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Abstract

This research is an investigation into developing computer vision based
mechanisms to address the safety related concerns connected with piloting a
small fixed-wing Unmanned Aerial Vehicles (UAVs). Many consumer fixed-
wing UAVs do not come equipped with accurate Global Navigation Satelite
Systems GNSS technology. Professional drones which do, are prone to jam-
ming, spoofing and other problems, and reliance on the skill of the remote
pilot is not failure proof either. Therefore having an automated safety mech-
anism is of vital importance, especially on fixed-wing UAVs given their high
speeds and high flying altitudes. Many works have proposed localisation
solutions on rotor-wing UAVs, but few have addressed the problems related
to fixed-wing UAVs, or taken advantage of resources uniquely available to
them. In this work: 1) An understanding is formed of traditional visual
odometry (VO) methods and their effectiveness on fixed wing UAVs. Suit-
able motion estimation algorithms are proposed, evaluated and their disad-
vantages concluded. 2) A learning based visual localisation system is in-
troduced using semantic segmentation and particle filtering for the absolute
localisation of a fixed-wing UAV. The solution relies on sparse monocular
top-down imagery captured by the UAV, and takes advantage of an onboard
Google Earth map. The system runs in real-time on a modest CPU and
achieves an accuracy that is close to recent state-of-the-art methods, with the
added advantage of global localisation capacity. 3) The learning based sys-
tem is extended to cover the motion estimation part of the system. A deep
learning rigid registration CNN is proposed for the registration of segmented
images. The proposed localisation system can be used to enable homing on
small UAVs enabling beyond visual line of sight operations, it can add an
extra layer of redundancy to fixed-wing navigation systems. It can also be
used on GNSS denied environments such as other planets.
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[2]. In addition, many terms are used interchangeably to refer to the same ob-
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general, or more specifically a top-down aerial photo, unless otherwise
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• The terms Unmanned Aerial Vehicle (UAV) and drone, are used to refer
to a small UAV (under 20kg according to the Civil Aviation Authority’s
classification [8]). It is also referred to as Small Unmanned Aircraft
(SUA), which is fixed-wing unless otherwise noted.

• The terms robot and agent are used in a general sense to refer either to a
vehicular or aerial robot, but not necessarily a UAV.
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Chapter 1

Introduction

The last century has witnessed a soaring usage of remotely piloted Un-
manned Aerial Vehicles (UAVs), commonly known as drones. Because they
are comparatively much cheaper to operate than manned aircraft, they have
entered and revolutionised many fields in which they continue to be increas-
ingly utilised. Some of their applications include: agricultural crops scan-
ning [9], urban planning [10], city mapping (such as Google Maps) and pho-
togrammetry based historical site 3D reconstruction [11], disaster manage-
ment (wildfires and earthquakes) [12], search and rescue [13], parcel delivery
[14, 15, 16], last mile delivery [17] and many other usages in many diverse
fields.

The UAV market continues to expand and develop, with some reports
[18] predicting it to triple by the end of this decade, with a growth of £7
billions per year. However, a number of challenges accompany the advent
of UAVs. As the UAV market continually grows, UAV risks grow with it,
and we are increasingly faced by growing concerns to address those risks
(safety, security and privacy). One of the notable and most critical challenges
we face today is safety, not only the safety of the drone itself but also the
safety of its surroundings (any people or property possibly residing under
the UAV’s navigation space).

The critical issues, challenges and public risks of UAVs are well known,
and they have already been identified for example by the Department for
Transport in early 2017 [19]. Many goals had been set, such as, (a) maximis-
ing security and safety at all times and (b) real-time situational awareness.
But they are yet to be fully addressed. This thesis is an attempt to address the
safety critical issues of flying a fixed-wing UAV as opposed to a rotor-wing
UAV (see Figure 1.1 for a graphical comparison), and to propose appropri-
ate computer vision based solutions. It will focus on small fixed-wing UAVs,
which can be also referred to as Small Unmanned Aircraft (SUA), under the
weight of 20kg (as according to CAA classification [8]), which fly at a height
which allows the surface of the ground to remain clearly seen.

Some professional grade fixed-wing UAVs, for example the ones used for
photogrammetric scanning such as drones sold by Sensefly [20] and Wing-
tra [21], are guided by an advanced satellite direct georeferencing technol-
ogy which is expensive for the average customer in its current state. These
drones use state-of-the-art technologies in waypoint satellite navigation (eg.
Real Time Kinematics (RTK) and Post Processing Kinematics (PTK) [22] tech-
nologies), and the whole system costs upwards of £17,000. This price tag
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FIGURE 1.1: Top: fixed-wing UAVs. Bottom: rotor-wing UAVs.

is enough to push away customers not using these UAVs for professional
purposes into finding cheaper solutions. In contrast, consumer grade low-
end fixed-wing UAVs do not rely on battery intensive and high-cost external
satellite navigation technologies, and they are commonly sold up to 100 times
cheaper. Many of these UAVs are provided with a downward-facing camera,
and they rely on being remotely controlled by a pilot for navigation.

Such fixed-wing UAVs are used to navigate much longer distances and
at higher speeds as opposed to rotor-wing UAVs (see Table 1.1 for a com-
parison). It is argued in this thesis that such UAVs pose inherent safety and
security risks for many reasons. These reasons are expoounded in the follow-
ing section.

Fixed-wing Rotor-wing
Speed High Low-Medium

Altitude
High (minimum of Low-Medium (normally
100m, up to a few operated up to a few
hundred meters∗) tens of meters)

Coverage/ Outdoor/Long (up Indoor & Outdoor/Short-

Range to tens of kms) medium (up to a few
hundred meters)

Agility/ Low High. Has
Maneuverability hovering capacity

TABLE 1.1: Comparison between small fixed-wing and rotor-
wing UAVs. ∗ Flying at altitudes higher than 120m requires

explicit permission from Civil Aviation Authority [8].
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1.1 Motivation

Whether the UAV navigation system relied on advanced Global Navi-
gation Satellite System (GNSS) technology, or on the skill of the remote pi-
lot, both methods have many vulnerabilities and there are many factors that
could contribute to a navigation failure. Such vulnerabilities include:

1. Human error: Some reports have outlined that humans are not good
pilots, reporting high human error percentages in remotely navigating
a UAV which range from 20% up to 60% [23]; some papers reporting
human error percentages from 70% - 80% [24], these include skill-based
errors (failure of the pilot to maneuver a certain situation), perceptual er-
rors (failure of the pilot to notice an obstacle) and decision errors (failure
of the pilot to make the right decision in a certain situation).

Indeed, given the current UK regulations regarding UAVs, and accord-
ing to the Civil Aviation Authority (CAA), unless permission is guar-
anteed, a UAV must remain within the Visual Line Of Sight (VLOS) of
the pilot [8]. I.e. the UAV must never be flown out of eye sight range.
But despite this regulation, it is not enough to guarantee safe flight.
Given this reliance on the user and his level of experience, the UAV
poses safety concerns.

2. GNSS failures: A GNSS signal transmitter power is equivalent to a
weak light bulb, 27W in the case of Global Positioning System (GPS),
which exists on a satellite more than 20, 000km away. This means that
the received GNSS signal on the ground is very weak which makes
it succeptible to considerable malicious or unintentional interferences
which can cause a navigation failure. Such interferences include:

(a) Jamming: A jammer is a transmitter which transmits a signal that
is slightly stronger than GNSS signal, which is enough to deflect
it. Since the GNSS signal is already weak, a 0.1W transmitter for
example can interfere with and block GPS signals within a radius
of 10km [25]. Jamming poses considerable risk to UAVs as such
jammers are available to purchase on the internet by civilians [26].
Military GPS jamming tests affect GPS signal reception, for exam-
ple 173 cases were recorded during a 6 months period in 2017 [27]).

(b) Spoofing: A spoofer on the other hand is a transmitter which repli-
cates the GNSS signal. This causes receivers to ignore the real
satellite signal and listen to the spoofer instead, which causes it to
have false location and time measurements. In a maritime global
journey numerous losses of signal were recorded sometimes last-
ing for hours [28].

(c) Situational reliability: There are 24 operational satellites dispersed
in space and used by GPS technology. To localise correctly the re-
ceiver needs to receive signal from at least 4 satellites. Therefore
signal unreliability is introduced near hills, mountains or large
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man made structures which cause either signal reflection or ob-
struction.

(d) Unintentional interferences: Includes natural interferences like iono-
spheric disruption or unintentional interferences from radio fre-
quency (RF) waves.

3. Software errors: A famous example is the commercial airplane Boe-
ing 737 Max. Boeing introduced a new software meant to run in the
background to compensate for a change in engine positioning. Due
to complications related to this software, two plane crashes occurred,
one in October 2018, and another in March 2019, killing a total of 346
people [29]. The software errors in this particular case can be traced
back to bad software engineering as the software relied on a single sen-
sor [30], which highlights the importance of redundancy. Errors can
also be traced to human self-seeking decisions [31], for example, com-
pensating safety in the name of minimising production costs, matching
delivery schedules and making more profits.

Even if the chances of such failures were rare, their impact remains mas-
sive as they have the potential to cause catastrophic damage. They pose a
considerable safety concern by placing a significant physical danger on hu-
mans residing in UAV’s flying space. Direct collisions with humans or man
made structures can cause serious harm. These issues make it of vital impor-
tance to have a redundant and automated safety mechanism that is indepen-
dent and does not rely on external aid such as GNSS. Indeed, this need has
already been acknowledged by numerous technical reports [32]. This is why
it is important to have separate localisation systems that backup each other
and keep each other in constant check by providing feedback to each other,
especially so on fixed-wing UAVs given their high speeds and high flying
altitudes.

This research is proposing the usage of the integrated cheap cameras and
onboard processing to aid in navigation and to improve the safety of the
UAV. The usage of computer vision can aid in dealing with safety issues that
can possibly arise due to human, software or GNSS errors. It is therefore
important to assist the pilot using technology, and this is the reason why in
this work, solutions are proposed which can be used either to improve UAV
safety, or to influence legislation. These proposals will be described in the
following section.

1.2 Aim and Objectives

Even though a UAV failure might be rare (for example due to GPS fail-
ure), or more common such as a human piloting error, but its impact is great,
as it poses considerable risks. The aim of this research is to develop computer
vision based tools to address the safety related concerns connected with pi-
loting a UAV, and possibly be able to influence legislation. This is done by
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using computer vision, utilising an onboard down facing camera and mod-
erate onboard processing, to aid in navigation (see Figure 1.2). The following
objectives are proposed to improve UAV safety:

FIGURE 1.2: Fixed-wing UAV taking top-down snapshot.

1. Give UAVs an autonomous homing capacity. Homing is a safety mea-
sure which gives the fixed-wing UAV the ability to head back to its
take off location (home) autonomously and in a straight line in case of
an emergency. For example, when the UAV goes out of the sight of the
pilot, when the pilot makes a navigation mistake or in case of GNSS
failure.

2. Improve the safety of flying a fixed-wing UAV by adding more redun-
dancy. Using advanced GNSS localisation technologies on some UAVs
reduces the chances of failure on high-end UAVs. But this alone does
not eliminate all possible risks, therefore adding redundancy to any
navigation system improves its safety and reliability. Such localisation
mechanism is even more valuable for low-end UAVs which do not rely
on state-of-the-art GNSS localisation.

3. Contribute towards satisfying the requirements of government safety
regulations such as flying beyond visual line of sight (BVLOS) [8]. If
it was possible to localise a small UAV, and make it head back home
autonomously, it can be shown that a direct visual line of sight is not
required for a safe return. Therefore it can allow more autonomy to be
safely implemented.

4. The UAV should be able to navigate safely in new environments with-
out being previously trained or adapted to fly over these environments.
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1.3 Contributions:

The objectives described in Section 1.2 have led to the following thesis
contributions:

1. The proposal of a deep learning segmentation based UAV localisation
system given an aerial map (Chapter 4). The proposed system enables
localisation in new cities which the UAV has not seen before. This is
done through the segmentation of both the aerial map (e.g. Google
Earth) and the captured snapshots using a Convolutional Neural Net-
work. The CNN is not trained on any data derived either from the nav-
igated environment, nor the aerial map. It is shown that using these
segmentations it is possible to localise the UAV in an urban environ-
ment which enables homing, achieving accuracy comparable to state-
of-the-art systems but with the added advantage of global localisation.

2. The proposal of a deep learning based rigid aerial image registration
system (Chapter 5). The problem of registering segmented aerial im-
ages with large rotation and translation is studied, and an investiga-
tion is done into the possibility of transforming the traditional visual
odometry system component into a learning based localisation system.

3. Understanding the efficacy and the shortcomings of traditional locali-
sation methods on fixed wing UAVs (Chapter 3), and the proposal of
appropriate traditional algorithms for fixed-wing UAV visual odome-
try (VO).

1.4 Thesis structure

The remainder of this thesis is divided into the following Chapters:
Chapter 2 contains a comprehensive literature review. The review covers

state-of-the-art algorithms in UAV monocular navigation, visual odometry,
deep learning techniques such as segmentation and registration, in addition
to some inspiring biomimetic navigation techniques.

Chapter 3 provides an understanding of the application of traditional mo-
tion estimation techniques on fixed-wing UAVs. It proposes suitable visual
odometry (VO) localisation techniques, addressing the first objective.

In Chapter 4, deep learning is investigated in order to build a novel seg-
mentation based UAV localisation system given an aerial map. A Convo-
lutional Neural Network (CNN) is proposed which is trained on a separate
dataset but can segment any aerial map image. This chapter addressed the
second contribution of this thesis.

In Chapter 5, a systematic study of the possibility of extending deep learn-
ing to other parts of the UAV localisation system is addressed, particularly
to motion estimation. A suitable rigid based deep registration network which
aimed to replace traditional image matching algorithms was introduced. This
chapter addressed the third contribution.
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And finally, Chapter 6 contains a summary of the conclusions of this
study. Possible applications are proposed and possible future research which
can be made in this field are outlined.
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Chapter 2

Background

This chapter is going to be a literature review of state-of-the-art meth-
ods which are related to Unmanned Aerial Vehicle (UAV) navigation. The
review covers numerous fields: A short introduction will be provided first
in Section 2.1. Monocular navigation will be explored in Section 2.2, a deep
learning review will be provided in Section 2.3, a review of insect navigation
methods in Section 2.4, other notable navigation techniques will be covered
in Section 2.5 and finally a summary is provided in Section 2.6.

2.1 Introduction

In recent years, the surge of demand on unmanned aerial vehicles (UAVs)
or drones, in the commercial industry, has been driving more investments in
UAVs, and eliciting more UAV-related research in many universities. In 2016
global UAV sales registered $13 billion, and UAV related solutions across
industries reached $127 billion [33], with a projected spending of up to $11
billion per year [34]. These numbers prove that UAVs accommodate for a big
market that continues to grow.

Drones are being used today for many purposes, such as: long-range pho-
togrammetric environment scanning (for extraction of measurements like
distances and volumes) [21], cartography including orthographic environ-
ment scanning (ortho-mosaicing), damage estimation after natural disasters
like floods, fires and earthquakes, and agricultural crop scanning for yield es-
timations [20], inspection in difficult to reach areas [35], investigation of con-
taminated areas [36], delivery and parcel transport [37], surveillance, wildlife
surveys, historical site archiving (as a successor for the use of photography
for archiving [38]), transportation [39], using swarms as an expression of art
[40], exploration, filming and journalism, humanitarian aid, environmental
protection and search and rescue emergency services [41], weather forecast-
ing, data collection... etc.

The reason for the big interest in UAVs is their advantages over traditional
manned aircrafts (both fixed and rotary wing systems)[42]. Such advantages
include:

1. A UAV does not require a pilot to reside in the aircraft, which prompts
the ability to fly it in more dangerous areas and take risks that other-
wise would be life endangering for pilots, for example flying in toxic
environments, bad weather conditions, fires.. etc.
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2. A UAV costs cheaper to operate than flying a passenger size aeroplane
or a helicopter, with quicker, more flexible and reliable deployment
times.

But despite the agility and flexibility of drones, they have numerous lim-
itations in various areas when compared to ground vehicles. These limita-
tions include:

1. Stability: It is difficult for a hovering drone to maintain sufficient sta-
bility which is necessary to operate an attached moving device like an
arm.

2. Weather conditions: A UAV is more susceptible to be affected by weather
conditions especially wind, which can have a destabilising effect on the
drone while flying.

3. Navigation complexity: Even though that obstacles laying on the ground
might not be of concern to the UAV, but it still has to manage obstacles
that might be more complex to navigate through, for example, a gap in
a wall, or avoiding a descending column from a ceiling.

4. Recoverability: A slight crash or accident against an object by a UAV is
likely to introduce catastrophic damage which renders the drone inop-
erable unless being salvaged, and it can even be completely irretriev-
able.

In general, each robotic platform (ground or aerial) has its own limita-
tions which makes each platform able to address a specific problem more
efficiently than the rest. This is why each platform has its own applications.
An optimum solution to complex problems is very likely to require a combi-
nation of both aerial and ground vehicles.

2.2 Monocular Navigation Overview

In this section, current monocular navigation techniques will be described:
Visual Odometry (VO) in Section 2.2.1, Visual SLAM in Section 2.2.2 and pho-
togrammetry in Section 2.2.3. Photogrammetry means monocular 3D scene
reconstruction, and it is also referred to as Structure from Motion (SfM). Fi-
nally some insect navigation techniques are discussed in Section 2.4.

It might be important to link the 3 previous terms ahead of delving deeper
into them, as VO, Visual SLAM and SfM are related to each other. VO is a
special case of SfM; and SLAM is VO with the added ability to recognise
previous locations (loop closing).

2.2.1 Visual Odometry

The term VO was first coined in [43]. Visual Odometry (VO) is a dead
reckoning technique used to estimate the distance travelled by a robotic ve-
hicle/UAV using solely visual input, as described in the two comprehensive
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introductions [44, 45]. Dead reckoning is the process of determining current
position using a previously memorised locations given speed and direction
of movement; subject to drift due to inaccuracies in speed/direction mea-
surements.

VO is like a spider hanging from a thread in one of the corners of a room.
The spider has to maintain at least a single thread attached from itself to one
of the walls so that it can have at least some control. A single line of thread
would allow it to determine its position on one axis. And the more threads it
can link itself with its environment (walls around it), the more accurately it
can determine its location in the environment. This is called localisation. And
in VO, a robot/drone tries to do exactly the same thing, but instead of using
cobweb, the links to the environment are established by tracking features
in visual input over time. For example, a robot establishes a connection to
a corner, by observing this corner over time, in other words, by tracking it
across frames using the visual sensor. This is called Visual Odometry.

It is possible to combine the visual data with information coming from
other internal sensors such as an inertial measurement unit (IMU) which
increases localisation accuracy. Or it could be combined with an external
source of information such as a global navigation satellite system like GPS or
GLONASS.

VO does not offer the ability to recognise places visited in the past. So we
can think that VO is like building a linked list of consecutive visited places,
which entries are the main features that are tracked over time. It is possible
to plot this list on a map, but the result wont be coherent and the resulting
map wont help in navigation due to the lack of loop closure, and due to drift.

2.2.1.1 Global & Relative VO:

VO can be classified into two categories [46]: Global VO, i.e. the ability to
localise the UAV along the way from take off until reaching the destination.
And relative VO, which is the ability to localise the UAV in relation to observ-
able objects in the environment, for example to help in landing the UAV. The
first is long term, the second is short term.

One of the early works implementing relative VO is the visual odome-
ter system implemented by Amidi [46]. The system estimates a helicopter’s
location by processing a video input from vertically positioned stereo cam-
eras, and calculating frame to frame difference using sum of squared differ-
ences (SSD). This information is combined with data coming from a gyro-
scope to estimate motion. Amidi’s thesis [47] displays good relative (short
term) odometry results.

Other navigation methods employ computer vision techniques to do the
required navigation. For example in [48] the navigation is done by extract-
ing roads from aerial photographs and matching them to each other to help
localise the drone. In [49], [50] global navigation is done using image registra-
tion, which is used to match captured frames after extracting edges, against
a database of aerial/satellite photographs.
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2.2.2 Visual Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation And Mapping (SLAM), also called Concurrent
Mapping and Localisation (CML); is a technique that has received an inten-
sive amount of research over the past two decades. There are many avail-
able introductions to SLAM available such as the comprehensive tutorials by
Whyte and Bailey (University of Sydney) [51, 52], and reviews [53].

The main difference between Visual SLAM and VO, is loop closure (see
Figure 2.2). We can say that SLAM is doing VO with the added ability to
recognise places visited in the past, in other words, Visual SLAM is VO with
the added capability to close loops or perform loop closure. So any Visual
SLAM system can be reduced to a VO system if we take away its loop closure
capability [53].

Authors in [53] propose a valid classification describing SLAM as com-
posing two systems: Front-end and Back-end. The Front-end includes lo-
calisation (feature detection, feature matching, triangulation) and mapping
(including loop closure). The Back-end includes more sophisticated and in-
tensive operations like line-fitting and other optimisation (Newton Gradient
Descent) and estimation techniques (MAP, MLE) that operate on data coming
from the Front-end.

If VO was about building a sequential list of visited landmarks, then
SLAM would be about producing a coherent map from this list that the robot
can use to navigate the environment and localise itself within it. Mathemati-
cally, it is possible to categorise SLAM into two classes [54]:

1. Online SLAM: which is the estimation of the current robot/UAV lo-
cation depending on current sensor measurements and landmark ob-
servations (an example is the EKF-SLAM, described later). The sec-
ond part is Full SLAM or Offline SLAM: which is the estimation of
the map and the complete robot path depending on all previous mea-
surements and landmark observations (an example is the Graph based
SLAM algorithms Graph-SLAM, which is a linked-nodes representa-
tion of robot/UAV poses and observed landmarks).

2. Active-SLAM is a group of SLAM algorithms that consists of 2 stages:
first identify possible regions to explore; then explore those areas then
decide whether to continue or withdraw.

Visual-SLAM, is a kind of SLAM that is dependent on visual sensors, as
opposed to 2D/3D LIDAR SLAM. It is a particular case of Structure from
Motion (SfM), (see Table 2.1 for a comparison). The difference between VO
and SfM is in some way identical to the difference between online and offline
SLAM. VO can be classified into three different categories (see Figure 2.1):

Localisation: In Visual-SLAM, the standard procedure is: feature detec-
tion, feature matching, then triangulation. These steps provide the ability to
determine the location of a robot. LIDAR SLAM follows the same procedure,
but it has different sensors: so it starts with capturing lidar frames (point
clouds), then point cloud matching. GNSS and IMU data can be combined
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Direct/Semi-direct
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Bio-inspired
methods

FIGURE 2.1: Classification of Visual-SLAM methods

in either systems for more accuracy. And BA can be used for more accurate
results.

Mapping: Mapping is the process of memorising observed landmarks
with locations relative to each other. It can be classified into four types [53]:

1. Landmark based maps: or topological mapping, models the environ-
ment as a collection of landmarks or features, the geometry between
them is preserved. It has a sparse representation.

2. Occupancy grid mapping: segments the environment into equal seg-
ments (cubes) and assigns an occupancy probability to each segment.

3. Raw dense 3D representations: are raw representations, such as point
clouds. Point clouds can be produced using depth cameras (RGBD),
2D & 3D LIDAR scanners [55] and Direct methods (LSD-SLAM TUM
university [56]). It is also possible to produce these point clouds using
photogrammetry and SfM. Their disadvantage is the high volume of
raw data they contain. This kind of representation requires high pro-
cessing power, but provides high accuracy.

4. High level 3D representations: provide high-level understanding of the
environment (shapes & structures). These methods either segment the
environment into separate recognisable 3D objects with known geo-
metrical relations; or they use semantic labeling (just like the BoW ap-
proach), but on the 3D object level.
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Frame �1 Frame �2

Feature
Detection

Feature
Matching ��

Triangulation

Optimisation
(BA) Mapping Loop Closing

(BoW)

Data Fusion
(AKF)

IMU

GNSS

Compass

Pose Estimation

VO (Localisation)

SLAM

FIGURE 2.2: Dissection of a SLAM system. (�) Frames can be
produced using Monocular camera (as in our situation), Bino-
colour or RGBD cameras, or 2D & 3D LIDAR sensors. (��)
RANSAC can be applied to remove outliers after the feature

matching step.

Loop closure: Loop closure is a method of telling that a certain landmark
(or a group of landmarks) has been visited in the past, therefore identifying
a place. By visiting this place again, a loop is formed, cancelling all drift re-
sulting from navigating this loop. Without loop closure, SLAM is reduced to
mere odometry. This was one of the main reasons that SLAM was developed,
when it was realised that the observation of landmarks can help reduce the
odometry positioning errors.

This means that the only difference between Visual-SLAM and Visual-
Odometry is loop closure (see Figure 2.2). This makes VO concerned with
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the accuracy of the local trajectory, whereas in SLAM, it is important to have
a consistent global trajectory in a map.

There are different techniques used to recognise visited places, one of
them is the Bag of Words (BoW) algorithm [57]. In BoW, each image is tagged
by a number of words forming a vector, which are in turn stored in a tree
called a vocabulary tree. Every time a new snapshot is captured, the tree is
queried for a matching vector. If one is found, a loop is identified. BoW is
used in many algorithms such as the monocular ORB-SLAM [58].

2.2.2.1 Feature based methods:

SLAM algorithms that depend on feature detection to estimate the camera
motion can be called Feature-Based methods [44]. The workflow of feature
based methods is split into two stages: first the detection of features in the
images (hence the name), and then trying to estimate the camera perspective
and the geometry of the scene. The first stage is done using well known
feature detectors such as SIFT or ORB.

Filtering methods: There are many filtering algorithms, of those we men-
tion the Extended Kalman Filter (EKF) based, and the Particle Filter (PF). Fil-
tering methods are probabilistic filters [59], and they attempt to estimate the
current robot location using a probability distribution by combining input in-
formation gathered using robots sensors. For example the robots location can
be estimated using either information coming from monocular sensors alone,
or after combining them with information coming from another sensor like
an IMU or a GNSS signal.

The main difference between the two is the number of Gaussians they use.
Both filters use Gaussian distributions to represent the robot state, an EKF
can have a single Gaussian, whereas a PF can have as many as the particles
it is using.

EKF-SLAM is described in detail in [54]. It uses a Maximum Likelihood
Estimator (MLE), which is a statistical method that estimates current (the
posterior) state using previous states/observations. MLE is related to MAP.

In one sense, we can say that an EKF is used to combine information
coming from different sensors. For example in [60] it is used to fuse camera
poses with IMU data to provide more robust camera location estimates. In
[61] it was used to determine image scale by fusing visual odometry data
with IMU and PID controller data. Early EKF Visual SLAM systems include
Davison’s work (Imperial College London) [62, 63] (Figure 2.3)

The second kind of filtering is the Particle Filter (PF), which is mostly
used with 2D & 3D LIDAR sensors. PFs are Monte Carlo sampling based
algorithms. One of the early algorithms to employ it was FAST-SLAM [64,
54], using a filter called Rao-Blackwellized PF. A PF application on UAVs
include its usage in [65] to localise emergency sound signals coming from
lost victims.

Smoothing methods: Also called Keyframe based methods [66]. Keyframe
based methods are selective methods, i.e. they do not process all input infor-
mation, but a selected subset of this information (for example by selecting
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FIGURE 2.3: Mono-SLAM (SceneLib2) running on our machine

one frame every n number of frames). Bundle Adjustment (BA) is an ex-
ample of an offline smoothing based technique (actually, it is called offline
because it requires a minimum recent number of input camera poses, this
is why it is also called Windowed Bundle Adjustment). BA is refining the
calculated camera perspectives from frames so as to get a consistent 3D cam-
era movement (camera path or trajectory) which would enable us to deduce
odometric information.

Since BA is selective, it operates on a fewer number of frames, and this
allows it to detect more features in a single frame. This is the main reason
why Strasdat & Montiel et al. [66] determined that BA based methods are
more accurate and robust than filtering methods. One of the most successful
papers in this category is PTAM by Klein and Murray [67], and it is the basis
of many other algorithms like [60, 68, 58, 69].

When it comes to navigation, one of the best performing state of the art
SLAM algorithms in this category is the recent algorithm by Raul Mur-Artal
from Universidad de Zaragoza, ORB-SLAM2 [70] (Figure 2.4), which is based
on the earlier ORB-SLAM [58].

FIGURE 2.4: ORB-SLAM2 running on our ubuntu machine.
Left: Current frame with detected features. Right: Mapped fea-

tures in 3D.



2.2. Monocular Navigation Overview 17

Researchers at the highly regarded Robotics and Perception group at the
University of Zurich have extended ORB-SLAM2 to make it much more ro-
bust in varying lighting conditions using active exposure control [71].

One of the earliest projects to use monocular navigation is the SFLY project
[69, 60, 72] (2009-2011), which was led by Davide Scaramuzza from ETH
Zurich. Their algorithm processed monocular images in a GNSS-denied en-
vironment; and it was based on the popular algorithm by Klein and Murray
[67].

Most recent advances in this category, and one of the best performing
is a system that is still being developed and tested by Davide Scaramuzza at
ETH Zurich. The SLAM system is dependent on a new type of neuromorphic
visual system, called an event camera. The system is developed and sold ex-
clusively by a Swiss company called iniVation. These cameras provide a low
response latency, and high dynamic range which allows them to work much
better in the dark, but they can capture only motion. Because of the super
fast sensitivity of the camera, it allows very robust feature tracking. A SLAM
system of this kind has been produced which combines a photographic cam-
era, an event camera and an IMU [73], compared with the traditional SLAM
system which only consists of a photographic camera and an IMU. This sys-
tem and thanks to the event camera, easily beats the ORB-SLAM2 algorithm
mentioned above.

2.2.2.2 Direct and semi-direct based methods:

Direct & Semi-Direct Pose Estimation Methods, also called appearance
or global based methods [44]. As opposed to Feature-Based methods that
depend on feature detection, direct methods estimate the camera perspec-
tive directly from differences in pixel contrast values of the image. J. Engels
(Technical University Munich) algorithm LSD-SLAM [56] is an example.

The disadvantage of Direct based methods when compared with feature
based methods, is that they require higher processing power [44], as feature
based methods are well mature and they are optimised for speed as they only
use a fraction of the available information in the images. However global
based methods perform better in low textured environments [53]. An ex-
ample is LSD-SLAM developed at Technical University of Munich by Jakob
Engel and others [56]. Semi-Direct methods such as SVO [74] is a combina-
tion of feature based and global based methods, and it is proved to produce
the most efficient performance.

2.2.3 Photogrammetry/SfM

Photogrammetry is performing 3D reconstruction and producing a 3D
model of a scanned object using a given set of photographs. This operation
can be done in real time using a continuous flow of high frame rate images
(video), or post capture using multiple photographs of the object taken from
different perspectives.
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Photogrammetry results in a 3D model of the environment, or a depth
map, which can be used for measurement purposes, like distances and vol-
umes. The depth map can be also used to produce an orthographic projection
of the environment, an orthomosaic which serves as a map.

A special case of photogrammetry is structure from motion (SfM). Both
SLAM and VO, can be considered as a real-time structure from motion tech-
nique. SfM is determining the cameras perspective by comparing two over-
lapping photographs. By determining the corresponding features in each
photograph, and by doing triangulation, both the perspective of the cam-
era and the camera trajectory can be calculated, and by doing this, a recon-
structed model of the environment can be produced. SfM is concerned with
calculating the camera perspective, and VO is concerned with calculating the
trajectory (See Table 2.1 for comparison).

2.2.3.1 Real-time reconstruction

This kind of reconstruction is done in real-time using a high frame rate
input, and it requires a SLAM system to be running side-by-side. One of
the recent and best performing algorithms for real-time reconstruction is the
work by Scaramuzza Regularised Monocular Depth Estimation (REMODE)
[75]. The same algorithm is used in [76] to determine safe landing locations
for UAVs.

2.2.3.2 Offline reconstruction

Performed offline after the photographs have been captured. No SLAM
is required, and the minimum amount of overlap between each frame and
the next is a minimum of 30%. But the exact location and orientation of each
photograph have to be known; hence it requires the use of a GNSS system
[22]. The images captured are processed post-flight to produce a 3D scan
of the environment, this scan is a point cloud which can be used to obtain
numerous measurements like distances and volumes. This is done by per-
forming photogrammetry on the captured images, which are also used to
build orthomosaic maps.

This photogrammetry reconstruction stage is highly complex, and it is
done using professional software such as Pix4D [77].

Process Goal Operation Data input Optimisation

VO Same as in 3D camera motion Online Consecutive/ Not
Figure 2.2 calculation (i.e. (real-time) incremental requiredpath or trajectory)

SfM Same 3D reconstruction Offline Unordered Required
as VO of scene structure (BA)

TABLE 2.1: Comparison between VO & SfM



2.3. Deep Learning 19

2.2.4 State Of The Art

Numerous tutorials [44, 45] offer lengthy and detailed information of how
to implement a VO system, however, VO is rarely used alone due to inaccura-
cies resulting from drift. Perhaps it is only used up to a few hundred meters
[78]. This is especially true for safety critical operations such as flying a UAV.
For this task, a loop closing scheme is needed, and this is achieved through
SLAM [60, 79, 70, 73]. SLAM is used in different kinds of robots and envi-
ronments today, for example, rotor-wing UAVs which fly in closed or short
range environments [60, 73], aerial robots within limited outdoor environ-
ments [60, 69, 80, 81] and wheeled robots within cities [82, 83].

2.3 Deep Learning

2.3.1 Introduction

Deep learning is used to refer to layered machine learning networks which
aim to automatically learn a representation of some specific data, avoid-
ing the need for traditional hand engineered machine learning algorithms
which are meticulously written to find such patterns of information. Its
development was due to the failure of traditional machine learning algo-
rithms to generalise on large tasks. Since their introduction, deep learning
networks have vastly surpassed state-of-the-art conventional algorithms in
many fields, for example, image classification [84], semantic segmentation
[85], speech synthesis [86], speech recognition [87], face recognition [88], ob-
ject detection [89] and many others.

A deep learning network’s goal is to find a specific relationship between
input data units, which is done sequentially through multiple layers, each
representing the inputs using fewer but more representative features. Each
network is composed of an input layer which receives input training data
units in batches, one or more hidden layers (hence the name ’deep’), and an
output layer which produces the representative information predicted by the
network (see Figure 2.5).
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FIGURE 2.5: A single output neural network with 2 hidden lay-
ers and 3 inputs. The intermediate transformed information

which is the output of each layer is called a feature map.

Each layer in a deep learning network is composed of many nodes. Each
node resembles a simple non-linear function which maps the inputs to the
outputs (called the activation function), in addition, each node has a weight
and a bias. The numerical value of each node is found by multiplying each
one of its input by the weight of this input, and adding the bias value. For
example, the value of the node h2

1 in Figure 2.5 can be found like so:

h2
1 = f (w1

1h1
1 + w1

2h1
2 + w1

3h1
3 + w1

4h1
4 + b2

1), (2.1)

expressed in matrix form:
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] 
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h1
3

h1
4

+ b2
1), (2.2)

which can be generalised to resemble an entire layer like so:

h2 = f (W1h1 + b2). (2.3)

Each one of these layers can be represented by the following graph (Fig-
ure 2.6). To some degree, the graph resembles a neuron; and its develop-
ment origins might be traced back to neuroscience through the field of com-
putational neuroscience. This is the reason each deep learning network is
also called a neural network (NN). The combination of these simple units in
layered structures gives the NN its powerful performance, as layers learn
increasingly more accurate representative features of the training data.
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FIGURE 2.6: A representation of the operations done within
each node (also applicable to a whole layer). The backward

green arrow represents backpropagation.

2.3.1.1 Activation function

There are many activation functions which can be adopted in Figure 2.6,
one of them is the sigmoid function which is commonly used in regression
problems. The output of the function is a probability distribution score be-
tween 0 and 1:

f (x) =
1

1 + e−x . (2.4)

The Rectified Linear Unit (ReLU) is another function which simply suppresses
any values smaller than 0. It has a simpler mathematical function therefore
it has better performance than the sigmoid function, hence it is used more
widely:

f (x) = max(0, x). (2.5)

A generalisation of the Sigmoid function is the Softmax function, which is
used for classification problems to distinguish between different classes:

f (xi) =
exi

∑k
j=1 exj

, for i = 1, · · · , k. (2.6)

Where xi is the input vector to the function and k is the number of classes.
exi is the exponential function applied to the input values; and maps nega-
tive values to small positive ones. The division term ∑k

j=1 exj ensures that all
function outputs are in the range 0 to 1 which also sum to 1.

2.3.1.2 Objective function

Each neural network has an objective function (also referred to as cost func-
tion, loss function, energy function or error function). In supervised learning
this function measures the amount of error between the predicted and the
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ground truth values. The aim of the neural network is to optimise this func-
tion using a minimisation algorithm, depending on the amount of error be-
tween the ground truth and the predicted values. This algorithm is called
an optimiser, and the optimisation is done by modifying the weight and bias
values of the neurons of the network by finding the derivative of the function
f (x) such that its value is minimised:

f ′(x) =
δy
δx

. (2.7)

Since the derivative is the slope, it provides a guide of how to minimise f (x).
This operation is done iteratively and gradually using an algorithm called
gradient descent. In neural networks, a modified randomised version called
Stochastic Gradient Descent (SGD). Unlike gradient descent which estimates
the gradient on the whole dataset at once, SGD estimates the gradient on a
small subset of samples chosen randomly from the training dataset. This pro-
cess is repeated iteratively until the whole dataset is covered. SGD remains
the most efficient training algorithm for neural networks until this date [90].
SGD is done recursively starting from the output layers and going in reverse
layer by layer until the input layer is reached. In a NN which has thou-
sands of parameters, derivation of the objective function can be done using
the chain rule (i.e. deriving more than a function together) giving rise to a
strategy referred to as backpropagation [91].

2.3.1.3 Datasets

Dataset size and its quality (the existence of outliers) play a vital role in
the development of a NN. Dataset size is indispensable to solve complex
problems, the bigger the dataset, the more accuracy that can be achieved [92].
A dataset is splitted into 3 separate sets composed from a single large shuf-
fled dataset. The data units belonging to each set are organised in batches. It
is said that an iteration (or an epoch) has passed when all of the batches have
passed through the network once:

1. Training set: Contains 70-80% of the overall data. Used to train the
network, that is, the weights and biases of the network are updated so
as to achieve a high loss function score on this set.

2. Validation set: Contains 15-25% of the overall data. This set is used to
estimate the generalisation capacity of the network after each training
iteration. Its main advantage is that it is a good indication of overfitting
or underfitting (explained in the following sub-section).

3. Testing set: Contains 10-15% of the dataset units. Used to test the final
generalisation ability of a NN after it has finished training.

2.3.1.4 Neural Network Types

Neural networks can be classified into different categories based on the
type and amount of supervision they receive during training. The datasets
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used must have common features so that a relationship between these fea-
tures is discoverable by the network:

1. Supervised learning: Ground truth labels (solutions) l are available for
dataset units x, these labels are used to guide the network how to learn
relevant representations from x, i.e. the goal of the network is to find
the probability p(l|x). Used typically to solve problems such as classi-
fication, regression, object detection and image segmentation.

2. Unsupervised learning: Dataset units x are unlabelled. The network
has to discover a valid relationship between data units and learn on its
own a generalisable representation probability p(x). Used typically to
solve problems such as clustering, de-noising and visualisation.

3. Semi-supervised learning: The dataset is partially labelled. Both la-
belled and unlabelled data units are used to find a generalisable repre-
sentation p(l|x).

4. Reinforcement learning: A more recent kind of learning where training
data is generated in real-time. An agent (the NN) learns by interacting
with an environment (sensing and acting) and it is rewarded according
to some policy (learning strategy). Applied mainly in robotics like self
driving cars. A successful and famous example of reinforcement learn-
ing is AlphaGo [93] which learned by playing against itself, and won
against the world champion at the game of Go.

2.3.2 Common NN Concepts

2.3.2.1 Overfitting

Overfitting is a main challenge in deep learning. The term overfitting
is used to describe the network when its generalisation capacity starts to
degrade during training. If the network performance on the validation set
stops improving during training, but it continues to improve on the training
set, the network is said to be overfitting. At this stage, the network starts to
memorise the training set, without being able to find a good representation
which is applicable to the validation set. An over-fitted model is a model
that performs well on the training set, but fails to generalise its knowledge
to the validation or test sets (see Figure 2.7). The opposite of overfitting is
underfitting, which is when the network’s performance can’t improve on the
training set.
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FIGURE 2.7: Left: A typical good learning curve. Right: Valida-
tion curve stops improving starting from the 3rd epoch, unlike

the training curve. This is a major sign of overfitting.

Overfitting is solved using different techniques. For example, by remov-
ing outliers (noise) as much as possible from the dataset. Or by increasing the
dataset size, as it is more difficult for a network to memorise a large dataset.
This can be done through data augmentation, by translating, rotating, scaling
and deforming existing photos from the dataset so as to generate more data.
Or by inversely reducing network architecture complexity, as small networks
have lower capacity to memorise the training set.

A different group of solutions is called regularisation. Popular regularisa-
tion techniques include weight regularisation which penalises the loss score
when the weight coefficients are large, such as L1 (absolute) and L2 (square)
regularisation (also called weight decay). L1 regularisation adds a sum of
the absolute values of the weight coefficients to the loss function. It is com-
monly used when doing feature selection, as small weights get shrinked to
zero, which keeps the important features. L2 regularisation adds a sum of
the square weight coefficients to the loss, which unlike L1, does not nullify
less important features. Another way is applying dropout which is an inter-
mediate function between the layers of a NN, which randomly turns off a
percentage of input feature maps [94]. This operation helps in reducing the
reliance of neurons on each other.

2.3.2.2 Transfer Learning

It is well known that building and training a neural network from scratch
takes a considerable amount of engineering effort and time to design the net-
work. This is not to mention the massive amounts of training data required.
This is why transfer learning techniques were developed to adapt an existing
and pre-trained neural network to learn a new task using a limited amount
of training data (up to hundreds of images in the case of ConvNets).

For example, transfer learning can be done on a pre-trained image classi-
fication network trained on ImageNet [95] to classify images of sheep. The
classification layers, usually the fully connected layers are replaced with un-
trained ones. The whole network is frozen except the newly added layers,
then it is trained on the sheep dataset.
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2.3.2.3 Fine-Tuning

After a network has been trained, the whole network is frozen except for
the first or last few layers. The learning rate is set to a much smaller value
than before (eg. 10−6), and training is restarted on the current task at hand,
where the same dataset is used. This process makes small adjustments to
the weights and biases of the defrozen layers (hence the name fine tuning)
so that they are more adapted to extract more relevant and accurate feature
representations either on a high level (top defrozen layers), or on a low level
(last defrozen layers). The network must be monitored carefully while train-
ing because the risks of overfitting when fine tuning are very high.

2.3.2.4 Hyperparameter Optimisation

An automated randomised searching mechanism which allows the net-
work find the optimum parameters which produce the highest training loss
accuracy. It iteratively trains the network with randomly selected sets of set-
tings from ranges of values specified by the user, such as dropout percent-
age, network depth, neuron counts in each layer, learning rate, activation
functions.. etc.

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), also referred to in literature as
ConvNets, are the application of NNs on images. This is done by using a
set of filters which are convolved with an input feature map at layer n in a
sliding window movement. This operation produces a new feature map at
layer n + 1 for each kernel which contain more accurate feature representa-
tions (see Figure 2.8). For example, in the first layer the CNN might learn to
detect random edge features. In the following layer it might learn to com-
bine the edges into shapes, and in the final layer it might learn to recognise
complete shapes into numbers. Development of NNs in general has been
driven by the sizes of the available datasets. This is especially true for CNNs
as dataset sizes had been central to the development of better and more ad-
vanced CNNs [96].
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...

3× 3 kernels
(convolution filters)

stride = 2 padding = 1

feature map
at layer n + 1

feature map
at layer n

FIGURE 2.8: Convolution operation in a CNN. Each kernel (left
side) is convolved with the feature map in layer n to produce a
new feature map in layer n + 1, which contains a denser repre-
sentation of features in the input feature map. The kernel has
a stride of 2 pixels and the input feature map is padded with

zeroes.

The first application of CNNs was on the recognition of handwritten num-
bers first in 1989 [97], and then improved a decade later [98]. The field of
CNNs afterwards remained dormant for nearly two decades, mainly due to
the lack of processing power [99]. In 2009 a large scale image dataset was
released called ImageNet [95], which induced new progress in the field of
CNNs. Shortly after the introduction of ImageNet, the first deep CNN for Im-
ageNet classification was introduced, the network was called AlexNet [100].
The breakthrough which AlexNet made was that it proved that adding more
layers to the CNN improved the visual classification capacity of the network,
and it beat all competing hand engineered feature extraction methods by a
big margin.

Many more deeper networks which surpassed AlexNet have been pro-
posed since then, e.g. GoogleNet [101], VGG [102], ResNet [103], MobileNet
[104, 105], U-Net [106], DenseNet [107].. etc, especially with the availability
of large training datasets such as ImageNet in 2009 [108], CamVid in 2009
[109], KITTI in 2013 [110], ISPRS Potsdam in 2013 [3] and many others.

2.3.3.1 Segmentation CNNs

Image segmentation is one of the many domains where CNNs have been
successfully applied. Image segmentation is the classification of each pixel of
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a given photo as belonging or not belonging to a certain category. Segmenta-
tion specialised CNNs can be classified in 3 categories:

1. Fully Convolutional Networks (FCNs): In 2015 it was demonstrated
that replacing fully connected layers of a CNN with convolutional lay-
ers can adapt the network to better solve semantic segmentation. This
framework was called the Fully Convolutional Network (FCN) [111]
and it quickly became state-of-the-art outperforming earlier methods.
Later many architectures based on FCNs appeared:

(a) Encoder-Decoder architectures were first proposed in DeconvNet
[112] and later improved in SegNet [113]. As can be seen in Fig-
ure 2.9, an encoder-decoder network is composed of two halves:
an encoder which downsamples the input image capturing rele-
vant representations, and a decoder which upsamples the result
into a full resolution segmented image. The encoder is composed
of convolution layers followed by max pooling layers. Max pool-
ing is a downsampling layer identical to a convolution layer with
the kernel being a max function which returns the maximum value
within a square region. The decoder is composed of upsampling
followed by convolution layers. The upsampling layers are guided
either by switch variables [112], or by the pooling indices of corre-
sponding layers [113] in the decoder. The decoder ends in a soft-
max classification layer.

Pooling
Convolution
Upsampling
Softmax

Encoder Decoder

Pooling indices

FIGURE 2.9: Encoder-Decoder CNN architecture.

(b) U-Nets: Were first proposed in [106] and they quickly became
state-of-the-art for medical image segmentation. U-Nets are also
encoder-decoder networks, but their distinction from other net-
works is that with each upsampling step, the feature maps from
the equivalent downsampling layer is copied and concatenated
with the layer being upsampled, this is termed skip connections.
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(c) DeepLab techniques: These techniques combine the encoder-decoder
model with other algorithms [114, 115]. They combine techniques
which improve the segmentation capacity of the network such as:

i. Atrous Convolution: increases the field of view of convolu-
tion filters without increasing the number of parameters, there-
fore reducing computational requirements which leads to ef-
ficient dense feature extraction.

ii. Atrous Spatial Pyramid Pooling (ASPP): used to detect objects
at multiple scales. This operation is traditionally done intro-
ducing rescaled versions of the same image, but it could be
computationally expensive. In ASPP, an input feature map is
sampled at different rates which are combined before convo-
lution, which simulates multiple field-of-views.

iii. Fully-connected Conditional Random Field (CRF): A fully con-
nected CRF layer is added to the end of the network which
improves its capacity to capture fine details.

2. Regions with CNN Features (R-CNNs): Another class of algorithms
is R-CNNs which combine CNNs (eg. AlexNet) with region detection
methods. The first paper of this kind was introduced in [116] and it was
called R-CNN.

R-CNNs have 4 main stages:

(a) Generate category-independent regions using region detection al-
gorithms.

(b) Extract feature vectors using a CNN.

(c) Classify the feature vectors using an SVM.

(d) Finally segmentation is done by testing these features against both
the foreground and the background.

In general RCNN methods [116, 117, 118, 119] depend on object de-
tection algorithms, which makes them very effective on photographs
which contain objects such as people and vehicles, but they are not very
practical for the segmentation of aerial photographs.

2.3.3.2 Regression CNNs

Regression is the problem of predicting a continuous value. CNNs are
adapted to solve regression problems by replacing the ending classification
layer with a fully connected layer with a linear activation function. This al-
lows the network to map the learned feature representations into continuous
numerical values. There are many regression problems which are addressed
by CNNs, they include: pose estimation [120], object tracking [96], image
registration [121] and others.

It might be important to note that when transfer learning is applied on a
CNN with the purpose of solving a regression problem, and when fine-tuned
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correctly, the resulting network can achieve similar results to other existing
networks which are engineered to solve specific tasks [122].

2.3.3.3 Siamese CNNs

A Siamese neural network is a kind of convolutional neural networks
which is composed of two branches [123]. The two branches share the same
layers and the same variables (both biases and weights), and they learn to
find a relationship between a pair of images. Each branch extracts rele-
vant features and then both of them are connected to a number of fully con-
nected layers, which learn to find the relation between the two input images.
Siamese networks have been applied successfully to many problems such as
visual odometry [124, 125] and image comparison [123].

2.3.4 State Of The Art

Deep learning continues to prove its success in nearly every field, vastly
overcoming traditional methods in many disciplines. Segmentation contin-
ues to be at the heart of image understanding and recognition. It has been
successfully applied in medical applications [126], remote sensing [127], au-
tonomous driving and numerous other fields [128]. Regression networks
have likewise been very successful. Today they are used in numerous ap-
plications [129] such as face landmark detection [130], pose estimation [131]
and image registration [132].

2.4 Insect Navigation

In the field of biology, insect navigation strategies have been well studied
and researched. Insects apply efficient techniques to navigate, collect food
and survive using, comparatively with a mammal’s brain, very simple neural
structure equivalent to less than 0.01% the amounts of neurons that a human
has.

This is a quick study about some of the observable navigation strategies
that insects rely upon. One particular interesting strategy is called snapshot
navigation, we will be investigating its employability on UAV navigation. It
is possible to classify navigation into 3 hierarchical layers [133], ordered by
complexity:

1. PI (Path Integration): which is a dead reckoning technique [134]. In-
sects use it to estimate their location using the past memorised land-
mark snapshots. PI is performing odometry by estimating the time and
distance travelled in a certain direction towards the next destination,
and eventually integrate all stored paths between different landmarks
into a single vector that leads to destination.

2. Topological navigation, which is the ability to perform PI over many
paths and the ability to combine those paths into a unified map. It
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was argued in [134] that the navigation behaviour of insects can be
explained using vectors and snapshots alone, and there is no need to
employ a higher level metric (topological) map.

3. Survey navigation, which is topological navigation with the added abil-
ity to infer new paths and take shortcuts.

2.4.1 Ant navigation

It is well known that ants can establish and follow pheromone trails as
means for navigation, we are not interested in this kind of navigation, how-
ever, ants have two other navigation mechanisms [135] which are of interest
to us:

1. Path Integration (PI); also called vector navigation [136]: Ants main-
tain a vector that points home, and they do so by employing multiple
techniques like: employing celestial and wind compasses [137], recog-
nising olfactory landmarks (odours) [138], skyline [139] and polarised
skylight observation (magnetic compass), and using odometry to es-
timate travelled distance using visual optic flow (both rotational and
translational) and step count memory.

2. Remembering snapshots of landmarks: Generally ants try to match the
actual view to the memorised one, this is called retinotopic matching
[1] whereby ants match the observed scene to a stored snapshot in their
memory.

It has been shown in [140] that ants use path integration to maintain a
home vector; so even though that the ant might leave home in a winding
path, its return path is always straight. The ant Cataglyphis fortis can per-
form successful homing after having travelled away from home for hundreds
of meters. Its behaviour is very identical to the kind of behaviour which will
be described later in Figure 3.1. It is notable to say that an ant does not use
memorised places to recall directions, but to recall orientation of movement
to be done next [141]

Insects like ants, including bees are sensitive to ultraviolet light. One of
the advantage of this sensitivity is that it enhances the skyline view. In [142] a
skyline retinotopic matching algorithm was proposed. Notably, the authors
suggested that tagging snapshots with derived compass information (from
wind, sun or sky polarised pattern) cannot explain all insect navigation abil-
ities.

2.4.2 Bee navigation

Bees use the same mechanisms as ants to navigate [136]. Bees use the sun,
visual memory (landmark snapshots & panoramic views) and odours.

A bee segments a route travelled [1] using PI (Figure 2.10). Bees also use
panoramic views as snapshots or landmarks 2.11: [1] This means that the
bees perspective is horisontal whereas ours is vertical (top-down view).



2.4. Insect Navigation 31

tree

bee

rock

lake

hill

food

FIGURE 2.10: Path Integration in bees. The bee moves from one
familiar location to the other so as to arrive to its destination.

Bees have colour constancy which allows them to recognise colours and
see in day and night [143]. They can recognise colour, shape and texture; and
they are sensitive to motion (optic flow) which enables them tell the fore-
ground from the background, adjust speed and provide flight stability and
control.

But do not depend completely on vision, and when the visual information
is not sufficient to localise the goal, they use other cues like celestial cues,
magnetic cues, and visual panoramic cues [143]. Similar behaviour has been
recorded with ants.

2.4.3 Notable behaviour of other insects

It has been shown in [143] that wasps search for home entrance relative
to a known landmark. And when this landmark is moved by a human, the
wasp searches for nest entrance relative to the new position of the landmark.
This highlights the importance of vision for insects. Similar behaviour has
been documented with ants and bees. This means that there is a general
tendency at insects to use landmarks as a cue that tells in which direction to
head next.

Insects have many navigation advantages over the visual and cognitive
systems commonly used by mammal; as they have sensitivity to different
kinds of cues that help them navigate such as:

1. Near panoramic 360 degrees view, as the compound eyes they have
provide them with larger field of view.

2. Sensitivity to ultraviolet light. [142]

3. Sensitivity to magnetism.

The question whether or not insects use the same kind of cognitive map
that is used in mammals, is still contested/contented by some researchers un-
til today [144, 145]. The use of a cognitive map requires more mental capacity
than using a simple odometry model. And the opinion that bees do not use
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FIGURE 2.11: Bees homing behaviour. This experiment per-
formed in [1] is evidence that bees use panoramic vision to aid
in navigation. For example in this particular study, the bee
knew how to navigate from both A and B, to and from the bee-
hive. When the bee was captured and released in a point C
between A & B, the bee navigated home directly, which is evi-
dence that the bee must be using the visible hill to localise itself.

cognitive maps is supported by powerful logical argument: bees behaviours
should be interpreted and explained by the simplest available solution. Au-
thors in [145] contend that as long as bees behaviour can be explained by the
simplest available models, we cannot assume a more complex model, which
is the cognitive map.

2.4.4 Biomimetic navigation

Biomimetic navigation techniques are navigation algorithms inspired by
insect navigation techniques. Most available visual biomimetic homing al-
gorithms use panoramic photography which imitates insects’ large field of
view [146]. Some projects [147] develop customised sensors which are ded-
icated to the replication of insect vision, in the hope of replicating insects’
navigation capacities.

Some navigation methods are based on reactive navigation using opti-
cal flow sensors [148]. This mechanism is similar to how bees and insects
navigate [149]. The University of Sheffield has done some research in this
direction. The Green Brain project [150] which ended in 2016 aimed to sim-
ulate the bee brain that is responsible for visual navigation, i.e. to do visual
odometry. The simulated brain produced odometry measurements using op-
tical flow for a drone flying down a binary striped/chequered corridor in a
straight line, which mimics the behaviour of bees who fly in straight lines.

Brains on Board project, started in 2017 is a continuation of the Green
Brain project. What is significant about both projects is that rather than using
deep learning to produce a simulation model, it uses a pure mathematical
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model, a reverse engineering of the central complex of the bee [151], to sim-
ulate the visual capacity of the bee, using optic flow [152].

Generally, existing biomimetic navigation algorithms can be classified
into two kinds [153]:

1. Continuous metric navigation: estimates of the locations of landmarks
as well as the robot’s location are continually estimated and their rel-
ative metric locations mapped. An example of this kind of navigation
includes all kinds of SLAM algorithms for example [54]. We have dis-
cussed this kind of navigation in Section 2.2.2.

2. Homing based navigation: this model of navigation is based on the
snapshot model observed in ants and bees. Whereby current location
is estimated based on a similarity measure between current view and
memorised snapshot, and mapping is done using a graph model com-
posed of edges and nodes, the nodes being the memorised snapshots,
and edges representing the required transitions required to move from
one snapshot to the other (translations and rotations). Implementations
include [133] (using a panoramic stereo camera). This kind of naviga-
tion can be implemented using two methods [143]:

(a) Feature detection and matching across snapshots. An example im-
plementation is the Average Landmark Vector (ALV) [154] where
each landmark is associated with a compass direction (vector),
and homing is initiated by averaging multiple vectors associated
with relative landmarks that lead to home. This mimics the PI
navigation behaviour.

(b) Image difference minimisation using intensity comparisons, this
can be done for example using Sum of Squared Distances (SSD).
This mimics the retinotopic snapshot matching in ants.

Some biologically-inspired techniques fall under the SLAM category be-
cause they perform loop closure:

1. One of the most successful methods in this category is M. Milfords Rat-
SLAM, which is inspired by rodents nervous system. Open-RatSLAM
[155] is a neural simulation (now open sourced) of a model that repre-
sents the rodents hippocampus, which is capable of navigating through
and mapping an environment as large as a whole suburb [156].

2. Another algorithm is Sequence SLAM (Seq-SLAM) [157], also devel-
oped by M. Milford, and later Sequence Matching Across Route Traver-
sals (SMART) [158] which are developed for wheeled road vehicles.
The main principle of these systems is image matching, they store a
map of the environment, the map being a sequence of images taken
from a front-facing camera on a vehicle. The images are converted into
low-resolution contrast patterns. What is notable here is that input live
stream of images is compared to the stored dataset and vehicle location



34 Chapter 2. Background

is determined. This comparison isnt done on the level of a single pho-
tograph, but a sequence of photographs, which increases localisation
accuracy, as each sequence becomes like a unique face feature.

Snapshot navigation: Given that insects use panoramic vision for navi-
gation, particularly to do visual homing, we think that it is possible to pro-
duce the same behaviour using top down snapshots. Indeed, it has already
been proved in [159] that it was possible to perform navigation by matching
top-down images. Authors simulated insect navigation by matching satel-
lite images. Their algorithm is based on insect retinal matching, as top down
satellite images are pixelated and compared against a map (also satellite im-
age). This kind of navigation will be investigated and explored more detail
in Chapter 4, where a localisation system based on this model will be intro-
duced.

2.5 Notable Navigation Techniques

Some of the older navigation techniques depended on the use of artifi-
cial beacons deployed in the environment, also called ground control points
(GCPs), this is done to accurately perform triangulation so as to localise the
UAV during flight. Newer methods use direct georeferencing [22] which
combines inertial data with data coming from a satellite navigation system
(GPS) to localise the drone.

Other UAV navigation methods depend on radio transmitters or cameras
for localisation. Such systems can perform localisation very accurately. One
system [160] shows an impressive performance between two drones juggling
a ball to each other. This system uses 8 cameras to help detect a marker on
the drone, which helps in accurately localising the drone.

Correct image registration is a fundamental part of any image navigation
technique. As links between photographs have to be calculated accurately,
and this is done by matching each pair of photographs with each other. Im-
age registration is a well researched topic that has already achieved a high
level of accuracy, for example in its use in image stitching [161]. The use of
image matching in navigation is dependent on correct feature detection and
matching.

An effective approach in feature matching is to consider the distribution
of features and their relations to each other (like distances and angles). This
technique is called Spectral Graph Matching [162]. And it is being applied
to match 2D point clouds [163]. The importance of this kind of matching is
that it is scale and affine invariant [164]. Tuples (triplets) of features can be
formed, and matching procedure is done by comparing the angles formed by
each tuple.

2.6 Summary

This chapter was a review about state-of-the-art visual navigation algo-
rithms, as well as some related biomimetic navigation algorithms. In general
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many biomimetic navigation algorithms were developed to perform panoramic
navigation, this is because a panoramic view contains sufficient amount of in-
formation that is sufficient for many insect and animal navigation [165]. In
the next chapter, we are going to describe a snapshot navigation technique
and prove that it is sufficient to navigate using top-down images.
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Chapter 3

Snapshot-based Localisation and
Homing

The previous chapter (Chapter 2) was a discussion of state-of-the-art al-
gorithms in visual odometry (VO), Simultaneous Localisation And Mapping
(SLAM), deep learning and some related insect and biomimetic navigation
techniques. In this chapter, localisation and homing using solely the snap-
shots taken from the UAV is studied, with a focus on the application of VO on
fixed-wing UAVs. The aim is to provide an understanding of VO algorithms
for homing and to understand the efficacy of their application specifically on
fixed-wing UAVs.

3.1 Introduction

Visual Odometry has been applied successfully on aerial robots and ground
vehicles in numerous environment settings. For example, indoor robot local-
isation [166], outdoor vehicular localisation [167, 43], UAV localisation [168],
etc. Homing, defined as the capacity to navigate back home (i.e. to the navi-
gation origin), is generally done by tracking the stored environment features
which had been collected along the way, until the initial location is reached.
And generally this is how existing navigation systems do to head back home.

However there is an area which remains unexplored and uninvestigated.
Today it is well known [140] from research in insect navigation that some
insects despite navigating for long distances, head back home in a straight
line.

Most of the localisation research is done in environments that are nor-
mally full of obstacles, for example, localising a handheld camera in closed
indoor environments [166, 67, 70], aerial robots within relatively limited out-
door environments [60, 69, 80, 81] and forests [169], wheeled robots in natural
environments [43, 167] and within cities [58, 83]. Because of this, the applica-
tion of straight line homing remains unexplored. As it is not possible for a car
within a city, to head back home in a straight line because of buildings. Nor
it is possible for an indoor robot to navigate from room to room in a straight
line because of walls and other obstacles.

In a normal SLAM robotic system, VO is done all the way from the be-
ginning until the end of the navigated path. Loops are closed as part of the
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SLAM system. When homing is traditionally done, the robot has to return
back home by following the same way it has navigated (see Figure 3.1).

C

A

B

D

E

FIGURE 3.1: Planned return (homing) path, a hypothetical sce-
nario. The Black path is a possible UAV travel path. Points B, C
& D are intersections at which a loop closure occurs. In a SLAM
system after loops are closed, the UAV returns home by follow-
ing the Red path, which consists of stored feature points of the
environment along the way. The Orange dashed line from E to

A is the optimum homing vector.

But the case is different for fixed-wing UAVs. It is only possible to take
a straight homing path in an open environment, therefore such navigation
technique is applicable specifically on fixed-wing UAVs. Because they fly
in an open air environment that is free from obstacles, it would be theoreti-
cally possible to solve the problem of homing in a straight line. The possibil-
ity of applying such homing methods on fixed-wing UAVs remains under-
explored. Would it be possible to achieve such a goal using a top-down sen-
sor alone? This inspiration comes from the way ants navigate and do homing
[140, 154].

The dataset which will be used is an aerial dataset of top-down snap-
shots taken in an urban city using a fixed-wing UAV (Figure 3.2). Each snap-
shot has an overlap with the next as little as 49% and up to 74%. Tradition-
ally, a video is used to do visual odometry where most frames are dropped
and enough are retained to do the motion estimation. This kind of video
for fixed-wing UAVs is not available (refer to the reasoning introduced in
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Chapter 3.4.1). However the existing snapshots help in testing the minimal
amount of overlap which is required for successful localisation.

FIGURE 3.2: Sample snapshots from Sensefly Merlischachen
dataset [2].

The aim of this chapter is to investigate and propose suitable visual odom-
etry methods to track the UAV. These methods rely on motion estimation be-
tween each two consecutive frames. The essential problem is to estimate the
motion of the UAV across frames, therefore the aim is to propose the appro-
priate solution which can make this possible (see Figure 3.3).

Previous frame

Current frame
VO

∆ψ

∆T
Plot path on map

FIGURE 3.3: The motion estimation system (VO) which is pro-
posed in this chapter. Its aim is to find the rotation (∆ψ) and

translation (∆T) between two consecutive frames.

And since the camera of the UAV is perpendicular to the ground, estimat-
ing the location of the snapshot centre will be equivalent to the location of
the UAV. Doing this repetitively across snapshots would draw a UAV path,
which makes it possible to head back home in a straight line. This kind of
homing would help reduce the UAV navigation time, therefore reducing en-
ergy consumption and safety risks of flying a UAV, and improving Visual
Line Of Sight (VLOS) regulations.

The remainder of this chapter will be organised as follows: In Section 3.2
a literature review of related work is done. In Section 3.3, the problem is for-
mulated and the planned solution is described, the initial results are outlined
in Section 3.4 and finally a short conclusion in Section 3.5.
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3.2 Related Work

In the previous chapter, visual odometry and SLAM methods were re-
viewed. The problem of visual odometry is solved by estimating the motion
between each two consecutive frames. Therefore in this section, related mo-
tion estimation algorithms are reviewed.

The general workflow that applies to most algorithms is described in (Fig-
ure 3.4). After frames are captured, feature detection and matching are done
between the current frame at time t and previous frame at time t− 1. Out-
liers are removed, the motion is then estimated using a Perspective-n-Points
(PnP) triangulation algorithm. In the case of SLAM, loops are detected and
smoothing is applied using either windowed or global Bundle Adjustment if
necessary. This whole process is iterated in a loop. And the location of the
camera, therefore the robot, is estimated.

Input
frames

Feature
extraction

(ORB/SIFT..)

Find corre-
spondences

between
frames t, t− 1

Outlier
detection

(RANSAC)

Is camera
calibrated?

Calibrated
camera:

determine
motion using
P3P or P5P

Uncalibrated
camera:

determine
motion using
P8P (Lounget-

Higgins)

Triangulate
correspon-

dences t, t− 1

Loop detec-
tion: BoW

Add current
pose to map
(pose-graph)

Global/
windowed
BA every n
frames (&

update map)

frame t

no

yes

FIGURE 3.4: The general motion estimation workflow for mo-
tion estimation algorithms. To do VO, this workflow is repeated
in a loop. Dashed boxes can be done without, as they represent

the difference between SLAM (with) and VO (without).
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The majority of VO algorithms have little variation from this general model.
It is important to note here that these systems rely on consecutive snapshots
with scale being estimated up to scale. This means that these systems are
more susceptible to failure due to momentary occlusions. Enough overlap is
required across 3 consecutive frames to allow for successful feature detection
and matching.

To estimate the motion of the camera across two frames, different mutual
points (correspondences) are needed to be detected and matched. The points
are required to constrain the degrees-of-freedom (DoF) of the camera. This is
a well studied problem called Perspective-from-n-Points (PnP), and it will be
explained in detail in Section 3.3.

Naturally, a free moving rigid 3D object has an unconstrained motion
described by 6 DoF (degrees-of-freedom). As more point on this object are
pinpointed, more of its degrees of freedom will become constrained, as ac-
cording to the following table (Table 3.1):

PnP DoF
P0P 6 DoF
P1P 4 DoF
P2P 2 DoF
P3P 0 DoF

TABLE 3.1: Different number of correspondences are required
to determine the camera pose across frames. To constrain a
freely moving object with 6 Degrees-of-Freedom (DoF), 3 points

are required using the Perspective-n-Points (P3P) algorithm.

This means that the minimum correspondences required to constrain a
free moving object with 6 DoF is 3 points. In general, the more correspon-
dences are found across frames, the more accuracy will be achieved for mo-
tion estimation. There exists other solutions that solve the PnP problem using
more than 3 points, they begin with the P3P algorithm (using 3 points), others
include, P4P, P5P, P6P, P7P and P8P.

It might be helpful to distinguish between motion/pose estimation and
triangulation; as the first estimates camera location, and the second estimates
points’ locations in the real world.

In the cases when the camera does not have free 3D motion, it makes the
motion estimation problem simpler to solve. Supposing that a vehicle with a
mounted forward-facing camera moves a planar movement, it becomes pos-
sible to constrain the motion of the vehicle using a single point correspon-
dence [170]. The non-holonomic constraint helps in removing one degree of
freedom from the vehicle (as the rotation of the camera becomes tied to the
rotation of the car).

What is needed to estimate the camera motion has now been described.
And since motion estimation is at the heart of the problem of localisation, Ta-
ble 3.2 provides a comparison between different localisation solutions. They
are categorised into two classes: problems where it is possible to constrain
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the motion, and those where the motion cannot be constrained, this is when
the camera is assumed to have 6DoF.

Models with Models with
constrainable motion unconstrained motion

Degrees

· 2DoF (planar movement 6DoF (unconstrained

Of

2DoF, 1DoF of camera camera moving in

Freedom

is tied with car depending 3D space) [58, 62, 67]
on nonholonomic
constraint). [170]

· 3DoF (2DoF planar
movement, 1DoF
camera) [166]

Bundle Adj- None. Windowed BA,
ustment (BA) Global BA.

Motion

Essential matrix Fundamental matrix

estimation

estimation from motion estimation from
translation & rotation correspondences,
parameters [166, 170]. solved using

SVD: P3P, P8P.

Outlier
· 1pt RANSAC [170] RANSAC

removal
(few iterations).

· RANSAC.

Scale Constant (up to a scale)
Observe a known
size object or
use extra sensor.

Feature Depending on algorithm Depending on algorithm
extraction (SIFT, Harris or KLT). (SIFT, ORB..)

TABLE 3.2: Comparison of the main categories of motion esti-
mation algorithms with ours.

3.3 Proposed Method

As it was shown in the previous chapter, Section 2.4.4, most available
biomimetic navigation techniques use panoramic snapshots to do homing,
and they do so by minimising the difference between the view being seen,
and the stored snapshot in memory. This means that from two views, the
insect can deduce a direction of movement. This is identical to having a
compass, hence it is called a visual compass, or snapshot navigation. The aim
of this research is to simulate the same behaviour but on top-down snapshots.
It has already been proven in [159] that top-down snapshots can indeed be
used for navigation, and the goal here is to advance this study.
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Another notable behaviour that we will be depending on is Path Integra-
tion (PI). PI is the process that ants use to average out all perceived move-
ments (orientations and translations i.e. step counts) to form a heading di-
rection that leads to home. PI is equivalent to dead-reckoning or visual-
odometry (Section 2.2.1), and it is well known and well studied for insects
like bees and ants [136, 140, 145]. Insects use this kind of navigation to return
to their nests in a straight line, for example desert ant can return home in a
straight line after having navigated up to 600m in a long winding path (see
Figure 3.1). Considering that VO is the aggregation of a consecutive number
of vector headings/directions, the final aim would be to form a total vector,
the homing vector, which points directly to home (i.e. the navigation start-
ing point). And what enables this kind of homing is the fact that fixed-wing
UAVs fly in open space with no obstacles.

From here, our starting point is going to be photogrammetry. Photogram-
metry literally means ’measuring graphically using light’ and it has been
around for more than a century. Today with the advent of UAV, photogram-
metry scanning using drones is growing. Sensefly [20] and Wingtra [21] for
example, are among many other companies that are helping grow this field
today.

These UAVs depend completely on GPS for navigation, and they fol-
low GPS paths that are pre-determined (waypoint navigation) [146] (see Fig-
ure 3.15). The snapshots they capture are taken solely for performing pho-
togrammetry which is performed post-flight. This procedure is done on pow-
erful computers due to its complexity and processing power requirements.

The goal of this chapter is to employ these snapshots for navigation. The
snapshots have a minimum overlap with each other of 49% up to 74% (nu-
merous datasets are available online [2, 171]), and this limitation needs to be
accounted for. The aim is to give the UAV the capacity to do two things:

1. Deduce a compass direction from each consecutive pair of snapshots
(i.e. form a vector).

2. Average out all of those vectors to form a global vector, the homing vec-
tor.

A fundamental problem that needs to be solved is the estimation of scale.
Traditionally in VO algorithms, correspondences across 3 frames are found
and used to estimate scale. But a small amount of overlap between the
snapshots means that it would impossible to find correspondences across 3
frames, such as the datasets used in this thesis. Therefore traditional meth-
ods would fail. The reason is that it is possible to position objects in ways
that the locations of the projections of some chosen points would not change
in the image (see Figure 3.5). This phenomenon is related to pinhole camera
model (central projection) which is explained later. To calculate scale, one of
the following conditions must be satisfied [44]:

1. An extra sensor is needed to determine scale (IMU, GNSS..).

2. It can be calculated from observing an object in the scene with a known
size.
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C A A′

FIGURE 3.5: Impossibility of determining scale from two snap-
shots or image projections. The two differently sized squares
(centres A, A′) are placed at different distances to the cam-
era, such that they generate exactly the same projection image

through the projection centre C.

There is little need to account for scale in the case of a fixed-wing UAV,
such as the datasets used here; as the UAV flight height is near constant and
the UAV maintains a fixed altitude. The recorded GPS coordinates from the
snapshots for the Merlischachen dataset [2] ranges from 606-616m above sea
level. If the varying altitudes of different parts of the village above sea level
are taken into account, it would result in a UAV altitude of 162m from the
ground. Therefore it is safe to assume that the UAV maintains a constant
height, and scale is not needed to be estimated.

The final aim of this chapter is to do visual odometry on the UAV, even-
tually giving the UAV the capacity to return back to its take-off location au-
tomatically in emergency situations. The first stage is to extract a direction
vector from each consecutive couple of snapshots. Then the averaging of all
these vectors should result in an averaged vector that points home (Figure
3.6). In insects this is called Path Integration, which is equivalent to VO.

Homing arrow

FIGURE 3.6: Left: Registered input images. Right: Transitions
from one snapshot to the next; the visual compass/PI (consid-
ering relative distance & orientation). Scale can be ignored if
the UAV is flying in a horizontal plane. A home vector (orange)

is maintained constantly along the way.
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There are two different ways to solve the motion estimation: Either using
epipolar correspondences, P5P (since it is the most accurate), or P2P (minimal
case solution). Postulate planar scene. BA not necessary. Constant scale (see
Figure 3.5). SURF feature extraction. Or: using homographies. Both of these
methods will be expounded in the coming sections.

3.3.1 Problem Formulation

For the case of this research, two assumptions are made: the UAV moves
in a 2D plane (2 DoF), which means that a constant height throughout the
flight is assumed. Indeed, this condition is satisfied in the datasets. Neg-
ligible variation in height is recorded by the GPS coordinates. Another as-
sumption is also made, it is assumed that the camera tilts only on one axis
(Yaw), therefore adding another DoF. In reality, as it will be discovered later,
due to weather conditions the tilting assumption is not always preserved, as
the wind causes disturbances to the flight of the UAV. These interruptions
mean that the snapshot will not contain pure yaw rotation at the moment
of exposure. However, it is assumed that the other angles (pitch and roll)
are negligible. This provides simpler problem formulation at the cost of ac-
curacy. In total, the UAV has 3 DoF, which means that a minimum of two
correspondences are needed between each two consecutive frames to con-
strain the movement of the camera (therefore localise the UAV). One point to
constrain the 2D movement of the UAV, and another point to constrain the
yaw rotation (see Table 3.1).

Having 3 DoF and a fixed-wing UAV is a special case among existing so-
lutions. For example, solutions existing for a free moving hand held camera
in 3D space (6 DoF) [58, 67], a self driving car in a city (2 DoF) [83], a free-
moving indoor robot (3 DoF) [166], or a rotor-wing UAV (6 DoF) [60].

The camera is solidly fixed to the centre of the UAV, this means that the
orientation and location of the camera, are equivalent to the UAV position
and orientation. The coordinate system which will be used to describe the
position and orientation of the UAV is the NED (North East Down) model
[172]. It is centered on the UAV, and it is composed of 3 perpendicular axes:
North (N), East (E), and Down (D) axes. The N axis stretches from the centre
of the UAV to its head. The E axis stretches from the UAV centre to the eastern
wing, and the D axis stretches from the centre of the UAV towards the centre
of the Earth. In the next section and given this model, Euler rotations will
be used to describe the 3 different possible rotations using this coordinate
system (see Figure 3.7).
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ϕ(roll)
N

ψ(yaw)

D

θ(pitch)

E

FIGURE 3.7: Camera coordinate system (in addition to the UAV
2D planar movement). Left: a top-down view. The Down vec-
tor is perpendicular on the page and is heading to the centre of
the Earth. Right: NED north-east-down model & possible UAV

rotations in mid-air.

There are two basic assumptions which will be made about the UAV: That
it makes a planar flight (flies in a 2D plane parallel to the ground), and that it
has a constant velocity with no acceleration. Since the UAV flies at an altitude
higher than 100m, it is assumed that the ground is planar or near-planar for
urban areas. The solution to this navigation problem requires a familiarity
across a number of fields, including: coordinate system transformation (Sec-
tion 3.3.2), computer vision (Section 3.3.3) and state estimation (Sections 3.3.4
and 3.3.5).

3.3.2 Euler Angles

In mid air, the camera can assume different orientations (pitch, yaw and
roll). It is possible to describe these orientations using Euler angles. As can
be seen in (Figure 3.7), roll is a rotation about the North axis (tail to head),
pitch is a rotation about the East axis (wing to wing), and yaw is a rotation
about the Down axis.

α

α xa

xb

yayb

FIGURE 3.8: Rotation about center.

Let us consider the two perpendicular axes xa, ya in a 2D plane (Figure
3.8). The two axes are rotated by angle α. The rotation from xa to xb can be
described using the following equation:
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xa = Rb
axb, (3.1)

where Rb
a is the rotation matrix that transforms xb into xa. There are 3 possible

situations:

1. First, assuming that this rotation is about the N axis, then α will become
equivalent to ϕ which is a roll rotation according to Figure 3.7. And
Rb

a = RE
D. It is then possible to estimate ϕ using the rotation matrix RE

D
by substituting in equation 3.1:

D = RE
D(ϕ)E, (3.2)

RE
D(ϕ) =

 1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)

 . (3.3)

2. Second, assuming that this rotation is about the E axis, then α will
become equivalent to θ which is a pitch rotation (Figure 3.7). And
Rb

a = RD
N. Now it becomes possible to estimate θ by substituting RD

N
into equation 3.1:

N = RD
N(θ)D, (3.4)

RD
N(θ) =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 . (3.5)

3. Third, assuming that this rotation is about the D axis, then α will be-
come equivalent to ψ which is a yaw rotation (Figure 3.7). And Rb

a =
RN

E . Yaw angle defines the heading of the UAV. Now it is possible to
calculate ψ by substituting RN

E into equation 3.1:

E = RN
E (ψ)N, (3.6)

RN
E (ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 . (3.7)

The three kinds of rotation matrices described above are special cases of
orthonormal (orthogonal) rotation matrices. These matrices have the follow-
ing special property:

Rb
aRc

b = Rc
a, (3.8)

this property allows the combination of multiple consecutive rotation matri-
ces around different axes (such as the 3 types mentioned above, equations
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3.3, 3.5 & 3.7) into a single matrix. This property will be useful for the calcu-
lation of the homing vector at a later stage.

R(ψ, θ, ϕ) = RN
E (ψ)

Yaw

RD
N(θ)

Pitch

RE
D(ϕ)

Roll

=

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)

 .
(3.9)

When using Euler angles, and when the pitch angle is±90; the yaw angle
is undefined. This perfectly vertical position is rare in a fixed-wing UAV, as
the UAV is not acrobatic. And this it is assumed that the UAV will never be
in that position. This singularity is termed gimbal lock, and normally quater-
nions are used to solve it instead of Euler angles [172].

3.3.3 Pinhole Camera Geometry

Camera calibration is the estimation of intrinsic and extrinsic camera set-
tings. The intrinsic settings are internal camera parameters such as focal
length, sensor shape and size, and optical centre (principal point). The ex-
trinsic parameters are the 3D coordinates of the physical camera location in
the real world. Both instrinsic and extrinsic settings are required to be known
for accurate camera motion estimation.

The purpose of camera calibration matrices is to project the points in the
real world, into the image plane. Traditional cameras that are normally used
on UAV use the pinhole projection model, and it will be described next.

3.3.3.1 Pinhole Projection

The pinhole camera projection system is a system that projects points in
the real world, into a planar projection plane (or image plane), through a
single point (called a pinhole). As can be seen in Figure 3.9, P is the world
point with coordinates (X, Y, Z), and it is being projected through the camera
focal centre into the projection plane resulting in point p(x, y). With c being
the optical centre (the centre of the image plane).

Note that the projection plane in reality lies behind the pinhole O, but
for ease of description, it is regularly drawn inverted, i.e. it lies between the
focal centre and the world, at a distance f from O. This model is called central
projection, and it is equivalent to pinhole projection.
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Uc

Vc

Wc O (cam pinhole)

P(X, Y, Z)

u

v

f ( f ocallength)

Z

p(x, y)

cC

FIGURE 3.9: Pinhole camera projection model. A point P in the
real world is projected onto a projection plane (the grey reg-
tangle), through a pinhole O. The distance from the projection

plane to the pinhole cO is the focal length f .

From Figure 3.9; by looking at the two similar triangles Ocp and OCP, it
is possible to derive the two equations:

x
f
=

X
Z

=⇒ x = f
X
Z

, (3.10)

y
f
=

Y
Z

=⇒ y = f
Y
Z

. (3.11)

Which means that given a 3D world point, it is possible to calculate its
projection point given the 3D world point’s coordinates. As can be noticed,
any point on the line pP has the same projection point p. To resolve this
ambiguity, homogenous coordinates are used. They are discussed next.

3.3.3.2 Homogenous coordinates

The homogenous coordinates of a point p are any multiple of this point.
For example the point p(x, y) has the equivalent homogenous points pa(ax, ay, a)
where a ∈ R, a ̸= 0. The extra homogenous coordinate is added so that
each pixel becomes a vector, this is relevant because in a 2D image, the exact
depth of a pixel is unknown (as the depth values are dropped in a planar
projection). To retrieve the original coordinates, both ax, ay coordinates are
divided by a.

To determine the depth value, a second image projection of the same
scene from a different orientation is required. This will be discussed in de-
tail later in Section 3.3.4, as well as the significance of using homogenous
coordinates.

To project a 3D real world point P(X, Y, Z) into a 2D image p(x, y) (world
coordinates to pixel coordinates), 3 stages of different transformations are
required:

1. World coordinates to camera coordinates:
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By looking at Figure 3.9, to calculate the accurate projection location,
it is important that both O and C be aligned, where O is the centre of
the camera, and C is the centre of the world. This alignment is done by
using two kinds of transformation matrices: a rotation matrix R, and a
translation matrix T. This operation can be described in matrix form as
follows: 

U
V
W
1

 =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1




1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1




X
Y
Z
1

 , (3.12)

which is equivalent to:
C = RT X. (3.13)

Where C is a point in camera coordinates, R is a rotation matrix, T is a
translation matrix and X is a real world point.

Both R and T can be combined into a single matrix called the extrin-
sics matrix, its purpose is to convert the world perspective to camera
perspective:

Mextrinsic = RT =

[
r3×3 t3×1
01×3 1

]
, (3.14)

where r3×3 is a rotation that is composed of one or more Euler angles
described earlier in section 3.3.2. And t3×1 is a translation vector.

2. Camera coordinates to film coordinates:

From Figure 3.9, it is now needed to project all light rays passing through
O onto the grey projection plane. For example the ray extending from
P to p, or from C to c. This is done using the two equations (3.10, 3.11).
The two equations can be rewritten in matrix form, but to do so both p
and P need to be described in homogenous forms:

x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




U
V
W
1

 , (3.15)

which takes the form:
x = PX. (3.16)

Where x is a point on the image plane, X is a point in the real world, and
the matrix P is called the perspective projection matrix, and its purpose is
to project points from 3D to 2D.

3. Film coordinates to pixel coordinates:

Observing Figure 3.9, after P is projected onto the grey projection plane
resulting in p, and for an accurate projection, there is a need to align
p(x, y) which exists on the projection plane, with the pixel coordinates
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of the resulting image (u, v). Due to the high sensor density of the pro-
jection plane (accuracy in nanometres), perfect physical alignment of
the camera pinhole C with the centre of the projection plane c is impos-
sible to achieve. This is why the projected image needs to be aligned
and scaled in software. This is done by multiplying film coordinates
(the projected image) by the following affine matrix:

A =

a11 a12 a13
a21 a22 a23
0 0 1

 . (3.17)

This matrix can account for different factors like scale, principal point
centre and skew. If it is multiplied by the film coordinates, it will result
in pixel coordinates: u

v
1

 =

sx 0 cx
0 sy cy
0 0 1

x
y
1

 , (3.18)

which is equivalent to:
u = Ax, (3.19)

where u is the equivalent pixel coordinates, A is an affine matrix, and x
is a point in film/image plane coordinates. Further: sx, sy are scale pa-
rameters, and cx, cy is the principal centre shift amount. The skew pa-
rameters are set to zero and skew amount is ignored in the case above.

It is notable here to define the intrinsics matrix, also called the camera
calibration matrix. Its function is to convert from the camera coordinates,
to pixel coordinates. And it is produced by multiplying the affine matrix A
(equation 3.17), by the perspective projection matrix P (equation 3.16):

I = A3×3P3×4 =

 f x/sx 0 cx 0
0 f y/sy cy 0
0 0 1 0


3×4

, (3.20)

where A3×3 is an affine matrix, and P3×4 is the perspective projection matrix.
The intrinsics and extrinsics camera matrices combined are referred to as the
camera matrix (M).

Finally, the full pinhole camera projection model can be described and the
three transformations above can be combined using the following equation
(according to Figure 3.9):

uimg
vimg

1


Pixel coords (u)

=

 f x/sx 0 cx 0
0 f y/sy cy 0
0 0 1 0


Intrinsics matrix (I)


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1


Extrinsics matrix (E)


X
Y
Z
1

 ,

3D World coords (X)
(3.21)
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equivalent to:
u = I3×4E4×4 X, (3.22)

where u is an image point in pixel coordinates (homogenous form), X is a real
world point in world coordinates (also homogenous form), I is the intrinsics
matrix, and E is the extrinsics matrix.

3.3.3.3 Camera Calibration

Camera calibration is the process of estimating the intrinsic and extrinsic
matrices of a camera. By looking at equation 3.22, it becomes possible to
construct the intrinsics matrix given default camera specification values. The
focal length, the focal centre and the scale are usually provided with most
pinhole cameras sold today.

Given this information, it is possible to estimate the intrinsics matrix. But
this matrix will never be accurate enough for accurate projection required for
pose estimation, as during the manufacturing process of the camera, it is not
possible to align the sensor chip on the camera board accurately enough to
align the aperture centre with the focal centre of the chip. This is why manual
calibration needs to be done.

Possession of the camera is required for manual calibration, which is done
by taking multiple photographs of a chequerboard pattern and finding the
vanishing points which can be used to estimate both intrinsics and extrinsics
matrices.

This process gives an estimation of the camera matrix M, and it helps in
minimising reprojection errors as much as possible; which leads to greater
accuracies when the camera is used for pose estimation.

3.3.3.4 RANSAC

RANSAC (Random Sample Consensus) [173] is a random sampling algo-
rithm which iteratively collects random samples from a given set, with the
purpose of discerning outliers. It can be described by the equation:

N =
log(1− p)

log(1− (1− e)s)
, (3.23)

where N is number of samples, e is the probability that a point is an out-
lier, s is number of points in a sample and p is the desired probability that
a good sample is acquired. This equation can be derived as such: The com-
plement probability of e is the probability of an inlier (1− e). (1− e)s is the
joint probability that s sample points are all inliers. The complement prob-
ability 1− (1− e)s is the probability of choosing s points which are not all
inliers. The term (1− (1− e)s)N is its joint probability across N samples. The
complement probability of this term is the probability of choosing N sam-
ples and not all of them are outliers 1− (1− (1− e)s)N = p. This leads to:
(1− (1− e)s)N = 1− p, after calculating the logarithms we get the equation
above.
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RANSAC is intended to be used to find the best fit of a mathematical
model (for example a regression) to a given data. This is done by taking
a random number of samples from the data, and testing them against the
present mathematical model. The samples that satisfy the model would be
the inliers. It is used widely in the field of motion estimation to refine inlier
(true) correspondences across images and discard outliers.

3.3.4 Epipolar Geometry

As it was mentioned earlier, a second pinhole camera projection from a
different angle is needed to estimate depth. The so called epipolar constraint
is the only available geometric constraint which can be used for estimating
motion between two different snapshots of the same scene [174]. This motion
can be estimated up to scale, which means that scale cannot be determined
from 2 images alone, this is was explained in Figure 3.5.

Even though that taking a single 2D projection of a 3D scene drops the
depth values, but there is a possibility of estimating the depth values using
two snapshots of the same scene from 2 different angles. By triangulating
a point as seen from the two different camera perspectives, with the first
camera location, both depth of the point and the second camera’s pose can
be estimated. This is called Epipolar geometry, and it is described in Figure
3.10.

P

p

p′

O

O′

e

e′

p1p2p3

FIGURE 3.10: An epipolar geometry setup. OO′ is called the
baseline. e, e′ are the epipoles, which are the intersection of the
baseline with the image planes. pe and p′e′ are epipolar lines
(an epipolar line is the set of all points {p′, p1′, p2′, p3′, .., e′} that
form a line in one projection plane, and which correspond to a
single point in the other projection plane). Epipolar lines lie on

the epipolar plane OPO′.

The setup of cameras described in Figure 3.10, is a setup of two pinhole
cameras O, O′ taking a projection of the same point P from two different
points of view. P has two projections p and p′ in the two grey image planes
belonging to the two pinhole cameras. The depth of the real world point
P cannot be determined from a single projection p, as P can be considered
lying anywhere on the segment pP, for example p1, p2, p3... To determine
the depth of P, another pinhole projection of the point P is needed from a
different point of view O′. This is when the location of P can be estimated
using the projection p′.
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As can be noticed that each projection point in one image plane p corre-
sponds to a line in the other image plane p′e′; this line is called the epipolar
line. This is the purpose of the other camera O′, as using the projection p′ the
location of the point P can be triangulated and its depth estimated.

3.3.4.1 Essential Matrix

The essential matrix is a matrix that relates two camera projection planes
to each other (for example, the two grey planes in Figure 3.10). It can be
defined and derived as follows: Starting with an equation that describes the
relation (rotation R & translation T) between one image plane (snapshot) IR
to another IL:

IL = RIR + T, (3.24)

cross product by T:

T × IL = T × RIR + T × T
0

, (3.25)

the cross product between a vector and itself is zero, therefore the second
term of the right hand side is vanished. Now do a dot product by IL:

IL. (T × IL)

0

= IL. (T × RIR) , (3.26)

the left hand term totals to zero, because the result of the cross product is a
vector which is perpendicular to both T and IL. A dot product with IL which
is perpendicular to it, gives 0. See Appendix A for more details about vector
properties. The dot product on the right hand term can be expanded as a
matrix multiplication by substituting IL with its transpose IT

L ; and the cross
product can be written in matrix form:

0 = IT
L ⌊TX⌋RIR, (3.27)

which can be summarised as:

0 = IT
L EIR, (3.28)

where IL is the left image projection plane (snapshot), E is the essential matrix
and IR is the right image projection plane.

3.3.4.2 Fundamental Matrix

Its concept was first introduced by Longuet-Higgins [175], which is a ma-
trix of rank 2 that relates a single point from one camera to the epipolar line
in the other camera. It is derived as follows. Start by substituting equation
3.13 (Pcam = RTX) into equation 3.22:

Pimg = KPcam, (3.29)
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where Pimg is a point coordinates in image plane (in pixels), Pcam is the point
in camera coordinates, and K is the intrinsics matrix. This implies:

Pcam = K−1Pimg. (3.30)

Now if equation 3.30 is plugged into 3.28:(
K−1

l Pl

)T
E
(

K−1
r Pr

)
= 0, (3.31)

where: Kl, Kr are intrinsic matrices of left and right frames, Pl, Pr are points’
coordinates in image plane for left and right frames respectively, and E is the
essential matrix.

Now decompose the transpose of the multiplied matrices (refer to Ap-
pendix A for matrix properties):

PT
l

(
K−1

l

)T
EK−1

r︸ ︷︷ ︸
F

Pr = 0, (3.32)

PT
l FPr = 0, (3.33)

where Pl is a point in the left image, Pr is a point in the right image, and F is
the fundamental matrix. It is equivalent to:

[
a b 1

]
1×3

 f11 f12 f13
f21 f22 f23
f31 f32 f33


3×3

a′
b′
1


3×1

= 0, (3.34)

where F is a matrix with 7 degrees-of-freedom (DoF), 3 for position, 3 for
orientation and 1 for scale. If the matrices are multiplied, they result in an
equation with 8 unknowns. To solve this equation, Richard Hartley proposed
the 8-point algorithm [176] where 7 other similar equations procured from 7
other correspondences (matched points) are needed. The 8 equations pro-
duce a linear system and it is finally written in matrix form and the matrix is
solved using Singular Value Decomposition (SVD). This solution is called the
Longuet-Higgins eight point algorithm [175]. It is solved using Direct Linear
Transform (DLT) [176], and its derivation is explained later at the homogra-
phies discussion in Section 3.3.5, as a homography is solved using DLT.

An important thing to note here is that the intrinsics matrix is required to
calculate the fundamental matrix. But it is not required to find the essential
matrix.

3.3.4.3 Motion Estimation

Also known as extrinsic calibration, which is the problem of estimation
the location and orientation of the camera in the real world given some known
coordinates of a scene [177]. There are 3 kinds of motion/pose estimation de-
scribed in detail in the excellent visual odometry paper by Scaramuzza [44].
They will briefly described here:
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1. 2D-to-2D: this is the case of estimating the motion from projecting a
planar scene (2D), into a projection plane of a single camera (2D). It is
possible to use this case if the ground is considered as planar.

2. 3D-to-3D: this case is used for stereo cameras. Since stereo cameras can
produce a depth map of the scene using triangulation (structure from
motion SfM), the goal is to estimate motion given a 3D scene, and to
project it into a 3D depth map.

3. 3D-to-2D: the case of projecting a 3D scene into a 2D image plane. This
the situation of this research, and the goal is to generally minimise the
reprojection error.

3.3.4.4 Reprojection error minimisation

Reprojection error is the process of finding the distance between points in
the image plane, and their reprojected triangulations. I.e. after points are tri-
angulated, they are reprojected into the image plane (using the fundamental
matrix). The distance between each reprojected point and the original point
is calculated. Reprojection error minimisation is the process of minimising
this value, and it is expressed by the equation:

Tk,k−1 = arg min
T

∑
i
∥ui − π(pi)∥2, (3.35)

where Tk,k−1 is the transformation between the two frames k and k− 1, ui is
the ith image point, and π(pi) is the reprojection of the triangulated point pi.

Pose/motion estimation is the problem of estimating the extrinsic cali-
bration matrix, using point correspondences for an object viewed from two
perspectives. For the 3D-to-2D problem mentioned above, the extrinsic ma-
trix is estimated by minimising the reprojection error, which is known as
the Perspective-from-n-Points (PnP) problem mentioned earlier. The itera-
tive process of minimising equation 3.35 non-linearly is called Bundle Ad-
justment (BA).

3.3.5 Homographies

Also called projective or perspective transformation. A homography is
the most general form of a geometric transformation, which may take differ-
ent kinds:

Transformations are either 2D to 2D, or 3D to 3D; and they include: trans-
lation, Euclidean (translation + rotation), similarity (translation, rotation &
scaling), affine (translation, rotation, scaling and skewing) and projective
transformation (which only preserves straight lines). Each transformation
of these includes the previous one, this means that the projective transforma-
tion is the most general kind of transformations, and it is called a homography
(see Figure 3.11).
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FIGURE 3.11: A homography.

The homography matrix is a special case of the Essential matrix, and be-
cause it does not consider the geometry of the scene, its use is limited to 2
kinds of mappings:

1. 2D-to-2D mapping (planar scene): The homography matrix maps two
snapshots of the same scene to each other (or the scene to its projection
image), given that the projected scene in the two snapshots is planar.
Such applications include: image stitching (mosaics) and texture ren-
dering.

xl = Hxr, (3.36)

where xl[3×1], xr[3×1] are the homogenous forms of a point in the left
and right projection planes respectively and H[3×3] is the homography
matrix. And just like the fundamental matrix, it can be solved using
SVD. Its derivation and solution are provided below.

2. 3D-to-2D mapping: An orthographic (perpendicular) projection that
drops the depth of a 3D object into a projection plane to acquire its 2D
image. It is suitable for objects whose depth is within a small range
relative to the distance from the camera [177]. This property makes
them suitable for the application on fixed-wing UAVs with top-down
cameras (which is the case in this thesis).

Note that for planar surfaces, 3D to 2D mapping reduces to 2D to 2D;
and that homography reduces to a similarity transformation when the
camera is facing the planar scene (when the Down axis is perpendicular
to the ground). Its most prominent application is VR (virtual reality).

The deriviation and solution of a homography are as follows. Starting
from equation 3.22:

x = I3×4E4×4 X, (3.37)

where x is pixel coordinates, and X is world coordinates. I and E are the
intrinsics and extrinsics matrices respectively. Assuming the planarity of the
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scene, it becomes possible to set the Z coordinate of the real world point X to
0. This is the main reason why homography is a special case of the essential
matrix. The equation takes the form:

x
y
w

 =

 f x/sx 0 cx 0
0 f y/sy cy 0
0 0 1 0




r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1




X
Y
0
1

 . (3.38)

This results in cancelling the third column of the matrix E. Also, the
fourth column of I cancels the fourth line of E. This results in:

x
y
w

 =

 f x/sx 0 cx
0 f y/sy cy
0 0 1


3×3

r11 r12 t1
r21 r22 t2
r31 r32 t3


3×3

X
Y
1

 , (3.39)

the matrices I and E are multiplied and combined into one matrix to produce
the homography matrix h:x

y
w

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

X
Y
W

 . (3.40)

By taking the projection equations of a world point into each frame:x1
y1
w1

 = H1

X
Y
W

 ;

x2
y2
w2

 = H2

X
Y
W

 , (3.41)

by substituting one of the equations above into the other:x2
y2
w2

 = H2H−1
1︸ ︷︷ ︸

H

x1
y1
w1

 , (3.42)

the homography H is a 3× 3 matrix that relates points in one camera frame
to points in the other camera frame:x2

y2
w2

 =

H11 H12 H13
H21 H22 H23
H31 H32 H33

x1
y1
w1

 . (3.43)

Considering that the two points are in homogenous coordinates:

x′2 =
x2

w2
; y′2 =

y2

w2
, (3.44)

x′2 =
H11x1 + H12y1 + H13w1

H31x1 + H32y1 + H33w1
; y′2 =

H21x1 + H22y1 + H23w1

H31x1 + H32y1 + H33w1
, (3.45)

this is equivalent to:
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x′2H31x1 + x′2H32y1 + x′2H33w1 − H11x1 − H12y1 − H13w1 = 0, (3.46)

y′2H31x1 + y′2H32y1 + y′2H33w1 − H21x1 − H22y1 − H23w1 = 0. (3.47)

Now write this equation in matrix form after setting w1 = 1 (homogenous
coordinates):

[
−x1 −y1 −1 0 0 0 x1x′2 x′2y1 x′2

0 0 0 −x1 −y1 −1 y′2x1 y′2y1 y′2

]
2×9


H11
H12
H13

...
H33


9×1

= 0,

(3.48)
which is an equation with 9 unknowns (the matrix H). To solve this series, 6
more equations are required. It is possible to acquire those equations from 3
more correspondences:

−x1 −y1 −1 0 0 0 x1x′2 x′2y1 x′2
0 0 0 −x1 −y1 −1 y′2x1 y′2y1 y′2
...

...
...

...
...

...
...

...
...


8×9


H11
H12
H13

...
H33


9×1

= 0,

(3.49)
which takes the form:

XH = 0, (3.50)

where X is an 8× 9 matrix. It is possible to reduce the unknowns to 8 by
assuming that H33 = 1. Now it becomes possible to solve 8 equations with 8
unknowns, and this is done using SVD.

A homography cannot be used to calculate the camera pose/orientation
in all cases, i.e. it is not accurate enough to be used for motion estimation
in all possible cases. If homographies are used for image stitching, to be ef-
fective for estimating camera motion accurately, either one of 2 requirements
are necessary (see Figure 3.12):

1. When the camera rotates purely about a single axis (regardless of scene
planarity) without changing its location. I.e. all snapshots have to be
taken from exactly the same camera location [161]. This would make
the homographies relating the snapshots to each other pure Euclidean
transformations.

2. When the scene is planar. Here there are two cases:
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(a) If the camera moves horizontally parallel to the scene in 2D with
its vertical axis perpendicular to the scene. This would make the
homographies consist of pure Euclidean transformations.

(b) Or if the camera moves in a free 6DoF motion, making the homog-
raphy transformations affine.

In optimal conditions, the first condition of the second requirement ap-
plies to the case of fixed-wing UAV with top-down camera. Therefore a solu-
tion using image stitching based on this assumption will be described in the
following Section (Section 3.3.6), and later tested and evaluated in Section
(Section 3.4).

C
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E

FIGURE 3.12: It is possible to use homographies to estimate
UAV motion in two cases: either when the camera axis D is per-
pendicular to the ground despite scene planarity (left image), or
when the scene is planar regardless of camera orientation (right
image). In the case on the left, a similarity matrix can be used
to estimate UAV motion, as the location of the UAV would be

estimated exactly above the image center.

3.3.5.1 Singular Value Decomposition

Every real matrix can be factorised into singular values and singular vec-
tors. It can be decomposed into a product of three matrices, as according to
the following equation:

A[m×n] = U[m×m]D[m×n]V
T
[n×n], (3.51)

where U and V are orthonormal (orthogonal) matrices whose columns are
called left-singular and right-singular vectors respectively. D is a diagonal
matrix whose diagonal elements are called the singular values. The SVD fac-
torisation is used to decompose the essential matrix into constituent trans-
formations. For example, the rotation can be acquired from the U and V
components.
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3.3.6 Proposed Solutions

Two algorithms are proposed for predicting the location of a fixed-wing
UAV, which is done estimating the motion between each two consecutive
top-down aerial snapshots:

1. Using image stitching: As it was shown in Section 3.3.5, when the depth
of the world objects is negligible compared to the distance to the cam-
era, planar homographies can be used. Also, since the world objects is
constantly in front of the camera, it can be assumed that the world is
planar. This condition cannot be assumed in the case of a free moving
camera in a 3D world, for example, a camera mounted on a car. As the
objects constantly move from the front to the back of the camera. This
means that it is possible to stitch snapshots with each other, with the lo-
cation of the UAV falling above the centre of each snapshot. Therefore
stitching the snapshots with each other would be equivalent to esti-
mating the 2D location of the UAV. An algorithm for this is devised as
follows (Algorithm 1).

Algorithm 1 Image stitching algorithm
1: Get first frame k
2: Detect SURF features
3: Get new frame k + 1
4: Detect SURF features
5: Find correspondences between k, k + 1
6: Refine inliers using RANSAC
7: At least 4 evenly distributed correspondences are needed between the

two frames.
8: Estimate planar homography according to equation 3.49.
9: Extract rotation & translation matrices using SVD

10: Update pose-graph.
11: Repeat from (3).

2. Using Perspective-from-n-Points (PnP): As it was explained in Section 3.3.1,
it is possible to assume that the UAV has 3 DoF in total. This means that
2 points are required to constrain all of them. Therefore theoretically,
a P2P algorithm would be sufficient. However, it was proved [178]
that the P5P algorithm outperforms all others. Therefore it will be used
here.
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Algorithm 2 Motion estimation algorithm
1: Get first frame k
2: Detect SURF features
3: Get new frame k + 1
4: Detect SURF features
5: Find correspondences between k, k + 1
6: Refine inliers using RANSAC
7: Collect 5 evenly distributed correspondences between the two frames
8: Estimate essential matrix E using P5P [178]
9: Decompose E into rotation & translation matrices

10: If k mod n == 0: use Windowed-BA for motion estimation refinement
every n frames. This step is optional.

11: Update pose-graph.
12: Repeat from (3).

Both of these algorithms rely on feature detection and matching. For the
purpose of this research, Scale-Invariant Feature Transform (SIFT) feature de-
tection algorithm is being used. Numerous other algorithms could be used
as well, they include detection algorithms, such as, Harris [179], Speeded-
Up Robust Features (SURF) [180], Oriented FAST and Rotated BRIEF (ORB)
[181], Binary Robust Invariant Scalable Keypoints(BRISK) [182], Features from
Accelerated Segment Test (FAST) [183] and many others. And correspon-
dence matching such as Ultra-Robust Feature Correspondence Via Unilat-
eral Grid-Based Clustering (UGC) [184], Grid-Based Motion Statistics (GMS)
[185] and others.

FIGURE 3.13: Feature detection and matching using SIFT.

3.4 Performance Evaluation

In this section, the experimental setup of the UAV and the datasets used
will be detailed in Section 3.4.2. Then the results from both image stitching
and PnP algorithms will be discussed and evaluated in Section 3.4.3.
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3.4.1 Datasets

The datasets which were chosen as the object of this research contain top-
down aerial photos (snapshots) captured by a ground facing camera mounted
on a fixed-wing UAV (see Figure 1.2). The consecutive snapshots are limited
by the small overlap amount and the big exposure time between them. The
reasoning why these snapshots are chosen to be used rather than video is
twofold:

1. Even though that there exists numerous well performing algorithms
that can do localisation using videos (these algorithms are reviewed
in Chapter 2, such as, [58, 56]), but technically, they are dependent on
correspondences across 3 frames, a condition which is satisfied in most
available datasets (e.g. KITTI [110], ISPRS [3]..). But this requirement
makes these systems susceptible to failure as identified in [53]. We aim
to show that correspondences across 2 frames are enough to do success-
ful localisation and enable homing, which means that having a contin-
uous stream of visual information with high overlap is not a necessary
requirement for this task. This is discussed in more detail throughout
the thesis.

2. Proper evaluations and testing require having access to the ground
truth of the data that is used. A good ground truth of the path taken by
a fixed-wing UAV requires having access to accurate GPS technology.
This technology is only available in the higher end lines of UAVs which
are expensive. And given that there are considerable licensing, costs
and skills required to acquire such dataset and to fly a fixed-wing UAV
over long distances in the UK, it was decided to use existing datasets
for the purpose of this research. These datasets are numerous and they
are available online from UAV manufacturers which are used for aerial
mapping (photogrammetry), such as, [20, 21]. Such datasets consist of
consecutive snapshots which are overlapped with each other up to a
certain percentage. Despite the fact that video datasets are numerous
for indoor or vehicular navigation, they are rarely publicly available for
long-range top-down camera UAVs.

3.4.2 Experimental Setup

The datasets which are used in this thesis are acquired from a light weight
fixed-wing UAV, with a top-down camera. The dataset which will be used
in this chapter is acquired in April 2013, it is composed of overlapping top-
down photograph of a village in Switzerland called Merlischachen [2]. The
UAV flight altitude is 162m. The UAV flies at a constant speed, and it cap-
tures a snapshot every 4 seconds as a minimum time.

Two different paths are going to be experimented on. The first one is a
straight path (see left of Figure 3.14). It is composed of 21 consecutive snap-
shots, the total navigated distance is 1080m. The second path is a longer
winding zig-zag path. It is composed of 100 snapshots, and the total navi-
gated distance is 5300m (see right of Figure 3.14).
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FIGURE 3.14: Top row: The UAV flight paths used from Sense-
fly Merlischachen village dataset [2]. Bottom row: The down
projected locations of the recorded GPS UAV location at the mo-
ment of taking the snapshot (numbered). The left column is the
first datset which is a straight path composed of 21 snapshots.
The right column is composed of 100 snapshots. GPS coordi-

nates are plotted on Google Maps.

The 2D ground-truth locations of the UAV are extracted from the recorded
GPS coordinates. They GPS coordinates are recorded at the instant of captur-
ing a snapshot and they are plotted in Figure 3.15. These coordinates repre-
sent the paths in Figure 3.14, and they will be used to evaluate the motion
estimation accuracy.
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FIGURE 3.15: Top line: The 2D ground truth of the UAV loca-
tions at the moment of exposure, extracted from the GPS geo-
tags of Sensefly Merlischachen dataset [2]. The blue line is the
path of the UAV, and the small blue circles are the recorded
UAV locations. Path lengths are 1080m (left) and 5300m (right).

More details about the captured snapshots can be found in Table 3.3. They
include the overlap amount, the time difference, and the navigated distance
between each two consecutive snapshots. The average time between snap-
shots is 5.4 seconds, the average distance is 54.1 meters and the average over-
lap is 64%. The minimum overlap is 48.8% and the maximum is 75.1%.
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ID
Snap- Time Nav. Overlapshot (s) Dist. (%)name (m)

1 0928 - - -
2 0929 5 53.8 48.8
3 0930 4 53.6 62.1
4 0931 4 49.4 66.9
5 0932 5 53.3 68.5
6 0933 4 48.8 68.8
7 0934 5 53.6 73.7
8 0935 5 51.9 64.3
9 0936 10 55.7 59.2
10 0937 5 54.0 60.1
11 0938 4 49.6 67.3
12 0939 5 54.1 68.8
13 0940 4 48.6 66.7
14 0941 4 51.9 68.3
15 0942 5 51.8 60.3
16 0943 4 51.1 67.8
17 0944 12 65.0 64.6
18 0945 5 55.0 55.7
19 0946 5 53.5 71.3
20 0947 6 69.0 59.4
21 0948 4 53.3 59.2
22 0949 6 65.9 64.9
23 0950 5 53.1 59.9
24 0951 13 49.8 66.5
25 0952 4 48.8 64.2

ID
Snap- Time Nav. Overlapshot (s) Dist. (%)name (m)

26 0953 6 69.4 63.1
27 0954 5 57.0 61.7
28 0955 5 54.7 64.9
29 0956 4 53.1 67.7
30 0957 4 45.9 71.0
31 0958 5 53.9 53.5
32 0959 10 66.0 56.8
33 0960 5 56.0 50.5
34 0961 4 51.0 75.1
35 0962 5 51.8 68.5
36 0963 4 51.8 69.2
37 0964 5 52.2 71.3
38 0965 4 52.1 69.9
39 0966 5 52.5 72.6
40 0967 10 55.7 65.5
41 0968 5 55.5 55.2
42 0969 4 52.3 69.3
43 0970 5 55.7 64.3
44 0971 4 51.1 71.4
45 0972 5 54.3 63.4
46 0973 4 50.8 64.0
47 0974 5 53.6 56.4
48 0975 11 64.7 58.5
49 0976 5 54.2 56.0
50 0977 4 49.1 67.4

TABLE 3.3: Sample snapshots from Sensefly Merlischachen
dataset [2] with corresponding time, distance and overlap
amounts. Time is difference between curren frame and pre-
vious frame measured in seconds. Distance is calculated us-
ing the actual 2D UAV position (using the GPS coordinates
recorded by the UAV), and not the distance between the snap-
shot centres. Overlap is calculated between current and previ-

ous snapshot.

3.4.3 Results and Discussion

Results from the two proposed algorithms will be discussed and evalu-
ated in this section. First results from image stitching are described in Sec-
tion 3.4.3.1, then motion estimation using image geometry from PnP algo-
rithm is described in Section 3.4.3.2.
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3.4.3.1 Homography Based Image Stitching

Hypothesising the ground as being flat, would enable the usage of ho-
mographies to align the snapshots to each other. Therefore it would enable
using image stitching to estimate the motion of the UAV, in short this would
allow localising the UAV.

As it was shown in Section 3.3.5, for image stitching to work, either one of
two assumptions have to be true. For the case of this research, the planarity
of the scene is assumed. This would mean that relationship between each
snapshot and the next overlapping snapshot, is a similarity transform. A
similarity transform is a combination of rotation, translation and scale, as
described in Section 3.3.5, and it is represented by the following matrix:

A =

 sx ∗ cos(ψ) −sin(ψ) 0
sin(ψ) sy ∗ cos(ψ) 0

tx ty 1

 , (3.52)

where ψ is the yaw rotation angle, sx, sy are scale values on both x and y axes;
and tx, ty are the translation values. Since the UAV altitude is constant, it
would mean that the scale does not change. Therefore it is safe to assume
that sx = sy = 1. This would render the transformation into a Euclidean
transformation:

A =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

tx ty 1

 . (3.53)

The matrix A is a Euclidean transformation matrix which maps the pre-
vious snapshot to the current snapshot. It assumes that the Down axis is
perpendicular to the ground (as in Figure 3.12 (left)), and it is estimated us-
ing a RANSAC approach [186]. The location of the UAV is determined by
the centre of the snapshot which would be at a constant height exactly above
the centre. Therefore by matching two snapshots to each other, it becomes
possible to know the path that the UAV took.

After running this algorithm on 2 different datasets, the results in Figure
3.16 were acquired.
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FIGURE 3.16: Graphical depiction of applying homography
stitching to the 2 datasets (first dataset on the left column, sec-

ond one on the right).

The snapshots centres (resembling resulting UAV path) are plotted against
the ground truth in Figure 3.17:
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FIGURE 3.17: Comparison the results of homography image
stitching to the GPS ground truth.
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The resulting path plotted in Figure 3.16 does not accurately follow the
actual path of the UAV. This can be seen when compared to the ground-truth
in Figure 3.15. In the case of the straight path dataset, the calculated UAV
path drifts by an average of 96 meters (8.9%), and a final drift value of 254
meters (23.5%). The second longer zig-zag dataset recorded an average drift
of 127 meters (2.4%), and a final drift of 262 meters (4.9%). Despite the fact
that the second dataset is considerably longer than the first one (5300m ver-
sus 1080m), but its final drift values are less than the other dataset. This is
because even though the second path is longer, but the UAV goes back and
forth, reaching a point which is located at a Euclidean distance of 750m away
from the initial take-off location. The drift values are plotted as follows in
Figure 3.18:
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FIGURE 3.18: Drift values resulting from using the image stitch-
ing algorithm.

After further investigation and deeper inspection of the snapshots, it is
noticed that they are not perfectly aligned with the recorded GPS UAV loca-
tions. I.e. the centre of each snapshot, does not fall straight below the tagged
GPS location. I.e. the camera does not point perfectly downwards. This is
explains the amounts of drift which is seen, especially the zig-zag motion be-
tween snapshots (right of Figure 3.17). Therefore, the cause of the drift can
be concluded as follows: The camera perpendicularity hypothesis which was
made earlier must be invalid for the following reasons:
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During flight, and at the instant of taking a snapshot, the orientation of
the camera, particularly the Down axis, is not perfectly perpendicular to the
ground. This is caused in part due to perturbations exacted on the body of
the UAV due to irregular air flow. This causes the Down axis to shift off from
the perpendicular position, even though that the camera is facing the ground
(see right Figure 3.12).

This means the the orientation is no longer a pure yaw rotation, and more
rotations are introduced (pitch and roll) into the orientation equation. And
since a yaw rotation cannot accommodate the other rotations, inaccuracy is
introduced, therefore the drift. The conclusion of this is that the orientation is
more complex and it cannot be captured by a single yaw rotation. Therefore
a different route is needed to be taken to address this problem. This is when
the epipolar geometry had to be investigated.

3.4.3.2 Epipolar Geometry Results and Discussion

As mentioned earlier in Section 3.3.4, the only available geometrical rela-
tion between two overlapping images which can be used to estimate motion
is the epipolar constraint [174]. The proposed solution can be represented by
the following workflow in Figure 3.19.

input
frames

SURF feature
detection

Find corre-
spondences
with previ-
ous frame

Estimate
essential
matrix E

using P2P
or P5P [178]

Decompose E
into rotation
& translation

matrices

Update pose-
graph (map)

FIGURE 3.19: Motion estimation workflow (following Algo-
rithm 2).

The proposed algorithm starts by feature detection across two frames, de-
tected features are matched to find the correspondences. After this a number
of the correspondences are used to estimate the essential matrix.

The minimal number of correspondences which can be used is 2 (as ar-
gued earlier). But it was shown in the previous section that the rotation of
the UAV camera is not purely composed of yaw rotation, therefore 2 corre-
spondences will not be enough. It was shown [178] that the P5P algorithm
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is more efficient than other algorithms which require more correspondences
such as P6P-P8P. Therefore five of the correspondences are used to estimate
the essential matrix using P5P. This can be done using SVD as described in
section 3.3.5.1. Since P5P algorithm estimates 6DoF movement, the depth
values as well as the roll and pitch rotations are intentionally dropped.

Note that it is not possible for us to use P3P because it requires corre-
spondences across 3 consecutive frames as it matches 2D features from the
3rd frame, to the 3D triangulated features from the first two frames. And
since 3 points are enough to constrain the motion of a 3D object, P3P is usu-
ally adopted when correspondences across 3 frames are available.

Given the essential matrix, it becomes possible to decompose it into corre-
sponding rotation and translation matrices as described in [178]. This is also
done using SVD. When the decomposition is done the locations are plotted
on a 2D map (pose graph). Since the times between each two snapshots is
between 4-5 seconds, the algorithm execution is real-time. Noting that the
most time consuming step in the proposed algorithm (as well as most VO
algorithms) is the feature detection and matching stage.

The algorithm was applied on both datasets, once using Bundle Adjust-
ment (BA) globally (on all frames), and another without using it. The results
are plotted along with the ground truth and they can be seen in Figure 3.20.
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FIGURE 3.20: Mapping the results of Algorithm 2, with global
Bundle Adjustment (BA) and without it. The red and yellow
paths represent the estimated path taken by the UAV, plotted
along the ground truth (blue). The algorithm is tested on two

datasets: the straight path (left) and the zig-zag path (right).

For the first straight path dataset, an average drift of 132m (12.2%) on
Non-BA P5P, and 96m (8.8%) on BA P5P were recorded. The final drift val-
ues were 286m (26.5%) and 203m (18.8%) respectively. On the second longer
dataset, the average drift was 466m (8.8%) on Non-BA P5P, and 303m (5.7%)
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on BA P5P. The final drift values were 686m (12.9%) and 297m (5.6%) respec-
tively. The resulting drift is plotted in Figure 3.21.
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FIGURE 3.21: The drift values resulting from the estimated
UAV paths. Left column: straight path dataset. Right column:
zig-zag path dataset. First line: resulting drift in both axes with-
out using BA. Second line: with BA. Third line: combined Eu-

clidean drift from both BA and non-BA.

The proposed solutions are compared with each other in Figure 3.22. As
can be seen, on the straight path dataset, the most accurate solution is the
P5P with BA, due to the employment of global error minimisation. On the
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zig-zag dataset the image stitching solution (homographies) performs better
on average than P5P with BA, and scores a slightly better final drift result.
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FIGURE 3.22: Drift comparison between using image stitch-
ing algorithm (homographies) and Perspective-from-n-Points
(epipolar geometry) algorithm. Top: straight path dataset. Bot-

tom: zig-zag path dataset.

To make sense of these results they must be compared to other works.
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However, a direct comparison is not possible because the majority of other
algorithms rely on correspondences between 3 frames for performing trian-
gulation and scale estimation. In addition, the amount of frames used by
other works is considerably larger. However, an extrapolation of results is
possible as is done in Table 3.4.

For example, using a video camera mounted on a vehicle, Nister [43] used
a combination of P5P for motion estimation, P3P for triangulation and Bun-
dle Adjustment for optimisation. On a dataset of 2944 frames over a 365m
long path, the final drift error was 1.63%. In another wheeled vehicle [83]
which used P1P without BA, 100m drift was reported across a 3km path,
which is equivalent to 3.33%. When VO was applied on UAVs, it achieved
less accurate results than vehicular robots. For example, one research [168]
used two datasets: the length of the first path was 140m, and the second
path was 110m long. The UAV had 6DoF and the navigation system used
a Kalman Filter to fuse visual and inertial sensor data. On the first flight it
resulted in a 2D drift up to 30m. On the second flight it scored a drift up to
7m. The amount of drift was equivalent to 21.4% on the first dataset, and the
second was equivalent to 6.3%.

Algorithm Type (Aerial/ Navigated FPS DriftWheeled) Distance
Ours (1) Aerial 1080m 0.2 18.8%
Ours (2) Aerial 5300m 0.2 4.9%

Nister [43] Wheeled 365m 5-10 1.63%
Scaramuzza [83] Wheeled 3000m 2.5-15 3.33%

Andert [168] Aerial 110m 10-30 6.3%

TABLE 3.4: Comparison between the results of the proposed
algorithms and other VO methods (using the best results and

the final drift values).

It is difficult to compare the amounts of drift achieved in this thesis to
ones in other works. This qualitative difference in performance between
aerial and vehicle VO systems can be attributed to:

1. Wheeled vehicles have more stability than aerial vehicles.

2. A higher frame rate means more frames being available for processing,
which allows motion estimation and BA algorithms to have more data
for processing, which means more accuracy.

3. Drift errors accumulate variably with time.

3.4.3.3 Homing Vector

It is now possible to estimate the homing vector which is calculated by
multiplying pose matrices by each other. This results in a total pose matrix.
Each pose matrix is composed of rotation R3×3 and translation T3×1, and it
has the form:
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Pose state =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1


This is equivalent to summing up all of the translation vectors (according to
the orthogonal matrix property described by Equation 3.8). An example of
an estimated homing vector can be seen in Figure 3.23, applied on the P5P
with BA results. The target was missed by an angle of 10.3

◦
which resulted

in a Euclidean drift distance of 203m on the first straight path datset. On
the second dataset, the angular drift was 10.2

◦
resulting in a Euclidean drift

distance of 298m.
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FIGURE 3.23: The estimated homing vectors calculated from
the estimated UAV path using P5P with BA. The light blue path
resembles the estimated homing orientation and length which
should be taken. The purple path is the actual direction which
the UAV will take. Due to drift, the homing is not very accurate.

3.5 Conclusion

In this chapter, two different visual localisation algorithms for homing
were proposed. The algorithms are inspired by insects [136, 140]. The first
one relies on image matching employing homographies, and the second one
relies on epipolar geometry, estimating the camera pose using Perspective-
From-n-Points algorithm. But because of resulting drift, these algorithms
cannot be used to plan the homing path for fixed-wing UAV on long jour-
neys as shown in the previous section. Therefore new solutions need to be
investigated. The next chapter is going to investigate the possibility of using
existing external cues which could aid in the task of homing, and localise the
UAV more accurately, such as Google Earth.
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Chapter 4

Global Localisation Using Sparse
Image Deep Segmentation

It was shown in the previous chapter how conventional VO methods
cause a serious amount of drift. This drift accumulates to the point that af-
ter a few kilometers, it becomes impossible to find the absolute location of
the UAV. This makes the task of UAV homing or taking any shortcuts back
home out of reach. Therefore, a natural question would arise at this point: Is
it possible to use any existing cues that would help in the localisation of the
UAV?

The current chapter answers this question by suggesting to use an exist-
ing aerial map for the absolute localisation of a UAV. Today, there are many
public photographic datasets of the surface of the earth which can be invested
in solving this problem. One such resource of information is Google Earth.

4.1 Introduction

Many risks are associated with relying on Global Navigation Satellite Sys-
tems (GNSS) for localisation which is traditionally used to localise fixed-wing
unmanned aerial vehicles (UAVs). For example, as it was argued in Chap-
ter 1.1, GNSS signal is succeptible to considerable malicious jamming and
spoofing risks, other than well known signal unreliability when flying close
to hills or large man made structures. Even if the chances of such failures
were rare, their impact would remain massive. These issues put more value
on having a redundant navigation mechanism that is independent and does
not rely on external aid such as GNSS.

Visual Odometry (VO) [44, 45] is traditionally used to track the path of
a robot such as a UAV. But the resulting location estimate of VO inevitably
drifts due to inaccuracies and noise in the measurements. This was shown
in Chapter 3. Drift can be corrected by the detection of loops, the so-called
loop-closure [52, 57]. Combining VO and loop closure is called Simultaneous
Localisation And Mapping (SLAM) [51]. But sometimes loop closures are not
always possible, for example when the robot, especially a fixed-wing UAV,
takes a long path and semi-circular turns. In this case, the localisation prob-
lem becomes more feasible to solve when some information is known about
the environment, such as, a ground-truth map [187], or artificial landmarks
[188, 189].
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In certain applications when flying a fixed-wing UAV at high altitudes,
a raw map of the environment is already available but it is not useful with-
out further processing, for example, due to differences in the states of the
environment. Google Earth is a rich source of this information, which can
be invested in the localisation of fixed-wing UAVs given that they fly at high
altitudes, much higher than rotor-wing UAVs. This is what makes an aerial
map especially accepssible to fixed-wing UAVs. Being able to localise the
UAV on a map, solves the problem of homing.

Many available visual UAV solutions take advantage of Google Earth for
GNSS denied localisation. These solutions range from relying on object seg-
mentation [190, 191], edge matching [50], feature matching [192, 193, 194],
deep optic flow [7] and dense registration [195, 196]. Some methods use a
precalculated lookup table (LUT) which resembles a map as in [197, 198]. De-
spite their success, challenges remain unaddressed in many of these systems,
such as, slow performance [7], relying too much on the similarity between
stored map and captured UAV snapshots [50], requiring a ground truth map
[198] or lack of objective results [192, 196].

The following scenario is considered: a consumer grade fixed-wing UAV
with onboard processing and a top-down RGB camera, which has gone be-
yond the visual line of sight but has access to a stored satellite map and a
series of top-down RGB images captured in real time. For this a semantic seg-
mentation based image-to-map matching localisation algorithm is designed.
The map is segmented using a dedicated end-to-end Convolutional Neural
Network (CNN). The UAV snapshots are segmented in real time using the
same CNN, and the histogram of the current snapshot is then localised on the
map. The proposed system architecture is depicted in Figure 4.1. See Fig. 4.2
for an outline of the particle filter localisation procedure, the whole algorithm
is explained in detail in section 4.3.

Previous frame

Current frame

Map

VO

CNN

PF Location estimate

LUT

Hist.

∆ψ

∆T

FIGURE 4.1: Proposed system architecture. The motion estima-
tion (VO) component is used from the previous chapter. Two
new components are added: The CNN, and the particle fil-
ter (PF). The CNN segments the map only once (dashed line)
which is converted to a Look Up Table (LUT). It also segments
each snapshot which is converted into a histogram of 4 values.
Both the LUT and the histogram are used by the PF for locali-

sation.

Semantic segmentation is necessary for understanding the composition
and contents of the photo. The main segmentation challenge is the lack of
training data belonging to the navigated region. Therefore the proposed
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CNN relies on a recent progress in aerial segmentation. It takes advantage
of mutual features [199] between urban satellite maps and top-down aerial
photos, given that they, A) share the same basic categories (roads, buildings,
trees and grass), and B) the relationships between these components are sim-
ilar (for example, roads are narrow, long and connected with each other).
This network is trained on the well known ISPRS Potsdam dataset [3] (see
Fig. 4.3), and it is not trained on any data derived from the UAV flight testing
environment.

FIGURE 4.3: Top row: Sample snapshots captured by the UAV
[2] used for localisation. Bottom row: Sample photo from the
CNN training dataset (ISPRS Potsdam [3]). The ground truth
for both is composed of four categories: houses, roads, trees

and grass

The main contributions of this chapter are declared as follows:

1. The proposal of a localisation system which can localise a UAV either
independently or act as a backup redundant system to aid GNSS.

2. It is demonstrated how real-time UAV localisation is possible given a
CNN with a modest segmentation capacity. Despite the importance of
having accurate segmentation, the focus of the contribution is not on
accuracy.

3. The CNN is trained on a single aerial dataset, but it has the capacity to
segment any aerial urban map, up to an accuracy percentage which is
enough to enable localisation. This enables the UAV to localise itself in
any urban setting.

The proposed deep learning segmentation based localisation system achieves
localisation performance close to recent state-of-the-art methods [7] while
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having the additional advantage of global localisation and real time perfor-
mance. It is demonstrated that given an aerial map, it would be possible for
a UAV to localise itself on a map in real-time by categorising different com-
ponents of a top-down aerial image, e.g., houses, trees, grass and roads. This
makes it possible to plan a return path to its origin. It also enables safe land-
ing, and has the potential to amend UK government fixed-wing UAV safety
regulations [8], by enabling safe flight beyond Visual Line Of Sight (VLOS).

The rest of the chapter is organised as follows: In section 4.2 related work
is discussed, in section 4.3 the proposed algorithm is described, in section 4.4
the performance of the proposed algorithm is evaluated, and finally conclu-
sions are outlined in section 4.5.

4.2 State Of The Art

In this section GNSS denied UAV localisation methods are reviewed in
the first half (Section 4.2.1), and since the proposed algorithm is based on
image segmentation, latest aerial image segmentation networks are reviewed
later in (Section 4.2.2).

4.2.1 UAV Localisation

Existing solutions relying solely on VO [44, 45] are enough to cover short
distances of a few hundred meters [78], but not longer ones. Even with Visual
SLAM solutions [60, 79, 70, 73], they are mostly used in closed or short range
environments. No SLAM applications have been found on fixed-wing UAVs,
perhaps due to their high flying speeds which make loop closures [57] less
likely. However, many works have been proposed to compensate for this
drift by calculating the absolute location by making use of an existing map,
for example Google Earth maps. Such solutions are reviewed in following
paragraphs.

A demonstration of the capacity of using top-down photos for navigation
using satellite imagery comes from [159] where the authors propose a basic
pixel-by-pixel comparison navigation algorithm which is inspired by insect
navigation.

We begin with solutions that use a lookup table. In [198] a geo-referencing
absolute localisation system is presented, that uses a hand-labelled Google
Earth map composed of 3 labels: grass, asphalt and house. The UAV snap-
shots are cropped circularly which makes them rotation invariant for match-
ing against the map, and the histogram for each segmented snapshot is cal-
culated in real time. This histogram resembles the ratios of the 3 different
categories in the image, and it is matched to a look-up table produced from
the map using a particle filter. This solution relies on a given ground truth
segmented map, which we consider a shortcoming that we aim to address.
Other solutions that use a lookup table include [197], but no convincing re-
sults are provided.
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Some other localisation systems use edge matching, such as, a sobel edge
detector [200, 50]. A Multi Layer Perceptron was used instead as an edge de-
tector and an automatic thresholding algorithm was adopted as an improve-
ment in the latter. The main disadvantage of edge matching algorithms is
variance to orientation and scale, both of which require additional sensors to
estimate. In addition, illumination changes in the environment can severely
affect the thresholding algorithm required for edge detection.

Dense registration localisation methods that depend on pixel intensity
values such as Mutual Information (MI) [195, 196], and optic flow [7]. We
believe this is the category of solutions that achieves the best state-of-the-art
accuracy. MI is used in [195, 196] to estimate the similarity between the cap-
tured UAV snapshot and the map. In [195] the accuracy is improved by us-
ing a stereo camera to register photos to a 3D map, the lack of availability of
which we consider a disadvantage. In other systems MI is shown to produce
very little improvement over other much simpler methods such as Sum of
Square Differences [196], perhaps because the dataset used is unchallenging.
A deep optic flow system is employed in [7] where a Convolutional Neural
Network (CNN) is used with a dedicated Lukas Kanade optic flow layer for
image registration, followed by state optimisation using photometric Bun-
dle Adjustment. This work is chosen as the best performing state-of-the-art
solution against which the algorithm proposed in this chapter is compared.

Other localisation methods rely on feature matching using traditional cor-
ner detectors, such as, SIFT, SURF and BRIEF, extracted from the RGB photos.
But due to temporal changes in the state of the environment (whether sea-
sonal or man-made) between the stored map and the current environment
state, such methods perform poorly, and current available solutions provide
unconvincing results [192, 193, 194], one shortage is the lack of comparison
with competing algorithms. Other methods focus on object segmentation
such as houses [190] and roads [191, 201]; and invest them for localisation.
Such methods assume the existence of roads and houses in each captured
UAV snapshot, a condition that is not always guaranteed. And since match-
ing relies on certain segments, useful information is possibly ignored.

4.2.2 Aerial Image Segmentation

Many deep learning solutions today have become state-of-the-art solu-
tions in a wide range of fields [99]. Within the field of semantic segmenta-
tion, deep learning solutions are based on Convolutional Neural Networks
(CNN). A sub-set of CNNs is called Fully Convolutional Networks (FCN)
[111], which are at the heart of solving the problem of semantic segmenta-
tion.

One category of a segmentation network is the Encoder-decoder architec-
ture. It is composed of a CNN stack that downsamples the input image into
denser feature maps, followed by an upsampling stack that upsamples the
feature maps into a segmented image with the same size as the input. An ex-
ample of this kind of network is SegNet [202, 113], in which pool indices from
the encoder are transferred to the decoder, and the decoder is followed by a
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final softmax classification layer. Another category is U-Net [106], in which
each step of the decoder is concatenated with feature maps taken from corre-
sponding parallel locations on the encoder.

Many deep learning solutions have been developed particularly for the
segmentation of aerial/satellite photos. Works in this field include road ex-
traction [203], building detection [204, 205] and landcover classification (se-
mantic labelling) [204, 206, 207, 208, 209, 210, 211, 212, 213]. The first work
that dealt with the lack of training data derived from the navigated region
is [214]. The training data used was completely different than the testing
data (both belonging to different cities), and it confirmed the generalisation
capacity of CNNs on aerial photos.

Another notable work is relation networks (RN). Original RN research
aimed at learning relations between different objects using their textual de-
scription [215]. It was later expanded to cover convolutional networks [216].
Recently, this research was applied on aerial photos, where progress was
done on a relation CNN [199] which can improve the capacity of an FCN
to learn how to associate similar distant regions of an aerial photo. Two dif-
ferent modules are used, one that makes use of the contextual information;
and another that takes advantage of colour. The modules accumulate infor-
mation and automatically learn the relationships in between. The modules
are designed as two extensions that can be added to any network, and both
are made use of at the bottom of the CNN.

Other notable research on image segmentation modular networks is the
use of Spatial Pyramids which started with [217]. In the beginning it was
used for object detection and image classification by calculating feature de-
scription histograms of different image regions. It was then improved in
Spatial Pyramid Pooling (SPP-net) [218] which became a module that can be
added to the end of a CNN before a classification layer. Its function was to
pool information on several global scales, which produced different descrip-
tors that can be eventually classified. Spatial Pyramids were finally applied
on convolutional networks to do semantic segmentation in Pyramid Scene
Parsing Network (PSPNet) [219], where it was used as a modular layer that
can be integrated into an FCN.

4.3 Proposed Method

In the first part of this section, the CNN implementation which is used for
segmentation is described (Section 4.3.1). In the second part the localisation
algorithm is outlined, which is the particle filtering algorithm used to localise
the segmented snapshots on the segmented map (Section 4.3.2).

4.3.1 Segmentation Convolutional Neural Network Architec-
ture

A lightweight CNN for segmenting both the UAV snapshots and the map
is designed (refer to Fig. 4.4 for the CNN structure). The network is a fully
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convolutional network [111] which has a U-Net [106] architecture, its encoder
being a mobileNetV2 network [105] which is a lightweight network opti-
mised for mobile devices. The encoder network is pretrained on ImageNet
dataset [108], which is frozen for transfer learning. Each of the modules de-
scribed below are added incrementally until the required segmentation accu-
racy threshold is matched (this test is described in section 4.4.3.1).

The encoder’s final output is first passed through 3 bottleneck residual
blocks, which are the basic building blocks of ResNet [103]. Each block has
double the number of output feature maps of the previous block. This con-
figuration was fine-tuned by testing randomly such that the overall network
achieved the best segmentation results.

The output is then passed through two modules taken from state-of-the-
art segmentation networks. The first module is a Pyramid Pooling Module,
which is adapted from [219]. In this module 3 different pyramid scales are
used to process the input and form 4 feature maps. The first feature map
is the result of 1x1 global average pooling, the second and the third feature
maps are 2x2 average pooling; and the last is 8x8. Each feature map is con-
voluted using a 1x1 convolution filter, and then upsampled. Eventually all
4 feature maps are concatenated with the original input, and passed to the
following module.

The last module is the Relations Module [199]. The relevance of this mod-
ule (adapted from [199]) is that it was designed for aerial photograph seg-
mentation by focusing on relating distant image segments with each other.
Relations Module is composed of two smaller modules: Spatial Relation
Module (see Fig. 4.6), and Channel Relation Module (see Fig. 4.7). Both of
these modules are connected in parallel, they receive the same input and the
results are concatenated.

The output is finally taken through the decoder, where it is upsampled 4
times using transpose convolutions. After each upsampling stage, the out-
put is concatenated with the encoder’s expand ReLU layer outputs which are
taken from blocks 1, 3, 6, 13 of MobileNetV2. A sample segmentation output
of the network can be seen in Fig. 4.5. For more sample results see (Fig.4.16
and Fig.4.17).

4.3.1.1 Significance of each Module:

Each module which was added to the network has its own significance
and special properties for which it was chosen. These properties are de-
scribed as such:

1. The residual blocks (Module 1 in Fig. 4.4): Taken from Res-Net [103]
which is composed of a large number of consecutive layers of these
blocks, each of which is designed to work well in deep layers. The sig-
nificance of these blocks is that they contain a skip connection whichs
enables achieving more depth than the deepest earlier networks such
as VGG [102].

2. Pyramids (Module 2 in Fig. 4.4): Shown to be useful in connecting
distant regions of the image to each other.
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3. Relation Modules (represented by Module 3 in Fig. 4.4): Spatial Rela-
tions module (Fig. 4.6) helps in capturing global spatial relations, and
Channel Relation module (Fig. 4.7) helps in capturing contextual rela-
tions.

Notably each of these modules has a skip connection, so that the original
signal is not modified but rather amplified.

Input Image Ground Truth Prediction

FIGURE 4.5: Sample CNN segmentation results on UAV snap-
shots
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FIGURE 4.6: Spatial Relation Module (SRM). signifies re-
shape. ⊗ is matrix multiplication. ⊙ is 1×1 convolution. ⊘

is Rectified Linear Unit (ReLU). • is concatenation.
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FIGURE 4.7: Channel Relation Module (CRM). ⊕ denotes
Global Average Pooling. ⊙ denotes 1×1 convolution. ⊛ de-
notes outer production. ⊖ denotes Softmax operation. ⊗ de-

notes matrix multiplication. signifies reshape.

4.3.2 Global Particle Filtering

In this section a K-Nearest Neighbour based Particle Filtering algorithm
is described. It will be used to localise a series of segmented top-down UAV
snapshots on a segmented Google Earth map. Our goal is to track the path
drawn by the snapshots on the map, therefore localise the most recent snap-
shot location on the map, which corresponds to the absolute location of the
UAV. In general the inspiration of this algorithm is [198], similar logic is fol-
lowed in this proposal but without relying on a ground truth map.

Our particle filtering (PF) framework, also known as Sequential Monte
Carlo (SMC) [54, 220], is a nonlinear state estimation approach that approx-
imates the posterior by a finite set of random samples. It is inspired by a
template matching algorithm [221]. The input measurements to the PF are
the angle and the distance between each two snapshots, both of which are
derived from VO.

The map is segmented using the CNN described in Section 4.3.1 before
flight and it is composed of 4 different categories: grass, houses, roads and
trees. Each snapshot is then segmented in real time using the same CNN
into the same categories. All input snapshots to the algorithm are resized to
800x600. The localisation steps are as follows:

1. Create the segmented map look-up table (LUT) Hn = {h1, h2, ..., hn}
using a sliding window (see Fig. 4.2). Each entry hi in this table cor-
responds to the histogram of a circular region with radius r centred
at a unique location on the map. The radius r is equal to I/2, where
I = 576 pixels, the height of the input image to the CNN. A window
stride equivalent to 5 meters in chosen in both column and row direc-
tions to reduce the size of LUT; this number will define the maximum
localisation accuracy that can be achieved. Each histogram is a list of 4
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percentage values that sum to 100 corresponding to 4 categories: grass,
houses, roads and trees.

2. PF initialisation: Create a set of particles Pc = {p1, p2, ..., pc}. The parti-
cle count is chosen to be c = 10, 000. Randomly spread the particles Pc
globally across the whole map (see Fig. 4.8).

1

2

3

FIGURE 4.8: (1) Ground truth path as recorded by GPS stamps
on photos (in red). (2) Global spreading of particles. (3) K-NN

particle matches for the 1st snapshot.

3. Segment the first snapshot St and take its histogram S′t, then find its K-
Nearest Neighbour [222] in the LUT: Kt = {Y : d(Y, Hi) < d(Hi, Hj), i ̸=
j} where Y is a small set of histograms closest to S′t; and d is the Eu-

clidean distance function: d(x, y) =
√

∑4
i=1(xi − yi)2.

4. Segment the second snapshot S(t+1) and take its histogram S′(t+1). Find
K(t+1) then allocate an initial movement direction for each particle by
finding the nearest neighbours to Kt. This is done by finding the nearest
neighbours of 8 equally dispersed points around Kt (see Fig. 4.9).
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pn

|

|

45◦
r

FIGURE 4.9: Particle pn with 8 possible movement directions of
radius r, each is measured at 45◦ angle of the next.

5. Acquire the following snapshot S(t+2), then calculate the amount of
yaw rotation ψ with the previous snapshot S(t+1). Since the UAV move-
ment is planar and the altitude is nearly constant, a planar scene is
assumed and ψ is estimated by finding the Rigid (Euclidean) transfor-
mation matrix between two snapshots: First, the locations of the corre-
spondences between the two snapshots are extracted using SURF [180].
They are centred and multiplied by each other: M = CorT

n × Cor(n−1),
where Corn is the correspondences locations list of snapshot n. Then the
Singular Value Decomposition (SVD) of M is calculated: M = USVT,
where U, S, V are the factorised matrices resulting from SVD. The Eu-
clidean rotation matrix can be then acquired using the equation:

R = V ×
∣∣V ×UT

∣∣×UT, (4.1)

where R is a counter-clockwise rotation matrix which takes the shape:

R2×2 =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (4.2)

After calculating R, the euclidean distance d between the two snapshots
can be calculated from the difference of their corresponding centres.

6. Scale the snapshot so that its height fits the input height I required by
the CNN. Crop the snapshot to a circle centred at the centre with a
radius r (following [198]). Segment the snapshot using our CNN, then
calculate its histogram S′(t+2) (see Fig. 4.10).
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FIGURE 4.10: Cropped snapshot S with histogram: S′ =
[55.3, 0.1, 2.3, 42.2] resembling percentages of: grass, houses,

roads and trees.

7. Move all particles by an angle ψ, and a distance d relative to their pre-
vious locations (see Fig. 4.11). The amount of movement of a particle
pn = (xn, yn) is calculated using:

p(n−1)

pn

|

| p(n+1)
ψ

d

FIGURE 4.11: Particle p(n+1) after being moved from its previ-
ous location pn relative to p(n−1) by angle ψ and distance d.

[
x′

y′

]
= R

[
x′′

y′′

]
, (4.3)

Where R is substituted from eq. 4.2; and (x′′, y′′) is the vector from the
previous particle location to the current one −−−−−→p(n−1)pn:[

x′′

y′′

]
=

[
pn.x− p(n−1).x
pn.y− p(n−1).y

]
, (4.4)

Finally the new particle location p(n+1) is calculated:

p(n+1) = (pn.x + x′, pn.y + y′). (4.5)
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8. After moving all particles, look up their equivalent histogram from the
LUT. Then calculate the particle weights based on their KNN distance
to the current snapshot histogram S′t. Normalise all weights so that
they sum to 1:

K′i =
Ki

∑ Ki
. (4.6)

9. Resampling: Sort the particle weights in a list starting with the small
weights (weights reflect the KNN distance to the current measurement
i.e. snapshot histogram, a smaller weight means a closer match). Then
calculate the cumulative sum C of all particle weights. Randomly sam-
ple n particles in the first half of C. This will increase the probability
of selecting particles that best agree with the measured snapshot his-
togram. Because the weights are sorted, cumulative sum is denser in
the first half than in the second half (see Fig. 4.12).

draw range

FIGURE 4.12: The cumulative sum of particle weights, notice
that it is denser at one edge than the other. Each pin represents
an entry, entries at the dense edge are closer match to the mea-

surement (snapshot histogram).

10. Calculate the PF estimate of the current snapshot location by taking the
mean of all particle locations. Then repeat from step (5).

4.4 Performance Evaluation

The experimental setup is described first in Section 4.4.1, then the perfor-
mance of both segmentation and localisation is evaluated in Sections 4.4.2
and 4.4.3 consecutively.

4.4.1 Experimental Setup

4.4.1.1 Datasets

The proposed CNN was trained on Potsdam satellite semantic labelling
image database authored by International Society for Photogrammetry and
Remote Sensing (ISPRS) [3]. The dataset contains 38 images, each image has
a resolution of 6000x6000 pixels and a Ground Sampling Distance (GSD) of
5cm. To train the network, the RGB orthographic versions of images are used
(see bottom row in Fig. 4.3).

Seven photos are used for validation (photo IDs are: 2_10, 2_11, 2_12,
2_13, 2_14, 3_10 and 3_11), and the rest are used for training excluding photo
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ID 4_12 (a total of 30 images). The corresponding ground truth images are
given and they are labeled by the authors using 6 categories: building, road,
tree, low vegetation (grass), artificial ground and cars. The CNN was trained
using 4 labels, after combining cars category with road; and artificial ground
with grass.

The main influential factor in training the CNN is data augmentation.
Potsdam RGB images are resized from 6000x6000 to 1200x1200 resolution
to match the scale of snapshots captured by the UAV. Then the augmented
datasets are created by cropping each image into 5 images (the 4 corners and
the center), then applying different rotation and flipping operations on the
resulting images. Finally each photo is blurred using a gaussian (normal
distribution) 3x3 kernel with σ = 1.

P(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.7)

Where µ is the mean (controls the centre of the curve), and σ is the standard
deviation. σ2 is the variance, which controls the width of the guassian curve.
If the function is plotted, it produces a bell shaped curve, this is why it is
called the bell curve.

The main UAV snapshots dataset used to evaluate the system is a pub-
licly available Sensefly Small Village dataset, Merlischachen [2]. The dataset
was captured in April 2013, and contains 297 high resolution (4608x3456)
top-down snapshots taken by a fixed-wing UAV (see top row in Fig. 4.3).
The UAV flight height is 162 meters relative to the ground, and the absolute
height ranges from 609-616m above sea level. Each snapshot has a reported
GSD of 5.32cm. 53 snapshots starting from photo ID 0928 are selected for
testing our algorithm, each having an overlap between 49-72% with the next.
The average distance between consecutive snapshot centres is between 50-
60m, and the average time gap is 5 seconds. The total navigated distance
is 2.85km with a flight time of 4 minutes and 39 seconds. Another dataset
(Willisau Swiss Gravel Quarry [6]) captured in April 2013, was also used to
compare our system with [7].

The maps were acquired from Google Earth. A map of the navigated
village (Merlischachen) was acquired at an altitude that corresponds to the
same scale of UAV snapshots. Two versions of this map were tested, one
acquired in June 2015, and another in May 2012 (see 2nd & 3rd columns in
Fig. 4.13). Both vary in the amount of changes from the state of the environ-
ment at flight time (which was in April 2013, see 1st column in Fig. 4.13). The
segmented ground truth for 2013 and 2015 maps were manually created and
used later for evaluation. Another map for Willisau [6] was also acquired on
November 2014 (see Fig. 4.14).
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Actual environment (2013) Willisau (GE, 2014)

FIGURE 4.14: The map used in the second dataset [6], acquired
from GE in November 2014. Along with the corresponding lo-

cation at the time of the flight (Dec. 2013).

A few of the photos (whether from the snapshots or the map), contain
a different category belonging to sea. But to our advantage there was no
confusion about classifying this category as the network learned to classify it
consistently as ’grass’ across all photos.

4.4.1.2 CNN Implementation

The final network contained 13m weight parameters. It was implemented
using Tensorflow and trained using an Nvidia Tesla K80. The encoder was
frozen so that its weights did not change. The Adam optimiser was used
and trained until the network could no longer improve on the validation
set. The network input image is a square image with height I = 576 pixels,
and the output is a segmented image of 4 labels with the same resolution.
Because transfer learning and a lightweight network were used, training the
CNN took around 8 hours, using a batch size of 16, and 20 epochs. The
corresponding training and validation loss can be seen in left of Fig.4.15, and
the resulting accuracy on the right of the same figure.
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Training and Validation Loss
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FIGURE 4.15: Loss (left) and accuracy (right) CNN training
curves.

4.4.2 Segmentation Performance

4.4.2.1 Evaluation Metric

To evaluate the segmentation performance Merlischachen dataset was
used along with the corresponding 2015 Google Earth map (2nd column in
Fig. 4.13). The segmentation grou nd truth for both is not available so one
third of Merlischachen testing snapshots (17 out of 53) were manually hand
labeled, as well as all of the 2015 Google Earth map.

The segmentation confusion matrices are calculated. The amounts of
correctly classified pixels (true positives) and the incorrectly classified pix-
els (false negatives) are shown for each label. Bottom Table 4.1 shows the
confusion matrix of Merlischachen snapshots, and Top Table 4.1 shows the
confusion matrix of Merlischachen Google Earth map.

→ Reference Houses Trees Grass Roads
↓ Prediction
Houses 51.24 5.65 20.78 22.33
Trees 0.27 62.85 36.07 0.81
Grass 2.23 10.04 83.00 4.73
Roads 3.38 2.56 33.70 60.35

→ Reference Houses Trees Grass Roads
↓ Prediction
Houses 69.13 1.44 11.53 17.89
Trees 1.32 51.52 45.60 1.56
Grass 3.33 6.82 85.84 4.00
Roads 7.71 6.33 22.89 63.07

TABLE 4.1: Segmentation accuracy confusion matrices for 2015
Merlischachen Map (top), and Merlischachen snapshots [2]
(bottom). Higher values (percentages) on the diagonal line
mean higher segmentation accuracy for each individual cate-

gory (true positives).
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Even though that the incorrectly labelled pixels (false negatives) can amount
up to 45% on a single category; or up to 22% on average; but the majority of
these incorrectly labelled pixels contribute towards the Overall Percentage
Accuracy (OPA) metric, which is the measure which was used to evaluate
matching the segmented snapshots to the map.

The Overall Percentage Accuracy (OPA) is defined as the overall pixel
count of each predicted label (whether true positives or false negatives) com-
pared to the ground truth counts. To calculate the OPA, Algorithm 3 is fol-
lowed:

Algorithm 3 Calculation of Overall Percentage Accuracy (OPA)
1: for snapshot s← 1, n do
2: for all label i ∈ {houses, trees, grass, road} do
3: A← percentage of i in GT
4: B← percentage of i in prediction
5: Acci ← A− B
6: if Acci < 0 then
7: Acci ← 0
8: OPAs = 100−∑ Acci

9: OPA = (∑n
s=1 OPAs)/n

4.4.2.2 Results and Discussion

The advantage of our navigation algorithm is that it is not necessary to
have a state-of-the-art segmentation performance, whether with regard to
true positives or accurate boundary segmentation, as misclassified pixels
(false negatives) can count towards the OPA metric.

What matters for us is to have ratios of labels in each snapshot as close as
possible to the ground truth ratios. This information is represented using the
Overall Percentage Accuracy (OPA) metric. This means that the misclassified
pixels can count towards the overall ratios.

In table 4.2, the total percentages of true positives and false negatives can
be seen, along with the corresponding Overall Percentage Accuracy (OPA).

→ Reference Snapshots Map
↓Measure
True Positives (%) 80.40 77.32
False Negatives (%) 19.60 22.68
Overall Percentage Accuracy (OPA) (%) 95.46 90.48
CNN Inference Time (s) 0.55 0.41

TABLE 4.2: Segmentation performance on Merlischachen snap-
shots and map. Inference time is per single processed photo.
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Input Image Ground Truth Prediction Input Image Ground Truth Prediction

FIGURE 4.16: CNN segmentation results on first 15 snapshots
from Merlischachen dataset.
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Input GT Prediction Input GT Prediction Input GT Prediction

FIGURE 4.17: Sample CNN segmentation results on GE map.
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4.4.3 Localisation Performance

4.4.3.1 Evaluation Metric

An accuracy test was conducted to find the lowest possible Overall Per-
centage Accuracy (OPA) on both map and snapshots, which is required for
successful localisation (i.e. for the PF to maintain tracking and to eventually
converge). This test would guide us in designing the CNN that would enable
this localisation in real time.

The starting point is the segmented ground truth for both Merlischachen
snapshots and map, then noise is incrementally added. First the algorithm is
tested after adding noise to the snapshots alone, then to the map alone, then
to both snapshots and map (see Table 4.3).

In the case of the map, uniform noise is distributed across the map, and
the look-up table Hn is recalculated. In the case of the snapshots, either static
or random noise value is either added or subtracted from the histogram.

Noise - + +/-
tolerance static noise static noise random noise *

Snapshots up to 30% up to 30% up to 30%
Map up to 25% up to 35% up to 30%
Both - ** - ** up to 15%

TABLE 4.3: Noise tolerance rates for both the snapshots and
the map. * The random noise has an upper limit and a lower
limit of the percentage specified. ** Repeating the same static

operation on both map and snapshots has no effect.

The process started with a bare U-Net, the modules described in sec-
tion 4.3.1 are incrementally added, and the network is fine tuned until an
OPA accuracy higher than 85% is achieved, the required minimum accord-
ing to the conducted test. Both OPA segmentation accuracies in Table 4.2
match this requirement. It is important to note that a bare U-Net without the
additional modules achieves considerably poorer localisation results.

4.4.3.2 Results and Discussion

The inference time of the CNN is an average of 0.55 seconds for UAV
snapshots, and 0.42 seconds for map photos tested on an Intel Core i3-6100T
CPU. The maximum time required to calculate the Rigid transform after ex-
tracting SURF features and matching them (as mentioned in section 4.3.2) is
0.22 seconds. This means that more than enough time is available to do the
processing in real time (a maximum of 0.77 seconds per snapshot), as the
capture time difference between each two snapshots is between 4-5 seconds.
This is much better than the method presented in [7], whose optimisation
alone takes an average of 6.8 seconds per snapshot on the same CPU.

In Fig. 4.18 the proposed global localisation algorithm is evaluated us-
ing 53 snapshots from the Sensefly Merlischachen dataset [2] on two Google
Earth maps. Using the first map (captured on June 2015), it was possible to
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estimate the location of the UAV with an average drift amount of 35m since
convergence on snapshot 16. This is within the visual range of a single snap-
shot which has a radius of around 80m. The second map was captured on
May 2012, where the PF converged on snapshot 11, and with an average drift
of 39m. The average drift for VO was 66m. The total area of each map is
600m2, and the total navigated distance is 2.85km. A video recording of the
system’s performance on the first dataset (GE, 2015) is available online 1. It
can also be seen in Fig.4.21.
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FIGURE 4.18: Our global absolute localisation performance
compared to Visual Odometry relative localisation tested on 53
snapshots from Merlischachen dataset. On a Google Earth map
captured in May 2012, the PF converges on snapshot 11, and
with an average drift of 35m. On a different map date (June
2015) our PF converges on snapshot 16, with an average drift of
39m. The U-Net behaves poorly without the additional mod-
ules. The planar drift is measured from the centre of the lo-
calised snapshot to the actual GPS recorded location of the UAV

in the air. [7] is not capable of absolute localisation.

In comparison with recent state-of-the-art algorithms, that the proposed
solution achieves close results. The proposed algorithm is applied on the
same snapshot sequences and maps used in [7]. The first dataset is a se-
quence of 17 snapshots (from Sensefly Merlischachen dataset [2]) which was
captured on April 2013, was used along a Google Earth map of the same area
which was captured earlier on May 2012. This is a time gap of 11 months,
which is much shorter than the more challenging version which was used in
our global localisation test above (26 months). The proposed system achieves
a relative localisation with an average drift of 20.3m is achieved, but even

1Online: https://doi.org/10.15131/shef.data.16589621

https://doi.org/10.15131/shef.data.16589621
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though it is less accurate than the state-of-the-art average of 7.06m on the
same map (see Fig. 4.19); it has the advantage of being capable of global lo-
calisation.
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FIGURE 4.19: Comparison with the first map in [7] (relative lo-
calisation). Sequence is 17 snapshots long.

The second map used in [7] is more challenging as the houses category is
nearly absent. There is a time gap of 19 months between flight date (April
2013) and map capture date (November 2014). The sequence used is 12 snap-
shots long from Sensefly Willisau dataset [6]. An average drift amount of
38m was achieved, close to the state-of-the-art of 25m (see Fig. 4.20).
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FIGURE 4.20: Comparison with the second map in [7] (relative
localisation). Sequence is 12 snapshots long.

4.5 Conclusions

In this chapter a vision based absolute global localisation system that uses
Google Earth had been designed. The proposed solution is a CNN segmen-
tation based algorithm which uses a particle filter for localisation. The key to
the success of the algorithm is taking advantage of features common to both
maps and aerial photographs, namely the categories of objects and the rela-
tions between them. By taking advantage of those relations it was demon-
strated that it is possible to localise a UAV using sparse snapshots and a map
given a lightweight CNN which is trained on a popular aerial dataset [3]
achieving modest segmentation results on both snapshots and map.

It was demonstrated that the proposed solution could achieve localisation
performance close to state-of-the-art algorithms, with the additional advan-
tage of being capable of global localisation. More accuracy would have been
achieved if a higher frame rate was available, or if other measurements from
other sensors such as an IMU were acquired. In those cases, it would be pos-
sible to fuse the estimate from our system with other estimates coming from
the extra sensors in a sensor fusion mechanism. The proposed solution has
the potential to enable many safety measures that can be used in emergen-
cies such as homing (i.e. return back to take-off position) and safe landing.

A natural question would arise: Is it possible to improve the system fur-
ther? Today, deep learning is becoming the state-of-the-art solution in many
diverse areas. Therefore a logical question imposes itself: Is it possible to
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integrate more deep learning into the system? Therefore in the coming chap-
ter, the possibility of integrating more deep learning into this system will be
investigated.
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FIGURE 4.21: System performance continued from Figure 4.8.
The red path is the ground truth, the blue path is the estimated
UAV location. The PF converges on snapshot 16. Notice that
before convergence the estimated location is inaccurate because
its location is estimated by averaging the locations of all parti-

cles.
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Chapter 5

Deep Image Registration and
Visual Odometry

The previous chapter proposed a UAV localisation and homing solution
which was completely independent from GNSS. The main component which
enabled this capacity was a CNN which could segment both the captured
snapshots and the map without being trained on datasets derived from nei-
ther the map nor the snapshots. The proposed algorithm could localise the
snapshots globally on the map. The current chapter deals with the question:
Can deep learning be extended to other parts of the system which are cur-
rently solved using non-learning algorithms, namely, the motion estimation
(visual odometry) component, and would it make any improvements?

5.1 Introduction

In the previous chapter it was shown how image matching against a map
using deep learning can be competing to traditional methods for localisation.
It can even be superior to them at other tasks (such as global localisation).
Given the success of deep learning in many applications, it is natural to won-
der about the possibility of getting performance improvements by extending
the deep learning into other parts of the system. By looking at the sketch
of the localisation system introduced in the previous chapter (Figure 4.1), it
can be noticed that the motion estimation (VO) operation is completely inde-
pendent from the segmentation. It used the input frames directly to find the
motion between two frames. But can this architecture be modified to allow
the integration of more learning into the system (Figure 5.1)?

The aim of this chapter is to investigate the possibility of converting the
motion estimation (VO) algorithm introduced in Chapter 3 and used in Chap-
ter 4, into a learning solution. This task is going to be addressed by investing
the segmented snapshots which were acquired by the segmentation network
of the previous chapter in motion estimation, through deep registration.
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LUT
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CNN VO PF
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estimate
on the map

Learning based

FIGURE 5.1: Localisation system diagram. The segmentation
CNN was proposed in Chapter 4. In Chapter 3, frame to frame
motion estimation (VO) was proposed (either using homogra-
phies or PnP algorithm). In this chapter, the aim is to convert
the motion estimation (VO) segment to become learning based.

Traditionally, the transformation between two frames is found by extract-
ing specific point features from both frames, then matching them. This is pos-
sible in monocular RGB images (see top row in Figure 5.2), and this is how it
was done in Chapter 3. But if the pixel intensities of the segmented frames
are to be considered, considerable amounts of useful information which are
currently being ignored, could be invested in matching (see bottom row in
Figure 5.2).

Left Right Registered

FIGURE 5.2: Top row: Traditional image registration through
feature detection and matching. Bottom row: Global pixel in-

tensity based registration.

Two main challenges arise at this point against doing deep registration:

1. It is well known [44] that global matching methods which rely on pixel
intensities for matching are less accurate than feature based methods.

2. It was shown in many researches how traditional (non-learning) regis-
tration and matching methods outperform learning based ones. This
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is mainly because 1) the ground truth of learning methods is acquired
from traditional methods, and 2) the capacity of the deep network to
generalise beyond the training dataset is very limited on greyscale pho-
tos.

However, the argument of using the segmented snapshots as the object of
learning has stronger incentives:

1. In the case of fixed-wing UAV navigation introduced in this thesis, no
frames bear to be lost. As there is a single line of frames which draws
the UAV path. Therefore, due to the sensitivity of motion estimation
from feature correspondences, it would be advantageous to switch to
deep matching when the RANSAC correspondence algorithm does not
meet a good consensus threshold [185].

2. Existing deep registration networks fail to register greyscale photos
with 256 labels not belonging to the dataset used for training. It would
be interesting to know if this case still applied to segmented photos
composed of only 4 labels instead of the normal 256 greyscale colours
range. Does the reduction in labels make the registration task easier to
address?

3. Since traditional registration methods outperform deep ones, it was
suggested that it is preferred to use the deep VO methods only in case
of temporary failures of traditional methods [223]. This argument adds
to the redundancy of the localisation system.

Many of the available registration convolutional neural networks follow
a siamese architecture. Given that the purpose of the deep VO networks is
to find a relationship between two frames, it is reasonable that the siamese
approach is taken. The same types of features (whether points or regions)
have to be extracted from the two input frames. These features are eventually
matched and used to find a relationship between the two input frames and
to produce the corresponding translation and rotation transformations.

The rest of the chapter is organised as follows: In Section 5.2 a review
of existing state-of-the-art deep registration/VO methods is presented. The
solution is proposed in Section 5.3 and evaluated in Section 5.4. Finally a
conclusion of this work is presented in Section 5.5.

5.2 State Of The Art

As previously defined, Visual Odometry is done by estimating the changes
in location and orientation of the agent across frames. In simple terms, it is
done by estimating the pose changes of the agent from one frame to another
using a user defined function. When all of these poses are combined, they
amount to what is called visual odometry. Motion estimation is done by
matching (or registering) the frames to each other. Traditional (non-learning)
image registration techniques can be classified into two categories:
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1. Feature based methods: Which first do feature detection on two input
frames using algorithms such as SIFT, SURF, ORB.. And then matching
those features from one frame to another. Using the correspondences it
becomes possible to find a relationship between frames.

2. Intensity based methods (also called global, or wholistic methods): Op-
timisation based methods which follow an iterative approach so as to
minimise a cost function or a similarity measure.

In deep learning, pose estimation follows the same approach as tradi-
tional methods. They take an input of two images, and produce the trans-
formation between them. The only difference is in the way the function is
estimated: it is not defined by the user, rather by a learning based neural
network.

Existing deep VO methods imitate both of these techniques: feature based
and intensity based; in addition to a third technique not normally applied in
traditional methods which is based on optic-flow. Available deep image reg-
istration systems, like other deep image processing networks, rely on CNNs.
And just as some conventional image registration methods are iterative, such
as, Mutual Information (MI), deep methods are iterative as well, as the CNN
is trained iteratively, but eventually the prediction is done in a single itera-
tion.

Given a fixed image f and a moving image m, existing deep VO and reg-
istration networks can be classified into the following 3 categories:

1. Rigid registration: Also called linear or affine registration. In this kind
of registration all pixels from image m are transformed by the same
amounts of translation, rotation and scaling, so as to maximise a sim-
ilarity measure with f . This is the kind of registration that is most re-
lated to the application of this chapter.

2. Non-Rigid registration: Also referred to in literature as non-linear, warp-
ing, deformable and morphing registration. Here, an irregular transforma-
tion field or an optic flow field is predicted so as to transform the pixels
in m to match ones in f , maximising a similarity measure. Each pixel in
m is transformed separately.

3. Spatial Transformation Units (STNs): is a kind of modular network that
does not predict transformation parameters (nor a registration field),
rather it applies such parameters to the moving image m, which in turn
is compared to f using a similarity measure.

Available rigid registration methods are used in two main kinds of sys-
tems: Deep Visual Odometry, and deep image registration (medical and aerial
images). These methods are classified in Table 5.1, each category is discussed
in detail in the following sub-sections.
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Supervised Un-Supervised
Rigid [224, 225, 226, 227, 228, 229, 230] [121, 231]
Non-Rigid [231, 121]
Prior Concat. [224, 225, 226] [121, 232, 233]
Ensuing Concat. [227, 228, 229, 230] [231]
MSE-Loss [228, 229, 226, 230, 225, 224, 234] [235]
NCC-Loss [231, 121, 236, 237, 235]
Other Loss Geodesic [225] MAE [233], Custom [232]

TABLE 5.1: Classification of registration methods.

5.2.1 Deep Visual Odometry Networks

Deep VO methods accomplish the task of visual odometry by predicting
the camera poses across frames. This is done repetitively by matching each
frame at time t with the following frame at time t+ 1, until final frame at time
n is reached. Deep VO networks can be classified into two categories: net-
works that do concatenation at the beginning (prior concatenation), and ones
that do concatenation at the end (ensuing concatenation) (see Figure 5.3). All
of deep VO networks do rigid registration.

Frame 1 Frame 2

C
N

N

C
N

N

Dense Dense

Concatenate

Dense

∆T ∆ψ

Frame 1 Frame 2

Concatenate

Frames

C
N

N

Dense Dense

∆T ∆ψ

FIGURE 5.3: Deep VO network types: concatenation is either
done at the end (ensuing concatenation), on the left, or at the
beginning (prior concatenation), on the right. Each dense block
is composed of 1 or more fully connected layers, which are used

to regress the rotation and translation changes.
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Ensuing Concatenation: The general procedure followed by this kind of
networks is to extract features from two frames at times t and t + 1, then
match those features to find the pose. The general network architecture is
composed of two branches (following a siamese architecture), each branch
is a shared CNN which is used for feature extraction. Then the final out-
puts of the two CNNs are concatenated and connected to a layer or more of
fully connected layers, which does the task of feature matching, eventually
regressing the required rigid parameters (rotation, translation and/or scal-
ing). This kind of networks belong to the ensuing concatenation category,
and such networks generally follow the architecture described in left of Fig-
ure 5.3.

The first learning based framework that was proposed to do pose esti-
mation was DeepVO [234]. The network is siamese, each branch consists of
a bare (untrained) AlexNet [100] and two fully connected layers. The two
branches are then concatenated and connected to 3 fully connected layers,
the final output of which regressed 3 values: two for translation on ∆x and
∆y axes, and one for rotation ∆ψ. The network was trained on the KITTI
autonomous driving dataset [110].

This class of networks was later improved by using pre-trained CNN
models such as, VLocNet [238] and VLocNet++ [125]. This network has
two ResNet-50 branches which are concatenated and connected to two fully
connected layers to regress 6 variables representing the 6 degree-of-freedom
global pose. Many other networks with similar architectures were also pro-
posed [227, 228, 229, 230, 231]. Other variations include using optic flow
maps [239], passing detected features along with input images [234], doing
segmentation along with VO [125] and predicting depth along with VO [240].

Prior Concatenation: Appearing after the ensuing concatenation models,
this kind of networks does not follow the siamese architecture. Rather the
two input frames are concatenated, and they are processed by a single CNN
branch (as described in the right of Figure 5.3). For example UnDeepVO
[232], which relies on VGG network architecture [102], and ends with two
branches of fully connected layers to regress 6 values representing changes
in rotation (∆ϕ, ∆ψ, ∆ψ) and translation (∆x, ∆y, ∆z).

Numerous variations have been proposed [124, 240, 224, 225, 121, 226,
233, 124] which integrate different components, for example, the integration
of Long Short-Term Memory (LSTM) modules after the CNN, such as DR-
CNN [241, 242]. Other networks pass features instead of whole images [243].

DeepVIO [233] uses separate networks to estimates the optic-flow be-
tween two frames, then it is integrated with IMU data using another network
to calculate the trajectory of a stereo camera. Other networks integrate depth
like [244, 240], others predict depth which is passed to a separate VO network
like [245, 244].

5.2.2 Spatial Transformer Networks

Spatial Transformer Networks (STNs) are modular networks which can
be inserted into other existing networks, and trained along with them using
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backpropagation. They take in an input image or feature map, and produce
a transformed version of it. This transformation can be rigid or non-rigid,
and this flexibility makes them applicable on both rigid and non-rigid reg-
istration. In the case of rigid registration, the STN receives an input image,
along with transformation parameters (translation x, y and rotation ψ), and
it applies those parameters to every pixel in the image. In the case of non-
rigid registration, the STN receives a transformation field Φ and it applies it
to corresponding pixels in the input image.

They were first introduced in [246], and their advantage is that they ef-
ficiently learn how to adjust the spatial information within a network, so as
to maximise the final optimisation objective done by the network. For exam-
ple they help shift and rotate an input image so as to best match a template
image by employing a similarity measure. They help the network invest spa-
tially diverse information instead of ignoring such information which is what
CNNs normally do. An STN is depicted in Figure 5.4, and it is composed of
the following parts:

1. Localisation network: which is a small CNN which regresses the trans-
formation parameters (whether rigid or non-rigid).

2. Sampling grid: calculates the new location of each transformed feature
point (pixel) from the input image into the output image.

3. Sampling (bilinear interpolation): calculates the intensity values of each
pixel or feature point in the new location by considering the intensity
values of surrounding pixels.

Spatial Transformation Unit (STN)

CNN
∆T
∆ψ

Grid
generator Sampler

FIGURE 5.4: A Spatial Transformation Unit (STN) which shows
its application on a rigid transformation.

Since their introduction, STNs have been successfully invested in many
medical image registration networks [231, 121] which are discussed in the
following section. It is worthwhile to mention some notable modifications
to STNs. In [227] a new module was introduced called Image Transformer
Network (ITN) which can be added prior to an STN forming Image and Spa-
tial Transformer Network (ISTN). It was applied on the rigid registration of
segmented vessel images. It is composed of a mini CNN which learns how
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to optimise the input image received by the STN, maximising the registra-
tion accuracy of STN given that a Structures-of-Interest (SoI) regions are pro-
vided (such as a segmented map). Another notable work is IC-STN [247]
which addresses the boundaries effects produced by STNs due to cropping,
by modifying the warping parameters instead of the input image.

5.2.3 Deep Image Registration Networks

A different category of networks is called deep image registration, such
techniques are mostly applied on medical and aerial images. A big portion of
these systems follow non-rigid registration, but some of them follow a rigid
registration approach which is the focus of this chapter.

Deep registration networks aim to accomplish a similar task as Deep VO
methods, but instead of predicting a camera pose, they attempt to register
one image on top of the other. They match a moving image m to a fixed image
f . Despite the fact that both of these methods are used to solve different
problems, but both of them serve the objective addressed by this chapter.

5.2.3.1 Aerial Image Registration

Also called remote sensing image registration. Existing aerial image reg-
istration systems’ final aim is to overlay one image on top of the other. In
general, aerial image registration systems can be classified into 3 categories:

1. Feature matching registration: follow the same architecture as Deep
VO, such as, [248, 249, 250, 251, 252, 253, 254, 255, 256, 257]. They ex-
tract features using a CNN, then match them either using a separate al-
gorithm, or using another CNN. Even if some of these methods do not
predict the registration parameters (such as rotation and translation),
in theory, it is possible to calculate them from the correspondences.

2. Homography prediction: Predict the locations of the 4 corners of mov-
ing image m in fixed image f , such as, [258, 259]. This is not necessarily
useful for the applications of this chapter, as the 4 corners have to ad-
here to rigid transformation constraints.

3. Global registration: The only kind which is non-rigid. The pixel inten-
sities in each image are considered as a whole, and a CNN is trained
to compare two images by maximising a similarity measure like Nor-
malised Cross Correlation (NCC), Mutual Information (MI) or Mean
Square Error (MSE) [260].

5.2.3.2 Medical Image Registration

Deformable registration networks are applied on medical image registra-
tion with the purpose of finding the segmentation map of one of the two
images being registered. This is done by registering a segmentation ground
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truth A′ of image A, to another unsegmented image B. This results in an op-
tic flow field which maps the pixels of image A to image B. This optic flow
field is eventually applied on the segmented map A′, to get B′.

In essence, deformable registration morphs a moving image m to match
another fixed image f , using a transformation field which contains different
transformation values for each pixel [121, 236, 261, 230]. This is different than
finding rigid transformation parameters which applies the same transforma-
tion to all image pixels.

A few of the available medical image registration systems focus on rigid
registration, and they follow the same architecture as deep VO systems. For
example, [230, 228, 229] follow the later concatenation model, others follow
the prior concatenation model [226, 225, 224]. Some are capable of doing
both rigid and non-rigid registration [121, 231]. Others prove that registering
feature points is more accurate than registering pixel intensities [262].

The majority of medical image registration systems are non-rigid, a semi-
nal work which is a good representative of state-of-the-art medical deformable
networks is called DIRNet [237]. DIRNet is an unsupervised network which
receives two images: moving m and fixed f , and composed of a fully CNN
that predicts a transformation field Φ, which is applied to m using an STN
producing m(Φ). Then m(Φ) is compared to f using a similarity metric, op-
timising a normalised cross correlation (NCC) objective function (loss) and
providing backpropagation to the CNN.

Most of existing deformable networks follow similar architectures as [237],
for example the recent state-of-the-art unsupervised VoxelMorph [236, 235].
VoxelMorph contains a U-Net CNN, which concatenates the two input im-
ages and predicts a transition field. This field is sent to an STN [246] which
warps one of the input image, which is then compared to the other. There
is no need for ground truth labels, hence the training is unsupervised. Its
advantage is the flexibility in calculating the loss, as in addition to calculat-
ing the NCC loss, it introduces another smoothing loss term to supervise the
changes in the transformation field. Many later works were built on top of
VoxelMorph such as ADMIR [121].

A recent breakthrough which is based on VoxelMorph is the introduction
of SynthSeg [263] which recognises the weak ability of CNNs to generalise
to images with contrast values different than those used for training. There-
fore instead of requiring ground truth segmentations for training data, it uses
samples of existing labelled data and produces new data for training using a
gaussian generative model. This forces the network to learn to segment dif-
ferent shapes and intensities during training. The most notable registration
work built on it is SynthMorph [264, 265], which recognises a disadvantage
of all existing deformable networks to generalise to new data with intensities
non-existent in training data. It proposes to use randomly synthesised train-
ing images, and it proves that this method beats state of the art networks
such as [235].
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5.3 Proposed Method

The overall system architecture is described in Figure 5.1. The difference
between this architecture and the one introduced in the previous chapter, is
that the VO component no longer needs to do traditional feature detection
and matching on input RGB snapshots. Instead, it works on the segmented
snapshots coming from the segmentation CNN, using 4 greyscale values in-
stead of 256 which is normally used. In addition, it is now learning based.

The new proposed VO module is another CNN which receives 2 input
snapshots captured at times t and t + 1. The snapshots are segmented and
they are composed of 4 labels. The CNN predicts two numerical values:
the amounts of yaw rotation ∆ψ and translation ∆T between the two input
frames.

The main challenge that the research in this chapter faced is the lack of
research in rigid segmented image registration, which especially have big
amounts of rotation and translation. It was unclear from the beginning of
the research which direction had to be taken which would enable this kind
of registration. The planned CNN could follow one of numerous different
architectures, as most of the existing works seemed plausible to begin with.
Therefore, a series of experiments had to be done so as to reach the optimum
network architecture. The progress towards the optimum solution can be
summarised as:

1. Deep VO: Experimentations started with deep VO network architec-
tures (prior and ensuing concatenation, as will be explained in the fol-
lowing section), and their results were evaluated on the proposed dataset.

2. Deformable networks: A semi-supervised learning solution is proposed.
The network is derived from deformable network registration.

3. Randomised generation: A promising work about adding randomness
to the training images is evaluated for better addressing the problem.

The results and discussion of each one of these experiments are described
in the following section. Conclusions are finally made in Section 5.5.

5.4 Performance Evaluation

In this section the dataset setup is described first. Then the experiments
listed in the previous section are described, each with its own corresponding
results and discussion.

5.4.1 Experimental Setup

The main dataset used for training is ISPRS Potsdam [3], which is the
same one used to train the segmentation CNN in Chapter 4. This dataset
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contains 38 high resolution aerial images along with their ground truth seg-
mentations. Each segmented image contains 6 different categories (impervi-
ous surfaces, buildings, low vegetation, tree, car and clutter). For the pur-
poses of this work, the ’car’ label is combined with ’imprevious surfaces’ to
create a ’road’ label, and ’clutter’ is combined with ’low vegetation’ to create
a new ’grass’ label. This results in images which contain 4 categories, the
same number of categories predicted by the segmentation CNN. Figure 5.5
outlines sample photos from Potsdam dataset.

FIGURE 5.5: Sample Potsdam DS photos used for augmenta-
tion. First line: RGB Potsdam photos. Second line: Original
labels. Third line: The combined labels used for augmenting

the required dataset.

Using the high resolution images in Potsdam dataset (a total of 38 images,
each with the size of 6000x6000 pixels), an augmented dataset was created.
The augmented datset consists of pairs of images with 60% minimum over-
lap. To produce those pairs, each one on the 38 images was augmented as
follows:

Let a Potsdam photo be called im, each photo is augmented as follows:

1. For each photo im of 38 photos:

2. Resize im to a size that matches the scale of the standard fixed-wing
UAV altitude.
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3. Randomly rotate im in an angle between -179◦ and +179◦.

4. Crop a square inside the result to acquire the first snapshot.

5. Crop a random square inside the unrotated im, to acquire the second
snapshot. Cropping should be done so that there is a minimum overlap
of 60%, a chosen initial value.

6. Repeat 190 times for each photo.

This procedure produces 7220 augmented pairs of images (see Figures 5.6 &
5.7 for sample photos).

FIGURE 5.6: Samples of augmented Potsdam DS photos used
for training the registration CNN.

FIGURE 5.7: Samples from a single augmented Potsdam photo.



5.4. Performance Evaluation 117

5.4.2 Rigid Deep VO: Prior Concatenation

Research started by replicating the deep VO network architectures. It
seemed reasonable that such architectures would work. As existing works
solve a similar problem to the one being addressed: the inputs are two frames,
and the objective is to find a relationship between them, which is a transfor-
mation from one frame to the other.

An initial model was created which followed the Prior Concatenation ar-
chitecture described in Figure 5.3. The model relied on a pre-trained Mo-
bileNetV2 [105] network base, the same light weight network that was cho-
sen for the segmentation network in Chapter 4. The base was connected to
fully connected layers, the last of which regressed the translation ∆T, which
is composed of two values (∆x, ∆y); and rotation ∆ψ values.

5.4.2.1 Results

Numerous architecture settings were tested, for example, numerous base
CNN architectures were tested (bare such as AlexNet [100] or pre-trained
like MobileNetV2 [105]), the number and width of dense layers, dropout,
optimisation algorithm, learning rate.. etc. But none gave good results, in
all tested settings no matter how the network structure and its parameter
configurations were changed, the network would not learn successfully, it
would keep overfitting, i.e. memorising the input images, but not finding a
generalisable relationship between them.

5.4.2.2 Discussion

After deeper investigation into existing deep VO networks, it becomes
easy to notice that they are applied on video frames captured at high frame
rate, the same kinds of videos used to do SLAM. Which means that the two
input frames at times t and t + 1 have a very high overlap. And when they
are concatenated on top of each other, one of the two frames needs a small
deformation to match the other. This deformation can be represented by an
optic flow field (see Figure 5.8):
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FIGURE 5.8: Top: Two input frames at times t and t + 1 from
KITTI driving dataset. Bottom: The resulting optic flow map

which captures the movement from one frame to the other.

In prior concatenation deep VO networks, the two frames are concate-
nated at the outset, and later they are convolved by the CNN. Since the dif-
ference between the two frames is minimal, it becomes possible to capture
the feature transitions from frame t to frame t + 1 within a single kernel. Fig-
ure 5.9 shows how it is possible to map two diagonal edges using a 5 × 5
convolution kernel:

5× 5 Convolution filter

frame t

frame t + 1

frames t and t + 1

FIGURE 5.9: High overlap between two photos means that the
convolution filters of a CNN can easily find a mapping between

the pixels of two concatenated images.

It can be understood that the prior concatenation networks first find an
optic flow map, then with the help of fully connected layers, they average the
whole map and convert it into a transformation matrix. This is precisely the
reason why such architectures failed in the case of aerial photos with little
overlap. Because since the overlap was not big enough, it was not possible
to find the initial optic flow field using convolution filters. By comparison to
Figure 5.9, the second layer of pixels t + 1 contained pixels which are neigh-
bouring to the corresponding pixels in the first layer t. Such neighbouring
pixels do not exist in the case of aerial images with limited overlap. Even
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when it was attempted to increase the size of the convolution filters to excep-
tionally big sizes, e.g., 20 or 30, overfitting remained and generalisation was
unsuccessful. Therefore a different path had to be taken.

5.4.3 Rigid Deep VO: Ensuing Concatenation

Since concatenating the two input frames at the outset (before being con-
volved by the network) did not produce good results, another network was
created following the ensuing concatenation architecture. The base CNN
remained similar, with the exception of converting the architecture into a
Siamese (double branched) network, and adding fully connected layers at
the end. Each branch received an image which would be convolved by the
CNN. The processed feature maps would be concatenated, then finally re-
gressed to do a regressive prediction of 3 values: two values representing
changes in surface translation (∆x, ∆y), and one representing change in yaw
angle rotation ∆ψ.

5.4.3.1 MobileNetV2 Results

The following is the network architecture which was adopted when a
pre-trained MobileNetV2 was used as the base CNN. The weights of Mo-
bileNetV2 were frozen (in preparation for transfer learning). The output
feature maps from layer block_16_project were taken from MobileNetV2 (this
layer which has low resolution is immediately behind the last output layer of
MobileNetV2). Then the feature maps were passed to a fully connected layer,
which were then concatenated and eventually regressed through a series of
dense (fully connected) layers. The architecture can be seen in Figure 5.10.
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FIGURE 5.10: Ensuing concatenation network structure. The
’Functional’ module is the MobileNetV2 CNN. The ’Dense’ lay-

ers are fully connected layers.

The network contained 16m parameters, and it was trained on an Nvidia



5.4. Performance Evaluation 121

V100 GPU for 500 epochs. Adagrad optimiser was used (which does not
require any manual tuning of the learning rate) with MSE loss for the trans-
lation, and MAE loss for rotation (scaled by 20 factors to compensate for the
low values). MSE and MAE losses are commonly used for regression prob-
lems. The progress of the resulting loss showed good learning. The loss
curves showed that the network was learning well as its performance on the
validation set was as good as the training set. Both curves were decreasing
hand in hand, as can be seen in Figure 5.11:

75

175

150

125

100

50

25

0 100 200 300 400 500

Epoch

Accuracy Metrics: Translation

predictionsTranslation_euclidean_distance

val_predictionsTranslation_euclidean_distance

A
cc

 V
a
lu

e

80

60

40

20

0 100 200 300 400 500

Epoch

Accuracy Metrics: Rotation

predictionsRotation_mae

val_predictionsRotation_mae

A
cc

 V
a
lu

e

FIGURE 5.11: Loss and accuracy training curves resulting from
using MobileNetV2 CNN transfer learning.

When the trained network was tested on the testing set, the results were
as follows (Table 5.2):
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Prediction Average accuracy
Rotation MAE (yaw angle) 11◦

Translation (Euclidean distance) 19 pixels

TABLE 5.2: Results from using MobileNetV2 in ensuing con-
catenation architecture.

5.4.3.2 AlexNet Results

Another experiment was performed, where the same network architec-
ture was maintained, with the exception of replacing MobileNetV2 pre-trained
CNN with an untrained AlexNet [100] CNN. The overall network structure
can be seen in Figure 5.12:

FIGURE 5.12: Network structure. The ’Sequential’ model is
AlexNet CNN.

The AlexNet CNN architecture used can be seen in Figure 5.13.
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FIGURE 5.13: The modified AlexNet structure which was used.

The final network contained 4.8m weight parameters. It was trained on
an Nvidia Tesla P100 GPU for 300 epochs. Adam optimiser was used with
MSE loss for translation, and MAE loss for rotation. The rotation loss was
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scaled by 10 factors to compensate for low rotation values. The resulting loss
curves showed good learning behaviour. They are shown in Figure 5.14:
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FIGURE 5.14: Loss and accuracy training curves.

The final prediction results on the testing set are as follows (Table 5.3):

Prediction Average accuracy
Rotation MAE (yaw angle) 4◦

Translation (Euclidean distance) 12 pixels

TABLE 5.3: Results from using bare (untrained) AlexNet in en-
suing concatenation architecture.

The results above were acquired by training on Potsdam dataset. All im-
ages in the dataset were augmented, the augmented results were shuffled
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and the resulting set was split into training/validation/testing subsets (see
top of Figure 5.15). According to this setting, the network worked well and
gave the results above.

However, when the network was tested on segmented images belong-
ing to a different dataset, e.g., the hand labelled versions of Sensefly Merl-
ishachen dataset [2], the results were not as expected. In those cases, the
network performed much worse and it was incapable to learn and generalise
its knowledge. Surprisingly, similar results were acquired when Potsdam im-
ages were split at the outset, i.e., instead of shuffling all photos then splitting,
the photos were split into different subsets, then each subset was augmented
to produce the full sized subsets (see bottom of Figure 5.15).

Frame 1

Frame 2

Frame n

Training set (70%)

Validation set (20%)

Testing set (10%)

Input Frames
Augmentation

Shuffling

Frame
1

Frame
k

Frame
k

Frame
m

Frame
m

Frame
n

Training set

Validation set

Testing set

Input Frames Augmentation Shuffling

Training set (70%)

Validation set (20%)

Testing set (10%)

FIGURE 5.15: Dataset splitting strategies: Either augment all
photos (all Potsdam DS photos), shuffle then split into 3 sub-
sets (top), or separate photos before augmentation and shuf-

fling into 3 subsets (bottom).

The outcome that a bare network performed slightly better than a pre-
trained network is discussed in the following section, where the results above
are investigated.

5.4.3.3 Discussion

The ensuing concatenation architecture proved more successful than the
prior concatenation, as the network learned successfully and it did not over-
fit. Also, it was not a surprise that a bare un-trained network such as AlexNet
performed much better than using a pre-trained network such as MobileNetV2.
As it was shown in [266], using a pre-trained network (transfer learning) does
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not help very much if the objective is localisation, as opposed to classification.
This is because the majority of the currently available pre-trained networks
are trained on on a single dataset: ImageNet [95], with a classification objec-
tive.

The acquired results were consistent with this conclusion, as after many
trials it was found that an untrained AlexNet gave better results than Mo-
bileNetV2. It can be understood that the network works as follows: first,
the two branches of the CNN performed feature extraction on both input
frames, then the fully connected layers helped find a relationship between
the extracted features, in effect doing feature matching. Which is identical to
the traditional feature extraction and matching workflow.

Despite the fact that it is well known that neural networks perform well
only on datasets on which they are trained, the original assumption which
was made in this work was that it would be easier to register segmented
aerial photos due to their much simpler nature: they are not RGB images,
rather, they are segmented into only 4 categories. I.e., instead of dealing with
256 colours, only 4 colours are needed to be dealt with (see Figure 5.16).

FIGURE 5.16: Comparison between an RGB image, and a seg-
mented image composed of 4 colours.

Therefore, it seemed reasonable at the outset that a network trained on a
subset of such images, would be able to generalise its knowledge to register
other similar images. However, after proper testing and evaluation, this as-
sumption was proved to be invalid. The conclusion to be made from this is
that the number of categories did not matter, rather, the patterns and distri-
butions of those categories played the main role. For the network to learn
well, it needed to be trained on patterns which were similar to the testing set.
This is when research took a new path, and another category of solutions had
to be investigated: The deformable networks.

5.4.4 Deformable Networks

Deformable networks are a kind of networks which were designed for
medical image registration. They morph a moving image so as to match a
fixed image. Applying deformable transformation on aerial images is un-
helpful in the case that is being addressed in this chapter (see Figure 5.17).
This is because the eventual aim of the desired registration is not only to map
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pixels of one image to another, but to find the rigid transformation parame-
ters. However, since they use STNs (which can operate on regressed rotation
and translation parameters), it would be possible to modify them to make
them suitable for rigid registration.

Fixed image f Moving image m Deformed Optic Flow Deformation Field

→

FIGURE 5.17: Deformable registration results on aerial snap-
shots.

The state-of-the-art work in this field is a network called VoxelMorph[236,
235]. The network receives two images: A fixed image f , and a moving image
m. And it is composed of a U-Net which learns to predict an optic flow reg-
istration field ϕ, which is applied on m using a Spatial Transformation Unit
(STN), and then compared to the fixed image f . The network architecture
was modified as follows (refer to Figure 5.18):

moving (m)

fixed ( f )
. . .

∆ψ

∆T

STN

ground truth
(∆ψ, ∆T)

Siamese CNN

FIGURE 5.18: Proposed rigid semi-supervised architecture.
STN is a Spatial Transformation Unit.

1. The U-Net was replaced with a rigid transformation network which
regressed rotation ∆ψ and translation (∆x, ∆y) resembled by ∆T. In-
stead of concatenating input images, both images were provided con-
currently to the best performing siamese model which was achieved
before. Which has an ensuing concatenation siamese architecture with
untrained AlexNet base (Figure 5.12).
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2. Instead of predicting a registration field ϕ, the network now regressed
rotation and translation values. But since the ground truth for these
values was already available, they were used as means to provide par-
tial supervision to the network. If the original unsupervised scheme
was used, the chances of getting stuck at local minimums become big,
as the aerial images have large rotation/translation difference. This
is why ground truth rotation & translation values were provided as
means to regularise the network. I.e. replace the Lsmooth loss with a
new semi-supervised loss. This made the network semi-supervised.

3. Two STNs were used sequentially: one to apply rotation, another is to
apply translation to the moving image m.

The ADAM [267] optimisation algorithm was used, MSE loss was used
for regressing the translation, and MAE for regressing the rotation.

5.4.4.1 Results

The resulting architecture can be seen in Figure 5.19.
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FIGURE 5.19: Modified deformable network structure.

The final network contained 4.8m parameters. It was trained on Nvidia
Tesla P100 for 300 epochs. Adam optimiser was used along MSE loss for
both spatial transformers and translation regression. MAE loss was used for
rotation regression. The resulting loss curves from this network proved much
better than previous networks (Figure 5.20):
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FIGURE 5.20: Loss and accuracy training curves.

Resulting predictions on the testing set were as in Table 5.4:

Prediction Average accuracy
Rotation MAE (yaw angle) 4◦

Translation (Euclidean distance) 5.8 pixels

TABLE 5.4: Results from using the proposed network architec-
ture.

5.4.4.2 Discussion

Instead of augmenting and shuffling all Potsdam dataset images, then
splitting them into training/validation/testing sets, they were split before
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augmentation, and each set was augmented. But this failed, which meant
that the network was not learning to generalise to photos it had not seen
before.

It is important to note that existing rigid transformation works [230, 228,
229, 226] use a single dataset. I.e. they use similar kinds of photos with
identical layout but different rotations and translations to produce the train-
ing/validation/testing sets. Not only this, but the augmentations made are
minimal, for example:

1. In [226] the translation in the augmented images ranged from [-5, +5]
pixels, and the rotation was between [-5, +5] degrees only. The image
sizes were 71x61 pixels.

2. In [229] they had a standard deviation of 10 pixels and 10 degrees i.e.
68% of training values were within this range. The images were sized
at 156x300 pixels.

3. In [230] rotations were between [-15, +15] and translations between [-
30, +30], with 256x256 pixels sized images.

4. The network proposed in [224] was trained for rough registration using
rotations of range ±30, and for fine registration with range ±5.

This clearly showed that other existing networks were simply learning
the current task only, and their generalisation capacity with other datasets
was not good at all. This made it required to pursue a different direction,
particularly a recent work which showed good prospects.

5.4.5 Randomised Generation

There is evidence from a recent work that training on randomly gener-
ated images makes the network adapt to the registration of images unseen
before [264]. So a final attempt to learn the regression task was made using
randomly generated images (Figure 5.21).
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FIGURE 5.21: Samples of generated randomised images.

The images were generated like so:

1. Generate 4 Perlin Gaussian noise images pj(j ∈ 1, 2, ..., J). Perlin noise
is a kind of randomly generated n-dimensional gradient noise [268],
whose values have smooth transitions. As an example, see left of Fig-
ure 5.22. The number of generated images J equals the number of cate-
gories (labels) required, for this thesis, J = 4.

2. Apply Gaussian blurring to each noise image. See right of Figure 5.22.

3. To get the final labelled image, calculate the argmax across all pixels of
all generated noise images pj: rk = arg max(pj)

4. Repeat for k required random images k ∈ 1, 2, ..., K. For this work, K =
8900 images were generated for training.

FIGURE 5.22: Perlin Gaussian noise image before smoothing
(left), and after smoothing (right).
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5.4.5.1 Results

This procedure follows the process presented in [264, 265], except that
no random deformation field is applied to the noise images. After training
using the randomly generated dataset, the network could not learn to gener-
alise well, and it was overfitting no matter how the parameters were changed
(refer to Figures 5.23 & 5.24).
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FIGURE 5.23: Resulting loss after training on the network ar-
chitecture with AlexNet base.
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FIGURE 5.24: Resulting loss after training on the modified de-
formable architecture.

5.4.5.2 Discussion

It has been recognised by many different papers such as [264] that CNNs
in general work only on images they have seen before. Therefore the CNN
does not learn how to work with unfamiliar data. This is understandable, as
if the CNN learns to extract particular features belonging to a set of images,
there would be no reason to think it would be able to extract those unique
features in images belonging to a different datasets.
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But we have a couple of reasons to postulate that this rule does not apply
for aerial images, especially top-down ones, and more especially that they
are segmented. Most aerial images share similar components (roads, trees,
houses, streets). And they share a lot of common features, for example it is
not possible to find round houses, as houses are mostly square shaped, roads
extend from one end to another and are not isolated.. etc.

We have relied on this principle to produce the segmentation CNN which
enabled the localisation system introduced in Chapter 4. It was assumed that
it would work for registration as well as segmentation. I.e. by following
the same principle, training a network to register pairs of segmented aerial
photos from one dataset, should give the network enough knowledge to be
able to generalise its behaviour on different datasets.

In addition, it has been proved in some works [265] that brute forcing the
network to learn new features dramatically improved its generalisation abil-
ity. Nevertheless, none of these techniques were able to give the proposed
network the capacity to generalise beyond training dataset. That is, they fail
to register new aerial photos, not only photos belonging to the same dataset
which the training set was taken from. The reason why randomised gener-
ation worked in the original paper [265] might be that the generated images
in it were morphing examples. Which means that they already had big over-
lap, and it can be understood that the network ’nudged’ edges to match each
other. The case is different in the case of this thesis. As the photos have big
rotation variance, an act of ’nudging’ them means the possibility of falling
into local minimums. Therefore the colours in the image need to be used for
matching. In Appendix B a simple test was conducted to validate this. This
test demonstrates how CNNs fail to recognise, or ’see’ colour, perhaps due to
their convolutional nature (convolutions are only sensitive at the edges, not
on blank colours).

5.5 Conclusion

In conclusion, the search done in this chapter went through a series of
stages so as to reach a sound solution. In the experiments done in the first
stage, it was shown how both kinds of deep VO networks (prior and ensuing
concatenation) did not work for the problem of top-down segmented regis-
tration with big rotation and translation differences. In the second stage, a
different solution taken from deformable networks was proposed. The ar-
chitecture of a state-of-the-art deformable network was changed, and a new
semi-supervised network capable of doing the required registration task was
proposed.

However, the proposed architecture failed to register novel photos not
derived from the same dataset from which the training set was taken. There-
fore, in the third stage, another experiment inspired from a promising re-
search was conducted. The research proved that training a CNN with ran-
domly generated images improved its generalisation capacity. The proposed
network was trained on randomly generated images which represented the
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input segmented photos. They contained 4 labels with identical colour spread-
ing to the dataset. However the generalisation capacity was not improved.

The main conclusion to be drawn from this is that the failure to generalise
registration to novel aerial images belonging to new environments other than
the trained dataset, is not due to a shortcoming in the proposed network. As
it can correctly predict the transformations between images as long as they
are taken from the same dataset (as in Figure 5.15). But rather this failure
is due to the convolutional nature of CNNs. A small experiment was made
that exposes this shortcoming, it shows how CNNs fail to distinguish colour.
The research made in this chapter highlights this gap in CNNs, and shows
the need to address it.
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Chapter 6

Conclusions

In this thesis the localisation of a fixed-wing UAV using a single monoc-
ular camera was studied. The main focus was on addressing the safety con-
cerns of flying Small Unmanned Aircraft (SUA) under the weight of 20kg,
using computer vision techniques. The SUA flies at a constant height up to
a few hundred meters. Throughout the thesis, a computer vision localisation
solution was developed.

Two visual odometry (VO) algorithms based on traditional feature detec-
tion and matching were proposed for solving the problem of localisation of
a UAV. The first was based on image stitching, and the second was based
on camera motion estimation, Perspective-from-n-Points (PnP). This was ad-
dressed in Chapter 3. Both algorithms were evaluated, but as it was shown,
due to accumulated inaccuracies between the frames, big amounts of drift
resulted at the end of the navigated paths. On two long datasets (1080m and
5300m), the angular drift was 10.3

◦
and 10.2

◦
respectively. And a Euclidean

drift distance of 203m and 298m respectively.
With the aim of addressing the big drift resulting from traditional tech-

niques, it was suggested to use existing resources of information which is
especially available for fixed-wing UAVs, such as Google Earth. A segmen-
tation CNN was proposed (Chapter 4) which was trained on an independent
dataset, but was able to segment new unseen datasets, such as the navigated
environment and the corresponding Google Earth map. It was shown how
integrating this CNN with a particle filter, in addition to the VO module pre-
sented earlier which caused drift if used alone, offered big improvements. It
enabled the localisation of the UAV on the map, which solved the large drift
amounts and made it possible to do homing, which is to return back to the
initial take off location.

The proposed solution could achieve localisation accuracy close to state-
of-the-art algorithms, with the additional advantage of being capable of global
localisation. The only disadvantage of the proposed system is that its accu-
racy is highly tied to the frame rate. Given the probabilistic nature of the
particle filter, its accuracy can be significantly improved by having higher
frame rate, which was not available in the datasets used.

Aiming to refine the system further, and given the success of using deep
learning in a navigation system, an investigation about the possibility of ex-
tending the deep learning to other parts of the system was pursued. The fo-
cus was especially the motion estimation component. Many existing works
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were evaluated, eventually proposing a rigid based semi-supervised regis-
tration system which could estimate the rotation and translation between two
segmented snapshots (Chapter 5). Despite its limited generalisation capacity,
it was able to learn and predict well but only using photographs identical to
the dataset on which it was trained.

The proposed solution is cheap to implement. It requires a single camera
with moderate on-board processing, which makes it applicable to consumer
lightweight fixed-wing drones under 20kg. Possible applications include:

1. The proposed localisation system is cheap to implement. All it requires
is a top down camera and moderate on-board processing. And it can
be used to enable homing on Small Aerial Vehicles (SAVs), especially
cheap drones sold off the shelf. This property increases safety of oper-
ation and it can possibly count towards demonstrating that safe flight
can be performed beyond visual line of sight (BVLOS). Such demon-
stration is a legal requirement in the UK [8]. If it can be demonstrated
that the system is safe enough, it can deregulate flying an SAV.

2. The system can be deployed on professional UAVs with state-of-the-art
GNSS navigation technologies. This helps in adding an extra layer of
redundancy which is crucial in every aerial navigation system. Numer-
ous redundant localisation systems are used on civilian aeroplanes, but
unfortunately, not all of them are available for SAVs. Therefore hav-
ing cheap redundant localisation systems which can be cheaply imple-
mented on SAVs is very important for reducing risks and improving
safety. This was argued in detail in Chapter 1.

3. The system can also be extended to be used on other large scale GNSS
denied environments specifically on other solar planets which lack satel-
lite navigation technologies like Mars.

6.1 Future work

The work presented in this thesis can be carried forward and developed
in many directions, for example:

1. State estimation and visual odometry are problems which have been
studied well over the past two decades. They have efficient traditional
mathematical and geometric solutions. However, due to the advent
of deep learning techniques, the right balance and optimum integra-
tion between deep learning and traditional methods across different
fields and applications is yet to be found. The research done in this
thesis highlights this need, and shows how the two can be combined to
achieve superior end results.

2. Localisation accuracy: It is possible to integrate an Inertial Measure-
ment Unit (IMU) inside the UAV. The IMU measurements should be
recorded alongside the captured snapshots. It is possible to merge these
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measurements with the location estimate predicted by the system using
a Kalman filter, in what is known as the Extended Kalman Filter (EKF)
sensor fusion. Other clues which can possibly help in localising the
UAV can also be integrated such as the location of the sun, which can be
inferred from the building shadow directions in each of the snapshots.
The application of recent neuromorphic imaging sensors on fixed-wing
UAVs can also be explored.

3. Improve safety: Another path which can be pursued is to classify the
safe landing regions on the map and attempt to use them as backup
landing sites in case of emergency. It is sometimes important to recog-
nise populated areas and avoid flying over them all together. This re-
quires improving the classification CNN, and to develop path planning
algorithms. One important challenge in this regard is to be able to cor-
rectly classify safe landing sites as they share the same categories as
other sites.

4. CNN architecture: The fifth chapter revealed a shortcoming about CNNs
and provides pointers to possible directions which can be taken. It
shows a need to deeply explore how CNNs process information on a
lower level, with the purpose of enabling CNNs to have better colour
sensitivity on blank and untextured images (refer to Appendix B).
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Appendix A

Matrix and Vector Properties

Some of the equations in Chapter 3 rely on the following vector and ma-
trix properties:

A.1 Vector Operations

A.1.1 Cross Product

• The cross product of two vectors, is another vector which is perpendic-
ular to both. The resulting vector has a magnitude (length) which is
equal to the parallelogram formed by the two vectors.

• A cross product of a vector with itself is zero:

a⃗× a⃗ = 0,

• Cross product between two equal n-dimentional vectors is equal to:

⃗a3×1 × ⃗b3×1 = ⌊ax⌋b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


3×3

b1
b2
b3


3×1

,

Where ⌊ax⌋ is called the skew symmetric matrix form of the vector a⃗. A
skew symmetric matrix is a matrix which satisfies the condition:

AT = −A.

A.1.2 Dot Product

• The dot product of two vectors is a scalar which can be calculated as:

a⃗.⃗b = |a||b| sin(θ),

• A dot product of a vector with itself is one:

a⃗.⃗a = 1,
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• The dot product of two perpendicular vectors is zero:

a⃗.⃗b = 0,

• Dot product of two matrices:

A.B = ATB,

Where AT is the transpose of A.

A.2 Matrix Properties

• Transpose of two multiplied matrices is:

(AB)T = BT AT.

• Matrix multiplication is associative:

A ∗ B = B ∗ A

• Matrix rank is the number of unique rows or columns in that matrix.
I.e. it is the number of rows which are not a multiplication, addition,
division or subtraction of other rows. If the rank of a matrix is equal
to the number of variables in it, it becomes possible to find a unique
solution. If the matrix is square, it is possible to find the rank by finding
the determinant. A non-zero determinant means that matrix is full rank
(all rows and columns are independent).

• Matrix determinant can be found only for square matrices:

M =

[
a b
c d

]
= ad− bc
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Appendix B

CNN blindness to colour

The following experiment was done to test the colour sensitivity of the
registration CNNs presented in Section 5.4.3. A greyscale chequered image
was randomly generated using a range of 4 colours (representing the 4 main
categories existing in the aerial datasets used in the thesis). See Figure B.1.

FIGURE B.1: Randomly generated image with 32x32 blocks, us-
ing 4 colours.

Each generated image was randomly cropped into two snapshots differ-
ing only in translation, and each containing 8x8 blocks. Each generated im-
age had the resolution equivalent to input an input aerial photo to the CNN
(see Figure B.2).

FIGURE B.2: Two 8x8 cropped snapshots from a generated im-
age.

This operation was repeated until a whole dataset of left and right images
was populated, and used to train a siamese CNN proposed in Section 5.4.3.
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B.1 Results

The experimented was first attempted with low resolution shapes (Fig-
ure B.3), then with ones containing more blocks:

FIGURE B.3: Two 4x4 cropped snapshots from a generated im-
age.

But no matter how much block resolution the images had, the registration
CNN would not learn to map these photos to each other. A sample resulting
loss curve is shown in Figure B.4.

FIGURE B.4: Sample loss result of training using the checkered
squares.

However, surprise came when a simple non symmetric star shape was
imposed on the snapshots (Figure B.5):

FIGURE B.5: Left: Imposed star. Right: Sample resulting frame
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The network learned to register the unsymmetrical images easily as op-
posed to images containing symmetrical coloured blocks. The resulting loss
curve is shown in Figure B.6.

FIGURE B.6: Sample loss result of training using the checkered
squares with the added star.

This experiment shows clearly how CNNs have a disadvantage when it
comes to colour sensitivity. As the network only learned to register the im-
ages when the unsymmetrical shapes were added to the training images.
Which lets us draw the conclusion that due to the convolutional nature of
CNNs, they learn from edges despite the various colours existing in the im-
ages. This experiment sheds the light on an inherent shortcoming about
CNNs. The research done in Chapter 5 shows the need to address this short-
coming.
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