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Abstract 

Improving stroke care is a national priority and adherence to national policy and 

guidelines is closely monitored by numerous organisations using a considerable 

number of overlapping indicators of stroke care processes. Demonstration that the 

processes of stroke care are linked to patient outcomes in empirical post-stroke 

populations is confounded by the complexities of patient case-mix.  

Electronic, real-time, point of care data capture of care processes that are 

demonstrably linked to appropriately case-mix adjusted patient reported outcomes 

would increase confidence that the important aspects of patients’ care are 

measured, monitored, and improved. This thesis aims to determine the best 

available case-mix adjuster, process measures and preferred patient reported 

outcome instruments and, through exploration of the relationships between these 

factors, to develop a dataset for use within an electronic data system. The best 

available case-mix adjuster was identified through a systematic literature review as 

the Six Simple Variable (SSV) model. Through group decision making workshops, 

and informed by a previous systematic review, the Subjective Index of physical and 

Social Outcome (SIPSO) was identified as the preferred postal outcome measure. I 

demonstrate how existing process markers for stroke lack variability, such that 

when recorded in their current format, their relative impact on patient outcome is 

difficult to discern.  

Process measures which feature as important predictors of patient outcome are 

shown to act as proxy measures of stroke severity. The SSV case-mix adjustment 

model is overshadowed by a simple univariable predictor (length of stay) which is 

also likely to be acting as a proxy for stroke severity. In this context, length of stay 

may offer a pragmatic alternative to more complex case-mix adjustment models to 

examine the relationships between processes of care and outcome in populations 

of stroke survivors.  
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Chapter 1 Introduction  

1.1 A brief history of stroke 

Until the early part of the 20th Century, stroke was referred to in the medical literature as 

apoplexy. The term originated with the ancient Greeks and, etymologically, derives from 

the Greek ‘to disable by means of a stroke’, with stroke in this context taken to mean “as if 

struck by lightning” or “the stroke of God” (Pound P et al  1997 p 337). In 1802, Heberden 

offered a description of apoplexy: 

“…a sudden, or rapid weakness in some of the muscles of voluntary 

motion, constitutes a palsy, and in this manner it most usually 

begins; and a total loss of motion in every part of the body except 

the heart and organs of respiration, together with insensibility, is 

called an apoplexy; the cause of which is sometimes strong enough 

to put a stop to the motion even of the heart and lungs, and to 

occasion instant death.” (Heberden W 1892 p338)  

This accurate description of the onset of stroke is remarkably similar to the current World 

Health Organisation definition of “rapidly developing clinical signs of focal disturbance of 

cerebral function, lasting more than 24 hours or leading to death with no apparent cause 

other than that of vascular origin” (Hatano S et al  1976). 

Interruption to cerebral blood flow as the pathological cause of stroke was recognised as 

long ago as the ancient Greeks (Galen AD 131) (Pound P et al  1997). Blood-letting was 

commonly employed in an attempt to relieve the symptoms of stroke and, remarkably, it 

was not until the early 20th Century that venesection was deemed to be of no benefit 

(Pound P et al  1997). Treatment options for acute stroke remained dishearteningly limited 

with the Hippocratic aphorism that: “It is impossible to remove a strong attack of apoplexy, 

and not easy to remove a weak attack” remaining a remarkably insightful observation. As 

recently as the 1980s, treatment of stroke remained largely supportive, with emphasis 

being placed on prevention of further events (Petersdorf RG et al  1983 p 2041). In the 

middle of the 20th Century, pioneers of Geriatric Medicine such as Marjorie Warren 

demonstrated the benefits of rehabilitation in longer term conditions including stroke 

(Barton et al  2003); the importance of organised multidisciplinary therapy in stroke has 

been increasingly recognised and encouraged since the early 1960s (Pound P et al  1997).  

However, it was the 1997 Stroke Unit Trialists’ systematic review of randomised trials of 

organised stroke unit care versus general ward care that catalysed a paradigm shift 

towards organised inpatient stroke care delivered in dedicated stroke units (Stroke Unit 

Trialists' Collaboration 2007). This review demonstrated a clear benefit in terms of 

likelihood of survival, return to independence and living at home following a stroke; a 

benefit that was seen in all patients regardless of stroke type or severity. 
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Specific interventions have now been shown in randomised controlled trials to be effective 

in improving patient outcomes following stroke. Early Supported Discharge schemes 

promote the use of community based specialist stroke rehabilitation teams and have been 

shown to be cost effective, improve patient outcomes and reduce length of stay in those 

with less severe strokes (Early Supported Discharge Trialists 2005).  Thrombolytic therapy 

has been shown in meta-analysis of large multicentre randomised trials to be of benefit in 

terms of increasing the likelihood of independent survival in specific subgroups of patients 

with acute ischaemic stroke (Wardlaw JM et al  2009).  

These complex interventions require significant organisational infrastructure to enable 

them to be routinely available to all who may benefit from them - for example the timely 

availability of brain imaging to allow administration of thrombolytic agents in those for 

whom it is indicated, or sufficient capacity on the specialist acute stroke unit to allow 

direct admission from the Emergency Department or from the community. Over the last 

decade, there has been considerable work to define best practice in stroke care based on 

the emerging evidence base and to identify areas of deficiency in stroke care provision. 

This has prompted significant investment in the development of stroke services in an 

attempt to improve access to these interventions. In the next section I discuss the 

evolution of the definition and monitoring of high quality stroke care in England, Wales 

and Northern Ireland.   

1.2 The evolution of stroke care monitoring 

Since their inception in 1998, sequential biennial Royal College of Physicians Clinical and 

Organisational National Sentinel Stroke Audits (RCP NSSA) have allowed local services to 

assess changes over time and in relation to the national situation as regards stroke care 

provision in England, Wales and Northern Ireland (Intercollegiate Stroke Working Party 

2010; Intercollegiate Stroke Working Party 2011). Stroke process data are extracted 

retrospectively from consecutive patients admitted during the audit period (the first 60 

patients in the last audit) and submitted to the RCP via a web based form. The audits 

continue to provide useful information regarding clinical and organisational aspects of 

stroke care provision and, over time, have become central to a number of stroke metrics as 

indicators of the quality of stroke care.  

The National Service Frameworks were introduced in the 1997 White Paper ‘The New NHS; 

modern, dependable’ with the aim of consolidating clinical best practice and cost-

effectiveness to improve service provision in several key areas of healthcare (Department 

of Health 2007c sect. 3.5). In contrast to coronary heart disease for which a dedicated NSF 

was published, and despite 25% of strokes occurring in those under the age of 65 (National 

Audit Office 2005), stroke featured as one of the eight standards in the 2001 NSF for older 

people (Department of Health 2007c).  
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The first National Clinical Guideline for Stroke (NCGS), devised by the Intercollegiate Stroke 

Working Party at the Royal College of Physicians, was published in 2000 (Intercollegiate 

Stroke Working Party 2008). The guideline has undergone two subsequent revisions (2004 

and 2008), with the latest version of the guideline incorporating the National Institute for 

Health and Clinical Excellence (NICE) guidelines for the management of acute stroke and 

TIA (National Institute for Health and Clinical Excellence 2008). The NCGS defines best 

practice in stroke management through consolidation of trial evidence and expert 

consensus opinion, describing the components of a quality stroke service and offering 

recommendations as to how these should be achieved (Intercollegiate Stroke Working 

Party 2008).  

 In 2005, the National Audit Office produced a critical report for the Committee of Public 

Accounts that highlighted deficiencies in the provision of care against the evidence base 

and guidance documents in several key areas of the stroke pathway (National Audit Office 

2005). The National Stroke Strategy (NSS) (Department of Health 2007b) was the policy 

response from the Department of Health (DH) to address these deficiencies.  

The NSS outlines a ten year strategic framework to drive stroke service reconfiguration and 

deliver improvements in the quality of stroke care along the entire stroke care pathway. 

However, the delivery of quality, personalised stroke care in a timely and cost-effective 

manner requires definition of the components of quality care, demonstration that 

delivered care has a positive effect on patient and carer outcome, and reliable metrics with 

which to quantify these effects along the whole stroke care pathway. Drawing heavily on 

previous consensus documents such as the NICE clinical guidelines for acute stroke and TIA 

(National Institute for Health and Clinical Excellence 2008) and the NCGS (Intercollegiate 

Stroke Working Party 2008), the NSS offers 20 ‘Quality Markers’ of a quality stroke service 

and a series of ‘measuring success’ metrics to facilitate quantitative analyses (both within 

and between services) (Department of Health 2007b). 

The NSS has become a major driver of stroke service improvement.  Implementation of the 

strategy features in the NHS Operational Framework and, as a result, a number of markers 

and metrics have been developed in an attempt to measure and monitor its delivery. 

These data are requested by a variety of disparate bodies for the purposes of performance 

monitoring, remuneration or service improvement (see section 1.2.1 below). The quality of 

these data is imperative to ensure that robust, consistent and comparable conclusions 

regarding the delivery and quality of stroke care may be drawn.  

Quality data are “accurate, up-to date, free from duplication and free from confusion” 

(NHS Connecting for Health 2011). In short, data items and how these are used to derive 

indicators should be explicitly defined, captured once and in a timely manner (ideally at the 

point of patient care). The existing ‘cacophony’ of stroke requirements and datasets 

obfuscates the collection of ‘quality data’ in many, if not all, of these areas.  A brief 
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discussion of the current data that are requested from provider trusts is outlined here to 

highlight its complexity. A timeline of the key policy documents and data collections is 

given in Figure 1 (page 9). 

1.2.1 Existing datasets for monitoring the delivery of stroke care 

1.2.1.1  Integrated Performance Measures  

The annual NHS Operating Framework defines national priorities in health care, the 

direction of health reform, and financial objectives of the NHS (Department of Health 

2009b). Every quarter, since the 2008/09 review, service providers have been required to 

provide mandatory performance indicators to the Department of Health (DH) via Primary 

Care Trusts (PCTs) (Department of Health 2008b). In stroke and TIA, these ‘Vital Sign’ (VS) 

indicators (Department of Health 2008d) are designed to demonstrate implementation of 

the NSS. In June 2010, following the formation of the new Government, the Operating 

Framework underwent a series of revisions (Department of Health 2010c). Implementation 

of the NSS has remained in ‘Tier 1’ of the Operating Framework retaining stroke and 

transient ischaemic attack (TIA) as high national priorities (Department of Health 2009b). 

However, in the 2010/11 Operating Framework, the Vital Signs will be renamed ‘Integrated 

Performance Measures’ (IPM), although their content will remain identical (Department of 

Health 2008d; Department of Health 2010e).  

1.2.1.2 CQUINs 

In 2008, ‘High Quality Care for All’ (Darzi A 2008) introduced the Commissioning for Quality 

in Innovation (CQUIN) framework. Goals are locally agreed between commissioners and 

providers to encourage the provision of quality services at a contractual level. A proportion 

of a provider’s income is reliant on meeting these goals (Department of Health 2008c; 

Institute for Innovation and Improvement 2010). Dependent on local priorities, stroke data 

may be required to fulfil CQUIN requirements.  

1.2.1.3 Payment by Results (PbR) 

In England, Payment by Results (PbR) is the mechanism through which, providers are 

remunerated by commissioners for delivery of services. Payments are made according to 

national tariffs calculated from adjusted ‘average’ service costs across similarly grouped 

activities (Healthcare Resource Groups (HRGs)) (Department of Health 2007a). The HRG for 

a particular hospital spell is calculated from ICD-10 and OPCS-4 coding data following the 

patient’s discharge (ibid).  

National Best Practice Tariffs were introduced in England in 2010/11 for selected 

conditions (including stroke) where ‘best practice’ is well defined, but variations in 

delivered care occur (Department of Health 2010b). The BPT framework offers incentives 

for the delivery of high quality care through additional payments above the base tariff for 

aspects of an individual patient’s care that meet specific quality standards (Department of 

Health 2010b).  The base tariff for stroke care is set below the average cost of a stroke 
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hospital spell (and below the ‘conventional tariff’ for stroke that had been used within the 

PbR framework), such that the remuneration of care not meeting the BPT quality standards 

is, on average, less than the cost of the admission (Department of Health 2010b). 

Moreover, specific aspects of care (e.g. CT brain imaging) are not included within the base 

tariff, such that patients scanned outwith the BPT criteria will not be remunerated 

(Department of Health 2010b). Adjustments may be paid outside the BPT framework to 

cover the cost of drugs and the additional resource associated with thrombolytic agent 

treatment (Department of Health 2010b).  

1.2.1.4 National Sentinel Stroke Audits 

The Royal College of Physicians (RCP) Clinical and Organisational National Sentinel Stroke 

Audits (RCP NSSA) (see section 1.2) have had significant and sustained effects on national 

improvements in stroke services (Intercollegiate Stroke Working Party 2010; Intercollegiate 

Stroke Working Party 2011). However, there are a number of deficiencies with the audits. 

They comprise multiple process markers resulting in a large dataset which is complex, 

unwieldy and neither designed nor feasible for prospective, real-time collection. Moreover 

many of the indicators within the dataset are of unproven association with patient 

outcome (e.g. being weighed during the course of the hospital admission) and it is possible 

that such process markers are acting as proxy markers for more complex factors (e.g. 

stroke severity). 

1.2.1.5 Stroke Improvement National Audit Programme (SINAP) 

Funded by the DH, the Stroke Improvement National Audit Programme (SINAP) dataset has 

been developed by the RCP Stroke Programme to capture real-time prospective data 

describing acute stroke care (Royal College of Physicians Stroke Programme 2010). 

Although the dataset is large, only care delivered within the first 72 hours following acute 

stroke is considered, and many of the questions relate to the provision of thrombolysis. 

The audit started in 2010 with data being entered into a web-based form and submitted 

electronically to the Royal College of Physicians. The first report of data for England was 

published in July 2011 covering the reporting periods June 2010 to June 2011 (Royal 

College of Physicians 2011).  Although not currently a mandatory requirement, the SINAP 

audit features as one of the National Clinical Audits within the Quality Accounts for 2011 

and as such, participation is required implicitly (Healthcare Quality Improvement 

Partnership (HQIP) 2011).  

1.2.1.6 NICE quality standards 

The National Quality Board (NQB) was created in March 2009 as a recommendation of 

‘High Quality Care for All’ (Darzi A 2008). The board has a remit to “oversee improvement 

of quality indicators” and to “ensure overall alignment of the quality system” (Department 

of Health 2010d). The NICE Quality Standards Programme, under the direction of the NQB, 

aims to extract or devise quality standards from available evidence, existing guidance 
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documents and expert consensus of health and social care professionals. In early 2010, a 

‘Topic Expert Group’ developed and refined a set of eleven quality standards and metrics 

to describe the stroke pathway (National Institute for Health and Clinical Excellence 

2010b). It is anticipated that these standards will, in part, inform service commissioning 

and act as a stimulus for high quality stroke care (National Institute for Health and Clinical 

Excellence 2010a).  

1.2.1.7 Stroke Improvement Programme, Accelerating Stroke Improvement. 

The Stroke Improvement Programme (SIP), developed in 2007 as part of NHS Improvement 

(NHS Improvement 2010b), oversees 28 regional Stroke Care Networks tasked with the 

local implementation of the NSS (NHS Improvement 2010b).  In early 2010, as a follow up 

to the 2005 report (National Audit Office 2005), the NAO re-examined the national 

situation regarding the provision of stroke care (National Audit Office 2010). 

Improvements in the acute end of the stroke care pathway (with notable exceptions such 

as direct admission to a stroke unit) were identified, but deficiencies in the longer-term 

management of stroke remained (National Audit Office 2010). The DH responded by 

committing the NHS to a year of accelerated improvement in stroke care. The Accelerating 

Stroke Improvement Programme, as part of the SIP, was launched in April 2010 (NHS 

Improvement 2010a). The programme has been extended and continues into 2011/12. 

Nine aspects of the NSS have been targeted for ambitious accelerated improvement with 

particular emphasis on the longer-term care of stroke patients (NHS Improvement 2010a).  

1.2.1.8 Emerging datasets ‘SSNAP’ (Sentinel Stroke National Audit Programme) 

It has been proposed that from spring 2012, SINAP and the Sentinel audits will be 

combined into one prospective audit to cover aspects of the whole stroke pathway. This 

will involve the development of a further, new dataset in place of the existing data 

collections. It is proposed that this new dataset will be funded by HQIP and, at the time of 

writing, the selection of provider for this new data collection is out to tender (Health 

Quality Improvement Partnership (HQIP) 2011).    

1.2.1.9 Data definitions and accuracy 

Accurate between institution or within institution comparisons of performance and quality 

rely on like being compared with like. Effective case-mix adjustment constitutes one aspect 

of this (see Chapter 3), but explicit data definitions form another important factor. 

Consistency in reporting of metrics requires every step in the derivation of indicators to be 

unequivocally defined. Application of these data definitions should occur at the point of 

data capture (or data extraction if these are different). Although derivation of some 

indicators (such as the IPM and BPT) is well defined (Department of Health 2008d; 

Department of Health 2010b), other datasets are more open to interpretation (e.g. the 

Accelerating Stroke Improvement metrics (NHS Improvement 2010a; Stroke Improvement 

Programme 2011)).  
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1.2.1.10 Overlapping datasets and duplication of data capture 

The existing stroke datasets as outlined in section 1.2.1 are complex and replicative often 

containing similar yet subtly different indicators. In the absence of robust IT systems, the 

greater the data burden, the greater the data collection resource required to extract it. 

Capture of data is expensive and resource intensive. Every data item that is requested 

comes at a cost. Duplication of data extraction for different bodies therefore reflects 

wasted resource. The benefit that every data item confers should be weighed up against 

the cost of collecting it. Thus the capture of large and unwieldy datasets comprising 

process markers of little or unproven link to patient outcome are unlikely to be cost or 

resource effective (See section 2.1.5). Intuitively, the more data that are requested, the 

less likely it is that these data will be extracted and reported accurately. Moreover, 

frequent changes to data requirements are likely to have an impact on the accuracy and 

consistency of reporting.  

1.3 Background to CIMSS 

This MD thesis forms part of the preliminary work for the CIMSS project (Clinical 

Information and Management System for Stroke), the stroke theme of the National 

Institute for Health Research (NIHR) funded Leeds, York, Bradford (LYBRA) Collaboration 

for Leadership in Applied Health Research and Care (CLAHRC).  

The CIMSS project has the overall aim of defining, iteratively refining and implementing, a 

novel core stroke dataset that is clinically relevant and feasible for electronic collection at 

the point of care by members of the multidisciplinary team responsible for delivering that 

care. The CIMSS dataset has an emphasis on patient reported outcomes, with the 

anticipation that routine collection and feedback of relevant CIMSS data to healthcare 

professionals and commissioners will result in measurable improvements in the 

effectiveness of stroke care in the stroke services within the Yorkshire and the Humber 

region that are participating in the implementation phase of the CIMSS CLAHRC project. 

This thesis describes the research led process to define and test the preliminary CIMSS 

dataset and refine the preliminary fields to a dataset suitable for wider implementation.  

This CIMSS dataset differs from existing and previous data collections as it includes 

routinely collected patient reported functional outcomes data within an infrastructure that 

allows these outcomes data to be linked directly to information relating to patients’ 

inpatient stay (process data) and their individual characteristics (case-mix). Moreover, 

through consideration of the current ‘data environment’ in stroke, an alternative approach 

to stroke data collection is suggested, offering standardisation, reproducibility and 

consistency of data collection and reporting across provider trusts. This solution ensures 

that existing data requirements are met (e.g. participation in SINAP - see section 1.2.1.5), 
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but that stroke data collection is simplified, rather than compounded by the collection of 

CIMSS data.  

1.4 Aims of thesis 

Through examination of the literature and a prospective observational cohort study I aim 

to address the following research questions:  

• Which combination of postal outcomes instruments best captures the physical and 

social functioning of patients following stroke?  

• Which is the best available case-mix adjuster in stroke? 

• How does care process relate to patient outcome after stroke? 

• Which process, case-mix and outcomes markers should be included in a routinely 

collected stroke dataset’? 

I begin by critically appraising the literature regarding both process and outcomes driven 

approaches to the monitoring of healthcare, and will consider the implications of the 

application of these arguments to stroke care. I then describe a systematic review to 

identify the best available case-mix adjuster in stroke. Subsequent chapters describe the 

design, execution and results of a prospective cohort study to test the utility of the 

preliminary dataset to capture care process, case-mix and physical and social outcomes 

following stroke. Finally I discuss the refinement of this dataset to a set of core fields for 

wider implementation where CIMSS fields are combined with existing datasets to provide a 

flexible core minimum dataset from which all existing stroke metrics may be derived.  
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Figure 1 Timeline of best practice guidelines, reports and data collections 
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Chapter 2 Literature review 

2.1 Measuring quality in stroke care 

There is much debate in the medical literature as to how the quality of delivered health 

care should be measured, monitored and improved. Two discrete approaches have 

attracted significant debate: the reflection of quality through measurement of care 

processes, or through patient outcome. In this chapter, through discussion of the benefits 

and pitfalls of process and outcomes driven approaches, I will discuss how assessment of 

healthcare delivery depends on the definition of quality, the purpose of quality 

measurement and the perspective from which these assessments are made. Moreover, in 

order to achieve a broad quality perspective that captures the entire stroke pathway, I will 

argue that measures of both process and outcomes are required. 

2.1.1 What is quality in healthcare? 

2.1.1.1 The political background in England, Northern Ireland and Wales 

The National Health Service (NHS) is underpinned by the principles of Clinical Governance, 

the system “through which NHS organisations are accountable for continuously improving 

the quality of their services and safeguarding high standards of care” (Department of 

Health 1999). The system was introduced in 1998, to ascribe formal accountability to the 

requirements of clinical audit and quality assessment, assurance and improvement that 

had previously been the informal responsibility of healthcare professionals, commissioners 

and health services management (Buetow SA et al  1999).  

A decade of health reforms following the 1997 General Election saw a series of 

government policy initiatives aimed at increasing capacity in the NHS (Darzi A 2008 

preface). Key policies included the introduction of Performance Assessment Frameworks, 

disease specific National Service Frameworks (with compliance markers) and the Quality 

Outcomes Framework in Primary Care. In addition, the establishment of the National 

Institute for Clinical Excellence (NICE) (latterly the National Institute for Health and Clinical 

Excellence) introduced a series of frameworks of evidence based, cost effective best 

practice guidance for a range of health technologies, pharmaceuticals and interventions 

across a range of disease areas (McLaughlin V et al  2001).  

In 2008, the political focus shifted from capacity building within the NHS towards the 

delivery of care based on quality, productivity and value (Department of Health 2009a). 

“High Quality Care for All” (Darzi A 2008), a report commissioned by the DH and led by a 

senior clinician, was a vision of a 21st Century NHS with specific focus on achieving 

improvements in patient centred, quality care through the provision of safe and effective 

treatments. Notable outputs from the Darzi review include the National Quality Board 

(NQB), developed in March 2009 (Department of Health 2010d).The NICE Quality 
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Standards Programme, under the direction of the NQB, aims to extract or devise quality 

standards from available evidence, existing guidance documents and expert consensus of 

health and social care professionals (see also section 1.2.1.6). 

Since the formation of the Conservative/Liberal Democrat coalition government in May 

2010, there has been a further shift of focus in the NHS with emphasis being placed firmly 

with the measurement of patient outcome indicators as markers of the quality of care 

(Department of Health 2010e). These outcomes, however, tend to focus on hard objective 

endpoints such as mortality and length of hospital stay and any patient reported outcomes 

are limited to quality of life and satisfaction surveys (Department of Health 2010e). 

Although at the time that the Outcomes Framework was written it was proposed that an 

indicator for stroke recovery should be included, it was yet to be developed.  

2.1.2 Defining quality in healthcare 

Quality of care is a complex, multi-dimensional concept that has been variously defined 

and described. Campbell et al (2000) have suggested that care quality centres on two 

constructs: efficiency (in the use of resources including needs-based access to care) and 

effectiveness (in both the delivery of personalised care and in technical aspects of clinical 

care) (Campbell SM et al  2000). Anavedis Donabedian described three interrelated aspects 

of quality in healthcare in his influential 1966 paper “Evaluating the Quality of Medical 

Care” (Donabedian A 1966; Frenk J 2000). Processes of care describe technical aspects of 

care delivery – whether particular aspects of care occurred e.g. patients undergoing timely 

imaging or the most appropriate operation. These hard aspects of healthcare delivery are 

often measured through process metrics which may be used for clinical audit and 

benchmarking to encourage the delivery of care according to evidence-based practice. 

Whilst some of these care processes are directly related to an individual clinician (e.g. 

operative skill, choice of drug), some will require adequate staffing or care pathways and 

are the responsibility of the organisation. These latter, organisational aspects reflect the 

structure of care – the infrastructure necessary to deliver high quality care. Finally, there is 

patient outcome - this is defined in the NHS Outcomes Framework (Department of Health 

2010e) as “… a change in the health status of an individual, group or population, which is 

attributable to an intervention from a healthcare provider”. The premise that the way in 

which care is organised (care structure) affects the care that is delivered (care processes) 

which in turn affect patient outcome remains fundamental to the considerable and 

ongoing debate in the medical literature as to whether care process or patient outcomes 

should be monitored in order to reflect the quality of patient care. There is a dynamic 

relationship between these three dimensions of quality, the full understanding of which 

requires a fourth factor: case-mix, to account for the severity of an index condition in an 

individual patient (Figure 2). Case-mix is an important, but often ignored factor if between-

organisation quality comparisons are to be attempted. 
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Figure 2 The interrelationship between care process, structure, case-mix and 

patient outcome 

The Care Quality Commission (CQC) (formerly the Healthcare Commission), is the 

independent regulator of health and adult social care in England. The CQC broadly define 

quality care as that which is “safe; has the right outcomes (including clinical outcomes); is a 

good experience for the people who use it, their carers and their families; helps to prevent 

illness and promotes healthy, independent living; is available to those who need it when 

they need it; and provides good value for money” (The Care Quality Commission 2009).This 

definition encompasses three main perspectives of quality care: Patients and their families 

(safety, experience and clinical outcome), commissioners and service providers (resource 

availability and value for money), and society as a whole (prevention and health 

promotion). The CQC definition of quality has formalised the need to account for and 

quantify the experience of a health care encounter from the perspective of the patient, 

family and carer. The patient experience of care adds an additional layer of complexity to 

the measurement of quality. In order to ensure that patients are receiving care that meets  

emotional as well as physical needs, the Department of Health defines  good patient 

experience as that which ensures that patients are “getting good treatment in a 

comfortable, caring and safe environment, delivered in a calm and reassuring way; having 

information to make choices, to feel confident and to feel in control; being talked to and 

listened to as an equal and being treated with honesty, respect and dignity” (Department 

of Health 2007d).  

It can be seen therefore, that although much discussed, quality in healthcare remains a 

concept complicated by its multidimensional nature; measurement needs to encompass 
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the perspectives of patient and healthcare professional as well as logistical, organisational, 

financial and procedural aspects of care. Markers of quality are not, therefore, 

synonymous with markers of performance. 

2.1.3 How can quality be measured? 

"Not everything that counts can be counted and not everything that 

can be counted counts.”  

(Albert Einstein 1879-1955) 

In order to improve the quality of delivered care, it must be measurable. There are no 

‘units of quality’ and therefore proxy markers must be used. The nature of these markers 

will depend on the purpose of the measurement. Regardless of which markers are used, 

they must be valid (in their reflection of quality), explicitly defined to allow measurement 

against agreed standards or against similar services, and their measurement reliable 

(stable) over time and between raters. Indicators should also be sensitive to change (i.e. be 

able to detect and discriminate between small changes), relevant and acceptable to 

clinicians and patients, and provide relevant and useful information to wider stakeholders 

(Davies HTO 2005).  

The populations in which quality markers are used should be standardised for baseline 

characteristics and case-mix (variation in e.g. stroke severity between individual patients 

and populations of patients) to allow legitimate and meaningful comparative 

measurements. The important issue of case-mix is discussed further in Chapter 3. 

2.1.4 Why measure healthcare quality? 

2.1.4.1 Performance monitoring and remuneration  

Commissioning bodies require reassurance that services are being planned and delivered 

in line with commissioning contracts and national guidance. As such, specific (usually 

process) markers may be used to examine performance often with associated financial 

incentives (Department of Health 2010b). Remuneration of individual service providers has 

been based on volume and activity through the Payment by Results framework. However, 

increasingly, remuneration is only provided for care provided in line with explicit ‘Best 

Practice’ guidelines within the Best Practice Tariff structure (Department of Health 2010b). 

The origins and current data requirements for performance monitoring and remuneration 

of stroke service delivery have been described in detail in sections 1.2.1. Open competition 

for the commissioning of health services from NHS and non-NHS (public and private) 

organisations was introduced by the last Labour administration (Department of Health 

2009a sect 4.19 p 54). Planned NHS reform under the coalition government aims to extend 

this competition and proposes that commissioning responsibilities are moved from Primary 

Care Trusts to consortia of General Practitioners (GPs) (Department of Health 2010a). This 
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is likely to heighten the emphasis on the requirements for, and demonstration of, value for 

money through performance monitoring.  

The requirements for data regarding quality of care from the perspective of patients and 

commissioners highlight two different aspects of quality care – patient satisfaction and 

value for money. Indeed, the data obtained through ‘quantification of quality’ through the 

measurement of patient satisfaction surveys as compared with performance metrics 

provide very different types of information. The first could be considered an outcome (a 

broad patient-centric opinion on the healthcare experience), whist the second reflects 

measurement of process based around volume (e.g. PbR) or delivery of care against pre-

specified standards (e.g. BPT). Collecting data to describe aspects of the patient experience 

may be achieved through patient surveys, although focus groups or patient interviews may 

provide richer information in specific areas. There are, however, issues with the 

representativeness and feasibility of collecting data in this way. Therefore, the aspect of 

quality that is measured should reflect the purpose of the ‘quality assessment’. 

2.1.4.2 Patient centred care 

There has been a gradual, yet sustained evolution of the concept of personalised care 

within the NHS since the introduction of the Patients’ Charter in 1991 (The King's Fund 

2011). Since 2009, as a consequence of the Darzi Review (Darzi A 2008), NHS trusts have 

been required to collect and report routinely Patient Reported Outcome Measures 

(PROMs) following specific operative procedures (Department of Health 2008a). Although 

the scope of this framework is currently limited, it is anticipated that the scheme will 

“extend … across the NHS wherever practicable” (Department of Health 2010a). 

The PROMs framework is designed to capture patient reported disease specific and 

subjective outcomes data in an attempt to reassure patients, commissioners, healthcare 

providers and the tax-payer that delivered care has a positive effect on the types of 

outcomes that are relevant to patients. Moreover, it is intended that these may be used to 

differentiate good from poor quality care. Indeed, the Information Centre (IC) website 

(currently responsible for the PROMs data) states: “The health status information collected 

from patients by way of PROMs questionnaires before and after an intervention provides 

an indication of the outcomes or quality of care delivered to NHS Patients” (The 

Information Centre 2011b). Raw and case-mix adjusted PROMs data collected since 2009 

are available in the public domain from the Information Centre via the Hospital Episode 

Statistics (HES) website (Hospital Episode Statistice (HESonline) 2011). In this context 

PROMs – subjective measures of an individual’s disease specific outcome and quality of 

life– are likely to be used to make assumptions about the relative quality of delivered care 

(process) between institutions, regardless of whether or not this is the intent of capturing 

the data.  
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2.1.5 Linking process and outcome 

The reflection of quality through markers of process is dependent on the demonstration of 

robust linkages between the process marker and patient outcomes in unselected 

populations - in order for the processes of care to reflect quality they must be known to 

explain some variability in patient outcome. The measurement of process becomes an 

abstract concept “of little intrinsic interest” (Mant J 2001), a marker of the quality of 

process and not the quality of care, unless it has been demonstrated to have some impact 

on outcome. Similarly, the use of outcomes of care as markers of quality is of little benefit 

in terms of improving the quality of care unless it is known which specific aspects of care 

process are responsible for the variation in patient outcome and whether optimisation of 

specific aspects of process could indeed improve these outcomes (Lilford RJ et al  2007). 

Therefore, regardless of whether processes or outcomes of care are to be used to monitor 

care quality, it should be clear that variation in outcome is explained through variation in 

care processes rather than, for example, unexplained differences in case-mix or chance 

(Lilford RJ et al  2007; Mant J 2001). 

Evidence based healthcare relies on the translation of processes and interventions shown 

to be beneficial in the clinical trial setting into routine care. However, an important caveat 

to the development and legitimacy of process markers based on trial interventions for the 

purposes of monitoring quality of patient care is that this depends on the demonstration of 

linkages between process and outcome in unselected populations. Clinical trials often 

involve the measurement of both processes of care (or specific interventions) and patient 

outcomes. However, there are important differences between measurement of process 

and outcome in the research setting and for quality assessment. 

Randomised controlled trials (RCTs) and meta analyses of RCTs are generally considered 

the ‘gold standards’ in terms of the hierarchy of research evidence (Scottish Intercollegiate 

Guidelines Network (SIGN) 2008 p 51), as the effect of confounding variables can be 

minimised through randomisation.  Indeed, RCTs have demonstrated that many processes 

of care to be effective in reducing the hard endpoints of death or dependency in stroke 

(e.g. thrombolysis, stroke unit care, early supported discharge, aspirin). However, direct 

translation of RCT results into routine care (generalizability to unselected populations) may 

be limited by trial inclusion and exclusion criteria (Black 1996). For example, the proportion 

of patients recruited over the age of 80 in the Cochrane review of thrombolysis for acute 

ischaemic stroke, was just 0.5% (Wardlaw JM et al  2009). It is possible that the benefits 

(and risks) of some interventions may be attenuated or accentuated in certain subgroups 

of patients that were excluded from the original trials. Extrapolation of research findings to 

these subgroups is not necessarily valid and, in the absence of studies to demonstrate 

generalizability into unselected populations, subgroup treatment effects remain untested. 

Randomised rehabilitation trials pose particular challenges. For example, blinding and 
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sustained adherence to rigid treatment protocols may be difficult due to the complexities 

of the interventions (Horn SD et al  2005; Black N 1996). Basing generic performance 

markers on randomised trial evidence should therefore be with the caveat that this may be 

in the absence of empirical evidence of generalizability into unselected populations.  

Evans et al (2001) aimed to identify processes of care within the complex intervention of 

stroke unit care that may predict dichotomised patient modified Rankin Score (mRS) at 

three months (Evans A et al  2001). Logistic regression analysis was performed using data 

from 304 patients collected for a previous randomised controlled trial of stroke unit vs. 

general ward care.  Limited case-mix variables (age and baseline Barthel Index) were also 

entered into the regression models.  Of the factors that were identified as being associated 

with outcome in this study (prevention of aspiration pneumonia, early feeding, stroke 

progression, chest infection, dehydration and management on a stroke unit) (Evans A et al  

2001), many are likely to reflect the severity of stroke rather than a discrete process of 

care; chest infections, stroke progression and dehydration are more likely to be markers of 

stroke severity or comorbidity rather than deficiencies in care process. Although these data 

were taken from a randomised trial, case-mix adjustment is still important as patients were 

randomised to receive stroke unit care and not individual care processes. Additionally, the 

data for intervention and control arms were pooled to form the study dataset such that 

the randomisation is no longer effective.  

Observational studies offer an alternative way to examine populations that may produce 

more generalizable (externally valid) results than RCTs (Black N 1996). Capture of data 

describing processes of care that actually occur rather than through RCT treatment 

protocols allows a pragmatic exploration of delivered care.  The broad external validity that 

is conferred through examination of non-randomised, unselected populations is, however, 

attenuated through the uncertainty that is introduced through the heterogeneity of these 

populations (i.e. a loss of internal validity) (Horn SD et al  2005). Observational studies can 

therefore facilitate exploration of correlation (as opposed to causation) between processes 

of care and outcomes. However, these relationships are complicated by the effects of 

additional and potentially unmeasured confounding factors (Lilford RJ et al  2007).  

Several groups have tried to correlate process markers with patient outcomes (at an 

institutional level) across a variety of conditions in empirical (unselected) populations with 

limited success (Lilford RJ et al  2004). In a review of 36 studies examining 51 such 

relationships between process and outcomes, Pitches et al found a positive correlation in 

51%, no correlation in 31% and a paradoxical relationship (where ‘better’ care process was 

associated with higher mortality) in 18% (Pitches DW et al 2007).  Of the four studies 

included in this review that specifically examined stroke (Dubois et al  1987; McNaughton 

H et al  2003; Mohammed MA et al  2005; Weir N et al  2001), one study found no 

correlation between individual processes of care and patient outcomes (Dubois RW et al  
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1987), and one identified a paradoxical association where the hospital with the highest 

summed (unweighted) process scores (RCP NSSA process markers) (Intercollegiate Stroke 

Working Party 2011) reported poorer patient outcomes (McNaughton H et al  2003). The 

two remaining (multicentre) stroke studies each found higher mortality rates persisted at 

one of their study sites following adjustment for case-mix (using the variables of the Six 

Simple Variables case-mix adjustment model (Counsell et al  2002)), and that these sites 

were also deficient in aspects of care process (Mohammed MA et al  2005; Weir N et al  

2001). No differences in between site mortality (Weir N et al  2001), or relationships 

between processes of care and standardised mortality rate (SMR) (Mohammed MA et al  

2005) remained at other sites following case-mix adjustment, despite significant 

differences in process delivery across sites.  

A systematic review performed in 2007, pooling data from 16 observational stroke studies 

where adjustment for case-mix or baseline variables had been performed (N=42,236), 

demonstrated a clear survival benefit at one year for patients receiving organised stroke 

unit care vs. general ward care (OR 0.79 [0.73,0.86]) (Seenan P et al  2007). These figures 

are comparable to those demonstrated in the SUT systematic review of randomised trials 

of stroke unit vs. general ward care (OR 0.86 [0.76-0.98]) (Stroke Unit Trialists' 

Collaboration 2007). 

However, commentators have argued that variations in observed outcome between 

institutions are more likely to reflect systematic differences in between institution 

populations (e.g. differences in case-mix, data quality or the role of chance) than true 

differences in the quality of care.   

2.1.6 Case-mix 

Case-mix, discussed in detail in Chapter 3, represents the range of disease severity and 

baseline characteristics that may be the cause of variation in outcomes between 

individuals and populations (Lilford et al  2004; Mant J 2001). Case-mix has been argued to 

be a major barrier to the demonstration of process-outcome linkages in empirical studies. 

Differences in observed outcome between groups have been shown to be wholly or partly 

attributable to case-mix in a number of experimental stroke studies (Davenport RJ et al  

1996; Lingsma et al  2008; Mohammed MA et al  2005; Weir N et al  2001). In other 

studies, process markers identified as potentially important in determining patient 

outcome in unadjusted analyses were no longer significant following case-mix adjustment 

whilst other variables, became statistically significant predictors of outcome following 

adjustment (Bravata DM. et al  2010).  

Where differences in outcome remain after case-mix adjustment in observational studies 

or empirical populations, it has been argued that this is more likely to reflect unmeasured 

case-mix variables or confounders than true differences in delivered care (Lilford RJ et al  
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2004; Mant J 2001). It is unlikely that any case-mix adjustment model will ever account for 

all potential confounders and as such, many prognostic or specific case-mix variables may 

remain unmeasured and their effect unaccounted for (Mant J 2001).  

2.1.7 Process saturation 

A further barrier to the linkage of processes of care with outcome is a consequence of the 

heightened delivery of specific aspects of care according to existing stroke care monitoring 

indicators. Many existing markers of process for stroke care have evolved from a 

systematic evaluation of the key aspects of stroke care process consistently delivered in 

the effective stroke units identified in the SUT systematic review of organised stroke unit 

care (Langhorne et al  2002; Stroke Unit Trialists' Collaboration 2007). However, robust RCT 

evidence to link many of these and other individual processes of care that occur on a 

stroke unit with improved patient outcomes is often lacking. Where there is expert 

consensus on specific aspects of care delivery (for example early mobilisation), processes 

are often adopted into clinical guidance in the absence of RCT trial evidence 

(Intercollegiate Stroke Working Party 2008). Inclusion of these processes as an accepted 

part of standard quality care precludes, on ethical grounds, the randomisation that would 

be required to allow formal clinical trial evaluation of the potential benefit of receiving the 

process (Black N 1996). Comprehensive adoption of these processes into routine care 

reduces the variability in care process delivery such that detecting the effect of omitting 

the process through observational studies becomes more difficult due to a lack of 

statistical power (see also section 6.1.2.1). As saturation of the process reaches 100%, 

demonstrating a process is effective becomes impossible. For processes of care where 

there is a logical rationale for clinical benefit this is unlikely to be problematic. However, 

for process indicators where the potential benefit to individual patients is not clear cut (for 

example being weighed at least once during the course of the admission (Intercollegiate 

Stroke Working Party 2011) it remains unclear whether the process has any impact on 

patient outcome. 

2.1.8 The role of chance 

Statistical analyses can offer confidence limits and levels of statistical significance, 

however, it should be remembered that these are simply reflections of the likelihood of an 

event being due to chance. Differences in outcome between centres or within centres over 

time may therefore be due to random variation rather than delivered care.  The risk of 

associations being due to chance is higher when either the numerator (outcome) or 

denominator (total number of cases) is small (Mant J 2001) – i.e. for rare events or small 

sample sizes. For example, in an attempt to demonstrate the effect of the introduction of a 

stroke unit on 30 day and 1 year stroke mortality, Davenport et al collected data on 216 

patients pre and 252 patients post introduction of the new service (Davenport RJ et al  
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1996). Having adjusted for case-mix adjustment, no difference in mortality was observed 

following introduction of the stroke unit. In response, Mant et al identified that in order to 

be adequately powered to detect the differences in mortality comparable to those seen in 

the SUT RCT of organised stroke unit care with 5% confidence and at 80% power, the 

before and after study would have needed to recruit 2066 patients (Mant J et al  1996).  

Where multivariable models have been constructed to explore relationships between 

process and outcome whilst adjusting for confounding factors (e.g. linear or logistic 

regression analyses), ensuring that the number of variables entered into the model is 

appropriate for the sample size is critical in reducing the identification of spurious or 

chance associations. This is discussed in detail in 3.5.8.1.  

2.1.9 Data quality  

In order for the routine measurement of process markers to be reliable in longitudinal or 

cross-sectional (between institution) comparisons, there needs to be standardisation in the 

data that are recorded (Lilford RJ et al  2004; Mant J 2001). This relies on strict data 

definitions such that it is clear that precisely the same aspects of care are being measured 

between individuals and between institutions (Lilford RJ et al  2007). In order for this to 

occur, there should be minimal subjectivity in measurement. Ideally, process markers 

should be observations (or derivations) of whether and when an explicitly defined event 

occurred. Variations in measurement of processes (such as could occur if data definitions 

do not exist or if there are no validation checks to ensure that they have occurred) can lead 

to spurious data and unfair comparisons.  

Some processes appear to have been particularly poorly completed within the SINAP 

dataset in the 2010/11 data collection period (where data collection and submission were 

not mandatory) (Royal College of Physicians Stroke Programme 2010). For example, bundle 

12 reflects the proportion of eligible patients receiving antiplatelet therapy within 72 

hours, and “adequate” fluids and nutrition within each 24 hours of the 72 hour audit 

period. The SINAP data reveal that 25% of trusts achieve this process marker in just 43% of 

their patients (Royal College of Physicians 2011). The RCP national sentinel audit report 

(2010) states that 99% of patients (nationally) receive fluids within 24 hours, 95% receive 

nutrition within 72 hours and 93% are commenced on antiplatelet therapy within 72 hours 

of admission. It therefore would appear somewhat incongruous that the SINAP data reflect 

such low achievement of a similar (but not directly comparable) marker, perhaps reflecting 

differences or difficulties in data reporting rather than true deficiencies in patient care. It 

should, however, be considered that SINAP as a prospective audit, includes all patients 

admitted to a particular trust with a stroke diagnosis, whereas the RCP NSSA is performed 

on the first 60 consecutive stroke admissions in the reporting period (Intercollegiate Stroke 

Working Party 2011; Royal College of Physicians Stroke Programme 2010). 
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Missing data is a further important consideration in data quality. Routine documentation 

of the delivery of specific processes of care may be deficient, thus complicating 

retrospective data extraction (Walsh et al  2002). In terms of measurement of process, 

data may be missing because a process was not performed or because data were either 

not extracted or recorded incorrectly (i.e. non-sense data). If possible, differentiation 

between these types of missing data adds additional and useful information. For example, 

actively identifying a process that is consistently not performed (i.e. recording that the 

data are not available) may indicate a problem with staff training or resource, whilst data 

that are consistently not recorded may indicate that these data are difficult to extract, 

highlighting a problem with the indicator itself. Examination of missing data can help to 

identify missingness patterns (i.e. subgroups of patients that tend to have missing data) as 

these may lead to bias. Metadata (‘data about data’) can help to explore these patterns – 

for example examination of the missing data in relation to disease severity, or by 

institution. 

2.1.10 Data sources 

Studies that have attempted to link care process with patient outcome have utilised data 

from a variety of sources: retrospective routine data (e.g. stroke registers or routine 

hospital data), retrospective data obtained from case-note review, secondary use of trial 

data (e.g. data from control arms of RCTs) and prospective observational data defined a 

priori and obtained expressly for the purposes of the study. The data source affects both 

data quality, and the conclusions that may be drawn. Often, more than one of these 

approaches is employed to obtain the necessary data.  

There are many sources of routine healthcare data such as locally held stroke databases, 

hospital records systems (such as Patient Administration Systems (PAS)) and anonymised 

data held in large central databases (e.g. Hospital Episode Statistics (HES) held by the 

Information Centre) (The Information Centre 2011a). However, the specific data fields that 

are recorded and available in these routine databases are likely to limit their use, i.e. the 

information to answer specific questions may not have been routinely captured within 

existing systems. If a proxy marker is available this could be used to reflect data that are 

unavailable (e.g. marital status could be used as a proxy marker of living alone). However, 

the validity of the proxy marker will depend on how well it reflects the underlying 

construct (there are many reasons why patients who are married may live alone and many 

reasons why people who are not married may not). Definitions for data that are collected 

routinely may not be standardised, and this will be reflected in the quality of the data. In 

addition, data available from routine data sources for case-mix adjustment is often limited 

to variables such as age, sex and comorbidity based on hospital coding data and these may 

not be sufficiently detailed to support complex case-mix adjustment (The Information 

Centre 2011a).  
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A further caveat to the use of retrospectively collected data is that the outcomes data that 

are routinely recorded (or that may be extracted retrospectively) are limited and often 

restricted to mortality and length of stay. Prevention of post-stroke mortality is not the 

only goal of therapy or stroke unit care. Many of the complex therapy interventions that 

occur on a stroke unit are aimed not at preventing death, but at achieving improvements 

in function and independence. Using death as an outcome fails to capture a ‘middle band’ 

of patients who survive but with disability. There are crude measures which would allow 

this middle band to be quantified (i.e. independent survival, discharge home or modified 

Rankin Score), although these measures fail to capture the nuances of an individual’s post-

stroke recovery, and are not currently recorded routinely in England, Wales and Northern 

Ireland.  

Patient case-notes are a rich source of patient specific data. However, data within patient 

case-notes are not usually recorded in a standard format and as such data extraction from 

the case-note narrative requires specific expertise. The data that are required may not 

always be available and extrapolation or ‘best guesses’ may occur especially if data 

extraction is not performed by stroke experts. The data extraction process is therefore 

time consuming and as a result expensive and resource intensive. Case-note data captured 

retrospectively are often not timely; the 2010 RCP sentinel stroke clinical audit report was 

published 11 months after the end of the data extraction period (Intercollegiate Stroke 

Working Party 2011). 

An alternative approach to obtaining process and outcomes data in empirical populations 

is through prospective data collection as part of usual care. The development of electronic 

systems has facilitated data capture and submission such that routine, prospective and 

cumulative data collection is now feasible. As a consequence many countries now host 

electronic stroke databases (Australian Stroke Clinical Registry 2011; Dennis M et al 2011; 

Royal College of Physicians Stroke Programme 2010; Asplund K et al 2011). Routine 

collection of functional outcomes is currently in operation in the Australian and Swedish 

registries (Australian Stroke Clinical Registry 2011; Asplund K et al 2011). Co-ordinating 

large scale data collection requires robust electronic infrastructure and methods for 

ensuring data quality, cleaning and obtaining missing data. 

 

2.2 Measuring quality through Process 

2.2.1 Benefits of process driven care 

It has been argued that identification of deviations from care processes can detect 

discrepancies in quality of patient care with more sensitivity than can be achieved through 

the measurement of outcomes (Mant J 2001).  
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In a simulation study, Mant and Hicks (1995) demonstrated the relative sensitivity of 

process and outcomes measurement to detect discrepancies in quality of care using the 

specific example of mortality following myocardial infarction (MI) (Mant J et al  1995). The 

calculated combined effect of proven acute pharmacological interventions was used to 

model the effect of different rates of uptake of therapies on mortality between two 

theoretical ‘hospitals’ identical in all other respects. Calculations of sample size revealed 

that the deviations from care process (defined as a failure to administer treatment to 

patients in whom it is indicated) that would result in a difference in mortality of 9% 

between institutions (0% vs. 55% process compliance) could be detected within 2 weeks 

(12 patients in each institution). Detecting this difference through direct measurement of 

mortality (with power of 80%, 2p=0.05) would take just over ten months and 389 patients 

(Mant J et al  1995). This demonstration does, however, assume a linear relationship 

between mortality rates and the use of effective interventions, and a linear cumulative 

effect of interventions (Mant J et al  1995). This simulation study elegantly demonstrates 

that detection of deviation from process is likely to be a more efficient way of detecting 

poor compliance with care processes than waiting for the effect of defective processes to 

be borne out through mortality rates. However, the measurement of process for the 

purposes of quality monitoring, simply informs whether a particular process occurred or 

not. No inference can be drawn about the effect of missing a particular process on an 

individual patient’s outcome.  

Detection of deviation from care processes identifies deficiencies in procedural aspects of 

care. Through this direct detection of deficiencies in care process delivery, improvements 

to the average quality of care can be achieved in all institutions regardless of baseline 

quality of care or observed outcomes (Lilford RJ et al  2007; Lilford RJ et al  2004).  In other 

words, there is a paradigm shift towards improved care (Lilford RJ et al  2004; Lilford RJ et 

al  2010).  

A major argument in support of the measurement of process as a marker of quality care is 

the immediacy with which data are available. Lilford et al have consistently argued that the 

delay between the delivery of process and detection of the effects of deviations from 

process through outcome measurement makes it hard to ascribe differences in outcome to 

deficiencies in care process (Lilford RJ et al  2007). Moreover, it is easier and more timely 

to record and rectify deficiencies in process delivery through audit, than waiting to 

estimate the effect of an event not occurring through observing patient outcomes (Lilford 

RJ et al  2007; Lilford RJ et al  2010; Lilford RJ et al  2004).  

2.2.2 Drawbacks to process driven care 

The validity of datasets made up of process metrics for the monitoring of quality of care in 

clinical situations rely on some key assumptions:  
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a. Patients benefit equally from interventions.  

The use of process metrics as measures of quality of care could increase the likelihood 

that, providing specific interventions are not contraindicated in individuals, all patients 

receive similar care.  An assumption that all patients require the same ‘bundles’ of care 

processes, overlooks the possibility that particular interventions may be of more, or less 

relevance to particular subgroups of patients and could “result in standardised care of little 

relevance to individuals” (Walsh K et al  2002).  Some existing process measures for stroke 

(e.g. the RCP NSSA markers) circumvent this problem through the inclusion of explicit 

criteria to allow patients to be allocated a ‘no but’ code. These codes are allocated to 

patients in whom an intervention is either not indicated (e.g. a patient with no speech or 

language deficit that does not require a SLT assessment) or contraindicated (e.g. patients 

receiving palliative care). Patients allocated ‘no but’ codes are removed from the 

denominator in RCP NSSA process scores. 

Other datasets, however, calculate percentage compliance with interventions using the 

whole population as the denominator, but build in ‘tolerances’ to account for patients in 

whom interventions are not indicated, or contraindicated. For example, the ASI metric that 

60% of patients admitted with stroke and in atrial fibrillation should be on anticoagulation, 

or have a plan for anticoagulation by discharge from hospital (Stroke Improvement 

Programme 2011). Here, patients in whom anticoagulation is contraindicated, or that 

refuse, are included in the 40% tolerance limit. This approach requires careful planning to 

ensure that the tolerances are reasonable and to reduce the risk of gaming, or 

inappropriate prescribing.   

The Stroke Unit Trialists’ (SUT) concluded that all patients benefit from stroke unit care 

(regardless of the severity of stroke) (Stroke Unit Trialists' Collaboration 2007) and that the 

improved outcomes observed in patients treated on a stroke unit vs. general wards is likely 

to be due to the prevention of post-stroke complications (Langhorne P et al  2002). 

However, there is likely to have been significant heterogeneity in the processes of care 

delivered on the units within the included trials as participants were randomised to 

organised stroke unit or other “conventional care” rather than to specific treatment 

protocols (Stroke Unit Trialists' Collaboration 2007). The SUT review could therefore be 

interpreted to suggest that the average care delivered on the stroke units included in the 

systematic review is beneficial to a population of heterogeneous post-stroke patients as 

compared with the average care that is delivered on conventional wards.  

b. The measurement of individual processes is equally important 

 There are likely to be some care processes that are more important than others in terms 

of the effect that their omission may have on patient outcomes (Sudlow C et al 2009). If 

care process is to be used to assess the quality of delivered care, especially if institutions 
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are to be compared on the basis of the delivery of these processes, weighting to account 

for this relative importance may be appropriate. For example, a unit that achieves delivery 

of complex care processes of benefit a few patients may do so to the detriment of delivery 

of care that is of potential benefit to all. A failure to apply weighting to metrics designed to 

reflect capture of care processes that are only indicated in small subgroups of a population 

may result in disproportionate emphasis on particular aspects of care. For this reason, the 

denominator (case-volume or the number of patients in whom a process is indicated) 

should form an important consideration of between or within institution comparisons of 

process delivery (see section 2.4). However, it has been argued that the denominator for 

the measurement of process should be the number of opportunities for a process to have 

occurred, rather than the number of patients in whom it is indicated (Lilford RJ et al  2004). 

This approach incorporates a form of case-mix adjustment for process measures as there is 

more scope for omission of processes of care that occur repeatedly (e.g. administration of 

aspirin), or in patients who require more interventions (e.g. those with severe strokes)  

(Lilford RJ et al  2004). 

Some stroke care processes (e.g. stroke unit care or antiplatelet therapy) have been shown 

to be of benefit to patients regardless of stroke severity (Chen Z-M et al  1997; Stroke Unit 

Trialists' Collaboration 2007), whilst the use of other interventions (for example 

thrombolysis) is restricted to those fulfilling specific criteria (Boehringer Ingelheim 2009; 

Intercollegiate Stroke Working Party 2008).  

The numbers needed to treat (NNT) to prevent an adverse outcome is greater for some 

processes of care than others. For example the NNT with aspirin to prevent one death or 

dependent outcome following an ischaemic stroke is 67, as compared with a NNT of 10 to 

avert the same outcomes following treatment with alteplase (rtPA) (Sudlow C et al  2009). 

However, the relatively small treatment effect of aspirin is offset by the treatment 

achievability and eligibility i.e. the administration of aspirin is a relatively simple task and 

should be achieved consistently and completely in all patients in whom it is not 

contraindicated (the proportion of the acute post stroke population in whom antiplatelet 

therapy is indicated is estimated at 80% (Langhorne P et al  2009). In contrast, an 

estimated 10% of patients admitted to hospital with acute stroke are eligible for 

thrombolytic therapy (Langhorne P et al  2009). Moreover, achievability of thrombolysis is 

currently limited by the considerable infrastructure required to deliver it safely (Sudlow C 

et al  2009) (5% of patients admitted to hospital with acute stroke in England, Wales and 

Northern Ireland received thrombolysis in the 2010 RCP NSSA (Intercollegiate Stroke 

Working Party 2011)) . Despite a relatively small NNT to prevent an adverse outcome 

following thrombolysis (large treatment effect), the number of adverse outcomes actually 

averted is attenuated by limited achievability and eligibility as compared with other 

treatments (Sudlow C et al  2009).  
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c. The process is important and missing it has a detrimental effect to individuals  

rather than the institution 

Some processes may be correlated with patient outcome, although the nature of this 

relationship may be complex (Rubin HR et al 2001). For example, it is difficult to see how 

the RCP NSSA process measure “Is there evidence that the patient was weighed at least 

once during their admission?” (Intercollegiate Stroke Working Party 2011) would relate 

directly to patient outcome. However, patients who are weighed may be more likely to 

also receive other aspects of care relating to nutrition that may have a more causal 

relationship with outcome; such processes have been termed ‘tracers’ (Walsh et al 2002). 

Weighing a patient may therefore be acting as a proxy marker for other aspects of care 

that may be more difficult to capture. Close examination of markers where there is 

correlation with outcome may reveal what these additional markers could be, although it 

may be difficult to estimate the effect of failing to achieve proxy measures of care on 

patient outcome if the underlying constructs are unmeasured and unknown.    

2.2.3 Quality and interpretability of data  

2.2.3.1 Gaming 

The use of process data for remuneration, performance ratings or for between institution 

comparisons runs the risk that the care is focused on the meeting of targets rather than 

reflecting the broader context of care that the process markers are designed to represent 

(Davies HTO 2005). There is a possibility that situations will be manipulated to allow such 

targets to be met (Mears et al  2010), indeed examples of gaming in the health service are 

well documented (Bevan G et al  2006). Pejorative comparison of institutions based on 

unadjusted process (or outcome) measures can therefore be potentially damaging both to 

those institutions and to the patients they treat:  

“Reward and punishment strategies do not produce knowledge; 

they produce fear and anxiety often leading to distortion of the data 

or the process” (Lilford RJ et al  2004)  

2.2.3.2 Representation of data 

The importance of data interpretation and presentation is highlighted here using the 

example of the first Royal College of Physicians SINAP report (2011). During the reporting 

period, participation in data collection for SINAP was not mandatory, indeed nationally 

only 82 out of 157 trusts submitted data, with nine of these trusts submitting insufficient 

data for analysis (Royal College of Physicians 2011). Seventy-three trusts were therefore 

included in the data analysis. The SINAP report presented the number and percentages of 

(eligible) patients receiving specific processes, ‘bundles’ of care (patients receiving 

combinations of processes) and an average process score as the unweighted mean of the 

percentages of eligible patients receiving each of 12 key processes.  
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There are a number of problems with this approach. Firstly, presentation of an unweighted 

score fails to account for the relative importance or difficulty of delivering individual 

processes of care – i.e. processes that are simple to achieve are given the same scoring 

weight as more complex processes. The use of total scores as a summary measure also has 

implications in terms of scaling properties (i.e. an assumption that a summary score may 

be treated as an interval scale may not be valid).  

Calculating a mean from  a series of percentages, as has occurred with the SINAP data, is a 

flawed approach, as the denominator (case volume) for each individual process has not 

been accounted for. Centres with small volumes of cases are more likely to demonstrate 

extreme values as variations in process delivery would have a disproportionately influential 

effect on their overall score (O'Brien S et al  2008). The denominator for each process 

marker can be calculated from the numerator and proportion of eligible patients as 

detailed in the SINAP data spreadsheet (available from the RCP SINAP website (Royal 

College of Physicians 2011)).  Notwithstanding the fundamental problems with calculating 

summed process scores (see above), the analyses performed by SINAP have been repeated 

here simply to demonstrate the effect of consideration for case volume on the relative 

position of patients in ‘league tables’. If the sum of patients at each site receiving all the 

processes of care for which they are eligible are presented as a proportion of the sum of 

patients eligible for each of the processes, 13 of the 73 trusts move up a quartile, 10 move 

down a quartile and one trust moves from the top (1st) to the third quartile of all the trust 

scores. These marked movements in the relative ‘position’ of trusts based purely on the 

volume of patients treated, without consideration of the problems encountered with 

summed total scores or more complex factors such as case-mix, are an indication of the 

potential difficulties in publishing data in the public domain. This is discussed further in 

section 2.4. 

2.3 Outcomes driven stroke care 

The distinction between outcome indicators and patient reported outcomes (as outlined in 

section 2.1.4.2) is an important one. Hard, objective endpoints (e.g. mortality following 

stroke) offer no information as regards the complexities of stroke recovery from the 

perspective of the individual, indeed prevention of mortality is not the only goal of 

therapy. Patient reported outcomes can offer information regarding aspects of patient 

outcome that cannot be measured through other means (Mant J 2001), but the question 

remains: how can or should this information be used at a population level?  

Comparison of institutions based on patient reported outcomes as subjective measures 

runs the risk that any between institution differences are attributed to the quality of 

delivered care. However, aside from arguments regarding the availability of more 

appropriate methods to detect deficiencies in the quality of care processes (2.1.5), 
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differences in patient reported outcome are dependent on the way in which individuals 

perceive their healthstate (Lilford RJ et al  2007).  Moreover, good outcome may occur 

despite failures in the delivery of care process and vice versa (Mant J 2001; Walsh K et al  

2002).  

2.3.1 What is outcomes measurement good for? 

Subjective outcomes assessment by patients offers some benefits that cannot be achieved 

through the isolated measurement of care processes: 

a. Useful information at individual level  

Outcomes measurement is arguably of more importance and relevance to individuals than 

individual aspects of care process. When considered at an individual level, patient reported 

outcomes offer a valuable resource. Interventions may be tailored to specific needs to 

inform care at an individual patient level i.e. to facilitate discussions regarding targeted 

longer-term treatments or therapy goals for individuals. Cumulatively, this information 

could help to inform the identification of gaps in local service delivery. Outcomes 

measurement may therefore be useful as part of a feedback loop to plan ongoing care, 

rather than as a method of evaluating the care that has already been delivered.  

A broad overview of delivered healthcare at a population level   

“…every hospital should follow every patient it treats long enough 

to determine whether or not the treatment has been successful, and 

then should inquire, “If not, why not?” with a view to preventing 

similar failure in the future” 

Ernest Codman (1869-1940) 

The measurement of outcomes measurement can provide a ‘broad barometer’ of 

delivered care (Lilford RJ et al  2007; Mant J 2001) – i.e. the cumulative effects of complex 

interventions, service structure and individual characteristics. Identification of substantial 

outliers, i.e. where there is deviation beyond that expected through ‘normal variation’ 

following case-mix adjustment could allow identification of institutions where outcomes 

are particularly good, or less good than expected (Lilford RJ et al  2004; Mohammed MA 

2001). Examination of these institutions may reveal areas for further exploration, or 

systematic differences may lead to generation of hypotheses regarding ‘what might work’ 

(Lilford RJ et al  2007). Identification of such outliers is likely to be best achieved through 

funnel plots and this approach is discussed in detail in 2.4.1.  

2.3.2 Drawbacks of outcomes measurement 

Aside the problems in linking care process with outcome (2.1.5), there are a number of 

technical and logistical difficulties in the routine collection of patient reported outcomes.  
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One of the major considerations in terms of outcomes measurement is which instrument 

should be used. Outcomes such as mortality or length of stay data are more readily 

available and may already be routinely recorded in existing systems. However, these offer 

no information regarding post stroke function in stroke survivors, and are not useful to 

inform individual patient care. The alternative is the collection of patient reported 

outcomes. There are a number of stroke specific and generic questionnaires to assess 

various domains of patient functioning following stroke. Any measurement scale for this 

purpose should be valid and reliable in stroke populations and should ideally have had 

these psychometric properties tested in a number of different datasets. Previous reviews 

(Jenkinson C et al 2009; Teale EA et al  2010) and online resources (Salter K et al 2010) aim 

to identify the optimal outcomes instrument for stroke, but consensus is lacking.  

Routine collection of patient reported outcomes requires considerable infrastructure. 

Collection of outcomes data face to face is unlikely to be feasible in routine care due to 

resource costs and time restraints. Existing infrastructure could be exploited (e.g. clinic 

attendance, or the community stroke team) in order to collect outcomes information, 

although these assessments are unlikely to be sufficiently standardised to ensure robust 

data collection. Postal questionnaires are an alternative, but introduce problems with 

return and completion rates, proxy completion and stroke specific problems such as the 

impact of dysphasia on the questionnaire completion. Postal questionnaires also need to 

be triggered at an appropriate time, following checks of residency and survival. All patient-

completed questionnaires (unless completed and submitted electronically) will require 

some form of data entry resource.  

2.4 Problems with presentation of data in the public domain  

Process and outcomes data are readily available in the public domain, including patient 

reported outcome data (The Information Centre 2011c), satisfaction ratings (Ipsos MORI 

2011) and league tables (Dr Foster 2010) for a variety of conditions including stroke (Dr 

Foster 2010; Intercollegiate Stroke Working Party 2011; Royal College of Physicians 2011). 

Often the data presented are standardised or adjusted for case-mix variables, but these 

are often those that are available from existing resources such as the Hospital Episode 

Statistics database (HES) (e.g. Dr Foster 2010). Data may therefore have been adjusted by 

the case-mix variables that are available, rather than those that have been validated 

through research or that make the most clinical sense.  

Appropriate interpretation of complex activity or outcomes data by the public, clinicians 

and commissioners is dependent on the way in which these data are presented (Davies 

HTO 2005). As patient choice becomes more prevalent and increasingly likely to drive 

commissioning decisions (Department of Health 2010a), the interpretation of data that 

may be used to inform decision making is key. It is unclear how well the public are able to 
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interpret these complex data (Scott IA et al  2006). However, the presentation of data that 

are flawed or difficult to interpret is likely to be damaging to individual provider trusts both 

financially and in terms of reputation (Davies HTO et al  1997; Lilford RJ et al  2004).  

2.4.1 Common cause versus special cause variation 

Mohammed et al explored the potential use of Shewhart charts (or statistical process 

control charts) to identify common cause (expected random) variation in outcome from 

special cause variation (due to an external influence on an otherwise stable process) 

(Mohammed MA 2001). A funnel plot presents similar information, but takes account of 

case volume. The funnel plot represents interval level data, and can be used for normally 

distributed data, proportions (based on a binomial distribution) or count data (based on a 

Poisson distribution). For example, observed cases as a proportion of potentially eligible 

cases could be plotted against the potentially eligible cases to account for differences in 

sample size (Speigelhalter DJ 2005; Speigelhalter D 2002).  

Providing that the markers approximate the appropriate distribution, funnel plots may be 

used to present either deviations from process or special cause variation in objective or 

patient reported outcomes either between institutions (Gale CP et al  2006) or within 

institutions over time (Henderson GR et al  2008). Special cause variations (greater than 3 

standard deviations from the mean or a chance probability of 1 in 500 (0.2%)) are highly 

unlikely to be due to chance and could be examined further for external causes or 

influences (Mohammed MA 2001; Speigelhalter DJ 2005). Special cause variation could 

indicate an important case-mix variable or confounder that has not been accounted for but 

that is particularly important at an individual site or at a particular time (e.g. temporary 

loss of scanning resource due to a broken scanner). Examination of the data in this way 

allows rational interpretation and may lead further exploration or investigation as 

required.  

Figure 3 uses data extracted from the 2011 RCP SINAP data spreadsheet (Royal College of 

Physicians 2011) to  highlight that similarly, funnel plots may be a more useful way to 

present complex stroke  data than the summed averages of percentage process scores that 

have been presented on the SINAP website (Royal College of Physicians 2011) (see also 

section 2.2.3.2). The proportion of patients receiving the processes that they require 

across trusts and the sum of the patients in whom these processes are indicated were 

calculated as discussed in section 2.2.3.2. The sample sizes from which these proportions 

have been calculated are large enough for the binomial distribution of the proportions to 

approximate a normal distribution (according to the central limit theorem).These data 

were therefore used to create a funnel plot (Figure 3). A number of hospitals are outwith 

the 3SD limits and therefore show ‘special cause variation’ from the average proportion 

(across all trusts) of patients in whom required processes are achieved. Trusts within the 
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outer limits are within “common cause” variation – i.e. their deviation from the mean is 

within the bounds of chance variation. There are benefits to examining both high and low 

outliers – to learn lessons from those that perform well and to explore further those that 

appear to perform less well. There are a number of possible reasons for the apparent 

differences between sites e.g. differences in measurement or data recording or case-mix 

that should be explored before the disparity is attributed to a true failure to achieve the 

process markers (Lilford RJ et al  2004).  

In 2011, The Information Centre moved towards the presentation of PROMs data in the 

form of funnel plots as they are “…relatively easy to produce, readily interpretable and 

allow for additional variability in institutions with small volumes.” (Department of Health 

2011b) 

Figure 3 Funnel plot to present total process scores from SINAP 2011 audit as a 

function of case volume 
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2.5 Conclusions 

Both process and outcomes driven approaches to the measurement of the complex and 

multifaceted construct of quality in healthcare have been advocated. In order for such 

measurements to be meaningful it is important to be mindful of the purposes of the data 

collection. It is unlikely that exclusive measurement of process, objective outcomes 

indicators or patient reported outcome measures will capture all aspects of patient care.  

Process monitoring is useful for detecting deviations from agreed protocols and best 

practice, although the effect of these deviations may not be detectable through the 

measurement of outcome. Monitoring of processes of care may also lead to a data driven 

approach to care provision that may fail to meet the needs of individual patients. 

Measurement of patient reported outcomes offers a unique insight into broader aspects of 

care, and may identify areas of service deficiency and need at an individual and population 

level.  

The complexity of the relationships between process, outcome and case-mix make 

interpretation of routine data problematic. Monitoring of quality through process 

measurement requires knowledge that the process (or omission of the process) has an 

effect on patient outcome, whilst routine measurement of patient outcomes would be 

enhanced through knowledge of whether processes of care are affecting outcome such 

that they may be monitored and improved. Both approaches are therefore dependent on 

the demonstration of robust adjusted process outcome linkages.  Case-mix adjustment is 

key to the exploration of these linkages and this will be discussed in more detail in Chapter 

3.  

It is likely that a combined approach to the measurement of stroke care that encompasses 

aspects of care process and patient reported outcome will give the most useful perspective 

of the stroke care pathway of interest to commissioners, service providers, clinicians, 

patients, and researchers. Routine capture of a dataset that includes these key aspects of 

care could also allow further exploration of the complexities of case-mix adjustment in 

stroke care.  
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Chapter 3 Systematic review case-mix adjustment model(s) 

in stroke 

3.1 Introduction 

Stroke is a heterogeneous and complex clinical syndrome. The clinical course and outcomes 

for individual patients following stroke are dependent not only on the site and/or size of 

the pathological lesion, but on the context of the injury in relation to combinations of 

mediating factors that are unique to individuals. For example, pre-stroke function, co-

morbidities, social environment and rehabilitation potential are all likely to affect an 

individual’s functional, cognitive and social outcomes. It is the combination of these 

complex factors that contribute to case-mix and make direct comparisons between 

individuals or empirical populations following stroke problematic and unreliable. It is, 

therefore, over simplistic and potentially misleading to consider the effect of treatments 

and therapies on patient outcome following stroke without considering the mediating 

effects of these other factors (see Chapter 2, section 2.1.6).  

Randomisation in clinical trials aims to balance the unmeasured confounders and biases 

between intervention and control groups. As such, in adequately randomised stroke trials, 

outcomes in two (or more) populations may be legitimately compared. Nevertheless, 

through the role of chance in random allocation, differences in important prognostic 

factors may remain between groups (Altman D 1985) and differences in outcome may 

reflect these imbalances rather than the true effect of the intervention.  For recognised and 

measurable risk factors, effects may be tempered by minimisation procedures (active 

balancing of patients with certain characteristics between intervention and control arms). 

Biases introduced by more immeasurable confounders may be attenuated by stratification 

according to predicted outcome prior to randomisation. 

In routine care and in unadjusted observational studies, the possible contributions of 

mediating factors are not accounted for and their effect on outcomes remains unmeasured 

and unknown. Inadequate (or absent) case-mix adjustment may therefore preclude 

meaningful examination of the relationships between care process and outcomes in 

observational studies (Mant J 2001) (see also section 2.1.6). Through prognostic modelling, 

case-mix adjustment of empirical post-stroke populations allows stratification into more 

homogenous groups according to predicted outcomes. Within such strata, observed 

outcomes between groups of individuals may be directly compared more legitimately. The 

influence of specific prognostic factors on patient outcome may be non-uniform across the 

spectrum of stroke severity (i.e. some factors are more or less important in certain 

subgroups of patients) (Lilford RJ et al  2007). In observational studies, adjustment for 

these factors can result in the ‘constant risk fallacy’ – a paradoxical increase in bias 

between groups (Nicholl 2007). 
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Stratification of populations according to predicted outcomes therefore has uses in both 

clinical care (e.g. targeting of appropriate therapies) and research (e.g. in examination of 

non-randomised populations or for stratified randomisation) (Counsell C et al  2001). 

However, such analyses must still be interpreted with caution as important differences and 

a degree of heterogeneity are likely to remain within strata even following case-mix 

adjustment (Mant J 2001).  

3.2 Assessment of prognostic models 

 There are no universally accepted criteria to assess the quality of prognostic studies 

(Altman D 2001; Hemingway H et al  2010; Mallett S et al  2010b). However, there is both 

generic and disease specific literature that has identified key clinical and statistical criteria 

that should be considered in model development or assessment (Altman D 2001; Counsell 

C et al  2001; Harrell FE et al  1996; Hayden JA. et al  2006; Kwakkel et al  1996; Laupacis A 

et al  1997; Mallett S et al  2010b; Mallett S et al  2010a; Perel P et al  2006; Wyatt JC 1995).  

This broadly concerns consideration of model internal, external and statistical validities.  

A “systematic review of reviews” published by Hayden et al in 2006 considered the quality 

of reviews to identify clinical prediction models across a range conditions (Hayden JA. et al  

2006). This review suggests a “framework of potential biases” that should be considered in 

the assessment of the quality of studies to develop prognostic models. This framework 

largely considers internal validity of models across the broad categories of 

representativeness of the study population, attrition (and consideration of whether loss-to 

follow up could be systematic), inclusion and accurate measurement of appropriate 

prognostic information, accurate definition and measurement of valid and reliable 

outcomes, consideration of confounding and the use of appropriate modelling techniques. 

Within each of these categories a number of criteria are specified to aid consideration of 

whether or not the study to develop the model is adequate (Hayden JA. et al  2006). 

However, this framework does not address key issues relating to the models that have 

been developed, for example external validity or feasibility of prognostic models in terms 

of their clinical utility and ease of data collection.  

Several authors have provided detailed discussion regarding the development of robust 

models (Harrell FE et al  1996; Mallett S et al  2010a; Wyatt JC 1995). There are several 

factors that should be taken into account during model development and failure to do so 

may affect the stability and utility of models. This includes consideration of sample size and 

the number of variables that may be entered into the model, prospective data collection, 

representativeness of population samples, coding of variables (and proper classification of 

continuous variables) and variable selection. 

In a 2001 review, Counsell et al tabulate 25 separate criteria for assessing the quality of 

studies to develop prognostic models in stroke. The broad categories of internal, external 
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and statistical validities, model evaluation, and feasibility are considered. These criteria 

incorporate many of the methodological quality markers identified in other studies 

(Counsell C et al  2001).  

Previous reviews have been undertaken to identify prognostic models specifically in stroke 

(Counsell C et al  2001; Hier HB et al  1991; Jongbloed L 1986; Kwakkel G et al  1996; Meijer 

et al  2003a; Meijer et al  2003b; Meijer et al  2004; Segal M et al  1997) and show these 

models to be generally poor. One of these reviews identified studies describing models to 

predict stroke survival, survival in an independent state or alive and at home (Counsell C et 

al  2001). The vast majority of the 83 discrete prognostic models identified demonstrated 

significant flaws in statistical or internal validities. Only four met 8 simple quality criteria of 

internal and statistical validity defined by the authors, and none was fit for purpose to case-

mix adjust in routine clinical care (Counsell C et al  2001). Other authors have attempted to 

identify case-mix adjustment models which were developed to predict functional outcomes 

following stroke (Jongbloed L 1986; Kwakkel G et al  1996). However, these have tended to 

be limited to prediction of activities of daily living; most commonly the Barthel Index which 

has limitations due to its marked, and well documented, ceiling effects (Salter K et al 2010). 

Since these reviews were performed, clear evidence demonstrating the benefits of 

organised specialist multidisciplinary stroke care over general ward care (Stroke Unit 

Trialists' Collaboration 2007) has led to the widespread adoption of this model and 

fundamental changes to the delivery and monitoring of stroke care across health care 

systems (American Stroke Association's Task Force on the Development of Stroke Systems 

2005; Lindsay MP et al 2010; Thomassen L et al 2006). It is possible that prognostic factors 

previously unknown or overlooked are important in determining patient outcomes and 

these should be modelled explicitly.  In addition, increasing scrutiny of the quality of 

prognostic research (Altman D 2001; Hayden JA. et al  2006; Hemingway H et al  2010) and 

more sophisticated statistical modelling techniques (e.g. multilevel modelling, latent 

variable analysis and structural equation modelling) are likely to have altered the type and 

quality of models to predict outcomes following stroke.  

A systematic review of the literature was therefore undertaken in order to update previous 

reviews (in light of the above factors) and identify any externally validated prognostic 

model to predict outcome in unselected populations following acute stroke comprising 

simple clinical variables feasible for collection in routine care.  
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3.3 Methods 

3.3.1 Review team 

To minimise bias and in accordance with suggested guidelines (Altman D 2001; Centre for 

Reviews and Dissemination 2009), this review was designed and conducted by a team with 

a variety of skills led and co-ordinated by Elizabeth Teale (ET). The search strategy was 

developed in collaboration with a colleague at Leeds University Library (Deidre Andre (DA), 

Research Support Officer). Development and definition of inclusion criteria was undertaken 

by ET. Screening of titles was performed by Anita Ranjendran (AR, Medical Student 

University of Leeds Medical School) and Anne Forster (AF, Professor of Stroke 

Rehabilitation, University of Leeds). Subsequent screening of titles for which consensus had 

not been met was performed by ET. Review of abstracts and selection of studies for 

inclusion was performed by AF and ET. Double data extraction was performed by Ruth 

Lambley (RL, Research Assistant, Academic Unit of Elderly Care and Rehabilitation) and ET. 

Statistical appraisal of identified models was performed by Theresa Munyombwe (TM, 

Medical Statistician, University of Leeds) and ET.  Consolidation and synthesis of findings 

was performed by ET. 

3.3.2 Information sources 

A comprehensive search strategy was developed with a colleague at Leeds University 

Medical Library (DA) combining terms to identify stroke studies (as developed by the 

Cochrane Stroke Group (Cochrane Database of Systematic Reviews Stroke Review Group 

2009) with terms to describe prognostic modelling. The full search strategy is included in 

Appendix A-1 Searches were run in MEDLINE, EMBASE, CINAHL, PsycInfo, AMED and ISI 

Web of Science with no date or language limits until 30th May 2009. Results were 

downloaded into EndNote™ (version X2.0.1) and duplicates removed.  

3.3.3 Study selection 

Titles were examined by two independent reviewers (AR and AF) and obviously irrelevant 

titles excluded. A third reviewer (ET) examined titles where there was no agreement to 

ensure all relevant titles were included. Abstracts of potentially relevant papers where 

there was agreement between at least two of the three reviewers were then further 

examined by two reviewers (AF and ET). Papers fulfilling inclusion criteria were retrieved in 

full text.  

Studies were included if they described development or external validation of a discernible 

prognostic model at a fixed time point following ischaemic or haemorrhagic stroke. Studies 

referring to ‘adjustment for baseline variables’ were excluded unless the method of 

adjustment was further qualified.  
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Only studies describing models with variables considered to be feasible for collection in a 

routine care setting, by ward staff and within two weeks of stroke were included. 

Prognostic models that required specific radiological or laboratory test results were 

excluded as the aim is to identify a case-mix adjustment model comprising variables that 

may be collected at the bedside.  

For the purposes of this review, an assumption was made that not all services are currently 

set up to facilitate data collection requiring specialist assessment on, or within a few hours 

of, admission to hospital. Models that require collection or measurement of case-mix 

variables requiring a level of expertise above that expected on a typical medical assessment 

unit by non-specialist stroke clinicians (for example the National Institute of Health Stroke 

Score (NIHSS)) were therefore excluded.  

Similarly, models requiring the collection of case-mix variables within six hours of 

presentation were excluded as patients not admitted directly to a stroke unit (or those 

transferred to a stroke unit from the Emergency Department within four hours) are unlikely 

to have case-mix variables collected reliably within this time frame. The rates of direct 

admission to specialist stroke units are improving in England, Wales and Northern Ireland. 

The proportion of patients admitted directly to an acute stroke unit increased from 29% to 

56% between the 2008 and 2010 RCP clinical audits (Intercollegiate Stroke Working Party 

2011; Royal College of Physicians 2009b). A continuation in this trend is likely to occur with 

the expansion of thrombolysis services with initial assessments increasingly likely to be 

made by more senior and specialist stroke clinicians. This may, in the future, facilitate the 

collection of more complex baseline data at the point of admission (e.g. complex clinical 

prognostic scoring systems) and shorten the time frames within which collection is feasible. 

Previous reviews have either limited their searches to identify models predicting functional 

outcomes (Kwakkel G et al  1996) or have limited the scope of their review to consider the 

outcomes of death and dependency (as defined by a dichotomised modified Rankin 

Score)(Counsell C et al  2001). We aimed to identify all available prognostic models to 

predict any post stroke outcome (including mortality, disability and functional outcomes).   

Models developed in populations unlikely to be representative of the wider stroke 

population (e.g. exclusion of the oldest old, or patients at the extremes of stroke severity) 

were excluded as models developed in such populations are unlikely to be generalisable to 

unselected stroke populations. Similarly, prognostic factors for stroke are likely to differ 

from those of transient ischaemic attack (TIA) and subarachnoid haemorrhage (SAH). 

Models developed to predict outcome following TIA or SAH were therefore excluded.  

External validation refers to the testing of models in populations independent to those in 

which the model was developed. Ideally, this should occur in an unselected population in a 

different institution from that in which the model was developed. Models without evidence 
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of external validation were excluded from this review. Where it was not clear whether a 

model had been externally validated, the paper was retained for further scrutiny.  

A flow chart of inclusion and exclusion criteria is presented in Figure 4. 

Figure 4  Citation screening inclusion and exclusion criteria 
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3.3.4 Data extraction  

Data extraction was performed in duplicate by ET and a fourth independent reviewer (RL).  

Details regarding the name of the case-mix model, author, model variables, reference 

population (inception cohort and study exclusion criteria), prospective or retrospective 

data collection, losses to follow up, outcome measures (and time point of measurement), 

sample size, external validation of model and feasibility of collection of independent 

variables were extracted if available. Studies describing the development of models and 

subsequent validation studies were then grouped together.  

3.3.5 Data items 

Initially, criteria to assess the quality of each model were applied. These were extracted 

from a framework of criteria used to assess internal validity of models (Hayden JA. et al  

2006) and a broader set of criteria to examine quality of models as used by Counsell et al in 

their 2001 review (Counsell C et al  2001). The criteria used at this stage in the review were 

selected to cover the aspects of model quality considered to be essential: adequate 

inception cohort, prospective data collection, a description of patients lost to follow up 

(and no systematic exclusion or drop out of particular patient subgroups), clinical relevance 

of prognostic factors, assessment of valid and reliable outcomes at a fixed time point, no 

inclusion or exclusion criteria that might limit generalisability, and variables that are 

feasible to collect in routine care.  

Independent statistical appraisal of the model development was then performed by TM to 

assess aspects of statistical quality as regards model fitting. This included consideration of 

sample size, variable selection techniques, consideration of collinearity and interaction 

terms (Harrell FE et al  1996). Regression models require a linear relationship between the 

independent and dependent variables, and normally distributed model residuals with 

constant variance (the difference in observed and predicted outcome for each case) (Fox J 

1997p 113). These assumptions should have been checked explicitly to demonstrate that 

that the models are statistically robust. Information regarding any testing of modelling 

assumptions was therefore also extracted. 

3.3.6 Model performance 

Measures of model performance were extracted from external validation studies for each 

model. These comprise measures of discriminatory function (e.g. the c statistic) 

sensitivity/specificity analysis and calibration of models in independent populations 

(Altman D et al  2000; Altman D et al  2009). 
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3.4 Results 

After the removal of duplicates, the initial search identified 19,867 titles. Screening of titles 

(to exclude obviously irrelevant citations) and abstracts (based on inclusion and exclusion 

criteria (Figure 4) led to two independent reviewers agreeing to the retention of 176 

citations. In 487 further citations where consensus between these two reviewers was not 

met, the opinion of a further independent reviewer (ET) resulted in the inclusion of an 

additional 183 potentially relevant citations. A discussion (based on abstracts) between AF 

and ET regarding relevance for inclusion in the review of the 359 identified papers resulted 

in the retention of 119 papers for examination in full text. Handsearching of the reference 

lists of these papers (ET) identified a further 15 potentially relevant citations. A total of 43 

of the papers were retained for data extraction. In addition, five previous reviews were 

examined to identify any models that may otherwise have been overlooked. A flow-

diagram of the selection process can be found in Figure 5. 

Figure 5 Identification of citations for inclusion in the review (Teale et al 2012) 
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Twenty-one case-mix or prognostic models predicting a range of outcomes were described 

in 43 papers (Table 1). In addition, two studies described the use of 3 existing impairment 

scales to predict patient outcome post-stroke (Lai et al  1998; Muir KW. et al  1996). Of 

these 3 models, only one was used in isolation to predict outcomes whilst the other two 

were incorporated into existing models, such that their independent performance was not 

discernible. Following data extraction, therefore, these two models, the Canadian 

Neurological Score and the Middle Cerebral Artery Neurological Score (MCANS or Orgogozo 

score) were not considered further. Of the remaining 22 models, one was developed to 

predict outcome following intracerebral haemorrhage and was retained (Weimar et al  

2006). Examination of previous reviews did not identify any additional externally validated 

models comprising variables that were feasible for collection in routine care.  

 Prognostic models identified through review (Teale et al 2012) Table 1

 Model Citation 

Anderson (Anderson et al  1994) 

Belfast (Fullerton KJ et al  1988) 

Bristol (Wade DT et al  1983) 

Edinburgh (Prescott et al  1982) 

G score (Gompertz et al  1994) 

Guys (Allen CMC 1984) 

Johnston (Johnston et al  2000) 

Lincoln (Lincoln et al  1990) 

Masiero (Masiero et al  2007) 

Modified National Institute of Health Stroke Scale (mNIHSS) (Lyden et al  2001) 

Shortened National Institute of Health Stroke Scale (NIHSS_8) (Tirschwell et al  2002) 

National Institute of Health Stroke Scale + age (NIHSS+age) (Weimar et al  2004) 

Orpington (Kalra et al  1993) 

Six Simple Variables (SSV) (Counsell C et al  2002) 

Tilling (Tilling et al  2001a) 

Uppsala (Frithz G et al  1976) 

Wang (Wang et al  2003) 

Weimar (Weimar et al  2002) 

Weimar intracerebral haemorrhage model (Weimar_ICH) (Weimar C et al  2006) 

Williams (Williams et al  2000) 

Young (Young et al  2001) 

Existing prognostic models Citation 

Canadian Neurological Scale (CNS) (Muir KW. et al  1996) 

Middle Cerebral Artery Neurological Score (Orgogozo score) (Muir KW. et al  1996) 

National Institute of Health Stroke Scale (NIHSS) 
(Lai SM et al  1998; Muir KW. et 

al  1996) 

Four models (Anderson CS et al  1994; Masiero S et al  2007; Wang Y et al  2003; Williams G 

et al  2000) were validated using a ‘split-sample’ technique. Here, the model is developed 

in a training set (a subgroup of the study population) and validated in the remaining study 

population. This represents a form of internal (not external) validation and should not be 

considered to represent evidence that the models perform adequately in independent 

populations (Altman D et al  2009). These models were not considered further. The G score 

is unusual in the identified models in that it is identical to the Guys score, but the model 
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beta co-efficients have been simplified to create a new model (Gompertz P et al  1994). The 

G score is therefore a modification of the Guys score rather than a model developed de 

novo and no further validation studies were identified. The Guys model has however been 

externally validated and as such, the G score was retained for further discussion. 

Where included studies described the external validation of models, the papers describing 

model development were also retrieved (if these did not feature in the output from the 

original searches). Data extraction was therefore performed from papers describing 

seventeen prognostic models. Data extraction tables are included in appendix 7.2A-2. 

Studies describing model development are grouped with subsequent validation studies. 

Table 2 offers a summary of the studies describing model development.   

3.5 Discussion 

Results are discussed according to each criterion on which the models were assessed. 

Models fulfilling criteria are then discussed further in terms of their statistical properties 

and performance. A brief overview of the modelling assumptions and statistical criteria 

against which the models were assessed is offered in section 3.5.6. Assessment of 

individual models against the initial criteria and subsequent assessment of statistical 

methods used in model development are summarised in Table 4 and Table 6. Complete 

data extraction tables are presented in appendix A-2. 

3.5.1 Inception cohort 

An inception cohort is a group of patients at the same point in the disease process – in the 

context of stroke an inception cohort is taken to mean a group of patients assessed or 

recruited into a study within (and preferably at) a specific time-period following their 

stroke (Altman D 2001; Counsell C et al  2001).  

Four of the models identified in this review (Bristol, Edinburgh, Lincoln and Young) 

described cohorts assessed at greater than two weeks following the stroke event and were 

not considered further (Lincoln et al,  1990; Prescott RJ et al  1982; Wade DT et al  1983; 

Young J et al  2001). Measurement of variables for development of the Edinburgh model 

was at four weeks following acute stroke and this is likely to limit the utility of this model in 

the acute stroke setting (Prescott RJ et al  1982). The Orpington score is an adaptation of 

the Edinburgh score to include an assessment of cognition (Kalra L et al  1994; Kalra L et al  

1993). Unlike the Edinburgh model, the Orpington score was developed on an adequate 

inception cohort and is therefore retained.  

The models developed by Young et al (Young J et al  2001) and Lincoln et al (Lincoln et al,  

1990) were developed using variables collected on admission to (or discharge from) a 

rehabilitation facility and therefore the inception cohort (time from  stroke to assessment) 

was not uniform. The SSV model was developed using retrospective data (collected 
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prospectively) from the OCSP cohort (Bamford J et al  1988; Counsell C et al  2002). 

Although in the original OCSP cohort about three quarters of assessments were performed 

within two weeks of the stroke event (median time to assessment 4 days) (Bamford J et al  

1988), the SSV model was developed using data on the 86% of assessments performed up 

to 30 days following stroke(Counsell C et al  2002). This model was, however, retained as 

the proportion of assessments performed after 14 days was small. 

Further discussion of models is restricted to the 13 models that are externally validated and 

developed on an adequate inception cohort. The NIHSS is also included for further 

discussion as a prognostic model as its use has been described as a predictor of outcome in 

studies identified through this review (Counsell C et al  2002; Lai SM et al  1998; Muir KW. 

et al  1996).  

3.5.2 Sources of data for model development 

Models should ideally be developed from prospective data – i.e. data that are collected 

according to a protocol with the express purpose of developing the model (Wyatt JC 1995). 

The convenience of data extracted from retrospective databases, may be offset by 

limitations in the data that are available, or its quality (Wyatt JC 1995). There were three 

main identified sources of data used for model development and validation in this review: 

prospective data collection for the purposes of model development, retrospective use of 

data collected within stroke registers, and the secondary use of data from previously 

conducted randomised controlled trials.  Five of the remaining 13 models identified during 

this review were developed through studies where the primary purpose of the research 

was to develop the model (Belfast, G score, Guys, Orpington, Weimar_ICH) (Allen CMC 

1984; Fullerton KJ et al  1988; Gompertz P et al  1994; Kalra L et al  1993; Weimar C et al  

2006). These tended to be small studies (sample size 96-361, median 206).  

The secondary use of retrospective data may introduce bias either due to inclusion and 

exclusion criteria of clinical trials, or to non-standardised methods of collection and 

definitions of prognostic variables (such as may be seen in the extraction of data from 

existing databases) (Wyatt JC 1995). Ideally, the external validation of models in 

independent datasets should also use data that is prospectively collected (to prevent any 

bias that could be introduced if prognostic information is recorded when the outcome is 

known) (Wyatt JC 1995). Models developed from retrospective data where cases are 

selected and extracted on the basis of concordance with inclusion criteria and complete 

outcomes data are particularly prone to selection bias as there may be systematic reasons 

why outcomes data are missing in certain patient groups. The reasons why certain types of 

patients might be lost to follow-up and their baseline characteristics should be examined 

and compared to cases with complete data to ensure that there is no systematic bias 

(Hayden JA. et al  2006). 
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Three models were developed using data extracted from stroke registries or prospective 

cohorts. These were the Weimar (ischaemic stroke) model (Weimar C et al  2002), the 

NIHSS+age (Weimar C et al  2004) and the SSV models (Counsell C et al  2002). Of these, 

two models were developed from prospectively collected data extracted from the German 

Stroke Database (Weimar and NIHSS+age) (Weimar C et al  2002; Weimar C et al  2004). 

Although only patients fulfilling inclusion criteria and with complete data were selected, 

baseline characteristics of patients with complete and incomplete outcomes data were 

compared during the development of two of the models and no statistically significant 

differences found (Weimar C et al  2002; Weimar C et al  2004).  

The Six Simple Variable model (SSV) (Counsell C et al  2002) was developed retrospectively 

using prospectively collected data from a community cohort of stroke patients of whom 

about half were never admitted to hospital (Bamford J et al  1988). Patients excluded from 

model development included those who died before assessment or who were not assessed 

by a study neurologist within 30 days of the stroke event. Outcomes data for the remaining 

530 patients was complete. The SSV model has, however, been subsequently externally 

validated using prospective data (Dennis et al  2006; Lewis S et al  2007; Reid J et al  2007), 

with collection of variables within a week of the stroke event. One further model (Uppsala) 

was developed using data extracted retrospectively from patient case-notes (Frithz G et al  

1976). 

Four models identified used data from previously conducted RCTs (Johnston, mNIHSS, 

NIHSS_8, Tilling) (Johnston KC et al  2000; Lyden PD et al  2001; Tilling K et al  2001a; 

Tirschwell DL et al  2002). RCTs performed on an intention to treat basis may ascribe the 

last available score, or worst outcome to patients lost to follow up or unable to complete 

assessments (Tirschwell DL et al  2002). Secondary use of data (from RCTs, databases or 

previously conduced cohort studies) means that patients with incomplete data (or those 

lost to follow up) may be excluded (Johnston KC et al  2000; Johnston et al  2003) with the 

risk of systematic bias. Moreover, inclusion or exclusion criteria of RCTs (e.g. exclusion of 

patients unable to transfer from bed to chair (Tilling K et al  2001a) or exclusion of patients 

with contraindications to thrombolysis (Tirschwell DL et al  2002)) may affect the ability of 

models developed from trial data to predict outcomes in the groups that were excluded 

from the training dataset. If validation studies were also performed in selected populations, 

the performance of models in empirical populations may remain untested and uncertain. 

Of four model development studies making secondary use of RCT data, only one (Johnston 

KC et al  2000) reported the number of patients excluded through incomplete outcomes 

data and none compared the characteristics of patients excluded through missing data with 

the study population (Table 2). 
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 Summary of studies describing construction of models identified in the review (Teale et al 2012) Table 2

 Reference Sample 

size 

Data 

source 

Adequate 

inception 

cohort 

Less than 

10% loss to 

follow up 

No systematic 

difference in 

patients lost to 

follow up? 

Valid 

outcome 

measured 

at fixed 

time point 

Modelling 

methods 

Adequate 

EPV 

Linearity 

assumptions 

tested and 

met 

Control for 

collinearity 

Belfast Fullerton (1988)  206 P + +  - CDA 0 - - 

Bristol Wade (1983)  162 P - - + + LinR + 0 + 

Edinburgh Prescott (1982)  155 T - +  - LinR - - - 

G score Gompertz (1994)  361 P + - 0 + N/A + 0 0 

Guys Allen (1984)  148 P + + 0 - S LR - - + 

Johnston Johnston (2000)  256 T + - 0 + LR + + - 

Lincoln Lincoln (1990)  70 P - - 0 - S LR - - + 

mNIHSS Lyden (1999)  291 T + 0 0 + FA NA NA NA 

NIHSS_8 Tirschwell (2002)  233 T + 0 0 + S LR - - + 

NIHSS+age Weimar (2004)  1079 D + +  + S LR + + + 

Orpington Kalra (1993)  96 P + +  + LinR + - - 

SSV Counsell (2002)  530 D + +  + S LR + + + 

Tilling Tilling (2001a)  299 T + 0 0 + MM + + 0 

Uppsala Frithz (1976)  344 CN + +  + LR + 0 + 

Weimar Weimar (2002)  1754 D + +  + S LR + + + 

Weimar_ICH Weimar (2006)  260 P + - + + S LR + 0 + 

Young Young (2001)  207 T - +  + S LR - + + 

P = Prospective data collection, T = retrospective use of RCT data, D = Data extracted from database or cohort study, 

CN= data extracted from case notes 

(S) LR = (stepwise) logistic regression, LinR = linear regression, MM = multilevel modelling FA =factor analysis CDA Canonical Discriminant Analysis 

+ = condition met, - = condition not met, 0 = unclear from study reports 

Highlighted studies were not developed on an adequate inception cohort and are not considered further 
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In developing the NIHSS_8, Tirschwell et al extracted 223 cases with complete prognostic 

variable data from the placebo arms of three RCTs (239 patients randomised to placebo in 

these trials) (Tirschwell DL et al  2002).Two of these trials were analysed on an intention-to-

treat basis with ‘last observation carried forward’ for patients who died (combined rate 

27/191) or who were not followed-up (combined rate 8/191 patients). It is not clear if the 

patients who died but were ascribed the last available functional outcome score from these 

trials were coded as deaths during development of the shortened NIHSS models (Tirschwell 

DL et al  2002).  

Johnson et al extracted data from both placebo and intervention arms of a therapeutic trial 

where no overall treatment effect was demonstrated (Johnston KC et al  2000). Patients with 

incomplete predictor or outcomes variables were excluded, and their characteristics were not 

compared to the baseline characteristics of the complete study sample (222/256 patients).  

Tilling et al analysed all patients randomised into a trial of early supported discharge 

compared against usual care (Tilling K et al  2001a). To enable multilevel modelling of 

recovery trajectories, outcomes measurements were performed at a number of time points 

following stroke. All patients had at least one outcome measurement and were included in 

the model development. Mean Barthel Indices for patients in whom measurements were not 

made on all occasions were compared to patients with complete data.  

Data for external validation studies of identified models were similarly obtained through 

secondary use of trial data, existing cohort data or gathered prospectively. The number of 

validation studies for individual models ranged from one (Belfast, mNIHSS, NIHSS_8, Tilling, 

Uppsala, Weimar and Weimar_ICH) to six (SSV), with cumulative validation sample sizes of 27 

(mNIHSS) to 8964 (SSV), median 762 (see appendix 7.2A-2). Larger validation populations 

were generally those from databases and registries, whilst smaller sample sizes reflect studies 

with data collected prospectively to meet the a priori intention to validate a specific model. 

Some studies used the same study population to validate several models (Gladman et al  

1992).  

3.5.3 Clinically relevant prognostic variables 

Statistical credibility of a prediction model in isolation is not useful unless the prognostic 

variables make clinical sense. Predictor variables in the identified models fell into three broad 

categories: markers of stroke severity at onset, possible confounding variables (e.g. age) and 

co-morbidities (Table 3). Generally, variables used to construct the identified models made 

clinical sense. However, some of the covariates are less convincing clinically e.g. the presence 

of ‘non-specific ST or T wave changes’ was included as a predictor in the Belfast model 

(Fullerton KJ et al  1988). During the development of this model, multiple univariate analyses 

of binary and categorical variables had been performed to identify candidate predictors for 

multivariable analysis. Some variables had several categories (up to 11), and variable 
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selection was data driven (Fullerton KJ et al  1988). This highlights the importance of clinical, 

as well as statistical judgement during model development.  

 Variables included in identified models (Teale et al 2012) Table 3

 Variables included in model 

SSV Age, living alone,  independent pre stroke ,normal GCS verbal score ,able to lift both 

arms, able to walk  

Tilling Age, Sex, ethnicity, pre-stroke handicap, limb weakness, dysphasia, dysarthria, 

incontinence, conscious, swallowing deficit, stroke subtype 

Johnston Age, NIHSS score, small vessel stroke, previous stroke, diabetes, prestroke disability, 

infarct volume 

Orpington Arm power, proprioception, balance, cognition 

Guys Limb paralysis, higher cerebral dysfunction+ hemiparesis+ hemianopia, drowsy, age, 

unconscious at onset, uncomplicated hemiparesis 

Belfast Albert’s test score, leg function, conscious level, arm power, weighted mental score, 

non-specific ECG changes 

Uppsala Adaptation of Mathew’s score (0-100) Conscious level, orientation, dysphasia, 

conjugate gaze palsy, facial weakness, arm power, Performance Disability scale, 

reflexes, sensation 

Weimar Model 1: Neurological complications, fever, lacunar infarct, diabetes, previous stroke, 

sex, age, mRS, NIHSS score on admission 

Model 2: Fever, age, NIHSS score on admission 

NIHSS_age Age, NIHSS 

Weimar_ICH Age, NIHSS 

NIHSS_8 NIHSS_15 items 1a, 2,3,4 6a&b 9, 10 

conscious level, gaze visual fields, facial paresis and lower limb motor scores, language 

and dysarthria 

mNIHSS Items 1B, 1C, 2,3,5 a&b, 6 a&b, 8, 9, 11 from the NIHSS: 

Conscious level, gaze, visual fields, upper and lower limb power, sensory function , 

language and neglect 

 

Counsell et al (2001) argue that the variables included in a prognostic model for stroke should 

include a marker of stroke severity (Counsell C et al  2001). It is possible, if not likely, that 

some clinical variables may act as proxy markers for stroke severity; e.g. patients with more 

severe strokes are more likely to develop new urinary incontinence. In this way, the presence 

of urinary incontinence may reflect constructs related to stroke severity such as mobility 

(difficulty in self-toileting), communication problems (difficulty in communicating the need 

for assistance with toileting) or conscious level. The potential for such collinearity between 

independent (predictor) variables should be examined and addressed during model 

development, but raises the possibility that more simple (univariate) case-mix adjustment 

may be possible. Indeed, it has been argued that multivariable prognostic models add little 

additional accuracy for prediction of discharge home over and above that of urinary 

incontinence alone (Barer et al  1989). A more recent examination of the role of urinary 

incontinence as a univariable predictor of outcome by Counsell et al found that although 

urinary continence was able to identify patients with good outcome (mRS  ≤2), the specificity 

(correct identification of patients with unfavourable outcome) was poor (0.44, 0.40-0.48) 

(Counsell C et al  2004). This would tend to suggest that absence of urinary incontinence is a 
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predictor of good outcome, rather than presence of urinary incontinence necessarily 

predicting poor outcome. This raises the question of whether there are particular subgroups 

of patients with new urinary incontinence following stroke that are more likely to have a poor 

outcome.  

3.5.4 Feasibility of data collection at ward level 

Three models require baseline data to be collected within six hours of admission (Johnston, 

NIHSS+age and Weimar_ICH models (Johnston KC et al  2000; Weimar C et al  2004; Weimar C 

et al  2006). A further three require variable collection within 24 hours (G score, mNIHSS, 

NIHSS_8) (Gompertz P et al  1994; Lyden PD et al  2001; Tirschwell DL et al  2002). One 

further model was developed using variables collected “on admission”, although the exact 

time frame within which variables were collected is not specified (Uppsala) (Frithz G et al  

1976).   

The type of ward to which the patient is admitted also has implications for the types of data 

that may be collected to enter into prognostic models. The availability of staff trained to 

perform complex clinical assessments (e.g. the NIHSS) may limit the use of some models to 

specialist staff in stroke units.  In addition, data collection is resource dependent. In funded 

research projects assessments are likely to differ from those that may be performed as part 

of routine care. Eight identified models (Johnson, Lincoln, Weimar & Weimar ICH models, 

Uppsala , Belfast, NIHSS+age, mNIHSS) (Frithz G et al  1976; Fullerton KJ et al  1988; Johnston 

KC et al  2000; Lincoln et al,  1990; Tirschwell DL et al  2002; Weimar C et al  2002; Weimar C 

et al  2004; Weimar C et al  2006) and one pre-existing severity score used to predict outcome 

(the NIHSS) (Muir KW. et al  1996)  require complex clinical assessments for completion and 

are therefore unlikely to be feasible for collection in non-specialist settings or in routine care.  

3.5.5 Assessment of valid and reliable outcomes at a fixed time point 

The models identified through this review may be classified according to the outcomes that 

they were developed to predict. Some authors describe development of similar models to 

predict different outcomes, and these therefore counted more than once. Outcomes should 

be of proven validity and reliability in stroke populations. In addition, the outcome should be 

measured at a particular time point following the stroke event, such that time to 

measurement of outcome is standardised.  

Two of the identified models predict the Barthel Index as an interval dependent variable 

(Orpington, Tilling) (Kalra L et al  1993; Tilling K et al  2001a). The Tilling model is a multilevel 

model and, as such, predicts average recovery trajectories (measured with Barthel Index) 

over time following a stroke event (Tilling K et al  2001a). The Orpington score was developed 

to predict the Barthel Index at three time points following stroke (Kalra L et al  1993). In a 

subsequent validation study of the Orpington score and the NIHSS (a pre-existing stroke 

severity scale), Lai et al predicted Barthel Index as an interval variable (Lai SM et al  1998). 
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The validity of this approach is dependent on some statistical assumptions which are 

discussed further in section 3.5.8.2.  

Seven of the remaining 13 models predict dichotomised Barthel Index (Johnston, G score, 

Weimar ICH, Weimar, NIHSS+age, NIHSS_8, mNIHSS). Time to outcomes measurement for 

these models varied from two to six months.  

Three models predict dichotomised modified Rankin Score (or Oxford Handicap Score) (SSV, 

mNIHSS, NIHSS_8) (Counsell C et al  2002; Lyden PD et al  2001; Tirschwell DL et al  2002), and 

two predict other dichotomised impairment scores (Johnston, NIHSS_8) (Johnston KC et al  

2003; Johnston KC et al  2000; Tirschwell DL et al  2002)). The Johnston model predicts 

devastating outcome with the NIHSS, dichotomised BI or dichotomised Glasgow Outcomes 

Score whilst the NIHSS_8 model predicts a global outcome score (good/poor outcome) 

calculated from four other dichotomised outcomes: BI, NIHSS_15, mRS, and the Glasgow 

Outcomes Score. The authors of the Guys and Belfast models developed study specific 

impairment scales (Allen CMC 1984; Fullerton KJ et al  1988). 

Four of the 13 models were developed to predict mortality – Uppsala, SSV, Weimar and 

NIHSS+age) (Allen CMC 1984; Counsell C et al  2002; Weimar C et al  2002; Weimar C et al  

2004).  

3.5.6 Statistical quality of studies describing model development 

The majority of the models identified in this review comprise variables that are not feasible 

for collection in routine care (for reasons of time to assessment or complexity of assessment), 

require training for administration (NIHSS) or were developed on an inception cohort 

established more than two weeks following the stroke event (Table 2). No model was 

excluded solely on the basis of the characteristics of the cohort from which it was developed 

if there was evidence that it had been validated (and performed acceptably) in a more 

general post stroke population (e.g. the SSV model and Tilling models) (Counsell C et al  2004; 

Tilling K et al  2001a) (see data extraction tables in appendix 7.2A-2). Six models were 

therefore further scrutinised according to statistical criteria: the Tilling model, Orpington 

score, G score, Guys model, NIHSS_8 model and the Six Simple Variable model (see Table 4). 

Five of these six remaining models use single level regression modelling for the prediction of 

outcomes. The sixth (Tilling model) uses multilevel modelling and is considered in 3.5.7.4 as a 

special case. Regression models are based on the ‘generalised linear model’ comprising a 

linear predictor (1) and random effects (ԑ) such that the general form of the equation to 

calculate the mean expected values of the dependent variable E(Y) from a linear model is 

given by (2) where μi =the predicted outcome for individual i, β = variable coefficient between 

limits i� k, x= independent variable and ԑ= random effects. The generalised linear model (2) 

contains a ‘link function’ f(μi), dependent on the underlying distribution of the data (3). The 

inverse of which transforms the linear prediction to the probability distribution of the 
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underlying data (Fox J,  1997 pp 487-488). For example, the logit function is used in logistic 

regression models to predict binomial probability distributions (dichotomous outcomes), and 

the transformation function is given by (3)(Fox J,  1997). The inverse of this function is 

therefore used to calculate the fitted values μ. The probability distribution of these fitted 

values should therefore follow a binomial distribution. For normally distributed linear 

outcomes, the function is f(μ) = μ.  
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3.5.7 Checking model assumptions – (Multiple) linear regression 

Multiple linear regression modelling requires a number of assumptions to be fulfilled in order 

for the approach to be valid (Fox J,  1997 p 113; Harrell FE et al  1996). Firstly, there must be 

an underlying linear relationship between the independent and dependent variables (or a 

transformation thereof). Secondly, the residuals (the difference in observed and predicted 

outcomes) must be normally distributed. Providing this assumption is met, individual 

continuous (or ordinal) variables entered into the model need not be normally distributed. 

Thirdly, the distribution of variance of predicted values of y should be inspected to ensure it is 

uniform across all values of the independent variables (homoscedasticity), i.e. there should 

be no pattern in a plot of model residuals against fitted values (Fox J,  1997).  Finally, there 

must be no linear relationship (collinearity) between independent variables. A possible 

example of collinearity would be to include variables measuring leg weakness and mobility 

into a model: there is likely to be a strong relationship between these two variables. Entering 

highly correlated predictor variables into a model means that the individual effect of each 

variable is hidden within their combined effect such that the individual contribution of the 

variables cannot be discerned. Inclusion of collinear variables can overestimate the individual 

effects and result in inflated and unstable beta coefficients, i.e. estimates may vary widely 

with the addition or exclusion of individual cases, often reflected in wide confidence intervals 

around co-efficient estimates (Fox J,  1997 p 337). Collinearity between independent 

variables should be identified, through logical or clinical reasoning, and explored. Variables 

likely to be correlated should either be excluded from the model (if they add little to the 

explanation of outcome) or combined to form a sensible composite measure. Stepwise 

variable selection procedures in statistical software help to overcome collinearity through 

automatic exclusion of variables that are highly correlated (Concato J et al  1993). 
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  Models retained for statistical appraisal Table 4

Model Citation 

Inception 

less than 

2 weeks 

Clinically 

relevant 

prognostic 

factors 

Feasible to 

collect at 

ward level 

Prospective data 

collection (or validation 

in prospective 

population) 

No 

systematic 

loss to 

follow up 

Valid and reliable 

outcome measured 

at a fixed time 

point? 

Generalisable 

to other 

stroke 

populations? 

Retained 

for 

statistical 

appraisal? 

Bristol Wade (1983)  ���� � � � ? � � � 

Edinburgh Prescott (1982)  ? � � � � � � � 

Lincoln Lincoln (1990)  � � � � � � � � 

Young Young (2001) � � � � � � � � 

Belfast Fullerton (1998)  � � � � ? � � � 

Johnson Johnston (2000)  � � � � ? � ? � 

mNIHSS Lyden (2001)  � � � � � � � � 

NIHSS 
Lai (1998); Muir 

(1996)  
NA � � � � � � � 

NIHSS+age Weimar (2004)  � � � � � � ? � 

Uppsala Frithz (1976)  � � � � ? � � � 

Weimar Weimar (2002)  � � � � ? � � � 

Weimar ICH Weimar (2006)  � � � � � � � � 

G score Gompertz (1994)  � � � � ? � ? � 

Guys Allen (1984)  � � � � � � ? � 

NIHSS_8 Tirschwell (2002)  � � � � ? � � � 

Orpington Kalra (1993)  � � � � ? � ? � 

SSV Counsell (2002)  � � � � ? � ? � 

Tilling Tilling (2001a)  � � � � ? � � � 
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Model assumptions should be checked during development, and attempts made to overcome 

violations if they occur. Most assumption checks can be achieved through examination of 

simple scatter plots. Non-random distribution of model residuals in a scatter plot of residuals 

across values of individual independent variables may reveal a non-linear relationship 

between independent and dependent variables (Altman D 1999 p 346).  In addition, a scatter 

plot of residuals against fitted values can demonstrate heteroscedasticity (non-uniform 

variance in residuals across fitted values of the dependent variable) which may indicate the 

omission from the model of an important factor exerting a systematic effect (Fox J,  1997 

p302). Figure 6 is a plot of fitted values against model residuals and demonstrates 

homoscedascticity (constant variance across fitted values).  

Figure 6 Model fitted values vs. residuals to demonstrate homoscedasticity  

 

A histogram of (studentised) residuals can indicate a deviation from a normal distribution1.  A 

(standardised) normal (Q-Q) plot can be used to examine the distribution of residuals against 

the normal distribution (Fox J,  1997 p42; Altman D,  1999 p 133), see also section 4.4.3.2.  

Non-normally distributed residuals may be another indication of non-linear relationships 

between predictor and outcome. Transformations of the independent variable may 

overcome this non-linearity, and may also help to solve problems with non-uniform variance 

(Altman D,  1999 p 303; Royston P et al  2008). 

                                            

1 The theory behind the derivation of studentised and standardised residuals is 

discussed in appendix A-3 
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Independent variables in regression models may be continuous, ordinal or dichotomous. 

Prediction of dependent variables from categorical independent variables requires the 

creation of ‘dummy variables’. A dummy is created for each level of the categorical variable 

apart from the ‘reference category’ coded 0 by convention (Fox J,  1997 142). Each dummy 

variable is then compared to the reference category in order to create a series of 

dichotomous pairs (Altman D,  1999 p 339). The beta coefficient of the dummy variable in the 

model is then equivalent to the difference in mean expected outcome for patients in the 

dummy category as compared with the reference category.  As this could markedly increase 

the number of variables that need to be considered in the EPV calculation of sample size, the 

inclusion of categorical variables and creation of dummies should be considered during 

model development.  

3.5.7.1 Model assumptions: Logistic regression models 

In the models identified in the review, continuous dependent variables were often 

dichotomised to circumvent some of the requirements for linear regression, e.g.  

dichotomised Barthel Index to reflect ‘good/poor’ outcome)  (Gladman JR et al  1992; 

Gompertz P et al  1994; Johnston KC et al  2000; Lyden PD et al  2001; Weimar C et al  2004; 

Weimar C et al  2006). This allows a logistic regression model to be used to predict a binary 

outcome where the assumptions on the underlying distributions are less stringent. However, 

dichotomising continuous variables means that detailed information may be lost (Mallett S et 

al  2010a; Royston P et al  2008).  

Logistic regression is used to predict a log transformation of the odds of a binary outcome 

(the ‘logit function’ see Equation (3) p 49) (Fox J,  1997 p 78). A linear relationship between 

the predictors and this logit function is assumed (Harrell FE et al  1996). There are no 

assumptions placed on the distributions of the independent variables but there must be no 

correlation (collinearity) between them (Bewick V et al  2005).  

3.5.7.2 Interaction terms 

Interaction is a problem with both linear and logistic regression analyses and occurs when the 

effect of one variable is mediated by the effect of another (Fox J,  1997 p 145). For example, 

the relationship between height and age would be mediated by gender if girls tend to be 

taller than their male counterparts when they are younger but relatively shorter as they grow 

older. This could be controlled for by entering an interaction term into a regression equation 

(as the product of the two terms). Interaction terms should be carefully considered through 

clinical reasoning, ideally a priori. In contrast with composite terms to control for collinearity, 

where the number of variables may be reduced, inclusion of an interaction term will increase 

the number of variables entered into a model (Harrell FE et al  1996). Interaction terms may 

be demonstrated by plotting independent against dependent variables at different levels of 

the mediating variable.  If the two lines are not parallel, then an interaction term is likely (see 

example, Figure 7). 
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Figure 7 Theoretical example of an interaction term between age and height 

 

3.5.7.3 Variable selection  

Selection of variables to include in a logistic regression model may be data driven, or made 

through clinical reasoning. A common, but not recommended data driven approach is to 

perform multiple univariable analyses and discard variables which do not reach a pre-

specified p-value (often 0.2) (Mallett S et al  2010a). This approach can result in selection bias 

(Royston P et al  2008) - predictors with larger co-efficients (perhaps through chance) are 

more likely to be statistically significant and therefore more likely to be retained in the model 

over variables with smaller co-efficients (Royston P et al  2008). Clinically unimportant 

variables may therefore be included, or relevant variables discarded on the basis of their p 

value (Mallett S et al  2010a; Royston P et al  2008). Predictor variables may also be selected 

for inclusion through automated (forwards or backwards) selection procedures with 

statistical software. Here, variables are selected on the basis of their influence on maximising 

the model R2 statistic. The retention or rejection of variables previously entered or removed 

from the model is re-considered following the addition or removal of subsequent variables 

during the stepwise procedure (Fox J,  1997 p 356).  

It has be argued that any clinically relevant predictor (or confounder) should be included in a 

model even if it does not reach statistical significance in univariable or multivariable analysis 

(Mallett S et al  2010a); variables may be excluded through chance and a model based solely 

on statistical criteria may lack generalizability due to the exclusion of these clinically 

important predictors (Rothwell PM 2008). Ideally the most parsimonious model that 

maximises explanation of the dependent variable should be developed through both clinical 

and statistical reasoning (Altman D et al  2000; Concato J et al  1993).  
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3.5.7.4 Multilevel (hierarchical) models 

The Tilling model (Tilling K et al  2001a) was derived using multilevel modelling techniques. 

For this reason it is considered here as a special case. Multilevel modelling exploits the 

hierarchical nature of data by considering e.g. repeated Barthel Index measurement over 

time (Level 1) as a property of individuals (Level 2) (Tilling K et al  2001a). Consideration of 

higher levels (e.g. ward or hospital) may help to explain further residual variation in patient 

outcome. This clustering of data can be used to explain fixed and random effects at different 

levels of the model and to explore the interdependence of the measurements (Kline RB 2005 

p 332),  thereby providing additional information as to the structure of the data over and 

above that which is offered through single level regression modelling (Tilling et al  2001b).   A 

multilevel modelling approach allowed Tilling et al to estimate average recovery trajectories 

based on baseline characteristics. From these, iterative calculations of an individual’s 

outcome could be made at any time point conditional on both baseline characteristics and 

observed outcome trajectory (Tilling K et al  2001a).  

3.5.8 Reporting of checks of model assumptions for models identified in the 

review 

Checks of model assumptions are discussed in two parts: assumptions and checks during 

model development, and post-estimation checks of model assumption (i.e. after calculation 

of model beta-coefficients). Model fit and performance in external validation studies are 

discussed in subsequent sections.  

3.5.8.1 Construction of models  

The Guys score was developed by Allen et al and its utility re-examined in an independent 

cohort by Gladman et al (Allen CMC 1984; Gladman JR et al  1992). Twenty-nine candidate 

variables were identified for possible inclusion in the original model. Selection of variables for 

inclusion in a multivariable model was made through identification of univariate predictors 

where observed and expected frequencies were significantly different (at the 0.05 level) 

between patients with ‘good’ or ‘poor’ outcome (Chi-squared or t-test). At this significance 

level, examination of more than 20 variables makes it likely that at least one will reach 

statistical significance by chance. There was no control for collinearity or consideration of 

potential interaction terms in the development of the model (Allen CMC 1984).  

The G score was developed from the Guy’s score through simplification of the regression co-

efficients to integers (Gompertz P et al  1994). Although this is, therefore, technically a new 

model, the method of variable selection is the same as in the original study (as described 

above). 

The Six Simple Variable models (Counsell C et al  2002) were developed to predict 

dichotomised functional outcome (alive and independent vs. not, as measured with an 

Oxford Handicap Score <3), and survival at 30 days. Many of the issues surrounding variable 

selection were addressed explicitly. Variables were selected initially through clinical 
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reasoning and feasibility of data collection. Remaining variables were separated into a core 

group of clinical variables (‘set 1’) and groups of additional variables of increasing complexity 

(‘sets 2 & 3’). Eighteen clinical variables were included in set 1 to be entered into a forward 

stepwise regression model. Linearity of the relationship between the only continuous 

independent variable (age) and the dependent variables were tested and met.  Interaction 

terms were tested between variables where interactions were clinically suspected (age, sex 

and previous disability), but none were found (Counsell C et al  2002).  

The authors of the SSV models highlight that many regression analyses were performed in the 

development of the final SSV models and acknowledge that these multiple analyses may have 

led to the inclusion (or exclusion) of variables from the models by chance (Counsell C et al  

2002).  

The predictive accuracy of any regression model is dependent on the correct variables being 

included in the model and the stability of the beta co-efficient estimates. Too many variables 

included in the model may result in overfitting (Type 1 error). Here, the model has high 

predictive accuracy in the sample from which it was drawn but performs poorly in 

independent datasets (Peduzzi P et al  1996). Type 2 errors arise from a lack of power, e.g. 

where the effect of an individual predictor is too small to be detected given the sample size.  

Sample size is also important in determining the number of variables that may be entered 

into a model. The number of variables that may be entered into a model to predict a binary 

outcome is determined by the ratio of observed events to the number of variables (including 

dummies) – the events per variable ratio (EPV). The number of events in this context applies 

to whichever is less frequent between the binary outcome pair. An EPV of greater than 10 has 

been suggested and widely accepted following a simulation study by Peduzzi et al (Peduzzi P 

et al  1996). Here, retrospective data from a study where binary outcomes had been 

predicted using a logistic regression model were used with a re-sampling technique (Monte 

Carlo) to simulate model variable co-efficients  over a series of pre-specified EPV ratios 

(between 2 and 25). The distribution of estimated co-efficients was then examined and 

compared with the parameters derived from the original regression model. Below a cut-off 

EPV ratio of 10 the regression co-efficient estimates were unstable: there was lack of 

convergence (i.e. the simulated models did not ‘settle’ onto a value for the regression co-

efficient), predicted co-efficients were not normally distributed and their confidence-intervals 

unacceptably wide (Peduzzi P et al  1996).  

Thus, the number of variables that may be entered into a logistic regression model (but not 

necessarily retained (Rothwell PM 2008)) may be calculated by dividing the total number of 

events (e.g. number of deaths or dependent patients) by ten. If there are interaction terms, 

or dummy variables, these needed to be counted as separate variables for the purposes of 

the calculation. If data are to be collected prospectively, an estimation of the expected events 

should be calculated from previous studies or epidemiological data.  Linear regression models 
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should also meet an ‘events per variable’ ratio of ten, but here the number of events is the 

number of observations for the dependent variable. 

Of the retained models in this review, the Guys score and Bristol model have an EPV of less 

than ten (Gladman JR et al  1992; Gompertz P et al  1994). The G-score, Orpington, Tilling and 

SSV (Set 1) models have adequate EPV (Counsell C et al  2002; Gompertz P et al  1994; Lai SM 

et al  1998; Tilling K et al  2001a).  

3.5.8.2 Post-estimation checks of model assumptions 

The Orpington model is a single level regression model that predicts the Barthel Index score 

(Lai SM et al  1998). During their examination of the predictive properties of the Orpington 

score, Lai et al entered individual items from the Orpington score into a linear regression 

model to predict the (ordinal) Barthel Index thereby treating the Barthel Index as a 

continuous variable.  Although Lai et al acknowledge the potential problems due non-

normally distributed ordinal data (and the question this raises regarding a linear relationship 

between predictor and outcome), normality assumptions (of model residuals) were not 

tested (Lai SM et al  1998). The variance of the Orpington score was noted to decrease over 

time (with successive measurements) (Lai SM et al  1998). This may suggest a non-linear 

relationship between predictor and dependent variable or perhaps some interaction between 

the score and time. This is not unexpected, as recovery trajectories are known to be non-

linear (Jorgensen HS 1996; Tilling K et al  2001a). However, in the presence of this variability 

related to time, analyses should be cross-sectional as opposed to longitudinal.  

Violation of the normality of residuals assumption in the Tilling model was felt, by the 

authors, to be due to the effect of 19 individual patients for whom the model did not fit well 

rather than the underlying distribution of the dependent variable (Tilling K et al  2001b). Thus, 

the dependent variable (Barthel Index) was treated as a normally distributed continuous 

variable. Tilling et al recognise that this assumption is violated due to the ceiling effect of the 

Barthel Index. Strategies to overcome this were explored through more complex modelling 

techniques that allow for censoring at the upper limit (ceiling) of the Barthel Index (Tilling K et 

al  2001b; Twisk J et al  2009). However, application of these techniques affected neither the 

estimates of model coefficients nor predicted Barthel Index values (Tilling K et al  2001b).  

3.5.9 Model performance (external validation) 

External validation (performance in independent population) for the models with acceptable 

properties as regards model development is considered in section 3.5.9.3 following a brief 

discussion of the methods used to measure model performance (sections 3.5.9.1 & 0). Two 

aspects of the models’ predictive function are discussed: discrimination (ability to distinguish 

between individuals with good and poor outcome) and calibration (accuracy of predicted 

outcomes).  
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3.5.9.1 Discrimination 

Discrimination is a measure of how well a model is able to correctly distinguish patients with 

good over poor outcome (Harrell FE et al  1996), and is measured with the ‘c statistic’. This is 

calculated as the overall proportion of correct (good over poor) predictions across all non-

concordant outcome pairs in the sample (Harrell FE et al  1996; Justice AC et al  1999). For 

binary outcomes, this is equivalent to the area under the Receiver Operating Characteristic 

(ROC) curve (Hanley et al  1982). Models with no discrimination (i.e. no better than chance) 

would be represented by a c-statistic, or area under ROC curve (AUC) of 0.5. Perfect 

discrimination is represented by a c statistic, or AUC of 1.0.  

Sensitivity and specificity are often presented as a measure of how well a model predicts 

individual patient outcome. Patients predicted to have a poor outcome who are observed to 

have poor outcome are ‘true negatives’ whilst those with poor outcome predicted to have 

good outcome are ‘false positives’ (see Table 5). Acceptable values for sensitivity and 

specificity is dependent on the purposes of measurement, i.e. the tolerability of false positive 

and false negative rates depends on the clinical context (Altman D,  1999 p 418). For the 

purposes of this review, models were retained if sensitivity and specificity were both greater 

than 0.75.  

 Contingency table Table 5

 

  Observed Outcome 
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 0 True negative False Negative 

1 False Positive True Positive 

 

3.5.9.2 Calibration 

Calibration is a marker of how well a model can make correct predictions (e.g. patients 

actually have the outcome that is predicted). Calibration of a model can be examined through 

plotting proportions of predicted outcome in deciles against the proportion of patients with 

the observed outcome within each decile (Counsell C et al  2002). Perfect calibration is 

represented by a line y=x.  

3.5.9.3 Predictive accuracy of included models 

The performance of each model in external validation studies (external datasets) are given in 

the data extraction tables (appendix A-2).  

Two SSV models predict either survival at 30 days (developed through a Cox proportional 

hazards model) or alive and independent at six months (logistic regression analysis) (Counsell 

C et al  2002). The AUC (equivalent to the c-statistic) for prediction survival was 0.84 in the 

external validation study by the developers of the model (Counsell C et al  2002) and 0.73 in 

an independent study (IST3 trialists 2008). Discrimination of the model to predict 
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independent survival was greater than 0.75 in each of 4 external validation studies (Dennis et 

al  2003; Lewis S et al  2007; Reid J et al  2007; Weir N et al  2001).  

The remaining models report sensitivity and specificity analysis to demonstrate model 

performance (see appendix A-2). Although the Guys has an acceptable specificity of 83% to 

predict death at three weeks (i.e. a low rate of false negatives), the sensitivity is poor (58%) 

representing a high rate of false positives (Gladman JR et al  1992). Conversely, the G score 

has a sensitivity of 72% but a low specificity (63% i.e. it will predict 37% of patients with an 

ultimately poor outcome as having good outcome) (Gompertz P et al  1994). A sensitivity 

analysis was performed for the Bristol model in a prospective observational study by 

Gladman et al (Gladman JR et al  1992). This aimed to ascertain the predictive ability of the 

Bristol score at one week to predict a BI>10 at 3 months. The sensitivity was found to be 

100%, but the specificity 0% (highlighting the inverse relationship between these two 

parameters). The Tilling model predicted the Barthel Index to within 3 points on 49% of 

occasions. This was increased to 69% if the recovery trajectory (i.e. last BI score) was included 

in subsequent predictions (Tilling K et al  2001a). The average difference in predicted and 

observed outcome using the Tilling model was -0.4 with 90% limits of agreement between -7 

and 6 (i.e. 90% of predicted values lie between -7 and +6 of the observed values) (Tilling K et 

al  2001a).   

3.5.9.4 Reliability 

The mNIHSS was derived from the NIHSS through removal of poorly performing and 

redundant items and through exploratory and confirmatory factor analysis using data from 

the two parts of the NINDS rtPA Stroke Trial (Lyden PD et al  2001; The National Institute of 

Neurological Disorders and Stroke rt-PA stroke study group 1995) as a means to simplify risk 

stratification and prognostication following stroke for the purposes of stratified 

randomisation in clinical trials (Lyden PD et al  2001). Correlations with the Barthel Index and 

mRS formed an assessment of concurrent validity. Substituting the modified scale into the 

original regression models yielded similar results to the parent NIHSS to predict a ‘global 

outcome score’ developed from four stroke outcome measures. To assess criterion validity, 

correlations between the mNIHSS and NIHSS were assessed. Inter-rater reliability for 

individual items was shown to be high between neurologists trained in the use of the NIHSS 

although reliability for non-trained practitioners remains untested (Lyden PD et al  2001). 

However, the mNIHSS may offer a simple and practical alternative to the NIHSS for risk 

adjustment if it can be shown to be reliable when used by non-stroke specialists.
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3.6 Limitations of the review 

This review provides a systematic overview of available externally validated prognostic 

models in stroke, updating previous reviews (Counsell C et al  2001; Kwakkel G et al  1996) to 

include more recent models and modelling methodologies. This review was based on a 

comprehensive and replicable search strategy producing a vast amount of literature for 

consideration. Despite this process, it is possible that relevant citations describing model 

development or validation of existing models have been overlooked. In addition, models that 

are yet to be externally validated and may yet prove to be good predictors of patient 

outcome may have been excluded from the review. Information regarding modelling 

techniques may not have been reported in detail in individual studies, and where this detail 

was lacking I have not attempted to obtain this information directly from authors. It is 

therefore possible that further robust models may have been excluded. Apparently poor 

performance of individual models in independent populations may reflect the methodology 

of external validation studies. It has not been possible to offer a quantitative summary of the 

performance of individual models in external populations due to the heterogeneity of 

external validation studies. Instead, validation studies have been presented individually to 

allow comparative assessment of their methodological quality and generalisability.  

This review presented a number of methodological challenges. Firstly, a lack of universal 

criteria for scrutiny of prognostic research meant that the criteria against which the models 

were assessed are open to debate. Secondly, few of the included studies were based on data 

which was collected expressly for the purposes of model development. The secondary or 

retrospective use of data was common and models were often derived from available as 

opposed to desirable data. It is therefore possible that although the variables within the 

models make clinical sense, they are not necessarily the optimal factors to explain variability 

in patient outcome. Often, detailed descriptions of model development were lacking 

especially as regards checking of model assumptions and the characteristics of patients lost to 

follow up. Where such checks were not explicitly discussed, we have assumed that they did 

not occur, and this assumption may not be valid.   
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 Summary of statistical appraisal of models identified in the review Table 6

Model Valid method of variable selection? Control for 

Multicollinearity 

Consideration 

of interaction 

terms 

Events per 

variable 

>10? 

linearity assumptions 

tested and met? 

External Validation 

Acceptable discrimination (or 

sensitivity/specificity) 

Guys � 

Multiple variables selected 

through identification of 

‘statistically significant’ 

univariate predictors 

� � � ? 

Sens 0.83 

Spec 0.58 

G score � 

Variables extracted from Guys 

model (simplified regression co-

efficients to integers) 

� � � ? 

Sens 0.72 

Spec 0.63 

Bristol ? � ? � � 
Sens 1.00 

Spec 0 

SSV � 
Use of stepwise variable 

selection and clinical reasoning 

Stepwise 

variable 

selection 

� � � � 

C statistic acceptable for 

prediction of alive and 

independent or dead/alive 

Tilling ? � ? � 

Tested; attempts to 

correct for censoring 

effects of Barthel Index 

did not affect the model 

Predicts Barthel Index to within 3 

points on 49% of occasions (increases 

to 69% if recovery history is included 

in the model). 

90% limits of agreement -0.4 (-7, +6) 

Orpington ? 

Stepwise 

variable 

selection 

? � � 
R

2 
values used to assess model fit. 

Discrimination not tested 

Teale � 

Variables selected through 

identification of important 

predictors in univariate 

analyses, regression trees and 

clinical reasoning 

Stepwise 

variable 

selection 

� � � Not externally validated 
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3.7 Conclusions 

Prognostic modelling has a number of applications in stroke. In the research setting 

prognostic models can be used in both randomised trials (for risk stratification) and 

observational studies (for case-mix adjustment) (Counsell C et al  2001). Potential 

applications in routine care range from the prediction of outcomes in individuals or groups 

of similar individuals (to facilitate treatment planning) to case-mix adjustment in the 

context of performance management within or between institutions.  The usefulness of 

any prognostic model in these situations is likely to rely heavily on feasibility of data 

collection, and simplicity of application. In addition, any prognostic model should be robust 

in terms of the statistical methods used in its development, and in its predictive and 

discriminatory properties.  

Of the six models that were subject to statistical scrutiny, only one (the SSV model) fulfilled 

all statistical criteria (Table 6 p 60). This model has been used in both randomised (Dennis 

MS et al  2003; IST3 trialists 2008) and observational (Reid J et al  2007) studies. Although 

the Tilling model has additional utility in terms of predicting individual recovery trajectories 

(Tilling K et al  2001a; Tilling K et al  2001b), the use of the Barthel Index as the predicted 

outcome is limiting due to its well documented ceiling effects (Salter K et al 2010). 

This review aimed to update previous reviews (Counsell C et al  2001; Jongbloed L 1986; 

Kwakkel G et al  1996; Seenan P et al  2007) to identify risk adjustment models in light of 

the significant changes in stroke care that have occurred over the last decade. Twenty-

three models were identified predicting a variety of outcomes following stroke. Of these, 

only six met quality criteria as regards the populations from which they were developed 

and the clinical utility of the covariates (Table 6 p 60). These factors are, to some degree, 

subjective and based around the specific requirements of a model for the CIMSS project. 

The exclusion of some models where the prognostic variables were felt to be too complex, 

or the time frames unrealistic for data capture as part of routine care by non-stroke 

specialists could be criticised for being over pessimistic. However, although there has been 

significant progress in direct admission to stroke units for patients presenting to hospital 

with stroke, this does not occur universally. Thus, any model which relies on specialist 

skills, or laboratory and radiological tests may result in systematic inconsistencies in data 

capture with the consequent introduction of bias.  

With the exception of the Tilling model where multilevel modelling techniques were used, 

all the models included in this review were developed through single level regression 

modelling techniques. Alternative and more sophisticated modelling techniques exploit 

many of the conditions that make regression modelling difficult (e.g. the hierarchical or 

clustered nature of data) to provide more meaningful and clinically relevant models. 

Alternative modelling techniques such as latent class analysis, structural equation 
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modelling or decision trees may offer additional explanations as to the relationships 

between case-mix and patient outcome and warrant exploration in the stroke setting.  

Case-mix and risk adjustment is central to the validity of observational studies and also has 

utility for stratification in randomised trials. However, this review has not identified any 

new clinically useful and feasible model that can be used for these purposes since the 

Counsell model was developed ten years ago (Counsell C et al  2001). Despite advances in 

statistical modelling techniques, the available stroke risk adjusters are largely derived using 

regression modelling techniques with all their inherent problems. The use of more 

sophisticated techniques to develop robust case-mix adjustment models may increase 

confidence in the conclusions that may be drawn from observational studies of unselected 

populations.  
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Part II CIMSS research phase study
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Chapter 4 Methods 

To address the research questions posed in section 1.4 and to define a core stroke dataset 

for further testing, a prospective observational cohort study was performed (the CIMSS 

research phase study). The aims of this study were to test the feasibility of prospective 

data collection, to identify important (or redundant) data items, assess return and 

completion rates of postal questionnaires and explore case-mix adjusted relationships 

between care processes and patient reported outcomes.   

4.1 Patient identification and recruitment 

4.1.1 Study sites 

Three study sites were selected as representative of the stroke services across Yorkshire 

and the Humber. Leeds Teaching Hospitals Trust (LTHT) is a large, multi-site teaching 

hospital and a tertiary referral centre within Yorkshire offering interventional radiological 

and neurosurgical services. Bradford Teaching Hospitals Foundation Trust (BTHFT) is a 

smaller teaching hospital with foundation status, and York Hospitals NHS Foundation Trust 

(YHFT) is a smaller foundation trust. All three sites have both acute and rehabilitation 

stroke units offering organised multidisciplinary acute and rehabilitation stroke services 

with the aim of direct admission to these units from the Emergency Department. The 

structure of stroke services at each trust is given in Table 7. During the study period, 

thrombolysis was offered at all sites Monday to Friday, during office hours. The main 

differences between the sites are the number of stroke beds, the provision of Early 

Supported Discharge (ESD) seven day rehabilitation services – both only available at LTHT. 

However, both BTHFT and YHFT offered ongoing community rehabilitation following 

discharge from hospital (Table 7).  

4.1.2 Ethical and Research and Development (R&D) approvals 

Ethical approval for the study was sought and obtained from the Bradford Regional Ethics 

Committee. R&D approvals were obtained individually from each of the three study sites.  

4.1.3 Research staff  

Researchers with a background in healthcare were employed to collect data in each of the 

three study sites. All the researchers underwent Good Clinical Practice (GCP) training and 

also attended an afternoon training session regarding the aims and objectives of the study, 

patient and carer recruitment and data collection processes. Specifically, training was 

provided on the processes for identification of potentially eligible patients and carers and 

obtaining informed consent. In addition, training was provided in the use of the data 

extraction forms (case report forms (CRFs)), use of the site file, creation of file notes and 

special processes for ‘unscheduled’ events such as patient death or withdrawal.  
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 Characteristics of stroke services at each study site Table 7

 Bradford Leeds York 

Type of service Hyperacute  

(Mon-Fri 9-5) 

Rehabilitation 

Hyperacute 

(Mon-Fri 9-5) 

Rehabiliation 

Hyperacute 

(Mon-Fri 9-5) 

Rehabilitation 

Type of stroke unit Acute Stroke Unit 

Rehabilitation Unit 

2 Acute Stroke Units 

Rehabilitation Unit 

Acute Stroke Unit 

Rehabilitation Unit 

Total acute stroke beds 14 18, 15 15 

Rehabilitation stroke 

beds 

22 30 19 

7 day rehabilitation?  No Yes No 

ESD service available?  

Members of team 

No Yes  

CNS, SW, SLT, PT, OT, 

Dietician* 

No 

Community rehab team Yes Yes Yes 

Restrictions for access 

to SU 

No No No 

*CNS = Clinical Nurse Specialist (stroke), SW = Social Worker, SLT = Speech and Language Therapist, 

PT = Physiotherapist, OT = Occupational Therapist 

 

4.1.4 Screening data 

Patients admitted to each Trust with stroke were identified by researchers through liaison 

with stroke care co-ordinators and stroke unit staff. Through this approach, patients that 

were admitted to wards other than the acute stroke unit were also identified.  

Anonymous screening data were collected onto screening forms for all patients potentially 

eligible to take part in the study. This was in order to allow examination of the 

representativeness of the study sample through comparison of patients that consented to 

participate compared with the general post stroke population admitted to each site. 

Screening data comprising demographic details (age, sex and ethnicity) and a baseline 

functional score (Barthel Index (BI)) were collected on all patients admitted to participating 

centres with stroke during the study period. Reasons why patients were either not eligible 

or did not consent to participate in the study were also collected where this information 

was available.  

4.1.5 Patient selection 

Following screening, patients meeting eligibility criteria were approached for consent to 

participate in the study. Broad inclusion criteria were applied with the aim of recruitment 

of consecutive patients admitted to the study site with stroke. All patients were eligible for 

inclusion in the study if they had a primary diagnosis of stroke, and were recruited within a 

week of the onset of symptoms (or within two weeks if case-mix variable data could be 

extracted from the case-notes with respect to the week post stroke). Patients with 

subarachnoid haemorrhage and transient ischaemic attack were excluded, as were 

patients in whom it was clinically inappropriate to approach for consent (i.e. patients 
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receiving palliative care). Patients were included if they provided informed consent to 

participate or, for patients unable to provide informed consent, only if they had a 

consultee (e.g. relative or carer) able to provide proxy consent. Patients unable to provide 

consent (i.e. patients who lacked capacity) were excluded from the study if they had no 

appropriate consultee. Therefore patients with cognitive impairment and dysphasia were 

not excluded from the study unless they lacked capacity and had no appropriate consultee. 

The main carer of patients (when available) was asked to provide consent to receive 

follow-up questionnaires regarding carer strain following stroke. 

Consent was sought to extract data from patient case-notes and to send a questionnaire 

booklet to patients and carers at six months. A ‘tiered’ consent process was adopted 

whereby patients could consent to participate in certain parts of the study (e.g. baseline 

assessments), but withhold consent for e.g. follow-up.  

Once patients had agreed to participate in the study and the consent forms were 

completed, the researchers telephoned the Academic Unit of Elderly Care and 

Rehabilitation in Bradford where a verbal eligibility and consent checklist was performed. 

Researchers were then given a study number which was added to all pages of the CRF.  

Patients and carers were able to withdraw consent at any time during the study without 

offering a reason. Where a patient lost capacity during the course of the study, the 

decision to continue in the study was made by the main carer. Carers who had consented 

to participate in the study were withdrawn from further follow-up if the patient died 

between recruitment and follow-up.  

4.1.6 Data collection 

Data were extracted from case notes, therapy records and patient interview onto case 

report forms (CRFs) designed for the study. These included flowcharts for the completion 

and return of study paperwork, checklists to ascertain eligibility for the study and a patient 

and carer registration checklist. The CRFs were designed to reflect the patient pathway 

during their hospital stay with questions requiring data extraction at similar points in the 

pathway grouped together. A discharge checklist (including check of survival and discharge 

address) was completed and returned at patient discharge from hospital.  

Researchers were asked to note any difficulties in recruitment, data extraction or 

particularly hard to collect data items for discussion in regular teleconferences. These 

teleconferences were also used to identify data items where differences in interpretation 

existed between researchers and sites. This information was used iteratively to improve 

standardisation of data collection processes and reduce any variability in application of 

data definitions that could impact negatively on the robustness of the study results.  
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Pages requiring collection of patient identifiable data contained no clinical data. Similarly, 

pages containing clinical data contained no patient identifiable data. Participant records 

were linked only by a unique identifier provided at registration. 

4.1.7 Sample size 

The study sample size was based on pragmatic consideration of the average number of 

patients admitted to each study site with stroke over a proposed recruitment period of six 

months. A formal power calculation was not performed as the ‘treatment effect’ of 

complex stroke care is difficult to quantify, and is likely to depend on process and care 

structure variables.  

A conservative estimate of 30 patients per month per site admitted to each of the three 

sites was made based on the number of stroke admissions to the smaller study sites 

(Bradford Teaching Hospitals Trust and York Hospitals NHS Foundation Trust). Of the 

patients admitted with stroke it was assumed that one fifth would have suffered severe 

strokes and not be expected to survive until six month follow-up, and a further quarter 

would not be able to (or wish to) provide informed consent. A recruitment target of 300 

(one hundred patients at each site) over six months was therefore set.  

4.2 Development of the research dataset 

The research dataset comprises four components: process markers, case-mix variables 

care structure variables and patient reported outcomes. The best available case-mix model 

and the outcome measures were defined through comprehensive examination of the 

literature as described in the following sections.  The process variables included in the 

study were restricted to variables extracted from the RCP NSSA dataset and existing 

mandatory data requirements for stroke. Additional univariable case-mix variables were 

included in the study dataset based on the RCP dataset and clinical reasoning as described 

in section 4.2.3. 

4.2.1 Patient reported outcomes dataset 

A previously conducted systematic review of outcome indicators, valid and reliable for 

postal administration, examined as a thesis for a Master of Public Health was used to 

inform the choice of patient and carer outcomes questionnaires (Teale EA et al  2010). Six 

patient and three carer instruments with acceptable psychometric properties for self or 

proxy completion in physical, social and psychological domains (Table 8) were identified. 

Acceptable psychometric properties in terms of patient proxy agreement are particularly 

pertinent, as patients with dysphasia or cognitive problems were not excluded from study 

recruitment and some proxy completed questionnaires were returned.  
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 Patient and carer outcomes instruments identified in previously Table 8

conducted systematic review (Teale EA et al 2010) 

Patient outcomes instruments 

Nottingham Extended Activities of Daily Living (NEADL) 

Frenchay Activities Index (FAI) 

Subjective Index of Physical and Social Outcome (SIPSO) 

EuroQoL (EQ5D) 

London Handicap Score (LHS) 

London Stroke Satisfaction Questionnaire (LSSS) 

Carer strain instruments 

Carer Strain Index (CSI) 

Carer Burden Score (CBS) 

Bakas Carer Outcomes Score (BCOS) 

 

In order to refine these instruments to create the battery of questionnaires for use in the 

CIMSS research study, consensus expert and consumer group consensus was sought. A 

stroke consumer group (Consumer Research Advisory Group (CRAG) for the Yorkshire 

Stroke Research Network) was consulted for views and opinions regarding utility of 

questionnaires including layout, wording and content. 

A workshop with stroke clinicians and members of the stroke multidisciplinary team was 

also conducted and used group decision making techniques (nominal group theory) to rank 

the instruments identified through the postal stroke outcomes systematic review. 

Participants were asked to first list the important features of an outcomes measurement 

instrument in terms of utility (e.g. depth of questions, breadth of questions, important 

constructs to measure). These features were then ranked by all participants and the five 

most consistent important features identified. Participants were then asked to perform 

pairwise comparisons of all permutations of the outcomes instruments to create a ranking 

of all the identified instruments. These rankings were then combined to give an overall 

ranking of the individual outcomes measurement instruments. The instructions given to 

participants at the group decision making workshop is included in appendix B-1. Three 

patient questionnaires and one carer outcome questionnaire were identified through this 

process for inclusion in the outcomes datasets. These were the Nottingham Extended 

Activities of Daily Living (NEADL) (Lincoln et al  1992), the Subjective Index of Physical and 

Social Outcome (SIPSO) (Trigg et al  2000) and EuroQoL (EQ5D) (The EuroQoL Group 1990) 

patient outcomes questionnaires and for carers, the Carer Strain Index (Robinson B 1983). 

The use of visual analogue scales (VAS) has been shown to be unreliable in patients 

following stroke (Price et al  1999). For this reason, the EQ5D questionnaire was used, but 

the VAS was not included in the outcomes booklet.  

The SIPSO instrument is provided in appendix B-3. It is a stroke specific scale in two 

subscales measuring physical and social reintegration following stroke (each comprising 

five questions with a five level response). The SIPSO has been shown to be well completed 
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when administered by post (88-97% of returned questionnaires fully completed (Trigg 

2000, 2003; Kersten et al 2004)) and to have acceptable patient-proxy agreement in total 

scores despite some variation in individual item agreement (Trigg et al 2003). A ceiling 

effect has been noted in the physical subscale in one validation study, although this study 

excluded dependent patients (Trigg et al 2000). The original validation studies suggest that 

the scores from the two subscales should be considered together (Trigg 2000), however, 

subsequent Rasch and Mokken analysis has suggested that the two subscores should be 

considered independently (Kersten 2010) (see also section 4.4.4).  

The Nottingham Extended Activities of Daily Living instrument addresses four domains of 

functioning (see Table 9). The NEADL was completed at baseline (with respect to the week 

prior to completion) and again at six months. The instructions given with the questionnaire 

indicated that patients should “record what you have actually done over the last week”. At 

the time the baseline surveys were designed, it was anticipated that patients would be 

recruited within a few days of admission to hospital such that the previous week would 

relate to their pre-stroke function. However, as recruitment was often delayed, patients 

may have completed the baseline questionnaire with respect to their immediate post-

stroke function. In future work, further clarification of the instruction to complete the 

baseline NEADL with respect to pre-stroke function will be required.   

The Six Simple Variable case-mix adjuster model was developed to predict the 

dichotomised Oxford Handicap Scale (OHS) (Counsell C et al  2002). A postal version of the 

OHS questionnaire (as used in the FOOD trial (Dennis MS et al  2003)) was therefore 

included in the outcomes dataset to allow stratification of patients according to the SSV 

case-mix adjuster (see appendix B-2).  

The systematic review of patient outcomes following stroke did not identify any measure 

of patient mood following stroke that was valid and reliable for postal administration. The 

GHQ_12 has been shown to be valid in patients following stroke, but lacks evidence of 

postal reliability (Teale EA et al  2010). In order to evaluate the reliability of the GHQ_12 

collected by postal survey following stroke, a postal test-retest reliability study of the 

instrument was incorporated into the CIMSS research phase study.  

In addition to these outcomes questionnaires, questions regarding return to work, return 

to driving and information provision were included in the outcomes questionnaire pack. 

These aspects of patient recovery are included as quality markers in the National Stroke 

Strategy (Department of Health 2007b) and were therefore collected to explore any 

relationship between these markers and processes of care.  

Information regarding how the questionnaires were completed was also collected (self-

completed, own answers but completed by carer or proxy responses). In all, six outcomes 
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measurement instruments, and seven additional questions were included in the outcomes 

booklet. These are outlined in Table 9 (p 74) with a brief description of each instrument. 

4.2.2 Process data set 

A discussed in 1.2.1, best practice in stroke is described in national documents and there 

are several existing stroke process markers which have been developed to reflect the 

evidence base. The RCP NSSA audit dataset has evolved over the 12 years since its 

inception to reflect the emerging evidence base and consensus opinion on best practice 

(Intercollegiate Stroke Working Party 2011). Feasibility of retrospective extraction of these 

data from patient case-notes has been demonstrated through sequential audits. However, 

the audit datasets were not designed for prospective collection and, in addition, some of 

the markers are of unproven association with patient outcome. The process variables used 

in the CIMSS research phase were restricted to those used within the 2008 RCP NSSA 

dataset to allow specific exploration of case-mix adjusted process-outcome relationships. 

Through examination of systematically missing data, feasibility of prospective collection of 

RCP audit data will be tested. Components of the audit that were outwith the remit of the 

CIMSS research study were excluded (pre-hospital care and information regarding 

secondary prevention of stroke).  

The latent traits of the SIPSO subscores are those of (physical and social) reintegration 

following stroke. These are complex constructs and are likely to rely not only on physical 

recovery, but also on psychosocial factors such as mood, social networks and community 

services. The process variables included in the study reflect these factors through 

recording assessment of impairments (e.g. speech and language assessments, occupational 

therapy and physiotherapy assessments); social care needs assessment, mood assessment 

and whether or not patients were able to return to their pre-admission address. The 

provision of community rehabilitation is likely to influence patients’ functional and social 

reintegration following stroke. Collection of detailed data regarding post-hospital care was 

beyond the scope of the study. However, two markers post-discharge care delivery were 

collected: whether the patient was discharged to an intermediate care facility, and 

whether or not the patient received Early Supported Discharge (ESD) support. Whether or 

not a service included an ESD facility was also noted. For the purposes of the study, specific 

criteria as regards what comprises an ESD service were not stipulated, and ESD was said to 

be available providing a service was in place that facilitated early discharge from hospital 

with additional support and community therapy.  

Times and dates of admission to hospital, admission to a stroke unit and imaging were 

collected to allow the derivation of metrics in line with the mandatory Integrated 

Performance Measures and Best Practice Tariff metrics (direct admission to a stroke unit, 

proportion of a patient’s inpatient stay spent on a stroke unit and timeliness of brain 
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imaging) (Department of Health 2008d; Department of Health 2010b). The complete 

process dataset is provided in  Appendix B .  

4.2.3 Case-mix adjustment variables 

The best available case-mix adjuster was identified through a systematic review described 

in detail in Chapter 3. The Six Simple Variable case-mix adjustment model was used to 

adjust the study population for case-mix (Counsell C et al  2002). The SSV model was 

developed to predict independent survival with the dichotomised Oxford Handicap Score 

(OHS). The OHS is similar to the mRS, but with slight differences to the wording. A postal 

version of the OHS has also been developed (as used in the FOOD trial (Dennis et al 2006)). 

The postal OHS and mRS are included in Appendix 0 for comparison.  

The SSV model was derived on an inception cohort of up to 30 days post-stroke onset 

(Counsell C et al  2002), although subsequent testing has shown that the model functions 

well if the variables are collected within a week of the stroke event (Dennis MS et al  2003). 

In order to define a discrete inception cohort, case-mix variables were therefore collected 

on patients within one week of stroke onset.   

Additional case-mix adjustment variables were collected to investigate for a univariate 

predictor which may function as a simple case-mix adjuster. These variables were chosen 

as variables that either featured in the RCP NSSA dataset (e.g. reduced conscious level) or 

that have been postulated as predictors of post-stroke outcome (e.g. new urinary 

incontinence, or the Oxford Community Stroke Project (OCSP) classification of stroke 

(Bamford et al 1988)). Factors that may have a relationship with post-stroke function (e.g. 

the presence of speech or language deficits or the side of stroke), or that may confound 

the relationship between the baseline impairment and patient outcome (e.g. a previous 

disabling stroke or cognitive impairment) were also captured. For the purposes of the 

study, a pragmatic definition of drowsiness and confusion were applied. If there was 

documentation in the case-notes that there was evidence of the patient being drowsy or 

having a reduced conscious level between onset of stroke and recording of case-mix 

variables then patients were classified as having been drowsy. Similarly, if there was 

documented confusion (either through a narrative description or through more formal 

testing with a score such as the Abbreviated Mental Test or Mini Mental State 

Examination), patients were classified as having had confusion since the onset of the 

stroke. These pragmatic descriptions were applied in an attempt to reflect the ways in 

which these data may have been recorded during the course of routine patient care.  

There is likely to be a degree of correlation between some of these univariable case-mix 

variables and the SSV model, as they are likely to be proxy markers for stroke severity. 

However, redundant markers (where there is significant collinearity) will be removed 

through construction of regression trees and stepwise variable selection during the 
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modelling process. Case-mix variables collected during the study are tabulated in Appendix 

B.   

There are likely to be a number of additional factors that confound the relationships 

between processes of care and patient outcome. For example, pain could act as a true 

confounder through restricting the delivery of specific care processes (e.g physiotherapy) 

and limiting functional outcome following stroke. However, the complexity of case-mix in 

the post-stroke population makes it unlikely that all of these factors could ever be 

accounted for. It is anticipated that the case-mix variables and process markers will act as 

summary measures or proxies for additional features of case-mix that are not measured 

explicitly (for example, a question regarding pain is included in the baseline EQ5D).  An 

impression of how much variability in patient outcome is not explained by the variables in 

the model will be offered through examination of model fit. A poorly fitting model implies 

that there are important variables that have been excluded from the model. These could 

represent aspects of care process, organisational structure or case-mix.   

4.2.4 Care-Structure 

Organisational structure is likely to be an important mediator in the relationship between 

care process and patient outcome. The structure of stroke services in terms of staffing 

levels, capacity, patient monitoring, therapy time and specialist clinician input may all have 

an effect on patient outcome. However, in the CIMSS research study, it is unlikely that 

variability in organisational structure will be sufficiently diverse, nor the sample size large 

enough, to confidently attribute the effect of differences in patient outcome to variation in 

the organisation of stroke services.  

However, information regarding the organisation of stroke services at each of the study 

sites was captured at the beginning and end of the data collection period according to the 

RCP NSSA organisational audit proforma (Royal College of Physicians 2009a), to ensure that 

there were no significant changes in the delivery of care over the data collection period 

that may present otherwise unmeasured confounding variables in the determination of 

patient outcome within or between sites.  

4.3 Data collection processes 

4.3.1 Baseline data 

Following collection of screening data, patients and their carers were approached to 

provide informed consent. Patients receiving or likely to receive, palliative care (or their 

carers) were not approached to participate in the study. Once consent had been obtained, 

process data were extracted from patient case-notes. Data were extracted from existing 

records (case-notes and electronic hospital data systems) as far as possible in an attempt 

to mirror the capture of routine data. In this way, data items that are not routinely 
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recorded (or that may require additional data extraction resource) were highlighted. Data 

were recorded onto Case Report Forms (CRFs) designed for the study. Case-mix data were 

extracted with respect to the week immediately following the stroke.  

Patients (or their proxies) were asked to complete baseline outcome questionnaires (the 

Nottingham Extended Activities of Daily Living (NEADL), the General Health Questionnaire-

12 (GHQ-12) and the EuroQoL). This was to allow the baseline assessments to be used to 

adjust for six month outcomes (i.e. to account for a change in the outcome score from 

baseline). The instructions for completion of the NEADL refer to activities actually 

performed in the week prior to questionnaire completion. The GHQ-12 and EuroQoL are 

completed with respect to the day of completion, and therefore represent measures of 

mood and quality of life in the immediate post stroke period. The environment in which 

these data are collected (i.e. the acute stroke unit) and the sudden change of circumstance 

in the immediate post-stroke period may make these measures difficult to interpret.  

4.3.2 Data entry and verification of data 

Baseline assessments and the CRFs were returned to the Academic Unit of Elderly Care and 

Rehabilitation in Bradford, and data entered into a bespoke web-based browser electronic 

data collection system. Double data entry was performed to flag and reduce data 

transcription errors. Attempts to obtain missing data identified at the data entry stage 

were made by data entry clerks.  

4.3.3 Outcomes data 

Follow-up questionnaire packs containing the outcomes instruments and instructions for 

completion were sent to surviving patients with a covering letter at six months post 

recruitment. In an attempt to maximise the return rates of the postal questionnaires, the 

outcomes packs were endorsed by the Stroke Association (TSA) and carried the Stroke 

Association logo (no additional funding for the study was provided by TSA). Checks on 

residency and survival were made through access to the “NHS spine portal” and through 

contacting patients’ General Practitioners. Participants who did not respond to the initial 

questionnaire were contacted by telephone and a further outcome pack sent if necessary. 

Outcomes packs were returned to the Academic Unit of Elderly Care and Rehabilitation in 

Bradford and entered into a bespoke electronic data collection system. Hard copies of 

identifiable and non-identifiable data were stored separately under a unique identifying 

study number. Patients who did not respond following reminders were deemed ‘non-

responders’. The first 25 patients and carers at each site to respond to the outcomes 

questionnaire were sent a second (retest) questionnaire pack containing the postal version 

of the GHQ-12. The patient retest pack also contained the postal version of the modified 

Rankin Score.  
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  Outcomes questionnaires included in questionnaire packs  Table 9

Patient pack Number of items Comments 

“I would like more information 

about my stroke” 
1 question Quality marker from National Stroke Strategy. 

Post-discharge review 1 question Quality marker from National Stroke Strategy. 

Return to work 2 questions Quality marker from National Stroke Strategy. 

“Two simple questions” (Lindley 

RI et al  1994) 
2 questions 

Two questions to place patients into one of three groups: independent completely recovered (1), 

independent some residual problems (2), residual problems requires at least daily assistance (3). These 

can be mapped onto  the dichotomised OHS (1 = OHS of 0 or 1, 2 = OHS of 2, and 3 = OHS of at least 3) 

Nottingham Extended Activities of 

Daily Living (Lincoln NB et al  

1992) 

22 questions in 4 domains, 

four level responses 

Domains are: mobility, ‘in the kitchen’, domestic tasks, leisure activities. Questions are filled in with 

respect to what the patient has actually done in the last few weeks. Certain questions may be of limited 

relevance to some patients (do you write letters; do you manage your own garden; do you drive a car?) 

Subjective Index of Physical and 

Social Outcome (Trigg et al  2003) 

10 questions, 2 domains, 3 

level responses 
Physical and social subscores. 

EuroQoL (The EuroQoL Group. 

1990) 

5 questions, 3 level 

responses 

A measure of quality of life. A continuous utility score is calculated from which Quality Adjusted Life Years 

(QALYs) may be calculated.  

GHQ-12 (Goldberg D et al  1988) 
12 questions, 4 level 

responses 

A screening tool for anxiety and depression. Lacks evidence of postal test-retest reliability in stroke 

populations and included in order to test this. 

Postal Oxford Handicap Score 

(Dennis M et al  2006) 

6 mutually exclusive 

questions 

Scored from 0-5 to indicate level of dependency following stroke. An extra category (6) is often used to 

represent patients that have died. Often dichotomised <=2 and>=3 to represent independent vs. 

dependent survival 

Proxy completion 3 questions Respondents were asked to indicate if they completed the questionnaire unaided or with assistance 

Carer pack   

Carer Strain Index (Robinson B 

1983) 

13 questions, yes/no 

responses 
Questions relating to different aspects of caring and the effect on the carer 

GHQ-12 (Goldberg D et al,  1988) 
12 questions, four level 

responses 

A screening tool for anxiety and depression. Lacks evidence of postal test-retest reliability in stroke 

populations and included in order to test this. 
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4.4 Statistical methods 

A statistical plan designed to answer the research questions outlined in section 1.4 was 

developed a priori (see appendix B-4). Statistical support was offered by colleagues in the 

department of Biostatistics at Leeds University (Theresa Munyombwe, Brian Cattle and 

Robert West).  

4.4.1 Data cleaning, outliers and missing data pattern analysis  

Data were inspected for outliers and where these were identified, the original data were 

checked to ensure that there had not been data entry errors or data likely to reflect errors 

in recording data (for example, negative lengths of stay).  

Tables were constructed (using STATA software) to examine the numbers of cases where 

there were missing data for individual item responses in patient reported questionnaires, 

and whether or not there were any patterns to this missingness. 

 

4.4.2 Examination of return rates for outcomes questionnaire packs 

The return rate for the six month questionnaire was calculated as the proportion of 

survivors to six month follow up who returned the questionnaire.  

 

4.4.3 Descriptive statistics  

4.4.3.1 Floor and ceiling effects of baseline and six month patient completed 

questionnaires 

Floor and ceiling effects were identified through examination of histograms of patient 

reported questionnaires and presented as the percentage scoring minimum or maximum 

scores on each scale. Floor or ceiling effects were noted if questionnaires had more than 

10% of respondents scoring at the extremes of the scale.  

4.4.3.2 Tests of normality of continuous variables 

Normality of continuous variables (and model residuals) was assessed through 

examination of histograms, and quantile normal (Q-Q) plots. In a normal (Q-Q) plot, the 

observed sample data is ranked in percentiles and plotted against the percentiles that 

would be expected if the data fitted a normal distribution. Deviation from a straight line in 

a Q-Q plot therefore indicates likely deviation from a normal distribution. Statistical 

significance at the 0.05 level on Shapiro-Wilk testing was used as a quantitative marker of 

deviation from a normal distribution. 
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4.4.3.2.1 Hypothesis testing 

In order for continuous variables to be treated as parametric data for hypothesis testing 

(e.g. in the examination of representativeness of the study sample), they must 

approximate a normal distribution. If normality assumptions were not met, data were 

treated as non-parametric data.  

4.4.3.2.2 Distributions of dependent regression model variables 

The link function that is applied to the generalised linear model in order to derive the 

equation that fits a model is dependent on the underlying distribution of the outcome 

(dependent) variable (see section 3.5.6). Normally distributed continuous dependent 

variables may be modelled through linear regression and binary outcomes (binomial 

distribution) through logistic regression models. Examination of the distribution of 

dependent variables may identify that the variables are likely to fit an alternative 

distribution (e.g. a Poisson distribution for count data (Fox J,  1997)).  

For the purposes of the linear regression modelling used in this study, continuous 

outcomes measurements should ideally be normally distributed. However, providing 

linearity assumptions (between individual independent predictors) and normality of 

residuals assumptions are met for any linear regression model, then non-normality of the 

dependent variable may be overlooked (see section 4.4.6.1.4). Where continuous 

outcomes variables are not normally distributed a variety of transformations have been 

explored to ascertain if the data can be normalised.  This function is performed in STATA 

using the ‘ladder’ and ‘gladder’ commands. Lower (and statistically significant) chi-squared 

values in the STATA output suggest a better fit of the data to a normal distribution 

following the transformation. A Shapiro-Wilk test and p value are provided to indicate the 

confidence with which the null hypothesis (that data are normally distributed) may be 

accepted or rejected.  Normal (Q-Q) plots are provided. Deviations at the tails of a 

distribution may represent the floor and ceiling effects of the measurement instruments. A 

mathematical function is unlikely to remove the presence of floor and ceiling effects, it is 

therefore unlikely that these distributions could be normalised through a simple 

transformation. An alternative model that accounts for censored data (such as a Tobit 

regression model) may be more appropriate in these instances (Twisk J et al  2009), 

although this is beyond the scope of this thesis.  

4.4.3.2.3 Independent regression model variables 

Normality of independent continuous variables in regression models is not essential, 

providing that model residuals are normally distributed (see 4.4.6.1.4). However, 

independent variables were examined to ascertain whether any transformation of the data 

improved normality, as this may improve model fit.  
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4.4.3.3 Examination of representativeness of study sample 

Analyses were performed to ascertain whether there were significant differences in 

baseline variables between sites, between patients recruited and not recruited into the 

study (through examination of screening data) and between patients who responded to 

the six month survey and those who did not respond, who died or who withdrew from the 

study.  

Examination of observed versus expected frequencies for categorical data were made with 

Chi squared tests (of Fischer’s exact tests for contingency tables with cells containing less 

than five patients).  

Identification of statistically significant differences between medians (non-parametric 

data) or means (parametric data) were made with Mann-Whitney U tests or independent 

sample t-tests respectively. Where these tests were across more than one group (e.g. 

comparisons across sites), a Kruskall-Wallis test (non-parametric) or oneway ANOVA 

(parametric) was performed. Pairwise examination of groups to identify the differences 

following a statistically significant Kruskall-Wallis or oneway ANOVA was then performed 

with Mann-Whitney U or independent sample t-tests. 

4.4.4 Conversion of SIPSO to interval level data  

The SIPSO outcome is an ordinal score and, as such, cannot be used in parametric 

statistical analyses. Rasch analysis is a statistical method whereby, providing the data fit 

the Rasch model, ordinal data can be converted to interval level data (thereby allowing 

mathematical manipulation and parametric analyses). Normality of the transformed score 

is not essential, providing that the assumptions of parametric analyses are met. The Rasch 

model generates a latent distribution of the probability of endorsement of an item in a 

scale (p) based on both person and question characteristics. In the context of the SIPSO, 

this means that patients with more of the latent trait (better social and physical 

reintegration) following their stroke are more likely to answer questions favourably, and 

that questions representing  lower functioning are more likely to be endorsed by all 

(Kersten et al 2010).  

Mokken analysis is a measure of the hierarchical nature of a scale. The hypothesis is that, 

patients will endorse items reflecting a level of function up to and including their actual 

function, but not items reflecting a greater level of function. Acceptable test statistics 

(Loevinger statistic >0.3) for this hypothesis, suggest that the scale is a valid, hierarchical 

scale (Kersten et al 2010).     

The Rasch model is a logit function of the generalised linear equation containing two 

terms: person characteristics and item difficulty (equation (4)). The number of patients 

within each decile of logit (p) may then be plotted to give a histogram of the distribution of 

‘endorsement’ (which should be approximately normal). If the item difficulty term is 
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plotted against this histogram, it can be seen whether or not the items in the scale reflect 

the person characteristics (i.e. patients with more of the trait are more likely to endorse 

more difficult items and vice versa) and whether the scale items cover the whole of the 

distribution of the latent trait, or it there are areas that the scale does not address.  

(4) �&���(4) � 	�
4���&�	.����.�������. 		�5���'	�����.���� 	
The Rasch model relies on there being no interaction effects between person 

characteristics and item difficulty – i.e. older patients with a similar level of functioning 

should not answer questions differently to younger patients (differential item functioning). 

Differential item functioning should be explored to ensure that the scale properties do no 

vary according to baseline characteristics.  

Rasch and Mokken analyses have been performed for the SIPSO in a population of younger 

stroke survivors (aged under 65) (Kersten et al 2010), and transformation factors provided 

such that the discrete scale may be transformed to interval level data measuring the latent 

trait. This Rasch analysis identified a two factor scale and confirmed unidimensionality of 

the two subscores. Mokken analysis confirmed that these two subscores behaved as valid 

ordinal scales (Kersten et al 2010). Differential Item Functioning (DIF) was observed for 

gender for some items in both subscores and this was dealt with by collapsing items such 

that both subscales conformed to the Rasch model. No DIF was observed for age, however, 

as the population excluded patients over 65, this is not surprising. For the purposes of the 

study, the SIPSO subscores were transformed using the transformation factors provided by 

Kersten et al (2010), with the caveat that the absence of DIF for age needs to be confirmed 

in an older population. This is, however, beyond the scope of this thesis and limitations 

based on the assumption that the transformations are valid in an older population are 

discussed in section 6.3.1.  

4.4.5 Exploration of process-outcome linkages in the study population 

4.4.5.1 Univariate (unadjusted) analyses 

Unadjusted univariate analyses were performed to identify significant differences in 

patient outcome for patients that did, and did not receive specific process markers. 

Process markers coded “no”, “yes” and “no but”, would ideally be assessed with a oneway 

ANOVA. However, this relies upon normality assumptions being met for the outcome 

variables. Where these assumptions were not met, a Kruskall-Wallis test (non-parametric 

equivalent to the oneway ANOVA) was performed.  

Variables reaching statistical significance at the 1% level were identified for inclusion in 

subsequent regression models providing their relationship with patient outcome made 

clinical sense. Conversely, variables failing to reach statistical significance in univariate 

analyses were entered into regression models if they were felt to be clinically important 
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predictors. This helps to overcome problems with overfitting the model to the study 

population through inclusion or exclusion of variables on statistical rather than clinical 

grounds. 

4.4.5.2 Construction of decision trees to predict CIMSS study outcomes to identify 

important predictors 

Regression and classification trees are both types of decision tree and allow the graphical 

representation of the relative importance of independent variables in the prediction of the 

dependent outcome variable. Regression trees are used for the prediction of continuous 

outcomes, and classification trees for binary or categorical outcomes. As interval level 

outcomes have been used in the study (Rasch transformed SIPSO subscores), regression 

trees have been used. These have been constructed in R software (version 2.13.0) with no 

specification of the distribution of the dependent variable (i.e. a normal distribution of the 

outcome has not been assumed).   

In the construction of regression trees, study participants are categorised into groups of 

predicted outcome based on their combination of predictor variable values. Starting with a 

full model (including all the predictor variables in the dataset), each predictor variable is 

considered in turn in order to identify the predictor which defines two groups between 

which the difference in mean outcome score is maximal. The value at which this split 

occurs is the cut point for that predictor and forms the first branch of the tree. This 

variable is the most important predictor in the dataset in terms of explaining diversity in 

outcome. The process is repeated, conditional on preceding branches such that, at the 

bottom of the tree, several outcome groups are created based on the tree algorithm 

defined from the dataset. Trees were ‘pruned’ (lower branches removed) in order to 

remove less influential variables and prevent over interpretation of the data.  In 

interpreting regression trees, the left branch should be followed if the condition at the top 

of the branch is met (see Figure 95, Appendix C ).  

Regression trees do not rely on assumptions as regards the underlying distribution of the 

variables and there is no limit to the number or type of variables that may be entered into 

the equations to construct the trees (StatSoft Inc 2011). This allows the number of 

potential independent variables to be reduced before constructing final linear regression 

models.  For the purposes of this study, the regression trees have been used to identify 

prominent variables (and therefore potentially important variables in the prediction of 

patient outcome) rather than for the prediction of absolute values of the SIPSO outcomes. 

Two trees were created for each outcome. The first included baseline questionnaires (the 

Nottingham Extended Activities of Daily Living (NEADL), General Health Questionniare_12 

(GHQ_12) and the EuroQoL utility score (EQ5D)). The second did not include these 

variables. Both models contained the Barthel Index as a marker of baseline stroke severity. 

The reason for excluding baseline assessments from one set of models was to ascertain 
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whether outcome can be predicted without the need to collect baseline questionnaires, as 

collection of these data has implications in terms of resource and practicality in routine 

care. Variables entered into the regression tree models are given in Table 10 (p 81).  
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 Independent variables to be entered into regression tree models for prediction of the SIPSO subscores. Table 10

Demographic 

variables 
Prognostic/severity variables Patient movement Process Variables 

Baseline 

questionnaires 

Gender Length of stay 
Admitted to stroke unit on same 

day, or day after admission 
Scan within 24 hours of admission 

Baseline Barthel 

Index 

Ethnic group 

Propensity score 

(calculated from age, independence pre-stroke, living 

circumstances alone pre-stroke, normal or abnormal 

verbal GCS score, ability to lift arms above head and 

ability to walk independently) 

Ward type (ward patient first 

admitted to) 
tPA given Baseline NEADL 

Study site Pathological classification No stroke unit care Swallow screen in 24 hours Baseline EQ5D 

 Clinical classification (OCSP classification) Early supported discharge Aspirin in 48 hours Baseline GHQ_12 

 Weak side Discharged same address Physio in 48 hours  

 Dysphasia  OT in 4 days  

 Confusion at onset  MDT rehab goal setting  

 New urinary incontinence  Weighed during admission  

 Previous stroke  Mood assessment  

 Drowsy since presentation  Visual fields assessed  

   Sensory testing  

   Formal swallow in 72 hours  

   SLT communication assessment  

   Social worker assessment  

   Cognition screen  

   Malnutrition screen  

   Urinary incontinence care plan  

   Fluids within 24 hours of admission  

   Nutrition within 72 hours of admission  
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4.4.6 Construction of linear regression models to predict SIPSO using 

important clinical variables and predictors identified in decision trees  

The cut points defined in the regression trees are data driven – i.e. their absolute values 

are specific to the study data. The failure of important clinical predictors to feature in 

regression trees may represent peculiarities of the study dataset. The inclusion of these 

clinically important variables in the models may mediate the effect of variables which have 

been identified as important from the regression trees. As the focus of the study was the 

identification of potentially important predictors of patient outcome for further testing 

rather than the definition of prognostic models for external use, linear regression 

modelling was performed In order to explore the role of any clinically important predictors 

on variables identified through the data driven regression trees. 

4.4.6.1 A priori model variable selection 

4.4.6.1.1 Adjustment of the study sample using the SSV model  

In observational studies, the propensity score is often referred to as the probability that a 

patient will have received a particular intervention on the basis of their characteristics. 

Instead, I have used the propensity score to denote the probability of the patient having a 

good or poor outcome (alive and independent vs. not as measured with the dichotomised 

OHS). The propensity score was calculated from the SSV model (probability of poor 

outcome as measured with the OHS) using the published, and externally validated beta 

coefficients (Counsell C et al  2002). Propensity score was added to regression tree 

equations and to linear regression models as an independent, continuous predictor. This 

approach has previously been adopted to adjust for case-mix in stroke studies (Bravata DM 

et al 2010). 

The propensity score includes age and therefore age is not entered into the models as a 

separate variable (to avoid collinearity). Where propensity score does not feature in 

models, they have been re-run with age as an independent predictor as, in the absence of 

the propensity score, age may represent an important independent predictor of outcome. 

Additional case-mix or stroke severity variables are also added into the models to identify 

any further potentially important determinants of outcome that may be further 

investigated to see if they enhance the prognostic predictions of the SSV model.  

4.4.6.1.2 Process variables 

Independent variables included in each model are summarised in Table 11. These were 

identified for each SIPSO subscore, with and without baseline assessments, through clinical 

reasoning, the regression trees and through univariate analyses as described in sections 

5.7 & 5.8. 

The ‘no but’ codes of swallowing assessment, communication assessment and urinary 

incontinence variables indicate patients who do not require these assessments, either 
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because their strokes are too mild, or too severe. Examination of twoway tables of 

association between individual process markers (receipt of communication or continence 

assessments) and the respective specific impairments (presence of dysphasia or 

incontinence) reveals strong correlations (Chi-squared tests, p=<0.001 see appendix E-1.1). 

As such, the process variables may act as proxy markers for the presence of these deficits, 

and the presence of the deficits is therefore not modelled explicitly.  

Tests of linearity between individual predictors and the outcome were tested post model 

estimation as described in section 4.4.6.1.4. However, it was hypothesised a priori that the 

relationship between length of stay and physical outcome was likely to be non-linear, and 

this relationship was therefore explored prior to model development (see section 5.9.1).   

Forwards and backwards stepwise automated variable selection procedures were applied 

to the variables identified through clinical reasoning, regression trees and variables that 

featured prominently in the univariate analyses. Model parameters were set such that 

variables reaching the 0.05 significance level were added to the model, and those 

consequently failing to reach significance at the 0.05 level were automatically removed. 

Models were also run with these parameters set at 0.5 to ensure that the statistically 

important predictors did not change appreciably when additional clinically (but not 

statistically) significant variables were included in the models. Variables where there is 

evidence of collinearity are automatically removed by the STATA software during stepwise 

variable selection procedures. Dummy variables were created automatically by the STATA 

software to represent levels of categorical data. Each dummy variable is entered as a 

dichotomous variable with respect to the reference variable which has been selected as 

the zero category for consistency. As the models created are linear, the beta co-efficients 

represent change in SIPSO subscore that would be expected for a one unit change in the 

independent variable when all other variables are held constant (Altman D,  1999 p 337). 

For categorical (and dummy variables), the beta co-efficient represents the difference in 

mean SIPSO between the level of the variable and the reference variable with all other 

independent variables being held constant (Altman D,  1999 p 339). Variables within the 

model that reach statistical significance can either be identified through examination of 

the 95% confidence intervals (to see if they include zero implying non-significance) or 

through examination of the p value. Equations to predict the SIPSO score can be 

constructed from the beta-coefficients calculated through the modelling using the general 

linear equation (equation (2), page 49). 

A table identifying statistically significant predictors, with beta co-efficients and confidence 

intervals is provided for each model. The adjusted R-squared value gives the ‘variance 

explained’ by the model (Altman D,  1999 p 345). A model with an R-squared of 0.4, 

therefore, would therefore explain 40% of the variation in patient outcome through the 

predictor variables. An F statistic that reaches statistical significance implies that the model 
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explains a significant amount of variability in the dependent variable (Altman D,  1999 p 

346). Each model is followed by tests to ensure that the final models meet linearity, 

normality of residuals, homoscedasticity and absence of collinearity assumptions (see 

section 4.4.6.1.4).  

4.4.6.1.3 Pre-estimation checks 

The study dataset contains several potential independent predictors of outcome. The 

STATA software will automatically exclude cases where there are missing data for 

independent variables – i.e. a complete case analysis is performed. There are therefore a 

number of cases that may be excluded from the analysis. Imputation techniques may be 

employed to overcome this difficulty, although this is beyond the scope of this thesis. It is 

important to consider whether these missing data may bias any analyses and in order to 

investigate this I compared the Barthel Indices of patients with complete data (that would 

be included in models) and those where data is incomplete (that would be automatically 

excluded). The baseline Barthel Index has been chosen for the comparison as there is only 

one missing case for this measure.  

Pre-estimation checks of sample size for each model were performed, based on an event 

per variable (EPV) ratio of 10, as suggested by Peduzzi et al (Peduzzi P et al 1996). The 

number of variables entered into each linear model was limited to n/k where n=sample 

size and k=number of independent variables (including dummy variables).  

Interaction effects between independent variables occur when the effect of one predictor 

on the dependent variable is mediated by the effect of another (see section 3.5.7.2). 

Inclusion of interaction terms (as the product of the two independent variables) into 

regression models as dummy variables accounts for these interaction effects. However, 

due to the size of the study dataset, the number of interactions that would need to be 

modelled and the potential reduction in EPV that would occur through inclusion of 

interaction terms, these have not been modelled explicitly.  
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 Dependent and independent variables included in each model. Total number of variables (including dummies) presented. Table 11

 Model  

 1 2 3 4 5 6 7 8 9 

Dependent variable Physical 

SIPSO 

Physical SIPSO Physical 

SIPSO 

Physical 

SIPSO 

Physical SIPSO Social 

SIPSO 

Social SIPSO Social 

SIPSO 

Social SIPSO 

Description of model  

(independent variables) 
Full 

model   

Age instead of 

SSV 

Influential 

cases 

removed 

No baseline 

Ax 

No baseline Ax, 

influential 

cases removed 

Full 

model 

Influential 

cases 

removed 

No 

baseline Ax 

No baseline Ax, 

influential cases 

removed 

Independent variables Number of variables including dummies 

Length of stay 1 1 1 1 1 1 1 1 1 

Propensity score 1   1 1 1 1 1 1 

Age  1 1       

Baseline NEADL 1 1 1   1 1   

Baseline EQ5D 1 1 1   1 1   

Baseline Barthel Index    1 1     

Admitted to stroke unit on day, or 

day after admission  
       1 

1 

Lacunar vs non-lacunar stroke         1 1 

Early supported discharge        1 1 

Imaging within 24 hours        1 1 

Old stroke    1 1     

Formal swallowing assessment 2 2 2 2 2 2 2 2 2 

Communication assessment 2 2 2 2 2 2 2 2 2 

Social worker assessment 2 2 2 2 2 2 2 2 2 

Urinary incontinence care plan 2 2 2 2 2 2 2 2 2 

tPA given 2 2 2 2 2 2 2 2 2 

First admitted to ward for 

hyperacute stroke care 
1 1 1 1 1 1 1 1 

1 

Discharge to same address 1 1 1 1 1 1 1 1 1 

Total variables (including dummies) 16 16 16 16 16 15 15 18 18 
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4.4.6.1.4 Post-estimation checks 

a. Linearity assumptions 

In order for the model to be valid, there must be a linear relationship between the 

continuous (or ordinal) predictors (independent variable) and the outcome (dependent 

variable) (Fox J,  1997 p 113). This may be assessed in different ways. The simplest way is 

to plot the model residuals against the individual predictors to identify obviously non-

linear patterns (Chen X et al 2003). However, for this approach to be valid, there is an 

assumption that there is no relationship between the predictors in the model i.e. the 

presence of one predictor in a model does not affect the relationship between another 

predictor and the outcome. This is unlikely to be true for complex multivariable models 

(i.e. there is likely to be a degree of collinearity between variables). In order to circumvent 

this problem, a partial residual plot can be examined. Partial residuals are the component 

of variance attributable to a predictor having accounted for the variance due to other 

variables in the model.  Post estimation ‘augmented component plus residual plots’ 

(acprplot) may be constructed easily using STATA software (Chen X et al 2003) and can 

identify more complex (e.g. polynomial) relationships between independent and 

dependent variables  (Fox J,  1997 p 283). 

An alternative approach to detect non-linearity is to categorise the independent variable 

and fit a model to predict the outcome. Comparison of the estimates from a univariable 

linear regression model, with those from a model using the categorised variable can 

identify whether the two models are significantly different (i.e. whether the model created 

from the categorised data, which allows a more complex relationship to be revealed, 

deviates significantly from a simple linear prediction – the likelihood ratio test) (UCLA: 

Academic Technology Services 2011). If there is no significant difference between the two 

models, the relationship may be assumed to be linear.  

For the purposes of detecting non-linearity between predictors and outcome in the study 

data, I first plotted augmented component plus residual plots (acprplot). Where there is 

apparent deviation from linearity, I performed a likelihood ratio test to ascertain whether 

categorising the variable improves the model fit. However, it should be considered that 

categorisation of variables for the final models would result in the creation of dummy 

variables and this would therefore increase the number of variables which would need to 

be entered into the models. 

Where linearity assumptions between continuous independent the dependent variables 

are not met, transformations that have been shown to improve the normality of the 

distributions (as outlined in section 5.3) have been substituted and the models re-run. 
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b. Normality of residuals 

Residuals were estimated for each model constructed. These were tested for normality 

through Q-Q plots and Shapiro-Wilk testing (see 4.4.3.2) 

c. Homoscedasticity 

Homoscedasticity describes constant variance of model residuals across all fitted values. 

There should be no pattern in a scatter plot of fitted values against model residuals. Non-

uniform variance may indicate an omitted variable exerting a systematic effect on the 

model (Fox J, 1997 p302). Homoscedasticity has been assessed through inspecting scatter 

plots of fitted values vs residuals and through quantitative hypothesis testing where 

rejection of the null hypothesis of homogeneity of variance occurs when the test reaches 

statistical significance at the 0.05 level (Breusch-Pagan test (Chen X et al 2003)).   

d. Absence of collinearity 

Entering independent predictor variables that are linearly related into regression models 

can lead to inflated or unstable beta co-efficients with wide confidence intervals. This can 

potentially result in poorly generalizable models where the relative importance of 

individual predictors is overestimated (Fox J, 1997 p337). Collinearity has been addressed a 

priori through application of clinical reasoning to model variable selection and during 

model construction through stepwise variable selection procedures, which reduces 

collinearity (Concaco J et al 1993). In addition, variance inflation factors (as a measure of 

any effect of collinearity on beta coefficients) were examined post-estimation (Fox J 1997).  

Variance inflation factors (VIF) greater than 10 are of concern and may indicate collinearity 

between independent predictors.  

e. Influence and Leverage (DFBetas and Cook’s D statistics) 

The influence of individual cases on the model regression co-efficient or individual beta co-

efficients depends on leverage (where a point lies relative to the distribution of the 

independent variable (X)), and it’s residual. In simple terms, in the same way that torque is 

the product of distance from a pivot and force applied, the influence of a case on a 

regression line is a product of its leverage (distance from the centre of the distribution of 

X) and its residual (deviation of a point from the regression line for a given value of X).  

High leverage points occur where individual cases occur at the extremes of the distribution 

of the independent variable (Fox J,  1997 p 268). Cases with unusual values for 

independent variables (at high leverage points) do not exert undue influence if the 

observed outcome is as predicted by the model (small residual) as they lie on, or near, the 

regression line (they are not regression outliers). Cases with large residuals exert less 

influence if the value of the independent variable is within the distribution of the variable 

for other cases (low leverage points). Conversely, cases with large residuals at high 
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leverage points can exert considerable influence on the model co-efficients (Fox J 1997 

p269).  

A plot of leverage against the square of residuals can identify cases that are exerting 

particular influence on a regression model (Chen X et al 2003), and these have been 

provided for each specified model. The horizontal and vertical lines on the leverage vs. r-

squared plot represent the mean leverage and r squared for all the points in the model. 

 Influence can be explored quantitatively through calculation of Cook’s D statistic (D) - an 

overall marker of influence on the regression coefficient for each individual case (Fox J,  

1997 p 277). The cut-off value of Cook’s D above which individual points are likely to be 

exerting influence is determined as 4/n where n = the number of complete observations 

from which the model has been constructed (Chen X et al 2003). Cook’s D statistics have 

been calculated for each model to identify particularly influential cases. 

A measure of the effect of influential cases on individual beta-coefficients may be obtained 

through the calculation of DFBETA statistics. For each variable in a model, the beta co-

efficients are calculated with all cases included, and then with each case excluded in turn. 

The modulus of the difference between these values is the DFBETA value for an individual 

case. This value is scaled by the standard error of the omitted co-efficient to enable the 

values to be compared on a single scatter plot (Fox J 1997 p276). Particularly influential 

cases are those where the magnitude of this difference is greater than 2/√n, (where n= the 

number of observations in the model (Chen X et al 2003). These limits may be presented 

the scatter diagram, such that outlying cases for particular variables can be seen. 

It should be remembered that outliers do not necessarily represent ‘wrong’ data, but cases 

where outcomes are different to that which would be expected from the specified model.  

4.4.7 Performance of the SSV case-mix adjuster to predict study outcomes 

Utility of the SSV case-mix adjuster was explored through examination of its discriminatory 

properties (c-statistic) and calibration in the study dataset. These methods have been 

discussed in sections 3.5.9.1 and 3.5.9.2. In short, discrimination is the ability of a model to 

determine which, from of a pair of participants with incongruous outcomes, will have the 

outcome of interest (Harrell FE et al 1996). Calibration is the ability of a model to correctly 

predict outcome in the population of study participants.  

In order to examine discrimination and calibration of the SSV and any identified univariable 

predictor to predict the SIPSO outcomes requires the SIPSO to be dichotomised to reflect 

‘good’ over ‘poor’ outcome. Such a cut point for the SIPSO has not been determined in the 

literature. The cut point was therefore created at the level that represented a score of 3 on 

each of the individual SIPSO questionnaire items (representing a mild residual deficit that 

does not interfere appreciably with daily living), and the SIPSO subscores were 
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dichotomised at 15. This was felt to be clinically comparable to an OHS dichotomised at 

<=2. Analyses were also performed using the data driven median of the SIPSO subscores to 

represent good over poor outcome. The calculations of c statistics were also performed 

first excluding, and then including and ascribing a score of zero, to patients who died.  

4.4.7.1 Model discrimination (measured with c statistics) 

For examination of the c statistics of the SSV model, covariates from the original published 

model were used to calculate the probability of outcome for each study participant 

(propensity score) using the generalised linear equation with a logit function (equation (3) 

p 49). These were then used against dichotomised study outcomes to plot Receiver 

Operating Curves (ROC).The area under a ROC curve for a binary outcome is equal to the c 

statistic. Confidence intervals were also calculated. 

 There is no value above which a c statistic is ‘good’ as this depends on both the clinical 

context and the purposes for which the model will be used. For the purposes of this study, 

the c statistics have therefore been used to examine the relative performance of the SSV 

model with any identified univariate predictor.  

4.4.7.2 Calibration of the SSV in the CIMSS study population (calibration plots) 

Within each decile of predicted probability (between 0 and 1), the proportion of patients 

(p) with observed good outcome (OHS <=2) was calculated and plotted (Counsell C et al 

2002). Errors bars were created based on calculation of 95% confidence intervals for 

proportions, given by equation (5). 

(5) 95%	confidence	interval	of	p	�	p	±	1.96IJ(
+J)K 	
Perfect calibration would be represented by all points falling on a line x=y (i.e. where 

predicted probability equals observed probability). 

4.4.8 Exploration of potential univariate predictors of outcome that could be 

used in addition to, or instead of the SSV case-mix adjuster 

Prominent variables in the models that may have utility as univariate case-mix adjusters 

were identified. In order to test their utility, they were entered as a single predictor into a 

logistic regression model to predict the dichotomised outcome. Fitted values from this 

model represent predicted probability of outcome using the univariable predictor. These 

fitted values were then used to plot ROC curves to examine discriminatory properties.  

Calibration curves for variables identified through the study to predict the dichotomised 

outcomes have not been constructed as the predicted outcomes are derived from the 

observed outcome and these values would therefore be dependent on each other. In order 
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to test calibration of univariable study variables, external validation in an independent 

dataset would be required.  

4.4.9 Markov Chain MonteCarlo (MCMC) simulation iterations  

In order to test the stability and convergence of model beta coefficients, single level 

regression models were recreated in MLWiN software and Markov Chain MonteCarlo 

iterations performed. A model is specified in the study dataset and the beta-coefficients 

and their standard errors are used to simulate latent distributions model beta co-efficients 

for each variable. This distribution is used to perform multiple automated calculations of 

estimates of the coefficient for one variable conditional on the other variables. The 

procedure is then repeated iteratively for each variable in turn resulting in estimations of 

model beta coefficients which ‘settle’ on an approximation of the true model co-efficients 

(central limit theory). If estimates of beta co-efficients fail to converge on a value after 

repeated iterations, the model is unstable. For the purposes of this study, 5000 MCMC 

post-estimation iterations were performed, with a ‘burn in’ of 50 iterations.  

 

4.5 Data manipulation 

Data were stored as comma separated variable (.csv) files within the data collection system 

and exported directly to statistical software. STATA version 11 was used for statistical 

analysis. Manipulation of variables was performed through creation of syntax files (.do 

files) to allow real time data exports to be used in data analysis.  

Dates and times were converted from string variables to numerical variables, and 

categorical variables coded. For consistency, ‘no’ or ‘false’ was assigned a value of zero, 

and ‘yes’ or ‘true’ a value of one. ‘No but’ scores (processes that are either not indicated or 

contraindicated) are assigned a score of 2.  

Where possible, durations were calculated from dates and times:  

• Length of stay 

• Time from hospital admission to scan 

• Time to stroke unit admission 

• Length of stay on stroke unit 

• Length of stay post stroke unit discharge 

Baseline and six month outcomes questionnaires were scored or coded as suggested in the 

literature, or by the authors of the instruments.  

The NEADL and Barthel Index use a total summed score. Providing linearity and normality 

of residuals assumptions are met, these may be entered into regression models as 
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continuous variables. If model assumptions are not met (see section 4.4.6.1.4.), they must 

be analysed as non-parametric data and treated as either ordinal data or categorised and 

treated as categorical data. 

The General Health Questionnaire-12 (GHQ-12) has been scored using the dichotomised 

rather than Likert scoring system (Goldberg D et al,  1988). This system of GHQ-12 scoring 

ascribes a score of 0 for patients reporting absence of problems or no better/worse than 

usual and a score of 1 otherwise. A total GHQ-12 score is therefore out of a maximum of 

12 (with higher scores indicating more problems). The GHQ-12 is again treated as 

continuous data unless violations to assumptions are encountered when it will be 

dichotomised. This is with the acceptance of the loss of information that this will incur. 

Both the SIPSO and EuroQoL have conversion algorithms that allow the summed score to 

be converted to an interval score. These variables are therefore treated as continuous 

variables providing linearity and normality of residuals assumptions are met. Although 

performed on a population of younger patients (Kersten et al  2010), the output from the 

Rasch analysis of the SIPSO should not be dependent on the underlying population and the 

conversion should therefore be transferable. However, this is with the caveat that specific 

examination of differential item functioning of age has not been performed in an older 

population. Using ‘time trade off (TTO) techniques and visual analogue scales based on 

‘value sets’ the creators of the EQ5D have developed formulae to allow conversion of an 

individual’s answers across the five EQ5D questions to a continuous score (between -1 and 

1) to reflect perceived quality of life. These norms are country specific and the UK ‘time 

trade off’ values have been used for the purposes of this study (Rabin R et al 2011).  

The SSV case-mix model is used to calculate the probability of good outcome using the 

beta coefficients from the equation created through the original logistic regression analysis 

(Counsell C et al  2002). This probability of outcome was then dichotomised at 0.8 to give 

the probability of good (≥0.8) over poor (<0.8) outcome. The value of 0.8 was chosen as 

this is the cut off that was used to stratify in the FOOD trial (M Dennis, personal 

communication), the data from which formed a large external validation study of the SSV 

model (Dennis MS et al  2003).  In observational studies, a propensity score usually refers 

to the calculated likelihood of a patient receiving a specific treatment based on their 

characteristics, however, for the purposes of this thesis, the propensity score has been 

used to denote the probability of a patient having a good outcome (defined in this case as 

a dichotomised modified Rankin Score of less than three) based on their baseline 

characteristics. 
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Chapter 5 Results 

5.1 Data cleaning 

5.1.1 Outliers in continuous process data 

Inspection of continuous process variables was performed to identify any outliers. This 

revealed some anomalies requiring further inspection of the variables ‘date and time of 

hospital admission’ and ‘date and time of admission to the stroke unit’. For four patients the 

date and time to admission to the stroke unit is before the date and time of admission to 

hospital. This may be possible for in-hospital strokes, but the differences in time are small (-

4.3 to -0.8 hours). This is therefore more likely to reflect an error or inconsistency in the way 

that the time of admission was recorded.  Discussion with researchers revealed that this 

variable was extracted from either ED records or from the Patient Administration System 

(PAS) where the ED records were not available. It is possible therefore, that the unreliability 

of the data stems from inconsistencies within the PAS database.  This inconsistency has 

implications for the reliability of other variables that rely on time of hospital admission for 

calculation (e.g. time to scan). These variables have therefore been excluded from further 

analysis as the number of cases where there may be inconsistencies is not apparent. 

Variables that rely on date of admission (e.g. length of stay), are however unaffected by the 

time of admission and may therefore be calculated. The variable “scan within 24 hours of 

admission”, was recorded as a dichotomous yes/no response. Although the derivation of this 

variable requires knowledge of both the time of admission and time of scan, it does not rely 

on these times having been recorded in the CRF.  There is an assumption in the use of this 

variable that the times of hospital admission and time of scan were available for the 

researchers to calculate whether or not the scan occurred within 24 hours of admission to 

hospital (and that this calculation was correct). However, this assumption may not be valid. A 

preferable approach would have been to record the primary data from which the variable 

was calculated rather than recording the derived variable. The relative merits and difficulties 

of recording data in this way are discussed in section 6.3.3.  

There were marked inconsistencies between the length of stay on a stroke unit recorded as 

number of days by the stroke researchers and the calculated length of stay from dates of 

admission and discharge where these were available. The date of discharge from the stroke 

unit is missing in 203/298 (68%) of patients who received treatment on a stroke unit. As a 

consequence, the number of missing data for days on a stroke unit and proportion of stay 

spent on a stroke unit make the use of these variables unviable as the risk of systematic error 

is too great (39% each). Length of stay on a stroke unit has therefore not been used as a 

variable as the data were deemed to be unreliable.  

For the purposes of analysis therefore, admission to a stroke unit for any part of the inpatient 

spell (vs. no stroke unit care), admission to stroke unit on the same day or day after hospital 
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admission and total length of hospital stay (calculated from date of hospital admission and 

date of hospital discharge) have been used as markers of timeliness of stroke unit admission. 

Length of acute hospital stay in whole days was derived from the date of admission and date 

of discharge from the acute hospital, as recorded by the study researchers in the CRF. 

Additional post discharge lengths of stay in geographically distinct inpatient rehabilitation 

facilities, intermediate care facilities or any time spent under the care of post-discharge 

community rehabilitation or early supported discharge teams were not recorded. Patients 

discharged from the acute trust to receive further community therapy are likely to represent 

patients from a different subgroup of the post-stroke population to those patients that 

require protracted lengths of acute hospital care due to the severity of, or complications 

from, their stroke. It would therefore have been beneficial to measure and model the 

duration and nature of community rehabilitation separately from the acute hospital stay; the 

approach to the measurement of lengths of stay used in the study could be argued to be over 

simplistic, and to exclude important aspects of additional post-stroke rehabilitation. 

However, the study was not resourced to capture these post-acute hospital data. 

Spurious data for length of stay were identified through examination of negative values and 

identification of cases where duration from hospital admission to stroke unit admission or 

stroke unit discharge to hospital discharge were particularly long (two cases) or where there 

were negative values for length of stay (one case). This identified three cases with spurious 

data which, when checked against the original CRF reflected data recording or data entry 

errors of exactly one month in either hospital admission or hospital discharge dates. These 

were assumed to be erroneous and were corrected. 

After correction for the spurious data, an examination of a histogram of length of stay reveals 

that there is still a very wide distribution. However, on examination of individual records for 

patients with lengths of stay greater than 100 days, these were felt to reflect true lengths of 

stay. They were therefore retained.  
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Figure 8 Distribution of length of stay in study population 

 

The distribution of patient age at stroke demonstrates marked negative skew. This reflects 

the increased incidence of stroke with increasing age. Although there are two outliers 

markedly younger than the rest of the population, this is clinically feasible.  

Figure 9 Distribution of age at stroke in study population 
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5.2 Missing data   

5.2.1 Continuous process data 

The process markers selected to represent length of stay and timeliness of stroke unit 

admission are generally well completed. 

 Missing data regarding stroke unit treatment and length of stay by site Table 12

Variable Site Number 

recruited 

Number missing 

data 

Proportion of missing 

data 

Treated on a 

Stroke Unit for 

part of inpatient 

stay 

Bradford 71 1 1.5% 

Leeds 125 1 0.8 

York 
116 0 - 

Admission to SU 

same day, or day 

after admission 

Bradford 71 3 4.2% 

Leeds 125 14 11.2% 

York 116 4 3.4% 

Length of stay Bradford 71 1 1.5% 

Leeds 125 11 9% 

York 116 4 3% 

The rates of missing data for length of stay are small (16 cases in total, with the majority of 

missing data from Leeds). A Kruskall-Wallis (equivalence of populations test) between sites 

reveals that there is a significant difference in the median length of stay between sites (chi-

squared (χ2) = 21.1, degrees of freedom (ν) = 2, p<0.001).  

Figure 10 Length of stay by study site 
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If the median length of stay (for all sites) is imputed for missing values at each site (10 days), 

the difference in median length of stay between sites remains significant (χ2 = 21.4, ν = 2, 

p<0.001). This difference also remains significant if the median length of stay at each site is 

imputed (Bradford 13 days, Leeds 14 days, York 6 days) rather than the median across sites 

(χ2 = 21.5, ν = 2, p<0.001).  

A box plot to examine the effect of imputation of the median length of stay (LOS_imput) on 

the distribution of length of stay reveals that this does not significantly change the median 

length of stay. Missing data for length of stay may therefore be ignored.  

Figure 11 Box plot of length of stay across sites and with imputation of median 

length of stay  

  

5.2.2 Categorical process data 

Missing data for categorical data were infrequent (Table 12). Researchers reported particular 

difficulty in extracting the time of imaging as this was often not recorded in patient case 

notes. These data were therefore obtained from the electronic results servers at each trust.
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 Missing categorical data Table 13

Variable Missing (%) 

Patient not treated on a stroke unit 2  

Discharge address the same as admission address 2 

Admitted to stroke unit on same day, or day after presentation 21 (7) 

Type of ward patient first admitted to  3 

Patient discharged with Early Supported Discharge team input 18 (6) 

Radiological classification of stroke (infarct or haemorrhage) 2 

OCSP classification of stroke 17 (5) 

Side of weakness 1 

Lived alone or cohabited pre-stroke, or admitted from nursing or residential care 10 (3) 

Independent activities of daily living prior to stroke 0 

Normal verbal GCS score 0 

Able to lift arms above head (or MRC power score >=3) in week following stroke 1 

Able to walk unaided in week following stroke 1 

Drowsy since presentation to hospital  4 

Evidence of dysphasia 0 

Evidence of confusion 2 

New urinary incontinence or newly catheterised since stroke 5 

Previous disabling stroke 1 

Imaging performed within 24 hours 5 

Thrombolysis (rtPA) given 2 

Swallowing screen performed within 24 hours of admission 2 

Aspirin (or alternative antiplatelet) given within 48 hours of admission 1 

Physiotherapy assessment within 48 hours of admission 1 

Occupational therapy assessment within 4 working days of admission 4 

Evidence of multidisciplinary team goal setting 1 

Patient weighed during the admission 1 

Evidence of an assessment of patient mood 7 

Documented visual field assessment 2 

Documented sensory assessment 3 

Formal swallowing assessment (by Speech and Language therapist) within 72 hours 2 

Formal communication assessment by Speech and Language therapist 1 

Assessment by social worker 2 

Assessment of cognitive function 3 

Patient screened for malnutrition 0 

Documented continence promotion plan 2 

In receipt of fluids within 24 hours of admission  0 

In receipt of nutrition within 72 hours of admission  0 

As cases with missing data will be excluded automatically when entered as independent 

variables into regression models, the outcomes of those with missing data (and therefore 

excluded from the analysis) will be compared with those with complete data to ensure that 
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there is no systematic difference between patients with complete data and those in whom 

data are missing. 

5.2.3 Missing Baseline questionnaire data 

Baseline questionnaire packs were not returned for ten patients. There was only one 

participant where a baseline Barthel Index was not available.  

5.2.3.1 The Nottingham Extended Activities of Daily Living (NEADL) baseline 

questionnaire 

The NEADL was fully completed by 90% of patients at baseline. Missing values were spread 

across seven variables (managing garden, writing letters, driving, going out socially, reading 

books, managing money and using the phone). Management of the garden was the most 

frequently omitted item (8 participants for whom baseline assessments were available 

excluded the item). Missing items tend to be from the ‘leisure activities’ subscale of the 

NEADL. The total number of missing items for each of the subscores is shown in Table 14, 

with the number of patients responsible for the missing data. The majority of the missing 

data are in the domestic tasks and leisure activities subscales of the questionnaire. Three 

participants missed the last 11 items which may reflect omitting (or overlooking) an entire 

page of the questionnaire.  

 Missing data by domain for NEADL questionnaire (missing baseline packs Table 14

excluded)  

NEADL Subscore Total number of missing data 
Number of participants with 

missing data 

Mobility 13 8 

‘In the Kitchen’ 4 1 

Domestic tasks 27 10 

Leisure activities 42 16 

 

5.2.3.2 The EuroQoL 

The number of missing data items for each question of each questionnaire is presented. The 

‘missing value patterns’ tables identify if there are patterns in the combinations of missing 

data by displaying number of patients with missing responses (indicated by a 1) for each  

question. In these tables a 1 that the item was missing. For example, in Table 15, 6 patients 

omitted only the question pertaining to ability to perform usual activities on the EQ5D, whilst 

three omitted two questions pertaining to pain and anxiety - highlighted in grey in the table.
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 Missing data patterns by domain in the baseline EuroQoL (including ten Table 15

missing baseline packs) 

Number of 

patients  
1 1 2 2 3 5 6 10 282 

Total missing 

data  

Mobility 0 0 0 0 0 0 0 1 0 10 

Self-care 1 1 0 1 0 0 0 1 0 14 

Usual activities 1 1 0 0 0 0 1 1 0 18 

Pain/discomfort 0 1 1 0 1 0 0 1 0 16 

Anxiety/depression 1 0 0 0 1 1 0 1 0 19 

  Nine returned baseline questionnaires had missing data for the anxiety question.  

5.2.3.3 GHQ-12 baseline 

The authors of the GHQ_12 instrument suggest that missing GHQ-12 items are replaced with 

the most pessimistic score (Goldberg D et al,  1988) . However, missing data analysis of the 

raw data from returned baseline questionnaires reveals missing data across all questions 0. 

Again, ten baseline assessments were not returned and these are included in the table of 

missing data. Three patients who returned a baseline questionnaire pack did not complete 

any of the GHQ-12 questionnaires.  

 Key for Table 17 (questions of the GHQ-12) Table 16

Key Question: Have you recently… 

1 been able to concentrate on whatever you’re doing 

2 lost much sleep over worry? 

3 felt that you are playing a useful part in things? 

4 Felt capable of making decisions about things? 

5 felt constantly under strain? 

6 felt you couldn’t overcome your difficulties? 

7 been able to enjoy your normal day-to-day activities? 

8 been able to face up to your problems? 

9 been feeling unhappy and depressed? 

10 been losing confidence in yourself? 

11 been thinking of yourself as a worthless person? 

12 been feeling reasonably happy, all things considered? 
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 Missing data patterns for baseline GHQ_12 Table 17

   Question number 
  1 2 3 4 5 6 7 8 9 10 11 12 
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13 1 1 1 1 1 1 1 1 1 1 1 1 

3 0 1 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 1 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 1 0 0 0 0 0 

1 1 0 1 0 0 0 1 0 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 1 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 1 1 1 1 1 1 1 1 

1 0 0 0 0 1 1 0 0 1 0 0 0 

1 0 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 0 0 1 1 0 0 

1 0 0 0 0 0 1 0 0 0 0 1 1 

1 0 0 0 0 0 1 0 0 0 0 0 1 

1 0 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 1 1 1 1 

1 0 0 0 0 0 0 0 0 1 1 1 0 

1 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 1 

270 0 0 0 0 0 0 0 0 0 0 0 0 

Total 17 16 17 16 16 19 17 15 21 21 17 18 
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5.2.4 Outcomes data 

5.2.4.1 Missing outcome packs 

The flow of patients recruited into the study is shown in Figure 12. The overall response rate 

was calculated as the proportion of survivors responding to the questionnaire at six months 

(after reminders if these were required).   

Figure 12 Questionnaire returns at six month follow up 

 

Response rate  = 188 / 266 = 71% 

 

5.2.4.2 Missing individual items 

Figure 13 to Figure 18 represent the total number of missing questions for each outcome 

broken down by subscales where these apply (NEADL and SIPSO). For example, Figure 13 

concerning the NEADL shows that seven respondents missed one item from the mobility 

subscale, one respondent missed three items from the domestic subscale and two 

respondents missed four items across all the NEADL subscales. There is no pattern to the 

missing items in the NEADL (i.e. missingness is spread across items).   
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Figure 13 Frequency of missing NEADL data items in returned 6 month 

questionnaires 

 

There is no pattern to this missing data in terms of individual items that are not completed.  

Figure 14 Frequency of missing SIPSO data items in returned 6 month 

questionnaires 
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 Key for table Table 19 (Physical subscore of SIPSO) Table 18

Key Question 

1  Since your stroke, how much difficulty do you have dressing yourself fully? 

2 Since your stroke, how much difficulty do you have moving around all areas of the home? 

3 Since your stroke, how satisfied are you with your overall ability to perform daily activities 

in and around the home? 

4 Since your stroke, how much difficulty do you have shopping for and carrying a few items       

(1 bag of shopping or less) when at the shops? 

5 Since your stroke, how independent are you in your ability to move around your local 

neighbourhood? 

 Missing-value patterns in physical subscore of SIPSO Table 19

 Question 
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 1 2 3 4 5 

4 0 0 0 1 0 

2 0 0 0 0 1 

1 1 0 0 0 0 

1 0 1 0 0 0 

1 0 0 1 0 0 

Total 2 2 1 4 2 

There is no pattern to the missing items on the physical subscore of the SIPSO. However, 

examination of the social subscore of the SIPSO reveals that five patients did not respond to 

the question “since your stroke, how do you feel about your appearance when out in 

public?”. 

 Key for Table 21 (social subscore of the SIPSO) Table 20

Key Question 

1  Since your stroke, how often do you feel bored with your free time at home? 

2 Since your stroke, how would you describe the amount of communication between you 

and your friends/associates? 

3 Since your stroke, how satisfied are you with the level of interests and activities you share 

with your friends/associates? 

4 Since your stroke, how often do you visit friends/others? 

5 Since your stroke, how do you feel about your appearance when out in public? 

 Missing-value patterns in social subscore of the SIPSO Table 21

 Question 
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 1 2 3 4 5 

4 0 0 1 0 0 

3 0 0 0 0 1 

2 1 0 0 0 0 

1 1 0 0 0 1 

1 0 0 0 1 1 

1 0 0 0 1 0 

174 0 0 0 0 0 

Total 3 0 4 2 5 

The Rasch analysis of the SIPSO suggests that the structure of the scale is such that the 

subscales should be considered separately (Kersten P et al  2010). Each SIPSO subscore is 

better completed than the total NEADL scale. 
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Figure 15  Frequency of missing EQ5D data items in returned 6 month 

questionnaires 

 

No patterns were identified in the missing data for the six month EQ5D questions.  

Figure 16 Frequency of missing GHQ_12 data items in returned 6 month 

questionnaires 
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 Key for Table 23 (six month GHQ_12) Table 22

Key Have you recently… 

1 been able to concentrate on whatever you’re doing 

2 lost much sleep over worry? 

3 felt that you are playing a useful part in things? 

4 Felt capable of making decisions about things? 

5 felt constantly under strain? 

6 felt you couldn’t overcome your difficulties? 

7 been able to enjoy your normal day-to-day activities? 

8 been able to face up to your problems? 

9 been feeling unhappy and depressed? 

10 been losing confidence in yourself? 

11 been thinking of yourself as a worthless person? 

12 been feeling reasonably happy, all things considered? 

 Missing value patterns in six month GHQ_12 Table 23

   

  Question number 

  1 2 3 4 5 6 7 8 9 10 11 12 
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5 0 0 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 0 0 

2 0 0 0 0 0 0 1 0 0 0 0 0 

1 1 0 0 0 1 0 0 1 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 0 0 

166 0 0 0 0 0 0 0 0 0 0 0 0 

Total 3 1 3 2 4 2 2 5 0 0 0 0 

 

The ‘do you feel able to face problems’ question was the question omitted by five of the 18 

respondents who only omitted one question from the GHQ-12.  

One hundred and thirty five patients completed all the questionnaires in their entirety. The 

numbers of incomplete questionnaires are presented in Figure 17 .  
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Figure 17 Number of  incomplete scales within returned questionnaires (excluding 

OHS) 

 

The majority of missing outcomes data is due to one item missing from 1 scale (31 cases, 

Figure 18). Data were most frequently missing from the NEADL and GHQ_12 scales.  

Figure 18 Frequency of all missing items by scale  

 

 

 



- 107 - 

 

5.2.4.3 Management of individual missing outcomes items 

As with the baseline GHQ_12 (see section 5.2.3.3) the most pessimistic score (0) has been 

entered for patients with missing six month GHQ_12 data. For the most part, imputation of 

outcomes is not advisable and records with missing data will therefore be excluded from the 

analysis. The calculation of EQ5D scores and SIPSO subscales scores excludes records with 

missing data.  

5.3 Distributions of continuous and ordinal variables 

Examination of the distributions of continuous and ordinal variables can identify both 

significant floor and ceiling effects that may limit the sensitivity of the variable at the 

extremes of measurement, and unusual patterns that may require further exploration. If 

these are to be used as dependent variables, their distributions may affect the type of 

regression analysis that may be performed, or may cause problems with meeting linearity 

assumptions (see section 5.4, and also sections 4.4.6.1.4 & 3.5.7.1 ).  

5.3.1 Distribution of the propensity score 

The propensity score calculated from the SSV case-mix adjuster demonstrates a marked floor 

effect (prediction of poor outcome) with 111/312(35.6%) of patients in the lowest decile of 

predicted outcome. However, if the propensity score is entered into a model as an 

independent variable, providing the residuals from that model are normally distributed and 

that linearity assumptions are met, then this deviation from normality may be ignored. 

Failure to meet linearity assumptions may require transformation or categorisation of the 

variable.  

Figure 19 Distribution of propensity score in the CIMSS study population 
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5.3.2 Length of stay 

Length of stay demonstrates marked positive skew (see Figure 8, section 5.1.1). It is likely, 

therefore that this variable will need to be transformed in order to linearize the relationship 

between length of stay and outcome and this will be explored further during model 

construction.  

5.3.3 Distributions of baseline assessments 

The presence of significant floor or ceiling effects (10% of patients scoring at extremes of the 

scale) suggests a lack of responsiveness of the instrument to detect change at the extremes 

of measurement. Large floor and ceiling effects in baseline functional assessments may 

reflect the immediacy of the assessment following the stroke event (i.e. reflection of 

immediate post-stroke disability) or the recruitment of patients that tended to have milder 

strokes.  

 Floor and ceiling effects of baseline functional assessments Table 24

 Floor effect Ceiling effect 

Barthel Index 25/311 = 3.2% 70/311 = 23% 

NEADL_baseline 14/302 = 4.6% 32/302=10.6% 

EuroQoL_baseline 0/302 = 0% 38/302 = 12.6% 

GHQ_12 baseline 125/302 = 41.4% 12/302 = 4.0% 

Figure 20 Baseline Barthel Index 
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5.3.3.1 Distribution of the baseline EQ5D 

Figure 21 Baseline EQ5D 

 

The baseline EQ5D appears to be biphasic, with peaks around zero and 0.7. There is also a 

ceiling effect of 12.6%. This may reflect a correlation with baseline function, as three of the 

questions within the EuroQoL questionnaire relate directly to constructs measured with the 

Barthel Index (mobility, self-care and usual activities), and may therefore be acting as a proxy 

marker for the floor and ceiling effects seen with this instrument at baseline.   

5.3.3.2 Distribution of the baseline NEADL 

The NEADL score is filled out according to an individual’s function over the last week. For 

some patients (in whom the time from stroke to recruitment was more than a week), this 

period will include the period since the onset of the stroke. For others, where time to 

recruitment was short, the NEADL is more likely to reflect pre-stroke function. The 

instructions for completion of the NEADL in the context of the study were therefore unclear.  

In addition to the factors that contribute to floor and ceiling effects of the Barthel Index, this 

timing of completion may account for the marked floor and ceiling effects of the baseline 

NEADL. The distribution of time from stroke (as reported by patients or their carers) to 

completion of baseline questionnaires are shown in Figure 22 (7 days to recruitment is 

marked with the black line). The lack of clarity as regards the instruction as to the period with 

which the NEADL should be completed with respect to may also account for the wide 

distribution of the baseline NEADL Figure 23. 
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Figure 22 Time (days) from stroke to completion of baseline questionnaires 

 

Figure 23 Distribution of responses on baseline NEADL 

 

5.3.3.3 Distribution of the baseline GHQ-12 

Marked floor effects are seen with the baseline GHQ_12 (46%). This may reflect 

understandable anxiety or low mood in the immediate post-stroke period (Figure 24).  
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Figure 24 Distribution of responses on the baseline GHQ_12 

 

5.3.4 Floor and ceiling effects of outcomes instruments at six months 

 Floor and ceiling effects in returned questionnaires Table 25

Outcomes instrument (fully 

completed six month 

questionnaires) 

Floor effect Ceiling effect 

NEADL total 1/165 = 0.6% 16/165 = 9.7% 

NEADL_mobility subscale 13/177 = 7.3% 57/177 = 32.2% 

NEADL_kitchen subscale 9/186 = 4.8% 110/186 = 59.1% 

NEADL_domestic subscale 28/178 = 15.7% 42/178 = 23.6% 

NEADL_leisure subscale 8/178 = 4.5% 32/178 = 18.0% 

SIPSO (physical) 10/176 = 5.7% 41/176 = 23.2% 

SIPSO (social) 2/174 = 1.1% 19/174 =10.1% 

EQ5D 2/179 = 1.1% 35/179 =  19.6% 

GHQ_12 53/166 = 31.2% 13/166 = 7.8% 

Ceiling effects are seen with the physical subscale of the SIPSO and the EQ5D. Marked floor 

effects are seen with the GHQ_12. The EQ5D and the SIPSO subscales only contain 5 items 

and are therefore more prone to ceiling and floor effects  Consideration of the two SIPSO 

subscales together to give a total score eliminates the ceiling effect seen within the physical 

subscale (ceiling effect of total SIPSO score 41/176 = 9.0%).  The subscores of the NEADL have 

significant ceiling effects (most pronounced in the kitchen subscore). In addition there are 

marked floor effects in the domestic subscale. This is likely to limit the use of the NEADL in 

the CIMSS population. These effects have not been noted in previous studies using the 

instrument, although floor effects in the mobility domain have previously been noted in more 

dependent patients (Gladman et al  1993; Gladman et al  1994).  
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5.4 Distributions of patient reported measures (six month 

questionnaires) 

5.4.1 Conversion to continuous variables 

Two of the patient reported instruments have scoring systems or conversion tables that allow 

them to be converted into interval level variables (the EuroQoL and the SIPSO). The EuroQoL 

is converted into a continuous utility score between -1 (lowest) and 1 (highest quality of life) 

(Rabin R et al,  2011). The SIPSO has been subject to Rasch and Mokken analyses which 

confirmed a two factor structure with two subscores which may be considered separately, 

but where the summed (total) score fails to meet scaling assumptions (Kersten P et al  2010). 

The two SIPSO subscales are therefore considered as two separate interval level outcomes. 

Limitations of this approach are discussed in sections 4.4.4 and 6.3.1.   

Four of the patient reported measures are ordinal (the baseline and six month NEADL and 

GHQ_12, baseline Barthel Index and six month OHS). They may be treated as continuous data 

if linearity and normality of residuals assumptions are met, and models using these outcomes 

will be constructed first using parametric techniques (linear regression). Where linearity and 

normality of residuals assumptions are not met, the outcomes will be dichotomised and 

treated as non-parametric data with the caveat that this is with the loss of information.  

5.4.2 Continuous patient reported measures 

5.4.2.1 EuroQoL 6 months 

The six month utility score for the EuroQoL deviates significantly from a normal distribution 

(Figure 25), and looks to follow a censored distribution. This cannot be normalised through 

transformation (Figure 26), and if the EQ5D were to be used as the dependent variable, a 

Tobit regression model (to account for the censored data) may be appropriate.  
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Figure 25 Distribution of the six month EQ5D 

 

Figure 26 Transformations of the six-month EQ5D 

 

5.4.2.2 SIPSO subscores at six months 

A normal (Q-Q) plot deviates from the reference line; thereby suggesting that the physical 

subscore of the SIPSO is not normally distributed. The untransformed physical subscore of 

the SIPSO is highly statistically significant (p<0.01) on Shapiro-Wilk testing confirming that the 
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variable cannot be assumed to be normally distributed. However, as no transformation 

appears to improve the distribution towards normality (Figure 28), the untransformed 

physical subscore of the SIPSO will be entered into the models. Linearity and normality of 

residuals assumptions must, however, still be met on testing of model diagnostics.  

Figure 27 Normal (Q-Q) plot for untransformed six month SIPSO physical subscore 

  
 

Figure 28 Transformations of the Rasch transformed six-month SIPSO physical 

subscale  

 

-1
0

0
1
0

2
0

3
0

S
ix

 m
o
n
th

 S
IP

S
O

 p
h
y
s
ic

a
l 
s
u
b
s
c
o
re

 (
fo

llo
w

in
g
 R

a
s
c
h
 t
ra

n
s
fo

rm
a
ti
o
n
)

-10 0 10 20 30
Inverse Normal

0
1
.0

e
-0

4
2
.0

e
-0

4
3
.0

e
-0

4
4
.0

e
-0

4
5
.0

e
-0

4

0 2000 4000 6000 8000

cubic

0
.0

0
2
.0

0
4
.0

0
6
.0

0
8

.0
1

0 100 200 300 400

square

0
.0

5
.1

.1
5

.2

0 5 10 15 20

identity

0
.2

.4
.6

.8
1

0 1 2 3 4 5

square rootD
e
n
s
it
y

Six month SIPSO physical subscore
Histograms by transformation



- 115 - 

 

A normal probability plot suggests that the social subscore of the SIPSO follows 

approximately a normal distribution, although there is some deviation at the tails. A Shapiro-

Wilk test fails to reach significance (p=0.095), suggesting that a normal distribution can be 

assumed.   

Figure 29 Normal (Q-Q) plot of SIPSO social subscore 

 

 

5.4.3 Ordinal patient reported measures 

5.4.3.1 NEADL 6 months 

The six month total NEADL score deviates markedly from a normal distribution as suggested 

by the normal plot (Figure 30) and confirmed by the highly significant Shapiro-Wilk statistic 

(p<0.001) . If the NEADL is to be used as an outcome in a regression model and residuals are 

not normally distributed the scale would need to be categorised and a multivariate ordinal 

regression, or logistic regression performed depending on the number of categories created.  
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Figure 30 Q-Q plot for the six month NEADL (total summed scores across subscales) 

 
 

5.4.3.2 GHQ_12 baseline 

The six month GHQ_12 can also not be considered to be normally distributed as there is 

marked deviation from the reference line on a Q-Q plot, and the Shapiro-Wilk statistic is 

again, highly statistically significant. For ease, if, the GHQ-12 is to be treated as a dependent 

outcome variable it will be dichotomised into ‘case’ and ‘non case’ and treated as a 

categorical variable in a logistic regression model (with a score of >=3 out of a total of 12 

signifying a ‘case’ when using the dichotomised scoring system as described by the authors 

(Goldberg D et al,  1988)). This categorisation is not necessary for the creation of decision 

trees (with the baseline GHQ-12 being entered as a predictor, or the six month GHQ-12 as an 

outcome), as no assumptions are made regarding the underlying distribution of the data (see 

section 4.4.5.2).  

5.4.3.3 Oxford Handicap Scale (six months) 

The Oxford Handicap Scale (OHS) is an ordinal outcome, and will be dichotomised into 

good/poor outcome using the same cut of at <=2 as good outcome, 3 to 6 as poor outcome 

(which includes 6, dead) such that these classifications match those used in the development 

of the SSV case-mix adjuster (Counsell C et al  2002).  
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Figure 31 Distribution of responses on the postal modified Rankin Score 

 

5.5 Choice of outcome measures for the CIMSS study 

The GHQ-12 questionnaire was included in the outcomes questionnaire in order to examine 

its test-retest reliability when collected by post in stroke populations. It has not, therefore 

been examined as a primary outcome of the study for the purposes of this thesis. The postal 

version of the OHS was collected in order to calculate the SSV predicted probability of good 

outcome for the purposes of case-mix adjustment. The postal OHS will be used to ascertain if 

there are any univariable predictors which may perform as well as the SSV in terms of 

predicting patient six month OHS scores, and also to ascertain if there are any additional 

predictors which, when added to the SSV model, improve its utility in outcome prediction.  

The distributions of the outcomes measures have important implications on the types of 

analyses that may be performed and the types of conclusions that may be drawn. The NEADL 

and SIPSO both measure aspects of post stroke function and activities of daily living. 

However, the property of the SIPSO that allows it to be treated as interval level variable 

offers significant advantages over the NEADL. Firstly, it is likely that it may be predicted 

through linear regression modelling whilst the NEADL is more likely to require categorisation 

and multivariable ordinal modelling. Linear modelling increases the number of predictor 

variables that may be entered into models, as the EPV reflects the number of observations 

and not the number of outcome events. Secondly, the SIPSO is less prone to the marked 

subscore ceiling and floor effects that are apparent with the NEADL and may, therefore, be a 

more sensitive instrument in patients nearing the extremes of the scale. Finally, and possibly 

due to its relative brevity as compared with the NEADL, the individual subscores of the SIPSO 

are well completed. However, the SIPSO does have drawbacks. It is less well externally 
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validated than the NEADL, and the validation studies that have been performed are either by 

the authors of the instrument (Trigg R et al  2003), or have been performed on samples not 

necessarily transferrable to the wider stroke population (i.e. a population of younger stroke 

survivors (Kersten et al  2004)). This may have implications for the validity of the scale in 

reflecting the latent trait of reintegration in older stroke survivors (see sections 4.4.4 & 6.3.1) 

Finally, and importantly, the SIPSO is completed after the stroke event, and therefore does 

not allow direct comparisons with individual baseline function. The advantages of the SIPSO 

however, outweigh these drawbacks and it has been used at the primary outcome 

throughout the study analysis. Each subscore of the SIPSO is considered separately as an 

individual score (physical and social domains). This approach was encouraged in a recent 

study examining the scaling properties of the SIPSO (Kersten P et al  2010).  

5.6 Descriptive statistics of study population and representativeness of 

sample 

Descriptive statistics for the patients recruited into the study (study population) are 

compared with the stroke population screened at each site (as a marker of the wider stroke 

population) as a measure of sample representativeness. Descriptive statistics regarding 

process markers are provided for the study population. The characteristics of patients that 

respond to the six month questionnaire as compared with those that do not are also 

described to identify any systematic differences between those that did and did not respond 

to the outcomes questionnaires.  

5.6.1 Barriers to data collection across study sites 

Regular teleconferences were held with researchers in each site to identify and, where 

possible, resolve difficulties with patient recruitment and data collection. There were some 

barriers to recruitment that were common across the study sites. Identification of patients 

with stroke that were not admitted to the stroke unit was problematic, though close liaison 

with the stroke care co-ordinators at each site helped with both patient identification and 

tracking patients that had moved wards. It was not possible to include patients admitted and 

discharged during the course of a weekend as the researchers’ working week was Monday to 

Friday. The omission of these patients may have introduced bias to the study sample. Often 

patients and their carers were unwilling to discuss participation in a study soon after the 

stroke event and researchers expressed difficulties in identifying, recruiting and collecting 

case-mix data within a week of admission following stroke. Consequently, providing that 

case-mix data could be extracted retrospectively from case notes with respect to the week 

following admission, patients were recruited up to two weeks following admission.  

It was found that carers were particularly difficult to recruit to the study, often because they 

visited the ward outside normal working hours. In York, the researcher liaised with the ward 

sister to allow carers to visit the ward at other times such that they could be approached for 
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consent to participate in the study. In Leeds, the researcher worked flexibly and visited the 

ward during the early evening to obtain consent from carers.  

5.6.2 Screening and recruitment  

In total 656 patients were screened across the three study sites during the six month 

recruitment period. Initially 320 patients were consented, but 8 were not recruited as they 

were found not to  meet eligibility criteria (one did not have information available regarding 

case-mix variables from the week following the stroke, one deteriorated and was receiving 

palliative care, one died prior to recruitment and four were found to have subarachnoid 

haemorrhage on imaging). 

Table 26 outlines the absolute numbers and proportions of patients screened and recruited 

at each of the study sites. It can be seen that higher proportion of screened patients were 

recruited in Leeds than in both Bradford and York. Reasons why patients that were screened 

were not subsequently recruited (either through a failure to meet eligibility criteria, or 

through informed consent not being obtained) are shown in Figure 32 & Figure 33. 

 Proportion of screened patients recruited into study by site Table 26

Site Number screened Number eligible 

patients recruited 

Proportion recruited 

Bradford 176 71 40% 

Leeds 193 125 65% 

York 287 116 40% 

Total 656 312  

 

The most common reason for patients being ineligible for inclusion was that the diagnosis 

was not a primary stroke. The proportion of patients in whom this was the case is surprisingly 

high (74/193 = 38%). This may reflect the number of patients admitted with “query stroke” 

and commenced on the stroke care pathway prior to specialist assessment. The most 

common reason for eligible patients not being recruited was a lack of capacity and no 

available carer to provide consent to take part in the study.  
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Figure 32 Reasons screened patients not eligible for recruitment 

 

Figure 33 Reasons eligible patients not recruited into study 
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5.6.3 Demographic data 

5.6.3.1 Differences in age at stroke and gender between screened and study 

population 

The median age of patients recruited into the study was 74 (IQR 65-82), with a range of 31 to 

95 years. Fifty-one percent of the study population were female.  

An equivalence of proportions test reveals no difference in the proportion of women 

between screening and study populations (p=0.165 working shown in appendix D-1).  

The distribution of age by sex in patients recruited into the study is shown in the boxplot 

(Figure 34) 

Figure 34 Distribution of age by sex in study sample 

 

This difference in age by sex is highly statistically significant (Mann-Whitney U test of 

equivalence of medians) and is likely to represent the longer life expectancy of women in the 

general population (working shown in appendix D-1.2).  

Figure 35 reveals that patients who are not recruited into the study have a higher median age 

than those who are (the median is used as the data are negatively skewed). This difference is 

confirmed as statistically significant on a Mann Whitney U test (the non-parametric 

equivalent to a t-test – appendix D-1.3).  
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Figure 35 Distribution of age by recruitment into study 

 

 Difference in median age between patients recruited and not recruited Table 27

into study 

 Range Median IQR 

Recruited 31-95 74 65-82 

Not-recruited 39-98 81 71-86 

The difference in medians between patients recruited and not recruited is seen at each site 

(Table 28) 

 Difference in median age between patients recruited and not recruited Table 28

by site 

Site Median age 

recruited  

Median age 

non recruited 

Significance level for 

equivalence of medians 

(Mann Whitney U) 

Bradford 72 79 0.012 

Leeds 76 81.5 0.003 

York 74 81 <0.001 

Significance level for equality of 

population medians (Kruskall-

Wallis1 test) 

0.34 0.20  

However, a difference is not seen in median age between sites for patients who are, and are 

not recruited into the study (Kruskall-Wallis tests for median age by site for patients recruited 

and not recruited into the study are not statistically significant). 

 

                                            

1 A Kruskall-Wallis test is the non-parametric equivalent to a oneway ANOVA 
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5.6.3.2 Ethnicity 

The vast majority of patients recruited were white (see Table 29) 

 Ethnicity of patients recruited and not recruited into the study Table 29

Ethnic Group Screened not recruited (N (%)) Recruited (N (%)) 

White 311(90.4) 298(95.5) 

Mixed White & Black Caribbean 2 (0.6) 0 

Asian- Indian 3(0.9) 3(1.0) 

Asian - Pakistani 11(3.2) 6(1.9) 

Asian - Bangladeshi 2(0.6) 1(0.3) 

Other Asian background 1(0.3) 1(0.3) 

Black Caribbean 0(0) 3(1.0) 

Chinese 2(0.6) 0 

Missing 12(3.5) 0 

Total 344 312(100) 

There does not appear to be a difference in ethnicity between patients recruited and not 

recruited into the study (Table 29). Formal testing for association with a Fisher’s exact test (to 

account for the low frequencies in some cells) confirms there is no association (p=0.31).  

5.6.3.3 Availability of carer and living circumstances 

The majority of patients recruited to the study cohabit (60%), 38% lived alone and 2% were 

admitted from nursing or residential care.  

A two way measure of association (chi-squared test) showed that patients with carers 

available were no more likely to be recruited to the study than those without carers (p=0.06). 

5.6.3.4 Baseline stroke severity  

The descriptive statistics for the baseline Barthel Index in screened and recruited populations 

are shown in Table 30. 

 Descriptive statistics for baseline Barthel Index Table 30

 Range Median IQR 

Recruited 0-20 13 5-19 

Screened 0-20 4 0-13 

 

There is a marked difference in the Barthel Index scores between patients recruited into the 

study when compared with those that are not. An equivalence of medians test (Mann-

Whitney U test), confirms a highly significant difference in baseline BI between patients 

recruited and not recruited into the study (p<0.001 – working shown in appendix D-2.1).  
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Figure 36 Difference in baseline Barthel Index between patients recruited and not 

recruited into the study 

 

This difference in baseline disability is seen in all sites, and is most marked in Leeds. Patients 

with very severe strokes (i.e. those that were in receipt of, or likely to receive palliative care) 

were not recruited into the study and this is likely to have been reflected in this difference. 

The study sample is therefore more representative of a population that is more likely to 

survive to six month follow up rather than all strokes. For the purposes of the definition of a 

routine dataset with outcomes data being collected at six months, this should not be 

problematic.  

Figure 37 Difference in baseline Barthel Index between patients recruited and not 

recruited into the study by site 
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Kruskall-Wallis equivalence of medians tests for baseline Barthel for patients not recruited by 

site reveals no statistically significant difference in medians (appendix D-2.2). Inspection of 

the boxplot (Figure 37) would tend to suggest that the difference in medians between sites 

for patients not recruited into the study is marked, however inspection of the histograms by 

site reveals very large floor effects close to the median of 4 which may explain why the 

difference has not reached statistical significance (Figure 38). There is a statistically significant 

difference in median baseline Barthel Index across sites for patients recruited into the study, 

with York tending to recruit less disabled patients (median baseline 14 see Table 31). Two-

way examination of medians in patients recruited into the study by site reveals this difference 

to be significant between Leeds and York (p=0.001) and of borderline statistical significance 

between Bradford and York (p=0.017) (appendix D-2.3). The difference in median baseline 

Barthel Index between patients recruited and not recruited is statistically significant at each 

site (Mann-Whitney U test (Table 31).  

 Significant difference in median baseline Barthel Index between screened Table 31

and recruited patients at each site 

Site Median BI 

recruited 

(N) 

Median BI 

not recruited 

(N) 

Sig level for 

equivalence of medians 

(Mann Whitney U) 

Bradford  12 (71) 3.5 (175) <0.001 

Leeds 12 (125) 0 (68) <0.001 

York 14 (116) 5 (171) <0.001 

Sig level for equality of population 

medians (Kruskall-Wallis test) 

0.003 0.24  

Figure 38 Distribution of baseline Barthel Index in patients screened but not 

recruited into study, by site 
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5.6.4 Admission data (patients recruited into study) 

5.6.4.1 Differences in age at stroke and gender between responders and non-

responders 

A Kruskal-Wallis equivalence of medians test reveals a significant difference in age between 

groups that responded, died or withdrew from the study (χ2 = 38.4, ν = 3, p<0.001). 

Two way examination of the difference in median age between these groups reveals that 

there are statistically significant differences in median age between patients that do not 

respond and each of those that respond, die or withdraw and also between patients who 

respond and those that die Figure 39.  

Figure 39 Boxplot of age at stroke by response to six month questionnaire, death or 

withdrawal 

 

5.6.5 Age and sex of patients who respond to six month questionnaires  

Patients who responded to the questionnaire were significantly older (by 7 years) than those 

that did not respond (two sample t-test, p<0.001) 

 Age of patients who responded to six month questionnaires Table 32

 Mean age (95% CI) 

Response 72.9 (71.3-74.6) 

No response 65.7 (62.2-69.1) 

A Chi squared test confirms that there was no difference in the likelihood of questionnaires 

being returned from males or females (Χ2 0.19 p=0.663). 
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5.6.6 Length of stay  

The distribution of length of stay demonstrates marked positive skew. For this reason, the 

median as opposed to the mean has been used at the marker of central tendency. Median 

length of hospital stay is ten days (range 1-147). The length of stay varies markedly and 

significantly with study site (see Figure 10 in section 5.2.1, p 95). 

 Length of stay by study site Table 33

 Median Range IQR 

Bradford 13 1-85 5-46 

Leeds 14 1-118 6-40 

York 6 1-147 3-14.5 

 

A Kruskall-Wallis equality of populations rank test is highly statistically significant p< 0.001, 

indicating that there is a significant difference in length of stay between at least two of the 

sites.  

Pairwise examination of median length of stay (Mann-Whitney-U tests) between sites reveals 

the length of stay to be significantly shorter at York than the other two sites Table 34. This 

could reflect factors of organisational structure, but may also reflect the patients admitted to 

York had a higher baseline Barthel Index (i.e. were less disabled at baseline - see section 

5.6.3.4.  

 Pairwise comparison of length of stay across study sites Table 34

  Bradford Leeds York 

 
Median length 

of stay 
13 14 6 

Bradford 13    

Leeds 14 0.802   

York 6 0.001 <0.001  

 

There was no significant difference in length of stay for patients who returned six month 

questionnaire as compared with those that did not respond (Figure 40). This was confirmed 

on a Mann-Whitney U test (p=0.79). 
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Figure 40 Length of stay in patients that did, and did not respond to the six month 

questionnaire 

 

5.6.6.1 First ward to which patient was admitted  

The majority of patients were admitted to a medical admissions unit, with just over a third 

(34%) being admitted onto a stroke unit, coronary care unit or intensive care/high 

dependency bed. Two hundred and thirty four of 291 patients with available data (80%) were 

admitted to a stroke unit on the same day, or day after presentation to hospital. Two 

hundred and ninety eight patients out of 310 patients with available data (96%) across the 
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Figure 41 First ward to which patients were admitted  

 

5.6.7 Stroke severity and case-mix variables   

5.6.7.1 Stroke type 

Two hundred and ninety five (94%) of the 312 patients enrolled in the study had a cerebral 

infarction, and 15 (5%) suffered haemorrhagic strokes. 48 patients (15%) presented with a 

recurrent stroke. Data on pathological stroke type was missing in one patient.  

Clinical classification according the Oxford Community Stroke Project Classification of Stroke 

(Bamford J et al  1988) reveals just under a quarter of strokes to be total anterior circulation 

strokes (TACS) (23%), and a third partial anterior circulation strokes (PACS) (33%). Posterior 

circulation strokes (POCS) were least common at 14%, with the remainder (30%) lacunar 

strokes (LACS). A one way ANOVA (analysis of variance) reveals no significant difference in 

age (using a square transformation to normalise the data) between patients suffering 

different types of stroke.  

Left sided weakness was more common (128/311) than right sided weakness (115/311). One 

patient had global weakness and 67 no weakness.  

Table 35 shows other markers of stroke severity and their relative frequencies.  

 Frequency of markers of stroke severity in the study population Table 35

Prognostic variable Number (%)   

Able to walk unaided at presentation 147/311 (47.2)  

Dysphasia (speech or language deficit) 195/312 (62.5)  

Confusion at presentation 58/310  (18.7)  

New urinary incontinence 70/308 (22.7)  
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Chi-squared tests for association between response and markers of stroke severity revealed 

there to be no difference between responders and non-responders in the OCSP stroke 

subtype or in the presence of new urinary incontinence.  

Patients who did not respond to the questionnaires were no more likely to have dysphasia 

than those that responded. Of the 69 patients who required assistance in completing 

questionnaires, 40 received help in recording their own responses, proxy answers were 

returned in 29. Twenty one of the 29 patients returning proxy responses had a speech or 

language disturbance at presentation (Table 36). A Chi-squared test of association between 

proxy response and dysphasia failed to reach significance, however, the severity of dysphasia 

was not recorded at baseline and it is possible that the patients for whom proxy responses 

were returned had more severe speech or language deficits.  

 Association between dysphasia and proxy responses Table 36

  Proxy response 

  No Yes 

D
ys

p
h

a
si

a
 No 109 8 

Yes 174 21 

Χ2 = 1.34 (p=0.25) 

5.6.7.2 Differences in baseline Barthel Index between responders and non-responders 

There is no significant difference in median baseline Barthel Scores between patients that 

respond to six month questionnaires and those that do not (Mann-Whitney U test). However, 

including deaths and withdrawals in this analysis to create four groups (no response, 

response, dead, withdrawn) revealed a highly significant difference between the groups. 

Examination of pairwise combinations of these groups (using a Mann Whitney U test) reveals 

highly significant differences in baseline Barthel Index between patients who did not respond 

and patients who died; and patients who did respond and those that died (appendix D-2.4). 

There was, however, no significant difference in baseline Barthel Index between patients who 

withdrew and those who did not respond; died or did respond; or between responders and 

non-responders (see Table 37). 

 Pairwise comparison of p values (Mann-Whitney U tests) for median Table 37

baseline Barthel Indices (BI) by response 

  Responder 
Non-

responder 
Death Withdrawal 

 
Median 

Baseline BI 
17 13 1.5 12 

Responder 17     

Non-responder 13 0.267    

Death 1.5 <0.001 <0.001   

Withdrawal 12 0.017 0.112 0.022  
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5.6.7.3 Propensity score 

The propensity score was calculated from the six variables included in the SSV model (age at 

stroke, living alone pre-stroke, independent before stroke, able to walk independently within 

a week of admission, an MRC power score (arms) greater than 3 (i.e. able to lift arms against 

gravity), a normal verbal Glasgow Coma Score (orientated) (Counsell C et al  2002)). The 

covariates used to construct the original model were used to calculate this score (see 

equation (3)). The cut off for distinguishing good over poor outcome (as determined with a 

postal OHS ≤3) was set at 0.8. This value was chosen as it was the cut off used in a previous 

external validation of the SSV model (the FOOD trial, personal communication M Dennis).  

The range of propensity scores was 0-0.96 (median 0.36, IQR 0.04-0.77). It can be seen, 

therefore, that the SSV predicts that the vast majority (243/312 = 78%) of patients in the 

study dataset to have a poor outcome (predicted dichotomised OHS of >=3) following their 

stroke.  

 Differences in predicted outcome  between responders and non-Table 38

responders 

 Range Median IQR 

Non-responder 0.00074-0.95 0.37 0.078-0.85 

Responder 0.00040-0.97 0.56 0.095-0.79 

Dead 0.00051-0.91 0.013 0.006-0.10 

Withdrawal 0.0016-0.93 0.10 0.015-0.56 

 

Figure 42 Propensity score by response 

 

Pairwise examinations of the differences between these groups (Mann-Whitney U tests) 

reveal that the propensity scores of both responders and non-responders are significantly 
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higher than the median propensity score (probability of a good outcome) for patients who 

died (Table 39).  

 Pairwise comparison of p values for differences in propensity score by Table 39

response to six-month questionnaire (Mann-Whitney U tests) 

  Responder 
Non-

responder 
Death Withdrawal 

 Median propensity score 0.56 0.37 0.013 0.10 

Responder 0.56     

Non-responder 0.37 0.95    

Death 0.013 <0.001 <0.001   

Withdrawal 0.10 0.077 0.169 0.048  

5.6.8 Process data 

The proportion of patients receiving process markers, and the percentage of eligible patients 

in whom these were achieved are shown in Figure 44 (p 135). Specific aspects of care were 

delivered to patients in whom they were indicated (or not contraindicated) in over 80% of 

cases for fourteen of the nineteen processes shown. The care processes that were measured 

as part of the study (reflecting the indicators of the RCP NSSA (Royal College of Physicians 

2009b)) are therefore often ‘saturated’ with little variability as regards receipt of specific 

aspects of care. It is therefore possible, if not likely, that these care processes will be poor 

discriminators of patient outcome.  

There are exceptions, with some care processes being poorly achieved, for example, the 

proportion of eligible patients receiving a social worker assessment was particularly low 

(34%). Twenty five of all patients in the study received thrombolysis with recombinant tissue 

plasminogen activator (rtPA). Fifteen patients had a definite contraindication to thrombolysis 

(haemorrhagic stroke, two of whom had had a previous stroke event). The proportion 

receiving thrombolysis across sites was therefore 25/297 = 8.4%. A further 46 had had a 

previous ischaemic stroke which, in the presence of diabetes (which we have not recorded) is 

a further contraindication to thrombolysis for acute ischaemic stroke. It is therefore likely 

that the proportion of eligible patients receiving thrombolysis is higher than it appears in the 

study population. It should also be remembered that the CIMSS study population excluded 

patients with very severe stroke who were unlikely to survive to discharge. This is likely to 

have reduced the denominator such that the proportion of patients ‘eligible’ for thrombolysis 

within the study population is falsely elevated.  

Much of the variability in whether patients received different aspects of care process is due 

to whether or not a particular care process is indicated. The variability in achievement of care 

processes in patients in whom they are indicated tends to decrease as the proportion of 

patients in whom a “no but” code is recorded decreases (moving left to right in Figure 44). 

This would tend to suggest that as a proportion of eligible patients, the care processes that 

are universally applicable are more readily achieved than processes that are not.  
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The exceptions to this are admission to a stroke unit the same day or day after the stroke, 

and an assessment of mood. Despite being relevant to all (stroke unit) or nearly all (mood 

assessment) patients admitted with stroke, the proportion actually achieving these processes 

was 77% and 81% respectively.  

The reasons that specific processes are not indicated (“no but” codes) are either that the 

stroke is too mild or too severe (not possible or inappropriate to achieve). For example, 

patients with no speech deficit will not require a formal Speech and Language Therapist (SLT) 

communication assessment, and such an assessment would be inappropriate in some 

patients with very severe strokes (e.g. the drowsy or comatose). Patients with very severe 

stroke receiving or likely to require palliative care were excluded during recruitment for the 

study. It is possible, therefore, that in the study population the “no but” codes are more likely 

to reflect patients at the milder end of the spectrum of stroke severity. A summed score of 

the number of processes of care achieved for individual patients in whom they were 

indicated has been calculated  using the 20 process indicators in Table 40 to give an overall 

picture of ‘compliance’ with the process markers measured in the study. This approach of 

summing process measures has been adopted by the RCP in the reporting of the NSSA data 

(Intercollegiate Stroke Working Party 2011). However, a summed process score is not useful 

either as a predictor of outcome or as a summary of process delivery, as this approach 

assumes that care processes are both additive and equally weighted. These assumptions are 

unlikely to be valid and would be particularly misleading if such a score were to be used as a 

single variable. For example, a simple summation of processes would fail to reflect that 

receipt of thrombolysis is likely to be a greater determinant of outcome than being weighed 

during the course of the admission.  Moreover, this histogram is difficult to interpret, as the 

proportions of patients in whom particular processes are not indicated (“no but” codes) is not 

represented and as such it is difficult to appreciate what the maximum summed process 

score could be for individuals.  

 Process markers measured in the study population Table 40

Process markers 

Admitted to stroke unit on day or day following 

admission  
Visual fields assessed 

Brain imaging within 24 hours of admission Sensory testing 

Patient given rtPA Formal swallowing assessment within 72 hours 

Swallowing screen within 24 hours 
Speech and Language Therapy (SLT) 

communication assessment 

Aspirin given within 48 hours Social worker assessment 

Physiotherapy assessment within 48 hours Cognitive screening 

Occupational therapy assessment within 48 hours Malnutrition screening 

MDT rehabilitation goal setting Care plan for urinary incontinence 

Weighed during admission Fluids within 24 hours 

Mood assessed during admission Nutrition within 72 hours 
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Figure 43 Total number of processes received in those for whom they were 

indicated 

 

 The median number of processes received was 14 (range 6-19 IQR 12-15) 

Figure 44 presents the individual processes of care as the proportion of patients eligible for 

individual care processes that received them, and the proportion of patients in whom individual care 

processes were not indicated (“no but” codes). This offers a more useful summary of process 

delivery than presentation of summed process scores. 
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Figure 44 Proportion of patients receiving specific aspects of care by proportion eligible for individual care processes 
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5.6.9 Baseline questionnaires 

The median, range and interquartile range for each of the baseline questionnaires is given in 

Table 41. These questionnaires offer a measure of stroke severity and baseline function. 

Scores on baseline questionnaires between patients who have responded and failed to 

respond to the six month questionnaire have been examined to ascertain if there are any 

systematic differences.  

 Distribution of scores on baseline questionnaires Table 41

Instrument Min-max score Median Range IQR 

Barthel Index 0 to 20 14 0-20 6-19 

NEADL 0 to 66 53.5 0-66 36-60 

EQ5D -1 to 1 0.63 -0.429-1 0.082-0.814 

GHQ-12 (dichotomised scoring) 0 to 12 1 0-12 0-4 

 

5.6.9.1 Differences in baseline questionnaires between responders and non-

responders 

A Kruskall-Wallis test demonstrates that there are significant differences in both median 

NEADL and EQ5D scores at baseline between patients who responded and those that did not. 

Figure 45 Baseline NEADL by response to six month questionnaire 
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 Pairwise comparison of baseline NEADL by response (Mann-Whitney U Table 42

tests) 

  Responder Non-responder Death Withdrawal 

 Median Baseline NEADL 56 52.5 42 39 

Responder 56     

Non-responder 52.5 0.215    

Death 42 <0.001 0.012   

Withdrawal 39 <0.001 0.011 0.466  

 

Patients who died or withdrew from the study had significantly lower baseline NEADL scores 

than those who remained in the study regardless of whether or not they responded to the six 

month questionnaire.  

Due to the biphasic and non-normal distribution of the EQ5D, the median has been used as 

the measure of central tendency with non-parametric analyses. Patients who did not respond 

to the six month questionnaire had lower median quality of life scores than those who 

responded. Patients who subsequently died reported the lowest baseline quality of life 

scores, and this was significantly lower than patients who responded at six months.  

 Pairwise comparison of baseline EQ5D by response (Mann-Whitney U Table 43

tests) 

  Responder Non-responder Death Withdrawal 

 Median Baseline EQ5D 0.691 0.551 0.267 0.640 

Responder 0.691     

Non-responder 0.551 0.013    

Death 0.267 0.004 0.302   

Withdrawal 0.640 0.331 0.886 0.502  
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Figure 46 Baseline EuroQoL by response to six month questionnaire 

 

5.6.10 Six month outcomes questionnaires 

The theoretical range of each outcomes questionnaire score, study median, observed range 

and interquartile range for returned questionnaires are given in Table 44.  

  Descriptive statistics for individual outcomes questionnaires Table 44

Instrument Returned completed 

questionnaires (N) 

Min-max score Median Range IQR 

NEADL 165 0-66 47 0-66 21-60 

EQ5D 179 -1 to 1 0.71 -0.349-1 0.414-0.85 

SIPSO 

physical 
176 0-20 13.2 0-20 8.36-17.8 

SIPSO social 174 0-20 12.1 1.79-20 7.5-15.8 

GHQ-12  

(dichot 

scoring) 

166 0-12 2 0-12 0-6 

OHS 219 

(includes 44 deaths) 

0-6 

(6=dead) 
2 0-6 1-5 

 

5.6.10.1 Proxy completion 

Sixty two out of 175 (35%) participants in whom information was available on proxy 

completion of the outcomes questionnaires required some help in completing the 

questionnaire. In twenty nine returned questionnaires the responses were those of a proxy 

on behalf of the patient. In the remaining cases, the proxy recorded the patient’s own 

responses. 

n=67 n=188
n=44

n=13

-.
5

0
.5

1
B

a
s
e
lin

e
 E

Q
5
D

no response response dead withdrew



- 139 - 

 

5.6.11 Change in outcomes scores 

For the Nottingham, GHQ_12 and EQ5D where assessments were made at baseline and at six 

months, a change in score may be plotted and this should be approximately normally 

distributed (data presented as histograms). ‘Waterfall’ plots are also presented which 

represent the change in scores between baseline and six-month assessments for individuals. 

This allows the proportion of patients with positive, unity and negative differences in scores 

to be seen.  

Figure 47 Change in NEADL scores between baseline and six months 

 

On inspection of the histogram, the change in NEADL score from baseline to six months is 

approximately normally distributed, but there is a negative skew to the distribution 

suggesting that the scores at six months were worse than the score at baseline. This is to be 

expected as the NEADL questionnaire is completed with respect to function and activity in 

the preceding week. Depending on the time of stroke relative to completion of the 

questionnaire, therefore, for some patients this may have represented function immediately 

before their stroke and for others soon afterwards.  
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Figure 48 Waterfall plot for change in NEADL between baseline and six months 

 

Figure 49 Change in GHQ_12 score 

 

Median change in GHQ score between baseline and six months is zero, and the IQR is 0-3. 

Therefore changes in GHQ-12 between baseline and six months tend to be small, although 

there are a few outliers where there are marked changes in scores (in both positive and 

negative directions). 
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Figure 50 Waterfall plot of change in GHQ-12 score between baseline and six 

months 

 

Figure 51 Change in EQ5D 

 

Similarly for the quality of life score (EQ5D), the distribution is approximately normally 

distributed centred on zero. Large differences between baseline and six month EQ5D scores 

were therefore infrequent. The EQ5D is measured with respect to how an individual feels at 

the time of filling in the questionnaire.   
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Figure 52 Waterfall plot of change in EQ5D utility score between baseline and six 

months assessments.  

 

  

5.7 Univariate analyses 

The relationship between individual process markers and patient outcome in univariate 

analyses may offer an indication of important factors that contribute to patient outcome. 

However, interpretation of these relationships should be made with the caveat that there is 

no adjustment for confounding or mediating factors and markers which may appear to be 

important may cease to be so when other factors are taken into consideration. Entering 

univariate predictors that reach statistical significance into regression models without clinical 

reasoning may result in the inclusion of statistically, but not clinically, important predictors. 

Moreover, the risk of uncovering a statistically significant relationship (or refuting an 

important relationship) between process markers and outcome increases as the number of 

analyses increases, especially if the sample size is small. For example a 5% significance level 

means that if twenty analyses are performed, one is likely to be statistically significant 

through chance alone. Primary analyses have been performed using the SIPSO physical and 

social outcomes. This is due to the relatively superior properties in terms of absence of floor 

and ceiling effects when compared with the NEADL (see section 5.5) In addition, the Rasch 

analysis of the SIPSO that has been performed by previous authors allows the instrument to 

be considered as an interval scale (Kersten P et al  2010). The authors of this Rasch analysis 

argue that the population in which the Rasch analysis was performed should not affect the 

transformation of the ordinal scores to continuous scores in other populations, and the same 
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transformation factors may be used (Kersten P et al  2010). ). However, further exploration of 

the scale with respect to differential item functioning in an older population is required (see 

section 6.3.1).  

Examination of the relationships between categorical data with two level responses (usually 

whether a process did, or did not occur) and the subscores of the SIPSO would ideally be 

analysed with a parametric test (ANOVA). However, as discussed in section 5.4.2.2, the 

physical subscore of the SIPSO is not normally distributed and this may lead to violation of 

the assumption of normality of residuals for an ANOVA.  Univariate analyses for the physical 

subscore of the SIPSO have therefore been performed with the non-parametric equivalent to 

an ANOVA (Kruskall-Wallis test). ANOVAs have been used for the normally distributed social 

subscore of the SIPSO. Where an ANOVA demonstrates a statistically significant difference 

between groups, pairwise examination of the mean SIPSO scores (and confidence intervals) in 

each of the three levels of categorical outcome have been performed to identify where the 

differences lie.  

5.7.1 Correlation of process variables with SIPSO physical subscore 

 Univariate analyses of process measures and physical subscore of SIPSO Table 45

Care process Kruskall Wallis test p value 

Admitted to stroke unit on day or day after admission 0.25 

Scan within 24 hours of admission 0.56  

tPA given 0.31 

Swallow screen in 24 hours 0.04 

Aspirin in 48 hours 0.46 

Physiotherapy within 48 hours 0.55 

Occupational therapy assessment within four days 0.32 

MDT rehab goals set 0.17 

Weighed during the course of the admission 0.035 

Mood assessed during admission  0.13 

Visual fields assessed 0.08 

Sensory testing 0.39 

Formal swallow assessment by SLT within 72 hours 0.005 

Communication assessment by SLT  0.001 

Social worker assessment 0.0016 

Cognition screen  0.15 

Malnutrition screen 0.41 

Urinary incontinence care plan <0.001 

In receipt of fluids within 24 hours of admission N/A 

In receipt of nutrition within 72 hours of admission  0.14 

Variables failing to reach significance at the p ≤0.01 level were not explored further unless 

there were strong clinical reasons for doing so because of the small size of the data set and 

the number of univariate analyses (which increases the risk of spurious or chance 

correlations). Four variables (formal swallow and communication assessments by Speech and 

Language therapist, social worker assessment and a urinary incontinence care plan) all 

reached statistical significance at the 0.01 level for the prediction of the physical subscore of 
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the SIPSO (highlighted in Table 45). In addition, a swallow screen within 24 hours of 

admission is a potentially clinically important process marker and will be considered further. 

Two-way examination of the relationships between these variables and the physical subscore 

of the SIPSO are highlighted in Table 46 with a Mann-Whitney U test. The levels of the 

variable between which there are statistically significant differences in six month SIPSO 

outcomes are presented in bold – for example, patients who require and receive a formal 

swallowing assessment (“Yes”) have significantly lower SIPSO scores at six months than 

patients in whom such an assessment is not required (“No but”). This is also true for patients 

receiving a swallowing screen within 24 hours and those with a urinary incontinence care 

plan. For patients in whom assessments are indicated (“No” or “Yes”), there is no significant 

difference between those that do, and do not receive the assessments for any of the 

variables reaching significance at the p≤0.001 level the oneway ANOVA.  

 Pairwise identification (Mann-Whitney U tests) of statistically significant Table 46

differences in distributions of Rasch transformed physical SIPSO scores 

between levels of response for process variables significant at the 1% 

level on Kruskall-Wallis testing  

Formal swallowing assessment within 72 hours  

 No Yes No But 

No    

Yes p=0.80   

No but p=0.051 

 

Medians (p=0.0032) 

Yes=11.4 

No but=15.0 

 

SALT communication assessment  

 No Yes No But 

No    

Yes p=0.19   

No but Medians(p=<0.001): 

No=9.1 

No but=15.0 

Medians (p=0.032): 

Yes=13.6 

No but=15.0 

 

Social worker assessment  

 No Yes No But 

No    

Yes p=0.25   

No but Medians (p=<0.001): 

No=8.4 

No but=15.0 

p=0.21  

Urinary incontinence care plan  

 No Yes No But 

No    

Yes p=0.26   

No but p=0.064 Medians (p=<0.001): 

Yes=8.4 

No but=14.0 

 

Swallow screen in 24 hours  

 No Yes No But 

No    

Yes p=0.55   

No but Medians (P=0.009):  

No But=20 No=14 

Medians (p=0.001):  

No But=20 Yes=12.8 
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Further exploration of whether or not patients were weighed during their admission revealed 

that no patients received a “no but” code for this variable. There is therefore a statistically 

significant difference in the distributions of physical SIPSO scores between patients that were 

weighed and those that were not, with patients not being weighed having higher median 

SIPSO scores at six months than those that are not (medians Yes=13.2 No=16.2,  z=2.13 p 

=0.033 Mann-Whitney U test).   

Being weighed is used as a marker of process in the RCP NSSA audit. However, in this dataset 

there is an inverse relationship between being weighed and physical outcome. If this 

relationship was also evident in external datasets, the relevance of being weighed as a 

marker in the RCP summed process scores could be questioned – patients who are weighed 

have poorer six month physical SIPSO scores than those that were not. It is possible, that this 

phenomenon is a chance finding (there were only 22 patients that were not weighed during 

the course of their admission), but the difference in scores between the groups is large 

enough to be of some clinical significance (three points on SIPSO scale) if it were true. The 

characteristics of patients who were not weighed have therefore been explored further.  

There is no significant difference in age or clinical classification of patients that were or were 

not weighed during their admission. However, the characteristics of patients who were not 

weighed differed significantly in terms of stroke severity variables as outlined in Table 47 

below. Medians have been presented as the marker of central tendency due to the non-

normal distributions of the variables. 

 Characteristics of patients who were, and were not weighed during the Table 47

course of their admission  

Variable Weighed (median{IQR}) Not weighed (mean[95%CI]) 

Propensity score 0.31[0.03-0.74] 0.69[0.21-0.83] 

Length of stay 12[5-38] 4[2-9] 

Baseline Barthel Index 13{6-19} 18{12.5-20} 

Patients that have had more severe strokes are more likely to have longer hospital stays and 

therefore more opportunity to be weighed. It is likely that it is this relationship that results in 

the seemingly poorer outcomes in patients who are not weighed, i.e. being weighed is acting 

as a proxy marker of stroke severity. It is therefore unlikely that the apparent statistical 

significance of being weighed in univariate analysis would remain once stroke severity 

variables are controlled for in multivariable analysis.   

5.7.2 SIPSO social subscore  

A Q-Q plot and Shapiro Wilk test suggest that the social subscore of the SIPSO approximate a 

normal distribution such that parametric analyses may be performed (see Figure 29). 
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 Univariate relationships between processes of care and SIPSO social Table 48

subscore 

Care process ANOVA p value  

Admitted to stroke unit on day or day after admission 0.0073 

Scan within 24 hours of admission 0.16 

tPA given 0.26 

Swallow screen in 24 hours 0.034 

Aspirin in 48 hours 0.17 

Physiotherapy within 48 hours 0.38 

Occupational therapy assessment within four days 0.09 

MDT rehab goals set 0.24 

Weighed during the course of the admission 0.50 

Mood assessed during admission  0.15 

Visual fields assessed 0.13 

Sensory testing 0.48 

Formal swallow assessment by SLT within 72 hours 0.006 

Communication assessment by SLT  <0.001 

Social worker assessment 0.021 

Cognition screen  0.036 

Malnutrition screen 0.80 

Urinary incontinence care plan <0.001 

In receipt of fluids within 24 hours of admission N/A 

In receipt of nutrition within 72 hours of admission  0.066 

 Identification of statistically significant differences in mean social SIPSO Table 49

scores between levels of response for process markers reaching 

significance at the 1% level in a oneway ANOVA  

 mean social SIPSO scores [95% confidence interval]  

 No Yes No But 

Admitted to stroke unit on day or 

day after admission 

9.9 [8.1-11.6] 12.6[11.8-13.4] N/A 

Formal swallow assessment by 

SLT within 72 hours 

10.9 [8.5-13.4] 10.6[9.2-12.0] 13.0 [12.1-13.8] 

Communication assessment by 

SLT  

10.2 [8.4-11.9] 10.3 [9.0-11.6] 13.5 [12.6-14.3] 

Urinary incontinence care plan 10.7 [7.7-13.6] 9.1 [7.6-10.5] 13.0 [11.4-12.9] 

The darkest shaded box for SLT communication assessment in Table 49 indicates a significant 

difference between “No”/“No But” and “Yes” / “No But”. There is no significant difference 

between “No” and “Yes” responses.  

Patients admitted to a stroke unit on the same day or the day after their presentation to 

hospital have better six month social SIPSO scores, although this just fails to reach statistical 

significance at the p=0.01 level. Patients who are formally assessed by speech and language 

therapists for both swallowing and communication have worse six month outcomes than 

patients that do not require such assessments (“no but” codes). This likely reflects patients 

without deficits rather than patients too unwell to undergo assessments. In addition, patients 

in whom a communication assessment is indicated but not performed also have significantly 

lower six month social SIPSO scores than patients in whom such assessments are not 

indicated, but they do not have worse outcomes than patients who receive formal 
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communication assessments. This would tend to suggest that it is the presence of the deficit 

rather than the communication assessment itself that is correlated with the six month social 

outcome. In a similar way, patients who require and have a urinary incontinence care plan in 

place, have significantly worse social outcome scores at six months than patients in whom 

such an assessment is not required.  

Consistently in univariate analysis, the significant differences are between the ‘no but’ group 

and the ‘no’ or ‘yes’ groups. This would tend to suggest that it is the requirement for, and not 

the receipt of, particular processes that is associated with outcome.   

 

5.8 Regression trees 

5.8.1 Prediction of Physical subscore of SIPSO 

Entering the variables from Table 10 p 81 (including the baseline assessments) into a 

regression tree model to predict the Rasch transformed physical SIPSO subscore results in 

Figure 53. Pruning this tree to remove the variables that explain less of the SIPSO physical 

outcome gives the tree shown in Figure 54. 

It can be seen from the regression tree that length of stay is the main determinant of physical 

SIPSO score at six months. Baseline NEADL is also an important predictor, and propensity 

score does not feature in the regression tree. It is likely that there is collinearity between the 

baseline EQ5D and the baseline NEADL variables. This however will be addressed further 

through both clinical reasoning and stepwise variable selection procedures during the 

construction of regression models. 

Construction of the trees without the baseline assessments gives Figure 55 (unpruned) and 

Figure 56 (pruned tree). Inspection of these regression trees reveals length of hospital stay to 

be the most important predictor (see pruned tree Figure 54). It is likely that length of stay is 

acting as a proxy marker for stroke severity and there is therefore likely to be collinearity 

between length of stay and other prognostic or severity variables. Again, this will be 

considered explicitly during linear regression model development.  
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Figure 53 Regression tree of physical subscore of SIPSO on variables in Table 10 (including baseline assessments) 

     Baseline EQ5D   utility score <0.79 

Length of stay >=33.5 

Propensity Score <0.10 

Baseline NEADL < 45.5 

Baseline EQ5D utility score <0.63 Baseline NEADL < 61.5 

Formal SLT swallowing assessment = Yes 
              Baseline GHQ_12 >=4.5 

Baseline BI   <16.5 

 Baseline BI   >=11.5 

3.35 8.23 

9.50 

4.74 8.83 
12.62 

10.37 

10.20 16.43 

16.51 

16.56 19.42 

 Length of stay > =56.5 
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.  

Figure 54 Pruned regression tree of physical subscore of SIPSO on variables in Table 

10 (including baseline assessments) 

Length of stay >=33.5 

6.35 

7.40 12.6

2 

14.94 18.13 

Baseline NEADL < 45.5 

Baseline EQ5D utility score 

<0.63 Baseline NEADL < 61.5 
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Figure 55 Regression tree of physical subscore of SIPSO on variables in Table 10 (excluding baseline assessments)

Length of stay >=33.5 

Propensity Score <0.10 Propensity Score <0.06 

 Length of stay >=56.5 

Formal SLT   communication   
assessment = No 

     Previous stroke? 

First admitted to CCU, MAU or general ward 

Swallow screen required? 

Non PACS  stroke 

3.35 8.23 

9.27 

10.73 

10.64 

17.35 

9.50 

14.00 17.05 
18.54 
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Figure 56 Pruned regression tree of physical subscore of SIPSO on variables in Table 

10 (excluding baseline assessments) 

 

5.8.2 Prediction of social subscore of SIPSO 

Examination of the regression tree to predict the social subscore of the SIPSO that includes 

baseline questionnaires is shown in Figure 57. Here the major determinant of social outcome 

at six months is the baseline EQ5D. Pruning the tree reveals baseline EQ5D, the requirement 

for a formal speech and language assessment and the baseline NEADL as the most important 

predictors of outcome (Figure 58) 

Length of stay >=33.5 

Propensity Score <0.06 

First admitted to CCU, MAU or 

general ward 

6.35 

9.27 

14.24 17.35 
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Figure 57 Regression tree of social subscore of SIPSO on variables in Table 10 (including baseline assessments)

Baseline EQ5D Utility Score <0.59 

Formal SLT communication 

assessment required Baseline NEADL <47.5 

     Length of  stay >=64          ESD provided Female?      Length of  stay >=9.5 

     Baseline EQ5D Utility Score <0.74 

Admitted to 

general medical ward 

      Baseline  NEADL >=56 

     Baseline  NEADL <62 

4.98 7.96 9.00 12.80 
9.10 12.73 

11.77 

12.15 15.45 

13.47 16.25 15.15 18.52 

      Propensity  Score <0.77 
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Figure 58 Pruned regression tree of social subscore of SIPSO on variables in Table 

10 (including baseline assessments) 

 

Length of stay is revealed as the most important predictor in the tree to predict social 

outcome that does not include the baseline assessments (Figure 59). Whether or not patients 

were treated on a stroke unit, stroke type (lacunar vs. other types of stroke) and imaging 

within 24 hours of admission were other important predictors, and these remained in the 

trees following pruning (Figure 60)  

Categories of formal communication assessment by a speech and language therapist feature 

as predictors in three out of the four trees (Figure 53, Figure 55 & Figure 57), although it only 

features prominently in the model to predict the social SIPSO with baseline assessments 

(Figure 57). This variable, the type of ward a patient is admitted to, are the only two process 

markers that feature prominently in the regression trees. The majority of variables which 

feature in the trees are markers of stroke severity and these overshadow the other variables. 

Some variables describing more organisational aspects of patient care do appear in the trees 

(e.g. whether a patient was first admitted to a ward capable of delivering hyperacute stroke 

care) and this may reflect local differences in service provision. 

.

7.24 10.98 

Baseline EQ5D Utility Score < 0.59 

Formal SLT 

communication 

assessment required 
Baseline NEADL <47.5 

11.13 
14.54 
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Figure 59 Regression tree of social subscore of SIPSO on variables in Table 10 (excluding baseline assessments) 

Length of stay >=10.5 

Non LACS stroke Some of hospital spell spent on a SU = No  

Length of stay > =52 

ESD support provided 
Propensity Score <0.57 

     Formal SLT communication Assessment 
= No 

Propensity Score >=0.25 

Propensity Score <0.77 

Propensity Score>=0.87 

Swallow screen required? 

6.45 9.26 9.71 13.73 

9.06 

10.33 

11.67 

13.77 17.46 

16.62 

13.54 

13.92 17.75 

Imaging within 24 hours of 

admission = No  
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Figure 60 Pruned regression tree of social subscore of SIPSO on variables in Table 

10 (excluding baseline assessments) 

  

Length of stay 

 

Non LACS 

 

Some on hospital spell spent 

on a SU = No 

Imaging within 24 hours of 

admission = No  

8.09 11.89 

9.06 13.6

8 

15.8

1 
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5.9 Construction of linear regression models 

Linear regression models were constructed to explore the association between individual 

processes of care and the physical and social subscores of the SIPSO. Modelling 

methodology including post-estimation checks of assumptions is discussed in section 4.4.6. 

Two models were created for each outcome – one that includes and one that excludes 

baseline functional assessments. This was in order to ascertain whether there are 

prominent predictors of outcome in the absence of baseline assessment, as this would 

increase the utility of these predictors in routine care where the infrastructure to collect 

baseline assessments may be limited.  

Models were re-run for each analysis with exclusion of influential cases to ascertain 

whether the prominent predictors changed (as a measure of model stability). However, 

post-estimation analyses were made on the full models.   

5.9.1 Transformation of length of stay 

A pre-estimation examination scatter plot of length of stay against SIPSO physical score 

revealed a likely logarithmic or reciprocal relationship (the line represents a fractional 

polynomial line of best fit calculated by STATA).  

 Scatter plot of length of stay against SIPSO physical subscore with Table 50

fractional polynomial line of best fit 

 

A logarithmic transformation of the variable length of stay was performed in an attempt to 

improve the linearity of the relationship with the physical subscore of the SIPSO prior to 

modelling. A value of one was added to length of stay to ensure that there were no zero 

0
5

1
0

1
5

2
0

0 50 100 150
lengthofstay
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values prior to taking logarithms. However, as time of discharge had not been recorded in 

the study, cases where discharge was on the same calendar day of admission (discharge 

within 24 hours) had already been rounded up to one whole day (i.e. there were no zero 

values). A scatter plot of the logarithm of length of stay plus one against the physical 

subscore of the SIPSO reveals a linear relationship, but there is deviation from linearity at 

small values of length of stay. This may represent the rounding of length of stay, although 

it would be expected that patients discharged rapidly who survive to six month follow up 

(i.e. not discharged for palliative care) would have better  outcomes than those with longer 

lengths of stay. It is possible, therefore, that this line of fit is being ‘pulled’ by influential 

cases (such as cases 232 and 50, highlighted on Figure 61), where outcomes are poorer 

than would be expected based on their length of stay.  

A logarithmic transformation of length of stay plus one was used in all the models.  

Figure 61 Scatter plot of logarithmic transformation of (length of stay + 1) 

against physical subscore of SIPSO with polynomial line of best fit 

demonstrating linearity 
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5.9.2 Prediction of physical subscore of the SIPSO with baseline assessments 

(Model 1) 

 Independent variables to be entered into regression models for Table 51

prediction of physical subscore of the SIPSO 

 Variables Number of variables 

(including dummy 

variables) 

Variables identified from 

regression trees 

Length of stay 

Baseline NEADL 

Baseline EQ5D 

1 

1 

1 

Variables identified from 

univariate analysis 

Formal swallowing assessment 

Communication assessment 

Social Worker assessment 

Urinary incontinence care plan 

2 

2 

2 

2 

Probable important variables 

through clinical reasoning 

tPA given 

First admitted to a stroke unit, 

CCU/HDU/ICU vs. general ward/MAU 

Propensity score (or age if propensity 

score removed) 

Discharge to same address 

2 

1 

 

1 

 

1 

Total   16 

A variable was created to distinguish whether a patient was admitted to a ward for 

hyperacute stroke care (stroke unit (SU), coronary care unit (CCU), high dependency unit 

(HDU), or intensive care unit (ICU)) or to a medical admissions unit or general medical 

ward. The reasoning for the creation of this variable is discussed in section 5.9.3.1. 

5.9.2.1 Effective sample size for Model 1 

An EPV calculation has been performed using the number of completed outcomes There 

are 176 completed SIPSO physical subscore questionnaires, therefore 17 variables 

(including dummy variables) may be entered into the models in order to achieve 10 events 

per variable  as recommended by Peduzzi et al (Peduzzi P et al  1996). 

Figure 62 demonstrates that the baseline Barthel Index was lower in patients automatically 

excluded from the Model 1 due to incomplete predictor variables than in patients included 

in the model. However, a Mann-Whitney U test shows this difference is not statistically 

significant (p=0.555).  
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Figure 62 Difference in baseline Barthel Index for patients with complete and 

incomplete independent variables selected for entering into regression 

model to predict physical subscore of SIPSO (only cases with complete 

physical SIPSO shown). 

   

Model 1 Linear regression of predictor variables (Table 51) on physical subscore of 

SIPSO, logarithmic transformation of length of stay 

 

     R
2 

= 0.54 

Adj R
2
 =0.52  

N
o
 Obs  =145  

F  =31.99  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Baseline NEADL 0.13 0.024 5.35 <0.001 0.08 0.17 

Baseline EQ5D 4.43 1.23 3.58 <0.001 1.99 6.87 

Log (length of stay +1) -1.39 0.41 -3.40 0.001 -2.20 -0.58 

Discharged to same 

address 
3.73 1.24 3.00 0.003 1.27 6.19 

Constant 3.92 2.14 1.83 0.069 -0.31 8.15 

 

Propensity score has been automatically removed from this model, therefore the model 

has been re-run with age at stroke entered as an independent variable as it is likely to be 

an important predictor (Model 2), and is used to calculate the SSV.  
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Model 2 Linear regression of predictor variables (Table 51) on physical subscore of 

SIPSO, including age at stroke 

     R
2 

= 0.54 

Adj R
2
 =0.52  

N
o
 Obs  =145  

F  =31.99  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Baseline NEADL 0.11 0.024 4.72 <0.001 0.07 0.16 

Baseline EQ5D 4.73 1.23 3.86 <0.001 2.31 7.16 

Log (length of stay +1) -1.27 0.41 -3.10 0.002 -2.07 -0.46 

Discharged to same 

address 
3.49 1.23 2.84 0.005 1.06 5.92 

Age at stroke onset -0.07 0.33 -2.28 0.024 -0.14 -0.01 

Constant 9.73 3.31 2.94 0.004 3.19 16.27 

Age reaches statistical significance in this model and is therefore retained. 

 

5.9.2.2 Post estimation checks 

5.9.2.2.1 Linearity 

Linearity assumptions were checked for continuous baseline predictors in the model. There 

are apparently non-linear relationships between the logarithmic transformation of length 

of stay and physical SIPSO subscore identified through augmented component plus 

residual plots (see section 4.4.6.1.4) (Figure 63). However, the estimates from a model 

where length of stay is divided into six categories and treated as a categorical variable data 

does not differ significantly from a linear prediction of physical SIPSO with length of stay 

treated as a continuous variable (likelihood ratio test - see appendix E-1.2). 
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Figure 63 Augmented component plus residual plots (acprplot) for continuous 

independent predictors in Model 2 (Baseline NEADL,  baseline EQ5D, 

length of stay and age at stroke) 
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5.9.2.2.2 Influential cases and leverage  

The deviation from linearity for both transformed length of stay and baseline NEADL seen 

on acprplots may be due to outlying cases with particularly large residuals at high leverage 

points (e.g. those highlighted in Figure 64 below). 

Figure 64 Augmented component residual plots labelled by study number to 

identify likely cause of deviation from linearity 

  
 

A histogram of studentised residuals for Model 2 reveals a few extreme outliers where 

observed outcome is different from that predicted from the model. Examination of the 

cases with studentised residuals ≥|3| reveals these to be cases 239 and 232. 
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Figure 65 Histogram of studentised residuals (Model 2) 

 

When the augmented component residual plots for transformed length of stay and 

baseline NEADL are re-examined and individual points labelled (Figure 63), it can be seen 

that some of the cases identified in Figure 66 as likely to be exerting undue influence on 

the whole model may also be contributing to the deviations from linearity, i.e. these points 

may be distorting the relationship between individual covariates and the dependent 

variable.  

Figure 66 Leverage vs. r squared plot for prediction of physical subscore of the 

SIPSO 
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There are a number of cases of concern, study numbers 239, 172 and 116 are all outliers in 

both r-squared value and leverage and are therefore likely to exert influence on the model 

regression coefficient (i.e. the slope of the fitted regression line). Troublesome cases with a 

Cooks D statistic of >4/n = 0.028 (n=145 for this model) are shown below (see section 

4.4.6.1.4). It can be seen that, as predicted, cases 239, 232, 172, 239 and 116 are of 

concern.  

Study number  Cooks D 

239  0.104 

232  0.069 

172  0.055 

116  0.051 

236  0.038 

Examination of DFBETA for the independent predictors reveals that the cases identified on 

an acprplot as possible contributors to non-linearity between the baseline NEADL and 

physical SIPSO subscore are also particularly influential on the beta coefficient for the 

baseline NEADL in the model (identified with black circles on Figure 67 i.e. cases 239, 172). 

Similarly, for the length of stay (grey triangles on Figure 67), it is the points identified on 

the acprplot that appear to be exerting undue influence.  

Figure 67 Scatter plot of DFBeta for independent variables across study numbers 

(prediction of physical subscore of the SIPSO with baseline 

assessments) 
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However, although none of these cases are extreme outliers in terms of their individual 

values for either baseline NEADL (172,239) or length of stay (232, 116), they represent 

cases with particularly good or poor outcome relative to that which would be predicted on 

the basis of the independent variable (i.e. they have high residuals). This can be seen from 

a simple scatter plot of the predictor against the SIPSO physical score. For example, cases 

172 and 239 represent individuals that have much better physical scores at 6 months than 

would have been expected on the basis of their baseline NEADL scores.   

 

Removing the 4 particularly influential cases from the regression model (232, 239, 172 and 

116) makes a large difference to the R squared (variance explained) of the model and 

increases the proportion of the total variance that is explained by the model as opposed to 

the model residuals (Model 3), but this is to be expected as some of the residual variation 

has been artificially removed. However, omission of the influential cases does not alter 

which of the variables reach statistical significance in the model, nor are there large 

differences to the size or polarity of the beta co-efficients. For the purposes of 

identification of important predictor variables for the development of a dataset, the 

influential cases can remain in the model as small changes to the values of the individual 

beta co-efficients is of little importance.  Moreover, removing the influential cases is likely 

to overfit the model as the identified cases do not represent ‘wrong’ data, but cases better 

or worse outcomes are observed than predicted with the model (Fox J,  1997 p 286). It may 

be useful, therefore, to examine these cases qualitatively to identify any salient features of 

management that may warrant further exploration.  
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Model 3 Linear regression of predictor variables (Table 51) on physical subscore of 

SIPSO, with influential cases removed 

     R
2 

= 0.63 

Adj R
2
 =0.62  

N
o
 Obs  =141  

F  =45.85  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Baseline NEADL 0.15 0.022 6.71 <0.001 0.11 0.19 

Baseline EQ5D 4.50 1.08 4.16 <0.001 2.36 6.64 

Log (length of stay +1) -1.37 0.36 -3.79 <0.001 -2.09 -0.66 

Discharged to same 

address 
3.57 1.08 3.30 0.001 1.42 5.71 

Age at stroke onset -0.059 0.029 -2.00 0.05 -0.12 -0.001 

Constant 7.05 3.00 2.35 0.02 1.12 12.99 

 

5.9.2.2.3 Normality assumptions 

Normality of residuals for the full model (with transformed length of stay and age at stroke 

included) (Model 2) is assessed through examination of standardised normal probability 

plots. There is some deviation from normality at the extremes of the distribution of the 

residuals (which may reflect the influence of the cases already highlighted). However, this 

deviation does not look too serious.  

Figure 68 Normal probability (Q-Q plot) for Model 2  

 

-2
0

-1
0

0
1
0

2
0

R
e
s
id

u
a
ls

-10 -5 0 5 10
Inverse Normal



- 168 - 

 

Figure 69 Scatter plot of fitted values vs. residuals demonstrating 

homoscedasticity for Model 2 

 

There is no pattern in a plot of residuals against fitted values, so the variance of the model 

is assumed to be homoscedastic. Formal diagnostics reveal that the null hypothesis of 

constant variance can be accepted (p=0.46).  

5.9.2.2.4 Tests for collinearity in Model 2 

Variance inflation factors (VIF) were examined to identify any collinearity between 

predictor variables (see section 4.4.6.1.4). The variance inflation factors were all less than 

ten and therefore do not imply that there is any collinearity between the predictor 

variables. However, this is not surprising, as the model was constructed using stepwise 

variable selection such that collinear variables are automatically excluded from the model. 

A table of variance inflation factors is provided for Model 2 in appendix E-1.3; however 

these have not been repeated for subsequent models.  
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5.9.3 Prediction of physical subscore of SIPSO, no baseline assessments 

The variables identified through regression trees, univariate analysis and clinical reasoning 

for the prediction of physical SIPSO without baseline assessments are provided in Table 52. 

 Independent variables to be entered into regression model to predict Table 52

physical subscore of the SIPSO 

 Variables Number of 

variables (including 

dummy variables) 

Variables identified from 

regression trees 

Length of stay 

Propensity score  

Old stroke 

Ward type 

Communication assessment 

1 

1 

1 

7 

2 

Variables identified from 

univariate analysis 

Formal swallowing assessment 

Social Worker assessment 

Urinary incontinence care plan 

2 

2 

2 

Probable important variables 

through clinical reasoning 

tPA given 

Discharge to same address 

Age if propensity score removed 

Baseline Barthel Index 

2 

1 

0 

1 

Total   22 

Boxplots of baseline BI in patients with, and without complete predictor variables reveal 

that patients automatically excluded from the model to predict physical SIPSO subscore 

(without the baseline assessments) are more disabled than those in whom data are 

complete. However, this difference does not reach statistical significance in a Mann-

Whitney U test (p=0.187) 

Figure 70 Difference in baseline BI between patients with complete and 

incomplete model variables  
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5.9.3.1 Sample size 

If the predictors outlined in Table 52 were to be entered into the models as shown, the 

number of variables to be entered into this model would exceed 10 EPV, largely due to the 

large number of dummy variables associated with ward type. Examination of the 

regression trees and dummy variables for ward type reveals that the significant predictor is 

whether patients were admitted to an environment with facilities to provide hyperacute 

stroke care (coronary care unit (CCU), high dependency unit (HDU)/ intensive care unit 

(ITU), or acute stroke unit (ASU)). Although treatment on CCU appears alongside ‘other 

ward’ or ‘medical admissions unit’ in the regression tree to predict physical SIPSO without 

baseline assessments, this represents only one patient in the study. CCU has therefore 

been grouped with the other wards where hyperacute stroke care may be provided. The 

‘ward type’ variable has therefore been re-categorised to reflect the receipt of specialist 

acute stroke care or not by combining CCU, HDU, ITU and ASU care into one category, and 

admissions unit and general ward care into another. 

Entering the new variable (admitted ASU) into a regression tree reveals that it remains an 

important predictor of the physical subscore of the SIPSO Figure 71.  

Figure 71 Regression tree to demonstrate prominence of composite variable of 

direct admission to a unit providing hyperacute stroke care on 

prediction of physical outcome  

 

The number of variables entered into the model can therefore be reduced to 16. Length of 

stay will again be entered into the model as a logarithmic transformation.  
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Model 4 Linear regression of predictor variables (Table 52) on physical subscore of 

SIPSO, without patient reported baseline assessments 

     R
2 

= 0.45 

Adj R
2
 =0.43  

N
o
 Obs  =167  

F  =18.53  

P>|F|<0.001  

     

     

     

     

 

Beta 

coeffici

ent 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Log (length of stay + 1) -2.11 0.49 -4.92 <0.001 -2.96 -1.26 

Propensity score (SSV) 3.18 1.43 2.22 0.028 -0.35 6.01 

Admitted to hyperacute bed 2.11 0.78 2.75 0.007 0.60 3.62 

SLT communication Ax “yes” 2.87 1.10 2.61 0.01 0.70 5.04 

SLT communication Ax “no 

but” 
2.76 0.97 2.85 0.005 0.84 4.67 

Previous stroke -2.61 1.06 -2.48 0.014 -4.70 -0.53 

Discharged to same address 3.94 1.23 3.19 0.002 1.50 6.38 

Constant 10.36 2.13 4.86 <0.001 6.16 14.57 

 

5.9.3.2 Post estimation checks 

5.9.3.2.1 Linearity assumptions 

The augmented partial residual plots (acprplot) for the propensity score appears to be 

influenced by some points at the extremes, but this deviation is not serious. As before, 

there is deviation on the acprplot for length of stay which is likely to reflect the influential 

points at the extremes of the distribution. Linearity assumptions are therefore assumed to 

have been met.  
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Figure 72 Augmented component plus residual plots for continuous predictors in 

Model 4 
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5.9.3.2.2 Leverage 

The most influential cases in this model would be expected to be case 232, 264, 116, and 

196. Examination of Cook’s D statistic (as discussed in 4.4.6.1.4e) confirms the most 

influential points to be 232, 264, 50, 254, and 196.  

Figure 73 Leverage vs. r-squared plot for Model 4 

 

Study number  Cooks D  

 

232  0.12 

264  0.047 

50  0.043 

254  0.041 

196  0.039 

The effect of individual cases on the beta co-efficients of each individual variable is shown 

in (Figure 74). It can be seen that the influential cases are similar to those that exert 

influence on the regression coefficient of the whole model. 
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Figure 74 DFBeta for independent variables across individual cases (prediction of 

physical subscore of SIPSO without baseline assessments) - Vertical 

lines identify potentially influential cases 

 

Removing the influential cases and re-performing the regression analysis removes previous 

stroke as an important predictors of outcome. This may be due to the large DFBETA for 

case 232 for this variable. Again, this represents unexpected, but not spurious data and 

influential cases are retained for interpretation of the models.  
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Model 5 Linear regression of predictor variables (Table 52) on physical subscore of 

SIPSO, without baseline assessments and with  influential cases removed 

     R
2 

= 0.48 

Adj R
2
 =0.46  

N
o
 Obs  =163  

F  =24.21  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Log (length of stay + 1) -2.56 0.42 -6.16 <0.001 -3.38 -1.74 

Propensity score (SSV) 3.10 1.36 2.27 0.024 0.41 5.79 

Admitted to hyperacute 

bed 
1.98 0.73 2.71 0.01 0.54 3.42 

SLT communication Ax 

“yes” 
3.57 1.06 3.36 0.001 1.47 5.67 

SLT communication Ax 

“no but” 
2.53 0.92 2.76 0.007 0.72 4.34 

Previous stroke       

Discharged to same 

address 
4.01 1.24 3.24 0.001 1.56 6.46 

Constant 11.21 2.08 5.37 <0.001 7.09 15.34 

 

5.9.3.2.3 Normality of residuals 

A standardised probability normal plot (for Model 4, with influential cases included) 

suggests there is deviation of the residuals from normality at the extremes of the 

distribution. This is confirmed on Shapiro-Wilk testing (z=1.89, p=0.03).   

Figure 75 Normal probability plot for model residuals (Model 4) 
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5.9.3.2.4 Homoscedasticity 

A plot of residuals against fitted values does suggest a downward linear trend in the data. 

This is again likely to represent a missing variable from the model. Diagnostics to assess for 

heteroscedasticity, however, fail to reach significance such that the null hypothesis of 

homogeneity of variance is accepted.  

Figure 76 Scatter plot of model residuals against fitted values to identify 

heteroscedasticity (Model 4) 

  

5.9.4 Prediction of social subscore of the SIPSO with baseline assessments 

Variables to be entered into a model to predict the social subscore of the SIPSO (with 

baseline assessments) are shown in Table 53. 

 Variables to be entered into regression model to predict social Table 53

subscore (with baseline assessments)  

 Variables Number of variables 

Variables identified from 

regression trees 

Baseline EQ5D 

Baseline NEADL 

SALT  communication assessment 

Length of stay 

1 

1 

2 

1 

Variables identified from 

univariate analysis 

Formal swallowing assessment 

Urinary incontinence care plan 

1 

2 

Probable important variables 

through clinical reasoning 

Propensity score (or age if 

propensity score excluded) 

First ward admitted to 

Discharged same address 

tPA given 

Social Worker assessment 

1 

 

1 

1 

2 

2 

Total   15 
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There were 144 completed and returned SIPSO subscore questionnaires, therefore 

entering these 15 variables into a model gives an EPV of 9.6. 

Figure 77 Difference in baseline BI between patients with complete and 

incomplete model variables to predict social subscore of SIPSO  

 

The apparent difference in the baseline BI between patients who are included in the 

models (complete predictor variables) vs. those who are automatically excluded 

(incomplete predictor variables) is demonstrated not to be statistically significant on 

Mann-Whitney U testing (p=0.504) 

Model 6 Linear regression of predictor variables (Table 52) on social subscore of SIPSO 

(with baseline assessments) 

     R
2 

=0.40  

Adj R
2
 =0.39  

N
o
 Obs  =144  

F  =23.59  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Baseline EQ5D 3.53 1.05 3.37 0.001 1.46 5.61 

Baseline NEADL 0.06 0.02 2.89 0.004 0.02 0.10 

Log (length of stay +1) -0.81 0.37 -2.21 0.029 -1.53 -0.086 

SLT communication Ax 

“no but” 
2.11 0.65 3.22 0.02 0.81 3.40 

Constant 7.78 1.67 4.65 <0.001 1.42 11.1 

 

The propensity score again fails to reach significance in this model. Substitution for age 

instead of propensity also fails to reach significance, and make no real difference to either 
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the beta-coefficients or total fit of the model. Propensity score is therefore retained in the 

model. 

5.9.4.1 Post estimation checks 

5.9.4.1.1 Linearity 

Augmented component plus residual plots reveal that the largest deviation from linearity 

occurs with the baseline NEADL. 

Figure 78 Augmented component plus residual plots of continuous variables 

entered into Model 6 (baseline NEADL, baseline EQ5D and length of 

stay) 
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A likelihood ratio test for improved model fit using a continuous vs. a categorised NEADL 

variable fails to reach significance such that it can be assumed that categorising the NEADL 

will not significantly improve the model (p=0.332 working not shown).  

As with the prediction of the physical subscore of the SIPSO, it is possible that some 

influential points are ‘pulling’ the fitted line away from linearity (large residuals). These are 

highlighted on the acprplots (Figure 78), and particularly influential points in terms of 

leverage will be explored further in the next section.  
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5.9.4.1.2 Influence and leverage 

A plot of leverage against r squared for individual cases is shown below 

Figure 79 Leverage against r squared Model 6 

 

There are a few potentially influential cases highlighted on this plot. It is likely that cases 

239, 172, 94, 167, 259 may be problematic.  

Determination of Cook’s D statistic (n=144) reveals that these are indeed the 5 most 

influential cases in terms of overall leverage. 

Study number Cooks D 

167  0.09 

94  0.07 

172  0.06 

259  0.05 

239  0.05 

A DFBETA plot (below) shows cases that are likely to be exerting undue influence on the 

beta coefficients for individual variables. Several cases are outwith the limits of 2/√144 

(0.167). However, the cases which exert influence on individual variable beta coefficients 

(with high |DFBeta| values) tend to be the same cases as those which exert influence on 

the overall model regression co-efficient (high Cook’s D).  
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Figure 80 Scatter plot of individual cases against DFBeta values for individual 

variables. Vertical lines represent cases likely to be of particular 

influence.  

 

Re-running the regression models with cases with high Cook’s D and with high DFBeta 

values removed (i.e. cases that are influential on the model regression coefficient and 

individual variable beta co-efficients) results in the propensity score entering the model 

reaching statistical significance at 0.05. The omission of this variable in the full model may 

therefore be due to the influential cases. However, as previously discussed, these cases 

represent unexpected, not spurious data and therefore are retained in the models to 

prevent overfitting. 

Model 7 Linear regression of predictor variables (Table 52) on social subscore of SIPSO 

with influential cases removed 

     R
2 

=0.53  

Adj R
2
 =0.51  

N
o
 Obs  =139  

F  =29.45  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Baseline EQ5D 4.48 0.93 4.82 <0.001 2.64 6.32 

Baseline NEADL 0.10 0.02 4.90 <0.001 0.06 0.14 

Log (length of stay +1) -1.29 0.38 -3.39 0.001 -2.04 -0.54 

SLT communication Ax 

“no but” 
-1.86 0.70 -2.75 0.01 -3.21 -0.52 

Propensity score -2.25 1.13 -1.99 0.05 -4.49 -0.01 

Constant 7.78 1.65 5.33 <0.001 5.55 12.1 
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5.9.4.1.3 Normality assumptions (all cases included)  

A normal probability plot is straight suggesting that residuals are normally distributed and 

this is confirmed on a Shapiro-Wilk test (z= 0.16, p=0.44)  

Figure 81 Normal probability plot (Model 7) 

    

Figure 82 Fitted values against model residuals demonstrating homoscedasticity 

in Model 6 
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Therefore, although this model explains little in the way of variation in social SIPSO score 

at six months, modelling assumptions are met. The variance explained by the fixed (fitted) 

component of the model is considerably less than the proportion of variance explained by 

the random effects. It is therefore likely, that there are important factors that have 

significant influence on the social outcome of patients following a stroke other than the 

baseline assessments and process markers that have been recorded during the study.  

5.9.5 Prediction of the social subscore of the SIPSO without baseline 

assessments 

Variables to be entered into the model to predict the social subscore of the SIPSO without 

baseline assessments are presented in Table 54. 

 Identified variables to be entered into linear regression models to Table 54

predict the social subscore of the SIPSO without baseline assessments 

 Variables Number of 

variables 

Variables 

identified from 

regression trees 

Length of stay 

Admitted to stroke unit on day, or day after admission 

Clinical classification 

Early supported discharge 

Imaging within 24 hours 

SALT  communication assessment 

1 

1 

3 

1 

1 

2 

Variables 

identified from 

univariate 

analysis 

Formal swallowing assessment 

Urinary incontinence care plan 2 

2 

Probable 

important 

variables 

through clinical 

reasoning 

Social Worker assessment 

Baseline Barthel Index 

tPA given  

Propensity score 

First admitted to a stroke unit, CCU/HDU/ICU vs. general 

ward/MAU 

Discharged to same address 

2 

1 

2 

1 

1 

 

1 

Total   21 

In the classification tree to predict the social subscore of the SIPSO without baseline 

assessments, the clinical classification of stroke ‘splits’ on partial anterior (PACS) vs. other 

type of stroke (see section 5.8.2, Figure 59). For the purposes of reducing the number of 

dummy variables to enter in the model, this variable will therefore be classified in this way. 

Admission to a stroke unit on the same day, or day after admission is likely to capture 

similar constructs to the first ward that the patient was admitted to. The latter variable will 

therefore be excluded from this analysis.   
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 Variables to be entered into the model to predict social subscore of Table 55

the SIPSO without baseline assessments following refinements 

Length of stay  Formal SLT swallowing assessment  

Some of hospital spell spent on a SU Urinary incontinence care plan 

LACS vs. other stroke Social Worker assessment 

Early supported discharge  Baseline Barthel Index 

Imaging within 24 hours rtPA given 

SALT  communication assessment Propensity score 

Discharged same address  = 18 variables (including dummies) 

 

Figure 83 Difference in baseline Barthel Index for patients with complete and 

incomplete independent variables selected for entering into regression 

model to predict social subscore of SIPSO without patient reported 

baseline assessments (only cases with complete social SIPSO shown) 

 

Patients with missing predictor variable data (and therefore automatically excluded from 

the model) appear to have higher baseline BI than those with complete data (included in 

the models). However, Mann-Whitney U testing shows that this difference fails to reach 

statistical significance (p=0.116) such that the median BI between the two groups is 

assumed to be equal.  
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Model 8 Linear regression of predictor variables (Table 55) on social subscore of SIPSO, 

without baseline assessments 

     R
2 

= 0.36 

Adj R
2
 =0.35  

N
o
 Obs  =153  

F  =21.02  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Log(length of stay+1) -1.69 0.31 -5.5 <0.001 -2.30 -1.08 

SLT communication Ax 

“no but” 
2.22 0.66 3.35 0.001 0.91 3.53 

Discharged same 

address 
2.67 1.18 2.26 0.03 0.34 5.00 

Some of hospital spell 

on stroke unit 
2.26 0.67 3.36 0.001 0.93 3.59 

Constant 11.58 1.53 7.58 <0.001 8.56 14.61 

 

Propensity score has been automatically removed from this model as it fails to reach 

significance at the p<0.05 level. If age at stroke is substituted for propensity score in the 

regression equation, it too is automatically removed from the final model. Neither age nor 

propensity score therefore feature as important predictors in this model.   

The model explains only 35% of the variance in patient outcome as measured with the 

SIPSO social subscale. In addition, the majority of this variance is attributable to the 

residuals rather than the fitted values of the model.  

Post estimation checks 

5.9.5.1.1 Linearity  

Length of stay is the only non-categorical variable that appears in the model. The 

relationship between a logarithmic transformation of length of stay and the SIPSO social 

subscale is linear on an acprplot.  
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Figure 84 Augmented component plus residual plot for log transformed length of 

stay in Model 8 

 

5.9.5.1.2 Leverage 

Examination of studentised residuals reveals very few outlying values where |r| is >2. 

Figure 85 Histogram of studentised residuals Model 8 
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Figure 86 Leverage vs. r-squared plot Model 8 

 

Cases 26, 167, 94, 85 appear as if they may exert undue influence on the beta-coefficients. 

Cook’s D reveals the most influential case to be 85 (cut off value for d = 4/153 = 0.026). 

Study number  Cooks D 

26  0.07 

94  0.05 

167  0.05 

85  0.04 

279  0.04 

Displaying DFBeta statistics with limits around 2/√153 reveals a number of cases outwith 

these limits across the variables.  Removal of the most influential case (85) in terms of the 

regression coefficient for the whole model does not change appreciably the overall fit of 

the model. Removal of the cases with particularly high |DFBeta| values (50, 85, 94, 167, 

196, 279) that are likely to exert influence on the individual beta co-efficients, results in the 

variable ‘discharged to the same address no longer reaching statistical significance, and the 

entry of ‘scan within 24 hours’ into the model. There are minor changes to other beta-

coefficients in the models, but no other variables change significance or polarity (Model 9).  

111

105

140297

286

215
3663
15
137

13997
199

193

284

194

265212
52

294

12690

179

219

1

129

175
220278

308

56

62253
47

269
27026017

154

195

60

71

2144160299113
298

91

6

82

218

257

35
135
34

210

115

186
222

9

305

276

258309

68

287

166

192
57

42

46

211

203

58

141

174

67
114

180

224

293

96

98208

11070

120214

254

32

231

202

37

306

136

266

75

149

185

72

242

127

89

78

88
99

302720125183147

79

274

2398300

171

77

146151

246

3325919

108
189

118

45

233188

275

168209

69
143

134

74
24

38

236

12

301172104
181182

312

132

290

10
161

281

18

116

11177

251249

303 264

282

27

196

50

279

85

167 94

26

.0
2

.0
4

.0
6

.0
8

.1
.1

2
L
e
v
e
ra

g
e

0 .01 .02 .03 .04
Normalised residual squared



- 188 - 

 

Figure 87 Scatter plot to identify individual cases with particularly large DFBeta 

values across variables (Model 8) 

  
 

Model 9 Linear regression of predictor variables (Table 55) on social subscore of SIPSO, 

without baseline assessments and with the most influential cases removed 

(study numbers 50, 85, 94, 167, 196, 279)  

     R
2 

= 0.43 

Adj R
2
 =0.41  

N
o
 Obs  =147  

F  =26.57  

P>|F|<0.001  

     

     

     

     

 
Beta 

coefficient 

Standard 

error 
t P>|t| 

95% confidence 

interval 

Log(length of stay+1) -2.64 0.30 -7.60 <0.001 -2.85 -1.68 

SLT communication Ax 

“no but” 
1.61 0.63 2.42 0.01 0.36 2.87 

Discharged same 

address 
      

Scan within 24 hours of 

admission 
1.99 0.82 2.42 0.02 0.36 3.62 

Some of hospital spell 

on stroke unit 
2.47 0.65 3.80 <0.001 1.19 3.76 

Constant 11.95 1.53 7.82 <0.001 8.93 14.97 
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5.9.5.1.3 Normality of residuals (Model 8) 

A normal probability plot and Shapiro-Wilk test confirm normality of residuals. 

Figure 88 Normal probability plot Model 8      

  

5.9.5.1.4 Homoscedasticity 

There is no apparent pattern in the residuals vs. fitted values plot, and therefore 

homogeneity of variance across fitted values from Model 8 is assumed.  

Figure 89 Fitted values vs. residuals demonstrating homoscedasticity 
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5.10 Stability of models 

5.10.1 Markov Chain MonteCarlo iterations 

The models for physical and social SIPSO outcomes, with and without baseline assessments 

(four models in total) were recreated in MLWiN software, and MCMC iterations performed 

to assess convergence of the beta coefficients (see section 4.4.9). Five thousand iterations 

were performed, with a ‘burn in’ of 50 iterations for each model. All variables in each 

model converged on values similar to those of the models generated through the linear 

regression modelling. Diagnostics of the iterations were acceptable suggesting that the 

model beta co-efficients are stable.  

5.10.2 Significance level for stepwise selection procedures 

Models were also run with the significance level for stepwise variable selection procedures 

set at 0.5 instead of 0.05. This allows examination of the effect of inclusion of clinically but 

not necessarily statistically significant variables in the models. This resulted in propensity 

score failing to reach statistical significance in model 3 (prediction of physical subscore of 

SIPSO without baseline predictors), and imaging within 24 hours reaching statistical 

significance in model 8 (prediction of social subscore of SIPSO without baseline 

assessments). This may reflect the relative inferiority of models where baseline 

assessments are not included (see 6.1.4). 

 

5.11 Utility of the six simple variable case-mix adjuster in the study 

population 

In order to test the utility of the SSV case-mix adjuster in the population, I will examine the 

discriminatory function (c statistic) and calibration.  

5.11.1 Discrimination  

The three original SSV models were derived to predict survival, alive and independent 

(based on the OHS dichotomised at <=2) or alive and living at home. Of these three 

outcomes, alive and independent is the most relevant to the study, and so it is this model 

that has been selected to case-mix adjust the study population.  

C statistics were calculated through creating receiver operating curves (ROC) of the 

propensity score (as calculated from the original SSV model to predict survival, alive and 

independent) against the observed outcome (OHS <=2). It can be seen that the AUC (which 

is equivalent to the c statistic for dichotomous outcomes) is 0.77 (95% CI 0.71-0.82), 

indicating that the SSV model has good discrimination in the study population to predict 
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the outcome alive and independent (OHS<=2) at six months. The reference line represents 

discrimination no better than chance is given for comparison.  

The ROC curve obtained is shown in Figure 90 

Figure 90 Receiver Operating Curve (ROC) for propensity score against observed 

dichotomised OHS 

 

C-statistic = 0.77 [95% CI: 0.71-0.84] 

5.11.2 Calibration 

Calibration is the ability of a model to correctly predict outcomes in patients that 

ultimately have the outcome. Deviation from the reference line (y=x) signifies over or 

under optimistic predictions as outlined in Figure 91. 

Figure 91 Calibration of the SSV model to predict alive and independent at six 

months in the study population 

192It has been previously observed that the proportion of patients with predictions of 

good outcome as determined with the SSV model tends to be over optimistic when 

compared with observed outcomes (Counsell C et al  2002). Conversely, the model tends to 

make over pessimistic predictions of the proportion of patients with poor outcome (death 

or inability to return to own home) (Dennis MS et al 2003). However in the CIMSS study 

population (where patients with very severe strokes are excluded from recruitment), the 

SSV makes both over pessimistic and over optimistic predictions in patients with 

predominantly good observed outcomes (Figure 91). However, it should be noted that 
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some of these proportions are calculated from small absolute numbers of patients as 

reflected in the size of the error bars.  

5.11.3 Utility of the SSV case-mix adjuster to predict the SIPSO outcomes.  

In order to ascertain whether the SSV case-mix adjuster may be used to adjust for the 

SIPSO outcomes, it is necessary to determine that the SSV model can discriminate good 

over poor outcome and is reasonably calibrated for the SIPSO subscores (i.e. that it makes 

correct individual predictions). The SIPSO was dichotomised to reflect good over poor 

outcome as described in the statistical methods section (4.4.7). 
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5.11.3.1 Discrimination 

 C statistics for the SSV model to predict dichotomised study outcomes Table 56

 

Centile within 

which score of 

15 lies 

C 

statistic 

95% 

confidence 

interval 

SIPSO physical subscore    

Dichotomised at 15    

Dead patients excluded 60 0.73 0.65-0.79 

Dead patients ascribed a score of zero 60 0.76 0.70-0.82 

Dichotomised at median (data driven)    

Dead patients excluded (median 12.6)  0.75 0.68-0.81 

Dead patients ascribed a score of 0 (median 10.2)  0.89 0.74-0.85 

SIPSO social subscore    

Dichotomised at 15    

Dead patients excluded 70 0.66 0.58-0.72 

Dead patients ascribed a score of zero 70 0.70 0.64-0.76 

Dichotomised at median (data driven)    

Dead patients excluded (median 11.7)  0.70 0.63-0.76 

Dead patients ascribed a score of zero (median 9.5)  0.75 0.70-0.81 

C statistics were not significantly different with dead patients included (and ascribed a 

score of zero) or with them excluded, and patients who had died were therefore excluded 

from the further analysis. The SSV model performs poorly in the prediction of the social 

subscore of the SIPSO (if dead patients are excluded from the sample (c statistic 0.66). 

5.11.3.2 Calibration 

Figure 92 Calibration plot for prediction of the physical (top) and social (bottom) 

subscore of the SIPSO with the SSV model 

Calibration of SSV to predict dichotomised SIPSO physcial subscore
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Calibration of SSV to predict dichotomised SIPSO social subscore

Predicted proportion with outcome
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In contrast to the prediction of survival in independent state (Figure 92), the SSV model 

tends to make over optimistic predictions of six month physical and social functioning as 

measured with the SSV case-mix adjuster (Figure 92).  As before, small numbers of patients 

used to calculate some of these proportions (reflected in the wide confidence intervals) 

limit the conclusions that may be drawn from these graphs. However, if the SSV case-mix 

adjuster is not transferable to outcomes other than the OHS, its utility and generalisability 

in studies and populations where the OHS as not an endpoint may be limited.  

5.11.4 Use of Length of stay to predict patient outcome 

Length of stay has featured prominently in the regression models as a strong predictor of 

patient outcome. Moreover, the presence of length of stay has resulted in the SSV model 

not appearing in some models. It is therefore likely that length of stay is acting as a marker 

of stroke severity. The utility of length of stay as a univariable case-mix adjuster has been 

explored to determine whether or not it may offer a pragmatic alternative to more 

complex case-mix adjustment methods.  

The discriminatory function of the length of patient stay can be examined through 

determining the predicted probability of a dichotomised (good/poor) outcome (as 

measured with the OHS or dichotomised SIPSO subscale scores) through a logistic 

regression model (see section 4.4.8). This predicted probability was then used to plot ROC 

curves for length of stay to predict each of the dichotomised study outcomes.  
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 C-statistics for SSV model and length of stay to predict dichotomised Table 57

study outcomes with 95% confidence intervals 

  C statistic [95% confidence interval] 

Dichotomised outcome SSV model Length of stay 

Dichotomised OHS 0.77 [0.71-0.84] 0.79 [0.73-0.85] 

Physical subscore of SIPSO (>15) 0.73 [0.65-0.79] 0.75 [0.68-0.81] 

Social subscore of SIPSO (>15) 0.66[0.58-0.72] 0.73 [0.66-0.79] 

It can be seen from the above table that there is a tendency for length of stay to be a 

better discriminator of good over poor outcome for all three of the outcome measures, 

although these differences are not significant. Length of stay would therefore appear to be 

non-inferior to the SSV model in terms of discrimination. The ROC curves for length of stay 

are provided appendix E-2.1. 

5.12 Comparison of statistical validity of study models with case-mix 

adjusters identified through systematic review 

Table 6 has been reproduced here, with an additional row to represent the statistical 

methods used in generating the models in this study. It can be seen that aside from the 

limitations due to a lack of external validation, and a failure to consider interaction terms 

(due to sample size), that the modelling methodology used here is robust 
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 Reproduction of Table 6 to compare statistical validity of ‘Teale’ models with models identified in systematic review of case-mix adjusters Table 58

Model Valid method of variable selection? Control for 

Multicollinearity 

Consideration 

of interaction 

terms 

Events per 

variable 

>10? 

linearity assumptions 

tested and met? 

External Validation 

Acceptable discrimination (or 

sensitivity/specificity) 

Guys � 

Multiple variables selected 

through identification of 

‘statistically significant’ 

univariate predictors 

� � � ? 

Sens 0.83 

Spec 0.58 

G score � 

Variables extracted from Guys 

model (simplified regression co-

efficients to integers) 

� � � ? 

Sens 0.72 

Spec 0.63 

Bristol ? � ? � � 
Sens 1.00 

Spec 0 

SSV � 
Use of stepwise variable 

selection and clinical reasoning 

Stepwise 

variable 

selection 

� � � � 

C statistic acceptable for 

prediction of alive and 

independent or dead/alive 

Tilling ? � ? � 

Tested; attempts to 

correct for censoring 

effects of Barthel Index 

did not affect the model 

Predicts Barthel Index to within 3 

points on 49% of occasions (increases 

to 69% if recovery history is included 

in the model). 

90% limits of agreement -0.4 (-7, +6) 

Orpington ? 

Stepwise 

variable 

selection 

? � � 
R

2 
values used to assess model fit. 

Discrimination not tested 

Teale � 

Variables selected through 

identification of important 

predictors in univariate 

analyses, regression trees and 

clinical reasoning 

Stepwise 

variable 

selection 

� � � Not externally validated 
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Chapter 6 Discussion 

6.1 Identification of variables to be included in a routinely collected 

stroke dataset 

6.1.1 Patient outcomes variables 

In order to ascertain which combination of postal outcomes instruments best captures 

physical and social functioning following stroke, instruments identified in a previous review 

as valid and reliable for postal administration (Teale EA et al  2010) were further examined 

for utility and acceptability for patients and healthcare professionals. Discussion at a 

consumer group and a group decision making workshop identified the SIPSO as the 

preferred instrument, and this outcome was therefore selected as the primary outcome in 

the CIMSS study. The SIPSO was non-inferior to the NEADL in terms of missing data and 

problems with floor and ceiling effects were less pronounced. Moreover, the 

transformation of the SIPSO subscores to interval level data confers advantages over the 

NEADL in terms of the types of statistical analyses that may be performed (see section 5.5). 

However, Rasch analysis for the SIPSO has only been performed in a population of younger 

stroke survivors (under 65) (Kersten et al 2010). Although there were no interactions 

between age and the SIPSO items in this age group, differential item functioning has not 

been explored in older patients and this may limit the generalizability of the transformed 

scale to the current study. 

The SIPSO physical and social subscores measure the underlying traits of reintegration 

following stroke. The conceptual relationship between the SIPSO subscores and patient 

care are complex, and are likely to be mediated by factors over and above delivered care 

processes. These mediating factors include the nature of specific impairments, recovery 

trajectories, mood, community rehabilitation and social networks.  

6.1.2 Identification of important predictor (process) variables 

Consideration of all the factors which may contribute to six month SIPSO scores is limited 

by the feasibility of capturing variables which represent them, and sample size. Process 

markers were identified through both statistical and clinical reasoning. In order to reduce 

the number of variables that were entered into the models, proxy or composite markers 

were chosen (i.e. SLT communication assessment represents whether or not an 

assessment was required (a proxy for dysphasia) and whether or not the assessment was 

performed). Other than whether or not ESD was planned, it has not been possible to 

capture detailed information regarding the period between discharge and the six month 

follow up questionnaire. This may limit the conclusions that may be drawn, as provision of 

post-discharge services and rehabilitation are likely to influence post-stroke reintegration. 
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In order to reduce the number of predictor variables to be entered into linear regression 

models such that the EPV was maintained below ten, three approaches were adopted. The 

first, univariate analysis, considers the association of individual process measures or 

predictors with patient outcome. Although this unadjusted approach is simple, there is no 

consideration for the mediating or confounding relationships of other factors. As such, 

although specific aspects of process may be identified for further exploration, the creation 

of models based solely on these univariate relationships is likely to include unimportant or 

exclude important predictors on the basis of chance alone (Altman D,  1999p 349).  

Moreover, the prominence of some of the relationships of individual process markers with 

outcome is removed when other factors are controlled for, e.g. although highly significant 

in univariate analysis, the presence of a urinary incontinence care plan failed to reach 

statistical significance as an important predictor of physical outcome in multivariable 

models.  

The second approach to refining predictor variables was through the use of regression 

trees. These offer a simple and powerful visual representation of the statistically important 

factors in terms of prediction of patient SIPSO subscores. The benefits of this approach are 

that there is no assumption based on the distribution of either the independent or 

dependent variables and no limit to the number of variables that may be entered into the 

tree model. The importance of each predictor, having taken account of all other predictors 

is considered, and the ‘split-point’ is made at the value of the independent variable that 

maximises the diversity of outcome. However, the regression trees are ‘data-driven’ and 

require clinical interpretation. Important factors may not appear in the trees due to 

idiosyncrasies of the study dataset. This leads to the third approach for variable selection: 

the inclusion in regression models of any clinically important predictor that has not been 

identified through ‘data-driven’ approaches.  

6.1.2.1 Process measures that are predictive of functional outcome in the study 

The determination of sample size for specification of regression models depends not only 

on achieving sufficient ‘events per variable’ in order to ensure that the model is not 

overfitted (Peduzzi P et al  1996), but also in ensuring that the sample size is adequate for 

individual predictors to distinguish a clinically relevant difference in patient outcome. The 

failure of Davenport et al to detect an effect of stroke unit care on patient outcome 

despite an adequate EPV (Davenport RJ et al  1996) is likely have been due to the study 

being underpowered to detect the effect, as highlighted by Mant in his response to the 

article (Mant J et al  1996) (see also section 2.1.8). 

If it is assumed that case-mix adjustment is sufficient to ‘level the field’ such that any 

residual variation in outcome is due to the delivery of specific care processes, the delivery 

of process measures must vary in order to detect the effect of deviation from process 

delivery on outcome. In Mant and Hick’s simulation study describing delivery of care 
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processes of proven association with outcome in myocardial infarction, the treatment 

effect of interventions were applied to theoretically identical populations to demonstrate 

the difference in sample size required to detect differences in mortality from myocardial 

infarction through measurement of process versus  outcome (Mant J et al  1995). Here it 

was demonstrated that the higher the proportion of patients receiving a particular process 

or combination of processes in a particular hospital, the smaller the sample size required 

to detect deviations from care process delivery through measurement of both process and 

outcome (Mant J et al  1995).  However, where the ‘treatment effect’ of specific 

interventions has not been determined  and the relationship between process and 

outcome is not known as is the case with many stroke process measures, the larger the 

proportion of patients receiving a particular care process  the harder it is likely to be to 

detect the effect of missing that process on patient outcome. For processes that near 

100% saturation, the magnitude of the effect of these processes of care on patient 

outcome, if any, is unknown.  

The process saturation in the study population Figure 44 (i.e. the lack of variability in 

patients that did and did not receive specific aspects of care process), is in concordance 

with the recent RCP NSSA audit where the median percentage achievement of the twelve 

key indicators across participating trusts in England, Wales and Northern Ireland was 

greater than 80% in all but 3 process markers audited (Intercollegiate Stroke Working Party 

2011). Although some of the process markers entered into the study models represent 

‘best-practice’ interventions for which there is good supporting randomised controlled trial 

evidence (e.g. treatment on a stroke unit (Stroke Unit Trialists' Collaboration 2007)), the 

demonstration that other interventions or processes of care are effective where such 

evidence is lacking is unlikely to be feasible in empirical post-stroke populations whilst 

there is such a degree of saturation of process markers; if the majority of the population 

receives an intervention routinely, it is difficult to discern the effect of not receiving that 

intervention on patient outcome. As the proportion of patients in whom a monitored 

process is achieved increases, the proportion in which it is not achieved, and therefore the 

variability, decreases.  This is especially pertinent as the effect of individual processes on 

outcome is likely to be small (the effects of individual processes that typically occur on a 

stroke unit are unlikely to be larger than the overall treatment effect of stroke unit care 

over general ward care (an estimated ARR of  4.4%)  (Sudlow C et al  2009; Stroke Unit 

Trialists' Collaboration 2007).  A lack of variability in the delivery of specific processes 

means that distinguishing patients with good over poor outcome conditional on the 

achievement of a specific care process will require a larger sample (analogous to a 

randomised controlled trial to determine the benefit of an intervention with a small 

treatment effect). The likelihood of type 2 errors is high (falsely rejecting a hypothesis that 

is true) and potentially important predictors in the models may fail to reach significance 

due to a lack of power. Whether the difference in outcome observed between levels of a 
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predictor reaches statistical significance is reflected in the model output by the‘t’ value and 

its significance level (which is the same as performing a t test between the model predictor 

and the reference value). The magnitude of the mean difference between the levels of the 

variable is represented by the beta co-efficient, the value by which the dependent value is 

increased for a unit increase in the independent variable. Standard errors for the beta co-

efficients are provided in the STATA output from which the standard deviations may be 

calculated from the formula for the standard error of the difference between two sample 

means [s.e. = √(s2/n1 +s2/n2)] (where s.e. = standard error, s=standard deviation and n = 

sample size in each group (Altman D,  1999 p 160)). The power with which these t-tests 

have been performed during the modelling process can be calculated in STATA from the 

standard error, the observed difference in outcome between groups, the number of 

patients in each level of the variable and the α-significance level (set at 0.05). Using similar 

methodology to Mant in his criticism of the Davenport study (Mant J et al  1996; Davenport 

RJ et al  1996), I have used the example of the SLT communication assessment for the 

prediction of the social subscore of the SIPSO to demonstrate the large sample size that 

would be required to detect the difference in mean social SIPSO subscore between 

patients that do, and do not receive a SLT communication assessment resulting from 

Model 6. This process has some variability (“no” = 29/312 (9.3%), “yes” = 108/312 (34.6%), 

“no but” = 173/312 (55.4%)), although the absolute numbers of patients receiving the 

process is small compared with those in whom an assessment is not required (the “no but” 

dummy). Performing a power calculation in STATA reveals the probability of detecting a 

difference of 2 points on the physical SIPSO subscore between patients who do, and do not 

receive a SLT communication assessment (represented by the beta co-efficient for receipt 

of a communication assessment in the model) is just 33% (power 0.33). In order to detect 

such a difference with reasonable certainty (e.g. power 80%), would require 54 patients in 

the “no” group, 201 in the “yes” group and, accounting for those in whom an assessment is 

not appropriate (55% in the study population), a total sample size of 567 patients with 

complete data (working provided in Appendix 7.2E-1.4). Assuming that there are no 

missing data for process markers, and a return rate for outcome questionnaires of 70% 

(similar to that seen in the study), to detect the difference in SIPSO outcome between 

patients who do, and do not receive a SLT communication assessment with power of 80% 

would require a total sample size of ≈800 patients.  

Previous studies to identify important aspects of stroke care that may determine patient 

outcome after adjustment for case-mix have tended to focus on the prediction of 

dichotomised outcomes of mortality and dependency (Bravata DM. et al  2010; Evans A et 

al  2001; Lingsma HF et al  2008; Mohammed MA et al  2005; Weir N et al  2001) although 

attempts have been made to explore relationships between processes of care and 

discharge home (Indredavik B et al  1999) and functional outcomes (McNaughton H et al  

2003). In many of these studies, variations in outcome between institutions and individuals 
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are completely (Davenport RJ et al  1996; McNaughton H et al  2003) or partly (Lingsma HF 

et al  2008; Weir et al  2003) explained through differences in case-mix rather than 

differences in the delivery of care. Process markers which have been highlighted as 

potentially important predictors of outcome in previous studies include swallowing 

assessment (Bravata DM. et al  2010), measures to prevent aspiration (not further 

qualified) (Evans A et al  2001), early feeding (Evans A et al  2001), organised stroke unit 

care (Evans A et al  2001; Weir N et al  2001), prophylaxis for venous thromboembolism 

(Bravata DM. et al  2010), treatment of all episodes of hypoxia with supplemental oxygen 

(Bravata DM. et al  2010), early mobilisation (Lingsma HF et al  2008) and antiplatelet 

therapy within 48 hours (Lingsma HF et al  2008). Use of some of these interventions are 

corroborated (stroke unit care (Stroke Unit Trialists' Collaboration 2007), antiplatelet 

therapy (Chen Z-M et al  1997; International Stroke Trial Collaborative Group 1997)) or 

questioned (use of graduated compression stockings (CLOTS Trial Collaboration 2009)) in 

randomised controlled trials, and some are subject to ongoing investigation (the use of 

supplemental oxygen  (Roffe C 2011) and intermittent pneumatic compression devices 

(CLOTS Trial Collaboration 2011)). It has been postulated that the improved outcomes of 

patients admitted to acute stroke units are due to the prevention of complications of 

stroke, such as the prevention of infection (Govan et al  2007). Although many specific care 

processes which form existing stroke markers have not been linked to outcome in 

dedicated randomised trials, features of stroke unit care that are consistently provided in 

effective stroke units have been systematically identified from the Stroke Trialists’ 

systematic review of organised stroke unit care (Langhorne P et al  2002; Stroke Unit 

Trialists' Collaboration 2007). These were recently summarised by McArthur et al 

(McArthur et al  2011) and are reproduced in Table 59. 

 Important components of stroke unit care (from McArthur et al (2011), Table 59

based on Langhorne P et al  (2002)) 

Important components of 

stroke unit care 

Potentially important 

components of stroke unit care 

Components with no evidence of 

efficacy 

Staff with a specialist 

interest in stroke care 

Management of pyrexia, blood 

sugar, hypoxia, blood pressure, 

hydration, nutrition 

Routine use of compression 

stockings (CLOTS Trial 

Collaboration 2009) 

Early mobilisation Mouth care Early PEG feeding (Dennis M et al  

2006) 

Early investigation Swallowing assessment Routine use of nutritional 

supplements (Dennis et al 2006) 

Prompt pharmacotherapy Bladder and bowel care  

Physiological monitoring Provision of information for 

patients and carers 

 

Discharge planning Involvement of carers  

MDT goal setting   

Positioning   

Linear regression models were constructed from the variables identified through 

regression trees, univariate analysis and clinical reasoning. Important predictors featuring 
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in these models are highlighted in Table 60. Only variables reaching significance at the 

p<0.05 level are included here, although it is possible, indeed likely that the variables in the 

models that have not reached statistical significance still represent important predictors 

due to the possibility of type 2 errors for individual predictors. For the purposes of 

definition of a routine dataset, any clinically and statistically important predictor should be 

included. 

 Important predictors of outcome featuring in regression models Table 60

 With baseline assessment 
No baseline 

assessment 

 
Physical 

SIPSO 
Social SIPSO 

Physical 

SIPSO 

Social 

SIPSO 

Baseline NEADL � �   

Baseline EQ5D � �   

Propensity score   �  

Age at stroke �    

Previous stroke   �  

Length of stay � � � � 

D/C to same address as admitted from �  � � 

SLT communication Ax  � (21) � (1 or 21) �(21) 

First ward ASU, CCU, HDU or ICU   �  

Some time spent on a stroke unit during  

inpatient spell 
   � 

Three process markers appeared in one or more of the four linear regression models (a 

formal Speech and Language communication assessment, admission to a ward where 

hyperacute stroke care can be delivered, and admission to a stroke unit for some of the 

inpatient spell) (Table 60). This is in concordance with the important features of care 

process identified through the previous systematic review of stroke unit care (Langhorne P 

et al  2002; McArthur KS et al  2011). Of these, only formal SLT communication retains 

prominence across the models (featuring in 3 out of 4). Of particular note is that SLT 

communication assessment is one of the process markers with greatest variability across 

the three levels of the variable which may, in part, explain its prominence in the models 

(Figure 44).  In accordance with the univariate analysis, patients who do not require a SLT 

assessment (“no but” code) have better physical and social SIPSO subscores at six months 

than those that require but do not receive an assessment. The caveat to this is that SLT 

communication assessment does not feature in the model to predict the physical subscore 

of the SIPSO where baseline assessments are also included in the model. This may reflect 

the possibility that the “no but” code is acting as a marker of case-mix but is overshadowed 

in the model to predict physical outcome where there are more explicit markers of 

baseline physical function present. In the model to predict physical subscore where these 

                                            

1 Where 1 = SLT communication assessment performed, and 2 = SLT 

communication assessment not required (“no but” code) 
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baseline functional assessments are excluded, not requiring an assessment is associated 

with intermediate physical outcomes scores (better than requiring and not receiving an 

assessment, but worse than if the assessment is performed). Here, it is likely that the 

outcomes of the heterogeneous group in whom “no but” codes are used (where 

assessments are either not required (mild strokes) or not appropriate (severe strokes)) fall, 

on average, between those in whom formal communication assessments are, or are not 

performed. These subtleties in the potential meaning of the prominence of different levels 

of the variables are important in their interpretation. Moreover, this represents an 

argument for the explicit capture of reasons why assessments are not indicated. This is 

particularly pertinent in routine care where, unless there is adequate and robust case-mix 

adjustment, the significance of different levels of the variable in terms of their relationship 

to outcome is difficult to interpret. In previous studies where markers from the RCP NSSA 

have been used, and in the report of the audit data from the RCP (Intercollegiate Stroke 

Working Party 2011), patients with a “no but” code are removed from the denominator 

(McNaughton H et al  2003; Weir N et al  2001) such that only patients who are eligible for 

interventions are included in the analysis.   

The distinction between clinical and statistical significance of the predictors is key in terms 

of determining the relative importance of the difference predictors. As the models are 

linear, the beta-coefficient is interpreted to represent the difference in the mean outcome 

(i.e. physical or social SIPSO subscore) for a one unit change in the independent variable. 

For example, for a dichotomous predictor, the beta-coefficient represents the change in 

outcome score for one level of the predictor with respect to the other, with all other 

variables being held constant. For a continuous predictor (for example age at stroke), the 

outcome changes by the value of the beta-coefficient for each additional year. The 

magnitude of the change in outcome therefore needs to be interpreted in this context, 

taking into consideration the units of measurement and any transformations of the data 

that have occurred. Data transformations make the relative relationship of length of stay 

to outcome subscore difficult to interpret. However the mean difference in outcome score 

for patients staying for B days rather than A days can be calculated from the following 

equation: 

(6) M	�	βNOP	_RST_UNVW_OXY	*	[log	(lengthofstayA		1)	–	log	(lengthofstayB		1)c																																																				
								� 	βNOP_RST_UNVW_OXY ∗ elog (NYXPfgOhWfijk2
)(NYXPfgOhWfijl2
)m	

Where M = mean difference in outcome score 
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If a length of stay of one day is taken as a ‘reference’ value, then the differences in 

outcome score dependent on changes in length of stay (with all other variables being held 

constant) are shown in Table 61.  

It can be seen therefore, that the absolute difference in total SIPSO subscores attributable 

to each variable is very small (Table 62) and, although a highly statistically significant 

predictor of outcome, the differences in mean SIPSO subscore in the physical domain 

compared with a length of stay of one day is of questionable clinical significance (Table 61). 

 Differences in average outcome subscore for length of stay compared Table 61

with one day 

  Compared with a length of stay of one day:  

 With baseline assessments No  baseline assessments 

Length 

of stay 

Difference in 

average physical 

SIPSO subscore 

(1 dp) 

Difference in 

average social  

SIPSO subscore 

(1 dp) 

Difference in 

average physical 

SIPSO subscore 

(1 dp) 

 

Difference in 

average SIPSO 

social subscore 

(1 dp) 

1 0 0 0  0 

3 -0.4 -0.6 -0.1  -0.5 

5 -0.6 -1.0 -0.4  -0.8 

10 -0.9 -1.6 -0.6  -1.3 

30 -1.5 -2.5 -1.0  -2.0 

90 -2.0 -3.5 -1.3  -2.8 

 Beta co-efficients for statistically significant predictors in models, Table 62

p<0.05 significance level – excluding length of stay (significant in all 

models) 

 Change in SIPSO outcome per unit change in predictor 

 With baseline assessments No baseline assessments 

Predictor 
Physical 

subscore 

Social 

subscore
 

 

Physical 

subscore 

 

Social 

subscore
 

 

Baseline NEADL 0.11 0.06   

Baseline EQ5D 4.73 3.53   

Propensity score (SSV)   3.18  

Age at stroke -0.07    

Previous stroke   -2.61  

Discharged to same address as 

admitted from 
3.49  3.94 2.67 

SLT communication Ax (assessment 

performed) 
  2.87  

SLT communication Ax 

(no but code) 
 2.11 2.76 2.22 

First ward ASU, CCU, HDU or ICU   2.11  

Some time spent on a stroke unit 

during  inpatient spell 
   2.26 
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6.1.2.2 Predominance of proxy markers of severity in models  

Examination of the important predictor variables across the models reveals that markers of 

stroke severity predominate over markers of process. Two process markers feature 

prominently across the models as being associated with better outcomes: a “no but” code 

for a formal SLT assessment, and being discharged to the pre-admission address. No other 

process markers feature in more than one model. Discharge to the same address is 

associated with better physical outcomes, and a “no but” code for a communication 

assessment with a better social outcome. These markers remain in the models even when 

baseline assessments for severity are included (i.e. in the models that include baseline 

assessments). However, as discussed in section 6.1.2.1, it is likely that these process 

markers are actually acting as markers of stroke severity: discharge to the same address 

would usually reflect less physically impaired patients. It is likely that discharge to the same 

address is a proxy measure of independence, social support or ability to return to the pre-

stroke address with a package of care as opposed to discharge to a continuing care facility. 

Although discharge home may be for palliative care, these patients would not usually be 

expected to survive until six month follow up and therefore would not have been included 

in the sample.  

The models that do not contain baseline assessments are less explanatory of the variation 

in outcome than the models that do contain these assessments (adjusted R2 for model to 

predict physical SIPSO with baseline assessment = 0.52, without baseline assessments = 

0.43). Where process markers do feature in the models, these tend to reflect 

organisational processes: direct admission to a stroke unit or spending any part of the 

hospital spell on a stroke unit.  

Unfortunately as detailed information regarding the movement of patients around the 

hospital was unreliable it has not been possible to extract the proportions of individual 

patient’s stay spent on a stroke unit, or to explore the optimal proportion of a hospital 

spell that should be spent on a stroke unit to optimise outcome. Stroke unit care is a 

complex intervention, and is likely to reflect may different aspects of patient care. Its 

presence in the models may reflect that these models are underpowered to detect the 

effect of individual processes of care that occur within a stroke unit, or that many of the 

care processes were saturated.   

6.1.3 Length of stay as a marker of stroke severity 

Length of stay was a prominent predictor of patient outcome as measured with the SIPSO 

and featured in all the models. It is likely that length of stay is acting as a marker of stroke 

severity, and its inclusion in the models overshadowed the ‘best’ existing case-mix 

adjustment model (the SSV model) such that the propensity score (probability of a good 

outcome as predicted with the SSV case-mix adjustment model) reached statistical 
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significance in only one of the models (where physical subscore of the SIPSO was predicted 

without baseline assessments). There is a negative and highly significant correlation 

between the logarithm of length of stay and the propensity score r= -0.6, p<0.001), such 

that patients with higher propensity score (higher probability of good outcome) tend to 

have shorter lengths of stay. It is therefore likely that the two variables are collinear, hence 

the automated removal of propensity score from the model during stepwise variable 

selection procedures. If propensity score is forced back into the model, it is automatically 

removed by the STATA software due to collinearity.  

As with other markers of severity, length of stay is a complex marker and is likely to be 

acting as a proxy measure for several different aspects of patient care. For example, length 

of stay is likely to reflect stroke severity (patients with more severe strokes are more likely 

to require longer spells in hospital), the requirement for increased social support at 

discharge, rehousing, equipment and complications of stroke (e.g. intercurrent illness, or 

the requirement for feeding via percutaneous gastroenterostomy (PEG)). However, length 

of stay may have utility as an overarching variable to adjust for the combined effect of 

these factors and as a crude marker of stroke severity. Length of stay is not available until 

after hospital discharge and therefore could not be used for stratified randomisation in 

trials, or to determine prognostic information for individuals from baseline data. However, 

for adjustment in observational cohort studies, or in routine data collections it may offer 

improvements to over simplistic approaches such as age-sex standardisation, whilst acting 

as a pragmatic alternative more complex case-mix adjustment models.   

There are however, drawbacks to the approach. Reduction in length of stay is often 

targeted specifically as a positive outcome (Intercollegiate Stroke Working Party 2011). The 

introduction of Early Supported Discharge or community rehabilitation teams is a clear 

example of where length of stay may be shortened for certain groups of patients. 

However, patients who are ‘fit’ for these types of intervention are unlikely to be the same 

cohort as those with protracted lengths of stay due to severe strokes. Moreover, if 

necessary it would be possible to adjust for these interventions explicitly. Another possible 

factor confounding the relationship between stroke severity and length of stay would be 

discharge for palliative or nursing home care. Here a shorter length of stay may be 

associated with poorer outcome.  

In-hospital deaths also spuriously reduce the length of stay. In routine care, there is likely 

to be a higher proportion of inpatient deaths than has been observed in this study where 

patients in receipt of palliative care were excluded. The utility of length of stay as a case-

mix adjuster is for adjustment of outcomes in populations of survivors to hospital 

discharge. Inpatient deaths are therefore not included within this subgroup, although 

deaths between discharge and follow up could be included if death is considered as an 

outcome (e.g. independent survival).  
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Lengths of stay may also be affected by organisational factors (e.g. access to community 

rehabilitation facilities), and these would require specific consideration and additional 

adjustment. Length of stay could be used in this context as a marker of the efficiency of a 

stroke service – how rapidly patients are discharged conditional on their stroke severity.  

Between institutions comparison may be complicated by inconsistent measurements of 

length of hospital stay across diverse healthcare systems. These may be mitigated 

through the application of precise definitions of what constitutes acute hospital care, 

and the start and end points of an acute hospital stay (e.g. exclusion of residential 

rehabilitation facilities from the length of hospital stay). 

Providing external validity of length of stay as a univariate case-mix adjuster could be 

demonstrated in external datasets, application of consistent definitions to the routine 

recording of length of stay across healthcare systems could increase the feasibility and 

interpretability of large sets of observational data where outcomes are collected following 

discharge from hospital.  

Length of stay has often been used as an endpoint (outcome) in stroke studies, but we are 

not aware of it previously being used as an independent variable to adjust post-stroke 

populations for case-mix.  

6.1.3.1 Comparison of LOS with SSV case-mix adjustment model 

The utility of the SSV case-mix adjustment model and length of stay as a univariate adjuster 

were directly compared. However, it should be noted that this represents external 

validation of the SSV model (to predict an outcome that it was not designed to predict), 

but internal derivation of length of stay as a case-mix adjuster. The relative performance of 

the two models is therefore biased to favour length of stay. 

The SSV model was developed to predict probability of  good over poor outcome as 

determined with the dichotomised modified Rankin Scale (alive and independent vs. not) 

(Counsell C et al  2002). When used to predict this outcome in the study population, the 

SSV model had good discriminatory function (see 5.11). However, it was poorly calibrated 

with a tendency to both over pessimistic and over optimistic predictions in patients with 

mild to moderate strokes. The c-statistic of length of stay to predict the same outcome was 

comparable (SSV c-statistic (0.77 [0.71-0.84]; LOS c-statistic (0.79 [0.73-0.85]). This 

represents internal validation of length of stay to predict this outcome. As such, length of 

stay as a prominent predictor is likely to be overfitted to the study data, and the c statistics 

for LOS are likely to be higher than would be expected in an external dataset.  

In order to explore the utility of the SSV case-mix adjuster to predict the SIPSO outcomes, 

the SIPSO subscores were dichotomised to create two groups felt to reflect broadly the 

dichotomised OHS, i.e. some residual impairment, but not severe enough to interfere with 

daily living. It is perhaps unfair to expect the SSV model to be able to predict an outcome 



- 208 - 

 

that is was not developed to predict, but as the best available case-mix adjuster, if the 

model lacks generalisability to outcomes other than the OHS, its utility in observational 

cohorts where functional outcomes are measured, is limited.  

Despite this, the SSV model performed reasonably to predict the physical subscore of the 

SIPSO (c-statistic 0.73[0.65-0.79]), but less well to predict the social outcome (0.66[0.58-

0.72]). Length of stay was non-inferior to the SSV model, with c-statistics of 0.75[0.68-0.81] 

and 0.73[0.66-0.79] to predict the physical and social subscores respectively.  

6.1.4 Can outcome be predicted without the need for patient reported 

baseline assessments? 

Recording patient reported assessments of function in routine care is costly in terms of 

resource and infrastructure. Such assessments also add a layer of complexity to the 

interpretation of routine data. However, the addition of these baseline assessments to the 

models greatly improved model fit and increased the amount of variation in patient 

outcome that was explained. The change in the variables reaching significance on exclusion 

of influential cases in models without baseline assessments indicates that these models are 

less stable than the models where baseline assessments were included.  Indeed, for the 

models that included baseline functional assessments, more variance was explained 

through the model variables than through the residuals. It is a logical assumption that 

patient reported function at baseline will be linked to, and an important predictor of, 

patient reported function at six months.  

It is also of note, that process measures are more prominent in the models which do not 

contain the baseline assessments, and that the Barthel Index (as a measure of objective 

baseline function) does not reach significance in the model to predict either physical or 

social subscore of the SIPSO. It is possible, that the presence of process markers in these 

models is a consequence of suboptimal case-mix adjustment in the absence of a baseline 

marker of severity rather than a true reflection of the importance of individual process 

markers. The marked improved fit of the models when baseline assessments are included 

provides evidence to support this possibility.  

Baseline quality of life (as measured with the EuroQoL) was a particularly important 

predictor of patient outcome as measured with the SIPSO. This may be due to the EQ5D 

containing questions concerning mobility, self-care and ability to perform usual activities, 

constructs also contained within the SIPSO. Alternatively, the prominence of the baseline 

EQ5D may reflect the inclusion of a question pertaining to pain, a construct which is 

conceptually linked to patient outcome, but otherwise unmeasured in the study dataset. 

The value of a questionnaire to reflect quality of life in the week immediately following a 

stroke is debatable. This is likely to be a time of considerable emotional and physical stress, 

perhaps reflected in the perception of quality of life. Moreover, questions pertaining to 
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ability to perform usual activities (contained within the EQ5D) may be difficult to answer in 

the inpatient hospital setting. However, as the baseline EQ5D is such a strong predictor of 

six month SIPSO score, it would be beneficial to include it in a routine dataset for further 

exploration, although a question specifically relating to pain at baseline may warrant 

further exploration as an alternative measure.  

6.2  Alternative methodology for exploring the relationships between 

processes of care and patient outcome in observational cohorts 

Conducting randomised controlled trials for processes of care that are established as ‘best 

practice’ would clearly be unethical and this approach would therefore be precluded. 

Exploration of the relationships between processes of care and outcome therefore rely on 

(prospective or retrospective) observational data.  

An alternative approach to regression modelling to explore the effect of individual 

processes on patient outcome in observational cohorts could involve the use of 

instrumental variables. Instrumental variables are correlated with a covariate (process 

marker) but not the dependent variable (or any other variables which influence the 

dependent variable), such that any effect of the instrumental variable on the dependent 

variable is through its relationship with the covariate (Pearl J 2009 p 247; Newhouse et al 

1998) see also Figure 93. Therefore, the receipt of a particular process is conditional on the 

instrumental variable. For example, availability of a bed on a stroke unit is likely to be 

highly correlated with direct admission to a stroke unit, but unlikely to have direct 

association with patient outcome other than through the association with early stroke unit 

treatment. Assuming that factors such as stroke severity have no association with transfer 

to a stroke bed if one is available, direct admission to a stroke bed is therefore dependent 

on stroke bed availability and the latter could be considered to be acting as a quasi-

randomising variable (Figure 93, adapted from Newhouse et al 1998).  

Figure 93 Stroke unit bed availability as a possible instrumental variable.  

 

Such an approach has been used in a stroke study by (Xian et al  2011) to compare 

outcomes of patients admitted to stroke centres vs. non-specialist hospitals using distance 
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from the hospital as the instrumental variable. The use of instrumental variables may 

therefore be useful in observational cohorts in circumstances where randomisation is 

unethical, or not practicable. This approach, however, requires further research.  

6.3 Study limitations  

6.3.1 Statistical and methodological weaknesses 

The linear regression models performed in this thesis are based on the assumptions that 

the latent trait of the SIPSO is conceptually linked to the predictor variables, and that the 

Rasch transformed SIPSO subscores represent the latent trait in an older post stroke 

population. It is possible that there are systematic differences in the way that SIPSO 

questions would be answered by older patients as compared to those of the younger post-

stroke population – i.e. there may be variability in the performance of the SIPSO scale 

across baseline patient characteristics. Differential item functioning (DIF) of age with 

respect to the latent trait has not been performed in an older population, and if 

differences were to exist in the manner that patients of different ages answer SIPSO 

questions, this may limit the utility or validity of the SIPSO, and the conclusions that may 

be drawn. This therefore represents a significant limitation of the work.  

Post estimation assumptions were generally met for the models generated in the study. 

The notable exception is the deviation from normality of residuals in model 4. This 

deviation is at the tails of the distribution suggesting it may be due to outliers. Re-running 

models without outliers did not improve normality, and resulted in previous stroke no 

longer featuring as an important predictor. The violation of normality assumptions may 

therefore represent the the absence of important predictors, and inferiority of models that 

do not include baseline assessments.  

The ordinal NEADL has been entered into models as a summed score, an approach which 

makes an assumption that it may be treated as a continuous variable. This assumption may 

be responsible for the deviations from linearity and normality of residuals in models to 

predict the physical subscore of the SIPSO. However, these deviations may also reflect the 

effect of particularly influential cases (i.e. cases with large residuals at high leverage 

points). In models containing the NEADL at baseline, these influential cases may have 

arisen through inconsistencies as regards whether the NEADL was completed with respect 

to pre- or post-stroke function. In future studies, the instructions in this regard would need 

to be made more explicit.  

The floor and ceiling effects of the NEADL and the SIPSO may limit the validity of the 

models. These effects cannot be mitigated through transformations of the data and 

modelling alternative distributions (e.g. using censored (Tobit) regression) may have 

helped to circumvent these problems.  
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Although attempts have been made to include clinically important variables in the models, 

the methodological approach to the identification of important predictors of patient 

outcome set out in this thesis is primarily data-driven. It is important in the development 

of any dataset for routine collection, that the choice of variables reflects clinical, as well as 

statistical reasoning. However, this is with the caveat that the dataset should be small 

enough to be feasible for routine collection. 

6.3.2 Representativeness of study population 

There is a potential for selection bias in the types of patient that were recruited as 

compared with the general post stroke population. The additional collection of 

anonymised screening data meant that an objective measurement of the 

representativeness of the study population was made. However, the number of patients 

screened across three sites in six months (656) is less than would be expected. A 

conservative estimate of a combined population of 1.5 million in Leeds, Bradford and York 

(Office for National Statistics 2011) and an annual UK stroke incidence of 1.3/1000 

population per year (based on London Stroke Register incidence data) (Saka O et al  2009) 

would mean that the number of patients screened would represent about two thirds of 

expected strokes in a six month period. In addition the main reason for non-eligibility of 

screened patients was a non-stroke diagnosis (74/193 = 38%, with 59 of these cases in 

York), which would tend to imply that many patients admitted with a label of “query 

stroke” have an alternative diagnosis. Two thirds of the patients that were screened and 

eligible for the study (463) were recruited (312), with the main reasons for non-

recruitment being the severity of stroke or its complications leading to the need for 

palliative care, patients not wishing to participate, or patients lacking capacity with no 

carer available for assent (Figure 33, p 120). When compared with the screened 

population, patients recruited into the study were younger (by seven years) and less 

disabled but no more likely to have a carer available. The difference in baseline Barthel 

Index (as a measure of disability) is likely to reflect patients in receipt or likely to receive 

palliative care being excluded from the study.  

The study sample therefore represents a group of patients aged between 31-95, median 

74, with equal sex distribution and baseline BI ranging from 0-20 (median 13) who were 

felt on admission, to be likely to survive to discharge. In this way, the study sample is 

reflective of a heterogeneous population of stroke survivors, rather than the general post-

stroke population. Consideration of consecutive hospital admissions (as would occur with a 

stroke register) includes patients that die in hospital. These patients would not have a date 

of discharge but a date of death and this may result in spuriously short lengths of stay 

given their stroke severity. The proposed use of length of stay as a case-mix adjuster is in 

the routine adjustment of functional post stroke outcomes. Patients in whom these are 

available form a subgroup of the general post stroke population, not containing patients 
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who do not survive to follow up. The exclusion from the study population of patients who 

were not felt to be likely to survive to discharge was therefore not unreasonable.  

A further potential cause of selection bias is withdrawals or non-response to six-month 

questionnaires. Patients who responded to the questionnaire compared with those that 

did not respond were older (median difference 7 years), with no difference in sex 

distribution. There is no difference in baseline BI or predicted probability of good outcome 

(as calculated with the SSV case-mix adjuster) between responders and non-responders to 

the questionnaires. There are, however, significant differences in both BI and propensity 

score between patients who responded and those that died or withdrew from the study. 

As the regression models were constructed to explore important prognostic factors in 

patients who survive, these differences were not felt be problematic.  

The number of study sites and the sample size are too small to draw conclusions regarding 

specific organisational or structural aspects of care and their relationship with patient 

outcome. However, there are specific features at individual sites that warrant specific 

consideration here as potential sources of bias. Firstly, the length of stay at York hospital 

was significantly shorter than at the other study sites. This may reflect the higher median 

BI at York, however, this may also reflect particular organisational structures at York that 

would  warrant further examination (e.g. staffing levels for therapists or a well-established 

Early Supported Discharge team).  

Bias due to exclusion of patients with dysphasia or cognitive impairment was reduced 

through the use of carer assent for recruitment. Over half of the patients included in the 

study were reported to have dysphasia at baseline. However, although the nature of the 

impairment (e.g. fluent vs non-fluent dysphasia) may have a bearing on ability to complete 

assessments, this was not specified. The presence of these impairments increases the 

likelihood of proxy responses to questionnaires. Although the proxy reliability of the SIPSO 

has been shown to be acceptable, this is likely to have affected the validity of the 

responses. Differential item functioning of the SIPSO items for patients with aphasia or 

cognitive impairment who self-complete the SIPSO has not been performed, and this may 

affect the scaling properties of the measure, and therefore the validity of results in 

subgroups with language or cognitive impairments. Future work to explore the scaling 

properties of the SIPSO in these patients would be useful.   

6.3.3  Data completeness and quality  

 The validity of the models generated in this study is reliant on the quality of the data from 

which they are derived. Similarly, the quality of data collected routinely (as occurs for the 

purposes of prospective audits such as SINAP, or for remuneration), are reliant on data 

capture processes. The increase in routine stroke data reporting requirements in recent 

years has not necessarily resulted in improvements to data collection infrastructure (see 
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section 1.2.1). Similar data capture methodology to that which was used in this study is 

often employed in routine data collection – i.e. data are extracted retrospectively from 

case-notes and existing hospital electronic records. Therefore the problems encountered 

during the study in terms of data quality and missingness are likely to be generalizable to 

routine data collections. Indeed, many of the problems encountered in attempting to 

obtain accurate data for the purposes of the research study are likely to be amplified in 

routine data collections where data collection resource may be scare, and motivation may 

be more focused on the volume, rather than the quality of data. In other words, if the 

rationale for capturing data is to meet mandatory data requirements for the purposes of 

remuneration or reporting, the emphasis is not necessarily on data quality and accuracy.  

The key to accuracy in data collection is in the specification and application of explicit 

definitions of individual data items – i.e. there should be little or no scope for 

interpretation at the point at which the data are extracted. It is preferable, therefore, to 

collect ‘hard’ data from which further information may be derived – i.e. dates and times 

that specific events occurred (e.g. date and time of admission, and date and time of 

imaging) rather than a series of tick boxes to indicate dichotomous responses as to 

whether or not a particular process was performed within a time frame (e.g. imaging 

within 24 hours of admission). The latter approach lacks both standardisation and 

validation. However, it was seen during the study, that often, the dates that were 

extracted from case-notes and hospital electronic systems were not accurate resulting in 

spurious data – indeed, many fields were not used due to concerns regarding their 

accuracy (for example patient movement around the hospital, or time of admission to 

hospital). For the purposes of the study, this led to the requirement for creation of 

composite variables (e.g. patient admitted to hospital on the same day, or day after their 

stroke), with the consequent loss of information, and ongoing concerns regarding data 

accuracy.  

The difficulties experienced in extracting accurate times of events from existing routine 

data sources highlights a major barrier to the use of these data to monitor routine care for 

the purposes of audit or remuneration. If these data are not recorded accurately, the 

information and conclusions that are derived from them are also not accurate. Future data 

collections should therefore be focused on collecting basic data (such as time of hospital 

admission) accurately, before more complex data are requested. Improvements to routine 

data collection may be made through electronic, point of care data capture – in this way, 

data may be captured according to explicit standard data definitions and recorded 

contemporaneously by those that create it. However, this approach requires both a 

significant change to patterns of current working and organisation-wide change in 

attitudes to data collection. This approach to data collection, adopting standard data 
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definitions to collect stroke data electronically at the point of patient care forms the basis 

of the next phase of the CIMSS project.  

 Missing data form another significant barrier to the accuracy of the study models, and 

may result in non-representativeness of the sample. As baseline data were extracted from 

case-notes, each process or case-mix data item has several potential causes of 

missingness: process performed but not recorded, not performed, performed and 

recorded but missed (not extracted) by the researchers. I had hoped to be able to identify 

the different causes of missing data, although this proved not to be feasible due to the 

complexity and additional work involved in capturing these data. These problems are, in 

part, a symptom of retrospective data extraction, especially if paper records are not 

standardised and instead collected from the narrative entries of a patient’s inpatient stay. 

This has specific implications for variables where “yes, no, no but” codes are required, as 

the distinction between “no” and “no but” may not be recorded explicitly. Recording of 

these data in a standardised format (e.g. on a stroke proforma) is becoming more 

widespread (all of the study sites in the study complete paper based stroke proformas 

during the course of the admission) and may help to overcome these problems. However, 

the presence of such a proforma is no guarantee that it is adequately and accurately 

completed. Moreover, attention to specific aspects of process on a proforma, may lead to 

saturation of these processes (missing process data were infrequent, and there was little 

variability in patients who did, and did not receive specific aspects of care process see 

Figure 44 and discussion in section 5.6.8). Patients with any missing process or baseline 

patient reported assessment data for the variables entered into the model were 

automatically excluded from the regression analysis by the STATA software. However, 

comparison of baseline BI between these patients and those with complete data did not 

reveal any significant differences.  

The return rate of six months outcomes questionnaires of 71% is acceptable for a postal 

questionnaire (Teale EA et al  2010). Examination of baseline and six month patient 

completed questionnaires did not reveal any pattern to the missingness (i.e. there were no 

questions that were consistently missed in the returned questionnaires).  

This study presents a pragmatic examination of the relationships between stroke care 

processes and patient reported outcomes following stroke, using methodology comparable 

to existing routine data collection infrastructure. The components of the study datasets 

have been determined through systematic examination of the stroke evidence base and, at 

the time of writing, include the best available case-mix adjustment model and the 

preferred patient reported postal outcomes instrument selected by expert and consumer 

groups. The process dataset comprised the markers from the 2008 RCP NSSA which, at the 

time of the development of the research datasets, was the most standardised and regular 

data collection in England, Northern Ireland and Wales (Royal College of Physicians 2009b). 
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Chapter 7 Conclusions 

7.1 Definition of a minimum dataset based on study findings 

The aims of this study were to identify which patient reported outcome measure(s), case-

mix adjuster and care process markers should be included in a routinely collected stroke 

dataset. A previous systematic review (Teale EA et al 2010) had identified candidate 

outcome instruments on the basis of their validity and reliability for postal collection 

following stroke. These were refined using group decision making techniques to the two 

preferred instruments of a group of consumers and stroke experts (the NEADL and the 

SIPSO). The SIPSO was chosen as the primary endpoint in the study due to its relatively 

superior properties in terms of completion rates and fewer floor and ceiling effects. 

However, in order to confirm the SIPSO instrument reflects the latent trait of reintegration 

in older stroke survivors, testing of differential item functioning with respect to age in an 

older population is required.   

Routine collection of patient outcomes following stroke is not currently performed in 

England, Northern Ireland and Wales. However, this is likely to change through the 

Outcomes Framework (Department of Health 2010e). An open competition held by the 

Department of Health to identify a marker of stroke recovery (the ‘Innovation in Outcomes 

competition’) has resulted in the modified Rankin Score at six months post stroke being 

incorporated into the Outcomes Framework (Department of Health 2011c). It is also 

possible that the Patient Reported Outcome Framework (PROMs) (Department of Health 

2008a) will expand to include stroke. A robust case-mix adjustment method for routine 

stroke outcomes data is therefore desirable. 

A systematic review performed as part of this thesis has identified the SSV case-mix 

adjustment model as the most clinically feasible and statistically robust model for use in 

routine stroke care for the prediction of dichotomised OHS (see Chapter 3) (Counsell C et al  

2002). This study has shown that despite being useful for stratified randomisation in 

clinical trials, the SSV adjustment model may lack generalizability, and therefore utility to 

predict outcomes other than the dichotomised OHS in routine empirical populations. This 

study identified that length of stay was a prominent predictor of both physical and social 

subscores of the SIPSO. Discriminatory properties of LOS in this (internal derivation) study 

showed that LOS was non-inferior to the SSV model in prediction of dichotomised OHS. 

This requires external validation.  

Adjusting for length of stay as a proxy for stroke severity may offer a pragmatic alternative 

to more complex case-mix adjustment methods in observational cohorts of survivors to 

hospital discharge. However, it is possible that LOS may be more useful as a measure of 

service efficiency rather than as a proxy for stroke severity and this requires further 

investigation.  
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The main determinants of post stroke outcome in this study have been identified as direct 

or proxy markers of stroke severity. This study does not add additional convincing evidence 

that the current (RCP NSSA) process markers are associated with improved patient 

outcomes. However, as the majority of these process markers are near saturation, 

demonstration of their benefits may be limited by a lack of variability, and by the sample 

size of the study. Moreover, process markers are masked by (or act as) case-mix or stroke 

severity variables in both regression trees and linear regression models. Where process 

markers do feature in models, this is largely as a reflection of organisational structure 

rather than the delivery of particular processes of care. The exception to this observation 

may be a formal communication assessment in patients in whom it is indicated which was 

associated with clinically significant better physical outcome in one model. However, this 

may represent a phenomenon particular to the study dataset and would require further 

examination and verification in external datasets. 

Markers of quality in stroke care have been changing rapidly and erratically since the 

publication of the National Stroke Strategy (Department of Health 2007b) (see also 1.2.1), 

often with little or no strong evidence to support the relationship between individual 

process markers and patient outcome. In the absence of this understanding  of these 

relationships, information may be misinterpreted, service development may misdirect 

resources and healthcare provider institutions be unfairly sanctioned on the basis of poorly 

comparable data (Lilford RJ et al  2004). Moreover, concerns regarding the accuracy and 

quality of these routinely collected data may further limit their utility. This study offers 

preliminary data as regards important core predictors of functional patient outcomes that 

may be used as the basis of a minimum dataset for further testing.  

 

7.2 Future work 

This thesis raises a number of unanswered questions which require further exploration and 

verification. Firstly, is length of stay a feasible and valid alternative to more complex 

methods of case-mix adjustment for routine and observational post-stroke cohorts? 

Further testing of this hypothesis through secondary use of the FOOD trial data is planned 

to determine the external validity of length of stay as a univariate case-mix adjuster. The 

FOOD trials comprised three international multicentre randomised controlled trials of early 

feeding (via PEG or nasogastric tube) versus ordinary diet with the primary endpoint of 

dichotomised OHS at 6 months post-randomisation. Randomisation was stratified 

according to the SSV case-mix adjustment model. Eligibility criteria were broad, comprising 

patients where consent was given (or obtained from a relative), admitted to hospital 

within 7 days of stroke (or inpatient stroke), where the responsible clinician was unclear as 

to the best method of feeding. Patients with subarachnoid haemorrhage or where 
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supplementary feeding was unlikely to be beneficial (e.g. TIA) or contraindicated (e.g. the 

morbidly obese, unconscious, or imminently dying) were excluded (Dennis M et al 2006). 

The FOOD trial data therefore represents a heterogeneous post-stroke population, and 

offers an opportunity to externally validate LOS against the SSV, and to test the calibration 

of LOS as a univariate predictor of dichotomised OHS in an external dataset.  

The Rasch analysis that has been performed on the SIPSO outcome measure was 

performed in a population of younger stroke survivors, with consequent uncertainty 

regarding the properties of the scale in older patients. The CIMSS study offers an 

opportunity to repeat this Rasch analysis in an older population, and to examine whether 

there is differential item functioning for baseline patient characteristics, especially age.  

A communication assessment performed in patients who required one, was the only 

variable featuring in the models that was likely to represent a true marker of care process. 

It is unclear from the current study whether it is the assessment, or any consequent 

therapy that afforded better outcomes in these patients. This therefore requires further 

verification, and exploration in an external dataset. 

In line with the direction of travel from Connecting for Health (Department of Health 

2011a), the development of a core stroke dataset for electronic collection should be based 

on the principles of robust data definitions (a data dictionary) and a standard way of 

combining data to derive metrics (a standard data model). Based on the findings from this 

study, the key fields for inclusion in such a dataset are outlined in Table 65, along with 

explicit data definitions. From these 17 fields, the important predictors, and case-mix 

variables identified in the study models may be derived. As data collection infrastructure 

improves, particular aspects of stroke care that are clinically important, where individual 

clinicians or services have particular data requirements, or where there are areas that 

require further research could then be added onto this core dataset in a modular and 

incremental fashion to describe further aspects of patient care. For example, the addition 

of a field to capture start and finish times of individual therapy sessions as a repeated 

measure would allow exploration of the optimal time frame within which a patient should 

be assessed by a therapist, patterns in delivery of therapy, total duration of therapy and 

possible ceiling effects of interventions. Moreover, if mandatory data reporting 

requirements were to change (for example to physiotherapy assessment within 24 hours), 

the individual data items that are collected need not change in order for the new metric to 

be derived. Of additional benefit is that this approach circumvents many of the problems 

with saturation of process markers through allowing the creation of continuous ‘time to 

event’ variables. Using the data in this way also allows overlap in existing data 

requirements to be exploited (as many fields are common to different markers and 

metrics) and offers reassurance that derived metrics are comparable.  
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The next phases of the CIMSS CLAHRC study focus on the Information Technology solution 

and behavioural change aspects of implementation of point of care (electronic) data 

capture in hospitals across West Yorkshire.  The dataset that is embedded within these 

hospitals is based on the findings from this study, with additional fields to allow trusts to 

produce reports to meet existing mandatory and voluntary data requirements. Once these 

data collection processes are embedded, future work may examine the feasibility of 

prospective point of care data capture and the data dictionary approach to stroke data.  
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Appendix A  Case-mix adjuster systematic review 

A-1 MEDLINE Search Strategy 

Devised by Deirdre Andre at the University of Leeds Healthcare Library 

1. cerebrovascular disorders/ 

2. exp basal ganglia cerebrovascular disease/ 

3. exp brain ischemia/ 

4. exp carotid artery diseases/ 

5. stroke/ 

6. exp brain infarction/ 

7. exp cerebrovascular trauma/ 

8. hypoxia-ischemia, brain/ 

9. exp intracranial arterial diseases/ 

10. exp intracranial arteriovenous malformations/ 

11. exp "intracranial embolism and thrombosis"/ 

12. exp intracranial hemorrhages/ 

13. vasospasm, intracranial/ 

14. vertebral artery dissection/ 

15. aneurysm, ruptured/ and exp brain/ 

16. brain injuries/ 

17. brain injury, chronic/ 

18. exp carotid arteries/ 

19. endarterectomy, carotid/ 

20. *heart septal defects, atrial/ or foramen ovale, patent/ 

21. *atrial fibrillation/ 

22. (stroke or poststroke or post-stroke or cerebrovasc$ or brain vasc$ or cerebral vasc$ or cva$ or 

apoplex$ or isch?emi$ attack$ or tia$1 or neurologic$ deficit$ or SAH or AVM).tw. 

23. ((brain$ or cerebr$ or cerebell$ or cortical or vertebrobasilar or hemispher$ or intracran$ or 

intracerebral or infratentorial or supratentorial or MCA or anterior circulation or posterior 

circulation or basal ganglia) adj5 (isch?emi$ or infarct$ or thrombo$ or emboli$ or occlus$ or 

hypox$ or vasospasm or obstruction or vasculopathy)).tw. 

24. ((lacunar or cortical) adj5 infarct$).tw. 

25. ((brain$ or cerebr$ or cerebell$ or intracerebral or intracran$ or parenchymal or intraventricular 

or infratentorial or supratentorial or basal gangli$ or subarachnoid or putaminal or putamen or 

posterior fossa) adj5 (haemorrhage$ or hemorrhage$ or haematoma$ or hematoma$ or 

bleed$)).tw. 

26. ((brain or cerebral or intracranial or communicating or giant or basilar or vertebral artery or 

berry or saccular or ruptured) adj5 aneurysm$).tw. 

27. (vertebral artery dissection or cerebral art$ disease$).tw. 

28. ((brain or intracranial or basal ganglia or lenticulostriate) adj5 (vascular adj5 (disease$ or 

disorder or accident or injur$ or trauma$ or insult or event))).tw. 

29. ((isch?emic or apoplectic) adj5 (event or events or insult or attack$)).tw. 

30. ((cerebral vein or cerebral venous or sinus or sagittal) adj5 thrombo$).tw. 

31. (CVDST or CVT).tw. 

32. ((intracranial or cerebral art$ or basilar art$ or vertebral art$ or vertebrobasilar or vertebral 

basilar) adj5 (stenosis or isch?emia or insufficiency or arteriosclero$ or atherosclero$ or 

occlus$)).tw. 

33. ((venous or arteriovenous or brain vasc$) adj5 malformation$).tw. 

34. ((brain or cerebral) adj5 (angioma$ or hemangioma$ or haemangioma$)).tw. 

35. carotid$.tw. 

36. (patent foramen ovale or PFO).tw. 

37. ((atrial or atrium or auricular) adj fibrillation).tw. 

38. asymptomatic cervical bruit.tw. 

39. exp aphasia/ or anomia/ or hemiplegia/ or hemianopsia/ or exp paresis/ or deglutition 

disorders/ or dysarthria/ or pseudobulbar palsy/ or muscle spasticity/ 
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40. (aphasi$ or apraxi$ or dysphasi$ or dysphagi$ or deglutition disorder$ or swallow$ disorder$ or 

dysarthri$ or hemipleg$ or hemipar$ or paresis or paretic or hemianop$ or hemineglect or spasticity 

or anomi$ or dysnomi$ or acquired brain injur$ or hemiball$).tw. 

41. ((unilateral or visual or hemispatial or attentional or spatial) adj5 neglect).tw. 

42. or/1-41 

43. Risk Adjustment/ 

44. (case mix$ adj3 adjust$).tw. 

45. exp "Severity of Illness Index"/ 

46. Diagnosis-Related Groups/ 

47. DRG$1.tw. or diagnosis related group*.mp. or diagnostic related group*.mp. 

48. Prognosis/ 

49. exp "Outcome and Process Assessment (Health Care)"/ 

50. Comorbidity/ 

51. morbidity/ 

52. mortality/ 

53. survival rate/ 

54. or/43-53 

55. exp models, statistical/ 

56. ROC Curve/ 

57. roc curve.tw. 

58. exp Survival Analysis/ 

59. Data Interpretation, Statistical/ 

60. multivariate analysis/ 

61. or/55-60 

62. 42 and 61 and 54 
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A-2 Data extraction tables for studies describing models included in the review 

Belfast Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to collect 

at ward 

level? 

Fullerton 

(1988) 

Albert’s test 

score, leg 

function, 

conscious 

level, arm 

power, 

weighted 

mental score, 

non-specific 

ECG changes 

Within 48 

hours of 

stroke 

Yes Yes 4 level 

measure of 

dependency 

206 Linear logistic 

regression 

analysis 

(canonical 

discriminant 

analysis) 

35 

predictor 

variables 

and >40 

dummy 

variables 

EPV<10 

No No  No No 

Belfast Validation studies 

 Population Inception cohort Data source Loss to 

follow-up 

Outcome assessed Sample size Model performance 

Gladman (1992) Unselected consecutive patients admitted with stroke 

over 3 years 

‘On admission’ Prospective 

cohort study 

 Death at 3 months 102 Sensitivity 94%, 

specificity 29% 

Likelihood ratio 

1.3 (1.1-1.6) 
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Bristol Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 

10% loss to 

follow-up 

Assessment 

of a reliable 

outcome 

and at a 

fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Wade et 

al (1983) 

Age, 

hemianopia, 

arm motor 

deficit, sitting 

balance, 

urinary 

incontinence 

On admission 

to 

rehabilitation 

unit 

Yes 48/162 with 

insufficient 

data =30% 

No 

significant 

difference 

between 48 

patients 

with 

insufficient 

data and 

whole 

sample 

BI at six 

months post 

stroke 

(measured 

on 0-100 

scale) 

162 Multiple 

linear 

regression 

Yes Not stated Yes Correct 

prediction of 

6 month BI 

(within 5 

points) in 55% 

of cases 

Attendees at a 

non-residential 

rehabilitation 

facility – time 

from stroke to 

recruitment not 

uniform 

Yes 

Bristol Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample 

size 

Model performance 

Gladman 

et al 

(1992) 

Unselected 

consecutive patients 

admitted with stroke 

over 3 years 

7-10 days 

following 

acute 

admission to 

hospital 

Prospective cohort 

study 

 Barthel 

Index at 

3 months 

102 Sensitivity 100%, specificity 0%  
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Edinburgh Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective data 

collection 

Less than 

10% loss 

to follow-

up 

Assessment 

of a reliable 

outcome 

and at a 

fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion 

criteria that 

may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Prescott  

et al 

(1982) 

Upper limb 

motor 

function, 

proprioception, 

postural 

stability 

? Retrospective use 

of RCT data 

(patients 

randomised to 

treatment on a 

stroke unit) 

Yes, 

however 

30/100 

surviving 

patients 

untestable 

on at least 

one test 

at 4 weeks 

and 

ascribed 

worst 

outcome 

score 

 

7 level 

dependency 

scale 

155 Linear 

regression 

No No No 75% correct 

prediction of 

independence 

at week 4 

Minor and very 

severe strokes 

excluded 

Yes 

Edinburgh Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample 

size 

Model performance 

Gladman 

et al 

(1992) 

Unselected consecutive 

patients admitted with 

stroke over 3 years 

At four 

weeks 

from 

admission 

to acute 

hospital 

Prospective cohort 

study 

2/102 Death or 

prolonged 

hospital 

stay 

102 Sensitivity 55%, specificity 65%  
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G score Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 10% 

loss to follow-

up 

Assessment 

of a reliable 

outcome 

and at a 

fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Gompertz 

et al 

(1994) 

Limb paralysis, 

higher cerebral 

dysfunction+ 

hemiparesis+ 

hemianopia, 

drowsy, age, 

unconscious at 

onset, 

uncomplicated 

hemiparesis 

Within 24 

hours of 

stroke 

Prospective 

cohort 

study 

No 12% loss to 

follow-up, a 

further 5 had 

incomplete 

data. 

Characteristics 

of non-

responders not 

examined 

BI at six 

months 

361 

recruited 

(314 with 

complete 

data) 

None- 

adaptation 

of Guys 

score to 

simplify 

weights 

Yes   Prediction of 

BI<13 at 6 

months 

Sens: 47% 

Spec:73% 

LR 1.74 

No Yes 

 Validation studies: NONE 
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Guys Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 

10% loss 

to follow-

up 

Assessment of 

a reliable 

outcome and at 

a fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Allen 

(1984) 

Limb paralysis, 

higher cerebral 

dysfunction+ 

hemiparesis+ 

hemianopia, 

drowsy, age, 

unconscious at 

onset, 

uncomplicated 

hemiparesis 

Within 2 

weeks 

Yes 7% at 2 

months, 

14% at six 

months 

(excluded 

from 

analysis) 

Four point scale 

of dependency 

(dichotomised) 

at two months 

and six months 

148 Stepwise 

logistic 

regression  

50 

patients 

with poor 

outcome, 

10 

variables 

entered 

into 

model 

EPV<10 

No Stepwise 

variable 

selection 

89% correct 

allocation 

Patients over 76 

excluded 

Yes 

Guys Validation studies 

 Population Inception 

cohort 

Data source Loss to follow-

up 

Outcome 

assessed 

Sample size Model performance 

Gompertz 

(1994) 

Consecutive patients 

admitted with stroke 

1990-91 (UK) 

Within 24 

hours of 

stroke 

Prospective 

cohort study 

42 (12%) BI (postal) 

at six 

months 

361 Sensitivity 0.72, specificity 0.63 for 

prediction of poor outcome (Likelihood 

ratio 1.97) 

 

Gladman 

(1992) 

Unselected consecutive 

patients admitted with 

stroke over 3 years 

‘On 

admission’ 

Prospective 

cohort study 

 Death at 

3 months 

102 Sensitivity 58%, specificity 83% 

Likelihood ratio 3.3 (1.8-6.0) 

 

Muir et al 

(1996) 

All patients with 

Ischaemic and 

haemorrhagic stroke 

admitted to a single 

stroke unit. No 

restriction on age or 

stroke subtype 

Within 72 

hours of 

admission 

Prospective data 

collection 

Less than 10% Alive at 

home 

versus in 

care or 

dead at 3 

months 

408 Prediction of poor outcome when added to 

model with NIHSS (i.e. not an assessment of 

performance of Guys score in isolation) 

Sens  70% 

Spec 89% 

Predictive accuracy 82% 
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Johnston  Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less than 

10% loss 

to follow-

up 

Assessment of a 

reliable 

outcome and at 

a fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Johnston 

et al 

(2000) 

Age, NIHSS 

score, small 

vessel 

stroke, 

previous 

stroke, 

diabetes, 

pre-stroke 

disability, 

infarct 

volume 

6 hours 

from 

stroke 

onset 

Retrospective 

use of RCT data 

(RANTTAS) – 

intervention 

and control 

groups 

No 

NIHSS 

35/256 

BI 27/256 

GOS 

27/256 

(excluded 

from 

analysis) 

Excellent or poor 

outcome based 

on dichotomised 

NIHSS score, BI 

and Glasgow 

Outcome Score 

(GOS) at 3 

months 

256 Logistic 

regression 

models. All 

seven 

variables 

used.  

EPV<10 

(NIHSS), 

EPV≥10 

(BI and 

GOS) 

 

Six 

models 

specified  

Yes No C statistics >0.8 

for all models 

except 

prediction of 

devastating 

outcome with 

NIHSS (0.79) 

Unclear No 

Johnston  Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-

up 

Outcome 

assessed 

Sample size Model performance 

Johnston et al 

(2003) 

Ischaemic stroke population 

eligible for thrombolytic 

therapy 

Within 3 

hours of 

symptom 

onset 

Retrospective use of placebo 

arm of RCT (NINDS trial)  

 Excellent 

or very 

poor 

outcome 

as above 

299 

EPV >10 for 

all models 

Five out of six models have excellent discrimination (c statistic >0.8) 

C statistic for prediction of devastating outcome with NIHSS 0.75 

Calibration: Over optimistic  predictions of excellent recovery with NIHSS 

for patients in middle band of stroke severity 

Johnson et al 

(2004) 

Ischaemic stroke population 

eligible for thrombolytic 

therapy 

Within 3 

hours of 

symptom 

onset 

Retrospective use of 

intervention and control arm 

of RCT (NINDS trial) 

 Excellent 

or very 

poor 

outcome 

as above 

615 

 

Study used model to calculate differences in unadjusted 

(univariate) and adjusted (using pre-specified models) odds 

ratios for prediction of excellent or very poor outcome. 

Model performance not measured.  
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Lincoln Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less 

than 

10% loss 

to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect at 

ward 

level? 

Lincoln 

et al 

(1989) 

Age, sex, marital 

status, side of 

stroke, weeks 

post stroke, tests 

of motor function, 

ADL, perception, 

language, 

memory, 

cognition, 

incontinence 

No – one 

week post 

admission 

to rehab 

facility (1-13 

weeks post 

stroke) 

Yes No  

16/70 

lost to 

follow 

up at 9 

months 

Rivermead 

gross function 

score, ADL 

status at 

discharge and 

nine months, 

discharge 

destination 

70 Stepwise 

regression 

No No Stepwise 

variable 

selection 

81% of cases 

correctly 

classified 

Post-acute 

patients admitted 

to rehabilitation 

unit 

No 

Lincoln Validation studies 

 Population Inception cohort Data source Loss to 

follow-up 

Outcome 

assessed 

Sample size Model performance 

Lincoln et al (1990) Prospective observational cohort admitted 

to rehab stroke unit 

One week post transfer to 

stroke unit 

Data capture for purposes of 

validation study 

 Discharge 

destination 

57 

EPV<10 

Sensitivity 98%, 

specificity 25% 
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mNIHSS Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less than 

10% loss 

to follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Lyden 

et al 

(2001) 

Items 1B, 1C, 

2,3,5 a&b, 6 

a&b, 8, 9, 11 

from the NIHSS 

Conscious level, 

gaze, visual 

fields, upper and 

lower limb 

power, sensory 

function , 

language and 

neglect 

Within 24 

hours of 

stroke 

onset 

Retrospective 

use of data 

from 2 placebo-

controlled trials 

of rt-PA in 

acute ischaemic 

stroke (NINDS-

rtPA (REF)).  

Not 

specified 

 

Good/poor 

outcome BI 

>95, mRS <1 

and GOS=1 

mNIHSS<1  at 

90 days 

291 Developed 

through 

factor 

analysis of 

the NIHSS_15 

, redundant 

items 

dropped to 

produce the 

mNIHSS 

(Lyden et al 

1999) 

   Performs 

identically to 

the NIHSS 

when 

substituted 

into a model 

to predict 

outcome after 

ICH 

Patients eligible 

for thrombolysis 

 

mNIHSS 

performed by 

specialists 

certified in 

administration of 

NIHSS 

 

 Validation studies (psychometric testing) 

 Population Inception cohort Data source Loss to 

follow-up 

Outcome 

assessed 

Sample size Model performance 

Meyer et al 

(2002) 

Ischaemic and 

haemorrhagic 

stroke 

Inpatients and 

outpatients 

No specification for time 

since event 

Prospective 

cohort 

 BI, mRS 27 for validity 

assessments 

Examines reliability / validity of mNIHSS rather than model 

performance. Good inter-rater reliability  and concurrent validity. Valid 

predictor of NIHSS.  
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NIHSS + 

age 

Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less 

than 

10% loss 

to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect at 

ward 

level? 

Weimar 

(2004) 

Age 

NIHSS 

Within 6 

hours of 

onset 

Data 

extracted 

from 

prospective 

stroke 

database 

Yes BI≤95 (model 

1) and 

mortality 100 

days mortality 

(model 2) 

1079 Backwards 

and forwards 

selection 

logistic 

regression 

analysis 

Model 1 

EPV>10 

Model 2 

EPV<10 

Yes Yes, and 

interaction 

terms 

Prediction of 

BI≤95 

Sensitivity 

63% 

Specificity 

83% 

Prediction of 

mortality 

Sens  59% 

Spec 92% 

 No 

NIHSS+age Validation studies 

 Population Inception 

cohort 

Data source Loss to follow-up Outcome assessed Sample size Model performance 

Weimar 

(2004) 

Same sample as used 

to validate Weimar 

models 1&2.  

13 acute hospitals in 

Germany 2001-2002. 

Pre-stroke mRS>2.  

Within 6 

hours of 

onset 

Prospective data 

collection  

Centres with>10% loss to follow up 

not included. Patients with 

incomplete data excluded 

275/1582 (17%) but did not differ 

significantly from those included 

BI<95 and death at 120 

days 

1307 120 day BI<95 

Sens 63%  

Spec 83% 

120 day mortality 

Sens 58% 

Spec 92% 

 

Kӧnig et al 

(2008) 

Combined data from 

11 randomised stroke 

trials. 

Inclusion/exclusion 

criteria for individual 

trials not specified 

Within 6 

hours of 

onset 

Retrospective 

analysis of VISTA 

data (Virtual 

International 

Stroke Trials 

Archive). 

BI 795/5843=14% 

Mortality <10% 

BI or mortality at 90 days 5843 BI <95 at 90 days  c statistic = 0.808 

90 day mortality c statistic = 0.706 

 



- 248 - 

 

NIHSS_8 Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included 

in model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 

10% loss 

to follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample size Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Tirschwell 

et al 

(2002) 

NIHSS_15 items 

1a, 2,3,4 6a&b 

9, 10 

conscious level, 

gaze visual 

fields, facial 

paresis and 

lower limb 

motor scores, 

language and 

dysarthria 

Within 

24 

hours 

Secondary 

use of data 

from 

placebo arm 

of three 

RCTs 

Patients 

with 

complete 

data 

selected 

Dichotomised 

‘Global 

outcome score’ 

(good/poor) 

derived from 

NIHSS_15 (≤1), 

mRS (≤1 and BI 

≥95) 

223 Forward 

and 

backward 

stepwise 

logistic 

regression  

No No Stepwise 

regression 

C statistic for 

model to 

predict good 

outcome = 

0.87 

NIHSS>5 at onset Yes 

NIHSS_8 Validation studies 

 Population Inception 

cohort 

Data source Loss to follow-

up 

Outcome 

assessed 

Sample 

size 

Model performance 

Tirschwell 

et al 

(2002) 

Acute ischaemic 

stroke 

3-5 hours 

post 

onset 

Treatment and 

control arms of 

RCT of rt-PA in 

acute ischaemic 

stroke 

Only pts with 

complete data 

included 

Dichotomised 

(good/poor) 

NIHSS_15≤1, 

mRS≤1, 

GOS=1, BI ≥95 

at three 

months 

531 C statistic for prediction of good outcome = 0.77  
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Orpington Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Kalra & 

Crome 

(1993) 

Arm power, 

proprioception, 

balance, 

cognition 

Within 72 

hours of 

admission 

Yes Yes BI at 

discharge or 

16 weeks 

96 Linear 

regression 

Yes No (BI treated 

as interval 

variable) 

No Strong 

correlation 

between 

Orpington score 

and discharge 

or 16 week BI 

(r2 = 0.89, 

p<0.001) 

Stroke patients 

>75 years. 

 

 

 

Orpington Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome assessed Sample size Model performance 

Lai (1998) Patients with severe strokes, coma, 

dependent or from nursing home prior to 

stroke excluded 

Within 14 

days of 

stroke  

Prospective cohort 

study 

 BI 

SF-36 

At 1,3 and 6 months post 

stroke 

184 Linear regression modelling, BI treated 

as interval data. 

R2 = 0.62 to predict BI at one month, 

less than 0.5 at 3 and six months 

Studenski (2001) Patients with coma, hepatic, renal or heart 

failure excluded, patients admitted from 

nursing care or dependent prior to stroke 

excluded 

Within 2 

weeks of 

stroke 

Retrospective use of 

data from a prospective 

cohort study 

11% Five markers of functional 

independence at 3 and 6 

months: 

(in)dependence 

 in personal care, 

independent in meal 

preparation, medication and 

community mobility 

413 Area under ROC (equivalent to c statistic 

for dichotomous outcomes) greater 

than 0.8 for all outcomes at 3 months, 

and 0.74-0.80 at six months 

Kalra et al (1994) Patients over 75 admitted to hospital with 

acute stroke, excluding  patients with pre-

stroke dependency, cognitive impairment 

or those admitted from institutional care 

At two 

weeks 

from 

stroke 

Prospective cohort 

study 

 BI, discharge destination, 

level of dependence (3 level 

score) at discharge from 

hospital 

217 OPS measured at two weeks to predict 

independent living at discharge  

Sens  96% 

Spec 36% 
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Six Simple Variables Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events per 

variable) of 

10 or more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion 

criteria that 

may limit 

generalisability 

Feasible 

to 

collect 

at ward 

level? 

Counsell 

et al 

2002 

Age  

Living alone  

Independent 

pre stroke 

Normal GCS 

verbal score 

Able to lift 

both arms 

Able to walk 

Assessments 

performed up 

to 30 days 

after stroke, 

proportion of 

assessments 

after 14 days 

small, median 

delay 4 days 

Retrospective 

use of data 

collected 

prospectively  

(Oxford 

Community 

Stroke Study 

data) 

No loss 

to 

follow 

up 

Survival at 30 

days, 6 

month 

independent 

survival 

530 Forward 

stepwise 

logistic 

regression 

(independent 

survival) and 

Cox 

proportional 

hazards (30 

day survival) 

18 variables 

entered.  

30 day 

survival 

EPV=3.8 

6 month 

independent 

survival: EPV 

= 15 

Yes Stepwise 

variable 

selection 

C statistic 

0.88 30 day 

survival 

 

0.84 6 month 

independent 

survival  

Developed on 

community 

stroke data, 45% 

of patients were 

not admitted to 

hospital.  

Yes 

SSV Validation studies 

 Population Inception 

cohort 

Data source Loss to follow-

up 

Outcome assessed Sample size Model performance 

Counsell et al 

2002 

Two cohorts one community and 

one hospital inpatients 

Within 30 

days of 

onset 

Retrospective use of 

prospective cohort study data 

 Survival at 30 days, 6 

month independent 

survival 

538 

community  

1330 

Hospital 

based 

30 day survival:  

Community cohort c statistic 0.88 

Hospital cohort c statistic 0.86 

6 month independent survival: 

Community cohort c statistic 0.84 

Hospital cohort 0.84 

FOOD trial 

(2003) 

Dennis (2006) 

Dennis (2003) 

 

Patients hospitalised with acute 

stroke 

Within 7 

days  

Prospective RCT trial data 

(FOOD trial) 

 6 month 

independent survival 

2955 

EPV >10 

Independent survival c statistic 0.79 

Calibration: tends to predict over optimistic 

outcomes in patients with milder strokes, pessimistic 

predictions for more severe strokes 

Lewis et al 

(2008) 

Patients with ischaemic stroke 

eligible for thrombolysis 

Within 6 

hours of 

acute stroke 

Prospective RCT trial data 

(IST-3) 

 Independent survival  

30 day survival 

537 

EPV>10 

6 month independent survival: c statistic = 0.82 

30 day survival, c statistic = 0.73 

Calibration for 6 month independent  survival was 

good 

30 day survival, higher number of observed than 

predicted outcomes (i.e. Over pessimistic prediction) 
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 Population Inception 

cohort 

Data source Loss to follow-

up 

Outcome assessed Sample size Model performance 

SSV continued         

Reid et al 

(2007) 

Acute and hyperacute ischaemic 

and haemorrhagic stroke  

At first 

assessment, 

273/538 

(51%) within 

6h 

Prospective cohort study 

(Stroke Outcomes Study) 

 6 month mRS≤2 

 

538 

EPV>10 

mRS≤2 at 6 months c statistic 0.79 

Good calibration 

 

Weir et al 

(2001) 

Five Scottish hospitals 1995-97. 

Two teaching hospitals, 3 district 

hospitals 

Within 30 

days of 

admission 

Retrospective data extraction 

from case-notes 

 6 month mortality 2724 C statistic 0.84 

Hosmer-Lemeshow goodness of fit χ
2 

14.2, df 10, 

p=0.164 (good calibration) 

Weir et al 

(2003) 

Acute stroke On 

admission 

Prospective cohort    92 Aimed to establish inter-rater reliability of variable 

measurement for the SSV model.  

Kappa statistics for prospective and retrospective 

study were > 0.6 for all or all variables except ability 

to walk obtained from retrospective case-note 

review (κ 0.55) 

Five Scottish hospitals 1995-97. 

Two teaching hospitals, 3 district 

hospitals 

Records 

from the day 

of admission 

Retrospective case-note data 

as part of an observational 

study (Weir et al 2001) 

  200 
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Tilling Development 

 Internal validity Statistical validity Feasibility 

Citation Variables included 

in model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 

10% loss 

to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Tilling 

(2001) 

Sex, age, ethnicity, 

prestroke 

handicap, limb 

weakness, 

dysphasia, 

dysarthria, 

incontinence, 

conscious, 

swallowing deficit, 

stroke subtype 

Within 2 

weeks of 

stroke 

Retrospective 

use of 

randomised 

controlled trial 

data 

Includes 

patients 

assessed 

at least 

once 

Barthel Index 

at 2, 4, 6 and 

12 months post 

randomisation 

299 

patient 

Multilevel 

modelling 

Yes Yes (BI 

treated as 

continuous 

variable) 

No Not specified 

for 

development 

study 

Hospital based 

cohort able to 

transfer 

independently 

Yes 

Tilling Validation studies 

 Population Inception 

cohort 

Data source Loss to follow-

up 

Outcome 

assessed 

Sample 

size 

Model performance 

Tilling et al (2001) Unselected 

observational 

cohort or first 

strokes 

 South London 

Stroke Register 

1995-1998 

 Barthel 

Index 

710 Average difference between predicted and 

observed BI -0.4 (limits of agreement -7 to +6) 
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Uppsala Development 

 Internal validity Statistical validity Feasibility 

Citation Variables included 

in model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to collect 

at ward 

level? 

Frithz et 

al (1976) 

Adaptation of 

Mathew’s score (0-

100) Conscious 

level, orientation, 

dysphasia, 

conjugate gaze 

palsy, facial 

weakness, arm 

power, 

Performance 

Disability scale, 

reflexes, sensation 

On 

admission 

to hospital 

Data 

extracted 

from case-

notes.  

 Mortality at 

one month 

344 Logistic 

regression 

Yes Unclear Yes Not reported Patients over 70 

excluded 

 

Uppsala Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample 

size 

Model performance 

Gladman 

et al 

(1992) 

Unselected consecutive 

patients admitted with 

stroke over 3 years 

‘On 

admission’ 

to acute 

hospital 

Prospective cohort study  Death at 3 

months 

102 Sensitivity 30%, specificity 96% 

Likelihood ratio 7 (2.1-24) 
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Weimar 

models 

Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 10% 

loss to follow-

up 

Assessment 

of a reliable 

outcome 

and at a 

fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion 

criteria that may 

limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Weimar et al 

(2002) 

Model 1 

Neurological 

complications, 

fever, lacunar 

infarct, 

diabetes, 

previous 

stroke, sex, 

age, mRS, 

NIHSS score on 

admission 

Within 72 

hours of 

admission 

Data 

extracted 

from 

prospective 

stroke 

database 

(the German 

Stroke 

Database) 

No, 53/260 

(20.4%) lost to 

follow up. Their 

characteristics 

were 

specifically 

examined and 

did not differ 

significantly 

from sample 

 

BI ≤95 at 

100 days 

 

1754 Backwards 

stepwise 

logistic 

regression 

modelling 

41 

variables 

EPV>10 

 

Yes Yes Sensitivity 

77% 

Specificity 

84% 

R
2
 0.55 

 No 

Model 2 

Fever, age, 

NIHSS score on 

admission 

   Death at 

100 days 

  EPV<10 Yes Yes Sensitivity 

49% 

Specificity 

95% 

R
2
 0.41 

 No 

Weimar 

models 

Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample 

size 

Model performance 

German 

Stroke Study 

Collaboration 

(2004) 

13 acute hospitals in 

Germany 2001-2002. 

Pre-stroke mRS>2.  

Within 24 

hours of 

admission 

Prospective data 

collection  

Centres 

with>10% 

loss to 

follow up 

not included 

BI<95 

and 

death at 

120 days 

1470 120 day <BI95 

Sens  68% 

Spec 86% 

120 day mortality 

Sens 47% 

Spec 96% 
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Weimar_ICH Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included 

in model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less than 

10% loss to 

follow-up 

Assessment 

of a 

reliable 

outcome 

and at a 

fixed time 

point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion 

criteria that 

may limit 

generalisability? 

Feasible to 

collect at 

ward level? 

Weimar 

(2006) 

NIHSS 

Age 

Within 6 h of 

intracerebral 

haemorrhage 

Yes from 

hospitals with 

an acute stroke 

unit  

No 

53/260=20% 

(did not 

differ 

significantly 

from those 

with 

complete 

data) 

BI at 100 

days  

260 Forwards 

and 

backwards 

logistic 

regression 

analysis 

>10  Stepwise 

selection 

C statistic 

BI>95 = 

0.861 

 

Pre-stroke mRS 

of ≥3 

Only includes 

ICH and 

excludes 

comatose 

patients 

No 

 Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample 

size 

Model performance 

Weimar 

(2006) 

Consecutive admissions 

with ICH 1998-1999 in 30 

hospitals, with prestroke 

mRS≥3 

Within 6 

hours 

Retrospective 

cohort 

 BI at 100 

days 

173 C statistic 0.876  
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Young Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data 

collection 

Less than 

10% loss 

to follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method 

and 

method of 

variable 

selection 

An EPV 

(events per 

variable) of 

10 or more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Young 

et al 

(2001) 

Gait speed, 

prestroke FAI 

score, AMT, 

AMT missing, 

sensory 

neglect, 

COPD, side of 

hemiplegia 

Recruitment 

on discharge 

from hospital 

or within 6 

weeks of 

stroke if not 

admitted 

Yes Yes. Only 

complete 

data used 

FAI at 12 

months 

207 Forwards 

and 

backwards 

stepwise 

logistic 

regression  

 

No 

17 

predictors, 

100 

patients 

with poor 

outcome 

Yes Yes Poor FAI at 1 

year 

Sens:75% 

Spec 80%  

Post-acute 

patients admitted 

to rehab unit, 

some not patients 

not admitted to 

hospital 

Yes 

Young Validation studies 

 Population Inception 

cohort 

Data source Loss to 

follow-up 

Outcome 

assessed 

Sample size Model performance 

Young Community post-acute 

cohort 

 Community based 

stroke trial 

 FAI at six 

months 

108 Correct assignment to good/poor outcome in 76% of 

cases 
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A-2.1 Studies using existing impairment or severity scales to predict outcome 
Canadian Neurological Score (CNS)  

 Validation studies 

Citation Variables included in model Population Inception 

cohort 

Data source Loss to 

follow-

up 

Outcome 

assessed 

Sample 

size 

Model performance 

Muir et al 

(1996) 

 All patients with Ischaemic and 

haemorrhagic stroke admitted to a 

single stroke unit. No restriction on 

age or stroke subtype 

Within 72 

hours of 

admission 

Prospective 

data collection 

Less than 

10% 

Alive at home 

versus in care or 

dead at 3 months 

408 Prediction of poor outcome when 

added to model with NIHSS (i.e. not 

an assessment of performance of 

CNS in isolation) 

Sens  71% 

Spec 89% 

Predictive accuracy 82% 

Middle Cerebral Artery Neurological Score (MCANS) or Orgogozo score  

 Validation studies 

Citation Variables included in model Population Inception 

cohort 

Data source Loss to 

follow-

up 

Outcome 

assessed 

Sample 

size 

Model performance 

Muir et al 

(1996) 

Conscious level, communications, gaze, 

facial movement, arm raise, hand 

movement, upper and lower limb tone, leg 

raise, foot dorsiflexion 

All patients with Ischaemic and 

haemorrhagic stroke admitted to a 

single stroke unit. No restriction on 

age or stroke subtype 

Within 72 

hours of 

admission 

Prospective 

data collection 

Less than 

10% 

Alive at home 

versus in care or 

dead at 3 months 

408 Prediction of poor outcome  

Sens  71% 

Spec 89% 

Predictive accuracy 82% 

NIHSS   

 Validation studies 

Citation Variables included in model Population Inception 

cohort 

Data source Loss to 

follow-

up 

Outcome 

assessed 

Sample 

size 

Model performance 

Muir et al 

(1996) 

NIHSS_15 All patients with Ischaemic and 

haemorrhagic stroke admitted to a 

single stroke unit. No restriction on 

age or stroke subtype 

Within 72 

hours of 

admission 

Prospective 

data collection 

Less than 

10% 

Alive at home 

versus in care or 

dead at 3 months 

408 Prediction of poor outcome 

Sens 71% 

Spec 90% 

Predictive accuracy 83% 

Lai (1998) NIHSS_15 Patients with severe strokes, coma, 

dependent or from nursing home 

prior to stroke excluded 

Within 14 

days of stroke 

Prospective 

cohort study 

 BI 

SF-36 

At 1,3 and 6 

months post 

stroke 

184 Linear regression modelling, BI 

treated as interval data. 

R
2 

=0.56 for at 1 month. R
2 

below 

0.5 at 3 and six months 
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A-2.2 Studies using split sample (internal) validation 
 
Anderson (Development) 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Anderson 

et al 

(1994) 

Coma, cardiac 

failure, urinary 

incontinence, 

severe paresis, 

atrial 

fibrillation 

Within 

weeks of 

stroke 

onset 

(median 5 

days) 

Retrospective 

use data from 

patients 

registered in a 

population 

based study of 

acute stroke 

 

Yes Mortality at 1 

year 

492 Stepwise Cox 

proportional 

hazards 

14 

variables  

 Stepwise 

variable 

selection 

Sens 90% 

Spec 83% 

19% of patients 

not admitted to 

hospital,  

Yes 

 No external validation studies (authors used split-sample internal validation) 

Ischaemic Stroke Survival Score (ISSS) (Development) 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment 

of a reliable 

outcome and 

at a fixed 

time point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Williams 

(2000) 

Age 

Scandinavian 

Stroke Score, 

Rapid Disability 

Rating Scale 

score, previous 

stroke 

Within 3 

hours of 

stroke 

onset 

Retrospective 

use both arms of 

placebo-

controlled trial 

data (Stroke 

Treatment with 

Ancrod Trial 

STAT) 

Yes 1 year 

survival 

453 Logistic 

regression 

modelling 

EPV>10  Yes ISSS model in 

training data 

set  

 R
2
 =0.3 

C statistic in 

validation set 

(split sample) 

0.86 

Ischaemic strokes, 

exclusion of 

minor or very 

severe strokes 

No  

 No external validation studies (authors used split-sample internal validation) 
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Masiero Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Masiero 

et al 

(2007) 

Age 

TCT 

FIM 

Within 24 

hours of 

admission 

to rehab 

unit, and 

within 8 

weeks of 

stroke 

Yes  No 

Dichotomised 

Functional 

Ambulation 

Classification 

at discharge 

from 

rehabilitation 

facility 

100 Logistic 

regression 

modelling 

No, 12 

variables, 

48 with 

poor 

outcome 

Yes No To predict 

good/poor 

outcome  

C statistic = 

0.94 

Sens 87% 

Spec 96% 

Up to 8 weeks post 

first stroke, 

patients with 

hemiplegia, 

admitted for 

inpatient rehab, no 

additional 

preclusion to gait 

or exercise 

training, significant 

dysphasia or 

cognitive 

impairment 

No 

 No external validation studies (authors used split-sample internal validation) 

Wang Development 

 Internal validity Statistical validity Feasibility 

Citation Variables 

included in 

model 

Adequate 

inception 

cohort 

Prospective 

data collection 

Less 

than 

10% 

loss to 

follow-

up 

Assessment of 

a reliable 

outcome and 

at a fixed time 

point 

Sample 

size 

Modelling 

method and 

method of 

variable 

selection 

An EPV 

(events 

per 

variable) 

of 10 or 

more 

Linearity 

assumptions 

tested and 

met? 

Collinearity 

addressed 

Model 

performance 

Inclusion or 

exclusion criteria 

that may limit 

generalisability? 

Feasible 

to 

collect 

at ward 

level? 

Wang et 

al 

(2003) 

Conscious level, 

dysphagia, UIC, 

both sides 

affected, 

hyperthermia, 

IHD, peripheral 

vascular 

disease, 

diabetes 

 Retrospective 

cohort study 

(data 

extraction 

from case-

notes) for ICD 

stroke coded 

admissions 

1995-1997 

Yes 1 year 

mortality 

Split 

sample 

223 

training 

set 

217 

validation 

set 

Cox-

proportional 

hazards. 

Variables 

selected 

through uni-

variate 

analysis  

EPV<10 

(48 

deaths in 

training 

set) 

  Validation 

set to predict 

1 year 

mortality 

Sens 56% 

Spec 91% 

PPV 60% 

 Yes 

 No external validation studies (authors used split-sample internal validation) 
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A-3 Standardised and studentised residuals 

Examination of ‘raw’ residuals retains the units for the Y variable and these must therefore 

be interpreted in this context (Waterman R 1999). More useful for identification of outliers 

are residuals that have been standardised according to their standard deviation from the 

expected sample mean.  

However, as the calculation of the standard deviation for an individual point and its estimate 

are not independent, particularly influential points will alter the regression line thus 

affecting the size of the residual (Fox J, 1997 p 272; Waterman R 1999).  

This problem may be overcome through calculation of studentised residuals, where an 

individual point xi is omitted from the estimation of the standard deviation, such that the 

standardisation becomes independent of the observed value of xi (Fox J, 1997 p 272; 

Waterman R 1999).  

For example, if point xi in Figure 94 is exerting undue influence (leverage) on a regression 

line (1), calculating the standardised residual from estimates including xi will falsely lower 

the magnitude of |ri| to give ri’. However, if xi is excluded from the calculation of model 

estimates, the studentised residual is created (ri(-i)) based on the unbiased regression line 

(2) (Fox J, 1997 p 272; Waterman R, 1999). 

Figure 94 Demonstration of studentised residuals 
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Appendix B  Study variables 

Demographics  

Age at stroke onset 

Type of residence (pre-stroke) 

Has main carer 

Lived alone pre-stroke 

Ethnicity 

Gender 

Process indicators  

Admitted directly to stroke unit  

Proportion of stay spent on stroke unit  

Planned follow up by ESD 

Post-hospital spell in NHS facility (e.g. intermediate care) 

Discharge to the same address  

Imaging within 24 hours 

Thrombolysis given (date and time) 

Swallowing screen within 24 hours of admission to hospital  

Commenced antiplatelet within 48 hours of stroke  

Physiotherapy assessment within 72 hours of admission to hospital) 

Weighed at least once during admission 

Evidence of mood assessment before discharge  

Evidence of MDT rehabilitation goal setting  

Occupational therapy assessment within 4 working days of admission  

Visual field testing (RCP) 

Sensory assessment (RCP) 

Formal swallowing assessment within 72 hours of admission (RCP) 

Formal communication assessment within 7 days (RCP) 

Evidence within MDT notes of SW assessment within 7 days of referral (RCP) 

Evidence of cognitive status assessment (RCP) 

Malnutrition screening (RCP) 

Continence promotion plan (RCP)) 

Receipt of fluids within 24 hours of stroke (RCP) 

Receipt of nutrition within 72 hours of admission (RCP) 

Case-mix data  

Classification of stroke 

Radiological classification of stroke 

Pathological classification of stroke (OCSP) 

Side of weakness  

Six-simple variable case-mix adjustment variables 

(Age) 

Lived alone prior to stroke 

Independent in ADL prior to stroke 

Able to lift both arms above head (MRC power score>=3) 

Able to walk unaided 

Normal verbal GCS score 

Univariate predictors 

Drowsy since onset of stroke 

Speech or language problems 

Confusion at presentation 

New urinary incontinence or newly catheterised since stroke onset 

Previous disabling stroke 
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B-1 Instructions to delegates at the group decision making workshop to refine 

study outcome instruments 

Part 1 

We would like you (on the post it notes provided and working individually) to generate a list 

of the properties of a stroke outcomes instrument which you consider to be important. 

Write one idea on each piece of paper. Be inclusive and generic at this stage (e.g. does it 

measure relevant constructs, depth of questions, breadth of questions, length etc.) 

[Similar constructs are grouped together on a flip-chart and numbered] 

On an index card, please choose the five ideas that you feel are most important, and write 

the numbers, vertically down the side of the card 

Please then rank the ideas from 1 (most important) to 5 (least important) 

Part 2 – Paired weighting 

Please consider each scale in relation to the criteria we have collectively identified to be 

most important in the instruments. 

For each pair of scales please circle the one which you feel fulfils these criteria the best. 

At the end of each row, please add up the number of times you have circled each 

instrument. This gives your ranking as to which you feel is the most useful instrument 

according to the criteria we have established. 

     Total   

NEADL 

FAI 

NEADL 

SIPSO 

NEADL 

LHS 

NEADL 

EQ5D 

 

 

NEADL = 

 FAI 

SIPSO 

FAI 

LHS 

FAI 

EQ5D 

 

 

FAI = 

  SIPSO 

LHS 

SIPSO 

EQ5D 

 

 

SIPSO = 

   LHS 

EQ5D 

 

 

LHS = 

    

 

 EQ5D = 
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B-2 The Oxford Handicap Scale and modified Rankin Scale 

 Oxford Handicap Scale (postal version) from Dennis et al 2006 Table 63

Grade Description 

0 I have no symptoms at all 

1 I have a few symptoms but these do not interfere with m everyday life 

2 
I have symptoms which have caused some changes in my life but I am still able 

to look after myself 

3 
I have symptoms which have significantly changed my life and I need some help 

in looking after myself 

4 
I have quite severe symptoms which mean I need to have help from other 

people but I am not so bad as to need attention day and night 

5 
I have major symptoms which severely handicap me and I need constant 

attention day and night 

 

 Modified Rankin Scale from van Swieten et al 1988 Table 64

Grade Description 

0 No symptoms at all 

1 No significant disability despite symptoms: able to carry out all usual duties and 

activities 

2 Slight disability: unable to carry out all previous activities but able to look after 

own affairs without assistance 

3 Moderate disability: requiring some help, but able to walk without assistance 

4 Moderately severe disability: unable to walk without assistance, and unable to 

attend to own bodily needs without assiatance 

5 Severe disability: bedridden, incontinent, and requiring constant nursing care 

and attention 
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B-3 Subjective Index of Physical and Social Outcome (from Trigg et al 2000) 

Please answer all questions 

Physical Subscore 

1. Since your stroke, how much difficulty do you have dressing yourself fully? 

(Circle One Number) 

No difficulty at all....……………………………………………………………………………………………………. 4 

Slight difficulty………………………………………………………………………………………………………….... 3 

Some difficulty……………………………………………………………………………………………………………. 2 

A lot of difficulty…………………………………………………………………………………………………………. 1 

I cannot dress myself fully………………………………………………………………………………………….. 0 

  
2. Since your stroke, how much difficulty do you have moving around all areas of the home? 

(Circle One Number) 

No difficulty at all……………………………………………………………………………………………………….. 4 

Slight difficulty…………………………………………………………………………………………………………… 3 

Some difficulty…………………………………………………………………………………………………………… 2 

A lot of difficulty………………………………………………………………………………………………………… 1 

I cannot move around all areas of the home……………………………………………………………… 0 

  
3. Since your stroke, how satisfied are you with your overall ability to perform daily activities in and around 

the home? 

(Circle One Number) 

Completely satisfied………………………………………………………….......................................... 4 

Mostly satisfied………………………………………………………………............................................ 3 

Fairly satisfied……………………………………………………………………………………………………………. 2 

Not very satisfied……………………………………………………………………………………………………….. 1 

Completely dissatisfied………………………………………………………………………………………………. 0 

  
4. Since your stroke, how much difficulty do you have shopping for and carrying a few items (1 bag of 

shopping or less) when at the shops? 

(Circle One Number) 

No difficulty at all……………………………………………………………………………………………………….. 4 

Slight difficulty…………………………………………………………………………………………………………… 3 

Some difficulty…………………………………………………………………………………………………………… 2 

A lot of difficulty…………………………………………………………………………………………………………. 1 

I cannot shop for and carry a few items…….……………………………………………………………….. 0 

  
5. Since your stroke, how independent are you in your ability to move around your local neighbourhood? 

(Circle One Number) 

I am completely independent…………………………………………………………………………………….. 4 

I prefer to have someone else with me……………………………………..................................... 3 

I need occasional assistance from someone……………………………………………………………….. 2 

I need assistance much of the time…………………………………………………………………………….. 1 

I am completely dependent on others………………………………………………………………………… 0 
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Social subscore 

 
 

6. Since your stroke, how often do you feel bored with your free time at home? 

(Circle One Number) 

I am never bored with my free time…………………………………………………………………………… 4 

A little of my free time……………………………………………………………………………………………….. 3 

Some of my free time…………………………………………………………………………………………………. 2 

Most of my free time………………………………………………………………………………………………….. 1 

All of my free time……………………………………………………………………………………………………… 0 

  
7. Since your stroke, how would you describe the amount of communication between you and your 

friends/associates? 

(Circle One Number) 

A great deal………………………………………………………………………………………………………………… 4 

Quite a lot…………………………………………………………………………………………………………………… 3 

Some………………………………………………………………………….................................................. 2 

A little bit……………………………………………………………………………………………………………………. 1 

None………………………………………………………………………………………………………………………….. 0 

.  
8. Since your stroke, how satisfied are you with the level of interests and activities you share with your 

friends/associates? 

(Circle One Number) 

Completely satisfied…………………………………………………………........................................... 4 

Mostly satisfied………………………………………………………………............................................ 3 

Fairly satisfied…………………………………………………………………………………………………………….. 2 

Not very satisfied………………………………………………………………………………………………………… 1 

Completely dissatisfied………………………………………………………………………………………………. 0 

  
9. Since your stroke, how often do you visit friends/others? 

(Circle One Number) 

Most days…………………………………………………………………………………………………………………… 4 

At least once a week…………………………………………………………………………………………………… 3 

At least once a fortnight……………………………………………………………………………………………… 2 

Once a month or less………………………………………………………………………………………………….. 1 

Never…………………………………………………………………………................................................... 0 

  
10. Since your stroke, how do you feel about your appearance when out in public? 

(Circle One Number) 

Perfectly happy……………………………………………………………….............................................. 4 

Slightly self-conscious………………………………………………………............................................ 3 

Fairly self-conscious……………………………………………………………………………………………………. 2 

Very self-conscious……………………………………………………………………………………………………… 1 

I try to avoid going out in public…………………………………………………………………………………. 0 
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B-4 Statistical plan 

• Data cleaning and missing data pattern analysis (baseline data) 

• Outliers and tests of normality of continuous variables 

• Examination of return rates and missing data analysis for outcomes questionnaire 

packs 

• Descriptive statistics including: 

• Floor and ceiling effects of baseline and six month patient completed questionnaires 

• Examination of representativeness of study sample 

o Exploration of process-outcome linkages in the study population 

o Univariate (unadjusted) analyses 

• Construction of decision trees to predict CIMSS study outcomes to identify 

important predictors 

• Identification and testing of potential interaction terms 

• Stratification of the sample using the SSV model (e.g. using propensity score as a 

continuous variable in models, or stratification according to matched propensity 

score) 

• Construction of regression models to predict study outcomes using important 

clinical variables and predictors identified in decision trees  

• Performance of the SSV case-mix adjuster in terms of:  

o Model discrimination (measured with c statistics) 

o Calibration of the SSV in the CIMSS study population (calibration plots) 

• Exploration of potential univariate predictors of outcome that could be used in 

addition to, or instead of the SSV case-mix adjuster 

• Replication of models in MLWin software and with Markov Chain MonteCarlo 

(MCMC) iterations to explore stability and convergence of the beta coefficients 

• Identification of key process and case-mix variables that are important in 

determining outcome to be included in core dataset for further testing 
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Appendix C  Regression and Classification Trees 

Figure 95 shows an example of a regression tree to predict the (continuous) outcome of the 

physical subscore of the SIPSO and includes all the predictors, case-mix variable and baseline 

assessments used in the CIMSS study population. At the top of the tree, the condition length 

of stay >=33.5 is stipulated. For the purposes of interpretation of the tree, this has been 

interpreted as <=33 or >=34 (as length of stay has been recorded in whole days). If the 

length of stay was longer than 33 days, the left hand branch is followed; otherwise the right 

hand branch is selected. The length of the ‘legs’ for each predictor denotes its relative 

importance. Thus it can be seen from the example that, in this regression tree, the length of 

stay is the main determinant of physical SIPSO subscore. Other predictors and their relative 

importance are presented until, at the bottom of each terminal branch, a value for the 

predicted physical SIPSO score is given if all the preceding conditions are met. Thus, using 

this tree in this dataset, a patient with a length of stay of greater than 34 days and a 

probability of poor outcome as predicted with the SSV case-mix adjuster (propensity score) 

of greater than 0.1 has a predicted SIPSO physical score of 9.5 (path A highlighted on Figure 

95), whilst a patient with a length of 33 days or fewer, a baseline NEADL of greater than 62 

and a baseline EuroQoL utility score of greater than 0.79 has a predicted physical SIPSO 

subscore of 19.42 (path B on Figure 95).  
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Figure 95 Interpretation of regression trees using example of prediction of physical SIPSO subscore 

     Baseline EQ5D   utility score <0.79 

Length of stay >=33.5 

Propensity Score <0.10 

Baseline NEADL < 45.5 

Baseline EQ5D utility score <0.63 Baseline NEADL < 61.5 

Formal SLT swallowing assessment = Yes 
              Baseline  GHQ_12 >=4.5 

Baseline BI   <16.5 

 Baseline BI   >=11.5 

3.35 8.23 

Predicted SIPSO = 9.50 

4.74 8.83 
12.62 

10.37 

10.20 16.43 

16.51 

16.56 Predicted SIPSO 

score = 19.42 

 Length of stay > =56.5 

Length of stay >=33.5 

Propensity score >=0.1 

Length of stay <33.5 

Baseline NEADL >45.5 

Baseline NEADL >61.5 

Baseline EQ5D >0.79 

B A 
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Appendix D  Descriptive statistics 

D-1 Equivalence of proportions for sex between screened and recruited 

populations 

The working for statistical tests performed during data cleaning and descriptive statistics 

are shown here  

D-1.1 Equivalence of proportions for sex between screened and recruited 

populations 
    Screened 337  

    Recruited 312  

 Mean Standard error 95% confidence interval 

Screened  0.56 0.27 0.51 0.61 

Recruited 0.51 0.28 0.45 0.56 

Difference 0.054 0.040   

Probability difference ≠0: 0.16 

 

D-1.2 Significant difference in age by gender (recruited patients) 

Two-sample Wilcoxon rank-sum (Mann-Whitney) test age by gender 

      Gender    |      obs    rank sum    expected 

-------------+--------------------------------- 

        Male      |      154     20100.5       24101 

      Female    |      158     28727.5       24727 

-------------+--------------------------------- 

    Combined |      312       48828       48828 

 

Ho: age at stroke(males) = age at stroke(females) 

             z =  -5.024 

    Prob > |z| =   <0.001 

D-1.3 Age by recruitment to study 

 

Two-sample Wilcoxon rank-sum (Mann-Whitney) test 

 

patient_recruited |      obs    rank sum    expected 

-------------+--------------------------------- 

not recruited       |      343      126016      112504 

   recruited           |      312       88824      102336 

-------------+--------------------------------- 

    Combined         |      655      214840      214840 

 

Ho: age(patient not recruited) = age(patient recruited) 

             z =   5.589 

    Prob > |z| =   <0.001 
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D-2 Baseline stroke severity data 

D-2.1 Significant difference in Baseline Barthel Index between patients recruited 

and not recruited into study 

 

patient recruited  |      obs    rank sum    expected 

-------------+--------------------------------- 

       false                 |      319       79578     97454.5 

        true                |      291      106777     88900.5 

-------------+--------------------------------- 

    combined         |      610      186355      186355 

 

 

Ho: total BI(not recruited) = total BI(recruited ) 

             z =  -8.303 

    Prob > |z| =  <0.001 

D-2.2 Kruskal-Wallis equivalence of medians test Barthel Index by site in patients 

not recruited into study 

Kruskal-Wallis equality-of-populations rank test 

 

  +---------------------------+ 

  |     site   | Obs  | Rank Sum  | 

  |----------+-----+---------- | 

  | Bradford  |  94   | 14721.00  | 

  |    Leeds    |  56   |  8103.50    | 

  |     York     | 169  | 28215.50   | 

  +---------------------------+ 

 

chi-squared =     2.628 with 2 d.f. 

probability =       0.2687 
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D-2.3 Two way Mann-Whitney U tests to identify significant differences in 

baseline Barthel Index between sites for patients recruited into the study 
 

Two-sample Wilcoxon rank-sum (Mann-Whitney) tests 

 

        site       |      obs    rank sum    expected 

-------------+--------------------------------- 

    Bradford    |       63      5746.5      5638.5 

       Leeds      |      115     10184.5     10292.5 

-------------+--------------------------------- 

    combined  |      178       15931       15931 

 

Ho: total BI(Bradford) = total BI(Leeds) 

             z =   0.330 

    Prob > |z| =   0.7417 

 

        site      |      obs    rank sum    expected 

-------------+--------------------------------- 

    Bradford   |       63      4808.5      5575.5 

        York       |      113     10767.5     10000.5 

-------------+--------------------------------- 

    combined  |      176       15576       15576 

 

Ho: total BI(Bradford) = total BI(York) 

             z =  -2.392 

    Prob > |z| =   0.0168 

 

        site         |      obs    rank sum    expected 

-------------+--------------------------------- 

       Leeds       |      115       11576     13167.5 

        York        |      113       14530     12938.5 

-------------+--------------------------------- 

    combined  |      228       26106       26106 

 

Ho: total BI (Leeds) = total BI (York) 

             z =  -3.215 

    Prob > |z| =   0.0013 (reject Ho) 

 

D-2.4 Difference in median baseline Barthel Index between categories of response 

D-2.4.1 Kruskal Wallis test (BI by response category) 

  +------------------------------+ 

  |    response     | Obs  | Rank Sum  | 

  |-------------+-----+---------- | 

  | no response  |  67    | 10855.50  | 

  |    response      | 187   | 32814.00 | 

  |        dead         |  44    |  3296.50   | 

  |    withdrew     |  13   |  1550.00    | 

  +------------------------------+ 

 

chi-squared with ties =    47.670 with 3 d.f. 

probability =    <0.001 
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D-2.4.2 Pairwise comparisons of BI between levels of response (Mann-Whitney U tests) 

    Response  |      obs    rank sum    expected 

-------------+--------------------------------- 

 no response  |       67      7975.5      8542.5 

    response     |      187     24409.5     23842.5 

-------------+--------------------------------- 

    combined   |      254       32385       32385 

Ho: Baseline BI (non-responders) = Baseline BI (responders) 

             z =  -1.111    Prob > |z| =   0.2666 

________________________________________________________________________ 

    response  |      obs    rank sum    expected 

-------------+--------------------------------- 

 no response  |       67      4601.5        3752 

        dead  |       44      1614.5        2464 

-------------+--------------------------------- 

    combined  |      111        6216        6216 

Ho: Baseline Barthel (non response) = Baseline BI (dead) 

             z =   5.155    Prob > |z| =   <0.001 

________________________________________________________________________ 

    response  |      obs    rank sum    expected 

-------------+--------------------------------- 

 no response  |       67      2834.5      2713.5 

    withdrew  |       13       405.5       526.5 

-------------+--------------------------------- 

    combined  |       80        3240        3240 

Ho: Baseline BI (no response) = Baseline BI (withdrew) 

             z =   1.591    Prob > |z| =   0.1117 

________________________________________________________________________ 

    response  |      obs    rank sum    expected 

-------------+--------------------------------- 

    response  |      187     24291.5       21692 

        dead  |       44      2504.5        5104 

-------------+--------------------------------- 

    combined  |      231       26796       26796 

Ho: Baseline BI (responders)= Baseline BI (dead) 

             z =   6.563    Prob > |z| =  <0.001 (reject Ho) 

________________________________________________________________________ 

    response  |      obs    rank sum    expected 

-------------+--------------------------------- 

    response  |      187       19269     18793.5 

    withdrew  |       13         831      1306.5 

-------------+--------------------------------- 

    combined  |      200       20100       20100 

Ho: Baseline BI (response) = Baseline BI (withdrew) 

             z =   2.377    Prob > |z| =   0.0174 

________________________________________________________________________ 

    response  |      obs    rank sum    expected 

-------------+--------------------------------- 

        dead  |       44      1157.5        1276 

    withdrew  |       13       495.5         377 

-------------+--------------------------------- 

    combined  |       57        1653        1653 

Ho: Baseline BI (dead) = Baseline BI (withdrew) 

             z =  -2.293    Prob > |z| =   0.0219 

________________________________________________________________________ 
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Appendix E  Model construction and checks of assumptions 

E-1 Association between specific impairments and assessments 

E-1.1 Chi squared tests of association between specific impairments and 

corresponding assessments 
  |     SLT communication assessment 

             |        No        Yes     No but   |     Total 

-----------+---------------------------------+---------- 

   No dysphasia | 4           9    104  |       117  

             | 3.42        7.69       88.89 |    100.00  

-----------+---------------------------------+---------- 

      Dysphasia |         53          82          59  |       194  

             |      27.32  42.27      30.41  |    100.00  

-----------+---------------------------------+---------- 

     Total   |         57          91         163  |       311  

             |      18.33      29.26      52.41  |    100.00  

 

          Pearson chi2(2) = 100.1835   Pr =< 0.001 

 

New urinary |    Urinary continence care plan 

Incontinence  |         No         Yes      No but  |  Total 

-----------+---------------------------------+---------- 

     No new incontinence  |  19     20 197  | 236  

               |       8.05        8.47       83.47  |     100.00  

-----------+---------------------------------+---------- 

      New incontinence  |         14          46           9  |         69  

               |    20.29      66.67   13.04  |     100.00  

-----------+---------------------------------+---------- 

     Total    |         33          66         206  |        305  

               |      10.82    21.64  67.54  |   100.00 

 

          Pearson chi2(2) = 130.1537   Pr = <0.001 

E-1.2 Likelihood ratio test for transformed length of stay in the prediction of 

physical subscore of the SIPSO 

Model 10 Likelihood ratio test to determine if linearity is improved through categorising 

the log transformed length of stay variable 

Regression model of SIPSO physical subscore on categorised length of stay (log 

transformed) cut into 5 equally sized groups (Model A) 

------------------------------------------------------------------------------ 

SIPSO physical  

subscore        Coef.    Std. Err . t     P>|t|      [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_LOS_cut_1  |  0.22    1.27     0.17    0.87    - 2.29     2.73 

_LOS_cut_2  | 1.27   1.41 0.90  0.37  4.05 1.50 

_LOS_cut_3  | 3.63 1.38 2.62 0.01 6.36 0.90 

_LOS_cut_4  | 4.92 1.51 3.26 0.001 7.90 1.94 

_LOS_cut_5  | 10.17 1.42 7.17 <0.001 12.96  7.37 

       _cons | 15.76 1.03 15.27 <0.001 13.72 17.79 
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Linear regression model of SIPSO physical subscore on log transformed length of stay 

(continuous variable) (Model B) 

------------------------------------------------------------------------------ 

SIPSO Physical 

Subscore | Coef Std. Err t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

log_(LOS+1)  | 3.14 0.34 9.12 <0.001 3.82 2.46 

       _cons  | 20.39 0.91 22.37 <0.001 18.59 22.19 

Estimates store B 

Likelihood ratio test that model A is significantly different from model B 

Likelihood-ratio test                   LR chi2(4)  =      4.76 

(Assumption: B nested in A)           Prob > chi2 =    0.3124 

 

Therefore cannot reject the assumption that model A deviates from the linear model 

(model B is nested in model A) 

 

E-1.3 Variance inflation factors (VIF) for examination of potential collinearity 

(Model 2) 
 

Variable    VIF 1/VIF   

   

Baseline EQ5D   1.85 0.541835 

log_(LOS+1)   1.66 0.601100 

Baseline NEADL   1.21 0.826535 

Age at stroke   1.09 0.917088 

Discharged to same address 1.07 0.938279 

   

Mean VIF   1.38 
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E-1.4 Sample size required to detect significant difference in SIPSO social 

subscore dependent on receipt of SLT communication assessment 

Calculation of sample size of two equal sized groups is given by  

(7) o � 5
pqrst ∗ u  

where N=total sample size (equal groups), E=expected difference in outcome score 

between groups, s = standard deviation and P = 7.9, a constant based on the α-significance 

level (set here at 0.05) and the power (set here at 80%) (Whitley E et al  2002). The 

standard deviation of a sample can be calculated from the standard error of the mean for 

two groups given by the formula: 

(8) �� � �5 p 
K* 		 
Kts 

								�v � � �� w 1�
 	 1�5 

Where n = number of patients in each of “no” (n1) and “yes” (n2) groups for receipt of SLT 

communication assessment in the sample used to calculate the standard error.  

Using Model 6 (p 177), se = 1.311, n1 = 29, n2 = 108, such that s = 4.65, E = -2 

Therefore, N =[ 2/(-2/4.65)2] * 7.9 = 85 for each group such that the total sample size =170. 

Using formulae from (Whitley E et al  2002), the adjustment for calculation of the sum total 

of two unequal groups is given by:  

(9) ox 	� y(
2
)tz
 		� 		 {|	∗[
2(*}~t� )ctz(*}~t� ) 	� ���	
Where k = n2 /n1  

And each individual group is given by  

(10) yx(
2
)	and	 
yx(
2
)	such	that	n1	�	54545454,	n2	�	201201201201	
Accounting for the 55% of patients in whom SLT assessments are not indicated, 

255/0.45≈567 patients with complete data would be required to detect the difference with 

power of 80%. 
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E-2 Length of stay as a univariate case-mix adjuster 

E-2.1 ROC curves to calculate c statistic for length of stay to predict dichotomised 

study outcomes 

E-2.1.1 Receiver Operating Curve (ROC) and c-statistic for length of stay to predict 

dichotomised OHS,  

 
C statistic (AUC) = 0.794 [95% CI 0.73-0.85] 

E-2.1.2 ROC and c-statistics for length of stay to predict physical SIPSO subscore 

(dichotomised at 15 and excluding dead patients) 

 

C statistic 0.75 95% confidence interval 0.68-0.81 
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E-2.1.3 Receiver Operating Curves (and c-statistics) for length of stay to predict social 

SIPSO subscore (dichotomised at 15 and excluding dead patients) 

 
C-statistic 0.73 95% confidence intervals 0.66-0.79 

 

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0
S
e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7296



- 278 - 

 

Appendix F  CIMSS dataset fields 

The requisite fields from which the important predictors identified in the study may be derived are outlined in Table 65. 

 Fields required to derive important predictors of SIPSO physical and social subscores in the study Table 65

Field Definition 

Baseline NEADL 
NEADL completed by patient, or proxy within 7 days of  admission with respect to activities performed in the 

few weeks leading up to stroke 

Baseline EQ5D EQ5D completed by patient, or proxy within 7 days of admission, with respect to the current day 

Date of birth  

Independent in ADL prior to admission 
Record as yes / no – pre-stroke BI of 19 or 20. No report of requirements for assistnace in ADL from pt or 

carer 

Lived alone prior to admission No other person registered as living at address 

GCS (verbal score) Five point verbal component of the Glasgow Coma Score 

Able to walk without assistance at presentation Able to walk without support of another person. Does not include use of walking aids 

MRC power score (both arms) MRC power grade (scored 0 to 5) in both upper limbs 

Date / time SLT therapy session commenced (communication) Date and time SLT start therapy session 

Reason SLT intervention not required/indicated  Unconscious, no speech, language or communication deficit, receiving palliative care 

Date/time admission to hospital/trust  Date and time patient first arrived at hospital (A&E or assessment unit) 

Date discharged from acute hospital/death 
Date patient discharged from the acute trust (or rehabilitation unit within the trust if inpatient rehabilitation 

has been provided) to home, community rehabilitation facility or care home.  

Date/time admission to ward/bed Date / time patient arrives at allocated bed.  

Ward type Acute stroke unit, MAU, CCU, HDU, ITU, general medical ward etc. 

Previous disabling stroke Any previous stroke resulting in limitations to ADL, a pre-stroke OHS >=3 or a pre-stroke BI < 19 

Address on admission  

Address on discharge  
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