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Abstract

The Nanoparticle Tracking Analysis (NTA) is a method used to estimate the nanopar-

ticle size distribution from their Brownian motion in suspension tracked using multi-

ple images of the particles and the calculation of their hydrodynamic radii using the

mean squared displacement data and the Einstein-Stokes equation. However, the dis-

tributions obtained by this conventional approach of NTA are usually broader because

of the inability of NTA to track the particles over a large number of frames. To over-

come this undesirable effect, a statistical parameter estimation method, Maximum Like-

lihood Estimation is implemented which takes into account the number of steps for each

track along with the mean squared displacement values. To test the applicability of this

method on the various particle size distributions profiles, the computer simulations are

used to generate the different sets of random mean squared displacement and particle

steps values by which it is possible to simulate the different experimental scenarios and

obtain the different particle size distributions. The distributions obtained by the MLE

are compared with the distributions obtained by the conventional method and by the use

of Gaussian fitting, the distribution widths are also compared. Further, the application of

this MLE method is tested on the actual experimental data obtained by the NTA system

on the TiO2 sample.

Keywords— Brownian Motion - Nanoparticle Tracking Analysis - Maximum likelihood

Estimation
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1 | Introduction

According to the European commission’s recommendation [1], the definition of a

nanomaterial is -

"A natural, incidental or manufactured material containing particles, in an un-

bound state or as an aggregate or as an agglomerate and where, for 50 % or more

of the particles in the number size distribution, one or more external dimensions

is in the size range 1 nm - 100 nm."

The nanomaterials or nanoparticles can be manufactured according to the spe-

cific role (which are called ENP’s or Engineered Nanoparticles). Hence, the us-

age of nanomaterials spans across various industries from medicine, mechanical

industries, electronics to environmental preservation, air purification and energy

harvesting [2].

The bulk materials (the materials which do not have nano dimensions) have con-

stant physical properties regardless of the size but the properties of the same mate-

rials change as their size approaches the nanoscale and as the percentage of atoms

at the surface of a material becomes significant. Many physical and chemical

properties of nanomaterials or nanoparticles are size-dependent for example, the

colour of colloidal gold nanoparticles are dependent on their size and shape [3].

Also, many technological and industrial processes involving colloidal nanoparti-

cles are largely dependent on particle size for example, nanoparticle-based drug

delivery [4]. Therefore, the effect of particle size distribution products and pro-

cesses can be critical to the success of many manufacturing businesses. The size

distribution may reveal for example that there are aggregates present in the solu-

tion [5].

There is a diverse range of nanoparticle size measurement techniques available

1



CHAPTER 1. INTRODUCTION

and each technique makes use of different analytical methods for particle size

measurement. For example, SAXS (Small-Angle X-ray Scattering) determines

the size distribution by measuring the intensities of X-rays scattered by a sample

as a function of scattering angle. Some techniques measure the actual physical

size of the nanoparticle i.e. the actual material interface and some techniques

measure the hydrodynamic size of the nanoparticle i.e. they measure the size

of the water layer attached to the particle along with the actual material interface.

Table 1.1 gives an overview of the size range of different particle sizing techniques

and how different technique uses different particle sizing methods.

Particle Size Mea-
surement Technique

Size
Range(µm)

Size Type Type of
Quantity

Microscopy- Length/ Shape/
Structure

Number

Scanning Electron
Microscopy (SEM)

0.01-500

Transmission Electron
Microscopy (TEM)

0.001-5

Dynamic Light Scat-
tering (DLS)

0.005-1 Hydro-dynamic Scatter
Intensity

Nanoparticle Tracking
Analysis(NTA)

0.01-1 Hydro-dynamic Number

Atomic Force Mi-
croscopy (AFM)

0.1-8 Length / Shape /
Structure

Number

Small-Angled X-Ray
Scattering (SAXS)

0.003-0.3 Scattering Cross-
section

Model

Table 1.1: Comparison of some of the particle sizing techniques
[6]

Although Electron Microscopy techniques especially Transmission Electron Mi-

croscopy (TEM), is considered as "Gold-Standard" for the particle size measure-

Page 2



CHAPTER 1. INTRODUCTION

ment [7], the most common techniques for sizing colloidal particles are light scat-

tering techniques due to their relative simplicity and the existence of many com-

mercially available instruments.

The most widely used particle size measurement technique which uses light scat-

tering to determine particle size distribution is Dynamic Light Scattering (DLS)

or Photon Correlation Spectroscopy. It works on the principle of the Brownian

motion of nanoparticles in the suspension. Brownian motion is the random move-

ment of particles occurring due to the constant collision of particles with the sol-

vent molecules. If you know all the other parameters such as the viscosity of the

solvent and the sample temperature then you can determine the hydrodynamic

radius of that particle by measuring the diffusion of the particle. The relation be-

tween these quantities is given by the Einstein-Stokes equation 1.1. A detailed

explanation of the physics of the Brownian motion has been given in section 2.1.

D =
kβT

6πηr
(1.1)

where,

D- Diffusion constant[m2/s]-used to calculate the diffusion speed,

kβ- Boltzmann constant[m2.kg/Ks2],

T - Temperature of the solvent[K],

η- Viscosity[Pa.s],

r- Hydrodynamic radius[m2/s].

The diffusion speed of the particle is determined by measuring the rate at which

the intensity of the scattered light fluctuates using an autocorrelator. The size

distribution obtained is a plot of the relative intensity of light scattered by particles

of different sizes and is therefore known as an intensity-weighted size distribution

[9]. DLS is a very useful technique for the rapid, low-cost characterisation of
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Schematic of typical DLS experimental configuration. Diagram deduced
from [8].

monodisperse and spherical particles. However, in the case of polydisperse or

non-spherical particles, this technique is ill-suited because of the strong bias of the

DLS technique towards the largest particles present in the sample as demonstrated

by Filipe et al. [10] and Maguire et al. [11]. This bias comes from the fact that

the measured particle size is dependent on the light scattered by that particular

particle. This particle size dependence of light scattering is explained more clearly

in the next chapter in subsection 2.2.2. Also, DLS is an ensemble technique i.e. it

is not capable of single-particle tracking [12].

Particle Tracking Analysis (PTA) widely known as Nanoparticle Tracking Anal-

ysis (NTA) is a similar technique that also uses the principle of Brownian motion

for particle size determination. The only difference is that in NTA light scattered

by the particles are captured by using a CCD or CMOS camera and the Mean
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Squared Displacement (MSD) is determined by locating the same particle in each

frame of the video. (The detailed explanation of how NTA measures particle size

is given in the section 2.2). NTA is the only commercial technique available for

visualising and measuring the number concentration of particles directly. Due to

the instrumentation and optical setup, NTA is capable of single-particle tracking

and offers better size resolution than DLS for the highly polydispersed samples

[10], [13]–[16]. One other advantage of NTA is unlike DLS which gives intensity-

weighted size distribution, NTA gives number-weighted size distribution which is

less sensitive to the variation of particle size in the distribution [17].

Despite all of these advantages, NTA has its own shortcomings such as limited

concentration range, low reproducibility [10]. The focus of this research is on one

particular weakness of the NTA system, the errors in the particle size distribution

profile appearing due to the particle tracking approach of the system.

For the measurement of particle size, NTA calculates the particle’s mean squared

displacement value and as Brownian motion is a random process, it should be

calculated for the very large number of frames (ideally infinite number of frames)

to get an accurate estimate of the mean-squared displacement. This is not possible

due to several difficulties such as the tendency of the particles to diffuse out of the

camera’s focal volume or the difficulty in the association of intensity peaks to the

particles if two particles come very close together during tracking [18]. Hence

in the current NTA, size distribution is only obtained after tracking individual

particles for very small number of finite steps. As the particles are tracked for

only a small number of finite steps, there will be statistical errors in each of the

size estimates. This generally gives a broader size distribution estimate than actual

size distribution [19], [20].

To overcome this difficulty, the alternative data processing method based on the

Page 5



CHAPTER 1. INTRODUCTION

Maximum Likelihood Estimation given by J. Walker [18] has been explored in

this thesis. In the current NTA system, to get the particle size distribution data

only mean squared displacement data is used for the particle size distribution his-

togram. It does not make use of the other data which is readily available and can

be critical in the accuracy of the size distribution, the number of steps (number

of frames) for which particle is being tracked. The data processing method de-

scribed in this thesis uses the Maximum Likelihood principle [21] and Walker’s

MLE algorithm [18] which not only makes use of the mean-squared displacement

data but also the number of steps data for each particle and attempts to recover the

original size distribution. The Brownian Motion simulation is done to compare the

outputs of the new method with the original method as by using the simulations it

was possible to imitate the different experimental scenarios more easily. Further,

experimental results are also presented where this MLE algorithm is applied on

the actual particle size distribution obtained from the NTA system for the TiO2

sample.

The remainder of this thesis is organised as follows:

Chapter 2 gives the theoretical background behind the concepts appearing

in the thesis such as Physics of Brownian Motion, Detailed description of

the working of NTA system, Particle tracking softwares and detailed de-

scription of input parameters used, and Maximum Likelihood Estimation.

Chapter 3 describes the approach adopted in this research and the details of

the data processing method used for the Maximum Likelihood Estimation.

Chapter 4 is based on the results of the comparison of different size distri-

butions with different parameters and Brownian motion simulation results

along with the size distribution profiles obtained with the maximum likeli-

hood estimation.
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CHAPTER 1. INTRODUCTION

Chapter 5 demonstrates the application of the MLE program to the experi-

mental data obtained with NTA for the TiO2 sample.

Chapter 6 describes the overall summary of the result and discusses the

future scope of work in the improvement of the particle size distribution

profile.
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2 | Theoretical Background

2.1 Physics of Brownian Motion

The first detailed description for the Brownian motion was given by Robert Brown

by studying the rapid oscillatory motion of pollen grains in aqueous suspension

[22]. Following Brown’s work, there were many theories about the cause of the

phenomenon such as Gouy’s demonstration of Brownian motion being a funda-

mental property of the matter before Einstein developed conclusive mathematical

evidence for the random thermal motion of particles in a suspension due to diffu-

sional motion [23]–[25]. The results that Einstein got were particularly of interest

because further Smoluchowski and Langevin also managed to get the same math-

ematical results by different methods [26], [27]. The experimental proof of this

theory was further given by Jean Perrin [28], [29].

According to Einstein, if a particle in a fluid without friction collides with another

molecule randomly, then there is a change in the velocity of the molecule. But,

if the fluid is very viscous, there will be a quick dissipation of the velocity and

the net result will be a random change in the displacement of the particle. This

process keeps repeating. So if we look at the overall motion, the particle is per-

forming irregular motion where nothing can be predicted about the next step. The

only thing we can predict is the probability of the particle covering a particular

distance in time t. Because of the randomness of this motion, it is called a ‘ran-

dom walk’ and in our case of Brownian particles, the steps of the walk are caused

by molecular collisions.

Einstein further derived the expression for mean square displacement of particle

utilizing Fokker-Planck equation (Fokker-Planck equation is a partial differential
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CHAPTER 2. THEORETICAL BACKGROUND

equation and gives time evolution of probability density function of particle veloc-

ity under the influence of random forces [30]). To derive this equation, he made

the following assumptions:

1) The motion of an individual particle is independent of all other particles.

2) Considering a large time interval, the motion of a particle at any particular

instant is independent of that particle in any other instance. [23]

Einstein’s method for the derivation of the mean-squared displacement expression

can be given as follows:

We introduce a time interval τ which is very small if compared to the time in-

terval t over which the whole system is observed, but large enough such that the

observed particle motion during two consecutive time intervals τ can be consid-

ered as a mutually independent event as stated in the second assumption above.

Suppose there are f particles per unit volume between x and x + dx at a time t

(We are considering only one dimension here for simplicity. The result can be gen-

eralized to any higher dimension by projecting motion onto all one-dimensional

orthogonal dimensions). After time interval τ that we have introduced earlier, we

will consider exactly similar spatial element at the point x∗. We also consider

that, the probability of particles entering from the neighboring spatial element is

a function of only spatial distance x∗ − x and the time difference τ between the

successive observations. Let’s say this probability function is ϕ(x∗ − x, τ). This

also includes the case if particles were in x∗ if we set x∗ − x = 0. Here, ϕ is

the transition probability. Transition probability is the probability of jump from

one point to another point and f(x, t) is the probability density that a Brownian

particle is at x at time t [31], [32]. As particles need to come from some spatial
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element, the density will be given as

f(x∗, t+ τ) =

ˆ ∞

−∞
f(x, t)ϕ(x∗ − x, τ)dx (2.1)

The above equation is a special form of the Chapman-Kolmogorov equation or

Master equation [31] which usually describes the time evolution of the probability

for Markov processes.

Let’s say the displacement is X = x− x∗ and the x∗ is constant therefore, dX =

dx. and then, the equation 2.1 becomes

f(x∗, t+ τ) =

ˆ ∞

−∞
f(x∗ +X, t)ϕ(X, τ)dX

As Brownian particle has no memory, positive and negative displacements are

equally likely and the function ϕ(X, τ) will be even i.e. ϕ(X, τ) = ϕ(−X, τ)

Now suppose τ is small then we will expand left hand side in powers of τ and

right-hand side in the powers of small displacement X , then the equation will be

f(x∗, t) + τ
∂f

∂t
+ ... =

ˆ ∞

−∞

[
f(x∗, t) +X

∂f

∂x
+

X2

2!

∂2f

∂x2
...

]
ϕ(X, τ)dX

The right hand side of the equation is then given as

= f(x∗, t)

ˆ ∞

−∞
ϕ(X, τ)dX+

∂f

∂x

ˆ ∞

−∞
Xϕ(X, τ)dX+

1

2!

∂2f

∂x2

ˆ ∞

−∞
X2ϕ(X, τ)dX+...

For the next step, we will use the fact that the probability function sums to unity in

the first term. Also, f is independent of X , hence can be taken out of the integral

over X . As ϕ is an even probability density function i.e. ϕ(X, τ) = ϕ(−X, τ),
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Also, ˆ ∞

−∞
ϕ(X, τ)dX = 1 (2.2)

ˆ ∞

−∞
Xϕ(X, τ)dX = 0 (2.3)

ˆ ∞

−∞
X2ϕ(X, τ)dτ =< X2 > (2.4)

All higher order terms such as < X4 > on the right hand side are of order τ 2

therefore,

τ
∂f

∂t
=

1

2

∂2f

∂x2

ˆ ∞

−∞
X2ϕ(X, τ)dτ (2.5)

The integral right in equation 2.5 represents the mean-square displacement as it is

the sum of the squares of the displacements each multiplied by the probability of

its occurrence [31]. Therefore,

∂f

∂t
=

< X2 >

2τ

∂2f

∂x2
(2.6)

Equation 2.6 has the same form as the thermal diffusion equation hence we can

define an effective diffusion constant D. Therefore,

∂f

∂t
= D

∂2f

∂x2
(2.7)

where, D = <X2>
2τ

Equation 2.7 represents the diffusion equation in one dimension and D is the trans-

lational diffusion coefficient [23], [33]. The solution of this equation can be given

as,

f(x, t) =
1√
4πDt

exp

(
−x2

4Dt

)
,−∞ < x < ∞ (2.8)

where, D is the diffusion coefficient. The detailed derivation to obtain this solu-
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tion from equation 2.7 is given in Appendix A. The above equation has the form

of the Gaussian PDF (equation B.3) with variance σ2 = 2Dt and mean µ = 0.

Finally, Mean square displacement (MSD) of the particle can now be calculated

with the known expression for f given in equation 2.8 and from the starting con-

dition given for ϕ in equation 2.4 ,

< x2 >=

ˆ ∞

−∞
x2f(x, t)dx = 2Dt (2.9)

Therefore,

M.S.D. = z =< (x(t)− x(0))2 >= 2Dt (2.10)

Equation 2.10 gives the mean squared displacement of particles for one-

dimensional Brownian motion.

For the case of n-dimensional Brownian motion, suppose the position co-ordinates

are given by x1, x2, x3, .., xn. By using the product rule in probability, the n-

variable PDF will be given by the products of the fundamental solution in each

variable. Therefore, equation 2.8 will change into

f(x, t) = f(x1, t)f(x2, t)...f(xn, t) =
1√

(4πDt)n
exp

(
−x2

4Dt

)
(2.11)

In this case, MSD (z) will be given as

z =< (x1(t)− x1(0))
2 + (x2(t)− x2(0))

2 + ...+ (xn(t)− xn(0))
2 >

As all co-ordinates are independent, their total displacement from the reference

point is also independent. Therefore,

z =< (x1(t)− x1(0))
2 > + < (x2(t)− x2(0))

2 > +...+ < (xn(t)− xn(0))
2 >
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Therefore, in the case of n-dimensions MSD will be given by

M.S.D. = z = 2nDt (2.12)

In summary of the above derivations, the equation 2.12 gives the relation between

the mean square displacement and the diffusion constant and equation 2.6 defines

the probability distribution function of finding particles with a displacement x over

a time period ‘tau’(τ ). The former is the basis of the Einstein-Stokes equation that

is the key equation for the conventional NTA approach of obtaining the particle

size distribution and the latter is the basis for the Monte Carlo simulation and the

basis for the MLE approach.

2.2 Nanoparticle Tracking Analysis(NTA)

Particle Tracking Analysis or Nanoparticle Tracking Analysis (NTA) is one of the

few systems which can be used for measuring nanoparticles in suspension as well

as to visualise them. It utilizes both the properties of light scattering and Brow-

nian motion and can be used to determine fluorescence, particle concentration as

well as zeta potential (surface charge). The size range of the particles which can

be measured falls between 10-1000 nm of diameter but this also depends on the

light-scattering properties of the material from which the particle is formed [34].

There is a wide range of commercial NTA systems available such as Nanosight

developed by Malvern Panalytical [35], ZetaView developed by Particle Metrix

[36] etc. There is also a special NTA system [17] which is developed in the De-

partment of Physics of the University of York for the low-concentration operation.

This system is flexible as it is a completely open system and made from off-the-

shelf components which are cheap and easily available.
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Figure 2.1: 3D rendering of the low-concentration NTA system set-up[17].

2.2.1 Principle of Operation

For the size determination, NTA uses the particle tracks of the individual particles

obtained by tracking the Brownian motion of particles.

To observe the particle movements in suspension, a sample is inserted into a cham-

ber that is illuminated by the laser. The scattered light from particles is collected

through an objective lens and then focus onto a CCD or CMOS camera. Through

this camera, the movement of the particles is recorded in the video. The rough

schematic of this optical setup is given in Figure 2.2.

This video is analysed frame by frame and in each frame, the particle centres

are located and identified through algorithms such as Crocker and Grier algo-

rithm [38]. The identified locations of each particle are followed in each frame of

the video. To make a track of any particular particle, NTA takes into account a

threshold distance [6] or maximum jump distance [17] to determine if the particle

tracked in the successive frame is the same particle that was tracked in the pre-

vious frame or a different particle. If a particle is identified within the threshold

distance of the previously detected particle in the successive frame, then these two
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Figure 2.2: Optical set-up for a typical NTA system. The glass and metalized surface as
shown in figure is not necessary in general [37].

particles are recognised as the same particle and a particle track is made. This pro-

cess is done for all the successive frames in the video which then determines the

number of jumps for any particular particle. The track for any particular particle

terminates if there are no particles in the successive frame or two or more parti-

cles are detected within the threshold distance. From these tracks, a mean squared

displacement of particles in two dimensions is calculated. (As the recorded video

will be in 2-D). If we put n=2 in the equation 2.12, this calculated MSD can then

be converted into diffusion constant by the formula

z = (x, y)2 = 4Dτ (2.13)

where x and y are the coordinates of a particle in any particular frame and τ is the

duration of time between the frames.

From the calculated MSD of a particle and therefore essentially from the diffusion

constant (equation 2.7) D, it is possible to calculate the individual particle size by

using the Einstein-Stokes equation (1.1) which is obtained in terms of molecular
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Figure 2.3: The step by step process of how NTA measures particle size where first image
on the top-right shows the detected particle-like structures and their co-ordinates, second
image on the center-left shows the particle tracks [17] and third image on the bottom-
right shows the particle distribution profile of Frequency vs particle radius.

quantities by substituting D into equation 2.8 and given as,

D =
kβT

6πηr
(2.14)

From equation 2.14, equation 2.13 can be written as

(x, y)2 = z =
4kβTτ

6πηr
(2.15)

Rearranging the above equation for the hydrodynamic radius r,

r =
4kβTτ

6πηz
(2.16)

These calculated particle sizes are then plotted as a histogram of radii to get the

particle distribution profile. Figure 2.3 gives the pictorial representation of this
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process.

2.2.2 How NTA measures different properties

Along with determining particle size, NTA is also capable of determining particle

concentration, intensity and fluorescence detection.

Concentration Particle concentration can be easily calculated by the NTA system

as NTA is a microscope-based technique. By the known magnification value and

therefore the observable area or the field of view of the particle images, first, the

particle centres in the field of view are counted. By also estimating the depth of

field, the volume is determined within which particles are being tracked. The par-

ticle concentration can be determined by dividing the number of particle centres

by the volume which is usually given in cm−3 or mL−1.

Fluorescence If the sample of nanoparticles contains a sub-population of nanopar-

ticles that absorbs the light and emit a longer wavelength, it is possible to detect

those particles by insertion of a suitable optical filter in the imaging channel. This

filter can be used to reject light scattered by the particles of the same wavelength

and higher wavelengths can be selectively passed. By fluorescent labelling meth-

ods, it is possible to selectively identify and measure the size and concentration of

certain particles.

Intensity It is also possible to obtain information about nanoparticles by consid-

ering the ‘brightness’ of particles. Particles are brighter if they are larger as the

intensity of the scattered light is proportional to the sixth power of the diameter

for the homogeneous, spherical particles [10], [39]. Also if the particles have a

higher refractive index then the particles also have larger intensity values. For

example, Gold nanoparticles can have higher intensity values than polystyrene al-

though they have the same diameter [34]. Therefore, it is possible to differentiate
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between two sample populations by monitoring their intensity. Although this is

possible for homogeneous, spherical particles, apparent intensity fluctuates with

the particle orientation. For example, for the dielectric particles, the scattered

intensity will be proportional to the square of the optical thickness [40].

2.2.3 Notable limitations and the efforts done to minimize

them

1. The main challenge in the optical setup is to illuminate the sample with a

high-intensity light so that the low levels of the scattered light from the in-

dividual particles can be detected and to minimize the stray light scattered

by the interfaces such as the interface between liquid and cuvette wall. This

stray light adds to the optical noise of the system and detection of the weakly

scattering particle becomes difficult. This also results in the difficulty of do-

ing low concentration measurements. Due to this issue, the currently avail-

able commercial NTA systems can only be able to offer the concentration

range of around 107 particles/mL to 109 particles/mL [10]. The NTA

system developed at the University of York tried to overcome this issue by

improving the field of view for the particles and fixing the long working

distance so that lens will be able to focus the laser beam through the cuvette

wall. This system can offer the concentration range of 105 particles/mL

to 108 particles/mL [17].

2. The Einstein-Stokes equation 1.1 gives valid results only if the shape of

the particle is spherical. However, there are different shaped nanoparticle

available and if the particle shape is not sphere the diffusion shape become

invalid. There has already been some work done around this by studying the

shape of the intensity distributions for different particles and determining
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the shape of the particle whether it is a rod, disc or a sphere [17].

3. Brownian motion is a random process. Therefore, the Einstein-Stokes equa-

tion is valid only when a particle is tracked for infinite number of frames.

This is practically not possible and therefore, there are errors in the estima-

tion of particle size distribution e.g. Distribution may appear broader than

the actual particle size distribution [19], [20]. This issue is addressed in this

thesis.

2.2.4 Particle Tracking Softwares

There is a range of freely available particle tracking software packages such as

Trackpy [41], TrackMate [42], HybTrack [43] etc. which have their own approach

of making particle tracking as accurate as possible. The main program used for

the analysis of the particle videos for the research is ‘Sam’s Particle Tracking Pro-

gram’ [17]. This program is MATLAB based and developed by Samuel Thomp-

son, a former PhD student at the University of York. This is also the main pro-

gram in use for the Nanoparticle Tracking Analysis system developed for low-

concentration operation. This program has several notable features that can be

used to remove noises getting added into particle size distribution profiles due

to the shortcomings of the experimental setup. Details of some of these notable

features are mentioned below-

• Global Size Parameter - This parameter determines the particle neighbour-

hood. By defining this parameter we are defining the minimum distance

between particles for software to determine them to be different particles

rather than just part of the same particle. Global size parameter and associ-

ated algorithm can be used to remove the effect of ‘out-of-focus’ images or

the finite size of particles, which makes identification of particles by peak
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Figure 2.5: A representation of the Global Size Parameter where A,B and C’s are detected
particle-like structures and the radius of the circles represents the Global Size Parameter.

location algorithm unreliable. For example, extended images of large par-

ticles may have multiple local maxima that can be counted as two separate

particles. Alternatively, the out-of-focus images of nanoparticles may have

ripples or rings associated with the central maximum.

In the figure 2.5, A, B and C are the detected particles in the analysis. When

we define the global size parameter (in pixels), we are essentially defining

the circle which has a radius of the given value of the global size parameter

(in pixels) with a particle at the centre of the circle. Consider area of the

circles are A’, B’ and C’. In the figure 2.5, particles A and B are considered

as a single particle as their positions are within the area of the circles A’

and B’and C will be considered as different particles from A and B as their

position is outside of the circle A’ and B’. If the software detects a centroid

larger than the defined global size parameter, it will neglect to track that

particle.

• Minimum steps per track- These are the smallest number of steps any

particle must take before it can be included in the list of particles that is

used for the particle size distribution plots. Consider a particle is at a certain
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position having the coordinates (x0, y0) in the initial frame and then if we

detect the position of that particular particle in a successive frame which is

let’s say (x1, y1). This displacement of particle from (x0, y0) to (x1, y1) will

be called as one jump or step.

Therefore, we can only determine the number of steps that particle has taken

after we detect the position of that particle in the next frame. In conclusion,

if a particle is tracked for l number of frames, then it has taken l−1 number

of jumps.

• Max step length- This parameter determines the maximum number of steps

the particle can jump between the frames (in pixels) before we can classify

it as a newly detected particle. For example, if we set the value of this as 3

pixels then the particles that jumped more than 3 pixels from their original

positions in the next frame are considered as new particles. This value must

be kept the same or smaller than the global size parameter to prevent the

oscillation between two detected particles.

• Minimum expected particle size- This feature is used to remove particles

smaller than the value of the input. This feature can be used to remove the

noise (sub-nanometer particles).

• Minimum Percent Standard Error- This feature is used for the discrimi-

nation of particles based on the step length distribution. Standard Error is a

similar term to the standard deviation which uses sample data and gives the

spread of the distribution. Therefore, by using this feature, the uncertainty

in the measurement of sphere-equivalent hydrodynamic radius greater than

the inputted value can be discarded. But care should be taken while in-

putting the value for this because if the value is very small (around 1 or 2)

then an almost negligible number of particles get detected and then it is not
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possible to get the particle size distribution. So usually it needs to be set

very largely.

• Drift Correction- This option examines the mean trajectory of all the par-

ticles to detect and remove the drift which can appear in the suspending liq-

uid due to the intentional flow-through pumping or intentional/unintentional

convection. This feature works on the drift-correction algorithm which de-

termines the time-dependent group velocity of the detected particles and

then generates an apparent mean flow vector across the Field of View. This

calculated mean flow vector is then subtracted from the trajectories on a

frame by frame basis. However, if the drift is spatially heterogeneous this

subtraction is not appropriate. In this case, the subtraction can be done by

limiting the analysis to motion orthogonal to the suspected drift direction

[44], [45].

In Chapter 5, where the drift correction is applied for the TiO2 videos, every

video is carefully checked for the variable drifts and no variability is found

visibly. But there still can be errors in the drift correction calculations which

can result in erroneous size distribution.

2.3 Maximum Likelihood Estimation in Statistics

2.3.1 Definition and Intuitive Example

"An estimator is a procedure applied to the data sample which gives a numeri-

cal value for a property of the parent population or as appropriate a property or

parameter of the parent distribution function." [46]

The density estimation involves selecting a probability distribution function and

the parameters that best fits the given data. This can be done mainly in two ways
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[47]:

1. MLE or Maximum Likelihood Estimation [21] which does not use any prior

information and the convergence of MLE solutions are possible equally

likely for all the data points.

2. MAP or Maximum A Posteriori which takes prior information into account

such as prior belief or guess about the possible distribution.

Let’s consider a set of independent observations α1, α2, ..., αN , the joint probabil-

ity distribution function of α or let’s call it data, by independence, can be given

as

P (data|θ) = P (α1, ..., αN ; θ) =
N∏
i=1

P (αi|θ) (2.17)

(Product rule in Probability) [48] where, θ is a measurement of quantity or in case

of PDF can be parameters of PDF.

The above product of probabilities in equation 2.17, gives us the conditional prob-

ability or the likelihood of observing the ‘data’ given the condition ‘theta (θ)’.

L(θ) = P (data|θ) (2.18)

where, L(θ) is called as a likelihood function for θ. [46], [48]

The principle of Maximum Likelihood estimation is to maximize the likelihood

function given above given the set of parameters (θ) to predict the model that will

fit best to the given data. So essentially the maximum likelihood estimation can

be given as

θMLE = argmaxP (data|θ) (2.19)

For example, if we have the probability density of observing a single data point
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α, that is generated from a Gaussian distribution

P (α;µ, σ) =
1

σ
√
2π

exp

(
−(α− µ)2

2σ2

)
(2.20)

and suppose if we have two single data point values of α let’s say 1 and 2, we will

just multiply the individual probability densities with substituting values of α to

get the joint probability distribution which will be given as

P (1, 2;µ, σ) =
1

σ
√
2π

exp

(
−(1− µ)2

2σ2

)
∗ 1

σ
√
2π

exp

(
−(2− µ)2

2σ2

)

We will figure out the values of parameters µ and σ which will maximize the

likelihood of observing these parameters.

L(µ, σ) = P (data|µ, σ) (2.21)

We can do this by differentiation with respect to µ and σ respectively. But if we

consider the above example, we can see that it is a quite tedious job to differentiate

this equation. It can get simplified to work with if we take the natural logarithm

of the expression. This is possible and does not change the original form because

the natural logarithm is a monotonically increasing function. This means that if

the value on the x-axis increases, the value on the y-axis also increases. So even if

we take the natural logarithm, we are still ensuring that the maximum value of the

log of the probability occurs at the same point as the original probability function.

Therefore it’s better to work with the simpler log-likelihood instead of the original

likelihood. Therefore,

θMLE = argmax [logP (data|θ)] (2.22)
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For our example,

lnP (1, 2;µ, σ) = ln

(
1

σ
√
2π

)
− (1− µ)2

2σ2
+ ln

(
1

σ
√
2π

)
− (2− µ)2

2σ2

Again simplifying this equation using logarithmic properties,

lnP (1, 2;µ, σ) = −2lnσ − ln(2π)− 1

2σ2

[
(1− µ)2 + (2− µ)2

]

So if we differentiate the above equation with µ and σ we will get the best estimate

for the distribution which can be fit for the given data points 1 and 2 with these

parameters. For example, for mean µ for this example,

∂ lnP (1, 2;µ, σ)

∂µ
=

1

σ2
[(1 + 2− 2µ]

Setting left hand side to zero and rearranging gives us,

µ =
1 + 2

2
= 1.5

So this will be the maximum likelihood estimate for µ or mean of the Gaussian

distribution. Similarly, it can be applied to σ and then we can find two parameters

of the distribution which gives the best estimate or fit for the given data points.

The example given illustrates how MLE can be used to fit a Gaussian model to

the observable variables α1, α2, ....α by finding out the model parameters µ and σ.

Alternatively, the same optimization algorithm can be used to find the so-called

‘hidden variables’ of the model. The ‘hidden variables’ can mean αj’s that belong

to that observation α but were missing or not detected. The hidden variables can

also mean other variables γ that determines the observables α(γ) [49].
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2.3.2 Application of MLE to the Particle Size Distribution ob-

tained by NTA

As described earlier, MLE is used for the density estimation so, this method can

be used to get the accurate particle size distribution for Nanoparticle Tracking

Analysis by determining the frequencies of the particle sizes obtained from the

NTA and by assuming that the true particle sizes are distributed over a finite set

of values [18], [19]. For the application of MLE, first, the apparent sizes of the

individual particles are determined using the MSD values and the Einstein-Stokes

relation. (This can be done by using actual experimental data or the Monte-Carlo

simulation explained in Chapter 3). Then, the sets of bins are established for the

true sizes and for the virtual particles, initial values of frequencies with suitably

fixed sizes are chosen. Here, virtual particles meaning we are not considering the

actual data for particles, but considering some initial distribution of particles (uni-

form distribution in our case of MLE as we are considering convergence is equally

likely possible for all the radii values) as an initial estimate or as a starting point to

run the Maximum likelihood Estimation. Further, the probabilities (p1, p2, p3, ..)

of obtaining the individual particles are calculated from this size distribution of

the virtual particles. These probabilities are calculated from the values of MSD

and the number of steps for each particle. After having all these data, first like

explained in equation 2.17 the joint probability(p1 × p2 × p3 × .....) is estab-

lished where data will be apparent sizes of actual individual particles and θ will

be frequencies of the virtual particles. And finally, to get the size distribution the

frequencies of virtual particles are changed till the joint probability of obtaining

this set of apparent sizes P (data|θ) or in our case (p1, p2, p3, ..) becomes maxi-

mum. The flowchart of the whole process has been given in the figure and the

detailed algorithm for this process is explained in chapter 3.
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Figure 2.6: The flowchart of the MLE method for determining the improved particle size
distribution obtained from the NTA[19].

2.3.3 Advantages and Disadvantages of using MLE

The principle of Maximum Likelihood (ML) estimator is to estimate the most

likely value and it has some advantages such as no loss of information and all the

experimental data are used and it is very suitable for the problems where multiple

variables need to be estimated [46]. ML estimators are usually consistent meaning

as sample sizes grow larger, ML estimate approaches quickly to the original popu-

lation parameter. This has been shown in the section 4.2 where, as we increase the

mean step size gradually the ML estimator goes quickly to the original population

parameters. So for the large number of samples MLE can be the best estimator but

for small samples, this is not necessarily true which has also been demonstrated in

the section 4.2 where for the small number of step sizes ML estimator was unable

to estimate the actual size distribution.
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MLE can also be biased sometimes. Bias is a term used in statistics to define the

tendency of an estimator to overestimate or underestimate the parameter. This has

also been shown further in the results section 4.3 where MLE shows the bias to-

wards the radius value which has the highest occurrence probability and therefore

overfits the size distribution.

2.4 EM Algorithm

Maximum Likelihood Estimation involves density estimation or an optimization

and search problem, where we search for a set of parameters that will be the best

fit for the joint probability for the given data sample. But there is one weakness

involved with this MLE approach that it assumes that the data set is complete.

This is necessarily not the case every time as sometimes only some of the relevant

variables are observed or some variables can remain hidden although they influ-

ence other random variables [50], [51]. These unobserved or hidden variables are

called latent variables. Apart from the actual missing or unobserved variables or

data, the latent variable term also applies to the situation where incompleteness

is not evident. For example, a statistical model involving random effects [49].

The Expectation-Maximization algorithm (EM algorithm) is an iterative method

to find an MLE or MAP estimate for the models with latent variables.

The method consists of two steps:

1. Expectation Step - Computes the expected value for the Likelihood

L(θ;α, γ) where, θ is the unknown parameter vector and α and γ are ob-

served and missing dataset respectively.

2. Maximization Step - Maximizes the parameters of the model with the

present data. The parameters of the model can include the unknown par-
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ticle radius if the means or variance of the model is known.

2.4.1 Basic Idea

Let αi be the observed variables and γi be the missing or hidden variables for the

case i. The log-likelihood of the observed data is given as

L(θ) =
∑
i

logP (αi|θ) (2.23)

By considering the hidden variable γi above equation will turn into following by

marginalizing over γ,

L(θ) =
∑
i

logP (αi, γi|θ) (2.24)

Now for the EM algorithm,

1. E-Step- The E-step computes the expected value of L(θ) given the ob-

served data αi and the current parameter estimate θold. For this step, we

will first assume the conditional probability P (γi|αi, θold) and the auxiliary

Q function is defined which is formed by the expectation value of the log-

likelihood,

Q(θ, θold) = Eγi|αi,θold [L(θ)] (2.25)

Considering the conditional probability, the above equation can also be writ-
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ten as

Q(θ, θold) =
∑
i

P (γi|αi, θold)P (αi, γi|θ) (2.26)

2. M-Step- The M step consists of maximizing over θ the expectation com-

puted in the previous step which will be given as

θnew = maxQ(θ, θold) (2.27)

We then set θold = θnew and these two steps were repeated until the sequence of

θnew converges [52].

In summary, the EM algorithm maintains an estimate of the parameter of θ that is

updated on each iteration. If ‘j′ is the current iteration number, for the E-step, a

function of θ called the Q-function Qj(θ) is first formulated and then, on the next

M-step, the algorithm assigns θj+1 that will maximize the current Qj(θ).

In our case of the MLE for particle size distribution, the E step is for the calcula-

tion of the expectation value(or the means) of the current estimate of the particle

size distribution and the M step is for maximization which generates a new esti-

mate of the particle size distribution.

2.4.2 Convergence of EM algorithm

As mentioned earlier, EM algorithm maximizes L(θ) by the iterative procedure.

We are computing an updated estimate of θ such that,

L(θ) > L(θj)
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where, θj is the current estimate for jth iteration. Essentially we are maximizing

the difference L(θ)− L(θj). Let’s say,

L(θ)− L(θj) ≜ ∆(θ|θj) (2.28)

Equivalently we can write,

L(θ) ≥ L(θj) + ∆(θ|θj) (2.29)

θj+1 is the estimate for θ which maximizes ∆(θ|θj) and for the current estimate

θj we had ∆(θj|θj) = 0 [53]. As θj+1 has chosen to maximize ∆(θ|θj) we will

have,

∆(θj+1|θj) ≥ ∆(θj|θj) = 0 (2.30)

Therefore, from the above equation likelihood L(θ) is non-decreasing. For con-

venience we will define l(θ|θj) such that,

l(θ|θj) ≜ L(θj) + ∆(θ|θj) (2.31)

Therefore, from equation 2.29,

L(θ) ≥ l(θ|θj) (2.32)

Therefore, l(θ|θj) is bounded by the likelihood L(θ). Also for the current iteration

l(θj|θj) = L(θj) + ∆(θj|θj) = L(θj) (2.33)

Therefore, from equation 2.32 and 2.33, it can be concluded that any θ which
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increases l(θ|θj), increases L(θ).

Now, if L and l are equal at θj and also differentiable, then we can safely say

that θj must be the stationary point of L which proves the general convergence

of the EM algorithm. But the stationary point is not always the local maximum

and also in exceptional cases sometimes can converge to local minima or saddle

points [54]. This is often not the problem if the likelihood function is convex, but

for the non-convex likelihood function, it can be an issue. This can be checked

by reinitializing the EM starting point multiple times and choosing the convergent

point that has the highest likelihood value [49], [55].

2.5 Hypothesis Testing with Chi-Squared Test

In the experimental studies, there are generally two groups where researchers do

some process on one group such as giving a drug to the group of animals and

comparing the results with the other group where this process is not applied. The

results are compared and if the results are different then the researcher checks if

it is possible to say with certainty if the difference is large enough to say there is

a systematic difference in the group as opposed to the group where this process is

not applied. This is called Hypothesis Testing [56].

In statistics, the goodness-of-fit test is used to compare if your sample data is

comparable to the actual population. There are mainly 3 goodness of fit tests i.e.

The chi-square which is used for the discrete distributions, Kolmogorov-Smirnov

and Anderson-Darling.

The Chi-Squared test is the test that can be only used for the data that can be

put into classes or bins of Histogram. The other two tests are for continuous

distributions. The Chi-squared test is defined as-
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H0- Data that’s known to follow a specific distribution,

H1- Data that need to be tested to see if it follows the same distribution

To test the goodness-of-fit, if the data is divided into certain b number of bins then,

χ2 =
b∑

i=1

(Oi − Ei)
2/(Ei) (2.34)

[57] where, Oi is the observed frequency for the bin i and Ei is the expected

frequency for bin i. The main disadvantages of these tests are that it depends on

how the data is binned and it is very sensitive to the sample size [58], [59].
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This chapter provides the research strategy used to deal with the research problem

and further provides the data processing method used for the Maximum Likeli-

hood Estimation of the particle size distribution. The results obtained from this

approach are presented in the next chapter.

3.1 Research Approach

As mentioned earlier, the present strategy of forming particle size distribution

is to get the values of the individual particle radius from the Diffusion constant

values and form histogram or size distribution of different particle sizes and this

method lacks accuracy. To make the improvements in the particle size distribu-

tion obtained by NTA, it was essential to study how the present NTA software

obtains particle size data and the present approach of obtaining the particle size

distribution from the NTA system. To get the particle size distribution from the

videos obtained by the low-concentration NTA system, Sam’s Particle Analysis

program, the software developed in MATLAB was chosen for ease of accessibil-

ity and availability of the different analysis parameters to make the particle size

distribution as accurate as possible by the present histogram method. As the par-

ticle tracking software was made in the University and not yet fully tested for the

commercial application, the first steps were to find out the sources of errors or

bugs in the software such as tidying up the Graphical User Interface part of the

software by removing distortions so that the user interface will look clean, improv-

ing on the Data Visualisation part of the software by adding position coordinates

of the identified particles in the particle display window and making changes in

the App environment from ‘Guide’ to ‘App Designer’ so that the software will be
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future proof. Further analysis of the software was done by studying the Crocker

and Grier algorithm which is used for the detection of particles from the video.

After testing out the bugs in the software, the matrices produced by the software

were studied which contains the particle size data. It was observed that some par-

ticle data were giving infinity values which were producing errors for the particle

size histogram. These infinity values were appearing because some particles were

giving zero values for the Diffusion constant as they were just tracked for just one

frame as particles can go out of the frame of the video after some time. These

errors were removed by removing these zero values from the particle size matrix

which is used to plot the final particle size distribution profile.

A systematic investigation was carried out further on a sample video to analyze

the impact of the different analysis parameters on the particle size distribution

profile. To study this impact, basic parameters such as temperature, the viscosity

of the liquid, pixel size and minimum expected particle size were kept constant

throughout the analysis. The impact of the other analysis parameters such as max

step length, global size parameter and minimum steps per track was studied by

varying values of these parameters and obtaining particle size distribution along

with obtaining mean size, standard deviation and standard error for the distribu-

tion. The description of these parameters is already given in subsection 2.2.4.

Different statistical methods for the improvement in the particle size distribution

were reviewed further such as Walker’s iterative maximum likelihood algorithm

for the NTA system [18], Bayesian inference method for Dynamic Light Scatter-

ing data given by Naimm et al. [60] and Matsuura and co-workers [19]. Further

Maximum A Posteriori Nanoparticle Tracking Analysis or MApNTA is given by

Silmore et al. [20] was studied extensively.

Before applying any algorithm to the experimental data it was necessary to test the
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algorithm with different conditions as very little experimental data was available

and with the current experimental set-up, any particular particle was tracked only

for a few number of frames or steps. Therefore, the simulation for the Brownian

motion of particles was developed to simulate the similar experimental condi-

tions of NTA. To make the improvements in the size distribution, Walker’s iter-

ative Maximum Likelihood Algorithm [18] or EM-type algorithm was chosen to

convert the current version of the NTA program into the Maximum Likelihood

Estimation program. Further, the application of this program is tested on the ac-

tual experimental data. The distribution obtained from this type of algorithm can

be used for further improvement with the Maximum A posteriori Estimation but

currently, only the MLE algorithm is applied in the program.

3.2 Brownian Motion Simulation

For the testing of the modified size distribution approach and the conventional

approach used in the current version of the NTA program, the Brownian Motion

of particles was simulated in MATLAB and particle tracks are made according to

the NTA particle detection principle to generate the well-defined dataset. By us-

ing this simulation, it was possible to control and simulate different experimental

conditions such as monodispersed/polydispersed samples, a solvent of different

viscosities or different temperature conditions. It was also possible to control the

number of particles present or the mean and standard deviation for the number

of tracks for different particles (To mimic the actual experimental conditions, the

program generates a random number of values around a mean step number, with

the probability of the distribution adjustable with a step number variance parame-

ter for each particle).

The simulation takes the values of input to form an original particle size distri-
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bution for the sample where you first need to define whether you expect uniform

sized particles (monodispersed) to be present in the solvent or the particles of

varied sizes are expected (bidispersed or polydispersed). You also need to input

the value for the mean number of tracks and expected uncertainty in the num-

ber of tracks along with the expected number of particles present in the solvent.

The simulation automatically considers that the particles are present in the water

and particle size measurements are taking place at room temperature but this can

also be changed if we change the viscosity of the solvent and temperature in the

Einstein-Stokes formula (equation 1.1).

After giving the input values for the above parameters, the simulation then se-

lects random sizes from the allowed particle sizes defined in the originally defined

distribution for the given number of particles. Further, the Diffusion constant is

calculated from the Einstein-Stokes equation from each particle. To get the ran-

dom mean squared displacement values from this data, the normally distributed

random number of 2-D coordinates of particles are generated and scaled with

the variance of the Gaussian PDF (as mentioned in section 2.1 equation 2.8) of
√
2Diτ where Di represents calculated diffusion constant for each particle and τ

represents the time interval between each displacement or captured frames which

is set at 100 milliseconds which is an average value for the time interval between

the captured frames of the CCD camera.

After getting these coordinate values of the particles along the tracks simulated for

each particle, the simulation calculates mean-squared displacement values from

these coordinates for each particle. These randomly generated scaled coordinates

can mimic the data obtained from the actual experimental videos as this part is

similar to the NTA set-up where NTA determines the particle coordinates from

each captured frame and then particle tracks are generated from these coordinates

to obtain the mean-squared displacement values. MSD is calculated by using the
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Figure 3.1: The figure shows the 3D random walk for the five Brownian particles with
the mean number of steps 10 and with no variance in the count of steps for any particle
meaning each particle has the same number of steps.

formula:

M.S.D. = z =< |(r(t)− r(0))2| > (3.1)

where, r(t) is the position of the particle at time t and r(0) is the initial position.

These mean-squared values are already scaled with the diffusion constant values

so converting back these values into the diffusion constant and then the particle

radii will be similar to the conventional approach of the particle size distribution

of NTA. The MSD values are converted into the particle radii values by using the

equation 2.16 to get the Einstein-Stokes recovered distribution. This is the direct

derivation of particle radius from the estimate of the means from a finite number

of steps and is subject to statistical uncertainty. The smaller the number of steps,

the statistical uncertainty would be larger. To overcome this difference, one can

get the Maximum Likelihood estimate to take the statistical uncertainty into ac-

count. The data for the mean number of steps and mean squared displacement for
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(a) (b)

(c) (d)

Figure 3.2: The figure shows the different types of Einstein-Stokes distributions obtained
by the Brownian motion simulation for the input parameters of 1000 number of particles,
10 mean number of steps and the diffusion constant is scaled to obtain the particle sizes of
around 20 nm for subfigure a, around 100 nm for subfigure b, around 50 nm for subfigure
c and around 20 and 100 nm for subfigure d.

each particle is saved in a separate file to use further for the Maximum Likelihood

Estimation. The different types of distributions that can be obtained by the sim-

ulation are presented in the figure 3.2. The simulation does not take into account

the effect of drift in the solution or the experimental measurement errors which get

added while determining the position of the particle. The simulation code along

with the Maximum Likelihood Estimation program is added in the Appendix C

for the reference.
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3.3 MLE Based Size Distribution Determination

Due to the statistical nature of the random walk, the mean-square displacement

measured from the finite number of the steps tracked would not be an accurate es-

timate of the exact values. This estimate would be different even for particles from

a monodispersed population. In the conventional NTA approach adopted by Sam’s

program, the particle size is worked out directly from these estimated means. As

these estimated means would form a broad distribution about the true mean, the

radii deduced would also form a broad distribution even for the monodispersed

particles. This shows that the conventional NTA distribution can not be very ac-

curate for particles with a very narrow size distribution. MLE is developed to re-

move this statistical broadening. The new improved approach of forming particle

size distribution which uses the iteration based Maximum Likelihood Estimation

is explained in this section.

Consider the total number of detected particle-like structures to be N which are

tracked for a certain number of frames. For the nth particle tracked there will be

a finite number of 2-D x,y coordinates let’s say that number is ln which also will

be the number of frames for which this particular particle is detected. Further, we

can calculate the total number of tracks for the particle which will be one unit less

than the frame number which will be denoted as kn = ln − 1. Then the mean

square displacement will be given as

zn =
1

kn

kn∑
i=1

d2n,i (3.2)

where, zn is the mean squared or averaged squared displacement over entire tracks

and d2n,i will be the squared displacement for the particular track i.

So here rather than using the zn as an accurate estimate for the < d2 > and then
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calculating the radius to plot the particle size distribution, we will be finding the

particle size distribution which takes into account the number of tracks for each

particle or kn along with the zn values by using MLE.

3.3.1 Gamma PDF for Mean Squared Displacement

For the arbitrary pair of zn and kn, the maximum likelihood solution is obtained

by evaluating the probability that a value zn is obtained, for the parameters kn

and the temperature and viscosity of the liquid from which the particle radius r is

calculated.

Consider the Gaussian nature of the Brownian motion as discussed in section 2.1.

Then, each squared displacement i.e. d2n,i has a random value drawn from the

negative exponential distribution as Brownian motion is a random process and ex-

ponential distribution is used to predict the wait time until further event or time

interval between events between random processes. The PDF of exponential dis-

tribution is given by

f(t;λ) =

λe−λt, if x ≥ 0

0, otherwise
(3.3)

where, λ is a rate parameter or the average number of events per interval.

So if we consider our case, the rate of the occurrence of events will be λ =
3πηr

2KbTτ
as the number of random displacements is the event happening here for the given

interval of time.

Therefore, the mean (θr) of this distribution is given by

θr =
1

λ
=

2KbTτ

3πηr
+ 2σ2

e (3.4)
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where, σ2 is the variance of the experimental measurement errors which occurs

due to the uncertainty of the track length determination. The particle track is

obtained by determining the difference in the positions of the same particles be-

tween the successive frames. So an estimate of this uncertainty is the equivalent

physical dimension of one pixel in the CCD camera. The width of the pixel is

determined by the pixel pitch i.e. the physical dimension of the CCD camera and

the magnification of the optical system.

Now if we consider the equation 3.2, the product knzn will be a summation over

1 to kn exponentially distributed squared displacements d2n,i or random numbers

each with a mean value of θr. The exponential distribution is a special case of

Gamma distribution as the sum of exponentially distributed variables has a gamma

distribution, the PDF of jn = knzn which is the sum of all squared displacements

will have a gamma PDF.

Let’s consider the PDF for a gamma distribution

f(x; kθ) =


1

θkΓ(k)
x(k−1)exp

(
−x

θ

)
, if x ≥ 0

0, otherwise
(3.5)

putting the mean value θ as θr given in equation 3.4, x as jn where jn = knzn and

k as kn equation 3.5 becomes,

Pj(jn; kn, r) =
jkn−1
n exp(−jn/θr)

θknr Γ(kn)
(3.6)

As we are interested in M.S.D. or zn and not jn So we will use the change of
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variables method to obtain the PDF for zn.

Let’s consider the Pj (PDF for jn) as fa(a) and zn as b. zn can be written as

(1/kn)jn which is of the form b = Ka where, K = 1/kn and we will be finding

the PDF for zn i.e. fb(b). According to the scale transformation formula for

change of variables in PDF [61],

fb(b) = fa(b/K)/K (3.7)

Putting the respective values for a, b, and K we will get,

Pd(zn; kn, r) =
kn(knzn)

(kn−1) exp(−knzn/θr)

θknr Γ(kn)
(3.8)

which is the Gamma PDF for mean squared displacement value or zn.

3.3.2 Likelihood for Mean Squared Displacement

To find the likelihood of observing all MSD values first, we need to obtain the

probability of obtaining a single MSD value. So, we will first consider that the

particle radii has un-normalized PDF Pr(r). According to the property of PDF,

The probability of obtaining the single MSD value is then can be obtained by

integrating the above PDF within the limits of 0 to ∞ as any positive values of

MSD’s are possible. Also, as we are interested in the particle radius distribution,

we will be finding the probability of obtaining a single MSD value weighted with

the different radius or ‘r’ values which are given as

Pzn =

´∞
0

Pd(zn; kn, r)δPr(r)dr´∞
0

Pr(r)dr
(3.9)
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where, δ is the resolution to which zn is measured and
´∞
0

Pr(r) is a normalization

constant.

Now as we represent the particle size distribution in the form of a histogram, and

as the histogram will always have the discrete number of bins we can write the

above equation by replacing the integral with the summation over the number of

bins as

Pzn =

∑M
m=1 Pd(zn; kn, rm)δPm∑M

m=1 Pm

(3.10)

In the above equation, M is the total number of bins in the Histogram and Pm =

Pr(rm) will be the overall particle size distribution.

The above equation gives the final form of the probability for obtaining the single

value for zn. Our ultimate aim is to find the likelihood of obtaining this value.

As explained in section 2.3, the likelihood can be obtained by the product of indi-

vidual probabilities. Hence, the likelihood for obtaining the different probabilities

for the values of z1, z2, z3, ..., zn can be obtained by multiplying these individual

probabilities which will be given as,

L =
N∏

n=1

∑M
m=1 Pd(zn; kn, rm)δPm∑M

m=1 Pm

(3.11)

Using the log-likelihood form for the above equation,

LL = log

[
N∏

n=1

∑M
m=1 Pd(zn; kn, rm)δPm∑M

m=1 Pm

]
(3.12)
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Therefore using the logarithmic rules,

LL =
N∑

n=1

log

[
M∑

m=1

Pd(zn; kn, rm)δPm

]
−

N∑
n=1

log

[
M∑

m=1

Pm

]

As
∑M

m=1 Pm is constant for all the ‘n’ values, the summation will be replaced by

total number of n values i.e. N . Then, the final form of the above equation will be

given as

LL =
N∑

n=1

log

[
M∑

m=1

Pd(zn; kn, rm)δPm

]
−Nlog

[
M∑

m=1

Pm

]
(3.13)

To maximize this likelihood, we will first differentiate the above equation with

respect to Pm,

∂LL

∂Pm

=
N∑

n=1

Pd(zn; kn, rm)δ∑M
m=1 Pd(zn; kn, rm)δPm

− N∑M
m=1 Pm

(3.14)

As δ is present in both the denominator and numerator of the first term, it will

get cancelled and it also tells us that the resolution by which the mean squared

displacement is measured is irrelevant to estimate the likelihood. So the equation

will be

∂LL

∂Pm

=
N∑

n=1

Pd(zn; kn, rm)∑M
m=1 Pd(zn; kn, rm)Pm

− N∑M
m=1 Pm

(3.15)

The differential will be zero for the maximum point so to obtain the MLE, we will

equalise the above equation with zero to get,

N∑
n=1

Pd(zn; kn, rm)∑M
m=1 Pd(zn; kn, rm)Pm

=
N∑M

m=1 Pm

(3.16)
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3.3.3 EM Algorithm for the Iterative MLE solution

As explained in section 2.4, the EM-algorithm is an iterative procedure to ap-

proximate the maximum likelihood estimator. So, to get the final estimate of the

size distribution and to ensure that there are no latent variables, we will be us-

ing the form of an iterative equation which can be derived as follows using an

EM algorithm. From the above equation 3.16, the following relationship can be

established

Pm = Ψ[Pm] (3.17)

where, Ψ is an operator and defined as

Ψ[Pm] = Pm.
1

N

N∑
n=1

 Pd(zn; kn, r)∑M
m=1

Pd(zn; kn, r)Pm∑M
m=1 Pm

 (3.18)

From the observation of Ψ, it can be concluded that required solution is a fixed

point for operator Ψ. So we will apply EM algorithm [18], [62], [63] where,

• The E step is where we will start with the initial estimate P
(j)
m . Here, the

algorithm is always started with the uniform function for the initial particle

size distribution estimate (P (1)
m ).

• For the M step, if P (j)
m denotes current estimate, the new estimate P

(j+1)
m

will be defined by

P (j+1)
m = Ψ[P (j)

m ] = P (j)
m .

1

N

N∑
n=1

 Pd(zn; kn, r)∑M
m=1

Pd(zn; kn, r)P
(j)
m∑M

m=1 P
(j)
m

 (3.19)
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This form of the equation 3.19 should converge to the fixed point and give us the

Maximum Likelihood Estimate.

3.3.4 Stopping Criterion for Iterative Algorithm

As this MLE algorithm is based on the iterative solutions, defining a stopping

criterion is necessary as, without the stopping criteria, the algorithm will keep

repeating the iterations which could result in over smoothing or overfitting data.

Therefore, the chi-squared goodness of fit formula is used where iterations are

stopped when the change in χ2 becomes smaller than 1 % of the previous value.

χ2 =
bmax∑
b=1

[
Hd2(∗)(b)−H

(j)
ML(b)

]2
H

(j)
ML(b)

(3.20)

In this equation, Hd2(∗) is the histogram formed by the displacement data and the

HML is the calculated form of histogram obtained by the current iterative solution

j which is given below.

H
(j)
ML(b) =

kmax∑
k=kmin

Nk
Pd(b∆b; k, rm)∆bP

(j)
m∑M

m=1 P
(j)
m

(3.21)

During the iterations, the χ2 values initially decrease very rapidly but then stabi-

lize and remain constant for each iteration.
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4 | Results and Discussion: Simulated Data

4.1 Initial Checks with the Existing Program-

As mentioned earlier, the Particle Analysis software developed for the low-

concentration NTA system has several characteristic features that can be used to

weed out the noise so the effects of these different parameters on the particle size

distribution were studied initially. To study the effect of these parameters, the

available simulated video of particles test.avi was chosen used for all the analyses

and then particle size distributions were observed by varying all the other param-

eters. The simulation was obtained to get the particle size range of around 150

nm to 400 nm. After some initial tests, it was observed that the global size pa-

rameter value affects the number of particles as it decides the minimum distance

between particle centres or particle neighbourhoods. Therefore, the effect of dif-

ferent values of global size parameter is studied on the particle size distribution

profile while values of other parameters were suitably chosen and kept constant

e.g. Max Step Length value is chosen as 3 pixels as the value of Max Step Length

should be equal to or less than global size parameter to prevent oscillation of parti-

cles or pixel size value is chosen according to the camera that was used to capture

the video of particles. The effect of the different values of global size parameter

on the particle count, mean particle size, standard deviation and standard error is

summarized in table 4.1.

Constant Parameters for all the checks-

• Video - test.avi

• Maximum Percentage Standard Error - 30

• Pixel Size - 10 µm
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Parameters Values
Global Size Parameter (Pix-
els)

3 4 5 6 7

Mean Particle Size (nm) 365.4 319.8 241.4 278.2 186.1
Particle Counts 104 36 24 23 22
Standard Deviation (nm) 157.3 188.5 163.4 166.6 120.7
Standard Error (nm) 15.43 31.43 33.37 34.74 25.74

Table 4.1: Comparison of Mean Particle Sizes, Particle Counts, Standard Deviation and
Standard error with varying Global Size Parameter.

• Water Temperature - 300 K

• Minimum Expected Particle Size - 4 nm

• Max Step Length- 3 Pixels

Discussion-

It can be observed from the above table that, as we increase the global size param-

eter i.e. the minimum distance between the particles (in pixels) to consider them

as separate particles or particle neighbourhoods from 3 pixels to 7 pixels, the num-

ber of valid tracked particles gets reduced and almost remains constant after the

value 5. The Mean particle size values also follow a similar trend to the global size

parameter value till 5, but the values do not remain constant after 5. The reason

behind both of these trends could be that besides grouping particles together, the

global size parameter also neglects the centroid larger than the defined value. So

it is possible that with the increase in the global size parameter, new particles that

are out of focus or have rings around them are detected and therefore, the mean

particle size value changes. It can also be seen that the width of the distribution

is slightly reduced after the value 5, even though the particle count is the same.

But any specific conclusion cannot be drawn from these analyses as the software

does not allow to check and compare the width of the Gaussian peaks fitted to this
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(a) (b) (c)

(d) (e)

Figure 4.1: The particle size distribution obtained from video ‘test.avi’ with the parameter
set described in the list, except for different values of ‘Global Size Parameter’ ranging
from (a) 3 pixels, (b) 4 pixels and (c) 5 pixels (d) 6 pixels and (e) 7 pixels. As the ‘Global
Size Parameter’ increases, the number of the ‘valid’ particles decreases.
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distribution.

4.2 Application of MLE to the Simulated Data

As the number of particles detected from the video is very small, a good statistical

estimate is not possible to check the application of MLE on this video. Therefore,

Brownian Motion Simulation is used to check the application of the MLE program

on several possible experimental scenarios which are presented in the following

subsections. Also, as mentioned before, as MLE is an iterative program, a stop-

ping criterion is necessary to prevent over smoothing. The stopping criterion is

defined where the χ2 value becomes smaller than 1 % of the previous value. The

graph of χ2 values for each iteration versus the number of iterations is given be-

low where it can be clearly seen that the χ2 value initially drops very rapidly but

stabilizes after a certain number of iterations.

Figure 4.2: Convergence plot showing the relationship between χ2 value and number of
mean steps. χ2 value initially decreases rapidly but then remains constant throughout the
plot.
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4.2.1 Monodispersed Solution

To study the effect of the Maximum Likelihood Estimation program on the sim-

ulated Brownian motion and therefore the obtained particle radii values from the

Einstein-Stokes formula with the random number of generated steps and mean-

squared displacement values, first monodispersed case is considered. First, the

size distributions obtained by the different mean number of steps are compared.

Further, for the same allowed particle value, Gaussian fitting is done to compare

the widths of these distributions and to verify if MLE is actually able to give the

narrower distribution when compared to the conventional approach.

4.2.1.1 Comparison of ES and ES+MLE Distributions with the Original

Distribution

User Defined Parameters-

• Radius value - 50± 5 nm

• Mean number of steps - 10, 20, 30, 40, and 50.

• Uncertainty in the track length - 3 (Meaning random generated values of the

mean number of steps will be in the range of 50 to 53)

• Number of particles - 1000

Discussion-

Figure 4.3 shows the comparison of five particle size distributions obtained for

different numbers of mean particle steps. The number of particles is kept to 1000

so that better statistical estimates can be obtained. The blue bars in all the figures

above is the original size distribution or defined size distribution meaning it’s the

starting point for the simulation to run and also the ideal distribution to recover.
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(a) (b)

(c) (d)

(e)

Figure 4.3: Comparison of the original particle size distribution used for molecular sim-
ulation of random walks of 1000 particles which has just one peak on 50 ± 5 nm(Blue
bar) with the recovered particle size distribution by ES method (red bars) and ES+MLE
method (red bars) for different number of particle steps followed. ES+MLE size distribu-
tion is plotted with an iterative algorithm and iterations are stopped when the current χ2

value is less than 1 % smaller than the value for the previous iteration. The number of
iterations for the ES+MLE plots are 2, 2, 75, 95 and 111 respectively with an increase in
the number of steps.
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This size distribution is obtained by only allowing the radius value of 50 ± 5 nm

in the input. The red bars in all the figures are the Einstein-Stokes bars which

are obtained by first generating random values(within the limit of the track length

uncertainity value) of a mean number of steps, generating random mean squared

displacement values scaled with the original distribution and with this added ran-

domness again by converting these values again into the radii values to recover the

original distribution. The yellow bars are the ES+MLE bars which are obtained

with the combination of the Einstein-Stokes method and Maximum Likelihood

Estimation method. For this distribution also first a random number of steps and

scaled mean squared displacement values are generated like the ES method but

rather than directly converting it back into radii values, the ES+MLE method fur-

ther uses the Maximum Likelihood Estimation method and uses equation 3.19 to

estimate the final distribution using iterative algorithm method. The iterative algo-

rithm is terminated when the χ2 value of the final estimate is less than one percent

smaller than the value of the previous iterations. The values for both the ES and

ES+MLE method are normalized before plotting.

In the figure 4.3, the original distribution (blue bars) has the same values and

has the same peak positions in all the figures as it is the input. For the distri-

bution where the mean number of steps is 10, the bar values for both the ES

and ES+MLE are scattered all around the target radii values and not necessarily

concentrated around the original distribution which is expected and simulates ex-

perimental condition also as the Brownian motion is stochastic and particles are

needed to be tracked for a large number of steps (ideally infinite) to get the accu-

rate estimate of the radii values and therefore, a small number of steps like around

10 won’t give the better estimate for the particle radii values. For the next subplot,

where the mean number of steps is 20, the result for both the ES and ES+MLE

is better than the previous subplot in the sense that, the bars or peak positions are
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slightly concentrated near the original distribution but still pretty much scattered

around all the available radii values and not at all sufficient to estimate what the

original distribution is. For the subplot where the mean number of steps is 30, it

can be observed that the ES+MLE distribution is converging to the original distri-

bution and the central yellow bar of the ES+MLE distribution has size distribution

function values of around 0.7 nearly reaching the original distribution which has

the value of 1. The ES distribution is still not converged to the original size dis-

tribution but now it’s not scattered to all over the available radii values and slowly

coming close to obtaining the original distribution. For the next cases of 40 and

50 steps, the ES+MLE distribution further converges nearly to the original distri-

bution. ES distribution also starts to converge further and further to the original

distribution, but still not close enough to recover the original distribution.

It is also worthy to note that, the number of iterations for the ES+MLE distribu-

tion, is constant (2 iterations) for the first two cases of 10 and 20 mean number

of steps but as the mean number of steps increases the number of iterations also

increases before termination. The number of iterations for 30, 40 and 50 number

of steps are 75, 95 and 111 respectively. The execution time for these iterations

also increases slightly with increase in number of steps but it is still in order of

seconds for all the cases of 10, 20, 30, 40 and 50 mean number of steps.
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4.2.1.2 Gaussian Fitting

Einstein-Stokes Distribution

Mean
Number of
Steps

Width
of the
Peak
(W)
(nm)

Height
of the
Peak
(unit)
(H)

Peak Cen-
tre(nm)

Approx. Area
under the Peak
W*H (unit)2

10 19.7 0.1375 51.14 2.708
20 14.95 0.1863 50.04 2.785
30 11.9 0.2342 50.06 2.786
40 10.6 0.2619 49.3 2.776
50 10.06 0.2781 50.19 2.797
75 8.026 0.3448 49.8 2.767
100 7.435 0.3802 49.98 2.826

Table 4.2: Gaussian fitting Data for the monodispersed ES Distribution

ES+MLE Distribution-

Mean
Number of
Steps

Width
of the
Peak
(W)
(nm)

Height
of the
Peak
(unit)
(H)

Peak Cen-
tre(nm)

Approx. Area
under the Peak
W*H (unit)2

10 29.91 0.0952 54.17 2.847
20 20.94 0.1321 51.01 2.766
30 4.929 0.5719 49.75 2.817
40 4.881 0.578 49.47 2.821
50 2.786 0.9435 49.84 2.628
75 1.051 0.962 50 1.011
100 0.763 0.9722 50 0.741

Table 4.3: Gaussian fitting Data for the monodispersed ES+MLE Distribution
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The figure represents the Gaussian fitting for the normalized distribution ob-
tained by Einstein-Stokes method for 10, 20, 30, 40, 50 and 75 mean number of steps
respectively for a.b,c,d and e subplots. The variance of the noise in measuring step size
in the experimental setup is assumed to be zero.
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Discussion-

Figure 4.4 shows the Gaussian fitting for the particle size distribution obtained

from the original distribution by Einstein-Stokes method and figure 4.5 shows

the Gaussian fitting for the size distribution obtained from the Einstein-Stokes

plus Maximum Likelihood Estimation. The Gaussian fitting is done for the mean

number of particle steps of 10, 20, 30, 40, 50, 75 and 100 to compare the widths

of the peaks obtained from both methods. From comparing the widths of peaks it

is possible to determine if the Maximum Likelihood Estimation method is quicker

in recovering the original distribution and if it is quicker, then how quickly it can

reach the original distribution.

The original distribution is defined on the 50 ± 5 nm value for a monodispersed

case as only one size is present. In figure 4.4, which represents the ES case it

can be observed that for the case of 10 mean number of steps distribution width

is 19.7 nm which is expected as a small number of steps cannot give accurate size

estimation. As we increase the mean number of steps to 20, the peak width gets

reduced to 14.95 nm. For the 30 mean number of steps, the peak width further

decreases as it is known that the increase in the number of steps improves the

estimate. Further for the 40 and 50 number of steps, peak width further reduces

to 10.6 and 10.06 and now almost started to remain constant.

In the case of ‘ES+MLE’ distribution, the peak width for the 10 mean number of

steps is 29.91 nm which is broader than the ‘ES’ method and for the mean number

of steps of 20, the peak width is 20.94 nm which is still slightly broader than the

ES method but as the number of steps goes to 30, the peak width suddenly drops

to 4.929 nm and further reduces to the 4.881 and 2.786 nm respectively for 40

and 50 number of steps. So in comparison to the ES method, MLE is unable to

estimate the original size distribution at first but as the number of steps increases
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The figure represents the Gaussian Fitting for the normalized distribution
obtained from the original distribution by Einstein-Stokes plus Maximum Likelihood Es-
timation method for 10, 20, 30, 40, 50 and 75 number of steps respectively for a, b, c,
d, e, and f subplots. The original distribution is a monodispersed case where the peak is
defined on 50± 5 nm. The variance of the noise in measuring step size in the experimen-
tal setup is assumed to be zero. ES+MLE size distribution is obtained with an iterative
algorithm and iterations are stopped when the current χ2 value is less than 1% smaller
than the value for the previous iteration.
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Figure 4.6: Figure shows the comparison between the Gaussian peak width or (2σ) and
the different number of mean step counts for both the ‘ES’ and ‘ES+MLE’ method. The
original distribution is defined to be 50± 5 and the ES+MLE iterations are stopped when
the current χ2 value is less than 1 % of the value for the previous iteration. The variance
of the noise in measuring step size in the experimental setup is set to zero.

Figure 4.7: Figure shows the comparison between the Gaussian peak centre or (µ) and
the different number of mean step counts for both the ‘ES’ and ‘ES+MLE’ method. The
original distribution is defined to be 50± 5 and the ES+MLE iterations are stopped when
the current χ2 value is less than 1 % of the value for the previous iteration. The variance
of the noise in measuring step size in the experimental setup is set to zero.
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slightly it is quickly able to estimate the original distribution and the width of the

Gaussian peak reduces rapidly after a certain number of steps while in ES method,

the decrease in the width of the peak is steady and if we need to obtain the original

distribution from this method, we need to track the particle for more number of

steps as compared to MLE method.

Figure 4.6 gives this comparison with the graph of Gaussian peak width vs the

mean number of steps and it is evident from the slope of the line which is 0.2363

units for ES method and 0.7031 units for the ES+MLE method that the ES+MLE

method is able to obtain original distribution more quickly as the slope of the line

is greater for the ES+MLE method than the ES method.

The height of the peaks are also increasing with the decrease in the width of the

peak for ES and ES+MLE method and the area under the peak (width*height)

is almost remaining constant which suggests that the fitting and therefore MLE

is not giving any false result and the decrease in peak width is not random but

according to increase in the peak height with respect to the peak position. Also,

for the ES method, the peak position is always within the ±1 nm of the defined

distribution of 50 nm but in the case of the ES+MLE method, the peak position

is not accurate for the mean number of steps of 10 but quickly goes to almost at

the accurate position of the peak to the 50 nm with the increase in the number of

steps and therefore, the number of iterations.
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4.2.2 Bi-dispersed solution-

4.2.2.1 Comparison of ES and ES+MLE Distributions with the Original

Distribution

User Defined Parameters-

• Original radii values - 25± 5 nm, 70± 5 nm with occurrence probability of

50% each

• Mean number of steps - 10, 20, 30, 40 and 50.

• Uncertainty in the track length - 3 (Meaning random generated values of the

mean number of steps will be in the range of 50 to 53)

• Number of particles - 1000

Discussion-

Figure 4.8 shows the comparison of five particle size distributions obtained for

different numbers of mean particle steps. Like the previous case, the number

of particles is kept to 1000 so that better statistical estimates can be obtained.

The blue bars in all the figures above are the original size distribution. This size

distribution is obtained by only allowing the radii values of 25± 5 nm and 70± 5

nm in the input and normalized further. The red bars in all the figures belong to

the Einstein-Stokes radius histogram which is obtained by the method described in

the previous case. The yellow bars belong to the ES+MLE size distribution which

is obtained with the combination of the Einstein-Stokes method and Maximum

Likelihood Estimation method. The iterative algorithm is terminated when the

χ2 value of the final estimate is less than one percent smaller than the value of

the previous iterations. The values for both the ES and ES+MLE method are

normalized before plotting.
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(a) (b)

(c) (d)

(e)

Figure 4.8: Comparison of the original particle size distribution used for molecular sim-
ulation of random walks of 1000 particles, has two defined radii values on 25 ± 5nm
and 70± 5nm(Blue bars) with the recovered particle size distribution by ES method (red
bars) and ES+MLE method (red bars) for different number of particle steps followed (10,
20, 30, 40 and 50, as indicated in the subplot titles). ES+MLE size distribution is plotted
with an iterative algorithm and iterations are stopped when the current χ2 value is less
than 1 % smaller than the value for the previous iteration. The number of iterations for
the ES+MLE plots are 2, 2, 79, 98 and 119 respectively with an increase in the number of
steps.
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In the figure, the original distribution(blue bars) has the same values and has the

same peak positions in all the figures as it is the input and like the previous case,

for the distribution where the mean number of steps of 10 and 20, the bar values

for both the ES and ES+MLE are scattered all around the available radii values.

Again, for the subplot where the mean number of steps is 30, it can be observed

that the ES+MLE distribution is converging to the original distribution and yellow

bars of ES+MLE distribution has size distribution function values of around 0.48

on 25 nm radius value and around 0.25 on 70 nm radius value as compared to 0.5

and 0.5 for the original blue bars. For the next cases of 40 nm and 50 nm, the

ES as well as the ES+MLE distribution further converges nearly to the original

distribution. The number of iterations for the ES+MLE distribution is constant

(2 iterations) for the first two cases of 10 and 20 mean number of steps but as

the mean number of steps increases the number of iterations also increases before

termination. The number of iterations for 30, 40 and 50 nm cases are 79, 98 and

119 respectively. So it can be observed that for the bidispersed case, the number

of iterations required are greater than the monodispersed case in the aspect of the

mean steps value of 30,40 and 50.

4.2.2.2 Gaussian Fitting

Einstein-Stokes Distribution

Discussion-

Figure 4.9 shows the Gaussian fitting for the particle size distribution obtained

from the original distribution by Einstein-Stokes method and figure 4.10 shows

the Gaussian fitting for the size distribution obtained from the Einstein-Stokes

plus Maximum Likelihood Estimation. The Gaussian fitting is done with respect

to the mean number of particle steps of 10, 20, 30, 40, 50, 75 and 100 to compare
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: The figure represents the Gaussian Fitting for the normalized distribution
obtained by Einstein-Stokes method for 10, 20, 30, 40, 50 and 75 mean number of steps
respectively for a.b,c,d and e subplots where original distribution has radii values of 25±5
nm and 70 ± 5 nm. The variance of the noise in measuring step size in the experimental
setup is assumed to be zero.
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Mean
Number
of Steps

Width of Peaks
(W) (nm)

Height of Peaks
(Size Distri-
bution units)
(H)

Peak Cen-
tres (nm)

10 24.93, NA 0.1197, NA 24.93, NA
20 11.79, 54.45 0.0703, 0.0469 25.41, 68.7
30 6.085, 18.36 0.2137, 0.0805 24.87, 68.98
40 6.281, 14.15 0.2329, 0.0939 25.18, 70.55
50 5.456, 14.85 0.2593, 0.0945 24.65, 69.86
75 4.326, 10.43 0.3099, 0.1347 25.35, 68.95
100 3.93,9.684 0.3582,0.1434 25.09,69.54

Table 4.4: Gaussian fitting Data for the bidispersed ES Distribution where, the value
before comma(,) in any particular cell gives the value for the 25± 5 nm radius value and
the value after comma(,) gives the value for 70± 5 nm radius value.

the widths of the peaks obtained from both methods.

The original distribution is defined on the 25±5 nm and 70±5 nm radii values. In

figure 4.9, which represents the ES case it can be observed that for the case of 10

mean number of steps the two-peak Gaussian fitting is not possible as the recov-

ered ES distribution has distributed radii values and therefore, is not well suited

for the two-peaks Gaussian fitting model whereas, for the same mean number of

steps, in the case of ES+MLE distribution, it is possible to fit the two-fit model

but both the peaks have very large width. From the mean number of steps of 20, it

is possible to fit the two-peak model to all the ES distributions and a similar trend

is observed as the monodispersed case.

It is interesting to note one more thing that although there is an equal chance of

obtaining the particles of the values of 25±5 nm and 70±5 nm in the simulation,

the peak width and height is not equal for ES and ES+MLE distribution and the

peak at 25 nm has a narrower peak width for 10, 20, 30, 40, 50 and 75 mean

number of steps. As the value of the mean number of steps reaches 100, ES+MLE

can give almost equivalent peak width and height but in the case of ES distribution,

Page 67



CHAPTER 4. RESULTS AND DISCUSSION: SIMULATED DATA

there is still the difference of almost 6 nm in the peak width.

ES+MLE Distribution

Mean
Number
of Steps

Width of Peaks
(W) (nm)

Height of Peaks
(Size Distribu-
tion units) (H)

Peak Cen-
tres (nm)

10 11.79, 54.45 0.0703, 0.4692 25.41, 68.7
20 9.116, 38.51 0.1242, 0.0490 24.8, 69.95
30 2.393, 5.663 0.4715, 0.2585 24.85, 68.88
40 2.5, 4.206 0.4965, 0.3236 25.1, 70.01
50 2.245, 4.393 0.6008, 0.3185 24.91, 69.96
75 2.062, 3.851 0.4794, 0.3744 25.03, 69.68
100 1.739, 1.056 0.504, 0.4928 25, 70

Table 4.5: Gaussian fitting Data for the bidispersed ES+MLE Distribution where, the
value before comma(,) in any particular cell gives the value for the 25 ± 5 nm peak and
the value after comma(,) gives the value for 70± 5 nm peak.

Figure 4.11 shows the comparison for the Gaussian peak widths (2σ) with the

increase in the number of mean step sizes from 10 to 100 for the bi-dispersed

solution i.e. the original distribution is defined with the two peaks at 25±5 nm and

70± 5 nm and then the ES and ES+MLE methods are used to recover the original

size distribution. For both the peaks the analysis shows almost similar results for

both the ES and ES+MLE method except for the mean count of steps of 10. For

both the peaks, with the ES and ES+MLE method the peak width reduces rapidly

till the mean number of steps of 30 and then almost remains constant throughout

till 100. The ES+MLE has narrower peak width than the ES method throughout

the analysis except in the case of the mean number of steps of 10 for 70 nm peak

where the peak width is almost equal for both the methods. Also, it is interesting

to note that even if it is expected to get the equal peak width as chances of getting

the particles of both sizes are 50-50% (defined in the simulation), both ES and

ES+MLE method fails to get the same peak width for two peaks throughout the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: The figure represents the Gaussian Fitting for the normalized distribution
obtained from the original distribution by Einstein-Stokes plus Maximum Likelihood Es-
timation method for 10,20,30,40, 50 and 75 number of steps respectively for a, b, c, d, e,
and f subplots. The original distribution is a bidispersed case where the peak is defined
on 25 ± 5 nm and 70 ± 5 nm. The variance of the noise in measuring step size in the
experimental setup is assumed to be zero. ES+MLE size distribution is obtained with an
iterative algorithm and iterations are stopped when the current χ2 value is less than 1%
smaller than the value for the previous iteration.
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(a) (b)

Figure 4.11: Figure shows the comparison between the Gaussian peak width or (2σ) with
the mean step count for both the ‘ES’ and ‘ES+MLE’ method. The original distribution
is defined by the two peaks on 25± 5 nm and 70± 5 nm and the ES+MLE iterations are
stopped when the current value is less than 1% of the value for the previous iteration. The
sub figure a compares the ES and ES+MLE Gaussian peak width with step count for peak
defined at 25 ± 5 nm in original distribution while the sub figure b compares the ES and
ES+MLE Gaussian peak center with the step counts for peak defined at 70± 5 nm in the
original distribution. The variance of the noise in measuring step size in the experimental
setup is set to zero.

comparison. The ES+MLE method almost shows the equal-sized peaks for the

mean steps of 100 but this method also fails to show the equal peak width for a

lesser number of mean steps as the ES method.

Figure 4.12 compares the Gaussian peak centres or µ with the increase in the

number of step sizes for the ES and ES+MLE methods wherein subplot ‘a’ the

peak centre is defined in the original distribution at 25±5 nm and then comparison

with the peak centres obtained by both the method with the increase in the number

of steps is shown and in subplot ‘b’ the peak centre is defined in the original

distribution at 70± 5 nm and then the comparison with the peak centres obtained

by both the method with the increase in the number of steps is shown. For both

the methods there are small oscillations of peak centre values around the defined

peak centres, But for the ES+MLE method, for 100 mean number of steps peak

Page 70



CHAPTER 4. RESULTS AND DISCUSSION: SIMULATED DATA

(a) (b)

Figure 4.12: Figure shows the comparison between the Gaussian peak center or mean(µ)
with the mean step count for both the ‘ES’ and ‘ES+MLE’ method. The original distribu-
tion is defined by the two peaks on 25± 5 nm and 70± 5 nm and the ES+MLE iterations
are stopped when the current value is less than 1% of the value for the previous iteration.
The sub figure a compares the ES and ES+MLE Gaussian peak width with step count for
peak defined at 25± 5 nm in original distribution while the sub figure b compares the ES
and ES+MLE Gaussian peak center with the step counts for peak defined at 70± 5 nm in
original distribution. The variance of the noise in measuring step size in the experimental
setup is set to zero.

centre reaches at exact 25 and 70 nm up to significant numbers of 4.

4.3 Weakness of the MLE Approach

Although MLE is useful to get the accurate size distribution obtained from the

Nanoparticle Tracking Analysis system, there is one inherent problem of overfit-

ting associated with the MLE approach if the stopping criterion is not applied.

The figure 4.13 illustrates the comparison of the original size distribution with the

ES+MLE distribution when a large number of iterations are taken for the analysis.

The radii values are sampled randomly to get the original distribution. The origi-

nal distribution is defined in such a way where 35± 5 has the highest occurrence

probability and the probability of occurrence for the values 30± 5 nm and 40± 5
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nm are equal but higher than the 25 ± 5 nm and 45 ± 5 nm. The 25 ± 5 nm and

45± 5 nm have equal but lowest occurrence probability than any other value. For

the iterations of 4 and 8, MLE shows a very wide distribution than the original

distribution and therefore lower size distribution function values than the original

distribution. For 20 iterations MLE almost goes to the original distribution with

size distribution function values almost similar to the original distribution. But

it can be observed that for the 400 iterations, the ES+MLE goes quite close to

the original distribution but the size distribution function value is slightly larger

for the 35 ± 5 nm peak. For 4000 and 40000 number of iterations, it can be ob-

served from the figures that MLE distribution favours the radius value which has

the highest occurrence probability. This is because MLE selects the best possible

parameters and is biased towards the highest occurrence probability. As the prob-

ability of occurrence of 35± 5 is higher, it converges to that value as compared to

the other available values.

From the above discussion it can be concluded that the 20-40 iterations produce

the best fit and even if the self convergence criteria are not met for this number

of iterations, it is recommended that the user should stop the iterations within this

range.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Figure shows the comparison of the ES+MLE distribution to the original
distribution. The original distribution is defined on the 25± 5 nm, 30± 5 nm, 35± 5 nm,
40± 5 nm and 45± 5 nm where, the probability of occurrence for the value 35± 5 nm is
higher than any other value. The probability of occurrence for the values 30± 5 nm and
40 ± 5 nm are equal but higher than the 25 ± 5 nm and 45 ± 5 nm. The 25 ± 5 nm and
45 ± 5 nm have the equal but lowest occurrence probability. The ES+MLE distribution
is obtained for the 4, 8, 20, 400, 4000 and 40,000 number of iterations respectively for
the subfigures a, b, c, d, e and f. The variance of the noise in measuring step size in the
experimental setup is set to zero.
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5 | Results and Discussion: Experimental

Data

For further testing, the application of the MLE algorithm on experimental data,

the size distributions obtained from the video samples of the food-grade TiO2 are

used. Food grade TiO2 (E171) has been used as a food additive for its whiten-

ing effect [64]. There is still a doubt about health risks associated with the con-

sumption of TiO2 as it contains nanoparticles that can persist in a body even

after a long time after consumption [65]. The characterisation of this food-grade

TiO2 has been done as a part of the research project at the University of Leeds

to understand the surface chemistry properties [66]. To check the change in sur-

face chemistry and surface properties, thermal treatment is done on the TiO2 or

E171 sample where E171 powder was heated in air to temperatures of 500oC and

1000oC. TiO2 nanoparticles have a phosphate coating around them and by heat-

ing the sample, it can be possible to alter their phosphate coating and thereby to

change the dispersion [66], [67]. The videos of TiO2 samples obtained by the

low-concentration NTA system of the University of York are used to study the

difference between particle size distribution profiles obtained by the conventional

NTA approach and the MLE approach.

5.1 Standard Analysis

For the NTA analysis, 3 readily available videos for each untreated, 5000C and

10000C samples of food-grade TiO2 dispersed in water (E171) are used. Samples

were heated in the air before dispersing in the water. The videos were taken for

different durations with the first video being 30 seconds long, the second with 60

seconds and the third video with the 90 seconds duration. These videos are taken
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by the BSc students at the University of York as part of their BSc project. All

three samples were 100 µg/ml.

Constant Parameters for all the checks-

• Global Size Parameter - 6 Pixels

• Minimum Steps per Track - 5

• Maximum Percentage Standard Error - 50

• Pixel Size - 0.6 µm

• Water Temperature - 300 K

• Minimum Expected Particle Size - 5 nm

• Max Step Length- 5 Pixels

• Horizontal Drift Correction - ON

• Vertical Drift Correction - ON

Discussion-

Figure 5.1 shows the conventional approach of the NTA particle size distribution

for the untreated TiO2 sample. The number of particles found is 1499, 841 and

619 respectively for the first, second and the third video and also the mean particle

sizes obtained are 472± 138 nm, 413± 174 nm and 358± 117 nm.

Figure 5.2 shows the conventional approach of the NTA particle size distribution

for the TiO2 sample heated to 5000C. The number of particles found is 3154, 548

and 572 respectively for the first, second and the third video and also the mean

particle sizes obtained are 382± 109 nm, 323± 97 nm and 401± 125 nm.

Figure 5.3 shows the conventional approach of the NTA particle size distribution

for the TiO2 sample heated to 10000C. The number of particles found is 818, 698
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(a) (b)

(c)

Figure 5.1: Figure shows the conventional NTA analysis for the three videos of the same
untreated TiO2 sample where the duration of the videos for the samples are taken for 30,
60 and 90 seconds respectively for a,b and c. The number of particles found for each
analysis were 1499, 841 and 619 respectively.

and 2345 respectively for the first, second and the third video and also the mean

particle sizes obtained are 463± 114 nm, 231± 50 nm and 293± 63 nm.

From the above observations, it can be seen that there is inconsistency in the

particle size distribution profile even if the different videos for the same samples

are used. This is maybe due to the different number of particles detected for

each of the videos even if the different video of the same sample is used for the

analysis. But for all of the graphs, it can be observed that there are always two

peaks or maxima and a wide particle size distribution profile over multiple radii
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values. This can be associated with the shortcomings of the current NTA approach

of the particle size distribution which gives a broader particle size distribution than

the expected particle size distribution.

(a) (b)

(c)

Figure 5.2: Figure shows the conventional NTA analysis for the three videos of the same
TiO2 sample heated in air to 5000C where the duration of the videos for the samples are
taken for 30, 60 and 90 seconds respectively for a,b and c. The number of particles found
for each analysis were 3154, 548 and 572 respectively.
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(a) (b)

(c)

Figure 5.3: Figure shows the conventional NTA analysis for the three videos of the same
TiO2 sample heated in air to 10000C where the duration of the videos for the samples
are taken for 30, 60 and 90 seconds respectively for a,b and c. The number of particles
found for each analysis were 818, 698 and 2345 respectively.

5.2 Comparison of MLE Analysis with the standard

analysis

Discussion-

Results show the comparison of the MLE approach to obtaining the particle size

distribution with the conventional NTA approach. For this analysis, the variance of

the noise in measuring step size in the experimental setup is set to zero and MLE

size distribution is obtained with an iterative algorithm. Iterations are stopped
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(a) (b)

(c)

Figure 5.4: Figure shows the conventional and MLE NTA analysis for the three videos
of untreated TiO2 sample where the duration of the videos are 30,60 and 90 seconds
respectively for a,b and c. Conventional NTA analysis is shown in Blue and the MLE
NTA is shown in Orange. MLE size distribution is obtained with an iterative algorithm
and iterations are stopped when the current χ2 value is less than 1% smaller than the
value for the previous iteration. MLE analysis shows the sample distribution lies between
50 ± 10 nm to 250 ± 10 nm for the first and second videos and between 50 ± 10 nm to
150 ± 10 nm for the third video. The number of iterations for MLE analyses are 6, 5
and 4 respectively for a, b and c. The variance of the noise in measuring step size in the
experimental setup is set to zero.
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when the current χ2 value is less than 1% smaller than the value for the previous

iteration for all the analyses.

For all the MLE analyses, it can be observed that for all the video samples MLE is

giving narrow distribution with only two or three bins. For the untreated sample

of TiO2 it can be observed that, for the conventional NTA approach, particle size

distribution is very wide and ranges from 5 to 1000 nm for the first video, 5 to

1200 nm for the second video and 5 to 650 nm for the third video. MLE shows a

very narrow distribution with just three bins for the sample around 50 ± 10 nm,

150± 10 nm and 250± 10 nm for the first and second videos and two bins around

50± 10 nm and 150± 10 nm for the third video. It takes just 6, 5 and 4 iterations

respectively for the first, second and third video.

Similarly for the sample heated to 5000C, the particle size range is 0 to 850 nm

for the first and second video and 0 to 1100 nm for the third video. Although MLE

is showing the size distribution ranging from 25 ± 10 nm to 200 ± 10 nm for the

first video, the size distribution still lies between 50 ± 10 nm and 250 ± 10 nm

for the second and third video and does not show any increase or decrease in the

size with the increase in the temperature. The number of iterations is 5, 4 and 3

respectively for the first, second and third video.

For the sample heated to the 10000C, conventional NTA similarly shows a broad

size distribution profile for all the videos but, MLE shows the size distribution

ranging from 25± 10 nm to 250± 10 nm. The number of iterations is 5, 4 and 4

respectively for the first, second and third video.

From the above analysis, it can be concluded that the MLE is giving narrow size

distribution for all the TiO2 samples. But according to the findings of Shah [66]

and Talamini et al [65], the different sources of E171 TiO2 particles dispersed

in water at 100 µg/ml give an average hydrodynamic particle size by DLS of
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around 350 nm with sizes ranging from 50 nm to 500 nm and the average primary

particle size is around 100 nm with sizes ranging from 50 nm to 200 nm for

the TEM analysis. For the untreated samples the sizes obtained from the MLE

results are near to those findings but with a slightly narrow size distribution for the

hydrodynamic sizes with the sizes ranging from 50 nm to 250 nm. This could be

the outcome of the overfitting or the effect of the stopping algorithm used. Further

as shown by Shah [66] the hydrodynamic particle size for E171 heated to 5000C

and 10000 C and then dispersed in water at 100 µg/ml increases to 395 nm and

554 nm respectively for the DLS analysis with TEM showing the average particle

size around 187 nm. MLE analysis fails to observe this increase in size and still

gives the same results with the bias towards smaller particle sizes. This bias can

be the effect of the accuracy by which the mean of the exponential distribution θr

(subsection 3.3.1) is calculated as this value is used to further obtain the Gamma

PDF in the algorithm. Therefore, further investigation is required to make any

conclusion about the accuracy of these results with the more improved methods

such as Maximum A Posteriori or MAP estimation [20] which uses the Bayesian

probability and the regularization approach.
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(a) (b)

(c)

Figure 5.5: Figure shows the conventional and MLE NTA analysis for the the three videos
of TiO2 sample heated to 5000C where the duration of the videos are 30,60 and 90
seconds respectively for a,b and c. Conventional NTA analysis is shown in Blue and
the MLE NTA is shown in Orange. MLE size distribution is obtained with an iterative
algorithm and iterations are stopped when the current χ2 value is less than 1% smaller
than the value for the previous iteration. MLE analysis shows the sample distribution lies
between 25±10 nm to 200±10 nm for the first video and between 50±10 nm to 250±10
nm for the second and third video. The number of iterations for MLE analyses are 5, 4
and 3 respectively for a, b and c. The variance of the noise in measuring step size in the
experimental setup is set to zero.
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(a) (b)

(c)

Figure 5.6: Figure shows the conventional and MLE NTA analysis for the three videos
of TiO2 sample heated to 10000C where the duration of the videos are 30,60 and 90
seconds respectively for a,b and c. Conventional NTA analysis is shown in Blue and
the MLE NTA is shown in Orange. MLE size distribution is obtained with an iterative
algorithm and iterations are stopped when the current χ2 value is less than 1% smaller
than the value for the previous iteration. MLE analysis shows the sample distribution lies
between 25±10 nm to 250±10 nm for the first video and between 50±10 nm to 200±10
nm for the second and third video. The number of iterations for MLE analyses are 5, 4
and 4 respectively for a, b and c. The variance of the noise in measuring step size in the
experimental setup is set to zero.
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6 | Conclusion and Future Scope

In this research work, an improvement in the particle size distribution obtained by

NTA has been presented with the help of the Brownian motion simulation and the

probabilistic MLE approach.

In Chapter 3, the method of Brownian motion simulation is presented along with

the data processing method for MLE. It can be observed that Brownian motion

simulation is very useful in mimicking random walks of the Brownian particle

and therefore, it is a very useful tool to mimic the experimental conditions of

NTA. It can also be seen from some of the figures in 3.2 that it is easily possible to

obtain different types of particle distributions by this simulation. Also, as the con-

ventional approach of NTA is subject to statistical uncertainty, the new approach,

Maximum Likelihood Estimate is presented in detail further in the chapter. Un-

like the conventional approach, the Maximum Likelihood Estimate approach takes

into account the finite accuracy of the mean squared displacement along with the

average number of steps for each track to solve this statistical uncertainty and the

apparent broadened size distribution obtained by the conventional method due to

this uncertainty.

Chapter 4 and Chapter 5 present the results of this MLE approach applied to the

particle size distributions obtained by the simulation and by the actual experi-

mental videos. In Chapter 4 the comparison is shown between the distributions

obtained by the conventional ‘Einstein-Stokes’ and ‘Einstein-Stokes+MLE’ ap-

proaches. This comparison is done for the monodispersed and bidispersed distri-

butions and it has been observed that ‘Einstein-Stokes+MLE’ was quickly able to

converge to the original distribution and for the lesser value of the mean number of

steps than the ‘Einstein-Stokes’ approach for both the cases. Further, to compare
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the broadness of the distribution obtained by both the methods, Gaussian fitting

is done and it can also be observed that the widths of the ‘Einstein-Stokes+MLE’

distributions are narrower even for the distributions obtained with the mean num-

ber of steps as small as 10 and was able to quickly converge to the Gaussian centre

or mean value which is defined by the original distribution. In chapter 5, the MLE

approach was able to give a narrower size distribution for TiO2 samples but was

slightly inaccurate in determining the actual particle sizes. Therefore, it can be

concluded that although the MLE method can be very useful to determine the

accurate size distribution obtained by NTA and can be used to remove the inher-

ent uncertainties in the conventional approach but has some weaknesses such as

bias or overfitting if the stopping criterion is not applied which was also shown

at the end of Chapter 4. All the existing publications on MLE such as Walker

[18] truncated the iterations without giving any proper justifications of why they

truncated these iterations. So based on the results obtained with the simulations,

iterations should be truncated at 40 to get results similar to the actual distribution.

Results found in chapter 5 are also subject to additional experimental and numer-

ical uncertainties such as misidentification of particles and/or possible errors in

drift corrections. Thus the accuracy of the MLE result shown for the experimental

data is also affected by these uncertainties. It can also be observed that the MLE

distribution is biased towards the peaks appearing at the smaller sized particles in

the size distribution. This bias is mostly dependent on how accurately the mean

of the initial exponential distribution θr (refer to subsection 3.3.1) is calculated.

Future work should focus on the investigation of the possible effect of the known

experimental artefacts on the MLE accuracy by simulation and how accurately the

initial parameters need to be calculated for the unbiased distribution.

MLE is a useful technique for the determination of particle size distribution but as

mentioned earlier there is an inherent disadvantage of overfitting or oversmooth-
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ing and a stopping criterion is necessary to stop the iterations. Also, as evidenced

in Chapter 5, the accuracy of the size distribution can also be dependent upon how

accurately the initial parameters such as the mean of the initial exponential distri-

bution (θr) are calculated. The alternate approach Maximum A posteriori Estima-

tion [20], an approach based on the Bayesian probability that takes into account

the prior information can be used and tested to overcome these disadvantages.

This approach also takes into account the data like mean trajectory length or the

mean squared displacement but unlike MLE, has better regularization approaches

such as cross-validation and won’t be dependent on the statistical stopping choices

for the iterations.
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A | Solution of the Diffusion Equation

To find the solution of the diffusion equation given by equation 2.7, we will place

the assembly of the particle at the origin for convenience i.e. at x = 0. Then our

problem will be to solve this equation with the delta function x = 0 as our initial

condition

f(x, 0) = δ(x) (A.1)

In general terms, Fourier Transform is given as

f(x, t) =

ˆ ∞

−∞
F (u, t)e−iuxdu (A.2)

Also the Inverse Fourier Transform is given as,

F (u, t) =

ˆ ∞

−∞
f(x, t)eiuxdx (A.3)

From equation 2.7,

∂

∂t

[ˆ ∞

−∞
F (u, t)eiuxdu

]
= D

∂2

∂x2

[ˆ ∞

−∞
F (u, t)eiuxdu

]
(A.4)

Therefore,

ˆ ∞

−∞

∂

∂t

[
F (u, t)eiuxdu

]
= D

ˆ ∞

−∞

∂2

∂x2

[
F (u, t)eiuxdu

]
(A.5)

Now we can remove the integration sign from the equation A.5 because we are

taking partial differentiation with respect to t and x, Therefore,

∂

∂t
[F (u, t)] eiux = D

∂2

∂x2

[
F (u, t)eiux

]
(A.6)
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Therefore,
∂

∂t
[F (u, t)] eiux = DF (u, t)

∂2

∂x2

[
eiux
]

∂

∂t
[F (u, t)] eiux = DF (u, t)(i)(i)u2eiux

So we will get,

∂

∂t
[F (u, t)] = −Du2F (u, t) (A.7)

Dividing both sides by F (u, t) on both sides of the equation A.7,

1

F (u, t)

∂

∂t
[F (u, t)] = −Du2 (A.8)

Rearranging the equation to remove the partial dependence and integrating both

sides, ˆ
1

F (u, t)
dF (u, t) = −Du2

ˆ
dt

The solution of above equation can be given as,

lnF (u, t) = −Du2t+ C (A.9)

At t = 0, equation A.9 becomes,

lnF (u, 0) = C (A.10)

From equation A.3,

F (u, 0) =

ˆ ∞

−∞
f(x, 0)eiuxdx
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And from equation A.1,

F (u, 0) =

ˆ ∞

−∞
δ(x)eiuxdx (A.11)

We know the delta function property,

ˆ ∞

−∞
δ(x)f(x)dx = f(0) (A.12)

Therefore,

ˆ ∞

−∞
δ(x)eiuxdx = e0 = 1 (A.13)

Therefore, equation A.11 becomes,

F (u, 0) =

ˆ ∞

−∞
δ(x)eiuxdx = 1 (A.14)

Hence, from equation A.10,

C = lnF (u, 0) = ln1 = 0 (A.15)

And therefore, equation A.8 becomes,

lnF (u, t) = −Du2t

So F (u, t) is given as,

F (u, t) = e−Du2t (A.16)
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Now considering the general alternate form of the Fourier transformation,

f(x, t) =
1

2π

ˆ ∞

−∞
F (u, t)e−iuxdu (A.17)

Substituting the value of F (u, t) from equation A.16 to above equation,

f(x, t) =
1

2π

ˆ ∞

−∞
e−Du2te−iuxdu (A.18)

Let’s consider,

ˆ ∞

−∞
e−Du2te−iuxdu =

ˆ ∞

−∞
e−(au2+bu)du (A.19)

where, a = Dt and b = ix

To solve the integral in the equation A.17, we will first solve the integral´∞
−∞ e−u2

du Let’s consider,

I =

ˆ ∞

−∞
e−u2

du (A.20)

By squaring the above integral we get,

I2 =

ˆ ∞

−∞
e−u2

du

ˆ ∞

−∞
e−u2

du

or we can also write it as,

I2 =

ˆ ∞

−∞
e−v2dv

ˆ ∞

−∞
e−u2

du

Therefore,

I2 =

ˆ ∞

−∞
e−(u2+v2)dv

ˆ ∞

−∞
du
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Changing into polar coordinates,

I2 =

ˆ ∞

0

re−r2dr

ˆ 2π

0

dθ

I2 = 2π

ˆ ∞

0

1

2
d(r2)e−r2dr = π

Therefore,

I =
√
π (A.21)

Now, for a real constant a > 0, the simple change of variable gives us,

I(a) =

ˆ
e−au2

du =
1√
a

ˆ
e−(

√
au)2d(

√
au) =

√
π

a
(A.22)

To solve the equation of the required form we will complete the square and solve

the integration using similar change of variables,

ˆ ∞

−∞
e−(au2+bu)du =

ˆ ∞

−∞
e[−a(u2−2u b

2a
+ b2

4a2
)+ b2

4a
]du

ˆ ∞

−∞
e−(au2+bu)du =

ˆ ∞

−∞
e−a(u− b

2a
)2e

b2

4adu (A.23)

From equation A.22, we can write equation A.23 as,

ˆ ∞

−∞
e−(au2+bu)du =

√
π

a
exp (

b2

4a
) (A.24)

Therefore, from equation A.19,

ˆ ∞

−∞
e−Du2te−iuxdu =

√
π

Dt
exp (

i2x2

4Dt
) (A.25)
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B | Probability Distributions

B.1 Random variable

A random event is an event where more than one outcomes are possible. As the

outcome of the event itself is not predictable, we can only predict the probabilities

of all the possible outcomes. Variables associated with this event is called Random

variables. Let’s denote the random variable by α then this random variable can

take different possible numerical values such as α1, α2, α3 etc. corresponding to

different possible events. The corresponding probabilities P (α1), P (α2), P (α3)

then form a probability distribution. There are two types of random variables: one

is Discrete Random variables which are associated with a countable number of

values like the number of throws of dice and corresponding probability distribu-

tion for these variables are called as Probability Mass Function. Some examples of

discrete distributions are: Binomial Distribution, Poisson Distribution, Bernoulli

Distribution etc.

The other types of random variables are called Continuous Random variable

which takes all values between the given intervals such as age, height, weight,

temperature etc. In Principle, these variables are continuous, only the limitations

of our measuring instruments make it discrete or sometimes very finely divided

[68]. The probability distribution of continuous random variables is described by

Probability Density Function or PDF. Some examples of continuous distributions

and their details are given in subsection B.3.
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B.2 Probability Density Functions

Probability Density Function (PDF) or density of a continuous variable is the basic

building block of statistical estimations.

Formal definition: If α is a continuous random variable, then a probability distri-

bution or probability density function (PDF) of α is a function f(α) such that for

any two numbers a and b with

P (a ≤ α ≤ b) =

ˆ b

a

f(α)dα (B.1)

[68]. The probability of α taking value in the interval between a and b is the area

above that interval as shown in Figure B.1.

Figure B.1: A representation of the sample probability distribution or density curve where
area under the curve between intervals a and b is P (a ≤ x ≤ b). Here, x is considered
as a random variable. Diagram taken from [69].

It is the relationship between the outcomes of a random variable and their prob-
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ability meaning it can be used to specify the probability of the random variable

falling within a particular range of values. The PDF is the density of probability

which is very similar to the concept of mass density. As PDF gives the counts of

the number of occurrences of a value in a particular range it is basically a nor-

malized histogram. (A normalized histogram is a histogram obtained by dividing

the number of counts in a particular bin by the total number of observations and

multiplying it by bin width.)

The shape of this probability density function across the domain for the random

variable is designated as a probability distribution. Knowing which kind of dis-

tribution is we can determine the metrics or the parameters of the distribution.

Parameters are the descriptive measures of the entire sample and can be used as

the inputs in the PDF to generate the distributions. Parameters are usually denoted

by Greek letters. For example, for the Normal or Gaussian distribution population

mean is denoted by µ and the population variance is denoted by σ. Parameters are

fixed constants and do not vary with a sample. The main problem is usually for

the random variable, the parameters of the probability distribution are unknown

as we normally do not know all the possible outcomes and just have the sample of

observations. But we can estimate the probability distribution from the sample of

observations we have which is referred to as ‘density estimation’.

B.3 Some important Probability Distributions and

their significance

B.3.1 Continuous Uniform Distribution

The Continuous Uniform Distribution is the simplest distribution from all the dis-

tributions. The Uniform distribution is used where the probabilities of all the
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event are equally likely possible. The continuous random variable α is uniformly

distributed if PDF of the distribution is given by

f(α) =


1

b− a
, if a ≤ α ≤ b

0, otherwise
(B.2)

Parameters- a, b where a < b

Expected value- E(α) =
a+ b

2

Variance- V (α) =
(b− a)2

12

Figure B.2: Diagram showing the Continuous Uniform distribution where f(x) is the prob-
ability density and a and b are the parameters of the PDF. Here, X is considered as a
random variable Diagram taken from [70]

B.3.2 Normal or Gaussian Distribution

The normal distribution is the most important distribution in statistics. Many dis-

tributions for numerical populations can be fitted very closely with Gaussian or
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Normal distribution. Sometimes even if individual random variables are not nor-

mally distributed, under suitable conditions sums and averages of the variables can

be normally distributed which is the basic postulate of the Central Limit Theorem.

The normal distribution is defined by two parameters mean (µ), which gives the

central tendency or the location of the peak and standard deviation (σ) which gives

the width or spread of the distribution from its mean. The PDF of this distribution

is given as

f(α) = N(µ, σ2) =
1

σ
√
2π

exp

(
−(α− µ)2

2σ2

)
,−∞ < x < ∞ (B.3)

Figure B.3: Figure a shows two different Gaussian distribution curves one for the mean
value of 80 and standard deviation of 15 and another for mean value of 100 and standard
deviation of 5. Figure b helps to visualize the mean and standard deviation for the typical
Gaussian or Normal distribution. Diagrams taken from [68]

Parameters- µ- real, σ- real positive number

Expected Value- E(α) = µ

Variance- V (α) = σ2
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B.3.3 Exponential Distribution

The exponential distribution is used in the probability models to determine the

waiting time for the next event to occur if events happen independently and ran-

domly with a constant rate over time. For example, exponential distribution can

be used to predict the time until next bus arrives or to predict the failure of certain

hardware. The random variable αhas an exponential distribution when,

f(α;λ) =

λe−λα, if x ≥ 0

0, otherwise
(B.4)

where, λ gives rate of events. The exponential distribution has a memoryless prop-

erty [71] meaning even if you have waited for some time for the successful event

to happen, the mean waiting time for the next successful event is the same as when

you started. Because all the events are independent of each other. For example,

if you know the average waiting time for the customer to arrive in a certain store

is 15 minutes which is given by exponential distribution. Some customers can ar-

rive in 10 minutes or some customers can arrive in 20 minutes. But memory-less

property means average customer waiting time will always remain 15 minutes in-

dependent of when the last customer arrived as the event of a customer arriving in

the store is random and independent.

Parameters- λ Positive real number

Expected Value-E(α) =
1

λ

Variance-V (α) =
1

λ2
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Figure B.4: Figure shows different exponential distributions for the parameters λ = 0.5
, 1 and 2. f(x;λ) is the probability density. Here, x is considered as a random variable
Diagram taken from [68].

B.3.4 Gamma Distribution

A continuous random variable α will have a Gamma distribution if the PDF of α

is given as

f(α; vu) =


1

vuΓ(u)
α(u−1)e

−α
v , if α ≥ 0

0, otherwise
(B.5)

Gamma distribution is also used to predict wait time until the future event but

unlike exponential distribution which is used to predict the wait time of the very

first event, Gamma distribution gives us the wait time until the kth event occurs.

Gamma distribution has two different parametrization sets- u -shape, v -rate and k-

shape and θ-scale. u, v parametrization is same as the k, λ parametrization where,

k is the number of events and λ is the rate of events but for k, θ parametrization

θ is given by
1

λ
which is the mean wait time or the average time between the
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intervals. The PDF for the k, θ parametrization is given as

f(α; kθ) =


1

θkΓ(k)
α(k−1)e

(−α

θ

)
, if α ≥ 0

0, otherwise

(B.6)

Parameters- u v , k θ

Expected Value- E(α) = kθ or E(α) =
u

v

Variance- V (α) = kθ2 or V (α) =
u

v2

Figure B.5: The diagram shows the PDF for the gamma distribution with different pa-
rameters: u=0.5, v=1 (full line gray), u=2, v=0.5 (red), u=1,v=2 (dotted). Here x is
considered as a random variable. Diagram taken from [72]

Page 99



C | MATLAB code for the MLE program

1

2 %

3 % This program first defines an initial probability distribution

4 % for the sizes of the particles whose random walk is simulated

5 % in 2D projection and the mean displacement calculated together

6 % with the total number of steps tracked par particles.

7 % The mean displacement is used to recover an estimate of the

8 % particle radius using Einstein-Stokes relation.

9 %

10 % Alternatively, the means and number of steps tracked are used

11 % together and over a large number of particles to obtain a

12 % maximum entropy estimate of the particle radius distribution

13 % that has the same means as the first estimate, but maximize

14 % the entropy with the knowledge of the number of steps tracked

15 % for each estimate of the mean radius of the

16 % particls.

17 %

18 clear;

19 %

20 % The default setting is that particles are tracked on average

21 % for 50 consecutive frames (steps) with a step variance of 3.

22 %

23 step.mean=50;

24 step.variance=3;

25 %

26 % The particle size distribution(the probability distribution)

27 % is defined, by default, to be bimodel centered at 25 and 70

28 %

29 pm.r=

30 [10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105];
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31 pm.f=[0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0];

32 %

33 %The next block of the code is to get the allowed values of

34 %radius from the defined radius histogram above.

35 %

36 pm.allowed_r1=zeros(length(pm.r),1);

37 pm.allowed_f1=zeros(length(pm.r),1);

38 for j=1:length(pm.r)

39 if((pm.r(j)).*(pm.f(j))~=0)

40 pm.allowed_r1(j)=pm.r(j);

41 pm.allowed_f1(j)=pm.f(j);

42 end

43 end

44 pm.zero_values_r=find(any(pm.allowed_r1==0,2));

45 pm.zero_values_f=find(any(pm.allowed_f1==0,2));

46 pm.allowed_r1(pm.zero_values_r,:)=[];

47 pm.allowed_f1(pm.zero_values_f,:)=[];

48 pm.allowed_r_init=cat(2,pm.allowed_r1,pm.allowed_f1);

49

50

51 for u=1:length(pm.allowed_r_init(:,2))

52 if pm.allowed_r_init(u,2)~=1

53 p(u).allowed_r = repelem(pm.allowed_r_init(u,1),pm.

allowed_r_init(u,2));

54 else

55 p(u).allowed_r=pm.allowed_r_init(u,1);

56 end

57 end

58 %repelem- repeat copies of array elements

59

60 allowed_r=cat(2,p.allowed_r);

61 pm.radius=datasample(allowed_r,1000); % random sampling

62 pm.radius=pm.radius’;
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63 %

64 % Now we have a random set of (1000) particles radius

65 % (pm.radius(1:1000))in accorance of the size distribution

66 % defined in [pm.r, pm.f].

67 %

68 %

69 for j=1:length(pm.r)

70 theta_r(j)=(2*1.38*10^-23*0.1*300)/(3*pi*0.000853*pm.r(j));

71 end

72

73 D=stokes_einstein_D(300,pm.radius,0.00085);

74 %Define D as a function given temperature,radius,viscosity.

75 %particle.mean_d=sqrt(2*D*0.1);

76 %k=sqrt(2*mean_D*0.1);%scaling factor

77 %

78 % In the following, the random walk is simulated for a

79 % normalized distribution of unit variance. To convert

80 % this to one for a particle of radius r, the variance

81 % is multiplied by sqrt(mean displacement estimated

82 % by the Einstein relationship as calculated in the

83 % above few lines of the code.

84 %

85 particlecount=length(D);

86 delta_t=0.1;

87 dummy=zeros(particlecount,1);

88 rng(’shuffle’);

89 %meandisp=0.0;

90

91 particle = struct(’steps’,dummy,’meandisp’,dummy);

92 for i=1:particlecount

93 particle.steps=round(step.mean + step.variance.*rand(

particlecount,1));

94 %This command is used to generate random no. of steps for

Page 102



APPENDIX C. MATLAB CODE FOR THE MLE PROGRAM

95 %particle with given mean and variance of steps.

96 particle.dx= sqrt(2*D(i)*delta_t)*randn(1,particle.steps(i));%

Scaling

97 particle.dy= sqrt(2*D(i)*delta_t)*randn(1,particle.steps(i));%

Scaling

98 particle.rsquared = (particle.dx) .^2 + (particle.dy) .^ 2;

99 particle.meandisp(i)=mean(particle.rsquared);

100 particle.radius(i)=(2*1.38*10^-23*0.1*300)/(3*pi*0.000853*

particle.meandisp(i));

101 end

102 %

103 % The key data (the number of steps, the mean square

104 % displacement) for each particles are collected in

105 % the data ’sim_data’, saved to a csv file and

106 % plotted in a histogram with a bin width set to

107 % 0.6*10^-21.

108 %

109 sim_data=cat(2,particle.steps,particle.meandisp);

110 csvwrite("Sim_Data.csv",sim_data);

111

112 [N,edges] = histcounts(particle.meandisp,’BinWidth’,0.6*10^-21);

113

114 Num_Par=unique(sim_data(:,1),’rows’);

115 counts_1 = hist(sim_data(:,1),Num_Par);

116 %

117 % Initiation of the 1st guess of the true particle

118 % size distribution as P_m_1. Here the guess is a

119 % uniform distribution.

120 %

121 b=max(pm.r);

122 a=min(pm.r);

123 P_m_1=pdf(’Uniform’,pm.r,a,b);

124 %
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125 % Calculation of the Gamma distribution for probability of n

126 % steps of random motions.

127 %

128 M=cell(particlecount,1);%To store values in a sample cell

129 for i=1:particlecount

130 x(i)=sim_data(i,1)*sim_data(i,2);%k_n*z_n

131 M{i}=gampdf(x(i),sim_data(i,1),theta_r);%Gammapdf

132 end

133 %

134 % Declare matrix to store successive estimate of particle size

distribution.

135 %

136 First_cell=cell(particlecount,1);

137 last_cell=cell(particlecount,1);

138 P_m_=cell(5000,1);

139 P_m_{1}=P_m_1;%Defined uniform pd

140 Sum(1)=sum(P_m_{1}, ’all’);

141 for i=1:particlecount

142 First_cell{i}=M{i}.*P_m_{1}/Sum(1);%P_d*P_m(k)/Sum of P_m(k)

143 Denominator(i)=sum(First_cell{i},’all’);

144 %Sum over all bins for the term P_d*P_m(k)/Sum of P_m(k)

145 last_cell{i}=M{i}/Denominator(i);

146 %P_d divided by the term in the denominator

147 end

148 A_1 = cell2mat(last_cell);%Conversion of cell into single matrix

149 final_sum=sum(A_1,1);

150 %Sum of the individual columns as the sum is over all the

particles

151 %i.e.N(Sum over all the particles)

152

153 final_term=final_sum/particlecount;%Sum divided by no. of

particles(N)

154 P_m_{2}=P_m_{1}.*final_term;
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155

156 for j=1:length(N)

157 for l=1:length(Num_Par)

158 MLE_hist{l}=gampdf((0.6*10^-21)*j,Num_Par(l,1),theta_r);

159 MLE_Hist_Num{l}=MLE_hist{l}.*P_m_{1}*(0.6*10^-21);

160 Sum_HIST(l)=sum(MLE_Hist_Num{l},’all’);

161 Fin_HIST(l)=Sum_HIST(l)/Sum(1);

162 end

163 Sum_step=counts_1.*Fin_HIST;

164 H_ML(j,1)=sum(Sum_step,’all’);

165 Chi_init(j,1)=((0.6*10^-21)-H_ML(j,1))^2/H_ML(j,1);

166 end

167 Chi_FIN(1,1)=sum(Chi_init,’all’);

168

169 for k=2:5000

170 Sum(k)=sum(P_m_{k}, ’all’);%Sum of P_m(k)

171 for i=1:particlecount

172 First_cell{i}=M{i}.*P_m_{k}/Sum(k);%P_d*P_m(k)/Sum of P_m(k)

173 Denominator(i)=sum(First_cell{i},’all’);

174 %Sum over all bins for the term P_d*P_m(k)/Sum of P_m(k)

175 last_cell{i}=M{i}/Denominator(i);%P_d divided by the term in the

denominator

176 end

177 A_1 = cell2mat(last_cell);%Conversion of cell into single matrix

178 final_sum=sum(A_1,1);

179 %Sum of the individual columns as the sum is over all the

particles

180 %i.e.N(Sum over all the particles)

181

182 final_term=final_sum/particlecount;%Sum divided by no. of

particles(N)

183 P_m_{k+1}=P_m_{k}.*final_term;%Iterations

184
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185 %Convergence calculation

186 for j=1:length(N)

187 for l=1:length(Num_Par)

188 MLE_hist{l}=gampdf((0.6*10^-21)*j,Num_Par(l,1),theta_r);

189 MLE_Hist_Num{l}=MLE_hist{l}.*P_m_{k}*(0.6*10^-21);

190 Sum_HIST(l)=sum(MLE_Hist_Num{l},’all’);

191 Fin_HIST(l)=Sum_HIST(l)/Sum(k);

192 end

193 Sum_step=counts_1.*Fin_HIST;

194 H_ML(j,1)=sum(Sum_step,’all’);

195 Chi_init(j,1)=((0.6*10^-21)-H_ML(j,1))^2/H_ML(j,1);

196 end

197 Chi_FIN(k,1)=sum(Chi_init,’all’);

198 if (Chi_FIN(k,1)-Chi_FIN(k-1,1))<(0.01*Chi_FIN(k-1,1))

199 break

200 end

201 end

202 %

203 % Normalization of the updated particle size distribution

204 hold on

205 pm.f = pm.f / sum(pm.f(:));%normalize data

206 P_m_{k}= P_m_{k}/ sum(P_m_{k}(:));%normalize data

207 [N1,centers] = hist(particle.radius,pm.r);

208 N1=N1/sum(N1(:));

209 pm.r=pm.r’;

210 pm.f=pm.f’;

211 N1=N1’;

212 P_m_{k}=P_m_{k}’;

213 plot_data_y=cat(2,pm.f,N1,P_m_{k});

214 fin_plot_data=cat(2,pm.r,pm.f,N1,P_m_{k});

215 csvwrite("plot_Data50_1000.csv",fin_plot_data);%Create CSV file

for plot data.

216 %
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217 % Plotting of three curves within one plots.

218 bar(pm.r,plot_data_y)

219 legend(’Original’,’ES’,’ES+MLE’)

220 xlabel(’Radius(nm)’);

221 ylabel(’Size Distribution Function’);

222 box on;

223

224

225 function output = stokes_einstein_D(temp,radius,viscosity)

226 %applies stokes-einstein relationship to determine mean

hydrodynamic radius

227 boltzmann = 1.38*(10^(-23));

228 a=boltzmann*temp;

229 b=6*pi*viscosity.*radius;

230 output = a./b;

231 end
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