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Abstract

In the first part of this thesis we study linearization stability conditions in quantum
supergravity on a flat 3-torus. Solutions to linearized supergravity on this background
space-time can only be extended to solutions of the non-linear theory if they satisfy
additional quadratic constraints, called the linearization stability conditions. This
situation is well known in linearized gravity. The novel feature in the case of super-
gravity is the appearance of fermionic linearization stability constraints, in addition
to the kind of bosonic constraints which arise already for linearized gravity. We show
how to incorporate the fermionic and bosonic linearization stability constraints in the
quantum theory and construct a physical space of states by group-averaging.

Unlike higher dimensional de Sitter spaces, two dimensional de Sitter space is
not simply connected. This allows for the existence of fields which pick up non-
trivial phases when making a full rotation of the spatial sections. In the second
part of this thesis we study the quantum theory of automorphic complex scalar fields
in two dimensional de Sitter space, extending the work of Epstein and Moschella.
We define de Sitter invariant vacuum states when corresponding unitary irreducible
representations of the universal covering group of SL(2,R) exist. By calculating the
two-point functions we show that these states can only be Hadamard if the field is
periodic. We also define a class of de Sitter non-invariant Hadamard states for the
automorphic theories.

In the final part of this thesis we study harmonics on complex spheres. Using
Mackey’s tensor product theorem, the harmonics on complex spheres can be used to

decompose tensor products of principal series representations of the Lorentz group.



Contents

Abstract 2
Contents 3
List of Figures 6
Introduction 7
Acknowledgements 8
Declarations 9
I Supergravity on a 3-Torus: Linearization Stability Conditions with
a Supergroup 10
1 Introduction 10
1.1 Organisation of this Chapter . . . . ... ... ... ... ... ...... 12
2 Classical Theory of Free Fields: Spin-0, Spin-1/2, Spin-1 13
2.1 Scalar Field . . . . . . . . e 14
2.1.1 Comnserved Charges . . . . . . . . .. .. 15
2.1.2 Charged Scalar Field . . . . . . ... ... ... ... ......... 16
2.1.3 Massless Scalar Field . . . . . .. .. ... ... ... .. ... ... 17
2.2 Majorana Spinor Field . . . . . ... ... ... ... L 17
2.2.1 Zero Modes for Massless Majorana Spinor . . . . . . . ... ... .. 20
2.3 An Example of Global Supersymmetry . . . . . . .. ... ... . 21
2.4 Massless Vector Field . . . .. .. .. .. ... ... ... .. .. . ... . 22
2.4.1 Zero Momentum Modes . . . . . . . . .. ... ... .. 26
3 Example of Linearization Stability Conditions: Scalar QED on a Torus 26
4 Classical Theory of Free-Fields: Spin-3/2 and Spin-2 29
4.1 Rarita-Schwinger Fields . . . . . .. .. .. ... .. oL 29
4.1.1 Zero Momentum Modes . . . . . . .. ... ... L. 31
4.2 Linearized Gravity . . . . . . . . .. . 33
4.2.1 Zero Momentum Modes . . . . . . .. ... ... L. 36
5 Linearization Stability Conditions in Gravity on a 3-Torus 37
5.1 Linearization Stability Conditions in Classical Gravity . . . . ... .. ... 37
5.2 Quantum Linearization Stability Conditions . . . . . . . . .. .. ... ... 41
6 Linearization Stability Conditions in Supergravity on a 3-Torus 44
6.1 Linearized Supergravity . . . . . . . . . . . . . .. 45
6.2 Linearization Stability Conditions. . . . . . . . . . .. .. ... ... .... 49
6.3 Imposing the Quantum Linearization Stability Conditions . . . . . . . . .. 52
6.4 Example of a Physical State . . . . . .. .. ... oo 0oL 59



7 Conclusion 62

A A Note on Conventions 62
B Constrained Hamiltonian Systems 63
C Grassmann Variables 67
D A Note on y-Matrices 69
E A Note on Frame Fields 71
F A Note on Helicities 72
G More on the Quantised Zero-Momentum Gravitino Modes 74

I Automorphic Scalar Fields in two-dimensional de Sitter Space 76

8 Introduction 76
8.1 Organisation of this Chapter . . . . .. ... ... ... ... ........ 77

9 Geometry of Two-Dimensional de Sitter Space 77
10 Canonical Quantisation in two-dimensional de Sitter Space 81
11 States and Two-Point Functions 88
11.1 Symmetries . . . . . . . oL 88
11.2 Hadamard States . . . . . . . . . . . . . . .. 91
11.2.1 Adiabatic States . . . . . . . . . . . .. 91

11.2.2 De Sitter Invariant Hadamard States . . . . . . . .. ... ... ... 93

11.3 De Sitter Non-Invariant Hadarmard States . . . . . . . . ... ... ... .. 102

12 Conclusion 104

H Irreducible Unitary Representations of SO¢(2,1) and its Universal Cov-

ering Group 105

I Integral Representation of the Difference of two Series 108
J Derivation of Equation (657) 110
III Harmonics on Complex Spheres 112
13 Introduction 112
14 Background 112
14.1 Structure Theory of Non-Compact Groups . . . . . . . . . . ... ... ... 112
14.1.1 Iwasawa and Bruhat Decompositions . . . . . . .. .. ... ... .. 114

14.2 Induced Representations . . . . . . . . . .. ... L Lo 114



14.2.1 Principal Series SL(2,R) representations . . . . . . . ... ... ...
14.3 Tensor Product of Principal Series SL(2, R) representations . . . .. .. ..
14.3.1 Mackey’s Tensor Product Theorem . . . . . . . ... ... ... ...
14.3.2 Applying Mackey’s Tensor Product Theorem to SL(2,R) . . . . . . .
14.3.3 Representations Induced from AM . . . . . .. ... ... .. ....
14.3.4 Decomposing the Tensor Product using de Sitter Space . . . .. ..

15 Complex Spheres and SO(3,1) Representations
15.1 Structure Theory of SO(3,1) . . . . . .. . ... ... ... ... .....
15.2 Principal Series Representations of SL(2,C) . . . . .. ... ... ... ...
15.3 Tensor Product of SL(2, C) representations . . . . ... ... ... .....
15.3.1 The Quotient Space SL(2,C)/MA . . . ... ... .. ... .....
15.3.2 The Induced Representation on SL(2,C)/MA . . . . . ... ... ..
15.4 Harmonics on the Complex Sphere . . . . . . . .. .. ... ... .. ....
15.4.1 Normalisation of the Eigenfunctions . . . . ... ... ... ... ..

15.5 Generalising to Higher Dimensional Complex Spheres . . . . . ... .. ..
16 Conclusion
K Unitary Irreducible Representations of the Lorentz Group

Bibliography

123
123
124
125
126
127
129
134
137

139

140

144



List of Figures

1 Carter-Penrose diagram for two-dimensional de Sitter space. The green

area can be connected to the origin O by a space-like geodesic. The blue

area can be connected to the origin by a time-like geodesic. The red shaded

area can not be connected to the origin by a geodesic. . . . . ... ... .. 78
2 The integration contour C in red and Cx in blue in the complex s plane.

The dots represent the poles of the integrand at n + § for integer n. . . . . 108



Introduction

This thesis is composed of three parts, which can be treated independently. The first
part concerns the linearization stability of supergravity when perturbed around a flat
3-toroidal background. The second part deals with free complex scalar fields on two-
dimensional de Sitter space, when an additional twisted periodicity condition is imposed
on the complex scalar fields. In the final part, the decomposition of tensor products of
principal series representations of the Lorentz group is studied using functions defined on
2 complex-dimensional spheres.

In the first part of the thesis, we show that linearized supergravity on a 3-torus suffers
not only from the bosonic linearization instability conditions that the total energy and
momentum of the linearized perturbations have to vanish, which are conditions that al-
ready arise in linearized gravity, but also from a fermionic linearization stability condition
which requires that the total supercharge of the linearized system has to vanish. If these
conditions are not satisfied, the solutions to the linearized system can not be extended to
solutions of the full non-linear supergravity theory. The main result of this part is the
construction of a space of states for the quantum version of the linearized theory which
satisfy the linearization stability conditions. To illustrate the construction of this space,
we also provide an example of a particular state in this state.

In the second part of this thesis, we study automorphic complex scalar fields on two-
dimensional de Sitter space. Two-dimensional de Sitter space is not simply-connected,
so this provides a simple arena to study some effects of non-trivial topology in curved
spacetimes. The automorphic scalar fields are not invariant when making a full rotation
of the circular spatial sections, instead they pick up a phase factor. We study the canonical
quantisation of these free fields. The main results of this section are the construction of de
Sitter invariant states whenever a corresponding representation of the universal covering
group of SOg(2,1) exists, and we show that these invariant states can never be Hadamard
if the field is not periodic. Thus only the periodic Bunch-Davies state is both de Sitter
invariant and Hadamard. We also exhibit de Sitter non-invariant Hadamard states for the
automorphic fields.

In the third part of the thesis, the decomposition of tensor products of principal series
irreducible unitary representations of the Lorentz group into irreducible components is
studied. We follow the well known approach of using Mackey’s tensor product theorem to
show that the study of the the tensor product is equivalent to studying a single induced
representation. The main part of this chapter is showing how this induced representation
can be understood as functions on a 2 complex-dimensional sphere. These functions are

then studied and we recover the known result for the decomposition of the tensor product.
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Part 1
Supergravity on a 3-Torus: Linearization

Stability Conditions with a Supergroup

1 Introduction

In this chapter we examine linearization stability conditions that arise when one linearizes
supergravity in four dimensions around a flat background, whose spatial slices are 3-
toruses. In general, to gain insight into complicated non-linear equations, one considers
the linear equations of motion obeyed by small perturbations around known solutions.
However, it is not always guaranteed that the solutions of the linearized equations of
motions actually arise as approximations of solutions to the exact equations of motion.
When this is not guaranteed, we say that the system is linearization unstable, and further
conditions, known as linearization stability conditions need to be imposed to ensure that
a solution of the linearized system extends to a solution of the non-linear system.
Classical field theory systems which display linearization instabilities are Maxwell Elec-
trodynamics [3, 4] when the background has compact Cauchy surfaces, and classical gen-
eral relativity [3, 5, 6, 7, 8, 9, 10, 11, 12, 13] provided that the background spacetime has
compact Cauchy surfaces and admits Killing symmetries. In Maxwell Electrodynamics,
Gauss’s law says that the divergence of the electric field E is related to the charge density
p by
V-E=p. (1)

Thus integrating we find that
Q:/dsfp:/d?»mﬁ:o, 2)

because the divergence integral can be converted into a surface integral over the boundary
of the Cauchy surfaces, but if the background has compact Cauchy surfaces there are no
boundaries and the integral must vanish. However, in the linearized theory the charged
matter decouples from the electromagnetic field, and therefore the total charge is not
constrained in the linearized theory. Thus ¢ = 0 must be imposed as a linearization
stability constraint. Similarly, in general relativity, it is the charges ()¢ that generate
the Killing symmetries along the Killing vector fields £# which must vanish, and these
conditions must be imposed as linearization stability conditions on the linearized theory.

In the quantum version of the linearized system, the linearization stability conditions
@ = 0 are imposed as restrictions on the physical states of the theory [12, 13]. That is, a
state is said to be a physical state |phys) if

Q|phys) = 0. (3)

Thus the linearization stability conditions require that the physical states of the theory
be invariant under the symmetries generated by the conserved charges. Naively taken

however, this condition would be very restrictive. For example, four dimensional de Sit-
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ter space has compact Cauchy surfaces, and is invariant under the identity component
of SO(4,1). However, it is known that when quantising the gravitational perturbations
around de Sitter space, only the vacuum state is invariant under the Killing symmetires,
thus the space of physical states would appear to be very restricted [4, 14].

A way to deal with this problem is by a procedure known as group-averaging. In this
approach, one starts with a non-invariant state |¢)) and averages over the symmetry group

to define an invariant state |¥) by

|m=[§gwmw» (4)

where G is the symmetry group, and U(g) is the unitary operator which implements the
symmetry described by g € G on the space of states. We have here assumed that G is
unimodular, that is to say we can find a measure dg on the group which is invariant under
both left- and right-translations [15]. All the groups considered in this part will be of
this type. Then |W¥) is by construction invariant under the action of the symmetry group,

however if we calculate the inner product between invariant states
(W1%) = [ dgdh (12| (@)U (1))
— | [a01] [as wilvi@ e (5)
Vo [ g’ (Ul

where Vg is the volume of the group G and we used the unimodularity of G' to change
the integration over h to ¢’ = g~'h. In particular, if the volume of the background
symmetry group is infinite, as is the case for SO(4,1), then these invariant states are not
normalisable. This can be fixed by ‘dividing’ by the group volume, and redefining the

inner product between invariant states as

(%Wﬁ5L®WM@Wﬁ (6)

In this way one can hope to define a finite, positive definite, inner product between the
invariant states. Indeed, this procedure can be carried out to obtain a Hilbert space of
invariant states for linearized gravity in de Sitter space [4, 14], it can also be carried out
for other free fields in de Sitter space [16, 17]. Group-averaging has also been studied
in the context of constrained dynamical systems (see e.g. [18, 19, 20, 21]) and forms an
important part of refined algebraic quantisation [22] and is well studied in Loop Quantum
Gravity.

A comparatively simpler example of a gravitational system where the group averaging
procedure can be explicitly carried out is by expanding the gravitational perturbations

around a flat background metric, with line-element
ds® = —dt? + da? 4 dy? + dz2 (7)

The Cauchy surfaces are made compact by periodically identifying the spatial coordi-

11



nates, with periods Lq, Lo and L3 respectively. This background metric is still invariant
under the R x U(1)? group of space and time-translations. The quantised theory for this
model [12, 23] has been studied using group-averaging to obtain a physical space of states.
In this chapter we study four dimensional N = 1 supergravity linearized around the same
background. In this theory, in addition to the vanishing of the total energy and total
momentum, one requires that the supercharge ), must also vanish. This arises because
the supercharge can also be written as an integral over the boundary at infinity of Cauchy
surfaces in asymptotically flat space times [24]. Thus if we work on the flat 3-torus, these
integrals trivially vanish and we find (), = 0. In this chapter we show how to incorporate

this fermionic linearization stability constraint in the quantum theory.

1.1 Organisation of this Chapter

As a guide, the remainder of this chapter is organized as follows.

We begin first by building up classical field theory on a toroidal background. We first
consider real and complex Klein-Gordon scalar field theory, constructing the Fourier ex-
pansion of the field and the bracket relations obeyed by the Fourier components, which
become creation and annihilation operators on quantisation. We then consider the con-
served charges of the system, including the total energy, total momentum and the charge
for the complex scalar field. Finally, for a real massless scalar field, the torus allows spa-
tially constant (or zero-momentum) solutions to the Klein-Gordon equation, and these are
studied separately.

We then revisit the theory of a Majorana Spinor field, we again construct the Fourier
expansion for this field on a toroidal background and find the classical (Dirac) bracket
structure between the Fourier components. We then write down again the conserved
Energy and Momentum in terms of the Fourier components and finish by considering the
zero-momentum modes for the massless Majorana field.

Having constructed simple scalar and spinor fields, we then introduce supersymmetry
by studying a simple massive non-interacting Wess-Zumino type model. We calculate the
conserved supercharge of the system, and verify that the total energy, momentum and the
supercharge verify the N = 1 supersymmetry algebra relations.

After the detour into supersymmetry, we next introduce free massless vector field
theory on the 3-torus. This is the first theory with a gauge-symmetry, which we deal with
by explicitly fixing the gauge. Working in Coulomb gauge, we write down the Fourier
expansion of the physical components and the classical bracket relations obeyed by the
system. The zero-momentum modes are again separately analysed at the end.

Armed with a description of the electromagnetic field and complex scalars, we study
a first example of linearization instability conditions and group-averaging by considering
scalar quantum electrodynamics on a toroidal background. We show how the total electric
charge of the system must vanish and impose this as a linearization stability condition on
the quantised scalar field. We show how this constraint can be solved by averaging over
the U(1) group associated with the total electric charge.

Following on from this, we introduce spin-3/2 Rarita-Schwinger fields. This theory
again has a gauge symmetry, which we explicitly fix. Particular attention is paid to the

zero-momentum modes of this field, which are not as well studied as the modes with non-
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zero momentum. We calculate the classical brackets for zero-modes and show how these
can be organised into independent Fermi oscillators (up to a sign).

We then move on to the spin-2 field theory describing linearized gravity. We write
down the Fourier expansion for physical components of the spin-2 field, and also the total
energy and momentum. The zero-momentum modes are then separately analysed. We
then move on to recall how by studying the second order in perturbation theory, one
finds that the total energy and total momentum in the linearized theory must vanish. We
then recap how these constraints can be incorporated in the quantum theory by group
averaging, following the method of [23].

Finally, we combine the spin-2 and spin-3/2 fields in a linearized version of four dimen-
sional N = 1 supergravity. A novel aspect of this theory is that the conserved supercharge
Q@ also has to vanish. We show how this arises in the linearized theory by studying the
second order in the perturbation theory. We then incorporate this constraint into the
quantum theory, and show that this can be done by group-averaging over the supergroup
of symmetries. To end the main content of the chapter, we illustrate the construction
of the physical states in linearized supergravity on a 3-torus by constructing an explicit
example of a physical state.

The main content of the chapter is supplemented by seven appendices. In appendix
A, we collect the conventions we use throughout the thesis. Appendix B contains addi-
tional information about constrained Hamiltonian systems, in particular we recall how
constrained systems can be dealt with in the Hamiltonian formalism by replacing Poisson
brackets with Dirac brackets. Appendix C collects some information relating to Grassmann
variables, which are used to study the classical theory of the spinor fields. In appendix D
we collect some information regarding y-matrices and prove a number of identities used in
the main text. Appendix E is devoted to frame fields, which are required to couple gravity
to fermions, as is done in supergravity. Appendix F calculates positive helicity vectors
and spinors used in the construction of the spinor fields as well as the electromagnetic and
gravitational field. In appendix G we study the quantum theory of the zero-momentum

gravitino modes in more detail.

2 Classical Theory of Free Fields: Spin-0, Spin-1/2, Spin-1

Throughout this thesis, unless otherwise noted, we will assume that the background space-

time is four dimensional, with Minkowski metric given by
ds? = ny,detde” = —dt? + da? + dy? + dz2 (8)

Further, we will assume that the spatial sections form 3-tori with lengths L1, Lo and Lg
in the z-, y- and z-directions respectively. We denote the total spatial volume by V and
this is given by

V =L1LsLs. 9)

13



2.1 Scalar Field

We start with a free real scalar field ¢. This theory is governed by an action
1
Stol = [ dta 5 (-0"00, - M) (10)

The equation of motion for this theory is obtained by extremizing the action with respect

to the field. That is
oS

50
In the canonical setting, we are interested in the conjugate momentum 7 to ¢, which is

defined by

= 9,0"¢ — M?¢ = 0. (11)

oL 0
") = gaam) = 50l (12)

The classical phase space coordinates for the scalar field are ¢(Z,t) and 7 (Z,t) taken at
an arbitrary fixed equal time ¢ (typically taken as ¢ = 0). The canonical Poisson brackets

between ¢ and 7 are given as

{o(t.7),7(t,9)} = 6°(F — ), (13)

where 0%(Z—7) is the three dimensional Dirac-delta function defined so that for an arbitrary

function f(Z)
L/&gﬂm&fmzf@» (14)

To make progress, we expand ¢ as a Fourier series

_ 1 AW
¢(z) = Wzgjcb(t,k) : (15)

where V is the spatial volume of the torus and reality of ¢ requires that ¢(t, k)* = ¢(t, —k).

Then the Klein-Gordon equation becomes

d? - -
— + M*+ K ) ¢(t, k) =0. 16
(g + 00+ ) o0, (16)
Thus, denoting Ep = + K2+ M 2, we find that the general solution is a superposition of

positive and negative frequency solutions

-,

o(t, k) = A(k)e Frt + B(k)e'Pit, (17)

The names positive and negative energy or frequency come from considering a Heisenberg
type equation, applying ¢J; to these solutions gives positive or negative eigenvalues. Using

the reality of ¢(z), we can then write

. 1 1 ™ ik-x N, —ik-x
qﬁ(t,x):\/v;@(a(k)ek +al (Rye=h), (18)
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-,

where k# = (Er, k) and we have defined

1
V2E;

Similarly, we can expand the conjugate momentum as

L1 NN .
- _ _K kT __ 1R-T . 2
(t, 7) \/VE,;:( = (a(k:)e af (B)e ) (20)
Isolating the coefficient a(k) as

a(fy = V& iy / P ik (¢(t,f) - Eijr(t,f)> , (21)
k

A(k) = a(k),  B(k) =

at(=k). (19)

we can calculate the Poisson brackets between a(k) and af(k), where we find

{a(k),a’(§)} = —idp(k — p), (22)

with all other Poisson brackets vanishing. Here dp(p) is a discrete momentum-space delta

function, that is for any function g(k) in momentum space,

> 9@)dp(k - p) = g(k). (23)

2.1.1 Conserved Charges

The real Klein-Gordon scalar field theory has some continuous symmetries, arising from the
invariance of the action under space-time transformations. As a consequence of Noether’s
theorem there are associated conserved charges. For invariance under space-time transla-
tions these are the total energy H and total momentum P of the system. Suppose that

we make the infinitesimal space-time translation
T x—€ (24)

Under this translation, the fields transform as ¢(x) — ¢'(z) = ¢(x + €), so that the

infinitesimal transformation of the field is

dep(z) = ¢/ (x) — ¢(x) = €' Ou(). (25)

As the action is invariant under this transformation when the equations of motion are

obeyed, we must have

08

— e = Oy JH, 26

5500 = 0y (26)
We find that J* is linear in €, so writing J* = TH* ¢, we find that the energy-momentum
tensor is given by

TH = §Hpd” ¢ — P L. (27)

15



The associated charges are then obtained in the usual manner as
PF = / a3z T (28)

A straightforward, if slightly tedious, calculation then yields

-,

—H= ZE~a (k)a(k), (29)
P=>"kd (E)a(/z). (30)
k
2.1.2 Charged Scalar Field

We can also consider complex scalar fields ®, which are governed by an action
S[®] = /d4x (—aﬂqﬂa@ - M2<I>T®). (31)

Treating ® and ®' as independent, the phase space consists of {®,II, ®', I}, with the
conjugate momentum
0
11 —of 32
(1) = ¥/ (2), (32)

and the only non-zero canonical equal-time Poisson brackets being

{@(t,7),11(t,§)} = 6°(F — §) = {@'(t,2), L' (1, P} (33)

The Fourier series can be written down as before, except that there is now no reality

condition, which therefore yields

(alF)e™ + bl (R)e=v), (34)

f Z /2 E;
where in this case we have as non-zero Poisson brackets
{a(k),a' (D)} = —idp(k — p) = {b(k), b (§)}. (35)

In this case the total energy and momentum are given by

—.

H= ZEﬂ ( (B)a(k) + bWZ)b(E)) , (36)
P= Z P ( (B)a(k) + bT(/%’)b(/%’)) . (37)
A novel feature of this model is that there is an internal U(1) global symmetry, given by
P — &' (z) = exp(—ied)®(x), (38)
where 6 is a constant real number. The associated infinitesimal transformation is

dp®(x) = —iefP(x). (39)
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There is again an associated charge, which can be found as before, we write

oS oS
=50 + 60T = = —9,J". 4
Then we can calculate that a suitable current is
T = —ief(®T0"D — ' DTD). (41)

Removing 6 and integrating, we find the conserved charge @

Q = +ie / & (2100 - 0,872),

= Y (! (RyalF) — b (R)b(R)). “2)
k

when coupled to an electric field, this has the interpretation of electric charge.

2.1.3 Massless Scalar Field

There is a novel subtlety when working on the torus if we take the massless limit M? — 0.
In this case the zero-modes k = 0 need to be treated more carefully as in this case B — 0 as
well. The zero-momentum &k = 0 modes correspond to spatially constant modes. Writing

o(t, %) = ﬁqﬁo(t) in the scalar action (10), we find that these modes are described by a

L= % (a;?)?. (43)

This corresponds to the Lagrangian of a free particle, which can be analysed in the usual

Lagrangian

manner.

2.2 Majorana Spinor Field

We next consider spinor fields. We will exclusively deal with Majorana spinor fields, which
should be viewed as the spinor equivalent of real fields. Let 1, be a four component spinor
field. We will eventually want this to describe a theory of spin-1/2 particles, so by the spin-
statistic theorem these will be fermions obeying Fermi-Dirac statistics. As a consequence

the spinor field is composed of anticommuting variables

onﬂ/’ﬁ = _¢ﬁ¢a~ (44)

We refer to Appendix C for more on details on the classical mechanics of anti-commuting
variables. To work with spinors, we introduce the y-matrices v* which obey the commu-

tation relations
VY] = 20t (45)

See Appendix A and Appendix D for more properties of the y-matrices. We say that the

spinor field v is a Majorana spinor if it obeys

(V1o = (1CY")a, (46)
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where the charge conjugation matrix C' obeys CT = —C and
A = —CcyrC (47)

If we use the Majorana representation (422) for the y-matrices, we may take C' = i7" and

the Majorana condition reads

W, = o (48)

A suitable action for a theory of free Majorana spinors is
4 1 o
Sl) =~ [ de 50 (19, —m) v, (19)

where ¢ = 9T C. Then the equation of motion obeyed by 1 is found to be

5S
5 =—-C(y0, —m)yp =0, (50)

multiplying by C~! we recover the Dirac equation. We note here that the derivative is to

be considered as a left-derivative, see Appendix C equation (459), so that

1S

65 = [d'x s : 51
[t ooty (51)
Next, we calculate the conjugate momentum to v, we find here that
oL i
— Ve (52)

HO{ = =
000, 2

We note here that this definition is not immediately consistent with the canonical Poisson

brackets

{w(t7 f)? 1/’(@ Zj)} =0,
{¢(t7 f)? H(ta g)} = _53(5 - ?j); (53)
(11(¢, ), 1L(t, )} = 0.

To proceed, we need to implement (52) as a constraint on the system, which can be done
in the canonical formalism by using Dirac brackets. We refer to Appendix B for a review

of constrained Hamiltonian systems. Denote the constraint as

)
¢a = Ha + 571)047 (54)
this is a second-class constraint because

Cap(Z,7) = {9a(t,T), $5(t,§)} = —i0apd° (T — 7). (55)
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Thus, the fundamental Dirac bracket we should impose is

(alts ), 03(t, D} p = {Ga(t, 7). B(t, D)} p
= [ @PE (0,2, 0,00} C @ D000 1. )

= —i0,p0° (% — ¥),
(56)

— —

where C’;ﬁl (Z,7) is the inverse of Cog(Z,¥) in the sense that

/ P Cop (T, W) Cpy (W6, §) = G0y (T — 7). (57)

Next, we find again the Fourier expansions, so let us write
Yalt, &) \ﬁ Z D(t, k)™, (58)

where again the Majorana condition requires us to impose (¢, k)* = (¢, —k). Then the
Dirac equation implies that (¢, E) has to obey

-,

( gt +iy-k— m) Y(t, k) =0. (59)
By noting that
(VO +m) (18, — m)ip(x) = (90 — m?)ip(a) = 0, (60)

we again look for positive and negative energy solutions, proportional to exp(:FiEEt) re-
spectively. In fact, there are two linearly independent solutions for the positive and nega-

tive frequency solutions, so that we may write

GaltF) = > [As(B)e 5 + By (R)e | (61)

s=1,2

where we use s = 1,2 to count the two linearly independent solutions. Taking into account

the reality condition, we thus get the general expansion

1 s o
balt,B) = —=> Y —— |as(R)u’ (k)™ + af (k)v® (k)e 7| , (62)
vV i os=1,2V 2B [
where u*(k) a
that s (k)u’,(
v (F) = u(F
bracket obeyed by the as(E) are

a normalised basis for the positive frequency solutions, normalized such

are a
E) 2\/;;] In the Majorana representation for the ~-matrices, we have
). With these conditions, it is possible to find that the classical Dirac

{aS(E)> ai(ﬁ)} = _iésréD(E - m (63)

To get a feel for these solutions, let us take k= ké1, where €7 is a unit vector in the
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z-direction. Then the positive frequency solution u(lZ) obeys

(BA° — ky') u(k) = imu(k) (64)

That is, u(E) is an eigenvector of the 4 x 4 matrix, written as 2 x 2 blocks,

-k E-
( k) (65)
-E; k
with eigenvalue +im, thus we find

Us(kgl) _ <vk‘ —im 8) ’

Vk +img&® (66)

where £° is an orthonormal basis for two dimensional space. In particular, if we make the

e
fi(k}(il) = \/i <:|Zz> , (67)

then we show in Appendix E that in the massless limit the u®(k) are eigenspinors of the

choices

helicity operator with eigenvalues :l:% respectively
The theory also has a conserved total energy and momentum, which we can calculate

as

H=>" " Ezal(k)as(k), (63)

B s=12

P=>">" kal(k)as(k). (69)

i s=12

2.2.1 Zero Modes for Massless Majorana Spinor

Consider now the massless case m = 0. On the torus we then again expect zero momentum

modes. To analyse the zero modes, let us write

¢w@=jvam (70)

then the action for the zero-momentum modes becomes

S = / dt [— Tcyoaow] (71)

Then we can read off the canonical conjugate momentum =, as
R = (070 (72)
In the Majorana representation simplifies to 7, = —%wa. This again needs to be imposed

as a second class constraint on the system. Note that the canonical Hamiltonian for this
system vanishes, because
He = thoma — L =0 (73)
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A quick calculation shows that the Dirac bracket between the v, which we need to impose
is

{Yas¥ptp = —idap- (74)

2.3 An Example of Global Supersymmetry

Let us consider an example of a theory which displays a global supersymmetry. This free
massive Wess-Zumino [25] type model consists of two real scalar fields ¢; and ¢9 as well
as a Majorana spinor 1, all of which have the same mass M. There are no interaction

terms between the fields, and thus it is governed by the action

Ston. 62,01 = [ @t [3 (-0°0n0u6n — M2 — 000,00 — M23)

1 (75)
- §¢(7Mau — M)ip|.
This action is invariant under the supersymmetry transformation
1
P11 P1 + 001 = ¢1 + €Y,
i
G2 P2+ 0c2 = P2 + 5@5% (76)
P P+ 0p =P+ ( YOy +M)¢1+2€75( V0u + M)z,
where ¢ is a Majorana spinor and we have defined v5 = —iv%y!y2+43. By Noether’s

theorem, associated with this transformation there is a conserved spinor supercurrent J*

and a conserved spinor supercharge (). The conserved current obeys

0S -8
e 29 (qm
g+ B 005 = 0,(E0"). (1)
One quickly finds that a suitable super current is therefore
1 , .
9" = 5 1061 = iv52) = M(61 + 1562 ", (78)

so that the conserved supercharge is

Q= / a3z 9°
. (79)
= /d3:E 3 (I 0u(d1 — ivsd2) — M (1 + iv502)] 7°0) -

If we label the Fourier coefficients of the free scalar fields ¢; by a;(k) and aj(lg) fori=1,2

and for the Majorana spinor we use bS(E) and bz(g), then we can calculate that
Z > [—iu® (Byar (R)bl(F) + i® (Byal (F)bu ()

fwg) Z Z [ S(kK)a(B)bL(F) + ivs(E)ag(E)bs(E)} .
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Similarly, we can write down the conserved total energy H and total momentum P by

summing the independent contributions from each field as
Pﬂ—Zk“ al (F)ay (k) + al(K)ay +ZbT , (81)

where k* = (E(k), k) and P* = (P°, P). It is then not too complicated to see that if we

calculate the classical brackets we obtain

{QO”P“} =0. (82)

Similarly, it is possible to calculate that

{QmQB} = - (’Y#'Y )aﬂp (83)

in a way this says that the square of supersymmetry transformations is a space-time
translation, so we should not view supersymmetry as an internal symmetry, but instead
as a space-time symmetry.

As an aside, we note that this Wess-Zumino model can be made interacting with,
for example, Yukawa couplings and quartic interactions between the scalars, while still
preserving the supersymmetry of the theory. The form of the classical brackets between
the Q and P are unchanged.

2.4 Massless Vector Field

Let us now consider electromagnetic theory, which is the theory of a free massless vector

field A,. A suitable action for this theory is provided by

1
S[A,] = / d*z [—4FWFW} : (84)
where the electromagnetic field strength tensor is defined by
F,, =0,A, —0,A,. (85)

Varying the action with respect to A, yields the equations of motion

0S5
_— = VFMV = U.
A, 0 0 (86)

To see how this describes an electromagnetic field theory, we define the electric and mag-
netic fields E and B by

(87)
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Then the equation of motion yields two of Maxwell’s equations

V-E=0, (88)
ég—ﬁxézo (89)
The other two Maxwell equations
V-B=0, (90)
ﬁxﬁ+if:0, (91)

are already inbuilt in this formalism by the definition of E and B in terms of A
A novel feature of this theory is gauge invariance, that is to say the formalism we have
developed so far carries some redundancy which we need to deal with. In this case the
redundancy can be seen in that if we modify A, by a total derivative the field strength
tensor and hence equations of motions are unaffected, that is we can always make the
mapping
Ay A;L = A, + 0,0, (92)

without affecting the physics. One way of dealing with this redundancy is by fixing the
gauge, that is imposing extra conditions on the field A, which completely eliminate this
freedom.

Let us begin by first considering the non-zero momentum modes. That is, we do not
allow the field components to be spatially constant, as these again need to be treated
seperately. For these modes we can choose to work in Coulomb gauge, which imposes the

condition

V-A=0. (93)
This fixes the gauge completely, up to the zero-momentum sector which we will deal with
separately. A further consequence of the Coulomb gauge condition is that Ag is identically
zero. This follows by considering the p = 0 component of the field equation (86), which
in the Coulomb gauge becomes

V24y = 0. (94)

Switching to momentum space, we quickly see that this has only solutions spatially con-
stant solutions, which are treated separately. Thus for the non-zero momentum modes
we can take Ag = 0. The remaining equation of motion obeyed by A is then the wave
equation

90" A = 0. (95)

After removing Ag from the formalism, the remaining action for A s

i\ 2 , ‘ . .
S[4] = / d'z ;<8A> 13jAZajAl+§aiA”8jA" (96)

o) 2
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Then, the canonical momentum conjugate density II* to A’ is given by

A

and the canonical Poisson bracket relations for this theory are

{Ai (t> f)? Aj (ta Zj)}P = 0, (98)
{A'(t, ), TV (t, )} p = 6 6%(Z — 1), (99)
{I0(¢, 2), T (¢, %)} p = 0. (100)

so that the canonical Hamiltonian is given by

A
HC:/d?’aE’HZa—L
ot
. 1 . (101)
= / a*F [2HiHi + §ainain — 5(\avizavajfv‘ :
On this theory we still need to impose the Coulomb condition constraint
¢1(t,7) =V - A(t, &) = 0. (102)

Clearly this constraint can not be consistent with the canonical Poisson bracket structure,
so we will need to find the correct Dirac bracket structure for the theory. First we need
to check whether the constraint is consistent with the time evolution generated by the
canonical Hamiltonian. Demanding that the Poisson bracket of Ho and ¢, vanishes when

the constraints are obeyed leads us to an additional constraint
¢ =V T =0. (103)

These are all the constraints of the theory. To get at the Dirac brackets we calculate the

matrix of Poisson brackets between the constraints

Cab(f’ 37) = {¢a(t7 f)’ ¢b(t7 g)}P

0 -V2\ . . (104)
= (6% 0 )6(m—y).

Then we note the only bracket which needs to be modified is between A* and II¢, where

we calculate
{Ai(t7 f)a Hj (tv g)}D = {Ai(t’ f)v Hj (t’ g)}P
- [ A ) 10 4 ) O (2) (A D). 1P (7))

9Ll
(0~ %) -

T

(105)

To better understand the content of this, let us move over to momentum space. Acting
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on ei’;'f, we find that

I, ;A N g % AN
(51] %2 ) ezk~:c _ <51j o k_’l; > ezk-z’ (106)

so the effect of this factor is to remove any component in the direction of E, while any
component perpendicular to k is left unaffected. Using Dirac brackets for the theory, we are
allowed to set the constraints zero everywhere. In particular, we see that the action is the
same as that of a massless scalar field for each component A?, but the bracket structure
is different, meanwhile imposing the condition on the Hamiltonian we can recover the

Hamiltonian we know from electromagnetism
1/2 .,
/d3*n i + 8A28 Al = /d352(E2+B2). (107)
Now, let us find the Fourier expansion of the field operator

A ZAZ (t, k)e*Z, (108)
k;éo

where, as usual, reality means A’(t,—k) = Ai(t,k)*. The Coulomb gauge condition re-
quires that
k- At k) =0, (109)

thus if we introduce two polarisation vectors € S(E), s = 1,2, such that
k-ék)y=0,  &(k)-&(k)=0", (110)

then the Fourier expansion for the vector field can be written

.’L’ e ik CLT e 5 s *e—z’km
A, fZZ W( (R (e + al (Bye (Bye™=),  (111)

k#0 5=1,2

where k* = (|k|, k). In terms of the as, the Dirac brackets of the theory become

{CLS(E)? a:[(ﬁ)}D = _iésréD(E - m, (112)

with all other brackets vanishing.

Let us quickly give an example of suitable polarisation vectors € S(E) Let 6(3)(E) =
k/|k| and then introduce unit vectors &V (k) and &2 (k) so that these three unit vectors
form a right-handed orthonormal basis for R3. Then we introduce circular polarisation
vectors

“E(R) = — (A0 i@ (R)) (113)

1
V2
In Appendix F we show that these vectors are eigenvectors of the helicity operator with

eigenvalues £1.
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2.4.1 Zero Momentum Modes

We have so far neglected the modes with zero momentum. For these modes we can note
that the gauge transformation can not affect the spatial components, so these components

are all physical, while we can still gauge away Ap. Thus, we set

1

A =0, AT = —=
0=

A, (114)
then the action for the physical zero modes is

ﬁ:/dth 0A 115)

which we can recognize as the action for three independent classical particles.

3 Example of Linearization Stability Conditions: Scalar QED

on a Torus

To better understand the derivation of the linearization stability conditions, let us consider
the simpler example of scalar electrodynamics on a flat torus. The dynamical fields in this
theory are a complex scalar ® and the electromagnetic field A,. The theory is governed

by a minimal coupling action
S[A, @] = /d4:c <—1FWF“” ~ D'®'D,® — M2q>T<I>> , (116)
where we have defined the electromagnetic field strength tensor by
Fu =0,A, — 0,A,, (117)
and the gauge-covariant derivative D), is defined as
D, =0, —ieA, (118)

where e is the electric charge of the field, which is a constant. This theory has invariance

under finite gauge transformations given by

b(z) — ®'(z) = exp(—ieb(z))P(x) (119)
Ay(z) = Al (z) = Au(x) — 9,0(x), (120)

where 0(x) is an arbitrary function. The corresponding infinitesimal transformations are
then

do®(z) = ®'(x) — ®(x) = —iel(z)P(2), (121)
0o A, (z) = A (x) — Ay(z) = —0,0(x). (122)
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The equations of motion for this theory can be derived in the usual manner, by requiring

that 05 = 0 when we make arbitrary variations of 6® and 6A,,, that is

08 08
= =0. 12
5P () 0 0A,(z) 0 (123)
The resulting exact equations of motion are
D'D,® — M*® = 0, (124)
0, F" —ie(®'D"® — D'®'®) = 0. (125)

Now suppose we expand the fields in some small parameter a. We assume that the
fields ® and A, describe the small perturbations around the classical background solution

¢ = A, =0, so that we can write

p=oW 0@ 1 (126)
Ay =AD + AD 4+ (127)

where for a field F, F(® denotes the component which scales like af. If we expand the

action to second order, then the linearized theory of (@(1), A/(})) is described by the action

s[4 (1] / 4 [_i FOFOm _ g p0igrgh M2@(1)T(1>(1)]7 (128)

which is the action for the free electromagnetic field and the action for a free complex
scalar field, with no interaction between them. As we have seen, the free complex scalar

field ® has a conserved charge, arising from the internal phase rotations,

(1) (Dt
Q =ie / 3z [@W ait - aq;t <1><1>] . (129)

We now wish to show that on the torus, or more generally any compact space, the
second order theory imposes that the charge @ is not just conserved but in fact must
vanish identically. To see this, note that the exact equations of motion must vanish order

by order, and consider the order a? part of the equation of motion for A, which reads
9, (8“A(2)” - a"AW) e (q><1>fa”<1><1> - a”q><1>T<1><1>) ~0. (130)

Taking the v = 0 component reduces this to

. (= 1(2) (1) (Dt
V- <VA(2>0 424 ) = —ie (cb(lﬁaq) - 8@@@) : (131)

ot ot ot

In particular, note that the second-order fields enter this equation only as total spatial
derivatives. It follows that if we integrate over the whole torus, where such integrals must
vanish by Gauss’s theorem as there is no boundary, then we must get zero. It follows that
the total charge, @) must vanish, so

Q=0. (132)
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This is the classical linearization stability condition. We can only hope to extend a solution
of the linearized equations of motion to a full solution of the non-linear system if the system
obeys this additional condition.

Next, let us examine how this linearization stability is implemented on the quantised
version of the linearized theory. To quantise the complex scalar field, we promote the
Fourier coefficients a(k), af(k), b(k) and bf (k) to operators, which obey the commutation

relations

(133)

with all others vanishing. These commutation relations are obtained in canonical quan-
tisation by multiplying the classical brackets by ¢ and taking them to be commutators
instead of classical brackets. We also need to provide a Hilbert space of states for these

operators to act on. We define this to be the Fock space built on a vacuum state |0) which

is annihilated by all a(k) and b(k), that is
a(k)|0) = b(k)|0) =0,  for all k. (134)
Other states are then created by acting with aT(E) and bT(E). For example, the state
’a, E> — al(B))0), (135)

describes a single a-type excitation, with charge Q = e, energy H = E(E) = Vk2 + M?2
and momentum P = k. Similarly, applying b! creates b-type excitation, which have the

same energy and momentum as their a-type counterparts, but are oppositely charged

Q= —e.
In the quantum theory, the linearization stability constraint @ = 0 should be imposed

as a first class constraint, constraining the physical states |phys) by
Q|phys) = 0. (136)

By the definition of the total charge in terms of the creation and annihilation operators,

Q=cY [aT(E)a(E) - bT(E)b(E)] , (137)
E
it is clear that the physical states are those with with equal numbers of a- and b-type
excitations. But let us see how this fact comes about if we apply the group averaging
procedure over the generating U(1) symmetry group.
In the group averaging procedure we begin with a general, possibly unphysical, state

|state), and then define an associated physical state |phys) by

27

phys) = / " 46 €9|state), (138)
0

where the integral runs over the symmetry group which leads to the conserved charge @,
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in our case of the complex scalar field the symmetry is the internal phase rotation
dM — ) = exp(—ied)d™, (139)

so the parameter 6 € [0, 27). Now, suppose that we take [state) to be a state with N (k)
particles of type a with momentum k for each k and similarly mb(/g) particles of type b

with momentum I;, so that

|state) = ’{na(z),mb(E)}>
X o (140)
:H —(aT(k)na(k)bT(k)mb(k) |0)
i |/ na(k)my (k)

These kinds of states form a basis for the Hilbert space of the complex scalar field. On

these states, the total charge acts as

Qf{ra(®), o)} ) = €3 (nak) = ma(R)) - (141)

—

In particular, we can then evaluate the integral defining the physical state, as @/e is an

integer, we find that

[phys) = 2{5(2 (na(F) = ma(F))) | {na (), ma(R)} )
E
2r J 0, if 37 (na(F) = ma(F)) #0, (142)

3 [maB),mu(B)), it S (mal) — ma(F)) =0

Thus, for a general state composed of superpositions of these eigenstates, we see that the
group averaging prescription indeed projects onto the physical space of states with total
charge Q = 0.

4 Classical Theory of Free-Fields: Spin-3/2 and Spin-2

4.1 Rarita-Schwinger Fields

We next want to consider free massless fields of spin-3/2. These are described by a
Majorana vector-spinor field ¥,,,. A suitable theory is described by the massless Rarita-

Schwinger action
1.
SW,] = / d'e [—Q\Ifm”””ay‘l'p] : (143)

where y#*P is the anti-symmetric element formed out of three -matrices defined in (470)

of Appendix D. This action is invariant under a gauge transformation of the form

Vo > U = Wpo + Oty (144)
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where €, is a Majorana spinor function. Varying the action with respect to ¥, yields the
equation of motion in the form
Yo,V , = 0. (145)

To get at the physical degrees of freedom, we will completely fix the gauge. We will again
at first neglect the modes with zero momentum and deal with these separately later. For

the non-zero momentum modes, we impose the gauge-fixing condition
70 =0. (146)

This condition completely determines e,. Now, let us analyse the consequences of this

condition. If we take the O-component of the field equation, we have

-

V9,05 = —OV T =0, (147)

where we used 7% = 0(yi47 — §%), which follows from the definition (470) and using the
Clifford algebra relations between the vy-matrices (466). As 4" is invertible, we learn that

T is divergence free. Next take the i-component of the field equation, which reads
vijk8j\11k + ’yiojao‘l’j + ’yijoaj\lfo =0. (148)
This can be simplified by noting again 7% = 0 (yi4J — §%) and
I = S (I A 267 — 268y — 2604). (149)
Using these we arrive at
YW 440 (v — §9)0; W = 0. (150)

If 4% is applied to this, we find
7V, =0, (151)

which leads us to conclude that in the non-zero momentum sector
WUy =0, (152)

while the equation of motion obeyed by the remaining components is the massless Dirac
equation
v 00 =0. (153)

As the action is linear in derivatives of ¥, and because of the gauge conditions we need
to impose the system describing the Rarita-Schwinger field is singular. Thus the Poisson
bracket structure will not be adequate to describe the theory and we need to calculate the
Dirac brackets of the theory. This can be quite an involved task, however we can already
anticipate the result. The gauge conditions tell us that the physical degrees of freedom are

only those with helicity :l:%, thus we expect that the Fourier expansion for the non-zero
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momentum sector is of the form

Bt 7) = —— [ @ @R + ey EplEe ™| (154)

A=A

with the Dirac brackets between by (k) given by

{bs(k), b5(7)}p = —ib40p (K — ), (155)

with all other brackets vanishing. Indeed this turns out to be the case [26].
Under a translation z — x — ¢, the Rarita-Schwinger field changes by 0¥, = €70, ¥,

then we can calculate the energy momentum tensor by

5V, 555 = —9,T", . (156)
We have
5S .
O 5o v, = =~V Cy"10, T,
(157)

1 1
= 30, (&w;{oyﬂwa»p#) ~ 50 (ew;foyway%) ,

so that we read off
1
T = —JWT O Ty + T OO\ (158)

Note that when the equations of motion are obeyed the second term vanishes. Then we
can calculate the conserved charges

H = /d3 TOO /d3 —*‘I’TC 0 1]88\172

= [E[bL(k)bs(R). (159)

k0 5=+

Similarly,
1 -
P= / B3z TV = / d3z — iq/ichy%Uv\Ifj

=D kbl(k)bs(k). (160)

k#os +
4.1.1 Zero Momentum Modes

The zero momentum modes need to be analysed separately again. Once again, the gauge
freedom in this case can only change Wq(t), which we can set to zero. For the remaining

components, let
1

U= ——
vV

Yi(t), (161)

then the action is

Sli] Z/dt Y’ ”a;i’. (162)
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Then the associated conjugate momentum is
1 y
Tia = _§¢}10707ﬂv (163)

where as usual the momentum conjugate is defined as a left derivative with respect to
zbm. As this is a first order system, we need to impose this as a primary constraint on the
system, thus let

, | g
¢t =m"+ 5%1’0707]2' (164)

As for the Majorana spinor zero-modes, the canonical Hamiltonian vanishes, so the pri-
mary Hamiltonian is simply

Hp = ¢\ (165)

a’a

where \! are constants. We wish to impose that the constraints are (weakly) conserved
under the time evolution generated by Hp. Calculating the Poisson brackets between the

constraints gives

o 1 , T .
(G b = { i+ SECT ] 4 LT O3
P

1 g 1 iy 166
= —5(C7"7)ap = 5(C1°77) 50 (166)
= —(C"7")agp-

where we made use of the canonical Poisson brackets for the system

{7, 77} p =0, {iasTh}p = —630ap,  {¥i,vi}p =0. (167)

It follows that setting the time evolution to vanish requires A\!, = 0 because

{6l Hp}p = —(C"77)ap], (168)
and we used that if we let
T
Dgﬁ — 5 [(,Yz] _ 51])7 C ]Ocﬂ’ (169)
then
D(Z)fﬁ{(rb] > ¢§/}P = 6ik5a'y- (170)

We note that all the constraints fall into the second class, so we calculate the Dirac bracket

between 1 and itself to obtain

{Yia, ¥js}p = —{Wia, 8} PDS{ 85,98} P
1 (171)

=3 [(vig = 057 °C 7] -

To understand these relations a bit better, let us work again in our explicit Majorana

representation, such that C' = i7? and write

2

(Vi + > T (0 )a, (172)

1
lbm =
V6 1
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where 7 and n?, A = 1,2 are anti-commuting spinors and we have introduced the matrices

110 110

™m=—"0 -1 0of, T?°=—21]0 1 (173)
2 6
‘[0 f00—2

We can isolate the 7, by contracting v; with 7* as ﬂ?wifyj = 0, which yields

. 3
o=y (17)

so that
{na, 18} D = +idap (175)
A short calculation shows that
Ty TiA" = 647, (176)
so that
T57 Yja = - (177)
It follows that
{neni}p =0, {ng,ng}p = —id"Pous. (178)

The Dirac bracket relations between the 7t are the same as for the zero modes of the

Majorana spinor field, however the 7, come with opposite sign.

4.2 Linearized Gravity

The next theory we want study is that of a free massless spin-2 field. Such fields are
necessarily associated with gravity, and it is possible to obtain a free theory if we consider
small perturbations in the metric from a flat background. The vacuum Einstein equations

can be derived from the Einstein-Hilbert action
1
Sl =5 [ d'av=gR. (179)

where g,,,, is the metric tensor and R is the Ricci scalar, the trace of the Ricci tensor R,

defined in our conventions as

Ry = (0,17, = 0,17, + 17, TF —T7 T7,), (180)

and the Christoffel symbols I'¥,, are

1
Fuup = igw (8pgl/a =+ augpcr - 3agup) . (181)

Varying the Einstein-Hilbert action with respect to the metric g, yields the vacuum
Einstein equations
1
R;w - ig,u,l/R =0 (182)
Taking the trace of this, we can simplify this as R, = 0 for the vacuum case.

We will be interested in considering the theory described by the small perturbations
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hy from a flat background metric 7,,,. To obtain a linear equation of motion, we should
expand the Lagrangian /—gR to quadratic order in hy,,. We follow the argument by
Landau and Lifschitz [27]. First integrate by parts to write

1 v
S = /d4a: 5\/—gg“ R,

) 1 (183)
= /d4:n 2G+/d4:r 58“(\/—9111"),
where
wH = g’”T“p,, — g‘“Tppl,, (184)
G = _8P( \% _gg,uu)rpuy + 61’( \% _gglﬂ/)l"Pup
+v=g9"" (T, I7, = T7,,17,,) . (185)

Next, we recall that the derivatives of /—¢g and ¢g*” can be written in terms of I' as
ap( \% _gg/.u/) =V _gFTpTgMV —V—g (FMpTgTV + FVpTg'uT) . (186)
Inserting this into the previous expression for G yields
G =—gg" (TP 7, —T7,I7, ). (187)

To expand this to quadratic order in h,,, we only need the linear order expression of the
Christoffel symbol, which is

L
F(l)uup[h] - 5”“ (8Vhop + 8phllo - 80’th) . (188)

Thus the part of the action quadratic in hy, is, on performing another integration by

parts,
4 Lo wo 1 o Lop o 1 p
Sl = [ ' { 30 hup0oh"” — 2 Ophy O W — 20°hpgO7h + 2Oph0h ), (189)

where in this expression we can raise and lower indices using the metric n and we have
defined h = n*"h,,. The field equation obeyed by h,, is ten

0p0° Iy — (Dl + Ouhip) + 0u0h = 0. (190)

In the non-linear theory, the theory is invariant if the metric is changed by a Lie
derivative of the metric along any vector field. This invariance is inherited as the gauge

symmetry of the linearized theory, which allows us to change
by = By = Ty + 06 + 00, (191)

for any &,,. The linearized equation of motion is invariant under this gauge transformation.

To fix the gauge freedom in the sector of the theory with non-zero momentum, we proceed
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as in [28, 26]. We first impose the condition
9"hiy, = 0, (192)

which completely fixes the gauge freedom. Then examining the equations of motion shows
that additionally we have
hii = ho;i = hoo = 0. (193)

The remaining components of h;; then obey the wave equation
0,0"hi; =0, (194)

subject to the transverse 8ihij = 0 and traceless h;; condition. These conditions allow

only the helicity £2 components to remain, and the resulting Fourier expansion for h;; is

hij(t, %) = \/7 3 L ( 2 (R)ag(R)e™™ + H@*(E)a;(/?)e—ik'm) : (195)

v k#£0 s==* m

HE () = € (ke (k). (196)

where

{aS(E)> al(ﬁ)} = _idsréD(E - m, (197)

with all other brackets vanishing.

The theory is still invariant under space-time translations, so we can calculate the
conserved energy and momentum. Under the translation z — x — € the field h,, changes
by

dehyw = €°0ph (198)

and the energy momentum tensor is defined through

08

(Sehuym

= +0,T" €. (199)

We can calculate that

8€h,wﬁ = leTaThW [0P0,h* — O, (0"h"P + OV hHP) 4+ 00" h]
oh,, 4
a ) (200)
+ ieTﬁTh [0°0° hype — 0P0,h) .
It follows that a suitable candidate for T, is
1
T = 1 [0y hpeO' P + 0, WP 0, h + O, h0,hMP — 0, hO" h — 20, h"" 07 hy )]
(201)

1 1 1
+ 300 |9 hep@h™ = 0phar @ hTT = 9hypedh + JO;h0h| .
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In particular, if we impose the gauge-fixing conditions ho, = 0 = h = J;h;; we find

5 o +€h,~jﬁh,~j], (202)

so that if we insert the Fourier expansion for h;; we find

H:/ FT% =" " |klal(k)as(k). (203)

kA0 s=%

Similarly we get that

o1 h
T@z::Z [ 8}%k3 Jk},

5 (204)

which gives the total momentum as

P = /d?’”TO’ >N kal(k)aq (k). (205)

k#0 s==%

4.2.1 Zero Momentum Modes

In the sector with zero momentum, the gauge freedom can only affect the components hgg
and hg;, but the purely spatial components h;; are unaffected by a gauge transformation

because under the transformation labelled by £, we have

0
hoo(t) = hoo(t) + 2o,
hOi(t) — hoi(t) + %fl, (206)

hij(t) = hij ().

We can thus choose §, to fix the gauge such that hog = hg; = 0. The action for the

physical modes h;; then becomes

B 10hi; Ohij [ Oh?
S_/dt <8 ot ot <8t) ) (207)

where h = n""h,, = 64 hij. To analyse this system, let us write

hij(t) = \[ Sije(t) +2Z (208)

where the five symmetric traceless tensors T satisfy the orthonormality condition

T;TS =645, (209)
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We explicitly choose T so that T and T2 are as defined for the Rarita-Schwinger zero-

modes, so we make the choice

1100 1100
m=—"10 -1 0|, T*=—101 o0,
2 6
\fooo \[00—2
1010 100
™=—110 0], T™"=—10 0 : 210
7 7 (210)
000 1 0
00 0
T5—i001
= ,
\f010

In terms of the variables ¢ and ¢ the action can then be re-written as
A 1 /0c\? 51 dcy 2
_ L foc (%A | 211
Sle, ¢ /dt [ 2<8t> —i-Azz:lQ(at)] (211)

Notice that ¢ contributes to the action with a negative kinetic term. Defining the canonical

conjugates cp and cpy to ¢ and cy4 by

dc Ocy
=7 =75 212
cp ot CpPA ot ( )
the equal-time bracket structure for this system is given by
{c.ecp} =1, {ca,cpp}=das, (213)

with all other brackets between the ¢, cp, c4 and cp4 vanishing. Note that the Hamiltonian

for the zero-modes is non-zero and given by

H=-cb+ Y =cha. (214)

Importantly, this is not positive definite. In (super)gravity on the torus, we will find that
we need to impose H = 0 as a linearisation stability condition. The negative contributions

from —c%g to the Hamiltonian will allow for non-trivial solutions to the constraint H = 0.

5 Linearization Stability Conditions in Gravity on a 3-Torus

5.1 Linearization Stability Conditions in Classical Gravity

We now wish to exhibit the linearization instability conditions for classical gravity ex-
panded around a flat toroidal background. To this end, suppose that we expand the

metric in some small parameter, say «, as

G = My + hiy) + )+ (215)
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such that A0 = N and the scaling in « of each term is given by

W)~ o, (216)

Now consider the exact equations of motion

1
R,Lw - §guungRpU =0, (217)

and expand these order by order in «. The term first order in « gives the equations of

motion for the linearized system, described by h,(}V Ordinarily we would expect the term

second order in « to provide equations of motion for hff,,) , which can be solved once h,(}l,)
has been determined. We will show that the quadratic expressions for the energy and
momentum can be written in terms of integrals of total spatial derivatives of h;(?l,), which
necessarily vanish when integrated over the whole torus. Thus the second order theory
constrains the linearized theory because only solutions which have vanishing energy and
momentum can arise as a linearization of an exact solution to the equations of motion.
The discussion of the 2nd order theory here follows Wald [29].

In the expansion of objects like R, let RE}V) [h] denote the terms which are linear in h
and R,(LZ,,) [h] denote the terms which are quadratic in h. Then the terms of order « in the

equations of motion are:

1

RUAM]
2

n nuunpaRgl)[h(l)] =0, (218)

loa

by taking the trace with n*” this can be simplified to
ROAM] = 0. (219)

Next, at order a?, the equations of motion are

1 g 1 loa
R — Snan?” RO + BB ~ Snur? RARY =0, (220)
where we have already used the first order equations of motion Rf}l,) [hM] = 0.

Now let us write down the expressions for R,(}V) [h] and R,(f,,) [h]. We recall that the
lowest contribution to the Christoffel symbol is N vplh], so that the expressions for the

Riemann tensors are

R}(j,ll/) [h] = 8,0F(1)py1/[h] - aur(l)pyp[h]v (221)
R}(LQI/) [h] = 8PF(2)p;w[h] - aVF(Q)pup[h]
+ F(l)TuV [h]r(l)p‘rp[h] - P(l)Tup[h]F(l)pV‘r[h]' (222)
The expressions for F(l)“Vp[h] and I‘(2)”,,p[h] in terms of h are
Pk, [h] = %77’“’ (Ouhpo + Ophuo — Dohuy) (223)
1
@k, [h] = =51 Ouhpg + Ophug — Dghuy) (224)
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(1)

We are now finally ready to write down the expression for Ry, [h], which is
RW[h] = [aﬂ(a hup + Ouhyp) — 0°phy, — 8,0,h] . (225)

(1)

In particular R, [h(l)] = 0 recovers the equation of motion for the linearized equation

which we studied previously. Meanwhile, the expression for R( )[h] is

1 1 1
R/(EV) [h] = §hp08ual,hpg - §hpo-ap(aluhyo' + 81/]71/,“7) + ia‘uhpgayhpo-
1 1 1
+ 50N, Doy — 507H, Dphay + 506 (W7 Ophy) (226)

1 1 1
= 10°hDphyas = 5 Dby + uhyp) <8Jh”" - 28%) .

Now, let us consider

1 loa
G [n?] = R — S R0
1
— [ap(aﬂhg’? +0,h2) — 09,02 — 9,0,h (227)

_ %n ) [apaa B2 — 909,hC )}

where h(2) = ntv h,(f,,) First we note that
Dip2)7
rGH ) =0, (228)
a fact which also follows generally from the contracted Bianchi identity, thus
1 loa
to = = (R = S BRIV, (229)

obeys a conservation equation 0%, = 0, so the charges associated to these conservation
laws are constant. We will show that these charges are exactly the total energy H and
momentum P which we have met before, and these charges actually are not just constant

but vanishing. We consider the components G( ) o [P?)] and Géli) [h?)], which can be written

as
1
G 1) = 3 050003 — 0,0:07] (250)
1
Gi ) = 5 (00005 + 9,000 — 0,050 — dio0n |, (231)

which we both recognize as total spatial derivatives, so that their integrals over the spatial

3-torus necessarily vanish, that is

/di’”G K2 =0= /d3* D), (232)
However, we recall from the o contribution to the Einstein equation that
1 g
GAR®) = - (REE) (RO = ™ RE) [M) : (233)
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thus the vanishing of the integrals of G(%) [h®)] and Gé? [A?)] imposes non-trivial quadratic
(1)

conditions on hy,, which are the linearization stability conditions. One can show that these
integrals are suitably gauge-invariant [29] under h,(},,) — hf},,) + 0u& + 0,€,. Choosing a
gauge as previously by imposing

by, =0 =" = 9;ni), (234)

for the non-zero momentum modes we find

1

QTIOOUPURE)%) V)]

1 1

1L, Oh 10m) ah§.,3 L0g. 050

4Tk fg2 8 Ot Ot 4Jk vk
3 1 1 1 1

B
~to) = R [hV] -

(235)
1 1
100y o) Loy g0
8§ ot ot 8 Ik gk
1 1 1 1 1 1
+ 50 (nan)) = 70s (P05m))
B 1 1 1 1 1 1
For the modes with zero-momentum, we can impose
h;(LlO) =0, (236)
and of course 8khz(]1-) =0, so that
B (0) 57(0) (0) 57.(0) B
g A OO ey -
00 8 ot ot 8 Jat Ot 0o

Then the total energy density tog = Tpo up to total spatial derivatives. Thus integrating
this we find that one of the linearization constraints is that the total energy H has to

vanish,

o= @50l ) ZCPA+ZZ|kya (Fas(F) = (23)

k#0 s==+
Similarly, considering the 0¢ component yields
onG)\ 1 onY
b = RO = _qp 4 Lo [ p0 k) Ly [ 0
toi = Ry; [h\] = —To; + 231 i 51 28] hi o | (239)

Thus also the total momentum P has to vanish

/ 7" =" " kal(k)as(k) = 0. (240)

k#0 s=%

These are the classical linearization stability conditions. If these conditions are not satis-
fied, then the corresponding solutions of the linearized equations of motion does not arise

from a solution to the full Einstein equations. We next examine how these constraints are
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implemented in the corresponding quantum theory of linearized gravity.

5.2 Quantum Linearization Stability Conditions

Let us now consider the canonically quantised theory of linearized gravity on a 3-torus spa-
tial background. This quantum theory and the associated linearization stability conditions
have been previously studied by Moncrief [13]. We will satisfy the linearization stability
conditions and construct a physical Hilbert space of states by group averaging [30].

To obtain the quantised theory, we promote the Fourier coefficients a,(k) and al(lg) to

operators which obey the commutation relations

[as(lg)? ai(ﬁ)], = 587‘5D(E - @7 (241)

with all other commutators vanishing. The Hilbert space these operators act on is the

Fock space generated from the vacuum state |0) defined by
as(K)|0) = 0, for all s,and k. (242)

A suitable basis for this is provided by }{ns(l;:')}>, which obeys

al (B)as (B) {ns(R)}) = na(R)|{na()}), (243)

for all all s and k. These normalised states can be written

) =TT | (el (B ® | 0). (244)

k,s ns(E)'

The excitations created by al(/z) will also be called gravitons. We still have to consider
the contributions from the zero-modes, whose operators ¢, c4 and their conjugates cp and

cpa obey the commutation relations

[e,cp|- =1, [ca,cpB]- = 10aB. (245)

We can realise these commutation relations acting on normalisable wavefunctions ¥(c, c4),
with

0
¢ — multiply by ¢, cp — —ia—, (246)
c
0
ca — multiply by ¢y, CpA > —1—o. (247)
dca

If |¥;) and |Wy) are represented by Ui(c,c,) and Wa(c, c,) respectively, then the inner

product between them is given by
(V| Wq) = /dCdSCA Ui(e,ca)Wa(c,ca). (248)

The Hilbert space for the gravitons and the zero-modes is then formed by the tensor

product of these two spaces. Suppose now that we consider a state proportional to a
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single basis vector ‘{ns(lg)}>, that is

Istate) = W(e, ca) @ ‘{nS(E)}>. (249)

On such a state, accounting for the graviton and zero-momentum modes, the total energy

and total momentum operators H and P act as

P|state) = Z Z kns(k)|state), (250)

k#os +
2 5 92
H|state) = L <+§2 - Z 882 M2> |state), (251)
c

where the squared mass term M? is defined as

=33 |klns(k (252)

k#os +

Note that in defining H, we deal with possible ordering ambiguities when going from the
classical theory to quantum theory by normal ordering to tame the infinity occurring from
the vacuum energy contributions.

Now we want to incorporate the linearization stability constraints H = 0 and P=0.
The proposal by Moncrief [12, 13] is to impose these as first class constraints on the

physical states. Thus a physical state |phys) is one which obeys

Plphys) =0, (253)
H|phys) = 0. (254)

We notice that the Hamiltonian constraint then becomes a (5 4 1)-dimensional Klein-
Gordon equation for the wavefunction ¥(c,cq). However, in general solutions to this
equation will not be normalisable with respect to the original inner product for W(c,c4).
The approach we will pursue, which was carried out [30], is to first define a set of non-
normalisable invariant states which obey the linearization stability constraints by aver-
aging over symmetries generated by H and P and then to redefine the inner-product for
these states to make it finite. Start with a state |state) as in (249), then define a physical
state |phys) by

1 _
|phys) = oTa /dozo/d?’éf exp [—ionH +ia- P] |state). (255)

Since the operators H and P commute we can separately deal with the integral over the

Hamiltonian and the momentum. First we deal with the momentum. As we are dealing
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-,

with a single eigenstate ‘{n,(kz)}> we have

) (256)

0 if Pstate)
|state) if Plstate) =

so that this projects onto the zero total momentum sector of the theory. Thus, let us
define

0 13 DN S Eﬂs(? a (257)

(s} Ty s s (B) =

Then turn to the Hamiltonian integral. For this, if the zero-mode wavefunction is given

[{na(R)}) =

by ¥(c,ca), let us Fourier transform to write

d5 —ipQctip-
(c,ca) F(p¥, p)e P ctwe, (258)

Then we find that

1
2/da0 exp [—ia’H] |state)

_1 0 10 2
_2/da exp[ 22a ( 92 Z@ca+M>]

P, p)e "7 @ | {n, (B)})

(259)
/ / /doz0 exp [—;iao (—(p0)2 +p%+ MQ)}
< F(p"p)e” 775 |{n,(F)} )
d°p —ipYetip-c .
8 (60 = 7 = M2) FO, e 7 @ | {ny(B)} ).
Now recall that if f(x) has simple zeroes at at = x,, then
)) = Z%é(xfx*). (260)
2 177w
So let E(p) = ++/p? + M2, then
d°p ’ —ipctip P
[ [ 5250 (0 = 7 = M) PG e e 7 s () )
(2m) (261)

= / (;1;];5 (f(+)(13’)e*iE(ﬁ')c+iﬁ-€+ f(*)(ﬁ)eiE(ﬁ)chiﬁ'E) ® ‘{ns(l?)}>,
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where we introduced the functions f& defined by

f(ﬁ:) _ F(iE(ﬁ%ﬁ) (262)

2E(p)

Putting everything together, we find that group-averaging gives us physical states of the

form

d°p . - , - o
|phys) = / e 1)75 (f(+) (ﬁ)eﬂE(ﬁ)cJﬂp-c + f(*) (ﬁ)ezE(;ﬁ')c+zp.c> Q ‘{ns(k)}), (263)
T
and in fact we can note that this is a general solution for states obeying the linearization
stability conditions with “mass-squared” M?2.
Finally we need to calculate the inner product defined by the group averaging prescrip-
tion. Let us take two physical states |physl) and |phys2), which can be obtained from

group averaging from

|statel) = Wy(c,6) ® ‘{ns(E)}>,

. (264)
Istate2) = Us(c, &) @ ‘{ms(k)}>.
Then the inner product between |physl) and |phys2) is defined by
1 _
(physl|phys2) = (Statel|2v/dao/d362 exp [—iaOH +ia - P} |state2). (265)
Inserting the Fourier transforms of W1 and Wy, this becomes
dop X ) _
(phystphys2) = [ < 828 (107 0187 + 170100 )]
(2m) (266)

x ({ns(B)} {ms(B)})

6 Linearization Stability Conditions in Supergravity on a

3-Torus

Finally we wish to discuss supergravity. This should be thought of as the theory of local
supersymmetry. We have seen in the Wess-Zumino model that generally we expect the
anti-commutator of two supersymmetry transformations to give a space-time translation,
therefore if we have local supersymmetry transformations we should in general also have
local space-time translations. This necessitates a coupling to gravity, described by a spin-2
boson. The superpartner to the spin-2 particle needs to be a fermion, differing in spin by
a half-integer, so the simplest candidate is the spin—% field. Indeed, the simplest theory
with local supersymmetry that we can consider is in 4-spacetime dimensions. This theory
has a single supersymmetry, which couples the frame field €} to the field ¥,,. This theory
is called 4D, N = 1 supergravity [28]. A suitable action for this theory is

1 1
Sle, U] = / dz e [23“;*@5@;; =5V DY, + X | (267)
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a

where e M

is the frame field, which determines the spacetime metric g,,,, through

Guv = eznabeg’ (268)

and we define e = det(eZ) = /—g. The term X4y is quartic in ¥ and is required to have
local supersymmetry (see [26] for the explicit form of X(4y)). The numerical y-matrices
are v, and we define v# = efv*. The local Lorentz covariant derivative D,, of the field
V¥, is given by
1
DV, =09,¥, + Zw#awabxyy. (269)

We refer to the appendix E for further details of the frame field e, and spin-connection
Wyab-
6.1 Linearized Supergravity

At the linearized level, the 4D, N = 1 supergravity theory we consider is described by a
free massless spin-2 field, the graviton, and a free massless spin—% Majorana spinor field,

the gravitino [26]. Thus the action is

1 1 1
S[h, W] = / diz [Zaphupaghw — SOOI = 20Ny 0 o)
270
1 1-
+ SOhh = SU,0, W, ).

At the linearized level, this is invariant under the global supersymmetry transformation

L _
Pyw = By = hyus + 5 (EVYy + e ¥,), (271)
1 1%
Uy U, =V, + Zaphw/y Pe, (272)

where ¢ is an arbitrary Majorana spinor field. To see that indeed the action is invariant

under this transformation, if we vary only the gravitino part, we find

1< v 1< v
5,53/2 =4 (Q\I’N’Y’u pal,\I’p) == *g\lju’}/'u‘ p@,jé\I’p
X (273)
= _i\ijufym/paua’rhpafygTé‘)

where in the first line we have ignored a total derivative term, which will not contribute
to the variation of the action. To make progress, we recall the following identity obeyed

by the -matrices in four space-time dimensions [28]

,y;wp,ym- — ,y,um-npo + ,yp,u'rnz/o + ,Yup’rn,ucr o ,Y,U,I/O',r/pT o ,yp,ucrnur
=PI AT =0T (274)
+ (" = nPIntT) + AP (T — ntIn"T).
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Contracting this with ¥,8,0:h,, one finds only the terms proportional to a single A

contribute, so that we find

Y817 (0,0,h7 — 0,0mh)e

1-
0L3/0 = —Z%w(apaph — 0°07hpo)e — 1

1 (275)
— Z\Ilufyp(a”a"hpg — 9705h,")e.
Now, we note that
U, e = —evPV,, (276)
to write
1 uige 1P 1_ v i Iz
0L3/9 = yictl (0P0,h — 007 hpo )W), + 157 (0,0,hF — 0,0" )V,
1 (277)
+ Eewp(aﬂa”hpg — 070:h,")V,,.
Next, let us vary the part involving the graviton, where we find
5 5 1o wo 1 o Lap o 1 P
Lo = 18 hypOg W — gaph,wa hM — 18 hpe 07 h + gaphf) h
1 0 Hno 1 1N (278)
= 58 0hyp0s Rt — Zapéh,ﬂ,a h

- %806@08% - %aphmaaah + %apahaﬂh.

Integrating by parts to move all the derivatives off the variations, and ignoring the bound-

ary term, yield

1 1
0Lo = —50hyp0 Doh? + 1 0hyu,0,0° "
1 1 1
+ (Ohpo @07 h + L 0hDP O g — J5hD,0h

1 1 1
= — 2500 + W) 0T + JEN L D + 28,000 h

X . (279)
+ V070 hpr — S EV 0, 0,0°h
N ‘igv“(apaﬂh = 0707 hpo )Wy — iév”(auaah“" — 0,0,0)¥,,
_ igfyp(auaahpa — 0507h )W,
In particular, it follows that
68 = /d4:z: (0L2+0L3) =0, (280)

so that indeed the linearized supergravity action is invariant under the global supersym-
metry transformation. Next let us calculate the conserved supercurrent J* associated with
this global transformation. For this we write

5S ;68

5ghuym + 65\:[} == 3#(53”) (281)

ow,
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The graviton contribution to (281) expression is given by

1
o5 _ —&y, U, (0P, — B,(0"h¥P + 8" hFP) + MO h)

O h T 1

' (282)
+ 1O, (970 hyo — D°0yh).

Next the gravitino contribution to the expression for the divergence of the supercurrent

3
T ot \T v
0=V, SU, ——0rhue(777e) CY*P0O, Y,

1
= Ou | =7 0rhpe (V7€) Y0, (283)

1
+ Z@,,&hw(vaTs)TC’y“”p\Pp.
Now, we use that
(77 e) Oy, = Va5ECar Vs Pus

= _nyafygggﬂ’ysqujué

= Va3 Capepis Wus (284)

= —Eﬁcﬂa’Yg;’Y%V‘I’ué

= —&y7TPHV,,.
This allows us to then write

;08

56\1’“@ —

1
O +187h,,(,§7”7p“”\lfy
. (285)
- 1 aua‘r h;w'é’ym—’ywjp‘l]p

Using a transposed version of the previous identity for v#*?~4°7  the second term above

can be rewritten as
1 =~ OT A MVP 1 u p 5o o
—18,,6711“057 PP, = —16’}/ U, (0°0° hype — 070,h)
1
— —&7, ¥, (0°0,h"" — 0, (0" h"P + OV h'*) 4+ 0" 0" h) (286)

1
5S
= —chyu g

Thus combining everything, we find that the expression for the conserved supercurrent J*
is )

J* = Z&hmwww“p’jlﬂy. (287)
The associated conserved supercharge @ is then expressed as

. 1 .
Q= / Bz gl = / 3z Z({%hw’ym’yo” 2 (288)

Let us now calculate the contributions to the supercharge from the zero- and non-zero-
momentum sectors of the theory. Note that there are no cross term contributions to

supercharge.
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In the zero momentum sector, recall that we have h o = 0 = ¥y, so that

Q(O /d?)—» ldhlk 0k 0”\1’

4 dt )
289
:/d3f Ldh g, _ Ldhij g 2
dat’ T 4 a
where we used the y-matrix identities
7 = 4%, (290)
YRy = ARy I iR (291)

the second identity is proved in Appendix D. Inserting the expressions for h;; and ¥;,

which in the zero-mode sectors are

\/Vhij = \/>51]C+ 2 Z 7 CA, (292)

vV, 'ym + Z 34, (293)
yields
gv - ! (an ST mpAnB) | (294)
A=1B=1
where we recall cp = —0pc and cpy = Jpca.

For the non-zero-momentum modes, we recall the gauge-fixing conditions
h = hoy = 0'hij = 0, Y = 0'W; = U = 0. (295)
Then the expression for the contributions Q to the total supercharge becomes
2= / ar i [aﬂhikvokVOij U + Qhipy "0 (296)
this can be simplified a little if we note that in 4-dimensions
Menii = ligik kil ligik | kil 4 sl ik _ ghi git (297)
which is proved in Appendix D. Making also a partial integration and using v#9,¥; = 0,

i L[ Ohi v,
Q:/d?’x 4[ 0+ i’ 6t] (208)

Inserting the mode expansions for h;; and ¥, this can be written as

= ZZ[*&E Fu (R)ay (R)DE(R) — @ (F) - Fu* (Ryal (B)bs (F) | (209)

k#os +

The total supercharge for the system is then
Q=0 +Q. (300)
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The system also has conserved charges arising from spacetime translations, as the
linearized theory does not provide interaction terms between the graviton and gravitino,

these are simply found by adding the energy and momentum of both fields. Thus we have

5

1 1 - . . o -
H=—2cb+ Y schat Y > Il [al(Bas(R) + bl(R)b.(F)] | (301)
A=1 k0 s==%

P=Y"3"% [ag(“)as(l%') + bl(l?)bs(/‘c’)} . (302)

k#0 s=+

These operators yield the supersymmetry algebra

{Q,P"} =0, (303)

{Qa: Qs} = —5 (") P, (304)

where P* = (H, P).
In the next section we show that for the supergravitational theory we need to impose

H=P= @ = 0 as linearization stability conditions.

6.2 Linearization Stability Conditions

In this section, we want to show how ) = 0 arises as a linearization stability condition
when the second order contributions are taken into account. Similar to the gravitational
theory, the vanishing of the total energy H and total momentum P must also be imposed
on the solutions.
The equation of motion for the gravitino including first and second order corrections
is [28]
YPD,¥, =0, (305)

where the derivative D, W, is defined by

1
DV, =09,V,+ iwlmw“qup. (306)

Now expand in powers of some small parameter as before, with

U =004+ 9@ 4 (307)
NN C TS (308)
e — o0 fop) | (309)
Wyiab = Wiy + - (310)

Expanding the gravitino equation of motion order-by-order, at first order the field equation
is
Qe g, () = 0. (311)

Expanding the ¢ = 0 component of the field equation at second order

,Y(O)Oijai\l,f) + 7(1)Oij8i\1,§1) + i’Y(O)Oijwmwab‘I’g-l) —0. (312)
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This can be re-written as
0; (7(0)0”\1152) + 7(1)013\P§1)) + Z’Y(O)Owwi(il))’yabqjg'l) _ (8i,y(1)02j) \Ijgl) —0. (313)

(2)
J
a spatial divergence. Thus, if we integrate over the whole 3-torus this will vanish. Thus

In particular, we note that the second-order perturbation of the field ¥~ appears only as

we get a quadratic constraint on the first-order perturbations in the theory, which is a
linearization stability condition. We now want to show that this condition corresponds
exactly to the vanishing of the supercharge Q.

The space-time ~-matrices are covariantly conserved,
V. =0, (314)
see (493) in appendix E. It follows from this that

s 1 -
Oy D0 — —ng-(i?, [,Yab,,y(o)0m:|

@0 _(0ypi; _ p(Di_(0)0ki _ ()i (0)0ik
R . .
. N 1,07 ik ik (315)
2 ab . (0)0ij
4wzab |:’Y Y :|
_rMw (0)025’

i’

where the symmetry of rr ;- and anti-symmetry of ~ ik was used to eliminate terms.

The first-order Christoffel symbols we require is

e _L1ooq
r m_iath, (316)

Integrating by parts and using the first-order equation of motion then yields

g 1 g g
8¢7(1)0’J\IJ§1) _ _sz%l)a |:,yab7,y(0)01j:| \115,1) _ 5 [h(l),y(o)ow\pj] . (317)

We thus find that the following integral vanishes

S 11 @ i (1
/ 437 [4w§a§7abv<°)°”¢f§ >] —0. (318)
The frame fields are only defined up to local Lorentz transformations. We can use this
freedom to choose ego)“ = §i. We can go further and choose egl)“ so that the linearized

spin-connection is given by
1
win = 5 (05) = 0.ni)) 676 (319)
To see this, we make us of (490) from Appendix E,
Opel +w, el — T ,,e4 = 0. (320)

Rearranging for the spin-connection and making the antisymmetry in a and b explicit
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yields

1 14 14 1 14 14
Wyab = §Fp,uu(6apeb - ebpea) - 5 (ebaueau - eaauebu) . (321)
Then at the linear level we find
W Lo — 0,10 6767 — L [5r01e) — 62 0rel) 322
wiab_§<l’ai_Uui)ab_i[bieav_aiebu : ( )

The term inside the square brackets involves only the antisymmetric components of e((l})).

However, these are precisely the terms which can be modified using an infinitesimal local

Lorentz transformation, under which

ell) i ell) 4 Ny ()00, (323)
where A\ = —Ape. It follows that we can choose the second term to vanish by an appro-

priate choice of Ag.
Inserting (319) into the linearization stability condition (318), we find that

Q= / a7 |0;hiy) 2 OO0 W] o, (324)

Thus, the vanishing of the supercharge appears as a linearization stability condition of
linearized supergravity on a toroidal background.

The total energy H and total momentum P of the graviton and gravitino system also
has to vanish. This can be noted by examining the graviton equation of motion at second
order. We will only sketch the argument, since it is very similar to the general relativity

case. The equation of motion of the frame field is determined through

05 o (325)
(562

If Ssle] contains the Riemann term, that is

1
Sole] = / d'z e [QRWabegeg] , (326)
then 1 68 )
gggeau = R/uz - ig,u,l/Rv (327)

so the equation of motion can be written

Runlo) — 59 Rlg) = T le, W), (329)

where we have defined the tensor T;:IL by

v 1 (553/2
T T el Ca

(329)

and here .
53/2[8, Ul = /d4x e |:—2\TJM’VHV'DDV\I/,) + X(4\p) . (330)
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Notice that T;IL is at least quadratic in W, so if we expand the equation of motion with

eZ:6z+el(})“—|—eL2)“+...,

(331)
guuznuu‘FhE}V)‘Fhfy)‘F“-,
and ¥ expanded as before we find that at first order we have
1 loa
RO = S RO = 0, (332)

so that again h;(}y) obeys the linearized equations of motion. At second order we find

1
RO = Snun™ RGN =, + T (333)

where TE{,( Vs quadratic in ¥() and does not contain any other fields, and as before

R 2)1p (1 1 2)1p (1
) = = (REW) - S BB ) (334)
This is exactly the same set-up as for the linearization stability conditions in classical
linearized gravity, except for the addition of an energy-momentum tensor for the gravitino.
It follows that the total energy and total momentum of the linearized system have to
vanish, taking into account the contributions from both the gravitons and gravitinos.

Thus we have again

H
P

0, (335)
0. (336)

Let us now impose these three linearization stability conditions in the quantised version

of linearized supergravity on a 3-torus.

6.3 Imposing the Quantum Linearization Stability Conditions

Next we turn to the canonically quantised linearized supergravity theory. As before for
the gravitational theory, we promote the Fourier coefficients ay(k), al(k), bs(k) and bl(k)

to operators. They obey the (anti)-commutation relations

: (337)
: (338)

with all other (anti)-commutators vanishing. The a-type operators are related to the
gravitons, while the b-type operators are related to the gravitinos. A suitable Hilbert
space for these operators to act on is the Fock space generated from a vacuum state |0),
which is defined to be annihilated by all annihilation type operators as(k) and by(k), that
is

as(K)|0) = by(K)[0) =0,  for all sand k. (339)
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A suitable basis for this Hilbert space is composed of states which contain n” (E) graviton

-,

particles generated by al(/?) and nf (E) gravitino particles generated by bl(k), where of

course nt’ (E) must be 0 or 1 as the gravitino particles are fermions. Thus we have a basis

L (@l (BB G R ® | (o). (340)

S

{nf(@)) @ |l @) =1

ks ns(]z)'

For the bosonic zero-modes, we promote ¢, cp, c4 and cp4 to operators obeying the

non-zero commutation relations

[e,cp|- =1, [ca,cpB]- =0, (341)

exactly as before. We can again represent them as acting on wavefunctions ¥ = ¥(c,c4)
as we did in the gravitational case. We also have to promote the modes 7, and 17{14 to

operators, which obey anti-commutation relations

[77047776]—&- = _60457 (342)
it 5]+ = 0apd™®. (343)

Let Hp denote the Fock space of the graviton and gravitino modes with momentum. Let
Hp denote the space of the bosonic graviton zero mode space, and let Hp denote the
(indefinite) fermionic gravitino zero mode space. The total space for our theory will be

the tensor product of these spaces
H=Hr3Hp R Hp. (344)

The gravitino zero-momentum modes only enter the linearization stability conditions
through the supercharge @), and the supercharge commutes with the total energy and
the total momentum. We thus focus first on the bosonic linearization stability conditions
H =0 and P = 0. These are imposed exactly as before for the gravitational case. Let
HPhys:B denote the space of states which obey the bosonic linearization stability conditions,
that is
Iphys, B) € HPsB (345)
if
H |phys, B) = P|phys, B) = 0. (346)

Suppressing the fermionic zero-modes, the states are of the form
phys, B) = ¥(c,ca) @ [{(nP(R)}) © |{n (R)}), (347)

subject to

S 3k (nf(/%’) + nf(E)) =0, (348)
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and the wavefunction ¥(c, c4) must obey the (5 + 1)-dimensional Klein-Gordon equation

5
( 5 Z )qx(c,cA):o. (349)

A=1

where we have defined again

=3 DI (B (R) + nE (R)). (350)

k#0 s==*

The inner product between these states obtained by group averaging is precisely as in the
gravitational case, but now also including the gravitino modes with momentum.

Next let us impose the fermionic linearization stability conditions on the states which
already obey the bosonic linearization stability conditions. Let HP"* denote the space of

states which obey all the stability conditions, that is
|phys) € HPWs (351)
if |phys) € HPWsB and
Qo |phys) =0, a=1,2,34. (352)

Note that if we already satisfy the bosonic constraints, then the supercharges @, anti-
commute,
[Qa, Qpl+|phys, B) =0, if P¥|phys, B) = 0. (353)

Now split the supercharge again into its zero-momentum Q(©) and non-zero-momentum Q

contributions. We recall that

Qm——&m+§:21T m%mf). (354)

A=1B=1

Then calculating the anti-commutator between the zero-momentum contribution yields

5
0 1
Q@ = 5 (—c%a +> cip) ap: (355)
A=1
where we have to note that

5 2 5
S0 S S TATEIE TG = 54, (356
A=1B=1C=1

which is verified by explicit calculation using the definition of the matrices T;;‘ in (210).

If we're restricted to HPYSB we can then rewrite this as
(0) 0) _ _1M25
Q. Q14 = = M%5as, (357)
and then it follows that )
[Qa. Qs+ = 1M25a5- (358)

We decompose HPWB into eigenspaces of M? and work in the distinct eigenspaces. We
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need to consider two cases, first we consider the case M? > 0, and later we discuss the
possibility M? = 0. Now, let us combine Q© and Q into creation- and annihilation-
type operators, similar to the method in Appendix G for the gravitino zero-modes (see
also [31]). Define

V2 V2

0) , -0 0) , . ~(0
a1 = 32 (Q +iQY), az = Q" +iQf") (359)
by = M(Ql +iQ2), by = ﬁ(@?, +iQ4), (360)
which obey the anti-commutation relations
1
A, A ; - _62 j o
[bs, b))+ = +3i5-

We now build the space of states from a positively normalised state |0, B) which obeys
a;|0, B) =0, b;|0, B) = 0, i=1,2, (362)

and |0, B) € HP™SB and M? > 0. Built from this state we have a 16-dimensional Fock

space obtained by applying the creation-operators aZT and b;r. We denote a basis for this

space by
[mimaning) = (al)™ (af)™2(b])™ (b})"2(0, B), (363)

where each of mq, mo, n1 and ny can either be 0 or +1. We now want to consider a state

|phys) which obeys additionally the fermionic linearization stability condition
Qalphys) = 0, (364)
which in the new notation can be written as
(a; + bi)|phys) = (] + b}) phys) = 0. (365)

Now, in general we can write

[phys) = Z Crymanins [M1M2NIN2) (366)
m,n
Now, let us note that
0 ifm1:0,n1:0,
—1)m2 OmQOTLQ if mp = O,n1 == 1,
(a1 + by)mamamng) = 7 10m202) (367)
—‘Om20n2> if my = 1,711 = 0,
—‘0m21n2> + (—1)m2\1m20n2) ifmy=1,n =1.

Thus applying (a1 + b1) to |phys) we will get something proportional to |[0mglng) if
Clmaying 7 0, as terms proportional to |0malng) only arise from |1mglng). Thus we must

set Cimyin, = 0. Similar reasoning with (az + b2), (a{ + bi) and (ag + b;) tells us that we
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need to only consider states of the form
|phys) = A|1100) + B|0110) + C]1001) + D|0011), (368)

for some constants A, B, C and D. Note that these states are orthogonal to each other,
and
(1100]1100) = (0011 |0011) = —(0110|0110) = (1001|1001) = +1. (369)

Then apply the linearization stability conditions. First apply (a; + b1),
(a1 + b1)|phys) = —(A + B)|0100) + (D — C)|0001) = 0, (370)
so that we learn A = —B and C' = D. Next, apply (a?{ + bJ{), which gives
(al + b})|phys) = B|1110) + D|1011) + A|1110) — C|1011) = 0, (371)
so we learn nothing new from this condition. Then apply next (az + b2), giving
(a2 + bo)|phys) = A|1000) — B|0010) — C|1000) — D|0010) = 0, (372)

from which we learn A = D and B = —C. Finally applying (a; + b;) yields again nothing

new. Thus we must have,
|phys) = A[|1100) — |0110) + |1001) + |0011)] . (373)

This state now obeys all the linearization stability conditions, the bosonic as well as the

fermionic ones, however we note that
(phys |phys) = 0. (374)

We thus still have to redefine the inner product on HPW$ to be positive definite. To do
this, we will proceed again by group averaging. We first show that averaging a general
state in HPYSB over the supergroup generated by the supercharges Q. necessarily leads
to a state proportional to |phys). Then we apply the group-averaging method to define a
new, positive definite, inner product.

In the group averaging procedure, we start with a general |state) and then a physical
state is defined by

1 _
|phys) = Y d*ad*d exp (—ia - P — 0Q) [state), (375)

where 0, for @ = 1,2, 3,4 is an anti-commuting number, and o = (a?, @) as before. We
define d*0 = df4df3dfsdf;, and the integration over 6, is defined by [31]

/d@a 0o =0, /d@a =0. (376)

However, @), and P* commute, so we can first group-average over the constraint
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PH =0, to obtain |phys, B) and then

phys) = - [ @' exp(~6Q) phys, B). (377)

Acting on states which already obey P* = 0, the supercharges @), anti-commute and it
follows that

Iphys) = —Q1Q2Q3Q4|phys, B). (378)

Now, we can write

(Q1 —iQ2)(Q1 +1iQ2) = i(Q1Q2 — Q2Q1) = 2iQ1Q2, (379)

if we use that ()1 and ()2 anti-commute. Thus

[phys) = (Q1 — iQ2) (@1 +i@2)(Qs — iQ)(Qs +iQ)phys, B) .
380

M4
= ¢ (0l +bD)(ar +b1)(af + b}) (a2 + by) [phys, B).

Note that each of the brackets can be anti-commuted. In general we write |phys, B) as a

linear combination of the |mymaning), however note that

a1 + by ‘0m20n2

aJ{ + bJ{ [1malng

(381)

as + by \m10n10

( ) )
( ) )
( ) )
(ag + b;)\ml 1ny1)

Thus we only still need to consider [1100), [0110), |[1001) and |0011). We can calculate

that
(al + 1) (a1 + b1)(al + bD)(ag + b2)[1100)

(
= (a} + b1)(a1 + by)(ab + b})[1000)

= (a} + b)) (a1 + b1) [~]1100) — [1001)] (382)
= (al + b1)[]0100) + [0001)]

= [1100) — [0110) + |1001) + |[0011),

where the sign in the second term follows from the anti-commutation relations as
b110100) = blal|0, B) = —albl|0, B) = —|0110). (383)

Similarly,
(a] +b}) (a1 + b1)(ad + b)(as + b)]0110)

= |1100) — [0110) + |1001) 4 |0011),
(al +b1) (a1 + b1)(al + bY)(ag + b2)[1001)
= —[|1100) — [0110) + |1001) 4 0011)],
(al +b1) (a1 + b1)(al + bY)(ag + b2)[1001)
= [1100) — |[0110) + [1001) + [0011).

(384)
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Thus we find again, by group-averaging, that

Iphys) = — / a0 exp(—3Q)|phys, B)

= A[|1100) — [0110) + [1001) + |0011)] ,

(385)

for some constant A. However, as mentioned before, currently this state would have
zero norm, so we ought to redefine the inner product. According to the group-averaging

prescription, we define, if

1 _
[phys) = -5 d*ad*@ exp (—ia - P — Q) |state) (386)

1 _
(phys1|phys2) = (statel] [_2V /d4ad49 exp (—io- P — HQ)] |state2)

= (phys, B1| [—/d4Hexp (—zéQ)] |phys, B2) (387)

= —(phys, B1|Q1Q2Q3Q4|phys, B2)
= (phys, B1|phys2).

Now, if for ¢ = 1,2 we write
Iphys, Bi) = \V[1100) + 210110y + £{21001) + £{Y]0011) + . .., (388)

where the ellipses denote linear combinations of states which vanish when the combination
Q1Q2Q3Q4 are applied, then

M4
[physi) = ==-; [11100) — 0110) + 1001) + [0011)] (389)
where
A= k) 4+ kP = k@ g W (390)
Then we find that the redefined inner product (physl |phys2) between |physl) and |phys2)
is given by
M4
(physl |phys2) = ﬁX{)\g. (391)

In this manner we obtain a new inner product, which now is positive definite, at least for
M? > 0.

Let us quickly address the case M? = 0. In this case, after imposing the bosonic
linearization stability conditions, we have no graviton or gravitino contributions with non-

zero momentum. Thus the supercharge can be taken to be of the form

5 2
1 .
Q=Q" =_ (—cpn + Z Z Ti‘?vjﬂf'kaPAnj'E;) (392)

2
A=1B=1

Then consider graviton zero-mode states which are smeared against the plane waves

U(c,ca) = exp [Fi|plc +ip- ). (393)
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With respect to these plane waves we have
o _P
QO =L+ R), (394)
where the anti-commutation relations now read

(e, 18+ = —[Ra, Rgly = dap- (395)

Then we can proceed as for the M? > 0 case, but this time forming ladder operators out

of n and R instead.

6.4 Example of a Physical State

To illustrate the construction of the space of physical states which obey the linearization
instability conditions, let us now consider an explicit example. We will take a state of two
particles, moving along the z-axis in opposing directions with |E\ = k, we will also assume
that both particles have positive helicity. Then we have M? = 4k.

First we calculate the non-zero-momentum contribution to the total supercharge (300),

which we denote

Q=3 S5 [ (Byas(Bpl (F) — & (F) -5 (Byal Bpu(F)] . (396)

E#O s=+

For €t (+ke)) we can take (from (113) with slight modification)

ethe) =— [ 1|, er—key=—|1 (397)

1 1
k| —i k| i
ut (k1) = /3 1Z o ut(—ka) = /5 _Zl . (398)
—1 —1
Thus, we calculate
0 0 i 1 1 i
VELO 0 1 —i| |4 1
et(key) - yut (key) = — =k . 399
(ker) - Yu™ ™ (ker) >l 1 0 o L ; (399)
1 =i 0 0 i 1
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Similarly,

|
~
T
—_
~

(400)

=
o
L= O O
[a)

|

-~

Il

=

|
S

—_
<
o
~
—_

Introduce the notation a(yy = a4 (+ké)) and similarly for b4y, the contribution to the
supercharge (396) from +ke) is given by

—0()0() — o )b) — aby — alybe)
o= Yk ia)bly) — ol b)) — ilambl_) — afybe) (401)
2| —aebly — b + by +al_ybe)
z(a(Jr)bJ(rJr) aIJr)b(Jr)) —i—z(a(,)bz = ag 10))

As a quick sanity check, we can note that QT = Q We now combine the components
of the supercharge, including the zero-momentum components Q(©) into ladder operators.
As in (359) we define

1 0 . (0 1 0 . ~(0
a=—=@"+iQ),  a=——(QF +ial"), (402)
where we used M? = 4k. Similarly following (360), define
| A A 1 t +
b= @i = latly — b a0
1 4 A 1 + +
by = E(Q3 +iQ4) = ﬁ(—a(+)b(+) + a(f)b(_))
For ¢« = 1,2 the non-zero anti-commutation obeyed by these are
lai, ally = =85, [bibl]y = 0. (404)

Now let us define a suitable state |phys, B) obeying the bosonic linearization stability
conditions
H|phys, B) = P|phys, B) = 0. (405)

We will take the non-zero-momentum part to be a positive helicity graviton and a positive
helicity gravitino, with momenta +k€] respectively, this thus satisfies the constraint that

the momentum vanishes. For the graviton zero-modes, consider a Gaussian

U(c,ca) = Ne e @, (406)
In momentum space, we have
dp® [ d5p 1
U(c,cq) = N3 / % (2;;5 exp [—4((190)2 +ﬁz)} exp [—iplc +ip-e].  (407)
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Then, applying the bosonic group averaging procedure to this state, we find that

[ PP Ty oy i B@ et | (o) (o AE@etin| o f
phys. B) = [ 5 [/ e OB @al bl [0),  (408)

where E(p) = \/p? + M? and

7T3N6*M2/4e*132/2
FE @) = . (409)
/P2 + M2

The group-averaged norm for this state is then

5=
(wbys, Blphys, B) = [ BB (1O @ + 17O @

x (0[b_yacsyal, bl yo> (410)
3|N|2 7M2/2

[

We choose N such that this is normalised to unity.

Now it is time to add the gravitino zero-modes, 1, and n2. Let |0F) be the state
defined in the gravitino-zero mode appendix, which is annihilated by each of d; and df.
Define a; and ag to be the restrictions of a; and ay (formed from the graviton and gravitino
zero-mode) to the eigenspaces of the graviton zero-modes with cp = p® and cps = pa.
Then define,

(1%, 7) = Nypgtirazdbd] OF), (411)

where the normalisation constant ensures that
(%, 1p°, ) = +1. (412)

Then the state

5—»
phys. B) = [ e [0 @07 15, )

(27 (413)
+ fO) () E@etipe g |—E(ﬁ),p’))} ® aL)bE—)W
obeys the bosonic linearization stability conditions, as well as
a;|phys, B) = 0, 1=1,2 (414)
Notice also that this state obeys
blphys, B) =0,  i=1,2 (415)

thus in the previous notation, we are considering the state |0011). Now, to satisfy the

fermionic linearization constraint, we define

M4
——(al +b})(a1 + b1)(a} + b)) (a2 + ba)|phys, B) (416)

h
|phys) = 16
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this yields

(b (+$)9(-)
V2 (417)

where we introduced |¥) by
[phys, B) = albl_||©). (418)

Then the norm of this state is, using the group-averaging inner product,

4

M
—_— 419
- (419)

(phys|phys) = (phys, B|phys) =

as we would expect from the non-invariant state |phys, B) = |0011) that we started from.

7 Conclusion

In this chapter we have noted that there are fermionic linearization stability conditions
as well as bosonic ones in 4-dimensional N = 1 supergravity on a 3-torus background.
Then we showed that states satisfying both fermionic and bosonic quantum linearization
stability conditions can be constructed by group-averaging over the supergroup of global
supersymmetry and spacetime translation symmetry.

States satisfying the bosonic quantum linearization stability conditions were seen to
have infinite norm in the original Hilbert space. This infinity results from the infinite
volume of the symmetry group generated by the LSCs. Roughly speaking, this infinite
volume is factored out in the group-averaging inner product. It is interesting that the inner
product of states satisfying all quantum linearization stability conditions have zero norm
in the Hilbert space of states satisfying only the bosonic ones. The finite group-averaging
inner product is obtained by factoring out zero in this case.

It would also be interesting to investigate whether there are analogues of LSCs in String
Theory. A preliminary investigation in this direction [32] did not find such analogues in
Bosonic String Theory, but since String Theory contains General Relativity, we believe
there should be analogues of linearization stability conditions in (Super)String Theory on

any background spacetime with compact Cauchy surfaces.

A A Note on Conventions

In this appendix we try to collect the main conventions we follow for easy reference. We
try to follow the conventions of Freedman and van Proeyen [28], except we do not raise

and lower spinor indices. For indices, we try to follow the following conventions:

e u,v,...=0,1,2 3 are spacetime indices,
e i,j,...=1,2 3 are space indices,

o a,0,...=1,2, 3,4 are spinor indices,

e s,1,...=1,2 or +,— are helicity indices,
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e a,b,...=0,1,2,3 are local frame indices.

Unless otherwise indicated, repeated indices are implicitly summed over. We use a mostly-
positive metric convention (—, +, 4+, +), so that the spacetime element for the flat-Minkowski
space is

ds? = —dt? + di - d7. (420)

Throughout we work on a background spacetime whose spatial sections are flat 3-tori,
with lengths L1, Ly and L3 in the z-, y- and z-directions respectively. The spatial volume
isV = L1L2L3.

We use y-matrices which obey
[V "]+ =20, (421)

when we need a particular representation of the v-matrices, we will use a Majorana rep-

resentation

0 1 1 0 0 ot 0 o3
0_ 1_ ’ 2 _ ’ 3 — , 422

where the Pauli-matrices o* are

N B N IS (e | (a2)

If A and B are two operators, we denote the commutator and anti-commutator of them
by
[A,B]- = AB — BA, [A, Bl = AB + BA. (424)

B Constrained Hamiltonian Systems

Throughout, we want to study physical systems using the canonical formalism. In this
formalism, we imagine that the system is described by some coordinates ¢ and associated
momenta p. Together the ¢ and p, taken at an an arbitrary fixed equal time ¢, form
coordinates for the phase space of the system. The momenta and coordinates combine

into the Hamiltonian H,
H = H(p,q), (425)

which determines the time-evolution of the system through Hamilton’s equations

d

1= {q¢,H},

) (426)
= H

s {p,H},
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where { A, B} denotes the bracket between A and B. The brackets are typically determined

from the canonical (equal-time) Poisson brackets

{a(t),q(t)}p =0,
{a(t),p()}p =1, (427)
{p(t), p(t)}r =0,

as well as the anti-symmetry rule {A, B} = —{B, A}, Leibniz rule {A, BC'} = B{A,C} +
{A, B}C and the Jacobi identity

P =
P =

{A{B,C}} +{B,{C,A}} + {C,{A,B}} =0. (428)

Typically, the Poisson bracket defined by

0AIB 0AIB

AB\p=—-222_°22
{4, B}r dq 9p  Op Oq

(429)
satisfies these properties, and we can verify that this indeed gives rise to the canonical
Poisson brackets. The notation here is suggestive of a single ¢ and p, but this is schematic
for more general situations where there are multiple coordinates or even continuous coor-
dinates. In those cases there is a summation (and/or integration) over the variables.

As a standard example, a particle mass m moving freely in two dimensions has phase

space coordinates {q1, g2, p1,p2} and the Hamiltonian for the system is

1
H = %(p% +p3)- (430)

The associated equations of motion are then the well known

d d
=0 —q = p. 431
dtp ’ mdtq p (431)

This formalism is sufficient for describing unconstrained systems, however it is possible
that the system has some constraints on it, which relate the momenta and coordinates.
In this case, the formalism we have set up needs to be modified. To motivate the need for
the modifications, consider again a mass m particle moving in two dimensions, but now

constrain it to move on a circle radius 1, so impose

dlq1,q2) =qi +5 —1=0. (432)

One way to solve this system is to solve the constraint automatically by introducing a set

of canonical variables (6, pyg), related to {q1, g2, p1,p2} by

q1 = cost, g2 = sinf,
(433)
p1 = — sin Opg, po = cos Opyg.
In terms of the new variables, the Hamiltonian is
H= 1 p (434)
- Qmpe’
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so imposing the Poisson brackets {0, pg} = 1 and all others vanishing, we find the equations
of motion
d d
P = 0, mﬁﬂ = pg. (435)
If we calculate the brackets between the variables {qi, g2, p1,p2} using the fundamental
bracket {6,pp} = 1, we find
{ai, 45} =0,
{ai,pj} = 6ij — @iqj, (436)
{pi.pj}t = —aip; + pjdi-
If we adopt these brackets, when the constraint is obeyed the function ¢(q1,g2) has van-
ishing bracket with all the canonical coordinates, so it is consistent to set it to zero before
the brackets are taken.

In general, the method for dealing with such constraints in the Hamiltonian formalism
goes back to Dirac [33], and involves replacing the Poisson bracket with a more general
Dirac bracket. We now give a quick account of this method, based on Dirac [33], Das [34]
and Henneaux and Teitelboim [31].

Suppose we start with a Lagrangian L = L(q’, ¢*), which determines the equations of

motion of the system through extremising of the action
S—/&LWﬁ) (437)

In moving over to the Hamiltonian formalism, we define a canonical conjugate momentum

p; by

oL
i = — 438
Pi= ga (438)
and then define the Hamiltonian by
He = pig — L. (439)

Typically, we assume that we have as many independent momentum variables as we have
velocity variables, and so we can replace the velocities in favour of the momenta. However,
it may occur that the relations defining the momenta are not independent, then we get a

number of primary constraints
¢m(p,q) =0, m=12..,M (440)

which arise from the definition of the momenta. Then the Hamiltonian we have defined is
not the most general one we could consider. Adding any number of the primary constraints
to the Hamiltonian should make no difference when the primary constraints are obeyed.

We thus consider the primary Hamiltonian

HP = HC + Am¢>m(p, Q)a (441)

where the ), are undetermined Lagrange multipliers. Using standard Poisson brackets,
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the evolution of some phase-space function g(p, q) is given by

9, q) ={9(p,q), Hp}pr = {9(p,q), Hc} p + Ami{g(p; @) dm(p, @)} p- (442)

We first ask that the constraints ¢,,(p, ¢) are preserved under time-evolution. For this, we
need to be careful, we must only impose the constraint ¢(q, p) = 0 after Poisson brackets
are taken. To distinguish this, suppose we have two quantities A and B, we say that A
and B are weakly equal, written

A=~ B, (443)

if A and B are equal if the constraints are obeyed, ¢(p,q) = 0. If they are equal even if
the constraints are not obeyed, we say they are strongly equal and write A = B. We thus
ask that

Sm(p,q) ~ 0. (444)
In general there are then a few possibilities. Either (ﬁm(p, q) =~ 0 is already true by the
existing constraints, qu (p, q) = 0 could determine some of the Lagrange multipliers \,, or

we find

o(p,q) = x(p,q) = 0, (445)
where x(p, q) is a function of the p, ¢ which does not vanish if the other constraints are
obeyed. We must then incorporate x(p,q) as an additional, secondary, constraint into
the theory. We then repeat the procedure with the secondary constraints, until the the
procedure terminates and we have determined all the constraints, primary and secondary.

Let the secondary constraints x(p, ¢) be denotes by
ém(p,q) = 0, m=M4+1,...N. (446)

We now further classify the constraints. We say that a constraint is first class if it has

weakly vanishing Poisson bracket with all constraints. Thus ¢;(p, q) is first class if

If a constraint is not first class, then we say it is second class and has a non-vanishing
Poisson bracket with at least one other constraint. In general, there must always be an
even number of second class constraints [33].

Typically, first class constraints are related to gauge transformations, certainly in all
cases we consider this is true. One way to deal with the first class constraints is to impose
additional gauge-fixing constraints, one for each first class constraint, which turn the first
class constraints into second class constraints. We will thus assume that all the constraints
are second class.

Thus let ¢, (p,q) denote now the collection of all the second class constraints. In
general, the constraints will not be compatible with the canonical Poisson brackets between
the dynamical variables. This is fixed by introducing so-called Dirac brackets. Define the

matrix Cp,, of Poisson brackets between the constraints by

Cmn = {Cbma ¢n}P (448)
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This matrix turns out to always be invertible, and can then be used to define the Dirac

bracket between two functions f and g by

{f.9Yp ={f-9}p — {f- dm}PrC™ """ {dn, g} p. (449)

The nice property about Dirac brackets is that the constraints can be strongly set to

vanish, because

{f7 gbm}D =0, (450)

for any second-class constraint ¢,, and any phase space function f(p,q). Thus when
working with Dirac brackets, we may take the constraints to vanish even before taking
brackets. Furthermore, it is possible to show that the algebraic properties obeyed by the
Dirac brackets are the same as those for normal Poisson brackets.

Returning to the example of a particle constrained to a ring, this can be described by

the Lagrangian

. 1 . .
L@@JUZgW@%ﬂ@—ﬂﬁ+é—U] (451)

However, when calculating the momentum conjugate for the dynamical variable F', we

find
oL

= 87F =
Thus, this must be imposed as a primary constraint on the theory. After carrying out the

PF 0. (452)

constraint analysis [34], one finds that the Dirac brackets between ¢; and p; are given by

{gi,q;}p =0,
{ai,pj}p = 0ij — Gigj, (453)
{pi,pj}p = —aip; + pigi,

and the Hamiltonian for the system, after the constraints are strongly incorporated, is

1
H=—(p?+ p?). 454
om (pt + p3) (454)

This exactly reproduces the results for the particle constrained to the ring we found

previously by examining the system in angular coordinates.

C Grassmann Variables

In this appendix we collect some information on Grassmann, or anti-commuting, variables
as needed for the “classical” treatment of spinor fields and supersymmetry. The treatment
here is based on Rogers [35] and Henneaux and Teitelboim [31]. Grassmann numbers form
a vector space, with a product (such as matrix multiplication), multiplication by (complex)

scalars and a set of generating elements £ which anti-commute, that is

AP+ Pt =o. (455)

67



For example, the Grassmann algebra with two generators can be realised as 4 x 4 matrices,
with

0010 010 O
0 001 0 00 O
1 2
= 5 = 456
. 0 00O . 0 00 —1 (456)
0 00O 0 00 O

In general, we will realise bosonic dynamical variables ¢' as even elements of a Grassman
algebra, while fermionic dynamical variables 8¢ are odd elements of a Grassman algebra,
that is

@b (t) + dhp(EEE + ..,
05 (t)E + 0% o (H)EAEPEY +

Now we can consider functions f, which map from a set of dynamical variables (¢¢, %) to

q'(t)

(0 (457)

a new point f(q*,0%). We will only consider so called superfunctions f, which are defined
by the fact that they depend only on combinations of ¢* and #%, and do not involve the
Grassmann generators £4 explicitly. Then a general superfunction f admits an expansion

of the form

£(a.0) = fola) + fa(@)0° + fap(0)0°0° + ..., (458)
where we require fo3(¢) = —fga(q). Given a superfunction, the left-derivative is defined
by

WO f
0f = 80° S5 (459)

that is, when we vary 6, we place the variation on the left. We will always take derivatives
with respect to odd dynamical variables to be left-derivatives.
Suppose that A and B are dynamical variables and « is a complex scalar, we can define

complex conjugation by
(AB)* = B*A*, (A=A, (aA)* = a*A*. (460)

A variable is real if A* = A and imaginary if A* = —A. We will typically take the
dynamical variables #® and ¢’ to be real variables.
Now, let us do classical mechanics with both even and odd variables. Assume that the

equations of motion for the system are obtained by extremising an action of the form

Slq, 0] = / dt L(q,q,0,0), (461)

where L is assumed to be a real, Grassman even function, and dots denote differentiation

with respect to t. Canonical momenta are then defined

oL OrL
5 = — =, ﬂ'a = < . 462
P g 0~ (462)
Then the Hamiltonian is defined
H = 'p; + 6%7o — L. (463)
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In this formalism, Hamilton’s equations of motion can then be written

OH . OH OLH OLH
— v — 'a:—i, & — . 464
ag’ T " op T age 7 O (464)

Di = —

This can be written in terms of Poisson brackets in the usual manner if we introduce the

non-vanishing Poisson brackets between the dynamical variables
{ql)p]}P = 6;7 {904’ ﬂ-ﬁ}P - _53) (465)

and extend the algebraic properties of Poisson brackets to include odd-variables.

D A Note on y-Matrices

In this appendix we collect some information on y-matrices, and prove some identities
used in the main text, the treatment of the y-matrices is based of Freedman and Van
Proeyen [28]. The four y-matrices we use are the four 4 x 4 matrices 7%, v', 42 and 3,

which are defined to obey the anti-commutation relations
214 =AMy At =29, (466)

where n*¥ = diag(—1,+1,+1,+1). When necessary to indicate the components of a -
matrix, we will use the indices «, 3,... = 1,2, 3,4, so that 'ygﬁ denotes the a8 component
of the matrix v*.

An explicit realisation of the ~-matrices is provided by the following really real or

Majorana representation

0 1 1 0 0 o 0 o3
0_ 1_ . 2= . = , 467

where the Pauli-matrices o* are

(1) - (00) - 0) (a65)

By taking sums and matrix products the y-matrices generate a Clifford algebra. Due
to the defining relation, we can see that the antisymmetric products are sufficient to span

the entire algebra. Let us define

1
=50 =), (469)
1
P = g(v“’y”vp + APV A AP — APy — AP — APy AR, (470)

For the top element v#¥?7 it is more convenient to write

,yul/po' — _6MVpUryOfy1f>/2fy'3’ (471)
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where €, is the anti-symmetric Levi-Civita symbol, defined by

+1 if pvpo even permutation of 0123,
€uwpo = § —1 if prpo odd permutation of 0123, (472)

0 otherwise.

In particular €923 = —1.

We now want to prove some y-matrix identities. First
Rl = kT i ik ik (473)

Note that both sides of the result vanish if i = j. Thus suppose that i # j, then there are
two different cases we need to consider, first if £ = ¢, and if k # ¢ and k # j. In the first
case 7Fy% = 6% = 41, so that the result is 47. In the second case vFy4 = yFyind = ki
because k, ¢ and j are all distinct. Then the result follows by antisymmetry in ¢ and j.

Next we prove

,yuup,yafr — ,Y,uufrnpa + ’YPMTT]VU + ’}/VpTT]MJ _ ,Y,uuanpr o 'YpMUUVT
=PI+ A (TP =T n") (474)
+ (" = nPIntT) + AP (T — tIn"T).

To prove this, let us first note that u, v, p, o and 7 can not all be distinct. Furthermore,
by antisymmetry no two indices on the same ~-matrix can be the same. It thus suffices
to consider two cases, first when u, v, p and 7 are all distinct and p = o, second when p,

v, p are all distinct and p = ¢ and v = 7. In the first case we have
YPPYTT = APy PN = AT = T, (475)
where we used that p = ¢ and u, v, 7 and o are distinct. In the second case we have

po VT

YHPATT = P APy T = Ry TPT = pfont Tk, (476)

where u, v and p are all distinct and v = 7 and 4 = 0. The other terms in the result then
follow by using the anti-symmetry of the y-matrices.
Finally we wish to consider
7y (477)

Actually, this can be worked out from the previous identity by noting v%4* = 7% Then
,_YOZk,yij — ,.yOljé‘ik + ,kaidlj _ ’}/Oli(s‘jk _ ,kaj(sli + 70(5lj5ik _ 5k]52l) (478)
Then multiplying by 7° yields the result
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E A Note on Frame Fields

a
/,1,7

objects such as the spin-connection w,qp. As before, we follow the treatment of Freedman

In this appendix we collect some useful facts about the frame fields e%, and associated
and Van Proeyen [28]

The frame fields e}, are related to the space-time metric g, through

Juv = eznabeg, (480)

clearly this equation only defines the frame fields up to local Lorentz transformations. The
frame, or local Lorentz, indices a, b, ... can be raised and lowered with the Minkowski
metric 74, while the space-time indices 1 and v are raised and lowered with the space-time
metric g,,,. The frame field e, transforms as a vector under local Lorentz transformations
and as a 1-form under space-time transformations. In particular, in the language of 1-forms

we can write
e = ejdat. (481)

Throughout we will always take the spin-connection w,,; to be torsion free, that is we

define the spin-connection 1-form
Wap = Wyapda! (482)
through the first structure equation
de® +w® Aeb = 0. (483)

It is possible to consider also connections w,; with torsion, which have the torsion 2-form
T on the right hand side of the first structure equation (483). Such connections appear
naturally when considering Supergravity in the first order formalism, see [28]. Working in

components, we can use the first structure equation to evaluate w,qp in terms of eZ as

1 1
wuab = 56(1” (éheﬁ — &,eZ) - ieb" (Oues — &,eZ)
1 (484)
b b
—3 (e‘“’e P —e ”e‘”’) ecﬂ&jez.
The point of the spin-connection is to define derivatives which are covariant with respect
to local Lorentz transformations of the frame. For example, if V¢ is a local Lorentz vector,

then 9,V will not be a local Lorentz vector. We fix this by defining the Lorentz covariant

derivative D, of a vector field by
DV =0,V +w, V. (485)

Other tensor covariant derivatives are defined similarly, and importantly the Minkowski
metric 74, has vanishing covariant derivative D,n,, = 0. For a spinor such as the Majorana

field v, we define the Lorentz covariant derivative by

1
D,V = <au + 4w,wb7“b> v (486)

71



Given the local Lorentz covariant derivatives, let V* be a space-time vector, then define

vV, VP =etD, V"
(487)
=0,V" + el <8Mefj + w#abe?,) %48
We thus define an object I'”,,, by

I?,, = eh(Oue; + wuabeg). (488)

Inserting the definition of w,, in terms of the frame field, we find that as the notation

suggests I'”,,, is indeed the Christoffel symbol

1
Fp;w = §gpg (8#901/ + OvGuo — (%gm/) . (489)
Furthermore, the defining relation for r’ uv also tells us that

Ve, = 0uey, + wuabeg —T*,e;=0. (490)

Then consider the space-time covariant derivative of the space-time y-matrix +,. This has

three types of indices, two spinor indices (row and column) and a space-time index. Thus

1
vu"}/y = a‘u’}’y + Zwuab |:7abv PYV:| B - Fpuufyp (491)

To evaluate this, write v, = v°e., and use

ab a, bc

[y, 7%= = 29" — 29Pn° (492)

to note that
Vv =7"Vyew =0, (493)

whence the space-time y-matrices are covariantly conserved.

Finally, define the Riemann tensor RW“I’ in terms of the spin-connection by

ab ab ab a cb a cb
R," = 0w, — Ow,” +w, ' w,” —w, " w,”. (494)

Then the curvature 2-form defined by

1
p? = §Rwabdx“ Ada?, (495)

obeys the second structure equation

dw® 4w, A w® = p2. (496)

F A Note on Helicities

In this appendix we verify the claims about the helicities of €% (k) and u® (k). Helicity is
defined as the projection of the spin S along the direction k of the momentum of a particle
or field.
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—

Under a rotation R(f) the vector A transforms as

—

where a general rotation is given by

R(0) = exp [—z‘é’ : §} , (498)
and the generators S are
0 0 O 0 0 ¢ 0 —i 0
Si=10 0 —i|, Sa=|0 0 0], S3=1]7 0 0 (499)
0 ¢« O - 0 0 0 0 O

In particular, if we consider a rotation about the z-axis, so that 0= (0,0,0), we find

1 0 0
Ri(6)=10 cos —sinf (500)

0 sinf cosf
Notice that the generators Sy, Se and S3 obey the commutation relations
[Si, S]] = ieiijk (501)

Now, suppose that we choose k= két, so that the momentum is purely in the z-direction.

Then the helicity A is given by

ol

_S

h="=
L4

= 9. (502)

We can note that S; has eigenvalues +1, 0 and —1, with normalised eigenvectors €7,

e+ (kéy) corresponding to the eigenvalues 0 and +1 respectively, where

et (hey) = \}5(52 + iéy). (503)
We quickly check that indeed
) 0 0 O 0 .
Slei(kgl):E 00 —i 1' :iﬁ =+ (ké)) (504)
0 « O =+ i

—

Meanwhile, under a rotation R(#), the spinor 1), transforms as

—

Vo = P = D(0)apts, (505)

—

where the general D(0) is given by

D(0) = exp [—ié : 5*} , (506)
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and this time the generators are given by

; .
Si = geijkh/]a')/k]- (507)

Working explicitly in the Majorana representation for the y-matrices,

1{c®> 0 i (0 —o3 1 0 ot
S1=—2 Sy = - S3 = — . 508
A quick calculation verifies that again

Choosing again k= ké1, so that the helicity operator is S7. This has eigenvalues :l:%, both
with multiplicity 2. Writing out S in its 4 x 4 form,

0 4 0
11—¢ 0 0
=510 0 0 | (510)
0 0 — O
we see that a suitable basis normalised of eigenvectors is
1 0
) ) B L (511)

where vl-i have eigenvalue :l:%. In particular, it follows that

b [ VEEE + 1 (1
u™(kéey) = (\/E£i>, 13 _\/§<:Fi>’ (512)

are of helicity :l:% and also solve the massless the Dirac equation.

G More on the Quantised Zero-Momentum Gravitino Modes

In this appendix we consider the quantised zero-momentum sector for the gravitino. The
approach follows [31]. In this sector we have self-adjoint anti-commuting operators 7, and

7](’14 for A=1,2 and a = 1,2, 3,4. They obey the anti-commutation relations

(Mo, Ml+ = —dap; (513)
na ng)4 = 0apd™?, (514)

with all other anti-commutators vanishing. We wish to find a suitable space on which these

operators can act. To this end, we can combine them into creation- and annihilation-type
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by defining

1 .
dy = 5(771 + i),
1 (515)
do = —(n3 + ing),
2 \/5(773 )
and for A =1,2
1 .
dit = E(Uf‘ +in3),
1 (516)
A = (i +inh),
> \/5(773 )
These operators then obey the anti-commutation relations
(i, ]y = —di, (517)
[dfl,d?T]Jr = 6;;67. (518)

where i, j = 1,2. We thus have have 6 pairs of operators which obey fermionic creation- and
annihilation-type anti-commutation relations. We can thus have these operators acting on
a 26 = 64 dimensional space, by defining a ”vacuum” state |0) annihilated by each d; and
d{, that is

d;|0) = df'|0) =0, (519)
and we choose this state to be (positively) normalised, (0|0) = +1. Other states are then
built by acting with d;r and dfﬁ. Note that not all states in this space will have positive

norm. For example

1! [0)]12 = (0|dsd!|0) = —1. (520)
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Part 11
Automorphic Scalar Fields in

two-dimensional de Sitter Space

8 Introduction

Lower dimensional models are frequently useful in understanding novel effects in quantum
field theory as the relative simplicity of these situations may allow for the existence of
exact solutions. The hope is that such situations provide useful toy models and that
certain behaviours can be generalised to more realistic situations.

Unlike higher dimensional de Sitter spaces, the two-dimensional de Sitter space dSs, is
not simply connected. Correspondingly, the behaviour of the fields under complete traver-
sals of non-contractible loops must be specified. This topological non-triviality allows for
unexpected behaviour. For Dirac spinor fields in two-dimensional de Sitter space, Ep-
stein and Moschella [36] found that an anti-periodic Neveu-Schwarz boundary condition
is more natural than a periodic Ramond boundary condition. On conformally mapping
the spinors from a Lorentzian cylinder to two-dimensional de Sitter space, only the anti-
periodic spinor fields possess a form of invariance under all de Sitter transformations.
Furthermore, for free periodic and anti-periodic real scalar fields on two-dimensional de
Sitter [37, 38|, Epstein and Moschella showed that behaviour of the anti-periodic scalar
fields is quite different from the periodic scalars. For masses corresponding to the comple-
mentary series in the periodic case, the anti-periodic fields never admit de Sitter invariant
two-point functions. This can be understood from the representation theory of SL(2,R),
where there are no unitary irreducible representations corresponding to this mass range.
Epstein and Moschella also showed that for the anti-periodic case there does not exist a
natural analogue of the Bunch-Davies vacuum state [39, 40, 41] for any value of the mass,
and correspondingly one loses the associated Gibbons-Hawking thermal state [42].

More generally, the non-trivial fundamental group 71 (dS2) = Z of the two-dimensional
de Sitter space allows for the existence of automorphic scalar fields [43, 44, 45, 46, 47].
The automorphic scalar fields are generically complex scalar fields, which transform under
a unitary representation of m1(dSz2) on traversal of the non-contractible loop. Working in
global coordinates on the de Sitter manifold, this can be expressed as the scalar ®(t, ¢)

having the following periodicity condition imposed
O(t, ¢+ 21) = 2™PD(t, ¢), (521)

where 3 is a real number. These fields can naturally be viewed as single-valued fields on
the universal covering space Eéz of two-dimensional de Sitter space, and transform under
representations of the éE(ZR), the universal covering group of the de Sitter symmetry
group SOq(2,1). In this part, we study properties of the automorphic scalar field and
analyse the implications of a quantum field theory built upon it that different values
of the phase parameter 3 yield. In particular we investigate compatibility between de

Sitter invariance and the Hadamard condition for the resulting states associated to the
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automorphic field. We find that in general only the periodic § = 0 fields have a de Sitter
invariant Hadamard vacuum state; we do this by constructing the two-point functions for
the de Sitter invariant states and finding that they do not have the correct singularity

structure to be locally Hadamard.

8.1 Organisation of this Chapter

The remainder of this chapter is organized as follows.

We begin with a review of two-dimensional de Sitter space. We introduce the coordi-
nate systems used and review the causal and geodesic structure of the spacetime. Finally,
we write down the Killing vectors of the spacetime, and recall that they form an sl(2,R)
algebra.

We then review the canonical quantisation of automorphic scalar fields in two-dimensional
de Sitter space. We decompose the field into mode functions which automatically satisfy
the automorphic condition, and then split the space of solutions into a positive and a
negative norm space with respect to the Klein-Gordon inner product on two-dimensional
de Sitter space. This then allows us to define annihilation- and creation-type operators
and build up a Fock space for the theory in a usual manner.

Following on from this, we then start to impose additional restrictions on the mode
functions (or equivalently on the states). We first investigate when the Fock vacuum state
is de Sitter invariant, which requires the mode functions to form a basis for a unitary
irreducible representation of the symmetry group. Having found the symmetric states, we
then additionally want to check if they are in a sense “physically reasonable”, which we
do by asking that the states obey the Hadamard condition.

Finally, we define a class of de Sitter non-invariant states which obey the Hadamard
condition for all possible automorphic fields in two-dimensional de Sitter space.

The main content of the chapter is supplemented by three appendices. In the first
appendix we review the unitary irreducible representations of the sl(2,R) algebra. In
the second appendix we consider certain automorphic sums, which are encountered when
considering the de Sitter non-invariant Hadamard states. In the final appendix we prove

a formula related to Legendre equations used in the main part of the text.

9 Geometry of Two-Dimensional de Sitter Space

Two dimensional de Sitter space can be simply realised as a hyperboloid embedded within a
three-dimensional Minkowski space. Let X°, X! and X? be coordinates for the Minkowski
space, with metric

ds? = —(dX")? + (dX1)? + (dX?)% (522)

Then the de Sitter hyperboloid is defined by the equation

(X9 (xXH?2 4+ (XH?2 =1 (523)
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Figure 1: Carter-Penrose diagram for two-dimensional de Sitter space. The green area
can be connected to the origin O by a space-like geodesic. The blue area can be connected
to the origin by a time-like geodesic. The red shaded area can not be connected to the
origin by a geodesic.

A suitable set of coordinates are the global coordinates (¢, ¢) defined by

X0 = ginht,
X' = coshtcos ¢, (524)
X? = coshtsin ¢,

which cover the entire de Sitter manifold, with ¢ € (—o0, 00) and ¢ ~ ¢+ 27. In the global

coordinates the metric for de Sitter space is given by
ds? = —dt? + cosh? td¢? (525)

The spatial slices in these coordinate systems are constant X or ¢ slices, which are circles
with a contracting, then expanding radius r» = cosh ¢.
As a two-dimensional metric, this is conformally flat, which can be seen by going to

conformal coordinates (7,¢) with 7 € (=%, %) by

sinht = tan 7. (526)
Then the metric in conformal coordinates takes the form
ds? = sec? 7(—d7? + d¢?). (527)

From this, we can read off the causal structure of two-dimensional de Sitter space, as seen
in the Carter-Penrose diagram in Figure 1.

The embedding space picture also makes it convenient to talk about the geodesic
structure of de Sitter space. As is the case for geodesics on spheres, the geodesics of de
Sitter space are the intersections of the hyperboloid and planes through the origin [48].
Thus, following Synge, we can easily determine the geodesics as follows. Let X4 = P4,

with A = 0,1,2 be a point on the de Sitter hyperboloid and suppose that the geodesic goes

78



along the direction Q# from P#. To remain on the hyperboloid, these are constrained by
napPAPB =1,  napP?QP =0, (528)

where nap = diag(—, +,+) is the metric on the Minkowski space. Now the plane con-
taining P4, Q4 and also the origin in Minkowski space can then be given parametrically
by

X4(p,q) = pP* + qQ*, (529)

where p,q € (—00,00). Then the intersection between this plane and the hyperboloid is

determined by
X (p, )X (p,q) = p* + ’napQ? Q" = 1. (530)

Now the value of napQ”QP depends on whether the geodesic is null, spacelike or timelike.
If the geodesic is null, then n4pQ*QP = 0 and p = 1, so the geodesics are given by the
straight lines

X4q) = P +4Q". (531)

For a space-like geodesic, using proper-length [ as the parameter along the geodesic, we
have n4pQ4QF = +1, so that
P+ =1, (532)

and therefore the geodesics are given by
XA(1) = PAcosl 4+ Q% sinl. (533)

In particular, note that all the space-like geodesics emanating from P4 will intersect again
after a geodesic distance | = 7 at the anti-podal point —P4.
For the time-like geodesics we use proper-time 7 as the parameter along the geodesic,

so that n4pQAQP = —1. The geodesic is thus given by
XA(r) = PAcosht + Q*sinh 7. (534)

Let 2 and y be two points in two-dimensional de Sitter space and let X (x) and X4 (y)
be the corresponding embedding space coordinates for these points. Then the hyperbolic

distance Z(x,y) between these points is defined as
Z(x,y) = napX (@)X 2 (y). (535)
If x and y can be connected by a geodesic then we note that

cosl(z,y)  if space-like,
Z(z,y) = cos u(z,y) =  coshr(x,y) if time-like, (536)
1 if null.

Thus p(z,y) is the geodesic distance between z and y if they are space-like separated
and proportional to the proper time between x and y if they are time-like separated.

Conversely, any two-point with Z(z,y) > —1 can be connected by geodesics. Meanwhile,
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the point z can not be connected by a geodesic to the interior of the light-cone of the
anti-podal point Z, because here Z < —1. When Z = —1 the points are connected to the
anti-podal point by a null geodesic and only the antipodal point Z itself can be connected
to x by a geodesic, as can be seen from (533). For points « and y which are not connected

by a geodesic, we use the relation
Z(@,y) = napX (@) X" (y) = cos p(z, y) (537)

to define what we mean by cospu(z,y). Note that this leaves some ambiguity in the
definition of u(x,y), but we will deal only with cos u(x,y) which does not suffer from this
ambiguity.

The symmetries which leave the hyperboloid invariant are those symmetries of the
embedding Minkowski space which leave the origin invariant. Thus the symmetry group
is the group SO(2,1) of Lorentz transformations in (2 + 1)-dimensions. As a Lorentz

transformation, the SO(2,1) element A acts on the embedding space coordinates by
XA XM = A X8, (538)

The symmetry algebra SO(2, 1) is generated by a single rotation L and two boosts By and

Bsy. Acting on functions of the global coordinates (¢, ¢), these generators are

L= X1% — XZ% = 5;,
B Xlaf(o + x° af(l = cos ¢% tanht81n¢a¢ (539)
By = XZ&?(U +X08f(2 = smgb +tanhtcos¢> 90"
The algebra obeyed by these generators is
[L, B1] = —Bs, [L,Bo]=Bi, [Bi,Bs]=L. (540)
This algebra admits a quadratic Casimir element ) given by
Q=—-L*+ DB} + Bj. (541)
In terms of the generators in global coordinates this is
Q= g; + tanht gt costﬁ t;;, (542)

which we can recognize as being (minus) the box-operator of two-dimensional de Sitter

space
1
O0=——0, (V—-99"0,) = —Q. (543)

V=g
0 1
0 o

This algebra can also be realised by the sl(2,R) matrices

0 1 1 0
L:} s Blz1 5 B2:
2\-1 0 2\0 -1
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which is expected because SL(2,R) is a double covering of SOq(2, 1), which is the compo-
nent of SO(2,1) connected to the identity.

10 Canonical Quantisation in two-dimensional de Sitter Space

Let ®(z) be a classical, generically complex, Klein-Gordon scalar field on two-dimensional

de Sitter space. This field obeys the Klein-Gordon equation
(O - M?)®(z) = 0, (545)

where M? is a real number. Generically, we could also have a term proportional to the
Ricci scalar R, however this is a constant for de Sitter space, and thus for compactness
has been absorbed into the mass parameter M. Further, suppose that the field ® is
automorphic in the sense that it picks up a phase when making a full traversal of the

spatial sections. In global coordinates, this can be implemented as
O(t,¢ + 2m) = ¥ D(t,9), (546)

where the phase 5 € [0, %] Generically this requires the field ® to be complex, however
there are two special values 8 =0 and 8 = %, corresponding to periodic and anti-periodic
boundary condition, which also allow for real fields. These real fields have previously been
studied by Epstein and Moschella [37, 38], who realised them as single-valued fields living
on the double cover of two-dimensional de Sitter space.

To quantize this system, we will follow the canonical approach, as in Birrell and
Davis [49], Parker and Toms [50] or Wald [51]. As part of the canonical quantisation,
we promote ®(x) to an operator-valued quantum field and impose the curved-space ver-
sions of equal-time canonical commutation relations on the field ®(z) and its canonical
momentum conjugate II(z). We will only work with two-dimensional de Sitter space,
which has a well defined causal structure. Therefore, working in global coordinates (¢, ¢)
we may use t as a time coordinate, and the Cauchy surfaces of constant ¢ act as suitable
equal-time surfaces. To define the canonical momentum-conjugate II(z), we note that the

Klein-Gordon equation of motion can be derived from the Lagrangian density

L=y—g (—gﬂvauq>T(g;)ayq>(x) - M2<1>T(x)q>(x))
_eogng (22102 1 02799
TOSNEOt Bt cosht 06 09

(547)
— Mot q>> ,

where we have used ®f(z) to denote the complex conjugate field to ®(z), anticipating the

later quantisation. Then, defining the momentum conjugate as in flat space yields

oL 5l
II(z) = 9000 (x) = coshtﬁ(t,qb). (548)
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Then the appropriate equal-time commutation relations to impose on the fields are

[D(t,0),®(t,¢')] =0 (549)
[®(t,¢),11(t,¢")] = i6p(s — &) (550)
[11(t, ¢), T1(t, ¢")] =0, (551)

where we have defined the d-function dg(¢ — ¢') by
1 . / ) /
Tolo= )= D 5™ =d(6 = ), (552)

meZ+p

where dg(¢ — ¢') is the usual periodic §-function on a circle. This ensures that if f(¢) is

a smooth automorphic function obeying f(¢ + 2m) = e>™ f(¢), then one has

2
/0 A6 65(6 — &) F(&) = 1(6). (553)

Similar relations are imposed for the complex-conjugate field and its associated canonical
conjugate momentum. As in flat space, to make progress it will be convenient to decompose
the free field into independent modes. To this end, on the space of classical solutions of

the Klein-Gordon equation we define a Klein-Gordon type inner product by

[T L o®!
(1, ) () = i /0 dgcosht | BY(t,¢)— = (t,6) = 5 Lt A)Pa(t0)| . (554)
This product is conserved in the sense that
(1, 2)(t1) = (D1, P2)(t2), (555)

provided that &1 and ®5 are both solutions to the classical Klein-Gordon equation. As in
flat space, this product is not necessarily positive. Let 8g be the classical space of solutions
all with the same automorphy condition labelled by the shared value 5. We look to split
8z into a positive and a negative subspace, labelled by SE and SE respectively so that

85 =85 ©83. (556)
That is to say, if ¥, € SE and U_ € SE, then we have
(U4, ¥4) >0, (W4, 0_) =0, (V_,¥_) <O0. (557)

In canonical quantisation, the positive definite subspace SE provides the one-particle sub-
space of the theory.
Let us now construct a the subspaces SE and Sg. We can satisfy the automorphy

condition automatically if we look for modes of the form

D(t, p) = By (t)e™?, (558)
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where m € Z + (. The equation satisfied by the functions ®,,(t) is

1 d dd,, m?
e ht—2 ) + + M?) ®,, =0. 559
(CO dt ) (cosh2 > (559)

This is a second order ordinary differential equation, and in particular it is real. Thus,
if we assume ®,,(¢) and ®; (¢) are linearly independent, then the space of solutions is

spanned by ®,,(t) and @7 (t). Now suppose that we define
Fp(t, @) = @ ()™ (560)
and assume that these form an orthonormal basis of the positive subspace, so that
(Finy Fr) = Omn.- (561)
Then a suitable orthonormal basis for 85 can be formed by
Gra(t, 9) = B (£)e™?, (562)

and from the definition of the Klein-Gordon inner product we can note that these functions

obey

Gy GY) = —Omn, (563)
(Fm, Gr,) (564)

The completeness of these functions means that an arbitrary solution ¥ of the Klein-

Gordon equation can be expanded as

U(t,0) = Y [(Fn, ©)Fn(t, ) — (G, U)Gr (. 9)] - (565)

meZ+p

Expanding out the Klein-Gordon products equation (565) can be rearranged to
2
W(to)=i [ o' v ) cosit 3 [0 (6 0Fn6,0) + 0 (8, G, (6:0)
0

27
ti /O ! 1) ot 3 L7610 (6.) = (6, 0G5 (6,0)]
(566)

As U(t,¢) in (565) was assumed to be an arbitrary solution of the Klein-Gordon equation,
we can choose U(t,¢) and 0;¥(¢,t) independently at a given time t. Therefore we can

read off that the completeness requires
cosht Y [0iF (¢, 6) Fin($, 1) — 0:Gn (¢, £)G (6,)] = idp(0 — &), (567)
and

> [Fn(@ ) Fn(@,t) = Gin(¢, 1)Gr(6,1)] = 0. (568)

m
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Similarly, considering the expansion of 9;U(t, ¢) yields the further condition

D [OF (8 8O Fn(t, 6) — iG(t, ¢) DG (1, 0)] = (569)

m

With this in mind, now we use the basis {F,,, G}, } to expand the quantum field as

Ot,0) = Y. [anFnlt,0) +b,Gl(t )] (570)

meZ+f

Comparing with the expansion of an arbitrary solution, we can read off that
am = (Fpn, @), b, = —(G5,, ®). (571)

Then we can calculate

s8] = ~[(Fy, ), (3, @)
2 p oF}, p ot ,
:/o dpde cosh2t<— 5t (t,0)Fn(t,¢') [@(t,qb),at(t,ﬁf))}
]
- Falt0) 252 0. | 5 (1.0, 20 ¢’>D 6572)
[T OFy, OF,
——i [ a0 ot (2500 Rt 0) - Fi0.0) 75 0 0) )

Similarly, we can show that
B bl] = s (573)

and all other commutators vanish, that is the a,, and b,, obey independent ladder operator
algebras.

Conversely, it is also possible to show that if we assume a,, and b,, obey independent
ladder operator algebras, and also assume the form of the field operator in terms of the

ladder operators then the associated fields obey the canonical commutation relations. For

instance,
T
[(I)(t, ), 8;11 (t, ¢’)]
- mZ (Fm@,cb)aﬁ (t,¢)[am. al)] + G (¢, ¢>8G (t, ) b1 ]> (574)
S (AL =)
mEZ
- coéht 5(q§ qb)

Given this, the Fock space of states is defined as follows. Let |0) be the vacuum state
defined by
am|0) = b,|0) =0, for all m € Z + B. (575)

Other states are then created by acting on |0) with the creation operators a:rn and bin.
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It is important to note that the Fock vacuum state is not defined uniquely. The non-
uniqueness can be traced back to the choice of basis {F,,,, G}, } for the classical space of

solutions 8g. For instance, suppose that we define

Jm(t,¢) = amFn(t, ¢) +BmG;kn(t7¢)7 (576)
Im () = i, Gio(E, @) + B Fm (8, 0)-
Then we get a new orthonormal basis { fi, g, } if we choose
|| — 1Bm* = 1. (577)

In this context, this kind of change of basis is usually known as a Bogoliubov transforma-

tion. With respect to this new basis, we can expand

(t,0) = > (Amfm(t,0) + Bhgr(t,9)) (578)

meZ

so we can relate the new ladder operators A,, and B,, to the old by
am = mAm + B5BY bl = B Am + Bl (579)

Now suppose that |0) is the Fock vacuum state defined with respect to A, and B,,. We

calculate the expected number of b,,-excitations in this state by
(0 [b],6m]0") = |8 |*(0 | An AL |O) = | B | (580)

Thus if 3,, # 0, |0) and |0’) are inequivalent vacuum states. In particular, if we think of
bm-excitations as “particles”, not all observers will agree on their definition of particles
or the number of particles in a given state. In general it is also possible to consider
Bogoliubov transformations which mix different values of m, however we will restrict to
considering only transformations for fixed m.

With these considerations in mind, let us return to the case of two-dimensional de

Sitter space. The functions ®,,(t) satisfy the equation

1 D, 2
4 <coshtd> + (m + M2> b, =0. (581)

cosht dt dt cosh?t

If we let w = isinht, then this equation can be recast as

d o d 9 m?
T ((1 —u )ducbm> + <—M 1 —u2> ®,, =0, (582)

so that if we make the identification

M? = —I1(1+1), (583)

then this can be recognized as an associated Legendre equation with labels m and [ [52,
Eq. 8.700]. We assume that the mass-square is always positive, so that —1 < [ < 0 or
l e —% + iR. Notice that we can further restrict the value of [ by noting that M? is
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unchanged if we replace [ by —(I + 1), so that we may take —% < 1 < 0. The solutions are

Ferrer’s functions [53], defined in terms of hypergeometric functions as

P () ! L—u\"" Ll =014y (584)
u) — —1; m; .

! F(l+m) \1+u T T2

These functions have a branch cut running from v = +1 to oo and from v = —1 to —oo

along the real axis. Furthermore, we note that for the values of m and [ we consider the
identity
P/ ()" =P (u"), (585)

holds and that P,™(isinht) and P, ™(—isinht) are linearly independent provided that
l+m ¢ Z [52]. For the values of [ and m we consider in this thesis it will always be the
case that [ +m ¢ Z. Then, we set

B, (1) = \/ Lm +1 Z?F(m ) P, ™ (isinht), (536)

then the associated modes

F(t, ¢) = \/ Lm 1 Z?F(m ) P; ™ (i sinh )™, (587)
G (1 6) = \/ L(m 1 Z?F (0 =) b sinh ¢)eime. (588)

We will further restrict the allowed value of [ to
1 . 1
l€—§+z]R, or —§<l<—|ﬁ\7 (589)

with m € Z + . These restrictions ensure that (m £+ 1)(m F 1) are always positive,
see Appendix H. It follows also then that I'(m +{ + 1)I'(m —[) > 0. The normalisation
(B, Fr) = —(G3,, G) = 0mp follows as

2
z/ de ""™? cosht
0

d d
[Pl_m(—i sinh t) p7 P, ™ (isinht) — o7 P, ™ (—isinht)P, ™ (isinh t)]

. ] (590)
= 27 0mn (1 — u2) [le(u)dule(—u) — dule(u)le(—u)]
_ 4r 5
L(m—DT(m+1+1) """
where we made use of the Wronskian identity [54, Eq. 14.2.3]
d d 2
Py ()~ P ™ (—u) — ~— Py ™ (w)P;™ (—u) = :
! (u)du (=) du ! ()P ™ (—w) F(m—0)T(m+141)(1 —u?) (591)

These modes satisfy the completeness relations. As we have said, we can also make

a Bogoliubov transformation in each mode. Thus, absorbing an overall phase, we will
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consider mode functions of the form

cosh au Fin(t, @) + €™ sinh a,,, G2, (, ¢), (592)
e~ sinh oy, By (t, ) + cosh o, G2 (8, 6), (593)

)

fm(2,
n(t, 9)

¢ =
Im(t, ) =
where v,, and «,, are real numbers.

At this point, it is convenient to make contact with the quantisation conditions of
Epstein and Moschella [37]. We recall that they consider real scalar fields, corresponding
to the values § =0 and 8 = % For a real scalar field, we ought to be able to use { fm, fii}

as a basis, thus we need to choose «,, and -, such that

(fm: f2) =0, (594)

for all m and n when 8 =0 or 8 = % Taking the complex conjugate of f,, gives

fr(t, ¢) = cosh ay, F: (t, @) + €™ sinh o, G (2, 0). (595)

m

As F};, and G}, are both proportional to e~"% we should be able to express fr(t,¢) in
terms of F_,,(t,¢) and G*,,(t, ¢). Indeed, if we use the connection formula [54, Eq. 14.2.7]

sin(l — m)m sinlm sin mm

T+ =T —men @ N—myp e Y (%)
we find that
fr(t, ¢) = cosh ap Fy (t, ¢) + e~ sinh a G (£, ¢)
1
- Vsin(m — D) sin(m + ) (507)

X [ (cosh Q sinmm + e~ Y7 sinh o, Sin l7r) F_,,

+ (cosh ayy, sin im + e~ m ginh ayy, sin m) G*,m] )

Requiring therefore the reality condition (f,, f) = 0 imposes a non-trivial restriction

when n = —m. Calculating (f_,, f,) then gives

0 = cosha_,, (cosh o sinmm + e 7 sinh o, sin l7r)

— e M-mginha_,, (cosh Qp sinlm + e~ sinh ayy, sin mw) . (59%)
If m € Z we can rewrite this condition as,
e cosh a_,y, sinh ayy, — €™ cosh ayy, sinh a_,, = 0. (599)
Meanwhile, if m € % + Z we can instead rewrite theses conditions as
cosh ayy, cosh a_,y, — € +t7=m) sinh oy, sinh a_y, = 8, sin I (600)
e=m cosh oy, sinh o, — €7 cosh oy, sinh agy, = 6y, Sin o, (601)

for some constants d,,. These conditions are precisely the quantisation conditions of
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Epstein and Moschella.

11 States and Two-Point Functions

11.1 Symmetries

In this section we look for vacuum states which are invariant under the SO (2, 1) symmetry
group. This will impose further restrictions on the mode functions. Suppose that A is
a SO(2,1) transformation. Let this be implemented on the field operator by U(A) and

suppose that the associated action on the space of solutions is given by

UM P = 3 (UA)gn P+ T(8),,G) (602)
nez

UG =3 (V)P + V8, Gr) - (603)
nez

Note that here we U(A),,,,, is not the complex conjugate of U(A )y, and similarly for V'(A)
and V(A). Then we have

U8)D =3 (U Fn)am + (U(A)G;)b]

= Z :(U(A)mnFn + mmnG:L)am + (V(A)mnFn + WmnGZ)bH (604)

= Z :(amU(A)mn + ban(A)mn)Fn + (ammmn + bjnmmn)Gﬂ .

Thus, on the annihilation and creation operators we have

UM)an = > (amU(A)mn + bV (M)mn) (605)
meZ

U] = 3 (el (A + B, V(D)) (606)
meZ

However, as we have seen for the Bogoliubov transformations, in order for the vacuum
state to be invariant, we do not want to allow mixing between the 8 and 8~ subspaces

and we also want the transformation to be unitary. Thus we require

V(A)mn =0, U(A),,, =0, (607)
and
Z U(A)anU\)Zn = Omk;
neZi . (608)
> V(A V(A) gy = G-
nez
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Now, we recall that the generators of the symmetry group can be given in global coordi-

nates as

9
op’
B = cos gi)— — tanhtsmqb

L=

5 ¢ (609)

By = s1n¢> —i—tanhtcosgb 9

2L on some function F(¢), we find that

Then, if we act with e

L F(¢) = F(¢ + 2), (610)

2w L

so that acting on the automorphic field ®(t, ¢) shows that e is a scalar as

L1, ) = B(t, 6+ 27) = 27001, 9). (611)
Thus the group under whose representations the field transforms is SL(2,R), labelled by
5. In Appendix H we recall the classification of the irreducible unitary representations
of this group. To further classify the irreducible representation, we also need the action
of the quadratic Casimir operator = —[J in global coordinates. Thus, the eigenvalue

equation

QO(t,¢) =1(1+1)0(¢, ¢) (612)
is the Klein-Gordon equation obeyed by the field ®(¢, ¢) with mass M? = —[(I+1). With

the restriction

1 1
l€—§+iR+, or —§<l<|5\, (613)

P

we are looking at irreducible principal and complementary series representations of SL(2, R).
Thus the question of whether the Fock vacuum state |0) is de Sitter invariant is equiva-
lent to the question of whether the modes {f,,} and {g},} form a basis for an irreducible
representation. For this, we will check the action of L, B; and Bs on the modes. Firstly,
note that

Lfm =imfm, Lg}, = img),. (614)

Next, to find the action of By and Bs on the modes, we use the ladder operators By =
Bi 4+ B>, which in globabl coordinates act on the fields as

(0 0
B, =e (6 + ztanhta(b) (615)
(0 0
= —'L¢ _— = —_—
B_=e <(9t ztanhta¢> (616)

To find the action of B, we first recall the recurrence relations obeyed by the associated

Legendre functions [52]

( 1— u2% = ;”_“u2> P (u) = —P; ™ (u) (617)

mu

< 1— w2 dd + m) Py (w) = (1 —m)(I+m+ 1)P;™ (u), (618)
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whence it follows that

<c(lit —mtanht) P,,(t) = —Z\/ D(m 414+ 1)@t (t), (619)

(j + mtanht) = —z\/ —l=1)(m+1)Pp—1(t). (620)

In particular, letting again u = isinht¢ it then follows that

L F'm+1+1)I(m—1) d mu
i(m+1)¢ 2 m
By F,(t, ¢) = ie \/ 1 1—u " + N P; (u)

_ _Z,\/F(m + 14+ 1)I(m —1) (m — )(I +m + 1)P;™ (i sinh £)ci0m 16

4
= —iy/(m =) (m+1+1)Fnpi(t, ).
(621)
Similarly, we find also that
B+G* (t,0) = +i/(m — 1) (m + L+ 1) G4 (t, ), (622)
(t,d) = —in/(m — 1 — 1) (m + 1) E,_1(t, $), (623)
B_GL(t,6) = +iy/(m — L — 1)(m + )Gy (t,6). (624)

Thus {F,,} and {(—1)"G},} have the same transformation under the so(2,1) symmetry
algebra generated by the Killing vectors, and that they transform as the basis vectors of

a unitary irreducible representation of SL(2,RR). The general

fin(t, @) = cosh au, Fp(t, @) + 7™ sinh o, G2, (t, 6), (625)
g (t, ) = e~ sinh auy, Fi (t, ¢) + cosh G5 (¢, ¢), (626)

where 7,, and «,, are real numbers, and we can without loss of generality assume that
am > 0. Therefore it follows that these transform also as basis vectors of the same

irreducible unitary representation precisely if we choose that
am = Q, Ym =y + mm, (627)

where « and 7y are m-independent constant real numbers. It follows that if [ and m are cho-
sen so that there exists a corresponding Sm) representation, then this representation
can be realised using the mode functions of automorphic scalar fields in two-dimensional
de Sitter space. Notice that the vacuum state in each case is not unique, indeed the free-
dom in the choice of these states is precisely the same as for a-vacua [41, 55] of scalar
fields in higher-dimensional de Sitter spaces.

To compare with the results of Epstein and Moschella [37], let us impose again ad-
ditionally the reality conditions for the periodic, § = 0, and antiperiodic, f = % cases.

When m € Z, the reality condition requires
e’ cosh oy, sinh ay, — €™ cosh ayy, sinh vy, = 0, (628)

while de Sitter invariance requires o, = « and 7, = mm + v for constant o and ~.
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Inserting these values for «;, and ~,,, we see that the reality condition imposes no further
restrictions on « and 7.

For the anti-periodic case m € Z + %, and the reality conditions are

cosh ay,, cosh av_,,, — el(rm+7-m) ginh O sinh a_y,, = 6, sinlm,

. . (629)
e~ cosh oy, sinh a—,,, — €™ cosh a_,, sinh o, = 6y, sSinm.
Now let | = —% + i), as for the anti-periodic case there are no complementary series rep-
resentations, then sinlm = — cosh Aw. Inserting the values for a,,, and -,, and eliminating
Om yields

1 — e* tanh? o = 2i cosh Ae™ tanh av. (630)

This can be recognised as a quadratic in ie?” tanh o, with solutions
ie" tanh a = e, (631)

As we can choose o > 0 without loss of generality, the reality then requires us to choose

€ = —j. Then the condition can be rewritten as
coth 2« = cosh A, (632)

which agrees with the result of Epstein and Moschella [37].

11.2 Hadamard States
11.2.1 Adiabatic States

We have by now constructed a family of de Sitter invariant states, however symmetry is
not the only kind of extra condition we may wish to impose on states. For example, it
is not guaranteed a prior: that all the states we have defined lead to theories that can
be considered physically reasonable. In general, the definition of what we call particles
is dependent on the choice of observer and associated vacuum state, as a result of the
choice of basis we expand the field in. On short distance scales, the space-time appears
locally flat, thus if we consider the high (angular)-momentum modes which probe the
short distance scales we would on physical grounds not expect significant changes to the
number of excitations corresponding to very large momenta. This is the basis of the
adiabatic condition [49, 50, 56], which we can take as asking that the basis {f,,} for SE

behaves as m — oo like

1
fm(t, @) ~ ———=exp [i(m¢ — |m| arctansinht)]. (633)
4m|m)|
This follows if we consider the Klein-Gordon equation (581) for modes modes proportional
to €™, If m? is much larger than cosht, this is well approximated by
do

d
ht— (cosht—" ) = —m?®,,. 4
cos tdt <cos t dt> m (634)
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If we introduce y = y(t) by

d d
i cosh ta, (635)

which can be solved for y = arctansinh ¢, the equation becomes

e,

i —m2®,,. (636)

Thus we find that a general solution has asymptotic behaviour as m — oo of

1

VAr|m|
(637)

This can be thought of as a superposition of asymptotically positive and negative frequency

¢™? (A, exp[—i|m| arctan sinh t] + B,, exp[+i|m| arctan sinh ¢]) .

fm(ta ¢) ~

solutions. The content of the adiabatic condition is then to say that physical states have
modes such that A,, — 1 and B,, — 0 as m — oo. This ensures that the number of
excitations in the high momentum modes does not change rapidly.

So we wish to investigate whether any of the symmetric states we have found previously
are physical in the sense that they additionally obey the adiabatic condition. To this end,
recall that

F(t,¢) = @y (t)e™?, (638)

where

B, (1) = \/ L(m+1 Z?F(m —0 P, ™ (isinht). (639)

When m is large and positive, the behaviour of the associated Legendre functions is [54,
Eq. 14.15.1]

- 1 15 u\™?
P (fu) ~ . 640
) F(1+m)<1iu> (640)
Recalling further that
1 -y 1/2
exp(—iarctany) = <1 i > , (641)
y
implies that as m — 400 we have
P, ™(isinht) ~ T +m) exp(—im arctansinht). (642)

We then wish to investigate the behaviour as m — 400 of

F'm+1+1)I'(m—1)
(14 m)?

. (643)

To this end, we recall the Stirling approximation [54, Eq. 5.11.3] which says that provided

|arg z| < 7 — € for some positive €, as z — oo we have

I'(z) = ﬁzzez (1 +0 (i)) , (644)

92



from which it follows that as m — +oco

F'm+1+1)'(m—-1) 1

~—. 645
I'(14m)? m (645)
Thus we find that for large positive m
Fin(t,6) ~ ——— exp(ime — im arctan sinh) (646)
,¢) ~ ——=exp(itm¢ — imarctansinht).
" Vamm L
Similarly, we have
G2\ (1, &) ~ ——— exp(ime + im arctansinh 1) (647)
) ~ exp(ime + im arctansinh ¢).
" Varm P
For the negative m, we recall the connection formula to note that as m — —oo
Fp(t, ®) L ! (ime)
Q) ~ exp(im
" VAr|m| \/sin? Ir — sin? 3 (648)

X [sin 7 exp(im arctan sinh t) + sin mm exp(—im arctansinh ¢)] .

We are now ready to check when it is possible to have physical and de Sitter symmetric
vacuum states. Indeed, recall that for the de Sitter invariant states, we have in general

modes of the form
fn(t, @) = cosh aFy,(t, ¢) + (—1)™e" sinh oG, (¢, ¢), (649)

for constant o and v and m € Z+ 3. Thus, we can read off that in order to have the right

behaviour as m — 4+00 we must choose
a=0. (650)

However, if we then examine the behaviour as m — —oo we see that we must choose
sinmm = 0, which is to say that § = 0. Therefore only in the periodic theory (5 = 0)
is it possible to have a vacuum state that is both physically reasonable according to the
adiabatic principle and also de Sitter invariant. Indeed, the resulting state is of the well

known Bunch-Davies form.

11.2.2 De Sitter Invariant Hadamard States

Another, more formal, definition of a physically acceptable state is the Hadamard condi-
tion [51]. The Hadamard condition constrains the short-distance singular structure of the
two-point function W(z,y) = (0|®(z)®1(y)|0), where x and y label two space-time points.

In two dimensions, we say that the vacuum |0) is a Hadamard state if

W(z,y) = (0]2(x)2'(y)[0)

p(z,y) (651)

1 2
_ _Ev(gj’ y) log 5 + iesign(wo — yo) + W(z,y),

where € is a positive infinitesimal, p(z,y) denotes the geodesic-distance between = and

y, and W(x,y) and V(z,y) are smooth functions with V(x,y) state independent. The
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Hadamard condition is physically motivated similarly to the adiabatic condition. The
Hadamard condition requires that the singularity structure of the two-point function in a
general spacetime matches as much as possible the singularity structure of the two-point
function in a flat spacetime [51]. Generally, for globally hyperbolic spacetimes one expects
there to exist a large class of Hadamard states [51, 57].

In this section, we will calculate the two-point functions for the de Sitter invariant
vacuum states and show that unless f = 0 and o« = 0 the two-point function is always
singular at two antipodal points. For non-automorphic fields, Radzikowski [58] has proved
that a Hadamard state can not have other non-local singularities.

Suppose that we are working in a state that is invariant under connected component
of the de Sitter group. In such a state the two-point function can be determined as a
function of the geodesic distance [59]. Thus we may write W = W(u), and this two-point

function must still satisfy the Klein-Gordon equation
(Oe = M*)W(p(z,y)) = 0. (652)

In particular, let Z = cos u(x,y), then we look for a function F'(Z) that solves

d*F dF
0.F(Z)=(1- Z2)ﬁ —22 (653)

so that if we again set M? = —I(I + 1) we find that W(Z) obeys a Legendre equation

d*W dW
(1— 22)@ —27—+ I(1+1)W =0. (654)

Thus a general de Sitter invariant two-point function must take the form
W(u) = APi(— cos ) + BP;(+ cos p). (655)
For the automorphic fields, we then extend this two-point function by
W(t, ¢+ 2rM;t', ¢/ + 27 N) = 2 M=NBW(t ot/ &), (656)

where M and N are integers. We are interested in the singular behaviour of these functions,
so we note that when [ is not an integer P;(x) is singular with a branch cut from z = —1
to —oo and we have Py(1) = 1. The behaviour as  — —1 can be determined using the

following expression for P;(x)

sinlm 11—z 2
Pi(z) = [— - log T2 + C’l} Pi(—x) — ;Rl(x), (657)
where 5 )
. +x
Ri(z) = nlzanO a—mF (l +1,-0;1—m; 2) , (658)

and letting ¥ denote the digamma function and + Euler’s constant

.
G = Sl: T (4 1)] + cos L. (659)
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We note that R;(x) is analytic at x = —1. Then as z — —1 we have

sinlm

Pi(z) = - log(1+ x) 4+ O(1). (660)

The formula (657) is proved by differentiating the associated Legendre equation for I'(1 —
m)P]*(x) and taking the limit as m — 0. We relegate the details to Appendix J.
Recall that for the de Sitter invariant vacuum states, we can use the following positive
modes
fin(t, @) = cosh aFy,(t, ¢) + ™ e sinh oG, (t, ¢). (661)

Then define

W (2, 6;0,0) = (0]@(t, ¢)7(0,0)[0)
meZ+f
- ¥ [coshQaFm(t,qb)F;';L(O,O)—I—sinhzaan(t,qﬁ)Gm(O,O) (662)
meZ+p5

+ cosh arsinh «

% (eimﬂeifyG:n (t, ¢)F’:1 (0’ 0) + e—imwe—i’YFm(t7 ¢)Gm(07 O))i| .

Here we used the de Sitter invariance of the two-point function to set one of the points to

be at the origin of our coordinate system. Next, if we define

Wg)) (ta ¢) = Z Fm(t7 ¢)F’:’L(O7 O)a (663)
meZ+f

it is sufficient to study this two-point function because the general two-point function is
W(ﬂa) (t, ¢) = cosh? oawg))(t, $) + sinh? aW(BO)*(t, —¢)
, . . (664)
+ cosh asinh « [ewwg)) (t,—¢p—m)+ e_wW(BO) (t,o —m)|,
where we use that F},,(0,0) and G%,(0,0) are real, G%, (t, ¢) = F (t, —¢) and e ™ F,,,(t, ¢) =
F,,(t,¢ — ). Therefore it is enough to consider the simpler function W(BO) (t, ).
We know in general that if (¢, ¢) can be connected to the origin by a spacelike geodesic
that
Wg]) (t,¢) = AgPi(—cos ) + BgP;(4 cos ), (665)

and we will determine constants Az and Bg by matching the logarithmic singularities with
the mode-sum expressions.
For convenience, let us switch to conformal coordinates (7, ¢) with sinht = tan7. In

conformal coordinates, we have
cos (T, ¢;0,0) = sec T cos ¢. (666)

We expect the singularities as 7 £ ¢ approach 0 and £n. For example as 7 — ¢ = 0 is

95



approached from ¢ > 0 we have
cos (T = ¢ — €,$;0,0) = 1 — etan ¢ + O(€?), (667)
where € > 0 is a small number. Using that e = ¢ — 7, we find that the singular part as we

approach 7 — ¢ =0 from 0 < ¢ < 7 is

Agsinlm

wy log(¢ — 7). (668)

Similarly, as 7 — ¢ = 0 is approached from ¢ < 0, we have
cos (T = ¢ + €,$;0,0) = 1 + etan ¢ + O(€?). (669)
In this case € = 7 — ¢ and thus in the region —7 < ¢ < 0 we have

Agsinlm

wg log(r — 9), (670)

as T — ¢ approaches zero. Working out the other singularities from 7+ ¢ =0, 74+ ¢ = £7

and 7 — ¢ = =7 then yields the singularity structure as

WO ~ 22T 56— ) + log(6 + 7]
Bgsinnl 0<o<m, (671)
+ =2 [log(m — ¢+ 7) + log(r — ¢ — 7)],
and
Bgsinl —m<¢<0. (672)
+ 22 [log(m + ¢+ 7) + log(m + ¢ — 7)),

These expressions are valid provided that (7, ¢) and (0,0) are connectable by a spacelike
geodesic.
Now match these singularities with the singularities extracted from the mode-sum

expression for W(ﬁo). As the simplest case, let us first deal with S = 0. In this case the

mode-sum expression for Wéo) (1,0) is

W (1,6) = 3 Fn(r, ) F4(0,0). (673)

meZ

Separating the m = 0 and m > 0 and m < 0 modes yields

WO(r, ) = Ry(r, $)F (0,0)"

= . (674)
+ 3" [Fnl7,6)Fn(0,0) + Fopa(7, ) F*,,(0,0)] .
m=1
This can be rewritten in terms of Fy, (7, ¢) = ®,,(7)e"™?, where we recall that
r [+ 1)T'(m—1
D, (1) = \/ (m + —Z JL(m )me(z tanT). (675)
T
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When m € Z we use (596) to note that

sin(l — m)m sinlm

(m T I T 1) P (Z tan 7') mpl (Z tan T). (676)
Then we find that
O_pn(7) = \/F(l —m+ UiEm =) P (itanT)
47
~sinlr [T —m+1)I(=m =) T(m+1+1) v
N s \/ 4m 'l —m+1)sin(m — )7 Py (itanT)

_ _sil;lﬂ VI(m =D (=m = )T —m+ DI + m + 1)@ (7)

= ®,(7).
(677)
where we noted that |sinln| = —sinlm and also used the reflection formula [54, Eq. 5.5.3]
[(z)I(1— 1) = — (678)
x —x) = .
sinmx
Then the mode-sum expression (674) for WE)O) (7, ¢) can be rewritten as
3 (r,9) = )+ Z ()2, (O™ + 7). (679)
To extract the singular part, we recall that as m — oo
B (7, ) ~ i [1+O(1>} (680)
7—7 ~ b
" 47Tm m
and that we can drop sums of terms which behave like m~'=¢ for € > 0. Thus
(r.0) ~ — i 1 [ —im(r—¢) | e*im(”‘f’)} (681)
4 m '
m=1
In order for these sums to converge, we should understand
T T+ —ie (682)
With this understood, the sum can be evaluated using the Taylor expansion
1
log(1 — — 683
og(1 — ) ; ~a”, (683)

provided that || < 1. It follows that the singular part of the two-point function W ( ®)
is given by

W((JO) (1,0) = —% [log (1 - e*i(77¢>—z’e)> +log (1 _ e—i(7+¢—ie)>]

— 1 log (¢ — 7 +i€) +log (p+ 7 —ie)],  fO<¢<m,
—ﬁ[log(—¢+7—ie)—i—log(—qﬁ—T—l—ie)}, if —m<¢<O,

(684)

Q
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provided that (7, ¢) is connected to the origin by a space-like geodesic. Suppressing again
the 7e prescription, we can match the singularities with those obtained by the general

expression, whence we find

1
Ag=————  Bg=
g 4sinnl’ p=0 (685)
so that )
WG (7,6) = — 1 Pi(~cos (7, 6;0,0)), (656)

for space-like separated points. To extend the two-point function to points which are
not connected to the origin by a spacelike geodesic, we analytically continue through the
boundaries. For this, we choose the principal branches for the logarithm functions, in

particular, this means that for > 0 we continue to negative values by
log(—x + i€) = log |x| & im. (687)
Then extending across ¢—7 = 0 from ¢ > 0, we should replace the logarithmic singularities
log (¢ — 7+ i€) > — 1 [log (r — ) + i (688)
— 1o — T+ i€ —— [log (7 — iml.
T & 47 &

The non-singular terms added in this expression leads to additions of Pj(cospu), and it

follows that extending from positive ¢ we should take in the future light-cone

(0) S - i ,
WA (7,6) = ————Pi(—cos 1) — Pi(cos ), (659)
where we have defined for z > 1
- in 1
By(—) [_ 31I71T 4 log <i j 1> + C’l} Pi(z) + Ri(—x). (690)

We can also reach the future light-cone by extending from ¢ < 0 across ¢ + 7 = 0. Then

we should replace

1 , 1 .
i log(—¢ — 7 + i) — . [log(¢ + 7) + im]. (691)
We find again that we should take

1
4sinlm

WY (7,0) = — g Pi(— cos ) — {Pcos ) (692)

in the future light cone. For the past light-cone, we can extend from ¢ > 0 through
T 4+ ¢ = 0, which leads us to replace

1 ‘ 1 .
. log(¢p + 7 — i€) — i [log(—¢ — 7) —im]. (693)

Thus in the past light-cone of the origin we should take

1
4sinlrm

WO (r,0) = Pu(— cos ) + Pilcos ), (694)
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this formula is also obtained by extending from ¢ < 0. We still need to extend the two-
point function to the interior of the future and past lightcones of the anti-podal point
(0, £7). As we have seen, these points can not be connected to the origin by a geodesic,
thus we can not interpret i as a geodesic distance, however we can still extend the definition

(0)

of p to these points. As a function p, the two-point function Wy~ is not singular when

passing through cos u = —1, it follows that for these points we still have

©0) _ 1 _
Wy’ = Tsinls Pi(—cos p). (695)
These results can be summarised as
W (1,0) = — ! Pi(— cos pu + ieT). (696)
AN 4sinlm

Having seen the simpler case of 8 = 0, let us now return to general 3(# 0). The mode-sum

expression for W(ﬁo) is

WP(r,0) = > Fulr,0)F(0,0) (697)
meZ+p
Seperate into modes with m > 0 and m < 0, solet m =n+ 8 and —m' = —n — 1+ 3.
Then we can rewrite
o
= [Fn(7,0)F3(0,0) + F_pi (7, 9) F*,,,(0,0)] (698)
n=0

Recall that we have
Eon(1,8) = @ (1)e™?
N \/r(m+z+1)r(m—z)Pm(, ime (699)
= ; )

ta
p itanT)e

We now want to find the general m version of (677), relating ®_,, to ®,,, and ®},. This
is done again using the connection formula (596), however this time with m € Z + 3.

Arguing as for (677) the result is

1
\/sin2 Im — sin? Brr

O, (1) = [sinmn®;, (1) — sinln P, (7)] . (700)

Thus we can re-write the series expression for Wg)) (1,0) as

[e.e]

00 . .92 .,
=3 B, (1), (0)e™ 4 ——y Im 3 By (1) B, (0)e
n=0

sin? I — sin? B7r !

i 2
S1n 57'(' Z * 7im/¢
NS

sin? I — sin? Bﬂ

; sinlrsin fr  w— ., i
e S () 030(0) + By (1), (0)] 7,
sin®lm — sin” S =

(701)
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noting that — sinm/r = e*47 sin Bre¥' ™. From (646) as n — co we have

1 ; - 1
(I)m(T) ~ \/ﬁefwﬂtan LtanT (1 +0 <m>> , (702)

where we used again that in conformal coordinates sinht = tan7. To get at the singular
parts of these sums we proceed as before, dropping first sums of terms which scale like

m~17¢ for € > 0. Then the singular part of the first sum can be extracted from

o0 o0

. 1 1 .
* imaeo ~ —i(n+B)(T—¢)
3" By (1)} (0)e o> 5 . (703)

n=0 n=1

niB:;(Ho(i)). (704)

To actually evaluate the sum, we should again understand 7 — ¢ — 7 — ¢ — ie for € > 0,

Then as n — oo

and then the singular part is extracted as

s ) 1 . A A

Z (I)m(T)‘I);n(O)emwb s _Ie_Zﬁ(T_¢) log [1 N e—z(r—qb—zs)} ) (705)
™

n=0

The other sums can be analysed similarly, leading to

- . 1, . .
> " By (7) Ry (0)e ™' v —— P79 Jog [1 —~ e_Z(T“LqS_“)} (706)
= a7
° ., 1 . . .
: (ONe—im'S  _ L iB(r—¢) _ ilr—gric)
nE_O o (1) (0)e i log [1 e ] , (707)

and the final sum

D [ @5 (1) @50 (0) + Dt (7) @ (0)]
n=0
1/ _p T . (708)
~ iB(T—¢pEm) - i(T—ptm+ic)
47 (6 log [1 ¢ }

+ BT 100 {1 _ 6—z’(v+¢m—z’e>} )

Then, the logarithmic singularities of W(BO) (7, ¢) in the region connected to the origin by
a spacelike geodesic with 0 < ¢ < 7 are

sin? Ir

\/\7(;)(77 ¢) ~ —% [log (¢ — 7+ i€) +

sin? A7

1 .
sin? 7 — sin? B 0g (¢ 47— i)

sin [7 sin B (709)

lo — 7 —i€) 4 T PT
g(¢—7—ie) sin? I7 — sin? Br

sin? Ir — sin? B

X [log(7r+7'—<;5+ie)+log(7r—r—¢+i6)]].

Ignoring for this region the ie prescription, and comparing with the general logarithmic

singularity structure of the two-point function we can determine

1 inl 1 . ;
4 sin® [ — sin® B

Ag = (710)

4 sin? Ir — sin? B’
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so that for 0 < ¢ < m we have
(0) 1 sin {m
WB (Ta ¢) T a2 ) Pl(_ COSIU’)
4 sin” I — sin” B7 (711)
1. sin B
i P Pi(cos ).

e
4 sin? I — sin? A

Similarly, for the points connected to the origin by a spacelike geodesic with —m < ¢ < 0,

the logarithmic singularity structure is
W(O) 1 | . sin? I ) .
3 m0)m =g log(r =9 —ie) + ot log (6~ 7t ie)

sin? A7 ~ sin [z sin B
1 _ . —ifm (712)
sin? Im — sin? B 0g (T — ¢ +ie) +e sin? Ir — sin? B
X [log(w—7’+¢—ie)+10g(7r+7+<;5—ie)]].

Thus, matching the singularity structure as before, we find that in this diamond

1 .
sin Py(— cos )

W) __
g (1:@) 4 sin? Ir — sin? B
. (713)
— le_i’B7r sin S P;(cos )
4 sin? ir — sin? B : -

We now want to extend the two point function into the future and past light-cones of
the origin, as well as the future and past of the anti-podal point to the origin. If we come

from the spacelike region with 0 < ¢ < 7, we need to replace the logarithmic singularity

.2
sin” b log(¢p — 7 + i€)

1 — T +1€) +
0g(¢ — 7+ ie) sin? 7 — sin? Br
) .92 ) (714)
sin“ 7w . sin®lm — 2sin” B
1Og(’7'7d))+’L7T .9 .9 )
sin® I — sin” B7

sin? I — sin? B
in the expression for W(ﬁo). Thus in the future light-cone of the origin, where 7 > |¢|, the
two-point function is given by
(0) 1 sinlm ~
Wﬁ (1,0) = ——— ———Pi(—cos )
4 sin” lm — sin”® B (715)
1| cospBmsinpnr )
+i| Py(cosp).

4 | sin? Ir — sin® B

In the past light-cone of the origin, where 7 < —|¢| the expression can be similarly found

as
0 1 sin {m ~
W (1,6) = —~ 5 By(— cos )
4 sin® lm — sin”® B
. (716)
1 cos B sin B .
— 4| Py(cos ).

4 Lin2 I — sin? B
Finally we need to find Wg))(T, ¢) in the future and past light-cones of the point (0, 7).

To get into the future light-cone of this point, we have to pass through # — ¢ — 7 =0, so
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we find that

1 sinlm

Wi (r,6) =

_ P, (—
4 sin?Ir — sin? B (= cos )

1. sin B7 ~ .
_ 1ezﬁrr Y P——— 5 [Pl(COS p) +78In lﬂpl(— cos /L)} (717)
1 et

VI T —— o [sin BrP(cos ) + cos B sin ImPy(— cos u)] .

The same expression can be found for W(ﬁo) (7, ¢) in the past light-cone of (0, ).

The expression of the two-point function ng)) for all other values of ¢ can be found
using the automorphic condition using shifts of ¢ by 2.

We would now have all the ingredients to calculate the actual two-point function
W(ﬂa) (7, ¢) for general a. What we notice is that if 8 # 0 or « # 0, then we must necessarily
have singularities not just when cospu = 1 but also when cosu = —1. Furthermore, the
coefficient of P;(—cosp) when 8 # 0 differs from the same coefficient when 8 = 0 by a
factor of sin? I/ (sin? It — sin? Bw). Thus it follows when 3 # 0 these states can not be
locally Hadamard as they do not have the same strength singularities at cos 4 = +1. This
verifies the claim that there are de Sitter invariant Hadamard states only in the periodic

case, which occurs if we choose a =0

11.3 De Sitter Non-Invariant Hadarmard States

In the previous section we argued that the only de Sitter invariant vacuum Hadamard
state occurs for a periodic field. While de Sitter invariance is a pleasant feature for a
state to have, the Hadamard condition is essential for a state to be considered physically
reasonable. In this section we present a set of modes which heuristically, by the adiabatic
argument, should lead to a Hadamard vacuum state. We then consider the two-point
function and argue that the associated vacuum state is indeed Hadamard.

Define the mode functions

Fm(t7 ¢) = (I)\m\ (t)eimd)a (718)
Gr(t, ) = ()™, (719)

for m € Z + 3, where
B () = \/F(’m‘ — Z)ILTW +itl) P, ™l (isinht). (720)

Note that if 8 = 0, these modes just correspond to the invariant Bunch-Davies vacuum

state again. As m — 4oo the modes behave as
1

VAm|m|

as we expect for an adiabatic vacuum state. Thus it is reasonable

6i(m¢—\m\ arctan sinh t) (721)

*

and similarly for G},

to expect the associated vacuum states to be Hadamard. Let us consider the associated
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two-point function \7\75, which has the mode-sum form (for 8 # 0)

Wa(r,d3 7, @) = D Bpy (1) @y (7))
meEZ

= D (1) By, (7)) (722)
n=0
37 By (1) (7)o (079,
n=0

where we defined m = n+ 8 and m’ = n + 1 — 3, and we again switched to conformal
coordinates (7, ¢). Notice that as we have given up de Sitter invariance, we can no longer
place one of the points on the two-point function at the origin. Now, using the definition

of the Ferrer’s functions

1

Pl_m (Z tan T) = m

. 1—it
e=imT R (1 F1 =51+ mg Z;””) , (723)

we can rewrite the mode-sum expression for the two-point function as

Ws(r, g7, ¢') = Z Fn+ 87, 7))+ Zf(n +1- 87, 7)1 P, (724)

where we have introduced

7 = e T moH) 29 = e UTTTH=) (725)
and
I'(s=0r [+1
flosr, ) = OO LED
A1 + s)? (726)
1—2t 1+itan7’
><F<1+l,—l;1+s;Z2am>F<1+l7—l;1+s;+Z2W>.
For 8 = 0, the mode-sum expression for the two-point function is
[e.9] o0
Wo(r, ¢ 7, ¢) =D fnim,7)20 + D fns7, 725 (727)
n=0 n=1

In order for these series to converge, we should understand |z1| < 1 and |z3] < 1, so we

introduce the e prescriptions

— e*i(T*T’*¢+¢)lf’L‘6) 2y = efi(‘rf‘r’+¢>f¢>’7ie) (728)
To show that \7\75(7', ¢; 7', @) corresponds to a Hadamard state, we will subtract the known

Hadamard state Wy and analyse the remainder, we will find that remainder is suitably

analytic and conclude that Wg defines a Hadamard vacuum state.
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The difference between \7\75 and Wqy can be written
Awﬁ (7—7 ¢7 7—/7 (b/) = Wﬁ (7—7 ¢7 Tla (Z)/) - WO (T> ¢7 Tl: ¢/)
=3 [fn+ B ) — )t

= (729)
+ 3 [Fon+ 87, ) — fm)ag]
n=1

+ f(ﬁa T, 7—,)216 + f(]- - Ba T, T/)Zéiﬁ - f(oa T, T/)'

In the Appendix I, we show that these series can be analytically continued for |z;| > 0 and
|arg(z;)| < 2m, provided that |f(s;7,7)| grows at most polynomially for Re (s) > 0. In
fact, as s — oo with Re s > 0 we know from (645) that

Dis—)T(s+1+1) 1

T(1+ s)2 sy (730)

Further, for large |c| with Re ¢ > 0 and Rez = 0 we have [54, Eq. 15.12.2]

F <a, bic: 1;Z> _ 14 <i> . (731)

Thus we find that f(s;7,7’) in fact decays as s — oo. It follows then from the argument
in Appendix I that AW@(T, ¢; 7', @) is analytic provided that |(7 4+ ¢) — (7' + ¢')| < 2.
In particular, \7\75(7, ¢; 7', ¢") and Wy have the same light-cone singularity structure.
The failure of the analyticity at |(7 + ¢) — (7' & ¢')| = 27 arises due to the difference
in periodicity of the functions, as ng picks up a phase of 273, while Wy is periodic.
Now |7 — 7| <7, so Wg has the same singularity structure as Wy in a region containing
—m < ¢ — ¢’ < m, for arbitrary 7 and 7/, which covers the two-dimensional de Sitter
space. In this way we can interpret WB((T, ¢; 7', ¢') as defining a de Sitter non-invariant

Hadamard state.

12 Conclusion

In this chapter we studied complex scalar fields on two-dimensional de Sitter space, which
obeyed an additional periodicity condition when making a full spatial rotation. We re-
viewed how these fields are quantised in the canonical formalism. The symmetry group
of these automorphic theories is Sm), and we showed that whenever there is a corre-
sponding irreducible unitary representation of Sm), there is a two parameter (or one
complex parameter) family of de Sitter invariant vacuum states for the complex field. For
a real anti-periodic field, this two-parameter family of states gets restricted down to a
single state, as found by Epstein and Moschella [37, 38].

We then showed that only the periodic Bunch-Davies type vacuum state is a de Sitter
invariant Hadamard state, however we were still able to present a class of de Sitter non-
invariant Hadamard state for all other values of the automorphic parameter 5. In fact,
these de Sitter non-invariant Hadamard states can be shown to exhibit an approximate

Gibbons-Hawking effect [2], and in this sense the Gibbons-Hawking effect is not completely
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lost once the field is no longer periodic in contrast to claims of Epstein and Moschella [37].

H Irreducible Unitary Representations of SO((2,1) and its

Universal Covering Group

In this appendix we describe the irreducible unitary representations of SOg(2,1), the
connected component of the Lorentz group in (2 4 1)-dimensions. The treatment is based
on Kitaev [60].

We can realise the generators of the Lie algebra as differential operators acting on
functions on two-dimensional de Sitter space. In global coordinates (t,¢) the generators

can be written

0
L=— 732
=3 (732)
By = cos ¢g — tanh ¢ sin qbé (733)
P o 9’
By = sin ¢g + tanh t cos qbg (734)
ST 9p’
The brackets obeyed by these generators are then
[L, B1] = —Ba,
[L, Ba] = B, (735)
[B1, Bs] = L.
Note that if we define the operator Q) by
Q=-L*+B;+DBj
I A 1 8 (736)
~ coshtat \“ 9 cosh? t 9¢?’

then () commutes with each generator L, B; and Bs. We will call () the quadratic Casimir
operator. Next, let us define
R(\) = exp[AL] (737)

This operator corresponds to a shift in ¢ by A. For example,

R(\)Bi(t,¢)R(—)\) = Bi(t, ¢) cos A — Ba(t, @) sin A

= cos(¢ + )\)gt — tanh ¢t sin(¢ 4+ )\)E)aqﬁ (738)
=B (ta ¢ + )\)7

and similarly for Bs(t, ¢). It follows that R(2nm) for n € Z also commutes with all elements
of the algebra. In fact, the elements R(2n7) form the center of the simply connected Lie
group obtained by exponentiating the Lie algebra generated by {L, B1, Ba}.

We now want to consider the irreducible unitary representations of this algebra. In
a unitary representation of the algebra, the generators are to be represented by anti-

Hermitian operators. It follows that the quadratic Casimir operator @) is Hermitian, while
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R(27) is unitary. Thus the eigenvalues ¢ of @) are real, while the eigenvalues r of R(27)

must be on the unit circle. Let us write
g=101+1), r=e>P, (739)

Now let us work out the allowed values for [ and 3. For 3, it is possible to restrict to

RS (—%, %] and we should identify 8 with 5 4+ 1. Next, notice that we can always make

the transformation

L= —(1+1), (740)

under which ¢ — ¢. Tt follows that we can restrict to Re [ > —%. Now, let I = A+ iB,
then
q=1(1+1)=A(A+1) - B*+iB(2A+1). (741)

Thus for ¢ to be real, we must have B =0 or A = —%. It follows that

1 1 1
le[—i,oo), or l€<—2—ioo,—2+ioo>. (742)

In each irreducible unitary representation, we choose to diagonalise @) and R(27), so
we can label the representations by these eigenvalues. We can choose one further operator
to diagonalise, and we will choose to diagonalise L. Thus let ¥, denote a basis of the

representation such that
LY, =i(m+ B8)¥,,

R(2m)¥,, = U, (743)
QY =11+ 1)U,

where m € Z. Now, let us define ladder type operators B+ by
By =By +1iBs, B_ = B; —1Bs. (744)

These then obey the commutation relations

[L, B+] = +iBy,
(745)
[By,B_] = —2iL.
It follows that By raise the L eigenvalue by +i, as
LBV, = ([L,By]+ B+L)V,, =i(m+ 1+ 5)V,,. (746)

It follows that B4V, « ¥, unless B4 V¥,, = 0, and similarly for B_. To see when

BV, =0, let us work out the norms of these elements.

|BWll? = (By Wy, Bay) = — (W, B_B,y W), (747)
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where we used Bi = —B_. However, Q = —L? + B_B, —iL so that

1B @p||* = = (Wi, (Q + L* +4L) )
= —l(l+1) + (m+B)* + (m + ) (748)
= (m+B—U)(m+B+1+1),

assuming we have normalised so that || ¥,,||> = 1. Similarly, we can calculate
By ||> = (m+ B+1)(m+B8—1-1). (749)

In an irreducible unitary representation, both || BL W, || need to be non-negative, this leads
to the classification of the representations.

The simplest is the trivial representation, where we take [ = § = 0. There is a single
state in this representation with m = 0.

Next are the continuous series of representations. In these representations we always
have [|BLWV,,|| > 0. There are two types of continuous series representations. First are

the principal series representations, for which we let [ = —% + dv. Then

2

1
|BLV,,||? = ‘m—l—ﬂiz—i-w (750)

Thus principal series exist for all values of 3, and m takes all values in Z. The comple-
mentary series representations take I € R. In order for ||BL¥,,||?> > 0 we need 3 — [ and
B+1+1 to lie between the same two consecutive integers, similarly, 841 and 8 —1—1 also

need to lie between the same two consecutive integers. For a given 3, this occurs exactly

le (-i,—w) | (751)
1

Thus for all values, except § = 5 we have complementary series representations. These

also have m taking all values in Z.

when

The final possibility are the discrete series representations, in which one of the equa-
tions B+ V,, = 0 holds. When B_W¥,, = 0, we have a lowest weight, while B4 V¥,, = 0
gives a highest weight representation.

This exhausts the classification of the unitary irreducible representations of the algebra.
We will choose the phases of the basis vector ¥,,, such that in a representation the operators
{L,B+,B_} act as

By, = —iv/(m+B—-Dm+B+1+1)¥.1, (752)
LU, =i(m+ B)U,,, (753)
BV, =—i\/(m+B+D)(m+p—1—-1)¥,,_;. (754)
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v +ia

¥ —a

Figure 2: The integration contour C' in red and Cy in blue in the complex s plane. The
dots represent the poles of the integrand at n + 3 for integer n.

I Integral Representation of the Difference of two Series

In this appendix we wish to consider sums of the form

Se(z) =3 f(n+B)2"P, |2 <1. (755)

n=1

We will assume that —% < p < %, f(t) is analytic on the half-plane Re t > 0, and grows

at most polynomially as [t| — co. We first want to express Sg(z) as the integral

1

Sp(2) = 5

/ ds f(s)z°cotm(s — B), (756)
C
where the contour C' is composed of straight lines, starting at co — ia connecting to v —ia,
v + ia and then ending at oo + ia, where we choose |3| < v <1 — 3| and a is a positive
real constant. When g = %, we choose % << % The value of v is chosen so that the
pole at 8 is never within the contour and the first pole within the contour is at 1 + .
Then (756) is proved by making use of the residue theorem applied to
Sév(z) = Z/ ds f(s)z®cot (s — f3), (757)
2 Joy
where the contour C'y now consists of a rectangle, traversed clockwise with vertices at
(N + ~,+ia) and (v, +ia). The integrand has simple poles at s =n+ g, forn=1... N
with residues 71 f(n + 8)2"*#. Thus by the residue theorem
N
N
Sy (2) =D f(n+B)2"*7, (758)

n=1

so that as N — oo we have Sév — Sg. Now, consider the contribution to the integral
Sév(z) from the straight line contour running from N + v 4 ia to N 4+ v — ia, letting
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s = N + v + it with ¢ running from a to —a we consider

Iy =

/ ’ idt f(N +~ +it)2N T cot w(y — B + it)
. (759)
< [ at v+ i0l|N ooty — B+ )
—a
However, |zN+t7Fit| = ¢(N+)loglzl=(arg2)t Jecays exponentially as N — oo, while we have
assumed f(s) grows at most polynomially. It follows that as N — oo we must have
In — 0. Thus the result

i

Sp(2) = 5

/ ds f(s)z°cot (s — f5) (760)
C

follows.

Next, we want to consider the difference

Sa(2) = Sol2) = 3 [f(n+ B)2"+7 = f(2)="]. (761)
n=1
We can clearly use the same integral contour for Sp(z) and Sg(z), so that for |z| < 1 we
have )
Ss(z) — So(z) = l/ ds f(s)z® [cot m(s — B) — cot ms]
2Je (762)
= z’sinﬂ/ ds 1(s)2*
¢ cosmf —cosm(2s — )
Denote integrand here by
f(s)z®
G(s) = . 763
(s) cosmf — cos(2s — ) (763)
First, consider the size of the numerator that the numerator
|f(5)23| _ |f(5)’610g |z|Re(s)—arg(z)Im(s) < ‘f(8)|610g \Z|Re(s)+arg(z)\lm(s)\‘ (764)
Meanwhile, the denominator
cosmf3 — cosm(2s — f3)
(765)

= CcOoS 7'(6 _ % [e—QTrIm(s)—i-i(?WRe(s)—B) + e+27rlm(s)—i(2ﬂ'Re(s)—ﬁ) )

Then consider the contour Cry running in straight lines v + i(a + R) to v + ia and then
to v+ R+ ia and then closing back to v+ i(a+ R) in a quarter-circle. There are no poles

within the closed contour, so

7{ ds G(s) = 0. (766)
Cry

If we choose a large enough, then we can take

1
|cosf — cosm(2s — )| > ge%IImS\’ (767)
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so that
|G(s)| < 3|f(s)] exp [log |z|Re(s) — [2m — arg(2)] Im(s)] . (768)

Thus G(s) — 0 with exponential decay as either Re(s) — oo for Im(s) > a and |2 < 1
or as Im(s) — oo with Re(s) > v and |arg(z)| < 2m. In particular it follows that the
contribution of the integral over the quarter circle of Cr; tends to zero as R — oo.
Considering similarly a quarter circle in the lower half plane shows that it is possible to
deform the contour C to the straight line contour with Re(s) = ~, so that

Y400 f(S)Zs

Sg(z) — So(z) = isinﬁ/ - ds
Y—100

cosTf — cosm(2s — )’ (769)

We can note that this integral converges even for |z| > 1, provided we still take | arg(z)| <
27. Thus this integral representation provides an analytic continutation of Sz(z) — Sp(2)
to all |z] > 0 with |arg(z)| < 2.

J Derivation of Equation (657)

In this appendix we derive equation (657). The Legendre equation is

2

[(1 - 372)% — 237% +1(1 + 1)] F(z) =0. (770)

This has two linearly independent solutions P;(z) and Q;(x), which are real on —1 < z < 1.
We define [53]

1_
Piz) = F (l 1, L w) : (771)

the second Legendre function Q;(x) is related to this by [54, Eq. 14.9.10]
2 .
—sinlnQ(x) = coslnPi(x) — Py(—x). (772)
T

We further note that P;(1) =1 and that as  — +1 from below we have [54, Eq. 14.8.3]

Q) = %log <2> 4 1)+ 00— 2), (773)

1—=x

where v &~ 0.5772 is Euler’s constant and ¢ (x) is the digamma function.

Consider the associated Legendre equation

2 m2
[(1 - x%% - 21‘% {2 + (1 + 1)} (1 —m)P*(x) =0, (774)

where we have multiplied by I'(1 — m) for convenience and P}*(z) is a Ferrer’s function.

Differentiating with respect to m and then letting m — 0 yields

2
[(1 - xQ)% — 23:% +1(1 + 1)} fi(z) =0, (775)
where ) )
hle) = Py tos (12 ) + Ru(-a). (776)
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and

m—0 0m 2

Ry(—2) = lim ;F (z 11— _x) :
As fi(x) solves the Legendre equation, we must be able to write
fi(x) = AP(z) + BQ(x).
As Rj(—1) =0 and P;(1) = 1, we find that

lim fi(z) — Qu(z) =7+ +1).

r—1

It follows that we need to take B =1 and A =~ + (Il + 1), which yields

1+«

1
§Pl(x) log <1

— X

) T Ri(—a) = (v + 0l + 1D)Pia) + Qila).

Using this to eliminate Q;(z) in (772) and replacing = with —z we obtain (657)

sinlm 1—=x 2
Pi(z) = |- 1 Pi(~z) — =
1(z) [ - 0g1+x+Cl 1(—x) 7TRl(ac),
where 5 sin
C) = Sl: F[’y + (I +1)] + coslim.
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Part 111

Harmonics on Complex Spheres

13 Introduction

In this chapter we study the behaviour and properties of harmonics on complex spheres.
We begin by motivating the study of these harmonics by showing how they arise when
studying the tensor product of principal series SO(3, 1) representations. Using Mackey’s
tensor product theorem it is possible to show that the tensor product of the principal
series representations of either SL(2,R) or SO(3, 1) is equivalent to another induced rep-
resentation on two-dimensional real or complex de Sitter space. In the complex case, the
study can then be related to harmonic functions on complex spheres.

This chapter is structured as follows. We begin by recalling some background informa-
tion related to the structure theory of non-compact groups and induced representations.
Next we realise the principal series representations of SL(2,R) as induced representations.
We then carry on by recalling the methods employed by Repka [61] and Martin [62] for
decomposing tensor products of SL(2,R) principal series tensor products. Throughout,
we will not be interested in the precise proofs of the statements, but the ideas will be
illustrated primarily by reference to the examples. After this background information on
SL(2,R), we move on to deal with SL(2,C) or SO(3,1). We here also recall the structure
theory and principal series representations. We then show how in the decomposition of the
tensor product of the principal series representations one is led to consider harmonics on
complex spheres. We then analyse these spherical harmonics first for a three-dimensional
complex sphere, and verify that they correctly lead to the known decomposition of SO(3, 1)
principal series tensor products. We then generalise our study of the spherical harmonics
to higher dimensions.

The main text of this chapter is supplemented by Appendix K, in which we review the

classification of unitary irreducible representations of SL(2,C).

14 Background

In this section, we will deal with representations of non-compact Lie groups, primarily
SL(2,R). To begin, we recall some aspects of the structure theory of these groups. We
introduce parts of the general structure theory of non-compact semisimple Lie groups, but
we will not worry about the technical details. We carry the notation and definitions of
[63] and [15].

14.1 Structure Theory of Non-Compact Groups

The group SL(2,R), which we will use as our simplest example, consists of the 2 x 2 real

matrices with unit modulus, that is

C

b
SL(2,R) = {g: (a d> :ad—be=1, a,b,c,deR}. (783)
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It follows that the associated Lie algebra, sl(2,R), can be realised as the real 2 x 2 matrices

with vanishing trace, that is

s1(2,R) = {X - (“ _b > Cabc € ]R}. (784)

With respect to the Cartan involution #X = —XT on the algebra, we can decompose

sl(2,R) into positive and negative eigenspaces, which we call ¢ and p respectively. Explicitly

t={X esl(2,R) : 9X:X}:{(2 _0b> : beR}, (785)

p={X esl2,R) : 0X:—X}:{<Z _b> : a,beR}. (786)

Using the algebra identification sl(2, R) = so(2, 1), we can think of the elements of ¢ as the
generators of rotations, while the elements of p are generators of boosts. Exponentiating
t leads to the maximal compact subgroup K = SO(2) of SL(2,R).

Next, we define a to be the algebra generated by any boost in p. We choose

a:{(Z _Oa> :aER}. (787)

In the general case, a consists of a maximal abelian algebra from elements in p. This
suggests that we should look to diagonalise the adjoint action with respect to this algebra,

that is we look for elements X such that
[H, X] = \(H)X, (788)

for all elements H € a, and some restricted roots A. For sl(2,R), a quick calculation gives
that there are two roots A = £1. We let the positive and negative root spaces be n and n

respectively, which for sl(2,R) are

S S I A

Exponentiating the subgroups A, N and N respectively, we find

A={<€“ 0) ;aeR},N:{C ) ;xeR}. (r90)
0 e@ 0 1

Finally, let M be the subgroup of K which under the adjoint action on the algebra

leaves a invariant. For sl(2,R), it is possible to see that

G
0 1 0 -1

Note that in general this group does not have to be connected.
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14.1.1 Iwasawa and Bruhat Decompositions

We have now assembled all the pieces required to give some decompositions of SL(2,R).
The first decomposition we introduce is the Iwasawa or K N A decomposition, which

decomposes a general element g into an element of X, N and A:

a b cosf —sinf e 0 1 z
c d sinf cosf 0 e @ 01

where 6 € [0,27), a,z € R.
Secondly, we introduce the Bruhat or NNAM decomposition. Here the elements of
SL(2,R) are decomposed as

_ab_ilo 1 x e* 0 703
9=\e a) "7 \y 1) \o 1) o e=) (793)

with z,y,a € R. We note that if a = 0, then the element g does not admit a Bruhat

decomposition, but still admits an Iwasawa decomposition.

14.2 Induced Representations

Next we introduce induced representations. The idea here is to start with a representation
of a subgroup and to promote this to a representation of a larger group. We will not deal
with the more general situation, but use a simplified construction based on the definition
given by Berndt [15], which is sufficient for the cases considered.

We start with a group G and a closed subgroup H. We assume that G is unimodular,
that is to say G admits a measure which is both left- and right-invariant. Now, we will
assume that G admits a Mackey decomposition with respect to H. Given an element
g € G let x denote the associated point in the coset space G/H. Then we assume that we

can decompose the element g uniquely as
g = s(x)h(x), h(z) € H,s(z) € G. (794)

Furthermore, we will assume that the coset space G/H admits an invariant measure du(x).
Now the representation 7 of G induced from the representation mg of H can be constructed
as follows:

We realise the representations as functions f(z) on the coset space G/H, with

m(g)f(x) =mo(h(g™ " 2) ) f(g™" - 2), (795)

g 's(z) =s(g™" - 2)h(g™, ). (796)

That this forms a representation follows from the cocycle condition

h((g192) ") = h(gy " 97" - )h(gr ', ). (797)
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Furthermore, we introduce an inner product for the representation 7 by
(Fg)e= [ dula) (F(@).9(a))n (798)
G/H

14.2.1 Principal Series SL(2,R) representations

We illustrate the above ideas by considering some representations of SL(2, R). The princi-
pal series representations of SL(2,R) can be realised as representations induced from the

subgroup NAM. In particular, let

1 o
h=x (D) () envam, (799)
0 1)\0 e

then a suitable representation of NAM is
m; = e(£1)e™’, (800)

where €(+1) = +1 and ¢(—1) = £1.

Then we form the representation of SL(2,R) which this induces as II{ = ind%ﬁ’VR) .
Using the Bruhat decomposition, we can realise the induced representation as acting on
functions on N = R, thus we next calculate the action of SL(2,R) on N. Let

g= (Z Z) , (301)

= 10\ _[d-by b
y 1 —c+ay a
_( 1 0) <1 —b(d—by)) <d—by o)
e 1) \0 1 0 d_%y

It follows that the induced representation can be realised on functions of R as

) = (5 )1l s (5551 (503)

then we find

(802)

However, this representation is not yet unitary with respect to the L? product on R. This

measure on N is not invariant under the SL(2,R) action, indeed

ay — ¢ dy
‘ (d— by) T ([d—by) (804)

This leads us to the unitary principal series representations

. d—>b : ay — ¢
v ) = (G )l (5. (505)
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because then

is _ OO 1 i 2
W fHQ—/_oody (d — by)? f<d—by>‘ (806)
_ / dz [£(2)]2 = || ]2

—0o0

We want to check that this indeed defines a principal series SL(2,R) representation. To

this end, we calculate the actions of the algebra generators

10 -1 1(1 0 1(0 1
L —— , B — — s B = — . 807

For an algebra element X, the corresponding representation operator ¥ is calculated by

U0 1) = lim 5 (0 exp(t)] £1) (508)

We will typically abuse the notation for the algebra representation operators and denote
the representation operator by the same name as the generator. Then for the actions of

L, By and By we calculate

1 0 d 1,
L= —5(1+y )(‘)7; - 5(1‘*‘15)%
B = 2—1—1(1—1-@'3) (809)
1—yay 2 3
1 08 1,
B2 = —5(1 ) )87y + 5(14‘18)3}

A quick calculation then reveals that on the representation we then find

Q=—(L)*+ (B)*+ (Bo)? = fi(SQ +1) = (; + z;) <; + z;) : (810)

and we also have R[27] = exp(27L) = ¢(—1), which tells us that indeed ¥ is an irreducible
unitary principal series representation of SL(2,R), with [ = —% + 15 in the notation used
in appendix H. If e(—1) = +1, we get a representation of SOy(2,1).

For later use, the same principal series representation can also be realised by inducing
from NAM instead. Suppose that

;- 1 0\ [fe* O
(P50 s

with the representation of NAM given as before by
7 = e(£1)e®. (812)
Then we can form the unitary principal series representation as

1S . SL 2,R S
v = ind 9 (813)
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with

W) = (oo )l el o (50, (s14)

la — cz| a—cx

A quick calculation easily verifies that indeed W’ = ¥is,

14.3 Tensor Product of Principal Series SL(2,R) representations

We now want to calculate the decomposition into irreducibles of the product of two prin-
cipal series representations of SL(2,R). Following the approach of Repka [61] and Mar-
tin [62], the starting point for this is Mackey’s tensor product theorem. Before we state
the theorem, we need a further definition.

Suppose that G is a group with two subgroups H; and Hj. Then the double coset
HigH; the element g € G is in is defined by

HigH> = {hlghg €G : hi € Hy, hy € HQ}. (815)

Importantly, the double cosets H1\G/Hs partition the group. However different double
cosets are allowed to contain differing numbers of elements of G. This is unlike ordinary
cosets, which are required to all contain the same number of group elements.

To quickly demonstrate this, we give a discrete example: Consider the finite group
G=Dy=(bc:b?>=c*=1,bcb=c"'). Let Hy = Hy = Cy = {1,b}. Then

Hi1Hy = {1,b},  HycHsy = {c,bc,bc3,c*},  Hyc2Hy = {c?,bc?}. (816)

14.3.1 Mackey’s Tensor Product Theorem

We take a simplified version of Mackey’s Tensor Product Theorem [64]. This version will
be sufficient for the examples we consider in this thesis.

Suppose H; and Hs are closed subgroups of a group G. Suppose further that there are
only countably many H;\G/H; double cosets. Suppose that 71 and o are representations

of Hy and Hj respectively. Let x and y be elements of G. Then denote

Gpy =1 "Hiz Ny 'Hay. (817)

Next, we define
e y(9) = m(zgr™") @ mo(ygy ™), (818)
7 =ind@ Ty, (819)

Then the claim is that 7Y, up to equivalence, is determined by the double coset d to

which the element xy~! belongs. Therefore we write 7%Y = 7¢. Furthermore we have

ind%1 T ® indfl2 Ty & @ 7, (820)
d

where the sum runs over all cosets d which are not of measure zero.
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14.3.2 Applying Mackey’s Tensor Product Theorem to SL(2,R)

We now apply Mackey’s tensor product theorem to the SL(2,R) situation. We set G =
SL(2,R)
Hy = NAM, Hy = NAM. (821)

Now we need to calculate the NAM\SL(2,R)/NAM double cosets. Using the Iwasawa
decomposition, we note that the SL(2,R)/NAM cosets are determined uniquely as

SL(2,R)/NAM = {(COSQ —sin 9) L fe [o,w)}. (822)

sinf cosf

Next, note that as long as 6 # 5 we have
cosf —sinf _ 1 0 cosf) —sinf c NNAM. (823)
sinf  cos#@ tanf 1 0 sec
Thus there are two double cosets,
_ 10 . 0 -1
di=NAM <0 1) NAM, do = NAM (1 0>NAM. (824)

Notice that in the Iwasawa decomposition, all the elements of the double coset dy have
the same K = SO(2) angle § = 7, thus with respect to the Haar measure on the group
this is a set of measure zero. It follows that in Mackey’s tensor product theorem only the
double coset d; contributes. For the representations of NAM and NAM we choose, in
the notation used previously,

1181
€1 )

Ty = w2, (825)

T =T o

As the only contributing double coset d; contains the identity element, we may choose

x =19y = 1. Now it is clear that

NAMNNAM = AM, (826)
Meanwhile,
e* 0 e* 0 e* 0
Tey | B =m | & B ®@m | £ B
0 e“ 0 e “ 0 e “
= e1(£1)eg (1)l 51F52), (827)

. . @ 0
= széjw2 <i <60 e_a>> )

where we regard m*LY"*? as a representation of AM.

The end result is that Mackey’s tensor product tells us

. 1SL(2,R) _is . 1SL(2,R) isy ~ s 1SL(2,R) i(s1+s
ind g et @ind gy T Zind Wegeé 2), (828)
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14.3.3 Representations Induced from AM

Mackey’s tensor product theorem says that if we want to understand the tensor product of
two principal series representations, we can alternatively analyse a representation induced
from AM. Using the Iwasawa decomposition, the elements of SL(2,R)/M A can be labelled

by a real number x and an angle 6 € [0, 7) with

(2,0) cos —sinf\ (1 =z (829)
s(z,0) = )
sinf  cosf 0 1

If we work with the Bruhat NNAM decomposition, we instead label the cosets by y and
z, labelling elements of NN. These are related to 2 and 6 by noting that an elements of
NN can be written

1 0 I zy e P ePz e 0 (830)
y 1/\o 1) \e Py eP(1 + zy) 0 eB)’

thus, for 6 € (0, §), the coset labelled by (z,6) can also be labelled by

y = tanb, z = xcos’ —sinfcosh, (831)
meanwhile, if § € (3, 7), the coset labelled by (z,0) is instead labelled by

y = tand, z = —zcos® § + sin f cos 0. (832)

The elements with § = 5 are not captured by the Bruhat decomposition. We now carry

on working with the Bruhat decomposition. First we want to find the SL(2,R) action on

NN, let
a b
: : 833
o) (839
then
1 0\ (1 d—b d—by)z—0b
g_l o = y ( y)Z , (834)
y 1/ \0 1 —c+ay (—cH+ay)z+a
so that
yoy =g e == by) (b (A= by)e). (835)
Note that
dy' AdZ = dy A dz, (836)

so that this space admits an invariant measure. Thus, on these elements, the induced

representation, call it II*® is realised as

107 02) = e () =l (S5 (- )b+ (@ -w)2)) (97

Suppose that we Fourier transform in z by defining

r3 1 o —iwz
Flonw) = ——= /_ ) (838)
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This is clearly a unitary operation. Let f[is denote the Fourier transformed representation.
Then note that

\/12? /_Z dz exp (—iwz2)F((d — by)(=b+ (d — by)z)

1 o dz’
:m/_mu—b exp(—iwz) F()

_ 1 ( b > > dizlex < wz,> F(2)
" Var P\ Sy ) e d=by)2 TP\ T A= by)?
1

_<d—by)2exp<_“’ > (d by)

The end result is that

(839)

11 (9) f(y,w)
_ d—by —2_is . b ~(ay—c w (840)
_€<\d—by>'d_by' o (‘“"d b >f<d by’ (d—by>2>‘

Suppose we then define

fly,w) = w P F(y,w), (841)
then it is immediately clear that
T (g) |w P Fy,w) | = w™ /T (g) F (y, w), (842)
which proves that we have the unitary equivalence
s = 11°, (843)

The upshot of this is that we only have to consider the, comparatively, simpler represen-

tation

€ €

0 = indF ™ 70, (844)

14.3.4 Decomposing the Tensor Product using de Sitter Space

Using the Bruhat decomposition coordinates we can calculate an invariant metric for

SL(2,R). In the Bruhat decomposition g = g(y, z, @) is given by

1 0 1 =z e* 0
R -

Then a metric on the group which is given by

ds® o Tr [gil(y, z,a)dg(y, z, a)gil(y, z,a)dg(y, z, a)] , (846)

which leads to
ds? o« (da — zdy)? 4 dy(dz — 2%dy). (847)
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To find the metric on the quotient space SL(2,R)/M A, we look for directions which are

perpendicular to 0., which we can see to be 20, + 9y, then because
(200 + 0y)(dae — zdy) = 0, (848)
we should take for the invariant measure on SL(2,R) in these coordinates the metric
ds? oc dy(dz — 22dy). (849)
Making the coordinate transformations
Y =2y—Z, (850)

we find that

ds? —dY? +dz?), (851)

=
which we recognize as the Poincaré patches of de Sitter space. The regions Z > 0 and
Z < 0 cover both the expanding and contracting patches.

It follows that if we take the tensor product of two principal series representations of
SO(2,1), that is to say we let ¢(—1) = +1, then to decompose this tensor product into
irreducible representations it is sufficient to look for solutions to the scalar field equation in
de Sitter space. We look for solutions to the scalar field equation which are either square-
integrable or -function integrable. We work in global coordinates (¢, ¢) in two-dimensional

de Sitter space, where the metric takes the form
ds? = dt? — cosh?t d¢? (852)
Then the scalar field equation we wish to consider is

1 0 0P 1 92d
( a¢) cosht ot <COS > COSh2 + 6¢2 ( a¢) (853)

Let ®(t, ¢) = ®,,(t)e"™?, where m € Z so that the function is single-valued on de Sitter

space, then

1 d d®,, m? 9
— ht b, = —-M"D,,. 854
cosht dt <COS dt > * cosh®t " " (854)

As before, we write M2 = —[(I + 1) and restrict Re [ > —%, then the equation obeyed by
®,, is an associated Legendre equation in the variable ¢ sinh ¢, and the linearly independent

solutions are
D, (t) = APl_m(z' sinht) 4+ BPl_m(—z' sinh ), (855)

where the P, (x) denote associated Legendre functions. Now, as t — oo, both these
solutions behave as [54, Eq. 14.8.2]

[P (£isinht)] ~ elflRe !, (856)
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provided that [ is not an integer. While the measure behaves as
V—gd%z = cosh tdtde ~ elldtde. (857)

If follows that square-integrable solutions are not possible, while é-function integrable

solutions are possible only when

1
l=—5+i\,  A€R (858)

which is to say when [ is such that these functions fall into the principal series of rep-
resentations, as defined in Appendix H of Part II. Indeed it is possible to show that
P, (+isinht) both lead to d-function integrable solutions for each m, and it follows that
there are precisely two independent copies of the principal series for each A € R.

There is one possibility we have so-far missed, which can lead to square-integrable
solutions. This is when [ € Z, in which case the associated Legendre functions reduce to

associated Legendre polynomials. Now, notice that for each m the functions

U (t, ) = "™ cosh™™ t (859)
obey
1 d d 1
— (cosht—U,, | = — D), —mP——- Ty, 860
cosht dt (COb dt > m(m = 1) " cosh? ¢ (860)

that is the functions obey the associated Legendre equation with [ = m — 1. For m > 1
these functions are square-integrable on the de Sitter space. Moreover, these functions are

annihilated by the so(2, 1) lowering operator

L_=e (gt - z‘tanht;;) . (861)

So these functions form the lowest weight vector in a discrete series representation of
SO(2,1) as described in Appendix H of Part II. We denote it as T}, . The other vectors
can be found by applying the raising operator

Ly =¢e"? (0&1& + i tanh t%) . (862)
Similarly, the functions
U, (t, ) = e ™ cosh ™ ¢, (863)

form highest weight vectors for the discrete series representations 1_,, 4 of SO(2,1).
Putting everything together, when we decompose the square-integrable solutions to
the scalar field equation on de Sitter space, we find that in terms of the irreducible repre-
sentations of SO(2,1) we have two copies of every principal series representation and also
one copy of every discrete series representation with m > 1. Thus the decomposition of

our tensor product is

oo
T @t =2 2 / A P T (864)
0 m#0,meZ
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which agrees with the well known results in Martin [62] and Repka [61].

15 Complex Spheres and SO(3,1) Representations

With the background of SO(2,1) representations set up, we now consider SO(3,1) rep-
resentations. We first set up the necessary pieces of the structure theory for the case of

SO(3,1).

15.1 Structure Theory of SO(3,1)

We will make use of the identification of SL(2, C) as the double covering group of SO(3,1).

Here we have

SL(Q,C)—{g— (O‘ g) b — By =1, a,ﬂ,%éec}. (865)
v

Then the associated Lie algebra is composed of the complex trace-free 2 x 2 matrices

sl(2,<C):{X: (O‘ B) : a,ﬁ,vGC}. (866)
v -«

Then we can read off that £ consists of an su(2) subalgebra

{%:{X:<ZZT B) :aeR,ﬁeC} (867)
— —ia

while for the boost generators p we have

pz{X:Q; i) :aE]R,ﬂG(C}. (868)

For the privileged boost a, we again choose the diagonal element of p, so that

a:{(a O> :aER}, A:{(ea 0> :aER}. (869)
0 —a 0 e ¢

As a has the same form for sl(2,C) and sl(2,R), we can quickly see that there are again
two restricted roots A = £2, with positive and negative root spaces this time being two-

dimensional with

(I A (CF R

which exponentiate to

v () ek ) cuee)
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Finally we need to work out the group M of elements of K whose adjoint action commutes

with a, this is easily calculated as

e 0
M = {m = (0 eib) :be ]R} = S0O(2). (872)

Notice that if we let A = a + ib, then the elements of M A are of the form

e 0 et 0 Ao (873)
ma = am = ] =
0 e@ 0 et 0 e

We are now in a position to give the Bruhat NN AM decomposition of SL(2, C), which we

will primarily be using from now on. Here we decompose a general element of SL(2,C) as
1 0\ (1 Ao

o= (" 1) = ) (571
L) w 1 0 1 0 e”

15.2 Principal Series Representations of SL(2,C)

where w, z, A € C.

The principal series representations are again induced from NAM. Let h be an element

of NAM given by
1 z Ao
h(z,A) = 875
eo-( (0 575)

then for k € Z and s € R let 7% be the representation of NAM defined by
ﬂ(h(z,A)) — eisRe Aez‘klm A‘ (876)

If we let a generic element g of SL(2,C) be given by

_ (> B
g—(fy 5>, (877)

then proceeding as for SL(2,R) the representation IT¥* of SL(2,C) which is induced by

7% is given by

(o)) =19 — gl (2200 ) 7 g (22T, (78)

However, this representation is again not yet unitary with respect to the L? product on C

because the measure dwdw on C is not invariant under the SL(2,C) action. Indeed if

w' = R (879)
then dwdis
B wdw
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Whence the unitary induced representation U** of SL(2, C) is given by

W55 (g) Flw) = |6 — fu| 2 (M”)kf (), (s81)
o—pu) I \5—pw

We also note that not all the labels (k,s) lead to inequivalent irreducible unitary repre-

sentations. Indeed we have the unitary equivalence [63]
Whs o g, (882)

Moreover, we note that as for SL(2,R), it is irrelevant whether we induce from the lower

or upper triangular subgroups. These lead to equivalent representations, that is

indF ) 7k o ind SIS b, (883)

ks as a representation of NAM by

ks 1 0\ (et OA _ pisRe A ikIm A (884)
w 1 0 e”

Calculating the infinitesimal action of the elements of a basis for £ and p to find the

where in the right hand side, we view 7

quadratic Casimir operators acting on the representation, it is possible to show that
the representation W% has parameters [y = % and p = i35 in the notation used in the
classification of Appendix K. Only the representations with even k form principal series

representations of SO(3,1).

15.3 Tensor Product of SL(2,C) representations

We have now set up the necessary structure theory and principal series representations to
consider the tensor product of SL(2,C) representations. We follow essentially the same
procedure as for SL(2,R) representations as much as possible. The first step is to apply
Mackey’s tensor product theorem to show that the tensor product of the principal series
is equivalent to a representation induced from the diagonal group AM. We then show
that the representation space of the representation induced from AM can be viewed as
functions living on complex spheres. For SO(3, 1) representations we then decompose the
tensor product into irreducibles by finding the harmonics on the complex sphere which
make up the representation.

As for SL(2,R), apply Mackey’s tensor product theorem with

Hy = NAM, Hy = NAM, (885)

k1, k2,s2

and m; = "5t and o =7

SL(2,R) show that [62]

Then applying Mackey’s tensor product theorem as for

.. SL(2,C .. 4SL(2,C ~ k ko ~ s 1SL(2,C) _ki+ko,
del( )771 ® 1ndH2( )7'('2 o stk ® Ps2:h2 o lndA]\E[ )ﬂ. 1+k2 51+327 (886)

s

where we regard 7 as a representation of AM in the obvious manner for the final

induced representation. Furthermore, for SL(2,C) it is again the case that the label s on
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the representation induced from AM does not matter, that is for all s we have

S ko (887)

this is proved in general by Martin [62], Theorem 2.
In particular, now if we recall that U = U—%~5 this tells us that if k1 + ko is even,

which is in particular the case if we have SO(3, 1) representations, then

ki,s k2,89 ~ ;- 1SL(2,C) _ki+k2,0 ~ . 1SL(2,C) 0,0
WHLS1 @ Wh252 2= ind = TR 2 ind o o (888)

Thus, to decompose the tensor product of principal series Lorentz group representa-

tions, it is equivalently possible to decompose representation ind%&f’c) 790, We now anal-

yse this representation, which is realised on square integrable functions on SL(2, C)/M A.

First, let us consider this quotient space using the Bruhat decomposition.

15.3.1 The Quotient Space SL(2,C)/MA

As for SL(2,R), in the Bruhat decomposition we can write an element of SL(2,C) as

z eA
glw, 7 A) = (; (1)> ((1) 1) <0 e?/\>’ (889)

with w, z and A complex numbers. The elements of A of M A are of the form

h(A) = (eA ! ) : (890)

which suggests that we can identify the quotient space elements SL(2, C) /M A with g(w, z,0).

We can calculate an invariant complex metric on SL(2,C) by calculating

dsz o< Tr [g(w, 2, A)~dg(w, 2, A)g(w, 2, A)"'dg(w, 2, A)] . (891)

We have

—A 1 _—A
glw,z,A) " = ( e e ) (892)
—elz e
and
AA Mz — ze7MA
dg(w,z,A) =, " TR o (393)
erdw + werdA  —e AdA(1 + wz) + e (zdw + wdz)

which yields to the complex metric
ds? o (dA — zdw)? + dw(dz — 22dw). (894)

From this, we can get a real metric by adding the complex conjugate part. In particular,
we note that the SL(2,C) action on the group itself does not mix complex conjugates, so
the real metric has the same invariance properties as the complex metric. Next, we can

get from this a metric on the quotient space SL(2,C)/M A by taking out directions which
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are orthogonal to dx. We have already seen in the real case how this leads to the metric
on the quotient space
ds? o< dw(dz — 22dw). (895)

We again make the coordinate transformation

= W =2w-—Z, (896)

to get to the Poincaré patch of (complex) de Sitter space metric
ds? ox - (—dW? 4 d2? 897
82 o (AW +dZ2). (897)

Thus we take as our real metric on the quotient space SL(2, C) the real part of the above
metric

ds? —dW? +dZ?) +cc., (898)

= ﬁ(
where c.c. denotes the complex conjugate of the previous part. This four dimensional

manifold can be embedded in a six-dimensional flat space with metric
ds* = dZ% 4+ dZ3 + dZ2 + c.c., (899)

subject to the constraint
P+ 73+ 73 =1, (900)

where each Z; = X; + 1Y} is a complex coordinate. The connection between the two can

be made for example by letting

1 1 w2
iz == -—=4+Z - —
it 2< z " Z)’
1 1 w?2
To==-—= —Z+ — (901
2 2< Z +Z>’ )
W
Zg—_j.

15.3.2 The Induced Representation on SL(2,C)/MA

We have now seen how the quotient space SL(2,C)/M A can be realised as a complex
sphere. Let us now consider the representation of SL(2,C) induced from 7%° on AM.
We have already seen how this representation is equivalent to the tensor product of two
SO(3,1) principal series representations. We note that this representation can be viewed
as acting on square-integrable complex functions f depending on the complex variables

w, z and perhaps their complex conjugates. Furthermore, recall that if

_ (o B
g—(fy 5>, (902)

then we have seen that the representation acts as

a9 700) (@) 0.2 = 1 (§250,6 - Bud(-5+ G- pups) ). (903
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We now want to find how the complex generators of sl(2,C) act in this representation.

_ 1

Thus we define a complex basis for the sl(2, C) algebra by M; = 50;, where the o; are the

Pauli matrices given by

a-( o) == (03) = (0 1) 0

From this we are then able to calculate the action of the generators M; in the representa-
tion. Indeed we find that

1 w? 1
M, = (—2 + 2) Ow + <_2 - U}Z> 0, (905)
i dw? i
M2 == <—2 - 2) 8w + <2 + ZU}Z) az, (906)
M3 = wdy — 20,. (907)

Next, let us see how these act in the complex-sphere picture of our representation space.

Start with Ms, in the (W, Z) coordinates of the complex de Sitter space we have
M3 = Z0z; + Wow (908)

Now in the (Z, Z3, Z3) coordinates on the complex sphere we have

O =~ 0+ 02, — S, (909)
and ’ ) )
8Z:;<212+1+V;2)821+;<212—1—Z2>832+22823. (910)
Which means that
My = Z8y + Wy = —iZs0z, + 12107, (911)

and similarly for M7 and Ms. In particular, we can take as a real basis of generators for
the representation
Mi]’ = ZZBZ]. — Zjazj, (912)

and their complex conjugates Mij. These obey the commutation relations
[Mij, My] = 05 My — 6. My — 050 M, + 65 My, (913)

and
[M;j, My = 0. (914)

Thus we can recover the so(3,1) commutation relations if we define

1 ) 1 ) 1 .
Mo = 3 (L3 +1iB3), M= 3 (Ly +1iB3), M3 = 3 (L1 +iBy), (915)
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so that the commutation relations return the familiar so(3,1) commutation relations in

the form
[Li, Lj] = —€ijuLg, [Li, Bj] = —€ijxBr, [Bi, Bj| = €ijiLi. (916)

Now, if we rewrite the quadratic Casimir operator M;;M;;, in terms of L and B we recover

the usual so(3,1) Casimir operators L2 — B2 and L - B as

OM;;Mij = L3 + L3 + L3 — B} — B3 — B3 + 2i(L1B) + LaBy + L3B3)

- - - o (917)
=L[?>—-B2+2iL-B,
If we define complex spherical coordinates (6, ¢) by
Z1 = sin 0 cos ¢,
Zy = sin # sin ¢, (918)
Z3 = cosb,
then the usual calculation yields
1 1 9 %) 1 02
MMy = ——— (sinf— ) + ————, 919
2777 sinf 06 (Sm 89) * sin? § 0¢? (919)

which is the complex Laplacian [J on the complex sphere. Thus, in order to decompose
the induced representation into SL(2,C) irreducible representations we have to find the

eigenfunctions of the Laplacian on the complex sphere.

15.4 Harmonics on the Complex Sphere

We are interested in finding complex eigenfunctions of the Laplacian on the complex

sphere. We look for delta-function square-integrable, single-valued functions f(6, ¢, 0, ¢)

which obey
S MMy (0, 6,0,8) = (v +1)1(60,6,0,6), (920)
SN (0,6,0,0) = —2(o +1)f(0,6,0,5). (921)

Then the SO(3, 1) Casimir operators are

(L? = BY)f = =2[v(v+1) + (v + 1)]f, (922)
(L-B)f =i[v(v+1) — (v +1)]f. (923)

il

Now, we look for a basis of functions in our unitary representation which diagonalise L3
and Bj, with

Lyf = (Mg + Mi2)f =imf, Bsf=—i(Mia— Mi2)f =iMf, (924)
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where m and X are real numbers. Thus as M2 = 04, separating the variables in this way

we are trying to find functions of the form

£(0,6,0.3) = F(8,8) exp (z’m¢ u 0 \¢ - ¢> | (925)

We first note that in order to get a function which is single valued around Z3 = 0, we need
to have 27-periodicity in the real part of the complex spherical coordinate ¢. We should
therefore take m € Z.

If we switch back to Z3 = cos ), then the equations obeyed by F(Z3, Z3) are

d d m+ix\? 1
— (-2 —F) - F=— F 2
dZs <( Dz, ) ( 2 ) 1— 72 v(v+DF, (926)
d o d m—ix\> 1
_ 1_Z2 7,F — _ F:—__ ]_F 927
dZ; <( A ) ( 2 ) 1- 72 Hr+DF, (927)

which we recognize as associated Legendre equations. For brevity, define

i\
u:m—;—z . (928)

Two linearly independent solutions to the associated Legendre equation are P, *(x) and

QY () defined by [53]

n
x—1\2 11—z
P7H(x) = F 1, -1 ; 2
o) = (2) F (v Lm0, (929)
123
Qi (r) =2"T(v+1) vl 2(1:71)_”_1F v+1 V*,LL+1'2V+2‘L (930)
1% x+1 ) ) ’1—ZB )

where we have defined

F(a,b;¢;2) = a,b;c; z), (931)

1
—F
ER
and F'(a,b,;c;z) is the hypergeometric function. These functions have branch point sin-
gularities at x = +1 and x = oo, the principal branch has a branch cut running along the

real axis from —oo to +1. Note that as z — oo [53]

v+ L
Pte) ~ oD (o, (952)
() ~ F(/f;,)@x)—”—l. (933)
Similarly, as x — +1 [53]

_ z— 1)H/2

P (@) ~ M (934)
/2—1

Qo) ~ py oy L= 170 (9%5)

For later square-integrability, we are interested as functions which decay as |Z3| — oo,
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and remain square-integrable around Z3 = +1, so we focus on

FuulZs.Zs) = Ny [P Z0)QE(Zs) + B, QU(Zs) P, " (Z)] . (936)

where By, ,, is an undetermined constant and N, ) is a normalisation constant. We wish
to look for eigenfunctions f(Z, Z) which are single-valued over the whole complex sphere.
It suffices to consider the behaviour around two of the singular points of our functions,

Z3 = *1. To do this, first investigate the exponential factors in

Juw(Z, Z) = F,.(Zs, Z3) exp <z’m¢ _g ¢ — )\¢ ; ¢> . (937)
In terms of Z1, Z5 and Z3, the exponential factors can be rewritten as
ew) . Z1 + 129 qu; B Z1 412 (938)

1=z 1=z

so that

Gu(Z,2) = exp (zmqb—gd) - )\(b ; ¢)

o\ 939
A n+iz\" [ +iz\" (939)
V1- 272 V1i-22)

Suppose now we make a closed loop around Z3 = 1, on the complex sphere Z? —I—Z22+Z§ =1

For concreteness, let €(1)) > 0 be small and then parametrise the path in Z3 by

W) o

Zy=1- = >,

(940)

where 1) is a real parameter and we assume further that (1)) is 2m-periodic so that the
path is closed. This restricts Z; and Z5 such that

Z3 4+ 73 = e(y)e. (941)

The possible closed paths for Z; and Z5 can then be parameterised by a complex 27-

periodic function g(v) as

Zy +iZy =\ e(¥)g(¥), Zy —iZy = \e(Y)——= (942)

Then along this path we have
- Z1 + 179 Zl + 129
G.,(Z,7) =
W2, 2) < 1—Z2> ( 1—22>

:< zw/2 ( w/2> (943)

e~ W (ntp) /2 ug(
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Recalling that p = 1(m + i)) with m € Z and writing g(¢) in polar form as

g() = r(y)e?™), (944)

where the 27-periodicity requires that ¢(¢+27) = p(¢)+2kn with k € Z. Then it follows
that
Gu(Z, Z) = e/ 2p(h)Aeime(¥), (945)

In particular, it follows that as ¢ +— 1 + 27, so that we fully encircle the point Z3 = +1

in a positive sense,

Gu(Z,Z) — (-1)"G(Z, Z). (946)

It follows that for f, ., (Z, Z) to be single-valued around Z3 = 1, we require that
FN:V(Z?HZ?)) = (_1)mFM7V(Z3aZ3)7 (947)

as we encircle Z3 = +1, but not Z3 = —1, once in a positive sense. To this end, we note

that if only Z3 = +1 is encircled once in a positive sense [54, Eq. 14.24.3-4]

Py (Z3) = e P (Z3),
i (948)

QL(Z3) — e " Ql(Z3) — ij“(Zg).

Noting that if Z3 circles in a positive sense, Z3 circles in a negative sense, so that similarly

we have o S
Py H(Z3) = e7HT P (Z3),
QU(Zs) = QL Zs) + ——— P (Zy) o)
v \43 € v \43 F(D “at 1) 7 3
Thus, we have
_ ) o T T
Fo(Zs, 7 N,,[’“”P‘“Z AmiQE (7 P (Z
w23, 23) = Ny | P (3)<€ Q5 ( 3)+F(17—/1+1) o (3))
_ __ ) LT
B 2) (TQY ) - Pz
g (v —p+1) (950)

= (=1)"Fyu(Zs3, Z3)
e;wri e—ﬂm’

e &
Fv—p+1) PYT (v — i+ 1)

+ TN, [ } P (Z3) Py M (Zs).

It follows that for the function to be single valued around Z3 = +1, we must choose B,, ,,
such that , o
ek e~ P

Oy R () oy

Next, we investigate the behaviour around the singular point Z3 = —1. As the function is

single-valued around Z3 = 41 now, we can consider a path that encircles both Z3 = +1

and Z3 = —1 once in a positive sense. Along such a path,

Gu(Z,Z)— Gu(Z,2). (952)
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Along such a path, we have [54, Eq. 14.24.1-2]

43 sinvm

Py (Z3e*™) = 2™ P (Z3) + ———~QH(Z3),
Y Y L(p—v) ™ (953)
QU (Z5e*™) = e ™ QY(Zs),
and similarly,
o . i o= disinvm g,
Py (Z3e™™™) = TP M (Zs) — 5 —— Qi (Z3),
I'(p—v) (954)
QL (Zze ™) = ™ QL (Z3).
Thus,
o A gy : 45 si o
P\ Z5e®™, Zye™™) = Ny |27 <€2WPJ“(Z:5) + Ffm”)@ﬂzs)) Q5(2s)
w—v
. L disinvm 5. 5
B —2umi 1 7. _QWHP—'M 7)) — I 7 }
B QU (P2 - Q) )
= Ny [P (25 QR Zs) 4 Buue QU Z) Py (2)
10N 2O 7 opmi SIMVT 5 sinvmw }
AIQUZQ () (# T e T
(955)
In particular, to get a single-valued function we need to take
62(V+17)7ri — 17 (956)
that is,
n .
v=—+1K, (957)

2

for k € R and n € Z, actually we may assume n > —1 as we have Re v > —%. Then the

function F), ,(Zs, Z3) is single valued going along this path if we additionally have

sinvm . sin v
— B V€_2y7ﬂ’7_ — = 0 958
Pp—v) —F L(n—7) (958)

20T

This yields no additional conditions. Indeed, inserting the value for B,, , we found previ-

ously into the above yields

sin v i sin v

e
al(p—v)I'(v—p+1) mM(p—v)I'(v—p+1)
= e MMiginvrsin(p — v)r — A sin v sin(f — )

_ _i Q2inm _ 2ivm _ —i(2u=2v) _ 2ifim | 20w | (2f-D)mi

— e

e

(959)

:()7

if we use that e>™* = ¢=27 and 2™ = ¢~ 2™ Therefore, it follows that with this choice
of By, and v the functions f, ,(Z, 7) are indeed single-valued as functions on the complex

sphere.
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Let us note that if we use [54]

) ) 2
PV_:U'(Z?)elﬂ') — elWVPIj_/J‘(ZS) + ﬁQﬁ(ZB),
" (960)
Py Z3e™ ™) = ™ P (Z3) + ————QE(Z
1% ( 3€ ) € v ( 3)+F(ﬂ—17)QV( 3)7
to eliminate Q4 (Z3) and Q%(Z3) we find that we can rewrite F}, ,(Z3, Z3) as
Fu(Z3,23) = N,y | Py (Z3) Py *(Z3e™™) + o Py M (Z3e™) Py P (Z3) | (961)
where the new constants C,, are related to the B, , by
L(p—v)
Cpp=——"->-B
w,v F(ﬂ . 17) v
_ sinvm
 sinomw
(962)

+1, if nis odd,
—1, if nis even.

= —(-1)".

Now let us use the value of v to determine the values of the SO(3,1) Casimir operators,
which yields
(B2 - LY =2v(v+ 1)+ (74 1)] = n(n +2) — (2r)?,

.o (963)
B-L=iu(w+1)—o(m+1)] =—(2x)(n+1).

Thus these fall into irreducible unitary SO(3,1) representations with parameters Iy =
(n+1) and p = (2k) in the notation of Appendix K. The functions with fixed v form basis
vectors for the representation U5* of SO(3,1) with s = x and k = 2(n + 1). As we have
argued previously, the representation formed by the harmonics on the complex sphere is
equivalent to the tensor product of two principal series representations Us1:/#1 and Ws2.k2
of the Lorentz group. Thus we recover the classical result [62, 65] for the decomposition

of Lorentz group tensor products

Yotk g sk o @/ds \I;S,k’ (964)
k>0

where the sum extends only over the even k.

15.4.1 Normalisation of the Eigenfunctions

Next let us determine the normalisation constants N, ,,. We choose these to normalise the
L? inner product of the eigenfunctions. To integrate over the complex-sphere, we work in
coordinates (Z3, Z3, ¢, $), with

21+ iZy = Z3e'®. (965)

In these coordinates, the metric on the complex sphere can be written

dz3
1— 272

ds? = + (1 — Z2)d¢* + c.c. (966)
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and it follows that the associated volume form is dZ3dZ3d¢d¢. Therefore, the L? product
between f,u,V(Z37 237 ¢7 (5) a‘nd f,LL’,l/’<Z37 237 (bv é) iS given by

(furwrs fuw) = /dZSdZSdéf)dd_’ fw o (Z3, 23,0, 0) fun(Zs, Z3, d, D). (967)
Let us first deal with the ¢ dependent parts. Here we need to calculate
/dqﬁd& ciln—1")p i(i—f") (968)
Let ¢ =1 +ix, so that d¢ A d¢ = —2idyp A dx recall that p = %(m + 1)), so that
eHPid — oM g —IAX (969)

Then )
2 / dep efm=m)Y / dy e O = 825, 6(A — X)), (970)
0 —00

so that, up to the normalisation, this factor sets u = u/. It then remains to calculate
Ly (Z3, Z3) = /ngng Fouu(Zs, Z3)F,,(Z3, Z3). (971)
For this we will use Sturm-Liouville theory, but first let us note that
Fuu(Z3, Z3) = (~1)""H F (23, Zs), (972)
where v + v = n € Z. Next, we will consider the self-adjoint operator
%X = dgg ((1 — 25)653) — dng, ((1 — Zg)ddZJ . (973)
We know that when acting on F),, the action of X is given by

XF,,=—4iv(v+1)—v@+1)]F,,

(974)
=8k(n+1),
where we recalled that v = 5 +ix. Working with to complex polar coordinates Z3 = ret,
we then write
dZ3 NdZ3 = —2irdr A df (975)
and 0 1 (0 i
g (Y
9z;  2° <ar 7’80) ' (976)
Then we find that
0? 2 0? 4 0?
X =2sin20— — — sin20—; —4r + — cos 20
sin 572 72 sin 962 + [ r+ rcos } 9190 o7
2 . 0 4 9y O
— ;8111205 3 (cos260 + r?) ETh
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Then it is possible to check that this is operator is indeed formally self-adjoint with respect

to the L? inner product

(f.9) =2 [ drd0 T 8)g(r.0). (978)
Furthermore, we note that X can be put into a Sturm-Liouville form
fe76] 1 a3
X =V, (P*"Vpg) = ;Ba(rP J3) (979)
with
P = 2sin 26,
2
P = —9r 4+ = cos 20, (980)
r
po9 — —% sin 26.
r
Then

8lk(n+1) — k' (n' + 1)]IM7W/

2

drdd r [(XEF,)Fy — Fuu(XF,,)]

y » (981)
o / 4rd0 [0a(rP 05 Fu) Frur = Fuu0a(r P05 T, )|

2
—2lim [ A0 7 [(PP03F,0) Fur — Fiuu (P05 Fy0)]

T—00 0

Recall that

FuiZ, Z3) = Nuw | Py (Z5) Py (Zoe ™) 4 (=) 75 P (23 P (Zs) |, (982)

so that as r — oo, we have

Fuw ~ Ny Ay [ Z5 25771 4 (—1)" 7 e
_ , 4 4 4 4 , (983)
— N,u,l/Au,V [TQZlifleZVu,quZ@(nJrl) + (_1)n+17,72m71efwuyl,fza(nJrl) ’
where we have introduced A, , > 0 and 7,, € R defined by
v—u 1
AM,VGZ‘W’D = 2 F(_V i _2> — 3\" (984)
F(v+p+1)(a—o)l(+3)

In particular, we note that as r — oo, we have [}, , scaling like r~1. It thus follows that

only the —2r part of P will give a non-zero contribution as we take the limit r — oo.
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Thus we have

8[k(n+1) — x'(n' + D0

) 27 ) a o a
= 4);‘[{.10 o do r FM7V %FM,V’ — %FIMV FHaV/

- 4NM7VNM,V’AM,VA#,V’

2
lim dQ{i(n’ —n) [(—1)”/+1T2i(”+ﬂ')ei(w,u-wu,,,/+(n+n’+2)9)
r—00 0

(985)
_ (—1)n+1r72i(”+”/)e_i(%w!"'%t,u'+(n+n’+2)9)}
—i(n+n'+2) |:(—1)n+n/r2i(“_’€/)ei(’Yu,u*’Yuﬁl,/+(nfn’)9)

N 7,72i(/<fn’)e—i(7”,u—7uyy/+(”_n/)9)} }

= ]_671']{7“7,,]{7“’”/14“7,,‘4”7”/ rli{go sin [Q(H _ H/) lOgT 4 Y — ’y,u,V’] 571,71’7

where we used the fact that n+n'+2 > 0 to set a term proportional to 0, _,/_2 to zero.

Now use that )
sin sx

lim = mé(x), (986)

$—00 T

with logr — oo as r — oo to arrive at

8lk(n+1) —x'(n + D]

N (987)
e 2N2 A2 / /
=167"N, , A, ,0(k — K)6(k — K )0p -
Hence we get the result
I/'I‘7V7Vl = QWQNi,VAi,V(S(,{/ - K’,)(Sn,?’l/’ (988)
we then choose Niy = (2772Ai7,/)_1 to normalise so that
(furwrs fur ) = 6(k — KN = X)) O s (989)
where "
V:g—l—m, ,u:m—;l : (990)

15.5 Generalising to Higher Dimensional Complex Spheres

Let us note that these results can easily be generalised to higher dimensional complex
spheres. That is, we can easily write down single-valued, delta-function normalisable har-
monics, this is done inductively mirroring the way higher dimensional spherical harmonics

are defined on real spheres. Let 71, Zs, ..., Zn+1 be complex coordinates, related by

23+ 4+ 2%, =1 (991)
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Introduce complex spherical coordinates (61,62, ...,0y) in the usual manner

Z1 =sinfysinfy_1...sinfysin b,
Zy =sinfysinfy_q...sinfs cos b,

(992)
Zn =sinfpy cosfOn_1,

ZnN+1 =cosOy.

In these coordinates, the complex Laplacians Oy and Oy on the complex sphere are then

1 0 . N—1 0 ) 1
Oy=—x———1s 0 + Un—1, 993
N7 GnNTay 00y ( N0y ) T s Ly N (993)
and 19 B 1
Oy=—-— "~ [(sinV 1oy— + — Oy_g. 994
N N1 On 00N ( o N86N> sinV 1 Gy Nt (994)
Now look for functions fr,, (Z, Z) which obey
|:leLN(Z ):_LN(LN+N—1)f (Z Z)a (995)
Onfiy(Z,Z) = =Ln(Ly + N = 1)f1(Z, Z).
Using the shorthand Z to denote (Z1,...,Zn), let us write
fin = Frnin 1 (ZN+1, ZNn41) fLy s, > > : (996)
\/1 IN+1 \/1 ZN+1
where for each i =1,2,..., N — 1 we have

with Re L; > —%, except Re L1, which can take any integer or half-integer value.

Furthermore
Oifrn_1yitn = —Li(Li +i = 1) fry o005 (098)
Oifry yotn = —Li(Li+i—1)fry o L-
Then, define
Froin(Zn11,ZN41) = ! - ~ ! -
’ (1= Z5 )N =9/2 (1= Z5, )N =2/ (999)

X GLN,LN—1 (ZN+17 ZN+1)~

Then GLN,LN—l
(N —2) and Ly + £(N — 2) [66, 67]. Furthermore GLN Ly_1
Legendre equation in Zy1 with parameters Ly_1 + (N —2) and Ly + 5(N — 2). That

obeys an associated Legendre equation in Zy 1 with parameters Ly_1 +

also obeys an associated
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is

d d
0= 1-2% )——F
2
N —2 N Ly_1+ %32
+ <LN + 2> <LN + > - ( . 2 ) Fry,in s

2 1 - ZJQV+1

and similarly in the conjugated variables. Thus the delta-function square integrable solu-
tions are of the form

N
Fryin., = = Z]2V+1)(N_2)/2(1 _ Z]2V+1)(N—2)/2
—[Ln-1+(N-2)/2] —[Ly-1+(N=2)/2] 7> —im 1001
% PLN+AEN1—2)/2 (ZNH)PENJrJ\ENl—z)/Q (Znt1e7™) ( )
—[Ln-1+(N-2)/2] imy p—lIn—1+(N—2)/2]/ >
+ C’PszJrN(le2)/2 (Zn-+1e )PEN+N(N1—2)/2 (Zn+1)|,

where N is again a normalisation constant and C' is an undetermined constant. In order
for the eigenfunction fr,, to be single-valued on the complex sphere, arguing as in the

previous section requires that

e2mUINTIN) — 1 (1002)
which leads to
Ly = %N +ikn, (1003)

with ky € R and ny € Z, and we also have the restriction Re ny > —%(N —1), and then

€= "N T 2T (e, (1004)
Vs

The integral determining the normalisation constants N can be evaluated in the same
manner as the previous section.
These N-dimensional complex spherical harmonics form a basis of functions for the

induced representation

. 1SO(N+1,C
T = mdSOEN,C) )7'('0, (1005)

where 7V denotes the trivial representation of SO(N,C). Here SO(N,C) denotes the
group of complex orthogonal matrices. The coset space formed from these two groups
is the N-dimensional complex sphere. In the case N = 2, the accidental isomorphism
SO(3,C) = S0O(3,1) and SO(2,C) = M A allowed us to connect the induced representation
7 to the tensor product of principal series Lorentz group. This connection is lost in higher

dimensions.

16 Conclusion

In this chapter, we studied the well known decomposition into irreducible representations
of tensor products of principal series unitary irreducible representations of the Lorentz
group. The principal series representations are realised as induced representations, and
applying Mackey’s tensor product theorem to the tensor product of the principal series

representations, we argued that the resulting induced representation could be understood
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as describing harmonics on a complex sphere. We then analysed these harmonics, and
showed that they exist as single-valued, delta-function square-integrable functions for pa-
rameter values which ensure that they form basis vectors for exactly the principal series
representations which appear in the decomposition of tensor product, so that we recover
the known result. We then generalised the treatment of the harmonics from 2 complex-
dimensional spheres to N complex-dimensions, although these harmonics are not in general

related to representations of Lorentz groups.

K Unitary Irreducible Representations of the Lorentz Group

In this appendix we recall the classification of the unitary irreducible representations
of the Lorentz group SO(3,1) by infinitesimal considerations. This classification is well
known [68], the treatment here is based on Ohnuki [69].

The corresponding Lie algebra so(3, 1) is composed of 4 x 4 real matrices X which obey
XTn+nX =0, (1006)

where 7 is the Minkowski matrix n = diag(—1,+1,+1,+1). If a, b, ¢, d, e and f are real

numbers, then a general element is of the form

0 a b ¢
0 d
x=|° “l. (1007)
b —d 0 f
c —e —f 0

We introduce rotation generators Ly, Lo and L3 as

00 0 0 0 0O 00 0 O
000 O 0 0 01 00 -1 0
L= , Lo= , Ls= (1008)
00 -1 0 0 0O 01 0 O
00 0 0 -1 0 0 00 0 O
Similarly, we define the boost generators B, By and B3 by
01 00 0010 00 01
1 000 0000 0 00O
By = , Bo= , Bs= (1009)
0000 1 000 0000
0000 0000 1 000
In terms of these operators, the commutation relations can be written
[Li, Lj] = €iji L, (1010)
[Li, Bj] = €iji Bk (1011)
[Bi, B]] = _EijkLk- (1012)

Thus the rotations L; form an so(3) subalgebra, and the boosts transform as a vector

under the rotations. The irreducible representations of so(3) are labelled by [, which can
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be integer or half-integer. It is possible to choose a basis |m) for the representation labelled
by fixed [ such that

L2|lm) = —1(1+1)|m),  Ls|m) = —im|m), (1013)

with m taking the values —I,—l + 1,...,l — 1,1. Define the angular momentum ladder
operators L+ = Ly +iLs, which respectively raise and lower the eigenvalue m by one. The

basis can be chosen such that

Lilm) =+ —=m)(+m+ 1)|m+1),

(1014)
L_|m) = —/(I+m)(I—m+1)|m—1).

Now consider an irreducible unitary representation of so(3,1). Importantly, if we
restrict to an so(3) subalgebra, the representation of so(3,1) decomposes into irreducible
representations of so(3), labelled by different values of I, and each of these values can
appear at most once. Thus we can introduce a non-degenerate basis |, m) for the so(3,1)
representation, with each m taking values —I,—{ + 1,...,+[. Under the action of L3 and

L4 we have

Li|l,m) = +/(—m)(I +m+1)|l,m+1),
Ls|l,m) = —im|l,m), (1015)
L |l,m) = /(I +m)I—m+1)|l,m—1).

We now wish to consider the action of the boost generators B1, Bs and B3. As the boost
generators transform as a vector (I = 1) under rotations it follows from the addition of

angular momentum that they can change |I,m) only to |I’,m) with |l —I'| < 1. Define
By =B +iBs. (1016)
Then we have the commutation relations
[Ls, B3] =0, (L3, B+] = FiBx, (1017)

which tell us that B3 does not change the m values, while B raise and lower the m value

by 1 respectively. We are thus able to write

Bs|l,m) = A(l+ L;I,m)|l + 1,m) + A(l; L, m)|[l,m) + A(l — 1;1,m)|l —1,m), (1018)

Bi|l,m) = B(l+ L;I,m)[l+1,m+ 1) + B(l;l,m)|l,m + 1) (1019)
+B(l—1L;l,m)|l—1,m+1),
B_|l,m) =C(+L;l,m)|l+1,m—1)+C(;l,m)|l,m —1) (1020)

+C(—-LlL,m)[l—1,m—1).

141



Now, using the commutation relations [Ly, By] =0 = [L_, B_] we can determine that

- B[-l\/r(l~+m+2)r(l_~m+1)
T(l+m+ 10 —m)

. _CZZ¢HMWHJW@tm+Q'
I'(l—m+ DI +m)

(1021)

Meanwhile, the commutation relations [L_, By] = 2iBs = —[L4, B_] lead to
B(i;1,m)

\/(Z+m+1)(i—m)
. el l’m)N {Z(H 1) —11+1)+ Zm} .
VI =m+1)([+m)

2%A(l1,m) = ZU+J)_Rﬂ+U+2my

(1022)

—2iA(I;1,m) =

If we denote
Ao(l) = B(l;1), Ay()=B(+1;1), A_(l)=DB(-1;l), (1023)

it follows then that

Bill,m) = /I +m+2)(I+m+ 1A D[+ 1,m+1)
+/ ([ +m+ 1)1 —m)A(D)|l,m +1)
+Vl=m)l—m—1)A_(D]l —1,m+1),
Bwnm=~m¢z+m+4xwwn+nA4)u+Lm>
—imAp(1)|l, m) (1024)
— i/ (L —m)(I+m)A_(D)]l — 1,m),
B_|l,m)=+y/(1-m+2)I—m+ 1A DI+ 1,m—1)
— V(I +m)(I—m+1)A ()|, m — 1)
+ (I +m)(I+m—1DA_()]l —1,m —1).

For a unitary representation, we require that B; = —Bj3 and Bl = — B+, which imposes
that

Ao) = Ao(l),  AL()=—-A_(+1). (1025)

We still need to impose the commutation relations
[By, Bs] = FilLy, [By,B_] = 2iLs. (1026)
These lead to the recurrence relations

0=A, (1) [(1+2)Ao(l + 1) —1Ay(1)], (1027)
1=—204+3)AL(DA_(14+1)— Ag()?+ (2l — DA_()AL (1 —1), (1028)

where the second equality only holds if [ > 0, as we had to divide by m to get it, which is

always possible unless [ = 0.
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Now, let us denote the minimum [ value which occurs in the unitary irreducible repre-
sentation by ly. Furthermore, let us choose the phases of the basis vectors such that A_ (1)

is real. Then these recurrence relations can be solved as

o iplo
AO(Z)_ l(l+1)’ l>07
L@ = B - ) e

As Ap is a real number, if [y # 0 we must have that p € iR. If [ = 0 we must still have
1—p®>0. (1030)

If equality holds, so that p = £1, then we get the one-dimensional trivial representation.
If equality does not hold, we can have p € iR or —1 < p < 1. The representations
where p € iR are called the principal series representations. The representations with
—1 < p < 1 are the complementary series representations. The values of [ which appear
in these representations are ly,lg + 1, ..., where [y is either an integer or half-integer.

Let us note that in SO(3,1), we have

Rs[27] = exp [2mLs] = 1. (1031)
Meanwhile in the representations we find
R3[27]|l, m) = exp [27L3] I, m) = e~ 2™™|1,m) = ™|, m). (1032)

Thus only the representations with [y integer actually correspond to SO(3,1) represen-
tations. The half-integers lead to representations of the group SL(2,C) which forms the
double cover of SO(3,1).

Finally, let us note that the so(3,1) algebra has two Casimir operators
O =L*-B% Q=L B (1033)

In each irreducible unitary representation these are constant and we can calculate explicitly
that

B2 L*=(lo+1)(lo— 1) — p*, (1034)
L-B=—iply. (1035)
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