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Abstract 

The use of precast hollow-core concrete slabs with Fabsec steel beams in 

composite construction has had little research conducted in this area. The 

main purpose of the research is to develop an understanding into the 

behaviour of this form of construction and to demonstrate the advantages of 

using Fabsec beams with precast hollow-core concrete slabs. 

To achieve this, five full scale bending tests were carried out supplemented 

by horizontal push tests. In addition to the experimental work described, an 

analytical study is conducted and design recommendations are made. The 

main issues were the compression behaviour of the hollow-core slabs and 

the transfer of the horizontal shear forces between the steel beam and the 

concrete slab. 

I 

The aim of the research is to investigate the performance of composite 

beams with the position of the neutral axis in the concrete and also establish 

the effective width. By varying the beam size, span of beam, shear 

connection and slab depth in five full-scale experiments, the behaviour of the 

composite beam will be established. 
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Chapter 1: Introduction 

Chapter 1: Introduction 

1.1 Background 

Composite beams with web openings are frequently used these days in multi- 

storey buildings. Designers of multi-storey buildings are often faced with 

height limitations imposed by zoning, economic requirements, aesthetics, or 

the need to match floor heights of existing buildings. The use of web 

openings in composite steel members is a powerful tool for obtaining shallow 

floor systems that can be used to reduce storey heights (Darwin and 

Donahey 1986). Web openings in steel members are useful for passing 

utilities (sprinkler pipes and air-conditioning ducts etc. ) through, and also the 

reduction in building height can provide major cost savings. 

Fabsec beams are steel I-sections with web openings, but they are fabricated 

differently to cellular beams. They are fabricated by automatic welding of 

profiled steel plates used to form the flanges and web of the section, i. e. the 

web of the beam has the openings cut into it, and then the flanges are 

welded to the web to make the I-section. Figure 1.1 shows a multi-storey 

steel frame structure using Fabsec beams. 

1 



Chapter 1: Introduction 

Figure 1.1: Multi-Storey building using Fabsec Beams 

The benefits of using Fabsec beams for long span construction are: 

" Savings in cladding costs, when the floor to floor height is reduced. 

" Reduction in the number and total weight of steel columns and their 

foundations. 

9 Greater usable area of space, due to fewer (or no) internal columns. 

" Fewer steel elements leading to faster speed of erection of the primary 

structure. 

The success of Fabsec beams in the commercial building sector is implicitly 

related to the notion that long span construction in buildings leads to greater 

use of internal space, to facility for service integration, and to ease of future 
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Chapter 1: Introduction 

adaptability. All these benefits are part of the philosophy of `sustainable' 

construction (Fabsec Limited 2002). 

Composite construction using hollow-core slabs is intended to complement 

the now traditional steel frame/steel decking method and to offer advantages 

where for reasons of design or environmental considerations a steel decking 

system may be unacceptable. The main advantages of this form of 

construction are that precast concrete slabs can span up to 15 metres 

without propping. The erection of 1.2 metre wide precast concrete units is 

simple and quick. Shear studs are pre-welded on the steel beams before 

delivery to site, thereby offering additional savings associated with shorter 

construction times. Because no return is received from money invested in the 

construction of a multi-storey building until the building is occupied, the loss 

of income from capital may be 10% of the total cost of the building for a 

construction time of two years, which is about one-third of the cost of the 

structure (Lam 1998). 

Although tests have been conducted in the past with cellular and castellated 

steel beams, no experimental tests have been conducted using Fabsec steel 

beams with web openings together with precast hollow-core concrete slabs. 

An experimental program is to be setup using five Fabsec beams spanning 

between 9m and 12m with varying shear connection and depth for the 

hollow-core slab. An analytical study is conducted and design requirements 

will be established. 

3 



Chapter 1: Introduction 

1.2 Objectives of Research 

The use of precast hollow-core concrete slabs with Fabsec steel beams in 

composite construction has had little research conducted in this area. The 

main purpose of the research is to develop an understanding into the 

behaviour of this form of construction and to demonstrate the advantages of 

using Fabsec beams with precast hollow-core concrete slabs. The objectives 

of the research are: 

1. To study the interaction between the hollow-core concrete slabs and 

Fabsec steel beam with the neutral axis in the concrete slab. 

2. To establish the effective width of such composite beams. 

3. To propose design recommendations for Fabsec beams with precast 

hollow-core concrete slab. 

1.3 Scope of Thesis 

The scope of this research is to study the behaviour of long span composite 

beams with precast hollow-core slabs. To achieve this, five full scale bending 

tests were carried out supplemented by horizontal push tests. In addition to 

the experimental work described, an analytical study is conducted and design 

recommendations are made. The main issues were the compression 

behaviour of the hollow-core slabs and the transfer of the horizontal shear 

forces between the steel beam and the concrete slab. 

4 



Chapter 1: Introduction 

Chapter 2 presents a literature review of work related to composite beams 

with solid and metal decking construction, also presented is a review of 

current work on composite beams with hollow-core slabs. Full scale tests are 

reported in Chapters 3 and 4. Chapter 3 covers the beam specimen design 

and test set up and Chapter 4 contains the test results and discussion. In 

Chapter 5 an analytical study is conducted, from the study a comparison with 

design calculations is made in Chapter 6. Finally conclusions and 

recommendations are given in Chapter 7. 
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Chapter 2: Literature Review 

2.1 Introduction 

Composite beams with web openings are frequently used these days in multi- 

storey buildings. Experimental and analytical research has been conducted 

into web openings in steel beams, but limited effort has been made to 

investigate the behaviour of composite beams with precast hollow-core slabs. 

In this chapter, a literature review on composite beams with web openings is 

presented covering the following topics: 

" Steel-Concrete Composite Beams 

" Shear Connection of Composite Beams 

" Effective Width of Composite Beams 

9 Steel Beams with Web Openings 

9 Behaviour of Steel Beams with Web Openings 

" Composite Beams with Precast Concrete Hollow-Core Slabs 

2.2 Steel-Concrete Composite Beams 

Composite steel-concrete structures are widely used in modern day building 

construction. A composite member is formed when a steel component, an I- 

section beam is attached to a concrete component, such as a floor slab. 

Shown in Figure 2.1, is a composite beam, the high compression strength of 

the concrete compliments the high strength of the steel in tension. 

6 
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Reinforcement 

Shear stud connector 

i Concrete Slab 

Steel top flange 

feel bottom flange 

Figure 2.1: Composite T-beam 

Each material (steel or concrete) in composite structures is used to take 

advantage of the materials best attributes; therefore composite steel-concrete 

construction is very efficient and economical. The real attraction of composite 

construction is based on having an efficient connection of the steel to the 

concrete, and it is this connection that allows a transfer of forces and gives 

composite members their unique behaviour (Bradford and Oehlers 1999). 

Figure 2.2 shows the concept of a beam consisting of two constituent parts 

acting either separately or compositely. For the non-composite arrangement 

the load will be shared between the two parts, each deforming in bending 

separately. While for the composite arrangement the load will act on the 

beam with continuity preserved along the horizontal interface, so both parts 

of the beam respond as a unit (Nethercot 2001). 

ti 

(a) Non-Composite (b) Composite 

Figure 2.2: Mechanics of Composite Beam 
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Chapter 2: Literature Review 

Since no horizontal slip will occur at the interface of the composite beam, 

vertical lines drawn on the depth of the section before loading will remain as 

single lines as shown (Figure 2.2b). Clearly the composite arrangement may 

be expected to be more efficient structurally, developing smaller deflections 

and smaller strains than the non-composite equivalent. 

The advantages of composite beams compared with normal steelwork beams 

are the increased moment capacity and stiffness, or alternatively the reduced 

steel sizes for the same moment capacity. Apart from saving in material, the 

reduced construction depth can be worthwhile in multi-storey buildings. The 

main disadvantage of composite beams is the need to provide shear 

connectors to ensure interaction between the steel and concrete (Morris and 

Plum 1996). 

2.3 Shear Connection of Composite Beams 

In composite beams, the steel beams are designed to act with a part of the 

concrete slab, so they act compositely. For this to happen it is necessary to 

prevent slip at the interface. This is achieved by the use of shear connectors 

(Nethercot 2001). A shear connector must perform two functions: 

(a) To transfer shear between the steel and the concrete (i. e. to limit slip 

at the interface). 

(b) To prevent separation of the steel and the concrete at right angles to 

the interface (i. e. to prevent uplift). 
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Chapter 2: Literature Review 

The welded shear stud connector (Figure 2.3) is currently the most commonly 

used for composite beams. The transfer of shear initially occurs at the area of 

the weld and the remainder of the connector, the head of the stud provides 

anchorage against uplift (Davies 1975). 

Welded 
Shear Stud 

A 

Figure 2.3: Welded Stud Shear Connector 

2.3.1 Purpose of Shear Connectors 

Designers assume that the sole purpose of the shear connectors is to resist 

longitudinal slip (Figure 2.4). This action causes the concrete slab and steel 

beam to interact, and resultant longitudinal compressive and tensile forces to 

develop in the slab and steel beam, when the beam is loaded and bends. At 

any location along the beam, the resultant compressive force in the slab, C, 

is assumed to be evenly distributed across the effective width of the beam 

(OneSteel Market Mills 2001). 

9 
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Concrete Slab 

--_. -Jam-' -' 

Steel Beam 

Slip ý. 4 C=0 

->T=0ý-ý 

" No Shear Connection 
" Longitudinal slip occurs freely 

Slip 

Negligible Ci ý_Z JtCC 
slip -4 

-10- TI ýT 

Steel beam and concrete 
slab act separately 

(a) Non-composite beam 

" Shear Connection resists slip 
" Resultant Compression in slab C 
" Resultant Tension in steel beam T 

Composite beam with much greater 
bending strength and stiffness 

(b) Composite beam 

Figure 2.4: Welded Stud Shear Connector 

Tensile forces develop in the shear connectors when they resist vertical 

separation between the steel beam and the concrete slab. Therefore, shear 

connectors must be provided with some sort of tie-down feature such as the 

head on a stud. Normally, the effect that these tensile forces has on the 

shear capacity of the types of connectors can be ignored in design. In 

Eurocode 4, Part 1.1 this is assumed to be the case in design provided the 

tensile force per connector is less than 10 per cent of the shear capacity of a 

connector (OneSteel Market Mills 2001). 

Because of the flexibility of the shear connectors and the compressibility of 

the concrete, horizontal slip at the interface cannot be completely prevented. 

Therefore the interaction between the steel and the concrete is incomplete 

and the effect of slip at the interface is to produce a discontinuity in the strain 
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diagrams. To take account of the loss of interaction within the elastic range, a 

theory was developed by Newmark and others (Newmark et al 1951) in the 

early 1950's. The theory assumed that: 

1. The shear connection between the slab and the beam is continuous 

and uniform along the entire length of the beam. 

2. The load/slip relationship for the shear connection is linear. 

3. The distribution of strains throughout the depth of the concrete and 

steel is linear. 

4. The beam and slab are assumed to deflect by equal amounts to all 

points along their length at all times. 

The theory defined the load required per connector to produce unit slip as the 

'shear connector modulus' k and this was assumed to be constant for the 

'elastic' range considered. In fact, shear connectors do not behave elastically, 

and the load/slip curve for a shear connector is actually similar to the 

stress/strain relationship for concrete. In practice the `shear connector 

modulus' (that gradient of the load/slip curve) is not constant but depends on 

the magnitude of the applied load (Davies 1975). 

2.3.2 Partial Shear Connection 

Two terms that describe composite behaviour are partial-shear-connection 

and partial interaction, and these relate to the behaviour of the connection 

between the steel and concrete components. Partial-shear-connection 

concerns equilibrium of forces within a composite member, while partial 

11 
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interaction concerns compatibility of deformations at the steel/concrete 

interface. Therefore, partial-shear-connection represents a strength criterion, 
R 

while partial interaction represents a stiffness criterion (Bradford and Oehlers 

1999). 

The effect of partial interaction on the full-shear-connection strength of a 

composite beam is described by Ahmed et al (Ahmed et al 1997). It was 

shown that for composite beams in buildings, where the axial strength of the 

concrete section is usually much larger than that of the steel section, partial 

interaction has virtually no effect on the strength. Conversely, partial 

interaction can reduce the strength of composite beams with very strong steel 

sections. 

2.3.3 Load-Slip Behaviour of Shear Connectors 

In steel and composite design, the longitudinal shear flow in a composite 

steel and concrete beam is transferred across the steel flange-concrete slab 

interface by the mechanical action of the shear connectors. The ability of the 

shear connector to transfer longitudinal shear forces therefore depends on 

the strength of the shear connector, and also on the resistance on the 

concrete slab against longitudinal cracking induced by high concentration of 

shear force (Lam 2002). 

For composite beam members with web openings, shear connectors above 

the opening, between the openings and the support strongly affect the 
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capacity of the section. As the capacity of the shear connector increase, the 

strength of the opening increases. This increased capacity can be obtained 

by either increasing the number of shear connectors or by increasing the 

capacity of the individual connectors (Darwin and Donahey 1986,1988). 

Composite sections are also subject to bridging, the separation of the slab 

from the steel section. Bridging occurs primarily in beams with transverse ribs 

and occurs more as the slab thickness increases (Darwin and Donahey 

1988). 

The load-slip curve of a shear connector is determined from push-out tests, 

the load acting as the combined shear force applied to the connectors. 

Ductile and brittle behaviour of shear connectors, as well as the assumed 

model for design, are shown diagrammatically in Figure 2.5. 

Shear Force 
(F) 

- --Ductile 

Shear Force 
(F) 

ýA 

Brittle 
S 

k-ý 

F 

--------- ----- ----- 
Slip (6) 

(a) Actual Behaviour 

Nominal shear 
Design shear capacity (f 

5) capacity (fj, ) 

Slip (6) 

(b) Assumed model for design 

Features of assumed model for design: 
" Reaches design shear capacity with very little slip - (in practice, 1- 2mm). 
" Maintains design shear capacity indefinitely - (in practice, 8- 10mm). 

Figure 2.5: Load-Slip Behaviour of Shear Connectors 
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When shear connection is provided between the steel member and concrete 

slab, the two act together to span as a composite beam. The main function of 

the steel beam at mid-span is to resist tension, and the compression is 

assumed to be resisted by an `effective' breadth of slab (Johnson 1994). 

2.3.4 Push Test for Hollow-Core Slabs 

In steel-concrete composite design, the longitudinal shear flow in a composite 

steel and concrete beam is transferred across the steel flange and concrete 

slab interface by the mechanical action of the shear connectors. The ability of 

the shear connector to transfer longitudinal shear forces therefore depends 

on the strength of the shear connector, and also on the resistance of the 

concrete slab against longitudinal cracking induced by the high concentration 

of shear force (Lam 2007). In order to determine the strength of shear 

connection in composite construction, push tests need to be performed. 

A new push test procedure for composite beams with precast hollow-core 

slabs is introduced and carried out by Lam. Figure 2.6 shows the 

arrangement of the horizontal push tests for composite beams with precast 

hollow-core slabs. 
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From the push tests carried out by Lam, the results showed 100mm long 

headed studs with square-end hollow core slabs performed as well as the 

125mm long headed studs with tapered-end slabs. For the tapered-end 

slabs, the top of the headed stud should be at least 35mm above the 

chamfered-end of the hollow-core slabs to avoid premature failure of the 

slabs. The optimum in-situ gap width of 80mm should be used for square-end 

hollow core slabs. Transverse reinforcement is the dominant factor affecting 

both shear capacity and slip ductility. 16mm diameter high tensile bars are 

recommended to be used as transverse reinforcement to ensure a slip 

ductility of 6mm minimum is maintained at the maximum load. 

2.4 Effective Width of Composite Beams 

In reinforced concrete design and steel plate structures, it is common to 

consider the effective width. In composite construction, both steel and 

concrete are used, and so the effective widths are often specified for the 

concrete and steel component. The effective width of the concrete 

component arises primarily from shear lag, while the effective width in the 

steel component arises mainly from the effects of local buckling (Bradford 

and Oehlers 1999). 

The determination of the effective width for serviceability or ultimate limit 

states analysis is the basis for the design of steel-concrete composite beams. 

Shear strains play an important role for an elastic analysis of composite 

beams. The shear strains cause a non-uniform distribution of the normal 
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stresses and the non-planarity of the slab cross-section; this is known as 

shear lag (Amadio and Fragiacomo 2002). The term shear lag is used to 

describe the discrepancies between the approximate engineering theory and 

the real behaviour of the composite beam. There are increases in the 

stresses in the concrete component adjacent to the steel I-section component 

in a composite T-beam and decreases in stresses in the concrete component 

away from the steel. 

2.4.1 Effective Cross-Section 

Longitudinal shear in the slab causes shear strain in its plane. When the 

composite beam is loaded the vertical cross-sections through the beam do 

not remain plane. At a cross-section, the mean longitudinal bending stress 

through the thickness of the slab varies, as shown in Figure 2.7. 

Mean bending stress 
in concrete flange 

b r 

I 
Figure 2.7: Use of Effective Width to allow for shear lag (Johnson 1994) 
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Simple bending theory can give the correct value for maximum stress (at 

point D) if the true flange breadth B is replaced by an effective breadth, b. 

Therefore, the area GHJK equals the area ACDEF. Research based on 

elastic theory has shown that the ratio bB depends in a complex way on the 

ratio of B to the span L, the type of loading, the boundary conditions at the 

supports, and other variables. For beams in buildings, it is assumed that the 

effective width is 1J8 on each side of the steel web, where !o is the distance 

between points of zero bending moment. For a simply supported beam, lo is 

equal the span L, so baff = U4, provided that the width of the slab U8 is 

present at each side of the slab (Johnson 1994). 

2.4.2 Effective Width Evaluation 

Due to the difficulty of the complex analytical evaluation to calculate the 

effective width (Allen et al 1961, Bild and Sedlacek 1993), design codes 

adopt simplified formulations for the evaluation of the effective width to 

facilitate the designer. As mentioned in section 2.4.1, the effective width is 

expressed as a function of some parameters. For ultimate limit state design, 

design codes propose the use of the same effective width as calculated for 

an elastic analysis. At ultimate limit state the slab will behave as plastic, thus 

the effective width found from elastic analysis design is only an 

approximation. During plastic behaviour normal stresses tend to become 

uniform in the cross-section involving an increase of the effective width. 

Further study is required in this area, since, particularly for long span beams, 
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an increase of the effective width can imply a significant increase of load 

capacity. 

A factor that controls the stress in the serviceability condition is the 

connection between the concrete and steel. This is generally neglected in a 

correct evaluation of the effective width. The effective width calculated in the 

hypothesis of rigid connection is in fact larger than the one evaluated with a 

deformable connection. This occurs in both cases of partial and full shear 

connection (Amadio and Fragiacomo 2002). Amadio and Fragiacomo carried 

out a numerical study using Abaqus finite element analysis, in which they 

found that the connection deformability plays an important role in evaluation 

of the effective width for stress elastic analysis of steel-concrete composite 

beams. 

For a non-linear analysis, cracking of concrete and plastic behaviour of steel 

should be taken into account. The effective width proposed by design codes 

are based on elastic analysis and do not take plastic behaviour into account. 

For both cases of sagging and hogging moment the plastic zone is extended 

in almost the whole concrete slab in compression and the whole 

reinforcement distributed into the slab in tension respectively. 

2.5 Steel Beams with Web Openings 

Web openings provide an economical means for reducing the depth of floor 

systems in steel buildings. In the majority of these structures, the concrete 
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slab is designed to act compositely with the steel. The design of regions 

around web openings has been looked at as four separate problems, with the 

beam treated as composite in positive/sagging moment regions and non- 

composite in negative/hogging moment regions. During the past decade 

design techniques (Darwin and Donahey 1988, Cho and Redwood 1993, 

Darwin and Lucas 1990) for openings in composite members have reached a 

level of maturity (Darwin 2000). 

The conventional steel beams with web openings are known as cellular or 

castellated beams, they are manufactured by using a solid steel beam and 

burning along the web. Then the two parts of the separated web are welded 

together to form to deeper beam, as shown below: 

-o-c 

(b) Asymmetrical cellular beam 

Figure 2.8: Cellular beam burning profile 
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Cellular beams have limited shear capacity and are best used as long-span 

secondary beams where loads are low or where concentrated loads can be 

avoided. The height of the opening should not be more than 70% of the beam 

depth, and the length should not be more than twice the beam depth. The 

best location for web openings is in the low shear zones of the beam; this is 

because the web does not contribute much to the moment resistance of the 

beam (Liew and Uy 2003). 

Fabsec beams are also steel beams with web openings, but they are 

fabricated differently to cellular beams. They are fabricated by automatic 

welding of profiled steel plates used to form the flanges and web of the 

section, i. e. the web of the beam has the openings cut into it, and then the 

flanges are welded to the web to form the I-section beam. 

2.6 Behaviour of Steel Beams with Web Openings 

The load carrying capacity of a cellular beam is the smaller of its overall 

strength in flexure and lateral torsional buckling, and the local strength of the 

web posts and the upper and lower tees. A beam should be checked for both 

overall and local strength for ultimate and serviceability limit states under 

factored dead and imposed load (SCI Publication 100 1990). 

The overall beam behaviour should be checked for: 

" Beam flexural capacity 

" Beam shear capacity 
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9 Overall beam buckling 

The overall flexural capacity is assessed by considering the plastic moment 

of the cross section through the centre line of the opening. The maximum 

moment in the beam should not exceed the plastic moment capacity of the 

reduced section of the beam which is normally based on the tensile capacity 

of the lower web tee. 

The vertical shear capacity of the beam is also governed by the cross section 

through the centre line of the circular opening. The shear capacity is equal to 

the sum of the shear capacities of the upper and lower tees. The horizontal 

shear capacity depends on the minimum cross-sectional area of the web 

post. In areas of high shear, under point loads and at the supports, the 

required shear capacity may only be achieved by infilling the openings and 

adding stiffeners, as shown in Figure 2.9. 

Web post 
Top tee 

Cell omitted during profiling or 
infill plate (at supports or 
under point loads) 

I 

Figure 2.9: Cellular beam 
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Cellular beams without lateral restraint are likely to fail by lateral torsional 

buckling. In comparison to solid web beams, cellular beams are prone to 

buckle laterally because of their relatively deep and slender section and the 

reduced torsional stiffness of the web (SCI Publication 100 1990). 

The forces that act at web openings are shown in Figure 2.10. In the figure, a 

composite beam is illustrated, but the equations that follow are valid equally 

well to steel members. For positive bending, the section below the opening, 

or bottom tee, is subjected to a tensile force, Pb , shear, Vb , and secondary 

bending moments, Mb, and Mbh . The section above the opening, or top tee, 

is subjected to a compressive force, P,, shear, V, and secondary bending 

moments, Mb, and Mbh (Darwin 1990). 

v"aeo"", o" o ,"°eee VO"QO""""O"a.. "V 
o" es°. s" s 

m4 oM +' Vako 
IL d 

Low Moment High Moment 
End End 

M"4 

Figure 2.10: Forces acting at web opening 

P, 

IMý va. 
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Based on equilibrium: 

Pb =p =p (2.1) 

V= Vb +V (2.2) 

Vbao = Mb, + Mbh (2.3) 

V, ao = Ml, + M, h (2.4) 

M=Pz+M, h+Mbh-y2° (2.5) 

Where: 

V= total shear acting at an opening 

M= primary moment acting at opening centre line 

ao = length of opening 

z= distance between points about which secondary bending 

moments are calculated 
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2.6.1 Modes of Failure 

The deformation and failure modes for beams with web openings are 

illustrated in Figure 2.11. Figures 2.11(a) and (b) illustrate steel beams, while 

Figures 2.11(c) and (d) illustrate composite beams with solid slabs. 

(c) Composite beam with solid slab. 
pure bending 

i=- 

(b) Steel beam, low moment-shear ratio 

F----=-- , 
_-ý 

(d) Composite beam with solid slab, 
low moment-shear ratio 

Figure 2.11: Failure modes at web openings (Darwin 1990) 

Vierendeel bending is caused by the need to transfer shear force across the 

web openings to be consistent with the rate of change of bending across the 

beam. The flexural capacity of the upper and lower tees under Vierendeel 

bending is critical. In the absence of local or overall instability, cellular beams 

have two basic modes of collapse (SCI Publication 100 1990). They are. 

" Plastic tension and compression stress blocks in the lower and upper 

tees in regions of high overall bending, shown in Figure 2.12(a). 
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9 Parallelogram or Vierendeel action due to the formation of plastic 

hinges at the four corners of the opening in regions of high shear, 

shown in Figure 2.12(b). 

{ 

Yield in tension 

Yield in compression 

i 

Plastic hinges 

I 

(a) Yielding due to high bending (b) Yielding due to high shear 

Figure 2.12: Cellular beam modes of collapse 

The behaviour at an opening depends on the ratio of moment to shear, MN 

(Darwin and Donahey 1988). As MN decreases, shear and the secondary 

bending moments increase, causing increasing differential, or Vierendeel 

deformation to occur at the opening [Figures 2.11(b) and (d)]. The bottom 

and top tees display a well defined shape in curvature (Darwin and Lucas 

1990). 

For steel beams, failure occurs with the formation of plastic hinges at all four 

corners of the web opening [Figure 2.12(b)]. The yielding first occurs within 

the webs of the tees. For composite beams the formation of plastic hinges is 

accompanied by a diagonal tension failure within the concrete due to prying 

action across the opening. For members with ribbed concrete slabs, the 

diagonal tension failure is noticed as a rib separation and a failure of the 

concrete around the shear connectors (Figure 2.13). Also for composite 
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members with ribbed slabs in which the rib is parallel to the beam, failure is 

accompanied by longitudinal shear failure in the slab (Figure 2.14). 
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ýýn 
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Figure 2.13: Rib failure and failure of concrete around shear connectors in 

slab with transverse ribs (Darwin and Lucas 1990) 

,,... ::. ' ,. 

Figure 2.14: Longitudinal rib shear failure (Darwin and Lucas 1990) 

For members with low moment-shear ratios, the effect of secondary bending 

can be quite striking, as illustrated by the stress diagrams for a steel member 

in Figure 2.15 and the strain diagrams for a composite member with a ribbed 

slab in Figure 2.16. Secondary bending can cause portions of the bottom tee 

to go into compression and portions of the top tee to go into tension, even 

though the opening is subject to a positive bending moment. In composite 

beams, large slips take place between the concrete slab and the steel section 

over the opening (Figure 2.16). The slip is enough to place the lower portion 

of the slab in compression at the low moment end of the opening, although 

the adjacent steel section is in tension. Secondary bending also results in 
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tensile stress in the top of the concrete slab at the low moment end of the 

opening, which results in transverse cracking. 
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Figure 2.15: Stress diagrams for opening in steel beam with low moment- 

shear ratio (Bower 1968) 
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Figure 2.16: Strain distributions for opening in composite beam with low 

moment-shear ratio (Darwin and Donahey 1988) 
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Summarising the failure of steel beams with web openings, failure occurs at 

openings due to stress concentrations at the corners of the openings. For 

steel beams, depending on the proportions of the top and bottom tees and 

the proportions of the opening with respect to the member, failure can be 

manifested by general yielding at the corners of the opening. This is followed 

by web tearing at the high moment end of the bottom tee and the low 

moment end of the top tee (Bower 1968). Strength may be reduced or 

governed by web buckling in more slender members (Lupien and Redwood 

1978). In high moment regions, compression buckling of the top tee is a 

concern for steel members (Redwood and Shrivastava 1980). 

For composite beams, stresses remain low in the concrete until well after the 

steel has begun to yield (Darwin and Donahey 1988). The concrete 

contributes significantly to the shear strength, as well as the flexural strength 

of these beams at web openings. This contrasts with the standard design 

practice of composite beams, in which the concrete deck is used only to 

resist the bending moment, and shear is assigned solely to the web of the 

steel section (Darwin 1990). 

If multiple web openings are used in a single steel beam, strength can be 

reduced if the openings are placed too closely together (Redwood and 

Shrivastava 1980, Aglan and Redwood 1974). The following failures can 

occur if web openings are placed to closely together; (1) a plastic mechanism 

may form, which involves interaction between the openings, (2) the portion of 

the member between the openings, or web post, may become unstable, or 
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(3) the web post may yield in shear. The close proximity of web openings in 

composite beams may also be detrimental due to bridging of the slab from 

one opening to another (Darwin 1990). 

For both steel and composite sections, failure at web openings is quite 

ductile. For steel sections, failure is preceded by large deformations through 

the opening and significant yielding of the steel. For composite members, 

failure is preceded by major cracking in the slab, yielding of the steel and 

large deflections in the member. 

First yielding in the steel does not give a good presentation of the strength of 

either steel or composite sections. Tests show that the load at first yield can 

vary from 35 to 64 percent of the failure load in steel members (Bower 1968) 

and from 17 to 52 percent of the failure load in composite members (Darwin 

and Donahey 1988). 

It has been found that circular openings perform better than rectangular 

openings of similar size (Redwood and Shrivastava 1980). This improved 

performance is due to the reduced stress concentrations in the region of the 

opening and the relatively larger web regions in the tees that are available to 

carry shear. 
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2.6.2 Design of Beams with Web Openings 

The interaction between the moment and shear strengths at a web opening is 

generally quite weak for both steel and composite sections. That is, at 

openings, beams can carry a large percentage of the maximum moment 

capacity without a reduction in the shear capacity and vice versa (Darwin 

1990). 

The design of web openings has historically consisted of the construction of a 

moment-shear interaction diagram of the type shown in Figure 2.17. Models 

have been developed to generate the moment-shear diagrams point by point, 

illustrated in Figure 2.18. However these models were developed for 

research. For design it is preferable to generate the interaction diagram more 

simply. This is done by calculating the maximum moment capacity, Mm, the 

maximum shear capacity, V., and connecting theses points with a curve or 

series of straight line segments. This has resulted in a number of different 

shapes for interaction diagrams, as shown in Figures 2.17 and 2.18. To 

construct a curve the end points, M. and V., must be determined for all 

models. Some other models require an additional calculation for M, , which 

represents the maximum moment that can be carried at the maximum shear 

[Figures 2.18(a) and (b)]. 
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Figure 2.17: General Moment-Shear interaction diagram (Darwin and 

Donahey 1988) 

All procedures agree on the maximum moment capacity, M,,, . 
This 

represents the bending strength at an opening subjected to zero shear. The 

methods differ in how they calculate the maximum shear capacity and what 

curve shape is used to complete the interaction diagram. Models which use 

straight line segments for all or a portion of the curve have an apparent 

advantage in simplicity of construction. However, models that use a single 

curve [Figure 2.18(c)] generally prove to be the easiest to apply in practice 

(Darwin 2001). 
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Figure 2.18: Moment-Shear interaction diagrams 

In the past the maximum shear capacity, V,,,, has been calculated for specific 

cases, such as concentric unreinforced openings, eccentric unreinforced 

openings, and eccentric reinforced openings (Redwood and Shrivastava 

1980) in steel beams. Also concentric and eccentric unreinforced openings 

(Darwin and Donahey 1988) and reinforced openings (Donoghue 1982) in 
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composite beams have been calculated. Until recently, there has been little 

correlation between shear capacity expressions for reinforced and 

unreinforced openings or for openings in steel and composite beams. 

The design expressions for composite beams are limited to positive moment 

regions because of a lack of test data for web openings in negative moment 

regions. The dominant effect of secondary bending in regions of high shear 

suggests that the concrete slab will contribute to shear strength, even in 

negative moment regions (Darwin 2000). 

The following section presents design equations to describe the interaction 

curve, and calculate the maximum moment and shear capacities, M. and 

Vm 

2.6.3 Moment-Shear Interaction 

The weak interaction between moment and shear strengths at a web opening 

has been dealt with in a number of different ways, as illustrated in Figures 

2.17 and 2.18. Darwin and Donahey observed that this weak interaction can 

be represented using a cubic interaction curve to relate the nominal bending 

and shear capacities, M,, and Vn, with the maximum shear capacities, M. 

and V. (Figure 2.19). 
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Figure 2.19: Cubic Interaction diagram (Darwin and Donahey 1988) 

The solutions for Mn, and Vr, are shown below. These solutions are based 

on equilibrium, assumed stresses at failure, and selected simplified 

assumptions. 

33 
M" 

+ TVý" 
1 (2.6) 1\Mm) Ym 

Equation 2.6 accurately represents the weak interaction between flexure and 

shear, provides good agreement with test results (Darwin and Donahey 

1986), and allows Mn and V, to be easily calculated for any segment of 

factored moment to factored shear. 
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Maximum Moment Capacity 

The following expressions may be used to calculate the maximum moment 

capacity, M., at web openings in steel and composite beams. The openings 

have an eccentricity, e, which is always positive for steel sections and 

positive in the upward direction for composite sections. The expressions are 

generally exact or somewhat conservative (Darwin and Lucas 1990). 

For Steel Beams with Unreinforced Openings: 

DAs 
4, 

+e 
Mm = MP 1- 

Z 
(2.7) 

Where MP = bending capacity without opening = FFZ ; DAs = hot. ; 

e= eccentricity of opening =jej; and Z= plastic section modulus of member 

without opening. 

For Steel Beams with Reinforced Openings: 

tw 
4° 

+hoe-e2 -Aho 
MM =MP 1- 

Z 
<-Mp for te<A, (2.8) 
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DAs 
4+e-A" 

Mm =Mp 1- 
z 

"' jýMp for tx, ezA, (2.9) 

Where DAs = hoc -2A,. 

For Composite Beams: 

When the Plastic Neutral Axis (PNA) in the composite beam is located at or 

above the top of the flange: 

S� 
FyMse 

M. =M aA+ 

]ýMPC 
(2.10) 

As MPC 

Where Ma = nominal capacity of the composite section at the location of the 

opening; AS = cross-sectional area of steel with web openings in the member; 

Asn = net area of steel section with opening and reinforcement 

= As - hot,, + 2A, = As - DAs; DAs =hot,, - 2A.; and e= eccentricity of opening, 

positive upward. Equation 2.10 is always conservative forAsn 5 A,. 

When the PNA in the composite beam is located below the top of the flange 

and Pc =Pcmin =FyIN)wd-&s 

Mm = FyAsn 
d+ 

FYAAse + P, is -2S Ma (2.11) 
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Where is = thickness of slab; a= depth of concrete stress block 

= P,, /0.85 f be ); PP = force in the concrete [P, 5 0.85f, bete; Pc 5 NQ�; PP 5 FF As� ]. 

Equation 2.11 is also accurate when the PNA in the section with web 

openings is above the top of the flange and provide realistic results if the 

PNA is in the flange. However, if PP is small it may provide an unrealistic high 

prediction of M. (Darwin and Lucas 1990). 

Maximum Shear Capacity 

The maximum shear capacity, V., is obtained by considering the load 

condition in which the axial forces in the top and bottom tees, P and Pb , 

equal zero Figure 2.20. This gives a very close approximation of the true pure 

shear capacity but is not precisely pure shear. While the secondary bending 

moments at each end of the bottom tee are equal, the secondary bending 

moments at each end of the top tee are not equal. Therefore, the moment at 

the opening centreline has a small but finite volume (Darwin and Donahey 

1988). 
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Figure 2.20: Stresses at Maximum Shear (Darwin and Donahey 1988) 

J is equal to the sum of individual shear capacities of the top and bottom 

tees: 

Gh (max) + L, (max) (2.12) 

Vb (max) and i, (max) are calculated using the moment equilibrium equations 

for the tees (Equations 2.3 and 2.4) and the appropriate representations for 

the stresses in the steel and concrete. Since b;, (max) and 1, (max) are 

obtained under the combined effects of shear and secondary bending, the 

interaction between shear and axial stresses must be considered. The 

greatest proportion of the shear is carried by the steel webs of the tees. 
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For simultaneous shear and bending, the reduced axial stress within a web, 

F,,., and the web shear stress, z, using the Von Mises yield criterion, the 

equation is given below: 

Fy, _ 
(Fy 

- 3r2 ý2 (2.13) 

To simplify the calculations, interaction between shear and axial stresses is 

not considered for the concrete, and axial stress in the concrete is assumed 

to be 0.85f, when V. is attained. 

The moment capacity of reinforced openings is limited to the plastic bending 

capacity of the section with web openings (Redwood and Shrivastava 1980). 

2.7 Precast Hollow-Core Slabs 

Hollow-core floor slabs are used in all building types. The section profile 

incorporates hollow cores (Figure 2.21) to reduce the self-weight without 

significant reduction in section stiffness. Hollow core units typically range in 

depth from 150mm to 450mm. The majority of manufacturers produce units 

with a nominal width of 1200mm. Reinforcement is provided by high tensile 

prestressing strand or wire that has an ultimate strength of more than three 

times that of conventional high tensile reinforcement. The structural 

performance that results from the combination of these features produces a 

slab that is highly efficient and economic for a wide range of load/span 

situations. 
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Figure 2.21: Precast Hollow-Core Slabs 

The edges of hollow core units are profiled to provide an effective shear key 

so that when the joints between units are grouted (Figure 2.22) the individual 

units behave as a system acting together. The grout is commonly a C20/25 

or C25/30 concrete with 1 0mm aggregate. 

G rout 

Figure 2.22: Grouted joint between Hollow-Core Slabs 

The shape of the cores varies according to the manufacturer and the depth of 

the unit. Core profiles can be circular, square, elongated circles and bulb 

shaped. Typical cross-sections of hollow core units are shown in Figure 2.23. 
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000000000 11=0 b2ýmm 1200 mm Nominal width 

300 to 450 mm 

Figure 2.23: Typical cross-sections of Precast Hollow-Core Slabs (SCI 

Publication P351 2007) 

2.7.1 Opened Hollow-Cores 

One of the advantages of hollow core units is that some cores can be opened 

out to receive transverse (transverse to beam) reinforcement. The tops of a 

specified number of hollow cores (usually two, three or four per unit end, as 

shown in Figure 2.24) may be opened up. Typically, this opening up 

operation is carried out during manufacture. Transverse reinforcement is 

required for composite design. Cores may also be opened so that 

reinforcement can be placed and concreted in to satisfy tying requirements, 

with slots typically 500mm long. 
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Figure 2.24: Typical details of opened cores 

500 

The void at the back of each opened core is blocked with concrete during 

manufacture; the other cores are normally blocked using a polystyrene bung. 

2.7.2 Precast Slab Design 

The design of precast units is a traditional pre-stressed concrete analysis 

with some well established considerations appropriate to its geometrical 

profile. 

The only reinforcement in hollow-core slabs is the longitudinal pre-stressing 

tendons located in the lower half. The tendons are anchored by their bond 

with the concrete. Consequently, whenever possible, tensile stresses in 
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unreinforced zones (i. e. the top half of the unit) are normally avoided by 

designing the floors to be simply supported. 

The bending resistance of hollow-core slabs is provided in the same way as 

for any pre-stressed member. The pre-stressing force induced by the 

longitudinal wires pre-compresses the concrete in the regions where tensile 

stresses would develop. Therefore, when the precast unit is loaded the 

bending stresses reduce the built-in compression in those regions (Figure 

2.25). When the load is removed the unit will return to its original state of 

stress (SCI Publication P351 2007). 

Compression 

7 

Tension 

Tension 

Compression 

Compression 

Tension 

a) Stress due to gravity loads b) Stress due to prestress c) Final stress condition 

Figure 2.25: Precast slab stresses 

2.7.3 Floor Diaphragm Action 

The floor is often required to provide diaphragm action in order to transfer 

wind loads to braced walls or concrete core walls (Figure 2.26). In a steel 

frame building with precast unit floors, the diaphragm action can be achieved 

through a combination of the following measures: 
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0 Utilisation of the shear resistance of the grouted joints between the 

precast units. 

0 Provision of a continuous in-situ reinforced topping to enhance the 

diaphragm action provided by the grouted joints (a topping is 

recommended for larger floors or taller buildings). 

0 Ties between the perimeter members and the floor units. 

0 Ties between the floor units and the shear walls or reinforced cores. 

0 Encasement of columns into the floor. 

0) I 

U 
LI 

10I 

CI 

1 

Lateral load 

11111 wififflifi 
Compression in edge beams 

0H- No H Fý 

o, 
I .c IU 
I l` 

Precast 
units 

I'A 

HH +H 

H 

Link bars 
between ends 
of units* 

H-ý .4 1' Aº-H 
Tension in edge beams 

Note: ' Link bars between the ends of the units may be required to transmit tensile diaphragm forces 
resulting from negative wind pressure on the front of the building or wind on the sides of the 
building. 

Figure 2.26: Diaphragm action in a precast slab floor (SCI Publication P351 

2007) 

To ensure that the whole floor acts together, the longitudinal joints between 

the slabs must be grouted and allowed to cure before an in-situ concrete 

topping is poured. When a structural topping is provided with precast floors 
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acting compositely with steel beams using shear studs, floor diaphragm 

action is generally adequate for buildings with regular rectangular floors of 

normal proportions without large openings (SCI Publication P351 2007). 

2.8 Composite Beams with Precast Concrete Hollow-Core Slabs 

The most common form of composite beams in buildings, use steel beams 

with metal decking. The metal decking is placed on the beam as a form of 

permanent formwork for the concrete which is poured once the decking is in 

place. The connection between the steel beam and concrete is the shear 

studs welded to the beam. The modes of failure for steel beams with metal 

decking are concrete pull-out, stud shearing and local concrete crushing 

around the foot of the shear stud (Cairns et al 2001). Cairns et al. found the 

major failure modes in the tests conducted were concrete pull-out failure and 

local concrete crushing around the foot of the stud. 

Precast concrete hollow-core slabs may be designed to act compositely with 

steel beams. The slabs are produced with regular circular or elongated 

openings, see Appendix A for slab specification drawings. The use of precast 

concrete hollow-core slabs uses the same principle as metal decking. But 

there is no metal deck and pouring of the concrete floor. The slabs are cast 

from the factory, and can be placed on delivery to site. The only in-situ 

concrete needed is to cast the joint between the steel beam, precast concrete 

slab and transverse reinforcement (Figure 2.27). 
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Composite steel beams with precast concrete hollow-core slabs, as shown in 

Figures 2.27 and 2.28 are commonly used in long span multi-storey steel 

framed buildings. The slabs are placed on the top flanges of universal beams 

(UBs). The main advantages of this form of construction are that precast 

concrete slabs can span up to 15m without propping and the erection of 1.2m 

wide precast concrete units is simple and quick. Shear studs are pre welded 

onto beams before delivery to site, thereby offering the savings associated 

with shorter construction times (Lan 2002). 

Opened core 

In-situ concrete infill Square end precast 
hollow-core slabs 

Transverse reinforcement 

Fabsec steel beam with pre-welded 
shear studs 

Figure 2.27: Composite Beam with Precast Hollow-Core Slabs 
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Figure 2.28: Cross-section of Beam with Precast Hollow-Core Slabs 

Hollow-core slabs have longitudinal voids, and are produced on a long pre- 

stressing bed, either by slip form or extrusion, and are then saw-cut to length. 

The slabs depth ranges from 150 to 400mm, with the performance limited to 

a maximum span/depth ratio of around 50, although 35 is more usual for 

office loading conditions. The horizontal compressive forces are transferred 

through the slab the joint between the units being filled with in-situ concrete 

(Figure 2.20). The compressive strength of the infill may vary from 20- 

40N/mm2, although 30N/mm2 is normally used in design (Lam 2002). 

Experimental tests (Lam 1998), together with a parametric study conducted 

by Elliott et al. found that an increase in transverse reinforcement significantly 

increases the moment capacity but, as ductility is reduced, a brittle failure of 

the composite beam is found due to crushing failure of the concrete slab. In 
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addition, increases in slab thickness lead to increases in moment capacity, 

though slab failure might occur due to direct tensile force in the slab (Elliott et 

al 2000). 

2.9 Summary 

There has been a lot of research conducted into steel-concrete composite 

beams, most of which is concerning metal decking. Research conducted by 

Lam et al. show that the use of hollow-core slabs with steel beams is as 

competent as metal decking used with steel beams for multi-storey buildings. 

But, little research has been carried out into the use steel beams with web 

openings and precast concrete slabs to form long span composite beams. 

The concept of using steel beams with web openings and precast hollow- 

core slabs could have potential benefits in the design of multi-storey 

buildings. Therefore, this project is designed to investigate the behaviour of 

composite steel beams with web openings and precast hollow-core slabs. 

The aim of the research is to investigate the performance of composite 

beams with the position of the neutral axis in the concrete and also establish 

the effective width. By varying the beam size, span of beam, shear 

connection and slab depth in five full-scale experiments, the behaviour of the 

composite beam will be established. 
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Chapter 3: Beam Design and Test Set-up 

3.1 Introduction 

Five full scale long span composite beams consisting of steel I-sections and 

precast hollow-core concrete slabs were tested. The main variables for this 

research were the stud spacing (degree of shear connection), span of beam 

and depth of hollow-core slab. Prior to testing the composite beams, six push 

tests were performed to establish the capacity of 19mm x 125mm headed shear 

studs in square end hollow-core slabs. This chapter describes the test specimen 

design, testing arrangement, instrumentation used for the experiment, 

loading procedure and material testing. 

3.2 Push Test for Hollow-Core Slabs 

The push tests were set up as proposed by Lam (Lam 2006); with test 

specimens each consisting of four 600mm wide x 800mm long pre-stressed 

hollow-core units connected to a 254 x 254 x 73 UC with a single row of 6 

pre-welded headed studs at 150mm centres. The first stud is located 200mm 

from the end of the slabs as suggested in the Eurocode 4. Cores of 500mm 

long were left open to allow placement of the transverse reinforcement. The 

600mm slab width was chosen instead of the common 1200mm width so that 

the effect of the transverse joint could be observed. Figure 3.1 shows the 

general arrangement of the horizontal push test and Figure 3.2 shows the 
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push test specimen before casting of in-situ concrete. LVDT's are used to 

measure longitudinal slip at the end of the slabs until the load has dropped to 

20% below the maximum load reached. This enables the load and slip 

capacity to be determined and the results are shown in Chapter 4. 
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--' SOmm 

90m m 

-- ----- -- -' 50mm 
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1 holes 
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Reinforcement: 

Ribbed bars 416mm, 1000mm 
long, resulting bond stresses 
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525 mm 

Figure 3.1: General arrangement for horizontal push test 
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Figure 3.2: Push test specimen before casting 

3.3 Beam Specimen Design 

The beams are designed based on a multi-storey composite frame building, 

which are commonly constructed in the UK. A typical frame of 12m x 8m bays 

is shown in Figure 3.3. 

Office loading was assumed according to the British Standard BS5950, with 

live load taken as 5kN/m2 and the imposed dead load taken as 1.5kN/m2. 

The design of the steel beams with web openings was originally based on 

SCI Publication 100. The SCI design code gave the size of beam as 

UB61Ox305x238 with 400mm web openings for a castellated steel beam. 

Using the beam size from the castellated design, the steel beams were 

specified for fabrication by Fabsec Ltd (See Appendix A for beam 

specification drawings). The equivalent steel beams fabricated were 640x300 
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Fabsec beams (30mm flanges with a 20mm web) with varying shear 

connection, also fabricated was a 457x191x89UB for the 9m span test. 

E 

a) Plan view 

b) Elevation view 

Figure 3.3: Typical floor arrangement of steel/hollow-core slab structure 
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The precast hollow-core concrete slabs were manufactured by Bison 

Concrete Products Ltd. The slab depth (200 and 400mm) is the only variable 

for the concrete in the tests conducted. Appendix A shows the specification of 

the precast concrete slabs and technical information. 

3.4 Test Setup 

The test arrangement is a simply supported composite beam. The steel beam 

specification drawings are shown in Appendix A. Four 640x300 Fabsec 

beams with 400mm diameter web openings and varying stud spacing and 

one 457x191x89UB were fabricated. The beams are designed with stiffeners 

at the end supports of the beam and at the position where the loads will be 

applied (Figure 3.4) to eradicate failure in the web region during testing. The 

beams have a varying shear connection for the different experiments (Table 

3.1). A single row of shear studs, 19mm in diameter and 125mm long are 

pre-welded in the centre of the top flange of the steel beam. The test 

arrangement is shown in Figures 3.5, through to 3.10. 
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Concrete 
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Figure 3.4: Elevation of composite beam test specimen 
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(a) Elevation beam test specimen setup 

(b) Elevation photo test specimen setup 
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Placed on the Fabsec steel beam were Bison precast hollow-core slabs. A 

total of twenty slabs was used for each 12m span test (ten slabs placed on 

either side of the beam), and eighteen slabs for the 457UB 9m spanning test. 

The hollow-core units are 1600mm wide and 1200mm long with three or four 

600mm opening slots for the placement of the transverse reinforcement. The 

depth of the slab used was 200mm and 400mm for the different experiments 

(Table 3.1). The hollow-core units were connected transversely by reinforcing 

bars across the slots and between the units. The transverse reinforcement 

was 1100mm long and 16mm diameter (T16) reinforcing bars placed in the 

600mm slots within the slabs. In-situ concrete was poured into the 80mm gap 

between the slabs and into the slots once the transverse bars were placed. 

The top cover to the transverse reinforcement was approximately 150mm for 

the 200mm deep slabs and 350mm for the 400mm slabs. Once the 

composite beam test was set up, the specimen was cast with the in-situ 

concrete. The in-situ concrete had a concrete slump of a minimum 75mm 

(workability), so the concrete could fill the gaps in the connection of the 

composite beam. The in-situ concrete of a strength grade C30 (30N/mm2 at 

28 days) was aimed for all tests. 

When casting the in-situ concrete, two 30mm vibrating pokers were used to 

ensure the concrete flowed into all the openings in the slabs to form the 

composite connection. The core openings at the edge of the slabs were filled 

with paper/polystyrene (Figure 3.11) up to 1m from the centreline of the 

beam, so that during casting the concrete would not pour out of the sides. 
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After casting the connection, the top of the composite beam was covered with 

polythene sheeting and left to cure (Figures 3.12 and 3.13). The cylinders, 

prisms and cubes for each cast were cured under the same conditions as the 

specimen and were tested at 7,14 and 28 days. 
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Figure 3.11: Polystyrene bung 

Figure 3.12: Composite beam covered for curing 
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A steel support frame was designed to support the slabs while the test 

specimen was being put together. Also, scaffolding poles are attached to the 

bottom flange of the beam, to prevent the beam from overturning. The 

support frame and poles were used as safety apparatus and these were 

removed before testing. 

The main components of the test rig consisted of four 500kN hydraulic jacks 

on the 12m span tests and two 500kN jacks on the 9m test with load cells 

placed between the jacks and the top slab surface to record the load during 

testing. A single manual pump was used for all jacks so loading was applied 

simultaneously to the composite beam. To improve distribution of load, 
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Figure 3.13: Composite beam covered for curing (end view) 
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square steel plates of size 300x300mm in area and 50mm in depth were 

placed between the hydraulic jacks and precast concrete surface. 

Figures 3.4 to 3.13, shows the experimental setup for the test of the 

composite beam. Table 3.1 shows the variations in the testing of the 

composite beam. 

3.5 Instrumentation 

Instrumentation included linear voltage displacement transducers (LVDT's) 

and electrical resistance strain gauges (ERSG's). The LVDT's were used for 

measuring vertical deflection and horizontal slip of the composite beam 

specimen, while ERSG's were used on the steel beam, shear studs and 

transverse reinforcing bars to measure strain. 

3.5.1 Strain Gauges 

Strain gauges (ERSG's) were used on the steel beam (web, flanges and 

shear studs) and the transverse reinforcement. The gauges used were of 

type FLA-5-11 with a length of 5mm, the resistance of the gauge was 120 ± 

0.30 with a gauge factor of 2.13. Strain gauges were placed around the 

centre web opening of the beam (Figures 3.14,3.15 and 3.16) and on the top 

and bottom flanges. The readings from the gauges placed on the flanges, 

would allow the strain profile to be plotted, and the position of neutral axis will 

be obtained. 
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Figure 3.14: Location of strain gauges around centre opening 

Figure 3.15: Strain gauges along steel beam 
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the centre opening 
9 MSG's 13 to 241. 

C-C 

Not to Scale 

Figure 3.16: Position of strain gauges around centre opening 

Gauges were also placed on shear studs and in the centre of the transverse 

reinforcing bars and were protected with heated shrink wrap (Figure 3.17). 

Twelve studs were gauged with a gauge placed on either side of the stud, in 

order to establish the behaviour of the stud during testing. These gauges (on 

studs and reinforcing bars) were coated with an epoxy resin to protect them 

from the in-situ concrete (Figure 3.18). 
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Figure 3.17: Transverse reinforcement ready for placement in slabs 
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(a) Transverse reinforcement ready for placement in slabs 
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3.5.2 Displacement Transformers 

LVDT's (Linear Variable Differential Transformers) were used to measure the 

slip between the concrete slab and steel beam as well as the bending 

deflection. To measure horizontal slip, eight LVDT's were placed the 

concrete/steel interface under the bottom surface of the slab, and to measure 

the vertical deflection of the beam, five LVDT's were placed on the top 

surface of the bottom steel flange. LVDT's were positioned using magnetic 

clamps and brackets to measure movement (Figures 3.19 and 3.20). 
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Figure 3.18: Location of strain gauges on shear stud coated in resin 
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Figure 3.20: Position of LVDT's on test specimen 
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3.5.3 Loading Procedure 

The load was applied manually by a hydraulic pump simultaneously to all 

jacks. Elastic tests were run before testing to check instrumentation and the 

loading system. The load was applied in 20kN intervals with unloading cycles 

at about 200 to 300kN dependant on the test specimen. The loading intervals 

were decreased to 1OkN and 5kN as the test specimen got close to failure. 

Loading was applied to the specimen until failure was reached, i. e. excessive 

slip, failure of shear connection or severe cracking was observed. After 

testing, the specimen was dismantled in order to investigate the condition of 

the shear studs, concrete and possible failure of the steel beam. 

Figure 3.21 shows the hydraulic pump, load cell and jack. All the data from 

the instrumentation was simultaneously collected and stored by the data 

logger and computer, where the data is transformed into a spread sheet 

format, so the data could be analysed. 

 A 
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a) Hydraulic pump b) Load cell and jack 

Figure 3.21: Hydraulic pump, load cell and jack used in tests 
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3.6 Material Testing 

Material testing was performed on all materials that formed the composite 

beam. The following sections describe how the material testing was carried 

out for the in-situ concrete, steel coupons from the beam and transverse 

reinforcing bars. 

3.6.1 In-Situ Concrete 

In-situ concrete is used for the infill between the concrete slab and steel 

beam. To monitor the in-situ concrete strength, concrete cubes 

(100x100x100mm) and concrete cylinders (150mm diameter x 300mm long) 

were sampled and cured in the same conditions as the test specimen. The 

concrete samples were tested at 7,14,21 and 28 days in accordance with 

BSI 1881. The compressive and tensile strength of the in-situ concrete were 

derived from the compressive test and the Brazilian splitting test, results of 

which are shown in Tables 3.2 and 3.3. The characteristic concrete strength 

for the precast hollow-core slabs was taken to be 55N/mm2 as specified by 

the manufacturer. 
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3.6.2 Steel Coupons and Transverse Reinforcing Bars 

Steel coupons were cut from the flanges and web of the beam after each 

test, so they can be tensile tested. The steel coupons (Figure 3.22) were 

taken from the areas where the stresses are low, i. e. at supports for the 

flanges and between stiffeners for the web. In addition, tensile tests will be 

carried out on a sample of transverse reinforcing bars to measure the tensile 

strength of the bars. Tensile tests of the coupons were conducted using the 

Instron testing machine according to BS EN 10002 - Part 1. From the tensile 

tests conducted on the steel coupons and reinforcing bars, the yield strength, 

ultimate strength and ultimate strain were obtained. Test results are shown in 

Tables 3.4,3.5 and 3.6. 

ý'. w.. "ý 30 20 10 

100 

-R25 

150 10 

t00 

ma, 

7- n 

Steel Coupons to be cut from sbel plabs 

St"I Coup-s June 07 

ald-m.. nmm 

Not to scuIe 

a) Dimensions for coupon test specimen 

Figure 3.22: Steel coupons form cut from beam 
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Specimen 
Yield Strength 

N/mm2 
Ultimate Strength 

N/mm2 
Ultimate Strain 

s 

CB-1 378.1 542.8 199465.5 
CB-2 385.2 545.1 206579.4 
CB-3 402.6 564.6 212185.8 
CB-4 360.3 518.5 196668.7 
CB-5 391.4 545.4 200964.5 

Table 3.4: Tensile test results for steel flange 

Specimen 
Yield Strength 

N/mmZ 
Ultimate Strength 

N/mm2 
Ultimate Strain 

CB-1 362.1 506.7 199465.6 
CB-2 365.2 502.3 206079.3 
CB-3 362.1 489.5 189187.8 
CB-4 350.5 468.7 193368.4 
CB-5 375.4 510.2 189961.7 

Table 3.5: Tensile test results for steel web 

Test Specimen Yeild Strength 
(N/mm2) 

Ult. Strength 
(N/mm2) 

Cross-Sectional 
Area (mm2) 

CB-1 497.5 645.3 195.5 

CB-3 534.2 643.2 195.4 

CB-4 511.6 634.5 195.5 
CB-5 489.8 632.1 195.5 

Table 3.6: Tensile test results for T16 transverse reinforcing bars 

3.7 Composite Test Arrangement 

All the beam test specimens were setup as described in section 3.4. In order 

to investigate different variables, different test arrangements were adopted 
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for each test. For the first three tests (CB-1,2 and 3), the main variables 

investigated were the shear stud spacing of the shear connection. In test CB- 

4, the variable was the span of beam, which was reduced to 9m and CB-5 

had the variable of using 400mm deep slabs. The test parameters of the five 

composite beam tests are shown in Table 3.1. 

3.7.1 Test CB-1 

CB-1 was designed with a 68% shear connection, with a stud spacing of 

150mm on the steel beam. Figure 3.23 shows the general arrangement and 

the position of LVDT's and strain gauges on the steel beam. LVDT's are 

placed in five locations on the bottom flange of the beam to measure vertical 

deflection and eight LVDT's are placed at the concrete/steel interface to 

measure slip. Gauges are placed along the flanges, around the centre web 

opening of the beam and on studs. Figure 3.24 shows the general 

arrangement of the transverse reinforcing bars, with twenty nine of the forty 

nine bars having gauges placed in the centre of the bars. 

3.7.2 Test CB-2 

The purpose of this test is to study the effect on the shear connection with a 

reduced number of studs, giving half the connection of CB-1. CB-2 was 

designed with a 34% shear connection, with a stud spacing of 300mm on the 

steel beam. Figures 3.25 and 3.26 show the general arrangement and the 

position of LVDT's and strain gauges on the composite beam. All 
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instrumentation is similar to CB-1, with only a reduction in the number of 

strain gauges used on the transverse reinforcement (Figures 3.26). 

3.7.3 Test CB-3 

CB-3 was designed with a 26% shear connection, with a stud spacing of 

400mm on the steel beam. Again, the purpose of this test is to study the 

effect on the shear connection with a reduced number of studs compared to 

CB-1 and CB-2. All instrumentation is similar to CB-2, as shown in Figures 

3.27 and 3.28. 

3.7.4 Test CB-4 

CB-4 was designed to span 9m with a 50% shear connection, the beam size 

was 457x191x89UB used with 200mm hollow-core slabs. The purpose of this 

test was to study the effect of beam span in comparison to the other tests 

which were all spanning 12m. All instrumentation is similar to previous tests, 

with a reduction of LVDT's and strain gauges due to the shorter span. 

Another difference is the number of slots in the hollow-core slabs (three slots 

instead of four as in previous tests), therefore a reduction in transverse 

reinforcement. Figures 3.29 and 3.30 show the general arrangement and the 

position of LVDT's and strain gauges on the composite beam. 
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3.7.5 Test CB-5 

The purpose of this test was to study the effect of the hollow-core slab depth 

in comparison to the other tests which all used 200mm deep units. The 

hollow-core slabs used in this test were 400mm for a 12m spanning 

composite beam. CB-5 was designed with a 25% shear connection, with a 

stud spacing of 400mm on the steel beam. As with CB-4, the number of slots 

in the hollow-core slabs was reduced (three slots instead of four). Figures 

3.31 and 3.32 show the general arrangement and the position of LVDT's and 

strain gauges on the composite beam. 

3.8 Conclusion 

In this chapter, the test setup, material tests, instrumentation and loading 

system of five full scale composite beam tests consisting of steel I-sections 

with precast hollow-core slabs are described in detail. The test observations 

and test results are presented in Chapter 4. 
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Chapter 4: Test Results and Discussion 

Chapter 4: Test Results and Discussion 

4.1 Introduction 

Extensive analysis is conducted on the test results in this chapter, the test 

observations, results and the modes of failure for push tests and five full 

scale composite beam tests are presented in detail. Also presented in this 

chapter is a comparison between the five beam tests conducted and the 

effects of the different parameters of the specimen on the behaviour of the 

composite beam. Based on the analysis of the test results, the structural 

behaviour of the beam is discussed and recommendations for the design 

purpose have been made. 

4.2 Push Test Results 

Using the push test proposed by Lam in 2006 for hollow-core slabs, push 

tests were performed to determine shear capacity of the shear stud. By 

determining the slip and load per stud a comparison could be made with the 

beam test results. Six full-scale push tests were carried out, with 19x125mm 

studs, hollow-core slabs of 150-250mm in depth, T16 reinforcing bars and 

square end hollow-core slabs. 

Results in Table 4.1 include the maximum capacity per stud, the amount of 

slip when maximum load is achieved and crucially, the stud's capacity at 
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6mm slip. In accordance to Eurocode 4, shear connectors should have 

sufficient deformation capacity to justify any inelastic redistribution of shear 

assumed in design. Ductile connectors are those with sufficient deformation 

capacity to justify the assumption of ideal plastic behaviour of the shear 

connection in the structure considered when the characteristic slip is at 6mm. 

Hence, it is recommended by Lam that the stud capacity at 6mm slip should 

be used to specify the characteristics capacity of the shear connectors. 

In all tests carried out, only 0.1 mm of slip was noticed at 40% of the expected 

failure load. All tests were loaded until failure is reached, the specimens were 

then dismantled to investigate the condition of the studs after the tests. 

Tensile strength of the reinforcing bars was determined in accordance with 

BS 4449. The T16 bars were found to have a yield strength between 535- 

545N/mm2 and ultimate tensile strength between 627-633N/mm2. 
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Chapter 4: Test Results and Discussion 

4.2.1 Push Test Mode of Failure 

Three modes of failure were observed during the testing of the push tests. 

The first mode was crushing of concrete, forming concrete cone failure where 

no shearing off of headed studs is observed. For this mode of failure, the 

concrete around the stud started to fail in compression before the stud 

yielded; the compression failure progressed through the thickness of the 

concrete forming a conical shape around the stud. Figure 4.1 shows the push 

test specimen failed in this mode of failure. 

11 �ýia 

1ý: 
Figure 4.1: Crushing of concrete/conical failure 

The second mode of failure is when the stud was fully yielded and no 

concrete failure is observed. This mode of failure is identified as stud failure 

mode where the yield stress of the headed stud is reached while maximum 

concrete stress of the concrete element is not reached. Figure 4.2 shows the 

push test specimen with this failure mode. 
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Figure 4.2: Yielding of shear studs 

The third mode of failure is the combined failure of stud and concrete slab 

when maximum stresses are reached in the stud and concrete elements. All 

three modes of failure were observed in the experimental push tests. 

4.2.2 Push Test Discussion 

The behaviour of the shear connection in the composite beam with precast 

hollow-core slabs depends mainly on the load - slip characteristic of the 

shear connectors at the interface between the top flange of the steel sections 

and the concrete slabs. This load - slip behaviour (Figure 4.3), usually found 

from the push-off tests depends on the type of connectors, their sizes and 

dimensions, the amount of transverse reinforcement, their spacing and the 

gap and strength of the in-situ concrete infill. Early work by Lam et al (1998) 

showed that for the beam with full shear connection, a slip of only 2mm was 

observed in the full-scale beam tests at the ultimate load; therefore the 
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effects of slip can be ignored. However, for this research, the composite 

beams with hollow-core slabs are designed with partial shear connection, 

hence the effects of slip cannot be neglected. The ability of the shear studs to 

maintain the maximum capacity with slip, i. e. the ductility of the shear 

connector, became a very important issue. 

140 

120 

loo-- 

8o-- 

60-- 

40 

20 

0 
0 123458 

Mean Slip (mm) 

Figure 4.3: Load-Slip curve of shear connector 

7 

The results of these push tests showed that the in-situ concrete strength 

affected the shear capacity of the headed studs in the hollow-core slabs. 

Increases in in-situ concrete strength lead to increases in the shear stud 

capacity and the rates of increase were similar for all tests. 

The effect of hollow-core slab thickness was investigated. Table 4.1 shows 

the summary of test results. The results showed that the effect of slab 

thickness to the capacity of the shear studs was not significant. For all 
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composite beam tests conducted, 125mm long headed studs with hollow- 

core slabs of depths 200mm and 400mm are used. 

4.3 Beam Test Observations and Results 

This section describes the five full scale tests (CB-1 to CB-5) individually. All 

the notations, which include LVDT's on the test specimens and strain gauges 

placed on the steel beam, studs and transverse reinforcement are in 

accordance with Chapter 3. Table 3.1 show the test results for all composite 

beam specimens tested. 

4.3.1 General Flexural Behaviour of Composite Beam 

For the composite beam, the elastic neutral axis is usually close to the 

interface between the steel and the concrete. As the moment acting on the 

composite section is increased, the bottom flange of the steel beam begins to 

yield and the neutral axis moves towards the compression zone, causing 

tensile cracking at the underside of the slab. 

As bending is further increased in the section, the load carried remains 

approximately constant and crushing of the slab might occur. The steel 

section strength is increase by using large steel sections so yielding is 

unlikely to occur in the steel, forcing the shear connection between the steel 

beam and concrete to control failure. Crushing of the concrete slab and 

failure of the shear connectors may occur which will reduce the composite 
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action and thus the load carrying capacity of the section. Tables 4.2 and 4.3, 

show test results of beam tests and bending results of composite beams. 

The purpose of the tests carried out was to investigate the effect of the elastic 

neutral axis lying in the concrete and to establish if composite beams can 

induce ultimate moment capacity prior to failure. By using large steel (- 

sections with precast concrete hollow-core slabs and partial shear 

connection, the behaviour of the composite beam is established. 

4.3.2 End Slip 

When the load is applied to the beam, there is a tendency for slip to occur 

between the slab and the beam to which the connector is attached. This is 

partly due to the deformation of the concrete surrounding the shear connector 

and partly due to bending of the shear connector. Observations show that 

little or no slip occurred at the serviceability load. Slip is not uniform along the 

length of a beam, even when the external shear force is uniform. The largest 

slip occurs near the end of the beam and is generally also the region in which 

slip begins. From the observation of the bending tests, the effect of slip in the 

working range is unlikely to be sufficiently great to be considered in design. 

However, slip does have considerable influence on the development of the 

ultimate moment capacity. 
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Chapter 4: Test Results and Discussion 

4.3.3 Test CB-1 

This beam test had a shear stud spacing of 150mm and an in-situ concrete 

strength of 41.95N/mm2. The composite beam behaved elastically up to 

about a load of 250kN with a mid-span deflection of 34mm; at this point 

tensile cracks were observed on the underside of the hollow-core slabs. The 

first cracks were observed at an applied load of 240kN in the central region of 

the slab. At the applied load of 340kN (Bending moment = 204OkNm), 

excessive cracking in the concrete slabs was observed. The bottom flange of 

the steel started to yield and sudden failure occurred at a moment of 

2280kNm, this was due to crushing of concrete around the shear studs in the 

mid-span region with no yielding in the steel beam. 

The maximum load was reached at 400kN (Bending moment = 2400kNm), 

with a mid-span deflection of 85mm. Figure 4.4 shows the deflection of the 

beam after testing; the failure mode was due to crushing of concrete around 

the shear studs in the mid-span region of the beam (Figure 4.5). Once 

concrete failure occurred the cracks propagated along the connection of the 

slabs. The maximum recorded slip was 4.6mm on the South side and 4.2mm 

on the North side. Prior to failure of the concrete, a small amount of slip was 

observed, but once crushing of the concrete occurred there were larger slips 

due to the reduced interaction between the steel and concrete, this lead to a 

reduction in the capacity of the beam. Figure 4.9 shows the moment vs. slip 

curve, due to the high shear connection the slip at both ends of the beam 

were less than 6mm as expected. 
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After the experiment, the beam specimen was dismantled to investigate the 

mode of failure. This was found to be concrete crushing around the mid-span 

region of the beam with all shear studs on the steel beam remaining intact. 

Figures 4.6 and 4.7 show regions of the slab dismantled along the beam with 

exposed shear studs still intact. 

Figure 4.8 shows the moment vs. deflection curve of test CB-1, the beam 

remained elastic up to 1440kNm, after this the' stiffness of the beam 

decreased when the load was increased. Figure 4.10 shows the strain 

measured on studs along the beam, although the studs on the beam 

remained intact, there was an increase in strain on the studs in the central 

region of the beam after first cracks were observed. The strain measured on 

the transverse reinforcement (Figure 4.11) was relatively small, suggesting 

the transverse bars were not fully mobilised. Although as with the studs the 

transverse bars placed in the centre of the composite beam had an increase 

in strain once the beam became plastic. 

The cracking near the rib of the hollow-core slab is a consequence of 

crushing of concrete in the concrete section. This causes the neutral axis to 

move towards the compression zone, allowing tensile force to develop in the 

hollow-core slab. The position of neutral axis and strain distribution for test 

CBI is shown in Figures 4.12 and 4.13. 
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Figure 4.4: Bending of Test CB-1 after testing 

of, 

'.. 

Figure 4.5: CB-1 Transverse cracking along joint between slabs at mid-span 
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Figure 4.8: Moment vs. Mid-span deflection of CB-1 
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Figure 4.10: Moment vs. Strain on Shear Studs of CB-1 

Figure 4.11: Moment vs. Strain on Transverse Reinforcement of CB-1 
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4.3.4 Test CB-2 

The configuration of this beam was identical to CB-1 except with double the 

shear stud spacing and a reduced in-situ concrete strength of 32.6N/mm2. 

Hairline cracks between the in-situ concrete and precast slabs were observed 

before testing was started due to incorrect curing causing dehydration in the 

concrete. The deformation was linear up to 250kN, with a mid-span deflection 

of 46.3mm where further cracks between the in-situ concrete and precast 

slabs were noticed. At an ultimate moment of 2150kNm, which was 5% less 

than reached in test CB-1, crushing of the concrete in the mid-span region 

occurred and spalling of concrete from the precast slab was observed. The 

steel beam did not yield and the failure of this beam specimen was found to 

be more ductile than CB-1. 

The maximum load was reached at 367kN (Bending moment = 2200kNm), 

with a mid-span deflection of 130mm demonstrating that the beam behaved 

in a more ductile manner than Test CB-1. The failure mode was due to the 

crushing of concrete around the shear studs in the mid-span region of the 

beam. Due to the reduced number of studs on the steel beam there were 

larger slips measured at the interface. Figure 4.18 shows the moment vs. 

slip curve, with slip at both ends of the beam, the maximum recorded slip was 

4.5mm on the South side and 3.7mm on the North side. 

The beam specimen was then dismantled to investigate the mode of failure, 

which was found to be concrete crushing in the mid-span region of the beam 
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with shear studs on the steel beam remaining intact. Figures 4.14 and 4.15 

show regions of the slab dismantled along the beam with shear studs still 

intact. Also observed was the shear failure of the precast slab which occurred 

at a moment of 195OkNm (Figure 4.16). 

Figure 4.17 shows the moment vs. deflection curve of test CB-2, the beam 

remained elastic up to 1400kNm; further moment caused an increase in 

strain on the studs and first cracks were observed. Figure 4.19 shows the 

strain measured on studs increased after cracks were observed in the 

concrete, although the studs on the beam remained intact. The strain 

measured on the transverse reinforcement (Figure 4.20) was relatively small, 

although as with the studs, the transverse bars placed at the central region of 

the slab had an increase in strain once the beam became plastic. 

As crushing in concrete occurred the neutral axis moved towards the tension 

zone of the beam, finishing in the web of the steel section. Figure 4.21 shows 

the position of neutral axis and the strain distribution for test CB2 is shown in 

Figure 4.22. 
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Figure 4.15: Exposed studs on South side of CB-2 
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Figure 4.16: Shear failure in central slab of CB-2 
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Figure 4.17: Moment vs. Mid-span deflection of CB-2 
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Figure 4.18: Moment vs. Slip at Interface of CB-2 
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Figure 4.20: Moment vs. Strain on Transverse Reinforcement of CB-2 
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4.3.5 Test CB-3 
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Figure 4.22: Strain Distribution for Test CB-2 

The configuration of this beam was identical to CB-1 and CB-2 except with a 

further increased shear stud spacing of 400mm and an in-situ concrete 

strength of 34.4N/mm2. Cracks between the in-situ concrete and precast 

slabs were observed at a moment of 900kNm, with a mid-span deflection of 

30mm. At a moment of 1240kNm, the sound of a stud shearing off the steel 

beam was heard on the North side of the beam due to the excessive slip at 

the interface. As greater moment was applied, further slip was recorded as 

shown in the moment vs. slip curves (Figure 4.26). Prior to failure of the 

shear studs, a small amount of slip was observed, but once studs failed, 

larger slips occurred due to the reduced interaction between the steel and 

concrete, this lead to a reduction in the capacity of the beam. As with the 
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previous test there was no yielding in the steel beam, as the neutral axis 

position stayed in the concrete slab (Figure 4.29). 

The maximum load reached was 350kN (Bending moment = 2100kNm), with 

a mid-span deflection of 126mm. The failure mode was due to the crushing of 

concrete around mid-span region of the beam together with shear stud 

failure. Maximum recorded slip was 5.0mm on the South side and 13.1 mm on 

the North side. The strain recorded on the studs (Figure 4.27) show a loss in 

stud capacity at a moment of 1250kN, indicating the shearing of studs from 

this point onwards. 

The beam specimen was then dismantled to investigate the mode of failure, 

which was found to be concrete crushing in the mid-span and shear stud 

failure along the beam, with studs shearing off and excessive slip taking 

place on the North side. Figures 4.23 and 4.24 shows the region of the slab 

dismantled along the beam with failed shear stud, where separation between 

the concrete and steel was observed after failure occurred. 

Figure 4.25 shows the moment vs. deflection curve of test CB-3, the beam 

remained elastic up to 1250kNm, after this point there was an increase in 

strain on the studs and transverse reinforcement. Figure 4.28 shows the 

strain on the transverse reinforcement with increased strain as studs are lost 

from the shear connection. Transverse reinforcing bars placed behind the 

studs in the direction of bending had an increased strain measured. As the 
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stud deformed/rotated due to interface slip, the transverse reinforcing bar 

provided resistance to rotation of the stud (Figure 4.31). 

The neutral axis remained in the concrete throughout testing, dropping lower 

in the slab as failure occurred (Figure 4.29). Figure 4.30 shows the strain 

distribution for test CB3. As expected the test was found to be more ductile 

than CB-1 and CB-2, due to the reduced shear connection of the composite 

beam. 
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Figure 4.23: Exposed stud at mid-span region in slab of CB-3 

115 



Chapter 4: Test Results and Discussion 

�I 

Figure 4.24: Propogated cracking along joint of mid-span region in slab of 
CB-3 
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Figure 4.26: Moment vs. Slip at Interface of CB-3 
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Figure 4.28: Moment vs. Strain on Transverse Reinforcement of CB-3 
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4.3.6 Test CB-4 

The configuration of this composite beam test used a 457x191x89UB at a 

span of 9m with 200mm slab, shear stud spacing of 400mm and in-situ 

concrete strength of 35. ON/mm2. Up to a load of 11OkN the specimen 

remained elastic, and first cracking was observed at a moment of 400kNm. 

As the moment was increased, shear studs where heard failing at the 

interface. Once shear studs failed, excessive slip (15mm) was measured on 

the North side of the beam, and concrete crushing occurred in the central 

region of the beam, although the composite beam demonstrated ductile 

behaviour. The neutral axis remained in the slab throughout the test, and the 

steel did not yield. 

The maximum load reached was 31 OkN (Bending moment = 930kNm), with a 

mid-span deflection of 121mm. The failure mode was due to the crushing of 

concrete and failure of shear studs along the beam. Maximum recorded slip 

(Figure 4.35) was 6.0mm on the South side and 15.0mm on the North side. 

The strain recorded on the studs (Figure 4.36) showed a loss in stud capacity 

at a moment of 300kNm, indicating the shearing of a studs from the steel 

beam. 

The beam specimen was then dismantled to investigate the mode of failure, 

which was found to be concrete crushing and shear failure in the mid-span 

region of the beam with shear studs on the steel beam shearing off. Figures 

4.32 and 4.33 show regions of the slab dismantled along the beam. 
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Figure 4.34 shows the moment vs. deflection curve of test CB-4, the beam 

remained elastic up to 330kNm; however the beam was able to carry further 

moment, although shear studs were failing and there was an increase in 

strain on the transverse reinforcement after studs failed. Figure 4.37 shows 

the strain measured on the transverse reinforcement with increased strain as 

studs are lost from the connection. 

As failure in connection occurred the neutral axis moved towards the 

compression zone of the beam, finishing 160mm above the interface in the 

concrete slab. Figure 4.38 shows the position of neutral axis and the strain 

distribution for test CB4 is shown in Figure 4.39. 
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Figure 4.33: Moment vs. Strain on Shear Studs of CB-4 
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Figure 4.39: Strain Distribution for Test CB-4 

4.3.7 Test CB-5 

The configuration of this beam was identical to CB-3 except with 400mm 

hollow-core slabs and in-situ concrete strength of 30.7N/mm2. As with Tests 

CB-3 and CB-4, the neutral axis position remained in the concrete slab 

throughout testing. The composite beam behaved almost linear up to about a 

load of 250kN, when tensile cracks were observed in the in-situ concrete 

(Figure 4.40). First cracks were observed at an applied load of 320kN 

(Bending moment = 1920kNm) in the central region of the slab. At the applied 

load of 340kN (Bending moment = 204OkNm), excessive cracking in the 

concrete slabs around the mid-span of the beam was seen on the underside 

of the hollow-core slabs (Figures 4.41 and 4.42). Failure occurred at a 

moment of 2340kNm, this was due to crushing of concrete around the shear 
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studs that had failed. As with previous tests there was no yielding in the steel 

beam. 

The maximum load was reached at 390kN (Bending moment = 2340kNm), 

with a mid-span deflection of 150mm. Prior to maximum load, concrete failure 

occurred with cracks propagating along the connection of the slabs, and a 

number of shear studs were heard failing. Maximum recorded slip was 

8.7mm on the South side and 5.8mm on the North side as shown on the 

moment vs. slip curve (Figure 4.44). Also observed was separation between 

the concrete and steel after failure occurred. 

After the experiment, the beam specimen was dismantled to investigate the 

mode of failure. This was found to be concrete crushing around the mid-span 

region of the beam with studs failing along the steel beam. Figure 4.42 shows 

the moment vs. deflection curve of test CB-5, the beam remained elastic up 

to 1750kNm. Figure 4.45 shows the strain measured on studs along the 

beam; there was an increase in strain on the studs at the ends of the beam 

after cracks on the underside of the slab was observed. The strain measured 

on the transverse reinforcement (Figure 4.46) increased after a moment of 

175OkNm was reached. After this point, the stiffness of the beam decreased 

when the load was increased. As expected the beam had an increased 

stiffness and behaved in a ductile manner when compared to the other 

composite beams tested. 
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The cracking in the underside of the hollow-core slab is a consequence of 

crushing of concrete in the concrete section. This causes the neutral axis to 

move towards the compression zone, allowing tensile force to develop in the 

hollow-core slab. The position of neutral axis and strain distribution for test 

CB5 is shown in Figures 4.47 and 4.48. 
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Figure 4.40: Tensile cracks in In-situ concrete of CB-5 
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Figure 4.41: Excessive cracking on underside slab of CB-5 (West) 

Figure 4.42: Excessive cracking on underside slab of CB-5 (East) 
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Figure 4.44: Moment vs. Slip at Interface of CB-5 
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4.4 Comparison of Test Results 

Test results are summarised in Table 4.1. The behaviour of the composite 

beam is best described by Moment-Deflection relationships as shown in 

Figure 4.49. For tests CB-1, CB-2 and CB-3, the moment-deflection curves 

showed the stiffness of the beam was dependant on the shear connection; all 

were within 15% of the maximum moment achieved in all 12m spanning tests 

conducted. CB-5 had 400mm deep hollow-core slabs, which had the highest 

stiffness of all composite beams tested, and CB-4 had the lowest stiffness 

due to beam size and shorter span. 
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In the ultimate stage, all tests failed in a ductile manor, either by concrete 

crushing in the mid-span region of the beam or shear connection failure. 

There was no yielding of the steel beam, due to the large size of beams used 

in all tests. CB-1 and CB-2 both failed due concrete crushing in the centre 

region of the slabs. CB-3, CB-4 and CB-5 failed with a combination of both 

concrete crushing and shear stud failure. Yielding in steel was only noticed in 

the Test CB-1, while no yielding or buckling of the beam's flanges and webs 

was observed in the other tests. 

4.4.1 Comparison of Moment - Deflection 

Figure 4.49 shows the moment-deflection curves for all tests conducted. As 

expected, larger deflections were obtained from composite beams with partial 

shear connection and deeper hollow-core slabs. The test results show that 

deflection measured in tests CB-1, CB-2, CB-3 and CB-5 were all similar 

although the stiffness varied with each test due to the shear connection. 

Different shear connections were used for each test, while all tests deflected 

by a similar amount. Excessive deflection occurred in composite beams with 

reduced shear connection when concrete crushing and stud failure was 

noticed in the beam. 

4.4.2 Comparison of End Slip 

As expected, larger slip was obtained from composite beams with low shear 

connection and deeper slabs. The beams with the lowest shear connection 
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(CB-3 and CB-4) had excessive slip in comparison to the other tests, which 

did not exceed 6.0mm. Although CB-5 had a low shear connection, slip for 

this beam was not found to be excessive, due to the 400mm deep concrete 

slabs used for this test. Excessive slip occurred in beams when studs failed 

and sheared off, hence the shear connection was reduced. 

A comparison between the slip results and push tests can be made, with the 

load at 6mm slip taken as 102kN (Table 4.1) to calculate the actual shear 

connection of the composite beam. 

4.4.3 Comparison of Strain on Studs 

As expected, larger strains were obtained from composite beams with partial 

shear connection and deeper slabs. Studs placed in the central region of the 

slab (SG-5, SG-6, SG-7 and SG-8) were found to have larger strain when 

beam was still elastic. When the beam demonstrated plastic behaviour, larger 

strain was imposed onto studs at either ends of the specimen (SG-1, SG-2, 

SG-11 and SG-12) due to the increase in slip. Beam tests with lower shear 

connection had larger strains induced onto the studs during bending as 

expected. Studs with the transverse reinforcement placed close behind the 

stud (in direction of bending) had an increase in strain measured, due to the 

support provided by the transverse bar. 
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4.4.4 Comparison of Strain on Transverse Reinforcement 

Tests CB-1, CB-2 and CB-3 all had forty nine 16mm reinforcing bars, with a 

bar spacing at 240mm. CB-4 had thirty one 16mm reinforcing bars at 300mm 

spacing and CB-5 had thirty seven 16mm bars at 300mm spacing. Strains 

measured in all tests were relatively low. There was an increase in strain 

realised in beam tests with forty nine bars (CB-1, CB-2 and CB-3), while 

strains measured in the tests (CB-4 and CB-5) with thirty one and thirty seven 

had a smaller measurement of strain due to the reduced number of 

reinforcing bars. Stresses developed in the reinforcing bars were less than 

25% of the yield stresses, suggesting that the bars were not fully mobilised. 

4.4.5 Position of Neutral Axis 

The positions of the neutral axis for all beam specimens are shown in Figure 

4.50. The neutral axis position for all beam specimens began in the concrete 

slab, except for Test CB-1, where the neutral axis was in the top flange of the 

steel beam. In Test CB-2 the neutral axis was 97mm above the 

steel/concrete interface. The neutral axis for CB-1 and CB-2 then drops into 

the steel web when cracking occurs in the concrete. Test CB-3 followed a 

similar position to CB-1 and CB-2, but the neutral axis remained in the 

concrete, at failure the position of the neutral axis was approximately 22mm 

above the interface. The neutral axis of CB-4 started in the top flange of the 

steel beam and moved up into the concrete, finishing 130mm above the 

interface. The neutral axis of CB-5 behaved similarly to the neutral axis of 
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CB-4, starting 23mm above the interface and then moving up as the studs 

failed, to a maximum of 229mm above the interface. At failure load the 

neutral axis of CB-5 drops down to 49mm above the interface. it is shown 

that composite beams with the neutral axis in the concrete provided adequate 

moment capacity with ductile failure. 
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Figure 4.50: Position of Neutral Axis of all Tests 

4.4.6 Comparison of Failure Modes 

Three modes of failure were observed during the testing of the composite 

beams, both of which were shear connection failure: 

1. Concrete crushing (CC) as occurred in CB-1 and CB-2. 

2. Fracture of shear studs (SF) as occurred in CB-3, CB-4 and CB-5. 

3. Combination of concrete crushing (CC) and shear stud failure (SF) as 

occurred in CB-3, CB-4 and CB-5. 
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In Tests CB-1 and CB-2, concrete crushing occurred with no fracture of shear 

studs. In tests CB-3, CB-4 and CB-5 concrete crushing and fracture of shear 

studs occurred. There was no yielding in the steel beam, due to the large size 

of steel and stiffened web region. The purpose of the composite beam tests 

was to investigate the design of composite beams with the neutral axis in the 

concrete slab, which was found to have sufficient moment capacity when 

tested. 

4.4.7 Comparison of In-Situ Concrete 

The results of the full-scale push tests and composite beam tests showed 

that the in-situ concrete strength affected the shear capacity of the headed 

studs in the hollow-core slabs. Increases in in-situ concrete strength leads to 

increases in the shear stud capacity and the rates of increase were similar for 

all tests. 

4.5 Effect of Different Variables 

Discussed in this section is the effect of different variables that were looked 

at in the five full scale composite beam tests performed. These include the 

degree of shear connection,, amount of transverse reinforcement and slab 

depth. 
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4.5.1 Effect of Degree of Shear Connection 

Composite beams with high shear connection (CB-1 at 150mm stud spacing) 

were found to have a high stiffness as expected, although the failure was 

sudden due to concrete crushing. With the reduction in the stud spacing (CB- 

2 at 300mm and CB-3 at 400mm), the composite beams were found to 

behave more ductile but with a reduced stiffness with greater shear forces 

being induced on to the studs. This was confirmed in Test CB-3 with the 

failure of studs along the beam. In tests CB-4 and CB-5, the stud spacing 

was kept at 400mm, with a variation in span and slab depth. Although these 

tests had a low shear connection capacity, both beams behaved in a ductile 

manner with stud failure occurring after the moment capacity of the 

composite beam was reached. 

4.5.2 Effect of Transverse Reinforcement 

Tests CB-1, CB-2 and CB-3 all had four core openings in each precast slab 

with a total of forty nine transverse bars placed along the 12m spanning 

beam, while Tests CB-4 and CB-5 had three core openings in each precast 

slab with a total of thirty one transverse bars placed along a 9m span for CB- 

4 and thirty seven bars placed along a 12m span for CB-5. In all tests there 

was no yielding of bars. The transverse bars which were gauged had a 

relatively small strain recorded, although the beam tests with additional 

transverse bars (CB-1, CB-2 and CB-3) had an increase in strain recorded, 

due to the shear load transfer between more reinforcing bars. There was also 
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an increase in strain realised on the bars placed behind the studs in the 

direction of bending acting against the slip of the shear studs. 

4.5.3 Effect of Precast Slab Depth 

The only difference between Tests CB-3 and CB-5 was the depth of precast 

slab, with CB-3 having 200mm deep slabs and CB-5 having 400mm slabs. 

The results show that using deeper slabs, a higher stiffness and moment 

capacity could be obtained. The deeper slabs induced higher strains into the 

studs and consequently stud failure in the composite connection may occur. 

4.6 Conclusions 

Five full scale bending tests were carried out and the experimental behaviour 

of each test is fully described in this chapter. Three modes of failure were 

observed in the shear connection: (1) Concrete crushing in the mid-span 

region of the beam, (2) Fracture of shear studs along the shear connection of 

the beam and (3) Combination of concrete crushing and stud failure. 

Composite beam tests conducted showed adequate moment capacity and 

stiffness is acquired from this form of construction. From the analysis of the 

test results, the following conclusions can be made: 

1. Composite beams with the neutral axis position in the concrete slab 

perform adequately in plastic design. 
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2. Three modes of failure occurred at the connection of the composite, 

either through concrete crushing and fracture of shear stud or both. 

3. Reduction of the shear connection provided a more ductile failure with 

small loss in the moment capacity of the composite beam. 

4. Designing using partial shear connection shows the shear connectors 

have control of failure mode, depending on concrete parameters. 

The results of these tests are used in Chapter 5, with an analytical study of 

the composite beam. The effective width is calculated and the composite 

moment is found and compared with test data. In Chapter 6 comparison is 

made with the design equations for this form of construction. 
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Chapter 5: Analytical Study 

5.1 Introduction 

In the previous chapter, the results of five simply supported composite beams 

subjected to bending were presented. The beams were subject to loading 

and the level of shear connection, slab depth and span was varied in the 

tests. From the beam tests carried out, partial shear connection design was 

found to be advantageous in terms of strength and ductility. 

The development of an analytical based model to study the behaviour of 

composite beams under bending moment is described herein. This simple 

model considers the concept of partial interaction, allowing for slip at the 

steel-concrete interface. The material properties of all main components were 

incorporated and the inherent equilibrium and compatibility principles were 

satisfied. The results from the analysis showed good agreement with the 

experimental results of the five composite beams tested. 

5.1.1 Background 

Composite beams designed with full shear connection (FSC) are defined as 

the strength of the shear stud connectors being greater than the fully yielded 

strength of the reinforcing steel. The definition of FSC also implies that the 

bending resistance of the composite beam would not increase even if 
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additional connectors are provided (Johnson and Molenstra 1991). Otherwise 

it is termed as partial shear connection (PSC), where the reinforcement is 

now partially stressed since it is governed by the strength of the shear 

connection. 

Shear stud connectors attach the concrete slab and steel beam together, and 

are important in the development of composite action for flexure and to 

distribute the significant longitudinal shear forces acting along the interface. 

The longitudinal shear forces are transmitted through the shear connectors 

and considering that the concrete was cracked in tension, the load transfer 

system was possible. This suggested that there were no detrimental effects 

to the behaviour of the shear connectors (Bradford et al 2003). 

One of the key objectives of the experimental study was to investigate the 

scope of using partial shear connection (PSC) design. The results from 

experiments have demonstrated that composite beams designed with low 

shear connection, up to as low as 25% possessed considerable ductility 

whilst maintaining high levels of moment resistance at ultimate. The failure 

mode of the beams was governed by concrete crushing and fracture of the 

shear stud connectors. This occurred after large deformations and presented 

a ductile mode of failure. 

This chapter is intended to complement the results obtained from the 

experimental work carried out, in order to study the behaviour of long span 

composite beams in bending. The formulation of an equilibrium based model 
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using the cross-sectional analysis to simulate the response of composite 

beams is described in this chapter. The model satisfies inherent equilibrium 

and compatibility principles and includes the material stress-strain properties 

of the main components. 

Rigid-plastic analysis is employed to determine the strength of the composite 

beam under bending at the ultimate load using the yielded strength of all 

materials. An implicit assumption in the analysis is that premature failure of 

the materials does not occur, either through local buckling of steel elements, 

failure of shear connectors and crushing of the concrete (Oehlers and 

Bradford 1995). The current methods in practice seem to have conservative 

predictions on the ultimate strength of the beams; hence an improvement 

was made based on observations from experimental and analytical results. 

5.2 Analytical Model 

The following section describes the formulation of the analytical model used 

to simulate composite beams subject to bending using cross-sectional 

analysis. 

5.2.1 Basic Assumptions 

The analytical model is two-dimensional and is based on the following 

assumptions: 

143 . 



Chapter 5: Analytical Study 

1. Plane sections remain plane for the entire cross-section under 

bending. 

2. No uplift or vertical separation occurs between the steel and the 

concrete slab. 

3. The strain distribution throughout the depth of the cross-section is 

linear, implying that there is one neutral axis in the cross-section. 

4. The strain and stress distributions do not vary across the width of the 

cross-section. 

5. The shear connectors are considered as discrete elements with 

uniform spacing of studs. The slip strain distribution of each stud is 

assumed to have linear distribution. 

6. The load-slip characteristics for the stud are based o experimental 

push test results. 

7. Concrete has some strength in tension based on existing experimental 

models. 

5.2.2 Equilibrium and Compatibility 

Figures 5.1 and 5.2 present a typical cross-sectional illustration of strain, 

stress, force and moment distribution at a cross-section of the composite 

beam in the linear elastic range, while Figure 5.3 shows the cross-section in 

the linear plastic range. The notation represents each of the force 

components in the concrete, flanges and web of the steel as illustrated. The 

following presents the two important conditions of equilibrium that were 

satisfied at all cross-sections of the beams. 
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Condition 1: Global Force Equilibrium 

This represents the force equilibrium condition of the entire cross-section of 

the beam, which implies that there is zero net axial force acting on the 

composite steel-concrete section. 

EF=0; 

where EF = Fc - Fif - Ft, - Fb,, - Fbf =0 (5.1) 

Condition 2: Global Moment Equilibrium 

This represents the moment equilibrium condition of the entire cross-section 

of the beam, with bending moment of each component taken from the 

position of the neutral axis. This implies that the applied external bending 

moment has to be equal to the internal moment of the composite section. 

EM=0; 

where EM = Fd, - Ftfdff - Fwdt, - Fbwdbw - Fbfdbf =0 (5.2) 

5.3 Material Constitutive Relationships 

The accuracy of the analysis depends strongly on the accuracy of the 

constitutive laws used to define the mechanical behaviour of the materials 

used in the composite beam. The general constitutive laws used to represent 

the stress-strain characteristics of the relevant materials and the 

characteristic load-slip of the shear stud connectors is described in the 

following section. 
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5.3.1 Concrete 

The effective width, Beff is defined in general to allow for none uniform 

distribution of stress due to shear lag. Figure 5.4a shows the typical 

horizontal longitudinal stress contours of the composite slab. Considering the 

cross-section A-A in Figure 5.4b, it is assumed that the concrete element is 

narrower such that the rectangular stress block of area Beff x an,.,, is equal to 

the area under the curvilinear stress block ax over the width I. This is 

equivalent to integrating the rigorously calculated horizontal longitudinal 

stress ax in the concrete slab over the width 1, and dividing by the peak value 

of the stress amax (Lam 1998). 

Hence 

fcdr 
Bef 

Q max 
(5.3) 

where br = half the transverse spans of the slab on the right of the 

steel beam. 

b, = half the transverse spans of the slab on the left of the 

steel beam. 

x= coordinate transverse to the centreline of the steel. 

It is still important to proportion the concrete element to incorporate the non- 

linear effects of shear lag. In simple T-beam theory, based primarily on the 

engineering assumption that plane sections remain plane after bending, the 

idealised T-beam consists of the steel element with a certain width of slab 

referred to as effective breadth that is stressed uniformly. 
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Chapter 5: Analytical Study 

For the force in concrete, the strain profile of the beam was calculated using 

strain gauges placed on the top and bottom flanges of the steel beam. Taking 

equilibrium of forces (Fs = Fc), the effective width was determined using the 

equation below: 

Fc = 0.67fcuBeffd 

where fc� = Strength of concrete 

Beff = Effective width 

d= depth of concrete from neutral axis 

(5.4) 

The calculation spreadsheets in Appendix B show the calculation of the 

effective width using the strain profile of the composite beams tested. Using 

the force in steel and calculating the force in concrete with the effective width 

gained from the analysis, the moment capacity of the tested beams were 

found. 

5.3.2 Steel 

Figure 5.5 shows the generalised stress-strain curves for the steel beam 

section. The values were obtained from material tests, details of which are 

reported in Chapter 3. 

Structural steel beams are generally hot-rolled sections, where their stress- 

strain behaviour is elastic for a certain region followed by a well defined yield 

plateau before developing strain hardening and plasticity. Simple linear lines 
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were deemed sufficiently accurate to represent the stress-strain relationship 

in both tension and compression. 

I. 2 Kr 

<1.. 

Stain 30a.. 

Figure 5.5: Stress-Strain model curve for structural steel 

5.3.3 Shear Stud Connectors 

The connectors most commonly used in composite beams are headed studs, 

as the 19mm diameter studs used in the experiments conducted. The 

presence of these connectors embedded in the concrete slab and welded to 

the steel flange provides the link that enables composite action between the 

slab and the steel beam. The shear connectors are not only responsible for 

transferring shear forces at the slab-beam interface but also function to 

prevent vertical separation at the interface. The behaviour of the composite 

beam is therefore highly dependent on the shear stud connectors, particularly 

the amount of connection provided. 
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Chapter 5: Analytical Study 

Due to the complexity of the dowel action, the strength and ductility of shear 

connectors are always determined experimentally. It is difficult to determine 

the behaviour of the shear connectors from composite beam tests. This is 

because the connectors are loaded indirectly from the flexural forces within 

the beam, and the force on a connector is not directly proportional to the load 

applied to the beam, but depends on the stiffness of various components of 

the composite beam (Lam 1998). Instead, the behaviour of the connectors is 

determined from push-off tests in which the connectors are loaded directly. 

Figure 5.6 shows the load-slip curve from push tests; details of push tests are 

described in Chapter 4. 

140 

120 

100 

i 80 

60 

40 

20 

01 0 1234S67 
Mean Slip (mm) 

Figure 5.6: Load-Slip curve of shear connector 

From the push test results in Chapter 4, the shear connector capacity was 

obtained and used to calculate the shear capacity of the connections for the 

conducted composite beam tests. 
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5.4 Failure Criteria 

Failure was considered to have occurred due to one of the following causes, 

a) crushing of concrete in compression, b) fracture of shear connection due 

to excessive slip, taken as the slip at 6mm as obtained from the push tests 

and c) fracture of structural steel, when ultimate strain is reached. 

The phenomenon of local buckling represents another failure mode which is 

critical for beams, where the beam flange buckles under high compressive 

stresses or strains. Due to the large size and stiffened web of steel beams 

used in experiments, the possibility of local buckling in the steel is reduced. 

Therefore failure was controlled predominately by the connection of the 

beam. 

5.5 Discussion of Results 

From the results of the tests conducted, the strain in the steel was 

established and the effective width of the composite beam is calculated. By 

using the force and moment equilibrium technique, the composite moment of 

the beam was gained and compared with the actual moment for all tests. The 

composite moment was calculated in the analysis using the following 

equations: 

For full shear connection: 

Mcomp = Fs 
D+ 

DS -Fx 
Rs 

(5.5) 
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For partial shear connection: 

2 D Fron 
_ 

Fs - Fýýný 
(5.6) MýomP = FS 2+ Fron x DS -FxD T 

2 
Ffi°"ge x4 

where Fs = Force in steel 

F,, = Force in concrete 

Fcon = Force of shear connection 

Fflange = Force in steel top flange 

D= depth of steel beam 

Ds = depth of concrete slab 

Table 5.1 shows the effective width (Baff), composite moment (Mcomp) and 

shear connection (SC) calculated from the analytical study. The values 

shown are when failure occurred in the beam. 

Equation 5.5 was used in the analysis of tests CB-1 and CB-2 due to their 

relatively high shear connection. From the calculations for Test CB-1, the 

composite moment calculated was slightly higher than the moments during 

the experiment. Although as the beam got closer to failure the moments 

calculated were almost identical to the experiment and the effective width 

was found to be U16. For Test CB-2 the composite moment calculated 

matched closely to the moments during the experiment and the effective 

width was found to be U13. 
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Chapter 5: Analytical Study 

Equation 5.6 was used in the analysis of tests CB-3, CB-4 and CB-5 due to 

their partial shear connection. In these tests the moment reached during 

testing was almost the same as the calculated composite moment. The 

effective widths found in these tests were U19, U10 and U9 for CB-3, CB-4 

and CB-5. 

5.6 Conclusions 

From the analytical study performed on the beam test results, it has been 

shown that long span composite beams with precast hollow-core slabs have 

a reduced effective width when designed with partial shear connection with 

little reduction in moment capacity. With the position of the neutral axis in the 

concrete of the composite beam, the failure mode was found to be ductile 

and is likely to occur in the connection. It was established that the effective 

width in these beams is much smaller than current design suggests. 

In Chapter 6 results from the analytical study was used to compare with 

current design equations to show favourable comparisons for the use of 

partial shear connection in long span composite beams with precast hollow- 

core slabs. 
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Chapter 6: Design of Composite Beam 

6.1 Introduction 

From the beam test results and analytical study carried out in previous 

chapters, the shear stud capacity, effective width and composite moment was 

determined. In this chapter, comparisons are made with design equations 

and the competence of the composite beam tests is revealed. By using the 

different design equations currently in use for this form of construction, 

evaluation of composite beams with the neutral axis in the concrete slab is 

made. 

6.2 Design of Effective Width 

For designing the effective width, there are currently three design equations 

available, as shown below: 

12 
bei = 

fs 
x 

0=4 
x 1000 + 300 (6.1) 

ff 

where: fcu = concrete cube strength of in-situ concrete (N/mm2) 

ft = effective tensile strength (N/mm2) 
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Equation 6.1 from Lam et al (2000) is derived from research conducted into 

composite beams with hollow-core slabs. It was the first equation proposed to 

calculate the effective width of such composite beams. 

bei_f. x 
32 xx f' 

x 1000 + 2.5g (6.2) 
40 500 460 

where: fcu = concrete cube strength of in-situ concrete (N/mm2) 

= diameter of reinforcement (mm2) 

fy = characteristic strength of reinforcement (N/mm2) 

g= gap between ends of precast slabs (mm) 

Equation 6.2 is modified in comparison to 6.1, with the inclusion of the 

diameter of reinforcement, characteristic strength of reinforcement and gap 

between ends of precast slabs. 

bei = (t6J xx 
300 

x 
40 

x 1000 + 2.5g (6.3) 
460 s f. 

where: 0= effective tensile strength (N/mm2) 

fy = characteristic strength of reinforcement (N/mm2) 

s= reinforcement bar spacing (mm) 

fcu = concrete cube strength of in-situ concrete (N/mm2) 

g= gap between ends of precast slabs (mm) 
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Chapter 6: Design of Composite Beam 

Equation 6.3 is the latest effective width equation modified by Bison Concrete 

Ltd. The equation is modified to take into account the reinforcement bar 

spacing in the concrete slabs. 

The effective width is calculated using the three equations for each of the 

composite beams tested. Table 6.1 shows effective widths calculated using 

the three equations for each beam test. From the calculations, it can be seen 

that equation 6.2 is the nearest match to the actual effective widths found for 

the beams tested. 

Test 

Beff1 

E n. 6.1 

Beff2 

E n. 6.2 

Beff3 

E n. 6.3 

Beff4 

EC 4 U4 
Beff from 

experiments 
mm mm mm mm mm 

CB-1 444 1087 1300 2925 732 U11 
CB-2 444 1087 1300 2925 909 U13 
CB-3 444 1087 1300 2925 528 U19 
CB-4 480 1087 1200 2250 909 U10 
CB-5 480 1087 1200 2925 1319 U9 

Table 6.1: Effective width calculation for each beam test 

6.3 Design of Shear Stud Capacity 

From the six push tests carried out using hollow-core slabs, the results 

corresponded well with the design equations shown below. 

PRD= 0.29a/32d 2x wf ̀P 
Ep 

(6.4) 
Yv 

i 
PR D= 0.8 fx (6.5) 
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where: a=0.2 (h/d + 1) < 1.0. 

/1 = gap width factor and is given as 0.5 (g/70 + 1) < 1.0, 

and g> 30mm (5mm aggregate + stud dia. + 5mm 

aggregate). 
A= transverse reinforcement factor (grade 460). 

d= diameter of headed shear stud. 

w= transverse joint factor = 0.5(w/600 +1) < 1.5. 

w= width of hcu. 

fop = average concrete cylinder strength = 0.8 x average cube 

strength of the insitu and precast concrete (N/mm2). 

E, p = average value of elastic modulus of the insitu and precast 

concrete (N/mm2). 

A,, = partial safety factor (normally taken as 1.25 at ultimate 

accordance to EC4. 

fu = ultimate tensile strength of the headed stud material. 

The slip measured in the beam test experiments with low shear connections 

agreed well with results gained from the push tests. For beams designed with 

partial shear connection, the ductility of the shear stud is an important issue. 

The parameters affecting the stud capacity are the transverse reinforcement, 

in-situ concrete, the gap between the slabs and the depth of slab. 
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6.4 Design of Composite Moment Capacity 

As mentioned in Chapter 5, the composite moments of each test were 

calculated in the analysis using the following equations: 

For full shear connection: 

Mcomp = Fs + Ds -FS (6.6) 

For partial shear connection: 

MýomP = FS 
D+ 

F' x Ds - 
F, 

o� 
DS 

_ 
(Fs 

- F��n)ix (T)] 
(6.7) 

2 F, 2 Ffange 4 

where Fs = Force in steel 

F, = Force in concrete 

Fc0 = Force of shear connection 

Fflange = Force in steel top flange 

D= depth of steel beam 

Ds = depth of concrete slab 

Using the Bison software for the design of composite beams, the conditions 

for each test (beam and slab sizes, span, loading points, number of studs 

and load at failure) were input into the program and the composite moment 

capacity of the section was found. The results from the program for CB-1, 

CB-2, CB-3, CB-4 and CB-5 are shown in Figures 6.1,6.2,6.3,6.4 and 6.5 
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and summarised in Table 6.2. The results corresponded well with the 

moments calculated for all tests. 

Test M,,.,, p from Experiments Myom from Bison Design 
(kNm) (kNm) 

CB-1 2091 2180 
CB-2 1418 1979 
CB-3 1681 1655 
CB-4 795 710 
CB-5 2001 2180 

Table 6.2: Composite moments from analysis and Bison software 

i CBl 11.700 

Shear Connectors ( Slab Deflexion Dead Deflexion I Imposed Deflexion 
oýcre 

Total Deflexion I Serviceability Stress Natural Fregeeicp Section Properties 
B 

Summary I Section Classification, I Moment I Vertical Shear Longitudinal Shear eB 

610005x238 ['B S275 Total No. of Shear Studs Req'd = 73 

omposite Moment Design C Partial Interaction (39 stads ) 

Reference Sub-Beam Appied Caperýy Urits Rmio swim 
Section Class Plastic 

Moment 2179.7 3029.3 kN. m 0.720 Pass 
Vertical Shear 775.9 1880.3 kN 0.413 Pass 
Longitudinal Shear 346.6 358.3 kN 0.967 Pass 
Shear Connectors 39 No. 

Slab Deflexion 4.0 58.5 mm 0.069 Pass 
Dead Deflexion 11.0 N.! A mm 
Super Deflexion 0.0 32.5 mm 0.000 Pass 

Total Deflexion 15.0 58.5 mm 0.257 Pass 
Serviceability Stress 168.4 265.0 Nisq. mm 0.635 Pass 

Natural Frequency 5.31 4.00 Hz 0.753 Pass 

IConstruction Stage - Steel Beam Design aanstactory 

(MM) 

100.0 

UB 

19 1.45 1 :1 

Design Constraints 

Construction Stage 

Figure 6.1: Design of composite beam using Bison software (CB-1) 
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r Connectors I Slab Deflexion Dead Deflexion I Imposed Deferioe I 
oýcn Deflezioe' Serviceability Stress Natural Frequency Section Properties 

ary 
I Section Classification I Moment I Vertical Shear Longitudinal Shear Betr 

I 610005c238 1B S27 Total No. of Shear Studs Req'd - ?3 

ostaposite Moment Design @ Partial Interaction (19 steds ) 

Reference Sub-Beam Applied Capacity Units Ratio Status 
Section Class Plastic 

Moment 1977.8 2611.6 kN. m 0.757 Pass 
Vertical Shear 704.1 1880.3 kN 0.374 Pass 
Lon®tudinal Shear 168.8 358.3 kN 0.471 Pass 
Shear Connectors 19 No. 

Slab Deflexion 4.0 58.5 mm 0.069 Pass 
Dead Deflexion 11.6 N/A am 
Super Deflexion 0.0 32.5 mm 0.000 Pass 

Total Deflexion 15.7 58.5 turn 0.268 Pass 
Serviceability Stress 153.2 265.0 N sq. mm 0.578 Pass 
Natural Frequency 5.13 4.00 Hz 0.780 Pass 

Construction Staue - Steel Beam Design Satisfactory 

ap 

Prd 

4 

no 

S. 175 

sauna vpuvoa 
Design Constraints 

Coestrectioe Stage 

(...... jm, l ,", I 'dl, 
Composite Stage (Partial) 

Figure 6.2: Design of composite beam using Bison software (CB-2) 

r Connectors I Slab Deflexion Dead Deflexion I Imposed Deflexion 

Deflexion I Serviceability Stress Natural Frequency Section Properties 

ary 
I Section Classification I Mosert I Vertical Shear Loagitudieal Shear 

610005x238 VB S275 Total \o. of Shear Studs Req'd ?3 

oaposite Moment Desip C Partial Interaction (15 steds ) 

Reference Sub-Beam Applied Capacity Units Ratio status 
Section Class Plastic 

Motet 1654.7 2499.1 kN. m 0.662 Pass 

Vial Shear 589.2 1880.3 kN 0.313 Pass 

Longitudinal Shear 133.0 358.3 kN 0.371 Pass 
Shear Connectors 15 No. 

Slab Deflexion 4.0 58.5 mm 0.069 Pass 
Dead Deflexion 9.9 NA mm 

Super Deflexion 0.0 32.5 mm 0.000 Pass 

Total Deflexion 13.9 58.5 mm 0.238 Pass 

Serviceability Stress 129.1 265.0 N/sq. mm 0.487 Pass 
Natural Frequency 5.50 4.00 Hz 0.727 Pass 

onstruction Staue - Steel Beam Design Satisfac tory 

o, crete Gap (mm) 80 

Beff Prd No. of Studs 
(°°) (kN) Fill artig 

1449 100.0 49 115 

S275 

Design Constraints 

Construction Stage 

f'wiljin"lti" lI nlll 
Composite Stage (Partial) 

Figure 6.3: Design of composite beam using Bison software (CB-3) 
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Shear Connectors I Slab Deflexion Dead Deflexion I Imposed Deflexion 

Total Deflexion I Serviceability- Stress Natural Frequency Section Properties 

Summary I Section Classification I Moment I Vertical Shear Longitudinal Shear 

457x191x89 LB S275 Total No. of Shear Studs Req'd = 34 

osposite Moment Desip @ Partial Interaction (11 st. ds ) 

Reference Snb-Bean Applied Capacity Units Ratio Status 
Section Class Plastic 

Moment 709.6 828.9 kN. m 0.856 Pass 
Vertical Shear 245.4 781.5 kN 0.314 Pass 
Longitudinal Shear 97.8 358.3 kN 0.273 Pass 
Shear Connectors 11 No. 

Slab Deflexion 5.7 45.0 mm 0.126 Pass 
Dead Deflexion 7.1 NA mm 
Super Deflexion 0.0 25.0 mm 0.000 Pass 

Total Deflexion 12.8 45.0 stun 0.284 Pass 

Ser6ceabt7ity Stress 176.9 265.0 N'sq. mm 0.667 Pass 
Natural Frequency 3.82 4.00 Hz 1.048 Fail 

Construction Stage - Steel Beam Design Satisfactory- 
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t'nu; pn>üýi.: r il nlll 
Composite Stage (Partial) 

Figure 6.4: Design of composite beam using Bison software (CB-4) 

ii :. CBS MPfMlFj 

Shear Connectors I Slab Deflexion Dead Deflexion I Imposed Deflexion 

Total Deflexion I Serviceability Stress Natural Frequency Section Properties 

Summary I Section Classification I Moment I Vertical Shear Longitudinal Shear 

11, [-B S2" Total No. of Shear Studs Req'd - ?3 

omposite Moment Design @ Partial Interaction (15 studs ) 

Reference Sub-Beam Applied Capacity Units Ratio Status 
Section Class Plastic 

Moment 2179.7 2499.1 kN. m 0.872 Pass 
Vertical Shear 775.9 1880.3 kN 0.413 Pass 

Longitudinal Shear 133.3 358.3 kN 0.372 Pass 
Shear Connectors 15 No. 

Slab Deflexion 4.0 58.5 mm 0.069 Pass 
Dead Deflexion 13.2 NA mm 

Super Deflexion 0.0 32.5 mm 0.000 Pass 
Total Deflexion 17.3 58.5 mm 0.296 Pass 

Serviceability Stress 168.4 265.0 N sq. mm 0.635 Pass 
Natural Frequency 4.81 4.00 Hz 0.832 Pass 

Construction Stage - Steel Beam Design Satisfac tory 

Beff 
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Forces and Moments 

Figure 6.5: Design of composite beam using Bison software (CB-5) 
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6.5 Conclusion 

The main objective of this research is to investigate the behaviour of 

composite beams with partial shear connection. A comparison was made of 

the beam test results with the design equations and the Bison software. 

Calculating the effective width and shear stud capacity using the design 

equations confirm that the composite beam tests behaved adequately. By 

using the Bison software for the design of composite beams, it is shown that 

the design of the beams were in good agreement with test results. 
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Chapter 7: Conclusion and Future Work 

7.1 Conclusions from Research Work 

The behaviour of long span composite beams with precast hollow-core slabs 

has been investigated by a combination of experimental and analytical study, 

and the following conclusions can be extracted from this research: 

1. Long span composite beams with precast hollow-core slabs behave 

similarly to short span beams of the same composite construction. 

2. Long span composite beams designed with partial shear connection 

showed similar behaviour with full shear connection beams, with only 

a slight reduction in ultimate strength. 

3. The effective width of long span composite beams was found to be 

smaller than current design suggests. 

4. Long span composite beams with partial shear connection and the 

position of neutral axis in the concrete slab had no premature failure. 

5. Three modes of failure occurred at the connection of the composite 

beam, either through concrete crushing and fracture of shear stud or 

both. 
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6. Reduction of the shear connection provided a more ductile failure with 

little loss in the moment capacity of the composite beam. 

7. Increasing the slab depth will increase the moment capacity of the 

composite beam. 

8. Shear connectors have control of the failure mode in long span 

composite beams using partial shear connection. 

7.2 Proposed Future Work 

Further work needed for a complete understanding of long span composite 

beams with hollow-core slabs is as follows: 

1. To study the behaviour of long span composite beams with semi-rigid 

connections. 

2. To establish a finite element model of long span composite beams, so 

parametric studies can be carried out. 

3. Further research is required into the behaviour of the whole frame of 

buildings using composite construction. 
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Steel Beam and Slab Specification Drawings 
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TECHNICAL INFORMATION SHEET SHEET 330/200 REV. a 
44pk 

1200 x 200 DEEP P/S UNIT DATE AUGUST 1995 

BISON TENSYLAND SECTION 2Hr. FIRE 

ýw_ 

ot t 

. 6. I 85 11 85 11 36 

1166 

10x10 

N 
tr 

I- 

10 

.. 
60.5 60.5 60.5 

N A 

12.5 12.5 

113 121 121 121 121 121 121 121 121 113 

1194 

R20 

Ih 112.511 i 
12.5 

I ýý 

I 



*hk TECHNICAL INFORMATION SHEET SHEET 321/13 REV. A 

STANDARD FLOORING & ROOFING DATE March 2002 

BISON TENSYLAND UNITS END SLOTS 

ii ii 

_I I 

ii ii iý iilIý ii ii ýi 

600 1 600 
1 11 11 11 11'11 11 11 11 1 
111111111111111111 
111111111111111111 
111111111111111111 
111111111111111111 

ESI 

t 

230 370 370 230 

ES3 

11 
11 11 

t1 
II 

II1 
11 tl 

1I 
1I 

1I111 
11 I11 

11 
III 

1 11 1I11 
1I 

11 
1It 

1 

111 11 
t 

1I1 

1i1 
1 oil 
11 

1 
11 

11 1 
11 11 

I 
I 

1II 
1tI 

I11I 
I1 11 1 

1 
1 

tt1 
1II 

11 1 11 1I 
11 111 

11 
11 11 

II11 11111 11 11 

350 500 350 
IIIIIIIIIIIIII1II 
1IIItIIItIIIIIIt1 
11 II 11 II II 11 II II I 

ES2 

240 240 240 240 240 

III to 11*101 fill 

ES4 

STANDARD END SLOTS FOR 150 - 250 DEEP TENSYLAND UNITS 

40 
tI 

ZTop concrete compacted 
into core space over length of slots. 

: 'r 
O NB. Concrete to be removed from core Where composite 

steel beam design is used in conjunction With a sound or 
other hottoWcore stab. 

DETAIL OF LIMITED END SLOTS 
AVAILABLE WITH SOUND SLABS 

ALL SLOTS ARE 500mm LONG. 
ANY OTHER FORM QF E. S. END TO BE ORDERED AS ES. SP. 

Xref tim 



TECHNICAL INFORMATION SHEET SHEET 321/10 REV. E 

SPECIAL ENDS & SIDE POCKETS DATEMarch 2002 

B ISON TENSYLAND UNITS 150- 250 mm DEEP 

Stab schedule dinensio 

Open enc 

I 
mm Nib 

SQ. (Square End) 

235 Dry cast fill 
is not suitable 
for composite 

compression 
flange 

(Surplus material at end of voids 
may appear thus) 

AN. (A. Notch) 
(Not applicable to less than 150 deep) 

85 

EN. (E Notch) 

ENSI 
E Notch plus 1no. slot 
ENS2 
E Notch plus 2no. slots etc. 

(See 321/12) 

Slab schedule dinensio 

TS. (Trimmed Square) 
/Trim 

oFF 
shaded area 

Closed ends 
To be avoided where possible. 
If they must be provided, it must 
be appreciated that the concrete 
is not compacted. 

See T. I. SHEET 321/11 regarding 
Weep Holes in Tensyland slabs 

Xref tim 

500 x 50 Wide 
Min. slots 

Edge voids 
filled solid. 

Cavity fill 
CD 
U) 

Note top concrete compacted into 
soffit over slot length. 
(See 321/12 & /13 for slot ctrs. )I 

ribs cores L 
100 

ou 
a 0 

CD 
CD 

(IV 

PLAN Top removed after casting 

to expose cavities 
20 $ cover 

-T w 0 (3.., 

SECTION 1 1oI P8 loop 
to be concreted in 

SP. (Side pocket) on site 
In Wallframe construction the size of 
the loop bar must be designed to 
pass round the lifter/leveller at the 
appropriate centres. 
Handling stresses in reduced width 
slabs over 4m long should be checked 
and any special instructions issued. 



Appendix B 
Calculations for Chapter 5 (Analytical Study) 
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ABSTRACT 

Experiments of long span composite beams are presented in this paper. The composite 
beam consists of I-section steel beams with circular web openings and precast concrete 
hollow-core slabs. The beam test specimen is setup as simply supported, to investigate 
the behaviour of the composite construction. The evaluation of test results will cover the 
behaviour of the specimen observed during the tests, and also the performance and 
behaviour of all composite components (precast hollow-core slab, transverse reinforcing 
bars, shear stud connector and the steel beam with web openings). In addition to a 
comparison and appraisal of the test results, the various parameters that influence the 
behaviour and modes of failure of the composite beams are discussed. 

1. INTRODUCTION 

The use of long span composite beams in multi-storey buildings is common nowadays. 
By using long span steel beams with precast hollow-core slabs, fewer columns are needed 
in a building therefore allowing for column free space. Web openings in the steel beams 
are useful for passing utilities (sprinkler pipes and air-conditioning ducts etc. ) through, 
and also the reduction in building height can provide major cost savings. These savings 
include; saving on cladding costs, fewer columns leading to faster speed of erection and 
reduction in number of columns and their foundations. 

The conventional steel beams with web openings are known as cellular or castellated 
beams, they are manufactured by using a solid steel beam and burning along the web to 
form openings in the web. While Fabsec beams are fabricated differently to cellular 
beams, they are fabricated by automatic welding of profiled steel plates used to form the 
flanges and web of the section, i. e. the web of the beam has the openings cut into it, and 
then the flanges are welded to the web to form the I-section beam. In the majority of 
these structures, the concrete slab is designed to act non-compositely with the steel. 
During the past decade the design techniques for openings in composite beams with 
metal decks flooring have reached a level of maturity. [1] 

Precast concrete hollow-core slabs may be designed to act compositely with steel beams. 
The slabs are produced with regular circular or elongated cores. The use of precast 
concrete hollow-core slabs in composite construction uses the same principle as metal 
decks flooring, but without the need of pouring the concrete floor. The slabs are cast in 



the factory, and can be placed directly on site. The only in-situ concrete needed is to cast 
the joint between the steel beam, precast slab and transverse reinforcement. (Figure 1) 

In-situ concrete infill Square end precast / hollow-core slabs 

Opened core 

Transverse 
reinforcement 

Fabsec steel beam with pre-welded 
shear studs 

Figure 1: Composite Beam with Precast Hollow-Core Slabs 

Composite steel beams with precast concrete hollow-core slabs, as shown in Figure 1 are 
commonly used in long span multi-storey steel framed buildings. The slabs are placed on 
the top flanges of universal beams (UBs). The main advantages of this form of 
construction are that precast concrete slabs can span up to 15m without propping and the 
erection of 1.2m wide precast concrete units is simple and quick. Shear studs are pre 
welded onto beams before delivery to site, thereby offering the savings associated with 
shorter construction time. [2] 

The hollow-core slabs have longitudinal voids for the placement of transverse 
reinforcement bars. The slabs depth ranges from 150 to 400mm, with the performance 
limited to a maximum span/depth ratio of around 50, although 35 is more usual for office 
loading conditions. The horizontal compressive forces are transferred through the slab 
and joint between the units being filled with in-situ concrete (Figure 1). The compressive 
strength of the infill may vary from 20-40N/mm2, although 30N/mm2 is normally used in 
design. [2] 

Experimental tests [3], together with a parametric study conducted by Lam et al. found 
that an increase in transverse reinforcement significantly increases the moment capacity 
but, as ductility is reduced, a brittle failure of the composite beam is found due to 
crushing failure of the concrete slab. In addition, increases in slab thickness lead to 
increases in moment capacity, though slab failure might occur due to direct tensile force 
in the slab. [4] 

The advantages of long span composite beams are the increased moment capacity and 
stiffness with shallower floor depths. Research conducted show that the use of hollow- 
core slabs with steel beams is as competent as metal decking used with steel beams for 
multi-storey buildings. The concept of using steel beams with web openings and precast 
hollow-core slabs have potential benefits in the design of multi-storey buildings. 



This paper presents the experimental results obtained from tests done on two 12m full 
scale composite beam specimens. Fabsec steel beans are used with Bison precast 
concrete slabs. The only difference in the beam specimens is the shear connection (shcar 
studs on the steel beam), where Beam I (CB-I ) has shear studs at I50mm spacing and at 
300mm spacing for Ream 2 (CB-2). 

2. SPECIMEN AND TEST SETUP 

The beam designs are based on a multi-storey composite frame building, which are 
commonly constructed in the UK. Office loading was assumed according to the British 
Standard BS5950, with live load taken as 5. OkN/nr and the superimposed dead load 
taken as I. 5kN/m2. The design of the steel beams with web openings was based on SCI 
Publication [5]. The SCI design guide gave the size of beam as 610x305x238 with 
400mm web openings for a castellated steel beam. Using the beam site from the 
castellated beam design, the steel beams were specified ti)r fabrication by I absec Ltd. 
The equivalent steel beams fabricated were 640x300 Fabsec steel beams with 20mm výeh 
and 30mm flange thickness, with varying shear connection consisting of a single row of 
19mm diameter headed shear studs pre-welded to the top flange of' the steel beam. The 

precast hollow-core concrete slabs were 200mm in depth and are used fier both test 
specimens. 

2.1 TEST ARRANGEMENT 

The test arrangement of the composite beam comprised of a 121n 640x300 Fabsec heam 
with 400mm diameter web openings together with twenty 200mm deep x I200mm wide 
precast slabs. The slabs are connected through I25x I9mm shear studs placed along the 
füll length of the beams. The beam is loaded at tour symmetrical points over in I 1.7m 
simply supported span, as shown in Figure 2. The only ditfcrences hetNýeen the 
specimens are the shear connection and in-situ concrete strength. 

Precast hollow-core 
II Shear studs slab ,, 

640x300 Fabsec beam 

1500mm 3000mm 3000mm 3000+mi 1500mm 

Figure 2: Composite beam specimen test arrangement 

The precast hollow-core slabs are placed on to the top flange of the steel beam, ten slabs 
on either side of the beam. The slabs are 1600mm wide and 1200mm long. In addition. a 
total of forty nine I6mm diameter (TI6) by I I00mm long transverse rein fi rcement bars 



are placed across the 600mm slots in the slabs. The 80mm gap between the slabs and the 
slots for the transverse bars are filled with in-situ concrete. The in-situ concrete had a 
slump of 80mm (workability), so the concrete could flow into the gaps between the steel 
beam and slab to form the composite connection as shown in Figure 3 and 4. 

The main components of the test rig consist of four 500kN hydraulic loading jacks. A 
single electrical pump was used for all the jacks, so loading was applied simultaneously 
to the composite beam. To improve distribution of load, a 300000mm square steel plate 
was placed between the hydraulic jacks and precast concrete surface. The details of the 
test specimens are shown in Table 1. 

Figure 3: Composite beam specimen betöre casting 

Figure 4: Composite beam specimen after casting 



Beam Specimen In-situ concrete Stud spacing Beam Span Slab depth 
cube strength (mm) (m) (mm) 

(N/mm) 

CBI 48 150 12 200 
CB2 30 300 12 200 

Table 1: Composite beam specimen tests 

2.2 INSTRUMENTATION 

Electrical resistance strain gauges were used to measure strain; on shear studs, the top 
and bottom of the beam flange, around the centre opening of the beam (Figure 5), and at 
the centre of transverse reinforcing bars. Linear voltage displacement transducers 
(LVDTs) were used to measure the slip between the concrete slab and steel beam, as well 
as bending deflection. A total of thirteen LVDT's were used on each test, with eight 
LVDT's placed at the interface of the steel/concrete and five LVDT's placed at the top of 
the bottom flange of the steel beam to measure the vertical deflection. Load is applied 
simultaneously until the mode of failure was reached. All the data from the 
instrumentation are recorded into the data logger. 

3. TEST RESULTS 

The results of the composite beam tests are given in Table 2 and the moment vs. 
deflection curves are given in Figure 6, where the increases in moment capacity and 
flexural stiffness of the composite beam compared to the bare steel UB are shown. 

The elastic neutral axis of the composite beam is normally designed to lie closely to the 
interface between the steel and concrete. As the moment is increased, the concrete flange 

of the composite beam begins to reach the ultimate compressive stress and the position of 

I figure i: Location of strain gauges 



width of a simply supported beam to be 114. This was not the case in either of the 
composite beam specimens, where the effective width of CB-1 was found to be closer to 
115 and 117 for CB-2. It would suggest that the effective width is governed not only by 
the span of the beam but also other parameters for this type of composite construction. 

4. CONCLUSIONS 

After conducting two long span composite beam tests, it has been shown that precast 
hollow-core slabs can be used compositely with steel beams. The composite beam has an 
increase in both flexural strength and stiffness. The only extra costs with these composite 
beams are the welding of shear studs on to the steel beam. 

From the effective width calculations, it can be seen that the design of long span 
composite beams can be further utilised by considering the reduction in the effective 
width of the beam. The failure mode of the beams were found to be ductile and can be 
controlled by the shear stud spacing, in-situ concrete infill for the composite connection 
and the quantity of transverse bars. A further four composite beams are to be tested, with 
varying span, shear connection and slab depth. 
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the neutral axis moves towards the steel web. When the stress of the slab reached 
approximately 0.67fc,,, cracking and then spoiling of the concrete began and the ultimate 
strength of the section was then fully reached. As the moment is further increased, the 
load carried by the composite beam remains approximately constant and then crushing of 
the concrete slab occurred. The failure in tests CB-l and 2 was due to the crushing of 
concrete in the hollow-core slabs. 

Test Max. Load Deflection at Max. Mmt Max. Max. Failure 

specimen in Test Max. Load in Test recorded slip recorded Mode 
(kN) mm kNm (LHS) slip (RHS) 

CB-I 400 85 2400 4.6 4.2 CC 
CB-2 367 131 2200 4.5 3.7 CC 

CC - concrete crushing 
Table 2: Beam test results 
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Figure 6: Moment vs. mid-span deflection curves 

In test CB-1, the first cracks were observed at an applied moment of 144OkNm. This 
moment is about 0.58 times the ultimate moment capacity of the composite beam and 
may be taken as working load. The cracking caused the neutral axis to move downwards 
into the web of the steel beam (Figure 8), which resulted in further cracking in the precast 
slab. The deformation of the beam remained linear up to 1500kNm, when tensile cracks 
were observed on the underside of the hollow-core slabs. At the applied moment of 
204OkNm, excessive cracking in the concrete slabs around the mid-span region of the test 
specimen was seen. Sudden failure occurred at a moment of 2280kNm, this was due to 
crushing of concrete around the shear studs in the mid-span region (Figure 7). 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 
Deflection (mm) 



In test CB-2, hairline cracks between the in-situ concrete and precast slabs were observed 
before testing was started. The deformation was linear up to 900kNm, where further 
cracks between the in-situ concrete and precast slabs were observed. The reduced shear 
connection caused the neutral axis to be in the steel beam, indicating a reduced effective 
width of the concrete slab. The position of the neutral axis moved from 90mm to 190mm 
below the steel/concrete interface (Figure 8), which suggest further reduction of the 
effective concrete section. At an ultimate moment of 2150kNm, which was 5% less than 
reached in test CB-l, crushing of the concrete in the mid-span region occurred and 
spoiling of concrete from the precast slab was observed. Due to the partial shear 
connection of CB-2, the beam was found to be more ductile under bending. 
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Figure 8: Position of neutral axis 

Using the data obtained from the strain gauges placed on the top and bottom flanges and 
around the centre opening of the steel beam, the strain profile for the beam was found. 
From the calculations, the effective width of the composite specimen CB-1 and CB-2 was 
found to be 2600mm and 1700mm respectively. Current design codes take the effective 

i-ure 7: Concrete crushing from CB-1 


