compounds from the PVAH, CAH 

series, mainly those which exhibited potential antitubercular activity, were 

investigated at different pH. The change was monitored using UV-visible absorption 

spectroscopy. As discussed above, hydrazones hydrolyse at a faster rate at 

extremely low and high pH, hence two sets of titrations were performed. The 

compounds under investigation (0.05 mM for PVAHs and 0.02 for CAHs) were 

dissolved in water and were titrated with 0.01 M HCl (acid titration) and 0.01 M 

NaOH (base titration) and the spectral changes were recorded manually using a 

UV-vis spectrophotometer at regular intervals. Experimental details of the UV-vis 

studies can be found in chapter-7. However, for those compounds which exhibited 

limited solubility in water, a mixture of solvents (DMSO/MeOH: H2O) were used. 

5.2.1 Stability studies of NaHL20 and its Cu(II) and Zn(II) complexes 

NaHL20 and its respective Cu(II) and Zn(II) complexes were investigated for 

their stability in water at pH values ranging from 1 to 12. Overlaid UV spectra of 

NaHL20 and its respective Cu(II) and Zn(II) complexes along with the starting 

material, pyrazinoic acid hydrazide, are depicted in figure 5.2, whereas the 

corresponding structures are provided in figure 5.1. The spectra were recorded in 

HEPES buffer at pH 7.4 with concentration of 0.05 mM. 
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Figure 5.1: Structures of a) the starting hydrazide b) the hydrazone NaHL20 c) the 

Cu(II) complex and d) the Zn(II) complex of NaHL20 
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Both the hydrazone (NaHL20) and its starting hydrazide (pyrazinoic acid 

hydrazide) exhibit two distinct bands at 212 nm and 270 nm. The absorption 

maxima (λmax) for the electronic transitions observed at 212 nm for NaHL20 (ε= 19.5 

x 103 dm3 mol-1 cm-1) and pyrazinoic acid hydrazide (ε= 11.2 x 103 dm3 mol-1 cm-1) 

can be assigned to π-π* transitions. The higher absorption coefficient of NaHL20 

may result from the greater π-conjugation of the hydrazone due to the additional 

azomethine bond (C=N) compared to the hydrazide. Furthermore, the band at 270 

nm can be attributed to π-π* transitions of the C=O bond in the hydrazide (ε= 9.98 x 

103 dm3 mol-1 cm-1). The resultant broad band at 270 nm in NaHL20 can be 

assigned to overlapped C=N and C=O π-π* transitions (ε= 15.7 x 103 dm3 mol-1 cm-

1).  

 

Figure 5.2: Electronic absorption spectra recorded for hydrazide (black spectrum), 

NaHL20 (red spectrum) and its Cu(II) (green spectrum) and Zn(II) complex (red 

spectrum) in HEPES buffer at pH 7.4 and a concentration of 0.05 mM 

In the spectrum of the Zn(II) complex, [Zn(II)(HL20)2)] (blue spectrum, figure 

5.2), two absorption bands attributed to π-π* transitions were observed at 268 nm 

(ε= 7.45 x 103 dm3 mol-1 cm-1) and 324 nm (ε= 13.5 x 103 dm3 mol-1 cm-1). Although, 

the π-π* transitions at 268 nm exhibits a slight blue shift as compared to NaHL20 

(270 nm), the π-π* transitions show a small red shift and appear at 215 nm (ε= 13.5 

x 103 dm3 mol-1 cm-1).6 In the Cu(II) complex, [Cu(II)L20(H2O)2] (green spectrum, 
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figure 5.2), an additional moderately intense band is observed at 346 nm (ε= 5.01 x 

103  dm3 mol-1 cm-1), which might be due to ligand to metal charge transfer (LMCT) 

transitions and can be assigned to O→Cu(II), which is usually observed in copper 

Schiff base complexes.7, 8 Moreover, Cu(II)L20(H2O)2 exhibits similar π-π* transitions 

at 270 nm (ε= 13.3 x 103  dm3 mol-1 cm-1) to that of NaHL20.  

5.2.2.1 Stability studies of NaHL20 at different pH 

NaHL20 (0.05 mM) dissolved in water, exhibits the absorption maximum 

(λmax) at   270 nm (ε= 11.46 x 103 dm3 mol-1 cm-1) as depicted in figure 5.3. The 

absorbance at 270 nm was monitored in order to investigate the stability of NaHL20 

in solution as this electronic absorption band is associated with π-π* of azomethine 

bond as discussed above. A change of pH from 4.34 to 1.48 does not seem to have 

a significant effect on the position of the ligand absorption band, as seen in figure 

5.3. As the absorption maximum of the π-π* transitions band for the parent 

hydrazide and its respective hydrazone are similar, it cannot be accurately 

determined from the band position when hydrolysis occurs. Additionally, the 

hydrolysis may also occur when dissolved in water, as water triggers the hydrolysis 

reaction. 
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Figure 5.3: Electronic absorption spectra recorded for NaHL20 during acid titration 

using 0.01 M HCl in the pH range 1.4-4.4 
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However, as can be seen from figure 5.3, there is a decrease in the intensity 

of the band at 270 nm as the pH is lowered (pH 1.48, figure 5.3). In addition, the 

broad band tends to get narrower going towards extreme acidic conditions 

comparable to parent hydrazide. This indicates hydrolysis at low pH. The compound 

remains hydrolysed even after back titrating to extreme basic pH 10.58 (dashed 

spectrum 10.58B, figure 5.3) indicating an irreversible process. To gain more insight 

into hydrolysis of NaHL20, a plot of absorbance at 300 nm is illustrated in figure 5.4. 

The decrease in the absorbance values at 300 nm towards acidic pH values (pH 

4.33 → pH 1.98) indicates hydrolysis of NaHL20 to the starting hydrazide. 
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Figure 5.4: Titration curve obtained for NaHL20 at 300 nm during acid titration in the 

pH range 1.4-4.4 

NaHL20 was also investigated under basic conditions. The spectra recorded 

with increasing pH (basic) are shown in figure 5.5, which indicates that there is not a 

significant change in the overall shape of the UV spectra up to a pH of 

approximately 10. 
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Figure 5.5: Electronic absorption spectra recorded for NaHL20 during base titration 

using 0.01 NaOH in the pH range 4.3-11.6 

The absorbance at 310 nm tends to increase with increase in pH above pH 

10, as indicated in figure 5.6. However, the original spectra is regained when the 

solution is back titrated to 5.73 (dashed spectrum 5.73B, figure 5.5). This indicates 

that the chemical process is reversible and may be associated with the 

deprotonation of the hydrazone. The pKa of  the amide proton (N-H) is around 11 

and is consistent with the literature. 290 
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Figure 5.6: Titration curve obtained for NaHL20 at 310 nm during base titration 

using 0.01 NaOH in the pH range 4.3-11.6 
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It can be concluded that NaHL20 undergoes irreversible hydrolysis in 

aqueous solution below pH 4, whereas it remains stable under basic conditions. 

These observations confirm earlier reports on hydrolysis under acidic conditions.289 

Moreover, hydrazones with N as heteroatom and also those with electron-

withdrawing groups on the aromatic ring undergo hydrolysis at a faster rate than 

other hydrazones possessing electron donating group. This was illustrated by Buss 

and Ponka180, where they studied the stability of acyl hydrazones in PBS buffer at 

pH 7.4 and 37 °C. Hydrazones possessing an isonicotinic ring (PIH) exhibit rate of 

hydrolysis at 8.2 x 103 min-1. While the hydrazone possessing benzoyl hydrazone 

ring (PBH) have a rate constant of 2.1 x 103 min-1. This is due to the electron 

withdrawing effect of the pyridine ring, which is expected to decrease electron 

density on the imine carbon atom through the highly conjugated system.  

The hydrolysis occurs at C=N imine bond, as confirmed by Raines and his 

group.182 Raines et al. also observed that the rate of hydrolysis is very slow at pH 7. 

The mechanism of hydrolysis of PVAHs is given in scheme 5.1. The reaction is 

initiated by the addition of a proton to the azomethine nitrogen, followed by an 

attack of a water molecule on the electrophilic azomethine carbon. The reaction 

gives rise to the starting materials sodium pyruvate and hydrazide via the formation 

of a hemiaminal intermediate and can be classified as a reversible mechanism. 
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Scheme 5.1: Mechanism for hydrolysis of PVAHs182 
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5.2.1.2 Stability of the [Cu(II)L20(H2O)2] at different pH 

The stability of the Cu(II) complex of NaHL20, [Cu(II)L20(H2O)2], was also 

investigated at a range of different pH values. The band with absorption maximum 

(λmax) at 346 nm at pH 5.80, decreases in intensity whilst titrating from pH 5.8 to 

pH 2.46, as shown in figure 5.7. This decrease might be due to the dissociation of 

the copper complex.  
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Figure 5.7: Electronic absorption spectra recorded for [Cu(II)L20(H2O)2] during acid 

using 0.01 HCl titration in the pH range 5.7 –2.4 

 A back titration from pH 2.46 to pH 5.78 (dashed spectrum 5.78B, figure 

5.7) was performed. The spectra taken at 5.78 resembles to that of obtained  at pH 

2.46 which confirms that the copper complex remains dissociated once acidified. 

This can be accounted to the hydrolysis of the ligands followed by decomplexation 

of copper complex. As the ligand hydrolysis is irreversible, as can be gathered from 

the NaHL20 pH studies, the dissociation of [Cu(II)L20(H2O)2], which may be 

associated with the hydrolysis of the ligand can also be classified as an irreversible 

process. 

Whilst titrating towards basic pH the overall shape of the UV spectra 

changes only little, as can be seen from figure 5.8. This indicates that the complex 

seems to be fairly stable even in extreme basic conditions. 
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Figure 5.8: Electronic absorption spectra recorded for [Cu(II)L20(H2O)2] during 

titration with using 0.01 M NaOH base in the pH range 5.9 –12.2 

Hence, it can be concluded that [Cu(II)L20(H2O)2] is unstable in acidic 

media, whereas it remains stable in basic conditions as indicated by the titration 

curve (figure 5.9) plotted for the absorbances in the pH range 2.4 – 12.3 at 346 nm. 
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Figure 5.9: Titration curve obtained for [Cu(II)L20(H2O)2]  at 346 nm in the pH range 

2.4-12.3 
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5.2.1.3 Stability studies of [Zn(HL20)2] at different pH 

A similar trend is observed for the Zn(II) complex of NaHL20. [Zn(II)(HL20)2)] 

dissociates under acidic conditions, but is stable in basic conditions. As indicated in 

figure 5.10, the spectrum recorded at pH 1.14, closely resembles that of the starting 

hydrazide. This is consistent with the behaviour observed for [Cu(II)L20(H2O)2] and 

can be accounted for the hydrolysis of NaHL20 followed by decomplexation of the 

zinc complex. 
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Figure 5.10: Electronic absorption spectra recorded for [Zn(II)(HL20)2)] in the pH 

range 1.4-11.9 



  Chapter – 5    

 189 

5.2.2 Stability studies of NaHL9 

The stability of NaHL20 cannot be clearly determined from pH studies due to 

the similarity of the λmax values of the ligand and the starting hydrazide. Therefore, 

in order to get more insight into the stability of PVAHs, acid and base titrations were 

performed with NaHL9 instead. The titrations were also performed in water at a 

concentration of 0.05 mM. The λmax for the electronic absorption band of NaHL9 is 

observed at 269 nm as indicated in figure 5.11 (ε= 15.7 x 103 dm3 mol-1 cm-1) and 

may be attributed to overlapping C=N and C=O, π-π* transitions. The band 

decreases in intensity with the emergence of a new band at 243 nm upon titration 

from pH 5.7 to 3.5. The spectrum recorded at pH 3.5 closely resembles the 

spectrum of the starting hydrazide, which suggests the hydrolysis of NaHL9 to the 

starting hydrazide. This was confirmed by performing a back titration to pH 5.6, 

(dashed spectrum 5.60R, figure 5.11) which resulted in the same band remaining, 

proving the instability of the ligand under acidic conditions.  
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Figure 5.11: Electronic absorption spectra recorded for NaHL9 during acid titration 

using 0.01 M HCl in the pH range 3.5-5.6 
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In order to investigate the stability of NaHL9 in basic conditions, titrations 

were performed under similar conditions as use for the acid titrations. The same 

stock solution was used for basic titration which was used for the acid titration. The 

spectrum obtained at pH 5.80, figure 5.12, shows two bands at 269 nm and 243 nm, 

respectively. As discussed earlier, the band at 243 nm is characteristic for the 

starting hydrazide. This may be due to slow hydrolysis of NaHL9, since the base 

titrations were performed 2 hours after the acid titrations. From the figure 5.12, it 

can be noticed that the λmax at 270 nm does not shift significantly even going up to 

pH 11.6 indicating stability of the compound in basic conditions. Although, for the 

ligand NaHL9 hydrolysis occurs at a faster rate in acidic conditions, it remains fairly 

stable in basic pH. However, there is a slight decrease in the intensity of the bands 

with an increase in the intensity at 310 nm with an increase in pH, which may be 

associated with the pKa of the ligand. As can be seen from the figure 5.12, the 

isosbestic point for this change is observed at 290 nm. The titration curve obtained 

for NaHL9 at 270 nm in the pH range 3.5 – 12.0 is shown in figure 5.13. 
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Figure 5.12: Electronic absorption spectra recorded for NaHL9 during base titration 

using 0.01 M NaOH in the pH range 5.8-11.6 
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A similar observation is discussed above for NaHL20. Back titrating to pH 

2.90 (spectrum 2.90R, figure 5.12) results in the decrease of band at 310 nm and 

leads to hydrolysis of the ligand as the band at 264 nm, corresponding to the 

starting hydrazide, becomes more prominent. It can be concluded that NaHL9 

undergoes hydrolysis in acidic conditions, which is confirmed by back titrating to pH 

11.60 (spectrum 11.60R, figure 5.12), as it remains hydrolysed at pH below 4.  
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Figure 5.13: Titration curve obtained for NaHL9 at 270 nm in the pH range 3.5-11.6 

Hence, from the pH studies described above it can be concluded that PVAH 

ligands and their Cu(II) and Zn(II) complexes are fairly stable in basic conditions, but 

undergo hydrolysis under acidic conditions. 



  Chapter – 5    

 192 

5.3 Stability studies of  CAHs at different pH 

5.3.1 Stability of HCA1  

Due to the limited solubility of CAHs in aqueous solution, a 0.02 mM solution 

of HCA1 in a mixture of methanol: water (4:1) was titrated between pH 1.8 - 11.2. 

However, using a mixture of solvents does not provide a pH value that is directly 

comparable with a pH value measured in aqueous solution, but the results of the 

study in the mixed solvent system can provide a rough estimate of the stability of 

the compounds. The UV-vis spectra from these titrations are shown in figure 5.14. 

The λmax is observed at 323 nm and can be attributed to overlapping π-π and π-π* 

transitions of the C=O and C=N bonds292. The starting reactants of HCA1, 

cinnamaldehyde and hydrazide gave a λmax values at 287 and 264 nm, respectively.  
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Figure 5.14: Electronic absorption spectra recorded for HCA1 in the pH range of 1-

12 

With increasing pH, there is a decrease in the intensity of the maximum 

absorption band observed at 323 nm. Above pH 11, there is a significant decrease 

of the band at 323 nm with an additional band appearing at 360 nm, which goes 
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back to the original spectra when back titrated to pH 6.50 (spectrum 6.50B, figure 

5.14). The plot of absorbances at 360 nm with varying pH (1.5 – 12.0) is indicated in 

figure 5.15. This reversible process can be associated with the deprotonation of the 

amide proton (N-H) of HCA1, similarly discussed previously for PVAHs. Unlike 

PVAHs, no permanent new bands corresponding to the starting material appear 

with the change in pH, indicating that HCA1 is stable under acidic and basic 

conditions.  
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Figure 5.15: Titration curve obtained for HCA1 at 360 nm in the pH range 1.5-12.0 

The reason why HCA1 appears to be more stable in acidic conditions than 

the investigated PVAHs, may be due to the increased conjugation present in HCA1. 

This extra conjugation reduces the electrophilicity on the azomethine carbon, hence 

making it less favourable for the attack of water which in turn prevents hydrolysis. 

Kali and Raines illustrated that hydrazones exhibit greater hydrolytic stability than 

imines due to their ability to delocalise electron density through multiple resonance 

forms.182 
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5.3.2  Stability studies of HCA5 

Similarly, HCA5 was found to be stable in both acidic and basic conditions. 

In order to investigate the longer-term stability of HCA5 at pH 1.78, the UV-visible 

spectrum was recorded after 5 hours. There is a significant reduction in the intensity 

at the λmax of 329 nm (ε= 20.87 x 103 dm3 mol-1 cm-1) as indicated in figure 5.16. 

With a further increase in time, there is progressive reduction in intensity of the 

corresponding band and a new broad band appear ats 289 nm (ε= 14.40 x 103  dm3 

mol-1 cm-1) (spectrum pH 1.78, 48 hours, figure 5.16). The new band is very similar 

to that of cinnamaldehyde (287 nm). This indicates that HCA5 is prone to hydrolysis 

under acidic conditions at pH 1.78 over the time monitored and converts back to the 

starting materials used in its synthesis, cinnamaldehyde and hydrazide. 

Cinnamaldehyde was shown to have a higher molar absorption coefficient than the 

starting hydrazide. Hence, the λmax of the hydrazide is likely to be masked by that of 

cinnamaldehyde.   
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Figure 5.16: Electronic absorption spectra recorded for HCA5 during acid titration 

using 0.01 M HCl in the pH range of 7.1-1.7 
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The hydrolysis of HCA5 in acidic pH over time led to the further investigation 

of the behaviour of an acidic solution of HCA1 over time. The UV-visible spectrum of 

a solution HCA1 at a pH of 1.5 was recorded at regular intervals for a period of 48 

hours. However, there was no significant change in the spectra over this time 

period. This indicates that HCA1 is even more hydrolytically stable than HCA5 

under acidic conditions. The instability of HCA5 can be due to the electron 

withdrawing effect of the NO2 substituent on the aromatic ring. This makes the 

azomethine carbon more electrophilic and susceptible to attack by H2O. HCA1 does 

not possess an EWG on the aromatic ring and is thus more stable. This is in line 

with the observation made by Buss and Ponka in that the hydrazones possessing 

EWGs accelerates the rate of hydrolysis when compared to those having EDGs.180  

The reduced form of HCA1 (HCA1R) indicated in scheme 5.2, in which the 

olefin bond was reduced as discussed in chapter-3, was also tested for its stability 

at acidic pH under similar conditions. A solution of HCA1R was titrated to pH 1.5 

with  using 0.01 M HCl and its UV-visible spectrum was monitored over time. 

Although HCA1 was stable over a period of 48 hours, its reduced form HCAR1 had 

hydrolysed after 4 hours. The instability of HCAR1 may be due to loss of 

conjugation within the molecule resulting in restricted delocalisation of electrons 

across the reduced species. 
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Scheme 5.2: Reduction of HCA1 at olefin bond resulting in HCA1R 

The base titrations of HCA5 indicate that there is an additional band at 390 

nm, the intensity of which increases whilst the intensity at 330 nm decreases, as 

indicated in figure 5.17. Moreover, back titration to pH 7.14 (spectrum 7.14 B, figure 

5.17) leads to complete disappearance of the band at 390 nm and the band at 330 

nm (ε= 17.42 x 103 dm3 mol-1 cm-1) is restored, similar to the observations made for 

HCA1. The titration curve obtained for HCA5 at 390 nm is depicted in figure 5.18. 
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 Figure 5.17: Electronic absorption spectra recorded for HCA5 during base titration 

using 0.01 M NaOH in the pH range of 7.1-12.31 
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Figure 5.18: Titration curve obtained for HCA5 at 310 nm in the pH range 2.1 – 12.3 

 As discussed previously for HCA1, this reversible process can be attributed 

to the deprotonation of amide proton of HCA5 with a rough estimation of a pKa of 11 

as expected for acyl hydrazones.290 It can also be noted that deprotonation of the 

amide proton in HCA1 starts above pH 11, whereas for HCA5 it begins around 10. 
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This can be attributed to the strong electron withdrawing nature of the nitro 

substituent in HCA5 as compared to the phenyl ring of HCA1. The nitro group 

withdraws electron density making the amide proton more susceptible to 

deprotonation by stabilising the resulting negative charge. 

5.3.3 Stability of Cu(II) complexes of CAHs 

The Cu(II) complexes of CAHs also showed poor water solubility, hence 

their stability was investigated in a 4:1 (DMSO:H2O) mixture. Initially, a solution 

containing 0.02 mM of [Cu(CA1)2] was titrated towards acidic pH, from pH 7.95 to 

pH 2.40. The UV-visible spectra as displayed in figure 5.19 show a broad absorption 

band between 300 – 410 nm with a λmax at 365 nm and another prominent 

absorption at 382 nm. These absorptions can either be attributed to the ligand-

based π-π* transitions, which undergo a red shift upon complexation as  compared 

to the free ligand HCA1 (330 nm) or can be assigned to a LMCT band of the Cu(II) 

complex.   

As soon as acid is added to the solution, the two absorption bands at 365 

nm and 382 nm decrease in intensity, whilst a new band at 330 nm emerges. With 

further lowering of the pH, the band at 330 nm increases in intensity, whilst there is 

a decrease in absorbance for the bands at 382 nm and 365 nm. This process can 

be associated with the dissociation of [Cu(CA1)2]. Below pH 4 the absorption bands 

assigned to the copper complex have nearly disappeared, indicating that both 

ligands have been released from the Cu(II) centre. A back titration was performed to 

basic pH 10.24 (spectrum pH 10.24 back, figure 5.19) during which the bands at 

382 nm (ε= 15.3 x 103 dm3 mol-1 cm-1) and 365 nm (ε= 16.0 x 103  dm3 mol-1 cm-1) 

reappeared. On the other hand, the absorbance at 330 nm decreased in intensity 

suggesting re-formation of the [Cu(CA1)2].  

In contrast, the Cu(II) complex is stable in solution under basic conditions 

(figure 5.20) as no change in the overall shape of the UV-visible spectra is evident, 

similarly observed for Cu(II) complex of PVAH ([Cu(II)L20(H2O)2]). The plot of 

absorbances at 382 nm with varying pH (2.4 – 11.8) for ([Cu(II)L20(H2O)2]) is 

indicated in the figure 5.21. 
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Figure 5.19: Electronic absorption spectra recorded for [Cu(CA1)2] during acid 

titration using 0.01 M HCl in the pH range of 7.9-2.4 
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Figure 5.20: Electronic absorption spectra recorded for [Cu(CA1)2] during base 

titration using 0.01 M NaOH  in the pH range of 8.7-14.0 
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Figure 5.21: Titration curve obtained for [Cu(CA1)2]  at 382 nm in the pH range 2.4 – 

11.8 

The re-formation of the [Cu(CA1)2] complex at basic pH indicates that the 

complex formation is a reversible process, unlike the behaviour observed for the 

Cu(II) complexes of PVAHs. This can be accounted for the hydrolysis of the PVAH 

ligands in acidic solution, whereas CAHs tends to remain stable under acidic 

conditions. The mechanism of decomplexation for the copper complex is thought to 

proceed either via protonation of the amide nitrogen or anionic O atom, hence 

making the ligand neutral which is turn dissociates from the Cu(II) centre as 

indicated in scheme 5.3. The Cu-O bond cannot be maintained and the ligand 

dissociates from the copper complex. 
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Scheme 5.3: Decomplexation of CAH from a Cu(II) complex 
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 Hence, the pH studies of the CAHs investigated and the [Cu(CA1)2] complex 

suggest that the ligand is fairly stable in both acidic and basic conditions for a 

reasonable period of time. CAHs possessing EWG start to undergo hydrolysis at 

acidic pH values below 1.78 during prolonged period of time. The ligand dissociates 

from the Cu(II) centre in acidic conditions, however, reformation of the copper 

complex takes place when titrated back to basic pH 10.28 and the ligand remains 

coordinated even in extreme basic conditions (pH 11.8). 

5.4 Stability studies in PBS buffer 

5.4.1 Stability studies of PVAHs in PBS buffer 

In order to gain further insight into the rates of the hydrolysis of PVAHs and 

their corresponding metal complexes, a selection of compounds was investigated in 

PBS (phosphate buffer saline) buffer over a period of time. PBS is isotonic with 

human plasma and buffer to pH 7.4, hence mimicking the physiological conditions of 

human plasma. These properties make PBS a suitable medium for preliminary 

stability studies of a drug and PBS has been used before to explore the stability of 

related hydrazones.180 Dulbecco’s PBS buffer, purchased from Sigma, was used to 

study the hydrolysis of PVAHs and their metal complexes (0.05 mM) at 37 0C and 

pH 7.4. Stock solutions were made in DMSO and then diluted with PBS buffer 

maintaining a final ratio of 9:1 PBS: DMSO for investigated PVAH compounds. 

However, for compounds of the CAH series, the ratio had to be 5:5 due to their 

limited solubility in PBS buffer. The final 10 ml of solution was incubated in a sample 

tube immersed in a water bath, which was maintained at 37 0C.  The sample tube 

was closed to limit the evaporation of solvent and to provide accurate results.  

Spectral changes of the solution were recorded manually at regular intervals using a 

UV-vis spectrophotometer, as discussed in the following section. Experimental 

details can be found in chapter-7. 

The absorbance at λmax for NaHL11 (p-Br) was monitored at 270 nm (ε= 18.2 

x 103 dm3 mol-1 cm-1), as illustrated in figure 5.22. The associated band may be 

attributed to overlapping C=N and C=O π-π* transitions.292 When ligand NaHL11, 

was incubated with PBS buffer at 37 0C over a period of 6 days, a new band at 240 

nm emerged with a simultaneous decrease in the intensity of the band at 270 nm. 

The plot of decay of NaHL9 is indicated in figure 5.23 and the t1/2 is 38 hours. The 
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band at 240 nm is due to π → π* transitions of the aromatic ring of the starting 

hydrazide (dashed spectrum, figure 5.22). 
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Figure 5.22: Electronic absorption spectra recorded for NaHL11 in PBS buffer – Day 

1-6 
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Figure 5.23: Exponential decay obtained for NaHL11 at 270 nm over the period of 6 

days in terms of hours with a t1/2 of 38 hours 

NaHL14 (p-CF3) and NaHL16 (p-(CH3)3) were studied under similar 

conditions and showed comparable results to that of NaHL11 (p-Br). The plot 

illustrated in figure 5.24 indicates gradual hydrolysis of NaHL14, which is evident by 
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a decrease in the intensity of the band at 270 nm. In addition, this absorption band  

broadens with time while the final spectrum being almost comparable to the 

spectrum of the parent hydrazide shown as dotted line. The plot of decay of 

NaHL14 is indicated in figure 5.25 and the t1/2 is 54 hours, while for NaHL16 t1/2 is 

57 hours. 
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Figure 5.24: Electronic absorption spectra recorded for NaHL14 in PBS buffer (0 – 

120 hrs) 
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 Figure 5.25: Exponential decay obtained for NaHL14 at 270 nm over the 

period of 6 days in terms of hours with a t1/2 of 54 hours 
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Along with the decrease in the intensity of the band at 270 nm there is a small 

increase in the absorbance at around 330 nm. This may be due to formation of 

additional chemical species in solution, which can be attributed to either degradation 

or oxidation processes associated with hydrolysis of NaHL14. NaHL16 studied 

under similar conditions exhibit similar behaviour and the UV spectra of PBS studies 

can be found in Appendix 23. 

5.4.2 Stability studies of Cu(II) complexes of PVAHs in PBS buffer 

 Although the investigated PVAHs hydrolyse over longer periods of time, 

the copper complexes appear to be stable in PBS buffer. The absorption maxima 

(λmax) of [Cu(II)L11(H2O)2]  (figure 5.26) are observed at 277 nm (ε= 19.0 x 103 dm3 

mol-1 cm-1) and 320 nm (ε= 11.6 x 103 dm3 mol-1 cm-1) and can be assigned to π → 

π* transitions of the aromatic ring and overlapping of C=N and C=O π-π* transitions, 

respectively.292
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 Figure 5.26: Electronic absorption spectra recorded for [Cu(II)L20(H2O)2] 

in PBS buffer - Day 1-6 

 As evident from figure 5.26, there is no shift in the maximum of the band 

over 6 days. However, there is a slight decrease in the intensity of the band which 

can be accounted for the slow precipitation of the Cu(II) complex from PBS buffer 

due to the limited solubility of the complex in water. This leads to the conclusion that 
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copper coordination helps to stabilise the ligand. Hence, the copper complex can 

act as a potential drug candidate as the copper coordination may help to facilitate 

entry of the active drug into the bacterial cell without it being hydrolysed.  

 The Cu(II) complexes of NaHL14 and NaHL16 exhibit similar behaviour 

to that of [Cu(II)L11(H2O)2] as they remain stable over a period of 49 hours. As 

indicated in the plot for [Cu(II)L14(H2O)2] (figure 5.27) there is only little change in 

the overall shape of the UV-vis spectra over time. It can be noticed there is also a 

slight decrease in the intensity of the band at 320 nm which can be due to 

precipitation of the compounds with time.  
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Figure 5.27: Electronic absorption spectra recorded for [Cu(II)L14(H2O)2] in PBS 

buffer (0-49  hours) 

 [Cu(II)L14(H2O)2] studied under similar conditions exhibits similar 

behaviour and the UV spectra of the PBS studies can be found in  Appendix 23. 
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5.4.3 Stability studies of [Zn(HL11)2] in PBS buffer 

In contrast to the Cu(II) complexes of PVAHs, the Zn(II) complex of NaHL11 

is unstable in PBS buffer over time. [Zn(HL11)2] displayed similar behaviour to that 

of the PVAHs with the complex hydrolysing to the starting hydrazide (figure 5.28). 

The intensity of the band assigned to the π-π* transition of L11 in the zinc complex, 

observed at 312 nm (ε= 16.9 x 103  dm3 mol-1 cm-1), decreases and gives rise to a 

new band corresponding to the starting hydrazide. The exponential decay of 

[Zn(HL11)2]  is depicted in figure 5.29 with a t1/2 of 32 hours.  
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Figure 5.28: Electronic absorption spectra recorded for [Zn(HL11)2]  in PBS buffer - 

Day 1-6 
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Figure 5.29: Exponential decay of the absorption of [Zn(HL11)2]  at 270 nm over the 

period of 6 days(117 hours) with a t1/2 of 32 hours 
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The instability of [Zn(HL11)2]  can be attributed to the lability of the Zn(II) 

complex in the solution. This indicates that the Zn(II) ion is not coordinated strongly 

to PVAH ligand unlike Cu(II). Hence, when the zinc complex is dissolved in PBS 

decomplexation occurs followed by hydrolysis of the NaHL11 giving rise starting 

hydrazide. 

5.4.4 Stability studies of the di-hydrazide analogue NaH3D1 

As discussed in chapter-2, the di-hydrazide analogue of PVAH, NaH3D1, is 

expected to be more hydrolytically stable than PVAHs owing to its C-N single bond. 

To gain insight into the stability of NaH3D1, its behaviour was investigated in PBS 

buffer. The absorption coefficient at the λmax of NaH3D1 was determined at 275 nm 

(ε= 21.5 x 103 dm3 mol-1 cm-1) as shown figure 5.30. The associated band may be 

attributed to overlapping C=N and C=O, π-π* transitions.292  The intensity of the 

band decreases over a period of 98 hours. However, the decrease in the intensity is 

not as significant as observed for NaHL11, NaHL14 and NaHL16. Moreover, there 

is very little or no shift in the λmax value for the band observed at 275 nm. The slight 

decrease in the intensity can be attributed to the precipitation of the compound in 

the aqueous media and/or may be due to slow hydrolysis of the NaH3D1.  

 

Figure 5.30: Electronic absorption spectra recorded for NaH3D1 in PBS buffer (0 - 

98 hr) 
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Hence, it can be concluded that the dianalogue NaH3D1 is fairly stable over 

the investigated time period. This suggests that PVAH analogues with C-N single 

bonds are more stable than those with C=N double bonds. The stability could also 

due to an additional aromatic ring. This is indicated from the pH studies, as CAHs 

which are highly conjugated appear to be more stable than PVAHs. The stability of 

a compound over a long period of time can prove to be useful, since it may aid in a 

higher cellular uptake of the drug in bacteria.  

5.4.5 Stability studies of CAHs in PBS buffer 

Due to the poor solubility of CAHs and their copper complexes in PBS a 

mixture of PBS and DMSO (1:1 v/v) was used to investigate the stability of HCA1 

and its respective Cu(II) complex [Cu(CA1)2] (figure 5.31). The UV-visible spectra of 

the corresponding solutions were monitored over a period of 50 hours. For HCA1, 

there is no change observed in the overall shape of the UV spectra over the time 

period of 50 hours indicating its stability in PBS.  

The initial UV-visible spectrum of [Cu(CA1)2] in PBS recorded at 0 hours, as 

shown in figure 5.31, shows an absorption band at around 350 – 450 nm suggesting 

the presence of the copper complex. An intense band observed at 329 nm 

corresponds to the free ligand, HCA1. As can be seen from figure 5.31, the band 

observed in the region 350 – 450 nm disappears after one hour, and a prominent 

band at 329 nm develops. These spectral changes indicate that the complex rapidly 

dissociates to give free ligand and solvated Cu(II). The uncoordinated ligand HCA1 

remains stable for the period of 50 hours as there is no further shift observed in the 

λmax.  

The poor stability of the copper complexes in PBS buffer is likely to be 

associated with the additional DMSO used in the PBS study in order to make the 

copper complexes soluble in solution. DMSO is known to be a more coordinating 

solvent than water293 and it can replace weakly coordinated ligands in complexes294. 

Therefore, the complex could have been more stable in 100% PBS buffer solution.  

However, the solubility issues could not be solved as the copper complexes of 

CAHs were only soluble in DMSO and DMF. However, it is reported in the literature 

that complexes are less stable in DMF than DMSO264, hence replacing DMSO 

solvent with DMF may not have proven to be useful. 
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Figure 5.31: Electronic absorption spectra recorded for HCA1 in PBS buffer solution 

over a period of 50 hours then acidified to pH 1.5 with HCl 

Furthermore, the band at 329 nm shifts to 290 nm with lowering to pH 1 and 

appears at similar wavelength after 1 hour. The band at 290 nm closely resembles 

that of the starting material cinnamaldehyde (289 nm) suggesting the hydrolysis of 

HCA1 at pH 1. However, this contradicts results obtained in the pH studies of 

HCA1, where the ligand appears to be stable at pH 1.5. This suggests that PBS 

buffer accelerates the hydrolysis of the hydrazone at acidic pH. 

Buss and Ponka, showed that similar hydrazones dissociate at a slower rate 

in PBS buffer.180 However, when these compounds were further investigated by 

Kovaříková and group for their stability in animal plasma, they found that these 

compounds undergo rapid degradation in the plasma as compared to PBS 

solution181. 

Hence, PBS studies of CAH indicate that the ligand HCA1 appears to be 

stable in the buffer over the monitored time of 50 hours. However, copper complex, 

[Cu(HCA1)2] rapidly dissociates within an hour. 

From the combined stability studies it can be concluded that the investigated 

ligands and metal complexes remain stable under basic pH conditions, however, 

they undergo fast dissociation in acidic pH. This may considered as a drawback for 
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the oral administration of the compounds as the pH of stomach is below 2, hence it 

is likely the the drugs hydrolyse.   

5.5 Comparing CLogP values of PVAHs and CAHs 

It is well known that the CLogP plays an important role in drug design.216 As 

previously discussed in chapter-3, the theoretical CLogP values for PVAHs and 

CAHs lie between -1.03 to 2.74 and 2.58 to 5.18 respectively, depending on the 

substituent on the aromatic ring. It is obvious that the greater CLogP values for 

CAHs are due an additional aromatic ring as compared to PVAHs. Moreover, the 

lower CLogP values for PVAHs signify greater number of hydrogen-bonding 

interactions than the CAHs which is evident from the obtained X-ray crystal 

structures. The CLogP value for di-hydrazide analogue (NaH3D1) is 1.35, whereas 

its equivalent monoanalogue (NaHL9) is 1.34. As NaHL3D1 has two aromatic rings 

as compared to NaHL9 it should give higher CLogP values but gives similar values 

as indicated in table 5.1. The reduced CLogP value is more likely due to the 

presence of a greater number of hydrogen bond donor/acceptor atoms on NaH3L1. 

This is confirmed by comparing with the equivalent ligand (p-CH3 substituted 

hydrazone) of CAH series HCA9, which has a CLogP of 3.98. Hence, the greater 

CLogP of HCA9 can be accounted to a greater number or aromatic rings and a 

decrease in the number of hydrogen bond donor/ acceptor atoms over NaHL9 and 

NaH3D1. 

Table 5.1: Selected compounds with their structure and CLogP values 

Compound Structure CLogP 

NaH3D1 (Di- 
hydrazide analogue 

of a PVAH) 
N
H

N

O

O ONa

N
H

NH

OH3C

CH3

 

1.35 

NaHL9 
(Monoanalogue of a 

PVAH) 
N
H

O

N

O

CH3

OH3C Na  

1.34 

HCA9 (CAH) N
H

O

N

H3C  

3.98 

As the lipophilicity of a drug increases with the increase in the ClogP values, 

CAHs can prove to be more useful in antitubercular drug design than PVAH ligands. 

This is because an increased lipophilicity would facilitate the passage of the 
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molecule through the lipid bilayer of the waxy mycobacterial cell wall.189,218 However, 

the hydrophobic nature of a drug can pose a serious issue of solubility in aqueous 

media, which may result in reduced uptake of a drug in the body resulting in low 

bioavailability of active pharmacophore.  

5.6 Antitubercular activity 

5.6.1 Antitubercular activity of PVAHs and their metal complexes  

As mentioned earlier, the antitubercular studies which will be discussed in 

this chapter, were done by our collaborators. All the synthesized PVAHs and their 

respective Cu(II) and Zn(II) complexes compounds were screened initially for anti-

tubercular activity against Mycobacterium tuberculosis H37Rv at a concentration of 

256 µg /mL. The tested compounds that exhibited an inhibitory effect were further 

examined to determine their minimum inhibitory concentrations (MIC). Although, 

PVAHs and their parent hydrazides exhibit inhibitory action, their MIC values were 

significantly higher than that of isoniazid, which is a well known antitubercular drug. 

However, when PVAHs were complexed to Cu(II), the activity increases 

tremendously.  

Cu(II) complexes exhibiting similar MIC value to that of isoniazid were 

screened along with their parent hydrazones and hydrazides under both high iron (8 

µg Fe(II)/mL) and low iron (0.02 µg Fe(II)/mL) conditions. MIC values of hydrazides 

and their respective PVAHs and Cu(II) complexes in different conditions are 

provided in tables 5.2, 5.3 and 5.4, respectively. The experimental details of the 

antitubercular assay are provided in chapter-7. 
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Table 5.2: MIC values of selected hydrazides along with INH under different 

conditions  

N
H

O

NH2X3

X1
X2

R

 
Compo

und 
R MIC value in 

7H9 
conditions 
(µg/mL) 

MIC value in 
high iron 

conditions 
(µg/mL) 

MIC value in 
low iron 

conditions 
(µg/mL) 

Fold difference 
between high 
and low iron 
MIC values 

INH X1 = N 0.25 0.125 32 256 

H9 p - CH3 256 32 256 8 

H8 p -NO2 128 16 256 16 

H16 p -(CH3)3 128 32 >256 <8 

H7 p -NO2 , m -

Me 

128 32 >256 <8 

H14 p -CF3 64 32 256 8 

H15 m -F 128 64 256 4 

H3 m -OH 128 32 >256 <8 

H20 X2, X3= N 64 32 256 8 

Isoniazid (INH) is a widely used antitubercular drug, whilst other hydrazides 

have proven to be less efficient than INH itself. However, hydrazones derived from 

INH and related hydrazides have been known to have improved activities if 

compared with their parent hydrazides.78,81 In addition, coordinating hydrazones to 

metal ions, such as Cu(II) and Co(II) has been reported to enhance their activity 

significantly.87 Metal complexation of such conjugates has been found to enhance 

their antibacterial properties due to enhanced lipophilicities facilitating passage 

through the lipophilic mycobacterial cell wall. The enhanced lipophilicities can be 

accounted to the binding of the anionic donor atoms to the copper centre, which is 

evident from the single crystal X-ray structures of Cu(II) complexes of PVAHs 

discussed in chapter-4. This renders the overall complex neutral. In addition, some 

metal complexes found in the literature are also found to inhibit resistant strains of 

bacteria.85-86,286  
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Table 5.3: MIC values of selected PVAHs under different conditions 

N
H

O

N

O

CH3

ONa

X3

X1
X2

R

 

 

Monoanalogue PVAHs (NaHLX) 

N
H

N

O

O ONa

N
H

NH

OH3C

CH

 

 

Dianalogue PVAH (NaH3D1) 
compound R MIC value in 

7H9 
conditions 
(µg/mL) 

MIC value 
in high 

iron 
conditions 
(µg/mL) 

MIC value in low 
iron conditions 

(µg/mL) 

Fold difference 
between high and 

low iron MIC 
values 

NaHL9 p- CH3 32 16 256 16 

NaHL8 p -NO2 32 8 256 32 

NaHL16 p -

(CH3)3 

32 16 256 16 

NaHL7 p -NO2 

, m-Me 

64 8 128 16 

NaHL14 p -CF3 16 16 256 16 

NaHL15 m -F 32 16 256 16 

NaHL3 m -OH 32 32 256 8 

NaHL20 X2, X3= 

N 

64 8 256 32 

NaH3D1 p -Me 32 16 256 16 

As previously discussed in the stability studies sections, the Cu(II) ion does 

not only provide stability towards hydrolysis, it also makes the overall molecule 

neutral which may facilitate the cellular uptake of their components. Poor activity of 

PVAHs may not necessarily indicate a lower intracellular potency but can be due to 

reduced cellular uptake. This can be attributed to many factors such as a) 

hydrophilicity b) unstability towards hydrolysis c) anionic nature at physiological pH. 

However, the synthesised di-hydrazide analogue, NaH3D1, proven to be nearly 

stable at physiological conditions as evident from PBS studies was proven to be 

inefficient and the MIC value is similar to the monoanalogue NaHL9. Thus, the 

restricted uptake of the monoanalogue and dianalogue PVAHs is likely to be due to 

the anionic nature of the PVAHs. 
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Table 5.4: MIC values of selected Cu(II) complexes of PVAHs obtained under the 

indicated conditions 

X1

X2

X3

O

N
N O

O

CH3
R

Cu

H2O OH2  
Compound R MIC value 

in 7H9 
conditions 
(µg/mL) 

MIC value in 
high iron 

conditions 
(µg/mL) 

MIC value in 
low iron 

conditions 
(µg/mL) 

Fold 
difference 

between high 
and low iron 
MIC values 

[Cu(II)L9 
(H2O)2] 

p - CH3 8 <0.5 128 >256 

[Cu(II)L8 
(H2O)2] 

p -NO2 1 2 256 128 

[Cu(II)L16(
H2O)2] 

p -(CH3)3 16 1 64 64 

[Cu(II)L7 
(H2O)2] 

p -NO2 , m 
-Me 

4 <0.5 128 >256 

[Cu(II)L14(
H2O)2] 

p -CF3 8 <0.5 128 >256 

[Cu(II)L15(
H2O)2] 

m-F 8 0.5 64 128 

[Cu(II)L3 
(H2O)2] 

m -OH 8 1 32 32 

[Cu(II)L20(
H2O)2] 

X2, X3= N 16 <0.5 256 >512 

The stable Cu(II) complexes of PVAHs may be able to passively diffuse 

through the cell membrane owing to their neutral form. Our hypothesis supports the 

sequestering of the copper ions from the copper complex by mycobacterial 

metallothionein295, which in turn releases the hydrazone. Subsequent hydrolysis of 

the released hydrazone yields the hydrazide and pyruvate moiety. The inhibitory 

action may be attributed to the combination of the activity of released hydrazide and 

redox active Cu(II) ions. It can be seen from the MIC values that isoniazid and 

PVAHs and their copper complexes were less potent in limiting iron conditions. 

However, their potency increases with high iron levels, suggesting similar mode of 

inhibitory action towards mycobacteria to that of isoniazid. A schematic 

representation of our proposed mechanism of action is shown in figure 5.32.  
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Bacterial cell membrane

 

Figure 5.32.Suggested mechanism of action of Cu(II) complexes of PVAHs (active 

site of ICL enzyme53) 

Linking the hydrazinic chain (R-NH-NH2) of hydrazides with either aldehydes 

or ketones, such as pyruvate moiety, could possibly block the acetylation of these 

hydrazinic drugs.  The serum concentration of the hydrazide has been shown to be 

affected by N-acetyltransferase (NAT)-mediated acetylation of the amine centre, 

leading to either reduced or no antitubercular activity. Thus, the blocking of 

hydrazide acetylation would lead to an increase or the maintenance of their 

inhibitory activity against mycobacteria. NAT enzymes are not only present in 

humans but also known to exist in Mycobacterium smegmatis and Mycobacterium 

tuberculosis. It has been reported that the different forms of NAT enzymes have 
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been able to acetylate various substrates including INH and sullfonamide based 

antibacterial drugs under in vitro conditions. NAT enzymes can be classified into 

fast and slow acetylators and variable effective therapeutic doses of INH could 

possibly depend on different enzyme profiles.18,42  

One of the drawbacks of INH is that it causes vitamin B6 deficiency. This is 

due to the fact that the amine group of INH forms Schiff base conjugate with the 

carbonyl group of vitamin B6.
296 Conjugating the amine group of hydrazide with 

appropriate aldehyde/ketone could possibly overcome the issue of vitamin B6 

deficiency. 

In addition, the pyruvate moiety provides an extra anionic donor oxygen 

atom which balances the positive charge of the bound Cu(II) centre making the 

overall complex neutral. Pyruvate analogs such as nitropropionate and 

bromopyruvate have shown to inhibit the active site of isocitrate lyase (ICL).48,53 The 

ICL enzyme is known to play a vital role in the persistence of mycobacteria, hence it 

is considered as an attractive target for discovering new antitubercular drugs 

especially for persistent strains.  

Recent computational studies done by Padhye and group illustrated that 

pyruvate hydrazones can potentially bind and inhibit the active site of ICL.84 

Moreover, the hydrazide/ hydrazone (NaHL20) derived from pyrazinoic acid is of 

particular interest, since this hydrolysis product of another well known antitubercular 

drug pyrazinamide is able to target persisting Mtb. Very recent studies in the 

literature illustrate that it is found to inhibit trans-translation, a vital process found to 

occur in stress survival and recovery from nutrient starvation.58 

As already discussed in chapter-1, isoniazid acts on mycolic acid 

biosynthesis8. The compound is believed to be a pro-drug, requiring activation by 

Mtb catalase-peroxidase (KatG)297  to generate a range of reactive oxygen species 

(ROS) and reactive organic radicals, which then damage multiple regions in the 

tubercle bacillus. INH can be activated in vitro by KatG with Mn2+ whereupon it loses 

its -NH-NH2 side chain to form an isonicotinic acyl radical as indicated in figure 5.33 

(step a).15  This active pharmacophore then reacts with NAD to form an INH-NAD 

adduct as shown in figure 5.33 (step b). This adduct formed within the active site of 

InhA enzyme in turn inhibits the InhA enzyme16-17,298. 
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Figure 5.33: a) Formation of active pharmacaphore, isonicotinic acyl radical (top 

right) from isonicotinic acid hydrazide (INH) (top left) b) formation of INH-NAD 

adduct15 

In addition, the redox activity of metal ions is significant since bacterial 

resistance is known to be modulated by intracellular oxidative stress.41 It is known 

that an excess of free Cu(II) or Fe(II), causes oxidative stress, which in turn initiates 

the transcription of the catalyse-peroxidase (KatG) gene. Consequently, more KatG, 

which activates the hydrazide is produced, eventually leading to destruction of the 

bacterial cell.299 Resistance to isoniazid can occur in strains with impaired KatG 

proteins and lack of redox activity is associated with resistance to INH.40 KatG 

appears to utilize superoxide anions to activate INH, as the INH turnover by the 

purified enzyme is completely abolished in the presence of a catalytic quantity of 

superoxide dismutase (SOD).41   
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Hence, Cu(II) complexes of pyruvate hydrazone can serve multiple purposes 

in  antitubercular drug design which are as follows:  

1) Eradicating the actively growing bacteria, this is proven from the present 

antitubercular studies and has been recently published by us.300  

2) Mycobacteria which are resistant to present antibacterial drugs may be 

targeted with the Cu(II) complex of PVAHs since metal complexes, 

especially copper complexes, are known to inhibit the bacterial resistant 

strains.85,286 

3) Inhibition of persistent bacteria, which could possibly be achieved by 

pyruvate moiety, if it is capable of blocking the active site of ICL similar to 

other pyruvate analogs.48-50,53,301  In addition, hydrazone analogues derived 

from the pyrazinamide-containing pharmacophore may prove to be useful in 

inhibiting trans-translation process which are required to maintain the 

persistent state of bacteria.58 

The failure of Zn(II) complexes of PVAHs to exhibit low MIC values can be 

attributed to the labile nature of the zinc complexes, which may eventually form 

Zn(II)-OH2 species in aqueous solution. This is evident from the PBS study of the 

investigated Zn(II) complex, where [Zn(II)(HL20)2] dissociates and releases its 

ligand, which then undergoes hydrolysis back to its parent hydrazide. Even though 

the overall Zn(II) complex is neutral, as evident from the single crystal X-ray 

structure, it fails to cross the bacterial cell membrane due to dissociation of PVAHs 

from the Zn(II) centre. The reason for the lower uptake of Zn(II) complexes can also 

be due to their limited solubility in aqueous media.  

The other possible reason for high MIC values of Zn(II) complexes of PVAHs 

may be due to the redox inactive nature of the Zn(II) ion. If this is true then it 

supports the theory that oxidative stress is essential for the inhibitory activity of 

hydrazide type molecules. This is also reflected in the present antitubercular studies 

on PVAHs, where it is proven that the inhibitory action is greatly improved under 

high Fe conditions. 

It should also be considered that the MIC values obtained are given in 

µg/mL, whereas the compounds have different molecular weights. Therefore, in 

order for a direct comparison of hydrazides with their respective hydrazones and 
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Cu(II) complexes the MIC values obtained in µg/mL under high iron concentration 

were converted into picomolar concentrations (pM = 10-12 M). The values are 

provided in Table 5.5 and the graphical representation of these MICs values are 

shown in figure 5.34. The number given on the X-axis corresponds to the number of 

the compound provided in Table 5.5. 

Table 5.5: MIC values of selected hydrazides, PVAHs and their respective Cu(II) 

complexes in pM concentration under high iron conditions  

N
o 

Compo
und/R 

Hydrazides 

(pM) 

Hydrazones 

(pM) 

Cu(II) complex 

(pM) 

  
N
H

O

NH2X3

X1
X2

R

 

N
H

O

N

O

CH3

ONa

X3

X1
X2

R

 

X1

X2

X3

O

N
N O

O

CH3
R

Cu

H2O OH2  

 INH 0.9 - - 

1 p -Me 213 66 <1.5 

2 p -NO2 88 29 5.7 

3 
p -

(CH3)3 
167 56 2.8 

4 
p -NO2 , 

m -Me 
164 27 <1.4 

5 p -CF3 157 54 <1.3 

6 m-F 415 65 1.5 

7 m -OH 210 130 3.1 

8 
X2, X3= 

N 
232 34 <1.6 

 NaH3D1 213 43 - 

As can be gathered from Table 5.5, the MIC values of the Cu(II) complexes 

of PVAHs determined under high Fe conditions have comparable values to that of 

the frontline antitubercular drug INH (0.9 pM) ranging from <1.5 - 5.7 pM. While, the 

MIC values of hydrazides and hydrazones obtained under similar conditions falls in 

the range 88-415 pM and 27-130 pM respectively. Even though there is no 

improvement in terms of MIC values of the Cu(II) complexes with respect to INH,  

the copper complexes may be useful in targeting the bacterial strains which are 

proving resistant to INH.302 Although, the MIC value in µg/mL for the di-hydrazide 
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analogue (NaH3D1) and its equivalent monoanalogue PVAH (NaHL9) is 16 µg/mL, 

but in pM concentration it is 43 and 66 pM, respectively. The slightly lower MIC 

value of NaH3D1 is likely due to its increased cellular uptake, which may perhaps be 

due to its stability towards hydrolysis as evident from the PBS studies. 

 

Figure 5.34: Graphical representation of MICs of listed compounds in table 5.5 in 

pM concentration 

  Surprisingly, another front-line antitubercular drug, pyrazinamide (prodrug 

for pyrazinoic acid (PZA)) is known to possess a MIC value as high as 200 µg/mL 

under certain conditions.303 In spite of its high MIC value, it is used in the treatment 

of tuberculosis and is one of the most widely used drugs in modern chemotherapy in 

addition to isoniazid, rifampicin and ethambutol. Interestingly, pyrazinoic acid 

hydrazide, a congener of pyrazinamide, exhibits a MIC value of 232 pM, whereas its 

hydrazone and Cu(II) complex have a MIC of 34 and <1.6 pM as listed in Table 5.5. 

Hence, active Cu(II) complexes of PVAHs may prove useful as potential prodrugs 

and may provide an excellent alternative to current drugs to which resistance in 

emerging. 
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5.6.2 Structure activity relationship (SAR) of active compounds (Cu(II) 

complexes) of the PVAHs series 

1) Cu(II) complexes of PVAHs bearing electron donating groups such as p-

CH3 ([Cu(II)L9(H2O)2]) and p-(CH3)3 ([Cu(II)L16(H2O)2]), exhibit promising 

antitubercular activity which can be attributed to the enhanced 

liposolubilty due to the hydrophobic R groups on aromatic ring .78 

2) Those bearing fluoro [Cu(II)L15(H2O)2] (m-F)  and trifluoro 

[Cu(II)L14(H2O)2] (p-CF3) groups also exhibit low MIC values. Vigorita 

and coworker have extensively studied fluoro containing hydrazones and 

found that it enhances the antitubercular activities.80  

3) Complexes bearing electron withdrawing groups, such as nitro 

[Cu(II)L7(H2O)2] (m-CH3, p-NO2) and [Cu(II)L8(H2O)2]  (p-NO2)  are 

potent against mycobacteria. Density functional theory (DFT) 

calculations done by Tawari et.al. on a series of antitubercular 

compounds illustrated that the negative potential resulting from the NO2 

group makes them more active than other compounds which do not 

possess a nitro substituent.304  

4) [Cu(II)L20(H2O)2] containing two heterocyclic nitrogen atoms within the 

aromatic ring, which represents a pyrazinamide analogue of PVAH, 

possesses excellent activity. In contrast, the copper complexes of 

PVAHs bearing one heterocyclic nitrogen atom including the INH 

analogues of PVAH ([Cu(II)L18(H2O)2] and [Cu(II)L19(H2O)2]) failed to 

show any activity due to their insoluble nature, hence little or no cellular 

uptake is observed for these compounds. 

5) [Cu(II)L3(H2O)2]  bearing a OH group in meta position proved to be 

active, however [Cu(II)L2(H2O)2]  and [Cu(II)L4(H2O)2]  bearing OH 

groups in ortho and para position, respectively were inactive. 

6) Copper complexes bearing OCH3 groups, [Cu(II)L12(H2O)2]  (m-OCH3), 

[Cu(II)L13(H2O)2] (p-OCH3), [Cu(II)L17(H2O)2]  (o-OH, p-OCH3) Br group, 

[Cu(II)L10(H2O)2]  (m-Br), [Cu(II)L11(H2O)2]  (p-Br) and Cl group, 

[Cu(II)L6(H2O)2]  exhibited very high MIC values. 

Hence, from the SAR analysis it can be concluded that the Cu(II) complexes 

containing a pyrazine ring in addition to methyl, tert-butyl, fluoro and nitro 

substituents on the aromatic ring proved to be active. In contrast, the copper 

complexes containing Br, Cl, OCH3 substituents exhibited very high MIC values.  
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5.6.3 Antitubercular studies involving the CAH series 

Due to low solubility of the CAH ligands and their corresponding Cu(II) 

complexes in aqueous solution, the compounds precipitated from the buffer solution 

that was used for the antitubercular testing. Hence, the activity studies could not be 

performed on the CAH series using the technique employed for the PVAHs series. 

However, this does not rule out the possibility that CAHs may exhibit in vivo 

inhibitory activity. In order to overcome this problem, testing could also be done 

using the disc diffusion method. In this assay, a compound is dissolved in an 

appropriate solvent (in which they are soluble) and the disc impregnated with the 

inhibitor solution is placed on the agar (media used to grow bacteria) plate with the 

bacterial culture. The zone of inhibition observed directly relates to the antibacterial 

activity of the tested compound.305 This would limit the requirement of an aqueous 

solution and allow hydrophobic molecules like CAHs to be put in direct contact with 

the bacterial cells, hence would increase their cellular uptake. Once the in vitro 

studies of compounds prove to be successful, the lead compound/s can be further 

modified to improve its bioavailability. The solubility issues may potentially be solved 

by encapsulating the hydrophobic drug in a cyclodextrin, which has been 

successfully achieved in related studies.305 Due to time constraints, however, the 

CAHs could not yet be tested using such methods, but these can serve as a future 

goal. 

Hence, overall conclusions from the antitubercular studies that can be drawn 

are that the Cu(II) complexes of PVAHs are highly potent if compared with the 

hydrazone ligands and Zn(II) complexes. The low activity of PVAHs can be 

attributed to their anionic nature, whereas the neutrality of the Cu(II) complex of 

certain PVAHs facilitates the crossing of the bacterial cell membrane thereby 

inhibiting bacterial growth. The lower activity of neutral Zn(II) complexes may be 

related to the redox inactive nature of Zn(II) and/or their low uptake into bacterial 

cells due to their decreased stability and limited solubility in aqueous media. Similar 

solubility issues were encountered with the CAH series, as these compounds 

precipitated out in the buffer solution used. Hence, other methods like disc diffusion 

assays might be more suitable for such hydrophobic molecules.  

Therefore, for a drug to be orally active there should be a balance between 

its hydrophilic and lipophilic character. Thus, Cu(II) complexation of PVAHs may 

represent an promising strategy in antitubercular drug design, because the ligand 
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part (PVAH) is water soluble and the Cu(II) ion renders it less polar and neutral by 

binding to its anionic donor atoms. This in turn facilitates the passive diffusion of the 

copper complex through the lipophilic cell membrane. In addition, the redox nature 

of Cu(II) centre may aid the antitubercular activity of metal complexes. 
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5.7 Summary of Chapter- 5 

The pH-dependent stability studies of selected PVAHs indicate the hydrolysis 

of this type of ligands under acidic conditions, whereas the ligands are reasonably 

stable at basic pH. Similarly, the Cu(II) and Zn(II) complexes of NaHL20 are stable 

in basic pH. However [Cu(II)L20(H2O)2)]  undergo irreversible dissociation in acidic 

pH below 2 which can be attributed to the simultaneous dissociation and hydrolysis 

of the coordinated PVAH. Whereas [Zn(II)(HL11)2)] undergoes ligand dissociation 

below pH 5 followed by hydrolysis of the ligand below pH 2. 

On the other hand, HCA1 and HCA5 from the CAH series remain almost stable 

under both basic and acidic conditions over a certain period of time. HCA5, which 

possesses an electron withdrawing group, undergoes hydrolysis as indicated from 

the spectrum recorded after 5 hours, no change was observed for HCA1. In 

addition, the corresponding Cu(II) complex [Cu(CA1)2]  undergoes dissociation in 

acidic pH, however it re-forms and remains stable at basic pH. 

Stability studies in PBS buffer at pH 7.4 studies indicate that NaHL11, NaHL14 

and NaHL16 undergo slow hydrolysis with a t1/2 ranging from 36 – 57 hours. 

Similarly, [Zn(HL11)2)] proved to be unstable in PBS solution with a t1/2 32 hours. 

However, their respective Cu(II) complexes are stable over a monitored period of up 

to 6 days. Hence, the coordination of Cu(II) to PVAHs, helps to stabilise the ligands 

by preventing them from undergoing hydrolysis. Although, HCA1 appears to be 

stable in PBS buffer over the monitored period of time, its respective Cu(II) complex 

rapidly dissociates in the buffer solution. This indicates that the bidentate mode of 

binding of CAH is not as strong as the tridentate mode of binding of the PVAH 

ligands. 

The di-hydrazide analogue of PVAH (NaH3D1) proves to be fairly stable in PBS 

solution, which can attributed to the C-N single bond character of the molecule. This 

suggests that the reduction of azomethine bond can provide hydrolytic stability to a 

hydrazone ligand.   

The antitubercular activity tests revealed that hydrazone formation increases 

the inhibitory activity of the corresponding hydrazides by almost 3-7 fold when 

tested under high iron conditions. In addition, coordinating the hydrazones to Cu(II), 

increases the activity further to up to 270 fold in certain complexes. The activities. of 

some of the Cu(II) complexes of PVAHs are similar to that of the present 
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antitubercular drug isoniazid and may potentially prove useful in resistant bacterial 

strains. In addition, the redox active nature of Cu(II) may add to the activity of the 

compounds and, the coordination of Cu(II) to di-anionic PVAHs provided stability 

and lipophilicity to the resulting copper complexes. This cannot be achieved in Zn(II) 

complexes of PVAHs, which fail to show any promising activity.  

The clogP values indicate greater lipophilicity of CAHs over PVAHs, which can 

prove to be useful as it can facilitate the higher uptake of hydrophobic molecules 

across the lipophilic cell membrane of bacteria. Unfortunately, CAHs could not be 

tested for their antimycobacterial activity using the assay used for PVAH series due 

to their limited solubility in aqueous buffer solution. 

Hence, Cu(II) complexes of PVAHs can be considered as potential prodrug 

candidates for the treatment of TB and a further investigation of these complexes on 

MDR strains of mycobacteria would be very informative. 
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6.0 Conclusions and Future work 
 
6.1 Overall Conclusions 

A series of sodium pyruvate-based hydrazones (PVAHs); NaHL1-NaHL20, with 

a selection of aromatic substituents, ranging from electron withdrawing to electron 

donating groups, were synthesised and characterised by 1H NMR spectroscopy, 13C 

NMR spectroscopy, high resolution ESI mass spectrometry, infrared spectroscopy, 

elemental analysis and melting point analysis. Variable temperature 1H NMR studies 

indicate that PVAHs exist as a mixture of E and Z isomers in solution, with the Z form 

predominating owing to the strong hydrogen bond formed between amide N-H and 

carboxylate oxygen atom. This assignment was further confirmed by the torsional angle 

obtained from the single crystal X-ray structure data of NaHL9 and NaHL11, which 

confirm that the sodium salts of the ligands adopt the Z conformation. In contrast, 

NaHL20, which was crystallised in its protonated form (H2L20) adopts the E 

conformation in the solid state. 

Furthermore, the Cu(II) and Zn(II) complexes of the PVAHs were synthesised 

and characterised by using the above mentioned techniques, as appropriate. Single 

crystal X-ray diffraction data indicates that the Cu(II) complexes mainly exibit square 

pyramidal geometry, whereas Zn(II) coordinates two ligands to obtain octahedral 

geometry. The two ligands are coordinated meridonially due to the rigidity of the two 

ligands. The PVAH ligands bind to both Cu(II) and Zn(II) centres in a tridentate manner 

through the ONO donor system, forming two stable five membered chelate rings 

around the metal centre. In order to bind to the metal centre in a tridentate fashion the 

ligand has to change to E conformation, as was confirmed by the torsional angle 

determined for selected Cu(II) and Zn(II) complexes by X-ray crystallography.  

In the square pyramidal Cu(II) complexes the PVAH ligand binds in a dianionic 

manner (L2-), whereas in the octahedral Zn(II) complexes two PVAH ligands bind to 

Zn(II) centre in a monoanionic fashion (HL-), giving rise to overall neutral metal 

complexes in both cases. The remaining two coordination sites of the square pyramidal 

complexes are occupied by chloride or neutral solvent molecules such as water and 

methanol. The τ value of obtained for the square pyramidal Cu(II) complexes of 

PVAHs, indicates a slight distortion from perfect square pyramidal geometry. The 

apical bond distances are significantly longer than the equatorial bond distances, 

indicating an appreciable Jahn - Teller distortion, as expected for Cu(II) complexes due 

to the d9 electron count. The aromatic substituents have little or no influence on the 
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bond lengths and bond angles in the direct vicinity of metal centre. The ligands remain 

essentially planar when bound to Cu(II) in the square pyramidal complexes, however 

the ligands lose their planarity when bound in a octahedral geometry in order to reduce 

the steric repulsion between the two ligands bound to the same metal centre.  

Infrared studies indicate that electron withdrawing groups on the aromatic ring 

shift the stretching frequencies of carbonyl functional group towards higher 

frequencies, whereas electron donating groups have the opposite effect. A similar 

effect is observed in NMR spectroscopy, where the resonances assigned to the amide 

proton and azomethine carbon of PVAHs possessing electron withdrawing groups 

exhibit downfield shifts in comparison to those containing non-substituted and/or 

electron withdrawing groups. As a general trend, metal complex formation leads to the 

shifting and consequently merging of stretching frequencies assigned to the carbonyl, 

carboxylate and azomethine groups. 

The investigated PVAH ligands are redox inactive except for NaHL8, which 

exhibits reversible redox behaviour due to the -NO2 subsituent. The cyclic voltammetric 

studies indicate that the Cu(II) is reduced to Cu(I) when a negative potential starting 

from - 1000 mV with respect to Ag/AgCl is applied . The redox peak associated with the 

Cu2+/Cu1+ couple is classified as a quasi-reversible process, as the ∆E value increases 

with an increase in scan rate and ∆E >> 59 mV. The quasi-reversible behaviour is likely 

to be due to structural reorganisation taking place within the coordination sphere, whilst 

changing from a square-pyramidal Cu(II) to a tetrahedral Cu(I) coordination geometry.  

In order to obtain evidence in support of this theory, the Cu(I) complexes of NaHL8 and 

NaHL9 were synthesised. The crystal structure of both Cu(I) complexes indicate that 

PVAH ligands bind partially to the Cu(I) centre in a bidentate manner, thus allowing the 

Cu(I) complex to adopt a tetrahedral geometry. The other two coordination sites are 

occupied by the soft phosphorus donor atoms of PPh3 ligands which were introduced 

during the synthesis of the Cu(I) complex in order to stabilise the soft Cu(I) centre. The 
1H NMR spectra of the Cu(I) complexes confirm their diamagnetic nature, whereas 

broad phosphorus signals in 31P NMR spectra at room temperature indicate ligand-

exchange processes in solution. 

In the cyclic voltammograms, redox waves corresponding to the reduction of 

Cu1+ to Cu0 have also been observed, indicating that the investigated Cu(II) complexes 

are reduced to Cu(0), through a Cu(I) intermediate. The redissolution of the Cu(0) 

deposited on the electrode surface leads to a higher anodic peak current as compared 
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to its corresponding cathodic peak current. The peak potential values obtained for the 

Cu(II) complexes indicate that the type of PVAH ligand affects the metal-based redox 

potential, when compared with Cu(II) for example in CuCl2, irrespective of the 

subsituent on the aromatic ring. 

In order to investigate the stability of the Cu(II) complexes in the 

electrochemical solvent, DMSO, EPR spectra were recorded for selected complexes 

and these were compared with the spectra of ‘free’ Cu(II) ions (CuCl2, CuSO4). The 

EPR parameters, A║, g║ and g⊥ were found to be similar for the studied Cu(II) 

complexes of PVAHs, but distinct from ‘free’ Cu(II) ions (CuCl2, CuSO4). Hence, it can 

be concluded from the EPR studies that the ligands remain bound to the Cu(II) centre, 

even though there is large excess of DMSO present in solution.  

In addition, a series of cinnamaldehyde hydrazones; HCA1-HCA2 and their 

respective Cu(II) complexes was synthesised and characterised. ESI-MS and 

elemental analysis data indicate a 1:2, Cu(II):L ratio with a possible bidentate mode of 

binding allowing for a square planar geometry. The reduction of the azomethine bond 

of HCA1 was unsuccessful, as the olefinic bond was reduced instead, as indicated by 

ESI-MS and NMR spectroscopic analysis. The X-ray crystal structures of PVAHs reveal 

extensive intra and intermolecular hydrogen bonding, in contrast to CAHs. This may be 

accounted for by the higher number of hydrogen bond donor and acceptor atoms in 

PVAHs. Accordingly, higher CLogP values are obtained for CAHs. These higher 

CLogP values may lead to poor oral drug absorption but may prove to be 

advantageous in promoting permeation through the lipid bilayer of the mycobacterial 

cell wall. 

Positive ion ESI-MS of the Cu(II) complexes of PVAHs and CAHs indicated the 

presence of two positive charges, either due to Na+ and H+ or two protons. This can be 

rationalised by the reduction of Cu(II) to Cu(I) during the ionisation process. 

The pH-dependent stability studies of selected PVAHs and their respective Cu(II) 

and Zn(II) complexes indicate that these are unstable under acidic conditions, but 

reasonably stable at basic pH. The instability of the compounds is due to the hydrolysis 

of the azomethine bond under acidic conditions.  On the other hand, HCA1 and HCA5 

from the CAH series remain reasonably stable under both basic and acidic conditions 

over a certain period of time. HCA5, which possesses an electron withdrawing 

substituent, undergoes hydrolysis, as indicated from the spectrum recorded after 5 

hours, no change was observed for HCA1. In addition, the corresponding Cu(II) 
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complex [Cu(CA1)2]  undergoes dissociation in acidic pH, however it re-forms and 

remains stable at basic pH. 

Stability studies in PBS buffer at pH 7.4 indicate that NaHL11, NaHL14 and 

NaHL16 undergo slow hydrolysis with a t1/2 ranging from 36 – 57 hours. Similarly, 

[Zn(HL11)2)] proved to be unstable in PBS buffer with a t1/2 of 32 hours. In contrast, the 

corresponding Cu(II) complexes are stable over a period of up to 6 days. Hence, the 

coordination of Cu(II) to PVAHs, helps to stabilise the ligands by preventing them from 

undergoing hydrolysis. Although HCA1 appears to be stable in PBS buffer over the 

monitored period of time, its Cu(II) complex rapidly dissociates in the buffer solution. 

This indicates that the bidentate mode of binding of CAHs is not as strong as the 

tridentate mode of binding of the PVAH ligands. 

The reaction of 4-methyl benzoyl hydrazide and 3-bromopyruvate leads to the 

formation the di-hydrazide analogue (NaH3D1) via dehalogenation. The identity of the 

product was confirmed using ESI MS and NMR spectroscopy. NaH3D1 is fairly stable in 

PBS buffer, which can be attributed to the C-N single bond r and/or the two aromatic 

rings of the molecule.  

Antitubercular activity tests revealed that the hydrazone formation increases the 

inhibitory activity of the corresponding hydrazides by almost 3-7-fold when tested under 

high iron conditions. In addition, coordinating the hydrazones to Cu(II) increases the 

activity further to up to 270-fold in certain complexes. The activity of some of the Cu(II) 

complexes of PVAHs are similar to that of the present antitubercular drug isoniazid and 

may potentially prove useful in resistant bacterial strains. The Cu(II) complexes of 

PVAHs possessing nitro, fluoro, methyl and tert-butyl groups are active, whereas those 

with methoxy, bromo and chloro substituents were inactive. In addition, the redox 

active nature of Cu(II) may add to the activity of the compounds and the coordination of 

Cu(II) to di-anionic PVAHs provided stability and lipophilicity to the resulting copper 

complexes. This cannot be achieved in Zn(II) complexes of PVAHs, and these hence 

fail to show any promising activity.  

The clogP values indicate greater lipophilicity of CAHs than PVAHs, which can be 

useful as it can facilitate the uptake of hydrophobic molecules across the lipophilic cell 

membrane of mycobacteria. Unfortunately, CAHs could not be tested for their 

antimycobacterial activity using the assay used for PVAH series due to their limited 

solubility in aqueous buffer. 
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In summary, the aim of this project to synthesise a series of metal-based 

antitubercular compounds has been achieved. The Cu(II) complexes of PVAHs which 

exhibited potential activity against Mtb can be considered as potential prodrugs for TB. 

6.2 Future Work 

This project can be taken to various directions which are as follows: 

• The reduction of the azomethine bond could not be achieved using sodium 

borohydride and catalytic hydrogenation. Hence strong reducing agents, such 

as LiAlH4 could be tried. If this proves to be successful, then the complexation 

of the reduced hydrazones could also be tried. The reduced hydrazones and 

their respective metal complexes can be further investigated for their stability in 

various pH conditions and their half-life can be determined using PBS buffer. In 

addition, antitubercular activity testing can also be carried out. 

• It is evident from the antitubercular studies that adding Fe(II) salts improves the 

activity of the compounds drastically. Hence, the synthesis of Fe(II) complexes 

of PVAHs can also serve as a good strategy to improve the MIC values of 

hydrazones and antitubercular studies could help to achieve a comparative 

study with Cu(II) complexes of PVAHs.  

• According to literature studies metal complexes have proven to combat 

bacterial resistance.87 Therefore, Cu(II) complexes of PVAHs which exhibited 

promising MIC values against INH susceptible bacteria can be tested for their 

potential against INH resistant strains. 

• As compounds containing the pyruvate moiety have been shown to inhibit the 

ICL enzyme53, PVAHs can be explored for ICL inhibition. This could be 

achieved by either co-crystallising PVAHs with the ICL enzyme so as to study 

the binding mode of the ligand with the active of the enzyme. Earlier 

computational studies have shown that PVAHs can bind in the active site of 

ICL84, hence to prove this concept co-crystallising PVAH/s with ICL can be 

tried. ICL enzyme inhibitory assays as reported earlier for hydrazones83 can 

also be tried in order to study the behavior of direct inhibition of the enzyme by 

PVAHs and their metal complexes. 

• Due to low solubility of the CAH ligands and their corresponding Cu(II) 

complexes in aqueous solution, the compounds precipitated from the buffer 

solution that was used for the antitubercular testing. In order to overcome this 

problem, testing could also be done using the disc diffusion method.306 This 
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would limit the requirement of an aqueous solution and allow hydrophobic 

molecules like CAHs to be put in direct contact with the bacterial cells, hence 

would increase their cellular uptake.  

• ClogP values of PVAH and CAH ligands were calculated using OSIRIS 

software programme217, however this software does not allow calculating the 

values of metal complexes. Instead, the logP could be obtained using the 

octanol/water partition coefficient method. The logP obtained for the ligands 

can be used as a comparative study with clogP values calculated using 

computational methods.  
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7.0 Experimental 

7.1 Materials  

Chemicals were purchased from the following suppliers: Pyruvic acid 

(Fluka), all commercial hydrazides, cinnamaldehyde and metal salts (Sigma-

Aldrich), TLC plates F254 (Merck), solvents, NaOH pellets, conc. HCl (Fisher 

scientific), Dulbecco’s PBS buffer (Sigma). 

7.2 Instrumentation 

1H and 13C NMR spectra were recorded on a JEOL ECS, ECX 400 (1H NMR 

400 MHz, 13C 100.6 MHz). Chemical shifts (δ) are given in terms of parts per million 

(ppm) referenced to the residual solvent d6-DMSO: 1H NMR 2.50 ppm,13C NMR 

39.52 ppm, d4-MeOD: 1H NMR 3.30 ppm,13C NMR 49.50 ppm, D2O: 1H NMR 4.90 

ppm. All carbon-13 experiments were confirmed using carbon-DEPT experiments. 

VT experiments were recorded on a Bruker 500 MHz instrument (1H NMR 500 MHz) 

and carried out by Heather Fish. The spectra were processed using Bruker’s 

Topspin software. TLC was carried out on a Merck silica gel 60 F254 aluminium 

backed plates using a chloroform:methanol solvent system and visualised under a 

UV lamp (chromato-vue Model CC-10) and/or stained with iodine. Infrared spectra 

were recorded on an Avatar 370 FT-IR Thermo Nicolet instrument (400 – 4000 cm-1) 

using KBr discs. The data was processed using OMNIC software. The KBr 

purchased from Sigma-Aldrich was used as obtained. Electro spray ionisation mass 

spectrometry (ESI-MS) spectra were recorded on a Bruker microTOF electrospray 

mass spectrometer by Dr. T. Dransfield and Dr. K. Heaton. Elemental (CHN) 

analysis was performed by Dr. P. Helliwell and Dr. G. McAllister on an Exeter 

analytical CE-440 elemental analyser. Melting points were measured on a Stuart 

Scientific SMP3 apparatus. Electron paramagnetic resonance (EPR) was performed 

on JEOL JESRE-1 X-band machine in Dr. Victor Chechik’s laboratory by Kazim 

Naqvi. 
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7.3 X-ray Crystallography 

 Single crystal X-ray diffraction data was collected and processed with the 

help of  Dr. A. Whitwood, Dr. R. Thatcher and Dr. S. Hart. 

7.3.1 Bruker SMART Apex 

Diffraction data for NaHL9.2H2O, NaHL112H2O, [Cu(L7)(H2O)(MeOH)], 

[Cu(L8)(MeOH)2], [Cu(L9)(H2O)2], [Cu(L11)(H2O)2].H2O, [Cu(L17)(H2O)2], 

[Cu(HL9)2Cl2], [Cu(HL15)2Cu(HL15(L15] and [Zn(HL8)2].H2O were collected on a 

Bruker Smart Apex diffractometer with Mo-Kα radiation (λ = 0.71073 Å) using a 

SMART CCD camera. Absorption corrections were applied by SADABS (v2.10).307 

Structures were solved by either direct or Patterson methods using SHELXS-97 and 

refined by full-matrix least squares using SHELXL-97.308 All non-hydrogen atoms 

were refined anisotropically. Hydrogen atoms were placed using a riding model and 

included in the refinement at calculated positions. Acidic protons were placed using 

difference map method. 

7.3.2 Oxford Diffraction SuperNova 

Diffraction data for H2L20.H2O, [Cu(L13)(H2O)(MeOH)], 

[Zn(II)(HL7)2].H2O.DMSO, [Zn(HL9)2].H2O.CH3OH, [Zn(HL13)2], 

[Cu(I)2HL8(PPh3)5]PF6, [Cu(I)2HL9(PPh3)5]PF6,  [Cu(I)2HL9(PPh3)4]PF6.2Et2O.H2O , 

HCA2 and HCA5 were collected on an Oxford Diffraction SuperNova diffractometer 

with Mo-Kα radiation (λ = 0.71073 Å) using a EOS CCD camera. The crystals were 

cooled with an Oxford Instruments Cryojet. Face-indexed absorption corrections 

were applied using SCALE3 ABSPACK scaling. OLEX2309  was used for overall 

structure solution, refinement and preparation of computer graphics and publication 

data.  Within OLEX2, the algorithms used for structure solution were either direct or 

Patterson methods using SHELXS-97 and refinement by full-matrix least-squares 

used SHELXL-97 within OLEX2. All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were placed using a riding model and included in 

the refinement at calculated positions. Acidic hydrogen atoms were placed using 

difference map method. 
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7.4 Stability Studies using UV/vis Spectroscopy 

7.4.1 pH titrations 

7.4.1.1 Preparation of solution 

 Accurate weight measurements were conducted on a Mettler AE 240 five 

figure balance. The stock solution for pH titrations of PVAH series including NaHL9, 

NaHL20, [Cu(L20)(H2O)2], [Zn(HL20)2]  each with a  concentration of 1mM was 

prepared in deionised water. 5 mL of 1mM respective stock solution accurately 

measured using Eppendorf pipette were made up to a final concentration of 0.05 

mM using deionised water with 100 mL volumetric flask. The stock solution for pH 

titrations of CAH series including HCA1, HCA5 and [Cu(CA1)2] each with a 

concentration of 1mM was prepared in methanol. 2 mL of a 1mM respective stock 

solution accurately measured using Eppendorf pipette were made up to a final 

concentration of 0.02 mM using methanol:deionised water(4:1) with 100 mL 

volumetric flask. pH were adjusted using 0.001 M HCl and 0.001 M NaOH for acid 

and base titrations respectively. 0.001 M NaOH was made by dissolving NaOH 

pellets in deionised water and 0.001 M HCl was made using conc. HCl (12 M) in 

deionised water. pH values were determined using a WTW Profilab pH 597 pH 

meter with a Mettler Toledo Inlab 422 electrode.  

7.4.1.2 UV/vis measurements 

 Acid and base titrations were performed individually in two sets of 

experiments. The UV/vis spectra were recorded on a HP 8453 Agilent Diode Array 

spectrophotometer using a 5Q quartz UV cell with path length 10 mm. Dropwise 

addition of either 0.001 M HCl or 0.001 M NaOH was added to the respective stock 

solution (approx 40 mL) at regular intervals. Once the pH was stabilised, the 

solution was transferred into the UV cell and the UV/vis spectra were recorded in 

the 1.0 – 13.0 pH range at room temperature. These spectra were recorded 

manually at an interval ranging from 0.2-1.0 pH units. The UV/vis spectra were 

recorded in the range 200-1100 nm. 
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7.4.2 PBS stability studies 

7.4.2.1 Preparation of solution 

The stock solution for PBS stability studies of PVAH series including 

NaHL11, NaHL14, NaHL16, NaH3D1, [Cu(L11)(H2O)2], [Cu(L14)(H2O)2], 

[Cu(L16)(H2O)],  [Zn(HL11)2]  each with a  concentration of 1mM was prepared in 

spectroscopic grade DMSO. 0.05 mL of 1mM respective stock solution accurately 

measured using Eppendorf pipette were made up to a final concentration of 0.05 

mM using PBS buffer:DMSO (9:1) with 10 mL volumetric flask. Dulbecco’s PBS 

buffer purchased from Sigma was used as obtained. For CAHs series, the 

compounds including HCA1 and [Cu(CA1)2] the final concentration of 0.02 mM with 

a ratio of 1:1; PBS buffer:DMSO  was used. 

7.4.1.2 UV/vis measurements 

10 mL of final stock solution was incubated at 37 °C in a closed container 

(carousel tube). The temperature was maintained using a water bath with the 

carousel tube immersed in it. Solution was transferred to the UV cells at regular 

intervals (at indicated hours in the study) and the UV/vis spectra were recorded 

ranging from 200-1100 nm. 
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7.5 Electrochemistry 

Cyclic voltammetric experiments were preformed on an Epsilon, 

bioanalytical system instrument (BASi). The studies were carried out at room 

temperature using a standard three electrode configuration, consisting of a platinum 

working electrode, 1.6 mm (MF-2013), platinum wire as auxiliary electrode, 7.5 cm 

(MW-1032) and Ag/AgCl reference electrode (MF-2013) with supporting electrolyte 

0.1 M tetra-butyl ammonium hexafluorophosphate (TBAHFP) in DMSO. The 

Ag/AgCl reference electrode was stored in 3M NaCl solution. The solution was 

purged with N2 gas prior to use and maintained under a layer of N2 throughout the 

experiment. The platinum working electrode was polished with alumina on textmet 

pads, washed with deionised water and DMSO which was further dried before 

using. The concentration of the ligand and the complexes was approximately 2 mM 

and the cyclic voltammogram was scanned in DMSO. After use of the electrodes 

were washed with DMSO, water and conc. HNO3. Electrochemical grade, TBAHFP 

(99% CHN) was purchased from Fluka and used as obtained, whereas 

spectrophotometric grade DMSO (99.9%) was purchased from Sigma and dried 

over molecular sieves (3 Å) before use. Ferrocene (98 %) was purchased from 

Sigma-Aldrich and recrystallised using ethanol and then sublimed under vacuum 

using Schlenk lines. The sublimed ferrocene was used as an internal standard. 
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7.6 General synthetic procedure and characterisation detail of PVAHs 

(NaHL1-NaHL20) 

The respective hydrazide (1.82 mmol) and sodium pyruvate (1.82 mmol) 

were dissolved in 25 ml of a water-methanol mixture (methanol-water; 7:3). The 

solution was heated under reflux for 2 hours. The product was precipitated with 

Et2O, isolated and recrystallised from ethanol. The purified product was dried in 

vacuo 
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Sodium 2-[(benzoyl)-hydrazono]-propionate 

NaHL1 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 

benzoyl hydrazide 0.25 g (1.82 mmol) to give NaHL1, 0.34 g (1.49 mmol, 82%); 

Melting point: 110-112 °C; ESI-MS: positive ion m/z = 229.0586, 100%, HR ESI-

MS: For C10H10N2O3Na ([M+H]+), observed mass 229.0586, calculated mass 

229.0584, difference -0.3 mDa; δ  1H NMR (400 MHz, d6-DMSO): Major isomer: 

2.01 (s, 3H, H-3), 7.45-7.90 (m, 5H, H-6-8), 16.17 (bs, 1H, H-N), Minor isomer: 2.15 

(s, H-3); δ 13C NMR (100.6 MHz, d6-DMSO): Major isomer: 166.3 (4°), 162.0 (4°), 

150.7 (4°), 133.7 (4°), 131.7 (CH), 128.8 (CH), 126.9 (CH), 21.2 (CH3), Minor 

isomer: 132.2 (CH), 128.4 (CH), 128.2 (CH), 13.9 (CH3); Significant IR bands : 

(KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N ) 1645br. 



                                                                                                      Chapter-7                                                                                    

 237 
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Sodium 2-[(2-hydroxy-benzoyl)-hydrazono]-propionate 

NaHL2  was synthesized using sodium pyruvate 0.20 g (1.82 mmol) and 3-

hydroxy benzoyl hydrazide 0.28 g (1.82 mmol) to give NaHL2, 0.40 g (1.63 mmol, 

89%); Melting point: >350 °C; ESI-MS: positive m/z = 245.0541, 100%, HR ESI-

MS: For C10H10N2O4Na ([M+H]+), observed mass 245.0541, calculated mass 

245.0533, difference -0.8 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.05 

(s, 3H, H-3), 6.89 (apparent t, 1H, JH-H= 7.4 Hz, H-8 or H-9), 7.14 (d, 1H, JH-H= 8.4 

Hz, H-7 or H-10), 7.39 (apparent t, 1H, JH-H= 7.4 Hz, 1.4 Hz, H-7 or H-10), 7.68 (d, 

1H, JH-H= 8.4 Hz, 1.2 Hz, H-7 or H-10), 13.04 (1H, br, H-O) 16.02 (1H, br, H-N), 

Minor isomer: 2.09 (s, H-3), 6.83 (apparent t, JH-H= 7.4 Hz, H-8 or H-9), 7.01 (d, JH-

H= 8.4 Hz, H-7 or H-10), 7.33 (apparent t, JH-H= 7.4 Hz, H-8 or H-9), 7.95 (d, JH-H= 

8.4 Hz, H-7 or H-10); δ 13C NMR (100 MHz, d6-DMSO): Major isomer: 165.9 (4°), 

164.6 (4°), 160.2 (4°), 151.5 (4°), 133.7 (CH), 130.5 (CH), 117.8 (CH), 118.7 (CH), 

115.5 (C-4), 21.3 (CH3), Minor isomer: 167.2 (4°), 133.6 (CH), 130.5 (CH), 117.9 

(CH), 117.3 (CH), 48.6 (CH3), 12.9 (CH3); Significant IR bands : (KBr disc, cm-1): 

(ν OH) 3499br ,  (ν C=O) 1661s, (νas ym  COO, ν C=N) 1606s. 
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Sodium 2-[(3-hydroxy-benzoyl)-hydrazono]-propionate 

NaHL3 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 3-

hydroxy-benzoyl hydrazide 0.27 g (1.82 mmol) to give NaHL3, 0.39 g (1.59 mmol, 

87%); Melting point: 278-281 °C; ESI-MS: positive m/z = 245.0533, 100%; HR ESI-

MS: For C10H10N2O4Na ([M+H]+), observed mass 245.0533, calculated mass 

245.0533, difference 0.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, H-3), 6.97 (dd, 1H, JH-H= 7.8 Hz, 2.08 Hz, H-8 or H-10), 7.78 (m 3H, H-6, H-

9, H-8 or H-10), 10.20 (bs, 1H, H-O), 15.92 (bs, 1H, H-N), Minor isomer: 2.16 (s, H-

3), 7.02 (d, JH-H= 7.8 Hz, H-8 or H-10); δ 13C NMR (100.6 MHz, d6-DMSO): Major 

isomer: 166.4 (4°), 162.3 (4°), 157.9 (4°), 150.5 (4°), 135.1 (4°), 129.8 (CH), 118.9 

(CH), 117.3 (CH), 114.1 (CH), 21.2 (CH3), Minor isomer: 129.6 (CH), 118.7 (CH), 

115.0 (CH), 13.9 (CH3); Anal. Calcd. for C10H9N2O4Na1 x 1.6  H2O: C, 44.00; H, 

4.50; N, 10.26. Found: C, 44.16; H, 4.43; N, 10.10; Significant IR bands : (KBr 

disc, cm-1): (ν OH) 3426br ,  (ν C=O) 1663s, (νas ym  COO) 1633s, (ν C=N) 

1612s. 
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Sodium 2-[(4-hydroxy-benzoyl)-hydrazono]-propionate 

NaHL4 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 3-

hydroxy-benzoyl hydrazide 0.28 g (1.82 mmol) to give NaHL4, 0.37 g (1.51 mmol, 

83%); Melting point: 310-312 °C; ESI-MS: positive m/z =245.05, 100%, HR ESI-

MS: For C10H9N2O4Na ([M+H]+), observed mass 245.0533, calculated mass 
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245.0533, difference -0.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, H-3), 6.88 (d, 2H, JH-H= 8.4 Hz, H-6 or H-7), 7.68 (d, 2H, JH-H= 8.4 Hz, H-6 or 

H-7), 10.82 (bs, 1H, O-H),  15.75 (bs, 1H, N-H), Minor: 2.16(s, H-3), 7.84 (d, JH-H= 

8.4 Hz, H-6 or H-7); δ 13C NMR (100.6 MHz, d6-DMSO): Major isomer: 166.5 (4°), 

162.0 (4°), 149.5 (4°), 135.1 (4°), 128.9 (CH), 123.8 (4°), 115.4 (CH), 21.0 (CH3), 

Minor: 130.4 (CH), 115.1 (CH), 12.9 (CH3); Significant IR bands : (KBr disc, cm-1): 

(ν OH) 3452br ,  (ν C=O) 1684m, (ν C=O) 1659s, (νas ym  COO) 1630s, (ν 

C=N) 1610s. 
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Sodium 2-[(2-chloro-benzoyl)-hydrazono]-propionate 

NaHL5 was synthesized using sodium pyruvate 0.20 g (1.82 mmol) and 3-

hydroxy benzoyl hydrazide 0.25 g (1.82 mmol) to give NaHL5, 0.40 g (1.52 mmol, 

83%); Melting point: 105-108 °C; ESI-MS: positive m/z = 263.02, 100%, HR ESI-

MS: For C10H9N3O3Cl1Na ([M+H]+), observed mass 263.0202, calculated mass 

263.0194, difference -0.8 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.04 

(s, 3H, H-3), 7.31-7.57 (m, 4H, H-7-10), 15.48 (bs, 1H, H-N), Minor: 1.96, 1.72 (s, H-

3), 11.33 (bs, H-N), 15.10 (bs, H-N); δ 13C NMR (100.6 MHz, d6-DMSO): 135.6-

165.6 (4°), (126.7-131.6 (CH), 21.1, 14.0 (CH3); Anal. Calcd for C10H8N2O3Cl1Na1 x 

0.95 CH3OH x 0.05 moles H2O: C, 44.74; H, 4.08; N, 9.53. Found: C, 44.77; H, 

3.85; N, 9.31: Significant IR bands: (KBr disc, cm-1): (ν C=O) 1660s, (ν C=N) 

1610s.  
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Sodium 2-[(4-chloro-benzoyl)-hydrazono]-propionate 

NaHL6 was synthesised using sodium pyruvate 0.2 g (1.82 mmol) and 4-

chloro-benzoyl hydrazide 0.31 g (1.82 mmol) to give NaHL6, 0.43 g (1.64 mmol, 

90%); Melting point: 279-281 °C; ESI-MS: positive m/z = 263.0202, 100%; HR ESI-

MS: For C10H9N2O3Cl1Na ([M+H]+), observed mass 263.0202, calculated mass 

263.0194, difference -0.8 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, H-3), 7.58 (d, 2H, JH-H= 8.8 Hz, H-6 or H-7), 7.81 (d, 2H, JH-H=  8.8 Hz, H-6 or 

H-7), 16.48 (bs, 1H, H-N), Minor: 2.15 (s, H-3), 7.98, 7.85 (d, JH-H = 8.8 Hz, H-6 or 

H-7); δ 13C NMR (100.6 MHz, d6-DMSO): Major isomer: 166.3 (4°),160.9 (4°), 151.1 

(4°), 136.5 (4°), 132.5 (4°), 128.8 (CH), 128.4 (CH), 21.2 (CH3), Minor isomer: 130.2 

(CH), 128.4 (CH); Significant IR bands : (KBr disc, cm-1): (ν C=O) 1684s, (νas ym  

COO) 1649s, (ν C=N) 1612s.  
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Sodium 2-[(3-methyl-4-nitro-benzoyl)-hydrazono]-propionate 

NaHL7 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 3-

methyl-4-nitro-benzoyl hydrazide 0.35 g (1.82 mmol) to give NaHL7, 0.43 g (1.5 

mmol, 82%); Melting point: 243-245 °C; ESI-MS: positive m/z = 288.06, 100%, HR 

ESI-MS: For C11H11N3O5Na ([M+H]+), observed mass 288.0581, calculated mass 

288.0596, difference 1.5 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.01 (s, 3H, H-3), 

2.56 (s, 3H, H-11), 7.78 (dd, 1H, JH-H=  8.3 Hz, 1.1 Hz, H-9 or H-10), 7.87 (s, 1H, H-
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6), 8.09 (d, 1H, JH-H=  8.5 Hz, H-9 or H-10),  16.60 (bs, 1H H-N); δ 13C NMR (100.6 

MHz, d6-DMSO): 165.9 (4°), 160.1 (4°), 151.7(4°), 150.5 (4°), 137.9 (4°), 133.2 (4°), 

131.4 (CH), 125.5 (CH), 124.9 (CH), 21.1 (CH3), 19.4 (CH3); Anal. Calcd. for 

C11H10N3O5Na1 x 0.25 CH3OH x 1.8 H2O: C, 40.95; H, 4.13; N, 12.45. Found: C, 

41.24; H, 4.49; N, 12.82; Significant IR bands: (KBr disc, cm-1): (ν C=O) 1662s, 

(νas ym  COO) 1627s, (νas ym  (N=O)2) 1522s ,   (νs ym  (N=O)2) 1356s .   
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Sodium 2-[(4-nitro-benzoyl)-hydrazono]-propionate 

 NaHL8 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 4-

nitro-benzoyl hydrazide 0.33 g (1.82 mmol) to give NaHL8, 0.47 g (1.72 mmol, 

95%); Melting point: 204-205 °C; ESI-MS: positive m/z = 274.0429, 100%, HR ESI-

MS: For C10H9N3O5Na ([M+H]+), observed mass 274.0429, calculated mass 

274.0434, difference 0.5 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, H-3), 8.03 (d, 2H, JH-H= 8.8 Hz, H-6 or H-7), 8.34 (d, 2H, JH-H=  8.8 Hz, H-6 or 

H-7), 16.70 (bs, 1H, H-N), Minor isomer: 2.17 (s, H-3), 7.88, 8.15 (d, H-6 or H-7); δ 
13C NMR (100.6 MHz, d6-DMSO): 166.1 (4°), 160.2 (4°), 151.9 (4°), 149.2 (4°), 

139.6 (4°), 128.4 (CH), 124.0, (CH), 21.2 (CH3); Anal. Calcd. for C10H8N3O5Na1 x 

2.2 H2O: C, 38.40; H, 4.00; N, 13.28. Found: C, 38.69; H, 3.87; N, 13.43; 

Significant IR bands : (KBr disc, cm-1): (ν C=O) 1665s, (νas ym  COO) 1633s, (ν 

C=N) 1600s, (νas ym  (N=O)2) 1521s, (νs ym  (N=O)2) 1352s. 
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Sodium 2-[(4-methyl-benzoyl)-hydrazono]-propionate 

NaHL9 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 4-

methyl benzoyl hydrazide 0.27 g (1.82 mmol) to give NaHL9, 0.38 g (1.57 mmol, 

86%); Melting point: 242-244 °C; ESI-MS: positive m/z = 243.07, 100%, HR ESI-

MS: For C11H12N2O3Na ([M+H]+), observed mass: 243.0738, calculated mass: 

243.0740, difference: 0.2 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 1.98 

(s, 3H, H-3),  2.36 (s, 3H, H-9), 7.31 (d, 2H, JH-H=  8.0 Hz, H-6 or H-7), 7.71 (d, 2H, 

JH-H=  8.0 Hz, H-6 or H-7), 16.20 (bs, 1H, H-N), Minor isomer: 2.14 (s, H-3), 7.34, 

7.84 (d, JH-H= 8.1 Hz, H-6 or H-7),; δ 13C NMR (100.6 MHz, d6-DMSO): Major 

isomer: 166.3 (4°), 161.9 (4°), 150.5 (4°), 141.7 (4°), 130.9 (4°), 129.3 (CH), 127.0 

(CH), 21.24 (CH3), 21.0 (CH3), Minor isomer: 128.9 (CH), 128.3 (CH), 21.1 (CH3), 

13.9 (CH3); Anal. Calcd for C11H12N2O3Na x 2.2 H2O: C, 46.88; H, 5.51; N, 9.94. 

Found: C, 46.92; H, 5.41; N, 9.75; Significant IR bands : (KBr disc, cm-1): (ν C=O) 

1649s, (νas ym  COO) 1631s, (ν C=N) 1610s. 
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Sodium 2-[(4-bromo-benzoyl)-hydrazono]-propionate 

NaHL10 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 4-

bromo-benzoyl hydrazide 0.39 g (1.82 mmol) to give NaHL10, 0.48 g (1.56 mmol, 

86%); Melting point: 276 - 278 °C; ESI-MS: positive m/z = 306.97, 100%, HR ESI-

MS: For C10H9N3O3Br1Na ([M+H]+), observed mass 306.9685, calculated mass 

306.9689, difference 0.4 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, H-3), 7.48 (apparent t, 1H, JH-H= 7.88 Hz, H-9), 7.78 (m 2H, H-6, H-8 or H-
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10), 7.92 (s,1H, H-6), 16.46 (bs, 1H, H-N), Minor isomer: 2.16 (s, H-3), 8.09 (bs, 1H, 

H-N); δ 13C NMR (100.6 MHz, d6-DMSO): 166.1 (4°),160.3 (4°), 151.3 (4°), 134.4 

(CH), 131.0 (CH), 129.7 (CH), 129.3 (4°), 125.7 (CH), 122.1 (4°), 21.1 (CH3); 

Significant IR bands : (KBr disc, cm-1): (ν C=O) 1666s, 1649s, (νas ym  COO) 

1627s, (ν C=N)1606s. 
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Sodium 2-[(3-bromo-benzoyl)-hydrazono]-propionate 

NaHL11 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 4-

bromo-benzoyl hydrazide 0.39 g (1.82 mmol) to give NaHL11, 0.54 g (1.75 mmol, 

96%); Melting point:  279-281 °C; ESI-MS: positive m/z = 306.9678, 100%, HR 

ESI-MS: For C10H9N2O3Na ([M+H]+), observed mass 306.9678, calculated mass 

306.9689, difference 1.1 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.01 

(s, 3H, CH3), 7.73 (apparent d, 4H, JH-H= 1.6 Hz, H-6 and H-7), 16.36 (bs, 1H, H-N); 

δ 13C NMR (100.6 MHz, d6-DMSO): 166.2 (4°),161.0 (4°), 151.1 (4°), 131.8 (CH), 

132.9 (4°), 129.0 (CH), 125.4 (4°),  21.2 (CH3); Significant IR bands : (KBr disc, 

cm-1): (ν C=O) 1687s,  (νas ym  COO) 1648s, (ν C=N) 1627s. 
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Sodium; 2-[(3-methoxy-benzoyl)-hydrazono]-propionate 

NaHL12 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 3-

methoxy-benzoyl hydrazide 0.30 g (1.82 mmol) to give NaHL12, 0.38 g (1.47 mmol, 

81%); Melting point: 268-270 °C; ESI-MS: positive m/z = 259.07, 100%, HR ESI-
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MS: For C11H12N2O4Na ([M+H]+), observed mass 259.0692, calculated mass 

259.0689, difference -0.3 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 2.00 

(s, 3H, H-3), 3.80 (s, 3H, H-11), 7.13 (d, 1H, JH-H= 8.0 Hz, H-8 or H-10 ), 7.42 (m, 

3H, H-6 and/or H-8-10), 16.22 (bs, 1H, H-N), Minor isomer: 2.14 (s, H-3), 3.80 (s, H-

11), 11.05 (bs, 1H, NH); δ 13C NMR (100.6 MHz, d6-DMSO): Minor isomer: 166.3 

(4°), 161.7 (4°), 159.4 (4°), 150.7 (4°), 135.1 (4°), 129.9 (CH), 118.8 (CH), 117.3 

(CH), 112.4 (CH), 55.2 (CH3), 21.2 (CH3), Minor isomer; 164.7 (4°), 162.6 (4°), 

159.1 (4°), 149.0 (4°), 129.5 (CH), 120.4 (CH), 117.8 (CH), 113.6 (CH), 55.3 (CH3), 

12.7 (CH3); Significant IR bands : (KBr disc, cm-1): (ν C=O) 1644s,  (νasym  COO) 

1628s, (ν C=N) 1601s. 
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Sodium 2-[(4-methoxy-benzoyl)-hydrazono]-propionate 

NaHL13 was synthesised using sodium pyruvate 0.2 g (1.82 mmol) and 4-

bromo-benzoyl hydrazide 0.30 g (1.82 mmol) to give NaHL13, 0.39 g (1.51 mmol, 

83%); Melting point: 240 - 242 °C; ESI-MS: positive m/z = 259.0697, 100%, HR 

ESI-MS: For C11H12N2O4Na ([M+H]+), observed mass 259.0697, calculated mass 

259.0689, difference -0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 1.99 

(s, 3H, H-3), 3.79 (s, 3H, H-9), 7.03 (d, 2H, JH-H= 8.8 Hz, H6 or H-7), 7.77 (d, 2H, JH-

H= 8.8 Hz, H6 or H-7), 16.09 (bs, 1H, H-N), Minor isomer: 2.13 (s, H-3), 3.78 (s, H-

9), 6.98, 7.85 (d, JH-H = 7.2 Hz, 8.8 Hz, H-6 or H-7), 10.89 (bs, 1H, H-N); δ 13C NMR 

(100.6 MHz, d6-DMSO): Major isomer: 166.3 (4°), 161.5 (4°), 161.9(4°), 150.1 (4°), 

141.7 (4°), 128.8 (CH), 114.0 (CH), 21.2 (CH3), 55.4 (CH3), Minor isomer: 162.4 

(4°), 130.3 (CH), 113.5 (CH), 55.4 (CH3), 13.8 (CH3); Significant IR bands  (KBr 

disc, cm-1): (ν C=O) 1642s,  (νas ym  COO) 1625s, (ν C=N) 1607s. 
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NaHL14 
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Sodium 2-[(4-tert-butyl-benzoyl)-hydrazono]-propionate 

NaHL16 was synthesised using sodium pyruvate 0.2 g (1.82 mmol) and 4-

tert-butyl-benzoyl hydrazide 0.35 g (1.82 mmol) to give NaHL16, 0.46 g (1.75 mmol, 

96 %); Melting point: 260-262 °C; ESI-MS: positive m/z = 263.14, 100%, HR ESI-

MS: For C14H19N2O3 ([M-Na+2H]+), observed mass 263.1391, calculated mass 

263.1390, difference -0.1 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 1.29 

(s, 9H, H-10), 1.99 (s, 3H, H-3), 7.74 (d, 2H, JH-H=  8.0 Hz, H-6 or H-7), 7.51 (d, 2H, 

JH-H=  8.0 Hz, H-6 or H-7), 16.17 (bs, 1H, H-N) Minor isomer: 7.84 (d, JH-H=  8.0 Hz, 

Ar-H), 2.15 (s, 8); δ 13C NMR (100.6 MHz, d6-DMSO): Major isomer: 166.1 (4°), 

161.7 (4°), 154.4 (4°), 150.4 (4°), 131.1 (4°), 126.7 (CH), 125.4 (CH), 34.6 (4°), 30.9 

((CH3)3), 21.2 (CH3), Minor isomer: 128.0 (CH), 125.1 (CH), 34.7 (4°), 30.8 ((CH3)3), 

13.8 (CH3); Anal. Calcd for C14H17N2O3Na x 1.75 H2O: C, 53.24; H, 6.54; N, 8.87. 

Found C, 53.45; H, 6.41; N, 8.64; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1651s, (νas ym  COO) 1635s, ν (C=N) 1609s.  
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Sodium; 2-[(4-trifluoro-benzoyl)-hydrazono]-propionate 

NaHL15 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 4-

triflouromethyl benzoyl hydrazide 0.37 g (1.82 mmol) to give NaHL15, 0.48 g (1.62 

mmol, 89%); Melting point: 126-128 °C ; ESI-MS: positive m/z = 297.04, 100%, HR 

ESI-MS: For C11H9N2O3F3Na ([M+H]+), observed mass 297.0465, calculated mass 



                                                                                                      Chapter-7                                                                                    

 246 

297.0457, difference -0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.01 (s, 3H, H-3), 

7.89 (d, 2H, JH-H= 8.3 Hz, H-6 or H-7), 7.99 (d 2H, JH-H= 8.3 Hz, H-6 or H-7) 16.60 

(bs, 1H, H-N) ; δ 13C NMR (100.6 MHz, d6-DMSO): 165.9 (4°), 151.6 (4°), 160.5 

(4°), 137.8 (CH), 127.8 (CH) 131.3 (4°), 123.8 (C-9, 1J, JC-F = 271), 21.1 (CH3); 

Anal. Calcd. for C11H7N2O3F3Na2 x 1.4 CH3OH x 1.7 H2O: C, 37.83; H, 4.10; N, 

7.12. Found: C, 37.46; H, 3.73; N, 6.74; Significant IR bands  (KBr disc, cm-1): (ν 

C=O) 1653s, (νas ym  COO, ν C=N) 1632s. 
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Sodium 2-[(3-fluoro-benzoyl)-hydrazono]-propionate 

NaHL16 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 3-

fluoro-benzoyl hydrazide 0.27 g (1.82 mmol) to give NaHL16, 0.36 g (1.46 mmol, 

80%); Melting point: 255-256 °C; ESI-MS: positive m/z = 247.05, 100%, HR ESI-

MS: For C10H9N2O3Na ([M+H]+), observed mass 247.0496, calculated mass 

247.0489, difference -0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major isomer: 1.99 

(s, 3H, H-3), 7.40-7.80 (m, 4H, H-6, H-8-10), 16.42 (bs, 1H, H-N), Minor isomer: 

2.15 (s, H-3), 11.15 (bs, 1H, H-N); δ 13C NMR (100.6 MHz, d6-DMSO): Major 

isomer: 166.2 (4°), 162.0 (1J, JC-F = 247, C-7), 160.6 (4J, JC-F = 3, C-4), 151.2 (4°), 

136.0 (3J, JC-F= 7, C-9), 122.0 (4J, JC-F = 3, C-10), 131.0 (3J, JC-F = 7, C-9), 118.0 (2J, 

JC-F = 22, C-6 or C-8), 113.0 (2J, JC-F = 22, C-6 or C-8),  21.1 (CH3); Anal. Calcd. for 

C10H8N2O3FNa1 x 0.15 7H3OH x 1.1 H2O: C, 45.02; H, 4.02; N, 10.34. Found: C, 

45.03;  H, 3.92; N, 10.30; Significant IR bands : (KBr disc, cm-1): (ν C=O, νas ym  

COO, ν C=N) 1635br. 
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Sodium 2-[(2-hydroxy-4-methoxy-benzoyl)-hydrazono]-propionate 

NaHL17 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 2-

hydroxy-4-methoxy-benzoyl hydrazide 0.33 g (1.82 mmol) to give NaHL17, 0.46 g 

(1.68 mmol, 92%); Melting point: 258-260 °C, ESI-MS: negative m/z = 251.07, 

100%, HR ESI-MS: For C11H11N2O5 ([M-Na]-), observed mass 251.0665, calculated 

mass 251.0673, difference 0.9 mDa; δ 1H NMR (400 MHz, d6-DMSO): Major 

isomer: 2.03 (s, 3H, H-3), 6.38 (d, 1H, JH-H= 6.8 Hz, H-9 or H-10), 6.54 (s, 1H, H-7), 

7.86 (d, 1H, JH-H= 8.0 Hz, H-9 or H-10), 15.81 (bs, 1H, H-N), Minor isomer: 2.05 (s, 

3H, H-3), 6.48 (d, 1H, JH-H= 8.8 Hz, H-9, H-10), 6.68 (s, 1H, H-7), 7.57 (d, 1H, JH-H= 

8.8 Hz, H-9 or H-10), 13.39 (bs, 1H, NH); δ 13C NMR (100.6 MHz, d6-DMSO): Major 

isomer: 166.1 (4°), 164.7 (4°), 163.7 (4°), 150.6 (4°), 128.8 (4°), 128.8 (CH), 101.5 

(CH), 106.5 (CH), 55.5 (CH3), 21.2 (CH3), Minor isomer: 167.6 (4°), 164.8 (4°), 

162.6 (4°), 148.7 (4°), 132.0 (CH), 128.8 (4°), 101.6 (CH), 105.1 (CH), 55.1 (CH3), 

48.6 (CH3), 18.6 (CH3), 12.7 (CH3); Significant IR bands : (KBr disc, cm-1): (ν 

C=O) 1652s, (νas ym  COO, ν C=N) 1610s. 
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Sodium 2-[(pyridine-4-carbonyl)-hydrazono]-propionate 

NaHL18 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 

pyridine-4-carbonyl-benzoyl hydrazide 0.25 g (1.82 mmol) to give NaHL18, 0.37 g 

(1.62 mmol, 89%), Melting point: 281-282 °C; ESI-MS: positive m/z = 208.07, 

100%, HR ESI-MS: For C9H10N3O3Na ([M-Na+2H]+), observed mass 208.0719, 
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calculated mass 208.0717, difference -0.2 mDa; δ 1H NMR (400 MHz, d6-DMSO): 

2.03 (s, 3H, H-3), 8.75 (dd, 2H, JH-H=  4.4 Hz, 1.6 Hz, H-6 or H-7), 7.70 (dd 2H, JH-H=  

4.4 Hz, 1.6 Hz, H-6 or H-7), 16.46 (bs, 1H, H-N); δ 13C NMR (100.6 MHz, d6-

DMSO): 166.3 (4°), 160.5 (4°), 152.0 (4°), 150.7 (CH),  132.5 (4°), 121.0  (CH), 21.2 

(CH3); Significant IR bands : (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 

1644br. 
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Sodium 2-[(pyridine-3-carbonyl)-hydrazono]-propionate 

NaHL19 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 

pyridine-3-carbonyl-benzoyl hydrazide 0.25 g (1.82 mmol) to give NaHL19, 0.34 g 

(1.49 mmol, 82%); Melting point: 265-267 °C; ESI-MS: positive m/z = 208.0717, 

100%, HR ESI-MS: For C9H10N3O3Na ([M-Na+2H]+), observed mass 208.0717, 

calculated mass 208.0717, difference -0.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): 

2.02 (s, 3H, H-3), 8.97 (d, 1H, JH-H= 1.8 Hz, H-9), 8.74 (dd, 1H, JH-H=  1.6 Hz, 4.8 

Hz, H-6 or H-8), 8.14 8.74 (d,d  1H, JH-H=  1.9 Hz, 8.0 Hz, H-7), 7.55 (q, 1H, JH-H=  

4.8 Hz, H-7), 16.46 (bs, 1H, H-N); δ 13C NMR (100.6 MHz, d6-DMSO): 166.3 (4°), 

160.5 (4°), 152.4 (CH), 151.4 (4°), 148.0 (CH), 134.8 (CH), 129.4 (4°),124.0 (CH), 

21.2 (CH3); Significant IR bands: (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 

1640br. 
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Sodium 2-[(pyrazine-2-carbonyl)-hydrazono]-propionate 

NaHL20 was synthesised using sodium pyruvate 0.20 g (1.82 mmol) and 

pyrazinoyl hydrazide 0.27 g (1.82 mmol) to give NaHL20 0.36 g (1.46 mmol, 80%); 

Melting point: decomp. > 200 °C; ESI-MS: positive m/z = 209.07, 100%, HR ESI-

MS: For C8H9N4O3 ([M-Na+2H]+), observed mass 209.0670, calculated mass 

209.0669, difference -0.1 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.02 (s, 3H, H-3), 

8.72 (dd, 1H, JH-H=  2.5 Hz, 1.5 Hz, H-7), 8.85 (d, 1H, JH-H=  2.5 Hz, H-6), 9.21 (d, 

1H, JH-H= 1.4 Hz, H-8); δ 13C NMR (100.6 MHz, d6-DMSO): 165.7 (4°), 159.1 (4°), 

152.0 (4°), 147.6 (CH), 143.9 (CH), 143.6 (4°), 21.4 (CH3); Anal. Calcd. for 

C8H7N4O3Na1 x 0.15 CH3OH x 1.75 H2O: C, 36.73; H, 4.20; N, 21.02. Found: C, 

36.55; H, 3.90; N, 20.76; Significant IR bands: (KBr disc, cm-1): (ν C=O) 1670s ,  

(νas ym  COO, ν C=N) 1625br .  
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7.7 Synthetic procedure and characterisation detail of the di-

hydrazide analogue; NaH3D1 
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                          E isomer    (2)                  

Sodium 3-[N'-(4-methyl-benzoyl)-hydrazino]-2-[(4-methyl-benzoyl)-hydrazono]-

propionate 

NaH3D1 was synthesized by dissolving 3-bromopyruvate (0.2 g, 1.10 mmol) 

and 4-methyl benzoic acid hydrazide (0.32 mg, 2.05 mmol) in methanol with an 

equimolar amount of NaHCO3 (95 mg, 1.13 mmol). The reaction mixture was heated 

under reflux for 2 hours. A white precipitate was obtained, which was washed with 

an excess of methanol and water, filtered and dried under vacuum to give NaH3D1, 

0.24 g (0.06 mmol, 55%); Melting point: 248-250 °C; ESI-MS: negative m/z = 

367.1428, 100%, HR ESI-MS: For C19H19N4O4 ([([M-H-Na]-), observed mass 

367.1428, calculated mass 367.1412, difference -1.6 mDa; δ 1H NMR (400 MHz, d6-

DMSO): Z isomer: 2.36, (bs, 6H, H-1 and H-15), 3.69 (d, 2H, CH2, H-7), 5.70 

(apparent q, 1H, N(ii)-H), 7.22-7.76 (m, 8H, H-3-4 & H-12-13), 10.11 (d, 1H, N(i)-H), 

16.38, (s, 1H, N(iii)-H): E isomer : 2.33/2.30 (s, H-1 and H-15), 3.88 (s, CH2, H-7), 

7.22-7.76 (m, H-3-4 & H-12-13) 9.83 (bs, N(iii)H), 16.38 (s, 1H, N(i/ii)-H); 13C NMR 

(100.6 MHz, d6-DMSO): Z and E isomers: 166.59(4°), 166.25(4°), 165.96(4°), 

165.34(4°), 163.53(4°), 162.80(4°), 149.47(4°), 148.73(4°), 142.89(4°), 142.44(4°), 

142.03(4°), 141.55(4°), 131.15(4°), 130.93(4°), 130.75(4°), 130.35(4°), 129.91(CH), 

129.81(CH), 129.30(CH), 129.28(CH), 127.84(CH), 127.53(CH), 127.49(CH), 

127.45(CH), 60.45(CH2), 54.68(CH2), 20.94(CH3), 20.91(CH3), 20.85(CH3), 

20.84(CH3); Anal. Calcd. for C19H19N4O4Na x 1.6 H2O: C, 54.44; H, 5.34; N, 13.37. 

Found C, 54.01; H, 4.86; N, 13.11; Significant IR bands : (KBr disc, cm-1): (ν 

C=O) 1639s, (νas ym  COO, ν C=N) 1620br. 
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7.8 General synthetic procedure and characterisation detail of Cu(II)          

complexes of PVAHs [Cu(L1)(H2O)2]- [Cu(L20)(H2O)2] 

To a methanolic solution of the respective pyruvate-based aroylhydrazone 

(0.58 mmol) was added CuCl2 x 2 H2O (0.58 mmol). The mixture was stirred for 2 

hours. The resultant clear green solution was allowed to evaporate slowly giving 

green coloured crystalline powders which were isolated, washed with water and 

then re-dissolved in methanol. The resultant solution was allowed to evaporate 

slowly at room temperature, giving rise to green coloured crystals, which were 

isolated and dried in vacuo. 

[Cu(L1)(H2O)2]  

O

N
N O

O

CH3

Cu

H2O OH2

2+

 

[(Bis-hydroxy)(2-[(benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L1)(H2O)2] was synthesised using NaHL1, 0.13 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L1)(H2O)2], 0.067 g (0.22 mmol, 37 

%); Melting point: 245-247 °C; ESI-MS: positive ion m/z = 309.01, 20 %, ESI-

MS: For 63Cu1(I)C10H11N2O4Na1 ([M-H2O+H+Na)]+), observed mass: 309.01, 

calculated mass: 308.99; Anal. Calcd. for Cu1C10H12N2O5 x 0.45 H2O: C, 38.51; 

H, 4.17; N, 8.98. Found C, 38.35; H, 4.00; N, 8.83; Significant IR bands (KBr 

disc, cm-1): (ν C=O, νasym  COO, ν C=N) 1629br. 
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[Cu(L2)(H2O)2]  
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[(Bis-hydroxy)(2-[(2-hydroxy-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L2)(H2O)2] was synthesised using NaHL2, 0.14 g (0.58 mmol) and 

CuCl2.2H2O 0.1 g (0.58 mmol), to give [Cu(L2)(H2O)2] 0.065 g (0.20 mmol, 35%); 

Melting point: > 350 °C; ESI-MS: positive ion m/z = 309.01, 20%, ESI-MS: For 
63Cu1(I)C10H11N2O4Na1 [M-H2O+H+Na)]+, observed mass: 309.01, calculated mass: 

308.99; Significant IR bands (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 

1618br. 

 

[Cu(L3)(H2O)2]  

O

N
N O

O

CH3

Cu

H2O OH2

2+

HO

  

[(Bis-hydroxy)(2-[(3-hydroxy-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L3)(H2O)2] was synthesised using NaHL3, 0.14 g (0.58 mmol) and 

CuCl2.2H2O 0.1 g (0.58 mmol), to give [Cu(L3)(H2O)2] 0.064 g (0.20 mmol, 34 %) 

Melting point: 265-268 °C; ESI-MS: positive ion m/z = 325.01, 67 %, ESI-MS: For 
63Cu1(I)C10H11N2O5Na1 [M-H2O+H+Na)]+), observed mass: 325.01, calculated mass: 

324.99; Anal. Calcd. for Cu1C10H12N2O6: C, 37.56; H, 3.78; N, 8.76. Found: C, 

37.53; H, 3.85; N, 8.23; Significant IR bands (KBr disc, cm-1): (ν C=O, νas ym  

COO, ν C=N) 1645br. 
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[Cu(L4)(H2O)2] 
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Cu

H2O OH2
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[(Bis-hydroxy)(2-[(4-hydroxy-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L4)(H2O)2] was synthesised using NaHL4, 0.14 g (0.58 mmol) and 

CuCl2.2H2O 0.1 g (0.58 mmol), to give [Cu(L4)(H2O)2] 0.061 g (0.20 mmol, 34 

%); Melting point: 310-312 °C; ESI-MS: positive ion m/z = 325.01, 15 %, ESI-

MS: For 63Cu1(I)C10H11N2O5Na1 ([M-H2O+H+Na)]+), observed mass: 325.01, 

calculated mass: 324.99; Significant IR bands (KBr disc, cm-1): (ν C=O, νas ym  

COO, ν C=N) 1642br. 

[Cu(L5)(H2O)2]  

O

N
N O

O

CH3

Cu

H2O OH2

2+Cl

 

[(Bis-hydroxy)(2-[(2-chloro-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L5)(H2O)2] was synthesized using NaHL5, 0.15 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give(0.32 mg, 2.05 mmol)  [Cu(L5)(H2O)2], 

0.06 g (0.18 mmol, 31 %); Melting point: decomposes above 200 °C; ESI-MS: 

positive ion m/z = 360.32, 100 %, ESI-MS: For 63Cu1C10H11N2O5Cl1Na1 

([M+Na]+), observed mass: 360.32, calculated mass: 359.95; Significant IR 

bands (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 1630br. 
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[Cu(L6)(H2O)2]  
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N O
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[(Bis-hydroxy)(2-[(4-chloro-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L6)(H2O)2] was synthesised using NaHL6, 0.15 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L6)(H2O)2], 0.10 g (0.30 mmol, 52%); 

Melting point: 249-251 °C; ESI-MS: positive ion m/z = 325.01, 80 %, ESI-MS: For 
63Cu1(I)C10H11N2O5Na1 ([M-H2O+H+Na)]+), observed mass: 342.98, calculated mass: 

324.95; Anal. Calcd. for Cu1C10H11N2O5Cl (0.5 CH3OH, 0.15 x H2O): C, 35.33; H, 

3.76; N, 7.85. Found C, 34.95; H, 3.33; N, 7.43; Significant IR bands (KBr disc, 

cm-1): (ν C=O, νas ym  COO, ν C=N) 1633br. 

[Cu(L7)(H2O)2]  

O

N
N O

O
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Cu

H2O OH2
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[(Bis-hydroxy)(2-[(3-methyl-4-nitro-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L7)(H2O)2] was synthesized using NaHL7, 0.17 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L7)(H2O)2], 0.12 g (0.31 mmol, 54%); 

Melting point: 210-212 °C; ESI-MS: positive ion m/z = 368.02, 19 %, ESI-MS: For 
63Cu(I)1C11H12N3O6Na1 ([M-H2O+H+Na)]+), observed mass: 368.02, calculated 

mass: 368.00; Anal. Calcd. for Cu1C11H13N3O7 x 0.1 H2O: C, 36.06; H, 3.69; N, 

11.47. Found: C, 36.06; H, 3.55; N, 11.35; Significant IR bands: (KBr disc, cm-1): 

(ν C=O, νas ym  COO, ν C=N) 1642 br, (νas ym  (N=O)2) 1524s, (νs ym  (N=O)2) 

1360s. 
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[Cu(L8)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

2+

O2N

 

[(Bis-hydroxy)(2-[(4-nitro-benzoyl)-hydrazono]-propionate)]copper(II) 

  [Cu(L8)(H2O)2] was synthesised using NaHL8, 0.16 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L8)(H2O)2], 0.08 g (0.24 mmol, 41 %); 

Melting point: 250-252 °C; ESI-MS: positive ion m/z = 372.01, 100 %, ESI-MS: For 
63Cu(I)1C10H12N3O7Na1 ([M+H+Na]+), observed mass: 372.01, calculated mass: 

371.99; Anal. Calcd. for Cu1C10H11N3O7 x 1.15 H2O: C, 32.51; H, 3.63; N, 11.37. 

Found: C, 32.67; H, 3.31; N, 11.05; Significant IR bands (KBr disc, cm-1): (ν C=O, 

νas ym  COO, ν C=N) 1639br, (νas ym  (N=O)2) 1527s, (νs ym  (N=O)2) 1347s. 

[Cu(L9)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

H3C

2+

 

[(Bis-hydroxy)(2-[(4-methyl-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L9)(H2O)2] was synthesised using NaHL9, 0.14 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L9)(H2O)2] 0.13 g ( 0.38 mmol, 65 

%); Melting point: 223-225 °C; ESI-MS: positive ion m/z = 341.04, 100 %, ESI-

MS: For 63Cu(I)1C11H14N2O5 ([M+H+Na]+), observed mass: 341.04, calculated 

mass: 341.02; Anal. Calcd. for Cu1C11H14N2O5 x 0.3 H2O: C, 40.88; H, 4.55; N, 

8.67. Found C, 40.54; H, 4.23; N, 8.48; Significant IR bands: (KBr disc, cm-1): 

(ν C=O) 1653s ,  (νas ym  COO) 1637s ,  (ν C=N) 1609br. 
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[Cu(L10)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

2+

Br

 

[(Bis-hydroxy)(2-[(3-bromo-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L10)(H2O)2] was synthesised using NaHL10, 0.18 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L10)(H2O)2], 0.092 g (0.24 mmol, 

42 %); Melting point: 247-249 °C; ESI-MS: positive ion m/z = 327.01, 100 %, 

ESI-MS: For 63Cu(I)1C10H10N2O4Br1Na1 ([M-H2O+H+Na]+), observed mass: 

388.93, calculated mass: 388.63; Significant IR bands: (KBr disc, cm-1): (ν 

C=O, νas ym  COO, ν C=N) 1643br 

[Cu(L11)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

Br

2+

 

 

[(Bis-hydroxy)(2-[(4-bromo-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L11)(H2O)2] was synthesised using NaHL11, 0.18 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L11)(H2O)2], 0.12 g (0.31 mmol, 

54%); Melting point: 239-241 °C; ESI-MS: positive ion m/z = 388.93, 100 %, 

ESI-MS: For 63Cu(I)1C10H10N2O4Br1Na1 ([M-H2O+H+Na]+), observed mass: 

388.93, calculated mass: 388.63; Anal. Calcd. for Cu1C11H13N2O5Br: C, 33.31; 

H, 3.30; N, 7.06. Found C, 33.41; H, 2.84; N, 7.11; Significant IR bands: (KBr 

disc, cm-1): (ν C=O, νasym  COO, ν C=N) 1635br. 
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[Cu(L12)(H2O)2] 

 

O

N
N O

O

CH3

Cu

H2O OH2

2+

H3CO

 

 

[(Bis-hydroxy)(2-[(3-methoxy-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L12)(H2O)2] was synthesised using NaHL12, 0.15 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L12)(H2O)2], 0.088 g (0.23 mmol, 

39%); Melting point: 229-231 °C; ESI-MS: positive ion m/z = 339.03, 15 %, 

ESI-MS: For 63Cu1(I)C11H14N2O6 ([M-H2O+H+Na]+), observed mass: 339.03, 

calculated mass: 339.00; Significant IR bands: (KBr disc, cm-1): (ν C=O, 

νas ym  COO) 1642br ,  (ν C=N) 1609s. 

[Cu(L13)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

H3CO

2+

 

[(Bis-hydroxy)(2-[(3-methoxy-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L13)(H2O)2] was synthesized using NaHL13, 0.15 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L13)(H2O)2], 0.11 g (0.30 mmol, 51%); 

Melting point: 229-231 °C; ESI-MS: positive ion m/z = 339.03, 15 %, ESI-MS: For 
63Cu1(I)C11H14N2O6 ([M-H2O+H+Na]+), observed mass: 339.03, calculated mass: 

339.00; Anal. Calcd for Cu1C11H14N2O6: C, 39.58;  H, 4.23; N, 8.39 C, Found 39.70; 

H, 4.01; N, 8.24; Significant IR bands: (KBr disc, cm-1): (ν C=O, νas ym  COO) 

1639br ,  (ν C=N) 1603s. 
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[Cu(L14)(H2O)2] 

O

N
N O

O

CH3

Cu

OH2

2+

 

[(2-[(4-tert-butyl-benzoyl)-hydrazono]-propionate)(hydroxy)]copper(II) 

[Cu(L14)(H2O)] was synthesized using NaHL14, 0.16 g (0.58 mmol) and 

CuCl2.2H2O 0.1 g (0.58 mmol), to give [Cu(L14)(H2O)] 0.1 g (0.27 mmol, 47 %); 

Melting point: 244-247 °C; ESI-MS: positive ion m/z = 365.08, 100 %, ESI-MS: For 
63Cu(I)1C14H19N2O4Na1 ([M-H+Na]+), observed mass: 365.08, calculated mass: 

365.05; Anal. Calcd. for Cu1C14H18N2O4 x 0.25 CH3OH: C, 48.92; H, 5.47; N, 8.01. 

Found: C, 49.09;  H, 5.38; N, 7.87; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1645s  (νas ym  COO) 1628s ,  (ν C=N) 1602s. 

[Cu(L15)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

2+

F

 

[(Bis-hydroxy)(2-[(3-flouro-benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L15)(H2O)2] was synthesized using NaHL15, 0.14 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L15)(H2O)2], 0.06 g (0.19 mmol, 32 %); 

Melting point: 232-235 °C; ESI-MS: positive ion m/z = 327.01, 4 %, ESI-MS: For 
63Cu(I)1C10H10N2O4F1Na1 ([M-H2O+H+Na]+), observed mass: 327.01, calculated 

mass: 326.98; Anal. Calcd. for Cu1C10H11N2O5F1 x 0.27 H2O: C, 45.02; H, 3.56; N, 

8.57. Found: C, 45.03;  H, 3.29; N, 8.25; Significant IR bands (KBr disc, cm-1): (ν 

C=O, νas ym  COO, ν C=N) 1630br .  
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[Cu(L16)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

F3C

2+

 

[(Bis-hydroxy)(2-[(4-triflouromethyl -benzoyl)-hydrazono]-propionate)]copper(II) 

 [Cu(L16)(H2O)2] was synthesized using NaHL16, 0.17 g (0.58 mmol) and 

CuCl2.2H2O 0.1 g (0.58 mmol), to give [Cu(L16)(H2O)2], 0.08 g (0.21 mmol, 36 %); 

Melting point: 214-217°C; ESI-MS: positive ion m/z = 394.99, 100 %, ESI-MS: For 
63Cu(I)1C11H12N2O5F3Na1 ([M+H+Na]+), observed mass: 394.99, calculated mass: 

395.01; Anal. Calcd. for Cu1C11H11N2O5F3 x 0.27 H2O: C, 34.28; H, 3.27; N, 7.27. 

Found: C, 34.28; H, 3.07; N, 6.77; Significant IR bands (KBr disc, cm-1): (ν C=O, 

νas ym  COO, ν C=N) 1633br .  

[Cu(L17)(H2O)2] 

O

N
N O

O

CH3

Cu

H2O OH2

H3CO

2+OH

 

 

[(Bis-hydroxy)(2-[(2-hydroxy-4-methoxy-benzoyl)-hydrazono]-propionate)]copper(II) 

[Cu(L17)(H2O)2] was synthesized using NaHL17, 0.16 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L17)(H2O)2], 0.07 g (0.19 mmol, 34 %); 

Melting point: 244-246 ° C; ESI-MS: positive ion m/z = 353.07, 60 %, ESI-MS: For 
63CuC11H12N2O6Na1 ([M-H2O+Na]+), observed mass: 353.07, calculated mass: 

353.98; Significant IR bands: (KBr disc, cm-1): (ν C=O) 1676s ,  (νas ym  COO) 

1614s ,  (ν C=N) 1600s .  
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[Cu(L18)(H2O)Cu(L18)] 

N

O

N

N

O

O

H3C

Cu
H2
O Cu

N

O

N

N

O

O

CH3

2+ 2+

 

[2-[( pyridine-4-carbonyl)-hydrazono]-propionate]µ-hydroxy copper(II) 

[Cu(L18)(H2O)Cu(L18)] synthesized using NaHL18, 0.13 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L18)(H2O)Cu(L18)], 0.10 g (0.36 mmol, 

62 %); Melting point: decomposes above 300 °C; Anal. Calcd. for Cu2C18H16N6O7 

x 0.2 CH3OH, 0.1 H2O: C, 38.78; H, 3.04; N, 14.91. Found C, 38.71; H, 2.77; N, 

14.63; Significant IR bands: (KBr disc, cm-1): (ν C=O) 1670s ,  (νas ym  COO) 

1640s ,  ν C=N) 1619s .  

[Cu(L19)(H2O)Cu(L19)] 

N

O

N

N

O

O

H3C

Cu
H2
O Cu

N

O

N

N

O

O

CH3

2+ 2+

 

[2-[( pyridine-3-carbonyl)-hydrazono]-propionate]copper(II) 

[Cu(L19)(H2O)Cu(L19)] was synthesized using NaHL19, 0.13 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(L19)(H2O)Cu(L19)], 0.11 g (0.39 mmol, 

68 %); Melting point: decomposes above 300 °C; Significant IR bands: (KBr disc, 

cm-1): (ν C=O) 1661s ,  (νas ym  COO, ν C=N) 1614br .  
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[Cu(L20)(H2O)(Cl)] 

N

N

O

N

H
N O

O

CH3

Cu
2+

H2O Cl  

[2-[(pyrazine-2-carbonyl)-hydrazono]-propionate]copper(II) 

[Cu(L20)(H2O)(Cl)] synthesized using NaHL20, 0.13 g (0.58 mmol) and 

CuCl2.2H2O, 0.10 g (0.58 mmol), to give [Cu(HL20)(H2O)(Cl)], 0.11 g (0.34 mmol, 

58 %). Melting point: 137-139 °C; ESI-MS: positive ion m/z = 311.02, 100 %, ESI-

MS: For 63Cu(I)1C8H9N4O4Na1 ([M-Cl+Na]+), observed mass: 311.02, calculated 

mass: 310.99; Anal. Calcd. for Cu1C8H9N4O4Cl x 1.0 H2O x 0.1  CH3OH: C, 28.00; 

H, 3.17; N, 16.03. Found C, 27.81; H, 2.88; N, 15.78; Significant IR bands: (KBr 

disc, cm-1): (ν C=O) 1645s ,  (νas ym  COO, ν C=N) 1614br .  
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7.9 Synthesis and characterisation detail of the Cu(I) complexes of 

HL8- and HL9- 

Synthesis of [Cu(I)(CH3CN)4]PF6
   

 To a stirred suspension of Cu2O (1g, 7 mmol) in acetonitrile (20 ml) was 

added 60 % HPF6 (2.5 ml) in 0.5 ml portions. The heat released helps to dissolve 

the white solid formed. The hot solution was stirred for 3 minutes. The solution was 

then cooled to room temperature and left in the freezer for 3 hours. The resulting 

precipitate was isolated by filtration and dried in vacuo to afford the title compound 

as a white solid (2.6 g, 50 %). The solid was stored under N2.
173  

δ 1H NMR (400 MHz, CDCl3): δ 2.19 (s) 

Synthesis of [Cu(I)2HL9(PPh3)5]PF6  

N

O

N

CH3

O

O
Cu Cu

Ph3P
PPh3

PPh3

Ph3P
PPh3

H3C

1+ 1+

c

b

b

a

d c

Har  

[Cu(I)(CH3CN)4]PF6
- (0.6 g, 1.65 mmol) was dissolved in anhydrous and 

degassed THF (15 mL) and added to a methanolic solution (15 mL) of ligand L9 

(0.20 g, 0.82 mmol) under an atmosphere of N2 to yield a yellow-brown solution. 

After stirring the reaction mixture for 10 minutes at room temperature, 

triphenylphosphine (1.08 g, 4.13 mmol), dissolved in dry and degassed THF (10 

mL), was added to the reaction mixture. The resultant pale yellow solution was 

concentrated in vacuo to a volume of 5 mL, to which Et2O was added. The resulting 

precipitate obtained after addition of Et2O was filtered and dried under vacuo to 

yield the title compound as pale yellow solid. The solid was recrystallised from hot 

MeOH to yield a colourless crystalline powder. Crystals suitable for single crystal X-

ray diffraction were obtained from MeOH and Et2O. 

Yield: 90 mg (0.69 mmol, 84%); Melting point: 163-165 °C; 

 



                                                                                                      Chapter-7                                                                                    

 263 

ESI-MS: The dinuclear copper complex gave the following ESI-MS peaks 

corresponding to the two different Cu(I) centres 

Positive ion, m/z reported for 63Cu: 

587.1111 (60 %) – [Cu(PPh3)2]
+ 

807.1956 (60 %) – [L9Cu2(PPh3)2]
+ 

849.2031 (100 %) – [Cu(PPh3)3]
+ 

1) [L9Cu2(PPh3)2]
+ 

HR ESI-MS for C47H42CuN2O3P2 [M+], observed mass 807.1956, calculated mass 

807.3380, difference -1.4 mDa 

2) [Cu(PPh3)3]
+ 

HR ESI-MS for C54H45CuP3 [M+], observed mass 849.2043, calculated mass 

849.2025, difference -1.8 mDa 

δ 1H NMR (400 MHz, d4- MeOH): 1.84 (s, 3H, H-a), 2.41 (s, 3H, H-d), 7.33 (d, 2H, 

JH-H = 8.1 Hz, H-b or H-c), 7.69 (d, 2H, JH-H=  8.1 Hz, H-b or H-c), 7.40 (m, 15 H, Har 

(PPh3)),  7.23 (m, 60 H, Har (PPh3)); Anal. Calcd. for Cu2C101H86N2O3P6F6 (3.75 x 

CH3OH): C, 65.43; H, 4.29; N, 1.46. Found C, 65.08; H, 4.94; N, 1.54; Significant 

IR bands: (KBr disc, cm-1): (νas ym  COO, ν C=O, ν C=N) 1622br .  

Synthesis of [Cu(I)2HL8(PPh3)5]PF6  

N

O

N

CH3

O

O
Cu Cu

Ph3P
PPh3

PPh3

Ph3P
PPh3

O2N

1+ 1+

c

b

b

a

c

Har  

[Cu(I)(CH3CN)4]PF6
 (0.3 g, 0.8 mmol) was dissolved in anhydrous and 

degassed methanol (15 ml) and added to a methanolic solution (15 ml) of ligand L8 

(0.22g, 0.4 mmol) under an atmosphere of N2 to yield a yellow-brown solution. After 

stirring the reaction mixture for 10 minutes at room temperature, triphenylphosphine 

(0.42g, 2.0 mmol) dissolved in dry and degassed MeOH was added to the reaction 

mixture. The resultant green solution was concentrated in vaccuo to yield a light 

green precipitate. The reaction mixture was filtered and the filtrate was left to stand 
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at room temperature for 24 hours. Bright yellow single crystals suitable for X-ray 

diffraction were obtained from the filtrate. The solution was filtered and the solid 

obtained was dried in vacuo to yield the title compound as yellow crystalline solid. 

Yield: 0.33 g (45 %, 0.18 mmol); Melting point: 210-212 °C; 

ESI-MS: The dinuclear complex yielded the follwing ESI-MS peaks corresponding to 

the two different Cu(I) centres 

Positive ion, m/z reported for 63Cu  

587.1120 (100 %) – [Cu(PPh3)2]
+ 

838.1663 (10 %) – [L8Cu2(PPh3)2]
+ 

849.2043 (40 %) – [Cu(PPh3)3]
+ 

1) L8Cu2(PPh3)2 

HR ESI-MS for C46H39CuN3O5P2 [M+], observed mass 838.1663, calculated mass 

838.1655, difference -0.7 mDa 

2) Cu(PPh3)3 

HR ESI-MS for C54H45CuP3 [M+], observed mass 849.2043, calculated mass 

849.2025, difference -1.8 mDa 

δ 1H NMR (400 MHz, d4- MeOH): 1.94 (s, 3H, H-a), 7.98 (d, 2H, JH-H= 8.8 Hz, H-a or 

H-b), 8.35 (d, 2H, JH-H=  8.8 Hz, H-a or H-b), 7.27-7.44 (m, 75H, Har (PPh3)) 

Significant IR bands: (KBr disc, cm-1): (νas ym  COO, ν C=O) 1632br ,  (ν C=N) 

1597s, (νas ym  (N=O)2) 1527s, (νs ym  (N=O)2) 1346s. 
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7.10 General synthetic procedure and characterisation detail of Zn(II) 

complexes of PVAHs [Zn(HL1)2]  - [Zn(HL20)2] 

To a methanolic solution of the respective pyruvate-based aroylhydrazone 

(0.35 mmol) was added ZnSO4.7H2O (0.17 mmol). The mixture was stirred for 2 

hours. The resultant white precipitate, which was isolated was washed with water 

and dried in vacuo. 

[Zn(HL1)2] 

O

N

H
N O

O

CH3
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O

N
N
H

O

O
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7
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Bis[2-[(benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL1)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL1 0.080 g (0.35 mmol) to give 0.040 g [Zn(HL1)2], (0.068 mmol, 40 %); Melting 

point: 266-268 °C; ESI-MS: positive ion m/z = 475.0564, 10 %, HR ESI-MS: For 
64ZnC20H19N4O6 [(M+H)+], observed mass: 475.0564, calculated mass: 475.0591, 

difference mDa: 2.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.36 (s, 6H, H-3), 7.54 

(m, 4H, H-6 or H-7), 7.65 (m, 2H, H-8), 7.97 (s, 4H, H-6 or H-7); Anal. Calcd. for 

Zn1C20H18N4O6 x 2.25 H2O: 46.53; H, 4.39; N, 10.85. Found: C, 46.17; H, 4.02; N, 

10.55; Significant IR bands: (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 

1631br. 
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Zn(HL2)2] 
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Bis[2-[(2-hydroxy- benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL2)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL2 0.09 g (0.35 mmol) to give 0.050 g [Zn(HL)2] (0.10 mmol, 58%); Melting 

point: >350 °C; ESI-MS: positive ion m/z = 507.0491, 46 %, HR ESI-MS: For 
64ZnC20H18N4O8 [(M+H)+], observed mass: 507.0491, calculated mass: 507.0489, 

difference: -0.4 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.18 (s, 3H, H-3), 6.93 (m, 

2H, Ar-H), 7.39 (d,t, 2H, JH-H = 7.8 Hz, 1.6 Hz Ar-H), 7.87 (d, 1H, JH-H= 7.5 Hz, Ar-H); 

Anal. Calcd. for Zn1C22H23N4O6 x 0.45 H2O: 46.57; H, 3.69; N, 10.86. Found: C, 

46.49; H, 3.57; N, 10.74; Significant IR bands: (KBr disc, cm-1): (ν OH) 3406br ,  

(ν C=O) 1650s ,  (νas ym  COO, ν C=N) 1614br. 
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Bis[2-[(3-hydroxy- benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL3)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL3 0.086 g (0.35 mmol) to give 0.035 g [Zn(HL3)2], (0.07 mmol, 40%); Melting 
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point: 312-314 °C; ESI-MS: positive ion m/z = 507.0501, 40 % HR ESI-MS: For 
64ZnC20H19N4O8 [(M+H)+], observed mass: 507.0501, calculated mass: 507.0489, 

difference: -1.3 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.37 (s, 6H, H-3), 7.05 (d, 

2H, JH-H= 7.4 Hz, H-8 or H-10), 7.34 (m, 4H, H-9 and/or H-8,10), 7.41 (s, 2H, JH-H= 

7.8 Hz, H-6), 9.93 (bs, 2H, H-O), 12.72 (bs, 2H, H-N); Anal. Calcd. for 

Zn1C20H19N4O6 x 2.1 H2O: 44.03; H, 4.10; N, 10.27. Found: C, 43.54; H, 3.52; N, 

10.04; Significant IR bands: (KBr disc, cm-1): (ν OH) 3341br ,  (ν C=O) 1640s ,  

(νas ym  COO, ν C=N) 1618br 
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Bis[2-[(4-hydroxy- benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL4)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL4 0.09 g (0.35 mmol) to give [Zn(HL4)2], (0.01 mmol, 58%); Melting point: 

322-324 °C; ESI-MS: positive ion m/z = 507.0499, 50 %, HR ESI-MS: For 
64ZnC20H19N4O8 [(M+H)+], observed mass: 507.0499, calculated mass: 507.0489, 

difference: -1.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.20 (s, 6H, H-3), 7.49 (d, 

4H, JH-H = 8.3 Hz H-6 or H-7), 8.10 (d, 4H, JH-H= 8.3 Hz, H-6 or H-7). 
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Bis[2-[(2-chloro-benzoyl)-hydrazono]-propionate]zinc(II) 

[Zn(HL5)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL5 0.09 g (0.35 mmol) to give [Zn(HL5)2], (0.01 mmol, 58%); Melting point: 

261-263 °C; ESI-MS: positive ion m/z = 542.9828, 5%, HR ESI-MS: For 
64ZnC20H17N4O6Cl2 [(M+H)+], observed mass: 542.9828, calculated mass: 541.9811, 

difference: -1.7 mDa, difference: -1.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.18 

(s, 6H, H-3), 6.47 (m, 4H, H-8,9), 7.80 (d, 4H, JH-H = 8.8 Hz, H-7,10); Significant IR 

bands: (KBr disc, cm-1): (ν C=O, νas ym  COO) 1625s ,  (ν C=N) 1609s. 

[Zn(HL6)2] 

O

N

H
N O

O

CH3

Zn

O

N
N
H

O

O

CH3

1
2

3

4
5

6

7

6

7
8

1

2

3

4

7

6

7
6

5

8

Cl

Cl

 

Bis[2-[(4-chloro-benzoyl)-hydrazono]-propionate]zinc(II) 

[Zn(HL6)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL6 0.09 g (0.35 mmol) to give [Zn(HL6)2], 0.060 g (0.11 mmol, 65 %); Melting 

point: 249-251°C; ESI-MS: positive ion m/z = 542.9811, 20 % HR ESI-MS: For 
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64ZnC20H17N4O6Cl2 [(M+H)+], observed mass: 542.9826, calculated mass: 541.9811, 

difference: -1.5 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.18 (s, 6H, H-3), 7.55 (d, 

4H, Ar-H, JH-H = 8.5 Hz H-6 or H-7), 8.04 (d, 4H, JH-H = 8.5 Hz, H-6 or H-7); Anal. 

Calcd for Zn1C20H16N4O6Cl2 x 2.50 H2O: 40.74; H, 2.96; N, 10.29. Found: C, 40.52; 

H, 3.35; N, 9.38. Significant IR bands: (KBr disc, cm-1): (ν C=O) 1650s ,  (νas ym  

COO, ν C=N) 1614br 
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Bis[2-[(3-methyl-4-nitro-benzoyl)-hydrazono]-propionate]zinc(II) 

[Zn(HL7)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL7 0.10 g (0.35 mmol) to give [Zn(HL7)2], 0.051 g (0.085 mmol, 50 %); Melting 

point: 287-289 °C; ESI-MS: positive ion m/z = 593.0596, 10 %, HR ESI-MS: For 
64ZnC22H21N6O10 [(M+H)+], observed mass: 593.0596, calculated mass: 593.0605, 

difference: 0.9 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.27 (s, 6H, H-3), 2.55 (s, 6H, 

H-11), 8.04 (bs, 6H, H-6,9,10); Anal. Calcd. for Zn1C22H20N6O10 x 1.6 H2O: 42.44; 

H, 3.76; N, 13.50. Found: C, 42.08; H, 3.36; N, 13.16; Significant IR bands (KBr 

disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 1631br, (νas ym  (N=O)2) 1526s, (νs ym  

(N=O)2) 1358s. 
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[Zn(HL8)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL8 0.10 g (0.35 mmol) to give [Zn(HL8)2], 0.054 g (0.095 mmol, 56 %); Melting 

point: 282-284 °C; ESI-MS: positive ion m/z = 565.00, 5 %, ESI-MS: For 
64ZnC20H17N6O10 [(M+H)+], observed mass: 565.00, calculated mass: 565.00; Anal. 

Calcd for Zn1C20H16N6O10 x 0.75 CH3OH, 0.2 H2O: 42.00; H, 3.30; N, 14.16. Found: 

C, 42.80; H, 3.02; N, 13.91; Significant IR bands: (KBr disc, cm-1): (ν C=O) 

1638s ,  (νas ym  COO, ν C=N) 1621br, (νas ym  (N=O)2) 1530s, (νs ym  (N=O)2) 

1338br.. 
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Bis[2-[(4-methyl-benzoyl)-hydrazono]-propionate]zinc(II) 

[Zn(HL9)2] was synthesised using ZnSO4.7H2O 0.050 g (0.17 mmol) and 

NaHL9 0.85 g (0.35 mmol) to give 0.046 g [Zn(HL9)2], 0.046 g (0.09 mmol, 54%); 

Melting point: 244-246 °C; ESI-MS: positive ion m/z = 503.0911, 30 %, HR ESI-

MS: For 64ZnC22H23N4O6 [(M+H)+], observed mass: 503.0911, calculated mass: 
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503.0904, difference: -1.6 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.39 (s, 12H, H-

3,9), 7.35 (d, 4H, JH-H= 7.9 Hz, H-6 or H-7), 7.90 (d, 4H, JH-H= 7.9 Hz, H-6 or H-7), 

12.69 (bs, 1H, H-N); Anal. Calcd for Zn1C22H22N4O6 x 2.25 H2O: 48.54; H, 4.91; N, 

10.29. Found: C, 48.49; H, 4.79; N, 10.21; Significant IR bands: (KBr disc, cm-1): 

(ν C=O) 1649s ,  (νas ym  COO) 1623s,  (ν C=N) 1618s. 
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Bis[2-[(3-bromo-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL10)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL10 0.11 g (0.35 mmol) to give [Zn(HL10)2], 0.09 g (0.14 mmol, 84%); Melting 

point: 262-263 °C; ESI-MS: positive ion m/z =, HR ESI-MS: For 64ZnC20H17N4O6Br2 

[(M+H)+], observed mass:, calculated mass: 630.8801, difference: 0.3 mDa; δ 1H 

NMR (400 MHz, d6-DMSO): 2.29 (s, 6H, H-3), 7.76 (d, 2H, JH-H= 7.6 Hz, H-8 or H-

10), 7.44 (t, 2H, JH-H = 7.9 Hz, H-9), 8.17 (s, 2H, H-6), 8.00 (d, 2H, JH-H= 7.2 Hz, H-8 

or H-10); Anal. Calcd for Zn1C20H16N6O6Br2 x 1.15 H2O: 36.72; H, 2.82; N, 8.56. 

Found: C, 36.92; H, 2.65; N, 8.35. 
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Bis[2-[(4-bromo-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL11)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

sodium; 2-[(4-bromo-benzoyl)-hydrazono]-propionate 0.11 g (0.35 mmol) to give 

[Zn(HL11)2], 0.087 (0.136 mmol, 81 %) Melting point: 260-262 °C; ESI-MS: 

positive ion m/z = 630.8799, 6 %, HR ESI-MS: For 64ZnC20H17N4O6Br2 [(M+H)+], 

observed mass: 630.8799, calculated mass: 630.8801, difference: -1.6 mDa; δ 1H 

NMR (400 MHz, d6-DMSO): 2.30 (s, 6H, CH3), 7.70 (d, 4H, JH-H= 7.8 Hz Ar-H), 7.95 

(d, 4H, JH-H = 7.8 Hz Ar-H); Anal. Calcd. for Zn1C20H16N6O6Br2 x 2.15 H2O: 35.73; H, 

3.04; N, 8.33. Found: C, 35.98; H, 2.79; N, 8.08; Significant IR bands: (KBr disc, 

cm-1): (ν C=O, νas ym  COO, ν C=N 1627br. 
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Bis [2-[(3-methoxy-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL12)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL12 0.09 g (0.35 mmol) to give [Zn(HL12)2], (0.01 mmol, 58%); Melting point: 

269-271 °C; ESI-MS: positive ion m/z = 535.0810, 60 %, HR ESI-MS: For 
64ZnC22H23N4O6 [(M+H)+], observed mass: 535.0810, calculated mass: 535.0802, 

difference: -1.6 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.34 (s, 6H, H-3), 3.81 (s, 

6H, H-11), 7.19 (d, 2H, JH-H= 7.0 Hz, H-8 or H-10), 7.43 (t, 2H, JH-H = 8.0 Hz, H-9), 

7.51 (s, 2H, H-6), 7.59 (d, 2H, JH-H= 7.0 Hz, H-8 or H-10) 
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Bis[2-[(4-methoxy-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL13)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL13 0.09 g (0.35 mmol) to give [Zn(HL13)2], 0.055 g (0.10 mmol, 60 %); 
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Melting point: 287-289 °C; ESI-MS: positive ion m/z = 535.0805, 85 %, HR ESI-

MS: For 64ZnC22H23N4O6 [(M+H)+], observed mass: 535.0805, calculated mass: 

535.0802, difference: 0.3 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.22 (s, 6H, H-3), 

3.81 (s, 6H, H-9), 7.00 (d, 4H, JH-H=  8.4 Hz, H-6 or H-7),  8.05 (d, 4H, JH-H=  8.4 Hz, 

H-6 or H-7); Anal. Calcd. for Zn1C22H22N4O8 x 1.7 H2O: 46.65; H, 4.52; N, 9.89. 

Found: C, 46.11; H, 3.92; N, 9.51; Significant IR bands: (KBr disc, cm-1): (ν C=O, 

νas ym  COO) 1628s ,  (ν C=N) 1606s. 

[Zn(HL14)2] 

O

N

H
N O

O

CH3

Zn

O

N
N
H

O

O

CH3

1
2

3

4
5

6

7

6

7
8

1

2

3

4

7

6

7
6

5

8
9

9

� �� � � �

� � � �� �
 

Bis[2-[(4-tert-butyl-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL14)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL14 0.10 g (0.35 mmol) to give [Zn(HL14)2], (0.01 mmol, 58%); Melting point: 

257-259 °C; ESI-MS: positive ion m/z = 587.1857, 10 %, HR ESI-MS: For 
64ZnC28H35N4O6 [(M+H)+], observed mass: 587.1857, calculated mass: 587.1843, 

difference: -2.5 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.27 (s, 6H, H-3), 1.29 (s, 

18H, H-10), 7.45 (d, 4H, JH-H=  8.0 Hz, H-6 or H-7),  7.97 (bs, 4H, H-6 or H-7); 

Significant IR bands (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N ) 1624br. 
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Bis[2-[(4-tri-fluoro-methyl)-benzoyl-hydrazono]-propionate] zinc(II) 

[Zn(HL15)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and  

NaHL15 0.10 g (0.35 mmol) to give [Zn(HL15)2] 0.070 g (0.11 mmol, 67%); Melting 

point: 262-264 °C; δ 1H NMR (400 MHz, d6-DMSO): 2.26 (s, 6H, H-3), 7.86 (d, 2H, 

JH-H= 6.9 Hz, H-6 or H-7), 8.20 (apparent bs, 4H, H-6 or H-7); Anal. Calcd. for 

Zn1C22H16N4O6F6 x 1.1 H2O x 0.45 CH3OH: C, 41.74; H, 3.12; N, 8.67. Found: C, 

41.45; H, 2.75; N, 8.30, Significant IR bands: (KBr disc, cm-1): (ν C=O, νas ym  

COO, ν C=N) 1617br. 
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Bis[2-[(3-fluoro-benzoyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL16)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL16 0.09 g (0.35 mmol) to give [Zn(HL16)2], 0.047 g (0.09 mmol, 54%); Melting 

point: 249-251 °C; ESI-MS: positive ion m/z = 511.0399, 100 %, HR ESI-MS: For 
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64ZnC20H17N4O6F2 [(M+H)+], observed mass: 511.0399, calculated mass: 511.0402, 

difference: 0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.28 (s, 6H, CH3), 7.45 (m, 

2H, Har), 7.55 (d, 2H, JH-H = 6.3 Hz, Har), 7.79 (m, 4H, Har), 12.74 (bs, 2H, NH); δ 

Anal. Calcd. for Zn1C20H16N4O6F2 x 1.55 H2O: 44.51; H, 3.57; N, 10.38. Found: C, 

44.35; H, 3.30; N, 10.12; Significant IR bands (KBr disc, cm-1): (ν C=O, νas ym  

COO, ν C=N) 1634br. 
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Bis[2-[(2-hydroxy-4-methoxy-benzoyl)-hydrazono]-propionate] zinc(II) 

 [Zn(HL17)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL17 0.09 g (0.35 mmol) to give [Zn(HL17)2], 0.047 g (0.09 mmol, 52%); 

Melting point: 249-251 °C; ESI-MS: positive ion m/z = 511.0399, 30 %, HR 

ESI-MS: For 64ZnC20H17N4O6F2 [(M+H)+], observed mass: 511.0399, calculated 

mass: 511.0402, difference: 0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): 2.16 (s, 

6H, H-3), 3.76 (s, 6H, H-11), 6.47 (m, 4H, H-7, H-9 or H-10), 7.80 (d, 2H, JH-H = 

8.7 Hz, H-9 or H-10); Significant IR bands: (KBr disc, cm-1): (ν OH) 3432br ,  

(ν C=O, νas ym  COO, ν C=N ) 1606br. 
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Bis[2-[( pyridine-4-carbonyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL18)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL18 0.09 g (0.35 mmol) to give [Zn(HL18)2], 0.065 g (0.14 mmol, 82%); 

Melting point: decomposes above 300 °C; Anal. Calcd. for Zn1C18H16N6O6 x 

4.4 H2O: 38.81; H, 4.49; N, 15.09. Found: C, 39.14; H, 4.12; N, 14.76. 

Significant IR bands: (KBr disc, cm-1): (ν C=O, νas ym  COO, ν C=N) 

1652br. 
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Bis[2-[( pyridine-4-carbonyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL19)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL19 0.09 g (0.35 mmol) to give [Zn(HL19)2], 0.047 g (0.09 mmol, 55%); 

Melting point: decomposes above 300 °C; Significant IR bands: (KBr Disc, 

cm-1): (ν C=O) 1661s ,  (νas ym  COO) 1634s ,  (ν C=N) 1610s. 
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Bis[2-[( pyrazine-2-carbonyl)-hydrazono]-propionate] zinc(II) 

[Zn(HL20)2] was synthesised using ZnSO4.7H2O 0.05 g (0.17 mmol) and 

NaHL16 0.09 g (0.35 mmol) to give [Zn(HL20)2], 0.057 g (0.12 mmol, 72%); 

Melting point: decomposes above 200 °C; δ 1H NMR (400 MHz, D2O): 2.03 (s, 

6H, H-3), 8.60 (dd, 2H, JH-H = 3.0 Hz, 1.2 Hz, H-6 or H-7), 9.14 (d, 2H, JH-H = 2.8 

Hz, H-6 or H-7), 9.67 (s, 2H, H-8); Significant IR bands: (KBr disc, cm-1): (ν 

C=O, νas ym  COO, ν C=N ) 1616br. 
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7.10 General synthetic procedure and characterisation detail of CAHs 

(HCA1-HCA14) 

 

Cinnamaldehyde (1.5 mmol) was added dropwise to an ethanolic solution of the 

respective hydrazide (1.25 mmol). The mixture was then refluxed for 5 hours and 

the precipitate that formed after slow cooling of the solution was isolated by 

filtration. The volume of the filtrate was reduced to approximately a quarter of the 

initial volume. The solid formed was isolated by filtration and the two solids were 

combined and dried under vacuo. 
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Benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA1 was synthesised using cinnamaldehyde 0.24 g (1.85 mmol) and 

benzoyl hydrazide 0.18 g (1.32 mmol) to give HCA1, 0.23 g (0.92 mmol, 73%); 

Melting point: 193-194 °C; ESI-MS: positive ion m/z = 251.1181, 100%, HR ESI: 

For C16H15N2O2 ([M+H]+), observed mass 251.1181, calculated mass 251.1179, 

difference 0.2 mDa; δ 1H NMR (400 MHz, d6-DMSO): 11.75  (bs, 1H, H-N), 8.23 

(dd, 1H, JH-H = 6.8 Hz, 1.2 Hz, H-6), 7.89 (d, 2H, JH-H = 7.6 Hz, Har), 7.31-7.90 (m, 

8H, Har), 7.06 – 7.08 (m, 2H, H-4,5); δ 13C NMR (100.6 MHz, d6-DMSO): δ 163.0 

(4°), 149.7 (CH), 139.0 (CH), 135.9 (4°), 133.4 (4°), 131.7 (CH), 128.8 (CH), 128.4 

(CH), 127.6 (CH), 127.1 (CH), 125.6 (CH); Significant IR bands (KBr disc, cm-1): (ν 

NH) 3268m, (ν C=O) 1646s, (ν C=N) 1624s. 
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4-Chloro-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA2 was synthesised using cinnamaldehyde 0.2 g (1.50 mmol) and 4-

chloro-benzoyl hydrazide 0.21 g (1.25 mmol) to give HCA2, 0.28 g (0.98 mmol, 

78%); Melting point: 223-224 °C; ESI-MS: positive ion m/z = 285.0786, 100%, HR 

ESI-MS: For C16H14N2OCl ([M+H]+), observed mass 285.0786, calculated mass 

285.0789, difference 0.3 mDa; δ 1H NMR (400 MHz, d6-DMSO): 11.80  (bs, 1H, H-

N), 8.23 (t, 1H, 3JH-H = 4.0 Hz, H-6), 7.93 (d, 2H, JH-H = 8.4 Hz, Har), 7.31-7.64 (m, 

7H, Har) 7.06 – 7.08 (m, 2H, H-4,5); δ 13C NMR (100.6 MHz, d6-DMSO): δ 161.8 

(4°), 150.0 (CH), 139.1 (CH), 136.4 (4°), 135.8 (4°), 132.0 (4°), 129.4 (CH), 128.7 

(CH), 128.4 (CH), 127.0 (CH), 125.5 (CH); Anal. Calcd for C16H13N2OCl: C, 67.49; 

H, 4.60; N, 9.84. Found C, 67.44; H, 4.61; N, 9.74; Significant IR bands (KBr disc, 

cm-1): (ν NH) 3268m, (ν C=O) 1660s, (ν C=N) 1625s. 
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4-Methyl-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA3 was synthesised using cinnamaldehyde 0.2 g (1.50 mmol) and 4-

methyl-benzoyl hydrazide 0.19 g (1.25 mmol) to give HCA3, 0.27 g (1.00 mmol, 

80%); Melting point: 125-127 °C; ESI-MS: positive ion m/z = 265.1345 100%, HR 

ESI-MS: For C17H17N2O ([M+H]+), observed mass 265.1345, calculated mass 

265.1335, difference 1.0 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.67  (bs, 1H, 

H-N), 8.24 (d, 1H, 3JH-H = 7.4 Hz, H-6), 7.81 (d, 2H, JH-H = 8.1 Hz, Har), 7.31 (m, 7H, 
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Har) 7.10 – 7.01 (m, 2H, H-4,5), 2.38 (s, 3H, H-11); δ 13C NMR (100.6 MHz, d6-

DMSO): δ 162.8 (4°), 149.3 (CH), 141.6 (4°), 138.6 (CH), 135.8 (4°), 130.4 (4°), 

128.9 (CH), 128.7 (CH), 127.5 (CH), 126.9 (CH), 125.6 (CH), 21.5 (CH3); Anal. 

Calcd for C17H16N2O: C, 77.24; H, 6.10; N, 10.60. Found C, 77.07; H, 6.10; N, 

10.70; Significant IR bands (KBr disc, cm-1): ν (NH) 3200m, (ν C=O) 1637s, (ν 

C=N) 1525s. 
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4-Methoxy-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA4 was synthesised using cinnamaldehyde 0.20 g (1.5 mmol) and 4-

methoxy-benzoyl hydrazide 0.21 g (1.25 mmol) to give HCA4, 0.25 g (0.89 mmol, 

71%); Melting point:  217-219 °C; ESI-MS: positive ion m/z = 281.1290, 100%; HR 

ESI-MS: For C17H17N2O2 ([M+H]+), observed mass 281.1290, calculated mass 

281.1285, difference 0.6 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.62  (bs, 1H, 

H-N), 8.23 (d, 1H, 3JH-H = 7.3 Hz, H-6), 7.90 (d, 2H, JH-H = 8.4 Hz, Har), 7.62 (d, 2H, 

JH-H = 7.4 Hz, Har), 7.04-7.40 (m, 7H, Har, H-4,5) 3.83 (s, 3H, H-11); δ 13C NMR 

(100.6 MHz, d6-DMSO): δ 162.4 (4°), 162.0 (4°), 149.1 (CH), 138.6 (CH), 136.0 (4°), 

129.5 (CH), 128.8 (CH), 127.0 (CH), 125.8 (CH), 125.4 (4°), 113.7 (CH), 55.4 (CH3); 

Significant IR bands (KBr disc, cm-1): (ν NH) 3195m,  (ν C=O) 1634s, ν (C=N) 

1622s. 
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4-Nitro-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA5 was synthesised using cinnamaldehyde 0.20 g (1.5 mmol) and 4-

nitro-benzoyl hydrazide 0.23 g (1.25 mmol) to give HCA5, 0.31 g (1.06 mmol, 85%); 

Melting point: 243-245 °C; ESI-MS: positive ion m/z = 296.1023, 100%; HR ESI-

MS: For C16H14N3O3 ([M+H]+), observed mass 296.1023, calculated mass 296.1030, 

difference 0.6 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 12.01  (bs, 1H, H-N), 8.37 

(d, 2H, 3JH-H = 8.8 Hz, H-8 or H-9), 8.25 (dd, 1H, JH-H = 6.2 Hz, 2.5 Hz, H-6), 8.14 (d, 

2H, JH-H = 8.8 Hz, H-8 or H-9), 7.64 (d, 2H, JH-H = 7.2 Hz, H-2 or H-3), 7.32-7.42 (m, 

3H, H-1, H-2 or H-3) 7.09 – 7.10 (2H, m, H-4,5); δ 13C NMR (100.6 MHz, d6-DMSO): 

δ 161.3 (4°), 150.9 (CH), 149.2 (4°), 139.8 (4°), 139.1 (CH), 135.8 (4°), 129.2 (CH), 

129.0 (CH), 128.8 (CH), 127.2 (CH), 125.4 (CH), 123.6 (CH); Anal. Calcd for 

C16H13N3O3: C, 65.08; H, 4.43; N, 14.23. Found C, 64.70; H, 4.50; N, 13.96; 

Significant IR bands (KBr disc, cm-1): (ν NH) 3276m, (ν C=O) 1657s, ν C=N) 

1625s, (νas ym  (N=O)2) 1518s ,   (νs ym  (N=O)2)  1347s.  
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4-Trifluoromethyl-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA6 was synthesised using cinnamaldehyde 0.23 g (1.76 mmol) and 4-

trifluoromethyl- benzoyl hydrazide 0.35 g (1.26 mmol) to give HCA6, 0.33 g (1.04 

mmol, 83%); Melting point: 206-208 °C; ESI-MS: positive ion m/z = 319.1057 
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100%, HR ESI-MS: For C17H14N2OF3 ([M+H]+), observed mass 319.1057, calculated 

mass 319.1053, difference 0.4 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.94  (bs, 

1H, NH), 8.25 (t, 1H, 3JH-H = 4.4 Hz, H-6), 8.10 (d, 2H, 3JH-H = 8.1 Hz, H-9 or H-8), 

7.91 (d, 2H, 3JH-H = 8.2 Hz, H-9 or H-8), 7.64 (d, 2H, 3JH-H = 7.3 Hz, H-2 or H-3), 

7.31-7.42 (m, 3H, H-1, H-2 or H-3), 7.08 – 7.09 (m, 2H, m, H-4,5); δ 13C NMR 

(100.6 MHz, d6-DMSO): δ 161.9 (4°), 150.6 (CH), 139.6 (CH), 137.3 (4°), 135.8 (4°), 

131.6 (4°), 128.9 (CH), 128.8 (CH), 128.6 (CH), 127.2 (CH), 125.5 (CH); Anal. 

Calcd for C17H13N2OF3: C, 64.15; H, 4.12; N, 8.80. Found C, 64.01; H, 4.10; N, 

8.69; Significant IR bands (KBr disc, cm-1): (ν NH) 3257m, (ν C=O) 1659s, (ν C=N) 

1624s. 
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4-tert-Butyl-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA7 was synthesised using cinnamaldehyde 0.21 (1.6 mmol) and 4-tert-butyl 

benzoyl hydrazide 0.19 g (1.14 mmol) to give HCA7, 0.28 g (0.91 mmol, 80%); 

Melting point: 240-242 °C; ESI-MS: positive ion m/z = 307.1801 100%; HR ESI-

MS: For C20H23N2O ([M+H]+), observed mass 307.1081, calculated mass 307.1085, 

difference 0.8 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.68  (bs, 1H, H-N), 8.23 

(d, 1H, JH-H = 7.2 Hz, H-6), 7.83 (d, 2H, JH-H = 8.3 Hz, H-8 or H-9), 7.63 (d, 2H, JH-H = 

7.4 Hz, H-2 or H-3), 7.53 (d, 2H, JH-H = 8.3 Hz, H-8 or H-9), 7.30-7.42 (m, 3H, H-1, 

H-2 or H-3), 7.05-7.07 (m, 2H, H-4, 5), 1.31 (s, 9H, H-12); δ 13C NMR (100.6 MHz, 

d6-DMSO): δ 163.0 (4°), 154.6 (4°), 149.5 (CH), 138.9 (CH), 135.9 (4°), 130.6 (4°), 

128.8 (CH), 127.5 (CH), 127.1 (CH), 125.7 (CH), 125.2 (CH), 34.7 (4°), 30.9 

((CH3)3); Significant IR bands (KBr disc, cm-1): (ν NH) 3204m,  (ν C=O) 1635s, (ν 

C=N) 1624s. 
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4-Hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA8 was synthesised using cinnamaldehyde 0.21 g (1.5 mmol) and 4-hydroxy-

benzoyl hydrazide 0.22 g (1.25 mmol) to give HCA8, 0.23 g (1.23 mmol, 70%); 

Melting point: 232-234 °C; ESI-MS: positive ion m/z = 267.1124, 100%, HR ESI-

MS: For C16H15N2O2 ([M+H]+), observed mass 267.1124, calculated mass 267.1128, 

difference 0.4 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.53 (bs, 1H, H-N), 10.15 

(bs, 1H, H-O), 8.21 (d, 1H, JH-H = 7.4 Hz, 9), 7.78 (2H, d, JH-H = 8.7 Hz, H- 8 or H-9), 

7.62 (2H, d, JH-H = 7.4 Hz, H-2 or H-3), 7.30-7.41 (m, 3H, H-1, H-2 or H-3), 6.98-7.09 

(m, 2H, H-4,5), 6.85 (d, 2H, JH-H = 8.7 Hz, H-8 or H-9); δ 13C NMR (100.6 MHz, d6-

DMSO): δ 160.7 (4°), 148.7 (CH), 138.4 (CH), 136.0 (4°), 129.7 (CH), 128.8 (CH), 

128.7 (CH), 127.0 (CH), 125.8 (CH), 123.8 (4°), 115.0 (CH); Significant IR bands 

(KBr disc, cm-1): (ν NH) 3270m,  (ν C=O, C=N) 1621s. 
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3-Fluoro-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA9 was synthesized using cinnamaldehyde 0.2 g (1.53 mmol) and 3-

fluoro-benzoyl hydrazide 0.19 g (1.26 mmol) to give HCA9, 0.27 g (1.00 mmol, 

80%); Melting point: 207– 209 °C; ESI-MS: positive ion m/z = 269.1084, 100%; HR 

ESI-MS: For C16H14N2OF ([M+H]+), observed mass 269.1092, calculated mass 

269.1085, difference 0.8 mDa; δ 1H NMR (400 MHz, d6-DMSO): 11.80 (1H, bs, H-
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N), 7.31 – 7.77 (m, 9H, Har) 7.07 - 7.08 (2H, m, H-4, 5); δ 13C NMR (100.6 MHz, d6-

DMSO): 161.9 (d , 1jC-F = 243.4 Hz, C-13), 161.7 (4°), 150.3 (CH), 139.4 (CH), 135.9 

(4°), 135.8 (d, 3jC-F = 6.9 Hz, C-8), 130.7 (d, 3jC-F = 5.5 Hz, C-10), 128.9 (CH), 128.8 

(CH), 127.2 (CH), 125.4 (CH), 123.8 (d, 4jC-F = 3.1 Hz, C-9), 118.6 (d, 2jC-F = 20.7 Hz, 

C14), 114.4 (d, 2jC-F = 22.9 Hz, C-13); Anal. Calcd. for C16H13N2OF: C, 71.63; H, 

4.89; N, 10.44. Found C, 71.63; H, 4.91; N, 10.48; Significant IR bands (KBr disc, 

cm-1): (ν NH) 3234m, (ν C=O) 1650s, (ν C=N) 1627s.  
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3-Hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA10 was synthesised using cinnamaldehyde 0.24 g (1.84 mmol) and 3-

hydroxy-benzoyl hydrazide 0.20 g (1.31 mmol) to give HCA10, 0.28 g (1.05 mmol, 

80%); Melting point: 255 - 257 °C; ESI-MS: positive ion m/z = 267.1121, 100%, HR 

ESI-MS: For C16H15N2O2 ([M+H]+), observed mass 267.1121, calculated mass 

267.1128, difference 0.7 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.67  (bs, 1H, 

H-N), 9.77 (bs, 1H, H-O), 8.22 (d, 1H, JH-H = 7.4 Hz, H-6), 7.63 (d, 2H, JH-H = 7.3 Hz, 

Har), 7.26 – 7.42 (m, 6H, Har), 7.04 – 7.06 (2H, m, H-4, 5), 6.96 (1H, m, Har); δ 13C 

NMR (100.6 MHz, d6-DMSO): δ 163.0 (4°), 157.4 (4°), 149.6 (CH), 138.9 (CH), 

135.9 (4°), 134.8 (4°), 129.5 (CH), 128.8 (CH), 127.1 (CH), 125.7 (CH), 118.7 (CH), 

118.1 (CH), 114.5 (CH); Significant IR bands (KBr disc, cm-1): (ν NH) 3240m,  (ν 

C=O) 1638s, (ν C=N) 1624s. 
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2-Hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA11 was synthesised using cinnamaldehyde 0.24 g (1.84 mmol) and 2-

hydroxy-benzoyl hydrazide 0.20 g (1.31 mmol) to give HCA11, 0.30 g (1.13 mmol, 

87%);  Melting point: 259 - 261 °C; ESI-MS: positive ion m/z = 267.1122, 100%, 

HR ESI-MS: For C16H15N2O2 ([M+H]+), observed mass 267.1122, calculated mass 

267.1128, difference 0.6 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.78 (bs, 1H, H-

N), 8.24 (1H, dd, JH-H = 5.0 Hz, 3.6 Hz, H-6), 7.87 (1H, dd, 3JH-H = 7.7, 1.3 Hz, Har) 

7.63 (2H, d, 3JH-H = 7.4 Hz, Har), 7.32 - 7.45 (m, 4H, m, Har), 7.08 – 7.09 (2H, m, H-4, 

5), 6.92 – 6.98 (2H, m, Har); δ 13C NMR (100.6 MHz, d6-DMSO): δ 164.7 (4°), 159.2 

(4°), 150.7 (CH), 139.7 (CH), 135.8 (4°), 133.8 (CH), 129.0 (CH), 128.9 (CH), 128.5 

(CH), 127.2 (CH), 125.4 (CH), 118.9 (CH), 117.3 (CH), 115.8 (4°); Significant IR 

bands (KBr disc, cm-1):  (ν OH) 3457br ,  (ν NH) 3258m ,  (ν C=O) 1649s ,  (ν 

C=N) 1626s. 
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3-Methyl-4-nitro-benzoic acid (3-phenyl-allylidene)-hydrazide 

HCA12 was synthesised using cinnamaldehyde 0.19 g (1.43 mmol) and 3-

methyl-4-nitro-benzoyl hydrazide 0.20 g (1.03 mmol) to give HCA12, 0.26 g (0.83 

mmol, 81%); Melting point: 184-186 °C; ESI-MS: positive ion m/z = 310.1184 
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100%, HR ESI-MS: For C17H16N3O3 ([M+H]+), observed mass 310.1184, calculated 

mass 310.1186, difference 0.2 mDa; δ 1H NMR (400 MHz, d6-DMSO): δ 11.93  (bs, 

1H, H-N), 8.24 (dd, 1H, JH-H = 5.0, 3.8 Hz, H-6), 8.10 (d, 1H, JH-H = 8.4 Hz, H- 9 or 

H-10), 8.00 (s, 1H, H-13), 7.92 (1H, dd, JH-H = 8.4, 1.5 Hz, H-9 or H-10), 7.64 (2H, d, 

JH-H = 7.3 Hz, H-2 or H-3), 7.32-7.41 (m, 3H, H-1, H-2 or H-3), 7.08 – 7.10 (2H, m, 

H-4, 5), 2.58 (3H, s, H-14); δ 13C NMR (100.6 MHz, d6-DMSO): δ 161.4 (4°), 150.6 

(CH), 150.5 (4°), 139.7 (C7), 137.3 (4°), 135.8 (4°), 132.8 (4°), 132.0 (CH), 129.0 

(CH), 128.8 (CH), 127.2 (CH), 126.4 (CH), 125.4 (CH), 124.5 (CH), 19.3 (CH3); 

Anal. Calcd for C17H15N3O3: C, 66.01; H, 4.89; N, 13.58. Found C, 65.88; H, 4.90; 

N, 13.50; Significant IR bands (KBr disc, cm-1): (ν NH) 3234m, (ν C=O) 1655s, (ν 

C=N) 1625s, (νas ym  (N=O)2) 1518s, (νsym  (N=O)2) 1348s. 
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Nicotinic acid (3-phenyl-allylidene)-hydrazide 

HCA13 was synthesised using cinnamaldehyde 0.24 g (1.83 mmol) and 

nicotinic acid hydrazide 0.18 g (1.31 mmol) to give HCA13, 0.24 g (0.96 mmol, 

73%), Melting point :  176-177 °C; ESI-MS:  posit ive ion m/z = 

252.1128, 100%, HR ESI-MS: For C15H14N3O ([M+H]+), observed mass 

252.1128, calculated mass 252.1131, difference 0.3 mDa; δ 1H NMR (400 MHz, , 

d6-DMSO): δ 11.91 (bs, 1H, H-N), 9.05 (d, 1H, JH-H = 1.7 Hz, H-12), 8.76 (dd, 1H, JH-

H = 4.8 Hz, 1.5 Hz, H-6), 8.21-8.25 (m, 2H, Har), 7.64 (d, 2H, JH-H = 7.3 Hz, Har), 7.57 

(dd, 1H, JH-H = 7.7 Hz, 4.8 Hz, Har), 7.32-7.42 (m, 3H, Har) 7.08-7.10 (2H, m, H-4, 5); 

δ 13C NMR (100.6 MHz, , d6-DMSO): δ 161.5 (4°), 152.3 (CH), 150.4 (CH), 148.6 

(CH), 139.6 (CH), 135.8 (4°), 135.5 (CH), 129.2 (4°), 129.0 (CH), 128.9 (CH), 127.2 

(CH), 125.5 (CH), 123.6 (CH); Significant IR bands (KBr disc, cm-1): (ν NH) 

3242m,  (ν C=O) 1646s, (ν C=N) 1625s. 
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Isonicotinic acid (3-phenyl-allylidene)-hydrazide 

 

HCA14 was synthesised using cinnamaldehyde 0.24 g (1.84 mmol) and 

isonicotinic acid hydrazide 0.18 g (1.31 mmol) to give HCA14, 0.23 g (0.90 mmol, 

69%); Melting point: 201-203 °C; ESI-MS: positive ion m/z = 252.1134, 100%, HR 

ESI-MS: For C15H14N3O ([M+H]+), observed mass 252.1134, calculated mass 

252.1131, difference 0.2 mDa; δ 1H NMR (400 MHz, d6-DMSO): 11.96 (bs, 1H, H-

N), 8.78 (d, 2H, JH-H = 6.2 Hz, H-9 or H-10), 8.24 (1H, dd, JH-H = 1.6 Hz, 4.4 Hz, H-6), 

7.81 (d, 2H, JH-H = 6.2 Hz, H-9 or H-10), 7.64 (2H, d, JH-H = 7.2 Hz, H-2 or H-3), 7.40 

(2H, t, 3JH-H = 7.2 Hz H-2, 4), 7.32 - 7.42 (m, 3H, H-1, H-2 or H-3), 7.09 – 7.10 (2H, 

m, H-4, 5); δ 13C NMR (100 MHz, d6-DMSO): 161.5 (4°), 151.0 (CH), 150.3 (CH), 

140.5 (4°), 139.9 (CH), 135.8 (4°), 129.0 (CH), 128.9 (CH), 127.2 (CH), 125.4 (CH), 

121.5 (CH); Significant IR bands (KBr disc, cm-1): (ν NH) 3244m,  (ν C=O) 1650s, 

(ν C=N) 1626s. 
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7.11 General synthetic procedure and characterisation detail 

copper(II) complexes  of  CAHs ([Cu(II)(CA1)2]- [Cu(II)(CA1)2]) 

Copper(II) acetate (0.30 mmol) was added to a methanolic solution of the 

respective cinnamaldehyde hydrazone. The mixture was refluxed for 2 hours and 

the green precipitate formed was isolated and dried under vaccuo. 
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Bis[benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

 [Cu(II)(CA1)2] was synthesised using copper acetate 0.06 g (0.31 mmol) and 

HCA1 0.10 g (0.38 mmol) to give [Cu(II)(CA1)2], (1.23 mmol, 85%); Melting point: 

343-345 °C; ESI-MS: positive ion m/z = 563.1513, 65%, HR ESI-MS: For 
63Cu(I)C32H28N4O2 ([M+2H]+), observed mass 563.1513, calculated mass 563.1503, 

difference 1.1 mDa; Anal. Calcd. for C32H26N4O2Cu: C, 68.13; H, 4.98; N, 9.93. 

Found C, 68.03; H, 4.65; N, 9.95; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1612s, (ν C=N) 1589s. 
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[Cu(II)(CA2)2] 

N
N

O

Cu

N
N

O

Cl

Cl  

Bis[4-chloro-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA2)2] was synthesised using copper(II) acetate 0.06 g (0.31 mmol) 

and HCA2 0.10 g (0.38 mmol) to give [Cu(II)(CA2)2], 0.10 g (0.32 mmol, 84%); 

Melting point: 263-264 °C; ESI-MS: negative ion m/z = 628.0560, HR ESI-MS: For 
63Cu(I)C32H24N4O2Cl2 ([M]-), observed mass 628.0560, calculated mass 629.0572, 

difference 1.0 mDa; Anal. Calcd for C32H26N4O2Cl2Cu1x 0.25 CH3OH x 0.55 H2O: C, 

59.51; H, 4.35; N, 8.61. Found C, 59.45; H, 4.46; N, 8.73; Significant IR Bands 

(KBr disc, cm-1): (ν C=O) 1616s, (ν C=N) 1593s. 

[Cu(II)(CA3)2] 

N
N

O

Cu

N
N

O

CH3

H3C  

Bis[4-methyl-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA3)2] was synthesised using copper(II) acetate 0.06 g (0.31 mmol) 

and HCA3 0.10 g (0.38 mmol) to give [Cu(II)(CA3)2], (0.32 mmol, 84%); Melting 

point: 257-259 °C; ESI-MS: positive ion m/z = 591.1808, 40% HR ESI-MS: For 
63Cu(I)C34H32N4O2 ([M+2H]+), observed mass 591.1808, calculated mass 591.1816, 

difference 0.8 mDa; Anal. Calcd for C34H30N4O2Cu1x 0.3 H2O: C, 68.57; H, 5.18; N, 

9.41. Found C, 68.57; H, 5.11; N, 9.33; Significant IR bands: (KBr disc, cm-1): (ν 

C=O) 1611s, (ν C=N) 1587s. 
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[Cu(II)(CA4)2] 

N
N

O

Cu

N
N

O

OCH3

H3CO  

Bis[4-methoxy-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA4)2] was synthesised using copper(II) acetate (0.3 mmol) and 

HCA4 0.35 g (1.25 mmol) to give [Cu(II)(CA4)2], 0.23 g (1.23 mmol, 70%); Melting 

point: 255-257 °C; ESI-MS: positive ion m/z = 623.1715, 100%; HR ESI-MS: For 
63Cu(I)C34H32N4O4 ([M+2H]+), observed mass 623.1715, calculated mass 623.1719, 

difference 0.5 mDa; Significant IR bands: (KBr disc, cm-1): (ν C=O) 1610s, (ν C=N) 

1590s. 

 [Cu(II)(CA5)2] 

N
N

O

Cu

N
N

O

NO2

O2N  

Bis[4-nitro-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA5)2] was synthesised using copper(II) acetate 0.06 g (0.31 mmol) 

and HCA5 0.11 g (0.37 mmol) to give [Cu(II)(CA5)2], 0.09 g (0.28 mmol, 76%); 

Melting point: 275 - 277 °C; ESI-MS: negative ion m/z = 651.108, 100%; HR ESI-

MS: For 63Cu(I)C32H24N6O6 ([M]-), observed mass 651.1081, calculated mass 

651.1059, difference 2.2 mD; Anal. Calcd. for C32H24N6O6Cu x 1.5 H2O: C, 56.59; 

H, 4.01; N, 12.37. Found C, 56.12; H, 3.62; N, 12.85; Significant IR bands: (KBr 

disc, cm-1): (ν C=O) 1607s, ν (C=N) 1582s, (νas ym  (N=O)2) 1534s, (νs ym  (N=O)2) 

1348br. 
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[Cu(II)(CA6)2] 

N
N

O

Cu

N
N

O

F3C

CF3

 

Bis[4-triflouromethyl-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA6)2] was synthesised using copper(II) acetate 0.045 g (0.25 mmol) 

and HCA6 0.10 g (0.31 mmol) to give [Cu(II)(CA6)2], 0.095 g (0.27 mmol, 87%); 

Melting point: 258-260 °C; ESI-MS: positive ion m/z = 699.1241, 10%, HR ESI-

MS: For 63Cu(I)C34H26N4O2F6 ([M+2H]+), observed mass 699.1241, calculated mass 

699.1250, difference 0.9 mDa; Anal. Calcd for C34H24N4O2F6Cu1 x 0.4 H2O: C, 

57.90; H, 3.54; N, 7.94. Found C, 57.81; H, 3.46; N, 8.02; Significant IR bands 

(KBr disc, cm-1): (ν C=O) 1610s, (ν C=N) 1590s. [Cu(II)(CA7)2] 

N
N

O

Cu

N
N

O

 

Bis[4-tert-butyl-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA7)2] was synthesised using copper(II) acetate 0.05 g (0.27 mmol) 

and HCA7 0.10 g (0.32 mmol) to give [Cu(II)(CA7)2], 0.09 g (0.26 mmol, 81%); 

Melting point: 254-256 °C; ESI-MS: positive ion m/z = 675.2753, 7%, HR ESI-MS: 

For 63Cu(I)C40H44N4O2 ([M+2H]+), observed mass 675.2753, calculated mass 

675.2755, difference 0.2 mDa; Anal. Calcd. for C40H42N4O2Cu1: C, 71.24; H, 6.28; 

N, 8.31. Found C, 71.03; H, 6.28; N, 8.24; Significant IR bands (KBr disc, cm-1):  (ν 

C=O) 1612s, (ν C=N) 1584s. 
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 [Cu(II)(CA8)2] 

N
N

O

Cu

N
N

O

HO

OH

 

Bis[4-hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA8)2] was synthesised using copper(II) acetate 0.057 g (0.31 mmol) 

and HCA8 0.10 g (0.37 mmol) to give [Cu(II)(CA8)2], 0.077 g (0.26 mmol, 70%); 

Melting point: 256 - 258 °C; ESI-MS: positive ion m/z = 595.1401, 53%, HR ESI-

MS: For 63Cu(I)C32H28N4O4 ([M+2H]+), observed mass 595.1408, calculated mass 

595.1401, difference 0.7 mDa; Significant  IR bands (KBr disc, cm-1): (ν C=O) 

1610s, (ν C=N) 1595s. 

 

[Cu(II)(CA9)2] 

N
N

O

Cu

N
N

O

F

F

 

Bis[3-flouro-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA9)2] was synthesised using copper(II) acetate 0.04 g (0.23 mmol) 

and HCA9 0.075 g (0.28 mmol) to give [Cu(II)(CA9)2], 0.07 g (0.23 mmol, 84%); 

Melting point: 248-250 °C; ESI-MS: positive ion m/z = 599.1333, 30%, HR ESI-MS: 

For 63Cu(I)C32H28N4O2 ([M+2H]+), observed mass 599.1333, calculated mass 

599.1314, difference 1.9 mDa; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1609s, (ν C=N) 1583s. 
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[Cu(II)(CA10)2] 

N
N

O

Cu

N
N

O

OH

HO  

Bis[3-hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA10)2] was synthesised using copper(II) acetate 0.057 g (0.31 

mmol) and HCA10 0.10 g (0.37 mmol) to give [Cu(II)(CA10)2], 0.066 g (0.22 mmol, 

60%); Melting point: 254-256 °C; ESI-MS: positive ion m/z = 595.1399, 100%, HR 

ESI-MS: For 63Cu(I)C32H28N4O4 ([M+2H]+), observed mass 595.1399, calculated 

mass 595.1401, difference 0.2 mDa; Anal. Calcd for C32H26N4O4Cu1 x 0.25 CH3OH 

x 0.4 H2O: C, 63.76; H, 4.58; N, 9.22. Found C, 63.74; H, 4.48; N, 9.12; Significant 

IR bands (KBr disc, cm-1): (ν C=O) 1613s, (ν C=N) 1578s. 

 

[Cu(II)(CA11)2] 

N
N

O

Cu

N
N

O

OH

HO

 

Bis[2-hydroxy-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

  [Cu(II)(CA11)2] was synthesised using copper(II) acetate 0.057 g (0.31 

mmol) and HCA11 0.11 g (0.37 mmol) to give [Cu(II)(CA11)2], 0.08 g (0.27 mmol, 73 

%); Melting point: 279-281 °C; ESI: negative ion m/z = 593.1272, 100 % HR ESI-

MS: For 63Cu(I)C32H26N4O4 ([M]-), observed mass 593.1272, calculated mass 

593.1256, difference 1.7 mDa; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1617s, (ν C=N) 1593s. 
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[Cu(II)(CA12)2]  

N
N

O

Cu

N
N

O

NO2

O2N

CH3

H3C  

Bis[3-methyl-4-nitro-benzoic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA12)2] was synthesised using copper(II) acetate 0.057 g (0.31 

mmol) and HCA12 0.11 g (0.37 mmol) to give [Cu(II)(CA12)2], 0.10 g (0.30 mmol, 

82%); Melting point: 273-275°C; ESI-MS: negative ion m/z = 679.1402, 100%,  HR 

ESI-MS: For 63Cu(I)C34H28N6O6 ([M]-), observed mass 679.1402, calculated mass 

679.1372, difference 3.0 mDa; Anal. Calcd for C34H28N6O6Cu1 x 0.15 CH3OH x 

0.25 H2O: C, 59.49; H, 4.25; N, 12.19. Found C, 59.48; H, 4.15; N, 12.35; 

Significant IR bands (KBr disc, cm-1): (ν C=O) 1608s, (ν C=N) 1580s, (ν asym 

(N=O)2) 1536br, (ν sym (N=O)2) 1343br. 

[Cu(II)(CA13)2] 

N

N
N

O

Cu

N

N
N

O

 

Bis[nicotinic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

[Cu(II)(CA13)2] was synthesised using copper(II) acetate 0.04 g (0.24 mmol) 

and HCA13 0.10 g (0.40 mmol) to give [Cu(II)(CA13)2], 0.09 g (0.32 mmol, 79%); 

Melting point :  252-254 °C; ESI-MS: negative ion m/z = = 563.1401, 81%, HR 

ESI-MS: For 63 Cu(I)C30H24N6O2 ([M]-), observed mass 563.1401, calculated mass 

563.1413, difference 1.1 mDa; Anal. Calcd. for C30H24N6O2Cu x 0.6 CH3OH: C, 
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63.01; H, 4.63; N, 14.41. Found C, 62.82; H, 4.56; N, 14.34; Significant IR bands 

(KBr disc, cm-1): (ν C=O) 1621s, (ν C=N) 1592s. 

[Cu(II)(CA14)2] 

N

N
N

O

Cu

N

N
N

O

 

Bis[isonicotinic acid (3-phenyl-allylidene)-hydrazide]copper(II) 

 [Cu(II)(CA14)2] was synthesised using copper(II) acetate 0.04 g (0.24 mmol) 

and HCA14 0.10 g (0.40 mmol) to give [Cu(II)(CA14)2], 0.09 g (0.31 mmol, 78 %); 

Melting point: 248-250 °C; ESI-MS: positive ion m/z = 565.1399, 37% HR ESI-MS: 

For 63CuC30H24N6O2 ([M+H]+), observed mass 565.1399, calculated mass 

565.1413, difference 1.3 mDa; Significant IR bands (KBr disc, cm-1): (ν C=O) 

1621s, (ν C=N) 1582s. 
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7.12.  Single crystal X-ray data  (Crystal data and structure refinement); 

All other crystallographic data can be found in appendices 3-22  

NaHL9.2H2O 

Empirical formula  C11 H15 N2 Na O5 

Formula weight  278.24 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Rhombohedral 

Space group  R-3 

Unit cell dimensions a = 30.7555(9) Å α= 90°. 

 b = 30.7555(9) Å β= 90°. 

 c = 7.3013(4) Å γ = 120°. 

Volume 5981.0(4) Å3 

Z 18 

Density (calculated) 1.390 Mg/m3 

Absorption coefficient 0.136 mm-1 

F(000) 2628 

Theta range for data collection 1.32 to 28.30°. 

Index ranges -40<=h<=40, -40<=k<=40, -9<=l<=9 

Reflections collected 20886 

Independent reflections 3303 [R(int) = 0.0331] 

Completeness to theta = 28.30° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.987 and 0.836 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3303 / 0 / 194 

Goodness-of-fit on F2 1.091 

Final R indices [I>2sigma(I)] R1 = 0.0386, wR2 = 0.1026 

R indices (all data) R1 = 0.0513, wR2 = 0.1192 

Largest diff. peak and hole 0.470 and -0.282 e.Å-3 
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NaHL11.2H2O 

Empirical formula  C10H9BrN2NaO3  

Formula weight  308.09  

Temperature/K  566(2)  

Crystal system  trigonal  

Space group  R-3  

a/Å  30.9014(4)  

b/Å  30.9014(4)  

c/Å  7.2710(2)  

α/°  90.00  

β/°  90.00  

γ/°  120.00  

Volume/Å3  6012.9(2)  

Z  23  

ρcalcmg/mm3  1.957  

m/mm-1  5.777  

F(000)  3519  

2Θ range for data collection  9.92 to 141.74°  

Index ranges  -35 ≤ h ≤ 37, -32 ≤ k ≤ 37, -8 ≤ l ≤ 8 

Reflections collected  10998  

Independent reflections  2420[R(int) = 0.0305]  

Data/restraints/parameters  2420/0/195  

Goodness-of-fit on F2  1.053  

Final R indexes [I>=2σ (I)]  R1 = 0.0243, wR2 = 0.0592  

Final R indexes [all data]  R1 = 0.0307, wR2 = 0.0625  

Largest diff. peak/hole / e Å-3 0.313/-0.361  
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NaHL20 .H2O  

Empirical formula  C10H9BrN2NaO3  

Formula weight  308.09  

Temperature/K  566(2)  

Crystal system  trigonal  

Space group  R-3  

a/Å  30.9014(4)  

b/Å  30.9014(4)  

c/Å  7.2710(2)  

α/°  90.00  

β/°  90.00  

γ/°  120.00  

Volume/Å3  6012.9(2)  

Z  23  

ρcalcmg/mm3  1.957  

m/mm-1  5.777  

F(000)  3519  

2Θ range for data collection  9.92 to 141.74°  

Index ranges  -35 ≤ h ≤ 37, -32 ≤ k ≤ 37, -8 ≤ l ≤ 8 

Reflections collected  10998  

Independent reflections  2420[R(int) = 0.0305]  

Data/restraints/parameters  2420/0/195  

Goodness-of-fit on F2  1.053  

Final R indexes [I>=2σ (I)]  R1 = 0.0243, wR2 = 0.0592  

Final R indexes [all data]  R1 = 0.0307, wR2 = 0.0625  

Largest diff. peak/hole / e Å-3 0.313/-0.361  
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[Cu(L7)(H2O)(MeOH)] 

Empirical formula  C13H17CuN3O7  

Formula weight  390.84  

Temperature / K  110.0  

Crystal system  monoclinic  

Space group  P21/n  

a/Å, b/Å, c/Å  10.159(3), 14.1559(7), 11.895(2)  

α/°, β/°, γ/°  90.00, 114.11(3), 90.00  

Volume / Å3  1561.3(5)  

Z  4  

ρcalc/mg mm-3  1.663  

µ/mm-1  1.441  

F(000)  804  

Crystal size / mm3  0.1963 × 0.0833 × 0.042  

2Θ range for data collection 5.76 to 64.22°  

Index ranges  -15 ≤ h ≤ 15, -21 ≤ k ≤ 20, -16 ≤ l ≤ 17 

Reflections collected  13154  

Independent reflections  4881[R(int) = 0.0235]  

Data/restraints/parameters  4881/0/229  

Goodness-of-fit on F2  1.058  

Final R indexes [I>2σ (I)]  R1 = 0.0300, wR2 = 0.0682  

Final R indexes [all data]  R1 = 0.0377, wR2 = 0.0723  

Largest diff. peak/hole/e Å-3 0.466/-0.397  
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[Cu(L8)(MeOH)2] 

Empirical formula  C12 H15 Cu N3 O7 

Formula weight  376.81 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 7.8471(4) Å             α= 90° 

 b = 17.0584(8) Å           β= 93.9220(10)° 

 c = 11.0122(5) Å           γ = 90° 

Volume 1470.63(12) Å3 

Z 4 

Density (calculated) 1.702 Mg/m3 

Absorption coefficient 1.527 mm-1 

F(000) 772 

Theta range for data collection 2.20 to 28.30°. 

Index ranges -10<=h<=10, -22<=k<=22, -14<=l<=14 

Reflections collected 15054 

Independent reflections 3660 [R(int) = 0.0178] 

Completeness to theta = 28.30° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.941 and 0.823 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3660 / 0 / 219 

Goodness-of-fit on F2 1.072 

Final R indices [I>2sigma(I)] R1 = 0.0255, wR2 = 0.0695 

R indices (all data) R1 = 0.0276, wR2 = 0.0709 

Largest diff. peak and hole 0.454 and -0.338 e.Å-3 
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[Cu(L9)(H2O)2] 

Empirical formula  C11 H14 Cu N2 O5 

Formula weight  317.78 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.3879(9) Å              α = 93.602(2)° 

 b = 11.4695(13) Å          β = 102.437(2)° 

 c = 15.3898(18) Å           γ = 103.124(2)° 

Volume 1231.6(3) Å3 

Z 4 

Density (calculated) 1.714 Mg/m3 

Absorption coefficient 1.792 mm-1 

F(000) 652 

Theta range for data collection 1.84 to 28.33°. 

Index ranges -9<=h<=9, -15<=k<=15, -20<=l<=19 

Reflections collected 10913 

Independent reflections 5970 [R(int) = 0.0181] 

Completeness to theta = 28.33° 97.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.882 and 0.619 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5970 / 2 / 371 

Goodness-of-fit on F2 1.047 

Final R indices [I>2sigma(I)] R1 = 0.0379, wR2 = 0.0982 

R indices (all data) R1 = 0.0471, wR2 = 0.1048 

Largest diff. peak and hole 0.982 and -0.728 e.Å-3 



                                                                                                      Chapter-7                                                                                    

 303 

[Cu(HL9)2Cl2] 

Empirical formula  C22 H22 Cl2 Cu2 N4 O6 

Formula weight  636.42 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 8.3637(8) Å                α = 90° 

 b = 15.0338(15) Å            β = 94.701(2)° 

 c = 9.4535(9) Å γ = 90° 

Volume 1184.7(2) Å3 

Z 2 

Density (calculated) 1.784 Mg/m3 

Absorption coefficient 2.069 mm-1 

F(000) 644 

Theta range for data collection 2.55 to 28.27°. 

Index ranges -11<=h<=11, -20<=k<=20, -12<=l<=12 

Reflections collected 12070 

Independent reflections 2927 [R(int) = 0.0257] 

Completeness to theta = 28.27° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.940 and 0.857 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2927 / 0 / 168 

Goodness-of-fit on F2 1.058 

Final R indices [I>2sigma(I)] R1 = 0.0277, wR2 = 0.0697 

R indices (all data) R1 = 0.0352, wR2 = 0.0732 

Largest diff. peak and hole 0.482 and -0.239 e.Å-3 
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[Cu(L11)(H2O)2].H2O 

Empirical formula  C20 H24 Br2 Cu2 N4 O11 

Formula weight  783.33 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.3908(6) Å                α = 82.329(2)° 

 b = 11.0776(8) Å              β = 84.287(2)° 

 c = 16.9653(13) Å             γ = 75.676(2)° 

Volume 1330.56(18) Å3 

Z 2 

Density (calculated) 1.955 Mg/m3 

Absorption coefficient 4.666 mm-1 

F(000) 776 

Theta range for data collection 1.91 to 28.28°. 

Index ranges -9<=h<=9, -14<=k<=14, -22<=l<=22 

Reflections collected 13852 

Independent reflections 6557 [R(int) = 0.0212] 

Completeness to theta = 28.28° 99.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.756 and 0.565 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6557 / 3 / 388 

Goodness-of-fit on F2 1.069 

Final R indices [I>2sigma(I)] R1 = 0.0304, wR2 = 0.0765 

R indices (all data) R1 = 0.0383, wR2 = 0.0803 

Largest diff. peak and hole 1.193 and -0.774 e.Å-3 
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[Cu(L13)(H2O)(MeOH)] 

 

Empirical formula  C12H16CuN2O6  

Formula weight  347.81  

Temperature/K  110.0  

Crystal system  Monoclinic  

Space group  P21/n  

a/Å, b/Å, c/Å  10.2445(5), 13.1835(5), 10.7163(5)  

α/°, β/°, γ/°  90.00, 108.444(5), 90.00  

Volume/Å3  1372.97(11)  

Z  4  

ρcalc/mg mm-3  1.683  

µ/mm-1  1.620  

F(000)  716  

Theta range for data collection 3.33 to 25.05°  

Index ranges  -12 ≤ h ≤ 12, -15 ≤ k ≤ 15, -12 ≤ l ≤ 12 

Reflections collected  13705  

Independent reflections  2436[R(int) = 0.1120]  

Data/restraints/parameters  2436/59/212  

Goodness-of-fit on F2  1.064  

Final R indexes [I>2σ (I)]  R1 = 0.0387, wR2 = 0.0816  

Final R indexes [all data]  R1 = 0.0482, wR2 = 0.0879  

Largest diff. peak/hole/e Å-3  0.411/-0.375  
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[Cu(HL15)2Cu(HL15)(L15].Na.3H2O.CH3OH 

Empirical formula  C40.81 H41 Cu2 F4 N8 Na O16.19 

Formula weight  1128.67 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.9798(8) Å               α = 74.730(2)° 

 b = 11.8246(10) Å            β = 81.705(2)° 

 c = 20.4296(17) Å             γ = 82.246(2)° 

Volume 2289.5(3) Å3 

Z 2 

Density (calculated) 1.636 Mg/m3 

Absorption coefficient 1.036 mm-1 

F(000) 1152.8 

Theta range for data collection 1.79 to 28.34°. 

Index ranges -13<=h<=13, -15<=k<=15, -27<=l<=26 

Reflections collected 24057 

Independent reflections 11321 [R(int) = 0.0382] 

Completeness to theta = 28.34° 99.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.920 and 0.796 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11321 / 13 / 751 

Goodness-of-fit on F2 1.019 

Final R indices [I>2sigma(I)] R1 = 0.0454, wR2 = 0.0974 

R indices (all data) R1 = 0.0726, wR2 = 0.1099 

Largest diff. peak and hole 0.623 and -0.377 e.Å-3 
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[Cu(L17)2(H2O)2] 

Empirical formula  C11 H16 Cu N2 O8 

Formula weight  367.80 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.2658(7) Å                 α = 81.01(2)° 

 b = 7.3165(7) Å                β = 87.867(2)° 

 c = 13.8816(13) Å             γ = 73.718(2)° 

Volume 699.64(12) Å3 

Z 2 

Density (calculated) 1.746 Mg/m3 

Absorption coefficient 1.605 mm-1 

F(000) 378 

Theta range for data collection 2.92 to 28.29°. 

Index ranges -9<=h<=9, -9<=k<=9, -18<=l<=18 

Reflections collected 7147 

Independent reflections 3444 [R(int) = 0.0152] 

Completeness to theta = 28.29° 98.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.968 and 0.648 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3444 / 0 / 229 

Goodness-of-fit on F2 1.089 

Final R indices [I>2sigma(I)] R1 = 0.0280, wR2 = 0.0729 

R indices (all data) R1 = 0.0321, wR2 = 0.0755 

Largest diff. peak and hole 0.530 and -0.480 e.Å-3 
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[Cu(I)2HL8(PPh3)5]PF6 

Empirical formula  C401H336Cu8F24N12O21P24  

Formula weight  7366.42  

Temperature/K  110.0  

Crystal system  monoclinic  

Space group  P21/a  

a/Å  25.9574(5)  

b/Å  18.2375(3)  

c/Å  37.8159(6)  

α/°  90.00  

β/°  100.0501(18)  

γ/°  90.00  

Volume/Å3  17627.3(5)  

Z  2  

ρcalcmg/mm3  1.388  

m/mm-1  0.661  

F(000)  7604.0  

2Θ range for data collection  5.7 to 57.84°  

Index ranges  -35 ≤ h ≤ 24, -22 ≤ k ≤ 23, -49 ≤ l ≤ 44 

Reflections collected  71520  

Independent reflections  38784[R(int) = 0.0311]  

Data/restraints/parameters  38784/114/2763  

Goodness-of-fit on F2  1.067  

Final R indexes [I>=2σ (I)]  R1 = 0.0614, wR2 = 0.1269  

Final R indexes [all data]  R1 = 0.0874, wR2 = 0.1401  

Largest diff. peak/hole / e Å-3 1.03/-1.15  
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[Cu(I)2HL9(PPh3)5]PF6 

Empirical formula  C104H98Cu2F6N2O6P6  

Formula weight  1898.74  

Temperature/K  110.00(10)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  12.7572(3)  

b/Å  45.481(3)  

c/Å  16.3277(4)  

α/°  90.00  

β/°  99.241(2)  

γ/°  90.00  

Volume/Å3  9350.6(7)  

Z  4  

ρcalcmg/mm3  1.349  

m/mm-1  0.625  

F(000)  3944.0  

2Θ range for data collection  5.82 to 58.28°  

Index ranges  -11 ≤ h ≤ 16, -58 ≤ k ≤ 50, -21 ≤ l ≤ 21 

Reflections collected  36824  

Independent reflections  21014[R(int) = 0.0307]  

Data/restraints/parameters  21014/26/1150  

Goodness-of-fit on F2  1.134  

Final R indexes [I>=2σ (I)]  R1 = 0.0614, wR2 = 0.1129  

Final R indexes [all data]  R1 = 0.0770, wR2 = 0.1207  

Largest diff. peak/hole / e Å-3 0.91/-0.81  
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[Cu(I)2HL9(PPh3)4]PF6.2Et2O.2H2O 

Empirical formula  C89H86.36892Cu2F6N2O4.68446P5  

Formula weight  1654.85  

Temperature/K  110  

Crystal system  triclinic  

Space group  P-1  

a/Å  12.937(3)  

b/Å  13.150(4)  

c/Å  24.582(3) 

α/°  90.543(15)  

β/°  95.990(14)  

γ/°  100.77(2)  

Volume/Å3  4084.2(17)  

Z  2  

ρcalcmg/mm3  1.346  

m/mm-1  0.685  

F(000)  1718.0  

2Θ range for data collection  5.66 to 55.98°  

Index ranges  -17 ≤ h ≤ 11, -16 ≤ k ≤ 15, -29 ≤ l ≤ 30 

Reflections collected  25830  

Independent reflections  16093[R(int) = 0.0315]  

Data/restraints/parameters  16093/19/1032  

Goodness-of-fit on F2  1.060  

Final R indexes [I>=2σ (I)]  R1 = 0.0499, wR2 = 0.1137  

Final R indexes [all data]  R1 = 0.0716, wR2 = 0.1260  

Largest diff. peak/hole / e Å-3 0.62/-0.62  
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[Zn(HL7)2].H2O.DMSO 

Empirical formula  C23H28N4O8Zn  

Formula weight  553.86  

Temperature/K  110.4  

Crystal system  triclinic  

Space group  P-1  

a/Å, b/Å, c/Å  9.5115(6), 10.4966(6), 13.7572(9)  

α/°, β/°, γ/°  70.049(6), 79.268(5), 74.847(5)  

Volume/Å3  1239.03(13)  

Z  2  

ρcalc/mg mm-3  1.485  

µ/mm-1  1.046  

F(000)  576  

Theta range for data collection 3.0009 to 49.9474°  

Index ranges  -5 ≤ h ≤ 11, -10 ≤ k ≤ 12, -15 ≤ l ≤ 16 

Reflections collected  6342  

Independent reflections  4340[R(int) = 0.0211]  

Data/restraints/parameters  4340/0/339  

Goodness-of-fit on F2  1.057  

Final R indexes [I>2σ (I)]  R1 = 0.0398, wR2 = 0.0881  

Final R indexes [all data]  R1 = 0.0484, wR2 = 0.0937  

Largest diff. peak/hole/e Å-3  1.202/-0.375  
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[Zn(HL8)2].H2O 

Empirical formula  C21 H22 N6 O12 Zn 

Formula weight  615.82 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.1998(8) Å          α = 98.2510(10)° 

 b = 12.1658(10) Å      β = 110.4530(10)° 

 c = 12.4475(10) Å       γ = 93.257(2)° 

Volume 1283.20(18) Å3 

Z 2 

Density (calculated) 1.594 Mg/m3 

Absorption coefficient 1.032 mm-1 

F(000) 632 

Theta range for data collection 1.70 to 28.33°. 

Index ranges -12<=h<=12, -16<=k<=16, -16<=l<=16 

Reflections collected 17406 

Independent reflections 6364 [R(int) = 0.0178] 

Completeness to theta = 28.33° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.765 and 0.627 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6364 / 0 / 383 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0335, wR2 = 0.0888 

R indices (all data) R1 = 0.0365, wR2 = 0.0905 

Largest diff. peak and hole 0.971 and -0.579 e.Å-3 
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[Zn(HL9)2].H2O.CH3OH 

Empirical formula  C22H24Cl2N4O8SZn  

Formula weight  640.78  

Temperature/K  110K  

Crystal system  Triclinic  

Space group  P-1  

a/Å, b/Å, c/Å  8.5985(7), 10.5440(7), 15.5551(10)  

α/°, β/°, γ/°  104.251(6), 95.218(6), 109.582(7)  

Volume/Å3  1264.36(15)  

Z  2  

ρcalc/mg mm-3  1.683  

µ/mm-1  1.322  

F(000)  656  

Theta range for data collection 2.95 to 30.08°  

Index ranges  -12 ≤ h ≤ 12, -11 ≤ k ≤ 14, -21 ≤ l ≤ 14 

Reflections collected  11277  

Independent reflections  7335[R(int) = 0.0270]  

Data/restraints/parameters  7335/0/363  

Goodness-of-fit on F2  1.040  

Final R indexes [I>2σ (I)]  R1 = 0.0371, wR2 = 0.0847  

Final R indexes [all data]  R1 = 0.0467, wR2 = 0.0913  

Largest diff. peak/hole/e Å-3  0.642/-0.655  
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[Zn(HL13)2] 

Empirical formula  C22H24.5N4O9.25Zn  

Formula weight  1116.66  

Temperature/K  110.0  

Crystal system  tetragonal  

Space group  P43212  

a/Å, b/Å, c/Å  21.1918(3), 21.1918(3), 21.6652(4)  

α/°, β/°, γ/°  90.00, 90.00, 90.00  

Volume/Å3  9729.7(3)  

Z  8  

ρcalc/mg mm-3  1.525  

µ/mm-1  1.070  

F(000)  4616  

2Θ range for data collection  5.76 to 55.86°  

Index ranges  -25 ≤ h ≤ 24, -26 ≤ k ≤ 13, -28 ≤ l ≤ 25 

Reflections collected  32001  

Independent reflections  10157[R(int) = 0.0233]  

Data/restraints/parameters  10157/15/722  

Goodness-of-fit on F2  1.025  

Final R indexes [I>2σ (I)]  R1 = 0.0482, wR2 = 0.1155  

Final R indexes [all data]  R1 = 0.0726, wR2 = 0.1329  

Largest diff. peak/hole�/�e Å-3 0.788/-1.624  
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HCA2 

Empirical formula  C16H13N2OCl  

Formula weight  284.73  

Temperature/K  110.0  

Crystal system  triclinic  

Space group  P-1  

a/Å, b/Å, c/Å  5.2471(3), 8.3279(6), 15.3824(7)  

α/°, β/°, γ/°  92.175(5), 91.516(4), 91.150(5)  

Volume/Å3  671.31(7)  

Z  2  

ρcalc/mg mm-3  1.409  

µ/mm-1  0.281  

F(000)  296  

Theta range for data collection 3.5322 to 59.9346°  

Index ranges  -7 ≤ h ≤ 7, -11 ≤ k ≤ 11, -20 ≤ l ≤ 21 

Reflections collected  5933  

Independent reflections  3842[R(int) = 0.0224]  

Data/restraints/parameters  3842/0/185  

Goodness-of-fit on F2  1.044  

Final R indexes [I>2σ (I)]  R1 = 0.0442, wR2 = 0.1010  

Final R indexes [all data]  R1 = 0.0577, wR2 = 0.1100  

Largest diff. peak/hole/e Å-3  0.493/-0.284  
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HCA5 

Empirical formula  C16H13N3O3  

Formula weight  295.29  

Temperature/K  110.0  

Crystal system  monoclinic  

Space group  P21/c  

a/Å, b/Å, c/Å  16.429(4), 5.3321(8), 17.054(3)  

α/°, β/°, γ/°  90.00, 114.74(2), 90.00  

Volume/Å3  1356.8(5)  

Z  4  

ρcalc/mg mm-3  1.446  

µ/mm-1  0.103  

F(000)  616  

Theta range for data collection 2.8858 to 51.9984°  

Index ranges  -19 ≤ h ≤ 20, -6 ≤ k ≤ 4, -19 ≤ l ≤ 21 

Reflections collected  5760  

Independent reflections  2686[R(int) = 0.0226]  

Data/restraints/parameters  2686/0/203  

Goodness-of-fit on F2  0.985  

Final R indexes [I>2σ (I)]  R1 = 0.0428, wR2 = 0.0939  

Final R indexes [all data]  R1 = 0.0608, wR2 = 0.1039  

Largest diff. peak/hole/e Å-3  0.204/-0.276  
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7.13 Screening of the compounds for anti-mycobacterial activity 

The compounds were screened in the Department of Animal Sciences, School 

of Life Sciences, University of Hyderabad by Dr. Manjula Sritharan’s research group 

Mycobacterial strain and growth conditions: 

Mycobacterium tuberculosis ATCC 27294 was grown in Middlebrook 7H9 

broth medium (pH 7.0, Difco, Detroit, Mich., USA) containing 10% (v/v) albumin-

dextrose-catalase (ADC; Difco) enrichment and 0.2% glycerol and maintained with 

shaking at 150 rpm at 37 °C.  

Iron-regulated growth was performed in Proskauer and Beck medium (pH 

6.8) with iron added at 0.02 µg Fe/mL (low iron) and 8 µg Fe/mL (high iron), 

respectively. Ferrous sulphate was used as the iron source. The iron-regulated 

cultures were harvested in the mid-log phase after 10 days of growth. The iron 

status of the organisms was confirmed by assaying the siderophores mycobactin 

and carboxymycobactin using established protocols.310 Care was taken to ensure 

that the cells were harvested before the onset of iron limitation in high iron 

organisms. The cells were washed and re-suspended in the respective medium to 

get a cell density equivalent to McFarland 1 (3 x 108 cfu/mL) and further adjusted to 

get an OD600nm of 0.15 (Biophotometer, Eppendorf, USA). This cell suspension was 

used for the screening of the compounds. 

Preparation of the compounds for screening: 

Stock solutions of the compounds were prepared in HPLC grade dimethyl 

sulfoxide (Sigma Chemical Co., St. Louis, Mo., USA) at a concentration of 10 

mg/mL. These were filter-sterilized (0.22 µm filters, Sartorius) and stored at -80°C.  

Screening of the compounds: 

The compounds were first  screened  in the MB/BacT™ 240 Mycobacteria 

Detection System (BioMerieux / Organon Teknika, France) followed by the 

determination of the MIC values by Microplate Alamar Blue assay (MABA). Finally, 

the MIC values were confirmed in the MB/BacT™ 240 system by growth at MIC and 

sub-MIC concentrations of the compounds. 
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Compounds were screened for anti-mycobacterial activity in the 

MB/BacT™240 Mycobacteria Detection System (BioMerieux / Organon Teknika, 

France). The detection system employs standard bottles of 10 ml of culture media to 

which 0.5 mL of the mycobacterial cell suspension (prepared as detailed above) 

was added. The system also included the ‘proportion control’ that was inoculated 

with 0.5 mL of the cell suspension diluted 1:100. The system was standardised for 

the screening by adding INH at 0.1- 0.5 µg/mL final concentration. All the 

compounds were added at 256 µg/mL and checked for their effectiveness on M. 

tuberculosis. 

This was carried out essentially as described earlier.310 Briefly, it included 

testing of the compounds in 96 clear bottomed, sterile, microtitre plates (Corning, 

New York, USA). The outer perimeter wells were filled with 200 µL of sterile, distilled 

water to prevent evaporation from the experimental wells during incubation.  100 µL 

of 7H9 medium was added to all wells except those of column 2. 100 µL of the 

compound(s) to be tested was added to column 2. This represented the highest 

concentration of the compound(s). 100 µL of the compound(s) was added to column 

3 followed by serial dilutions of the compounds from columns 3 – 10. Column 11 

served as the control with no added drug. 100 µL of the cell suspension (1:50 

dilution of the cell suspension prepared above) was added to all wells and the plate 

was incubated at 37 °C for 5 days. 50 µL of Alamar Blu e [Invitrogen Corporation, 

Carlsbad, Ca., USA; prepared as a 1:1 (v/v) mixture with 10% Tween-80 (Sigma)] 

was added to the first control well and observed after 12 h. If the colour changed 

from blue to pink, Alamar Blue was added to all the wells and visual grading of the 

colour change was made 6 h after the dye addition. The MIC of the specific 

compound was taken as the lowest concentration in which there was no change of 

the blue colour of Alamar Blue indicating lack of any viable bacilli. 

Once the MIC value was established by MABA, the MICs of the compounds 

were confirmed by adding them at MIC and sub-MIC concentrations in the 

MB/BacT™240 system. 

Influence of iron levels on the anti-bacterial activity   

The organisms were grown in high and low iron conditions as described 

above. The cells were harvested and re-suspended in the respective medium and 

tested by MABA, essentially as described above except that the 7H9 medium was 

replaced by high and low iron Proskauer and Beck medium.  
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Abbreviations:  

4°  quaternary carbon (NMR) 

σ  Hammett parameter 

β  Bohr magneton (EPR) 

δ  chemical shift 

ε  molar absorption coefficient 

λmax  wavelenght of maximum absorption 

τ  tau 

°C  degrees Celcsius 

µ  micro 

ν  microwave frequency 

νas ym   asymmetric stretching (IR) 

νas ym   symmetric stretching (IR) 

Å  Angstroms (10-10 m) 

Arg  Argenine 

Asn  Arsenin 

br  broad (NMR) 

bs  broad singlet (NMR) 

CAH/s  cinnamaldehyde hydrazone/s 

clogP  calculated log P (lipohilicity) 

cm-1  wavenumber (IR) 

CoA  coenzyme A 

COSY  Correlation Spectroscopy 

CV  Cyclic voltamometry 

Cys  Cysteine 

dx  deuterated (NMR)  

d  doublet (NMR) 

dd  (double doublet) 

DEPT  Distortion Enhancement by Polarisation Transfer 

DFT  Density Functional Theory 

DMF  Dimethyl formamide 

DMSO  Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

DPPH  Diphenylpicrylhydrazyl 

EC99  Lowest concentrations, effecting 99% reductions in colony forming  units 
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Et2O Diethyl ether 

ESI-MS  Electronic spray ionisation-Mass Spectrometry 

EPR  Electron Paramagnetic Resonance 

FTIR  Fourier Transform Infrared spectroscopy 

Glu  Glutamic acid 

GSP  Glyoxylate shunt pathway 

H  magnetic feild (EPR) 

h  Planck’s constant 

hr  hour/s 

Har  aromatic proton/s 

His  Histidine 

HPLC  High Pressure Liquid Chormatography 

HRMS  High Resolution Mass Spectrometry 

Hz  Hertz 

INA  isonicotinic acid 

INH  Isoniazid/ Isonicotinic acid hydrazide 

ICL  Isocitrate lyase enzyme 

INH  Isoniazid/ Isonicotinic acid hydrazide 

IR  Infrared 

J  coupling constant 

KatG  Catalase-peroxidase 

L  ligand 

M  Metal 

m  multpiplet (NMR) 

m  medium (IR) 

MABA  Microplate Alamar Blue assay 

MB/BacT™ Mycobacteria Detection System  

MeOH  Methanol 

mDa  milli Dalton  

MDR  Multiple drug resistance 

MIC  Minimum inhibitory concentration 

mM  millimolar 

Mtb  Mycobacterium tuberculosis 

m/z  mass/charge 

MHz  megahertz 

min  minutes 

mol  moles 
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nm  nanometer 

NMR  Nuclear magnetic resonance 

NaBH4  sodium borohydride 

NADH  Nicotinamide Adenine Dinucleotide 

LMCT  Ligand to metal charger transfer 

PBS  Phosphate Buffered Saline 

ppm  parts per million 

PVAH/s pyruvate hydrazone/s 

q  quartet (NMR) 

s  singlet (s) 

s  sharp (IR) 

SAR  Structure Activity Relationship  

SOD  superoxide dismutase 

Ser  Serine 

Subsp  subspecies 

t  triplet (NMR) 

t1/2  half-life 

TB  Tuberculosis 

THF  Tetrahedronfuran 

TLC  Thin-Layer Chromatography 

Thr  Threonine 

TBAHFP tetra-butyl ammonium hexafluorophosphate 

UV-Vis  Ultraviolet-visible spectroscopy 

VT  variable temperature (NMR) 

W.H.O  World health organisation 

XRD  X-ray Diffraction 
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