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Abstract

Understanding the impacts and synergies of the many threats facing tropical forests is a

key research challenge. Here, three potential threats are addressed: drought, fire and

lianas. Using a network of 31 plots, changes attributed to these threats are addressed

over two decades in Ghanaian forests.

Ghana experienced a multi-decade drought beginning in the early 1970s. The impact of

this drought on functional composition and forest structure was tested. The results show

clear shifts in functional composition. Despite this, biomass increased during the study

period. This suggests that shifting species composition in favour of drought-tolerant

species increases the resilience of tropical forests to long-term drought.

A strong El Niño event in 1983 led to widespread wildfires in the Ghanaian forest zone.

To test the long-term impacts of these fires the structure and composition of seven burnt

plots and three control plots were compared. 27 years after initial fires, stem density and

biomass were reduced in burnt plots, and composition was characteristic of disturbed

forest. Over the twenty year study period, forest structure showed evidence of

regeneration, but no recovery of floristic composition was observed.

In contrast to the large increase in lianas observed in the Neotropics, there was only a

very slight increase in the percentage of infested trees over the study period. Forest

structure was found to be the main driver of liana spatial distribution. Importantly, large

lianas showed different spatial patterns, as forest turnover was the strongest predictor of

large liana distribution.

Overall, fire was found to be the strongest threat, having a large and long-term impact

on forest structure and composition. The results highlight that the prevention of fire

occurrence should be a priority in tropical forest regions, as should the maintenance of

biodiversity to maximise the resilience of forest to external changes.
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1. Introduction

1.1 Threats to tropical forests

Tropical forests cover just 10 % of the Earth’s surface but contain over 50 % of plant

species (Mayaux et al. 2005). They are an important component of global

biogeochemical cycles, and provide a myriad of ecosystem services (Constanza et al.

1997; Nasi et al. 2002). They also directly provide resources for many millions of people.

In the current age of unprecedented influence on the planet by one species, potentially

leading to the definition of a new geological epoch (Crutzen 2002), tropical forests face

serious threats. However, the tropical forest biome has persisted for approximately 120

Myr (Davis et al. 2005). For their continued persistence through future changes,

understanding of the impacts of the threats posed and appropriate management will be

required.

Human activities influence tropical forests directly in many ways. The clearest of these

is deforestation, the removal of forest vegetation to make way for other land uses such as

agriculture or urbanisation. Globally, the footprint of deforestation is large; in 2005

remaining forest cover (> 50 % tree cover) in Africa and South America was estimated at

62.8 % and 63.8 % respectively and was considerably lower in Asia/Oceania (27.2 %)

and Central America (26.9 %) (Asner et al. 2009). The global rate of forest clearance

between 2000 and 2005 has been estimated at 1.4 % yr-1 (Asner et al. 2009).

Deforestation has deeper impacts than simply removing forest area as it also affects

regional hydrology and precipitation (Avissar et al. 2006). Global precipitation may also

be affected; the majority of climate simulation experiments using global climate models

(GCMs) with and without complete Amazon deforestation predict decreased

precipitation with deforestation (Marengo 2007). Deforestation also leads to increased

fragmentation of remaining forest, which elevates tree mortality and alters floristic

composition within 100 m of forest boundaries (Laurance et al. 1997; 1998; 2006).

Fragmentation is also increased by road building, which is of particular significance in



2

locations with large remaining forest areas such as the Amazon and Central Africa. Road

building improves access to forest resources and can lead to increases in deforestation,

logging and hunting (Laurance et al. 2009). Hunting, which is particularly pervasive in

the African tropics, has obvious impacts on forest fauna. Changes in faunal populations

have subsequent impacts on forest flora due to the removal of large seed predators and

seed dispersers (Wright et al. 2007; Terborgh et al. 2008). Selective logging of remaining

forest, both legally and illegally harvested, causes degradation of the forest ecosystem.

This is particularly true for intensive mechanised logging operations that involve the

introduction of logging roads within forests. Collateral damage to other trees in addition

to the tree being harvested is high (Johns 1988) and the damage caused by selective

logging can leave forests exposed to further disturbances.

Physical disturbances to forests such selective as logging and fragmentation affect not

only forest structure and composition but can also catalyse other disturbances. For

example, fragment edges with large perimeters and more open and fuel-laden structures

are at greater risk of fires during dry years (Laurance 2006). These fires can have severe

impacts on forest structure and composition (Barlow & Peres 2006). Structurally

damaged forests are also thought to be of higher risk of plant diseases (Benítez-Malvido

& Lemus-Albor 2006) and invasion by exotic plant species (Fine 2002; Denslow &

DeWalt 2008).

Human activities also impact tropical forests indirectly by, for example, climate change

and increased concentrations of atmospheric CO2. Rising temperatures are likely to have

consequences for tropical trees as the rates of many physiological processes (e.g.

respiration, photosynthesis) change with temperature. Climate change is also likely to

alter precipitation patterns which in turn will also affect forest growth and mortality.

Although there is variation in predictions of different regions, and future trends in some

areas are not well understood at present, increased drought frequency, longevity and

intensity are predicted by some GCMs (Christensen et al., 2007). When linked to

dynamic global vegetation models (DGVMs), some alarming results have been found,

such as predicted dieback of the Amazon forest during the 21st century (Cox et al. 2004),
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particularly in the eastern portion of the basin (Malhi et al. 2009; Zelazowski et al.

2011). Strong drought events in recent decades have resulted in biomass loss in

Amazonia (Phillips et al. 2009a; 2010; Lewis et al. 2011) and Asia (Slik 2004; van

Nieuwstadt & Sheil 2005). Increases in atmospheric CO2, however, may have a positive

impact on tropical forest biomass stores. When including increased CO2 in GCM-DGVM

model runs, biomass losses due to future climate change are much reduced compared to

runs without a CO2 fertilisation effect (Lapola et al. 2009; Galbraith et al. 2010). Changes

to forest structure tentatively linked to rising atmospheric CO2 or increases in

availability of other resources have been observed across extensive networks of

monitoring plots in South America and Africa (Phillips et al. 1998; Baker et al. 2004a;

Phillips et al. 2004; Lewis et al. 2004; Lewis et al. 2009a; Phillips et al. 2009a). These

studies have shown increased biomass, basal area and tree turnover across the tropics,

suggesting that forests are already responding to global environmental change. The

abundance of lianas also increased in the Neotropics in recent decades (Phillips et al.

2002; Ingwell et al. 2010), hypothesised to be linked to global environmental change

(Schnitzer & Bongers 2011).

The impacts of many of the threats and changes to tropical forests presented above are

very uncertain. Prediction of the likely future trajectories of tropical forests requires a

thorough understanding of all potential threats and synergies between them, and is

necessary to guide policy makers on the best course of action for conservation. The

synergies between threats to tropical forests, their likely impacts on forests and

feedbacks between threats and impacts are shown diagrammatically in Fig. 1.1. This

thesis uses long-term forest inventory datasets from Ghanaian tropical forests to address

a number of the processes detailed in Fig. 1.1. In particular this thesis will assess the

resilience of forests drought and fires, and changes in liana abundance (which could lead

to increased tree mortality and changes to forest composition, see Section 1.4.2). These

processes are associated with considerable uncertainty and the nature of the dataset and

circumstances surrounding it allow in depth research. Specifically, I will test responses

of forest composition and structure to a long-term drought (Chapter 2), the impact and

recovery of forest structure and composition to wildfires (Chapter 3), and the recent
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temporal patterns of liana abundance and the drivers of liana spatial distribution

(Chapter 4).

Figure 1.1. Conceptual model of the threats to tropical forests and their impacts. Threats

are shown in red, with red arrows representing interactions between threats, impacts of

threats are shown in green, increased liana abundance which could be considered both a

threat and an impact is shown in blue and the feedback of tree mortality on increased

atmospheric CO2 concetration is shown in black. Dashed lines show the processes

assessed in this thesis.
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1.2 Droughts

1.2.1 Precipitation and water stress in tropical forest regions

The tropics receive two thirds of global annual rainfall (McGregor & Nieuwolt 1998) and

precipitation in tropical moist forest areas ranges from 1200 - 10000 mm yr-1 (Hijmans et

al. 2005). The dominant factor leading to high rainfall is the presence and length of stay

of the intertropical convergence zone (ITCZ), whilst topography and cyclones are also

important (McGregor & Nieuwolt 1998). South America and Asia have wetter climates

than Africa (Hijmans et al. 2005). Seasonality also varies between tropical forest regions

with areas of higher rainfall typically being less seasonal. Seasonality is lowest near the

equator where the ITCZ provides a relatively constant influence (McGregor & Nieuwolt

1998). The movement of the ITCZ results in seasonality patterns, such as the typical

bimodal rainfall pattern in much of Africa due to the passing over of the ITCZ twice a

year, that vary in different locations (McGregor & Nieuwolt 1998).

Tropical precipitation also shows high inter-annual variability (Salinger 2005). This is

often linked to El Niño Southern Oscillation (ENSO), with low rainfall in El Niño years

(ENSO events). ENSO is a tied ocean-atmosphere process in which changes in Pacific sea

surface temperatures alter atmospheric pressure and hence impact the climate system

(McGregor & Nieuwolt 1998). The correlation between ENSO events and rainfall is

particularly strong in South America and Asia and is weaker in Africa (Malhi & Wright

2004). Temperature increases in El Niño years in all tropical forest locations (Malhi &

Wright 2004). ENSO is a complex process which can show nonlinear and extreme

responses to small changes in controlling variables and therefore is difficult to accurately

capture in climate models (Malhi & Wright 2004).

Droughts can be defined as below normal precipitation for periods that can last from

months (e.g. ENSO related droughts) to years or even decades (Dai 2011). In terms of

vegetation water stress, soil moisture deficit incorporating soil water holding capacity,

evapotranspiration and precipitation has more impact than changes to precipitation per

se. Soil water holding capacity is strongly determined by soil texture. For example, soils



6

with high sand content will have large pore spaces between soil particles and water will

drain easily through these pores; therefore less water will be retained in sandy soils

compared with clay soils with smaller pore spaces (Shaw 1994). Spatial variation in soil

properties can therefore result in variations in plant water stress even under the same

precipitation regime. Evapotranspiration, the movement of water from soil to the

atmosphere through plant stomata (Hendriks 2010), increases with temperature and

therefore changes in temperature influence water stress. Water that is lost from soil

through evapotranspiration or runoff can be recharged by precipitation. To account for

these processes that influence plant water stress in tropical forests, the term maximum

cumulative water deficit (MCWD) has been developed (Aragao et al. 2007). MCWD is a

measure of drought severity representing the maximum amount of cumulative soil water

deficit over the course of a year, based on the assumption that each month 100 mm of

water is lost through evapotranspiration from tropical forest canopies (Shuttleworth

1989). MCWD varies spatially, reflecting differences in precipitation regimes and, in

particular, differences in seasonal water stress. As described above, variation in

seasonality between different regions occurs due to their position in relation to the

ITCZ. This variation in water stress leads to the occurrence of different vegetation types

with different species compositions, for example Malhi et al. (2009) show that in

Amazonia forest vegetation occurs where MCWD is greater than -300 mm and annual

precipitation is greater than 1500 mm yr-1, whereas below these limits savanna occurs.

The species occurring in different biomes are adapted to their local climatic conditions

with varying seasonal drought strengths, and within the tropical forest biome species

composition is known to vary over climatic gradients (Bongers et al. 1999; Engelbrecht

et al. 2007). The species that occur in locations which typically experience seasonal

water stress are able to cope with such conditions (see Section 1.2.2), and as such

deviations from the typical precipitation regime of a region are more important than

seasonal variations in the context of drought impacts on tropical forests.

Over the past 50 years temperatures have increased globally (Dai 2011), with a mean

increase in tropical forest regions of 0.26°C decade-1 from 1976 to 1998 (Malhi & Wright

2004). Rainfall has declined in some areas over these timescales, particularly in Africa
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(Malhi & Wright 2004; Dai 2011). Estimates of the Palmer Drought Severity Index for

the period 1900 - 2008 shows long-term drying over Africa, East Asia and northern

Amazonia (Dai 2011). Until the 1980s precipitation was found to be the dominant driver

of drying trends, whereas after the early 1980s surface warming and solar radiation also

became important (Dai 2011). Some forests may have experienced water stress in the last

century, either directly due to reductions in precipitation or due to other changes.

Future projections of the global climate show a high likelihood of increased

temperatures over the next 50 - 100 years. Using eight IPCC AR4 models, Sheffield &

Wood (2008) show global decreases in soil moisture by the end of the 21st century with a

doubling of short (4 - 6 months) droughts, and a tripling of droughts lasting 12 months

or more. Short droughts in particular may affect tropical forest regions, with tropical

Africa and South America particularly at risk. Amazon specific analyses using more

extensive ensembles of 19 - 24 models highlight the risk for Eastern Amazonia (Malhi et

al. 2009) and Southern Amazonia (Cook et al. 2012). Given these predictions, it is

important to understand the impacts of drought on tropical forests.

1.2.2. Impacts of droughts on tropical forests

Tropical forests are considered to be resilient to seasonal water stress that occurs as part

of the typical precipitation regime (Davidson et al. 2012). For example, deep rooting

systems reaching more than 8 m below the soil surface allow trees to maintain

evapotranspiration and photosynthesis during seasonally dry periods (Nepstad et al.

1994). Further, such roots have been shown to redistribute deep water resources to

shallower soils during the night to provide water to shallow roots during the day

(Caldwell et al. 1998; Oliviera et al. 2005). Leaf phenology is also an important

component of adaptations to seasonal water stress. The majority of leaf fall in seasonal

tropical forests occurs during the dry season which may avoid the risk of experiencing

dangerous levels of water stress at the end of the dry season when cumulative water

deficits are highest (Wright & Cornejo 1990). Leaf physiology may also play a part in

plant adaptations to seasonal water stress. Trees that retain their leaves during seasonal

droughts have been found to show isohydric behaviour (Fisher et al. 2006), closing
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stomata to maintain leaf water potentials above a critical threshold (Field & Holbrook

1989). The adaptations mentioned here allow tropical trees to survive during seasonal

water stress. The responses of forests to anomalous drought events, outside of the typical

seasonal variation experienced by any site, is the focus of this section of the thesis. Due

to the variation in background precipitation regimes, an anomalous drought may be very

different in terms of precipitation reduction in different areas.

The initial impacts of drought on tree mortality have been assessed in a number of

studies, particularly focussed on strong ENSO droughts such as those that occurred in

1982/83 and 1997/98. For example, Woods (1989) found 12 - 28 % of trees in logged

forests in Borneo died due to the 1982/83 ENSO drought and mortality was consistent

between size classes (Woods 1989). Leighton & Wirawan (1986) also report increased

mortality due to drought in Borneo with 14 - 24 % of trees dying. The 1982/83 ENSO

event also affected Barro Colorado Island, Panama, but not as strongly as in the Bornean

forests studied by Woods (1989) and Leighton & Warawan (1986). Condit et al. (1995)

assessed tree mortality rates over the drought period 1982 - 1985 and post-drought

period 1985 - 1990. During the drought an additional 2 % of stems ≥ 10 cm diameter

died compared with post-drought. Canopy species were particularly affected.

The impacts of the 1997/98 ENSO event was well studied in Borneo where rainfall was

severely reduced with several months receiving < 100 mm rainfall in an area that is

typically everwet (Potts 2003, van Nieuwstadt & Sheil 2005). Nakagawa et al. (2000)

found tree mortality rates increased from 0.89 % yr-1 pre-drought (1993 - 1997) to 6.37

% yr-1 during the drought. Similarly, basal area mortality rose from 0.33 % yr-1 pre-

drought to 5.28 % during the drought. Additionally, pre-drought mortality was biased

towards small trees, whereas drought mortality affected trees of all size classes

(Nakagawa et al. 2000). Potts (2003) show similar results; tree mortality was three times

higher during drought than pre-drought (1993 - 1997). Results from Slik (2004) show

greater mortality; after the 1997/98 drought 15.4 % of stems were dead compared to 4.2

% during a four year post-drought period. Mortality was higher in disturbed forest;

forests logged 24 years previously had drought-induced mortality of 19.6 %, and forests
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logged 14 years previously were even more severely affected with 25.7 % mortality. The

discrepancy between forests of different disturbance histories was attributed to high

mortality of pioneer trees of the Macaranga genus. Mortality was higher for trees

growing areas of lower soil moisture, and for trees > 20 cm diameter compared with

trees 10 - 20 cm diameter. Similarly high mortality (11 - 19 %) was reported by van

Nieuwstadt & Sheil (2005), increasing further to 22 - 26 % cumulatively two years after

drought. Larger trees were again found to suffer greater mortality. Furthermore,

mortality varied between different species and species with lower wood density

displayed greater mortality (van Nieuwstadt & Sheil 2005). In addition to increased

mortality, studies have shown growth rates of surviving trees to be reduced during the

drought period (Nakagawa et al. 2000; Newbery et al. 2011), but may then increase post-

drought (Newbery et al. 2011). Impacts of the 1997/98 ENSO event in other regions

were less severe. Despite a reduction in dry season rainfall in the central Amazon from

the long-term average of 732 mm to 230 mm in 1997, mortality only increased to 1.94 %

yr-1 from a background rate of 1.12 % yr-1 (Williamson et al. 2000). Similarly, at three

sites in Panama mortality was only weakly enhanced during the 1997/98 ENSO event,

and only significantly so at one site (mortality 1.23 % yr-1 1994 - 1997 vs. 1.70 % yr-1

1997 - 1998, Condit et al. 2004).

More recently, widespread droughts have occurred in the Amazon during 2005 and 2010

(Marengo et al. 2008; Phillips et al. 2009a; Lewis et al. 2011). Phillips et al. (2009a) show

large biomass losses compared to earlier multi-decadal biomass increases, based on a

widespread network of monitoring plots. This result is mostly due to increased tree

mortality, and marginally also to decreased tree growth (Phillips et al. 2009a).

Furthermore, using data from the network of plots in combination with other datasets

(many of which are cited above), Phillips et al. (2010) found large trees and those with

low wood density are more susceptible to drought. At lower drought intensities

mortality related linearly to intensity, whereas at higher intensities mortality increased

disproportionately. Post-drought period mortality was lower than during the drought

period, but not as low as pre-drought.
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Drought experiments also provide insight into the impacts of reduced rainfall on tropical

forests. However, at present only 2 ha of tropical forest have been experimentally

droughted in two experiments. Throughfall exclusion (TFE) experiments involve the

placement of plastic panels above the forest floor angled to transfer rainfall into

channels to remove it from the plot (Nepstad et al. 2002; Fisher et al. 2007). Both

experiments are located in eastern Amazonia, in Tapajos National Forest where

throughfall exclusion panels were in place only during the wet season (Nepstad et al.

2002), while in Caxiuanã where panels were used throughout the year (Fisher et al.

2007). Results from the two experiments show a high level of consistency. In both cases

tree mortality between TFE and nearby control plots did not greatly differ until three to

four years after commencement of the experiment (Nepstad et al. 2007; Brando et al.

2008; da Costa et al. 2010) when soil water is substantially reduced. Over the whole

study periods (5 years in Tapajos, 7 years in Caxiuanã) annual mortality rates of TFE

plots were 5.7 % yr-1 and 2.5 % yr-1 in Tapajos and Caxiuanã respectively, compared to

control plot mortality rates of 2.4 % yr-1 and 1.25 % yr-1; in both experiments stem

mortality under TFE were twice the rates in control plots (Brando et al. 2008; da Costa

et al. 2010). Clear size-dependent mortality was also consistent between sites, with large

trees (> 20 cm diameter) showing much higher mortality than smaller stems (Nepstad et

al. 2007; da Costa et al. 2010); overstorey species were also disproportionately affected in

Tapajos (Nepstad et al. 2007). Stem growth of large trees was consistently higher in

control plots compared with the TFE treatment and wood production declined with

time since initiation of TFE (Brando et al. 2008; da Costa et al. 2010). The biomass loss

associated with TFE in Caxuianã was 5.4 Mg C ha-1 yr-1, amounting to an 18 - 20 % loss

over the study period (da Costa et al. 2010). In Tapajos, aboveground net primary

productivity (including both wood production and litterfall) decreased by an average of

21 % (Brando et al. 2008).

Mechanisms of tree mortality were also investigated at the TFE sites. Leaf respiration

increased under TFE (Metcalfe et al. 2010a) and there is evidence that trees responded to

water stress by closing stomata to reduce transpiration (Fisher et al. 2006). Closing of

stomata, whilst reducing water loss, results in reduced leaf CO2 concentrations which
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would reduce carbon assimilation. Together, this suggests carbon starvation may be one

mechanism driving the drought-induced mortality, as carbon expenditure may have

been higher than GPP (Metcalfe et al. 2010b). Hydraulic failure through processes such

as xylem cavitation, rupture of the water column due to vapourisation of water under

tension (Field & Holbrook 1989), may also be a cause of drought-induced mortality. A

full understanding of the mechanisms of drought-induced mortality have yet to be

reached, particularly with regards to the role of phloem transport during drought

(McDowell & Sevanto 2010; Sala et al. 2010). During drought events, carbon

mobilization and transport may also be reduced, limiting the relocation of stored carbon

to parts of the plant where it is needed (Sala et al. 2010). A recent review of drought-

induced mortality proposes a linkage between mechanisms of mortality, with the

reduced carbon assimilation limiting the extent to which embolized xylem elements can

be refilled as this process requires energy (McDowell et al. 2011). The nature of drought-

induced mortality in forest trees is currently an active research topic.

Droughts may also affect species composition. Da Costa et al. (2010) show that of eight

genera for which analysis was possible, three were particularly susceptible to drought-

induced mortality. Large canopy trees, and species with low wood density, have also

been shown to have higher susceptibility to short-term drought (van Nieuwstadt & Sheil

2005; Nepstad et al. 2007; Brando et al. 2008; da Costa et al. 2010; Phillips et al. 2010).

Over a longer period with repeated droughts, this trend could result in changes to

species and functional composition. Two studies have assessed changes in functional

composition over decadal time-scales in single large plots in Central America, and

attributed observed changes to drought during the study period (Enquist et al. 2011;

Feeley et al. 2011). Evidence from both a 16.25 ha plot in Costa Rica and a 50 ha plot in

Panama show increases in deciduous, compound-leaved, canopy species with high wood

density (Enquist et al. 2011; Feeley et al. 2011). Understanding the long-term effects of

drought on the composition and structure of tropical forests remains a key research

challenge (Chapter 2).
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1.3 Fires

1.3.1 Fire history of tropical forests

Tropical, moist, closed canopy forest is only weakly susceptible to fires, especially those

dominated by evergreen species (Uhl et al. 1988). This is due to the ability of closed

canopy evergreen stands to maintain humidity below the canopy as transpired moisture

is trapped (Cochrane 2003). However, charcoal has been found in many tropical forests

dating back several millennia suggesting that occasional fire has been a long-term

feature of these ecosystems. For example, charcoal was dated to 1000 and 2000 yr BP in

Guyana (Hammond & ter Steege 1998) and at similar times in La Selva, Costa Rica (Horn

& Sanford 1992). In additional, Sanford et al. (1985) found a number of charcoal samples

in soils from Venezuela dated to between 250 and 6260 yr BP. The occurrence of these

fires coincides with known dry phases (Sanford et al. 1985) during which time even

closed canopy forests may have become flammable. The presence of charcoal in

sediment cores measured up to 7500 yr BP likely indicates fires caused by indigenous

populations, which decreased 500 yr BP following the European colonisation of the

Americas (Bush et al. 2007; Nevle & Bird 2008). The fire return intervals (time between

repeated burns at the same site) of 400 - 1560 yr suggested by Sanford et al. (1985) are

considerably longer than the fire return intervals observed at present. For example,

Alencar et al. (2011) estimate 82 yr fire return intervals in an area of Eastern Amazon,

and Barlow & Peres (2008) observed forest fires affecting the same area three times

within 10 years in central Amazon.

1.3.2 Current fire occurrence

Since the strong 1982/83 ENSO drought that affected much of the tropics and led to

unintentional understorey forest fires in Africa (Swaine et al. 1997) and South East Asia

(Goldammer & Seibert 1989), more attention has be made to the occurrence and impacts

of fires in tropical forests. Monitoring the occurrence and spatial distribution of damage

from understorey fires is challenging. Remote sensing techniques can provide active fire

pixels (hot pixels), showing locations where fires occur (e.g. global coverage using
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MODIS, Giglio et al. 2003 and South American coverage using the Fire Monitoring

Project from CPTEC and INPE). However, such hot pixel products can only identify

fires in open areas, rather than understorey fires that occur below the forest canopy

(Silvestrini et al. 2011). An additional problem of hot pixel products is that they do not

give an indication of the area burnt. It is possible to derive burnt areas for tropical

forests from Landsat images (Alencar et al. 2004; 2006; 2011), however the burnt area

signature of the vegetation is only detectable within one to two years of the fire

occurrence, and therefore many repeated images are needed to assess burnt areas over

time (Alencar et al. 2004). This is due to regrowth of vegetation following fire

disturbance (Alencar et al. 2004). As a result, the production of burnt area maps for

tropical forest regions has only been carried out for specific regions and over short time

periods. Once burnt area maps have been produced they can be used to investigate

which variables result in fires. Alencar et al. (2004) show that over 10 years in a 338,000

ha area of the Eastern Amazon half of the forest are was burnt; most fires occurred

during ENSO years and previously logged or burnt areas were more commonly affected.

Fire occurrence was also correlated with fragment size, distance to forest edge, roads and

settlements (Alencar et al. 2004). A further study has shown that fire spreads further

into the interior of forest fragments during ENSO years (Alencar et al. 2006). Extensive

fires in Amazonia due to the 2005 drought have also been documented (Aragão et al.

2007).

Clear links have been made between fire occurrence, strong droughts and human

impacts on tropical forests. The edges of fragmented forests have been shown to

experience increased tree mortality, increased canopy openness, increased litterfall and

hotter, drier microclimates (Kapos 1989; Laurance et al. 1998; Sizer et al. 2000). These

conditions of higher dead biomass on the forest floor and hot, dry microclimates result

in increased forest flammability due to an abundance of highly flammable fuels

(Laurance 2006). Selective logging of forests also has a similar impact resulting in

increased flammability due to opening of the canopy and debris produced from both the

logged trees and other trees killed during the extraction process (Uhl & Buschbacher

1985; Holdsworth & Uhl 1997). Ignition sources for understorey fires typically come
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from slash and burn deforestation fires and agricultural management fires (Uhl &

Buschbacher 1985; Laurance 2006). Areas already of increased flammability such as

along fragment edges and logged areas are also more likely to be close to such ignition

sources than undisturbed forests. Under appropriate climatic conditions such as

particularly severe dry seasons these forests can burn, and if conditions are anomalously

harsh even undisturbed forests may burn (Barlow & Peres 2006).

These results can then be used in modelling exercises to predict future fire occurrence.

Silvestrini et al. (2011) produced a model of future fire regimes in the Amazon

parameterised using hot pixel data. Vapour pressure deficit and various spatial land use

variables were used to estimate the current probability of fire occurrence, and these

models were projected to 2050 using future climate change and land use scenarios. The

results show that although both future deforestation and climate change may

independently lead to increased fire occurrence, the synergy between the two will lead

to particularly large increases in the future, resulting in a 50 % increase in fire

occurrence by 2050. Soares-Filho et al. (2012) developed a process-based understorey

fire model to predict forest fire ignitions and fire spread coupled to a vegetation model to

assess long-term carbon balance in the Xingu area of Amazonia. Findings from this study

suggest that, although climate change alone will result in an increase in the percentage

of forest burnt, forest fragmentation had the largest impact on future fires. As patterns of

deforestation and degradation as well as climate change are likely to affect all tropical

areas in the future and therefore fire occurrence in tropical forests is likely to rise,

providing data to calibrate these models is of high importance.

1.3.3 Impacts of fires on tropical forests

Understorey fires tend only to consume dry leaf litter on the forest floor (Cochrane et al.

1999) but can have large impacts on forests and result in highly elevated tree mortality.

However, mortality rates, typically measured within 3 years of the fire event, show wide

variation. A review by Barlow & Peres (2006) showed that the percentage of trees dying

due to fire can vary between 8 and 90 %. This variation can be attributed to a number of
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sources which are themselves interlinked. Forests in different areas may have had

different historical exposure to fires, and places with higher exposure may have

developed a more fire resistant floristic composition (Barlow & Peres 2006). For

example, fires in core Amazon forest regions show higher tree mortality (36 - 64 %) than

forests located at the fringes of the Amazon (8 - 23 %) (Barlow & Peres 2006). Fire

intensity, commonly measured using the presence and heights of fire scars on tree boles,

is also a strong predictor of tree mortality (Cochrane & Schulze 1999; Barlow et al.

2003a; Barlow & Peres 2004; Balch et al. 2008; Brando et al. 2012). Even within a single

study area there can be considerable variation in fire intensity (Cochrane & Schulze

1999) which may be due to spatial heterogeneity in microclimate, fuel load or

disturbance history. Forests that have been recently disturbed (e.g. logged forests) are

likely to burn more severely with their higher fuel loads and open canopies (Holdsworth

& Uhl 1990). Therefore both long-term fire history and recent disturbance history are

likely to influence the impact of fires on forests.

The susceptibility of individual trees within a stand also shows heterogeneity, and is

linked to tree size and the traits of different tree species. Many studies have shown that

small trees show higher post-fire mortality than large trees (Cochrane & Schulze 1999;

Pinard et al. 1999; van Nieuwstadt & Sheil 2005; Balch et al. 2011; Brando et al. 2012).

This has been linked to the thin bark present on small trees. Bark thickness of tropical

forest trees increases as a function of tree diameter and varies among species (Uhl &

Kauffman 1990; Pinard & Huffman 1997; van Nieuwstadt & Sheil 2005; Paine et al.

2010; Brando et al. 2012). Trees with thinner bark show higher cambium temperatures

under experimental fires than thicker barked trees (Uhl & Kauffman 1990; Pinard &

Huffman 1997; Brando et al. 2012); heat transfer rate and maximum cambium

temperature decrease exponentially with increasing bark thickness (Uhl & Kauffman

1990; Pinard & Huffman 1997; Brando et al. 2012). However, the presence of water

within bark is also important in determining heat transfer through bark as it limits the

cambium temperature to a maximum of 100°C (Brando et al. 2012). Small trees may also

be at higher risk of fire-induced mortality because their stems are more likely to be

burnt all around their circumference (Gutsell & Johnson 1996; Balch et al. 2011). Other
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factors may also be important. For example, trees with buttresses have been shown to

have thinner bark for their size than other species, with bark particularly thin at the

base of the bole where trees are at risk of burning (Barlow et al. 2003a). In addition,

larger trees and those with buttresses have greater loads of fine fuels at their bases which

may lead to more intense burning (Barlow et al. 2003a). Wood density has also been

found to correlate with fire-induced mortality, with denser wooded species showing

higher survival rates (Brando et al. 2012).

As there is variation in traits such as bark thickness among species, certain species also

have a higher chance of survival which may lead to altered species composition between

the pre-fire composition and those trees which survive. Furthermore, species typically

restricted to the understorey with smaller maximum sizes may suffer increased

mortality. Differences in fire-induced mortality between species have been found in

some studies (van Nieuwstadt & Sheil 2005; Balch et al. 2011). For example, assessing

species abundance two years after fires compared with pre-fire abundances in Borneo,

Slik et al. (2010) found that species which declined in abundance had thin bark,

population structures dominated by small trees, short seed dormancy and hillside or

ridge habitat preference. These results match the hypotheses that species most

vulnerable to fire-induced mortality will have thin bark and smaller individuals. Species

with short seed dormancies would be less likely to regenerate post-fire, and hillside and

ridge habitats may have lower soil moisture and therefore experienced more intense

fires (Slik et al. 2010). These results show that fire-induced mortality can generate

differences in forest composition after fires.

Not all impacts of fires occur immediately following the fire event. Assessing mortality

in the first three years following fires, it has been shown that elevated mortality still

occurs one or two years after the fire (Holdsworth & Uhl 1997; Cochrane et al. 1999;

Barlow et al. 2003b; Brando et al. 2012). Barlow et al. (2003b) show that in the years

post-fire the mortality of large as well as small trees can be elevated, suggesting that

large trees may have some susceptibility to time-lagged fire-induced mortality.
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After an initial fire, the forest becomes more susceptible to subsequent fires which tend

to be more severe (Cochrane et al. 1999). This is because dead trees provide more fuel on

the forest floor (Cochrane & Laurance 2002) which is then dried out extensively as the

canopy is more open (Cochrane & Schulze 1999). Grasses and small vines tend to invade

post fire, adding more potential fuel (Cochrane et al. 1999; Pinard et al. 1999). This

allows forests to burn under conditions where a primary forest normally would not. For

example, of unburnt logged forests in Para, Brazil, only 4% were expected to become

flammable with 16 rainless days, whereas 51% of lightly burnt logged forests and almost

100% of severely burnt forests were expected to become flammable (Cochrane &

Schulze 1999). The effects of subsequent burns are more severe than initial fires; Barlow

& Peres (2008) describe a cascade of changes in species composition with unburnt, once

burnt, twice burnt and thrice burnt forests composed of a series of different groups of

species. Stem density of all size classes also decreased with subsequent burns (Barlow &

Peres 2008). Living biomass is heavily reduced with increasingly severe fire histories

(Cochrane & Schulze 1999) and the survival advantage of thick barked larger trees in

initial fires may be lost with the increased severity of repeated fires (Cochrane &

Schulze 1999; Cochrane 2001). However, Balch et al. (2008) found that fire intensity and

spread may be limited by fuel availability during repeated experimental burns.

Although the short-term impacts of forest fires are relatively clear, the long-term

impacts of fires are not well known, with few studies assessing recovery after fires over

more than a few years. In the first years post-fire, growth and recruitment of seedlings

and saplings is increased in burnt forests compared with unburnt sites (Swaine et al.

1997; Cleary & Priadjati 2005; Gould et al. 2002). Given seven years of regeneration,

stems > 5 cm diameter increased compared with 1.5 years post-fire, but biomass of stems

> 10 cm diameter declined (Slik et al. 2008). Nine years after fires in the Brazilian

Amazon stem density in the 10 - 20 cm diameter size class was similar to that of adjacent

unburnt forests, but other size classes showed little recovery (Barlow & Peres 2008).

After 15 years stem density of trees ≥ 10 cm diameter reached the densities of unburnt

forests in sites in Borneo (Slik et al. 2002; Barlow & Peres 2008; Slik et al. 2008).

However, the regenerating stems in these studies are typically made up of early
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successional pioneer species, and floristic composition remains significantly altered (Slik

et al. 2002). These results suggest that forest structure can regenerate within a few

decades of fire events, but composition requires longer to recover. The decadal-scale

recovery of forest structure and functional composition in Ghanaian tropical forests will

be examined in Chapter 3 of this thesis, utilising plots established in previously burnt

forests.

1.4 Lianas

1.4.1 Background

Lianas are woody vines commonly found in tropical and some temperate forests

(Schnitzer & Bongers 2002), with maximum biomass and diversity in tropical forests

(Gentry 1991). Lianas germinate on the forest floor and use the support of trees to reach

the canopy (Putz & Holbrook 1991). Lianas can enter a tree either by growing up the

trunk or moving laterally from the crown of an adjacent tree, and they can grow

laterally along the ground and re-root away from the original rooting point (Schnitzer

and Carson 2001, Gerwing et al. 2006). As lianas use trees for structural support they can

put more of their biomass into leaf area and reproduction, giving them a high leaf

area:stem biomass ratio (Putz 1983); as a functional group their leaves make up a large

proportion of the canopy (up to 40%; Hegarty & Caballé 1991) despite contributing just

5% of total aboveground biomass (DeWalt & Chave 2004; van der Heijden & Phillips

2008). They make up to 15% to 25% of stems of woody plants in sample plots (Schnitzer

& Bongers 2002) and in Neotropical and Southeast Asian forests 40-60% of trees ≥ 10 cm

diameter carry a liana (Laurance et al. 2001).

Different liana species have different mechanisms for climbing trees: the may be

twiners, tendril climbers, root climbers or hook climbers (Putz & Holbrook 1991; Padaki

& Parthasarathy 2000). Twiners can have either stems or lateral leaf-bearing branches

which can twist in a helical manner to attach firmly to supports (Putz & Holbrook 1991;

Padaki & Parthasarathy 2000). Tendril climbers have specific organs which can twist

around supports but differ from twiners in that the tendril organs have a sensitivity to
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contact with supports which elicits a coiling response. Hook climbers posses hooks on

stems, leaves or modified flowers. They do not carry out searching movements, but

hooks in contact with a support become stronger (Putz & Holbrook 1991). Root climbers

utilise adventitious roots to attach to the tree surface (Padaki & Parthasarathy 2000).

Lianas of different climbing mechanism have the ability to enter hosts of different sizes.

For example, tendril climbers were found to only climb trees of maximum diameter of

approximately 8 cm, whereas branch twiners could climb trees up to a maximum of 16 -

24 cm diameter in Panamanian and Malaysian forests (Putz 1984a, Putz & Chai 1987,

Putz & Holbrook 1991). Root climbers can attach to irregularities in bark and hence can

potentially climb trees of all sizes (Darwin 1867; Jiménez-Castillo & Lusk 2009).

1.4.2 Impacts of lianas on host trees

Lianas depend on host trees for structural support and as such are parasites on the tree.

Putz (1984a) lists a number of ways lianas can negatively impact their hosts such as

mechanical abrasion, passive strangulation, damage by wind and increasing accessibility

of trees to potentially damaging animals. As a result, lianas increase host-tree mortality.

Using data from 13, 1 ha Amazonian plots Phillips et al. (2002) found that liana

infestation increased tree mortality by 39.6 ± 31.3 % compared with uninfested trees.

Large trees (≥ 50 cm diameter) with liana infestations had a basal area mortality rate

three times higher than uninfested large trees in Western Amazonian forests (Phillips et

al. 2005). Similarly, on Barro Colorado Island (BCI) twice as many heavily infested trees

died over an 11 year study period compared to trees free from lianas (Ingwell et al.

2010). Lianas are also known to decrease tree growth rates. Clark & Clark (1990) found

that both the basal area of and extent of tree crown occupied by lianas and

hemiepiphytes correlated negatively with annual tree diameter growth, whilst van der

Heijden & Phillips (2009a) show that trees ≥ 10 cm diameter heavily competing with

lianas have reduced diameter growth rates (32 - 82 % reduction) compared with

uninfested trees. Lianas also reduce host tree seed production (Nabe-Nielsen et al. 2009).
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Lianas have a negative impact on tree growth and mortality because they compete with

host trees for resources (Schnitzer & Bongers 2002). Aboveground, leaves of lianas are in

close proximity to host leaves and therefore compete with them for light (Clark & Clark

1990), although not all liana species compete with their hosts in this way (Ichihashi &

Tateno 2011) and lianas of differing climbing strategies may differ in the amount they

shade their hosts (Llorens & Leishman 2008). Lianas also posses extensive root and

efficient vascular systems (Ewers et al. 1991; Schnitzer 2005) making them efficient

belowground competitors.

The relative importance of aboveground and belowground competition between lianas

and trees has been investigated with varying results. In an experiment on tree saplings in

Cote D’Ivoire, Schnitzer et al. (2005) found that belowground competition had a larger

impact on sapling biomass than aboveground competition, however saplings carrying

lianas in their crowns did show altered allocation patterns suggesting mechanical stress.

A similar result was found by Toledo-Aceves & Swaine (2008) from a shade-house

experiment in Ghana: below ground competition had a larger impact on seedling growth

than above ground competition. Liana removal from adult trees increased tree water

potential during the dry season in Bolivia, showing effective competition for water by

lianas (Pérez-Salicrup & Barker 2000). However, the result was not found when a

different tree species was assessed (Barker & Perez-Salicrup 2000). In a temperate

habitat, belowground competition was again found to be more important than

aboveground competition (Dillenberg et al. 1993). In contrast, van der Heijden &

Phillips (2009a) suggested that aboveground competition was more important than

belowground competition in reducing tree growth of Peruvian trees, although this was

purely an observational study. Experiments also show that the importance of

aboveground and belowground competition may vary depending on irradiance, with

aboveground competition more important under low light conditions and belowground

competition more important under high light conditions the for the growth of tree

seedlings (Chen et al. 2008). The importance of belowground and aboveground

competition remains unclear, and may vary between species. In contrast to these studies

of competition, it has also been suggested that as lianas have high turnover of their high
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nutrient and abundant leaves (Zhu & Cao 2010), they may benefit trees by providing

additional nutrients to the soil, especially those lianas that root away from their position

in the canopy (Tang et al. 2012).

Lianas do not infest trees in a random manner (Putz 1984a). Trees with large diameters

have been found to carry larger infestations of lianas than smaller trees (Clark & Clark

1990; Pérez-Salicrup et al. 2001; Pérez-Salicrup & de Meijere 2005; Nesheim & Økland

2007), though Carsten et al. (2002) found that infestation with lianas of different

climbing mechanisms gave different relationships with host diameter. Addo-Fordjour et

al. (2009) found no significant relationship between tree diameter and liana load in

Ghana. Larger trees may be likely to carry more lianas as they may have been exposed to

the risk of infestation for a longer time than smaller trees, and infestation by one liana

can provide an access route for other lianas (Putz & Chai 1987; Campbell & Newbery

1993; Pérez-Salicrup et al. 2001). Once a tree has acquired one liana, it is likely to

acquire more. For example, liana infestation is commonly found to be aggregated in

certain trees, with some having higher and some lower number of lianas than would be

expected if infestation occurred at random (Campbell & Newbery 1993; Putz 1984a;

Pérez -Salicrup et al. 2001). Factors that have been found to reduce liana infestation

include high branch-free bole height (Balfour & Bond 1993; Campbell & Newbery 1993;

van der Heijden et al. 2008), long leaves (Putz 1984b; van der Heijden et al. 2008),

branch shedding (Campbell & Newbery 1993; Carse et al. 2000) and flexible trunks (Putz

1984b). High branch-free bole height may prevent lianas from having access to the

canopy, whilst large leaves, when shed, may dislodge lianas present in the tree, as would

branch shedding and the movement of flexible trunks. In the case of root-climbing

lianas, bark characteristics are also important (Talley et al. 1996). Lower growth rates

have been found to correlate with increased liana infestation (Clark & Clark 1990)

which is most likely due to a combination of the fact that lianas reduce tree growth (van

der Heijden & Phillips 2009a) and that traits that reduce liana infestation such as high

branch-free bole height and long leaves are correlated with faster growing species (van

der Heijden et al. 2008). Such traits are species-specific which is consistent with some

species carrying more or less lianas than expected by chance (Campbell & Newbery
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1993; Carse et al. 2000; Carsten et al. 2002; Nesheim & Økland 2007; van der Heijden et

al. 2008; Jiménez-Castillo & Lusk 2009). If particular species are infested by lianas more

than others, and the presence of lianas has a negative impact on host trees, it is likely

that lianas may impact patterns of tree species composition in tropical forests.

1.4.3 Liana spatial distribution

Low rainfall and high seasonality, disturbance, forest structure and soil fertility have all

been proposed as spatial drivers of liana abundance (Putz 1984a; Schnitzer & Bongers

2002). In particular, Schnitzer (2005) provides a compelling argument that liana

distribution is driven globally by precipitation and dry season length. This hypothesis is

driven by evidence that lianas are better adapted to cope with water stress giving them a

competitive advantage over trees. The structure of lianas with long, narrow stems and

large leaf area requires a larger amount of water to be transported through a much

smaller stem cross-sectional area than for trees. As such, lianas have a different xylem

physiology compared to trees, with larger vessel elements, lower sapwood density and

higher hydraulic conductivity (Carlquist 1991; Ewers et al. 1991; Tyree & Ewers 1991;

Ewers et al. 1997; Zhu & Cao 2009). To prevent embolism, lianas have deep and

expansive root systems to reach deep water sources during seasonal droughts (Restom &

Nepstad 2004; Andrade et al. 2005). These physiological adaptations enable lianas to

remain photosynthetically active during seasonal droughts when trees may lose their

leaves; this gives lianas an advantage of less competition with trees during the period

when irradiance is highest (Putz & Windsor 1987; Schnitzer 2005). To support this, Cai

et al. (2009) present clear evidence that lianas fix more carbon than trees, particularly

during the dry season.

A number of studies have tested the hypothesis that rainfall and seasonality drive liana

distribution. Using the pantropical Gentry dataset of 0.1 ha plots, Schnitzer (2005) found

a significant relationship between increased precipitation and liana density

(precipitation range 500 - 7,500 mm yr-1). Using a pantropical dataset DeWalt et al.

(2010) also find evidence in support of the relationship between low rainfall (range 860 -
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7,250 mm yr-1), high seasonality (range 0 - 7 months < 100 mm) and liana abundance.

Assessing a large dataset along a shorter rainfall gradient (1113 - 2198 mm yr-1) in

Bolivia, Toledo (2011) find that the percentage of trees infested with lianas decreased

with increasing rainfall, also supporting the results of Schnitzer (2005) and Dewalt et al.

(2010). Swaine & Grace (2007) assessed a similar precipitation gradient (1000 - 2000 mm

yr-1) in Ghana and found a significant relationship between decreasing rainfall and

increasing liana species as a proportion of tree, herb and liana species, however it does

not directly address liana abundance. In contrast, using only the Neotropical data from

the Gentry dataset van der Heijden & Phillips (2008) found no relationship between

precipitation or rainfall seasonality and liana abundance (precipitation range 500 - 9,000

mm yr-1, dry season length range 0 - 11 months < 100 mm). Testing relationships

between rainfall, dry season length and liana species richness (after accounting for liana

abundance) using the same Neotropical dataset, van der Heijden & Phillips (2008) found

that liana species richness increased with decreasing dry season length. The majority of

available evidence suggests liana abundance does increases in areas of lower rainfall and

greater seasonality, but not all studies support this.

Disturbances at various scales have also been shown to be drivers of liana abundance. At

small scales liana abundance has been related to treefall gaps. Schnitzer & Carson (2001)

investigated species diversity in treefall gaps on Barro Colorado Island and discovered

that liana diversity, both per unit area and per individual, was higher in treefall gaps

than in closed canopy forest areas. Abundance was also greater at gap sites. The increase

in lianas in treefall gaps may be due to lianas having four methods of gap colonization

(from the seed bank, advance regeneration, growing laterally into a new gap or

surviving when a tree in which they are resident falls and regrowing in the gap),

whereas trees can only colonize from the seed bank or advance regeneration (Schnitzer

& Carson 2001). The presence of small tree stems within tree fall gaps may also increase

liana abundance as it provides a trellis upon which small lianas can climb (Putz 1984a).

Some treefall gaps may even become dominated by lianas at the expense of trees and

persist in this state for many years (Schnitzer et al. 2000; Foster et al. 2008). Within old

growth forest patches of different tree heights (< 3, 3 - 15 m, 15 - 25 m and > 25 m),
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liana density and basal area decreased with forest height, again showing their affinity for

gaps and early successional stands (Gerwing & Farias 2000). Liana species richness and

basal area were found to increase with plot-level tree wood density (a proxy for forest

disturbance, van der Heijden & Phillips 2008; van der Heijden & Phillips 2009b). At

larger scales of disturbance, studies assessing liana abundance along gradients of

secondary forest age have also found significant trends. DeWalt et al. (2000) assessed

liana abundance along a chronosequence of secondary forests 20, 40, 70, and 100 years

after abandonment and old growth forests, and reported increased liana abundance in

younger Panamanian forests; however liana biomass increased with forest age.

Composition of lianas and climbing strategy also varied across stands of different ages,

suggesting different species may have different requirements with regard to support

structures. Similar results have been found in other secondary forests of varying ages;

Yuan et al. (2009) show liana abundance was higher in younger sub-tropical forests, and

along the chronosequence liana species composition and climbing strategy varied, whilst

Madeira et al. (2009) found the highest liana abundance in seasonally dry tropical forests

of intermediate successional stage. Liana diversity was reduced in Malaysian secondary

forests, but abundance remained was similar in primary and secondary forests whilst

liana basal area was considerably higher in primary forest (Addo-Fordjour et al. in

press). Forest fragmentation can also alter forest structure and dynamics. Laurance et al.

(2001) studied the effects of forest edges on liana spatial distribution and found that the

abundance of lianas increased significantly within 100 m of edges compared to the forest

interior. However, the relationship was complex as plots > 1000 m from the edge also

had high liana abundances, and had a higher proportion of lianas > 10 cm diameter

(Laurance et al. 2001).

Differences in forest structure, and therefore host availability, may contribute to the

patterns found along secondary forest chronosequences and in disturbed areas.

Relationships between liana abundance and forest structure are also likely to be

important in old growth forests. In fragmented forests, liana abundance decreased with

tree biomass (Laurance et al. 2001). In contrast, large lianas (≥ 10 cm diameter) increased

with large tree basal area in forest plots in Peru (Phillips et al. 2005). In Yasuni National
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Park, Ecuador, liana abundance was positively correlated to small tree density (1 - 10 cm

diameter), but not to density of trees ≥ 10 cm diameter (Nabe-Nielsen 2001). Liana

abundance was correlated with a vegetation index reflecting tree size class distribution

in Central Amazonia, corresponding to increased liana density with more smaller trees

(Nogueira et al. 2011). Across the Neotropics, liana density was found to be related to

density of trees ≥ 10 cm diameter, and liana basal area was related to basal area of trees ≥

10 cm diameter (van der Heijden & Phillips 2008). These results show a strong link

between forest structure and liana abundance.

Liana distribution may also be related to soil fertility; Gentry (1991) found low

abundance in very low fertility sites and high abundance in very fertile sites. Lianas may

increase with soil fertility due to the high nutrient demand of their nutrient rich,

extensive and high turnover foliage (Zhu & Cao 2010). However, relationships between

soil fertility and liana abundance are not always found. Laurance et al. (2001) show

higher liana biomass correlates with increased levels of P, clay, pH and exchangeable

bases, and decreased sand content in 1 ha plots across a landscape of the central Amazon.

In contrast van der Heijden & Phillips (2008) found no relationships between soil

variables and liana density and only a weak effect of Cu concentration on liana basal

area from a dataset with samples from across the Neotropics. The literature also presents

contrasting relationships between soil sand content and liana abundance. Across an

environmental gradient in Bolivia, Toledo (2011) found liana abundance increased with

soil sand content, whilst Nogueira et al. (2011) found liana density decreased with sand

content over a 64 km2 are of the Central Amazon. Further work is required to fully

comprehend the associations between soil properties and liana distribution.

1.4.4 Recent increases in liana abundance

Recent work on the dynamics of lianas in undisturbed Neotropical forests shows an

increase in abundance over time (Phillips et al. 2002; Wright et al. 2004; Wright &

Calderon 2006; Ingwell et al. 2010). Phillips et al. (2002) used data from 47, one ha plots

in the Neotropics with information on lianas ≥ 10 cm diameter and found that both the
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growth and mortality of lianas were increasing, with the increase in growth being

greater than the increase in mortality. Both density and basal area increased between

1981 and 2001. The biomass of trees in the Amazon also increased over the same time

period (Baker et al. 2004a) but the increase in lianas was much more rapid, leading to a

much higher liana basal area to tree basal area ratio; the dominance of lianas increased

by 1.7 - 4.6 % yr-1 (Phillips et al. 2002). This large-scale study is supported at a local scale

by a number of studies from Barro Colorado Island, Panama. Wright et al. (2004) studied

the changes in liana leaf litter, seed production and seedling density for 17, 15 and 9

years respectively in a 50 ha plot. The results from the leaf litter study indictated that

the proportional contribution of lianas to the leaf litter increasing from 10.9% to 17.1%

between 1986 and 2002. Similarly, between 1987 and 2003, flower production increased

by 4.1 % yr-1 (Wright & Calderon 2006). The percentage of trees ≥ 20 cm diameter

infested on Barro Colorado Island has also increased, from 43 - 47 % in 1980 (Putz

1984a) to 73.6 % in 2007 (Ingwell et al. 2010). However, not all studies support the trend

of increased liana abundance. A study from Gabon shows a 20 % decline in liana density

and no change in liana basal area between 1979 and 1992 (Caballé & Martin 2001),

though this is based only on a small 1.6 ha site. In a larger study of two, 10 ha plots in

the Democratic Republic of Congo, Ewango (2010) found a 33.5 % decrease in liana stem

density between 1994 and 2007. Further study, particularly outside of the Neotropics, is

required to assess the generality of these patterns.

As described above lianas have a negative impact on the trees they grow in and an

increase in lianas could result in increased in tree mortality. This could result in positive

feedbacks on liana abundance as increased tree mortality may lead to increased presence

of treefall gaps, which would then lead to increase in liana abundance (Phillips & Gentry

1994; Gerwing & Farias 2000; Schnitzer & Carson 2001). These effects could reduce the

carbon storage and sequestration capacity of forests. It is also possible for lianas to delay

successional processes (Schnitzer et al. 2000; Foster et al. 2008) and become dominant

over other plant types resulting in “liana forests” with considerably lower biomass

(Gerwing & Farias 2000). There is also evidence that the size of such liana dense forest

patches have increased in recent years (Foster et al. 2008). Disturbance may also lead to
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positive feedbacks where opening of the canopy increases liana abundance and the

presence of lianas increases the susceptibility of trees to wind and fire damage as well as

suppressing successional processes at forest edges (Laurance et al. 2001). Increases in the

dominance of lianas would give a selective advantage to those tree species with

characteristics that reduce liana infestation (e.g. long leaves, low density wood, fast

growth rates; Putz 1984b; Balfour & Bond 1993; Campbell & Newbery 1993; Carse et al.

2000; Pérez-Salicrup et al. 2001; van der Hiejden et al. 2008). These trees tend to have

lower carbon storage capacity so in addition to lowering carbon storage by increasing

tree mortality, selection for more liana-resistant trees could also lower tropical forest

carbon stocks; van der Heijden et al. (2008) calculated that trees without lianas tended to

store 25% less carbon than those with lianas.

1.4.5 Drivers of increased liana abundance

The observed increase in abundance and basal area of lianas over time in Neotropical

sites has led to a vigorous debate about the possible causes. Phillips et al. (2002) suggest

that the increase in lianas is due to increases in atmospheric CO₂. The effects of CO₂

enrichment has been examined by Granados & Körner (2002) in a laboratory setting

looking at the changes in growth of three liana species at different light levels (photon

flux density 42 and 87 μmol m-2 s-1) and CO₂ concentrations (280, 420, 560 and 700

ppm). The results show that under all conditions liana biomass increased with increasing

CO₂. For two of the three species investigated the increase in growth was a linear

response to CO₂. In contrast, the third species initially increased in biomass but CO₂

levels above 560 ppm resulted in a slight decline in growth. A key finding of this study is

that the relative growth increase of lianas was higher in low light than in high light

environments (though total growth was higher in high light). The implication of this

finding is that lianas in low light, such as those in the understorey, may get a greater

boost in growth from increased CO₂ than those in high light, such as those in the

canopy. This pattern might increase the ability of lianas to reach and dominate the

canopy. It also may increase the potential range of microenvironments lianas can persist

in, as they may be able to grow under condition where previously they may not have
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been able to (Granados & Körner 2002). It was also noted by Granados & Körner (2002)

that shoot rigidity (but not stem length) was increased under increased CO₂. This might

enhance survivorship of shoots and success of the liana. Similar increased growth

responses to elevated CO2 were found by Condon et al. (1992); under 1000 ppm CO2

growth increased by 5.5 and 7.1 times for two liana species compared to plants grown at

350 ppm CO2.

An alternative theory is provided by Wright et al. (2007) who propose that bushmeat

hunting has an effect on plant species composition as hunting causes removal of some

seed dispersers and therefore have a detrimental impact on plant species dispersed by

hunted animals; as lianas are commonly dispersed by wind they may be exposed to

reduced competition from animal dispersed species. The results presented by Wright et

al. (2007) show an increase in the abundance of liana seedlings in sites experiencing high

levels of hunting; however, the effect on adult population was not assessed. This

mechanism of increasing liana abundance would only be possible at sites that are under

influence of hunting and is therefore unlikely to be responsible for the increases across

multiple sites across the Neotropics.

A third potential explanation is that the observed increase in tree turnover (Phillips &

Gentry 1994; Phillips et al. 2004) may increase liana abundance by increasing the

number of gaps which they can exploit (Phillips et al. 2002; Schnitzer & Bongers 2011).

Similarly, anthropogenic disturbance in tropical regions may also favour liana

abundance (Schnitzer & Bongers 2011).

Furthermore, Schnitzer & Bongers (2011) suggest that as lianas may increase with

greater water stress (Schnitzer 2005), climate changes such as increased temperatures

and changes to precipitation regimes resulting in increased evapotranspiration may have

lead to this trend. The resultant increase in water stress may then increase the

competitive ability of lianas over trees. Supporting this, a recent study shows seed

germination and shoot biomass of Ipomoea cairica (an invasive liana) increased with

increased temperature when grown at 22, 26 and 30°C (Wang et al. 2011). Given the
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importance of lianas to forests, it is important to determine the cause of the increase in

Neotropical lianas and investigate if it is occurring on other continents. Chapter 4 of this

thesis will test whether lianas have increased in abundance in Ghanaian forests and

determine the dominant drivers of their spatial distribution across the forest zone.

1.5 Ghanaian forests

1.5.1 Climate and soils

Ghana is located in West Africa bordering Togo, Cote D’Ivoire and Burkina Faso, with a

coast line along the Gulf of Guinea (Fig. 1.1). Tropical forests in Ghana extend from the

coast northwards to approximately half way up the country, where there is a transition

zone to savannah vegetation (Fig. 1.1). The forest is part of the Guinean forests that

extend from Sierra Leone in the West to Cameroon in the East and are amongst

Conservation International’s 25 conservation hotspots due to its high number of

endemic plant taxa (2,250 species) and high level of threat with only 10 % of original

forest remaining (Myers et al. 2000). The Guinean forest region is split by the Dahomey

gap from Togo to Nigeria, with savannah vegetation, into Upper and Lower Guinean

forests (Fig. 1.1). However, the Dahomey gap was likely to have been forested during

the mid-Holocene (Maley 1991).
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Upper Guinea forests and other natural vegetation types of West Africa.

Ghana has a strong precipitation gradient with the highest rainfall in the south west

) which decreases to the north and east (Swaine et al. 1997). The

rainfall gradient is shown in Fig. 1.2a. The higher annual preciptation towards the south

west is due to higher rainfall during the wet season, dry season length is similar across

the forest zone (Hall & Swaine 1976). Rainfall is bimodal. The major dry season runs

from November (or December) to February, a three of four month continuous dry

season (months < 100 mm). Four month dry seasons occur in locations with lower

annual precipitation. The second dry season occurs in August due to the moveme

the Intertropical Convergence Zone (ITCZ). Rainfall in the Ghanaian and Ivorian forest

zones is typically lower than in Sierra Leone and Liberia due to their position in the rain

shadow of the latter two countries, and due to the parallel angle of the coastlines to the
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The forest zone soils are considered to be heavily weathered latosols (or ferralsols) with

low humus and low cation exchange capacity; there are two types, oxisols that are

strongly leached, acidic and nutrient poor and less leached, slightly acidic to neutral and

less nutrient poor ochrosols (Hall & Swaine 1981).

Figure 1.2. Annual precipitation across Ghana based on WorldClim interpolated data

(Hijmans et al. 2005) (a) and vegetation types based on Hall & Swaine (1976) (b),

courtesy of Ghana Forestry Commission.

The climate in Ghana has followed the same trends as the rest of West Africa for the

period 1960-1998; temperatures increased by 0.1 - 0.3°C per decade and precipitation

decreased by -2 to -12 mm yr-1 (Malhi & Wright 2004).

1.5.2 Forest types

The total area of the potential forest zone covers 82,260 km² with 16,790 km² (20%) in

forest reserves (Hall & Swaine 1976). The reserves were set up with aims of watershed

protection and climate amelioration and to supply timber as land outside reserves is used

for agriculture (Wong 1996). Many of the reserves contain logging concessions (Swaine

et al. 1997). Hall & Swaine (1976) completed a comprehensive survey of the forest zone

to categorise the different closed-canopy forest types found in Ghana. They used a

systematic sampling methodology across the forest zone using 155, 25 m x 25 m plots

(0.0625 ha) in which all trees > 10 cm diameter were identified and counted. In a

separate plotless survey readily identifiable species were counted and in 50m x 50m plots
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all trees > 10 cm diameter were measured. 1248 plant species were recorded in total and

soil characteristics from the 25 m x 25 m plots were also measured.

Using this dataset and ordination techniques (detrended correspondence analysis) Hall &

Swaine (1976; 1981) categorise the forest as: wet evergreen, moist evergreen, upland

evergreen, moist semi-deciduous, dry semi-deciduous, southern marginal and south-east

outlier forest types (Fig. 1.2b). In the evergreen forest types typically 10 - 20 % of

canopy species are deciduous, increasing to 30 - 70 % in the semi-deciduous forest types.

Moist semi-deciduous is the most extensive forest type. It also contains the tallest trees

(50 - 60 m) and half of the economic timber species are at their highest abundance.

Species characteristic of this forest type are Celtis mildbraedii, Nesogordonia

papaverifera, Microdesmis puberula and Baphia nitida. The moist semi-deciduous forest

type is further split into two subtypes: the north west and south east subtypes. The

boundary between the two subtypes corresponds with the 1500 mm rainfall isohyets,

with the north west subtype receiving less precipitation and soils are more fertile and

with higher pH than the south east subtype. The north west subtype is particularly well

stocked with timber species. On the south west coast and extending inland is the wet

evergreen forest type. This forest type receives the most rainfall and has the highest

species diversity. Soil fertility is low. Canopy species are shorter than in the moist semi-

evergreen forest type, reaching 40 m. However the basal area of the two types is similar.

Few timber species are present. Characteristic species are Cyanometra alata, Pentadesma

butyracea and Heritiera utilis amongst others. The moist evergreen forest type is

intermediate between wet evergreen and moist semi-deciduous, but still has a

characteristic composition including Petersianthus africanus. It receives rainfall similar

to the moist semi-deciduous south east subtype but has lower soil fertility. Canopy tree

height is a little taller than the wet evergreen forests at 43 m. To the north and east of

the moist semi-deciduous forest type is the dry semi-deciduous type. This forest type

contains shorter trees, 30 - 45 m, and few species are confined to it. Characteristic

species are Antiaris toxicaria and Triplochiton schleroxylon. Two subtypes have been

characterised, one bordering the moist semi-deciduous forest type (inner zone) and the

other bordering the savannah (fire zone). As climate and soils do not vary between the
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subtypes, fire activity has been implicated in causing the differences. The fire zone

subtype has few woody species in the understorey, and the distinguishing features

between the species occurring the two subtypes are likely related to fire resistance.

The three other forest types are less extensive. Upland evergreen forest occurs within

the moist semi-deciduous forest type on hills 500 - 750 m elevation. Canopy tree height

reaches 45 m and the type has the lowest percentage of deciduous species. Tree ferns and

epiphytes are common. The southern marginal and south east outlier forest types are the

driest and contain the shortest trees, 35 m and 15 m respectively. All forest types,

including undisturbed areas, were found to contain a high proportion (about 30%) of

climbing species.

Rainfall is thought to be the dominant environmental factor leading the different forest

types (Hall & Swaine 1976; 1981). However, as precipitation and variation in soil

properties co-vary it is difficult to fully determine which is most important. This has

been addressed by Swaine (1996), who found that precipitation was a stronger driver of

composition than soil fertility. However, variation within the wet evergreen forest can

be attributed to differences in soil fertility. When split into four categories, wet-fertile,

wet-infertile, dry-fertile and dry-infertile, species distributions for some species are

allied to a particular category, showing that soil factors are important, but secondary to

rainfall (Swaine 1996).

Recent studies have used the environmental gradients in Ghana to assess the

distributions of plant functional traits. For example, Poorter et al. (2008) have shown

that both rainfall and disturbance are important for tree maximum size, with larger trees

occurring in drier areas and in sites with greater disturbance. Furthermore, they confirm

the increase in species diversity with increased precipitation, and also find species

diversity decreases with increased disturbance. Maharjan et al. (2011) assess the

distribution of important timber species and their traits along environmental gradients

of Upper Guinean forests including Ghana and found rainfall an important determinant

of species distributions. Ordination of plant traits to determine the main plant life-
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strategies revealed shade-tolerance on the primary axis of variation and drought-

tolerance on the second axis of variation. The forests of Ghana have also been used to

test for support of the intermediate disturbance hypothesis that species richness will be

greatest where there is an intermediate level of disturbance (Bongers et al. 2009). The

results show support for the hypothesis but only for the dry forest type. These studies

show the importance of both the precipitation gradient and local disturbance for

community assemblage.

1.5.3 Fire and Drought History

Fire is known to have a strong effect on forest vegetation in Ghana as shown by the

inclusion in Hall and Swaine (1976) of a fire zone subtype of dry semi-deciduous forest.

It is particularly important at the forest/savannah boundary at the northern edge of the

forest zone (Swaine et al. 1997). Fires have been known to occur at the forest savannah

boundary for some time, but there appears to have been an increase in fire occurrence

since the 1970s, with particularly severe fires during the 1982/83 ENSO event. Since

then there have been more fires with more serious effects on the forest. During drier

years, fires initiated for agricultural land management outside the forest reserve

boundaries are more likely to spread into the forest. The effect of positive feedback of

fire susceptibility described above (Section 1.3.3) has also been noted. For example, in

some areas fire has been followed by the invasion of Chromolaena odorata that grows

well post-burn but is highly flammable and competes with other forest species (Swaine

et al. 1997). The invasion of C. odorata increases the risk of fire and reduces the

capability of the forest to regenerate. This process results in characteristic vegetation

(the dry semi-deciduous fire zone vegetation type) with many pioneer species, often

including Elaeis guianensis (oil palm) and Marantaceae species, a low number of small

and medium sized stems and above average abundance of ground flora. In some extreme

cases it appears that forest regeneration was completely terminated by fires; there are

areas thought to have had full forest cover earlier in the 20th century that are now

dominated by Panicum maximum grassland. This has happened in areas with sandy

shallow soils but relatively high rainfall, the southern marginal forest type. The
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increases in fire may also be associated with increased temperatures and greater

agriculture. Trends such as this may cause forest to convert to savannah vegetation.

However, this process is would require the invasion of savannah species and

composition to some form of degraded forest may be more likely (Swaine 1992; Swaine

et al. 1997).

As well as the strong ENSO event of 1982/83 which resulted in forest fires, the area has

been affected by a long-term drought. Data presented by Malhi & Wright (2004) shows

that between 1960 and 1998 precipitation in West Africa decreased by 4 % decade-1.

This is the strongest precipitation decline of all tropical forest regions (Malhi & Wright

2004). The drought in forested West Africa is paralleled by the Sahel drought to the

north which had a significant human impact (Nicholson et al. 2000). Looking

specifically at Ghana and using data from the Ghana Meteorological Agency, Owusu &

Waylen (2009) assessed differences in rainfall between the periods 1950 - 1970 and 1980

- 2000. They found a 10 - 30 % decrease in precipitation for the forest zone of Ghana

between the two time periods. The drought has been attributed to a southward shift in

the warmest Atlantic seas surface temperatures and the ITCZ, and warming of the

Indian Ocean (Dai 2011). Analysis of a sediment core from Lake Bosumtwi, located in

the Ghanaian forest zone, confirms the strong relationship between sea surface

temperatures and West African drought (Shanahan et al. 2009). Furthermore, by

assessing 3000 years of climate variability using the Bosumtwi core, it has been found

that the drought occurs cyclically on a decadal to centennial time scale, with a

particularly strong 40 year cycle (Shanahan et al. 2009). The drought since the 1970s in

West Africa is therefore part of long-term cycle, and the forest zone of Ghana will have

experienced similar droughts in the past.

1.5.4 Plot network

The programme of permanent sample plots (PSPs) in Ghana was initiated in 1969 with

the aim of studying the growth of economically important species. Two, 1 ha square

plots were selected in every square mile of reserved forest. These plots were split into 25
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quadrats for easier enumeration. With the emphasis on timber species the “leading

desirable” concept was used to guide the inventories and in each quadrat only the two

trees of most economic importance were measured. This method was not suitable for

studies of forest dynamics so the Forest Inventory and Management Project overhauled

the PSP network in 1988, increasing the number of plots to 600 with the existing plots

making up one third of the total (Table 1.1). Between 10 and 20 plots were set up in

each forest management unit (about 50,000 ha). (Affum-Baffoe 1996).

Table 1.1. Area and number of plots for each forest classification. (Affum-Baffoe 1996).

Forest Type Reserve Area (km²) Number of PSPs

Wet evergreen 1006 50

Moist evergreen 4361 160

Moist semi-deciduous SE 2290 82

Moist semi-deciduous NW 4602 228

Upland evergreen 259 10

Dry semi-deciduous 1991 60

Wet evergreen/moist evergreen 472 10

Other 1360 0

Total 16341 600

Plot establishment was completed by 1994 and remeasurement began in 1995. A 5 year

census period was planned. Trees with large buttresses were measured using a relascope

and callipers were used if climbers could not be moved away from the stem. The point

of measurement was marked with red paint around one third of the bole. Trees were

numbered using aluminium tags nailed to the tree below the point of measurement. For

each stem ≥ 10 cm diameter, the species, diameter, crown position, crown form and

climber status was recorded. The latter three measurements are made on a 5 point scale

(Table 1.2).
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Table 1.2. Measurement scales of crown position, crown form and climbers used in PSP

inventories in Ghana. (Affum-Baffoe 1999).

Crown position

1 Crown plan entirely shaded vertically and laterally.

2 Crown plan entirely shaded vertically but exposed to some direct side light

due to gap or edge or overhead canopy.

3 Crown plan partly exposed vertically but partly vertically shaded by other

crowns.

4 Crown plan fully exposed vertically but adjacent to other crowns of equal or

greater height within 90 degree cone.

5 Crown exposed vertically, free from lateral competition.

Crown Form

1 Degenerating, suppressed, badly damaged or likely to die, no true crown

present.

2 Distinctly unsatisfactory, extensive dead bark, strong asymmetry, few

branches but probably capable of surviving.

3 Just satisfactory, distinctly asymmetrical or thin, capable of improvement

given more room.

4 Nearly ideal, silviculturally satisfactory but some slight defect of symmetry or

some dead branch tips.

5 The best size and development generally seen.

Climbers

0 Free from climbers.

1 Climbers on main stem only.

2 Climbers in crown but main stem free.

3 Climbers on main stem and in crown.

4 Whole crown smothered by climbers and present on main stem.

After analysis of the data from these plots it was discovered that there was a high rate of

errors, with only 64 % of data points from 66 PSPs found to be error free (Affum-Baffoe

1996). Errors had derived from plot demarcation (such as trees found outside plot

boundaries in subsequent surveys and the removal of tree tags etc by hunters), from

enumeration (such as the inaccuracy associated with using 1 cm graduated girth tapes

and double measurements being carried out on unbuttressed trees) and errors in data

entry and processing. This led to changes in the methodology to reduce inaccuracies,

including sequential tree numbering, new forms for censuses featuring the data from the

previous census and new equipment such as fibre glass survey tapes and diameter tapes.

The number of PSPs was limited to 210 with 40 plots in each forest zone (dry semi-

deciduous, moist semi-deciduous NW subtype, moist semi-deciduous SE subtype, moist

evergreen and wet evergreen) plus 10 in upland evergreen areas (Affum-Baffoe 1996).

Most reserves have a proportion of plots within them measured twice with the second



38

measurements with a 10 cm or more commonly 20 cm diameter minimum size class.

More recently, recensuses of selected plots have been carried out in collaboration with

international research projects: the African Tropical Forest Observatory Network

(AFRITRON) and Tropical Forest Biomes in Transition (TROBIT).

1.6 Thesis aims and objectives

1.6.1 Aims

The broad aim of this thesis is to capitalize on the unique dataset available from

Ghanaian forests to investigate the impact of potential global threats to tropical forests.

The key questions to be addressed are 1) the impacts of long-term drought on functional

composition and forest structure across the forest zone, 2) the long-term regeneration of

forest structure and functional composition following understorey fires in moist semi-

deciduous forests and 3) the spatial and temporal distribution of lianas.

1.6.2 Objectives

1. Test for impacts of long-term drought on Ghanaian forests.

1.1 Collect data from multiple forest types and compile functional trait data for

species occurring in the plots.

1.2 Test if changes in functional traits over the decadal study period match

hypothesised changes due to drought or other potential drivers.

1.3 Test if these changes have occurred since the onset of the West African

drought using an extended temporal dataset.

1.3 Test if forest structure has altered over the study period.

2. Assess the impacts of past fire events on Ghanaian forests and long-term recovery

after burning.

2.1 Locate and remeasure permanent sample plots in burnt and unburnt forest

areas within the same forest type.
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2.2 Test if contemporary functional composition and forest structure are

associated with past fire history.

2.3 Test the extent to which burnt forests have recovered since the fire event.

3. Test whether there have been changes over time in liana abundance and determine

the drivers of liana spatial distribution.

3.1 Using a dataset of host tree infestation in plots from multiple forest types,

test if lianas have increased in abundance.

3.2 Survey current liana abundance and soils in permanent sample plots.

3.3 Test if climate, forest structure, disturbance or soil characteristics determine

liana spatial distribution.

To achieve these objectives, plot data from the Ghana Forestry Commission, AFRITRON

and TROBIT were combined with focussed data collection for this thesis. Plots from

across the rainfall gradient, except for the dry forest limits, were chosen for resampling.

These plots represented three forest types: wet evergreen, moist evergreen and moist

semi-deciduous. To complete objective two, seven plots that had been previously burnt

were compared to three unburnt plots in the same forest type. In total 31, 1 ha plots

were included in analysis (Table 1.3).
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Table 1.3. Plot Descriptions. Annual precipitation and consecutive dry months (< 100 mm precipitation) taken from WorldClim (Hijmans et al. 2005). All

plots have one additional dry month in August. Use of each plot in the analyses of different chapters is indicated (x).

Forest

Type

Forest

Reserve
Plot Code

Latitude /

Longitude

Plot

Area

(ha)

Census Years

Annual

Precipitation

(mm)

Consecutive Dry

Months

Drought Chapter Fire Chapter Liana Chapter

ReferenceComposition

Change

Tree

Height

Fire

Impacts

Bark

Thickness

Temporal

Change

Spatial

Patterns

Moist

Semi-

deciduous

Asenanyo
ASN-02

ASN-04

6.56 / -2.22

6.48 / -2.17

0.6

0.88

1993, 2007

1993, 2007

1412

1432

4

4

x

x

x

x

x

x

x

x
Lewis et al. 2009a

Asukese

ASU-88

ASU-99

ASU-100

ASU-101

7.16 / -2.45

7.13 / -2.47

7.14 / -2.45

7.13 / -2.45

1

1

1

0.96

1990, 1995, 2010

1989, 1995, 2006, 2010

1989, 1995, 2006, 2010

1989, 1995, 2006, 2010

1248

1251

1251

1248

4

4

4

4

x

x

x

x

x

x

x

x

x

x

x

x

TROBIT & this

study

Bobiri

BBR-02

BBR-03

BBR-14

BBR-16

BBR-17

BBR-21

6.68 / -1.34

6.68 / -1.33

6.71 / -1.29

6.70 / -1.29

6.69 / -1.28

6.67 / -1.28

1

1

0.88

0.92

0.96

0.88

1990, 2010

1990, 2010

1990, 2010

1990, 2010

1990, 2010

1990, 2010

1515

1515

1480

1488

1493

1528

3

3

4

4

4

3

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

This study

Esuboni
ESU-18

ESU-20

5.86 / -0.80

5.83 / -0.78

0.52

0.64

1993, 2010

1993, 2010

1632

1592

3

3
x

x

x

x

x
x x This study

Kade
KAD-01

KAD-02

6.15 / -0.92

6.15 / -0.92

1

1

9 years 1968 - 2010

8 years 1970 - 2010

1641

1641

3

3

x

x

x

x

x

x

Swaine et al. 1987 &

Lewis et al. 2009a

Tinte Bepo

TBE-05

TBE-08

TBE-09

7.01 / -2.05

7.02 / -2.07

7.02 / -2.06

0.64

0.88

0.36

1990, 2010

1990, 2010

1990, 2010

1288

1279

1279

4

4

4

x

x

x

x

x

x

x

x This study

Continued on next page.
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Forest

Reserve
Plot Code

Latitude /

Longitude

Plot

Area

(ha)

Census Years

Annual

Precipitation

(mm)

Consecutive Dry

Months

Drought Chapter Fire Chapter Liana Chapter

ReferenceComposition

Change

Tree

Height

Fire

Impacts

Bark

Thickness

Temporal

Change

Spatial

Patterns

Moist

Evergreen

Bonsa

River

BOR-05

BOR-06

5.35 / -1.83

5.35 / -1.84

1

1

1993, 2009

1993, 2009

1659

1660

3

3

x

x

x

x

x

x
This study

Dadieso
DAD-03

DAD-04

5.97 / -3.03

5.99 / -3.03

1

1

1993, 2007

1993, 2007

1658

1650

3

3

x

x

x

x
Lewis et al. 2009a

Tonton
TON-01

TON-08

6.07 / -2.12

6.04 / -2.10

1

1

1991, 2010

1991, 2010

1461

1457

4

3

x

x

x

x

x

x
This study

Wet

Evergreen

Cape Three

Points

CAP-09

CAP-10

4.85 / -2.10

4.80 / -2.05

1

1

1993, 2007

1993, 2007

1733

1689

3

4

x

x

x

x

x

x

x

x
Lewis et al. 2009a

Draw River
DRA-04

DRA-05

5.16 / -2.38

5.21 / -2.44

1

1

1990, 2009

1990, 2009

1921

1928

3

3

x

x

x

x

x

x
This study

Fure

Headwaters

FUR-07

FUR-08

5.56 / -2.39

5.58 / -2.39

1

0.6

1990, 2009

1990, 2009

1739

1741

3

3

x

x

x

x

x

x
This study
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2. Drought induced shifts in the floristic and

functional composition of tropical forests in Ghana

2.1 Abstract

The future of tropical forests under global environmental change is uncertain, with

biodiversity and carbon stocks at risk if precipitation regimes alter. This study assesses

changes in plant functional composition and biomass in 19 plots from a variety of forest

types over two decades of long-term drought in Ghana. The results show a consistent

increase in dry forest, deciduous, canopy species with intermediate light demand and a

concomitant decrease in wet forest, evergreen, sub-canopy and shade-tolerant species.

These changes in composition are accompanied by an increase in above-ground biomass.

The results suggest that by altering composition in favour of drought-tolerant species,

the biomass stocks of these forests may be more resilient to longer-term drought than

suggested by short-term studies of strong drought events.

2.2 Introduction

The risk of longer or more intense drought is one of the most pervasive threats faced by

tropical forests (Laurance & Peres 2006; Lewis 2006). Though future climate projections

are uncertain, particularly with regard to West Africa (Christensen et al. 2007), many

IPCC-AR4 models predict reduced precipitation and long-term soil moisture droughts in

some tropical and sub-tropical areas (Sheffield & Wood 2008). Many forests may

therefore be exposed to increased drought intensity, frequency or longevity. However,

few studies have assessed the response of tropical forests to longer-term drought. This

study assesses the effect of a decadal-scale drought on the composition and structure of

Ghanaian forests.
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The effects of long-term reductions in rainfall are more complex than the impact of

short-term droughts, as patterns of mortality and recruitment may cause a shift in

community composition over time. For example, studies of two large plots in Central

America demonstrated that floristic composition altered to favour deciduous,

compound-leaved, canopy species with high wood density over a time period which

included an episode of low rainfall (Condit et al. 1996; Condit 1998; Enquist & Enquist

2011; Feeley et al. 2011). Key questions are whether such changes in composition are

observed over larger spatial-scales, and how they relate to changes in overall ecosystem

function: if community composition shifts in favour of drought-tolerant species, forest

carbon stocks may be more resilient to long-term drought than suggested by short-term

studies of single drought events (van der Molen et al. 2011).

Monitoring forests over long periods that include droughts may be the only practical

way to address these questions. Widespread networks of small plots have been effective

in demonstrating consistent changes to tropical forest dynamics and structure across

multiple sites (e.g. Phillips et al. 2009a; Lewis et al. 2009a, b) and in combination with a

natural drought could be used to examine how forest composition and structure change

in response to a long-term reduction in rainfall.

The results of monitoring can, however, be difficult to interpret, as many factors may

influence the dynamics of the system. In order to assess whether drought is the

dominant process affecting the composition of tropical forests it is necessary to consider

other drivers of change, such as anthropogenic disturbance or other factors that may

influence forest structure and composition. This can be achieved by comparing changes

in the functional composition of communities to the changes that would be expected

given different drivers (e.g. Parmesan & Yohe 2003; Lewis et al. 2009b). For example, if

disturbances occurred during the monitoring period, increased light penetration would

lead to an increase in the occurrence of low wood density, pioneer species (e.g. Verburg

& van Eijk-Bos 2003) and a decrease in the occurrence of shade-tolerant species (e.g.

Kariuki et al. 2006). In contrast, if the forests under study were recovering from

disturbances that occurred before monitoring began, high wood density, shade-tolerant
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trees would be expected to increase (e.g. Chave et al. 2008a). Observations from plot

networks have shown that many old growth tropical forests have increased in biomass

in recent decades (Baker et al. 2004a, Lewis et al. 2009a) with increased atmospheric

CO2, fallout of nutrients from biomass burning or Saharan dust, and changes in solar

radiation all suggested as possible causes (Chave et al. 2008a; Lewis et al. 2009b). Such

increased resource availability has been hypothesised to affect species composition by

favouring faster growing, canopy species that can capitalise on such resource increases

(Laurance et al. 2004). In contrast, multi-decadal drought is likely to result in an

increase in deciduous species that are associated with drier forest types (Enquist &

Enquist 2011; Feeley et al. 2011). Drought, current disturbance, past disturbance and

increased resource availability are therefore predicted to have different effects on the

functional composition of forests (Lewis et al. 2009b). By investigating changes in the

functional composition of a network of forest plots undergoing drought this study aims

to assess whether the reduction in rainfall is the major driver of change in this system.

Monitoring the long-term effects of drought requires a forest region that has

experienced a decrease in precipitation, a long-term phytodemographic dataset, and

extensive ecological knowledge of the species. Ghanaian forests have these

characteristics. West Africa has experienced drought since the 1970s (Dai 2011), perhaps

linked to increasing sea surface temperatures (Shanahan et al. 2009; Dai 2011). In the

forest zone of Ghana there has been a step-change in mean annual precipitation: rainfall

in Kumasi, located within the forest zone, shows a reduction of approximately 250 mm

yr-1 for the period 1980 - 2000 compared with 1950 - 1970 (Owusu & Waylen 2009).

Additionally, the forest reserves of Ghana contain 600 one ha permanent sample plots

established in the early 1990s (Affum-Baffoe 1996). By continuing to sample a subset of

these plots and using an extensive trait data for Ghanaian forest species (Hall & Swaine

1981; Hawthorne 1995), it is possible to assess two decades of species dynamics in a

variety of forest types during an extended drought. The results show that drought,

rather than disturbance or increased resource availability, is most consistent with recent

changes in the floristic and functional composition of these forests, and that this trend

has been associated with an increase in aboveground biomass during the study period.
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2.3 Material and Methods

2.3.1 Study Sites

Data were collected from a network of 19 long-term permanent sample plots of 0.52 - 1

ha in size from ten forest reserves located within wet evergreen, moist evergreen and

moist semi-deciduous forest types in Ghana (Table 1.3, Fig. 2.4b). Plots were established

by the Forestry Commission of Ghana (FCG) during the 1990s in unlogged forests and

were re-censused between 2007 and 2010 as part of the current study. Most plots

remained undisturbed during the study period. However, in 8 plots some subplots

(covering 0.04 - 0.48 ha per plot) had been affected by tree felling; these subplots were

removed from the dataset. All plots were located at least 150 m from the nearest forest

edge, with the majority ≥ 1 km within a reserve (Table 2.4); fragmentation effects on

forest dynamics are greatest within 100 m of the forest edge (Laurance et al. 1998) and

therefore should not influence the results. None of the plots included in the study were

known to have been burnt and at each site this was confirmed by examination of tree

bases for evidence of fire scars. Although the precise long-term disturbance history of

these plots is unknown, they all occur in old growth forest reserves, the majority of

which were designated before 1940 (with the exceptions of Cape Three Points and

Dadieso, which were established in 1950 and 1977 respectively). Data from two plots

separated on the basis of soil type in other recent studies (Lewis et al. 2009a) were

combined to keep plot size as consistent as possible.

In order to examine compositional changes since the onset of the drought (c. 1970), data

from two long running one ha permanent sample plots at the University of Ghana Kade

Agricultural Research Station (Swaine et al. 1987) were used, where multiple censuses

have been completed from 1968 - 2010. The Kade dataset was analysed separately for

three reasons: firstly, to make use of the multiple censuses associated with these plots,

secondly, because this dataset extends to the beginning of the drought period and

thirdly, because the plots are located in a 12.4 km2 fragment adjacent to a Forestry
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Commission; the Kade plots have therefore been subject to higher anthropogenic

disturbance than those in the plots in the main analysis.

2.3.2 Precipitation Trends

Using the WorldClim dataset, recent long-term annual precipitation for each plot ranges

from 1288 to 1928 mm (Hijmans et al. 2005, Fig. 2.4b). Rainfall is highest along the

south-west coast and decreases inland. The rainfall pattern is bimodal; the main dry

season (months < 100 mm precipitation) begins in November or December and ends in

February, with an additional dry month in all sites in August.

To evaluate the long-term change in precipitation since the early 20th century, the

Climate Research Unit (CRU) 1901-2006 TS3.0 dataset (Mitchell & Jones 2005) was

used. To assess the accuracy of this global dataset for Ghanaian forests, it was compared

to monthly data from four weather stations within the forest zone: Axim (data available

for years 1961 - 2007), Kumasi (1961 - 2007) and Sunyani (1970 - 2007) from the Ghana

Meteorological Agency, and Kade (1980 - 2009) from the University of Ghana.

Correlations of monthly precipitation between the weather stations and CRU datasets

were high (Axim: r = 0.802, Kumasi: r = 0.797, Sunyani: r = 0.771, Kade: r = 0.630) but

wet season precipitation was underestimated by CRU, especially for Axim which is

located on the very wet southern coast. The CRU data were therefore used only to assess

temporal trends, rather than spatial patterns, in rainfall.

In all 10 CRU grid cells containing the study sites, annual precipitation was significantly

higher for years pre-1970 than post-1970 (Table 2.1), decreasing by 165 mm yr-1 when

averaged across all 10 grid cells. This value is lower than the reduction of 250 mm yr-1

presented by Owusu & Waylen (2009); however, the calculations are not directly

comparable as Owusu & Waylen (2009) calculated their value for a different time period

(excluding data from 1970-1980) and for a single location (Kumasi). The annual rainfall

anomaly (averaged across all grid cells containing study sites) from the 1901-2006 mean

clearly shows reduced rainfall after 1970 (Fig. 2.1). This decrease occurs all year round,

with a higher absolute reduction during the wet season, but a proportionally higher
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reduction during the main dry season (22.8 % reduction compared with average pre-

1970 dry season precipitation, compared with a 10.2 % reduction during the wet

season). All sites experienced similar proportional reductions in precipitation.

Table 2.1. Mean annual precipitation pre- and post-1970 from Climate Research Unit

(CRU) 1901-2006 TS3.0 dataset (Mitchell & Jones 2005) dataset for grid cells containing

forest plots.

Reserves
MAP 1901-

1969 (mm)

MAP 1970-

2006 (mm)
t* p*

Asenanyo, Tonton 1491 1310 4.92 <0.0001

Asukese, Tinte Bepo 1342 1184 4.22 <0.0001

Bobiri 1424 1228 5.76 <0.0001

Bonsa River 1384 1261 2.80 0.0064

Cape Three Points 1534 1378 3.48 0.0008

Dadieso 1627 1429 4.91 <0.0001

Draw River 1570 1407 3.86 0.0002

Esuboni 1207 1080 3.91 0.0002

Fure Headwaters 1513 1357 4.10 <0.0001

Kade 1338 1148 6.23 <0.0001

* t-value and p-value for t-test comparing precipitation of each year 1901-1969 and each year

1970-2006 for the relevant CRU grid-square.

Figure 2.1. Annual precipitation anomaly (mm) from the 1901 - 2006 mean for the

average annual rainfall across all grid squares containing plot locations (1901 - 2006

mean 1386 mm). Dashed lines represent 1 standard deviation from the mean. Data from

CRU (Mitchell & Jones 2005).
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2.3.3 Measurements

Initial plot set-up and measurements were performed following Alder & Synnott (1992)

and re-measurements followed similar standard protocols (Phillips et al. 2009b). Each

stem ≥ 10 cm D (diameter at breast height; 1.3 m or above buttresses) was given a metal

reference tag, and D and species identity was recorded. Of 10,224 recorded stems, 97.3

% of trees were identified to species-level, 2.04 % to genus-level only, 0.03 % to family-

level only, and 0.58 % were unidentified. Identification was carried out by employees of

FCG for the initial census and by K.P. Duah and Y. Nkrumah (FCG), supplemented by J.

Dabo of the Forestry Research Institute of Ghana (FORIG) and the use of the FORIG

herbarium for the recent census.

2.3.4 Functional trait data set

Data was collated on species’ habitat preferences, wood density, leaf phenology, adult

canopy position and successional status. Habitat score was based on a detrended

correspondence analysis (DCA, with rare species down-weighted) of an extensive

independent dataset of presence of 1550 vascular plant species in 155, 0.0625 ha plots

(Hall & Swaine 1976, 1981) and 552 inventory lists (Hawthorne & Abu Juam 1995) from

across the forest zone of Ghana. The first axis of this ordination (eigenvalue = 0.36,

gradient length = 4.38, total inertia = 6.68) shows a clear relationship with the wet to dry

gradient across the forest zone (Fig. 2.2). Soil fertility covaries with rainfall due to a long

history of leaching under higher precipitation regimes. However, overall the first axis

scores are more strongly correlated with rainfall than soil fertility (see Swaine 1996 for

further details). The value for each species along this axis was used as the habitat score

for that species, with higher numbers referring to drier forest species. The full range of

species scores from the original ordination was -259 to 687, and for species included in

the plot network the range was -166 to 503. A habitat score was available for 97.1 % of

species and 99.1 % of stems.
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Figure 2.2. Relationship between habitat score and annual precipitation (mm) from

WorldClim (Hijmans et al. 2005) for all data points used in the habitat score ordination

(grey circles; data from Hall & Swaine 1976, 1981; Hawthorne & Abu Juam 1995) and

plots included in the the analysis (black squares).

Wood density, ρ, was taken from the ForestPlots.net database (Zanne et al. 2009; López-

González et al. 2011a; López-González et al. 2011b), assigned to stems at species level

where possible, or given the genus or family-level mean as appropriate (Baker et al.

2004b, Flores & Coomes 2010). Species, genus, and family-level values were used for

65.4 %, 23.5 % and 8.3 % of stems respectively; in total 97.2 % of stems were allocated a

wood density value. Data on leaf phenology, adult canopy position and successional

guild were collated from Hawthorne (1995), Hall & Swaine (1981) and Poorter et al.

(2004). Leaf phenology was classified as deciduous or evergreen (classification possible

for 78.2 % of species and 91.8 % of stems). Where deciduousness was ambiguous (for

instance where a species was stated as “sometimes deciduous”) it was classified as

deciduous (17 species). Adult tree canopy position was classified as understorey (< 10 m),

sub-canopy (10-30 m) or canopy (> 30 m) (classification possible for 92.2 % of species

and 97.8 % of stems). Successional guilds were defined as pioneer (unable to establish in

1000 1200 1400 1600 1800 2000

0

100

200

300

400

Annual Precipitation (mm)

H
a
b
it
a
t

S
c
o
re



50

closed forest shade), shade-tolerant (able to establish in closed forest shade) or non-

pioneer light demander (NPLD - seedlings are present in the shaded understorey but

require higher light environments to reach adult size) following Hawthorne (1995)

(classification possible for 91.5 % of species and 97.4 % of stems).

2.3.5 Changes in biomass

To investigate changes in biomass stocks, annualised rates of biomass change were

calculated using the moist forest allometric equation based on diameter and species

wood density from Chave et al. (2005):

Aboveground biomass = ρ x exp(-1.499 + 2.148ln(D) + 0.207(ln(D))2 - 0.0281(ln(D))3)

to calculate biomass at each census. Of the tropical biomass equations available, the

Chave et al. (2005) moist forest equation was most suitable. This equation was chosen as

the rainfall regimes of the study sites most closely match those defined as ‘moist’ by

Chave et al. (2005) than those upon which the dry forest equation is based (sites in

northern Australia, India and Mexico with long dry seasons of 5 to 8 months). In

addition, a study of wet evergreen forests in Ghana showed that, of the available tropical

biomass equations, the Chave et al. (2005) moist forest equation predicted biomass most

accurately in this forest type (Henry et al. 2010). The dataset also includes samples from

moist evergreen and moist semi-deciduous forest types that may show different

allometric relationships.

As dry forests may contain shorter statured species with a lower height for a given

diameter, height-diameter relationships for wetter and drier forest adapted species were

assessed to ensure using a single biomass equation for all forest types and over time

would not bias results. Height-diameter allometry was calculated based on a dataset of

tree diameter at 1.3 m or above buttresses (D) and tree height (H) for 867 individuals

from 21 plots (Table 1.3) located predominantly in the moist-semideciduous forest type,

with two located in the wet evergreen forest type. Within each plot up to 50 trees were
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randomly selected to cover a wide range of diameter sizes and tree heights were

measured using either a Haglöf Vertex III ultrasonic hyposometer, a Nikon Laser 550AS

laser rangefinder, or by climbing the tree with a tape measure. Following Feldpausch et

al. (2011) any trees known to have been broken or exhibiting crown damage were

excluded from analysis. Using the habitat score for each individual (based on their

species identification), the data were split into ‘dry’ (habitat score > 175; 604 stems) and

‘wet’ (habitat score < 175; 263 stems) forest species. The habitat score cut off was chosen

based on the observation from the 2010 census data that plots located in wet or moist

evergreen forest types typically had a stem-based plot-mean habitat score below 175,

whereas plots located in moist semi-deciduous forests typically had a stem-based plot-

mean habitat score above 175. Height-diameter curves based on power law relationships

(e.g. Feldpausch et al. 2011) were produced for the dataset using nonlinear regression

(Xiao et al. 2011), with separate models produced for each species classification (wet or

dry). The equation H = aDb + ε was modelled, where a and b are constants and ε is error.

The separate models of the two species classifications were not significantly different (F

= 0.72, df = 341, P = 0.99, ANOVA; Fig. 2.3, Table 2.3). This shows that, contrary to the

hypothesis that dry forest species would have a lower diameter for a given height, there

is no significant difference in allometry between the two species classifications.

Interestingly, for larger diameters (> 50 cm) the ‘dry’ forest species are taller than the

‘wet’ forest species (Fig. 2.3); the increased tree height of species present in the moist

semi-deciduous forests has been shown in previous studies (Hall & Swaine 1981; Poorter

et al. 2008). As the shape of the height-diameter relationship for drier forest species was

not significantly different from the relationship for wetter forest species, the Chave et al.

(2005) moist, rather than dry, forest biomass equation was used for all species and forest

types in this analysis.
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Figure. 2.3. Height-diameter curves for ‘dry’ (black) and ‘wet’ (red) forest species,

separated on the basis of each species habitat score (‘dry’ species score > 175, ‘wet’

species score < 175). Each data point represents a single measured tree.

Table 2.2. Estimates of model parameters a and b for the equation H = aDb + ε for ‘dry’

and ‘wet’ forest species, estimated using non-linear regression. Species were separated on

the basis of each species habitat score (‘dry’ species score > 175, ‘wet’ species score <

175).

Species

Category
Parameter Estimate

Standard

Error
t-value p

‘Dry’ a 2.19 0.14 15.66 < 0.0001

b 0.66 0.016 41.11 < 0.0001

‘Wet’ a 2.78 0.29 9.63 < 0.0001

b 0.58 0.027 21.79 < 0.0001

Where no species, genus or family-level wood density value was available for a stem, the

plot-level mean was applied; missing species-level wood density values have been shown

not to largely affect biomass estimates (Baker et al. 2004a, Flores & Coomes 2010).

Where a change in the vertical point of measurement (POM) on the tree stem where the

diameter was measured occurred, the D used in biomass estimation was the mean of D

measurements at the original and new POM (2.5 % of stems). Where the original POM

was not visible or thought to be incorrect, the first census D was back-calculated using
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the latest diameter measurement and the plot-level mean diameter growth rate (1.7 % of

stems).

2.3.6 Plot-level trait shifts

To assess changes over time in the plot-level trait values, a similar bootstrapping method

to that utilized by Feeley et al. (2011) was used. This method involved three steps:

calculating plot-level trait values for each plot at each census, calculating the rate of

change in each trait for each plot, and finally determining if the mean rate of change

across all plots was significantly different from zero. First, for each continuous trait

(habitat score, wood density) the plot-level trait score, xj, for each census, j, was

calculated as ௝ݔ = ∑ ௜݌
ௌ
௜ୀଵ ௜whereݍ. S is the total number of species in the plot, pi is the

abundance of species i (based on stems or biomass) and qi is the trait score of species i.

For categorical variables (leaf phenology, adult canopy position and guild) xj was simply

calculated as the percentage of stems or biomass in each category. For example, for

successional guild the percentage of pioneers were calculated, followed by the

percentage of non-pioneer light demanders and then the percentage of shade-tolerant.

Thus each category was treated separately. Species with a missing trait value were

excluded from the analysis of that trait. Second, the annual rate of change of each trait

was calculated as (x2-x1)/t, where x1 is the initial plot-level trait score, x2 is the final

plot-level trait score and t is the census interval (years). Third, to test if the mean rate of

change of a trait across the 19 sampled plots was significantly different from zero, 19

plots were randomly selected, with replacement, 5000 times, and calculated the mean

rate of change of the trait, weighted linearly by plot size, for each bootstrap. If the 95 %

confidence intervals (CI) from the distribution derived from the bootstrapped data

(125th and 4875th ranked mean rate of change) did not overlap zero, it was considered

that the change in that trait was significant (at the p < 0.05 level). For categorical

variables, the method was performed twice, the second time using change in absolute

numbers of stems or biomass in each category rather than change in percentage.
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2.3.7 Species-level analysis

Species which significantly increased or decreased in abundance across the plot network

were determined to assess whether species that showed similar changes in abundance

also shared similar functional traits. A variation of the bootstrapping method of

Laurance et al. (2004; 2006) that uses each plot as a replicate of the changes in species

abundance was used. First, for each species the population size for the initial (N1) and

final (N2) census was calculated, defined as the mean abundance of each species across

all 19 plots at each census, based on stems or biomass, and weighted linearly by plot size.

Second, the observed proportional change in population size (λo), as λo = (N2-N1)/N1, was

calculated for each species. Third, a random selection of 19 plots were bootstrapped,

with replacement, 5000 times. For each bootstrap N1, N2 and λ for each species was

recalculated using the resampled selection of plots. The median value of λ across all 

species for each bootstrap, λm, was caluclated, 99 % CIs from the 5000 bootstraps were

derived (25th and 4975th ranked values of λm). Species with λo above the upper 99 % CI

or below the lower 99 % CI were deemed to have increased or decreased significantly

more than the median species (at the p < 0.01 level). As only widespread species in

occurring many plots can be analysed using this method, only species present in at least

6 of the 19 plots were included. This cut off excluded rare species whose population

dynamics may show large stochastic fluctuations. This criterion gave a total number of

101 species from a total of 300 identified species. The median λ rather than the mean λ 

was used as some species showed large increases in abundance which subsequently

inflated the mean, whereas the median is less sensitive to extreme values. 99 % CIs were

used to assess significance to avoid spurious significant results from multiple tests of 101

species. The functional traits of species that had significantly increased and decreased

were compared using t-tests and likelihood ratio (G) tests.
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2.4 Results

2.4.1 Changes in forest structure

Above ground biomass of plots increased significantly during the census interval (mean

interval 17.1 years; Fig. 2.4, Tables 2.3, 2.4) with a plot-size weighted mean increase of

1.78 Mg dry mass ha-1 yr-1 (bootstrapped 95 % CI = 1.09 – 2.48). Basal area also increased

significantly during the census interval (Table 2.4) with a plot-size weighted mean

increase of 0.12 m2 ha-1 yr-1 (bootstrapped 95 % CI = 0.063 – 0.18). Changes in stem

density differed markedly among plots and did not change significantly overall (plot-size

weighted mean 0.032 stems ha-1 yr-1, bootstrapped 95 % CI = -1.81 – 1.49, Table 2.4). The

increase is biomass observed is therefore likely due to the increase in basal area.

Figure 2.4. Location of plots and biomass changes. a) Histogram of annual rates of above

ground biomass change (Mg ha-1 yr-1). b) Mean annual precipitation (mm) of southern

Ghana from WorldClim (Hijmans et al. 2005) with plot locations (approximate) and

annual rates above ground biomass changes (arrows, size determines rate of biomass

change, direction increasing or decreasing biomass, Mg ha-1 yr-1), dashed line shows

approximate edge of the forest zone.
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Table 2.3. Plot structural variables for the initial and final censuses, for census dates see

Table 1.3.

Forest

Type
Plot Code

Distance

to Edge

(km)

Stem density

(Stems ha-1)

Basal Area

(m2 ha-1)

Biomass

(Mg ha-1)
No. Species

Initial Final Initial Final Initial Final Initial Final

Moist Semi-

deciduous

ASN-02

ASN-04

1.27

1.8

632

486

612

478

31.1

28.6

32.9

31.0

318

270

339

299

82

101

87

105

BBR-14

BBR-16

BBR-17

0.15

0.45

2.3

495

572

458

508

645

501

27.6

20.5

30.7

27.8

27.2

31.2

304

221

345

321

299

351

87

94

78

84

100

73

ESU-18 0.35 444 504 17.9 22.0 174 218 69 72

KAD-01

KAD-02

0.78

1.1

557

534

480

483

27.8

30.4

23.9

21.9

332

406

280

241

84

90

89

98

TBE-05 1.0 500 497 20.9 26.4 221 302 74 71

Moist Evergreen

BOR-05

BOR-06

1.0

2.0

337

430

395

486

18.2

20.4

22.3

22.0

206

241

257

256

80

87

86

91

DAD-03

DAD-04

2.3

2.9

412

456

245

445

16.5

25.7

13.9

27.0

154

356

138

385

80

93

72

91

TON-01

TON-08

1.15

2.2

458

483

394

464

28.7

28.6

28.1

29.5

378

315

385

327

62

88

63

92

Wet Evergreen

CAP-09

CAP-10

1.4

1.1

485

427

497

449

31.2

20.1

34.5

23.1

428

194

487

248

64

97

69

97

DRA-04

DRA-05

1.15

1.0

425

422

489

447

23.7

24.3

25.3

27.1

291

273

284

306

86

82

84

83

FUR-07

FUR-08

1.5

1.15

581

582

563

520

21.3

20.4

24.4

22.2

210

204

252

235

93

72

91

80

* Annual Precipitation and consecutive dry months (< 100 mm precipitation) taken from WorldClim

(Hijmans et al. 2005). All plots have one additional dry month in August.

† Dataset from the University of Ghana Agricultural Research Station at Kade, not part of the FCG plot

network.
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Table 2.4. Above ground biomass and stem density changes for each plot.

Plot

Rate of

Biomass Change

(Mg ha-1 Yr-1)

Rate of Basal

Area Change

(m2 ha-1 yr-1)

Rate of Stem Density

Change

(stems ha-1 Yr-1)

ASN-02 1.53 0.126 -1.44

ASN-04 2.09 0.177 -0.57

BBR-14 0.89 0.0076 0.63

BBR-16 3.95 0.336 3.68

BBR-17 0.30 0.0288 2.10

BOR-05 3.14 0.254 3.60

BOR-06 0.94 0.102 3.52

CAP-09 4.24 0.231 0.86

CAP-10 3.89 0.216 1.57

DAD-03 -1.10 -0.181 -11.76

DAD-04 2.00 0.0915 -0.77

DRA-04 -0.35 0.0712 3.38

DRA-05 1.75 0.147 1.32

ESU-18 2.63 0.243 3.59

FUR-07 2.21 0.163 -0.96

FUR-08 1.61 0.0959 -3.25

TBE-05 4.07 0.274 -0.16

TON-01 0.42 -0.0328 -3.55

TON-08 0.72 0.0541 -1.07

2.4.2 Plot-level trait shifts

Community composition shifted in favour of drought-tolerant, deciduous, non-pioneer

light demanding species. On a stems basis and using change in percentage for the

categorical variables (Fig 2.5, Table A1), plot mean habitat score increased significantly

(with higher scores reflecting drier species composition) during the study period (0.387

units yr-1, 95 % CI = 0.203 – 0.565), as did the percentage of deciduous trees (0.108 pp yr-

1, 95 % CI = 0.031 – 0.197, pp is percentage point) and the percentage of non-pioneer

light demanders (0.113 pp yr-1, 95 % CI = 0.038 – 0.189). The percentage of shade-

tolerant trees significantly decreased (-0.141 pp yr-1, 95 % CI = -0.247 – -0.045). The

percentage of canopy and sub-canopy trees did not change significantly. Based on

absolute rates of stem change, deciduous trees significantly increased but changes in

successional guild and canopy position were not significant (Table A1).

On a biomass basis and using change in percentage for the categorical variables (Table

A2), patterns were similar to those based on stems. Significant increases were found for

habitat score (0.429 units yr-1, 95 % CI = 0.067 – 0.770), percentage of deciduous trees



58

(0.120 pp yr-1, 95 % CI = 0.025 – 0.223), percentage of NPLDs (0.206 pp yr-1, 95 % CI =

0.100 – 0.318) and percentage of canopy trees (0.190 pp yr-1, 95 % CI = 0.095 – 0.290).

Shade-tolerant (-0.138 pp yr-1, 95 % CI = -0.262 – -0.022) and sub-canopy trees (-0.153

pp yr-1, 95 % CI = -0.230 – -0.079) significantly decreased. Based on absolute biomass,

increases in deciduous trees, NPLDs and canopy trees were significant but other changes

were not.

In all stem and biomass analyses, changes in wood density, pioneer and understorey

trees were not significant.

Figure 2.5. Histogram of annual rates of change in functional traits, based on stems. a)

change in plot mean habitat score (where higher values relate to drier habitat species),

b) change in % of deciduous stems, c) change in plot mean wood density (g cm-3), d)

change in % of pioneer stems, e) change in % of non-pioneer light demanding stems, f)

change in % of shade bearing stems, g) change in % of understorey stems, h) change in

% of subcanopy stems, i) change in % of canopy stems. Red lines - bootstrapped mean

annual rate of change, dashed - 95 % confidence intervals and blue lines -zero change.

Habitat score, deciduous, NPLD and shade-tolerant traits show significant directional

change.
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2.4.3 Change in species abundances

On a stem number basis, 32 species were found to be significantly increasing and 29

significantly decreasing (Table 2.5). On a biomass basis, 37 species were found to be

significantly increasing and 39 species significantly decreasing (Table 2.5). Overall, 22

species increased and 22 decreased in both population change metrics, whilst four

species increased in stem density but decreased in biomass and one species decreased in

stem density but increased in biomass. The bootstrapped median population changes

were 0.007 (99 % CI = -0.065 – 0.089) and 0.15 (99 % CI = 0.068 – 0.238) for stems and

biomass respectively, where 0 indicates no change in population size. The median

biomass-based population change was significantly greater than zero due to the increase

in biomass across the plots (Fig. 2.6), whereas the median stem-based population change

is close to zero as expected given the lack of overall change in stem density. The species

showing the largest changes in abundance are typical of the plot-level functional shifts

observed in the plot network, for example Celtis zenkeri, a deciduous, NPLD, canopy

species showed a 107.5 % increase in biomass, whilst Xylopia staudii, an evergreen,

shade tolerant, canopy species showed a 49.6 % reduction in stem number.

The percentage of deciduous species was significantly higher in the increasing compared

to the decreasing species groups (45 % vs 22 %, and 40 % vs 25 % for stems and biomass,

respectively; Fig 2.6; G-tests, stems: G = 6.17, df = 1, p = 0.013, biomass: G = 4.29, df = 1,

p = 0.038). The percentages of understorey, sub-canopy and canopy species were also

significantly different between increasing and decreasing species, with more canopy

species and fewer sub-canopy and understorey species increasing in abundance (stems: G

= 7.92, df = 2, p = 0.019, biomass: G = 14.88, df = 2, p = 0.0006). Increasing species groups

had a lower percentage of shade tolerant and a higher percentage of NPLD species

(stems: G = 8.65, df = 2, p = 0.013, biomass: G = 6.64, df = 2, p = 0.036) but pioneer

species showed little difference between increasing and decreasing species groups. The

mean habitat score of increasing species was higher than decreasing species, but this

result was not significant. Mean wood density showed no significant difference between

increasing and decreasing species groups.
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Table 2.5. Increasing and decreasing species based on changes in stem density and

biomass.

Increasing by stems Decreasing by stems Increasing by biomass Decreasing by biomass

Allanblackia floribunda Aidia genipiflora Anthonontha macrophylla Aidia genipiflora

Anthonontha macrophylla Albizia zygia Antiaris toxicaria Allanblackia floribunda

Buchholzia coriacea Baphia pubescens Buchholzia coriacea Alstonia boonei

Carapa procera Beilschmiedia mannii Bussea occidentalis Amphimas pterocarpoides

Ceiba pentandra Bombax brevicuspe Ceiba pentandra Annickia polycarpa

Celtis adolfi-friderici Calpocalyx brevibracteatus Celtis adolfi-friderici Baphia pubescens

Celtis zenkeri Chrysophyllum subnudum Celtis zenkeri Beilschmiedia mannii

Cola caricaifolia Cola nitida Cola caricaifolia Blighia unijugata

Cola gigantea Discoglypremna caloneura Cola gigantea Bombax brevicuspe

Cylicodiscus gabunensis Drypetes aylmeri Daniellia ogea Calpocalyx brevibracteatus

Desplatsia chrysochlamys Drypetes principum Desplatsia chrysochlamys Cleistopholis patens

Diospyros kamerunensis Hallea ledermannii Dialium aubrevillei Cola nitida

Entandrophragma angolense Hexalobus crispiflorus Diospyros kamerunensis Corynanthe pachyceras

Eribroma oblongum Klainedoxa gabonensis Diospyros viridicans Dacryodes klaineana

Funtumia elastica Myrianthus libericus Entandropragma cylindricum Discoglypremna caloneura

Guarea cedrata Newbouldia laevis Funtumia elastica Distemonanthus benthamianus

Hannoa klaineana Panda oleosa Guarea cedrata Drypetes aylmeri

Lannea welwitschii Pentadesma butyracea Hannoa klaineana Drypetes principum

Memecylon lateriflorum Piptadeniastrum africanum Irvingia gabonensis Hallea ledermannii

Musanga cecropioides Rinorea oblongifolia Lannea welwitschii Hexalobus crispiflorus

Nesogordonia papaverifera Sterculia tragantha Mammea africana Microdesmis puberula

Parkia bicolor Strombosia pustulata Memecylon lateriflorum Myrianthus libericus

Petersianthus macrocarpus Tabernaemontana africana Monodora myristica Newbouldia laevis

Polyalthia oliveri Treculia africana Monodora tenuifolia Petersianthus macrocarpus

Pterygota macrocarpa Tricalysia discolour Nesogordonia papaverifera Pouteria altissima

Pycnanthua angolensis Triplochiton scleroxylon Parinari excelsa Rinorea oblongifolia

Ricinodendron heudelotii Vitex ferruginea Piptadeniastrum africanum Scottellia klaineana

Sterculia rhinopetala Xylopia staudtii Polyalthia oliveri Scytopetalum tieghemii

Trichilia monadelpha Xylopia villosa Pterygota macrocarpa Sterculia tragantha

Trichilia prieureana Pycnanthua angolensis Strombosia pustulata

Uapaca guineensis Ricinodendron heudelotii Tabernaemontana africana

Zanthoxylum leprieurii Sterculia rhinopetala Treculia africana

Trichilia prieureana Tricalysia discolour

Trilepisium madagascariense Trichilia monadelpha

Uapaca guineensis Trichillia tessmannii

Xylopia quintasii Triplochiton scleroxylon

Zanthoxylum gilletii Vitex ferruginea

Xylopia staudtii
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Figure 2.6. Characteristics of species significantly increasing and decreasing in stem

population density. a) numbers of species classified as evergreen and deciduous in the

increasing and decreasing species groups, b) numbers of species in each successional

guild in the increasing and decreasing groups, c) number of species in each adult canopy

position in the increasing and decreasing groups, d) boxplot of habitat scores and e)

wood density (g cm-3) of increasing and decreasing groups. * denotes a significant

difference between increasing and decreasing species groups.

2.4.4 Trait shifts at Kade

The dataset spanning 1968 to 2010 of two, one ha plots showed very similar shifts in

species composition to the plot network (Fig. 2.7). Most functional traits showed

significant changes over time. Habitat score, percentage of deciduous, NPLD (KAD-01

only) and canopy trees increased, whilst the percentage of shade-tolerant and sub-

canopy trees decreased (p < 0.003, r2 = 0.606 – 0.979, Fig. 2.7). However, in contrast to

the plot network, understorey trees significantly increased over time in KAD-01 (but

not KAD-02). Pioneer trees and wood density, which showed no significant change in

the plot network, significantly increased and decreased respectively in both Kade plots.
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Figure 2.7. Changes in functional composition of KAD-01 (closed circles) and KAD-02

(open circles) from 1968 to 2010. a) change in plot mean habitat score, b) change in % of

deciduous stems, c) change in plot mean wood density (g cm-3) , d) change in % of

pioneer stems, e) change in % of non-pioneer light demanding stems, f) change in % of

shade bearing stems, g) change in % of understorey stems, h) change in % of sub-canopy

stems, i) change in % of canopy stems. * denotes a significant change in trait over time.

2.4.5 Relationships between precipitation, traits and forest structure

Relationships between mean annual precipitation (WorldClim dataset, Hijmans et al.

2005) and both functional traits and forest structural variables are shown in Fig. 2.8.

Relationships between continuous variables (habitat score, wood density, biomass, basal

area and stem density) and precipitation were analysed using linear regression, and

relationships between categorical variables (leaf phenology, guild and canopy position)

and precipitation were analysed using Spearman’s rank correlation. Many traits that

showed significant trends across the plot network over time also show the equivalent
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significant relationships with MAP across the plot network (based on 2010 census data

using number of stems, Fig. 2.8, Table 2.6, 2.7). In contrast, forest structural variables

showed no significant relationships with MAP, despite biomass increasing over the

census period (Fig. 2.8, Table 2.6, 2.7).

Figure 2.8. Relationships between mean annual precipitation (MAP (mm), data from

WorldClim; Hijmans et al. 2005) and functional traits (top three rows) and forest

structure (bottom row). Significant p-values from linear regression or Spearman’s rank

correlation are presented in bold.
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Table 2.6. Results of linear regressions of precipitation as a predictor of continuous

functional traits and forest structure variables. * denotes p < 0.05.

Variable F df p Adjusted r2

Habitat Score 24.98 17 0.00011* 0.57

Wood Density (g cm-3) 1.24 17 0.28 0.013

Biomass (Mg ha-1) 0.98 17 0.34 -0.00097

Basal Area (m2 ha-1) 2.74 17 0.12 0.088

Stem Density (stems ha-1) 0.71 17 0.41 -0.016

Table 2.7. Results of Spearman’s correlations between precipitation and percentage of

stems of different functional trait categories. * denotes p < 0.05.

Variable S p rs

% Deciduous 1674 0.045* -0.47

% Pioneer 1840 0.0062* -0.61

% NPLD 1564 0.12 -0.37

% Shade Tolerant 528 0.019* 0.54

% Understorey 1488 0.20 -0.31

% Sub-Canopy 336 0.0010* 0.71

% Canopy 1900 0.0024* -0.67

2.5 Discussion

This is the first report from tropical forests of concerted species compositional shifts in

response to drought across a range of sites and habitat types. Over the past two decades,

species composition in Ghanaian forests has shifted to favour deciduous, drier-forest

affiliated, canopy species with intermediate light requirements, over wetter-forest

affiliated, evergreen, shade-tolerant, sub-canopy species. This suggests that changes to

the rainfall regime are important in structuring these communities. In addition, the long

term dataset at Kade provides evidence that these functional changes have been

occurring since the onset of the West African drought.

2.5.1 Are widespread compositional changes likely to be caused by drought or other

drivers?

The multiple drivers that may have led to the significant directional shifts in forest

composition that were observed need to be carefully assessed. For example, disturbance

during the study period was hypothesised to increase the abundance of pioneer and

reduce the abundance of shade-tolerant species, while recovery from disturbance prior
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to monitoring would lead to an increase in shade-tolerant and a reduction in pioneer

species (Chave et al. 2008a). However, although a reduction in shade-tolerant species

was found, there was no change in the abundance of pioneer species, suggesting that

neither current disturbance patterns nor recovery from past disturbance are the

dominant drivers of compositional change in this dataset. A second potential

explanation is related to increased resource availability, which has been hypothesised to

favour fast growing, canopy species (Laurance et al. 2004). In this dataset, canopy species

did increase in abundance but there was no trend in mean wood density, a proxy for

diameter growth rate (King et al. 2006). These patterns are partially consistent with this

hypothesis, as is the overall rise in aboveground biomass, suggesting that increased

resource availability may be having a detectable effect on functional composition.

Finally, drought was hypothesised to increase both deciduous species and species

associated with drier forest types. Both of these patterns were found within the dataset

(Fig. 3). Overall, considering the consistent trends in habitat score and deciduous species

found across the plot network, drought, rather than disturbance or resource availability,

appears to have been the dominant driver of compositional change. Furthermore, the

case for drought as the driving force of changes in functional traits during the census

period is supported by the finding that the traits that increased or decreased over time

reflect the changes that occur spatially from wetter to drier forests (Fig. 8). For example,

habitat score and the abundance of canopy trees increase in drier sites, whilst shade-

tolerant and sub-canopy trees increase in wetter sites.

Despite these broad trends in compositional change across the plot network, some

individual plots show patterns which reflect the importance of other drivers at smaller

scales. For instance, DAD-03 exhibits a large increase in the percentage of pioneer trees

(0.54 pp yr-1) and reductions in biomass and stem density (Tables 2.4, A1-A2). These

result from a strong disturbance during the census period. Surveying the site it was

considered that the most likely cause of disturbance was an anomalous flooding event (S.

L. Lewis, pers. obs.). The plot also shows large increases in drought-tolerant trees, with

an increase in habitat score and one of the largest increases in the percentage of

deciduous trees (0.54 % yr-1). One explanation may be that the mortality event has
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allowed the changes seen in the other plots to be accelerated, as a greater proportion of

trees in DAD-03 were replaced in the twenty year study period.

2.5.2 Longer-term change at Kade

The 40 year dataset from Kade shows very similar results to the plot network: habitat

score, deciduous trees, NPLDs and canopy trees all increased, with a concurrent

reduction in shade-tolerant and sub-canopy trees (Fig. 7). These changes occurred

consistently over time, suggesting that the shifts seen since 1990 across the plot network

have been ongoing since the onset of the West African drought and steadily continued

throughout the census period to 2010. Pioneer species significantly increased and mean

wood density significantly decreased over time suggesting that the Kade plots have

experienced more disturbance than the majority of sites in the plot network. This trend

is likely to be due to the small fragment size and possibly higher anthropogenic pressure

on the Kade forest. In contrast to the plot network, understorey trees also increased over

time in KAD-01. This is due to two tree species, Diospyros canaliculata and Microdesmis

puberula, increasing in abundance. Other understory species remained rare or decreased

throughout the study period. These two species have relatively high habitat scores,

above the 70th percentile of all shade-tolerant species present in the plot. It is possible

that the high drought-tolerance of these particular species may be allowing them to

increase in abundance at this site.

2.5.3 Effects of long-term and short-term drought

The results presented here and from other long-term drought studies differ from those

focusing solely on short-term, extreme droughts. Many studies of the impact of short-

term droughts on mortality, typically linked to El Niño Southern Oscillation (ENSO)

events, find that large trees suffer greater mortality than small understorey trees (Condit

et al. 1995; Slik 2004; van Nieuwstadt & Sheil 2005; Phillips et al. 2010; but see

Nakagawa et al. 2000). In addition, results from throughfall exclusion (TFE) experiments
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have also reported increased mortality of large trees (Nepstad et al. 2007; da Costa et al.

2010). In contrast, this study and those from Panama (Condit et al. 1996; Feeley et al.

2011) and Costa Rica (Enquist & Enquist 2011) show an increase in abundance of canopy

trees and often a decrease in small trees. One explanation for this may lie in the types of

drought that these studies cover. In TFE experiments 50 % of rainfall may be excluded

(Nepstad et al. 2007; da Costa et al. 2010) and ENSO events characteristically reduce

pan-tropical rainfall by approximately 30 % (Malhi & Wright 2004 p321) and often with

much greater reductions at individual sites. Long-term droughts, however, can be more

complex, with long-term reductions in precipitation which may or may not also be

punctuated by stronger drought events. For example, the average decrease in annual

rainfall in this study is 11 %, with some years experiencing especially low rainfall (Fig.

1). Precipitation at the site studied by Enquist & Enquist (2011) gradually decreased over

the 20th century and included nine years of extremely low rainfall during the census

period. At the study site in Panama annual precipitation declined by 11 % from 1965 to

1996 compared to pre-1965 precipitation (Condit et al. 1996), with a particularly strong

drought during the 1982/83 ENSO event which the forest may still be responding to

(Feeley et al. 2011). Although there is likely to be variability in drought strength over

extended time periods, the rainfall declines in the long-term datasets are generally

weaker than those of short-term studies or experimental droughts. Increased mortality

of large trees may occur when soil water levels fall below a critical threshold (Nepstad et

al. 2007) due to the high transpiration demand of canopy trees and the distance over

which water must be transported (da Costa et al. 2010), resulting in hydraulic failure

(Phillips et al. 2010). Smaller trees might be susceptible to drought-induced mortality at

less severe reductions in soil water than canopy trees, possibly due to the higher

likelihood of carbon starvation in a low light environment, or their shorter rooting

depths (Condit et al. 1996). Longer-term but less extreme droughts may result in weaker

soil water deficits, sufficient to impact small trees but not reaching the threshold at

which canopy trees face physiological difficulties. Consistent with this, Phillips et al.

(2010) found that the relative risk of mortality for large trees was lower where droughts

were less severe.
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Recent evidence shows that intact tropical forests have increased in biomass over

decadal timescales (Baker et al. 2004a, Lewis et al. 2009a) and a variety of potential

drivers have been proposed; increased resource availability from atmospheric CO2,

nutrient enrichment and solar radiation (Lewis et al. 2009b). In contrast, studies of

anomalous short droughts and TFE studies have found rapid biomass loss over short

periods (van Nieuwstadt & Sheil 2005; Phillips et al. 2009a; da Costa et al. 2010) showing

that these extreme droughts can temporarily reverse the processes leading to increased

biomass. Despite the long-term drought, this study found an increase in biomass of a

similar magnitude to other African (Lewis et al. 2009a) and Amazonian (Phillips et al.

2009a) forests over recent decades. It is hypothesised that the shift in composition in

favour of drought-tolerant species that was detected may play a key role in allowing the

carbon stocks of these forests to be maintained during this long-term, low-intensity

drought. As the forest structure is maintained, the driver(s) of widespread biomass

increase may still be able to act on the system, whereas only during extreme droughts do

increases in tree mortality dominate and cause substantial decreases in aboveground

biomass.

The results presented here show species compositional change in response to drought in

conjunction with an increase in biomass. However, scaling-up these results requires

extreme caution. This study only assessed old growth sites and avoided areas with direct

anthropogenic impacts or that had been subject to wildfires; thus, these sites are not

representative of Ghanaian forests which are typically subject to high levels of human

activity and in which disturbance, or in some areas fire, are likely to play an important

role. Furthermore, extrapolating results to other parts of the tropics should be done with

care. The West African species pool may contain a particularly large proportion of

disturbance- and drought-adapted taxa compared to other tropical forests for three

reasons. Firstly, West African forests may have experienced such droughts as part of an

approximately 40 year wet – dry cycle operating over the past several thousand years

(Shanahan et al. 2009). Secondly, forests generally occur in Africa under lower

precipitation than in other tropical areas and have experienced dry periods during

glacial-interglacial cycles (Anhuf et al. 2006). Thirdly, though forests globally have been
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subject to some level of human activity for thousands of years, humans have been

present in Africa for a greater time than other areas of the tropics (Barnosky et al. 2004)

and West African forests have been fragmented and exposed to high levels of recent

anthropogenic disturbance (Fairhead & Leach 1998). Other tropical forest regions may

not be so well-stocked with species adapted to such changes in the environment.

In conclusion, this study shows the importance of changes in species composition within

a forest stand in determining the response of tropical forests to long-term drought.

While highlighting the sensitivity of tropical forest composition to environmental

change it is also demonstrated that the range of strategies represented within species-

rich forests means that some drought events may not result in reductions in forest

carbon stocks.
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3. Long-term impacts of understorey fires on tropical

forest structure and functional composition in Ghana,

West Africa.

3.1 Abstract

Tropical forests are at increasing risk of fire due to the synergistic effects of

anthropogenic disturbance and drought events. Despite this, the long-term impacts of

fire on tropical forests and the post-fire trajectories of burnt areas are not well

quantified. Previous studies up to 15 years after fires show evidence of regeneration of

forest structure but little recovery of forest composition. In this study, post-fire

regeneration is explored using a unique 27 year dataset of 10, one ha plots from Ghana.

The forest structure in 2010 of plots previously burnt once (in 1983) or twice (in 1983

and 1995) was significantly related to previous fire intensity, with stem density reduced

by up to 67 % compared with unburnt plots. The composition of the plots remained

similar to disturbed areas and showed little sign of recovery. However, aboveground

biomass and stem density had increased in burnt plots since the fires, suggesting that

forest structure was recovering. The results confirm that understorey fires have a

substantial impact on forest structure and composition and that forest structure recovers

faster than forest composition. It is estimated that 15 - 70 years would be required for

full regeneration of biomass stocks and stem density in burnt plots, with variation

strongly linked to previous fire intensity.

3.2 Introduction

The frequency of fires in tropical moist forests has increased considerably in recent years

(Peres et al. 2006). Current fire-return intervals (e.g. Eastern Amazon, 82 years, based on

remotely sensed burn scars for a 23 year period; Alencar et al. 2011) are much shorter
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than the background rate (e.g. Venezuelan Amazon, 400 - 1560 years, based on charcoal

records dated 250 - 6000 years BP; Sanford et al. 1985). These increases in fire

occurrence are linked to human activities, such as selective logging (Holdsworth & Uhl

1997) and fragmentation (Cochrane 2001; Cochrane & Laurance 2002) which increase

forest flammability by increasing fuel load and opening the forest canopy, in

combination with agriculture and cattle ranching which provide ignition sources (Uhl &

Buschbacher 1985). Forest flammability is increased further by extreme droughts, such

as those associated with El Niño Southern Oscillation (ENSO) events in some regions,

which dry out potential fuels on the forest floor. The combination of drought,

fragmentation, logging and ignition sources has led to vast areas of forest burning (e.g.

Brazilian Amazon, 3.9 million ha burnt during the 1998 ENSO; Alencar et al. 2006).

Future trends in deforestation and climate change are likely to increase further the

probability of fires in remaining tropical forest fragments; simulations of future

Amazonian fire regimes suggests climate change, deforestation and road building could

lead to a doubling of fire occurrence by 2050 (Silvestrini et al. 2011).

Fires are clearly a major threat that will affect the future structure and composition of

tropical forests, but the impacts and particularly the ability of previously burnt forest to

recover, are unclear. Research on the response of forests to fire has produced highly

variable results and the majority of studies have focussed on relatively short-term post-

fire periods. For example, a number of studies have reported enhanced mortality of

trees, ranging from 8 to 90 % of stems dying due to fire events (Barlow & Peres 2006)

and small trees with thin bark are particularly vulnerable to fire-induced mortality (Uhl

& Kauffman 1990; Cochrane & Schulze 1999; Barlow et al. 2003a; van Nieuwstadt &

Sheil 2005; Balch et al. 2011; Brando et al. 2012). The spatial variation in mortality can

be attributed both to fires occurring in different forest types where the susceptibility of

the tree community to fire varies, and also to differing fire intensities. For example, fire-

associated mortality rates reported from core Amazonian forests are higher than those

from the Amazon fringe which may contain fewer susceptible tree species due to prior

exposure to fire from the forest-savannah transition zone (Barlow & Peres 2006). Within

a single area of forest there can also be considerable variation in fire intensity, resulting
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in variation in the impacts of fire on the vegetation (Cochrane & Schulze 1999). In

general, fire intensity, estimated using the presence and heights of fire scars on tree

boles, is a strong predictor of changes in forest structure due to fire (Barlow et al. 2003;

Barlow & Peres 2004; Balch et al. 2008; Brando et al. 2012). However, although these

studies demonstrate substantial immediate impacts of fire, the long-term trajectories of

previously burnt areas have been little studied.

The majority of studies measure the effects of fire within 3 years of the fire event

(Cochrane & Schulze 1999; Barlow et al. 2003a; van Nieuwstadt & Sheil 2005) and such

short post-fire periods do not allow insight into forest regeneration after burning and

how long the effects persist. The current longest studies of recovery following fire

suggest that that forest structure may regenerate but forest composition remains altered.

For example, one of the longest post-fire studies measured five previously selectively

logged 0.3 ha plots 15 years after a severe fire event in Borneo. Stem densities had

recovered 5 - 15 years after fire, but species composition remained altered with a high

density of pioneer species (Slik et al. 2002). Similar results were found in one 0.25 ha

plot measured 18 years after fire in Nigeria (Muoghalu 2006), and four 0.25 ha plots

measured 9 years after fire in the Brazilian Amazon (Barlow & Peres 2008). However,

the small plot size, low numbers of replicates and relatively short time periods assessed

by these studies are not sufficient to determine if the patterns found can be generalised,

or whether the impacts of fires persist over longer timescales. Given the likely future

increases in fire occurrence (Silvestrini et al. 2011) it is important to improve our

understanding of these recovery processes following fire events.

Moist tropical forests in Ghana provide a unique opportunity to investigate the long-

term patterns of recovery from ground fires. A strong ENSO drought affected much of

the tropics during 1982/83 and led to fires in the 1983 dry season in Ghana (Swaine et al.

1992; 1997), as well as in other areas such as South-East Asia (e.g. Slik et al. 2002). Fires

also occurred in some Ghanaian forest reserves during 1995 (Doe 2008). An extensive

network of one ha permanent sample plots was established in Ghanaian forest reserves

during the early 1990s, with some these plots located in burnt areas. By revisiting a
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sample of these plots in areas which experienced understorey fires and also in unburnt

sites, this study assesses the extent to which forest structure and functional composition

have recovered up to 27 years since the most recent fire. This dataset provides the

longest directly observed record of tropical forest regeneration after understorey fires.

3.3 Methods

3.3.1 Study Sites

Data were collected from 10, 1 ha permanent sample plots from two forest reserves

(Asukese: ASU and Bobiri: BBR) in the moist semi-deciduous forest zone of Ghana

(Table 1.3, Table 3.1). Plots were established between 1989 and 1990 by the Forestry

Commission of Ghana (FCG) and remeasured in 2010, resulting in a twenty year period

of plot monitoring. Plots in ASU were also censused in 1995 and 2006 (except ASU-88 in

2006). In five of the plots, some sub-plots (covering 0.04 - 0.12 ha per plot) were affected

by tree felling after establishment; these sub-plots were removed from analyses and plot

sizes were reduced accordingly. The fire history of each plot was determined by

assessing the bases of individual trees for fire scars (Barlow et al. 2010), from interviews

with local residents, and consultation of FCG documents. Three plots in BBR remained

unburnt throughout the study period, three plots in BBR were burnt in 1983 only (once

burnt) and four plots in ASU were burnt in 1983 and 1995 (twice burnt, 1995 fire

occured in January before the 1995 census).

Table 3.1. Details of census years and fire history of plots included in the study.

Reserve Plot Code Plot Areaa Census Years
Number

of Firesb
Fire Intensityc

Bobiri

BBR-14 0.88 1990, 2010 0 0

BBR-16 0.92 1990, 2010 0 0

BBR-17 0.96 1990, 2010 0 0

BBR-02 1 1990, 2010 1 0.41

BBR-03 1 1990, 2010 1 0.27

BBR-21 0.88 1990, 2010 1 0.21

Asukese

ASU-88 1 1990, 1995, 2010 2 1.2

ASU-99 1 1989, 1995, 2006, 2010 2 0.66

ASU-100 1 1989, 1995, 2006, 2010 2 0.51

ASU-101 0.96 1989, 1995, 2006, 2010 2 0.29
a Plot areas were reduced in locations subject to tree felling.

b Fires occurred in 1983 once burnt forests and 1983 and 1995 in twice burnt forests.
c Fire intensity based on presence and heights of fire scars on tree boles (see Section 3.3.2).
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3.3.2 Measurements

Initial plot set-up and measurements were performed following Alder & Synnott (1992).

Re-measurements followed standard protocol (Phillips et al. 2009b). Each tree stem ≥ 10

cm D (diameter at breast height; 1.3 m or above buttresses) was given a metal reference

tag and D and species identity recorded. Of 5001 stems, 99.4 % trees were identified to

species-level, 0.36 % to genus, 0.04 % to family; 0.22 % remained unidentified.

Identification was carried out by employees of FCG for the initial census and by K.P.

Duah and Y. Nkrumah (FCG), supplemented by J. Dabo of the Forestry Research

Institute of Ghana (FORIG) and the use of the FORIG herbarium for the recent census.

As fire intensity can be spatially variable within a single forest area (Cochrane & Schulze

1999) the presence and estimated heights of fire scars were recorded (Barlow et al. 2010)

on every tree during the 2010 census as a proxy for fire intensity. Fire scar height is

highly correlated to fire line intensity (Van Wagner 1973) and has been used to estimate

fire intensity in other studies (Barlow et al. 2003a; Barlow & Peres 2004; Balch et al.

2011; Brando et al. 2012). Following Barlow et al. (2003a) each tree was categorized as 0

- no fire scar, 1 - scar up to 30 cm, 2 - scar 30 cm to 1.3 m or 3 - scar height above 1.3 m.

A fire intensity score for each burnt plot was calculated as the mean scar category score

(Barlow et al. 2003a; Barlow & Peres 2004). Only stems that had survived since the

initial census were used to calculate the fire intensity measure in order to avoid

including stems recruited since the fire that could not have been burnt. For twice burnt

plots this measure is a composite of fire scars produced by the 1983 and 1995 fires. This

measure of fire intensity is comparable between plots but may underestimate intensity

when compared with other studies using the same method with measurements taken

shortly after fires, as after 15 - 27 years many burnt trees may have died by the time the

scars were recorded.
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3.3.3 Functional Traits

To assess fire related changes to the functional assemblage of stands, data on species

functional traits were collated from Hawthorne (1995), Hall & Swaine (1981) and

Poorter et al. (2004). For each species a successional guild was applied, either pioneer,

non-pioneer light demander or shade-tolerant (classification possible for 94 % of species

and 99 % of stems). Adult canopy position was assigned as either understorey (> 10 m),

sub-canopy (10-30 m) or canopy (>30 m) (classification possible for 91 % of species and

98 % of stems). Leaf phenology was categorised as deciduous or evergreen (classification

possible for 81 % of species and 95 % of stems). Wood density was taken from values

contained within the ForestPlots.net database (Zanne et al. 2009; López-González et al.

2011a; López-González et al. 2011b), and assigned to stems at a species-specific level

where possible, or given the genus or family-level mean as appropriate (Baker et al.

2004a). Species-level values were available for 71 % of stems, genus-level values were

used for 20 % of stems and family-level for 8 % of stems; in total 99 % of stems were

allocated a wood density value.

As bark thickness has been proposed as a species trait determining fire tolerance (Uhl &

Kauffman 1990, Barlow et al. 2003a, van Nieuwstadt & Sheil 2005), the bark thickness of

all trees in both burnt and unburnt plots was measured using a Haglof bark gauge during

the 2010 census in order to produce a species-specific bark thickness index. Four bark

thickness measurements were taken around the trunk of each tree at approximately 1.1

m from the ground. Individual tree bark thickness was calculated as the average of the

four measurements. Bark thickness data was available from all ten plots included in this

study as well as five additional plots within the moist semi-deciduous forest zone; all

were included in this analysis. As bark thickness increases with D and varies between

species (Paine et al. 2010), different models of bark thickness with dbh were tested to

find the best model to fit the data. Only species with ≥ 3 sampled individuals were

included in the analysis, resulting in a dataset of 164 species (all species combined n =

6569). Using the best model, the bark thickness of a 20 cm D stem was calculated for

each species and this value was used as a species-specific index of bark thickness.
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3.3.4 Biomass Calculations

Biomass stocks were calculated using the moist forest allometric equation based on

diameter and species wood density from Chave et al. (2005). Where no species, genus or

family-level wood density value was available for a stem, the plot level mean was

applied. Where changes in the point of measurement (POM) occurred between

censuses, the D used in biomass estimation was the mean of D measurements at the

original and new POM (6.4 % of stems). Where the original POM was not visible or

thought to be incorrect, the first census D was back-calculated using the latest diameter

measurement and the mean diameter growth rate of the relevant plot and size class (0.6

% of stems).

3.3.5 Data Analysis

As no pre-fire data were available for the burnt plots, it was assumed that their structure

and functional composition was comparable to the unburnt control plots. Such

assumptions have been made in other similar studies (e.g. Cochrane & Schulze 1999; Slik

et al. 2002; Barlow & Peres 2004; Barlow & Peres 2008). Unburnt plots were located in

the same forest reserve (Bobiri) as the once burnt plots, which was 140 km from the

reserve containing the twice burnt plots (Asukese). Both reserves were in the moist-

semideciduous forest type, receive similar mean annual rainfall (1500 and 1250 in Bobiri

and Asukese respectively), experience similar seasonality (3-4 consecutive dry months, >

100 mm) and have similar soil physical and chemical characteristics. As the twice burnt

plots were located in a different reserve to unburnt plots, the unburnt plots cannot be

considered as true controls, but are used a general comparison of forest structure,

dynamics and functional composition in an area unaffected by fire.

3.3.6 Fire impacts on structure and dynamics after 27 years



77

To assess the impacts of past fires on current plot-level forest structure, linear

regressions were used to relate structural variables to past fire intensity score. The

structural variables were stem density (stems ha-1), aboveground biomass (Mg ha-1) and

proportion of small trees (D < 30 cm). The relationships between post-fire forest

dynamics and past fire intensity score were also assessed using linear regression. The

dynamics variables were stem mortality for all trees and mortality of small (D < 30 cm)

and large (D ≥ 30 cm) trees, stem recruitment rate, biomass mortality, biomass

recruitment and biomass growth rates (referring to the plot-level biomass increase due

to growth of surviving stems). These rates were calculated using the equations presented

in Lewis et al. (2004) and based on data for the entire census period (1990 - 2010) for the

control and once burnt plots. For the twice burnt plots, the period 1995 - 2010 was used

for these calculations to exclude the immediate mortality effects of the second fire on

forest dynamics, as regeneration was the focus of the study.

3.3.7 Fire impacts on functional composition

The impact of past fire intensity on current plot-level functional traits was also

determined using linear regression. The plot-level mean (for continuous variables; bark

thickness and wood density) or percentage in each category (for categorical variables;

guild, leaf phenology and adult canopy position) for each trait based on number of stems

were calculated for the 2010 censuses. Stems without trait data were excluded from the

analysis of that trait. The plot-level trait means or percentages were then regressed

against past fire intensity score.

To determine the causes patterns between trait composition and fire intensity, be it

trait-specific mortality at the time of the fire, mortality during the subsequent census

period, or recruitment during the subsequent census period, patterns of recruitment and

mortality in the post-fire period were assessed. Plot-level trait means and percentages

based on the stems that died or recruited during the census interval were calculated. As

for forest dynamics, the census intervals assessed were 1990 - 2010 for control and once

burnt plots and 1995 - 2010 for twice burnt plots. If relationships between the 2010
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functional composition and past fire intensity score were driven only by initial fire-

induced mortality, there would be no relationship between the functional composition

of subsequent recruits or dead trees and past fire intensity score. If relationships between

the 2010 functional composition and past fire intensity score were driven only by

mortality occurring in the post-fire period a relationship between the functional

composition of trees that subsequently died and past fire intensity score would be

expected. If the 2010 functional composition was determined only by post-fire

recruitment, there would be a relationship between the functional composition of

recruited trees and past fire intensity score. All percentages were arcsine transformed

prior to analysis.

3.3.8 Fire impacts on floristic composition

To assess the differences in plot floristic composition with fire intensity and over time

non-metric multidimensional scaling (NMDS, using Hellinger distance (Legendre &

Gallagher 2001) was used; function metaMDS in R package vegan, Oksanen et al. 2011).

This ordination was based on the abundance of stems of each species in the plots.

Permutation multivariate analysis of variance based on similarities (function adonis in R

package vegan, Oksanen et al. 2011) was used to test the effects of fire intensity, time

and plot on floristic similarity. Analyses were performed separately for each of the two

forest reserves to limit the effect of between-reserve compositional differences on

results.

3.3.9 Estimation of initial fire impacts on stems and biomass

Many studies on the impacts of fires report the percentage of stems or biomass lost due

to the fire, and studies of carbon emissions from fires use such measures in their

calculations (e.g. Alencar et al. 2006; Silvestrini et al. 2011). As no data was collected in

1983 before the first fires occurred, percentages of stems and biomass lost to these fires

were estimated. Given the available data, this process was necessarily complex. The

mean stem density and biomass values estimated for 1983 for the unburnt plots were
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used as a reference with which to compare the estimated 1983 stem density and biomass

values of the burnt plots. Estimated (post-fire) 1983 stem and biomass values were back

calculated from the initial 1990 census values. To do this, plot specific rates of

recruitment, mortality and growth were calculated for the period 1990 - 2010, and

applied to the initial 1990 census values assuming that the forest dynamic rates for the

period 1983 - 1990 were the same as from 1990 - 2010. For the twice burnt plots, plot

specific rates could not be used as the 1990 - 2010 rates could be influenced by the

second fire in 1995. For these plots, the mean dynamic rates of the once burnt plots were

applied to the initial census stem density and biomass values of the twice burnt plots to

estimate the 1983 values. Finally, the percentage differences between the estimated

burnt plot 1983 stem density and biomass values and the estimated unburnt 1983

reference values were then calculated. The results associated with this method are

uncertain, due to the number of assumptions made in their calculation. This uncertainty

derives from three sources. First, the assumption that biomass and stem densities of

burnt plots were similar to the unburnt plots before the fires occurred; second, that the

dynamic rates of recruitment, growth and mortality during the census period (1990 -

2010) were the same as for the initial post-fire period (1983 - 1990); and third that the

dynamic rates of the twice burnt plots in the initial post-fire period were the same as

those for the once burnt plots. All of these assumptions are likely to be incorrect to some

extent, and therefore caution should be taken when considering the estimated

percentage losses due to the 1983 fires. However, as many studies report or use these

values, they have been included here.

3.4 Results

3.4.1 Species specific bark thickness

A log-log relationship between bark thickness and D best described the data (Fig. 3.1).

Linear regression was used to model bark thickness (log transformed) as a function of D

(log transformed) and species (Fig. 3.1). Both D and species were significant predictors of

bark thickness (Table 3.2). Bark thickness at 20 cm D for each species ranged from 2.7

mm to 8.8 mm (classification possible for 72.5 % of species and 97.9 % of stems) which
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was within the range of observed bark thicknesses at that diameter size (2.3 - 10.0 mm

for trees 19.7 cm > D < 20.3 cm).

Figure 3.1. Bark thickness - diameter relationships for Ghanaian tree species. a) All

species with log-log curves for species with the maximum, median (thick line) and

minimum bark thickness. b-d) Species specific curves for Entandrophragma angolense,

Triplochiton scleroxylon and Ricinodendron heudelotii respectively.

Table 3.2. ANOVA table for the linear regression model of bark thickness (log

transformed) as function of D (log transformed) and species; n = 6569.

df
Sum of

Squares

Mean

Square
F p

log(D) 1 223.5 223.5 4560.3 < 0.0001

Species 163 373.3 2.3 46.7 < 0.0001

Residual 6404 313.8 0.05

3.4.2 Impacts of fire on current structure and dynamics

After 15 - 27 years of regeneration since the most recent fire, the structure of some

burnt forests remained substantially altered compared to unburnt forest plots in 2010,

with past fire intensity score explaining much of the variation among plots (Fig. 3.2a, b).

Both stem density and biomass decreased significantly with increasing fire intensity
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(stem density: F = 50.2, p < 0.001, r2 = 0.85, biomass: F = 14.2, p = 0.005, r2 = 0.59). In

2010, the most intensely burnt plot, ASU-88, had a stem density of just 182 stems ha-1

and biomass of just 137 Mg ha-1 compared to the unburnt plot mean stem density of 547

stems ha-1 and biomass of 324 Mg ha-1. Overall, biomass values in 2010 were 127 - 382

Mg ha-1 in burnt plots and 299 - 350 Mg ha-1 in unburnt plots and stem densities in 2010

were 182 - 452 stems ha-1 in burnt plots and 500 - 639 stems ha-1 in control plots.

Forest dynamics in the post-fire period (1990 - 2010 for once burnt plots, 1995 - 2010 for

twice burnt plots) were also significantly related to past fire intensity score. However,

relationships were weaker than between forest structure and past fire intensity score.

Both stem and biomass mortality rates increased with higher past fire intensity score

(stem mortality: F = 13.88, p = 0.006, r2 = 0.59, biomass mortality: F = 6.0, p = 0.040, r2 =

0.36, Fig. 3.2d, g). When split between large (≥ 30 cm D) and small (< 30 cm D) trees,

only post-fire stem mortality rates of small trees were significantly related to fire

intensity (large stem mortality: F = 1.6, p = 0.8, r2 = 0.065, small stem mortality: F =

19.74, p = 0.002, r2 = 0.68, Fig. 3.2e). Despite this, there was no significant relationship

between the current proportion of small trees (< 30 cm D) and past fire intensity score (F

= 2.1, p = 0.18, r2 = 0.11, Fig. 3.2c). The significant relationships between post-fire

mortality rates and past fire intensity score appear to be driven by the very high

mortality in plot ASU-88 which was twice burnt and had the highest fire intensity score;

these relationships are not significant if this outlier is excluded. Post-fire stem

recruitment and biomass growth rates both increased with past fire intensity score (stem

recruitment: F = 12.8, p = 0.007, r2 = 0.57, biomass growth: F = 7.0, p = 0.030, r2 = 0.40,

Fig. 3.2e, h). However, there was no significant relationship between past fire intensity

score and post-fire biomass recruitment rates (F = 2.6, p = 0.14, r2 = 0.15, Fig. 3.2i).
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Figure 3.2. Relationship between past fire intensity score and structural and dynamics

variables, 27 years after initial fires. Circles - unburnt, squares - once burnt plots (fire in

1983), triangles - twice burnt plots (fires in 1983 and 1995). Rates are calculated for post-

fire periods, 1990 - 2010 for control and once burnt plots, and 1995-2010 for twice burnt

plots. Regression lines are shown for significant results.

3.4.3 Impacts of fire on functional composition

The functional composition of forests in 2010 also varied with past fire intensity score

(Fig. 3.3). The plots that had experienced the most intense past fires contained very high

percentages of pioneer trees, and the relationship between past fire intensity score and

percentage of pioneers was significant (F = 21.53, p = 0.002, r2 = 0.70, Fig. 3a). The

percentage of deciduous stems in 2010 increased with past fire intensity score (F = 8.7, p

= 0.018, r2 = 0.46, Fig. 3g) whilst mean wood density decreased with increasing past fire

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

S
te

m
D

e
n
s
ity

(s
te

m
s

h
a

1
)

0.0 0.4 0.8 1.2

a

1
5
0

2
5
0

3
5
0

B
io

m
a
s
s

(M
g

h
a

1
)

0.0 0.4 0.8 1.2

b

0
.7

8
0
.8

2
0
.8

6
0
.9

0

P
ro

p
o
rt

io
n

S
m

a
ll

S
te

m
s

0.0 0.4 0.8 1.2

c
1
.0

2
.0

3
.0

S
te

m
M

o
rt

.
R

a
te

(%
y
r

1
)

0.0 0.4 0.8 1.2

d
1
.0

2
.0

3
.0

4
.0

S
m

a
ll

S
t.

M
o
rt

.
R

a
te

(%
y
r

1
)

0.0 0.4 0.8 1.2

e

2
3

4
5

6
7

8

S
te

m
R

e
c
r.

R
a
te

(%
y
r

1
)

0.0 0.4 0.8 1.2

f

0.0 0.4 0.8 1.2

1
.0

2
.0

3
.0

4
.0

Fire Intensity

B
io

m
a
s
s

M
o
rt

.
R

a
te

(%
y
r

1
)

g

0.0 0.4 0.8 1.2

1
.5

2
.0

2
.5

3
.0

Fire Intensity

B
io

m
a
s
s

G
ro

.
R

a
te

(%
y
r

1
)

h

0.0 0.4 0.8 1.2

0
.2

0
.6

1
.0

1
.4

Fire Intensity

B
io

m
a
s
s

R
e
c
r.

R
a
te

(%
y
r

1
)

i



83

intensity score (F = 12.2, p = 0.008, r2 = 0.56, Fig. 3h). The percentage of non-pioneer

light demanders and understorey species in 2010 decreased with increased past fire

intensity score (NPLD: F = 35.0, p < 0.001, r2 = 0.79, understorey: F = 19.7, p = 0.002, r2 =

0.67, Fig. 3.3b, d). Plot mean bark thickness (of a 20 cm D stem) significantly increased

with past fire intensity score (F = 9.0, p = 0.017, r2 = 0.47, Fig. 3.3i). No significant

relationships were found between the percentage of shade-tolerants, sub-canopy or

canopy species with past fire intensity score.

Figure 3.3. Relationships between functional composition and fire intensity in 2010, 27

years after initial fires. Circles - unburnt, squares - once burnt plots (fire in 1983),

triangles - twice burnt plots (fires in 1983 and 1995). All percentages are arc-sine square

root transformed. Regression lines are shown for significant results.
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The majority of changes in functional composition with past fire intensity are due to

post-fire regeneration of species with particular traits (Fig. 3.4). Post-fire recruitment of

pioneer species increased with past fire intensity score (F = 51.9, p < 0.0001, r2 = 0.85,

Fig. 3.4a), and recruitment of non pioneer light demanders and shade-tolerant species

decreased (NPLD: F = 37.2, p = 0.0003, r2 = 0.80, shade-tolerant: F = 5.3, p < 0.05, r2 =

0.33, Fig. 3.4b, c). Deciduous species showed increased post-fire recruitment (F = 12.9, p

= 0.007, r2 = 0.57, Fig. 3.4g) and mean wood density of post-fire recruits decreased with

increased past fire intensity score (F = 23.5, p = 0.001, r2 = 0.71, Fig. 3.4h). There were no

significant patterns in either recruited or dead stems of understorey trees with past fire

intensity score (Fig. 3.4d), despite a significant decrease in the percentage of understorey

trees with past fire intensity (Fig. 3.3d). Recruited trees had thicker bark in more

intensely burnt plots, whilst trees that died had thinner bark (recruits: F = 36.1, p =

0.0003, r2 = 0.80, dead: F = 5.7, p <=0.04, r2 = 0.35, Fig. 3.4i).
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Figure 3.4. Patterns in functional composition of recruited trees (red) and dead trees

(black) with fire intensity. Recruited and dead trees based on post-fire periods: 1990 -

2010 for control (circles) and once burnt plots (squares, fire in 1983), and 1995-2010 for

twice burnt plots (triangles, fires in 1983 and 1995). All percentages are arc-sine square

root transformed. Regression lines are shown for significant results.

3.4.4 Impacts of fires on floristic composition

As well as differences in functional composition due to fire intensity, floristic

composition was significantly altered by fire (Fig. 3.5, Table 3.3). In Asukese, the most

striking result is the large changes in the most intensely burnt plots, ASU-88 and ASU-

99 (Fig. 3.5b), which had very high mortality and recruitment during the study period,

when compared with the two less intensely burnt plots at that site. Within Bobiri, burnt

forest had an altered composition when compared to unburnt forest, with the unburnt
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plots clustered together (NMDS, Fig. 3.5a), and all unburnt plots moved in the same

direction over time along the NMDS axes. Multivariate ANOVA on floristic similarities

confirms that past fire intensity score is a significant predictor of variation in floristic

similarity among sites (Table 3.3). However, census date and differences between plots

were also significant (Table 3.3). In Bobiri forest where it is possible to compare changes

over time in floristic similarity between burnt and unburnt plots, an interaction term

between census date and fire intensity was included in the multivariate ANOVA. The

lack of significance of this term shows that burnt plots do not become more similar to

unburnt plots over time, as with time there is no change to the impact of fire intensity

on floristic similarity between plots.

Figure 3.5. Ordination (non-metric multidimensional scaling using Hellinger distances)

showing compositional trajectories of plots within a) Bobiri forest reserve and b)

Asukese forest reserve. Circles - unburnt, squares - once burnt plots (fire in 1983),

triangles - twice burnt plots (fires in 1983 and 1995). Filled symbols indicate the most

recent census (2010). Previous censuses took place in 1990 only in Bobiri forest, and in

1989, 1995 and 2006 in Asukese forest (except 2006 in ASU-88).
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Table 3.3. Multivariate ANOVA table based on a compositional similarity distance

matrix using Hellinger distances from Bobiri forest and Asukese forest. Plot, fire

intensity and census date all significantly explain variation.

Reserve Variable df
Sum of

Squares

Mean

Square
F r2 p

Bobiri

Date 1 0.03 0.03 3.5 0.03 0.007

Fire Intensity 1 0.17 0.17 22.7 0.20 >0.001

Plot 4 0.63 0.16 20.8 0.73 >0.001

Date*Fire 1 0.007 0.007 0.86 0.008 0.574

Residual 4 0.03 0.008

Asukese

Date 1 0.15 0.15 8.1 0.04 >0.001

Fire Intensity 1 0.30 0.30 16.0 0.20 >0.001

Plot 2 0.87 0.43 23.3 0.73 >0.001

Residual 10 0.19 0.02

3.4.5 Impacts of fires on trajectory of stem density and biomass

The 1983 fires caused substantial loss of stems and biomass (Fig. 3.6). The estimated

reduction of stems in burnt plots ranged from 15 - 78 % of the estimated mean unburnt

plot stem density (503 stems ha-1) in 1983. However, the burnt plots in both Bobiri and

Asukese have since shown a consistent increase in stem density and on average have

recovered 15 % of the initial estimated unburnt stem density (76 stems). This increase

for the majority of burnt plots still has not replaced all the stems lost to the fires.

However one plot, BBR-03, recovered stems sufficiently to match the 1983 control mean

by 2010. Initial estimated biomass loss due to the 1983 fires was similar to stem density

losses (Fig. 3.6b) ranging from 18 - 78 % of the estimated mean unburnt plot biomass

(286 Mg ha-1) in 1983, however, once burnt BBR-21 had 21 % higher biomass than the

average control plot and the lowest fire intensity. All burnt plots gained biomass over

the study period except ASU-88, which had the highest fire intensity. BBR-02 and ASU-

100 recovered biomass to close to the 1983 control mean by the final census, while BBR-

21 remained at high biomass throughout the study period. There is uncertainty

associated with the precise values of the percentage losses presented here, as they are

based on estimated values (see Section 3.3.9), however the general reductions and

recovery patterns shown by each plot are valid.
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The second fire in Asukese does not appear to have had a large impact on forest

structure (Fig. 3.6). In all twice burnt plots, stem density was reduced immediately

following the 1995 fires (Fig. 3.6a) and biomass decreased in three of the four twice

burnt plots (Fig. 3.6b). However, the changes due to the second 1995 fire were much

smaller in magnitude than the estimated losses due to the 1983 fires.

Figure. 3.6. Burnt plot stem density and biomass over the study period as a percentage of

a) estimated 1983 mean unburnt plot stem density (503 stems ha-1) and b) estimated

1983 mean unburnt plot biomass (286 Mg ha-1). Dashed lines show the mean control

stem density and biomass at 1983 and 2010 (stem density 2010: 547 stems ha-1, biomass

2010: 324 Mg ha-1). Squares - once burnt (fire in 1983), triangles - twice burnt (fires in

1983 and 1995). Dotted lines show the trajectory of plots over time. All data points for

1983 were estimated using recruitment, growth and mortality rates from the 1990 - 2010

census data (see Section 3.3.9) and are shown in red. Dashed lines representing 1983

mean unburnt plot stem density and biomass are also estimated and shown in red. Stem

density and biomass of the majority of plots, both burnt and unburnt, increased over

time.

3.5 Discussion

This study assesses 27 years of tropical forest regeneration from understorey fires and

shows that understorey fires can have large impacts on forest structure and functional

composition even after many years of recovery. Over the study period, forest structure

1
9

8
5

1
9

9
0

1
9

9
5

2
0

0
0

2
0

0
5

2
0

1
0

-80

-60

-40

-20

0

Year

%
D

iff
e

re
n

c
e

fr
o

m
U

n
b

u
rn

t
S

te
m

s

a

Unburnt-1983

Unburnt-2010

1
9

8
5

1
9

9
0

1
9

9
5

2
0

0
0

2
0

0
5

2
0

1
0

-80

-60

-40

-20

0

20

Year

%
D

if
fe

re
n

ce
fr

o
m

U
n

b
u

rn
t
B

io
m

a
ss

b

Unburnt-1983

Unburnt-2010



89

showed evidence of recovery, however functional and floristic composition remained

altered. Fire intensity score, measured retrospectively using char heights, was an

excellent predictor of many structural, dynamic and compositional variables, showing

the importance of this variable in the estimation of fire impacts on tropical forests.

3.5.1 Long-term fire impacts on forest structure

27 years after the initial 1983 fires, forest structure was still significantly altered in burnt

forests (Fig. 3.2a, b) with lower stem densities and aboveground biomass in more

intensely burnt forests. Stem density was as low as 182 stems ha-1 and biomass as low as

127 Mg ha-1 in the most intensely burnt plots when measured in 2010. Compared with

the 2010 unburnt plot means, these reductions represent losses of 67 % of stems and 60

% of biomass. Current variation in forest structure among burnt plots is closely related

to past fire intensity, showing the long-term impacts of fire on forest structure.

However, forest structure variables and biomass in particular are not substantially

reduced in once burnt plots in comparison to unburnt plots in 2010, with some plots

showing similar or higher biomass and stem densities than unburnt plots (Fig 3.2). This

result shows substantial recovery over the study period in these plots which experienced

lower fire intensities (discussed further in Section 3.5.3). The magnitude of losses after

27 years for the most severely affected plots are similar to the only other comparable

study, a chronosequence showing aboveground biomass 29 years after fire in a

seasonally dry tropical forest in Mexico was still reduced by 57 % compared to mature

forest biomass (Vargas et al. 2008).

3.5.2 Long-term fire impacts on functional and species composition

Even with 15 - 27 years of recovery, the functional and species composition of these

forests remained altered compared to unburnt forests, and again this was closely linked

to fire intensity. The results showed an increase in the proportion of pioneer species and

traits associated with pioneer species (deciduousness, low wood density) with increasing
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past fire intensity (Fig. 3.3). This increase in pioneer species is due to the high

percentage of recruited stems that were pioneer species over the post-fire study period

(Fig. 3.4). This influx of pioneers is expected given the high mortality due to the fire

event and has been observed in many other studies (Holdsworth & Uhl 1997; Cochrane

& Schulze 1999; Gerwing 2002; Slik et al. 2002; Slik & Eichhorn 2003; Barlow et al.

2008; Slik et al. 2008; Slik et al. 2010). Pioneer species were still more abundant in burnt

plots even after 15 - 27 years since the most recent fire and made up a large proportion

of recruits, suggesting little evidence of recovery of the successional guild composition

within the study period. However, Slik et al. (2008) showed that in Borneo plot mean

wood density similarly declined over the first seven years of post fire regeneration based

on the > 10 cm D size class, yet when based on small stems < 5 cm D, plot mean wood

density increased (Slik et al. 2008). Regeneration of higher wood density, late

successional species could have begun to occur in the burnt plots in this study, but this

may have been obscured by measuring only stems ≥ 10 cm D.

The percentage of understorey trees declined with increasing past fire intensity (Fig.

3.3d). Unlike the increase in pioneer species, this does not appear to have been driven by

selective recruitment or by mortality of understorey trees in the post-fire period (Fig.

3.4). Understorey species are likely to be small and therefore have thinner bark (Fig. 3.1,

Paine et al. 2010), which increases susceptibility to fire-induced mortality (Uhl &

Kauffman 1990; Barlow et al. 2003a, van Nieuwstadt & Sheil 2005; Brando et al. 2012,

Slik et al. 2010). The higher fire-induced mortality of understorey trees during the 1983

and 1995 fire events may therefore still be visible in the burnt forest communities, and

there does not appear to have been any preferential recruitment of understorey species

over the study period.

Plot mean bark thickness increased with increasing past fire intensity (Fig. 3.3i). During

the post-fire period, dying trees had lower bark thickness in plots with higher past fire

intensity. This is driven by the twice burnt plots and is likely a result of delayed fire-

induced mortality of thin barked trees from the 1995 fires. Interestingly, recruited stems

had thicker bark in the burnt plots. This may be a result of the post-fire community
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containing a greater proportion of thicker barked species which subsequently

reproduced over the study period. This finding has not been observed before, and may

result in greater resilience of the forest to additional fires.

The clear differences in functional composition with past fire intensity show that the

influence of fire on composition, and the patterns in recruitment over the study period

show that forest functional composition is not reverting to a pre-fire composition during

the first decades of recovery. The ordination analysis shows that over the study period,

the composition of burnt plots did not become more similar to the unburnt plots.

Overall, these results are comparable to those of other studies that suggest floristic

composition does not revert to pre-fire composition within the first 15 years after fire

(Slik et al. 2002; Barlow & Peres 2008).

3.5.3 Recovery trajectory of forest structure

Stem density and biomass were severely reduced due to the 1983 fires (Fig. 3.6). Stem

density was reduced by 15 - 78 % in burnt plots compared with the estimated mean

1983 control stem density, within the wide range of values from other studies (8 - 90 %,

Barlow & Peres 2006). Biomass was lost due to fire in six of the seven burnt plots,

ranging between 18 - 78 %. One plot, BBR-21, had greater biomass than the estimated

unburnt plot mean. The wide range of biomass losses found in this study have also been

shown for other regions; Cochrane & Schultze (1999) recorded biomass losses of 20 - 90

% in burnt compared with nearby unburnt forests, all of which had been previously

logged and Gerwing (2002) recorded biomass losses in logged forests of 32 % in lightly

burnt areas and 68 % in heavily burnt areas compared with only logged forests. The

precise values of stem density and biomass losses here should be treated with caution as

they are based on estimated values using backwards projections of plot dynamic rates,

rather than being based on pre-fire data for each burnt plot. However, the large

variation in losses, which were severe in some areas, is a valid result.
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Despite the large reductions in stems and biomass due the 1983 fires, all plots showed

some level of recovery during the 27 year study period. The majority of burnt plots

showed increased stem density and biomass over the study period (Fig. 3.6) associated

with increased stem recruitment and biomass growth. As there are lower stem densities

in burnt plots, recruitment and growth of surviving trees is likely to have increased

compared to unburnt plots due to the reduced levels of competition. Other studies have

shown increased regeneration of seedlings and saplings in burnt forests in studies up to 5

years post-fire (Swaine et al. 1997; Gould et al. 2002; Cleary & Priadjati 2005). Over

longer post-fire periods evidence of regeneration of larger stems is also found. For

example, seven years after fires in Borneo Slik et al. (2008) found increases in stem

density of 5 - 10 cm and > 10 cm D size classes compared to 1.5 years post-fire. In

addition, between three and nine years after fires in the Brazilian Amazon, high

recruitment into the 10 - 20 cm D size class resulted in abundance of trees in this size

class to approach the densities found in adjacent unburnt forests (Barlow & Peres 2008).

Slik et al. (2002) also found density of stems > 10 cm D in burnt forests recovered to pre-

disturbance levels within 15 years of fire in Borneo.

Although some studies have shown substantial impacts from repeated fires (Cochrane et

al. 1999; Cochrane & Schulze 1999; Barlow & Peres 2008), the second fire in 1995 only

had a small impact on forest structure in the twice burnt Asukese plots. Two plots in

Asukese experienced high fire intensities and showed low stem density and biomass in

2010 (Fig. 3.2a, b). However, the stem density and biomass estimates of these plots were

severely reduced even before the 1995 fires and the twice burnt plots displayed only

small reductions in stem density and biomass after the 1995 fire (Fig. 3.6). Repeated

annual fires in experimental burns showed reductions in flame height compared to the

initial fire potentially due to a lack of fuel limiting forest flammability (Balch et al.

2008). This pattern was also found by Slik et al. (2008) in Borneo where there was a

similar time period between the initial and second fires to this study. During the period

between fires some of the woody debris produced during the first fire may have

decomposed and the canopy may have closed, increasing the humidity of the

understorey and reducing fire intensity (Slik et al. 2008).
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These results show the potential for recovery of the structure of burnt plots. Given 27

years to recover from initial burning, with a second milder fire 12 years following the

first in some cases, one plot reached the estimated 1983 unburnt plot stem density, and

three plots reached biomass values similar to or greater than the estimated 1983 unburnt

plot biomass (Fig. 3.6). These plots reaching similar biomass and stem density values to

the unburnt estimates are primarily from once burnt sites, or twice burnt sites which

had experienced low fire intensities. The two plots which experienced the highest fire

intensities do not show any approach to unburnt plot values. However, as they also lost

the most stems and biomass, this is not unexpected and there may be ecosystem

limitations to the degree of recovery possible over a given time period. Furthermore,

invasion by the exotic herbaceous weed Chromolaena odorata had occurred in the two

most affected plots which may have further reduced potential recovery, especially tree

recruitment in open canopy areas where the weed covered the ground in thick layer

(pers. obs.).

To estimate the time required for all burnt plots to regain stems and biomass similar to

the unburnt plots, the recruitment and mortality rates during the post-fire period (1990

- 2010 for once burnt plots and 1995 - 2010 for twice burnt plots) were used to model

the trajectory of change over time in stem density and biomass starting from the

estimated 1983 post-fire values. The models show that recovery of lost stems and

biomass would take 15 - 70 years (Fig. 3.7). These are likely to be minimum estimates,

particularly for the most severely affected plots; the early stages of regeneration over

which the recruitment and dynamics rates are estimated are likely to also show the

fastest recovery and may decrease over time.
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Figure 3.7. Modelled stem density (a) and biomass (b) trajectories of burnt plots from the

initial fire. Once burnt plots - blue, twice burnt plots - green. Dashed lines show the

mean estimated unburnt plot stem density and biomass for 1983 and 2010. Recruitment

and mortality rates during the post-fire period (1990 - 2010 for once burnt plots and

1995 - 2010 for twice burnt plots) were applied to the 1983 estimated post-fire stem

density and biomass values.

This study is limited by complications that arise from the lack of pre-fire data at the

study sites and the comparison of burnt plots with adjacent unburnt areas. This problem

is faced by the majority of studies in this field that use natural fire events rather than

experimental burns (e.g. Cochrane & Schulze 1999; Gerwing 2002; Slik & Eichhorn

2003; Barlow & Peres 2004; Slik et al. 2008). It is not possible to prove that the burnt

plots included in this study were identical to the unburnt plots before the fires, but the

finding that the fire intensity score closely relates to forest structure (Fig. 3.2a, b)

suggests the fire rather than other factors has resulted in the current differences in

structure. Furthermore, the control and burnt plots are all located in the same forest

type with similar total rainfall, seasonality and soils. The census interval used for

analyses of the twice burnt plots (1995 - 2010) is also a complication as it may include

some delayed fire-induced mortality, as mortality is typically high for three years

following fires (e.g. Barlow et al. 2003b). This is likely the cause of the increased

mortality found with increased fire intensity (Fig. 3.2d, g, e).
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3.5.4 Improving modelling and emissions estimates of tropical understory fires

This study and others (Cochrane & Schulze 1999; Barlow et al. 2003a; Barlow & Peres

2004; Balch et al. 2011; Brando et al. 2012) show the importance of fire intensity for

understanding the impacts on forest structure and the wide variation in intensity within

a single burnt area. However, integrating this insight into remote sensing and modelling

of tropical forest understorey fires is challenging. Combining burnt area mapping with

higher-resolution methods could be used to improve estimations of fire-impacts on

vegetation and emissions estimates (e.g. Numata et al. 2011). Improvements in tropical

forest fire modelling to include variation in fire behaviour, such as the development of

models to predict forest flammability, and incorporating vegetation models to include

post-fire regeneration will aid the prediction of future impacts of understorey fires (e.g.

Soares-Filho et al. 2012).

This study assessed the impacts of historic fires on forest structure and composition, 27

years after the first fire event. This is considerably longer than the time periods assessed

by other studies. Even after 27 years since initial fires, biomass and stem density was still

significantly altered in some plots whilst others showed substantial recovery reaching

unburnt plot values. The intensity of past fires contributed to current variation in

structure and functional composition. In addition, the results support the few previous

long-term studies which show evidence of regeneration of forest structure during the

years following forest fires, but still little recovery of species composition. Given the

observed regeneration of forest structure, this study supports the notion that fire-

disturbed forests still have conservation value (Slik et al. 2002) and continue to provide

ecosystem services. In the long-term, if left to regenerate, these fire-disturbed forests

could be valuable, especially in areas of high fragmentation and few remaining natural

stands such as West Africa. However, with the likely increasing fire occurrence in

tropical forests due to fragmentation, logging and climate change, prevention of

wildfires should be given a high priority.
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4. Spatial and temporal trends in liana infestation in

Ghanaian tropical forests

4.1 Abstract

Studies of recent changes in the abundance of lianas in tropical forests have yielded

varying results: work in Neotropical forests has shown an increase, whereas the small

number of studies from African forests have tended to show decreases in liana

abundance. These results highlight that the drivers of liana increase are unknown, with

proposed hypotheses including increased natural disturbance, land use change, elevated

temperatures and increased atmospheric CO2. Studying the drivers of liana spatial

distribution and change in liana abundance at the same location may increase our

understanding of the causes of these patterns. Here there is the opportunity to test for

change in liana abundance (measured using liana infestation rates) and the drivers of the

spatial patterns of liana abundance in the forest zone of Ghana. The results show a very

slight but significant increase in the percentage of trees carrying lianas from 78.6 % (±

13.9 sd) in the early 1990s (mean census date 1991.84) to 81.2 % (± 15.1 sd) in the late

2000s (mean census date 2008.91). Liana spatial distribution was driven by variation in

forest structure rather than precipitation or soil properties. However the observed

changes in liana infestation over time could not be explained by changes in forest

structure over the same period. Large lianas (≥ 10 cm diameter) display different

relationships with environmental variables to the liana community as a whole, with

higher abundance in sites with lower turnover rates. In conjunction with the results

from other studies, these findings suggest that changes in liana abundance may be

landscape-specific, and we should not necessarily expect a simple global driver or trend.
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4.2 Introduction

One of the most compelling patterns to emerge from recent studies of long-term change

in tropical forests is an increase in liana (woody vine) abundance in the Neotropics

(Schnitzer & Bongers 2011). This result was first reported by Phillips et al. (2002) who

showed an increase in the abundance of lianas ≥ 10 cm diameter since the 1980s in

permanent sample plots in Amazonia. This finding has been supported by studies from

Barro Colorado Island (BCI), Panama, which have shown an increased production of

liana leaf litter (Wright et al. 2004) and flowers (Wright & Calderon 2006) since the mid

1980s, and an increased percentage of trees infested with lianas since 1967 (Ingwell et al.

2010). In addition, a small increase in stem numbers and biomass of lianas ≥ 10 cm

diameter was found over a 10 year period in French Guiana (Chave et al. 2008b).

However, not all studies find this pattern. For example, there was a 20 % decrease in

liana stem density between 1979 and 1992 in 1.6 ha of Gabonese forest (Caballé &

Martin 2001), whilst in the Democratic Republic of Congo liana stem density decreased

by 33.5 % between 1994 and 2007 in two 10 ha plots (Ewango 2010). Overall, more

studies are needed to understand whether the temporal trend in liana abundance is

consistent across tropical forests.

Any changes to the abundance of lianas are important, not only because lianas are a key

part of tropical forest ecosystems as they contribute approximately 25 % of woody

species richness (Gentry 1991), but also because of the negative impact of liana

infestation on tree hosts. Lianas decrease tree growth (Clark & Clark 1990; van der

Heijden & Phillips 2009a; Ingwell et al. 2010) and increase tree mortality (Putz 1984a;

Phillips et al. 2005; Ingwell et al. 2010). Therefore, understanding liana ecology is

important for understanding tropical vegetation dynamics and the carbon storage and

sequestration potential of tropical forests. There have been many hypotheses proposed

to explain the increase in liana abundance in the Neotropics such as increased

evapotranspiration demand, increased rates of natural disturbance, land use change and

elevated atmospheric CO2 (Schnitzer & Bongers 2011). However, the current lack of

evidence for an increase in liana abundance in African forests raises questions about
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whether this trend can be explained by any single driver. For example, some possible

drivers, such as elevated CO2 or increased evapotranspiration demand due to increased

temperatures, might be expected to affect all tropical forests. In contrast, the variation in

changes in liana abundance in different forests suggests that the drivers are likely to be a

complex combination of these global trends interacting with local conditions (Schnitzer

& Bongers 2011). Therefore, we need to assess temporal patterns in liana abundance in

the context of the landscape in which they occur. Assessing temporal patterns of liana

infestation in combination with local drivers of liana spatial distribution may aid our

understanding of the drivers of change over time.

Over different scales climate, forest structure, disturbance and soil fertility have all been

proposed as drivers of liana spatial distribution. As lianas are climbing plants that use

host trees to reach the canopy, forest structure and host availability have been suggested

as determinants of liana distribution (Putz 1984a) and forest structural variables have

been found to be significant predictors of liana abundance in many studies (Putz 1984a;

Balfour & Bond 1993; Laurance et al. 2001; Nabe-Nielsen 2001; Phillips et al. 2005; van

der Heijden & Phillips 2008; Nogueira et al. 2011). Lianas may also be favoured by forest

disturbance such as tree fall events (Schnitzer & Bongers 2002) as they have the capacity

to survive the disturbance and subsequently resprout in canopy gaps (Putz 1984a; Fisher

& Ewers 1991) and can grow horizontally into gaps from the forest floor (Penalosa

1984). Consistent with these mechanisms, liana abundance and species richness have

been found to increase with forest disturbance (Laurance et al. 2001; van der Heijden &

Phillips 2009b), in tree fall gaps (Gerwing & Farias 2000; Schnitzer et al. 2000) and at

forest edges (Laurance et al. 2001). Patterns of soil fertility may also control liana spatial

distribution; lianas may increase in abundance in forests with greater soil fertility due to

the high resource demand of their extensive, nutrient rich and high turnover foliage

(Zhu & Cao 2010). Significant, though typically weak, relationships between liana

abundance and soil chemical and physical properties have been observed, such as a

positive correlation with soil fertility (Putz & Chai 1987; Laurance et al. 2001; Phillips et

al. 2005). However, the relationship between liana abundance and climate is less clear.

Schnitzer (2005) provides a compelling case for liana abundance to increase with lower
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rainfall and increased seasonality. The physiology of lianas, with deep roots systems and

long, wide xylem vessel elements, make them particularly effective at water uptake, and

as such may provide a competitive advantage over trees during periods of water stress

(Schnitzer 2005; Zhu & Cao 2009). Evidence has been found to support the hypothesis

that liana abundance (or liana species richness) is favoured by water stress (Schnitzer

2005; Swaine & Grace 2007; DeWalt et al. 2010; Toledo 2011), but other studies find

either no effect, a weak effect or even an increase in liana abundance with increased

precipitation (van der Heijden & Phillips 2008; van der Heijden & Phillips 2009b; Hu et

al. 2010).

The drivers of liana distribution remain uncertain, particularly with regard to water

stress, and there is a scarcity of studies assessing a range of different drivers

simultaneously. Furthermore, understanding the importance of different drivers of liana

distribution in a given landscape may provide a framework for understanding temporal

changes in that region. Such studies are lacking in the literature as there are few datasets

with historical information on liana abundance that can be extended with contemporary

measurements. By utilising a widespread network of permanent sample plots established

in Ghana during the early 1990s, a unique opportunity arose to assess both temporal

changes in liana abundance over a decadal time-scale and determine the drivers of liana

spatial distribution across the same study area. Using this data this study will test: 1) if

liana abundance has changed over time, and 2) whether precipitation, forest structure,

disturbance or soil properties drive liana spatial distribution (Table 4.2).

4.3 Methods

4.3.1 Study Sites

Forest inventory data were collected from a network of 19, one ha long-term permanent

sample plots from ten forest reserves located within wet evergreen, moist evergreen and

moist semi-deciduous forest habitat types in Ghana (Table 1.3, Hall & Swaine 1976;

1981). Recent long-term annual precipitation for each plot ranged from 1288 to 1928

mm yr-1 (Hijmans et al. 2005). Rainfall is highest along the south-west coast and
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decreases inland. The rainfall pattern is bimodal; the main dry season (months < 100 mm

precipitation) begins in November or December and ends in February, with an

additional dry month at all sites in August.

Plots were established by the Forestry Commission of Ghana (FCG) during the early

1990s in unlogged forests and were re-censused in the late 2000s as part of the current

study (Table 1.3). Most plots remained undisturbed by humans during the study period.

However, in eight plots some subplots (covering 0.04 - 0.48 ha per plot) had been

affected by tree felling; these subplots were removed from the dataset. All plots were

located at least 150 m from the nearest forest edge, with the majority at least 1 km

within a reserve; fragmentation effects are typically found within 100 m of the forest

edge (Laurance et al. 1998; 2001) and as such should not influence our analyses. None of

the plots included in the study were known to have been burnt and at each site this was

confirmed by examination of tree bases for evidence of fire scars. Although the precise

long-term disturbance history of these plots is unknown they can all be considered to

occur in old growth forest reserves, the majority of which were designated before 1940

(with the exceptions of Cape Three Points and Dadieso, established 1950 and 1977

respectively). Two plots previously separated on the basis of soil type were combined

(Lewis et al. 2009a). Additional data from two, one ha permanent sample plots at the

University of Ghana Kade Agricultural Research Station (Swaine et al. 1987) censused

during 2010 were also included in the analysis of liana spatial distribution.

4.3.2 Measurements

Initial plot set-up and measurements were performed following Alder & Synnott (1992)

and re-measurements followed similar standard protocols (Phillips et al. 2009b). Each

tree stem ≥ 10 cm D (diameter at breast height; 1.3 m or above buttresses) was given a

metal reference tag, and D and species identity was recorded. Following standard

protocols (Phillips et al. 2009b), in the final censuses climbing lianas were included if

they reached ≥ 10 cm at any point below 2.5 m height from the ground and diameter
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measurements were taken at three locations: 1.3 m from the ground, 1.3 m from the last

rooting point, and the largest diameter below 2.5 m height from the ground (Dmax).

Within each plot, every tree included in the census was given a liana infestation score

between 0 (no lianas present in tree) and 3 (tree heavily infested with lianas). This score

was applied in both the initial and final censuses. As the score is subjective, during the

2009 and 2010 recensus only one individual (K.P. Duah) gave the score for all trees, and

to assess temporal changes, this score was reduced to a binary measurement of 0

(uninfested) or 1 (infested) as multiple different observers gave the liana infestation

scores for initial censuses of the plots. For the Kade plots the liana infestation scores

were recorded during the final census only.

Additional liana surveys were carried out during the final censuses in 15 plots. 50 trees

per plot were selected randomly, stratified by D; equal numbers of trees were sampled

throughout the plot from each of five diameter size classes (10 - 19.9 cm, 20 - 29.9 cm,

30 - 39.9 cm, 40 - 49.9 cm, ≥ 50 cm). For each selected tree, all lianas entering the crown

from the ground or adjacent tree crowns were counted in 10 mm size categories using

either a calliper or visually estimating the size of lianas entering from adjacent crowns

(van der Heijden et al. 2010).

4.3.3 Liana spatial abundance metrics

Five plot-level metrics of liana abundance were used to assess drivers of liana spatial

distribution based on data collected in the most recent census: the percentage of trees

infested, mean infestation score, number of large lianas (≥ 10 cm Dmax), liana stem

number index and liana basal area index.

Liana stem number index and liana basal area index were calculated for each plot based

on the liana survey data of 50 trees per plot. As the number and basal area of lianas

infesting a tree are known to increase with host tree size (Clark & Clark 1990; Pérez-

Salicrup & de Meijere 2005), host tree basal area was used to scale the measures of liana
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stem number and liana basal area in each sampled tree before calculating a plot-level

index. Liana stem number index, X, of plot p, was estimated as

ܺ௣ = ෍
ܺ௜

௜ܼ

ௌ೛

௜ୀଵ

where S is the number of tree stems included in the liana survey (normally 50), Xi is the

total number of liana stems infesting tree i, and Zi is the basal area of tree i. Similarly,

liana basal area index, Y, of plot p, was estimated as

௣ܻ = ෍
௜ܻ

௜ܼ

ௌ೛

௜ୀଵ

where Yi is the sum of basal areas of all lianas infesting tree i. In instances where Sp was

less than 50, Xp and Yp were adjusted to account for the number of trees included, i.e. Xp

corrected = (Xp / Sp) x 50.

4.3.4 Environmental variables

To test the importance of different hypothesised drivers of liana abundance, data for a

suite of biotic and abiotic explanatory variables were assembled (Table 4.1).

Table 4.1. Environmental variables included to test the importance of different drivers

of liana spatial distribution.

Hypothesised

Driver

Variable(s) Reference for Hypothesis

Precipitation Mean annual precipitation (MAP) Schnitzer et al. (2005)

Forest

Structure

Stem density, basal area to stem ratio Putz (1984a); Balfour & Bond (1993)

Disturbance Turnover rate Putz (1984a); Schnitzer & Carson (2001)

Soil properties Principal component axes of soil variation Putz & Chai (1987)

Mean annual precipitation (MAP, mm yr-1), maximum cumulative water deficit

(MCWD, mm, Aragão et al. 2007), a measure of seasonal drought stress, and dry season

length (DSL, number of consecutive months < 100 mm precipitation) were derived from

WorldClim (Hijmans et al. 2005). However, as MCWD was very strongly correlated to

MAP (r = 0.92), and DSL at the sites varied between only 3 and 4 months, only MAP

was included in analyses.
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Plot-level forest structure variables included in the analyses of liana spatial distribution

were tree stem density (stems ha-1) and basal area to stem ratio (m2 stem-1: plot basal area

divided by plot stem density). These variables were chosen as tree stem density provides

an estimate of the number of potential hosts for lianas, and basal area to stem ratio

provides an indication of the proportion of basal area made up by small trees which may

provide climbing trellis for lianas to access the canopy.

Tree stem turnover was used as an indicator of natural disturbance caused by mortality

and recruitment over the census period. Turnover rate is the mean of mortality and

recruitment rates (Phillips & Gentry 1994) which were calculated following the

equations presented in Lewis et al. (2004).

Soil cores were collected from each site and samples from 3 depths (0 - 5 cm, 5 - 10 cm

and 10 -20 cm) were analysed for chemical and physical properties. For the majority of

plots, laboratory analysis was carried out on only one soil core, and mean soil property

values were calculated across the three depths. For plots within Asenanyo and Cape

Three Points forest reserves, up to five cores per plot were analysed. Plot-level average

values were calculated for each depth, and then across the three depths. No soil was

available from plots within Dadieso forest reserve. Soils were analysed for pH, particle

size, C:N ratio, concentrations of exchangeable ions, effective cation exchange capacity

and total P following Quesada et al. (2010).

To assess pH, 10 g soil were shaken with 25 ml of H2O for one hour, and allowed to rest

for one hour. The pH of the supernatant was measured using an electronic probe.

Particle size fractions of sand (50 - 2000 μm), silt (2 - 50 μm) and clay (< 2 μm) were

determined using the pipette method. 10 g of soil were mixed with 100 ml of H2O and

20 ml of 5 % sodium hexametaphosphate, (NaPO3)6 (Calgon), and left overnight to

disperse the clay. The solution was then mixed vigorously for 10 minutes in a

commercial blender and the sand fraction removed using a 53 μm sieve. The remaining
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solution was poured into a 1 l measuring cylinder and mixed with a plunger. The

solution was left for 3 - 4 hours depending on the temperature of the solution, and a 20

ml sample was removed from 5 cm below the surface using a pipette to provide a sample

containing 1/50 of the clay fraction. The sand and clay fractions were dried at 105°C and

weighed. The sand fraction was placed in the furnace at 500°C to remove any remaining

organic matter and reweighed. The silt fraction was calculated as the initial weight

minus the sand and clay fractions.

To determine percentages of total carbon and nitrogen 45 μg of soil were combusted at

1000°C and read by an automated elemental analyser. C:N ratios were then calculated.

Concentrations of exchangeable Al, Ca, K, Mg and Na were estimated using the silver

thiourea (Ag-TU) extraction method (Pleysier & Juo 1980). 5 g of soil and 30 ml of Ag-

TU were shaken for 4 hours, centrifuged for 15 minutes and filtered through Whatman

43 filter papers. Ion concentrations of extracts were determined using ICP-OES

(inductively coupled plasma optical emission spectroscopy). Effective cation exchange

capacity (ECEC) was calculated as the sum of concentrations of Al, Ca, K, Mg and Na.

For analysis of total phosphorus 0.5 g soil was digested in concentrated sulphuric acid

(H2SO4) and additions of hydrogen peroxide (H2O2) (Tiessen & Moir 1993). Phosphorus

concentration was determined using the ICP-OES.

All soil properties were included in a principal components analysis to identify the main

axes of variation of soil properties for inclusion in the analysis of liana abundance. Soil

variables which did not conform to the assumptions of a normal distribution were first

appropriately transformed. The first three axes accounted for 79.4 % of the variation

(Table 4.2, Fig. 4.1). Variables with high loadings on the first axis (PC1) were effective

cation exchange capacity, exchangeable Ca and % N; higher values along this axis

represent higher soil fertility. The second axis (PC2) was dominated by exchangeable Na

and pH. Higher values along this axis represent lower pH and higher Na. The third axis
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(PC3) is predominately controlled by particle size. High values along this axis represent

high sand content and low clay content.

Figure 4.1. Biplot of PCA axes 1 and 2 with soil variables (red) and plots (black).

Table 4.2. PCA axis loadings of soil variables (with transformations indicated) and

variance explained by each axis. Variables with high loadings for each axis are shown in

bold.

Soil Variables
PCA Axes

1 2 3

1/(1-pH) 0.252 -0.403 0.085

% Sand -0.279 -0.287 0.336

% Clay 0.217 0.096 -0.509

% Silt 0.245 0.368 -0.069

% N 0.328 0.216 0.200

% C 0.266 0.303 0.329

C:N -0.171 0.339 0.475

√Al -0.181 0.305 -0.335

Ca 0.343 -0.217 0.149

ln(K) 0.326 -0.018 0.063

Mg 0.303 0.036 0.135

Na -0.111 0.446 0.139

ECEC 0.362 -0.086 0.072

ln(Total P) 0.228 0.096 -0.246

Proportion Variance

Explained
0.47 0.20 0.13

Axis Definition Soil fertility Na, pH Particle size
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4.3.5 Data Analysis

The proportion of trees infested, an indirect measure, was used to assess change over

time in liana abundance, as no direct measures of abundance were available for the

historical censuses. This indirect measure of liana abundance correlates well with two

more direct measures of liana abundance available from the 2009 and 2010 surveys: liana

basal area index (r = 0.75, t = 4.04, df = 13, p = 0.0014) and liana stem number index (r =

0.65, t = 3.09, df = 13, p = 0.0086). Logistic regression within a mixed-effects modelling

framework with nested random factors was used to test if time (a fixed effect) was a

significant predictor of the probability of a tree being infested with one or more lianas.

As this is an individual based analysis and some trees were given a liana infestation score

twice (during the first and last census), individual was included in the model as a

random factor nested within plot, nested within forest reserve. The Kade plots were

excluded from this analysis as historical liana infestation data were unavailable.

To assess the relationships between the liana abundance metrics (percentage of trees

infested, mean infestation score, number of large lianas, liana stem number index and

liana basal area index) and climate, forest structure, turnover and soil variables, simple

correlations and multiple mixed-effects models were used. Reduced datasets were used

excluding plots without data for particular variables (six plots lack liana stem number

index and liana basal area index data, and two plots lack soil data). Tree turnover rates

and the number of large lianas were log transformed and percentage of trees infested

was arc sine transformed prior to analysis. As many correlations were performed on the

same dataset, Hochberg sequential Bonferroni adjustment (Hochberg 1988) was applied

to the results to prevent Type I errors. To assess relationships between each liana metric

and all environmental variables in a single analysis, a multi-model selection procedure

was used. A mixed-effects modelling framework was used with reserve as a random

factor. Models were estimated using maximum likelihood (ML) rather than restricted

maximum likelihood (REML) in order to compare models with different fixed effects

(Bolker et al. 2009). As tree stem density and basal area to stem ratio were correlated,

and MAP and PC1 were correlated, four different multiple mixed-effects models were
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tested using each possible combination of the correlated variables, and for each different

liana metric. Stepwise model selection based on the second order Akaike Information

Criterion (AICc), which penalises model complexity and is appropriate for small sample

sizes (Burnham & Anderson 2004), was used to arrive at the best models for each liana

abundance metric. Response variables in both correlations and mixed-effects models

were weighted by plot size. All data analysis was carried out in R (R Development Core

Team 2012), using the package MuMIn (Bartoń 2012) for model selection.

4.4 Results

4.4.1 Change in liana infestation over time

Liana infestation status (infested or uninfested) was available for 10,121 individual trees

and was measured on 16,024 occasions; 5093 trees were measured twice. Initial liana

plot-level infestation rates were high: on average 78.6 % (± 13.9 sd, Fig. 4.2) of trees

were infested during the first census (mean date 1991.84). By the end of the study period

(mean date 2008.91), infestation rates had increased very slightly to 81.2 % (± 15.1 sd,

Fig. 4.2). The logistic mixed-effects model (including nested random effects of reserve,

plot and individual) showed that the probability a tree carried a liana significantly

increase over time (Hosmer-Lemeshow statistic = 1714, p < 0.0001), though this effect

was very slight. For example, the probability of infestation in plot BBR-14, with median

random effect size, was estimated to have increased by only 0.18 % yr-1 over the 20 year

study. Of the trees that survived the study period and therefore were measured twice,

52.1 % that were initially uninfested became infested by the end of the study period. Of

the individuals that initially carried at least one liana, 11.4 % had become liana-free by

the end of the study period.

The initial census infestation rates of dead trees (infestation recorded prior to death) and

surviving trees, and the final census infestation rates of surviving trees and recruited

trees are significantly different (F = 4.0, df = 3, p = 0.01, ANOVA, Fig. 4.3). Post-hoc

analysis of the differences show that recruited trees have significantly higher infestation

rates than trees that survived from the initial census (z = -3.3, p < 0.005) but differences
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between other categories were not significant, again showing that only small changes in

infestation rates occurred over the study period.

Table. 4.3. Rates of liana infestation at the initial and final censuses and liana abundance

metrics for each plot. - indicates no data available.

Forest

Type

Plot

Code

Plot Area

(ha)

Infestation

(%)

Mean

Infestation

Score

Lianas ≥ 10 cm

Dmax (ha-1)

Liana

Basal

Area

Liana

Stem

Number

Soil Data

Available
Initial Final

Moist Semi-

deciduous

ASN-02

ASN-04

0.6

0.88

91.8

91.0

92.6

86.8

1.95

1.79

23.3

10.2

-

-

-

-

Yes

Yes

BBR-14

BBR-16

BBR-17

0.88

0.92

0.96

83.7

87.3

81.8

83.6

88.4

82.1

1.61

1.69

1.66

6.8

5.4

8.3

2.20

3.92

1.97

1.37

1.55

2.30

Yes

Yes

Yes

ESU-18 0.52 92.6 89.2 1.77 5.8 4.15 3.09 Yes

KAD-01

KAD-02

1

1

-

-

87.2

92.1

1.70

1.74

10

5

4.32

4.08

1.87

2.36

Yes

Yes

TBE-05 0.64 80.3 85.2 1.66 4.7 2.86 2.18 Yes

Moist

Evergreen

BOR-05

BOR-06

1

1

56.4

68.6

57.3

97.3

1.07

2.04

5

17

2.03

4.29

0.75

2.01

Yes

Yes

DAD-03

DAD-04

1

1

99.0

93.4

98.3

95.0

2.01

1.85

8

7

-

-

-

-

No

No

TON-01

TON-08

1

1

65.6

79.9

70.5

88.0

1.39

1.87

9

5

1.45

2.96

1.36

1.93

Yes

Yes

Wet

Evergreen

CAP-09

CAP-10

1

1

53.1

54.6

43.0

60.7

1.19

0.72

43

4

-

-

-

-

Yes

Yes

DRA-04

DRA-05

1

1

93.4

66.7

95.0

85.1

1.57

1.16

14

9

3.50

2.55

1.62

1.52

Yes

Yes

FUR-07

FUR-08

1

0.6

86.4

82.2

87.5

89.4

1.67

1.70

7

6.7

4.27

3.50

2.38

2.36

Yes

Yes
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Figure 4.2. Percentage of trees infested across all plots at the initial and final censuses.

Box - interquartile range, thick line - median, whiskers - range, circles - outliers.

Figure 4.3. Differences in infestation rates between dead trees (infestation at initial

census), recruited trees (infestation at final census), and surviving trees at the initial

(mean date 1991.84) and final (mean date 2008.91) censuses. Box - interquartile range,

thick line - median, whiskers - range, circles - outliers. Categories with the same letter

are not significantly different from each other.

4.4.2 Correlations of liana abundance and environmental variables

After application of the Hochberg sequential Bonferroni correction, only one correlation

between the liana abundance metrics and environmental variables was significant: liana

basal area index was negatively correlated with tree basal area to stem ratio (r = -0.85, p
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= 0.0001, Fig. 4.4e). Four correlations were significant at the α = 0.05 level; liana basal

area index increased with tree stem density (r = 0.58, p = 0.025), liana basal area index

decreased with concentration of K (r = -0.55, p = 0.035), and both the percentage of trees

infested and the mean liana infestation score decreased with concentration of Na (r = -

0.51, p = 0.026 and r = -0.54, p = 0.017, percentage infestation and mean infestation score

respectively). Mean annual precipitation was not significantly correlated with any liana

metric.

Figure 4.4. Bivariate relationships between liana abundance metrics and spatial variables

from the best models of liana distribution. Correlation coefficients and p-values are

given; significant p-values are in bold.

4.4.3 Mixed-effects models of liana spatial distribution

The drivers of liana spatial distribution varied between liana metrics, as shown by the

best models chosen by the multi-model selection procedure (Table 4.4), but there is

evidence for some clear general patterns. Forest structure variables (stem density and

basal area to stem ratio) were the most important predictors of all liana metrics except

the number of large lianas (Table 4.4, Fig. 4.4). Liana basal area index and liana stem
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number index decreased with increasing tree basal area to stem ratio, whilst mean

infestation score increased with tree stem density. For the percentage of infested trees

both tree stem density and basal area to stem ratio were important. In contrast, the

number of large lianas was negatively related to tree turnover rate (Fig. 4.c); turnover

had no influence on other liana metrics. Some soil variables were occasionally included

in the chosen models, though typically these relationships were individually non-

significant; percentage of infested trees, mean infestation score and number of large

lianas showed a negative relationship with PC2 (pH axis), and large lianas and liana stem

number index decreased with PC1 (fertility axis). Mean annual precipitation was rarely

included in the best models and was individually non-significant.

Table 4.4. Estimates of parameters included in the four best mixed-effects models (based

on AICc) describing the spatial distribution of each liana metric. All models include

forest reserve as a random factor. p-values for each parameter estimate are shown as: • <

0.1, * < 0.05, ** < 0.01.

Liana Metric MAP PC1 PC2 PC3 Turnovera
Stem

Density

BA:Stem

Ratio
AIC AICc

% Infested Treesb

0.087* 140.2 143.0

-2.23 0.084* 138.6 143.2

-0.022• -596* 140.0 144.6

-507• 142.1 144.9

Mean Infestation Score

-0.076• 0.003* 9.3 13.9

0.003* 11.2 14.1

0.084 0.004* 10.6 15.2

-0.076• 0.074 0.004* 8.9 15.9

Number ≥ 10 cma

-0.088• -1.11* 34.6 39.2

-0.98* 36.6 39.5

0.0009 -1.09* 36.9 41.5

-0.093• -0.083 -1.23* 35.0 42.0

Basal Area Index

-91.8** 29.8 33.8

0.016** 33.8 37.8

0.063 -93.7** 31.3 38.0

0.0005 -87.8** 31.4 38.0

Stem Number Index

31.7 33.9

-34.4• 30.2 34.2

-0.091 -44.1* 28.0 34.7

0.004 31.8 35.8
a Log transformed.
b Arc sine transformed.

As the results show that forest structure is a key driver of the percentage of trees

infested in these plots, it was tested whether changes in forest structure over time may
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have led to the observed changes in infestation rates between censuses. To do this,

relationships between annual rate of change in liana infestation (pp yr-1, where pp is

percentage points), annual rate of change in tree stem density (stems ha-1 yr-1), and basal

area to stem ratio (m2 stem-1 yr-1) were analysed using mixed effects models with forest

reserve as a random factor. Tree basal area to stem ratio significantly increased during

the study period (t = 3.74, df = 18, p = 0.002, two-tailed t-test); there was, however, no

significant change over time in tree stem density (t = 0.049, df = 18, p = 0.96, two-tailed

t-test). Overall, neither change in stem density (F = 0.16, df = 8, p = 0.70, Fig. 4.5a) nor

change in basal area to stem ratio (F = 1.31, df = 8, p = 0.29, Fig. 4.5b) were significantly

related to change in infestation rates. However, the negative relationship between

change in basal area to stem ratio and change in infestation matches the result from the

analysis of liana spatial distribution that the percentage of infested trees is negatively

related to basal area to stem ratio.

Figure 4.5. Relationships between change in liana infestation over time (percentage

points yr-1) and change in forest structure; tree stem density (stems ha-1 yr-1) and basal

area to stem ratio (m2 stem-1 yr-1).
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the drivers of change in liana abundance are complex and may vary in different

landscapes or on different continents. Here, the results from Ghana show a significant

but very slight increase over time in the percentage of trees infested with one or more

lianas, a proxy for liana abundance. In terms of spatial patterns four of the five liana

abundance metrics were strongly linked to variation in forest structure, whilst the

abundance of large lianas (≥ 10 cm Dmax) was unrelated to forest structure, but

increased with lower tree turnover rates. In contrast, climate and soil variables appeared

to exert little control over liana abundance. Despite the significant relationships

between forest structure and liana distribution, plot-level changes in liana infestation

rates were unrelated to changes over time in forest structure.

4.5.1 Drivers of liana spatial distribution

Four of the five metrics of liana abundance (percentage infestation, mean infestation

score, liana basal area index and liana stem number index) gave the same overall result

that liana abundance increases with higher tree stem density and lower tree basal area to

stem ratio. This result of the importance of forest structure for liana distribution is

supported by other studies. In eastern Ecuador the number of liana individuals was

significantly positively correlated with the abundance of small trees (1 - 10 cm D, Nabe-

Nielsen 2001) and Laurance et al. (2001) found a negative relationship between both

liana abundance and liana biomass with tree basal area in Central Amazonia. In

addition, across the Neotropics, liana density, but not liana basal area, was significantly

but weakly related to tree stem number (van der Heijden & Phillips 2008) and the

density of lianas < 5 cm D in a Central Amazon forest increased with an increased

proportion of small trees (as measured using a vegetation index based on size class

distributions, Nogueira et al. 2011). This study has shown liana distribution to be linked

primarily to forest structure, with most liana metrics increasing in areas with higher tree

density and where trees are typically smaller (low basal area to stem ratio). These

patterns support the hypothesis that host availability is a key driver of liana distribution

as lianas require host trees to reach the canopy and gain access to light (Putz 1984a;

Balfour & Bond 1993).
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Interestingly, the distribution pattern of large lianas was very different to the other liana

metrics. The abundance of large lianas was predominately controlled by tree turnover

rate, with higher large liana abundance in plots with lower turnover. This is probably

because large lianas require large trees as supports, and presumably require long time-

periods to reach such substantial sizes without experiencing host tree mortality. In the

Peruvian Amazon, the abundance of large lianas was correlated positively with tree

basal area (Phillips et al. 2005), which similarly indicates their association with large

trees and stable patches of forest with low turnover rates and DeWalt et al. (2000) found

that along a secondary forest chronosequence large lianas were only found in forests at

least 70 years old, whereas small lianas were most common in 20 year old stands. A

similar contrast in the relationships between forest structure and lianas of different size

classes was found in forests of south west China where lianas ≥ 4 cm D showed a strong

positive correlation with the abundance of large trees but lianas < 4 cm D showed a

negative correlation (Yuan et al. 2009).

Surprisingly, neither mean annual precipitation (MAP) nor soil fertility (PC1, correlated

with MAP) were related to any liana metric. Other studies have shown liana abundance

increases with dry season length, and decreases with MAP (Schnitzer 2005; Swaine &

Grace 2007; DeWalt et al. 2010; Toledo 2011). One reason for the lack of a relationship

in this study may be that there was less variation in precipitation regimes within our

dataset compared to other studies. It was not possible to assess effectively the impact of

dry season length as all forests in this study experienced either 3 or 4 consecutive

months with < 100 mm rainfall and the gradient of MAP only varied from 1288 to 1928

mm yr-1. In contrast, the analyses of Schnitzer (2005) and DeWalt et al. (2010) are based

on datasets including MAP ranges of 500 - 7500 mm yr-1 and 860 - 7250 mm yr-1

respectively, and the shorter Bolivian rainfall gradient (1110 - 2200 mm yr-1) covers a

greater seasonality range of 4 - 7 months (Toledo 2011). Associations between liana

abundance and climate may therefore only be visible across larger gradients than

included in this study. However, another study carried out in Ghana found liana species

richness was negatively related to MAP. The discrepancy between this study and Swaine

& Grace (2007) is particularly perplexing as both studies were carried out in the same
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area. One reason may be that Swaine & Grace (2007) include samples from the driest

forests (estimated rainfall minimum 1000 mm) which were not sampled in this study. A

second cause of the different results between the studies may be the use of different

liana metrics; Swaine & Grace (2007) assess liana species richness as a proportion of all

species (lianas, trees and herbs) rather than liana abundance per se. As tree species

richness declines with increasing rainfall in Ghana (Hall & Swaine 1976) the result may

show an increase in the proportion of liana richness even if liana abundance remained

constant. Therefore, the result presented by Swaine & Grace (2007) may not reflect an

increase in liana abundance in drier sites. Despite the findings of Schnitzer (2005),

Swaine & Grace (2007), DeWalt et al. (2010) and Toledo (2011), the negative

relationship between precipitation and liana distribution has not always been observed.

Across 57 Neotropical sites with a MAP range of 400 - 9000 mm yr-1 there was only a

weak effect of MAP on liana basal area was found and no effect on liana stem density

(van der Heijden & Phillips 2008). DeWalt et al. (2010) suggest that the small plot area

(0.1 ha) used by van der Heijden & Phillips (2008) may not be sufficient to adequately

sample variation in liana abundance. However, this is unlikely to be a problem in this

study as larger (0.52 - 1 ha) plots were used.

As well as finding no effect of MAP on liana abundance, there was very little association

between soils and liana distribution (Table 4). At least along the environmental gradient

of the Ghanaian forest zone, the results of this study suggest forest structure is a more

important driver of liana distribution than climate or soils. Neither Schnitzer (2005),

Swaine & Grace (2007), DeWalt et al. (2010) or Toledo (2011) assess the influence of

forest structure on liana distribution; further studies including multiple potential drivers

of liana abundance are necessary to establish which drivers influence liana distribution

at various scales.

4.5.2 Temporal changes in liana abundance

The results show a very slight increase in the percentage of trees infested with lianas

from a mean of 78.6 % during the early 1990s to 81.2 % in the late 2000s. This is
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reflected by the logistic regression analysis showing the probability of a tree carrying a

liana increased very slightly over the study period. Our result contrasts with other

African studies that have shown 20 % (Caballé & Martin 2001) and 33.5 % (Ewango

2010) localised reductions in liana abundance between 1979 and 1992 and 1994 and

2007 respectively. Studies from the Neotropics show increases in liana abundance;

Phillips et al. (2002) find an approximate doubling of the number of large lianas in

multiple census plots from 1985 to 2002, whilst on Barro Colorado Island the leaf litter

dry mass from liana species increased from 0.85 to 1.55 Mg ha-1 yr-1 from 1986 to 2002

(Wright et al. 2004), flower production increased by 4.1 % yr-1 between 1987 and 2003

(Wright & Calderon 2006), and the percentage trees ≥ 20 cm D infested with lianas

increased from 45% in 1980 (Putz 1984a) to 73.6 % in 2007 (Ingwell et al. 2010).

Increases in large liana abundance and biomass observed in French Guiana were modest,

just 4 and 2 additional large lianas in 10 ha and 12 ha plots respectively over 7.5 yr and

9.6 yr intervals, with liana biomass increasing by 0.69 % yr-1 and 0.43 % yr-1 at the two

plots respectively (Chave et al. 2008b).

The increase in liana infestation of 0.18 % yr-1 found in this study is clearly not as strong

as those found in Neotropical studies (Phillips et al. 2002; Wright et al. 2004; Wright &

Calderon 2006; Ingwell et al. 2010), but neither does the slight increase follow the

results from other African studies (Caballé & Martin 2001; Ewango 2010). Initial liana

infestation was very high in the Ghanaian plots (53.1 - 99.0 %, mean 78.6 %, Table 4.3).

In comparison, recorded infestation rates for Neotropical forests with 3 - 6 months dry

season vary from 49.9 % to 77 % (Carse et al. 2000; van der Heijden et al. 2008; Ingwell

et al. 2010) and 57 % of trees were infested in an aseasonal forest in Borneo (Campbell &

Newbery 1993). A study from a forest reserve included in this analysis showed a

similarly high infestation rate of 88.2 % (Addo-Fordjour et al. 2009) and the mean initial

liana infestation is only slightly lower than in a Bolivian ‘liana forest’ where 86.3 % of

trees ≥ 10 cm D carried a liana ≥ 2 cm D (Pérez-Salicrup et al. 2001). Individual host tree

infestation is known to be linked to host traits (e.g. van der Heijden et al. 2008) and it is

possible that the majority of trees capable of carrying a liana were already infested at the

beginning of the study. This pattern would limit the potential for any further increase to
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occur. Furthermore, using only infestation data it would not be possible to detect if liana

load per infested tree had increased over the study period. Observations of decreases in

liana infestation, in contrast, should not be limited by an initially high infestation rate.

Overall, the infestation rate of the forest may in fact be a good predictor of the possible

changes in liana abundance over time.

If the infestation rates determine potential future changes, it is important to understand

why infestation rates vary among forests. The results show that, spatially, liana

abundance is strongly determined by forest structure in terms of stem densities and basal

area to stem ratio and other studies have shown the importance of tree height (Gerwing

& Farias 2000; Parthasarathy 2004). Tree height (Feldpausch et al. 2011; Banin et al.

2012) and tree diameter class distributions (Feldpausch et al. 2012) differ among forests

and continents, with trees being on average taller and wider but with lower stem

densities in African compared to Neotropical forests. This variation in forest structure

may cause variation in liana populations in addition to the effects of climate and soil. In

turn, this broad variation in liana infestation rates may strongly affect the observed

temporal trends.

Two changes in Ghanaian forests during the past decades may also have influenced liana

abundance in the region. Firstly, over the past twenty years forest structure has

changed: basal area has increased whilst stem numbers remained constant. This has

resulted in increased basal area to stem ratios which, as shown by our analysis of the

drivers of liana spatial distribution, may be expected to decrease liana abundance.

Secondly, Ghanaian forests have experienced an 11 % decrease in MAP since the early

1970s (Chapter 2) which may be expected to increase liana abundance according to the

hypothesis of Schnitzer (2005). At the plot level, there is only a weak relationship

between change in basal area to stem ratio and change in liana infestation, and no

relationship between change in stem density and change in liana infestation. This

suggests altered forest structure has not driven changes over time in liana infestation.

However, the increase in water stress may have counteracted the potentially negative

effect of increased basal area to stem ratio on liana abundance.
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Understanding drivers of temporal change in liana abundance remains a challenge, even

with knowledge of the local drivers of liana spatial distribution. However, separating out

and analysing liana size classes independently may help to understand some of these

patterns. Although large lianas ≥ 10 cm contribute large proportions of basal area and

biomass to the overall liana community (Phillips et al. 2005), in terms of stem density

the contribution is small (Putz 1984a; Hegarty & Caballé 1991). Using the liana survey

data collected in this study, only 0.4 % of liana stems reached 10 cm diameter,

comparable to the findings of Laurance et al. (2001) who found only 2.9 % were above

this threshold, and Reddy & Parthasarathy (2003) who found only 18 % of lianas were ≥

6 cm. This study and others show that large lianas display different relationships with

biotic and abiotic variables compared to the liana community as a whole (DeWalt et al.

2000; Laurance et al. 2001; Yuan et al. 2009; Nogueira et al. 2011); in this study large

liana abundance was negatively correlated to forest turnover rate, whilst all other

metrics showed liana abundance was related to forest structure (Table 4). Therefore,

analysing changes over time of lianas in different size classes may help to disentangle to

roles of different drivers.

Schnitzer & Bongers (2011) discuss four hypothesised drivers of increasing liana

abundance: increased evapotranspiration, increasing rates of natural disturbance,

changing land-use and elevated atmospheric CO2. Of these potential drivers, increased

rates of natural disturbance and changing land-use are likely to increase the abundance

of smaller lianas whilst having a negative impact on the abundance of large lianas. In

contrast, the other hypotheses, increased evapotranspiration and elevated atmospheric

CO2, would likely affect all liana size classes. An additional hypothesis may be that

changes in forest structure have affected liana abundance. For example, increased basal

area may promote large liana abundance and an increase in stem density may increase

the abundance of lianas of smaller size classes. However, few studies explicitly examine

trends in different size classes: the observed increases in liana abundance across the

Amazon are based only on large lianas (Phillips et al. 2002), whereas the increases on

Barro Colorado Island are more likely representative of the liana community as a whole
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(Wright et al. 2004; Wright & Calderon 2006; Ingwell et al. 2010). Hence, it is quite

possible that different mechanisms may be responsible for the increases in the different

studies. This study shows the importance of considering liana size class in assessing both

spatial and temporal patterns of liana abundance.

In conclusion, of the variables included in our analysis, the majority of liana metrics

were related to forest structure, whilst the distribution of large lianas was related to

forest turnover rates. Evidence for a pantropical temporal trend in liana abundance

remains unclear given the contradictory evidence from the few studies from Africa,

including the marginal increase found by this study in Ghanaian forests, and the absence

of studies from Asia. Overall, these results confirm that recent changes in liana

abundance are landscape-specific, and that we should not expect a simple global driver

or trend.
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5. Conclusions

5.1 Overview of findings

This thesis aims to make use of a long-term dataset from across the forest zone of Ghana

to assess key questions regarding threats to tropical forests. The main objectives were 1)

to assess the impacts of long-term drought on forest functional composition and

structure, 2) to test if past fires have a long-term impact on forest structure and

composition, and 3) to test if lianas have increased over recent decades in Ghanaian

forests, and the drivers of their spatial distribution.

The studies contained within this thesis have produced three main original findings.

First, I show for the first time that long-term drought can impact forest composition

across a variety of forest types, causing a shift towards more drought-tolerant species.

Furthermore, I demonstrate that despite this impact on species composition, drought

does not necessarily lead to biomass loss as has been shown in other short-term studies.

This suggests that shifting species composition in favour of drought-tolerant species

increases the resilience of tropical forests to long-term drought. Second, I present the

longest study of post-fire regeneration from tropical forests. This study shows that, even

after 15 - 27 years since the fires, burnt forests which experienced high fire intensity are

still significantly altered in structure and functional and species composition. However,

forest structure shows clear signs of recovery over this time period, with some plots

reaching stem density and biomass values of unburnt plots. Third, in contrast to the

large increase in lianas observed in the Neotropics, I find only a very slight increase in

the percentage of infested trees over the two decade study period. Furthermore, I find

no support for the hypothesis that liana spatial distribution is driven by water stress;

rather, forest structure is the main driver. Importantly, large lianas (≥ 10 cm maximum

diameter) showed different spatial patterns to the liana community as a whole as forest

turnover was the strongest predictor of large liana distribution.
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Overall, these results show that, for Ghanaian forests and the threats assessed in this

thesis, the impact of fire has the largest and most lasting impact on forest structure and

composition. This is because forests appear resilient to the long-term drought that has

occurred since the early 1970s, and the infestation rates of trees by lianas has remained

relatively constant. However, even with decades in which to recover, some burnt forests

still contain lower biomass and basal area and an altered species composition.

5.1.1 Long-term drought in Ghanaian forests

Comparing patterns of change in functional traits observed in Ghanaian forests to

hypothesised changes due to drought, past disturbance, current disturbance and nutrient

enrichment, the impact of drought was most strongly supported by the results: drought-

tolerant and deciduous species increased over the study period. I tested this further by

assessing the relationship between functional trait composition and mean annual

precipitation along the rainfall gradient. The majority of traits that increased or

decreased significantly over time also increased or decreased along the rainfall gradient,

confirming that the overall changes found, including such shifts as an increase in canopy

species and decreases in sub-canopy and shade-tolerant species, were supported by the

spatial patterns in trait composition. Furthermore, traits that did not show significant

changes over time, such as wood density and understorey trees, also showed no

relationship with the precipitation gradient. However, above ground biomass and basal

area, which increased over time, did not change along the precipitation gradient,

suggesting altered precipitation regimes have not led to the observed shifts in forest

structure. Other studies assessing the impact of more intense droughts show increased

mortality and biomass loss (van Nieuwstadt & Sheil 2005; Phillips et al. 2009a; da Costa

et al. 2010). I hypothesise that the long-term but relatively weak drought experienced in

Ghanaian forests has caused a shift in species composition to favour species better

adapted to greater water stress. As the long-term history of Ghanaian forests includes an

approximately 40 year wet - dry cycle the drought experienced since 1970 is not

necessarily anomalous, and the species pool is likely adapted to such changes. This shift
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in species composition to species more tolerant of water stress may have enabled forest

structure to be maintained during this period. However, as the study period for the plot

network (mean census dates 1991.84 - 2008.91) did not date back to the pre-drought

period I cannot exclude the possibility that initially the drought may have lead to

biomass loss, and since then the biomass store has been recovering. The lack of increase

in shade-tolerant species and lack of change in plot-level mean wood density, however,

do not show such signs of recovery from past disturbance. Furthermore, the shift in

habitat score in the 40 year dataset from the Kade plots dates back to the onset of the

drought suggesting this increase in drought-tolerance has been consistent since then.

5.1.2 Long-term impacts of fire in Ghanaian forests

Past fire events had a significant impact on both forest structure and functional

composition, even when measured 15 - 27 years after the most recent fire event. Fire

intensity, as measured by assessing fire scars on surviving trees, was a good predictor of

the difference in structural and compositional variables between plots. Using the dataset

of 10 plots, three unburnt, three once burnt and four twice burnt plots, there were clear

relationships between fire intensity and stem density and above ground biomass. The

most heavily burnt plots had the lowest biomass and stem densities. However, burnt

plots also showed high stem recruitment and biomass growth rates. Except for one plot

which decreased in biomass, all burnt plots increased in both stem density and biomass

over the study period, showing evidence of recovery since the fire events. Compared to

the estimated 1983 unburnt plot means, two burnt plots approached or surpassed the

equivalent stem density, and three plots the equivalent biomass, of unburnt plots. Based

on extrapolations of the growth, recruitment and mortality of the burnt plots, I estimate

that it would take up to 70 years for all burnt plots to recover stems and biomass to the

equivalent of unburnt plots, however some plots may do so as soon as 20 years after fire.

Functional composition also showed significant impacts of fire intensity. More intensely

burnt plots contained a higher percentage of low wood density, pioneer species. These

species also showed high recruitment over the study period, showing there was little



123

evidence of a shift away from a composition characteristic of disturbed forest. With

increasing fire intensity, plots contained fewer understorey species and had higher plot

mean bark thickness. These differences are likely due to fire-induced mortality rather

than recruitment of early successional species as small understorey tree with thin bark

are more likely to be killed by fire. Interestingly, the data also shows that thicker-barked

species recruited into burnt plots following fire events, possibly because parent trees of

thicker-barked species are more abundant in burnt forest. The lack of evidence of

recovery of functional composition similar to unburnt plots suggests that the recovery of

composition will take longer than the recovery of forest structure. The results presented

here support those of other studies proposing that structure can recover in shorter time-

periods than composition (Slik et al. 2002; Barlow & Peres 2008), but provides a

substantially longer post-fire recovery period than these previous studies.

5.1.3 Temporal changes and spatial trends in liana abundance

I find that liana infestation increased very slightly but significantly over the two decade

study period, in contrast to other studies from African forests reporting decreases in

liana abundance (Caballé & Martin 2001), and widespread increases in liana abundance

in the Neotropics (Phillips et al. 2002; Wright et al. 2004; Ingwell et al. 2010). Spatially,

four out of five liana abundance metrics were driven by forest structure, increasing with

stem density and decreasing with basal area to stem ratio. In contrast, the abundance of

large lianas was negatively related to stem turnover. This is important as the evidence of

liana increase from a widespread plot network is derived only from large lianas (Phillips

et al. 2002), and my results suggest that drivers of large liana abundance may be

different to the drivers of the liana community as a whole. Furthermore, a hypothesised

driver of liana spatial distribution and recent increases in the Neotropics is related to

water stress, with liana abundance hypothesised to increase with water stress. However,

along the precipitation gradient in Ghana (c. 1200 - 2000 mm yr-1) I do not find any

effect of precipitation on liana abundance, although it is possible that such patterns are

only apparent over wider rainfall gradients, or that seasonality of rainfall is more

important than total rainfall. A further result of interest from the study is the
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importance of forest structure in determining liana spatial distributions which may have

relevance for the different temporal patterns in Africa and the Neotropics. Evidence is

developing for differences in forest structure between the different tropical continents.

For example, trees reach taller maximum heights in Asia and shorter maximum heights

in Amazonia, with African forests intermediate (Feldpausch et al. 2011; Banin et al.

2012). Furthermore, stem density varies between forest regions, with African forests

typically holding fewer stems than Amazon forests, but with African forests containing

higher basal area and biomass (S.L. Lewis, pers. comm.). Stem turnover rates are also low

in Africa, more typical of low turnover Eastern Amazonian forests than the higher

turnover Western Amazonian forests (S.L. Lewis, pers. comm.). As liana distribution is

related to forest structure and dynamics, these differences between continents may

contribute to the differences found in recent changes in liana abundance in Africa and

the Neotropics.

5.2 Research Implications

5.2.1 Implications for Ghanaian forests

Of the potential threats to forests assessed in this thesis, drought, fire and liana

infestation, I find that fire is the strongest threat. Using the Walker et al. (2004)

definition of resilience as “the capacity of a system to absorb disturbance and reorganize

while undergoing change so as to still retain essentially the same function, structure,

identity, and feedbacks”, Ghanaian forests appear largely resilient to the multi-decade

drought experienced since the 1970s. This resilience to long-term drought is likely due

to the long history of wet – dry cycles experienced over millennia in West African

forests (Shanahan et al. 2009) and extensive human presence in the area leading to a

high number of drought- and disturbance-tolerant taxa in the regional species pool.

Future droughts of similar magnitude interspersed with wetter periods are likely to

occur in Ghana, following past trends in climate (Shanahan et al. 2009). Such conditions

are unlikely to result in detrimental effects on Ghanaian forests. Resilience to more

severe droughts, however, may not be so high. Furthermore, the diverse nature of the

forests studied was clearly important, and degraded forests with limited species diversity
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may not necessarily show such resilience. Liana infestation is known to increase tree

mortality and reduce tree growth rates (Clark & Clark 1990; Phillips et al. 2005; van der

Heijden & Phillips 2009a; Ingwell et al. 2010). Therefore any increase in liana

infestation would have a detrimental impact on tropical forest trees. In Ghana liana

infestation rates were already high at the beginning of the census interval, and over the

twenty year study period I find very little change in liana infestation rates, suggesting

that forest dynamics are unlikely to be affected by shifts in liana abundance. As

infestation rates of trees were high throughout, this may suggest a long history of

infestation to which the tree species have already adapted.

In contrast to drought and liana infestation, the occurrence of forest fires is of

considerable concern for Ghanaian forests. Functional composition remained

significantly altered in burnt forests compared to unburnt controls, even after 15 – 27

years of regeneration since fire. Forest structure showed recovery in all plots, with those

experiencing the lowest fire intensities approaching or surpassing stem desnity and

biomass of unburnt plots, however the forest sturtcures of areas with the highest fire

intensities were still strongly affected. At broader scales, these impacts may be an

underestimate. In this thesis only forests within the moist semi-deciduous forest type

were included; the dry semi-deciduous forest zone has been even more severely

impacted by fire since the strong ENSO event in 1982/83 (FORIG 2003). In this region,

repeated burning has occurred in some areas resulting in degradation of forest reserves

and invasion by exotic species such as the weedy vine Chromolaena odorata, the

invasive tree species Broussonetia papyrifera, and Panicum maximum grass (Swaine et

al. 1997). Presence of C. odorata was noted in open areas in some heavily burnt plots

during data collection, as well as in areas opened by logging activities such as old hauling

roads. Furthermore, heavily burnt and logged plots within Tinte Bepo forest reserve

which could not be included in analysis contained a high density of B. papyrifera trees.

The presence of these invasive species will likely limit the regenerative capacity of

native species in degraded areas. This is of economic significance for Ghana as selective

logging for timber is a major source of revenue.
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The wildfires in 1983 had a considerable impact in Ghana and alerted the Ghanaian

government to the problem. Across the country the fires destroyed an estimated 35 % of

crops and stored cereals (Ampadu-Agyei 1998) and the revenue loss from the

destruction of timber has been valued at $24 million (FORIG 2003). After the 1983 fires

new laws were implemented with an emphasis on punishing those who ignite fires, but

the law did not have much impact (Kalame et al. 2009). Improvements were made with

2006 National Wildfire Management Policy with a more holistic approach including

stakeholder participation in fire management (MLFM 2006; Kalame et al. 2009). The

activities of farmers using fire for land management altered after the 1983 fires with

more people constructing fire belts and using the services of fire volunteers (Amissah et

al. 2010). If successfully implemented, the response of both the government and farmers

to the fire outbreaks should decrease the occurrence of wild fires which may spread into

forested areas. The long-term impacts of fires on forest structure and composition found

in this thesis emphasise the importance of fire prevention activities.

These activities do not, however, tackle the issue of forest flammability. In order to

focus on the key issues of drought, fire and lianas, logged areas were excluded from

analysis. However, logging and other forms of anthropogenic forest degradation are a

significant issue for Ghanaian forests (Agyarko 2001; Alo & Pontius 2008), and in

particular influence the flammability of the forest. The remaining old growth forest

occurs within designated forest reserves and a smaller number of national parks. Areas

outside of the protected areas have been mostly deforested. Tree felling within national

parks is illegal, but within forest reserves concessions are sold to timber companies to

extract a limited quantity of trees. In addition to these legal activities, further pressure

comes from illegal tree felling and other disturbances such as gold mining and farming

(Agyarko 2001). As described at the beginning of this thesis (Section 1.3.2) forest

degradation increases forest flammability. The remaining forests are already highly

fragmented which again increases flammability. Furthermore, previously burnt forest

areas have also been affected by salvage logging, where the last remaining commercial

trees are removed before conversion to other land uses such as agriculture or

plantations. These activities are likely to again increase flammability and the spread of
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fires into previously unaffected areas. Increased temperatures and increased drought

occurrence due to climate change may also increase forest flammability. The

interactions between socio-economic drivers of land use and climate may exacerbate fire

risk. Even with the possibility of reduced ignition sources due to government policy, the

risk of fires in Ghanaian forests may remain high, especially in years of low rainfall; a

continued commitment to fire reduction will be essential for the future of Ghanaian

forests.

Fig. 5.1 shows the conceptual model of threats to tropical forests and the impacts of

these threats originally presented in Section 1.1 adapted to reflect the processes

highlighted in this thesis. The importance of fire for species composition change, tree

mortality, change to forest structure and the presence of invasive species are emphasised

in Fig. 5.1, as well as the causes of fire occurance and the influence of drought on species

composition. The link between climatic drivers of increased liana infestation have been

removed, as only a very slight increase in infestation was found during the study period

which included a long-term drought, and the potential impacts of increased liana

infestation have also been removed as other processes are of greater significance for

Ghanaian forests. However, links between forest structure and tree mortality (related to

turnover) and liana abundance have been added as the spatial distribution of lianas was

found to be related to these factors.
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Figure 5.1. Conceptual model of threats to Ghanaian forests and their impacts, informed

by the studies included in this thesis. Threats are shown in red, with red arrows

representing interactions between threats, impacts of threats are shown in green,

increased liana abundance which could be considered both a threat and an impact is

shown in blue and the feedbacks of tree mortality and tree growth to atmospheric CO2

concetration is shown in black. Bold lines show the processes found to be particularly

important for Ghanaian forests.
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5.2.2 Implications for the tropical forest biome

The results of this thesis have implications not only for Ghana, but for the whole

tropical forest biome.

A key result is the long timescale of recovery from forest fires. This result is supported

by other studies assessing shorter post-fire periods (Slik et al. 2002; Barlow & Peres

2008). Depending on the extent of initial fire damage, it may take up to 70 years for stem

densities and aboveground biomass to recover to pre-disturbance levels, and even longer

to develop a composition similar to unburnt forests. Increased fire occurrence is

predicted for many tropical regions due to the combination of land use change, direct

anthropogenic disturbance and climate change (e.g. Soares-Filho et al. 2012). Given the

large areas already burnt and that may be burnt in the future, and the time required for

full recovery, it is likely that in the future vast areas of forest will be at some stage of

regeneration from fire. These issues are important for the climate change mitigation

strategy REDD+ (Reduced Emissions from Deforestation and Degradation) which is

based on payments for avoiding carbon emissions from deforestation and forest

degradation (Laurance 2007). If forests under a REDD+ scheme burn, a significant

amount of carbon would be emitted and a decadal scale time-period would be required

to recover the emitted carbon. As proposed by Aragão & Shimabukuro (2010) fire

prevention activities should be included in REDD+ projects to ensure continued carbon

storage, and the risk of fire should be included in the design of these initiatives (Baker et

al. 2010).

Scaling up the results of the drought study to other areas is more complex. The tree taxa

in Ghana may have already experienced a selective filter of climatic and anthropogenic

disturbance resulting in a pool of species resistant to some environmental changes. As

such, areas that have experienced more constant climates and forest cover over

geological time scales, for example Amazonia (Anhuf et al. 2006) may not respond to

weak but long-term droughts in the same way. Other African forests with similar long-

term history are more likely to show similar patterns. This is good news for West and
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Central African forests if climate change leads to increased water stress of a similar

magnitude to that analysed in this study. The fact that shifts in species composition and

increases in biomass were found across a variety of forest types also suggests this effect

may be exhibited by other African forests, including wetter areas. I hypothesise that the

presence of species rich flora representing a range of life-history strategies is important

for the maintenance of forest under water stress. Therefore, for forests to have the

maximum capacity to survive climate change the full suite of species must be present.

This again has relevance for REDD+, emphasising the importance of biodiversity

conservation for the maintenance of forest carbon stocks (Grainger et al. 2009).

The findings presented here concerning trends in liana infestation support other

evidence that African forests are not exhibiting the same large increases in liana

abundance that have been shown in Neotropical forests. This pattern has two possible

consequences for the discussion on the drivers of increased liana abundance: either the

driver(s) of increased liana abundance is not acting globally, or differences between the

continents are preventing a global driver(s) from resulting in increased liana abundance

in Africa. A final key result is that liana distribution is most strongly driven by forest

structure and dynamics, suggesting liana abundance may also alter if forest structure and

dynamics change.

5.3 Future research directions

The results from this thesis provide many avenues of future research. Firstly, I show

tropical forests can be surprisingly resilient to long-term drought. However, the

generality of this result is unclear and it would be fascinating to test this at a broader

scale, assessing composition and biomass change in forest locations experiencing

different shifts in climate. Continuing to monitor the plot network in Ghana in the

coming years could provide further insight into the impact of climate on forest

composition, especially if, as would be expected from the cyclic precipitation history,

rainfall increases in the next decade.
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The fire study provides a second avenue for future research. Fire intensity was a

significant predictor of many structural and compositional variables, adding to the body

of evidence showing its importance to the impact of fire on forests. Remote sensing of

fires is still limited to hot pixel occurrence (typically including only deforestation fires)

and mapping burnt areas of understorey fires. To truly capture the impact of fire it is

important to include some measure of intensity or impact, such as reduction of stem

density or increase in canopy openness. Development of improved remote sensing to

include such measures and linking them to estimated losses of biomass would improve

quantification of emissions resulting from fires. In addition, I found evidence of

regeneration of forest structure after forest fires, and impacts of fires on forest dynamics.

To fully quantify emissions from forests it is also necessary to incorporate such

regrowth; vegetation models could be developed to achieve this.

Finally, the assessment of the drivers of liana spatial distribution raises a multitude of

further questions. Contrary to some studies, climate did not correlate with liana

abundance. It is possible that this is due either to the relative homogeneity of seasonality

among the study plots or to the relatively short rainfall gradient in comparison larger

scale studies. In order to fully test the influence of climate, forest structure, disturbance

and soil fertility, a global scale study is needed including data on all drivers. To date,

studies assessing all potential drivers have only been carried out within a single region.

An understanding of the drivers of liana abundance, and the scales at which drivers

operate, is important to inform the discussion of drivers of increased liana abundance in

the Neotropics. I have shown the importance of different liana size classes for assessing

the roles of drivers of liana spatial distribution; further studies could investigate shifts in

the abundance of small lianas in the Amazon where increases in large lianas have been

found.

5.4 Summary

Forest fires with high fire intensity were found to have a large and long-lasting impact

on tropical forest structure and composition, more so than long-term drought, whilst
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increased tree mortality and decreased tree growth due to increased liana abundance

does not appear to be a threat to Ghanaian forests. These results are relevant to tropical

forest management and policy; the prevention of fire occurrence should be a priority in

tropical forest regions, as should the maintenance of biodiversity to maximise the

resilience of forest to external changes.
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AFRITRON African Tropical Rainforest Observation Network

Ag-TU Silver Thiourea

AIC Akaike Information Criterion
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Al Aluminium

ANOVA Analysis of variance

BCI Barro Colorado Island

BP Years before present

C Carbon

Ca Calcium

CI Confidence interval

CO2 Carbon dioxide
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D Diameter at 1.3 m or above buttresses
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GCM Global climate model
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MCWD Maximum cumulative water deficit

MFLM Ministry of Lands, Forestry and Mines
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ML Maximum likelihood
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NMDS Non-metric multidimensional scaling
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REML Restricted maximum likelihood

sd Standard deviation

TFE Throughfall exclusion

TROBIT Tropical Biomes in Transition

ρ Wood density
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Appendix

Table A1. Plot level trait changes based on stem numbers. All values are annual rates of change. For categorical variables Rel. = change in percentage of

trees of that trait (percentage point yr-1) and Abs. = change in stem numbers (stems ha-1 yr-1) of trees with that trait. Bootstrapped mean weighted by plot

size and 95% CI are given for each trait. Significant changes across all plots are in bold.

Plot Habitat

Score

(units yr-1)

Wood

Density

(g cm-3 yr-1)

Deciduous Pioneers NPLD Shade Bearers Understorey Sub-canopy Canopy

Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs.

ASN-02 0.175 0.00028 -0.027 -0.288 -0.039 -0.288 -0.081 -0.577 0.120 0.000 0.082 0.288 -0.187 -1.010 0.105 -0.072

ASN-04 -0.041 -0.00027 0.034 -0.072 -0.017 -0.144 0.028 -0.072 -0.011 -0.289 0.101 0.361 -0.205 -1.083 0.104 0.144

BBR-14 0.815 -0.00058 -0.065 -0.202 -0.076 -0.304 0.335 1.568 -0.259 -1.012 -0.095 -0.405 0.294 1.315 -0.200 -0.809

BBR-16 0.180 0.00018 0.023 1.163 -0.123 -0.051 0.207 2.680 -0.086 0.809 -0.105 -0.354 0.006 1.011 0.099 2.275

BBR-17 0.858 -0.00007 0.140 1.719 -0.202 -0.491 0.492 3.193 -0.290 -0.589 -0.046 -0.098 0.092 0.884 -0.045 1.277

BOR-05 0.232 -0.00071 0.039 1.054 -0.031 0.246 0.214 1.922 -0.183 0.930 -0.057 0.000 -0.125 1.426 0.182 2.170

BOR-06 0.590 -0.000002 -0.069 0.377 0.087 0.627 -0.027 0.816 -0.060 1.318 0.021 0.251 0.132 2.762 -0.154 0.314

CAP-09 -0.129 0.00008 -0.016 -0.072 -0.034 -0.143 -0.066 -0.215 0.099 1.073 0.068 0.358 0.064 0.787 -0.132 -0.358

CAP-10 -0.327 0.00214 0.255 1.357 0.012 0.214 0.085 1.214 -0.097 0.643 -0.046 -0.071 -0.083 0.571 0.128 1.357

DAD-03 0.787 -0.0018 0.540 -1.198 0.617 -0.282 0.034 -3.169 -0.651 -8.099 -0.587 -3.803 -0.123 -6.690 0.710 -1.479

DAD-04 0.528 -0.00138 0.411 1.326 0.175 0.698 0.316 1.256 -0.492 -2.791 0.120 0.419 -0.383 -2.512 0.263 0.907

DRA-04 0.821 -0.00088 0.075 0.951 0.008 0.211 0.183 1.638 -0.192 1.638 0.204 1.110 -0.022 2.061 -0.182 0.211

DRA-05 -0.251 0.00033 -0.083 -0.053 -0.103 -0.264 -0.178 -0.264 0.281 2.327 -0.077 -0.264 0.235 1.798 -0.158 0.000

ESU-18 0.588 -0.000009 0.633 2.169 0.273 1.024 0.137 0.964 -0.410 -0.121 0.068 0.241 -0.194 0.060 0.126 1.567

FUR-07 0.085 0.000006 -0.040 -0.106 -0.009 -0.106 0.052 0.053 -0.043 -0.639 0.014 0.053 -0.017 -0.692 0.003 -0.319

FUR-08 0.891 -0.0147 0.102 0 0.141 0.263 0.056 -0.316 -0.196 -1.633 0.009 0.000 -0.084 -1.369 0.076 -0.421

TBE-05 0.783 0.01288 0.132 0.450 -0.166 -0.550 0.176 0.500 -0.010 -0.100 -0.141 -0.450 -0.066 -0.250 0.207 0.500

TON-01 0.660 -0.01148 0.098 -0.111 0.037 -0.167 -0.053 -1.166 0.016 -2.166 -0.125 -1.111 0.001 -1.111 0.124 -1.222

TON-08 0.461 -0.01443 0.031 -0.112 0.015 -0.112 0.198 0.562 -0.214 -1.574 0.009 -0.056 0.105 -0.112 -0.114 -1.068

All Plots 0.387 -0.00024 0.108 0.420 0.028 0.010 0.113 0.577 -0.141 -0.563 -0.035 -0.209 -0.021 -0.077 0.055 0.241

Lower CI 0.203 -0.00062 0.031 0.048 -0.044 -0.144 0.038 -0.140 -0.247 -1.754 -0.123 -0.750 -0.096 -1.181 -0.039 -0.240

Upper CI 0.565 0.00017 0.197 0.783 0.118 0.185 0.189 1.237 -0.045 0.374 0.033 0.184 0.051 0.801 0.170 0.749
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Table A2. Plot level trait changes based on biomass. All values are annual rates of change. For categorical variables Rel. = change in percentage of trees of

that trait (percentage point yr-1) and Abs. = change in biomass (Mg ha-1 yr-1) of trees with that trait. Bootstrapped mean weighted by plot size and 95% CI

are given for each trait. Significant changes across all plots are in bold.

Plot Habitat

Score

(units yr-1)

Wood

Density

(g cm-3 yr-1)

Deciduous Pioneers NPLD Shade Bearer Understorey Sub-canopy Canopy

Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs.

ASN-02 0.599 -0.00086 -0.302 -235.7 -0.238 -252.3 0.027 311.5 0.211 805.9 0.008 17.1 -0.067 30.5 0.059 817.1

ASN-04 0.218 -0.00043 0.124 1395.9 0.161 1043.4 -0.124 415.7 -0.036 366.9 -0.005 63.6 -0.165 -62.0 0.170 1778.3

BBR-14 -0.198 0.00136 -0.113 125.0 -0.464 -1128.7 0.340 1218.1 0.124 698.0 0.025 83.4 0.013 140.5 -0.038 552.9

BBR-16 0.804 -0.00115 0.387 2970.5 0.167 1184.4 0.492 2374.3 -0.659 148.2 -0.074 -63.1 -0.277 -196.6 0.351 3901.7

BBR-17 0.709 0.00083 -0.020 149.2 -0.597 -1891.6 0.483 1684.6 0.114 507.4 -0.004 -11.2 -0.047 -141.6 0.052 448.7

BOR-05 0.825 -0.000009 0.164 1308.5 0.037 330.0 0.266 2170.6 -0.303 417.4 0.004 63.1 -0.295 476.0 0.291 2620.9

BOR-06 1.021 0.00008 0.100 592.8 0.096 322.2 -0.118 323.7 0.022 510.7 0.034 96.3 0.088 805.7 -0.122 300.4

CAP-09 -0.014 0.00012 0.035 403.6 -0.006 9.2 0.088 1129.0 -0.082 3370.4 -0.016 -52.2 -0.237 1473.3 0.253 2817.3

CAP-10 -1.647 0.00264 0.098 1567.7 -0.540 -584.3 0.570 3307.5 -0.031 1046.1 -0.414 -603.0 -0.074 800.4 0.488 3721.1

DAD-03 2.078 -0.00171 0.527 276.0 0.480 502.2 0.179 -134.9 -0.658 -1017.9 -0.199 -337.1 -0.496 -1039.8 0.696 286.4

DAD-04 0.543 0.00028 0.472 2359.5 0.232 1580.1 0.131 1075.4 -0.362 -642.1 0.004 139.7 -0.343 -568.6 0.339 2381.4

DRA-04 0.503 -0.00078 -0.168 -248.5 -0.371 -936.0 0.667 1996.5 -0.296 -1311.3 0.037 112.5 -0.141 -921.6 0.105 636.6

DRA-05 0.104 -0.00023 -0.128 574.2 -0.277 -123.3 0.011 646.2 0.265 1240.3 -0.015 -16.8 0.164 1048.1 -0.149 706.0

ESU-18 1.010 0.00021 0.633 1138.0 0.128 248.8 0.267 781.5 -0.395 334.1 0.019 32.2 -0.378 -142.0 0.359 1497.7

FUR-07 -0.066 0.00008 0.024 849.7 -0.098 144.0 0.316 1829.6 -0.219 769.1 0.012 92.9 -0.154 909.8 0.143 1627.7

FUR-08 -0.101 -0.00006 -0.109 187.9 -0.140 -23.2 0.199 808.1 -0.059 215.4 0.006 25.4 -0.221 62.3 0.215 910.6

TBE-05 0.696 -0.00014 0.317 1822.5 0.055 707.5 0.035 1214.1 -0.090 694.9 -0.055 -57.7 -0.243 -92.4 0.298 2747.7

TON-01 0.455 -0.00026 0.169 809.7 -0.030 -69.1 -0.119 -357.9 0.149 848.3 -0.017 -59.6 -0.035 -74.3 0.053 487.1

TON-08 0.751 -0.0014 0.131 586.7 0.099 466.4 0.133 662.6 -0.231 -399.8 0.019 72.4 -0.122 -220.9 0.104 902.0

All Plots 0.429 -0.000069 0.120 888.7 -0.069 73.9 0.206 1158.8 -0.138 449.2 -0.037 -25.7 -0.153 137.3 0.190 1535.2

Lower CI 0.067 -0.00051 0.025 532.2 -0.207 -319.2 0.100 722.3 -0.262 -4.39 -0.094 -122.5 -0.230 -174.3 0.095 1024.7

Upper CI 0.770 0.00043 0.223 1284.7 0.060 453.4 0.318 1600.8 -0.022 952.7 0.005 47.8 -0.079 467.1 0.290 2081.9


