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Abstract

Viscous type damping from viscoelastics is one of the most largely adopted and

studied forms of damping. However, there are some harsh environments such as

outer space where viscoelastic materials are not favourable due to extreme con-

ditions such as high and low temperatures, corrosive environments, exposure to

vacuum and radiation from cosmic rays. In all of these cases, frictional (also

called Coulomb or Coulombic) dampers pose as a valid alternative, thanks to

the advantage of a higher resistance to temperature effects and a large applica-

bility to different conditions, this being only limited by the properties of their

constitutive materials. Because of these advantages, Coulomb dampers have been

largely adopted in many applications and they are available in several different

configurations.

This thesis focuses on a specific type of friction material that is referred to

by the author as plain-weave mesh material (PWMM), which consists in a highly

ordered structure composed of interwoven wires where the mutual frictional con-

tact at the numerous intersections generates the energy dissipation responsible

for damping. Their stiffness and damping behaviour is investigated through an

in-depth finite element (FE) analysis and a set of analytical models is developed

to predict the mechanical response to tension, in-plane shear and out-of-plane

bending. These mathematical models are compared to the numerical results for

validation and a general good agreement is observed between them for a wide

range of displacement. A reduced finite element model is developed, based on

these theoretical formulations which are exploited to calculate the effective prop-

erties of the material. This model can be implemented in a FE code for achieving
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a consistent reduction in computational demand. With this purpose, based on the

reduced model, a concept software is developed in a MATLAB-ANSYS integrated

environment, aimed at providing a tool to assist in the design of friction mesh

dampers and structures with complex geometries and load conditions. Finally,

some conceptual mesh damping devices are proposed and discussed as potential

industrial applications, considering different geometries, materials and loads, and

their hysteretic response to cyclic loading is reported.
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Chapter 1

Introduction

The presence of vibrations in mechanical systems is often undesirable. For this

reason, the proper design and selection of damping element is fundamental to the

correct operation and functionality of machines. Friction mesh materials have

gained popularity as damping solutions especially in aerospace and defence in-

dustry, thanks to their simplicity, low cost, high amount of energy dissipated

and the advantage of a large applicability to different environments. Due to

their non-linear behaviour and the associated complexities, currently the relative

mathematical models are limited to simplified geometries and highly reliant on

test data. For this reason, a deeper understanding of the physics at the base of

their behaviour is required in order to be able to fill these existing knowledge gaps.

1.1 Mesh materials

1.1.1 Non-ordered mesh materials

With the term non-ordered mesh materials (NOMMs) the author refers to all the

mesh materials characterised by a certain level of randomness in the structure

that does not allow to identify a precise pattern for the wires.
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Figure 1.1: Non-ordered mesh materials: example of tangled metal wire device.

Many non-ordered mesh materials used for energy dissipation are manufac-

tured from a single metal wire that is initially coiled into an elastic spiral, then

stretched and finally compressed. This material is referred to by several inter-

changeable names, including tangled metal wire (TMW), knitted mesh, or metal

rubber (MR) for its high elasticity and mechanical characteristics that are similar

to those of rubber [1]. MR can be fabricated in different shapes such as cylin-

drical, ring-shaped [2] or spherical [1, 3] (in this case it is referred to as metal

rubber particles, MRP). In Figure 1.1 an example of a ring-shaped metal rubber

is illustrated.

1.1.2 Ordered mesh materials

As opposed to the previous category, ordered mesh materials (OMMs) are or-

ganised in a precise pattern of connected wires that repeats periodically. This

characteristic lends itself to a mathematical description of the repeating architec-

ture for a subsequent development of analytical models, as will be discussed in

the next chapters.

Ordered mesh materials are commercially available in a range of different

shapes and dimensions for diverse applications, such as filtration, screening, acous-

tic attenuation (silencers), surgical mesh for tissue repairing, etc. They can be
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subdivided into different categories according to their pattern and method of junc-

tion between the wires:

i) Woven.

ii) Knitted.

iii) Braided.

iv) Bonded (welded, expanded and electroformed).

In woven materials, the wires are typically interlaced following two main or-

thogonal directions, whereas in knitted materials the wires follow a loop path,

interlacing the adjacent wires with each loop. In braided materials, three or more

yarns are interlaced together so that they cross each other forming a diagonal

pattern.

Excluding the case of bonded junction, where the connection does not allow a

relative motion between the wires, these materials are characterised by a series of

frictional contact points in every intersection between the wires, which are acti-

vated when the system is being dynamically excited resulting in energy dissipation

in the form of Coulomb damping.

According to the Coulomb friction model, the quantity of dissipated energy

mostly depends on the normal contact forces at the intersections and the fric-

tion coefficient between the surfaces. Moreover, increasing the number of contact

points corresponds in general to an increase in the surface friction mechanics and

hence results in a higher amount of energy dissipation (i.e. higher damping and

loss factor). Under this perspective, ordered mesh materials offer a highly tunable

solution for damping, whose response can be tailored by acting on the geometry

of the mesh and on the material of the wires, for example combining different

materials in order to produce a directional preference for stiffness and damping.

Considering metal as constituent material for the wires, OMMs have also the ad-

vantage of being resistant to extreme temperatures, peculiarity that makes them
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particularly suitable to severe environments, as aforementioned, as compared to

viscoelastic materials. Additionally, while used as dampers, they can also find ap-

plication as primary structural elements in withstanding potentially high intensity

loads.

1.1.2.1 Woven and plain-weave mesh materials

A woven structure is composed of a set of longitudinal (i.e., warp) and transverse

(i.e., weft or fill) wires that interlace each other according to a precise scheme.

They can be subdivided into several categories based on the weaving pattern. The

three basic ones are the following:

i) Plain.

ii) Twilled.

iii) Satin.

(a) (b) (c)

Figure 1.2: Basic weaving patterns: (a) plain, (b) twill and (c) satin.
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Figure 1.3: Woven materials: example of plain-weave mesh material.

Probably the simplest and most elementary form of woven structure is the

plain-weave, where warp and weft wires interlace over and under each other in

alternate order, as illustrated in Figure 1.2a. Because of its highest level of tight-

ness among the different woven patterns [4], this type of structure is particularly

stable and strong and for this reason is often employed in the manufacturing of

woven technical fabrics [5]. In Figure 1.3 an example of stainless steel plain-weave

mesh material is illustrated.

In the twill-weave, each weft wire floats over at least two warp wires before

crossing the weave plane and interlacing under the wires again. This results into

diagonal lines which are visible when observing the structure from the top, as

shown in Figure 1.2b.

In the satin-weave, each weft wire floats over several (three or more) warp

wires before interlacing one. The intersection points are disposed so that they are

not adjacent to each other. Therefore, contrarily to the twill-weave, no diagonal

lines are formed. When applied to the manufacturing of fabrics, the satin-weave

pattern results in a smooth and lustrous but less durable cloth. The satin-weave

pattern is usually described by the number of harnesses, representing the total

number of warp wires that each weft wire floats over and under before the pattern

is repeated again. For instance, in a 5-harness satin (5HS), the weft wire floats

over four warp wires before interlacing under one, as represented in Figure 1.2c.
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As the number of harnesses increases, this leads to a greater distance between the

intersections, thus reducing the stability of the structure.

The previous discussion on woven materials is intended as a brief introduction

and it is far from being exhaustive. For a thorough description of the several other

existing structures the author directs the reader to [6, 7].

Because of the wide diversity of existing OMMs, the focus of this work has

been narrowed to plain-weave mesh materials (PWMMs). However, the methods

adopted in this research can be also applied for extending the study of ordered

mesh materials to different architectures other than plain-weave.

1.2 Aims and main contributions

The main aims of this research are to develop the understanding of PWMMs

behaviour through a detailed investigation on their physics and to describe their

non-linear frictional response by means of a set of mathematical models. Another

additional purpose is to provide with an effective software tool, even if at a concept

stage, that can be used for the designing of mesh material damping applications.

The present research has produced the following five main contributions:

i) Detailed investigation on PWMMs response through numerical analysis.

ii) Development of a set of analytical models for the characterisation of PWMMs

stiffness and damping behaviour:

a) Tension model.

b) In-plane shear model.

c) Out-of-plane bending model.

iii) Development of a reduced order finite element model for PWMMs, also

suitable for other typologies of architectures.
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iv) Incorporation of the reduced model into a developed MATLAB-ANSYS soft-

ware.

v) Designing of four different concept dampers for industrial applications.

The finite element analysis is aimed to provide a detailed understanding of the

physics of PWMMs, in particular the frictional contact mechanics responsible for

the highly non-linear behaviour of these materials.

Based on the information gathered through this in-depth investigation, a set

of analytical models is developed for the characterisation of PWMMs, which is

capable to describe the dependence of their stiffness and damping response on the

numerous parameters involved. Numerical results are then used as a validation

for the mathematical models.

A novel reduced order finite element model is proposed, based on the developed

analytical models, that can be implemented in a finite element commercial code.

The motivation for this is achieving a considerable reduction in the computational

expense when studying large mesh materials. The reduced model is incorporated

in a developed MATLAB-ANSYS software that allows to study different and more

complex geometries. This is validated through direct comparison with the full FE

model. Finally, the novel tool is utilised for the designing of four different concept

mesh friction dampers.

1.3 Thesis layout

Currently the study of mesh materials is limited to simplified geometries and the

available mathematical models either do not account for the actual contact me-

chanics occurring at their intersections, or rely on empirical data. In this thesis, a

deep investigation on PWMMs is carried out, motivated by these existing research

gaps. The present thesis is articulated into eight chapters and one appendix.

In Chapter 2 a detailed literature review is conducted. This includes the

current state of the art of mesh materials and their application as damping devices.
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The main available analytical and numerical models and experimental studies are

reviewed. Particular emphasis is given to the modelling of plain-weave pattern in

textiles and fabric-reinforced composites.

In Chapter 3 the geometry of PWMMs is discussed, starting from the general

concept of metamaterials, which is then applied for identifying a repeating pat-

tern that characterises their architecture. The main geometrical parameters that

describe their structure are defined and some assumptions are made supported by

the results of a performed image analysis.

Chapter 4 presents the analytical models developed for the characterisation of

PWMMs. Initially, the most common beam theories, contact theories for elastic

materials and friction models are introduced. Then, the most suitable theories for

the study of PWWMs are selected. Based on these, a set of three mathematical

models (tension, in-plane-shear and out-of-plane bending model) is developed for

describing the mechanical response of PWMMs.

In Chapter 5 a series of finite element models is developed for the validation

of the analytical solutions through direct comparison with the numerical results.

After a brief introduction on the available FE commercial codes, a detailed con-

vergence study is performed showing how parameters such as FE meshing and

contact stiffness affect the accuracy of the solution. Finally, a thorough validation

of each analytical model presented in Chapter 4 is reported, showing a general

good agreement with the numerical results.

Chapter 6 presents a novel reduced finite element model that is obtained by

the incorporation of the developed analytical models, which is aimed to reduce the

computational expense of the numerical simulations. The model is implemented

in an integrated MATLAB-ANSYS environment for developing a tool useful in

the design of mesh material applications. A validation of the reduced model is

conducted by comparing the results with the theoretical solutions, with the full

FE model and with previously acquired experimental data.

In Chapter 7 the developed MATLAB-ANSYS software is exploited into the

designing of friction mesh material damping applications. Four concept solutions
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are presented involving different geometries, materials and loads, and the hys-

teretic response to cyclic loading is reported.

Chapter 8 discusses the conclusions emerging from the research conducted in

this thesis, also providing with a direction for future further research. Following

is a bibliography of references.
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Chapter 2

Literature review

2.1 Introduction

In this chapter, a thorough literature review is reported on previous studies con-

cerning the behaviour of mesh materials. First, the available research about or-

dered woven mesh materials is discussed. From this, a significant knowledge gap is

identified in the field, due to the almost complete absence of specific mathematical

modelling for their mechanical behaviour. The discussion is therefore extended to

non-ordered metal mesh materials. Similarities and differences with ordered mesh

materials are highlighted and the main experimental studies and models for their

characterisation are discussed. Then the focus of the literature interrogation is

moved towards plain-weave structures in general, which are typical of stand-alone

textiles and woven composites, and the previous theoretical and numerical studies

on this topic are discussed.

2.2 Behaviour of mesh materials

2.2.1 Ordered mesh materials

Currently, ordered mesh materials, especially in the plain-weave pattern, are com-

monly used for non-structural purposes such as air and water filtration, and for
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this reason in the literature there is a sensible lack of studies aimed towards their

mechanical characterisation, especially regarding the damping properties of this

typology of structure. Note that, with the term ordered mesh materials the au-

thor refers to a specific category of materials in which, not only the wires are

organised into a precise pattern, but also there is an aperture between adjacent

wires. Moreover, the wires in these materials are typically homogeneous. These

characteristics make them differ from textiles, that will be discussed as a separate

category.

Lord et al. [8] experimentally investigated the stiffness and damping response

of a plain-weave mesh material new type of damper. A cylindrical-shaped speci-

men of stainless steel composed of hundreds of intersections was analysed through

electrodynamic shaker vibration tests at different excitation frequencies and dis-

placement amplitudes, showing the high non-linearity of the material. The force-

displacement hysteresis loop was analysed for various amplitudes and the vibra-

tional loss factor was shown to be in agreement with the Coulomb damping theory

for a wide range of frequency ratios.

Kraft et al. [9] performed a study for the characterisation of a metallic woven

wire mesh under uniaxial tensile loading. Several stainless-steel twill-dutch spec-

imens, with different angles of orientation with respect to the loading direction,

were tested. It was found that the mechanical properties of the structure, such

as stiffness, yield and ultimate strength, toughness, and elongation to rupture

are strictly dependent on fibre orientation. The authors proposed an orthotropic

constitutive model to describe the material, which allows the determination of

the elastic modulus for any orientation even though it relies on the mechanical

properties obtained from test data in the direction of the warp and weft wires.

Glatt et al. [10] proposed a mathematical model for the description of the

geometry of woven metal wire meshes to be subsequently employed in a series of

finite element simulations. Aim of the authors was to accurately represent the 3-D

structure of wire meshes for improving the numerical computation of pressure drop

across these materials when used as filters. The method consists into first defining

the skeleton of the mesh, represented by the wire centreline in the unit cell, which
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is in general composed of the combination of straight and sinusoidal portions. The

maximum amplitude of the sine function is assumed as half height of the wires

along the perpendicular direction. The cross-section of the wires is assumed as

ellipsoidal. The structure is then represented analytically as a series of cylinders

whose axes correspond with the wire skeleton. This analytical structure is finally

discretised in a series of finite cubic elements referred to as voxels (volume cells).

The choice of sinusoidal functions was shown to be in good agreement with the

actual shape of the structure as confirmed by 3-D images of real meshes obtained

through computer tomography. However, this mathematical model only provides

a geometrical description of the mesh material, and it does not characterise its

mechanical response.

2.2.2 Non-ordered mesh materials

Although the object of this thesis is more specifically focused on ordered mesh

materials, a review on the literature concerning non-ordered mesh materials is

conducted, since the two categories share many analogies and the general prin-

ciples governing their behaviour are believed to be the same, first and foremost

their dependency on Coulomb friction [2, 8] and the mechanism involved in their

mechanical response.

Non-ordered mesh materials range from a host of different names (e.g., tangled

metal wire (TMW), metal rubber, knitted mesh). Their application as dampers

has been studied since the 1970s and some of the typical fields for NOMMs are

turbomachinery [11], spacecraft [12,13], cryogenics [14] and sound absorption [15].

In other researches, the usage of mesh materials as ground-borne vibration iso-

lation for high-precision instruments [16] or as impact loading protection against

hazards of explosion [17] have also been proposed. The materials used for their

fabrication are usually metals such as steel [12, 14, 18], aluminium [19], copper,

titanium [20], nickel based alloys [21], and shape memory alloys [22].

The damping and stiffness dynamic response of NOMMs is non-linear with

respect to strain amplitude [3,8,23,24]. Typically, a softening (stiffness decrease)
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is observed when the dynamic amplitude is increased. General agreement among

researchers is that the response of these materials is highly dependent on the

contact status and performance of adjacent wires, which can be either open (no

contact), sticking, or sliding [1, 25]. Applying a cyclic loading to these materi-

als results in both the stiffness and damping being dependent on the excitation

amplitude. For lower excitation amplitudes, the stiffness remains approximately

constant and damping is lower [3] because the response is highly dominated by

the elastic deformation of the mesh material and the frictional component is neg-

ligible. This is due to the fact that most of the contacts are either in the open

status and/or the contact force is too low to significantly affect the mechanical

response. Increasing the dynamic amplitude, the average stiffness of the system

drops [2] and this could be explained with the fact that a larger amount of contact

points are now activated and a relative motion between them now occurs.

Nevertheless, there is a certain lack of consensus about the nature of energy

dissipation and how it is manifested. Some researchers have shown in their ex-

periments that, with the presence of oil, the mechanical properties do not change

noticeably [18]. This has led some to the conclusion that the damping mecha-

nism may not be Coulomb friction. Thereby, some have proposed models that

involve the combined effects of Coulombic and viscous damping [26], and in some

cases also Coulombic, viscous and hysteretic damping [23] to characterise their

behaviour, although there is no physical evidence to justify the employment of

these mechanisms other than as a descriptive mathematical instrument.

Some justification that Coulomb friction is present has been shown in recent

experimental studies on NOMMs [2, 27] where it is demonstrated that the exci-

tation frequency does not noticeably affect the damping response and the force-

displacement hysteresis loop does not change significantly. In particular, in [2]

as a result of a series of dynamic testing it was witnessed that the loss factor is

not dependent on frequency of excitation in a range from 1 Hz up to 400 Hz, a

characteristic which is in agreement with the classical Coulomb friction damping.
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2.2.2.1 Experimental approaches

One of the first researchers to investigate these materials was Childs [12] who, in

1978, performed a series of bench tests on a wire mesh damper as a solution to

the rotordynamic instability problem of the Space Shuttle fuel turbopump. Even

though the test data were not published, he highlighted good vibration damping

properties from the device. Rivin [28] in 1979 and Barnes [29] in 1984 investigated

the usage of wire mesh as an aircraft engine mount with the function of a vibration

isolator. They both suggested a relationship between the density and the stiffness

of the wire mesh and also between the damping and the material of the wires.

Okayasu et al. [30] in 1990 studied the application of a metal mesh bearing for

the liquid hydrogen turbopump of the LE-7 engine as a solution to high vibration

levels. By introducing this friction damper, the device was able to operate at its

third critical speed of 46,139 RPM without stability problems.

Wang and Zhu [31] in 1997 proposed a damper replacement for squeeze film

dampers (SFDs) that does not require the presence of fluid, describing it as a

hollow cylinder built with woven metal mesh. They also tested the same rotordy-

namic rig both with SFD and with the new damper for comparison, concluding

that the mesh material is able to control high level of unbalance thanks to its

good vibration damping properties.

Zarzour and Vance [18] in 2000 studied a stainless steel mesh damper as a

substitution of SFDs concluding that it is a valid solution to reduce the amplitude

of vibration in rotordynamic systems. The experiments were conducted on a test

rig reproducing a power turbine that was operated up to 7000 RPM, in order

to exceed its first critical speed of 3200 RPM. It was shown that the damping

coefficient of the metal mesh does not change significantly in a temperature range

of 54-99°C unlike SFDs, which are based on viscous materials. Moreover, other

benefits were witnessed, in particular the ability of the mesh material to operate

when soaked in turbine oil without affecting its properties.

Al-Katheeb [23] in 2002 studied the influence on damping and stiffness of

several operational parameters such as excitation amplitude and frequency, even-
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tual presence of lubrication, and axial pre-compression. In 2003 Ertas et al. [14],

with the aim of ascertain the feasibility of applying two metal mesh damper ele-

ments into a lyquid hydrogen turbopump, investigated the stiffness and damping

response of mesh materials at extremely low temperatures, typical of cryogenic

turbomachines.

2.2.2.2 Modelling

Efforts have been spent in the attempt to characterise NOMMs through mathe-

matical models, in order to understand the relationship between performance and

the several parameters involved. The biggest complexity arises from the intrinsic

stochastic nature of these materials, because of which a certain level of variability

in the microstructure is witnessed even for nominally identical specimens [2].

A model for stiffness and damping was proposed by Zarzour [11], where the dy-

namic response of NOMMs is based on a hysteretic model. An equivalent modulus

of elasticity is initially determined for the material from static force-displacement

measurements and then this is utilised to calculate the stiffness for mesh elements

of other dimensions. However this is limited to the assumption of same type of

wire mesh under the same operational conditions. Regarding the characterisa-

tion of damping, similarly to the stiffness, this also relies on experimental data,

obtained either from a logarithmic decrement or from shaker tests.

A stick-slip model was proposed by Al-Katheeb [23] that is based on the com-

bination of viscous, hysteretic and Coulomb damping, even though the viscous

damping is not from a certain source. According to this model, the mesh mate-

rial is described as composed of various elements, each of them represented by a

combination of a spring and a damper in parallel, connected through stick-slip

friction joints. When the material is subjected to external excitation, the force

increases until some of the joints are freed and start slipping, resulting in a lower

equivalent stiffness and damping. The mass of each wire is considered insignifi-

cant compared to the overall system, and therefore ignored. The model allows to

predict how the force-displacement response changes in a cylindrical mesh damper
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for different radial thicknesses. However, it is still based on empirical results and

on the assumptions of a linear variation of the stiffness with radial thickness and

a constant friction force at every joint.

Given the numerous parameters involved in the determination of their be-

haviour, a very small number of constitutive models for NOMMs exists, which

are based on a theoretical study at a microscopic level. The typical approach

consists in the homogenisation of the material considered as composed of several

representative volume elements (RVEs) or unit cells. Three are the main theories

adopted for this purpose:

i) Pyramidal friction cells [32].

ii) Porous material theory [33].

iii) Helical spring microelements [1, 34, 35].

Chegodaev [32] in 2000 developed a model based on pyramidal friction ele-

ments, that characterises the mechanism of energy dissipation through friction

damping in NOMMs. The model provides the damping response based on the

contact status and the angle of orientation of the pyramid elements with respect

to the external load. Nevertheless, the mathematical model developed is rather

complicated and based on several parameters, which makes its application quite

inconvenient.

Li et al. [33] proposed a model based on porous material theory. The NOMM

is assumed as an isotropic medium composed of several unit cells. Each cell has

the form of a hollow cube delimited at the edges by cantilever beams. When

subjected to a compressive load, the walls of the cell deform elastically. Based on

the elastic beam theory only accounting for the bending contribution, the model

provides a theoretical expression for the cell wall elastic modulus as a function of

the geometrical dimensions and the material properties of the wires. However, the

constitutive dynamic force-displacement relationship is still based on coefficients

determined through a large amount of experimental tests.
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Hong et al. [36] established a micromechanics mathematical model for char-

acterising the damping behaviour of NOMMs, based on a single-helix spring mi-

croelement. The stiffness of each microspring is defined for the three different

contact conditions (open, sliding, sticking) as a function of the material proper-

ties of the wires, the geometry of each helix spring and the friction coefficient

between the materials (for the sliding status). A contribution ratio is defined that

represents the number of elements in each state with respect to the total num-

ber of elements. Finally, the overall stiffness and damping response is calculated

accounting for the different status of every single unit cell. However, given the

complexity of the problem of friction being non-linear, a certain approximation is

required to define the contribution ratio, which is assumed to vary linearly with

the deformation, from the state of open contact to the sticking condition.

2.3 Plain-weave pattern in textiles and compos-

ites

As introduced previously, this work is focused on ordered mesh materials (OMMs)

that follow a specific repeated nominal pattern. For this reason, it is possible to

find an analogy with fabrics, which are often manufactured in the form of plain-

weave pattern and have been widely studied both as stand-alone textiles and as

reinforcement for composite materials.

However, although a similar overall pattern, the main difference between PWMMs

and woven fabrics resides in the fact that, while mesh material wires are typically

homogenous solids that can be easily described mathematically through contin-

uum mechanics, in fabrics each individual strand or yarn is actually composed of

several fibres that do not follow a precise ordered structure, with many of them

protruding from the surface of the yarns. This particular composition makes them

differ from conventional engineering materials in many aspects, first of all they

are inhomogeneous and highly anisotropic [37]. Moreover, they are characterised

by a large deformability since their longitudinal stiffness is typically very low in
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comparison to most structural materials.

2.3.1 Modelling of woven fabrics

2.3.1.1 Geometry

Since the structure of fabrics is highly irregular, for its mathematical description

some assumptions are necessarily required. The threads are usually idealised into

simpler geometrical forms, representing the yarn longitudinal path and yarn cross-

section.

One of the first extensive studies of textile mechanics was conducted by Peirce

[38], who in 1937 proposed two geometric models for the description of plain-

weave fabrics, by introducing the concept of repeating unit cell (RUC). Both the

models are based on the assumption of infinite flexibility of yarns, so bending is

considered as negligible. In the first theory, the yarn cross-section is assumed as

circular and incompressible. Their longitudinal shape is considered as uniform

and composed of a straight and circular segment, the latter in correspondence

of the interaction with the orthogonal yarn. In his second theory, Peirce relaxed

the assumption of yarn incompressibility to extend the model for describing more

tight fabrics, where the longitudinal tension, from weaving, causes flattening of

the threads at the intersections, leading to an elliptic cross-section. Nevertheless,

since the usage of an elliptic cross-section would have led to complex formulations,

Peirce chose to retain the same equations for the circular cross-section, by only

replacing the diameter of the circle with the minor diameter of the ellipse.

Peirce’s model is generally suitable for open fabrics where the assumption of

circular cross-section is acceptable. To overcome this limitation and extend the

model to jammed structures, in 1958 a new model was proposed by Kemp [39]

where the cross-section is represented by a “racetrack” shape, consisting of a

rectangle enclosed by two semicircles at the sides. This allows to account for the

flattening of threads, exploiting, at the same time, the simplicity of the circular

cross-section.
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A more general model was developed by Hearle and Shanahan [40] in 1978,

which proposes a lenticular cross-section for the yarn and employs an energy

method for the description of fabric mechanics. From this model, equations for

the other two models (circular and race-track cross-section) can be easily derived.

Thus, the Peirce’s model can be thought as a special case of the Hearle’s model.

2.3.1.2 Tension

The characterisation of woven fabrics under tensile load was studied by Weis-

senberg [41] that in 1949 proposed his “trellis” model, that was able to predict

strains and stresses and their relationship. However, this theory was based on

an over-simplified approach, where the yarns were described as inextensible and

inflexible rods that were pinned at their intersections. Moreover, they were free

of rotating around their joints, therefore neglecting the resistance from contact

interaction. He also stated that the Poisson’s effect is manifested when fabrics are

subjected to tension, even though the determination of this parameter was only

based on experimental results.

In the same year, Chadwick et al. [42] studied the bias of woven fabrics when

subjected to a simple pull, showing that warp and weft yarns not only extend

under the effect of tension but also change their orientation with respect to one

another and to the direction of the force. However this model was still based on

the simplified trellis model proposed by Weissenberg.

In 1963 Kilby [43] proposed a new trellis model to investigate the plane stress-

strain relationship in fabrics. He showed that this model yields identical results

with an anisotropic elastic lamina with zero Poisson’s ratio when stretched along

either warp or weft directions, contrarily to what observed experimentally in fab-

rics. To overcome this important limitation, he therefore suggested that fabrics

should be treated as an anistropic lamina with Poisson’s effect and two planes of

symmetry perpendicular to each other.

In 1980, Leaf [44] proposed three different models to characterise the response

of plain-weave fabrics to tensile load. The first model describes small deflections
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by employing the Castigliano’s theorem, whereas the second and the third theory

attempt to capture large deflections by means of a force equilibrium and an energy

method. However, this model was still based on an over-simplified approach,

where the actual path of the yarns was replaced by a series of zig-zag pin-jointed

trusses, therefore also neglecting the contact mechanics at the intersections.

2.3.1.3 Bending

For the modelling of bending behaviour of woven fabrics, the first work was the

one of Peirce [45] who in 1930 proposed a novel methodology to measure the

flexural rigidity of fabrics based on experimental observations. A new instrumental

apparatus was designed to measure the droop angle of a specimen when a specific

length is held out over an edge. By considering the fabric as a Euler-Bernoulli

elastic beam, this angle can be converted into the bending length, that represents

the length of the fabric that will bend under its own weight. Although this is a

simplified formulation, it is based on the same fundamental principles that are

still used nowadays for measuring the static bending rigidity of fabrics.

2.3.1.4 Shear

The modelling of shear in woven fabrics have been largely investigated and many

researchers agree that the non-linear behaviour, especially in the first region, is

the result of the combination of elastic deformation and friction [46–48]. Olofs-

son [46] in 1967 proposed a rheological model where the fabrics are represented

as an assembly of several units disposed in series, each of them composed of an

elastic and a frictional element in parallel. For a series of identical elements, the

overall stress-strain relationship results into s = Ke1/2, where s and e represent

respectively the stress and the strain, and K is a fitting coefficient that is de-

termined through non-linear regression techniques. This model can be used to

capture both the shear and the bending of fabrics. However it is still a simplified

model that does not explain the mechanics involved, but it is rather based on

experimental coefficients.
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It is of particular interest the work of Grosberg and Park [49] who in 1966

proposed a mathematical model for the characterisation of shear in fabrics that

is based on the yarn contact mechanics. In this model, the single intersection of

two perpendicular yarns is represented as two crossed beams. These, for small

deflections are initially imagined as welded to each other at their intersecting

points like in a trellis, so the initial shear force is only given by the elastic bending

of the cantilever beams. When the shear force overcomes the friction resistance,

the joints start slipping resulting in a non-linear response and hysteresis. The

slippage starts from the outer boundary of the contact area and progressively

increases towards the centre. The friction resistance is calculated from an analysis

of the contact mechanics at the intersection. The longitudinal tension of yarns

generates a normal contact pressure that is thought to be distributed triangularly

along the contact area, with the peak in the centre. The total contact pressure can

be found through the model introduced by Peirce [38]. Therefore, the frictional

moment reaction is obtained by integrating the normal pressure distribution across

the slipping portion of the area multiplied by the distance from the centre and the

friction coefficient. This method is conceptually very similar to the one proposed

by Lubkin [50] for the problem of two elastic bodies under frictional contact, which

will be discussed in detail in Chapter 4 and employed for the characterisation

of PWMMs. Nevertheless the main difference is the oversimplified triangular

distribution of normal pressure, which might be acceptable for textile materials,

whereas it is not realistic for elastic isotropic solids in contact such as in the case

of mesh materials.

2.3.2 Modelling of fibre-reinforced composites

In the literature there are several mathematical models for the characterisation of

fibre-reinforced composites (FRCs), where an interwoven fabric (generally kevlar

or carbon fibre) is embedded in another softer material referred to as matrix (e.g.,

epoxy resin). This kind of woven reinforcement, besides guaranteeing a superior

stiffness-to-weight ratio that is particularly advantageous for structural purposes,

also increases the resistance to impact and cracking with respect to unidirectional
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plies, and thus one of the possible applications for these materials is building

bulletproof vests [51]. The main difference with respect to mesh materials is that

in composite materials the slipping between strands is restrained by the presence

of the matrix, so the analytical models usually do not take into consideration

frictional damping, although they are helpful in understanding the mechanics of

plain-weave.

One of the most known attempts to mathematically describe woven compos-

ites is the work of Ishikawa and Chou [52]. In 1989 they proposed three novel

models based on the classical lamination theory for the characterisation of the

thermoelastic response of woven fabrics. These models are: the mosaic, the crimp

(or also undulation), and the bridging models. Each of the models employ some

geometrical idealisations to represent the plain-weave RUC. The mosaic model

simplifies the plain-weave as an assemblage of cross-ply laminates neglecting the

undulation of the strands, whereas the crimp model considers the actual curva-

ture of strands in the loading direction, yet neglecting the undulation of the weft

yarns. The bridging model is an extension of the previous theories obtained as

a combination of the crimp model with the mosaic model. Even though it at-

tempts to capture the three-dimensional shape of the unit cell, it is still based on

a simplified approach, by using weighted averages of the effective stiffness terms.

In 1992 Naik and Ganesh [53] proposed two analytical models for plain-weave

composites that account for the undulation in both warp and weft directions.

These are the Slice Array Model (SAM) and the Element Array Model (EAM).

Both the models are based on the same mathematical representation of the yarn

cross-section and longitudinal path, the latter described by a cosine shape func-

tion. In the first model, the RUC is subdivided into a certain number of slices

along the loading direction. Each slice is then idealised as a four-layered laminate

to calculate its elastic coefficients. Then the slices are assembled under isostrain

conditions to obtain the effective properties of the composite. In the second model,

the unit cell is discretised in both the loading and its perpendicular direction, re-

sulting in a number of elements. These are then assembled in series or in parallel

to calculate the mechanical properties of the composite lamina. This approach
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however does not account for the actual orientation of each slide with respect to

the plane of the lamina.

On behalf of NASA, R.A. Naik in 1994 proposed an analytical model [54] for

the characterisation of woven and braided composites. The longitudinal path of

the yarns is assumed as composed of alternated sinusoidal and straight portions,

whereas the cross-section is considered lenticular and constant along the path.

The yarns within the RUC are subdivided into several slices and the novelty is

that the specific orientation of each slice with respect to the lamina plane is now

accounted for. The calculation of the overall stiffness matrix is therefore based on

the same simplified approach as in the previously mentioned models, consisting

in a weighted average of the single slice matrixes, where the weight is the volume

percentage of the slice with respect to the overall RUC volume. Moreover, the

dissipative mechanisms occurring at the yarn interfaces are still not accounted for.

Boubaker et al. [55] proposed a discrete model for the description of plain-

weave dry fabrics (i.e., not embedded in a matrix material) considering also the

yarn-on-yarn frictional interaction. Each yarn is subdivided into a certain number

of punctual masses connected through elastic extensional and flexural springs. The

deformed shape of each yarn at equilibrium is assumed as periodic and described

by a Fourier series. By employing the Timoshenko’s beam theory, the interaction

between weft and warp yarns is introduced considering each yarn as an elastic

beam subjected to an axial load and periodic lateral forces, corresponding to the

normal contact forces. The normal compression of yarns at the contact point,

under the effect of the normal contact force, is also included by means of the law

of Kuwabata [56]. The model also accounts for the frictional force exerted between

the yarns, even though by employing the simplified linear equation of the Gralen

model [57], which relies on experimental coefficients, and it is also limited to the

case of longitudinal tension.

Regarding the finite element analysis of woven structures, it is worth mention-

ing the work done by the University of Nottingham, which developed TexGen [58],

an open source software under General Public Licence (GPL) for the geometric

modelling of textile structures. The software allows to create a 3-D model of the
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fabric that is completely tailorable by choosing between several patterns of weav-

ing or knitting, 3-D or 2-D weave, and combining different layers. In addition,

the cross-section of the yarn can be changed specifying the yarn width, height

(or thickness of the textile structure in the case of 2-D weave), number of fibres,

density and other mechanical properties (such as Young’s modulus and Poisson’s

ratio). TexGen also offers the possibility to perform the meshing of the model

created and export it as a CAD file for a subsequent finite element analysis. This

software has been employed as a modeller for several FE analysis of woven textile

structures.

Lin et al. [59] studied a plain-weave unit cell of 150TB E-glass fabric subjected

to compressive and pure shear loading. The yarns, which in fabrics are generally

composed by a bundle of fibres, in this work are considered as an orthotropic

solid body with a transversely-isotropic behaviour. For the compression model,

the yarns were constrained between two compression platens. The lower platen

was fixed, while the upper platen was controlled by a displacement load. The

simulation accounted for the yarn-yarn and yarn-platen friction contact. From

the results of the pure shear simulation it was shown that, for large angles of

rotation, fabric locking occurs, resulting in lateral compression of the yarns. An

additional test, accounting for the combination of compression and shear, showed

how the shear resistance increases with the level of compression. Analogous anal-

ysis of woven fabrics under compression has been performed by Dixit et al. [60].

However in both the aforementioned articles, a stiffening behaviour was shown

in the numerical results, contrarily to what expected from a friction based prob-

lem, suggesting that the non-linearity was probably due mostly to the large strain

theory rather than friction at the contact interfaces.

Erool and Keef [61] conducted a series of finite element studies through LS-

DYNA on a Kevlar S706 plain-weave fabric under tension. The numerical results

were validated by comparison with previous experimental data. First, a tensile

test was simulated on a single crimped yarn, which was modelled by describing

its centreline with a cosinusoidal equation. The yarn was constrained at one end

and a controlled displacement was applied to the opposite end with a very low
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strain rate to simulate a quasi-static test. Then, under the assumption of same

geometrical dimensions for warp and weft yarns, a plain-weave model was created

by replicating, rotating and translating the single yarn multiple times. This fabric

model was tested under uniaxial tension along the warp direction. The model

also accounted for the friction contact between the yarns. A parametric study

was performed by sensibly varying the friction coefficient, showing that this value

does not affect the force reaction in the case of pure tension. To investigate the

response of textiles to shear, a bias extension test was also performed on a fabric

model in which the yarns were oriented at 45 degrees with respect to the loading

direction. The results showed how the shear of plain-weave structures leads to

rotation of the yarns. However the analysis was only limited to the kinematic

response of the material and the dissipative mechanisms due to friction were not

investigated.

2.4 Conclusions

In this chapter a thorough literature review on ordered mesh materials was con-

ducted. It was shown that there is a significant gap in the research of ordered mesh

materials and therefore is the purpose of the research presented in this thesis.

Only a few works have been specifically focused on this topic, whereas the

majority of the literature pertaining mesh materials is oriented towards the non-

ordered type. This type was also discussed for completeness since there is a

similarity with ordered materials, since their non-linear stiffness and damping re-

sponse is based, to some extent (except for the plasticity which is also believed

to be responsible for some of the non-linearity in NOMMs), on Coulomb friction.

Nevertheless, because of their stochastic nature, NOMMs characterisation is of-

ten obtained through fitting from experimental data rather than physics-based

models.

Regarding the characterisation of plain-weave structures in general, most of

the available mathematical models are related to textiles and fabric-reinforced
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composites. For this reason the previous research in this specific field was deeply

interrogated and the main existing models were discussed. Beside a general anal-

ogy in the overall plain-weave pattern, a fundamental difference between textiles

and ordered mesh materials is immediately highlighted, being the microstructure

of yarns highly irregular and inhomogeneous, contrarily to typical mesh material

wires. It was shown that, despite in the textile mechanics research field some

important contributions have been made for the characterisation of damping of

plain-weave structures, they are mostly based on either experimental data or sim-

plified equations that do not account for the actual contact mechanics occurring

at the intersections.

Therefore, the aim of the present research work is to fill this current research

gap, by developing the understanding of ordered mesh materials through a de-

tailed investigation of the physics at the base of their mechanical behaviour, pay-

ing particular attention to the investigation of the wire-to-wire frictional contact

mechanics.
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Chapter 3

Material characterisation

3.1 Introduction

In this chapter, the material characterisation of PWMMs is discussed, both in

terms of geometrical structure and constituent media.

The definition of metamaterial is initially introduced, explaining in particular

the subcategory of mechanical metamaterials and the concept of repeating unit

cell that will be adopted in this research.

For the subsequent development of analytical and numerical models, the geom-

etry of PWMMs is analysed and some parameters are identified for its character-

isation, based on the assumption of highly repetitive and periodic pattern. Three

different commercially available samples of PWMM are identified and compared.

A digital image analysis is performed on a selected set of samples, to investigate

the longitudinal shape of the wires and validate the initial assumption of highly

repetitive structure.

Finally, the importance of constituent materials for the wires is discussed.

Two test case materials (i.e, stainless steel and Nitinol) are presented and their

mechanical properties are reported.
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3.2 Metamaterials

A metamaterial, also referred to as architectured material, is in general an ar-

tificially structured material that exhibits properties that are different from its

constituent materials, as suggested by its prefix ”meta” (from the Greek word

µϵτα, meaning ”beyond”) [62].

Although the term metamaterial is mostly associated to electromagnetism and

optics phenomena that cannot be achieved naturally (e.g. negative refractive

indices and invisibility cloaking), this concept of artificially designed materials can

be extended to other areas of science such as classical mechanics, thermodynamics,

and also quantum physics [63].

To narrow the focus on the object of this work, mechanical metamaterials [64]

are designed media that can exhibit unique mechanical properties. These materi-

als are typically periodic and composed of a micro or nanoscale repeating pattern

often referred to as repeating unit cell (RUC). Their behaviour is originated on

the geometry of the RUC (rather than the constituent materials alone), which

can be engineered in order to achieve specific required properties. Their topol-

ogy is often optimised to achieve a higher mechanical performance as compared

to the constituent materials, such as a ultra-high strength to density ratio or a

tunable stiffness, as for example extremal materials, which are highly stiff for spe-

cific modes of deformation and highly compliant for other modes. Certain types

of mechanical metamaterials can sometimes manifest counter-intuitive properties,

as in the case of auxetic materials. To this category belongs any material with a

negative Poisson’s ratio, meaning that when stretched, it expands in the direction

perpendicular to the applied tension, instead of undergoing the natural shrinkage.

Following the same basic principle of metamaterials even though in a larger

scale, in this work the plain-weave pattern is intended as one of the possible

architectures for ordered mesh materials that can be tailored to elicit specific

desired mechanical properties, in particular the ability to absorb and dissipate

large amounts of energy for damping applications.
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3.3 Geometry of plain-weave mesh materials

For the subsequent development of a series of analytical models, it is necessary to

mathematically describe the geometry of PWMMs.

Recalling from Chapter 1, the plain-weave pattern is composed of a set of

longitudinal (i.e., warp) wires, which are interwoven with transverse (i.e., weft or

fill) wires, so that the wires alternate between going over and under each other.

This structure can be therefore represented by identifying the longitudinal shape

of each wire coupled with its cross-section and its relative position with respect

to the other wires and within the mesh material.

Since the plain-weave structure is periodic and highly ordered, it is possible to

identify some parameters that can be considered, in the first instance, as constant

across the PWMM. A first overall general description of the mesh material geom-

etry can be provided by the aperture w, which represents the dimension of the

opening between two contiguous wires, therefore indicating the relative distance

between the wires. The aperture is assumed to be equal in both warp and weft

directions, so that each opening is nominally squared. This parameter is of par-

ticular interest for filtration purposes, since only solid particles smaller than the

opening are allowed to cross the mesh, whereas the others are retained. Another

descriptive parameter is the percentage of open area, calculated as the area of the

openings over the total bulk area.
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Figure 3.1: Geometry of plain-weave mesh materials.

The distance L between the centrelines of two adjacent wires is simply given

by the sum of the wire diameter d and the mesh aperture as illustrated in Figure

3.1. This parameter also indicates the semi-wavelength of the wires as will be

discussed later. The number of contact points per unit area is also an important

characteristic of mesh materials, which gives information about their damping

capability. In fact, the amount of dissipated energy through dry friction is strictly

related to the number of intersections that are activated when then material is

subjected to motion. It can be demonstrated that the number of contact points

per unit area, for large meshes, tends to 1/L2. For the samples considered, the

main geometrical parameters, the respective number of contact points per unit

area, and the percentage of open area are reported in Table 3.1. .

Regarding the three-dimensional shape of the wires, their cross-section can be

considered as circular and constant across the structure. For a plane sheet of mesh

material at rest, the wires from a top view present as straight and parallel to each

other, whereas from a side view they are characterised by a periodic undulation.

For an exhaustive description of the geometry, an investigation on the longitudinal

path of the wires is required, to find a mathematical shape function that can

describe their vertical undulation. This will be performed through image analysis
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Parameter Symbol Unit Sample 1 Sample 2 Sample 3

Diameter of wires d mm 0.45 0.45 0.45

Aperture w mm 0.96 1.36 1.67

Semi-wavelength L mm 1.41 1.81 2.12

Contacts per unit area cm−2 50 30 22

Open area 46% 57% 62%

Table 3.1: Geometry of different PWMM samples.

and digital processing. Moreover, to validate the assumption of constant aperture,

a statistical investigation is carried out by means of the same technique.

3.3.1 Image analysis

3.3.1.1 Analysis of longitudinal path of the wires

The method adopted for analysing the longitudinal shape of the wires required

acquiring a side image of the mesh material, which was then analysed through

digital processing. A mesh material sheet with the same dimensions of Sample 3

from Table 3.1 has been chosen for the analysis. The sheet has been constrained

between two metal plates to guarantee a flat shape of the mesh avoiding any

out-of-plane bending of the material. In Figure 3.2a, a side image of the sheet

is reported, which has been acquired through a Sony RX100 IV digital camera,

which was oriented transversely to the plane of the mesh. The image has been

subsequently digitally processed to remove the background.
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Figure 3.2: Longitudinal undulation of the wires: (a) original image acquisition,

(b) Fourier series data fitting, and (c) comparison between three-harmonic Fourier

series and sinusoidal curve (the z-axis is scaled twice).

This procedure has been performed manually by means of a graphics software,

since the effort to develop a dedicated algorithm in MATLAB revealed as cum-

bersome. Then the strand image has been converted into binary format. The

procedure was performed in a single location of the mesh, under the assumption

of same geometry for warp and weft wires and highly repetitive structure. The

data has been fitted with a three-harmonic Fourier series through MATLAB, as

shown in Figure 3.2b. From a comparison between the Fourier series and a sinu-

soidal function reported in Figure 3.2c, it is evident that the difference between

the two curves is negligible, since the coefficient of the first harmonic (0.2216mm)
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in the series is much greater than the one of the other harmonics (0.0022mm and

0.0078mm). Therefore, the longitudinal undulation of the wires can be considered

as described by a monoharmonic sinusoidal function. This analysis, even though

performed on a single sample, is supported by other previous experimental studies

from the literature [10], also considering the high repeatability and the tolerances

adopted in the mesh material manufacturing process [65].

3.3.1.2 Statistical investigation of mesh aperture

The previous general description of the PWMM geometry is based on the as-

sumption of a constant aperture, which is representative of a highly repetitive

and periodic structure. To validate this assumption, a statistical analysis of the

aperture is performed to measure the level of uncertainty in this geometric dimen-

sion. The analysis has been performed for all the three material samples indicated

in Table 3.1. Each specimen has been spray-painted in black colour in order to

reduce the reflection and increase the contrast with respect to the background of

the image.

(a) (b)

Figure 3.3: Aperture detection method: (a) original image and (b) processed

image. In (b) the detected plain-weave pattern is represented by the blue grid.
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After setting a green surface as the background, a digital image of the specimen,

represented in Figure 3.3a, has been acquired by carefully positioning the camera

normal to the plane of the mesh. An algorithm has been developed in MATLAB

for the post-processing of the image data. The green background has been removed

by adjusting the colour threshold. As in the case of the longitudinal path analysis,

the image has been preliminarily converted into binary format and the colours have

been inverted to obtain a complementary image. The first step of the algorithm

consisted into finding the location of the mesh openings, corresponding to the

black areas in the binary image. This was accomplished by employing the built-in

MATLAB function regionprops, which is capable of performing measurements on

binary images, such as detecting centroids of areas. Then, with the same method,

the wire intersections are identified at the corners of each opening. The plain-

weave pattern is then reconstructed by connecting all the intersection points, as

represented by the blue grid in Figure 3.3b. The intersection coordinates are then

used to calculate the average diagonal of each mesh cell, as the mean value of the

two diagonals. From this value, the aperture is finally calculated for each opening.

In Figure 3.4 the frequency distribution of the aperture calculated from the

image data is plotted together with a fitted Gaussian function, showing a similar

trend with the normal distribution for all the samples considered. For each case,

the number N of openings analysed and the calculated average aperture and

standard deviation are reported.
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Figure 3.4: Frequency distribution of aperture and fitted normal distribution for

Sample 1 (a), Sample 2 (b), and Sample 3 (c).
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For all the three samples, the calculated mean aperture is in agreement with the

correspondent nominal value, with a higher relative error for Sample 1 (Figure

3.4a) and Sample 2 (Figure 3.4b) of respectively 3.12% and 1.99% , whereas

Sample 3 (Figure 3.4c) showed a higher accuracy with an error of 0.3% and

a standard deviation of 0.020mm, corresponding to 1.2% of the average value.

Moreover, the standard deviation is partially ascribable to the perspective of the

original image, for which the wires appear slightly distorted in size as they are far

from the centre of the picture.

The previous results indicate that the aperture can be considered as constant

across the mesh material in the subsequent development of the analytical models.

3.4 Constituent materials

The mechanical response of mesh materials is also largely dependent on the con-

stituent materials of the wires. This coupled with the wire geometry determine

not only the overall stiffness behaviour of the mesh, but also the friction contact

mechanics that is responsible for damping. Other important properties, are also

strictly dependent on the wire material, such as density, hardness, plasticity, resis-

tance to corrosion, thermal behaviour, et cetera. Although this research is based

on the fundamentals for the PWMM mechanical response, where any Hookean

based material can be implemented, two constituent materials are discussed and

their mechanical properties are reported, which will be used throughout this re-

search in the analytical and numerical models. At this stage, only the linear elas-

tic properties are considered, whereas their friction behaviour will be discussed in

Chapter 4.

3.4.1 Stainless steel

Woven mesh materials are largely commercially available in stain-steel for the high

resistance to corrosion, toughness, strength and resistance to temperature vari-

ation [9], which makes them particularly suitable to water filtration, among the
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other possible applications. Moreover, as discussed in Chapter 2, from numerous

vibration experiments on metal mesh dampers (even though with a non-ordered

structure), stainless steel was proved to be a highly reliable constituent material

that guarantees almost constant damping properties for a large range of temper-

atures [18]. This characteristic is important when these materials are applied to

extreme environments such as outer space.

Elastic modulus E GPa 200.00

Shear modulus G GPa 76.92

Poisson’s ratio ν 0.30

Density ρ kg/m3 7,500

Table 3.2: Mechanical properties of stainless steel.

For this reason, stainless steel has been chosen as one of the possible constitutive

materials for PWMMs in this research. The mechanical properties for a standard

stainless steel are reported in Table 3.2 and will be used in the following chapters.

3.4.2 Nitinol

Due to its unique mechanical properties and its frequent use in outer space appli-

cation in recent years, Nitinol is also considered as a constituent material. This

nickel-titanium alloy was discovered in 1959 by William J. Buehler of the U.S.

Naval Ordnance Laboratory (NOL) and subsequently investigated by Buehler

and Frederick E. Wang [66]. The material was named Nitinol by Buehler from its

two main chemical elements and its place of discovery (Nickel Titanium Naval

Ordnance Laboratory). One of the most notorious mechanical properties of Niti-

nol is undoubtedly its shape memory effect. While the material is in its martensitic

phase, it can be plastically deformed and if heated above the martensite-austenite

transition temperature, its shape reverts to the original one prior deformation [67].

The transition temperature varies based on the composition of the alloy. To per-

manently change the shape (also referred as training) of Nitinol, it is necessary to
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increase its temperature to approximately 500°C while constraining the material

to the desired position. In this austenitic phase, the material is restructured into

ordered grains, where each nickel atom is surrounded by eight atoms of titanium,

forming a body-centred cubic (BCC) lattice. Another unique property of Nitinol

is its superelasticity, which permits the ability of elastically deforming to an extent

that is much greater than the one of common materials. In particular, Nitinol can

achieve a maximum elastic strain of more than 10%, whereas for stainless steel

this value is typically around 0.3% [68].

For these unique properties together with its biocompatibility and a high resis-

tance to corrosion, Nitinol has being employed in dental and biomedical industry,

for instance in the manufacturing of stents [69]. The exploitation of Nitinol mem-

ory effect was also proposed for many aerospace applications, such as adaptive

inlets and nozzles, variable geometry chevrons and variable camber fan blades,

flaps, oil-lubricated bearings and gears [70]. Moreover, the engineers of NASA

Glenn Research Center have recently developed a non-pneumatic shape memory

tyre, composed of a Nitinol mesh of several interconnected helical coils, to be

mounted on rovers [71].

Elastic modulus E GPa 95.00

Shear modulus G GPa 35.45

Poisson’s ratio ν 0.34

Density ρ kg/m3 6,700

Table 3.3: Mechanical properties of Nitinol 60 (60NiTi).

Stiffness, hardness, density and other characteristics of Nitinol vary based on

its composition and percentage of nickel with respect of titanium. The mechanical

properties of 60NiTi [72], also referred to as Nitinol 60, containing 60% wt of nickel,

are reported in Table 3.3. These properties will be used in the following chapters

along with the ones of stainless steel. It is worth noting that, in this research,

only a linear elastic behaviour of Nitinol is considered, therefore neglecting its

superelasticity and shape memory effect.
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3.5 Conclusions

In this chapter, the material characterisation of PWMMs was discussed. Starting

from a general description of the plain-weave pattern, the high repetitivity of the

structure was exploited to identify the aperture as a constant parameter defining

the overall geometry of the material. A digital image analysis was performed to

investigate the longitudinal shape of the wires. After post-processing and fitting

through a Fourier series the mesh image data in a MATLAB environment, it

was concluded that the undulation of the wires can be accurately described by

a monoharmonic sinusoidal function. In addition, to validate the assumption of

highly ordered structure, a statistical investigation on the aperture was conducted

through image analysis. The results of this analysis have confirmed the validity of

the assumption, with an observed average aperture in acceptable agreement with

the nominal value and a low level of the aperture relative standard deviation, in

particular for Sample 3.

The influence of the materials constituting the mesh wires was discussed and

two different candidates - stainless steel and Nitinol - were presented. Their

elastic mechanical properties were also reported, which will be employed in the

next chapters.
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Chapter 4

Analytical modelling

4.1 Introduction

In this chapter three novel analytical models are presented that describe the me-

chanical response of plain-weave mesh materials for in-plane (tension-compression

and shear model) and for out-of-plane (bending model) loading.

Initially, the most common beam theories (Euler-Bernoulli and Timoshenko)

are briefly introduced. Then, a comparison between them is performed to es-

tablish which model is the most appropriate to be employed in the subsequent

development of the analytical models. The principle of virtual work and the Cas-

tigliano’s theorem are then discussed as energy methods for the determination of

displacements in elastic structures.

An introduction to contact mechanics is also presented, starting from the clas-

sic Hertz theory for elastic bodies. The JKR theory is also presented accounting

for the contact adhesive forces. The two contact models are compared when ap-

plied to a simplified PWMMs geometry in order to perform a model selection.

The micromechanics of friction is introduced and briefly discussed, followed by

discussion of the most popular macro-scale friction models (i.e., Coulomb, Dahl,

LuGre), highlighting the motivation for employing the specific model in this work.
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The first developed model for PWWMs to be presented is the tension-compression

model. Starting from a geometrical schematisation of plain-weave mesh materials,

the Castigliano’s theorem and the Hertz contact theory are applied to derive the

effective elastic properties of the RUC.

The shear model which describes the non-linear response of PWMMs when

they are subjected to in-plane shear load. The analytical shear model is based

on an in-depth study of the mesh materials frictional contact mechanics. This

involves a prediction of the contact area shape and dimensions along with the

distribution of normal and shear stresses over the contact area in order to calculate

the friction moment reaction. This model is then applied to characterise the

hysteretic response of PWMMs under an oscillating shear load and is used to

calculate the relative damping factor.

The last model presented is the out-of-plane bending model, which follows the

same approach adopted for the tension-compression model, and is used to predict

the effect of the out-of-plane bending on the contact force at the intersecting

locations.

4.2 Beam theories

For the development of the analytical models, in this research the PWMM wires

are represented as curved elastic beams crossed at the plain-weave intersections,

as will be discussed further later. For this reason, the main beam theories are

introduced and compared to select the most suitable one for the characterisation

of PWMMs.

Beam theories are simplified analytical models that describe the kinematics of

beams, which are defined as mechanical elements in which one dimension (length)

is much larger than the other two (depth and width). These models represent a

simplification of the general three-dimensional solid mechanics and the beams are

reduced to a one-dimensional body in which the deflection w(x) is a function of

the longitudinal coordinate x only.
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These theories are generally linear and based on the Hooke’s law of elasticity.

They allow to determine the displacements and internal forces of the beams and

they are typically applicable only for small deflections. The loads are assumed to

be applied transverse to the longitudinal direction.

There are different beam theories that have been developed. The most com-

monly adopted are:

i) Euler-Bernoulli

ii) Timoshenko

4.2.1 Euler-Bernoulli

The Euler-Bernoulli’s is the classical beam theory and generally the simplest one.

Enunciated for the first time probably around 1750 [73], it has been widely adopted

in designing and used for many engineering practical applications. It is based upon

three main kinematic assumptions, known as the Euler-Bernoulli hypotheses:

i) Cross-sections do not deform significantly and can be considered as rigid.

ii) Planar cross-sections remain planar.

iii) Normal cross-sections remain perpendicular to the neutral axis.

As a consequence of the last assumption, the theory does not account for

shear strains. The only contribution to deformation is given by the bending

moment, whereas shear internal forces are neglected. Therefore, it represents a

significant approximation of the real problem that is only valid for slender beams

with a straight axis, where the effects of shear strains are negligible. For other

engineering problems where a higher precision is required, the Timoshenko beam

theory lies as an alternative model.

The equilibrium of an infinitesimal element of the beam is expressed by the

following equations:
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V =
dM

dx
(4.1)

q =
dV

dx
(4.2)

where M is the bending moment, V is the transverse shear force and q is the

transverse distributed load. The Euler-Bernoulli beam theory establishes a rela-

tion between rotation, bending moment and shear transverse force, by expressing

these quantities as a function of the successive spatial derivatives of the transverse

deflection w(x):

θ(x) =
dw

dx
(4.3)

M = −EI d
2w(x)

dx2
(4.4)

V = −EI d
3w(x)

dx3
(4.5)

where θ(x) is the angle of rotation, E is the elastic modulus and I is the second

moment of area of the beam, relative to the cross-section perpendicular to the

neutral axis. The product EI is often referred to as flexural rigidity of the beam.

The deflection can also be expressed directly as a function of the transverse load,

by substituting Equation 4.5 into Equation 4.2:

d

dx

(
−EI d

3w(x)

dx3

)
= −EI d

4w(x)

dx4
= q (4.6)

For a subsequent comparison between Euler-Bernoulli and Timoshenko, consider

the case of a cantilever beam subjected to a load P applied at the free end. The

solution for this case can be obtained directly from 4.4. The displacement field of

the beam is represented by a cubic function of the distance x from the fixed end:
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w(x) = −Px
2(3L− x)

6EI
(4.7)

Which, calculated for x = L, returns the following expression for the tip deflection:

δ =
PL3

3EI
(4.8)

4.2.2 Timoshenko

The Timoshenko beam theory is an extension of Euler-Bernoulli theory. In this

method, the cross-sections are allowed to rotate about the neutral axis, so that

shear strains are accounted for. The method is suitable for deep beams, where the

shear stresses are not negligible. In Timoshenko beam theory the total deflection

of the beam is given by the contributions of both bending rotation and shear

deformation:

dw

dx
= φ− 1

K̃AG

d

dx

(
EI

dφ

dx

)
(4.9)

where φ is the rotation of the cross-section about the z-axis, A is the cross-section

area, G is the shear modulus of the material and K̃ is a shape coefficient (whose

value is usually 5/6 for prismatic sections and 9/10 for circular sections). The

bending moment M and the transverse shear force V can be related to the angle

of rotation φ and the deflection w by means of the following expressions:

M = −EI dφ
dx

(4.10)

V = −K̃AG
(
φ− dw

dx

)
(4.11)

Consider again the case of a cantilever beam, as discussed for the Euler-Bernoulli

model. Integrating Equation 4.9 and applying the proper boundary conditions, it

returns the expression for the tip displacement:
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δ =
PL3

3EI
+

PL

K̃AG
(4.12)

The previous solution is equal to the one of Euler-Bernoulli (Equation 4.8) plus

an additional shear displacement term that accounts for the shear rotation.

4.2.3 Model selection

In sight of the subsequent development of a stiffness model for PWMMs, it is

necessary to perform a careful selection of the most suitable beam theory to be

employed.

From a comparison between Equations 4.8 and 4.12, it is evident how the Euler-

Bernoulli beam model is stiffer than Timoshenko, being the shear deformation

neglected. A fundamental parameter in the selection is the slenderness ratio,

defined as the ratio L/d of the length to the diameter of the beam. As a general

rule, the usage of Timoshenko model is always recommended over Euler-Bernoulli

for deep beams, conventionally those with a value of L/d < 10 [74].

Parameter Symbol Unit Sample 1 Sample 2 Sample 3

Diameter d mm 0.45 0.45 0.45

Semi-wavelength L mm 1.41 1.81 2.12

Slenderness ratio L/d 3.13 4.02 4.71

Table 4.1: Slenderness ratio for different PWMM samples.

Recalling from Chapter 3, three different samples are identified and analysed

as example materials. An approximation can be done considering each wire in

the RUC as a cantilever beam whose longitudinal dimension is equal to the semi-

wavelength of the wire. For each sample, the slenderness ratio is calculated and

reported in Table 4.1. In Figure 4.1 the normalised difference in deflection be-

tween Timoshenko and Euler-Bernoulli beam theory is reported for a tip-loaded

cantilever beam as a function of the slenderness ratio.
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Figure 4.1: Normalised difference in deflection between Timoshenko and Euler-

Bernoulli beam theory for a tip-loaded cantilever beam at various slenderness ratios.

From the graph it could be seen how the difference, corresponding to the shear

contribution to deflection, reduces from more than 10% to almost zero as the ra-

tio increases, meaning that the two methods tend to analogous results for slender

beams. However, for the three samples considered, the results suggest that Tim-

oshenko beam theory should be employed in the development of a stiffness model

for PWMMs. Neglecting the transverse shear component, instead, would yield an

overestimation of the stiffness up to more than 5%.

These preliminary considerations are only based on the assumption of a straight

cantilever beam. As will be discussed further later, shear strains are introduced

in the wires when subjected to tensile load because of their curved shape, leading

to even higher errors if these were to be neglected.
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4.3 Energy-based methods in structural analysis

The beam models described previously are simplified and valid for initially straight

beams under lateral load only. For the structural analysis of more complex sys-

tems, the energy-based methods represent a robust approach that is suitable to

many different problems. In general, they are based on the well-known principle

of energy conservation, which states that energy can neither be created nor de-

stroyed, rather converted from one form to another. In the specific case of elastic

structures under static equilibrium, the work produced by the external forces act-

ing upon the system is entirely converted to internal energy, which is stored in

the body in the form of strain energy. The previous statement is only valid if the

loads are applied gradually, whereas a sudden deformation of the structure would

cause energy dissipation through heat generated by internal friction.

Consider a generic system subjected to an external force P , which causes a

displacement δ of its point of application. The external work done by the force is

equal to:

We =
1

2
P · δ (4.13)

Let {σ} and {ϵ} be respectively the stresses and strains at any point of the system,

as follows:

{σ}T = {σxx σyy σzz τxy τxz τyz}

{ϵ}T = {ϵxx ϵyy ϵzzγxy γxz γyz}
(4.14)

The strain energy stored into the system is then:

Ui =
1

2

∫
V

{σ}T {ϵ} dV (4.15)

The principle of real work states that the work of the external force We is equal

to internal energy Ui, and thus:
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1

2
Pδ =

1

2

∫
V

{σ}T {ϵ} dV (4.16)

Through this simple method, it is possible to determine the displacement δ when

a single external force is applied to a statically determinate system.

However, for the case of multiple external forces, distributed loads or statically

indeterminate systems, other methods are required. In fact, considering now a

structure subjected to n external forces {P}, associated to as many displacements

{δ} of their points of application, the solution of this problem would require n

independent equations, which cannot be obtained by means of the principle of

real work alone.

4.3.1 Principle of virtual work

The principle of virtual work (PVW) consists into observing how a system in

equilibrium reacts to an infinitesimal and arbitrary virtual perturbation, which

could be either a force or displacement. The virtual work is the work which is

done by a real force acting through a virtual displacement (principle of virtual

displacements), or by a virtual force acting through a real displacement (principle

of virtual forces). The first form is useful to solve hyperstatic systems in case of

redundant forces or reactions. The second form, of more interest for this work, is

often used to study the deflection of complex structures.

Consider a generic system subjected to n external virtual forces {P ′}, associ-
ated to as many real displacements {δ} of their points of application. The virtual

external work done by the forces is equal to:

We,v =
1

2
{P ′}T {δ} (4.17)

The associated virtual internal work or virtual strain energy of the system is:

Ui,v =
1

2

∫
V

{σ′}T {ϵ} dV (4.18)
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where {σ′} and {ϵ} are respectively the virtual stresses and the real strains of

the system. The principle states that in a system under static equilibrium, the

external virtual work is equal to the internal virtual work, and thus:

1

2
{P ′}T {δ} =

1

2

∫
V

{σ′}T {ϵ} dV (4.19)

The previous equation allows to calculate the structural displacements by means

of the unit load method. This consists into setting a virtual unitary force in

correspondence of the displacement of interest. Thus, Equation 4.19 reduces to:

1 · δ =
∫
V

{σ′}T {ϵ} dV (4.20)

To solve the previous equation it is required to calculate the virtual stresses

{σ′} and the real strains {ϵ} within the system. In the following subsections, the

procedure for each single internal force and finally the general solution will be

presented and discussed.

4.3.1.1 Normal force

Consider a rod subjected to a real normal force N and a virtual normal force N ′.

The virtual stress and the real strain are then:

σ′
xx =

N ′

A
(4.21a)

ϵxx =
N

EA
(4.21b)

where E is the elastic modulus and A is the cross-sectional area of the rod. Sub-

stituting the previous into Equation 4.18, it returns:

Ui,v =
1

2

∫
l

∫∫
A

NN ′

EA2
dA dl =

1

2

∫
l

NN ′

EA
dl (4.22)
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4.3.1.2 Shear force

Consider a beam subjected to real shear force V and virtual shear force V ′ along

the y-axis. The virtual stress and the real strain are then:

τ ′xy =
V ′Q (y)

Izt (y)
(4.23a)

γxy =
τxy
G

=
V Q (y)

GIzt (y)
(4.23b)

where t is the width of the section, G is the shear modulus and Q (y) and Iz

are respectively the first and second moment of area with respect to the z-axis,

calculated as follows:

Q (y) =

∫
A

y dA (4.24a)

Iz =

∫∫
A

y2 dA (4.24b)

Substituting Equations 4.23a and 4.23b into Equation 4.18, it yields:

Ui,v =
1

2

∫
l

∫∫
A

V V ′Q (y)2

GI2z t (y)
2 dA dl =

1

2

∫
l

χ
V V ′

GA
dl (4.25)

where χ is the inverse of the Timoshenko’s coefficient, calculated as follows:

χ =
A

I2z

∫∫
A

Q (y)2

t (y)2
(4.26)

4.3.1.3 Bending moment

Consider a beam subjected to a real bending moment M and a virtual bending

moment M ′. The virtual stress and the real strain are then defined as:
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σ′
xx = −M

′y

Iz
(4.27a)

ϵxx = −My

EIz
(4.27b)

Substituting the previous into Equation 4.18 and recalling Equation 4.24b, it

returns:

Ui,v =
1

2

∫
l

∫∫
A

MM ′y2

EI2z
dA dl =

1

2

∫
l

MM ′

EIz
dl (4.28)

4.3.1.4 Total virtual internal energy

The total virtual internal energy is finally calculated as the sum of the different

components:

Ui,v =
1

2

[∫
l

MM ′

EIz
dl +

∫
l

NN ′

EA
dl +

∫
l

χ
V V ′

GA
dl

]
(4.29)

Substituting the previous into Equation 4.20, it returns:

δ =

∫
l

MM ′

EIz
dl +

∫
l

NN ′

EA
dl +

∫
l

χ
V V ′

GA
dl (4.30)

Through this last expression, the deflection can be determined at any point of the

structure by simply calculating the real and the virtual internal forces. This is

achieved by solving separately the real system (i.e., in which the real forces are

applied) and the virtual system (i.e., in which only virtual forces are applied).

4.3.2 Castigliano’s theorem for elastic structures

The Castigliano’s first theorem [75], enunciated for the first time by Carlo Alberto

Castigliano in 1873 in his dissertation “Intorno ai sistemi elastici” (About elastic
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systems), also known as the theorem of least work, states that for an elastic

structure subjected to a system of external forces and under static equilibrium,

the partial derivative of the strain energy (“lavoro molecolare”) considered as a

function of the applied forces, with respect to one of these forces, is equal to the

displacement of the point of application of the force in the direction of the force.

In mathematical terms, this is described as:

δ =
∂U

∂P
(4.31)

where δ is the displacement, U is the strain energy and P is the applied force.

Recalling that the strain energy of an elastic body can be expressed as the sum

of the contribution of the internal forces:

U =
1

2

∫
V

{σ}T {ϵ} dV =

∫
l

M2

2EI
dl +

∫
l

N2

2EA
dl +

∫
l

χ
V 2

2GA
dl (4.32)

Substituting the previous into Equation 4.31, it returns the expression for the

displacement as a function of the internal forces:

δ =
∂

∂P

(∫
l

M2

2EI
dl +

∫
l

N2

2EA
dl +

∫
l

χ
V 2

2GA
dl

)
=

∫
l

M

EI

∂M

∂P
dl +

∫
l

N

EA

∂N

∂P
dl +

∫
l

χ
V

GA

∂V

∂P
dl

(4.33)

To solve the integral above, it is required to express the internal forces as a function

of the applied load P and calculate their derivatives.

Considering once again a cantilever beam of length L subjected to a tip load,

if only the moment contribution is accounted for, the Castigliano’s theorem yields

the same solution as Euler-Bernoulli (Equation 4.8):

δ =

∫ L

0

M

EI

∂M

∂P
dx =

∫ L

0

Px2

EI
dx =

PL3

3EI
(4.34)
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Introducing the shear contribution, the solution corresponds to the one of Timo-

shenko (Equation 4.12):

δ =

∫ L

0

Px2

EI
dx+

∫ L

0

χ
P

GA
dx =

PL3

3EI
+ χ

PL

GA
(4.35)

Finally, including the normal component in the equation, returns the expression

for a beam-column element, which is capable of withstanding tension and com-

pression load.

The method illustrated so far is specifically formulated to calculate a struc-

tural displacement in correspondence of an applied external force. However, its

application can be easily extended for determining the displacement of a general

point of the system, just by adding a dummy load with zero amplitude to the

location of interest, and thus calculating the corresponding internal energy.

An analogy is evident between Castigliano’s theorem and the principle of vir-

tual work, by comparing Equation 4.33 with Equation 4.30. In fact, the virtual

internal forces from the PVW, are now replaced with a derivative. However, since

the internal forces are in general a linear function of the applied force, their deriva-

tives are equivalent to the internal forces induced by a unitary load. Therefore, for

the determination of displacements, the two theorems lead to the same results and

Castigliano’s theorem can be considered as a particular case of the PVW. For this

reason, as regards the study of kinematics of mesh materials, all the conclusions

found in this work can be interchangeably considered as achieved through either

Castigliano or PVW, being them equivalent.

4.4 Contact mechanics

As previously introduced, the non-linear mechanical response of mesh materials is

greatly influenced by the contact mechanics occurring at the numerous warp-weft

wire intersections and currently the existing models either do not account for this

aspect or employ simplified or empirical formulations. Motivated by this existing
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knowledge gap, this work is aimed to develop a series of analytical models that

incorporate the effect of the wire-to-wire contact interaction. For this reason in

the next subsections, the main contact theories (i.e, Hertz and JKR) are discussed

and compared when applied to the case of PWMMs, with the purpose of selecting

the most appropriate model for this research.

4.4.1 Hertz theory

In 1882 Heinrich Hertz presented his theory that posed the foundations for the

development of contact mechanics [76]. He provided a solution for the problem of

curved elastic bodies in contact. The Hertzian theory is based on the following

assumptions:

i) Contact surfaces are continuous and non-conforming.

ii) Strains are small.

iii) Solids are considered as elastic-half spaces.

iv) Surfaces are frictionless.

v) Adhesion between surfaces can be neglected.

The surfaces are considered smooth from both a micro and a macro scale,

which implies that the small surface irregularities and asperities are neglected,

and the profiles of the solids are continuous up to the second derivative terms, in

correspondence of the contact area. For this last assumption, the profile of each

surface can be represented by a quadratic expression in proximity of the contact.

Choosing the point of first contact as the origin of the coordinate system, such

as the x-y plane is the common tangent to the surfaces and the z-axis is directed

along the common normal, the expression for the first surface takes the following

form:

z1 =
1

2R′
1

x21 +
1

2R′′
1

y21 (4.36a)
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where R′
1 and R′

2 are the principal radii of curvature of the first surface at the

origin. A similar expression can be derived for the second surface:

z2 = −
(

1

2R′
2

x22 +
1

2R′′
2

y22

)
(4.36b)

The difference between Equations 4.36a and 4.36b represents the separation be-

tween the two surfaces h = z1 − z2. Transposing the relation to a common

coordinate system, it returns:

h = Ax2 +By2 =
1

2R′x
2 +

1

2R′′y
2 (4.37)

where R′ and R′′ are the principal relative radii of curvature and A and B are

positive constants. According to Equation 4.37, the regions identified by the same

gap h between the undeformed surfaces are ellipses whose axes are in the ratio

(R′/R′′)1/2. If the axes of principal curvature of each surface are inclined with

respect to each other of an angle θ, the following two equations need to be true:

(A+B) =
1

2

(
1

R′ +
1

R′′

)
=

1

2

(
1

R′
1

+
1

R′′
1

+
1

R′
2

+
1

R′′
2

)
(4.38a)

|B − A| = 1

2

{(
1

R′
1

− 1

R′′
1

)2

+

(
1

R′
2

− 1

R′′
2

)2

+2

(
1

R′
1

− 1

R′′
1

)(
1

R′
2

− 1

R′′
2

)
cos 2θ

}1/2
(4.38b)

When the two solids are pressed together by a normal compressive load P, the

initial point of contact spreads into an area whose shape depends on their radii

of curvature.

4.4.1.1 Sphere-to-sphere contact

In the case of two solids of revolution in contact, their principal radii of curvature

are the same (R′
1 = R′′

1 = R1 and R′
2 = R′′

2 = R2), so the regions of same

55



separation and the contact area are circles with centre at the origin of axes. This

is the case of two elastic spheres in contact of radii R1 and R2. In this case, the

radius of the circular contact area is expressed as:

a =

(
3PR

4E∗

)1/3

(4.39)

where R and E∗ are respectively the effective radius of curvature and the effective

elastic modulus of the two spheres, calculated as follows:

1

R
=

1

R1

+
1

R2

(4.40a)

1

E∗ =
1− ν21
E1

+
1− ν22
E2

(4.40b)

where the subscripts 1 and 2 denote the two spheres and E and ν are respectively

their elastic modulus and Poisson’s ratio. The normal pressure distribution among

the contact area resulting from the load P is given by:

σ(r) =
3P

2πa2

(
1− r2

a2

)1/2

(4.41)

where r is the radial distance from the centre of the contact area. The pressure

distribution in Equation 4.41 has the form of a semi-ellipsoid acting upon a circular

area of radius a. The maximum pressure σ0 =
3P
2πa2

is located at the centre of the

contact area. Such a pressure field generates a uniform normal displacement across

the contact area and does not lead to contact outside of it.

4.4.1.2 Cylinder-to-cylinder contact: parallel and perpendicular axes

If the two solids are cylindrical bodies with radii R1 and R2, their radii of curvature

are respectively R′
1 = R1, R

′′
1 = ∞, R′

2 = R2, R
′′
2 = ∞.
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For two parallel cylinders, the contours of constant gap are lines parallel to

their axes. When a compressive load P is applied to the pair, a rectangular contact

area is generated, whose width is calculated as [77]:

b =

√
4PR

πE∗L
(4.42)

where L is the axial length of the cylinders. R and E∗ are again the effective

radius of curvature and the effective elastic modulus from Equations 4.40a and

4.40b. The normal pressure distribution is again a semi-ellipsoid, expressed by

the following equation:

σ(r) =
2P

πbL

(
1− r2

b2

)1/2

(4.43)

where the peak pressure, σ0 =
2P
πbL

, is at the centre of the rectangular area.

If the cylinders are crossed with perpendicular axes, the lines of constant gap

are circles. Under the application of a compressive load P , a circular contact area

is generated, whose radius is calculated with Equation 4.39, where the effective

radius of curvature is replaced by the Gaussian radius of curvature R =
√
R1R2.

4.4.1.3 General case and cylinder crossed with arbitrary angle

For the general case of bodies with an arbitrary profile, when the separation

follows Equation 4.37, the shape of the contact area is not known in advance;

however, it can be assumed as elliptical. Referring as a and b to the semi-major

and semi-minor axis of the elliptic area of contact, their ratio can be found from:

(
B

A

)
=

(
R′

R′′

)
=

(a/b)2E(e)−K(e)

K(e)− E(e)
(4.44)

where K(e) and E(e) are the complete elliptic integrals respectively of first and

second kind of argument e =
√

1− b2/a2 (also called first eccentricity of the

57



ellipse), with a > b. The normal pressure distribution generated by a compressive

load P, is again a semi-ellipsoid acting over the elliptic contact area:

σ(x, y) =
3P

2πab

(
1− x2

a2
− y2

b2

)1/2

(4.45)

Once again, the maximum pressure, σ0 = 3P
2πab

, corresponds to the centre of the

contact area.

Equations 4.44 and 4.45 apply to the case of two cylinders crossed with an

arbitrary angle θ between their axes. In the vicinity of the origin, the circular

cross-section of the cylinders can be approximated by a parabola. Consider two

different set of axes x1y1z1 and x2y2z2, both sharing the same origin in the point

of first contact, and such that the axes x1 and x2 are respectively aligned with

the generator of the first and the second cylinder. The profile of the first cylinder

of radius R1, in the system of coordinates x1y1z1, can be approximated by the

following expression:

z1 ≈
x21
2R1

(4.46a)

For the second cylinder of radius R2, in the coordinates x2y2z2, the equation

becomes:

z2 ≈ − x22
2R2

(4.46b)

The separation between the surfaces is then:

h ≈ x21
2R1

+
x22
2R2

(4.47)

The previous equation can be transposed to a common set of axes in the coordi-

nates xyz such that Equation 4.37 is recovered. Under these conditions, Equations

4.38a and 4.38b must be satisfied. Recalling that, for two cylindrical bodies of
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radii R1 and R2, the principal radii of curvature are R′
1 = R1, R

′′
1 = ∞, R′

2 = R2

and R′′
2 = ∞, the aforementioned equations reduce to the following:

(A+B) =
1

2

(
1

R1

+
1

R2

)
(4.48a)

|B − A| = 1

2

{
1/R2

1 + 1/R2
2 + 2/ (R1R2) cos 2θ

}1/2
(4.48b)

The contact between cylinders with perpendicular and parallel axes are just

particular solutions of the general case. In fact, for perpendicular axes, θ = π/2,

and thus Equation 4.48b reduces to A = B. Therefore, the contours of constant

gap in Equation 4.37 are circles, as well as the contact area, for which a = b.

As the angle θ tends to zero, a increases and b reduces, so that the contact area

becomes a narrower and narrower ellipse until, for θ = 0, it degenerates into a

rectangle, which can be interpreted as an ellipse of infinite major axis.

4.4.2 Adhesive contact: JKR theory

In 1971, almost a century after Hertz published his contact theory, Johnson,

Kendall and Roberts proposed a new contact solution that accounts for the al-

ways existing adhesion between elastic bodies, known as the JKR theory [78].

This complex physical phenomenon is mostly caused by the relatively weak inter-

active forces that are generated between atoms or molecules, referred to as Van

der Waals forces. These forces rapidly decrease with the sixth power of the dis-

tance between two atoms, according to the Lennard-Jones potential [79]. They

can be calculated theoretically for two atomically smooth surfaces, meaning that

the naturally existing asperities between the surfaces are small compared to the

atomic scale. In reality, the roughness of the surfaces is great enough to drastically

reduce the value of surface attraction calculated theoretically. For this reason, ex-

perimental procedures have been developed to measure this quantity, for instance

through the contact angle method.
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The JKR theory is particularly suitable to study contact problems between

soft materials or in micro- and nano-scale systems, where because of the size effect,

the adhesive forces are not negligible [80].

The theory initially considers the problem of two elastic spheres of radius R1

and R2 pressed together by a normal load P0. If the adhesive forces are initially

neglected, a Hertzian contact radius a0 is established, that can be expressed for

convenience as follows:

a30 =
RP0

K
(4.49)

where K = 4/3E∗. R and E∗ are again calculated respectively from Equations

4.40a and 4.40b.

In reality, because of the presence of attraction forces, the actual contact radius

a1 is greater than the Hertzian one and it can be considered as generated by an

apparent Hertz load P1, and defined as:

a31 =
RP1

K
(4.50)

The JKR theory calculates the actual contact radius a1 by calculating the

condition of minimum total energy of the system. The total energy UT of the sys-

tem is given by the sum of the stored elastic energy UE, the mechanical potential

energy UM given by the applied load and the surface energy US. Regarding the

elastic energy, suppose to initially apply the load P1 to the system generating a

contact area of radius a1, corresponding to energy U1. Then the load is reduced

until P0 by keeping the contact radius constant and an energy U2 is released.

Thus, the total elastic energy is given by the difference of these two quantities:

UE = U1 − U2 (4.51)

where

U1 =

∫ P1

0

2

3

P 2/3

K2/3R1/3
dP =

2

5

P
5/3
1

K2/3R1/3
(4.52)
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and

U2 =

∫ P1

P0

2

3

P

Ka1
dP =

1

3

(P 2
1 − P 2

0 )

K2/3R1/3P
1/3
1

(4.53)

Therefore:

UE =
2

5

P
5/3
1

K2/3R1/3
− 1

3

(P 2
1 − P 2

0 )

K2/3R1/3P
1/3
1

=
1

K2/3R1/3

(
1

15
P

5/3
1 +

1

3
P 2
0P

−1/3
1

) (4.54)

The mechanical potential energy generated by the load P0 is calculated as:

UM = −P0δ2 = −P0

(
δ1 −

2

3

(P1 − P0)

Ka1

)
= −P0

(
P

2/3
1

K2/3R1/3
− 2

3

(
K

RP1

)1/3
(P1 − P0)

K

)

=
−P0

K2/3R1/3

(
1

3
P

2/3
1 +

2

3
P0P

−1/3
1

) (4.55)

The surface energy, associated to the attractive forces, is calculated as:

US = −γπa21 = −γπ(RP1/K)2/3 (4.56)

where γ represents the adhesion energy of both surfaces. Finally, the total energy

is calculated as the sum of the different contributions:

UT =UE + UM + US =
1

K2/3R1/3

(
1

15
P

5/3
1 +

1

3
P 2
0P

−1/3
1

)
+

−P0

K2/3R1/3

(
1

3
P

2/3
1 +

2

3
P0P

−1/3
1

)
− γπ(RP1/K)2/3

(4.57)

The condition of contact equilibrium corresponds to the minimum total energy,

calculated as:

dUT/dP1 = 0 (4.58)
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By imposing the previous condition, the relation between the apparent Hertz load

P1 and the actual load P0 can be found:

P1 = P0 + 3γπR +
√

6γπRP0 + (3γπR)2 (4.59)

Combining Equations 4.50 and 4.59, finally the expression for the contact radius

modified to account for the surface adhesion is obtained:

a3 =
R

K

(
P0 + 3γπR +

√
6γπRP0 + (3γπR)2

)
(4.60)

It may be noted that, for a value of γ = 0, the previous equation reduces to

the Hertzian solution.

4.4.3 Contact model selection

Since the mechanical response of mesh materials is highly dependent on the con-

tact mechanics, Hertz and JKR theory are compared for the purpose of identifying

which model should be employed. As already discussed, one of the major limi-

tations of the Hertz theory with respect to the JKR theory is the neglection of

adhesive forces that, in certain cases, might lead to an underestimation of the real

dimensions of the contact area.

For this investigation, the contact between a pair of PWMM wires is reduced

to the one of two crossed cylinders of same radius, approximation that will be

recalled and adopted further in this work. Considering same diameter of the

PWMM samples analysed in Chapter 3 and the mechanical properties of stainless

steel in Table 3.2, the contact area is calculated for different values of contact

load through Equations 4.39 and 4.60, where the effective radius is R =
√
R1R2,

simply equal to the radius of the cylinders (i.e., R = R1 = R2). As regards the

surface energy of stainless steel, experimental values can be found in [81, 82]. A

value of γ = 110mJ/m2, accounting for both the surfaces involved in the contact,

has been used for the calculations.
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In Figure 4.2 the normalised difference in contact area between JKR and Hertz

theory at various contact forces is reported. From these results, it is evident how

for very small contact loads, the effect of adhesive forces is more pronounced and

the JKR theory provides with a more accurate prediction of the contact area di-

mensions. However, this difference rapidly decreases to <1% as the load increases,

suggesting that the Hertz theory can be applied to this particular geometry and

material with acceptable approximation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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7%

Figure 4.2: Normalised difference in contact area between JKR and Hertz theory

for two crossed cylinders at various contact forces.

Another important assumption of the Hertz theory is that the strains are

small, which implies that the size of the contact area must be much less than

the radius of curvature (a ≪ R). In order to verify whether this assumption

is satisfied, the ratio of the Hertzian contact radius to the effective radius of

curvature is calculated as a function of the contact load for the same two crossed

wires previously analysed, using the materials properties of stainless steel and

Nitinol reported in Tables 3.2 and 3.3.
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Figure 4.3: Ratio of Hertzian contact area to radius of curvature for two crossed

cylinders at various contact forces.

From Figure 4.3, it is apparent that this condition is verified for a wide range

of contact forces, being the maximum reported values of the ratio a/R roughly

11% and 14% respectively for the steel-to-steel and Nitinol-to-Nitinol contact cor-

responding to a normal load of 20N. As the normal load increases the percentage

of a/R would continue to increase approaching asymptoticity.

Finally, it is worth noting that the Hertzian theory is also based on the as-

sumption of frictionless surfaces, which is apparently in contrast with the damping

phenomena investigated in this thesis. Nevertheless, the classical Hertz theory has

been successfully combined with the Coulomb friction model by several authors to

solve frictional contact mechanics problems and these models are largely adopted

and verified both numerically and experimentally. Based on all the aforemen-

tioned considerations, the Hertz contact theory has been employed in this work

for the development of the analytical models.
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4.5 Frictional interaction of surfaces

Friction is a complex physical phenomenon where there is a resistance to relative

motion between two sliding surfaces that are in contact when they are subjected

to a normal and a tangential force. It manifests as a resistive force, referred to as

the frictional force, that always acts in the opposite direction of motion [83] and

perpendicularly to the normal contact load, resulting in dissipation of energy in

the form of heat. It can occur in multiple forms, and it is generally subdivided

into internal, dry and fluid friction [84]. Dry friction, also called Coulomb friction,

refers to the interaction between dry surfaces that move relative to one another.

Only this category will be discussed, since it is the one of interest in this research.

Considering two bodies in contact initially at rest, to initiate the relative mo-

tion between them, a tangential force needs to be applied that overcomes a critical

value, referred to as static friction force or sometimes as stiction force. The value

of the force that is necessary to maintain the motion is called dynamic or kinetic

friction force.

Nowadays it is commonly accepted that most of the friction problems between

unlubricated solid surfaces obey to some simple principles that were discovered

several centuries ago. Despite the first scientist to formulate these principles

was probably Leonardo da Vinci in his Codex Madrid I [85], they are commonly

attributed to Guillaume Amontons [86] and referred to as Amontons’ laws :

i) The frictional force is proportional to the normal load.

ii) The frictional force is independent of the contact area.

To these two laws, a third principle is usually added, which is commonly attributed

to Charles-Augustin de Coulomb [87]:

iii) The dynamic friction force (or dynamic coefficient of friction) is independent

of the sliding velocity.
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Regarding the latter law, significant experimental evidence is provided to demon-

strate this, such as by Bhushan [88]. As further examples in support of this theory,

dynamic load tests conducted on metallic friction damping systems have shown

that the vibration loss factor is independent of the excitation frequency [89,90].

The first enunciated principle can be expressed mathematically by the follow-

ing linear dependency:

Ffr = µs,dFN (4.61)

where Ffr is the frictional force, FN is the normal contact load and µs,d is a di-

mensionless number referred to as coefficient of friction. The subscripts s and d

indicate that the equation refers to either static or dynamic friction. The coeffi-

cient of friction is generally dependent on materials, roughness and topology of

the surfaces. It also can vary with the normal load, although for metals it remains

roughly constant for a wide range of forces [79,91,92].

4.5.1 Micromechanics of dry friction

Dry friction between solid bodies involves a diversity of mechanisms, such as elastic

and plastic deformations of the contact surfaces, chemical reactions, excitation

of electrons and phonons, microfractures, material loss caused by abrasive wear

and even transfer of particles from one body to the other [79]. These complex

phenomena, that are strictly related to the geometry and material of the bodies

in contact, occur at a microscopic level, and therefore, a deeper understanding

of the nature of friction requires an inspection of the interacting surfaces at a

microscopic scale.

In fact, considering for instance the contact between two flat surfaces such as

the ones illustrated in Figure 4.4, although from a macroscale they appear smooth

and continuous, at a microscopic level they reveal themselves as composed of a

series of irregularities that are randomly distributed across the area and change in
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Figure 4.4: Representation of the contact surface on a microscopic scale: the

cross-section appears as a multitude of asperities that interlock each other only in

a small portion of the surface (red circles).

form and size. The surface interaction in actuality takes place only in correspon-

dence of these peaks wherever the asperities of one body come into contact with

the ones of the other generating a multitude of so-called microcontacts. Therefore,

the true area of contact is given by the sum of all these microcontacts, and it is

in general much less than the apparent flat area of contact.

The friction is generated from the interference of asperities that interlock each

other so that, for the relative motion to occur, the tangential force has to be

large enough to elastically or plastically deform the asperities and to overcome

the adhesive forces. When fracture occurs in the asperities, it is referred to as

wear.

The size of the real area is in general dependent on the normal contact load, as

with this increasing, the asperities are deformed at first elastically and then plas-

tically causing more peaks to come into contact [93]. Therefore, being the friction

force proportional to the real contact area, this provides with an explanation to

the first of the Amontons’ laws.

One of the possible approaches for modelling the friction is through a micro-

scale mathematical representation. The first micromechanical model for friction
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was proposed by Coulomb and provides with a demonstration of the first two

of the Amontons’ laws. Consider two bodies pressed together into dry contact

whose interacting surfaces are characterised by a periodic corrugated profile, as

illustrated in Figure 4.5a. Initially referring to a single pair of interlocked asperi-

ties, when they are subjected to a tangential force FT , a reaction force FR opposes

to the motion, which is directed normally to the surface at the point of contact,

as represented by the free-body-diagram in Figure 4.5b. From the equilibrium

condition, the following equations can be written:

(a)

(b)

Figure 4.5: Coulomb’s micromechanical friction model: (a) contact surfaces de-

fined by a periodic profile and (b) free-body-diagram for a single asperity.

FN = FR cos θ (4.62a)

FT = FR sin θ = FN tan θ (4.62b)

where θ is the angle of the asperity surface at the point of contact. The maximum

tangential force for which the relative motion is still prevented is then calculated

as follows:

FT,max = FR sin θ = FN tan θmax (4.63)

68



where θmax is the maximum slope of the asperity. Therefore, FT,max represents

the force of static friction and θmax is the coefficient of static friction:

µs = tan θmax (4.64)

Despite of its simplicity, this mathematical representation demonstrates the

proportion between normal load and friction force, stated by the first law of Amon-

tons. The model can also provide with a demonstration of the Amontons’ second

law, by considering again the overall surface in Figure 4.5a composed of a certain

number n of identical asperities. In this case, the normal load can be assumed as

equally subdivided between each contact pair. The sum of the friction forces FT/n

at the multiple asperities would be equal to the case of a single asperity, meaning

that the total number of asperities, and so the area of the contact surface, has no

influence on the friction force.

Many other micromechanical models have been introduced, where the distri-

bution of asperities is more complex and takes into account randomness. For

instance, in 1966 Greenwood and Williamson [94] proposed a model where all the

asperities have a spherical summit of same radius of curvature and their heights

vary stochastically across the surface with exponential and Gaussian distribu-

tion. Andrews and Sehitoglu [95] studied the effect of roughness on fatigue life by

proposing a random variation in asperity heights, radii of curvature and spatial

distribution.

The high level of randomness on the surface topology and the complexities

associated to friction make the employment of these micro-scale models rather

inconvenient, especially to be implemented in a numerical model because of the

enormous computational burden they would require for describing large systems.

For this reason, macro-scale models based on experimentally determined coeffi-

cients of friction have gained more popularity and are often preferred in addressing

practical engineering problems since they are particularly easy to be implemented

into a dynamic numerical simulation.

69



4.5.2 Macro-scale modelling of friction

4.5.2.1 Coulomb model

The classic Coulomb is the most basic and probably most diffused friction model,

not only because of its simplicity and straightforwardness, but mostly because it

is capable of describing the response to friction with acceptable accuracy in many

engineering applications [96]. In its classic form, also referred to as pure Coulomb

solution, the friction force does not depend on the amplitude of the sliding velocity

ẋ but only on its direction, and it is linearly proportional to the normal load FN

and to the friction coefficient µ, in agreement with the Amontons’ laws. This is

expressed by the following equation:

Ffr = −µFN sgn ẋ (4.65)

where sgn is the signum function, which depends on the sign of the velocity, as

follows:

sgn ẋ =


1, ẋ > 0

0, ẋ = 0

−1, ẋ < 0

(4.66)

It is worth noticing that the negative sign in Equation 4.65 indicates that the

friction force is always opposite in direction with the velocity. Moreover, the vari-

able µ indicates that the friction coefficient is assumed as constant both under

static and dynamic conditions. In fact, although typically static and dynamic

friction coefficients are considered different with the first being greater than the

second, in certain conditions an approximation can be done, by considering them

as equal according to the pure Coulomb model. The extent of variation between

static and dynamic friction coefficients depends on the materials and roughness

of surfaces in contact. This has been experimentally investigated by Hwang et

al. [97] who considered steel/steel and steel/alumina interaction both under dry
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and lubricated conditions. From their experiments, a sensible disparity was mea-

sured for polished finish, whereas for ground surfaces a difference of only 9% was

witnessed. For the sake of simplicity, in this work the same value of dynamic and

static friction coefficient is adopted.

(a) (b)

(c) (d)

Figure 4.6: Coulomb model combined with different other friction models: (a)

pure Coulomb, (b) Coulomb + stiction, (c) Coulomb + Stribeck, (d) Coulomb +

Stribeck + viscous

Only two phases are contemplated by the Coulomb model: a stick phase, when

the applied tangential force FT is less than the static friction force, and a slip or

sliding phase, when the tangential force exceeds the friction force and the motion

is initiated. Mathematically, this is represented as:
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status =

{
stick, |FT | ≤ µFN , ẋ = 0

slip, |FT | > µFN , |ẋ| > 0
(4.67)

During the stick phase, the Coulomb model does not define the friction force,

which can take any value in the interval between −µFN and µFN . In reality, before

the relative motion is reached across the whole surface, microslip phenomena occur

in a portion of the contact area, leading to a gradual increase in the friction force.

The major problem with neglecting the microslip phase is that the discontinuity

in the friction force at zero velocity causes a singularity in the equivalent linear

damping, which tends to infinite for ẋ→ 0, making the computation cumbersome

[98]. Since only two statuses are possible (i.e., sticking and sliding), when applied

to a single DOF system, the classical Coulomb model is only able to provide with a

rough approximation of its dynamic response. However, if the interacting surfaces

are discretised into multiple elements (such as in the FE method), the increased

number of DOFs allows to have a description of the micro-slip phase, resulting in

a smoother transition from stick to slide condition.

The Coulomb model has been combined with many other friction models, to

describe more complex phenomena and behaviours. Some of them are illustrated

in Figure 4.6, where the friction force is plotted as a function of the velocity. For

instance, the disparity in static and dynamic friction coefficient is accounted for by

the stiction model in Figure 4.6b, whereas the Stribeck model [99] in Figure 4.6c

provides with a smoother transition from static to dynamic phase, by introducing

an exponential decay in the friction force. A linear proportion between friction

and velocity is obtained by incorporating the viscous model, as in Figure 4.6d.

4.5.2.2 Dahl model

The Dahl model [100] was proposed by Philip R. Dahl in 1968 and it is one

of the first dynamic models for friction, together with the LuGre model that

is its direct derivation [101]. It was developed with the purpose of describing

the hysteresis behaviour experimentally observed in ball bearings for aerospace
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industry when subjected to sinusoidal cyclic load. With respect to the Coulomb

model, the Dahl model is capable of describing the microslip phenomena in dry

contact of solids. In this model the friction microslip phase is related to the

stress-strain curve of the materials in contact. The nonlinear response of the

friction force during the pre-sliding is believed to be caused by the contribution

of an elastic and a plastic component of stress. To describe this behaviour, the

surface asperities are considered as a series of microsprings [102]. During the initial

phase, a linear increasing can be observed in the force, when the asperities at the

bonding interface are only elastically deformed. When the strain is increased

further, the local stress overcomes the yield point, causing plastic deformations at

the bonding interface. When the applied external force overcomes the maximum

internal restoring force, macroslip occurs. After plastic deformation, if the load is

released, the deformation will not return to the initial state, resulting in hysteresis

loop and dissipation of energy.

The friction force is expressed as a function of the displacement by the following

differential equation [103]:

dF (x)

dx
= σ|1− F (x)

FC
sgn ẋ|α sgn

(
1− F (x)

FC

)
(4.68)

where σ is the tangential stiffness of the contact surface expressed in [N/m], that

corresponds to the slope of the force-displacement curve at F = 0 and it is related

to the elastic stiffness of the asperities.

The term FC represents the Coulomb friction force, equal to µFN . This can

be understood as a ”yield force”, beyond which the plastic deformation of the

asperities occurs. In fact, when a tangential external force FT is applied such

that FT > FC , rupture of the asperities occurs leading to macroslip. Solution

of Equation 4.68 is illustrated in Figure 4.7 in non-dimensional coordinates for

positive values of the velocity ẋ. The value of FC is approached asymptotically by

the friction force as the displacement increases. For larger displacements, the Dahl

model corresponds to the Coulomb model. The coefficient α defines the shape of

the function during the microslip phase, which is dependent according to the
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Figure 4.7: Dahl friction model response: friction force as a function of displace-

ment in non-dimensional coordinates at various α.

material. For brittle materials the range is 0 < α < 1, while for ductile materials

α ≥ 1. The determination of the parameters α and σ relies on experimental data

and different procedures exist for their identification [104].

It may be noted that the Dahl model is only dependent on the displacement

and on the sign of the velocity, therefore it is not capable of describing the Stribeck

effect, which instead is a rate dependent phenomenon. Also stiction is not cap-

tured by the model, leading to inaccuracy when a great disparity between static

and dynamic coefficients exists.

4.5.2.3 Lund-Grenoble (LuGre) model

The Lund-Grenoble model [105], also referred to as LuGre model, results from

a collaboration of the universities of Lund and Grenoble and it represents an

extension of the Dahl model, with respect to which is also capable of capturing

more complex rate dependent mechanisms that are observed experimentally such

as stiction, Stribeck effect, hysteresis and varying break-away force.

In this model, the interacting surfaces are described as two rigid bodies that

come into contact through a series of randomly distributed bristles, as illustrated

in Figure 4.8. These represent the typical asperities that characterise contact
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�1

�2

Figure 4.8: Lu-Gre friction model: representation of the contact surfaces as a

series of bristles. For simplicity, the bristles on the lower body are represented as

rigid.

surfaces and are equivalent to elastic microsprings. If a large enough tangential

force is applied to the bodies, the bristles deflect until they slip.

Because of the randomness of the surfaces in contact, the model is based on the

average deflection z of the bristles, defined by the following first-order differential

equation:

dz

dt
= ẋ− σ0|ẋ|

g(ẋ)
z (4.69)

where ẋ is again the relative velocity between the sliding surfaces and σ0 is the

elastic stiffness of the bristles. The term g(ẋ) is a positive function that depends

on many factors such as materials, lubrication and temperature. It represents the

decay of the friction force when the velocity increases, which corresponds to the

Stribeck effect. In order to achieve a good approximation of the Stribeck effect,

Olsson et al. [106] suggest that the following form for g(ẋ) should be chosen:

g(ẋ) = FC + (FS − FC)e
−(ẋ/ẋs)

2

(4.70)

where FC and FS are respectively the Coulomb and the static friction force and

ẋs is the Stribeck velocity.
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In this model, the friction force is proportional to the deflection and the rate

of deformation of the bristles and to the relative velocity of the bodies, as follows:

F = σ0z + σ1
dz

dt
+ σ2ẋ (4.71)

where σ1 and σ2 are respectively the damping and the viscous friction coefficients.

Therefore, the model is characterised in total by six parameters (σ0, σ1, σ2,

FC , FS and ẋ), four of which are static and two dynamic. For this reason the

LuGre model is highly versatile and can be adapted to be employed in describing

a multitude of different friction problems [107,108].

It is evident that the LuGre model reverts to the Dahl model for the following

conditions:

g(ẋ) =
FC
σ0
, σ1 = σ2 = 0 (4.72)

4.5.2.4 Friction model selection

In this research, the classic Coulomb friction model will be employed for both

the analytical and numerical modelling. The main reason behind this choice

is that the model, despite its simplicity, can capture the necessary physics to

describe the mechanical response of mesh materials. As will be discussed further

later in Section 4.7, several models exist that combine the Hertz contact theory

with the Coulomb friction model for describing the frictional contact mechanics

of elastic bodies. These models have been largely adopted in the literature and

validated both through experiments and numerical analysis. In general, these

models interpret the contact non-linearity as a consequence of the sliding not being

achieved simultaneously in the entire interface of contact but rather progressively,

with a rate that depends on the elastic properties of the materials and the friction

coefficient.

The same non-linear microslip response could be represented also through the

dynamic friction models discussed previously, such as for instance the Dahl model.
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However in this case the non-linearity is ascribed to the plastic deformation occur-

ring at the contact interface, instead of the elastic strain distribution accounted

for by the Hertz theory. Moreover, the employment of the Dahl model relies on

experimental data for the determination of its fitting parameters.

Materials Friction coefficient

Steel-steel 0.30

Nitinol-Nitinol 0.18

Nitinol-steel 0.4

Table 4.2: Friction coefficient for the different material combinations.

In Table 4.2, the friction coefficients that will be utilised in the analytical

and numerical models are reported for each constituent material combination.

The friction coefficient for the Nitinol-Nitinol configuration was found through

experimental tests by DellaCorte [109].

4.6 Tension-compression model

In this section, a novel analytical model is presented, which describes the me-

chanical response of plain-weave mesh materials to tension-compression load. As

described previously, the model is based on Castigliano’s theory for elastic mate-

rials. The wires are considered as sinusoidally curved beams with the wire-to-wire

interaction being achieved via Hertz’s contact theory.

Initially, the equivalent longitudinal stiffness of a wire that is decoupled from

the mesh is derived. Then, the formulation is extended to account for the in-

teraction of warp/weft wires within the RUC, by solving a set of simultaneous

equations that define the kinetics of each wire.

The model defines a set of effective properties (stiffness and Poisson’s ratio) for

the characterisation of PWMMs, which are calculated based on the geometrical

and mechanical properties of the material and the contact between the wires. An
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averaged formulation of the same properties is also provided, which will be used in

the subsequent implementation of the model in a MATLAB-ANSYS environment.

4.6.1 Elastic stiffness of a single wire (decoupled)

As previously introduced and verified through image analysis (see Section 3.3.1.1),

given the highly ordered repetitivity of the structure, the longitudinal path of the

wires can be considered periodic and described by a sinusoidal wave:

z(x) = Z sin
(πx
L

)
(4.73)

where Z is the amplitude of the sine wave and L is the semi-wavelength which is

equal to the sum of wire diameter and aperture of the mesh. The cross-sectional

geometric shape is assumed as a circle of constant diameter always orthogonal to

the centreline.

x

z

u
x

P
x

L

(a)

(b)

Figure 4.9: Boundary conditions of a single wire: (a) pin-roller supported beam

and (b) roller-roller supported beam.
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Consider only a portion L of a decoupled wire, constrained as in Figure 4.9a. When

the wire is subjected to a uniaxial tensile load Px, the longitudinal deformation ux

can be calculated by means of Castigliano’s theorem (see Equation 4.33), returning

the following expression:

ux =
PxZ

2L

2EI
+

PxL
2

EA
√
Z2π2 + L2

+ χ
Px
GA

(
L
√
Z2π2 + L2 − L2

√
Z2π2 + L2

)
(4.74)

The same segment of wire can be also imagined as constrained at both ex-

tremities by a roller support, as in Figure 4.9b, with analogous kinematic results.

In this case, the external load Px is applied at both sides, and to preserve the

structure stability a third roller support is included mid-span (represented with

a faded line since in reality it does not produce any reaction). The overall dis-

placement is now referred to a local coordinate frame located at mid-span and the

total deformation ux is equally subdivided between the two sides of the beam.

To deeper investigate the relationship between stiffness and curvature of the

wires, a new parameter, waviness ratio, is now introduced, as the ratio of the

wire’s amplitude to the semi-wavelength:

ψ =
Z

L
(4.75)

Substituting the previous into Equation 4.74 and rearranging, it yields:

ux =

(
L3ψ2

2EI
+

L

EAΨ
+ χ

L (Ψ− 1)

GAΨ

)
Px (4.76)

where Ψ =
√

1 + ψ2π2. For a straight wire, ψ = 0 and the previous equation

reduces to only the normal force component, which corresponds to the axial de-

formation of a bar:

ux =
LPx
EA

(4.77)
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Figure 4.10: Stiffness and strain of a single wire at various ψ.

The static longitudinal stiffness of a single segment of wire is given by:

kL =
Px
ux

=
1(

L3ψ2

2EI
+ L

EAΨ
+ χL(Ψ−1)

GAΨ

) (4.78)

where the subscript L denotes that the expression is referred to only a portion L

of the wire.

The stiffness so calculated is constant with deformation and only depends on

mechanical (E, G) and geometrical (L, A, I, ψ, χ) properties of the structure.

It is only valid under the assumptions of small deflections and linear elasticity,

according to Castigliano’s theory. For this reason it does not account for non-

linear behaviour due to large deflections or plasticity phenomena.

Recalling that the strain is defined as the ratio of the deformation ∆L to the

initial length L0 of a body subjected to a state of stress, the normal strain of a

single wire can be approximated by the following expression:
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Diameter d mm 0.45

Length L mm 2.12

Elastic modulus E GPa 200

Poisson’s ratio ν 0.3

Table 4.3: Wire properties.

ϵx =
ux
L

(4.79)

where L is again the semi-wavelength of the wire. The total strain can be subdi-

vided into different components to analyse the influence of each internal force on

the overall behaviour as ψ changes:

ϵx,M =
ux,M
L

=
L2ψ2Px
2EI

(4.80a)

ϵx,N =
ux,N
L

=
Px
EAΨ

(4.80b)

ϵx,V =
ux,V
L

=
χ (Ψ− 1)Px

GAΨ
(4.80c)

where the subscripts M , N and V denote the strain components of bending mo-

ment, normal and shear force.

In Figure 4.10, the stiffness and strain of a single wire under a tensile load of

1N are shown for different values of the waviness ratio ψ. The dimensions and

material properties of the wire are described in Table 4.3. The stiffness, maximum

for ψ = 0 (i.e. straight bar), reduces significantly as the waviness increases. This

is mostly due to the effect of bending moment that grows quadratically with ψ,

and to a lesser extent to the internal shear, as is apparent from the different strain

components.
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4.6.2 Warp/weft wire interaction

The study of kinematics of mesh materials necessarily involves the understanding

of the interaction between the wires associated with motion and how this affects

the overall mechanical properties of the system.

Figure 4.11: Schematisation of plain-weave RUC under biaxial tension.

Consider a single mesh unit cell composed of two interwoven sinusoidal wires

orthogonal to each other like the one in Figure 4.11. As previously introduced, the

unit cell can be thought as an infinitesimal element of an equivalent homogenous

material. Therefore, its mechanical response can be characterised by a set of

effective properties, such as elastic stiffness and Poisson’s ratio. These properties,

as will be shown below, are a function of the warp/weft contact force.

Suppose, as a first example, that an axial force Px is only applied to the warp

wire. For a wire with a waviness ratio >0, this will cause an elastic elongation of

the wire along the x-axis, combined with a reduction of its amplitude. However,

this vertical movement is counteracted by the presence of the weft wire that exerts

a reaction through contact. If an axial force Py is also applied to the weft wire, the

reaction that this opposes to the warp wire is increased further. In both cases, the
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response to tension load of the RUC depends not only on the stiffness of the wire

along the load direction, but also on the stiffness of the orthogonal wire, because

of the mutual reaction exerted through contact.

In general, in the presence of tension load, the contact force at the warp/weft

wire intersections is responsible for increasing the overall stiffness of the struc-

ture, as compared to the stiffness of a decoupled wire discussed before. With the

methodology adopted in this work, contact phenomena are incorporated in the

effective properties and considered as internal forces.

4.6.2.1 Contact force

For a RUC under a system of longitudinal forces Px and Py such as the one in Fig-

ure 4.11, in the absence of torsional rotation of the wires about their longitudinal

axis, the contact force between the warp/weft pair can be assumed as:

i) Concentrated and applied to the middle section of the wire.

ii) Always directed normally to the mesh plane (i.e., z-axis).

Consider now the diagram of the warp wire only, reported in Figure 4.12. This

is similar to the one of a decoupled wire, with the addition of the contact force

Fn.

ux / 2ux / 2

P
x

P
x

L / 2 L / 2

wwarp

F
n

Figure 4.12: Diagram of warp wire with loads and boundary conditions.

The displacement w (at the mid-span) along the z-axis can be calculated by means

of Castigliano’s theorem (Equation 4.33), as a function of the applied forces:
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wwarp = C1Px + C2Fn (4.81)

where:

C1 = − L3ψ

EIπ2
+
L tanh−1

(
πψ
Ψ

)
EAπΨ

− χ
L tanh−1

(
πψ
Ψ

)
GAπΨ

(4.82a)

and:

C2 =
L3

48EI
+
L (Ψ− 1)

4EAΨ
+

χL

4GAΨ
(4.82b)

where again ψ = Z/L and Ψ =
√
1 + ψ2π2.

The same can be done for the weft wire, remembering that the sign must be

changed to preserve the consistency with the coordinate system:

wweft = − (C1Py + C2Fn) (4.83)

The displacements calculated with Equations 4.81 and 4.83 are referred to a point

lying on the neutral axis of the wire. However, in actuality the force is exerted

through a contact area that lies on the external surface of the wire. The total force

of contact can be considered as applied to a point C shared between the wires,

which corresponds to the centre of the contact area. Recalling the Hertz theory,

when two elastic bodies are pressed together into contact, a normal deformation

δH is generated on the contact area that represents the mutual approach of the

bodies (also referred to as penetration depth):

δH =
a2

R
(4.84)

where a is the radius of the contact area and R is the effective radius of curvature.

By neglecting their longitudinal curvature, the wires can be reduced to straight

cylinders initially crossed with perpendicular axes. Thus, recalling the case of
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two cylinders in contact with perpendicular axes, the radius of the contact area is

expressed by Equation 4.39, where the effective radius of curvature is calculated as

R =
√
R1R2. Considering same radius r for both warp and weft wires, the effective

radius reduces to simply R = r. Combining Equation 4.39 with Equation 4.84, it

returns:

δH =

(
3

4E∗√r

)2/3

F 2/3
n (4.85)

Figure 4.13: Kinematics of RUC under tensile load.

As represented in Figure 4.13, as regards the warp wire, the displacement magni-

tude of the neutral axis along the z-axis is given by the sum of the displacement

magnitude of the contact point and the contact normal compression of the body

(which for one wire corresponds to half the Hertzian mutual approach):

|wwarp| = |wC|+
δH
2

(4.86)

Since the point of contact is a shared entity between the wires, the same rela-

tion must be valid also for the weft wire, now changing the sign of the contact

compression:
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|wweft| = |wC| −
δH
2

(4.87)

For the case represented in Figure 4.13, |wwarp| = −wwarp, |wweft| = −wweft and
|wC | = −wC since they are all negative in sign. Hence, replacing the absolute

value and rearranging the previous two equations, it yields:

wC = wwarp +
δH
2

(4.88a)

wC = wweft − δH
2

(4.88b)

Substituting Equation 4.81 into Equation 4.88a and Equation 4.83 into Equation

4.88b, it returns the following system of two equations:

wC = C1Px + C2Fn +
δH
2

−wC = C1Py + C2Fn +
δH
2

(4.89)

Solving the system by addition, it yields:

2C2Fn + δH + C1 (Px + Py) = 0 (4.90)

Substituting Equation 4.85 into the previous, it returns:

2C2Fn +

(
3

4E∗√r

)2/3

F 2/3
n + C1 (Px + Py) = 0 (4.91)

Let A, B and D be the coefficients of the previous equation, as follows:

A = 2C2 (4.92a)

B =

(
3

4E∗√r

)2/3

(4.92b)
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D = C1 (Px + Py) (4.92c)

The root of the cubic equation can be found by means of Cardano’s formula [110]:

Fn =

[
− B

3A
+

3

√
−Q

2
+
√
∆+

3

√
−Q

2
−
√
∆

]3
(4.93)

The quantity ∆ is the discriminant of the cubic equation, calculated as follows:

∆ =
Q2

4
+
P 3

27
(4.94)

where:

P = − B2

3A2
(4.95a)

Q =
D

A
+

2B3

27A3
(4.95b)

Equation 4.93 expresses the contact force Fn as a function of the tension forces

Px and Py. This two-variable function depends on the sum of the tension forces,

implying that whichever combination of tension forces that returns the same sum,

would yield the same contact force. Thereby, a new variable P(x+y) = Px + Py

is introduced so that Fn = f
(
P(x+y)

)
. Moreover, the function is not addi-

tively separable, meaning that no functions g (Px) and h (Py) exist, such that

f (Px, Py) = g (Px)+h (Py) (as could be verified with the rectangle theorem [111]).

It is important noticing that, for obvious physical reasons, only real solutions

are of interest, and thus only real cube roots must be considered. A necessary

condition is that the discriminant ∆ ≥ 0. In fact, any negative value of ∆ indicates

that the deformation of the unit cell is such that the wires are not in contact any

more and a gap is generated between them. Such conditions occur when a state

87



of compression is applied to the mesh material and the contact force has become

null.

It is also worth noting that the sign convention was chosen so that the contact

force is positive for the configuration in Figure 4.13, meaning that it is directed

upwards in the z-axis and acting upon the warp wire. An opposite reaction −Fn
is acting upon the weft wire.

All the previous analysis was based on the configuration in Figure 4.13 where

warp and weft wires have respectively downwards and upwards concavity with

respect to the z-axis; nevertheless, it is still equally valid for the opposite config-

uration, just by reversing the sign of Equations 4.81 and 4.83.

In Figure 4.14, the real solutions of Equation 4.93 are plotted as a function of

the sum of the tension forces P(x+y).
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Figure 4.14: Contact force as a function of total tension force P(x+y).

The graph is relative to a single unit cell of mesh material and the wire properties

are the same as in Table 4.3, being in this case Z = d/2. A slight non-linearity

of the function is evident for lower values of tension, when the compression of
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the contact area (represented by a rational exponent) produces a noticeable ef-

fect, whereas for higher values, the linear term associated to elasticity becomes

dominant.

4.6.2.2 Effective stiffness

Consider the case of a unit cell subjected to a tension force Px applied to the warp

wire, whilst the weft wire is free at both extremities to move along the y-axis, so

that there is no external force Py to oppose resistance to the motion. In such

conditions, Equation 4.93 reduces to a function of only the variable Px.

Considering the static equilibrium of a wire subjected to a tension force Px

and a constant contact force Fn, the longitudinal deformation of the wire can be

calculated with the Castigliano’s theorem as follows:

ux = C3Px + C1Fn (4.96)

where C3 is the inverse of the stiffness kL of a single decoupled wire (from Equation

4.78) and C1 is the coefficient from Equation 4.82a.

Since the force Fn changes with the displacement, it is possible to express the

previous relation in infinitesimal terms:

δux =

(
C3 + C1

dFn
dPx

)
δPx (4.97)

The non-linear longitudinal effective stiffness of the unit cell is then calculated as

the ratio of the tension force to the longitudinal displacement:

Keff =
δPx
δux

=
1(

C3 + C1
dFn

dPx

) (4.98)

A new stiffness term can be introduced, which is proportional to the contact force:
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Figure 4.15: Effective stiffness of RUC.

kc =
1

C1
dFn

dPx

(4.99)

Substituting the previous expression and C3 = 1/kL into Equation 4.98, it returns:

Keff =
1(

1
kL

+ 1
kc

) =
kL · kc
kL + kc

(4.100)

which corresponds to the equivalent stiffness of two springs in series.

In Figure 4.15, the effective stiffness from Equation 4.98 is reported. The

properties from Table 4.3 are used. As introduced above, the interaction between

warp and weft wires increases the stiffness of the structure, which is theoretically

equal to the stiffness of a decoupled wire when no tension force is applied. This

stiffening effect can be easily visualised also in Figure 4.16, where the non-linear

deformation of the RUC (solid line) is compared to the linear elongation of a

decoupled wire (dashed line), both subjected to uniaxial tension, the first diverging

from the second as the contact force grows.
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Figure 4.16: Force-displacement curve for the RUC (solid line) and a decoupled

wire (dashed line).

4.6.2.3 Effective Poisson’s ratio

Consider again the general case of a mesh material unit cell subjected to a bi-

axial state of tension, such as the one in Figure 4.11. Recalling that the contact

force can be expressed as a function of a single variable P(x+y) = Px + Py, the

infinitesimal deformation of the warp wire along the x-axis takes the following

form:

δux = C3δPx + C1
dFn

dP(x+y)

δP(x+y) (4.101)

Since δP(x+y) = δPx + δPy, the previous equation can be reformulated as follows:

δux =

(
C3 + C1

dFn
dP(x+y)

)
δPx +

(
C1

dFn
dP(x+y)

)
δPy (4.102)

Multiplying each side by Keff and substituting Eq. 4.51 into Eq. 4.54, it returns:
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Keffδux = δPx +
Keff

kc
δPy (4.103)

A new quantity is now introduced that represents the effective Poisson’s ratio of

the mesh material:

νeff = −Keff

kc
= − kL

kL + kc
(4.104)

It may be noted that, despite the negative sign in the previous equation, the

Poisson’s ratio is still a positive quantity, since the denominator is itself a negative

number.

Another reasoning would lead to the same conclusions. In fact, the Poisson’s

ratio of a material is by definition the negative of the ratio of the transverse strain

to the axial strain for a uniaxial state of stress:

ν = −dϵy
dϵx

(4.105)

In the case of mesh materials, under the assumption of same initial length for

warp and weft wires, the strain can be replaced by the elongation of the wires:

νeff = −δuy
δux

(4.106)

By means of Castigliano’s theorem, an expression for the longitudinal deformation

of the weft wire can be derived (analogous to Equation 4.96 for the warp wire):

uy = C3Py + C1Fn (4.107)

Expressing the previous relation in infinitesimal terms and applying the same

substitutions as in Equation 4.102, it returns:

δuy =

(
C3 + C1

dFn
dP(x+y)

)
δPy +

(
C1

dFn
dP(x+y)

)
δPx (4.108)
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Considering again the case of a uniaxial tension Px, Equations 4.102 and 4.108

reduce to:

δux =

(
C3 + C1

dFn
dP(x+y)

)
δPx (4.109a)

δuy =

(
C1

dFn
dP(x+y)

)
δPx (4.109b)

Finally, combining Equations 4.109a and 4.109b with Equation 4.106, it yields:

νeff = −

(
C1

dFn

dP(x+y)

)
(
C3 + C1

dFn

dP(x+y)

) = −Keff

kc
(4.110)

which corresponds to Equation 4.104.

Substituting Equation 4.104 into Equation 4.103, it returns:

Keffδux = δPx − νeffδPy (4.111)

The previous expression is analogous to the equilibrium equation for an infinites-

imal isotropic material element subjected to bi-axial tension.

With the same considerations, the expression for the weft wire deformation

δuy can be found:

Keffδuy = −νeffδPx + δPy (4.112)

The system of Equations 4.111 and 4.112 can be expressed in the following matrix

form:

{
δux

δuy

}
=

1

Keff

[
1 −νeff

−νeff 1

]{
δPx

δPy

}
(4.113)
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In Figure 4.17, the effective Poisson’s ratio from Equation 4.104 is reported as

a function of the contact force. The properties from Table 4.3 are utilised. The

value is initially zero when there is no contact force between the wires. Then it

increases abruptly due to the establishment of the contact interaction.
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Figure 4.17: Effective Poisson’s ratio of RUC.

4.6.2.4 Linearised mechanical properties

Given a general bi-axial state of tension Px and Py, to find the displacements ux

and uy, it is necessary to integrate Equation 4.113. Before, however, some manip-

ulations are required to express the equations in terms of a common differential

of integration. Assuming that, throughout the application of the forces, the ra-

tios ζ1 = δPx/δP(x+y) and ζ2 = δPy/δP(x+y) remain constant, Equation 4.102 is

reformulated as follows:

δux =

(
C3 + C1

dFn
dP(x+y)

)
ζ1δP(x+y) +

(
C1

dFn
dP(x+y)

)
ζ2δP(x+y) (4.114)
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Integrating with respect to P(x+y), it returns:

ux =
(
C3P(x+y) + C1Fn

)
ζ1 + (C1Fn) ζ2 (4.115)

The force ratios are also equal to ζ1 = Px/P(x+y) and ζ2 = Py/P(x+y). Therefore,

the previous equation becomes:

ux =

(
C3 + C1

Fn
P(x+y)

)
Px +

(
C1

Fn
P(x+y)

)
Py (4.116)

The following two new linearised properties are now introduced:

K =
1(

C3 + C1
Fn

P(x+y)

) (4.117a)

ν = −C1
Fn

P(x+y)

K (4.117b)

The previous equations represent respectively a linearised effective stiffness and

a linearised effective Poisson’s ratio. These properties only depend on the final

value of P(x+y) and describe a hypothetical linear elastic deformation during which

stiffness and Poisson’s ratio do not vary with the force. They are not able to

capture the instantaneous changing of the material properties throughout the

deformation. Instead, they are only valid to calculate the final displacement,

given the applied system of forces. This is represented in Figure 4.18, that shows a

comparison between the non-linear and the linearised force-displacement response

to tension.
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Figure 4.18: Comparison between non-linear and linearised response to tension

(non-linearity is emphasized for better clarity).

As will be explained in more details in Chapter 6, these properties will be used

for the stiffness characterisation of mesh materials in the developed reduced order

finite element model. In Figure 4.19 the linearised stiffness and Poisson’s ratio

are compared to the corresponding effective properties, showing a similar trend

however with lower values along the whole range of tension forces.

Combining Equations 4.117a and 4.117b with Equation 4.116, it returns:

Kux = Px − νPy (4.118)

The same procedure can be applied to find the deformation of the weft wire:

Kuy = −νPx + Py (4.119)

The previous equations can be expressed in a matrix form, as follows:

{
ux

uy

}
=

1

K

[
1 −ν
−ν 1

]{
Px

Py

}
(4.120)

The previous matrix is analogous to the plane stress compliance matrix for an

isotropic material.
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Figure 4.19: Linearised effective properties: (a) stiffness and (b) Poisson’s ratio.
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4.6.2.5 Orthotropic effective properties

All the previous equations are based on the assumption that warp and weft wires

share the same mechanical properties.

For a more general case where they are built in different materials, a set of

coefficients C1, C2 and C3 is calculated for each wire from Equations 4.82a, 4.82b

and 4.78, by changing the material properties E, G and ν with the ones of the

respective wire. As regards the contact force Fn, in Equation 4.93 the coefficients

A and D are calculated as follows:

A = C2,warp + C2,weft (4.121a)

D = C1,warpPx + C1,weftPy (4.121b)

Hence, in this case the contact force cannot any longer reduce to a function of

the variable sum Px+y: instead, it depends separately on both the values of the

tension forces Px and Py.

A set of effective linearised properties is calculated for each wire, as follows:

Kwarp =
1(

C3,warp + C1,warp
Fn

P(x+y)

) (4.122a)

νwarp = −C1,warp
Fn

P(x+y)

Kwarp (4.122b)

Kweft =
1(

C3,weft + C1,weft
Fn

P(x+y)

) (4.122c)

νweft = −C1,weft
Fn

P(x+y)

Kweft (4.122d)
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The relation between deformations and applied forces can be expressed by the

following matrix form:{
ux

uy

}
=

 1
Kwarp

−νwarp

Kwarp

−νweft

Kweft

1
Kweft

{ Px

Py

}
(4.123)

The previous matrix is analogous to the plane stress compliance matrix for an

othotropic material, where the main directions are identified by the two intersected

wires.

4.7 Shear model

In this section, the shear model is presented, that predicts the response of plain-

weave mesh materials for in-plane shear.

Recalling from the introduction, when a plain-weave mesh material is subjected

to in-plain shear, this generates a relative rotation of warp and weft wires at

their points of intersection. This relative motion, combined with the normal

contact force exerted between the wires, dissipates energy through dry friction.

As previously mentioned, the model is based on a detailed investigation on the

contact mechanics of mesh materials, which involves the determination of the

contact area shape and dimensions throughout the application of the load. This

is achieved by employing the Hertz’s contact theory and Lubkin’s frictional torque

formulation to the specific geomety of PWMMs.

Initially, a novel approximation for the Lubkin’s function is presented, which

replaces the original use of elliptic integrals with a less computational expensive

polynomial form.

The proposed approximation is then applied to the case of elastic spheres in

contact and compared with the original formulation as a validation. Finally, the

proper in-plane shear model is presented, by extending the previous formulation

to the case of elastic cylinders in contact. The model is then applied to predict

the hysteretic response of mesh materials to a cyclic load.
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4.7.1 Lubkin’s theory

The problem of two elastic bodies in contact subjected to relative motion was

independently studied by Mindlin [112], Lubkin [50] and Cattaneo [113]. Mindlin

found a solution for two spheres under tangential slipping, which was validated

experimentally by Johnson [114].

In this section, the Lubkin’s theory for the case of two spheres in contact

under mutual torsional moment is introduced. This theory is widely adopted in

the literature and large validation is available, both numerically [115, 116] and

experimentally [117]. Recalling the Hertzian contact theory, if two elastic spheres

are pressed together by a load P , this generates a circular and plane contact area

whose radius a is defined by Equation 4.39. The normal pressure distribution

acting upon the contact area is defined by Equation 4.41. When a monotonically

increasing torque is applied to the sphere about their common normal, the outer

annular portion of the contact area starts slipping progressively, whilst the inner

zone, which is delimited by a circle of radius a∗, deforms elastically. The two

regions are represented in Figure 4.20.

Figure 4.20: Sphere-to-sphere frictional torque: slipping and sticking zone of

contact area.

The applied torque is calculated as a function of the sticking region radius by

integrating the shear stress distribution among the contact area, as follows:

M = 2π

∫ a

0

τ(r)r2dr (4.124)
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where τ(r) is the shear stress at distance r from the centre of contact area. In

order to solve the previous equation, it is necessary to define the distribution

of tangential traction among the contact area. Within the slipping zone this is

limited to the maximum compatible with the Coulomb friction law, as follows:

τ(r) = µσ(r), a∗ ≤ r ≤ a (4.125)

where σ(r) is the Hertzian normal pressure at distance r from the centre and µ is

the friction coefficient. In the inner stick region of the contact area, the two bodies

can be reduced to elastic half-spaces in contact subjected to both normal and

transverse pressure. This problem was addressed by Boussinesq (1885), Cerruti

(1877) and Mitchell (1899). Lubkin, by applying these differential equations to

the case of two spheres of same material in contact, provided with a formulation

for the shear stresses among the sticking zone, which is based on elliptic integrals:

τ(r) = µσ(r)

{
1 +

2

π

[
k2D(k)F (k′, ϕ)−K(k)E (k′, ϕ)

]}
, r < a∗ (4.126)

where K(k) and E(k) are respectively the complete elliptic integral of first and

second kind, and F (k′, ϕ) and E(k′, ϕ) are the incomplete elliptic integral of first

and second kind, as follows:

F (k′, ϕ) =

∫ ϕ

0

dt

1− k′2 sin2 t
(4.127a)

E (k′, ϕ) =

∫ ϕ

0

√
1− k′2 sin2 t (4.127b)

K(k) = F (k, π/2) (4.127c)

E(k) = E(k, π/2) (4.127d)
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D(k) = (K(k)− E(k))/k2 (4.127e)

where k′ = a∗/a, k =
√
1− k′2 and ϕ = sin−1

√
1−r2/a∗2
1−r2/a2 .

Finally substituting Equations 4.125 and 4.126 into Equation 4.124 and solving

the integral, it yields the following expression:

M = µPa
4π

{
3π2

4
+ k′k2 [6K(k) + (4k′2 − 3)D]− 3kK(k) sin−1 k′

−3k2
[
K(k)

∫ π
2

0
sin−1(k′ sinϕ)dϕ

(1−k′2 sin2 ϕ)
3/2 −D(k)

∫ π
2

0
sin−1(k′ sinϕ)dϕ

(1−k′2 sin2 ϕ)
1/2

]}
(4.128)

Lubkin also proposed a solution for the relative twisting angle (defined by Lubkin

as half of the absolute rotation of the spheres) due to the applied moment, as a

function of the radius of the stick region:

β =
3µP

4πGa2
k2D(k) (4.129)

where G is the shear modulus of the material of the two spheres.

4.7.2 Lubkin’s function approximation

The solution proposed by Lubkin involves the usage of elliptic integrals, therefore

it cannot be solved analytically as a closed-form. Deresiewicz [118] proposed a

simplified solution, approximating the elliptic integrals with a power series trun-

cated at the second term. Nevertheless, this relation is only valid for small values

of the torsional moment, whilst it tends to diverge from Lubkin’s solution for

higher values.

In this work, a new approximation for the Lubkin’s function is proposed. The

main purpose behind this, is to minimise the computational demand of the model
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Figure 4.21: Lubkin’s function approximation.

by replacing the elliptic integrals with a closed-form. This will allow to drasti-

cally reduce the calculation time when the model is applied to the study of mesh

materials, a crucial aspect to consider, given the high number of contact points

involved.

Introducing the ratio λ = r/a, the shear stress in the stick zone can be ap-

proximated by a polynomial form:

τ(λ) =
3µP

2πa2

(
Aλ+B

λ2

L − λ

)
, λ < k′ (4.130)

The coefficients A, B and L of the polynomial are calculated as follows:

A =

(
1− k′

k′

)(
1 +

k′

2

)
2π

9
(4.131a)

B =

(
L − k′

k′2

)(√
1− k′2 − Ak′

)
(4.131b)
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L = 1 + α
√
1− k′2 (4.131c)

where α is a fitting coefficient. High level of accuracy is obtained for α=0.09.

A comparison between the Lubkin’s function and the proposed approximation

is presented in Figure 4.21 for different values of k′, showing good agreement

between the two formulations.

4.7.3 Solution for elastic spheres in contact

Substituting the pressure distribution in Equation 4.124 with Equation 4.130 and

Equation 4.125, it returns:

M = 2πa3

{
3µP

2πa2

(∫ k′

0

(
Aλ+B

λ2

L − λ

)
λ2dλ+

∫ 1

k′

(
1− λ2

)1/2
λ2dλ

)}
(4.132)

Solving the integral, it yields a closed-form for the torsional moment, expressed

as a function of k′. In figure 4.22 the previous equation is compared to the

orginal Lubkin’s formulation (Equation 4.128) in non-dimensional form. A new

formulation for the torsional angle is also proposed, as a function of k′ and the

torsional moment M:

β = Z
(k′)−1M

Ga3
(4.133)

where G is the shear modulus of the spheres and Z = 7/34 is a fitting coeffi-

cient. The moment-rotation relation obtained by solving simultaneously Equa-

tions 4.132 and 4.133 is illustrated in Figure 4.23 in non-dimensional coordinates.

On the same graph the novel proposed approximation is compared with Lubkin’s

solution, showing high agreement.
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Figure 4.22: Non-dimensional torsional moment.
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Figure 4.23: Solution for two spheres.
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4.7.4 Solution for elastic cylinders in contact

Given the small dimensions of the contact area compared to the radius of the wires,

in its proximity the mating surfaces approach the shape of two straight cylin-

ders. Therefore, the mesh warp/weft intersection can be reduced to a cylinder-

to-cylinder contact problem with good approximation by just neglecting the lon-

gitudinal curvature of the wires. This is represented in Figure 4.24.

Figure 4.24: Warp/weft intersection: in the proximity of the contact area (red

circle) the surface of the wires can be approximated to a straight cylinder.

The accuracy of this approximation is obviously related to the waviness of the

wires and the size of the contact area with respect to the wires. Based on these

considerations, the novel analytical solution proposed before for the case of two

spheres under frictional contact can be extended to the case of cylinder-to-cylinder

contact for the characterisation of mesh materials under in-plane shear load.

Recalling the Hertzian contact between two elastic cylinders, the shape of the

contact area depends on the angle θ between their longitudinal axes: for θ = π/2

it is circular, becoming elliptic for π/2 < θ < 0 and finally degenerating into a

rectangle for θ = 0. Referring to a and b as the semi-major and semi-minor axis of

the elliptic area of contact, their ratio can be calculated by rearranging Equation

4.44, as follows:
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(a
b

)
=

√
(R′/R′′) (K(e)− E(e)) +K(e)

E(e)
(4.134)

where R′ and R′′ are the relative radii of curvature of the cylinders and K(e) and

E(e) are again the complete elliptic integrals of first and second kind of argument

e =
√

1− b2/a2. This last parameter represents the eccentricity of the ellipse and

can be approximated as follows:

e ≈

√
1−

(
R′

R′′

)−4/3

(4.135)

In the case of PWMMs, assuming same radius Rc for both warp and weft wires,

the radii of curvature become:

R′ =
Rc

1− cos θ
(4.136a)

R′′ =
Rc

1 + cos θ
(4.136b)

The semi-major axis is then:

a =

(
3PRe

4E∗

)1/3

F1(e)
(a
b

)1/2
(4.137)

where Re = (R′R′′)1/2 is the equivalent radius, P is the normal contact force and

F1 is a corrective factor calculated as follows:

F1(e) =

{
4

πe2

(
b

a

)3/2 [{(a
b

)2
E(e)−K(e)

}
{K(e)− E(e)}

]1/2}1/3

(4.138)

Recalling the Hertzian pressure distribution for an elliptic contact area from Equa-

tion 4.45, this can be expressed in polar coordinates as follows:
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σ (r, θp) =
3P

2πab

(
1−

(
r cos θP

a

)2

−
(
r sin θP

b

)2
)1/2

(4.139)

For a point along the semi-major axis, the previous equation reduces to the fol-

lowing:

σ(r) =
3P

2πab

(
1− r2

a2

)1/2

(4.140)

Analogously to the case of two spheres, if a monotonically increasing torsion is

applied to the cylinders around their common normal, the outer region of the

contact area starts slipping, whilst the inner portion maintains stick conditions.

Figure 4.25: Elliptic contact area under frictional torsion.

As shown Figure 4.25, the two zones are delimited by two concentric, coaxial and

homothetic ellipses, so that b/a = b∗/a∗, where a∗ and b∗ are the semi-major and

semi-minor axes of the stick zone and a and b are the semi-major and semi-minor

axes of the slip zone, which corresponds to the Hertzian contact area.

Once again, the torque reaction can be calculated by integrating the shear

stress distribution along the contact area. Lecornu [119] provided with an expres-

sion of such integral for an elliptic contact area, as follows:

M = abLe

∫ 1

0

τ(λ)λ2dλ (4.141)
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where Le = 4E(e)a is the circumference of the ellipse of semi-axes a and b, and

λ = r/a. The previous equation also shows that the resistance to rotation is

proportional to the length of the ellipse of contact. The solution found by Lecornu

was limited to the value of maximum torque, which corresponds to the condition

of complete slipping (τ = µσ for 0 < λ < 1):

Mmax =
3

32
µPLe (4.142)

To extend the solution to the partial slip condition, the tangential stresses among

the contact area can be derived with analogous considerations as the case of two

spheres.

Within the stick region, the approach of Lubkin for the determination of tan-

gential traction is still valid, thus the proposed approximation from Equation 4.21

can be applied, only by changing the maximum value of the stress according to

the Hertz theory, as follows:

τ(λ) =
3µP

2πab

(
Aλ+B

λ2

L − λ

)
, λ < k′ (4.143)

where the coefficients A, B, and L are the same as Eqs. 4.131a, 4.131b, 4.131c.

For the slip zone, the shear stress is again the maximum compatible with the

Coulomb friction law. It is obtained by expressing Equation 4.140 as a function

of λ and multiplying by the friction coefficient µ, as follows:

τ(λ) =
3µP

2πab

(
1− λ2

)1/2
, k′ ≤ λ ≤ 1 (4.144)

Finally, substituting Equations 4.143 and 4.144 into Equation 4.141, it yields the

expression of the torque as a function of k′:

M = abLe

{
3µP

2πab

(∫ k′

0

(
Aλ+B

λ2

L − λ

)
λ2dλ+

∫ 1

k′

(
1− λ2

)1/2
λ2dλ

)}
(4.145)
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As regards the torsional compliance, Mindlin [120] proposed a general solution for

the case of two bodies in absence of slipping, which represents a boundary for the

case of partial slip:

β

M
=

3

16b3G

8 {BD − νCE}
π {E − 4ν (1− k2)}

(4.146)

where in this case k =
√

1− a2/b2, ν is the Poisson’s ratio and B, C, D, and E are

functions of k2. A new simplified solution is proposed for the angle of twisting,

which preserves the same proportionality to shear modulus and dimensions of the

contact area:

β = Z
(k′)−1M

Ga2b
(4.147)

where Z = 7/34 is the same fitting coefficient as in Equation 4.133.

Comparing Equation 4.145 with Equation 4.132, a proportionality between

the two expression emerges clearly: in fact, the solution for two cylinders can be

written as the solution for two spheres, multiplied by the ratio of the ellipse length

to the circle circumference, as follows:

Mcylinders =
4E(e)a

2πa
Mspheres =

2E(e)

π
Mspheres (4.148)

4.7.5 Torque-rotation hysteresis loop and damping loss

factor

In this work, alongside the importance of the mechanical response, the damping

behaviour of mesh materials is of particular interest for their application as friction

dampers. Therefore, an analysis of PWMMs hysteretical behaviour under the

effect of cyclic loading becomes fundamental.

Lubkin developed his solution for the case of a monotonically increasing torque

applied to the spheres. Deresiewicz extended the solution of Lubkin to the case
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of an oscillatory couple applied to a contact pair of spheres, providing with an

expression for the hysteresis loop generated and the amount of energy dissipated

per cycle [118]. In this work, the original treatment of Deresiewicz is adopted to

determine the changing in shear stress distribution due to the inversion of motion

and then applied to the case of mesh materials. All the considerations made by

Deresiewicz for an oscillatory couple are still valid for the inverse problem, when

the contact pair is subjected to an oscillatory rotation, provided that the angle is

governed by a monotonic function.

Figure 4.26: Rotation of the wires around their common normal: starting from

an initial position θi at rest, wire A is twisted by an angle β with respect to wire B.

Consider the warp/weft wire couple represented in Figure 4.26, initially at

rest with perpendicular axes (i.e., θi = π/2), and then subjected to an increasing

rotation β. Suppose that, after the angle of twist has reached a certain value β∗,

which corresponds to a torsional couple M∗, the motion is suddenly inverted. The

slip portion a∗ of the contact area that was established during the previous verse

of rotation, is now ceased and restarted from r = a. Thus, an opposite shear

traction is generated in the contact area that will superpose to the previous one.

Let a∗∗ be the boundary of the new slipping area, such that a∗ ≤ a∗∗ ≤ a. In this

zone, the shear stress due to the new established slip sector is τ = −µσ; however,
the ceasing of the previous slipping has determined a further equivalent decreasing
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of the total stress, so the overall change in shear traction is actually twice (i.e.

τ = −2µσ). Therefore, referring to the case of cylinder-to-cylinder contact, the

total change in shear stress is:

τa∗∗ = −3µP
πab

(1− λ2)
1/2
, k′′ ≤ λ ≤ 1

τa∗∗ = −3µP
πab

(
Aλ+B λ2

L−λ

)
, λ < k′′

(4.149)

where k′′ = a∗∗/a. The coefficients A, B and L of the polynomial are also

calculated with respect to k′′. The resulting shear distribution is given by the

superposition of the preexisting one (Equations 4.143 and 4.144) and the change

(Equation 4.149), as follows:

τ = − 3µP
2πab

(1− λ2)
1/2
, k′′ ≤ λ ≤ 1

τ = − 3µP
2πab

(
2C ′′ − (1− λ2)

1/2
)
, k′ ≤ λ ≤ k′′

τ = − 3µP
2πab

(2C ′′ − C ′) , λ ≤ k′

(4.150)

where C ′ and C ′′ are the quantities between parenthesis respectively in Equation

4.143 and 4.149. Integrating the stress distribution in Equation 4.150, it returns:

M = M(a∗)− 2M(a∗∗) = M∗ − 2M(a∗∗) (4.151)

The rotation is found with the same process of superposition adopted for

the moment: the change in twisting angle is again described by Equation 4.133,

where M is now substituted by the change in moment (i.e.,−2M(a∗∗)). Thus, the

resulting angle is:

β = Z (k′)−1M(a∗)
Ga3

− Z (k′′)−12M(a∗∗)
Ga3

=

= β∗ − 2β(a∗∗)
(4.152)
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Figure 4.27: Torque-rotation hysteresis loop for a cylinder-to-cylinder contact in

non-dimensional coordinates.

Suppose now that, once the twist angle has reached the minimum value of −β∗,

the motion is inverted again. All the previous discussion regarding the inversion

of motion is still valid, just by considering, for this case, a positive sign for the

change of moment and angle.

When the reaction moment is plotted against the twisting angle, it results

in a hysteresis loop, as illustrated in Figure 4.27 in non-dimensional coordinates.

Referring asOA to the initial curve (also called ”back-bone” curve) (0 <M <M∗)

and as AB to the new curve generated after the inversion of motion (−M∗ <M <

M∗), from Equations 4.151 and 4.152 it is evident that the the segment AB is

simply equivalent to the segment OA reflected both across the x and y axes and

scaled two times. The same consideration applies to the segment BA, which is

again equivalent to the segment AB reflected across the x and y axes. The curves

AB and BA together represent the hysteresis loop for a single wire intersection

of mesh material under an oscillatory rotation −β∗ < β < β∗.

113



(a) (b)

Figure 4.28: Calculation of the loss factor: (a) dissipated energy and (b) stored

strain energy.

The hysteresis loop provides with useful information on the damping capabili-

ties of the mesh material. The area surrounded by the loop represents the amount

of dissipated energy Wd during a single cycle of displacement. The loss factor can

be defined as [121]:

η =
Wd

2πU
(4.153)

where U is the strain energy stored in a cycle. This is illustrated in Figure 4.28.

The periodic motion just analysed can be thought as representative of a general

vibration applied to the mesh material. The simplest type of vibration is a simple

harmonic motion. More complicated signals can always be represented by the

sum of different harmonic motions by means of the Fourier series. Therefore, the

evolution of the twist angle with time can be represented by a simple harmonic

function:

β = β∗ sin(ωt+ ϕ) (4.154)

where ω is the frequency, t is the time vector, and ϕ is the phase shift.

114



4.8 Out-of-plane bending model

The analytical models discussed until this point allow to predict the response of

mesh material to an in-plane system of forces. For a more general case, when the

structure is subjected to out-of-plane loads, a further analysis is required. The

method proposed in this work makes use of a combination of the Timoshenko’s

beam theory and the finite element method, and it is based on the same principles

as for the tension model. The unit cell can be again described as two crossed

beams of length L, which are in this case reduced to straight beams to simplify

the calculations. By means of the finite element method, each beam is itself

subdivided into two elements of length L/2, so that their central node coincides

with the contact point. This is illustrated in Figure 4.29, where the nodes 1-A-2

and 3-B-4 represent respectively the warp and the weft wire.

1 2

3

4

BA

Figure 4.29: Schematisation of RUC as two crossed Timoshenko beams: 1-A-2 =

warp wire, 3-B-4 = weft wire.

The stiffness matrix for a finite straight beam element of length L is the fol-

lowing [122]:
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[Kℓ] =



AE
L

0 0 −AE
L

0 0

0 12EI
L3(1+ϕ)

6EI
L2(1+ϕ)

0 − 12EI
L3(1+ϕ)

6EI
L2(1+ϕ)

0 6EI
L2(1+ϕ)

EI(4+ϕ)
L(1+ϕ)

0 − 6EI
L2(1+ϕ)

EI(2−ϕ)
L(1+ϕ)

−AE
L

0 0 AE
L

0 0

0 − 12EI
L3(1+ϕ)

− 6EI
L2(1+ϕ)

0 12EI
L3(1+ϕ)

− 6EI
L2(1+ϕ)

0 6EI
L2(1+ϕ)

EI(2−ϕ)
L(1+ϕ)

0 − 6EI
L2(1+ϕ)

EI(4+ϕ)
L(1+ϕ)


(4.155)

where E is the elastic modulus, A is the cross-section area, I is the second moment

of area and the parameter ϕ is calculated as:

ϕ =
12EI

GAK̃L2
(4.156)

In the previous equation G is the shear modulus and K̃ is the Timoshenko’s

coefficient. Referring to a portion L/2 of the beam and considering only the

bending and shear terms, it yields:

[
Kℓ/2

]
=

8EI

(1 + 4ϕ)L3



12 3L −12 3L

3L (1 + ϕ)L2 −3L (1
2
− ϕ)L2

−12 −3L 12 −3L

3L (1
2
− ϕ)L2 −3L (1 + ϕ)L2


(4.157)

Two half-beam element matrices can be assembled to form the out-of-plane bend-

ing stiffness of a wire. Referring to the warp wire, the assembled matrix takes the

following form:
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

R1

M1

Fn

0

R2

M2


= 8EI

(1+4ϕ)L3



12 3L −12 3L 0 0

3L (1 + ϕ)L2 −3L (1
2
− ϕ)L2 0 0

−12 −3L 24 0 −12 3L

3L (1
2
− ϕ)L2 0 2(1 + ϕ)L2 −3L (1

2
− ϕ)L2

0 0 −12 −3L 12 −3L

0 0 3L (1
2
− ϕ)L2 −3L (1 + ϕ)L2





w1

θ1

wwarp

θwarp

w2

θ2


(4.158)

The force acting at the central node of the wire corresponds to the contact force

exerted by the other wire. This can be calculated from the previous matrix as

follows:

Fn =
8EI

(1 + 4ϕ)L3
(−12(w1 + w2)− 3L(θ1 − θ2) + 24wwarp) (4.159)

Rearranging the previous equation, the vertical displacement of the central node

is obtained as:

wwarp = BFn +
1

2
(w1 + w2) +

L

8
(θ1 − θ2) (4.160)

where the coefficient B is calculated as:

B =
(1 + 4ϕ)L3

196EI
(4.161)

The same procedure can be repeated for the weft wire:

wweft = −BFn +
1

2
(w3 + w4) +

L

8
(θ3 − θ4) (4.162)

Recalling from Equations 4.88a and 4.88b the relationship between the displace-

ment of neutral axis and contact point and the normal Hertzian compression, the

following system of equations can be written:
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wC = BFn +
1
2
(w1 + w2) +

L
8
(θ1 − θ2) +

δH
2

−wC = BFn − 1
2
(w3 + w4)− L

8
(θ3 − θ4) +

δH
2

(4.163)

By solving the previous system, it returns:

2BFn + δH +
1

2
(w1 + w2 − w3 − w4) +

L

8
(θ1 − θ2 + θ4 − θ3) = 0 (4.164)

Substituting Equation 4.85 into the previous, it yields:

2BFn+

(
3

4E∗√r

)2/3

F 2/3
n +

1

2
(w1+w2−w3−w4)+

L

8
(θ1−θ2+θ4−θ3) = 0 (4.165)

Analogously to the tension model, let A, B and D be te coefficients of the previous

cubic equation:

A = 2B (4.166a)

B =

(
3

4E∗√r

)2/3

(4.166b)

D =
1

2
(w1 + w2 − w3 − w4) +

L

8
(θ1 − θ2 + θ4 − θ3) (4.166c)

Finally, the cubic equation is solved with the Cardano’s formula in Equation 4.93.

The solution expresses the contact force as a function of the nodal displacements

of the wires along the boundaries of the RUC:

Fn = f(w1, w2, w3, w4, θ1, θ2, θ3, θ4) (4.167)

The formulation can be extended to the case of warp and weft wires built

in different materials, by simply changing the coefficient A in Equation 4.165 as

follows:

A = Bwarp +Bweft (4.168)

where Bwarp and Bweft are calculated from Equation 4.161 by changing the ma-

terial properties with the ones of the respective wires.
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4.9 Conclusions

In this chapter, three analytical models for the characterisation of PWMMs were

presented.

The tension-compression model was based on a combination of the Castigliano’s

theorem and the Hertz contact theory. It provides with a set of effective proper-

ties (i.e., stiffness and Poisson’s ratio) for the description of the mesh material as

function of geometry of the RUC and constitutive materials of the wires. These

properties are shown to be non-linear due to the Hertzian normal compression of

the wires at the contact area. The model also defines the level of contact force at

the warp/weft wire intersection as a function of the bi-axial state of force applied

to the material and incorporates this quantity into the effective properties. A set

of linearised properties is also defined that will be employed in the reduced finite

element model discussed in Chapter 6.

The in-plane shear model describes the response of PWMMs to in-plane shear,

which is interpreted as a rotation of the wires around their common normal. The

model is capable of capturing the highly non-linear response of mesh materials

during the micro-slip phase through the determination of the tangential stress

distribution at the contact interface. The solution is then extended to the case of

an applied cyclic load for describing the hysteretical response of the materials to

vibrations.

Finally the out-of-plane bending model was presented, which was developed

based on the Timoshenko beam theory and studies the effect of out-of-plane dis-

placements on the level of contact force. Both the out-of-plane bending model and

the tension-compression model, show that the contact force can be ultimately de-

scribed as a function of the displacements at the RUC boundaries.

It is worth noting that the models developed in this research are based on the

assumption of linear elastic constitutive materials, and therefore do not account for

material non-linearities (such as plasticity, superelasticity or hyperelasticity), nor

for geometrical non-linearities (i.e., large strain theory). The non-linear response
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of PWMMs captured by these models is entirely due to the contact interaction

at the warp/weft intersections, caused by both the normal compression of the

interacting interfaces and the frictional energy dissipation associated with in-plane

shear. However other potential dissipative modes besides in-plane shear (e.g.,

torsion, bending) are not captured by these models. Furthermore, the models

are based on the geometrical characterisation discussed in Chapter 3 (constant

aperture, sinusoidal longitudinal path, circular cross-section, etc.) therefore the

accuracy of the analytical results is strictly related to the correctness of the related

underlying assumptions.

120



Chapter 5

Numerical modelling

5.1 Introduction

In this chapter, the developed analytical models previously discussed in Chapter

4 are validated through numerical modelling.

The chapter opens with a general introduction on the typical process for com-

mercial finite element codes. Some similarities and differences between the main

options commercially available are listed, underlining the reasons for choosing the

specific software for this research.

Since the contact mechanics plays such a significant role in the analytical and

numerical models, the element formulation is presented for both the solid (wire)

and contact (warp and weft wire interaction) elements. The choice of performing

a three-dimensional analysis and the main advantages and disadvantages between

the various available 3-D solid elements are discussed. The numerical computation

of contact phenomena is presented, with a brief summary on penalty-based and

Augmented Lagrangian methods for both normal and tangential contact.

A detailed description of the adopted meshing strategy is presented, with a

discussion around the influence of the contact local mesh size and contact pene-

tration and how these influence the accuracy of results.
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The results of the validation compared to the analytical models from Chap-

ter 4 are reported. For each of the analytical models (tension, in-plane shear,

out-of-plane bending) a dedicated set of FE simulations are carried out and the

numerical results are compared with the analytical solution for different conditions

and material combinations.

5.2 ANSYS finite element package

Nowadays several commercial software suites for finite element analysis are avail-

able on the market. These packages are all based on the same underlying mathe-

matical principles which constitute the finite element method (FEM), a numerical

method for the solution of partial differential equations (PDE). For this reason

they generally yield to similar results, provided that the physical problem is accu-

rately reproduced by the numerical model. These software applications generally

share the same organisation and their computation is divided into three main

stages:

i) Pre-processing.

ii) Processing.

iii) Post-processing.

For a very simplistic overview of the process, each of the stages can be defined

as follows. In the pre-processing, the geometry of the model is defined and then

subdivided into finite elements through the mesh generation. Materials, element

formulations, boundary conditions and loads are then assigned to the model. The

parameters for the subsequent solution are defined in this stage. During the pro-

cessing, the finite element equations are assembled into the global stiffness matrix

and the solution of the problem is carried out. Finally, in the post-processing, the

numerical results produced in the previous stage are displayed.
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Even though commercial finite element analysis (FEA) software programs are

based on the same principles, they can differ from each other in many aspects,

from the solver to the element formulations and the technology they offer for

generating the geometry and meshing, applying boundary conditions and loads

and for the post-processing of results. One of the most important difference is

probably the contact formulations, which is of particular interest in this work.

In this work, the ANSYS Mechanical 2019R1 package [123] has been chosen

for the finite element analysis, given a diffuse application of the software in the

literature for similar frictional contact problems which guarantees a high reliability

and repeatability of the results. Moreover, ANSYS offers several different contact

formulations that can be fully adjusted mathematically. Other advantages of this

software are the accessibility of the graphic user interface (GUI) and an integrated

computer-aided design (CAD) tool for the generation of the geometry together

with a series of flexible built-in meshing algorithms.

In this work, because of the substantially frequency-independent nature of the

problem, a static structural analysis has been performed. In this type of analysis,

the effects of acceleration are neglected, hence the problem is reduced to the

following equation:

[K]{x} = {f} (5.1)

where [K] is the stiffness matrix, {x} is the nodal displacement vector and {f} is

the load vector.

As regards to the numerical processing, for a static linear problem, as in Equa-

tion 5.1, for which the stiffness matrix is independent of the displacement, a direct

solver can be used that inverts the stiffness matrix to directly find the solution.

For the problem addressed in this work, the contact between the bodies intro-

duces a boundary non-linearity and the stiffness is generally proportional to the

displacement:

[K(x)]{x} = {f} (5.2)
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To solve this problem an iterative solver is required. In this case, the solution

is broken down into several substeps and for each of them, the solver has to

achieve convergence through equilibrium iterations. More specifically, the ANSYS

Preconditioned Conjugate Gradient (PCG) iterative solver has been used in the

following finite element analysis for its robustness and solving speed. The PCG,

although requiring a higher amount of memory, is up to 10 times faster than the

other available iterative solvers in ANSYS [123]. Hattori et al. [124] compared the

performance of the ANSYS PCG solver with sparse and frontal direct solvers for

the analysis of a contact between two cylindrical bodies (automotive connective

rod and pin) concluding that the PCG is in most cases the fastest solver even

though leading to same accuracy of the numerical results. Moreover, it handles

with high performance the Augmented Lagrangian contact algorithm employed in

this work, which will be discussed later.

5.3 Element formulation

A fundamental aspect in finite element analysis is the choice of the element for-

mulation for the model, which is strictly related to the accuracy of the results.

From the simplest to the more complex, elements in FEM can be subdivided

into 1-D, 2-D and 3-D type, according to the number of dimensions in which

translation of nodes can occur. Examples are 2-node beams or trusses (1-D), tri-

angles and quadrilaterals (2-D), tetrahedrons and hexahedrons (3-D). Therefore,

the first aspect to consider is the type of analysis to perform in terms of number

of dimensions to account for in the model. This mostly depends on the specific

problem that has to be addressed. Although a 3-D model that reproduces the

real system with high precision allows to achieve accurate results, this is not al-

ways desired because of the high computational demand required. In some cases

other strategies are adopted to contain the computational cost, for instance by

simplifying a general 3-D problem to a bi-dimensional one, reducing the number

of degrees of freedom (DOFs) involved.
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In this work, the priority was to produce a highly accurate set of numerical

results as a validation for the analytical models. Moreover, the FEM was intended

as a reliable method to investigate the physics of contact in a location which is,

by its nature, of difficult access empirically given the small dimension. For these

reasons a three-dimensional analysis has been chosen as a main strategy, despite

the higher computational demand, involving the usage of solid elements for the

meshing.

In contact problems such as the one object of this study, the interaction be-

tween different solids is computed by the FE software through dedicated contact

elements. Particular attention should be given to their settings and how they can

affect the quality of results and the performance of the simulation.

5.3.1 Solid elements

Generally, in FEs two different types of 3-D solid elements are available:

i) Tetrahedrons.

ii) Hexahedrons (also called bricks).

Depending on the field equation (or shape function) order, they are further

subdivided into linear and quadratic (higher order) elements. In linear elements,

the field equation is linear, meaning that the displacement within the element

varies linearly as a function of the nodal displacements. The biggest limitation

is that the strains, calculated as a derivative of the displacements, are constant

within the element. In high order elements, instead, the displacement field is a

quadratic function, so their edges can curve and the strains vary linearly through

the elements, giving them more precision at the expense of a higher computational

demand. In fact, whilst linear elements are only composed of vertex nodes, higher

order elements include an additional mid-side node for each edge, that corresponds

to a larger number of DOFs.
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Tetrahedrons are solids with four faces and four vertices, thus the correspon-

dent linear elements are composed of four nodes only (one for each vertex), whereas

the higher order tetrahedrons are 10-node elements (four corner nodes and six ad-

ditional mid-side nodes). Hexahedrons, instead, are solids with six faces and eight

vertices, and thus the correspondent linear elements are composed of eight nodes

only, whilst quadratic hexahedrons are 20-node elements (eight corner nodes and

twelve additional mid-side nodes).

Hexahedrons, as compared to tetrahedrons, have the advantage of a higher

precision (due to the Gauss integration points) and a lesser number of elements

is required for the same meshing. Nevertheless, for complex geometries, brick

elements are of difficult application, whereas tetrahedrons can fit different shapes

with less effort, also considering the wide choice of meshing algorithms available

nowadays.

In this work, because of the complexity involved in meshing 3-D solids with

multiple curvature (i.e., sinusoidally-curved cylinders), 10-node quadratic tetra-

hedral elements have been chosen for the FE meshing, which are referred to as

SOLID187 in ANSYS environment. A scheme representing the node nomenclature

for SOLID187 is reported in Figure 5.1.
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Figure 5.1: ANSYS SOLID187 element nodes: I through L represent the corner

nodes, whereas M through R represent the mid-side nodes.
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5.3.2 Contact elements

In FEs, the contact computation is implemented through zero-thickness interface

elements that overlie the solid structural elements. These are organised into pairs

of mating surfaces referred to as Contact and Target element.

In reality, two different bodies cannot occupy the same space. Hence in con-

tinuum mechanics, the contact problems are generally addressed by imposing that

solids cannot interpenetrate, which is achieved by demanding a non-negative dis-

tance between their boundaries. In FEs, the contact compatibility is enforced

by dedicated algorithms that establish a relationship between the solid bound-

aries. In general, these are penalty-based methods that allow a certain amount of

penetration between the surfaces to facilitate the convergence of the model. The

normal contact force is calculated as:

FN = kN · xN (5.3)

where xN is the amount of normal penetration allowed and kN is a parameter

referred to as normal contact stiffness. It is evident from the equation that in-

creasing the value of kN reduces the penetration, and the solution tends to the

real one. Ideally, for an infinite value of the contact stiffness, the penetration

would be zero, however numerical convergence could not be achieved. ANSYS

calculates the normal contact stiffness based on the elastic modulus and the size

of the underlying elements. This value can be modified by the user through a

scaling factor FKN. Typically there is a trade-off between using a lower value to

aid in convergence versus using a larger value to increase accuracy.

ANSYS offers two different type of behaviour for the contact pair:

i) Symmetric: when both the contact and target element are restrained from

penetrating each other.

ii) Asymmetric: when only the contact element is restrained from penetrating

the target elements.
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The asymmetric contact is typically computationally less expensive, whereas

the symmetric contact, although less efficient, can help achieving a lower con-

tact penetration. In this work, the ANSYS contact elements CONTA174 and

TARGE170 have been used with symmetric behaviour and a frictional type con-

tact. High values of FKN were used and the contact stiffness was updated for each

equilibrium iteration to guarantee a high accuracy and a very small penetration.

An Augmented Lagrange contact formulation has been chosen in this work. In

this penalty-based method the normal contact force is augmented by introducing

an additional term λ, as follows:

FN = kN · xN + λ (5.4)

Therefore, this formulation is less sensitive to the value of the normal contact stiff-

ness. The surface interaction is determined through integration point detection

rather than nodal detection, which results in a higher number of detection points

per element and increases the accuracy replicating the physics of the contact.

Besides carrying compressive normal stresses, contact elements are also capable

of computing the transverse interaction for friction or bonded type contact. In

general, two surfaces with frictional interaction can carry transverse stresses up to

a certain magnitude, beyond which they start sliding with respect to each other.

The classical Coulomb friction model is the default friction model employed in

ANSYS, with equal dynamic and static friction coefficients by default. Hence,

recalling from Chapter 4, the transition from sticking to sliding status occurs

when the tangential force FT exceeds the product of the friction coefficient and

the normal force FN . Although theoretically for a sticking status no sliding should

take place, in FEs a tangential penalty method is implemented, similar to the one

for the normal contact:

FT = kT · xsliding (5.5)

where FT is the shear force carried by the contact pair, kT is a tangential contact

stiffness and xsliding is the sliding distance allowed by the penalty method.
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5.4 Meshing

As well as the afore discussed element formulation, also the level of discretisation

of the numerical problem, in terms of number of elements in which the model is

partitioned, has a deep influence on the accuracy of the results. Increasing the

number of elements in which the problem domain in subdivided and therefore

reducing their dimensions, is often referred to as h-refinement, where h indicates

the characteristic length of elements, as opposed to p-refinement that consists

into changing the element formulation with a higher order of interpolation. In

general, the finer the mesh, the more accurately the FE model approximates

the real problem, although increasing the overall DOFs and consequently the

computational time. In a coarse mesh the internal stresses are interpolated within

bigger elements, yielding an inaccurate distribution, especially in the presence of

geometric discontinuities or concentrated loads.

Recalling the shear model from Chapter 4, the frictional moment at the warp/weft

wire intersections depends on the tangential stress distribution across the contact

area. Therefore, a correct computation of the stress distribution is crucial in order

to accurately characterise the moment-rotation response of PWWMs to in-plane

shear load. Numerically, this can be achieved only with a proper choice of the

FE mesh size. Moreover, in a non-conforming contact problem, such as the one

addressed in this work, where the two mating parts are initially only touching at

one point, the small dimensions of the contact area cause high stress gradients

requiring a finer interpolation. The strategy adopted in this work is a local re-

finement, restricted to a portion of the model involved in the contact, whereas in

the remaining part a coarser mesh is used in order to contain the computational

cost. This is illustrated in Figure 5.2 for a 3-D model of a single wire.
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Figure 5.2: Local mesh refinement: in the circle a close-up image of the contact

area, showing the high density of elements.

In Figure 5.3, a mesh convergence study is reported for a single RUC of mesh

material under shear load (dimensions and material reported in Table 4.3), with

a normal contact load of 10N and FKN=1.
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Figure 5.3: Contact mesh refinement demonstrating an asymptotic convergence

for (a) the relative error and (b) the contact penetration.

The relative error in the reaction moment between analytical and numerical solu-
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tion is reported in Figure 5.3a for different levels of mesh refinement. The error is

calculated in correspondence of the peak torque at a twisting angle of 5 degrees.

The quantity a/h in the x-axis is the ratio of the theoretical contact radius to

the element size. Progressively increasing the number of elements in the contact

area (by reducing the element size h with respect to the contact radius a), an

asymptotic behaviour of the relative error can be observed, until it reaches ap-

proximately 1.6% for 100 elements per diameter. This corresponds to an element

size of 0.5µm, being the theoretical radius of the contact area a=0.0249mm for a

normal contact force of 10N. The contact penetration also follows an asymptotic

trend similar to the one of the relative error, as shown in Figure 5.3b, with a

progressive reduction up to 20 times the initial value.

In Table 5.1 the ratio a/h, the total number of elements and nodes in the FE

mesh, and the solution time are reported for the same mesh convergence study

for various element sizes.

h [mm] a/h nel nnodes tsolution

0.0050 5 4169 7411 46s

0.0030 8 7889 13593 1m 12s

0.0016 16 23353 39545 4m 3s

0.0010 25 56086 94548 14m 11s

0.0007 36 111191 187338 32m 45s

0.0005 50 213823 359979 4h 25m

Table 5.1: Ratio a/h, number of elements and nodes, and solution time for various

element sizes.

It is apparent how the solving time rapidly increases for any further refinement,

from less than a minute up to more than four hours, together with the number

of elements and nodes involved. Note that these values should be considered in a

relative sense due to different computers yielding different solve times.

The asymptotic decreasing of relative error and contact penetration with re-

spect to mesh size suggests a strict dependence of results on the normal contact
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stiffness. Another convergence study is performed on the same model by using a

constant coarse mesh size with h=0.003mm and progressively increasing the value

of FKN. The relative error between numerical and analytical results is reported

in Figure 5.4, calculated as in the previous convergence study.
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Figure 5.4: Effect of contact stiffness factor on numerical results.

The figure demonstrates the asymptotic convergence of the relative error as

the value of FKN increases. This strategy will be exploited in this work to further

increase the accuracy of the numerical validation and to decrease the compu-

tational time for large FE models. Nevertheless, for too high values of normal

contact stiffness, numerical instabilities occur and one body starts oscillating, al-

ternately penetrating and rebounding from the other, yielding incorrect results or

not achieving numerical convergence.

5.5 Boundary conditions and loads

In reality, the numerous wires composing the mesh structure are held together by

the frictional contact interaction at the multiple intersections. When the material
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is not subjected to any external load, the stability of the structure is guaranteed

by the elastic forces generated by bending the wires during the manufacturing

process. These forces produce a very low contact force which is referred to as

pre-load by the author. If the structure was cut in a small portion corresponding

to only a single intersection, it would inevitably deconstruct into separate wires.

Therefore, in order to correctly reproduce the real physics of the RUC, it is nec-

essary to replace the surrounding mesh material with a proper set of boundary

conditions that simulate the same reaction forces for when the RUC is placed

within the PWMM structure.

Three different sets of boundary conditions are adopted in this work, one for

each developed analytical model, that will be discussed in the next respective

subsections.

The normal contact load is also generated differently for the three models. In

the tension model, this is produced with a controlled longitudinal tension applied

to the wire edges, whereas in the shear model the normal load is applied directly

to one of the bodies, while the other body is fixed. Finally in the bending model,

the contact force results from the vertical displacements applied to the wires.

5.6 Results

5.6.1 Tension model

Recalling from Chapter 4, both warp and weft wires are theoretically supported by

a roller constraint at each extremity that allows them only to move longitudinally

and rotate about the perpendicular direction.
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Figure 5.5: 3-D FE model with boundary conditions used to represent the ana-

lytical tension model.

This is implemented in the FEM by imprinting a central edge on the circular

bases of the wires, to which the kinematic constraints and tension loads are then

applied, as shown in Figure 5.5. Moreover, the bases are set as rigid to prevent

their deformation in the vicinity of the edges during the application of the load.

The wire dimensions are the same as Sample 3 in Table 3.1. Material properties

are as in Tables 3.2 and 3.3 and the friction coefficients can be found in Table 4.2.

A size of 0.001mm was chosen for the FE mesh in the contact area with a value

of FKN of 1000 to increase the accuracy.

Two different load configurations were carried out:

i) S01: a biaxial system of tension forces Px = Py applied to warp and weft

wires.

ii) S02: only a tension force Px applied to the warp wire, whereas the weft wire

is free to deform longitudinally.

In both cases the analysis is static and divided into 20 substeps, throughout which

the forces are linearly ramped from zero to a maximum value.

In the first load case, the normal contact force resulting from the numerical

simulation is compared with the analytical solution from Equation 4.93. This is
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illustrated in Figure 5.6. As regards the case of orthotropic mesh material (i.e.,

warp and weft wires built in two different materials), the two limit conditions

of only warp (Py = 0) and only weft wire (Px = 0) under tension load are also

reported in Figure 5.6c, for the case of warp wire in Nitinol and weft wire in steel.

In general, a small difference between numerical and theoretical results can be

observed, which remains almost constant within the range of tension load applied.

An average value of approximately 2.3% for both the case of steel against steel

and Nitinol against Nitinol has been calculated for the relative error, whereas

for the orthotropic configuration, this value is initially higher (7.8%) and tends

to approximately 2% as the loads increase. This is probably due to an error

in computing the normal compression for low contact forces, for which a finer

FE mesh would be required, given the small size of the contact area. For higher

loads, instead, the elastic deformation of the wires becomes dominant and the error

reduces, this being only limited by the accuracy of the beam theory employed in

the analytical models. In fact, the absolute error, which at high loads is mostly

due to a higher wire stiffness computed through the beam theory (as compared

to the more accurate finite element method), was shown to grow linearly with the

load. Therefore, it is believed that the range of forces applied could be extended

while maintaining a similar level of relative error.
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Figure 5.6: FEM and analytical results for S01: contact force versus total tension

load for (a) steel again steel, (b) Nitinol against Nitinol and (c) Nitinol against

steel.
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In S02, the deformations ux and uy of warp and weft wires, resulting from the

numerical simulation, are used for calculating the linearised stiffness and Poisson’s

ratio, respectively as K = Px/ux and ν = −uy/ux. For the orthotropic mesh

material, based on the numerical results the stiffness is calculated for warp and

weft wires as follows:

Kwarp =
Px
ux

∣∣∣∣
Py=0

(5.6a)

Kweft =
Py
uy

∣∣∣∣
Px=0

(5.6b)

From Equation 4.123, the following expressions for Poisson’s ratio are obtained:

νwarp = −
(
Kwarp|Px=0

Kweft

)
ux
uy

∣∣∣∣
Px=0

(5.7a)

νweft = −

(
Kweft|Py=0

Kwarp

)
uy
ux

∣∣∣∣
Py=0

(5.7b)

where Kwarp|Px=0 and Kweft|Py=0 represent the stiffness of a wire when the tension

is applied to the other. These are calculated analytically from the equations

provided in Chapter 4, whereas the other quantities in the previous expressions

are deducted from the FE simulation.

In Figure 5.7 the theoretical solution is compared with the numerical results

for both isotropic and orthotropic mesh material, showing acceptable agreement.

More specifically, the analytical and numerical model follow the same non-linear

trend, with the FEM showing a slightly higher stiffness and lower Poisson’s ratio

as compared to the theoretical solution for all the materials analysed. Values of

the absolute average relative error (AARE) are reported in Figure 5.7 for each

material configuration.
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Figure 5.7: FEM and analytical results for S02: stiffness and Poisson’s ratio for

(a)-(b) steel against steel, (c)-(d) Nitinol against Nitinol and (e)-(f) Nitinol against

steel.
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5.6.2 Shear model

Recalling from Chapter 4, for the developing of the analytical model, the wires are

reduced to straight cylinders, given the small dimensions of the contact area with

respect to the wire radius. In order to provide with a more extensive validation

of the theoretical solution and ascertain the validity of its assumptions, three

different FE configurations were developed for the shear model:

i) S03: sphere-to-sphere model, as a preliminary study.

ii) S04: cylinder-to-cylinder model, for a direct comparison with the analytical

model.

iii) S05: wire-to-wire model, to investigate the extent of error introduced by the

curvature simplification.
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Figure 5.8: Load history for shear model validation.

In all the aforementioned configurations, one of the bodies is constrained with a

fixed support at one face, whereas the other body is free to translate and rotate

about the z-axis. The analysis is composed of two loadsteps. In the first step, to

generate the contact force between the pair, a normal compressive load is applied
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to the movable body, with the face where the load is applied being set as rigid

to prevent it from distorting under the effect of the load. In the second step,

the normal force is held constant, while a rotation is applied to the same body

to generate the frictional torque. Both the normal load and rotation are linearly

ramped from zero to a maximum value, as illustrated in Figure 5.8. Each step is

subdivided in multiple substeps to facilitate the numerical convergence.

5.6.2.1 Sphere-to-sphere torsional friction

Initially, a preliminary FE analysis is conducted on the sphere-to-sphere frictional

torque problem, in order to build confidence on the numerical model, by compari-

son with a well-established analytical solution. Since this topic has already largely

studied and experimentally verified in the literature, this can be considered as a

validation for the FEM itself, to ascertain the reliability of the numerical results.

Figure 5.9: Boundary conditions and loads for S03.

The analysis is restricted to the case of two spheres with same diameter of

0.45mm and same material properties of steel, reported in Table 3.2. The contact

140



pair is represented only by two hemispheres, since, given the localised nature of

the contact problem, the remaining portion of the solids does not take part in the

deformation. Moreover, by exploiting the axial-symmetry of the spheres, only a

sector of the hemisphere corresponding to an angle of π/2 is represented, whilst the

remaining is replaced by symmetric boundary conditions, as represented in Figure

5.9. A normal load of 5N is applied to sphere B. In Figure 5.10 a comparison

between numerical results and theoretical solution from Equations 4.132 and 4.133

is illustrated. A good agreement between numerical and analytical results can be

observed, with an AARE of 1.61%.
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Figure 5.10: FEM and analytical results for S03.

5.6.2.2 Cylinder-to-cylinder torsional friction

The main validation of the shear analytical model is obtained by reproducing

through the FEM with the same assumption of curvature neglection at the base

of the theoretical formulation. The 3-D model is composed of two straight half-

cylinders of the same radius as in Figure 5.11. Cylinder A is fixed at the bottom

face. The load FN and the subsequent rotation β are applied to the top face of

cylinder B, which is set as rigid to maintain the geometric shape of the face to

invoke a consistent load.

Similarly to the tension model, three different material combinations are tested,
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two isotropic (i.e., steel and Nitinol) and one orthotropic (i.e. Nitinol against steel)

with same material properties and friction coefficients utilised before.

Figure 5.11: FEM boundary conditions and loads for S04: initially perpendicular

cylinders.

The normal load for each material combination (see Table 5.2) has been scaled for

each case so as to generate a similar size of contact area. For the orthotropic case,

an equivalent shear modulus has been calculated for the torsional compliance as

Geq =
√
G1G2, where G1 and G2 are the shear moduli of the constituent materials.

This value has been employed in Equation 4.147 for the calculation of the twisting

angle.

Materials Load [N]

Steel-steel 10.00

Nitinol-Nitinol 4.89

Nitinol-steel 6.57

Table 5.2: Normal load for the different material combinations.

For this validation, the finest mesh from Table 5.1 is used, with a value of

FKN=20 to further increase the accuracy. In Figure 5.12, the numerical results

are compared with the analytical model from Equations 4.145 and 4.147, showing

high accuracy over the whole range of rotation analysed.
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Figure 5.12: FEM and analytical results for S04: (a) steel against steel, (b) Nitinol

against Nitinol and (c) Nitinol against steel.

143



An absolute average relative error of 1.10% and 1.07% is calculated respectively

for the steel-to-steel and the Nitinol-to-Nitinol isotropic cases, with a relative error

at β=5deg of respectively 0.42% and 0.96%. With regards to the orthotropic mesh

material, an increased error can be observed in the microsplip (where only part

of the contact area is slipping) phase as reported in Figure 5.12c, due to the

simplified formulation used for the equivalent shear modulus. More specifically

an AARE of 2.25% and a maximum relative error of 4.39% at β=0.33deg are

calculated. However a high accuracy is reestablished in the macroslip phase, with

an error of 0.40% at β=5deg.

5.6.2.3 Wire-to-wire torsional friction

Finally, in order to ascertain the level of error introduced in the analytical model

by the curvature neglection, this assumption is relaxed and a FE model repro-

ducing a pair of sinusoidally curved wires under frictional contact is analysed.

Both the wires have been truncated with a plane parallel to the contact area, as

represented in Figure 5.13.

Figure 5.13: FEM boundary conditions and loads for S05: initially perpendicular

wires.

Note that Saint-Venant’s principle applies where the stresses and deformations

imparted locally at the contact do not propagate to the further field locations.

The boundary condition and FE meshing are analogous to S04, with an element
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size of h=0.0005mm and a value of FKN=10. Only the isotropic case of steel

against steel is analysed, with a normal load of 10N.

In Figure 5.14 the results of the simulation are compared with the analytical

model. As it can be seen from the figure, the initial region of the micro-slip phase

is almost identical with the S04 configuration.
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Figure 5.14: FEM and analytical torque-rotation response for S05.

It can be noticed that an error is introduced in correspondence of the macro-slip

phase, where the torsional moment is slightly higher than the analytical model.

This is most likely due to a larger contact area than the one theorised. This

is due to the curvature at the contact area which is not accounted for by the

Hertz contact model, but is in the FEM. An AARE of 3.31% is calculated and

the highest values of the relative error are observed across the final region of the

microslip phase, with a maximum of 5.65% at β=1.75deg. After this phase, the

error decreases to a value of approximately 2.25% at β = 5◦. It is believed that

the extent of this error is related to the curvature of the interacting surfaces and

the dimension of the contact area.
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5.6.3 Out-of-plane bending model

Recalling the out-of-plane bending analytical model in Section 4.8, this model

predicts the contact force between the warp/weft pair as a function of the RUC

boundary conditions. As a validation for the theoretical solution, the single case

of mesh material under uniaxial bending is considered, meaning that the bending

is only applied to one wire, whilst the other is free to extend longitudinally. As

represented in Figure 5.15, bending is generated in the warp wire (i.e., parallel

to x-axis) by applying a displacement along the z-axis at both of its extremities,

whereas the weft wire is pinned at both ends.

Figure 5.15: 3-D FE model and boundary conditions for the out-plane bending

model.

Materials, wire dimensions, and friction coefficients are again the same as in

the previous models. In the case of isotropic mesh material, analogous results

would be achieved with the opposite configuration, by applying the displacements

to the weft wire and the pinned constraints to the warp. The angle of rotation

of the circular cross-section with respect to the neutral axis is scoped for each

extremity of the wires and used as input for the analytical model. The simulation

is composed of a single loadstep, which is divided into 20 substeps and the dis-

placement load is ramped from zero to the maximum value of 0.01mm. Like from
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the tension model, the FE mesh element size in the contact area is increased to

0.001mm (as compared to the shear model where a smaller element of 0.0005mm

was used) to facilitate the numerical convergence since, in this case, both the

bodies are movable, making the convergence more difficult. Moreover, the same

contact configurations and settings are used with FKN=100 to increase the ac-

curacy. In Figure 5.16 the numerical results are compared with the theoretical

solution showing a general good agreement, with a slightly higher error for the

orthotropic case. This error is most likely attributed to the simplified approach of

how the contact area and the out-of-plane displacements are calculated with the

Hertz contact model and the Timoshenko’s beam theory employed not accounting

for the longitudinal curvature of the wires. Values of the AARE are reported in

Figure 5.16 for each material configuration.
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Figure 5.16: FEM and analytical results for out-of-plane bending model: (a) steel

against steel, (b) Nitinol against Nitinol and (c) Nitinol against steel.
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5.7 Conclusions

In this chapter, a thorough validation of the developed analytical models for

the characterisation of PWMMs was carried out by means of the finite element

method.

Due to the complexity of the frictional contact problem analysed, some critical

aspects have emerged, in particular the need for a high FE mesh density in the

proximity of the contact area for a correct description of the physics involved.

Based on the output of a mesh convergence study, a careful choice of the parame-

ters for the numerical model, such as mesh element size and contact stiffness, was

performed in order to achieve a sufficient level of accuracy in the simulations.

A comparison between numerical results and theoretical solution has substan-

tially confirmed a general validity of the analytical models. For all the models,

three different constituent material combinations are tested, two isotropic and one

orthotropic.

For the tension model, the validation shows good agreement between analytical

and numerical model in both uniaxial and biaxial load. The theoretical solution

is capable of predicting the contact force with a moderate relative error for a wide

range of tension forces (0-50N) considered. Since for high loads the accuracy of the

model is mostly limited by the simplifications of the beam theory in computing

the wire stiffness and the absolute error was shown to grow linearly with the load,

it is believed that the force range could be extended while maintaining the same

level of relative error. Also the non-linear behaviour of stiffness and Poisson’s

ratio is correctly captured by the theoretical solution as confirmed by the results.

The highly non-linear response of mesh materials to in-plane shear was cap-

tured with high accuracy along a wide range of motion (0-5◦) and for materials

with a large difference in mechanical properties (being the stiffness of steel more

than twice the one of Nitinol). It is believed that this rotation range can be

extended, only limited by when the warp and weft wires come into contact in

other locations other than the initial contact area. A slight error is observed in
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the microslip transition for the orthotropic case, suggesting the need of a fur-

ther investigation on the elastic compliance between two different materials under

frictional contact.

Finally, the out-of-plane bending model was tested for the case of uniaxial

bending applied to a single wire, showing acceptable agreement between numerical

and theoretical results. As with the shear model, the orthotropic configuration

provides a slight increase in error and is most likely due to both the longitudinal

curvature of the wires and the Hertz contact model not accounting for this.
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Chapter 6

Reduced order finite element

model

6.1 Introduction

In this chapter a reduced order finite element model for the characterisation of

mesh materials is discussed and a novel developed software that implements the

reduced model into a MATLAB-ANSYS environment is presented.

A brief overview and general introduction of the techniques for model order

reduction are presented and discussed. Highlighting the homogenization method

adopted in this work is the primary focus.

A new equivalent reduced element is then presented, which is composed of

the combination of shell and beam elements. The formulation of these two finite

element types is described. A detailed discussion is reported on how these elements

are assembled to form the novel beam-shell element and what their function is in

replicating the mesh material mechanical response.

The MATLAB-ANSYS algorithm is then presented and its different parts are

described in depth. The specific functions performed by MATLAB and ANSYS

and the procedure adopted to integrate the two software applications are illus-

trated.
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Finally, the reduced model is validated through its software implementation

by analysing a single RUC under different configurations of in-plane loads and

boundary conditions and comparing the results with the corresponding theoretical

solution. A more complex model composed of 100 beam-shell elements (100 mesh

intersections) is analysed and compared with a full FEM for further validation. A

qualitative experimental validation is also performed by comparing the numerical

results with previously acquired data from bias-extension tests.

6.2 Model order reduction techniques

The continuously increasing demand for high performances, precision and relia-

bility of dynamic systems has pushed the numerical modelling to extremely high

levels of complexity, sometimes involving several millions of DOFs. Despite the

advent of supercomputers, capable of solving extreme-scale FEMs, the still valid

need for an alleviation of the computational burden has incentivised the develop-

ment of several different model order reduction (MOR) techniques.

For a general structural dynamics problem, the dynamic equilibrium is ex-

pressed by a set of linear second-order differential equations:

[M ]{ẍ(t)}+ [C]{ẋ(t)}+ [K]{x(t)} = {f(t)} (6.1)

where [M ], [C] and [K] ∈ Rn×n are respectively the mass, damping and stiffness

matrices of the full order model, whereas x(t), ẋ(t), and ẍ(t) ∈ Rn are the nodal

displacement, velocity and acceleration vectors and f(t) ∈ Rn is the load vector.

The dimension n of the vector space represents the number of total DOFs of the

system, corresponding to the number of nodes multiplied by the DOFs at each

node. The main aim of the reduction method is to find an equivalent system

of dimension m for which m ≪ n, referred to as reduced order model or simply

reduced model, so as to limit the numerical expense of the full model. In general,

the reduced model is defined by a new set of reduced order coordinates xR ∈
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Rm, which are mathematically related to the full order coordinates through a

coordinate transformation:

x(t) = TxR(t) (6.2)

where T ∈ Rn×m is the coordinate transformation matrix. Being the matrix T

usually time-invariant, the same transformation can be applied to the velocity and

acceleration vectors by simply differentiating the previous equation, as follows:

ẋ(t) = T ẋR(t) (6.3a)

ẍ(t) = T ẍR(t) (6.3b)

The equations of dynamic equilibrium for the reduced model are then:

[MR]{ẍR(t)}+ [CR]{ẋR(t)}+ [KR]{xR(t)} = {fR(t)} (6.4)

where [MR], [CR] and [KR] ∈ Rm×m are respectively the mass, damping and

stiffness matrices of the reduced model and fR(t) is the equivalent load vector

applied to the reduced model.

6.2.1 Homogenization method as a physical coordinate re-

duction

Depending on the type of coordinate transformation, the reduction method be-

longs to one the following three categories:

i) Physical coordinate reduction.

ii) Generalised coordinate reduction.

iii) Hybrid coordinate reduction.
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Only the first category will be described since it is inherent to the present

research. For a detailed discussion on reduction techniques, the author directs

the reader’s attention to [125]. In the physical coordinate reduction method (also

called dynamic condensation), the reduced coordinates are obtained by removing

part of the physical coordinates of the original full model. In this sense, the

reduced model space represents a subset of the full model domain. The coordinate

transformation matrix is represented by the following expression:

T =

 I

R

 (6.5)

where I is an identity matrix of order m and R is the condensation matrix.

The homogenization method adopted for this work can be included among the

numerous existing physical coordinate reduction techniques and can be referred

to as truncated dynamic condensation technique. Recalling from Chapter 3, the

mechanical properties of mesh materials are defined based on a representative

volume element (RVE) or simply repeating unit cell (RUC). The physical coor-

dinates are reduced to only a limited subset located at the boundaries between

each RUC, where a system of periodic boundary conditions (PBC) and loads is

applied. At the microscopic level of the RUC, based on these reduced coordinates,

homogenized stresses and strains are calculated by averaging within the RUC.

As a simplified example, the warp wire in the RUC can be considered as

discretised in a number n of nodes in the full order model, as represented in

Figure 6.1. The full order coordinates are the following:

x =



x1

x2

x3
...

xn−1

xn


(6.6)
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Figure 6.1: Example of reduction technique adopted.

The tension-compression model discussed in Chapter 4 is a function of the

overall deformation ux of the wire, which can be calculated based on the position

of the initial and final nodes only (i.e., nodes 1 and n). Therefore a proper

coordinate transformation matrix T can be chosen to only retain the coordinates

at the boundaries, so that the reduced order coordinates are xR = {x1, xn}:

x =



1 0

0 0
...

...

0 0

0 1


xR (6.7)

6.3 Reduced element formulation

To predict with high accuracy the non-linear response of mesh materials, the full

numerical model must represent the contact mechanics of each wire intersection

with an extremely high mesh density (recall Section 5.4). For mesh materials with
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a high number of intersections involved, this would easily yield to models with

millions of DOFs.

The strategy adopted in this research consists into reducing each intersection

of the full model to an equivalent finite element, whose mechanical properties are

defined by the developed analytical models discussed in Chapter 4. The contact

force vanishes inside the RVE and can be considered as an internal force. The ben-

efit of this method is not only the reduction of the nodes number and consequent

DOFs, but also the elimination of computationally expensive contact elements

and incorporation of contact non-linearities into a linear analysis. Furthermore,

this reduces the issues associated with non-linear convergence of which complex

non-linear contacts can often become a victim. This reduced equivalent element

is representative of a single RUC and it is obtained by the combination of two

basic finite element types:

i) 3-D 8-node structural shell.

ii) 3-D 2-node beam.

In the ANSYS environment these elements are implemented respectively under

the name of SHELL281 and BEAM188. In the following sections a description of

their geometry and technology is presented with the kinematic coupling and the

role of the different elements within the reduced equivalent element.

6.3.1 SHELL281

SHELL281 is a high-order structural shell element composed of eight nodes (four

corner nodes and four mid-side nodes) with six degrees of freedom at each node:

translations u, v and w respectively along x, y and z-axes and rotations θx, θy and

θz about the same axes. The geometry and node naming convention is illustrated

in Figure 6.2.
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Figure 6.2: ANSYS SHELL281 element nodes: I through L are the corner nodes,

whilst M through P are the mid-side nodes.

Since the quadratic shape functions of the element SHELL281 are analogous for

all the six degrees of freedom, they can be expressed in a general form as follows:

X =
1

4

(
XI (1− s) (1− t) (−s− t− 1) +XJ (1− s) (1− t) (−s− t− 1)

+XK (1− s) (1− t) (−s− t− 1) +XL (1− s) (1− t) (−s− t− 1)

)
+

1

2

(
XM

(
1− s2

)
(1− t) +XN (1 + s)

(
1− t2

)
+XO

(
1− s2

)
(1 + t)

+XP (1− s)
(
1− t2

))
(6.8)

where X represents a generic displacement within the element and XI , XJ , . . . ,

XP represent the correspondent nodal displacements at the nodes I, J, . . . , P.

All the displacements u, v, w, θx, θx and θx are defined by the previous equa-

tion, by simply replacing the generic displacement with the specific one. For

example:

u =
1

4

(
uI (1− s) (1− t) (−s− t− 1) + uJ . . . (6.9)
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Equation 6.8 is expressed in isoparametric formulation, as a function of two natural

coordinates s and t, for which−1 ≤ s ≤ 1 and−1 ≤ t ≤ 1, attached to the element

with the origin located at its centre.

6.3.2 BEAM188

BEAM188 is a 3-D 2-node beam based on Timoshenko beam theory, hence also

accounting for transverse shear effects. Each node has six degrees of freedom,

which include translations along x, y and z-axes and rotation about the same

axes, plus an optional seventh degree of freedom for warping. The geometry and

node naming convention is illustrated in Figure 6.3.

This particular element technology offers three different options for the shape

functions, which can be selected by changing the value of KEYOPT(3).

� By default, KEYOPT(3)=0, which corresponds to a standard linear 2-node

beam element. Since the shape functions are linear with a single point of

integration, the solution quantities such as strains and stresses are constant

along the beam. Hence, with this option, the element is able to correctly

represent only the case of constant bending moment.

� With KEYOPT(3)=2, an internal node is added as a point of interpolation

and the element is based on quadratic shape functions with two points of

integration. The solution quantities vary linearly along the beam.

� With KEYOPT(3)=3, two internal nodes are added. The beam is now based

on cubic shape functions and three points of integration along the length

are used, resulting in quadratic variation of the solution.
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Figure 6.3: BEAM188: geometry and nodes.

In this work, KEOPT(3)=2 has been used, with quadratic shape functions.

This choice was motivated by the fact that, with this option, each beam element

can be defined by only providing the coordinates of its two end nodes, thus sim-

plifying the generation of the reduced FE mesh and at the same time maintaining

a good accuracy of the results. Analogously to the SHELL181 element, the shape

functions of this element can be expressed in general form, as follows:

X =
1

2

(
XI

(
−s+ s2

)
+XJ

(
s+ s2

))
+XK

(
1− s2

)
(6.10)

where againX is representative of each of the six degrees of freedom. The previous

equations are expressed with isoparametric formulation, with respect to a natural

coordinate s with origin at the centre of the beam and oriented along the element,

with −1 ≤ s ≤ 1.

6.3.3 Coupling and role of different elements

The elements previously described are combined to form a reduced equivalent

element, representative of a single RUC.

A square shell element of side L is disposed so as its centre corresponds to a

mesh material intersection and its mid-side nodes to a point along the warp and
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weft wires. Two beams of length L/2 are disposed along each side of the shell,

sharing one node with each other, for a total of 8 beams and 12 nodes.

Hence, the reduced equivalent element is composed of a total of 20 nodes and

9 elements (1 shell and 8 beams). Note that where the beam elements connect

to one another is a node share about those beam elements. This is represented

graphically in Figure 6.4.

Figure 6.4: Reduced beam-shell element: a shell surrounded by 8 beams along the

perimeter. Shell nodes are in letters (I through P) and beam nodes are in numbers

(1 through 12).

Conventionally, the warp and weft directions are defined as parallel respectively to

the local x-axis and y-axis. Thus, the beams in blue in the figure are representative

of the warp wire, whilst the beams in red represent the weft wire. For the case

of orthotropic mesh material, the mechanical properties of the beams are defined

accordingly to the ones of the respective wires. Since two rows of beams are

created to represent a single wire, the second moment of area of the beams must

be half that of the wire.

The beam nodes are spatially coincident with the shell nodes (meaning that

they share the same global coordinates), however they are mathematically in-

dependent. The coupling between these elements is guaranteed by kinematic

constraint equations that impose equivalent translational displacements between
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coincident nodes, allowing independence for in-plane rotation. This condition al-

lows beams on different sides of the shell to rotate independently from each other,

being only restrained by the membrane stiffness of the shell. A local coordinate

system with origin in the centroid is created for each shell, where the z-axis is

normal to the element and the x and y-axes are parallel respectively to the I-J

and J-K sides, as represented in Figure 6.4. Vertical and horizontal beams are

coupled at the corner nodes with a rotational constraint that imposes the same

rotation about the local x and y-axes.

As discussed in Chapter 4 and verified numerically in Chapter 5, the mechan-

ical response of the RUC to tension load can essentially be characterised by an

effective longitudinal stiffness and an effective Poisson’s ratio, whereas the non-

linear frictional response for in-plane shear is represented by a torsional moment

applied to the point of intersection of wires.

In the reduced model, the two element types (i.e., shell and beams) play a

different role in replicating the PWMM mechanical response. Resistance to ten-

sion and in-plane bending is computed separately by the two different elements.

In particular, the shell has the function of reproducing the longitudinal stiffness

of the wires and the Poisson’s effect, whereas the beams reproduce the in-plane

bending. Thus, the shell must not offer any resistance to transverse loading, since

this is already provided by the beam elements. This is achieved by using an or-

thotropic material formulation for the shell and setting an infinitesimally small

value for the shear modulus (not zero, since it would yield to a singular stiffness

matrix). With this condition, also the transverse shear and resistance to out-

of-plane bending is entirely relying on beams. On the contrary, the longitudinal

resistance of the beams must be reduced to nil, since already accounted for by

the shell elements. This condition is achieved by setting an infinitesimally small

area for the beams, being the longitudinal stiffness of a beam proportional to the

cross-sectional area.

The shell longitudinal stiffness is K = Et where t is the thickness. Setting

conventionally t = Awire/L (being Awire the cross-sectional area of the wire), the

elastic modulus of the shell is calculated as follows:
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Ex =
KL

Awire
(6.11)

whereK is the linearised effective elastic modulus of the mesh material, calculated

with Equation 4.117a. The Poisson’s ratio of the shell is simply equal to the

linearised effective Poisson’s ratio of the mesh material (Equation 4.117b):

νxy = ν (6.12)

6.4 MATLAB-ANSYS algorithm

The finite element reduction proposed in this work requires the implementation

into ANSYS of the equivalent element previously described. Moreover, to perform

the numerical analysis, the mechanical properties must be constantly updated in

the FEM, by solving the developed analytical models as a function of the external

loads.

With this aim, a software application was developed that integrates the func-

tionalities of MATLAB with the ANSYS finite element solver. The core of the

software application is developed in MATLAB and is composed of the following

parts:

i) Main script.

ii) Post-processing function.

a) Tension-compression subfunction.

b) In-plane shear subfunction.

6.4.1 Main script

In the main script, an iterative process is performed (see Appendix A). For each

iteration, the ANSYS solver is called in batch mode by the MATLAB script.
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The numerical solution is computed for a single substep at a time, after which the

execution is returned to MATLAB for the post-processing. Throughout the whole

process, data communication between the two software applications is performed

by means of dedicated CSV (Comma Separated Values) archives.

In the first iteration, some initialisation values are calculated in MATLAB

based on the material properties and geometry of the wires, and then passed to

ANSYS. In ANSYS, after a series of preliminary actions, the solving process is

carried out for the first substep. The output results are then stored in the CSV

files and the execution is returned to the MATLAB main script.

The post-processing function is then called, which, based on the results of

the numerical simulation, calculates the correspondent effective parameters for

the materials. These are compared to the initialisation values adopted for the

simulation. If some convergence criteria are met, in the next iteration the com-

putation will proceed to the second substep, otherwise the first substep will be

repeated until convergence. The whole process is repeated until completion of the

simulation.

6.4.2 MATLAB post-processing

Within the MATLAB post-processing, the ANSYS output data from the previous

iteration are used as input for the developed analytical models in order to calculate

the effective mechanical properties of the mesh material to be used in the next

iteration.

Since for a non-linear problem, such as the one investigated in this research, the

properties (i.e., stiffness, Poisson’s ratio and torsional moment) are proportional to

the displacement, it is not possible to calculate their correct values before actually

computing the displacements. For this reason, as aforementioned, an iterative

procedure is required, which starts by assuming some initial values K0, ν0 and

M0 for the mechanical properties and progressively correcting them according to

the numerical output, until the convergence is met.
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Figure 6.5: Logical scheme of the MATLAB-ANSYS algorithm for the i-th itera-

tion.
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At every iteration, based on the numerical results returned by ANSYS, the

local deformations ux and uy respectively of warp and weft wires are calculated

for every RUC as the product of the shell normal strains and the initial length L0

of the wires, while the twisting angle β between the wires is simply equal to the

shell shear strain:

ux = εxL0 (6.13a)

uy = εyL0 (6.13b)

β = τxy (6.13c)

where εx, εy and τxy are the shell strains calculated with respect to the element

coordinate system.

The calculation of the PWMM mechanical properties is then performed by the

two listed subfunctions which are executed sequentially, as schematised in Figure

6.5.

The first to be called is the tension-compression subfunction that, based on the

longitudinal deformations of the wires, calculates the value of the contact force

Fn for each RUC, by applying the correspondent developed analytical model.

The subfunction also calculates the effective longitudinal stiffness and effective

Poisson’s ratio of the material.

The contact force and the twisting angle are sent as input to the shear subfunc-

tion, which calculates the torsional moment generated by the frictional contact

between the wires.

6.4.2.1 Convergence criteria

At the end of the i-th iteration, a new set of parameters Ki, νi and Mi has

been calculated for each RUC. These values are compared with the results of the
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previous iteration by calculating a convergence parameter, which corresponds to

the absolute value of the relative error, as follows:

Xconv =

∣∣∣∣Xi −Xi−1

Xi−1

∣∣∣∣ < criterion (6.14)

where X is generic for each of the properties (K, ν and M) and criterion is a

parameter that specifies the maximum accepted error. A value of 1% has been

used for this parameter.

If the condition in Equation 6.14 is true for all the three properties, the con-

vergence is met for the correspondent element. If the convergence is met for all

the elements in the model, the solution will proceed to the next substep.

6.4.3 ANSYS APDL subroutines and restart solution

All of the processes of numerical analysis are executed in ANSYS and governed

through a series of subroutines developed in APDL (ANSYS Parametric Design

Language) code. To allow the passage of information between ANSYS and MAT-

LAB at each iteration, the numerical solution needs to be subdivided into different

time steps and the execution of ANSYS temporarily suspended after the comple-

tion of each of them. For this purpose, a multiframe restart analysis is set in

ANSYS, so that a result file is created after each substep. At the next execution

of ANSYS, the result file is loaded and the solution is started from the previous

converged point. If the convergence criteria in Equation 6.14 are not met dur-

ing the MATLAB post-processing, the last restart file is deleted and the solving

process is repeated for the unconverged substep.

At the first substep, a series of preliminary actions is performed in ANSYS:

i) Definition of mesh material overall geometry and FE mesh generation through

shell elements.

ii) Creation of local coordinate systems for each shell element.
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iii) Automatic creation of beam elements for each shell and setting of constraint

equations.

iv) Application of boundary conditions and loads.

The steps i) and iv) are accomplished through an input file that can be edited by

the user, whereas steps ii) and iii) are performed by means of dedicated APDL

subroutines. At the end of the analysis, a CDB database file is generated that

allows the post-processing of results in ANSYS environment.

6.5 Reduced model validation

A thorough validation of the reduced order finite element model is presented in

the following sections. Initially, a model representing a single RUC is analysed

separately under tension and shear. Then the results are validated by direct

comparison with the respective analytical models. Finally, a more complex model

representing a mesh material plate composed of 100 intersections is analysed and

the results compared with a dedicated full FEM.

In all the performed simulations, the geometry of the wires is the same as

listed in Chapters 4 and 5, corresponding to Sample 3 from Table 3.1. The same

three material combinations are tested, two isotropic and one orthotropic.

6.5.1 Single RUC

6.5.1.1 Tension

The response to tension load is analysed by considering the case of a single RUC

under uniaxial load. This corresponds to applying the tension load only to the

warp wire, whereas the weft wire is left free to deform longitudinally according to

the effective Poisson’s ratio.
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Figure 6.6: Deformed reduced FEM: load and BCs for uniaxial tension of a single

RUC.

In Figure 6.6 the deformed shape of the element is illustrated, together with

the boundary conditions and the application of the load. The nodes on the left

side are restrained from translating, while a displacement load along the x-axis is

applied to the nodes on the right side. The displacement load, which corresponds

to the elongation ux of the warp wire, is ramped from zero to a maximum value

of 0.005mm. The simulation is divided into 20 substeps.
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Figure 6.7: Reduced FEM and analytical results: contact force of a single RUC for

(a)-(b) steel against steel, (c)-(d) Nitinol against Nitinol and (e)-(f) Nitinol against

steel.
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Figure 6.8: Reduced FEM and analytical results: linearised effective properties

of a single RUC for (a)-(b) steel against steel, (c)-(d) Nitinol against Nitinol and

(e)-(f) Nitinol against steel.
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In Figure 6.7, the contact force resulting from the reduced model is compared

with the theoretical solution. Results are plotted both against the longitudinal

displacement and the tension force. An acceptable agreement is observed along the

whole range of forces analysed, with the reduced model always showing higher val-

ues than the analytical model. The relative error is slightly lower when the model

is controlled in force as compared to displacement, and also for the orthotropic

case.

The higher response of the reduced model compared to the analytical results in

terms of contact force is caused, in this configuration, by the bending stiffness of

the horizontal beams representing the warp wire. The beams oppose the tendency

of shell mid-side nodes to move vertically when subjected to Poisson’s effect. This

results in a lower Poisson’s ratio and a higher stiffness of the RUC compared to

the theoretical solution, as confirmed by the results reported in Figure 6.8, where

the linearised effective properties obtained from the reduced model are compared

to the analytical model. For the orthotropic configuration, the properties are

calculated for warp and weft wires from Equations 5.6 and 5.7. Nevertheless,

the choice of positioning the beams along the shell perimeter (instead of their

actual physical location at the centre of the RUC) is necessary to compensate the

numerical instability of the shell elements when using very low values of shear

modulus.

6.5.1.2 In-plane shear

The pure in-plane shear load is generated in the RUC through two different con-

figurations, illustrated in Figure 6.9.

In the first case, the left side of the element is restrained from translating,

whilst a displacement along the y-axis is applied to the opposite side, as shown in

Figure 6.9a. In the second case, the element is transformed with an angle of π/4

with respect to the global coordinate system. The translational constraints are

applied to the bottom vertex, whereas a displacement along the y-axis is applied

to the top vertex, as displayed in Figure 6.9b. In both cases the contact force
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is held constant at the value of 10N by changing the pre-load parameter in the

MATLAB main script.

(a)

(b)

Figure 6.9: Deformed reduced FEM of a single RUC for (a) pure shear and (b)

π/4 transformed shear.
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Figure 6.10: Reduced FEM validation: pure shear of a single RUC for (a) steel

against steel, (b) Nitinol against Nitinol and (c) Nitinol against steel.
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The previous cases are equivalent, yielding to identical results. In Figure 6.10

the numerical solution is compared with the analytical model, by converting the

nodal force reaction FR at the constrained nodes into resistant torque. It is evident

how the results are nearly identical between numerical and analytical model for

all the material combinations considered.

6.5.2 Mesh material plate

A mesh material plate composed of 10 by 10 wires for a total of 100 intersections

is analysed through reduced FEM. Wire geometry is the same as for a single

RUC, whereas only the isotropic case of stainless steel wires is analysed. Load

and boundary conditions are represented in Figure 6.11.

Figure 6.11: Reduced FEM results: load and BCs for uniaxial tension of a 10x10

mesh material plate.

The left side (x = 0) of the plate is fixed, whereas a displacement of 0.1mm along

the x-axis is applied to the opposite side (x = W ), whose nodes are also prevented

from rotating around the z-axis.

A dedicated full FEM is also developed to provide results for validation. Given

the high number of intersections, a coarser mesh (composed of 226,988 elements

and 404,115 nodes) than the one used for a single RUC was necessary, in order to

contain the computational demand. To reduce the error associated with contact
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penetration, a value of FKN=300 has been used. The simulation is divided into

5 substeps to facilitate the convergence.

In Figure 6.12 the contact force computed with the reduced model (numbers in

blue) is compared with the numerical results of the full model (numbers in black)

for each intersection.
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Figure 6.12: Reduced FEM contact force results: 10x10 mesh material plate under

uni-axial tension. The numbers in blue are computed with the reduced model,

whereas the numbers in black are computed with the full model.

Note that the decimal point is hidden by the warp wire representation and each

location consists of two shown decimal places. In Figure 6.13 the contact force

relative error between reduced and full model is represented graphically. The

majority of the surface shows an acceptably low error (up to 4%), whilst the

higher error is localised in correspondence of the boundary conditions, where the

contact force is overestimated due to the stiffness of the weft wires, as already

explained for the single RUC case. Note that the values between the warp and

175



the weft wires are linearly interpolated.

For the reduced model, only 3 iterations are required for the convergence to

be met for all the elements, with a solving time of about 16 seconds, as compared

to the full model that requires about an hour to complete the solution.
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Figure 6.13: Contact force relative error between reduced and full model for a

10x10 mesh material plate.

6.5.3 Experimental validation from bias-extension test

To provide experimental validation to the reduced model, and consequently to

the analytical models developed in this work, experimental results from bias-

extension tests conducted by Wang et al. [126] are considered. This test consisted

into applying a uni-axial tension to a mesh material specimen, in which the wires

were oriented at ±45 degrees with respect to the direction of the load. The

test rig consisted of a hydraulic test machine to which a rectangular specimen

of stainless steel PWMM was clamped by means of two grips. The lower grip

was fixed whereas the top grip was controlled in displacement in order to exert
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a uniaxial load. The deformation induced into the specimen by the load was

recorded though a camera and the contours of shear angle were extrapolated by

means of DIC (digital image correlation).

With the intent of simulating the same experiment through the reduced FE

model, a 3-D model composed of a total of 233 beam-shell elements (correspond-

ing to as many wires’ intersections) was analysed through the MATLAB-ANSYS

developed algorithm. This model is represented in Figure 6.14. The geometric

dimensions and material properties utilised for the analysis are reported in Table

6.1.

Figure 6.14: 3-D model of the bias-extension mesh material plate.

Diameter of wires d mm 0.91

Semi-wavelength L mm 2.70

Elastic modulus E GPa 200

Poisson’s ratio ν 0.3

Friction coefficient µ 0.3

Table 6.1: Properties of mesh material employed in the experimental validation.

As regards the boundary conditions, the bottom nodes of the rectangular plate

were fixed, whereas the top nodes were only allowed to move along the y-axis and
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prevented from rotating about the z-axis. A displacement along the y-axis was

applied to the top nodes and linearly ramped from zero to a maximum value of

10mm. The simulation was divided into 10 substeps. In Figure 6.15 the averaged

shear strain computed through the reduced model is compared with the DIC

shear angle contours from Wang et al. The scale colours have been adjusted

according to the ones of the test results. A general agreement between numerical

and experimental results can be observed, with a similar distribution of the shear

across the plate and similar values of the maximum shear. As the load increases

(Figures 6.15b and 6.15b), the numerical results show a slightly higher peak in

shear angle and a higher stiffness in the vicinity of the boundaries (where the

shear strain is lower) as compared to the test results. This suggests a decrease in

stiffness at the boundaries during the experiments (as compared to the reduced

model where the nodes have been fixed), possibly due to a partial slippage of the

specimen within the grips, which allowed a more even distribution of the shear

strains across the plate, with a correspondent decrease in the peak shear angle.

This can be observed, as the value of the uniaxial displacement increases, by

the almost total absence of blue contours around the edges in the experimental

results, whereas in the numerical results these contours are still evident around

the boundary conditions.

The presented results provide a qualitative validation of the analytical models

and the reduced finite element model developed in this work, showing the ability

of the MATLAB-ANSYS algorithm of capturing the shear behaviour of mesh

materials, in agreement with what observed experimentally.
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(a)

(b)

(c)

Figure 6.15: Comparison between numerical and experimental bias-extension test

results for (a) 1mm, (b) 5mm, and (c) 10mm uniaxial displacement.
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6.6 Conclusions

In this chapter, a novel reduced finite element model was presented for the char-

acterisation of PWMMs, which is based on the developed analytical models. This

has been subsequently implemented through a newly developed software into a

MATLAB-ANSYS integrated environment.

From a validation of the software, it was shown that the full FE model repre-

senting a single warp/weft wire intersection by means of hundreds of thousands

of elements can be effectively reduced to a simple equivalent element, composed

only by a shell and 8 beams. This allows to drastically reduce the computa-

tional demand and consequently the solving time, preserving at the same time an

acceptable agreement with respect to the governing analytical models.

Nearly identical results between reduced and analytical model were achieved

for pure in-plane shear load, whereas for tension load an error was observed, due to

the bending stiffness of the beam elements. For a larger reduced model composed

of several elements, a higher error was shown to be relegated to an area in the

proximity of the boundary conditions, whilst the majority of the model showed

a good agreement with the full FE results. This error is localised and confined

to the boundary condition locations. If the size of the mesh was to change, this

should still hold.

An experimental validation was also performed by employing data from a

previous research consisting into a bias-extension test. The qualitative comparison

between numerical results generated through the MATLAB-ANSYS algorithm

and experimental results showed a general agreement and confirmed the validity

of the developed reduced and analytical models in predicting the shear behaviour

of mesh materials.

180



Chapter 7

Application: design of a damping

device

7.1 Introduction

In this chapter, the reduced model discussed in Chapter 6 is applied to investi-

gate the response of different PWMM geometries that, under specific boundary

conditions and loads, can constitute a feasible friction damping device applica-

tion. After a brief introduction on the methodology adopted for designing of

these conceptual devices, some potential configurations are identified and pro-

posed. The FE reduced model from Chapter 6 is utilised for each case and the

resulting hysteretic response and correspondent damping loss factor are reported

to demonstrate the system non-linearity and the energy dissipation.

7.2 Design concept of mesh friction dampers

The methodology adopted for designing of the following damper concepts focuses

on increasing the dissipative friction force with respect to the elastic internal force,

with the goal of achieving a higher damping loss factor. Although the energy dis-

sipating modes in mesh materials are versatile and can be achieved by shear,
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torsion, bending, or a combination, in the following examples the shear mode is

considered. Therefore, the aim is to increase the shear strain across the material

(to activate the frictional contacts) and, at the same time, generate a sufficient

level of contact force at the intersections. The geometry and the boundary condi-

tions play an important role to access the optimum damping capacity. In fact, it

is required to avoid excessive limitations in motion that would prevent the device

from dissipating energy effectively. An important aspect is also choosing a proper

material with a low elastic modulus to reduce the internal force and a high fric-

tion coefficient to increase the energy dissipation. It should be noted that, in the

following examples, the number of apertures (or wire intersections) and the wire

dimensions and properties were not focused on as a point of optimising, but rather

on the motion itself. For each of the examples, the load (rotation or translation) is

linearly ramped from zero to a maximum value X. The resulting reaction (torque

or force) is the backbone curve that is employed to generate the hysteresis loop

(see Section 4.7.5), which is representative of a periodic load oscillating between

-X and X for 2.5π cycles. The geometrical dimensions of the mesh wires are the

same as Sample 3 from Table 3.1. Although the model and dampers could be

applied for various materials, either stainless steel or Nitinol are employed in the

examples (see Tables 3.2 and 3.3 for the mechanical properties).

7.2.1 Cylindrical damper

7.2.1.1 Torsional configuration

The first configuration analysed is a cylindrical damper with the warp wires di-

rected along the axial direction, whereas the weft wires are wrapped radially. This

particular device is intended to attenuate torsional vibrations, a common prob-

lem in all the rotational components with the function of transferring torque or

mechanical power, such as shafts or drive-trains in general.

This concept can be thought as a tunable device, since the amount of damping

provided can be regulated by controlling the contact force at the intersections

through the axial pre-tension of the mesh material.
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The model analysed is composed of 20 elements along the circumference and

8 elements along the height of the cylinder, for a total of 160 elements, resulting

in a cylinder height and diameter of respectively 16.96mm and 13.50mm. The

material considered is stainless steel with a friction coefficient of 0.3. The bottom

end of the device is pinned, whilst the loads are applied to the top end.

The simulation is divided into two steps. In the first step, a pre-tension dis-

placement along the z-axis is applied to the top end of the damper to generate the

contact force at the intersections and is held constant throughout the rest of the

simulation. In Figure 7.1a the deformation after the first step is illustrated for a

pre-tension of 0.08mm and the resulting contact forces are reported for a row of

elements along the axial direction.

15.36
12.87
12.96
13.12
13.12
12.96
12.87
15.36

(a) (b)

Figure 7.1: 3-D model of the damper under deformation. (a) Step 1: axial pre-

tensioning of the device. The numbers in black represent the contact forces for the

elements of the corresponding row. The deformation is scaled 50 times to enhance

the radial shrinkage of the weft wires due to the effective Poisson’s ratio. (b) Step

2: the twisting of the shaft causes a uniform shear strain on the elements.

In the second step, a rotation about the z-axis is applied to the top end and

ramped from zero to 10 degrees. The deformed model after the rotation is shown

in Figure 7.1b. The first step only comprises one substep, whereas the second
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step is divided into 20 substeps to increase the resolution of results. The resulting

non-linear torque reaction about the z-axis at the bottom end represents the

backbone curve that is used to generate the hysteresis loop reported in Figure

7.2 for a pre-tension of 0.08mm. A parametric study was performed by varying

the level of pre-tension and calculating the correspondent damping loss factor and

dissipated energy per unit area (calculated with respect to the mesh bulking area),

as reported in Table 7.1.
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Figure 7.2: Torque-rotation hysteresis loop for the torsional damper with a pre-

tension of 0.08mm.

Pre-tension mm 0.03 0.05 0.08

Loss factor - 0.8327 0.6764 0.5535

Dissipated energy per unit area mJ/mm2 0.0011 0.0021 0.0039

Table 7.1: Loss factor and dissipated energy per unit area at various levels of

pre-tension.

184



7.2.1.2 Linear configuration

Another configuration that has been investigated is a cylindrical linear damper,

meaning that it is subjected to a linear motion directed along the axis of the

cylinder.

In order to convert the axial oscillation into shear strain, which is responsible

for activating the frictional contacts, the wires (and so the reduced equivalent

elements in the model) are oriented at +/- 45 degrees with respect to the axial

direction of the damper. With this particular configuration, the contact force

depends on the level of elastic pre-tension generated in the mesh material during

the manufacturing process.

The reduced model analysed is composed of a total of 1600 beam-shell elements

with an overall cylinder height and radius of respectively 61.46mm and 38.12mm.

The 3-D model is illustrated in Figure 7.3a.

(a) (b)

Figure 7.3: 3-D model of the cylindrical linear damper. (a) Underformed model.

(b) Shape after deformation (results are scaled 10 times).
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In this case the material used is Nitinol with a friction coefficient of 0.3. The

bottom end is pinned and a vertical displacement along the z-axis is applied to

the top end and linearly ramped from zero to a maximum value of 0.85mm, to

represent the vibrational excitation to which the device is subjected. A level of

pre-tensional contact force of 10N has been used for all the elements, by explicitly

defining them into the model instead of the pre-tension discussed previously from

applying a tension load to either the warp or weft wires. The simulation has been

divided into 20 substeps. The resulting hysteresis loop is reported in Figure 7.4.

A value of 0.1188 was calculated for the damping loss factor.
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Figure 7.4: Hysteresis loop for the cylindrical linear damper.

The deformed shape is illustrated in Figure 7.3b. In this case, the radial

shrinkage of the cylinder is caused by the shear of the elements.

In Figure 7.5 the shear strain corresponding to the maximum deformation is

plotted for a generic column of elements (being the results analogous for every

sector given the axial symmetry of the cylinder) as a function of the element

position along the z-axis. The non-uniform distribution is minimum in correspon-

dence of the boundary conditions and reaches a peak at mid-height, where the
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radial shrinkage is also maximum. On the same figure, the frictional torque reac-

tion corresponding to the maximum shear is also reported for the same column

of elements, showing the different contribution of each wire intersection to the

overall energy dissipation. Note that, because of highly distorted elements at the

extremities of the cylinder, this has led to negative values of torque and strain in

those locations, contrarily to what expected. Since this has not sensibly affected

the overall results, it was chosen to force these values to zero in the figure.
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Figure 7.5: Variation of maximum torque reaction and shear strain for a single

element along the z-axis.

7.2.2 Sinusoidal plate damper

Another alternative geometry is proposed as a damper concept, consisting of a

sinusoidally curved plate of mesh material where the wires are oriented at +/- 45

degrees with respect to the sides of the plate.

The shape of the plate can be described by the following expression:
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z = Zpsin(
πx

Lp
− π

2
) (7.1)

where Zp is the amplitude and Lp is the semi-wavelength of the plate sinusoid.

The dimensions of the plate damper are reported in Table 7.2. The material

considered is Nitinol with a friction coefficient of 0.3.

Plate amplitude Zp mm 3.00

Plate semi-wavelength Lp mm 13.47

Plate width W mm 59.96

Table 7.2: Material properties and geometrical dimensions of the sinusoidal plate

damper.

The model is composed of 761 intersections in total and, analogously to the

cylindrical linear damper, a constant pre-tensional contact force is assigned to

every element. Two potential configurations are investigated that differ from each

other in terms of boundary conditions and applied loads.

z
y x

Figure 7.6: 3-D model of the sine plate damper.
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7.2.2.1 Squeeze damper

In this configuration, the damper can be imagined as constrained between two

frictionless rigid plates, one of which is fixed to the ground whilst the other is

bonded to the source of vibration. When the top plate is subjected to an oscilla-

tion along the z-axis, this causes the squeezing of the damper, with a reduction

of the plate damper sine amplitude and the elongation of the plate. The partic-

ular curved shape of the damper allows to convert the vertical compression into

shear strain of the elements, which generates a corresponding non-linear frictional

response.

To replicate the same conditions in the reduced model, the three bottom peaks

of the plate are restrained from moving along the z-axis, while a displacement is

applied to the top peaks along the z-axis, as illustrated in Figure 7.7.

Figure 7.7: Boundary conditions and loads for the sine plate squeeze damper.

In Figure 7.8 the force-displacement hysteretic response of the damper is re-

ported for a contact force of 20N. A value of 0.0597 was calculated for the corre-

spondent damping loss factor.
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Figure 7.8: Force-displacement hysteresis loop for the sine plate squeeze damper.

7.2.2.2 Mesh material constrained layer damper

Constrained layer dampers (CLDs) are devices used for the reduction and control

of vibrations that are composed of a polymeric layer that adheres to a metallic

constraining layer (often either steel or aluminium). The device in operating con-

ditions is bonded to the vibration source through the polymeric layer. When the

structure undergoes vibration, the deformation of the constraining layer gener-

ates shear strain within the polymeric layer and this results in energy dissipation

through viscoelastic damping. A common application of CLDs is the control of

noise in vibrating panels from computer hardware components to building con-

structions, automotive [127] and aerospace industry.

A novel damper concept is proposed which, on the same working principle as

the CLDs, replaces the viscoelastic layer with a mesh material sinusoidal sheet,

pinned at its extremities to a metal plate. When the vibrating structure to which

the damper is bonded undergoes bending deformation, this produces alternated

tension and compression of the plate. This displacement is transferred to the mesh
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and its frictional contacts are activated resulting in energy dissipation.

The sine plate model previously described is analysed under this specific load

configuration, which is illustrated in Figure 7.9.

Figure 7.9: Boundary conditions and loads for the mesh material constrained

layer damper.

The bottom peaks of the plate are restrained from moving along the z-axis, while a

displacement along the x-axis is applied to both extremities in opposite directions

and linearly ramped from zero to 0.5mm. To allow a sufficient freedom of motion,

the displacement load is applied only to the central node (e.g. Y = W/2) at each

side.

In Figure 7.10 the shape of the model after deformation is reported. Different

levels of pre-tensional contact force have been tested and the correspondent loss

factor and dissipated energy per unit area are reported in Table 7.3. In Figure

7.11a the non-linear hysteretic response for a contact force of 20N is reported. In

Figure 7.11b the same results are compared in normalised coordinates with the

ones corresponding to 1N and 10N contact force, showing how the area of the

hysteresis loop changes accordingly.

Pre-tensional contact force N 1 10 20

Loss factor - 0.0054 0.0506 0.0769

Dissipated energy per unit area mJ/mm2 1.63E-05 1.92E-04 3.71E-04

Table 7.3: Loss factor and dissipated energy per unit area at various levels of

pre-tensional contact force.
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Figure 7.10: 3-D model of the mesh material constrained layer damper after

deformation.
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Figure 7.11: Force-displacement hysteresis loop for the mesh material constrained

layer damper. (a) Results for a pre-tensional contact force of 20N. (b) Comparison

of hysteretic response for different level of pre-tension in normalised coordinates.

7.3 Conclusions

In this chapter four different PWMM dampers are proposed as substitute to com-

monly adopted viscoelastic materials. In particular, by means of the developed

reduced model, a cylinder and a sinusoidal plate are investigated as potential
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damper geometries. It is found that, with the proper set of boundary conditions

and with a sufficient contact force at the intersections, these damping devices

show a high hysteretic response, a clear indication of their capability of energy

dissipation.

These proposed solutions are intended as a concept and give an insight of the

level of complexity that can be achieved with the developed MATLAB-ANSYS

algorithm. By no way is this an exhaustive set of configurations. The possibilities

include but are not limited to geometry, materials, and load path. The intention

is to provide an illustrative example of how the reduced FEM can be used.

Although not discussed here, one of the main benefits of the model is that

it can identify the damping for each contact location. It is not unimaginable

to believe that this could be used as a design tool to optimise various locations

depending on the loading type, especially for complex loading configurations.
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Chapter 8

Conclusions and future work

In this research a detailed numerical and analytical investigation has been con-

ducted on PWMMs which has brought the development of a series of analytical

models for the characterisation of these materials. These models have been subse-

quently incorporated into a reduced finite element model for the study of different

complex geometries using PWMMs and the development of a software program

for the designing of mesh material damping devices. In this chapter, the main

conclusions originated from the work are summarised. The most important con-

tributions that this research has produced are highlighted and also further future

research suggestions are provided, further extending this work.

8.1 Overall conclusions

In Chapter 2, the literature has been interrogated on the current state of the

art regarding the characterisation of plain-weave structures. An evident knowl-

edge gap was identified since the current existing mathematical models, which

are mostly related to textiles and fibre-reinforced composites, typically rely on

experimental data or are based on simplified equations that do not account for

the frictional contact mechanics at the wire-to-wire interfaces.

In Chapter 3, the geometrical characterisation of PWMMs was conducted, by

exploiting the high repetitivity of the plain-weave pattern, defined by a constant
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aperture geometry and size. Through image analysis of a selected specimen, the

longitudinal undulation of the wires was investigated, concluding that it can be

mathematically described by a monoharmonic sinusoidal function. The initial

assumption of constant aperture was validated through a further image analysis,

that confirmed the high repetitivity of the structure, with a general low value

of relative standard deviation for the aperture. In addition, stainless steel and

Nitinol have been identified as test case materials, only considering their linear-

elastic properties.

A series of three analytical models describing the stiffness and damping me-

chanical response of PWWMs is presented in Chapter 4. The tension-compression

model combines Castigliano’s theorem and the Hertz contact theory for calculat-

ing the effective stiffness, effective Poisson’s ratio, and wire-to-wire normal contact

force of a single PWMM unit cell. Both the effective properties and the contact

force were shown to increase non-linearly with the tension load, because of the

Hertzian normal compression of the wires at the contact interface. The shear

model calculates the non-linear frictional response of mesh materials for in-plane

shear by employing the Lubkin model which combines the Hertz contact theory

and the Coulomb friction model. The shear model was exploited to calculate the

torque-rotation hysteresis loop, for characterising the vibration damping response

of PWMMs for shear modes. Finally, the out-of-plane model, based on the same

principles of the tension-compression model, calculates the wire-to-wire contact

force resulting from out-of-plane bending of the RUC.

In Chapter 5, the three analytical models presented in Chapter 4 were validated

through a comparison between numerical and theoretical results. This confirmed

the validity of the mathematical models. The tension-compression model was

shown as capable of capturing the non-linear effective stiffness and Poisson’s ratio

of PWWMs with good agreement and to compute the normal contact force at the

wire-to-wire intersection with a moderate relative error. The highly non-linear

frictional response of PWMMs for in-plane shear was described with high accu-

racy by the shear model for a wide range of wire rotations and for a large span

of mechanical properties of the constituent materials. The out-of-plane bend-
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ing model showed acceptable agreement between numerical and analytical results

when tested for the case of uniaxial bending (only applied to a single wire).

In Chapter 6, the analytical models presented in Chapter 4 were incorporated

into a reduced finite element model, where a newly developed beam-shell element

was introduced as representative of a RUC. This reduced model was then im-

plemented through a developed MATLAB-ANSYS software and validated. This

was shown to achieve a drastic reduction in computation expense, maintaining, at

the same time, acceptable agreement with the analytical models and the full FE

model. A qualitative experimental validation was also performed by comparison

with previously acquired bias-extension test data, showing a general validity of

the developed models in capturing the shear behaviour of mesh materials.

The reduced finite element model and software from Chapter 6 was employed

in Chapter 7 to analyse four different PWMM geometries - two cylinders and two

sinusoidal plates - which are proposed as novel conceptual devices for vibration

damping. It was shown that the reduced FEM is capable of analysing complex

three-dimensional geometries of mesh material with different loads and boundary

conditions, representing structures with a very high number of wire intersections.

From the results obtained using the software, the mesh material dampers were

shown to have a high hysteretic friction response, confirming their ability of dis-

sipating energy effectively.

8.2 Main contributions from this work

As a result of this research, the following contributions to the knowledge were

achieved, as already stated in Chapter 1:

� A detailed investigation for PWMMs through numerical analysis has been

conducted and this has has led to expanding the knowledge on the mechan-

ical behaviour of these materials.

� A set of analytical models for the characterisation of PWMMs stiffness and

damping behaviour was developed and discussed:
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⋄ A tension-compression model has been developed that describes the

behaviour of PWWMs when subjected to tension load by capturing

the non-linear effective stiffness, effective Poisson’s ratio and wire-to-

wire normal contact force arising from either a uniaxial or a biaxial

state of tension.

⋄ An in-plane shear model has been developed that captures the highly

non-linear frictional response of PWMMs for shear mode. The model

presents high precision for a wide range of motion, which encompasses

the entire micro-slip phase, limited only by when then wires touch

each other in a location other than the initial contact area (locking

condition).

⋄ An out-of-plane bending model has been developed that describes the

effect of the out-of-plane bending of the wires on the wire-to-wire nor-

mal contact force.

This set of developed analytical models introduces a novel approach to the

characterisation of mesh materials, based on the computation of the actual

contact mechanics involved at the wire-to-wire intersections with the aim

of capturing the nonlinear dissipative response of these materials, whereas

the current state-of-the art models either do not account for this or employ

simplified mathematical models that highly rely on empirical data.

� A reduced finite element model for PWMMs was developed that employs a

novel beam-shell finite element for representing a mesh material warp/weft

intersection. This element is described by a set of linearised properties

calculated by means of the analytical models. The major advantage of

this reduced model is that the contact non-linearities are incorporated into

the material properties and this permits to achieve a drastic reduction in

computational demand by both reducing the number of elements in the

model and the convergence issues that are often associated to non-linear

problems.

� A fully operational software for the analysis of PWMMs has been devel-
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oped by implementing the novel reduced FEM into a MATLAB-ANSYS

integrated environment that allows to study complex three-dimensional ge-

ometries of mesh materials.

� Four different concept dampers for industrial applications have been pro-

posed and their damping properties analysed by means of the newly devel-

oped software, to test the capabilities of the reduced FEM.

8.3 Suggestions for future further work

From the investigation conducted in this research, various further questions have

emerged concerning the behaviour of mesh materials. Here, some of these ques-

tions are briefly listed as suggestions for future research on this topic:

� In this work, a numerical analysis has been employed as a main approach of

investigation on the physics of mesh materials. A qualitative experimental

validation was also performed by employing previously acquired test data.

In a future work, this could be associated with an experimental study of

PWMMs by means of vibration tests and digital image correlation (DIC).

This can be performed both on in-plane mesh material configurations (for

instance through bias-extension and picture frame tests for the characteri-

sation of tensile and shear behaviour), and on more complex mesh material

geometries, such as the cylindrical and sinusoidal plate dampers proposed

in Chapter 7. An experimental validation of the frictional contact mechan-

ics of a single wire-to-wire intersection is also suggested. This could be

performed on a cylinder-to-cylinder configuration by employing a torsional

friction test rig and applying a quasi-static rotation to one cylinder while

fixing the counterpart and measuring the correspondent friction torque.

� In the analytical models presented, the longitudinal undulation of the wires

has been neglected when computing the contact mechanics via Hertz theory.

The models could be expanded to account for this aspect, to further improve

the accuracy of the results.
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� Throughout this research, two materials - stainless steel and Nitinol - were

considered as constituents for PWMMs. As already noted previously, these

only represent test case materials and the analytical models can be applied

to any Hookean material. Therefore, the potential application of other ma-

terials should be explored.

� In the in-plane shear model, a simplified equation (geometric mean) has

been utilised to calculate the equivalent shear modulus for the orthotropic

configuration, leading to an error in the micro-slip phase. This aspect re-

quires a further investigation to increase the accuracy when warp and weft

wires are built of different materials.

� The developed analytical models are limited to a linear elastic behaviour

of the wires. Effort should be spent on extending the models to account

for material non-linearities such as plasticity and superelasticity. Moreover,

they are based on the assumption of small deformations. This requires

further work to account for geometric non-linearities.

� In the examples analysed in Chapters 6 and 7, by means of the developed

software, only mesh materials with square apertures and same diameter for

both warp and weft wires were considered. Plain-weave structures with

different geometry (wavelength and diameter) between warp and weft wires

should be considered.

� The methodology adopted in this work for the homogenisation of plain-weave

materials lies itself to a description of other patterns of mesh materials with

high repetitivity. This should be further investigated to extend this work to

the study of other structures, such as knitted materials.
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Figure 8.1: NASA spring tire.

As already discussed, in recent years mesh materials have been gaining con-

siderable interest as industrial applications for harsh environments, because of

their large applicability to extreme conditions, only limited by the properties of

their constituent materials. The spring tire developed by NASA and mentioned

in Chapter 2 (see Figure 8.1) is just an example of a potential application of these

materials to aerospace industry. The analytical models and the reduced FEM

developed in this work, and their subsequent software implementation, can be ex-

ploited for the designing and optimisation of mesh material friction devices. This

is even more important as the popularity of mesh materials expands.
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Appendix A

MATLAB main script

clc

clear all

global G E_star L r C1a C2a C3a C1b C2b C3b K_eq_0 nu_eq_0 mu pre_FN

n_substeps criterion FN_table orthotropic

%material properties

%warp wire

E1=200*10^9; %Young’s modulus [N/m^2]

nu1=0.3; %Poisson’s ratio

G1=E1/(2*(1+nu1)); %shear modulus [N/m^2]

%weft wire

E2=200*10^9; %Young’s modulus [N/m^2]

nu2=0.3; %Poisson’s ratio

G2=E2/(2*(1+nu2)); %shear modulus [N/m^2]

%contact properties

E_star=1/((1-nu1^2)/E1 + (1-nu2^2)/E2); %effective elastic modulus [N/m^2]

G=sqrt(G1*G2); %effective shear modulus

mu=0.3; %friction coefficient
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%geometry

L=2.7*10^-3; %semi-period [m]

d=0.91*10^-3; %diameter [m]

r=d/2; %wire’s radius [m]

Z=d/2; %wire’s amplitude [m]

A=pi/4*d^2; %area [m^2]

I=pi/4*(d/2)^4; %second moment of inertia [m^4]

chi=10/9; %Timoshenko coefficient

if E1~=E2 || ni1~=ni2

orthotropic=1; %informs functions that material is orthotropic

else

orthotropic=0;

end

%coefficients for tension model

psi=Z/L; %waviness ratio

PSI=sqrt(1+psi^2*pi^2);

%warp wire

C1a=-(PSI*L^3)/(E1*I*pi^2) + (L*atanh(pi*psi/PSI))/(E1*A*pi*PSI)

-(chi*L*atanh(pi*psi/PSI))/(G1*A*pi*PSI);

C2a=L^3/(48*E1*I) + (L*(PSI-1))/(4*E1*A*PSI) + chi*L/(4*G1*A*PSI);

C3a=(L^3*psi^2)/(2*E1*I) + L/(E1*A*PSI) + (chi*L*(PSI-1))/(G1*A*PSI);

%weft wire

C1b=-(PSI*L^3)/(E2*I*pi^2) + (L*atanh(pi*psi/PSI))/(E2*A*pi*PSI)

-(chi*L*atanh(pi*psi/PSI))/(G2*A*pi*PSI);

C2b=L^3/(48*E2*I) + (L*(PSI-1))/(4*E2*A*PSI) + chi*L/(4*G2*A*PSI);

C3b=(L^3*psi^2)/(2*E2*I) + L/(E2*A*PSI) + (chi*L*(PSI-1))/(G2*A*PSI);;
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%initialisation values

K_eq_0=6.5; %initial effective stiffness [MPa]

nu_eq_0=0.35; %initial effective Poisson’s ratio

pre_FN=0; %pre-tensional contact force [N]

n_substeps=1; %number of substeps

max_iter=3; %max. number of iterations per substep

criterion=0.005; %max. rel. err. for convergence [x100%]

%cleaning the temporary files folder

system(’del/q files\*.*’);

%saving initial settings (units: [MPa] and [mm])

fileID = fopen(’files\settings.inp’,’w’);

fprintf(fileID,’%5.0f,%1.3f,%5.0f,%1.3f,%2.3f,%2.3f,%5.0f,%1.3f,%1.3f,%3.3f’,

E1/10^6,nu1,E2/10^6,nu2,L*10^3,d*10^3,n_substeps,K_eq_0,nu_eq_0);

fclose(fileID);

tic; %starts timer

for substep=1:n_substeps

for n_iter=1:max_iter

if n_iter==1

message=sprintf(’\nSUBSSTEP %d - iteration %d ’,substep,n_iter);

else

message=sprintf(’\n iteration %d ’,n_iter);

end
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fprintf(message); %prints message on command window

if n_iter==1

if substep==1

system(’start.bat’);

%in the first substep, starts simulation from beginning

else

system(’restart.bat’);

%restarts simulation from last converged substep

end

elseif n_iter>1

if substep==1

%if the first substep does not converge, the simulation

%will be started again from the beginning

system(’start.bat’);

else

%in order to re-execute the last non-converged substep,

%it is necessary to delete the restart file

file_name=[’files\file.r’,num2str(substep,’%03.f’)];

system([’del/q ’,file_name]);

system(’restart.bat’);

end

end

[non_conv_num]=post_process(substep, n_iter);

%analyses results and updates material properties

if non_conv_num==0

fprintf(2,’---> All elements converging.’)

break %exits iteration loop and starts next substep

else
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fprintf(2,’- %d non converging elements.’, non_conv_num)

end

end

%updates counter with ID of last converged substep

fileID = fopen(’files\counter.csv’,’w’);

fprintf(fileID,’%5.0f’,substep);

fclose(fileID);

end

%time required for simulation

simulation_time=toc; %stops timer

simulation_time=round(simulation_time,0);

s=seconds(simulation_time);

s.Format=’mm:ss’;

fprintf(2,’\n\nSimulation completed.’);

fprintf(1,[’\nElapsed time: ’,char(s),’ [mm:ss] \n’]);
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