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Abstract

The radiation produced in laser-solid interactions has been characterised at intensities rele-

vant to petawatt-class short-pulse lasers (1020 to 1022 Wcm−2). Particular attention is paid

to photons of energy over 1 MeV which emerge from synchrotron radiation in the laser focal

spot, and from bremsstrahlung radiation as hot electrons traverse the solid. Bremsstrahlung

modelling was performed in 3D simulations using a novel hybrid-PIC code, where it was

found that the emission lasted significantly longer than the laser pulse. For a driving pulse

of 1 µm wavelength and 40 fs duration, the bremsstrahlung emission was found to last on the

order of 10-100 ps. The efficiency of laser energy to bremsstrahlung radiation was found to

be significantly higher than that reported by earlier simulations using full-PIC codes, with

a peak efficiency of (7.4± 1.0)% for a 1022 Wcm−2 shot on a cubic gold target of side length

100 µm. A simple analytic model is provided to estimate these bremsstrahlung efficiencies.

The hybrid-PIC code has been benchmarked against experiments on the Vulcan petawatt

laser, and an empirical model has been used to emulate the complex electron refluxing

behaviour on the boundaries of the simulation window. The free parameters of this model

were set using both 1D and 2D full-PIC simulations. The role of self-generated magnetic

fields on the X-ray efficiency was also investigated.

Despite the high bremsstrahlung efficiencies, 2D full-PIC and 3D hybrid-PIC codes were

run together to demonstrate that synchrotron radiation could still dominate bremsstrahlung

in some set-ups with petawatt-class lasers. In a simulation where a laser of intensity 1022

Wcm−2 and wavelength 1 µm shot a plastic target, the efficiency of laser energy to syn-

chrotron radiation was found to be 0.84%, while the bremsstrahlung efficiency measured

only 0.083%.
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Chapter 1

Introduction

1.1 X-rays

On the 8th of November, 1895, Wilhelm Röntgen made an unexpected observation. While

studying the nature of electron beams passing from anode to cathode in a glass vacuum

tube, he saw the glow of a fluorescent substance on a distant table. After seven weeks of

investigating the mysterious “X-rays” responsible, he created the world’s first X-ray image [1].

This depicted the skeletal left hand of his wife, Anna Röntgen (complete with Wedding ring),

and led to Wilhelm receiving the first Nobel prize for physics.

Since their discovery, the useful properties of X-rays have led to numerous applications,

with the more common uses summarised in Figure 1.1. In 1913, Bragg [2] published work

detailing X-ray diffraction techniques for studying the structure of crystals, as X-ray wave-

lengths can be comparable to the atomic spacing in these materials. This has since evolved

into the field of crystallography [3–5], with slightly higher energy X-rays used in material

science for stress mapping and texture studies [6]. In 1952, London’s Hammersmith hospital

was fitted with a linear accelerator to create X-ray photons up to 8 MeV in energy, which

utilised the ionising nature of X-rays and provided patients access to radiotherapy [7]. Even-

tually X-rays could be produced with energies comparable to energy levels present in nuclear

physics, opening the field of photo-nuclear reactions. This provides X-rays which could ac-

tively scan for special nuclear materials (SNM) [8], or perform photo-fission reactions [9,10]

and transmute nuclear waste into medical isotopes [11]. The highest energy X-rays can

be used for laboratory astrophysics experiments as they decay into electron-positron pair

plasmas [12], or in quantum chromodynamics experiments for decay into pions [13]. These
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Figure 1.1: A graph detailing some of the more common applications of X-rays, plotted to
show the typical X-ray energy ranges required for each one. The limits used for this plot are
taken from [3–16].

higher-energy applications include photons typically associated with the label “γ-ray”, but

for simplicity throughout this thesis, the label of “X-ray” will be adopted for all high energy

photons created through electron acceleration.

In addition to providing a source for a variety of applications, sometimes the X-rays them-

selves can yield interesting information. As X-rays are produced by high energy accelerating

particles, they can act as a diagnostic tool to describe particle motion. This has seen use in

inertial confinement fusion investigations of fast ignition schemes, to diagnose the motion of

hot electrons through dense targets and to estimate the energy transferred from the laser to

electrons [17]. X-rays are therefore an invaluable tool across multiple disciplines of science,

and so there is some interest in the production and understanding of X-ray sources.

1.2 X-ray generation mechanisms

Most X-ray sources require two components: an energetic beam of particles and some mech-

anism to bend the particle trajectories. To accomplish this, various different schemes have

been developed which are effective at generating a variety of different X-ray characteris-

tics. Three of the most common types to see widespread use are synchrotron-like schemes,

bremsstrahlung sources and laser-driven set-ups. Synchrotron and bremsstrahlung sources

take beams of high energy electrons from accelerators, and alter electron trajectories through

applying external electromagnetic fields (synchrotron) or by passing the beam through a

target and using the electric fields of target nuclei (bremsstrahlung). Alternatively, the ac-
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Figure 1.2: The peak brilliance achieved from a variety of X-ray sources, adapted from Figure
4 of Sarri et al [18], with an additional data-point from Ferri et al [19].

celeration and bending stages can both be achieved using lasers, which are discussed further

in Section 1.3.

Many applications of X-rays involve scanning, and so a common figure of merit used for

their characterisation is the brilliance, which considers four beam properties. Firstly, the

rate at which photons are delivered is important, as faster scans can allow for more scans

to be performed over a given period. Also, smaller beam cross-sectional areas are useful

as they lead to a greater spatial resolution when scanning, and low beam divergence would

provide less noisy data. Finally, we are often only interested in the behaviour of a particular

X-ray energy, and so brilliance is measured as the number of photons Nγ per second passing

through an area (mm−2) into some solid angle (mrad−2), for photons with energies of ±0.1%

about some central photon energy.

Figure 1.2 shows the brilliance values achieved by various sources at different photon

energies, coloured by the underlying mechanisms exploited by each source. Here we see

that synchrotron-type sources provide the greatest brilliance for low energy X-rays, while

only bremsstrahlung sources are capable of producing brilliant beams at the highest photon

energies. In between these limits, in regions which are useful for dense radiography and some
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photonuclear reactions, laser sources are shown to dominate the brilliance plot. It is these

sources which are the focus of this thesis.

1.3 Laser-plasma interactions

Laser-plasma interactions offer some useful alternatives to conventional X-ray sources. When

the plasma is low density, the laser pulse can set-up wakefields which provide accelerating

fields on the order of 100 GV/m [19] compared to the 100 MV/m in linear accelerators

(linacs) [20]. Thus electrons may be accelerated over a short length scale and can be made

to radiate at the same time, which can provide a high brilliance source of multi-MeV X-rays.

One area where lasers will be particularly advantageous is high density radiography [21].

While synchrotrons can also be useful in this area, their large footprint can be a limiting

factor for widespread use. Unlike sources accelerated by linacs, the compact accelerating

area of laser-solid interactions provides a beam which is simultaneously bright and thin,

providing high resolution scans of high Z targets. Hence, laser-plasma based X-ray sources

have seen use in industrial radiography [22], and also in bone scans to diagnose diseases like

osteoporosis [21].

With the development of next generation lasers which will come online soon, this is an

interesting time to examine these systems. Facilities like ELI [23] and APOLLON [24] aim

to exceed intensities of 1023 Wcm−2 within the next few years, which could produce X-rays

of even higher energy. This may provide a brilliant X-ray source for triggering photo-nuclear

reactions, or could even produce dense electron-positron pair plasmas for the study of labora-

tory astrophysics. X-rays could also play a role in diagnosing the motion of plasma particles

in these next generation systems, which could provide a useful tool in future experimental

campaigns.

1.4 X-rays in laser-solid interactions

When intense lasers strike solid targets, the surface is ionised and electrons in the subsequent

plasma are heated to high energy. These hot electrons radiate synchrotron X-rays in the

laser fields, and bremsstrahlung X-rays as they collide with nuclei in the solid density target.

A more detailed breakdown of the physics involved in laser-solid interactions is provided

in Chapter 3. Additional sources of X-rays are present in these systems, including high
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Figure 1.3: Laser to X-ray efficiencies for various laser intensities and target compositions.
Solid lines denote synchrotron radiation, dashed lines are used for bremsstrahlung. Data is
labelled and sourced from Wan [28], Vysk. (synchrotron [29], bremsstrahlung [30]), Pand.
[31] and Brady [32].

harmonic generation (HHG), Kα emission, and coherent transition radiation (CTR).

In HHG, electrons are ionised by the laser and gain significant kinetic energy in the

laser fields before being re-absorbed and emitting a high energy photon [25]. Kα emission

also results from ionisation, although this refers to the photon emission due to electron de-

excitation from the L shell (n = 2) to the K shell (n = 1), where n is the principle quantum

number [26]. The Kα transition occurs when the K-shell is rapidly ionised before the outer-

shells, either through electron or X-ray bombardment. Electrons can also emit radiation

through CTR due to field changes when traversing media with different dielectric properties,

such as the plasma-vacuum interface passed by escaping electrons [27]. However, as we are

primarily interested in photon energies exceeding 1 MeV, then the lower keV photon energies

of HHG, Kα and CTR fall outside the scope of this thesis. These processes neither contribute

to the production high energy photons, nor do they make an appreciable impact on the hot

electrons generating synchrotron or bremsstrahlung X-rays.

Radiation from laser-solid interactions is often described in terms of its efficiency, the ratio

of the total radiated photon energy (between certain photon energy limits, typically over 1

MeV) to the total incident laser energy. A review of the bremsstrahlung efficiencies found

by various groups [28–32] is given in Figure 1.3. Here it can be seen that bremsstrahlung
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radiation tends to compete with and dominate synchrotron emission at intensities below

1022 Wcm−2, making bremsstrahlung the most important X-ray source for modern petawatt-

class lasers. However, the efficiencies present in Figure 1.3 were deduced through numerical

simulation, and the codes used to perform this analysis were too computationally expensive

to model the entire interaction. As a result, it is expected that these efficiencies under-

estimate the total bremsstrahlung emission. The work performed in this thesis aims to

address these limitations, and to develop greater tools for modelling high energy X-ray

production. Such work could be useful for both maximising the bremsstrahlung emission

to explore the viability of a compact X-ray source, and for minimising bremsstrahlung as a

background to synchrotron radiation.

Next generation lasers are expected to reach intensities which may exceed 1022 Wcm−2.

As seen in Figure 1.3, the synchrotron radiation scales faster with laser intensity, and should

become the dominant emission mechanism in multi-petawatt lasers. This could be useful

as not only a bright X-ray source, but also as a diagnostic for hot electron motion in the

laser focal spot. However, the laser intensity at which synchrotron radiation dominantes

bremsstrahlung is ambiguous, and dependent on the target composition. Experimental veri-

fication of synchrotron radiation may be challenging due to this bremsstrahlung background,

particularly at the intensities available with petawatt-class lasers. In Chapter 8, we present

work in search of synchrotron signatures at these lower intensities, along with a more rig-

orous characterisation of the bremsstrahlung background. This is useful for experimentally

benchmarking synchrotron models, and also as a means to provide insight to experiments

with next-generation lasers.

Some characteristics of the synchrotron and bremsstrahlung emissions have already been

studied. For example, the angular distributions of both radiation sources have been given in

Figure 1.4, and were calculated from simulation [29, 30]. In both cases, the angular distri-

bution of the X-rays is related to that of the electrons, as ultra-relativistic electrons radiate

in the direction of motion. Inside the target, hot electrons were found to reflect off target

boundaries, losing longitudinal momentum as they did so. As a result, the bremsstrahlung

emission starts along the initial electron direction (laser axis), but splits off to lobes as elec-

trons scatter off the boundaries. The nature of this scatter was not well understood, but has

been investigated in Section 5.7 of this thesis. Such work is important to understand the role

target geometry plays in radiation production. Similarly, synchrotron radiation mechanisms
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Figure 1.4: Angular distributions of X-rays created in laser-solid interactions. Results are
from 2D simulations (synchrotron [29], bremsstrahlung [30]), scaled to 3D by assuming a
length-scale in the omitted direction equal to the laser FWHM focal spot size. Both use a
30 fs laser with peak intensity 1022 Wcm−2 on a 2 µm target, with different compositions.
The bremsstrahlung target was Al and an X-ray band of 2-10 MeV was considered, while
the synchrotron target was plastic with a pre-plasma, and X-rays between 2.3 and 4.8 MeV
were plotted. The laser pulse initially travelled in the θ = 0 direction.

are also explored - particularly theory related to the backwards emission depicted in Figure

1.4. A detailed understanding of both radiation mechanisms is needed to fully exploit X-ray

production in both current and next-generation laser facilities.

1.5 Thesis outline

In this thesis, we intend to study the X-rays generated in high intensity laser-solid simula-

tions. In Chapter 2, we discuss the theory of X-ray emission due to electron acceleration in

both classical and quantum frameworks, and elaborate on the X-ray generation mechanisms

outlined in Figure 1.2. Then in Chapter 3, we turn our attention to laser-solid interactions,

which is the X-ray generation system of interest for our research.

Throughout this thesis, we will attempt to describe these complex systems through nu-

merical simulation. Chapter 4 provides detail on the Particle-In-Cell (PIC) codes which are

typically employed to model these X-ray emissions, and we also introduce the bremsstrahlung

module which we developed for this project. The chapter ends with a discussion of PIC-code

limitations, namely the computational expense and the small length and time scales which
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must be modelled. To address these limitations, we have written a hybrid-PIC code which is

detailed in Chapter 5, and a set of test problems is presented in Chapter 6 for benchmarking.

Finally, we present the results from our hybrid-PIC simulations in Chapter 7, where

we focus on bremsstrahlung X-rays produced within the solid target. In Chapter 8, we

provide the results from a similar simulation campaign which studied the synchrotron X-

rays produced in the laser-focal spot, and the two individual X-ray generation mechanisms

are compared. We finish with our conclusions in Chapter 9.



Chapter 2

Radiation

This thesis details my work on characterising X-ray emissions in laser-solid interactions. Be-

fore diving into the detailed theory of how solids behave under irradiation from intense laser

pulses, it is useful to put this work into context. In this introduction, a general overview of

radiation theory will be given, using both classical and quantum descriptions of the processes.

The chapter closes with a summary of existing and proposed X-ray generation methods, and

provides some extra motivation for the generation of high energy photons.

2.1 Radiation

Over the course of this thesis, we are primarily interested in the high energy photons produced

as electrons accelerate. In classical electrodynamics, the assertion that accelerating charged

particles produce radiation is a natural consequence of Maxwell’s equations,

∇ ·E =
ρ

ε0
(2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B = µ0J +
1

c2

∂E

∂t
(2.4)

where (2.1) denotes Gauss’ law, (2.2) forbids magnetic monopoles, and (2.3) and (2.4) show

the Faraday-Lenz and Ampère-Maxwell laws respectively [33, 34]. Vector and scalar poten-

29
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tials, A and φ may be defined such that

B = ∇×A (2.5)

E = −∇φ− ∂A

∂t
(2.6)

as these still satisfy the constraints of (2.2) and (2.3), with some freedom over the specific

choice of A and φ. Using the Lorenz gauge defined as ∇·Ac2 = −∂φ/∂t, the potential fields

may be substituted into (2.1) and (2.4) to return the inhomogeneous wave equations

(
∇2 − 1

c2

∂2

∂t2

)
φ = − ρ

ε0
(2.7)(

∇2 − 1

c2

∂2

∂t2

)
A = −µ0J (2.8)

which have solutions

φ(r, t) =
1

4πε0

∫
V

ρ
(
r’, t− |r−r’|c

)
|r− r’|

d3r’ (2.9)

A(r, t) =
µ0

4π

∫
V

J
(
r’, t− |r−r’|c

)
|r− r’|

d3r’ (2.10)

where the volume integral is evaluated over all space. Considering a point particle with

charge, e, and substituting the potentials from (2.9) and (2.10) into the field equations (2.5)

and (2.6) yields the Liénard-Wiechert fields

E(rrr, t) =
e

4πε0

[
(n̂nn− βββ)(1− β2)

κ3R2

]
ret

+
e

4πε0c

[
n̂nn× ((n̂nn− βββ)× β̇ββ)

κ3R

]
ret

(2.11)

B(r, t) = [n̂nn]ret ×
E(r, t)

c
(2.12)

where terms in the square brackets are evaluated for the charged particle at the retarded

time tr = t − R(tr)/c. Here, R is the distance from the charge to the observation point r,

and n̂nn is a unit vector pointing from the charge to r. The scalar κ represents 1− n̂nn ·βββ, where

βββ and β̇ββ are the velocity and acceleration vectors for the particle respectively, both divided

by c.

As seen in (2.11), the electric fields for a charged particle may be split into two terms.

The first has no dependence on the acceleration β̇ββ and a strength which falls off quickly
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as 1/R2. The second term we shall call Ea, and represents fields arising from accelerating

charged particles, only falling off as 1/R. We can demonstrate the radiative properties of

Ea by first considering its non-relativistic behaviour (β → 0). The energy flux in a given

direction carried by electric and magnetic fields is given by the Poynting vector, S

S =
1

µ0
E×B (2.13)

which for Ea takes the form |Ea|2n̂nn/µ0c. Thus, the power flowing through an infinitesimal

area, dA at the observation point, r is SdA, where dA = R2dΩ. The angular distribution of

power is then

dP

dΩ
=

1

µ0c
|REa|2 =

e2

16π2ε0c
β̇2 sin2 θ (2.14)

where θ is the angle between n̂nn and β̇ββ. In (2.14), we see that power doesn’t diminish with

increasing distance from the charge to the observer, R, and so this solution represents the

transport of electromagnetic power over space (radiation). Integrating over all solid angles

dΩ yields Larmor’s formula for the total radiated power, P

P =
2

3

e2

4πε0c3m2

(
dp

dt
· dp
dt

)
. (2.15)

The relativistic generalisation of Larmor’s formula may be obtained by constructing a

form from Lorentz invariant quantities which retains the non-relativistic behaviour of (2.15).

Jackson [33] describes how this may only be satisfied by

P =
2

3

e2

4πε0c3m2

(
dpµ
dτ

dpµ

dτ

)
(2.16)

where pµ denotes the 4-momentum of the charge, and dτ an interval of proper time. Solving

this yields the classical result for the power radiated by an accelerating, relativistic particle,

P =
2

3

e2

4πε0c
γ6(β̇2 − (βββ × β̇ββ)2). (2.17)

While (2.17) describes the radiation power produced by accelerating charges, it doesn’t ad-

dress the cause of acceleration. Relativistic electrons passing through matter are accelerated

by the electric fields of atomic nuclei, and the resultant emissions are termed bremsstrahlung
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radiation. Acceleration also occurs for electrons passing through external electromagnetic

fields, which results in synchrotron radiation (this term refers to a particular field configu-

ration, but will be used to describe the general case in this thesis - see Section 2.4). While

the emission of photons is an inherently quantum process, considering the radiation from

these sources using classical arguments provides simple analytic scaling laws for total emitted

power, which will be discussed further in later subsections. It is also possible to describe

the radiation spectrum using classical arguments, which will be useful in describing classical

bremsstrahlung.

2.1.1 Classical radiation spectra

Jackson obtains a radiation spectrum by considering the flash of radiation seen by an observer

as an accelerating charge passes by. The rise and fall of radiation power may be broken down

into a Fourier spectrum of waves with different frequencies, which corresponds to an energy

spectrum for radiation. If the angular distribution of power is rewritten as

dP (t)

dΩ
= |F(t)|2 (2.18)

then the angular distribution of total energy is

dW

dΩ
=

∫ ∞
−∞
|F(t)|2dt =

∫ ∞
−∞
|F(ω)|2dω (2.19)

where we define the Fourier transform of F(t) as

F(ω) =
1√
2π

∫ ∞
−∞

eiωtF(t)dt. (2.20)

By substituting the relativistic form of Ea into the Poynting vector (2.13), a relativistic form

of dP (t)/dΩ can be obtained, which results in

F(ω) =
e√

32π3ε0c

∫ ∞
−∞

n̂nn× ((n̂nn− βββ)× β̇ββ)

(1− βββ · n̂nn)2
eiω(t−n̂nn·r(t)r(t)r(t)/c)dt. (2.21)
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As there is no special significance to negative ω, we instead define a double differential on

radiated energy d2W/dΩdω such that

dW

dΩ
=

∫ ∞
0

d2W

dΩdω
dω (2.22)

and so d2W/dΩdω = 2|F(ω)|2. This double differential energy distribution may be simplified

further by considering the non-relativistic case β → 0. Assuming a characteristic interaction

time of τ ≈ x/v (where v and x are characteristic particle speeds and length scales during

the interaction), then we may integrate the non-relativistic form of d2W/dΩdω to obtain an

energy spectrum, dW/dω in high and low frequency limits

dW

dω
≈


e2

6π2ε0c
|∆βββ|2 ωτ < 1

0 ωτ > 1

(2.23)

which implies a cut-off frequency of ω = v/x. Here, |∆βββ| describes the change in βββ over the

characteristic interaction time.

Similarly, we may obtain a fully-relativistic angular distribution of radiation power in

the low frequency limit,

dP (t′)

dΩ
=

e2

16π2ε0c

∣∣∣n̂nn× ((n̂nn− βββ)× β̇ββ)
∣∣∣2

(1− βββ · n̂nn)5
(2.24)

where terms have been evaluated at the photon emission time t′. This angular distribution

becomes strongly peaked in the βββ direction for particles approaching the ultra-relativistic

limit, with the root-mean-square angle between radiation direction and βββ falling as θrms =

1/γ.

2.2 Bremsstrahlung radiation

Bremsstrahlung describes the radiation caused by charged particles accelerating in the elec-

tric fields of nuclei. In Section 2.1 we demonstrate that accelerating charged particles produce

radiation, and discuss the energy spectrum for non-relativistic particles using classical ar-

guments. Jackson also provides a method for using these equations to obtain a classical

description of bremsstrahlung radiation [33].
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We start by considering the case of a fast but non-relativistic electron approaching a

bare nucleus. In the frame moving at the initial velocity of the electron, v, we see a nucleus

approaching a non-relativistic electron with velocity −v. In this frame, the electric field on

the moving nucleus is simply given by Coulomb’s law,

E′ =
−e

4πε0(b2 + (vt′)2)
n̂nn′ (2.25)

where the impact parameter, b describes the distance between the electron and nucleus in

the direction perpendicular to v, and n̂nn′ is a unit vector pointing from electron to nucleus.

We have arbitrarily set t′ = 0 in this frame to correspond to the time of shortest electron-

nucleus distance, and the trajectories of both particles are assumed to be unaffected during

the interaction time. This field can be Lorentz transformed into the lab-frame [33], and the

momentum transfer can be calculated by integrating the resultant force on the nucleus over

all times. Hence, the parameter |∆βββ| takes the form

|∆βββ| = Ze2

2πε0mevbc
(2.26)

giving a bremsstrahlung spectrum of

dW

dω
≈


Z2e2

24π4ε30c

(
e2

mec2

)2 (
c
v

)2 1
b2

ω < v
b

0 ω > v
b

(2.27)

where we have replaced the characteristic interaction distance with the impact parameter.

This form is not very useful in large systems, as it requires knowledge of b for every electron-

nucleus collision. Instead, we define a radiation cross section,

dχ

dω
= 2π

∫ bmax

bmin

dW

dω
bdb (2.28)

where bmin and bmax describe the range of impact parameters which produce non-negligible

radiation. Physically, the integration of dχ/dω between ω′ and (ω′ + dω) yields the cross

section, multiplied by the radiated energy per electron-nucleus collision, for radiation with

ω between these limits.

We consider relativistic bremsstrahlung by returning to the frame co-moving with the

electron, where the electron remains non-relativistic throughout this interaction. Here,



CHAPTER 2. RADIATION 35

dW ′/dω′ is described by (2.27), and dχ/dω may be approximated for a suitable choice of

the b limits. From (2.27), it is clear there is no radiation above bmax ≈ γv/ω′, where a

γ factor is introduced due to the Lorentz transformation. The uncertainty principle gives

us bmin ≈ ~/mev. Solving (2.28) with these limits and transforming back to the lab-frame

yields the radiation cross section

dχ

dω
≈ Z2e2

12π3ε30c

(
e2

mec2

)2

ln

(
κγ2mev

2

~ω

)
(2.29)

where κ denotes the uncertainty in b limit approximations, and is of order unity.

2.2.1 Atomic screening

Equation (2.29) describes the radiation produced by an incident electron accelerating in the

Coulomb field of a bare nucleus, but the electric field on this electron will actually be a

combination of fields from the nucleus and orbital electrons if our target is composed of

neutral atoms. The orbital electrons reduce the Coulomb field strength experienced by the

incident electron, resulting in a screened potential of the approximate form

V (r) =
Ze

4πε0r
e−r/a (2.30)

according to Thomas-Fermi theory [35], where the characteristic atomic length scale a =

1.4aBZ
−1/3, and aB is the Bohr radius. The difference between potentials from bare/screened

nuclei is shown in Figure 2.1 for the case of aluminium (Al). Jackson obtains a screened dif-

ferential bremsstrahlung cross section by assuming the Coulomb field around the nucleus be-

comes negligible at r = a, which sets a maximum impact parameter of bmax = min(a, γ2v/ω)

[33]. Hence, this screening correction is only applied to the differential cross section for

frequencies below

ωs =
Z1/3γ2mevc

1.4~

(
e2

4πε0~c

)
(2.31)

where we have

dχ

dω
=

Z2e2

12π3ε30c

(
e2

mec2

)2

ln

(
λ

1.4~v(4πε0)

Z1/3e2

)
. (2.32)
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Figure 2.1: The electrical potential, V (r) of an Al nucleus as a function of distance, r for
three different screening models. In the plasma case, an Al plasma is used with an electron
temperature of 1 keV, and ion density ni = 6.026× 1028 m−3 (solid density).

Equation (2.31) shows that the critical frequency, ωs rises with the electron γ-factor. Once

~ωs exceeds the electron kinetic energy, the screening becomes “complete”, and radiation is

emitted according to (2.32) at every frequency.

2.2.2 Plasma screening

Expressions for bremsstrahlung radiation in ionised targets can be obtained using charge-

screening arguments similar to those used in deriving the differential bremsstrahlung cross

section with orbital electron screening (2.32). A heavily ionised target may be modelled

as a plasma - a collection of negatively charged free electrons and positively charged ions.

These free electrons will be distributed through space differently to their bound counterparts,

and Thomas-Fermi screening (2.30) will no longer be a valid potential model. Instead, the

screening of nuclear charge potential can be modelled by Debye shielding (see Section 3.1.1),

V (r) =
Ze

4πε0r
e−r/λD (2.33)

where the Debye length λD is given by

λD =

√
ε0kBTe
nee2

(2.34)
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for a given electron temperature and number density Te and ne respectively [36]. This

Debye shielding model is derived by solving Gauss’ law (2.1) for a Boltzmann distribution of

charges [36]. The potential (2.33) is also plotted in Figure 2.1 for an Al target heated to 1

keV, where the mean ionisation state was found to be Z∗ ≈ 12.7 using the FLYCHK tables [37].

Equation (2.33) is of the same form as the atomic screened potential (2.30), with the

length parameter a replaced with λD. The radiation cross section for ionised targets may

therefore be approximated as

dχ

dω
=

Z2e2

12π3ε30c

(
e2

mec2

)2

ln

(
λ
mev

~

√
ε0kBTe
nee2

)
(2.35)

in the complete screening limit.

2.2.3 Quantum cross-section

The previous subsections deal with a classical description of bremsstrahlung radiation, and

while this provides a good approximation for radiation power, it fails to fully describe the

quantum process of photon emission. Multiple groups have derived quantum expressions

for bremsstrahlung radiation in various approximations and limits, which are combined into

the differential cross section tables, dσ/dεγ given by Seltzer and Berger, where εγ denotes

the emitted photon energy [38,39]. These include the differential cross sections for electrons

with kinetic energies, εk between 1 keV and 10 GeV, passing through targets with atomic

numbers numbers from 1 to 100. These represent the total cross sections for atomic targets,

including bremsstrahlung due to both the interaction with the nucleus (e−n), and the Z

atomic electrons (e−e−) [38]. The total cross-sections integrated over all εγ are shown in

Figure 2.2.

For εk values between 1 keV and 2 MeV, the Seltzer-Berger e−n cross sections use analytic

results from Pratt et al [40], where the emission is treated as a single-electron transition in

a screened atomic potential. The cross sections were obtained by solving the Dirac equation

for electrons in targets with 2 ≤ Z ≤ 92.

For electrons with kinetic energy over 50 MeV, the Seltzer-Berger e−n cross sections

combine multiple bremsstrahlung models, and take the general form

dσn
dεγ

=
Z2e2

16π3ε30~c

(
e2

mec2

)2
1

εγ
(χunscrBorn + δscreen + δCoul) (2.36)
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Figure 2.2: The total integrated bremsstrahlung cross section per atom, σ, using the Seltzer-
Berger model [38]. This is expressed as a function of target atomic number, Z, and incident
electron kinetic energy, εk. 1 barn ≡ 10−28 m2.

where χunscrBorn is chosen such that (2.36) returns the unscreened differential cross section,

calculated by solving the Dirac equation with the Born approximation (if δscreen and δCoul

are set to zero) [41]. Here the electron wavefunction interacts with the potential of a bare

nucleus, where this potential is treated as a small perturbation to the wavefunction (Born

approximation). The additive correction factors δscreen and δCoul introduce screening and

Coulomb effects respectively. The term δscreen maps the unscreened Born differential cross

secton onto a corresponding screened Born result (for δCoul = 0) [42]. The Born approxima-

tion has been shown to over-predict the cross section for electrons in heavy elements by up

to 10% in the case of lead [43]. To correct for this, the δCoul term is chosen to map dσn/dεγ

onto unscreened equations derived without the Born approximation (for δscreen = 0) [38,43].

The dσn/dεk values for εk in the range 2-50 MeV are interpolated between the two regimes,

providing a smooth transition between the different theories.

The e−e− cross sections are calculated using a similar treatment, with the general form

dσe
dεγ

=
Ze2

16π3ε30~c

(
e2

mec2

)2
1

εγ
(feeχHaug + δescreen) (2.37)

where χHaug denotes the bremsstrahlung radiation from an unscreened target electron in the

Born approximation, δescreen is a correction factor for screening, and fee is a multiplicative

Coulomb correction. Much like the e−n case, the quantum cross-sections come from solving

the Dirac equation [44].
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These differential cross sections can be combined into a cross section per atom,

dσ

dεk
=
dσn
dεk

+ Z
dσe
dεk

(2.38)

which has been benchmarked against experiment to obtain uncertainty estimates [39]. For

εk < 2 MeV, the Seltzer-Berger cross sections agreed with experimental data within an

uncertainty of around 10%. This falls to 3-5% in experiments with εk > 50 MeV, and the

interpolation region was found to be accurate between 5% and 10%.

2.3 Radiation reaction

Radiation reaction is a classical, higher-order correction to the Lorentz force law. It provides

a resistive force corresponding to the recoil of charged particles when they emit radiation, and

a derivation has been provided by Landau and Lifshitz [45]. This begins by considering the

Lagrangian of a particle with charge, q and mass, m moving at speed, v in an electromagnetic

field,

L = −mc2

√
1− v2

c2
+ qA · v− qφ (2.39)

where the field potentials are defined in (2.5) and (2.6). Let us also rewrite the potentials

(2.9) and (2.10) as

φ =
1

4πε0

∫
V

ρret
R
dV (2.40)

A =
µ0

4π

∫
V

ρretv

R
dV (2.41)

where the current density has been expressed as the product of the charge density and its

velocity.

In the non-relativistic limit, the ratio v/c is small, and so the scalar and vector potentials

(2.40) and (2.41) may be expanded to

φ =
1

4πε0

(∫
ρ

R
dV − 1

c

∂

∂t

∫
ρdV +

1

2c2

∂2

∂t2

∫
RρdV − 1

6c3

∂3

∂t3

∫
R2ρdV

)
(2.42)

A =
µ0

4π

(∫
ρv

R
dV − 1

c

∂

∂t

∫
ρvdV

)
. (2.43)
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These forms have been chosen to ensure all terms in L are evaluated to third order in 1/c.

The vector potential, A has two fewer terms in its expansion because the pre-factor µ0/4π

already carries an extra 1/c2 when compared to 1/4πε0 for the scalar potential. The 1/c

term of (2.42) describes the rate of change of a conserved quantity (total charge), and so this

term may be removed from the expansion.

The third order term of equation (2.42) may be removed by considering an appropriate

gauge, as gauge invariance permits us to introduce any scalar function, λ provided the

potentials are modified by

φ→ φ− ∂λ

∂t
(2.44)

A→ A +∇λ (2.45)

because these new potentials still satisfy their original definitions, (2.5) and (2.6). Hence,

for

λ = − 1

24πε0c3

∂2

∂t2

∫
R2ρdV (2.46)

we obtain

φ =
1

4πε0

(∫
ρ

R
dV +

1

2c2

∂2

∂t2

∫
RρdV

)
(2.47)

A =
µ0

4π

(∫
ρv

R
dV − 2

3c

∫
ρv̇dV

)
(2.48)

where we have used R = R0 − r(t) for observation point R0 and charge position r(t). We

have also used Ṙ = −v and ∇R2 = 2R, as ∇ describes differentiation with respect to

observation point coordinates.

Using the scalar potential definition (2.6), the force on an electron associated with the

highest order term of our expansion is

FLA =
e2

6πε0c3
v̈ (2.49)

which is termed the Lorentz-Abraham force. This force is extended to the relativistic case

by invoking two arguments: the equation must reduce to (2.49) in the limit c → ∞, and

fµuµ = 0 for any 4-velocity uµ = γ(c,v) and 4-force fµ = d(E/c,p)/dτ , where τ is the
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proper time. The Lorentz-Abraham-Dirac 4-force satisfies both conditions

FµLAD =
2e2

12πε0c3

(
d2uµ

dτ2
+

1

c2

duν

dτ

duν
dτ

uµ
)
. (2.50)

2.3.1 Landau-Lifshitz equation

The Lorentz-Abraham (2.49) and Lorentz-Abraham-Dirac forces (2.50) describe the radiation

reaction process, but these equations can exhibit non-physical solutions. One particularly

troubling solution suggests that particles at rest may undergo exponential acceleration in

the absence of an electromagnetic field, in clear violation of the conservation of energy. The

issues come from the classical treatment which has potentials falling off as 1/R for point

particles, as this implies an infinite energy and mass which contradicts the finite electron

mass used in Section 2.3 [45].

To address these inaccuracies, Landau and Lifshitz proposed an approximation to (2.50)

without run-away solutions. When assuming the radiation reaction is significantly smaller

than the Lorentz force in the electron rest frame, the acceleration terms in (2.50) may be

replaced by the Lorentz force acceleration. The spatial components of this new equation

yield the Landau-Lifshitz force

FLL = −e
2m2

ec
2

6πε0~2
η2n̂nn (2.51)

where n̂nn is the direction of electron motion, the Lorentz invariant η2 takes the form

η2 =
1

E2
s

(∣∣∣∣γE +
1

mec
(p× cB)

∣∣∣∣2 − 1

(mec)2
(E · p)2

)
(2.52)

and the Schwinger field Es = m2
ec

3/e~. Physically, η describes the ratio of the electric field

experienced by an electron in its rest frame to the Schwinger field. Equation (2.51) is strictly

classical, and the ~ term is cancelled by a corresponding ~ in the Schwinger field. These ~

terms have been included to demonstrate a dependence on η2, which will be used in later

sections.
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2.4 Synchrotron radiation

Radiation due to relativistic electron motion in an external electromagnetic field has been

addressed for many special cases. The resulting models are given different names, including

magneto-bremsstrahlung, curvature radiation, non-linear Thomson scatter and non-linear

Compton scatter. Synchrotron radiation is also a special case, referring to the radiation of

electrons travelling through a synchrotron (uniform magnetic field) - but in this thesis we

will use this as an umbrella term for all of these processes, as done by Kirk et al [46]. A

justification for this treatment is provided in Section 2.4.2.

Much like in the case of bremsstrahlung, synchrotron radiation can be described classi-

cally as a continuous energy loss, or quantum mechanically as a discrete emission process.

The classical treatment is useful for analytic scaling laws, while the quantum description

provides a more accurate evolution of the electron distribution function with straggling ef-

fects [47].

2.4.1 Classical synchrotron emission

The synchrotron radiation produced by electrons as they execute circular orbits in constant

magnetic fields can be described classically using the classical radiation double-differential

cross section (2.21) [33]. It can be shown through integration by parts that (2.21) is equivalent

to the radiated energy double differential

d2W

dΩdω
=

e2ω2

16π3ε0c

∣∣∣∣∫ ∞
−∞

n̂nn× (n̂nn× βββ)eiω(t−n̂nn·rrr/c)dt

∣∣∣∣2 . (2.53)

As the electron traces circular motion with some radius ρ, let us define the electron position

rrr such that

rrr =


ρ sin

(
βct
ρ

)
ρ
(

1− cos
(
βct
ρ

))
0

 (2.54)

which ensures the electron is restricted to the x− y plane, passing the origin at time t = 0.

Let the centre of the circle be positioned such that the observation point n̂nn lies in the x-z
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plane, with position

n̂nn =


cos θ

0

sin θ

 (2.55)

for an observation point at some angle θ to the plane of the electron orbit. Radiation from

relativistic electrons points into a cone of θrms = 1/γ, with cone axis parallel to the electron

velocity. Hence, we may use the small angle approximation for θ in (2.55), as radiation

at large angles will be negligible for relativistic particles. Let us also define two additional

vectors εεε‖ and εεε⊥ which, when combined with n̂nn, form a set of mutually perpendicular unit

vectors (with εεε‖ pointing along the y-axis). The vector terms in (2.53) then reduce to

n̂nn× (n̂nn× βββ) = β

(
−εεε‖ sin

(
βct

ρ

)
+ εεε⊥ cos

(
βct

ρ

)
sin(θ)

)
(2.56)

ω

(
t− n̂nn · rrr

c

)
= ω

(
t− ρ

c
sin

(
βct

ρ

)
cos(θ)

)
(2.57)

which yield

d2W

dΩdω
=

e2

12π3ε0c

(ωρ
c

)2
(

1

γ2
+ θ2

)2(
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

)
(2.58)

in the small angle approximation, where ξ takes the form

ξ =
ωρ

3c

(
1

γ2
+ θ2

)3/2

(2.59)

and Ki(ξ) are the i-th order modified Bessel functions of the second kind. These Bessel

functions are negligible for ξ � 1, and so a critical frequency, ωc may be defined for ξ = 1/2,

θ = 0 such that

ωc =
3

2

c

ρ
γ3. (2.60)

Finally, the frequency distribution of radiated energy may be obtained by integrating (2.58)

over all solid angles, which gives

dW

dω
=
√

3
e2

4πε0c
γfsync

(
ω

ωc

)
. (2.61)
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Here, the classical synchrotron emissivity, fsync [33, 46] is given by

fsync(y) = y

∫ ∞
y

K5/3(x)dx (2.62)

which is a useful function for comparisons with the quantum description of synchrotron

radiation.

2.4.2 Quantum synchrotron emission

While bremsstrahlung radiation is described in terms of an emission cross section, the ex-

pressions for synchrotron radiation describe emission rates. These rates can be calculated if

the basis states of the system are known. When dealing with charged particles in external

electromagnetic fields, we may use the Furry states to describe the system [48,49].

In general the photon emission rates for a relativistic electron in an external field are

complicated, but there are approximations which simplify this treatment [46, 47]. Firstly,

the external fields are assumed to remain unchanged over the course of the emission, which

holds if the characteristic length scale of the emission is smaller than the length scale of field

variation. For electrons in a monochromatic laser field, this implies the normalised vector

potential a0 satisfies

a0 =
eE0λL
2πmec2

� 1 (2.63)

where E0 and λL are the peak electric field and wavelength of the laser respectively [46,47].

Within the quasi-static (large a0) approximation, the photon emission rates are governed

by three dimensionless Lorentz invariant quantities: η from (2.52), and

F =
|E2 − c2B2|

E2
s

(2.64)

G =
|E · cB|
E2
s

. (2.65)

The photon emission rate is further simplified in the weak-field approximation, which elim-

inates the dependence on F and G provided F � 1, G � 1, and η2 � max(F,G) [46, 47].

When both the quasi-static and weak-field approximations are applied, different field struc-

tures will give rise to the same photon emission behaviour provided they share the same

η. While synchrotron radiation traditionally refers to emission from electrons in a constant
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magnetic field, when its equations are expressed in terms of η they will apply to all elec-

tromagnetic configurations within the approximation limits [46]. This is the motivation for

using “synchrotron radiation” as an umbrella term for the radiation mechanisms at the start

of Section 2.4.

The differential photon emission rate for synchrotron radiation is given by

d2Nγ

dχdt
=

√
3mec

2

h
α
cB

Es

F (η, χ)

χ
(2.66)

where the emitted photon energy is parametrised by χ, F (η, χ) represents the quantum

synchrotron emissivity [50], and α is the fine structure constant. The χ parameter may be

written as

χ =
~

2Esmec

∣∣∣∣∣(k ·E)2 −

(∣∣∣∣ωEc + k× cB
∣∣∣∣2
)∣∣∣∣∣

1/2

(2.67)

for a photon of angular frequency ω and wavevector k, and can be considered the photon

equivalent of the electron η. Hence, d2Nγ/dχdt describes both the rate of radiated photon

production, and the energy spectrum of these photons in a particular (E,B) field configura-

tion. The parameter F (η, χ) takes the form

F (η, χ) =
4χ2

η2
yK2/3(y) +

(
1− 2χ

η

)
y

∫ ∞
y

dtK5/3(t) (2.68)

where y is 4χ/(3η2 − 6ηχ). The total rate of photon production can be determined through

integrating (2.66) over all χ, which yields

dNγ

dt
=

√
3mec

2

h
α
η

γ

∫ η/2

0
dχ
F (η, χ)

χ
(2.69)

where the upper integral limit for χ occurs when the emitted photon energy ~kc is equal to the

electron kinetic energy (approximately γmec
2 for ultra-relativistic electrons). Substituting

γmcc
2 into the χ definition (2.67) yields an upper limit equivalent to η/2 [47].

2.4.3 Gaunt factor

The quantum treatment of synchrotron radiation reveals an inconsistency when compared

to a treatment using classical methods. In the classical picture, h → 0 and there is no
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Figure 2.3: The synchrotron emissivity function F (η, χ) evaluated at different η. The solid
curves represent the quantum F (η, χ), and the dashed curves denote the classical equivalent
fsync(4χ/3η

2). Figure adapted from Kirk et al [46].

concept of photon energy. As a result, the classical emissivity (2.62) over-estimates the

emission by high energy photons when compared to the quantum case, and even allows for

the non-physical emission of photons with energy greater than the incident electron. These

differences are illustrated in Figure 2.3 for various η and χ values. The classical expression

for radiated power is therefore an over-estimate, which also applies to the Landau-Lifshitz

forumla (2.51). To correct this, a semi-classical Gaunt factor may be introduced [46,51].

The Gaunt factor, g(η) is defined as the ratio between the quantum and classical emis-

sivities for synchrotron radiation, integrated over all photon energies. It can be seen that

as h→ 0, the quantum emissivity (2.68) reduces to its classical form (2.62) for y = 4χ/3η2.

Hence

g(η) =

∫ η/2
0 F (η, χ)dχ∫∞

0 fsync

(
4χ
3η2

)
dχ

=
3
√

3

2πη2

∫ η/2

0
F (η, χ)dχ (2.70)

which may be approximated [51], to the form

g(η) ≈ (1 + 4.8(1 + η) ln(1 + 1.7η) + 2.44η2)−2/3. (2.71)

Using this Gaunt factor, a semi-classical form of the Landau-Lifshitz force (2.51) may be
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approximated as FLLg(η).

2.5 X-ray sources

There are many techniques capable of generating high energy X-rays, with each tailored for

particular energy ranges and brightnesses [18]. Despite the wide array of configurations, the

basic idea is shared across most methods (with the exception of sources based on electron-

positron annihilation): a high energy beam of electrons is created, which is then directed to

some converter region where acceleration is applied and radiation is generated.

X-rays over 1 MeV are of particular interest, as these can trigger nuclear processes because

they are of similar energy to transitions between nuclear states. For example, 1.32 MeV

photons could excite a tin vibrational state, and 8 MeV photons can trigger the proton

emission of lead [18]. Giant dipole resonances of heavy nuclei may be excited by photons

in the range 10-30 MeV, which can trigger the photo-fission of nuclear waste, or generate

medical isotopes [10, 11]. X-rays around energies 9-10 MeV may also be used in special

nuclear material (SNM) detection for defence and security applications, as these cause SNM

to eject neutrons which may be detected [8]. This section provides only a brief overview

of the methods used to generate high energy X-rays, with references provided for further

reading.

2.5.1 Synchrotrons and free-electron lasers

Synchrotrons and free-electron lasers (FEL) can provide brilliant sources of low-energy X-rays

using synchrotron radiation. A high energy electron beam is directed through an undula-

tor, which consists of many tightly-packed magnets stacked in a row. Undulator magnets

are arranged such that the magnetic fields of adjacent magnets point in opposite directions.

Synchrotron radiation is produced as the electrons wiggle through this magnetic field con-

figuration, which is shown schematically in Figure 2.4. The Diamond light source [52], along

with PETRA-III at DESY [6] are examples of synchrotron sources. In an FEL set-up, the

electron beam collapses into microbunches which radiate in phase with each other, leading

to constructive superposition of the radiation generated and high gain [53,54]. Examples of

FEL sources include FLASH at DESY [55], and LCLS at SLAC [56].

Synchrotron sources are capable of producing brilliant beams of radiation up to photon
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Figure 2.4: A schematic diagram of electrons emitting synchrotron-like radiation in an un-
dulator.

energies of many keV, with PETRA-III operating within the range 30-200 keV [6]. Photons

of these energies can penetrate deeply into materials while minimising radiation damage, and

so find many applications in material science, including stress mapping, texture studies, and

probing dynamic mechanical behaviours in manufacturing processes [6,57]. The LCLS FEL

typically produces photons of lower energy, in the range 0.8-8 keV [56], with an emphasis on

tracking ultra-fast dynamical processes [58].

2.5.2 Betatron

Betatron radiation refers to the X-rays produced when laser pulses pass through gas targets

and establish wakefields [59, 60], and is shown diagrammatically in Figure 2.5. The laser

pulse ionises the gas as it passes through, and the ponderomotive force of the laser fields

push electrons away from the laser axis, which creates a positively charged ion channel

behind the pulse. The plasma electrons ejected from the beam path then undergo transverse

oscillations across the ion channel, which is equivalent to electron wiggling in undulator

fields. Hence, a synchrotron-like spectrum of X-rays is produced.

The betatron process creates a broadband radiation source up to a critical photon energy,

Ec ∝ γ2ner0, where ne is the background plasma-electron number density, and γ and r0 are

the Lorentz factor and oscillatory amplitude of the electrons respectively [59]. This cut-off

occurs for photon energies at a few tens of keV for the ne of traditional betatron sources, as a

further increase of ne reduces laser propagation speed and affects electron acceleration. Ferri

et al address this problem with a two stage betatron source capable of reaching MeV photon
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Figure 2.5: A schematic diagram showing the laser-driven formation of an ion channel in a
gas target, which electrons oscillate through to create synchrotron-like betatron radiation.

energies [19]. Electrons are pre-accelerated via wakefield acceleration through low density

plasma, and are then injected into a high density region where they drive wakefields which

can produce high energy photons. This set-up is expected to produce a brilliance of 4× 1023

photons/s/mm2/mrad2/0.1%BW, and convert 1% of the laser energy into X-rays [19].

2.5.3 Bremsstrahlung

Bremsstrahlung radiation is created as high energy electrons traverse through the fields of

atomic or ionic nuclei. The cross section per nucleus is proportional to Z2 (2.36), so the

photon characteristics will have a strong dependence on the chosen material. In practice,

electrons pass through an accelerator and are directed into foil converter targets [61, 62], as

shown in Figure 2.6. The target thickness is chosen to maximise photon emissions from the

electrons, but also to minimise photon attenuation inside the target.

The photon energy distribution of bremsstrahlung radiation is dependent on the energy of

the incident electrons, and so bremsstrahlung radiation can be used in many different energy

regimes. In medicine, linear accelerators a few metres in size are used to create electron

beams with energies of a few MeV. These are directed onto high Z converter targets, and

the resultant bremsstrahlung X-rays can be used for imaging or radiotherapy [7].

The PrimEx [61] and GlueX [62] collaborations at the Jefferson Lab obtained photon

energies from 5-9 GeV, using electron beams accelerated to 5.76 GeV and 12 GeV respectively

[62, 63]. The absolute number of bremsstrahlung photons moving towards the target can

be deduced from photon-tagging. In PrimeEx, electrons emerging from the rear side of
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Figure 2.6: A schematic diagram of an electron beam colliding with a solid target, producing
bremsstrahlung X-rays.

the Au converter are bent into detectors where their energy is counted, which allows the

corresponding bremsstrahlung photon energy to be calculated. These detailed photon counts

are used to calculate photo-production cross sections for nuclear and particle physics [61,64].

2.5.4 Positron annihilation

High energy photons can also be created in annihilation events, e− + e+ → 2γ, and a set-up

which has been used to create annihilation photon beams in the past is illustrated in Figure

2.7 [65]. In these experiments, an electron beam passes through an accelerator and strikes

a thick, high Z converter target, producing copious bremsstrahlung radiation. These high-

energy photons undergo Bethe-Heitler pair production within the target, and beams of e−,

e+ and γ-rays exit the target rear. The e+ beam is selected for through electric or magnetic

field set-ups, and is directed at a secondary annihilation target with low Z to suppress

bremsstrahlung radiation. This creates a photon beam which is closer to mono-energetic

than a typical bremsstrahlung spectrum.

Precise estimates of these yields may be determined through photon-tagging, as two γ-

rays are produced in each annihilation event. When directed at a reaction chamber, the

number of beam photons which undergo a reaction can be estimated through comparison

of the photon beam exiting chamber, and the secondary annihilation photons which never

entered the chamber. This is useful information for experiments measuring photo-nuclear

cross-sections [65,66].

The Saclay linear accelerator set-up is capable of producing 300 MeV photons (±25 MeV)
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Figure 2.7: A schematic diagram depicting an incident electron beam striking a converter
target and generating positrons, which are magnetically steered into a second target to
produce annihilation photons.

at a flux of 104 photons per second as reported by Argan et al [67]. Using characterisations

in their paper, we estimate a brilliance of ∼4×10−6 photons/s/mm2/mrad2/0.1%BW. This

is very low when compared to other sources, and can be attributed to the use of more than

one converter stage in this set-up.

2.5.5 Compton scatter

Compton scatter refers to the X-rays generated when high energy electrons interact with

photons. This is often distinguished from Thomson scatter in the literature, which describes

the same process but for systems where the quantum effects like photon recoil are negligible

[18,68].

One of the more recent laser Compton backscatter sources has been proposed by IHEP,

and is shown schematically in Figure 2.8. The facility currently under construction will direct

a 0.2-2.5 GeV electron beam from a linear accelerator into a head-on collision with multi-

picosecond laser-pulses (of energy 0.5-1.0 J) [69]. This set-up is expected to achieve photon

energies between 1 and 111 MeV, and will aim to study photo-nuclear physics, transmutation

of long-lived isotopes, and QED effects like Breit-Wheeler pair production in photon-photon

collisions [69].

A slightly different Compton scatter scheme is performed by the HIγS (the high intensity

gamma source) synchrotron, which generates X-rays through Compton backscatter in an FEL

optical cavity [70,71]. Here, a primary electron bunch generates X-rays via the FEL process,
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Figure 2.8: A schematic diagram showing X-rays generated by colliding an electron beam
with a counter-propagating laser pulse.

and a second electron bunch collides head on with the FEL photons [72]. This allows the

creation of significantly higher photon energies than those generated by a standard FEL

set-up, reaching between 1 and 100 MeV [71].



Chapter 3

Laser-solid interactions

In Chapter 2, we briefly discussed the different physical mechanisms responsible for generat-

ing high energy X-rays, along with some set-ups which can achieve this radiation. We now

turn our attention to the system of interest in this thesis: high-intensity short-pulse laser-

solid interactions. The detailed physics involved when a high-intensity laser pulse strikes a

solid target is shown in Figure 3.1.

In these interactions, there is sufficient energy to ionise atoms on the solid target and

form a plasma on the target-surface. The ions and electrons of the plasma are accelerated by

the external fields of the laser pulse, and emit synchrotron radiation. Both ions and electrons

are accelerated by the laser, although the lighter electrons achieve greater speeds than the

heavier ions, and are injected into the solid.

This injected current produces bremsstrahlung radiation as the high energy (hot) elec-

Figure 3.1: A schematic diagram of a laser-solid interaction.

53
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trons interact with the electric fields of atomic nuclei [73–75]. Electrons may also lose energy

in non-radiative collisions, where energy is spent exciting atomic electrons and raising the

temperature of the solid (ionisation energy loss). The propagation of hot electrons though a

resistive material also generates return currents and fields which oppose the electron motion,

and energy is lost to the target in the form of Ohmic heating. Additionally, hot electrons

may scatter within the target through elastic collisions with the atoms which comprise the

solid target, or may bend through magnetic fields established by the moving charges.

Once electrons have traversed the target, they can pass through the rear surface and

the highest energy electrons may escape. However, the build-up of negative charge beyond

the target as hot electrons keep passing through will eventually create a sheath field, which

can be strong enough to reflect hot electrons arriving later back into the target [75, 76].

These sheath fields are also capable of accelerating ions from the target out into the vacuum,

providing a source of energetic ions.

The remaining sections in this chapter cover the particular processes outlined above,

describing the physics of the pre-plasma, important laser parameters, and electron transport

within the solid. An investigation into the behaviour of hot electrons traversing sheath fields

is present in Chapter 5.

3.1 Plasma physics

The beams produced by petawatt class lasers have sufficient energy to ionise the front surface

of a solid target into a plasma. Hence, a thesis on laser-solid interactions necessitates a

discussion of plasma physics. A plasma is an ensemble of negatively charged electrons and

positively charged ions, where particles are distributed through space like a gas, but also

experience long-range electro-magnetic forces.

There are several concepts in plasma physics which are useful in describing laser-plasma

interactions. The Debye length sets a typical length-scale for important processes in a plasma,

and the time-scale of plasma dynamics may be expressed in terms of the plasma frequency.

Whether or not a laser pulse can propagate through a plasma depends on the critical density,

which has a relativistic correction for high intensity lasers. This section will delve into these

concepts to provide greater insight into plasma behaviour, and also to pre-define terms which

will be useful in subsequent sections.
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3.1.1 Debye length

The electric field from a charged particle extends out to long ranges, and so one may assume

that the dynamics of a particular plasma particle will be governed by all other particles in

the plasma. In practice, the electric field around a plasma particle drops off faster than it

would in a vacuum due to Debye shielding [36].

Charged particles in a plasma will repel like-charges and surround themselves with op-

posite charges, such that any particular region in the plasma appears neutral on average.

The time-independent fields around the plasma satisfy Poisson’s equation

∇2φ = − ρ
ε0

(3.1)

where we have substituted the time-independent form of the scalar potential definition (2.6)

into Gauss’ law (2.1). For a charge, Q at position, rrr surrounded by a plasma of protons and

electrons, the charge density, ρ may be expressed as

ρ(rrr) = (np(rrr)− ne(rrr))e+Qδ(rrr) (3.2)

where np and ne denote the proton and electron number densities respectively. These may

be evaluated using the Boltzmann distribution, giving

np =〈n〉eeφ/kBT (3.3)

ne =〈n〉e−eφ/kBT (3.4)

where we have assumed both species are at the same temperature, T , and have the same

number densities, 〈n〉 when averaged over a large enough volume. The proton number density

(3.3) is often ignored, as electrons will have a greater speed than protons (or heavier ions)

at a given temperature, so over short time-scales it is the electrons which move to neutralise

local charge [77]. For small potentials |eφ| � kBT , we may use the expansion ex ≈ 1 + x on

the exponential in (3.4), and substituting resultant charge density into (3.1) yields

∇2φ =
e2〈n〉
ε0kBT

φ− Q

ε0
δ(rrr) (3.5)

where we have neglected the proton contribution to the charge density ρ.
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Figure 3.2: A schematic diagram depicting a displacement of ion and electron populations
in a plasma by distance x.

Assuming a spatially uniform proton charge density yields a potential of the form (2.33)

with the electron Debye length quoted in (2.34). In general, for a plasma consisting of mul-

tiple ion species, α, each with their own temperature Tα, number density, nα and ionisation

state Zα, the Debye length may be written

1

λ2
D

=
e2

ε0kB

(
ne
Te

+
∑
α

nαZ
2
α

Tα

)
(3.6)

for a sum over all ion species α, where all terms have been retained in the charge density,

ρ [77].

3.1.2 Plasma frequency

The charged particles in a plasma will arrange themselves so as to make the charge density

appear neutral when averaged over large volumes (quasi-neutral). If the negative charges

were displaced from the positive charges, then electric fields would be established to restore

quasi-neutrality. In a simple system, the restoring forces set-up simple harmonic motion,

with the plasma frequency, ωp describing the frequency of the oscillations [36].

To quantify this, consider a quasi-neutral plasma composed of positive ions and negative

electrons, surrounded by vacuum. If all electrons are all displaced in the same direction by

some length x, the electrons at one end of the plasma will move into the vacuum as shown

in Figure 3.2. This builds up a negative charge per unit area of enex on the electron side,

where ne is the electron number density. On the other side of the plasma, electrons will
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move away exposing a positively charged region with a charge density of equal magnitude.

The electric field between these positive and negative regions is calculated from Gauss’

law to be

E =
enex

ε0
(3.7)

which results in the electron acceleration

d2x

dt2
= − e

2ne
ε0me

x (3.8)

where we recognise simple harmonic motion with frequency

ωp =

√
e2ne
ε0me

. (3.9)

We have assumed immobile ions in this derivation, as ion acceleration in the same electric

field will be a factor mi/me smaller for ions of mass mi (about 1836 times smaller for the

case of a hydrogen plasma).

3.1.3 Critical density

In a laser-solid interaction, the laser pulse moves towards the target and strikes the pre-

plasma, which typically has a lower particle density than the solid. While the laser pulse can

pass through a low density plasma, eventually a critical density is reached where propagation

ceases, and the laser is reflected. This critical density may be determined by considering the

phase velocity of the light wave in the plasma medium [78].

To start, we consider the non-relativistic evolution of the plasma phase-space density

f(rrr,vvv, t), where f(rrr,vvv, t)d3rrrd3vvv denotes the number of particles within the phase-space vol-

ume d3rrrd3vvv at position rrr, velocity vvv and time t. The Boltzmann transport equation describes

the total time derivative of f , and may be expressed as

∂f

∂t
+ (vvv · ∇x)f +

1

m
(FFF · ∇v)f =

(
∂f

∂t

)
coll

(3.10)

where ∇x and ∇v denote the gradient vectors in position and velocity space respectively.

Here FFF is the force acting on a plasma particle of mass m, and the RHS term describes
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the change in f due to collisions. The time evolution of a velocity-dependent observable

quantity, Q(vvv) is found by applying
∫
v d

3vvvQ(vvv) to both sides of (3.10), which yields

∂

∂t
(n〈Q〉v) +∇x · (n〈vvvQ〉v)−

n

m
〈∇v · (FFFQ)〉v =

∫
v
d3vvvQ

(
∂f

∂t

)
coll

(3.11)

where 〈...〉v denotes an average over velocity space.

Setting Q = 1 yields the continuity equation

∂n

∂t
= −∇x · (n〈vvv〉v) (3.12)

and using Q = mvvv gives an expression for the momentum evolution

m

(
n
∂〈vvv〉v
∂t

+ (〈vvv〉v · ∇x)(n〈vvv〉v)
)

= nq(EEE + 〈vvv〉v ×BBB)−∇x ·Ψ +PPP (3.13)

for particles of charge q. In evaluating (3.13), we have split vvv into the sum 〈vvv〉v + ṽvv, where ṽvv

describes velocity fluctuations about the mean and has 〈ṽvv〉v = 0. The Ψ term describes the

stress tensor, defined such that

∇x ·Ψ =
∂

∂x
(nm〈ṽxṽvv〉v) +

∂

∂y
(nm〈ṽyṽvv〉v) +

∂

∂z
(nm〈ṽzṽvv〉v) (3.14)

and may be neglected in uniform plasmas with no pressure gradients. Also in (3.13), the

Lorentz force is used for FFF , and the average momentum change through collisions is written

as PPP , where

PPP =

∫
v
d3vvv

(
∂f

∂t

)
coll

mvvv. (3.15)

As a first approximation, neglecting BBB, Ψ, PPP and non-linear terms, a set of equations for

electron and ion evolution in an electric field may be written as

ne
∂vvve
∂t

= −ene
me

EEE (3.16)

ni
∂vvvi
∂t

=
Zeni
mi

EEE (3.17)

where subscripts e and i have been used for electron and ion quantities respectively, and the

〈...〉v brackets have been dropped for brevity. Performing Z(3.16)−(3.17) yields an expression
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for the current response to an electric field

∂JJJ

∂t
=

(
niZ

2e2

mi
+
nee

2

me

)
EEE (3.18)

where total current density JJJ = Zenivvvi − neevvve.

The propagation of a laser pulse is described by Maxwell’s equations (2.1)-(2.4), and

comparing ∇×(2.3) to ∂(2.4)/∂t produces

∇2EEE = µ0
∂JJJ

∂t
+

1

c2

∂2EEE

∂t2
(3.19)

where the term ∇ ·EEE has been removed as this is given by Gauss’ law (2.1), and ρ = 0 for a

quasi-neutral plasma. If the laser pulse is modelled as a plane wave with EEE = E0e
i(kx−ωt)ẑzz,

then using the current evolution (3.18) in equation (3.19) yields

−k2Ez =
µ0nee

2

me
Ez −

ω2

c2
Ez (3.20)

which may be re-arranged to obtain an expression for the laser phase velocity, vp

vp =
c√

1− ω2
p/ω

2
(3.21)

where vp = ω/k, and the plasma frequency ωp is given by (3.9). When ωp > ω, the phase

velocity goes imaginary, and the laser pulse can no longer propagate through the plasma.

This implies a critical electron number density, ncrit
e of the form

ncrit
e =

4π2c2meε0
λ2e2

(3.22)

for a laser pulse of wavelength λ [78]. For the 1 µm wavelength lasers typically considered

in this thesis, ncrit
e = 1.1 × 1027 m−3. This places the critical density between the electron

density of nitrogen gas at standard temperature and pressure, 3.8 × 1026 m−3, and that of

solid density aluminium, 7.8 × 1029 m−3. For X-rays of energies 10 keV and 1 MeV, the

critical densities are 7.3 × 1034 m−3 and 7.3 × 1038 m−3 respectively, and so X-rays are

capable of propagation through far denser targets than laser photons.
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3.1.4 Relativistic transparency

At high laser intensities, plasma electrons can achieve relativistic speeds which allows the

laser pulse to propagate through greater densities than approximated by the non-relativistic

critical density (3.22) [79,80]. Assuming all fields and electron momenta are functions of the

phase τ = t − (z/vp) for a plane wave travelling in the z direction with phase velocity vp,

Maxwell’s equations (2.1)-(2.4) may be re-written as

−ẑzz · dE
EE

dτ
=
evp
ε0

(n0 − ne) (3.23)

ẑzz · dB
BB

dτ
= 0 (3.24)

−ẑzz × dEEE

dτ
= −vp

dBBB

dτ
(3.25)

−ẑzz 1

vp
× dBBB

dτ
= −µ0enevvv +

1

c2

dEEE

dτ
(3.26)

with Lorentz force

(
ẑzz · vvv
vp
− 1

)
dppp

dτ
= e(EEE + vvv ×BBB) (3.27)

where n0 is the number density of electrons at equilibrium. In writing these equations,

we have assumed the electrons are initially immobile (thermal velocities are typically non-

relativistic), and that the laser pulse is not strong enough to accelerate background ions to

relativistic speeds [79].

From applying ẑzz·(3.26), we find

ne =
n0vp
vp − vz

(3.28)

and ẑzz×(3.27) yields

BBB = − 1

evp
ẑzz × dppp

dτ
. (3.29)

By comparing d(3.29)/dτ to ẑzz×(3.26), momentum evolution equations can be found for the
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transverse directions

d2px
dτ2

= − e2ne
meε0γ

v2
p

v2
p − c2

px (3.30)

d2py
dτ2

= − e2ne
meε0γ

v2
p

v2
p − c2

py (3.31)

where γ is the electron Lorentz factor, and we may also obtain

d2

dτ2
(γmec

2 − vppz) =
e2n0

ε0

vzv
2
p

vp − vz
(3.32)

from d(ẑzz·(3.27))/dτ . For pure transverse waves with vz = 0, (3.32) shows dγ/dτ is constant,

which implies γ is constant if we seek bounded solutions. This means (3.30) and (3.31) show

simple harmonic motion in the transverse directions, with angular frequency

ω =
ωp√
γ

vp√
v2
p − c2

(3.33)

and corresponding phase velocity

vp =
c√

1− ω2
p/(γω

2)
. (3.34)

As with the non-relativistic case (3.21), this wave may only propagate if the phase velocity is

real, which requires ω
√
γ > ωp. Hence, the relativistically corrected critical electron density

may be written as

nγ,crit
e =

4π2c2meε0
e2λ2

γ = ncrit
e γ (3.35)

and so when electrons reach relativistic speeds, a laser pulse of a given wavelength can

propagate through denser plasma than when electrons are cold.

3.2 High power lasers

The lasers of interest in this thesis are capable of producing high-energy, short-duration

pulses, with peak powers approaching and exceeding 1 PW. A good review of worldwide

petawatt-class laser facilities is given by Danson et al [81], and some examples include the
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Figure 3.3: A schematic diagram describing the production of a high energy laser pulse,
created using the chirped pulse amplification technique.

Vulcan PW laser [82], or 10 PW lasers like Apollon [24] and the extreme light infrastructure

(ELI) [23].

The high powers achieved by modern lasers can be attributed to the chirped pulse ampli-

fication (CPA) technique [83], which typically involves the use of four components sketched

out in Figure 3.3 [80]. An oscillator produces low energy, short-duration pulses with a large

bandwidth, which are then temporally stretched out to reduce the energy density of the

pulse. This is done to minimise damage to optical components, and can be achieved using

diffraction gratings which give varying transmission times for waves of different wavelengths.

The long pulse is then safely amplified, and compressed back to a short pulse using the optical

inverse of the initial stretcher. Optical parametric chirped pulse amplification (OPCPA) [84]

may enhance the laser power further, in which pre-amplified low-wavelength pulses are used

to amplify low-energy high-wavelength pulses in materials with non-linear optical properties

like KDP.

The pulses produced by petawatt-class lasers typically have durations with full width

half maxima ranging from picoseconds to tens of femtoseconds, at wavelengths around 1 µm,

with focal spot sizes of a few microns. A pulse from a 1 PW laser could reach intensities up

to 1022 Wcm−2, with next generation 10 PW lasers potentially exceeding 1023 Wcm−2. The

high-intensity main pulses from these lasers are often preceded by a nanosecond-duration

lower-intensity pre-pulse, which is capable of ionising the solid target before the main pulse

arrives, forming a pre-plasma [85]. The main pulse will then interact with the pre-plasma

instead of the solid, although the size of this plasma layer can be reduced by minimising the

pre-pulse using plasma mirror [86] or frequency doubling [87] techniques.
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3.3 Laser absorption

Before considering the acceleration of plasma electrons under the influence of a laser field, let

us first address the mechanism which allows a laser to convert solid atoms into plasma [80].

The wavelengths of petawatt-class lasers are typically around λ = 1 µm, and each laser

photon carries an energy Eγ = hc/λ, or about 1 eV. The energy required to ionise a hydrogen

atom is 13.6 eV, and so no individual laser photon is capable of ionisation. Instead, consider

the electric field, Ea, which binds an electron to its proton in a hydrogen atom

Ea =
e

4πε0a2
B

≈ 5.14× 1011 Vm−1 (3.36)

where the electron-proton spacing is taken to be the Bohr radius, aB. The peak electric field

of a laser pulse, E0 is given by

E0 =

√
2I

ε0c
(3.37)

where I is the cycle-averaged laser intensity, and so laser fields become comparable to atomic

fields at intensities around 4×1016 Wcm−2. For petawatt class lasers exceeding intensities of

1020 Wcm−2, E0 dominates and the atomic fields are no longer capable of holding the atom

together. This produces a pre-plasma, and solid atoms will continue to undergo field ionisa-

tion until the pre-plasma achieves critical density, as this prevents further laser propagation

and shields the remaining solid atoms from ionisation.

The amount of laser energy absorbed by plasma electrons is complicated, depending

on various laser and plasma parameters. Various models exist to describe the coupling of

laser energy to hot electrons [80], including resonance absorption [88], vacuum heating [89],

the anomalous skin effect [90], sheath inverse bremsstrahlung [91], and relativistic JJJ × BBB

heating (Wilks scaling) [92]. However, not all of these absorption mechanisms are important

for petawatt class laser pulses. The following subsections discuss acceleration methods for

plasma electrons in these laser fields.

3.3.1 Single electron motion in intense laser fields

To understand how electrons absorb laser energy, it is useful to discuss how a single electron

responds to the fields of a laser, as covered by Gibbon [80]. For a general elliptically polarised
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plane wave travelling in the x direction, the vector potential AAA takes the form

AAA =


0

A0δ cos(φ)

A0

√
1− δ2 sin(φ)

 (3.38)

where A0 is the peak vector potential, the laser phase φ = ωt − kx, and δ is a constant

between ±1 which sets the polarisation. The rate of change of electron momentum may be

expressed in terms of AAA by using the Lorentz force FFF = −e(EEE + vvv ×BBB) with the potential

definitions (2.5) and (2.6), along with the electron power

d

dt
(γmec

2) = −e(vvv ·EEE). (3.39)

This yields

dpx
dt

= mec
dγ

dt
(3.40)

dppp⊥
dt

= e
dAAA⊥
dt

(3.41)

with corresponding momenta

px =
1

4
a2

0mec
(
1 +

(
2δ2 − 1

)
cos(2φ)

)
(3.42)

py = a0mecδ cos(φ) + py0 (3.43)

pz = a0mec
√

1− δ2 sin(φ) + pz0 (3.44)

where the dimensionless vector potential (pump strength (2.63)) a0 = eA0/mec, and py0

and pz0 are constants of integration which represent the canonical momentum. Using the

AAA definition (2.5), A0 = E0/ω for a plane wave of peak electric field E0, and so a0 is often

written

a0 =

√
e2

2π2m2
ec

5ε0
Iλ2 ≈ 8.5× 10−6

√
Iλ2 (3.45)

where I and λ are the intensity (Wm−2) and wavelength of the laser pulse respectively.



CHAPTER 3. LASER-SOLID INTERACTIONS 65

Figure 3.4: The trajectory of a single electron in a laser field, parametrised by a0 = δ = 1.

The momenta (3.42)-(3.44) may be integrated to obtain the trajectories

x =
a2

0

4k

(
φ+

1

2

(
2δ2 − 1

)
sin(2φ)

)
(3.46)

y =
a0

k
δ sin(φ) (3.47)

z = −a0

k

√
1− δ2 cos(φ) (3.48)

where we have assumed that the electron initially has px = 0 and no canonical momentum.

A typical trajectory has been plotted in Figure 3.4.

Equations (3.43) and (3.44) describe electron oscillation in the transverse direction, with

(3.42) showing a longitudinal momentum consisting of both a drift term and an oscillatory

term at twice the wave frequency. At high a0, the motion is relativistic (v ≈ c), and px � p⊥.

As momentum is transferred to the electron from many (n) laser photons travelling in the

x direction, then px = n~k from momentum conservation. This implies px = (γ − 1)mec for

an electron which gains energy (γ− 1)mec
2, and comparing (3.42) to (3.43) and (3.44) gives

tan(θ) =
p⊥
px

=

√
2

γ − 1
(3.49)
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where θ denotes the peak ejection angle of an electron leaving the pulse [80,93]. To achieve

this escape angle, the electron must be ionised by the laser an instant when AAA is non-

zero to allow for a non-zero canonical momentum, and the laser intensity must decrease with

transverse distance from the pulse centre. The latter condition ensures the laser field strength

decreases as the electron moves in the transverse direction, which prevents the electron fully

returning to its original transverse displacement as in Figure 3.4. The process responsible

for the growth of transverse electron momentum is referred to as the “ponderomotive force”,

which can carry the electron out of the laser pulse.

3.3.2 Wilks scaling

Multiple models exist for describing the absorption of laser light into high energy (hot) elec-

trons [80], although the most common model used for intensities over 1018 Wcm−2 is that

covered by Wilks et al [92]. In a series of 2D PIC simulations, Wilks et al discovered similar-

ities between absorption in laser-solid simulations, and the single electron acceleration model

which was covered in Section 3.3.1. For laser intensities in the range of 1018-1019 Wcm−2, it

was found that the hot electron temperature scaled as

kBTe =

(√
1 +

Iλ2

(Iλ2)w
− 1

)
mec

2 ≈ a0mec
2 (3.50)

where (Iλ2)w = 1.37× 1018 Wµm2cm−2 [92], and the approximation holds at high intensity.

The high radiation pressure bores a hole through the critical density, and electron bunches

are accelerated into the target twice per laser cycle, which matches the oscillation frequency

in the vacuum px equation (3.42). Both electrons and ions are expected to accelerate in

the laser propagation direction, but the lighter electrons achieve much greater speeds at our

intensities of interest.

In the Wilks simulations, the absorption efficiency of laser energy to hot electron kinetic

energy, ηl→e ranged from 10% to 50% for different target structures and pre-plasma condi-

tions. These efficiencies also changed during the simulation as the critical density surface

became warped [92].
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3.4 Electron transport

Once the laser pulse ionises the front surface of the plasma and transfers some energy into

a hot electron population, these electrons are injected into the solid. As the hot electrons

pass through the electric fields of the solid nuclei, bremsstrahlung radiation can be produced

as discussed in Section 2.2. This provides an energy loss mechanism, but it is not the only

important process as the electrons traverse the solid. Non-radiative collisions can transfer

hot electron energy to raising the target temperature, resistive return currents and Ohmic

heating may be generated, along with a transfer of temperature between particle species.

This section aims to describe the relevant physics pertaining to hot electron transport in

solids.

3.4.1 Return current

The currents formed when laser-accelerated electrons pass through a solid can be very high.

For example, a 1020 Wcm−2 laser pulse with a 40 fs duration, 1 µm wavelength and a focused

area of 25 µm2 could deliver an energy of 1 J to a target placed at the focal spot. If 30% of

this energy was absorbed by hot electrons with a mean energy a0mec
2, then there would be

4× 1011 charge carriers, with a current of 2 MA [94].

Using the Ampère-Maxwell equation (2.4), it can be shown that the magnetic field inside

a charged beam grows with radial distance, r from the beam centre. Alfvén showed that

above some r, the magnetic field becomes so strong that the radius of curvature (gyroradius)

becomes small enough to turn beam particles around, preventing forwards propagation and

limiting the net forwards current [95]. The Alfvén-Lawson limit, IAL is defined as a current

where the gyroradius at the beam edge is half the beam radius, or

IAL =
4π

qµ0
p (3.51)

for beam particles of charge q and momentum p, which is equivalent to around 17000γβ

Amperes [96,97].

In our example IAL is around 100 kA, which is significantly lower than the 2 MA estimate.

Hence, some degree of current neutralisation is required to prevent the beam pinching and

to allow the hot electrons to propagate. This implies a return current of thermal electrons

must exist within the solid to balance out the fast electron current [94].
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3.4.2 Resistivity

The resistivity, ηr of a solid determines the magnitude of the electric field created by the

return current, and also determines the power dissipation in Ohmic heating. The definition

of ηr comes from an equation linking the electrical current to the momentum transfer in

collisions between particle species

PPP ei = ηrneeJJJ (3.52)

where PPP ei is defined in (3.15), and here refers to the electron response to collisions with

ions [78]. Following the derivation of the reduced Boltzmann equations (3.16) and (3.17),

but retaining the collisional PPP terms yields an expression for Ohm’s law

EEE = ηrJJJ (3.53)

which describes the resistive fields generated from the currents in the solid.

Spitzer derives an order-of-magnitude estimate for ηr, by assuming extreme collisions

where electrons of initial velocity vvve end up with the ion velocity vvvi [78]. The average

momentum transfer in one of these collisions is ∆p = me(vvvi − vvve). For a collision rate per

unit volume of ne/τ where τ is the electron relaxation time, we have PPP ei ≈ ∆pne/τ . Using

this approximate form of PPP ei in (3.52) yields the resistivity estimate

ηr =
me

nee2τ
(3.54)

for a current density JJJ = e(niZvvvi − nevvve). Spitzer then considers a more complex model,

using the Boltzmann equation (3.10) to calculate a more accurate current density. Electron-

electron encounters were also included, yielding a resistivity of the form

ηr =
π3/2m

1/2
e Z∗e2 ln Λ

2(2kBTe)3/2(4πε0)2γE
(3.55)

where Z∗ is the ion charge state, Te is the plasma electron temperature, and γE is a correction

factor which scales with Z∗ (γE = (0.582, 0.683, 0.785, 0.923, 1.000) for Z∗ = (1, 2, 4, 16,∞),

as given in Table 5.4 of Spitzer’s textbook [78]).

A more detailed model for the resistivity is derived by Lee and More [98]. Here the
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collisions are treated using a Coulomb-collision cross section, with cut-off parameters chosen

to map the resistivity onto the results from quantum calculations which solve Schrödinger’s

equation. The Thomas-Fermi potential model is used in these quantum calculations, which

describes degenerate electron behaviour in the electric fields of nuclei [99]. This results in a

resistivity of the form

ηr =
me

Z∗nie2τAα
(3.56)

where ni is the ion number density of the background solid. The electron relaxation time

for a plasma is given by

τ = 24πε20

√
me

2

(kBTe)
3/2

(Z∗)2 nie4 ln Λ

(
1 + e−µ/kBTe

)
F1/2

(
µ

kBTe

)
(3.57)

where ln Λ is the Coulomb logarithm, F1/2 is a Fermi-Dirac integral of the form

Fj

(
µ

kBTe

)
=

∫ ∞
0

tjdt

1 + et−µ/kBTe
= −
√
π

2
Li3/2(−eµ/kBTe) (3.58)

and Li3/2 is a polylogarithm function of order 3/2 [98]. Lee and More present two models

for calculating the electron relaxation time at temperatures below the plasma regime, with

one requiring the melting temperature of the material and a fitting parameter. This model

breaks down above the melting temperature, and is swapped out for

τ = R0/ve (3.59)

where the ion sphere radius R0 is given by

R0 = (3/4πni)
1/3 (3.60)

and the mean electron speed ve is calculated using the mean thermal velocity

ve =
√

3kBTe/me. (3.61)
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Finally, the coefficient Aα is given by

Aα
(

µ

kBTe

)
=

4

3

F3

(1 + e−µ/kBTe)(F1/2)2
. (3.62)

While the Lee-More resistivity has a more rigorous derivation, it also has many terms which

are difficult to evaluate computationally. Hence, a reduced form of the equations is used for

simulations in this thesis. A discussion of the approximations used is present in Section 5.5,

along with a comparison to the Spitzer resistivity.

3.4.3 Ohmic heating

Electron currents traversing resistive materials will undergo power dissipation and deposit

energy into the material (Ohmic heating). This proceeds through collisions and momentum

transfer between the current electrons and background ions. The mean force per unit volume

from ion impact is PPP ei given by the resistivity definition (3.52), and the mean speed of

electrons is vvv = JJJ/nee. Hence, the power due to Ohmic heating, PΩ within some small

volume, d3xxx is

PΩ = ηrJJJ · JJJd3xxx (3.63)

as power is the scalar product of force and velocity [78].

The temperature increase of the material due to this heating power can be deduced from

the heat capacity of the material. Bell [100] approximates this heat capacity by applying an

analytic fit to numerical solutions of the Thomas-Fermi equations of state [101],

C =
dε

kBdTe
= 0.3 + 0.8

(
DUT3 + 1.5T ′

2.2 + T ′

(1.1 + T ′)2

)
(3.64)

DUT3 =
(10−18V ′−0.75 + ln(1022V ′))(2.906× 108T ′−2.0733333 − 7.223× 106T ′−0.853333)

(3.283× 107T ′0.146666 + 1.805× 108T ′−1.073333)2.5

(3.65)

which corresponds to the temperature rise of a single electron after receiving energy dε.

These equations use reduced variables, where T ′ = kBTeZ
−4/3/e, and V ′ = 106ZV , where

V is the volume occupied by a single atom.
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Figure 3.5: A comparison of the Bell model heat capacity [100] for Al, to that of a monatomic
ideal gas.

The DUT3 term is often dropped when considering high-temperature solid-density sys-

tems. For an Al target at about 100 eV (1.2 × 106 K) electron temperature, we have

V ′ ≈ 2 × 10−22, and T ′ ≈ 3.3 which returns DUT3 ≈ 2 × 10−13. The second term in

the brackets of (3.64) works out to about 1.4, and so the DUT3 term may be ignored. This

yields the simple heat capacity at constant volume

C = 0.3 + 1.2T ′
2.2 + T ′

(1.1 + T ′)2
(3.66)

which has been plotted in Figure 3.5 for an Al target, and is compared to the equivalent C

for a monatomic ideal gas.

Over a small time ∆t in volume d3xxx, the energy transferred to the electrons is PΩdt.

If the energy is split evenly between the electrons in this volume, each one will receive an

energy Ve/d
3xxx, where the volume taken up by an electron Ve is approximately 1/ne. Hence,

the temperature gain due to Ohmic heating can be written

∆Te =
j · jηr∆t
neCkB

. (3.67)

3.4.4 Ionisation energy loss

As hot electrons pass through solids, they can lose energy to inelastic collisions with bound

atomic electrons, which can result in ionisation. This background ionisation acts as an energy
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loss mechanism for hot electrons, and can be parametrised by the mean excitation energy Iex

of the background solid (typically around 11Z eV, where Z is the solid atomic number) [102].

The nature of ionisation energy loss depends on the energies of the ionised background

electrons. The electron emerging from the collision with the higher energy is considered

the incident electron, and whichever is lower is termed a δ-ray, regardless of their state

before the collision. This is due to the indistinguishable nature of electrons, and restricts

the δ-ray kinetic energy, εδk to half that of the original incident electron. The cross sections

corresponding to the energy transfer to bound electrons are derived using quantum scatter

theory in the Born approximation [103]. Provided the δ-rays are below some critical energy,

εk,cut, the energy loss on the incident electron may be considered continuous, with a stopping

power [102,104]

dε

dx

∣∣∣∣
εδk<εk,cut

=
Znie

4

8πε20mev2

(
ln

(
2(γ + 1)m2

ec
4

I2
ex

)
+ F−(τ, τup)− δ

)
(3.68)

where v is the incident electron speed and δ is a density correction factor. The factor

F−(τ, τup) takes the form

F−(τ, τup) = −1−
(v
c

)2
+ ln ((τ − τup)τup) +

τ

τ − τup
+

1

γ2

(
τ2
up

2
+ (2τ + 1) ln

(
1− τup

τ

))
(3.69)

with additional parameters

τ = γ − 1 (3.70)

τup = min

(
εk,cut
mec2

,
τ

2

)
. (3.71)

The density effect describes the reduction of the ionisation energy loss due to dielectric

properties of the background material, as any polarisation may affect the electric fields from

the hot electron [105]. Sternheimer [106] provides an analytic fit to the experimental density

effect in a variety of targets, which can be described using a parameter x,

x =
ln(γ2 − 1)

4.606
(3.72)
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giving a density effect of the form

δ(x) =


0 x < x0

4.606x− C + a(x1 − x)3 x0 < x < x1

4.606x− C x > x1

(3.73)

with the additional parameters having values

C = 1 + 2 ln

(
Iex
~

√
ε0me

Znie2

)
(3.74)

a = 4.606

(
C

4.606
− x0

)
/(x1 − x0)3 (3.75)

(x0, x1) =



(0.2, 2) Iex < 100eV , C ≤ 3.681

(0.326C − 1, 2) Iex < 100eV , C > 3.681

(0.2, 3) Iex ≥ 100eV , C ≤ 5.215

(0.326C − 1.5, 3) Iex ≥ 100eV , C > 5.215

(3.76)

when considering condensed matter targets like solids.

In the continuous energy loss regime, the δ-rays lack the energy to move far from their

atom and energy is deposited locally. As in Section 3.4.3, the energy deposition corresponds

to a rise in solid temperature. Assuming the hot electron energy loss is shared equally

between electrons in a local small volume d3xxx on the hot electron trajectory, the background

electron temperature gain is

∆Te =
Σh∆εh

Znid3xxxCkB
(3.77)

where we sum the energy losses of each hot electron ∆εh, within this volume.

3.4.5 Møller scatter

Møller scatter and ionisation energy loss describe the same process - both consider hot

electron energy loss to the ionisation of background atoms and ions. The distinction is in

the energy of these ionised electrons (δ-rays). The model in Section 3.4.4 describes the

creation of low-energy δ-rays, where the hot electron energy loss per ionisation is so small
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and frequent that it may be treated as a drag force, with stopping power (3.68). Conversely,

Møller scatter describes the discrete process of high energy δ-ray emission, with kinetic energy

exceeding some value εk,cut. Møller scatter provides a source of secondary hot electrons, and

so the choice of εk,cut will depend on the minimum kinetic energy considered “hot” for the

system of interest. Such events are infrequent, and provide large energy loss and scatter for

the incident hot electron, and so a continuous stopping power is inappropriate here. Instead,

a δ-ray emission cross section is considered for δ-ray energies exceeding εk,cut.

The differential cross section per atom with respect to the energy transfer fraction ε =

εδk/Ek is calculated from QED collisional theory [107], and is of the form

dσ

dε
=

Z

8πε20

e4

mev2Ek

(
(γ − 1)2

γ2
+

1

ε

(
1

ε
− 2γ − 1

γ2

)
+

1

1− ε

(
1

1− ε
− 2γ − 1

γ2

))
(3.78)

where Ek, v and γ are the kinetic energy, speed and Lorentz factor of the incident electron

before the collision. The total cross section per atom, σatom for creating a δ-ray with energy

over εk,cut is found through integration of (3.78), which yields

σatom =
e4

8πmeε20

Z

v2εk

(
(γ − 1)2

γ2

(
1

2
− y
)

+
1

y
− 1

1− y
− 2γ − 1

γ2
ln

(
1− y
y

))
(3.79)

where the parameter y represents εk,cut/Ek [104,107,108].

3.4.6 Thermal equilibration

The electrons in the background solid can exchange energy amongst themselves and the

background ion population through collisions. This restores thermal equilibrium between

the electron and ion species over some equilibration time-scale, which may be estimated

from simple collisional analysis [36, 78]. If we work in the distant scattering limit, the ion

can be assumed to be immobile, and the force on the electron is so weak that any deviation to

its trajectory is small. A collision event in this set-up is shown diagrammatically in Figure

3.6. In this limit, integration of the electron-ion force over all time yields the change in

momentum

∆p⊥ =
Ze2

2πε0veb
(3.80)
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Figure 3.6: A schematic diagram showing a Coulomb collision between a hot electron and
an ion.

where Ze is the ion charge, ve the initial electron speed, and b is the distance of closest

approach between the electron and ion in the absence of forces. This momentum change is

perpendicular to the initial momentum direction of the electron, which results in a scatter

angle

θD ≈
b0
b

(3.81)

where the constant b0 is defined to be

b0 =
Ze2

2πε0peve
(3.82)

for initial electron momentum pe. Small angle scattering occurs for θD � 1, and so this

approximation is useful for b� b0.

The energy transfer in Coulomb collisions can be deduced from ∆p⊥ (3.80). This mo-

mentum must be gained by the ion to conserve momentum, and the corresponding rise in

ion kinetic energy must be lost by the electron to conserve energy. This results in the energy

transfer

∆E =
me

mi

b20
b2

(
1

2
mev

2
e

)
(3.83)

for each collision.

In order to deduce the thermal equilibration rate between two particle species, we must
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consider detailed calculations where both species are permitted to move, and have Maxwell-

Boltzmann energy distributions. Performing these calculations yields the Spitzer expressions

for thermal equilibration

dT1

dt
=
T2 − T1

teq
(3.84)

1

teq
=

2

3(2πkB)3/2

q2
1q

2
2n2
√
m1m2 ln Λ

ε20(T1m2 + T2m1)3/2
(3.85)

where we consider the rate of temperature change in species 1 through collisions with species

2 [78]. Here, the charge, mass, temperature and number density of species k are written as

qk, mk, Tk and nk respectively.

3.4.7 Elastic scatter

As hot electrons traverse the target, their trajectories will deviate due to elastic collisions

with the background atoms and ions. In Section 3.4.6, equation (3.81) is derived to give the

deflection angle from a single electron-ion collision in the limit of large impact parameters.

However, it is impractical and unnecessary to calculate the angular deflection from each

electron-ion pair. Instead we may calculate 〈∆θ2(t)〉, which describes the mean change in

the squared deflection θ2 by time t. Thus,

∆θ2(t) =

 N∑
j

∆θj

2

(3.86)

which describes the sum of angular scatters ∆θ from all collisions which occurred by time t.

When squaring this sum, cross terms 〈∆θj∆θk〉 vanish, as each collision may be considered

independent and 〈∆θj〉 = 0 in an isotropic plasma. Hence, (3.86) reduces to a sum of 〈∆θ2
j 〉,

which may be expressed as

〈∆θ2(t)〉 =

∫ bmax

bmin

ni(2πbdbvet)

(
b0
b

)2

(3.87)

using (3.81) to express ∆θ2 in terms of b and b0. Here a volume is constructed, combining the

area between impact parameters b and b+ db with the distance moved by the electron over

time t, and the number of collisions is estimated to be the number of ions in this volume.

This is integrated over the range of impact parameters corresponding to the small angle
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scatter regime, resulting in

〈∆θ2(t)〉 = 2πnivetb
2
0 ln

(
bmax
bmin

)
(3.88)

where the Coulomb logarithm ln(bmax/bmin) is often written as ln Λ. To evaluate these

terms in laser-solid systems, Davies chooses to use the atomic screening length for bmax,

and also uses bmin = ~/p motivated by the uncertainty principle [109, 110]. This yields an

approximate value for 〈∆θ2(t)〉 of the form

〈∆θ2〉 =
Z2e4ni
2πε20

γme

p3
t ln

(
4ε0h

Z1/3mee2
p

)
(3.89)

for an electron of momentum p.

3.4.8 Collective electron transport phenomena

When considering the complex physics of hot electron transport in solid-density targets,

a range of collective behaviours and instabilities can emerge which may affect the beam

profile. These are discussed thoroughly in a review by Robinson et al [111], and are briefly

summarised here.

From Ohm’s law (3.53), it can be shown that the magnetic fields within the solid-density

target evolve according to

∂BBB

∂t
= ηr∇× jjjh +∇ηr × jjjh +

ηr
µ0
∇2BBB −∇ηr × (∇×BBB) (3.90)

using methods discussed in Section 5.4, where jjjh denotes the hot electron current density.

While the latter two terms in (3.90) describe magnetic diffusion and advection, the first two

terms describe the generation of resistive magnetic fields.

Here, ηr∇ × jjjf causes the magnetic field to grow in such a way that the fast electron

beam is pinched, limiting divergence. The beam may also be hollowed by the ∇ηr×jjjf term,

as heating is concentrated in the beam centre where the electron density is the highest. This

sets up a resistivity gradient in the transverse direction, which leads to electron expulsion

from the beam centre. The resultant electron beam has a greater charge density around the

edges than the centre. In this way, the resistive magnetic fields influence the profile of the

hot electron beam.
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The beam profile can be further modified through instabilities. Beam filamentation can

arise due to anisotropies between the counter-propagating hot electrons and cool return

currents. The resultant instability has the effect of fragmenting the beam, breaking it into

smaller sub-structures [112]. It is expected that beam pinching, hollowing and filamentation

will be present in the simulations performed in this thesis.



Chapter 4

EPOCH

4.1 The particle-in-cell method

EPOCH, the Extendible Particle-in-cell (PIC) Open Collaboration (with a silent ‘H’) is a code

used to simulate plasmas with an international user-base [113, 114]. Numerical simulation

of plasma physics typically falls into two categories: fluid codes (MHD) and kinetic codes

(Vlasov, PIC). Hybrid codes also exist which combine aspects of these two code types [115].

In fluid codes, macroscopic quantities like density, velocity and temperature are calculated

on a grid, and evolve according to fluid equations (conservation of mass, momentum, energy)

where an equation of state is used to close the equations [80]. However, such a treatment is

inappropriate when considering deviations from Maxwellian distributions, and so fluid codes

cannot be used to describe phenomena like hot electron acceleration in short pulse lasers.

In kinetic models, the properties of individual particles are retained, and evolution oc-

curs according to the plasma kinetic equation (3.10). Vlasov codes attempt to solve this

directly, but as the phase-space density is a 6 dimensional quantity, these codes are often

very computationally expensive to run. In some cases, phenomena may be suitably described

without simulating all six dimensions [116–118], but even these Vlasov simulations can be

time consuming.

Particle-in-cell codes divide the plasma phase space into macro-particles which represent

many real particles, providing a light-weight simulation tool for a kinetic plasma treatment.

These particles experience forces due to the electric and magnetic fields which are evalu-

ated on a spatial grid, and interpolated to the particle position. The foundation of this

methodology arose around the 1960’s, where various authors showed that small systems of

79
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a few thousand particles can accurately reproduce collective plasma behaviour [119–121].

As computer power increased, so too did the complexity of PIC codes, moving from simple

collisionless plasmas on 1D spatial grids, to modern multidimensional codes like EPOCH with

additional modules for collisions, photon generation and pair production.

This chapter will discuss the basic EPOCH framework, including certain physics modules

and limitations of the code. Here we aim to support Chapter 5 which details our work on

creating a hybrid extension for EPOCH to model laser-solid simulations. We acknowledge that

the EPOCH code existed before this Ph.D. project and was not written by us; however, we did

write the bremsstrahlung module discussed in Section 4.5.2, as EPOCH had no bremsstrahlung

capability at the start of this project.

4.2 Particles

It should be unsurprising that Particle-In-Cell codes describe the passage of particles through

cells. Each computational macro-particle represents many particles of the same particle

species, such that all macro-particles combined approximate the phase-space density of the

entire plasma. Macro-particles are described by their position, xn and momentum, pn at

the current time-step n, along with their charge, mass and the number of real particles they

represent (the macro-particle weight).

The code proceeds in discrete time-steps, updating physical quantities in a loop according

to Figure 4.1. For particle variables, we are concerned with the three steps iterating xxx and

ppp, which are achieved using the particle velocity and the Lorentz force

xxxn+1/2 = xxxn +
∆t

2

pppn

γnm
(4.1)

pppn+1 = pppn + q∆t

(
EEEn+1/2 +

1

γn+1/2m
pppn+1/2 ×BBBn+1/2

)
(4.2)

xxxn+1 = xxxn+1/2 +
∆t

2

pppn+1

γn+1m
(4.3)

for a particle of mass m and charge q, where ∆t is the time separation between time-steps n

and n+ 1. The particle velocity is represented as p/γm, where the Lorentz factor γ can be

calculated from γ =
√

1 + (p/mc)2. This is referred to as a leap-frog scheme, as pppn → pppn+1

uses xxxn+1/2, and xxxn+1/2 → xxxn+3/2 uses pppn+1. Both updates “hop over” each other, and

quantities may only be evaluated at the same time if two half-steps are performed as in (4.1)
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Figure 4.1: An illustration of the EPOCH PIC loop, detailing the order in which physical
quantities are advanced, along with the terms used to perform each step. Initially, the
position, xxx, momentum ppp, electric field, EEE, magnetic field, BBB, and current density, JJJ are
all evaluated at time-step n, and all end the loop at n + 1. The point at which we switch
notation from n+ 1 to n is labelled, and represents the start of the next loop.

and (4.3) [115].

Equation (4.2) requires the electric and magnetic fields acting on the particle, and so

these grid quantities must be interpolated to the particle position. However, assigning the

fields of the local cell to the particle position can produce noisy data as particles experience

sudden field changes when passing from cell to cell. It is often better to average the fields

over a few nearby cells, which is equivalent to assuming the macro-particle is distributed

over some finite volume.

In EPOCH, the standard macro-particle distribution has a triangular shape S(w), such

that

S(w) =


1− |xi − w|/dx |xi − w| < dx

0 otherwise

(4.4)

where xi is the central particle position, the evaluation point is measured as some distance w

from xi, and dx is the spacing of grid points. The fraction of the macro-particle weight dis-

tribution over a given cell is found through integration of this shape over the cell boundaries,
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Figure 4.2: A diagram showing the contribution of each cell to the fields interpolated at
the particle position in a 2D PIC simulation (see colour-bar). Interpolation fractions here
represent those for variables which are evaluated at the cell centres. The corresponding
particle is displayed above the cell grid, with a side-lit colour-map and coarse mesh to better
show the 2-dimensional triangular weighting.

and so an interpolated field F may be written

F =
1

2

(
1

2
+
Xj − xi
dx

)2

Fj−1 +

(
3

4
− (Xj − xi)2

dx2

)
Fj +

1

2

(
1

2
− Xj − xi

dx

)2

Fj+1 (4.5)

where Xj and Fj refer to the central position and field in cell j, assuming the field is

evaluated in the cell centre. Contributions to the interpolated field can also be seen from the

neighbouring cells Fj−1 and Fj+1. In higher dimensions, S(w) is calculated independently

in each spatial direction, and the product of these 1D weights yields the full particle weight

distribution. A 2D particle shape is shown in Figure 4.2, along with the multiplication

factor applied to the fields in each cell when interpolating fields to the particle. Once the

fields at the particle position are known, the momentum can be updated using the Boris

algorithm [115,122].
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4.2.1 Boris particle pusher

The Boris particle pusher can advance the momentum vector forwards by a full time-step,

according to (4.2) [115,122]. The algorithm begins by defining two new vectors, ppp+ and ppp−,

such that

pppn+1 = ppp+ +
1

2
qEEEn+1/2∆t (4.6)

pppn = ppp− − 1

2
qEEEn+1/2∆t (4.7)

where ppp+ and ppp− describe the momentum after applying half a time-step of EEE field acceler-

ation to pppn. Substitution of (4.6) and (4.7) into the momentum update (4.2) yields

ppp+ = ppp− +
q∆t

2mγn+1/2

(
ppp+ + ppp−

)
×BBBn+1/2 (4.8)

which shows ppp+ is simply a rotation of ppp−, where |ppp+| = |ppp−|. The components of ppp+

and ppp− perpendicular to the magnetic field are sketched in Figure 4.3, where θ describes the

rotation angle between these components. As |ppp−| is the momentum after a half-acceleration,

its magnitude is equivalent to pppn+1/2, so γn+1/2 =
√

1 + ppp− · ppp−/mc.

We may evaluate the angle θ by noting that ppp+ and ppp− may be replaced with ppp+
⊥ and ppp−⊥

in (4.8), as any component parallel to the magnetic field has no contribution in the vector

product. From the geometry of Figure 4.3, we write

tan

(
θ

2

)
=
|ppp+
⊥ − ppp

−
⊥|

|ppp+
⊥ + ppp−⊥|

= − qBn+1/2

2γn+1/2m
∆t (4.9)

where the second equality comes from (4.8) using ppp+
⊥ and ppp−⊥.

To proceed, two new vectors are defined

ppp′ = ppp− + ppp− × tttθ (4.10)

where tttθ is chosen to make ppp′ perpendicular to (ppp+ − ppp−), as shown in Figure 4.3. This is

satisfied for

tttθ =
q∆t

2mγn+1/2
BBBn+1/2 (4.11)
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Figure 4.3: A depiction of important vectors and angles used in the particle pusher algorithm
described by Boris [115,122]. Here the ⊥ sub-script refers to vector components in the plane
perpendicular to the magnetic field. Diagram is sketched for a negatively charged particle.

and ppp′×tttθ returns a vector which is parallel to (ppp+−ppp−). Utilising the constraint |ppp+| = |ppp−|

results in the relationship

ppp+ =
2

1 + t2θ
(ppp′ × tttθ) + ppp− (4.12)

and so the momentum may be updated using equations (4.6)-(4.12).

4.3 Field solver

The EPOCH fields are evolved in time using discretised forms of the Faraday-Lenz (2.3) and

the Ampère-Maxwell (2.4) equations. The four field updates present in Figure 4.1 are

EEEn+1/2 = EEEn +
1

2
c2∆t (∇×BBBn − µ0JJJ

n) (4.13)

BBBn+1/2 = BBBn +
1

2
∆t
(
∇×EEEn+1/2

)
(4.14)

BBBn+1 = BBBn+1/2 +
1

2
∆t
(
∇×EEEn+1/2

)
(4.15)

EEEn+1 = EEEn+1/2 +
1

2
c2∆t

(
∇×BBBn+1 − µ0JJJ

n+1
)

(4.16)
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Figure 4.4: Visualisation of field staggering in an EPOCH2D simulation. Here we show how
the fields are arranged on the xmin, ymin simulation window corner, and fields are labelled
by their cell indices. The greyed out cells denote ghost cells, starting at index 0.

which represent two full steps in EEE and BBB, split into half-steps such that fields may be

evaluated at the same time for the particle push.

As equations (4.13)-(4.16) rely on the curl of the fields, the code must find a way to

discretise these operations too. If field variables F were evaluated in the centre of their cells,

then the partial spatial derivative ∂F/∂x evaluated in cell i could be written as

∂F

∂x

∣∣∣∣
i

=
Fi+1 − Fi−1

2∆x
(4.17)

for a cell size ∆x. Such schemes may develop instabilities as the gradient in cell i does

not depend on the field in its own cell. This allows the grid to decouple into two cell

groups according to an even-odd (“chequerboard”) pattern, which can lead to non-physical

numerical oscillations. Such issues are addressed by off-setting the field evaluation points

using a Yee staggered grid [123], which has been drawn in Figure 4.4 for a 2D cell. It can be

seen that this stagger allows calculation of gradients using only one neighbour. For example,

Ez(i, j) depends on the gradient ∂By/∂x evaluated at the centre of cell (i, j), which is given

by

∂By
∂x

∣∣∣∣
i,j

=
By(i, j)−By(i− 1, j)

∆x
(4.18)

as can be seen in Figure 4.4.
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Ghost cells must be positioned around the simulation boundary as particle shapes centred

within the simulation may still reach outside. The treatment of fields associated with these

ghost cells can determine the boundary conditions of the system. Ghost cell fields can form

the mirror image of the adjacent simulation cells (reflective boundaries), a mirror image with

field-signs then flipped in the ghost cells (open boundary conditions, fields are clamped to

0 on the simulation edges), or ghost cells can match the simulation cells on the opposite

boundary (periodic boundaries). Similarly, particles passing these simulation edges either

have a momentum component flipped (reflective), are removed from the simulation (open), or

are re-injected into the opposite boundary (periodic). Lasers pulses may be injected through

boundaries by ensuring the fields of the ghost cells satisfy the wave equation.

4.4 Currents

The final component to be addressed in the basic PIC loop shown in Figure 4.1 is the

algorithm which updates the current density, which is a term used by the field solver (4.13)

and (4.16). The general form for current density calculation is given by Villasenor and

Buneman [124], where it is shown how the motion of a single particle can trigger current

flow across several boundaries. This can also be seen in Figure 4.2, where a moving macro-

particle would trigger a flow of current across all cell edges contained within the particle

shape.

The specific current density calculation used by EPOCH is the Esirkepov current density

decomposition scheme [125]. Here, the particle positions xn+3/2 are calculated by advancing

xn+1 forwards by half a timestep using the momentum at pn+1. The total integrated macro-

particle weight in each cell before and after the update are compared, and currents can be

deduced. The full current density Jn+1 is found from summing current contributions from

all macro-particles in the simulation.

4.5 Radiation

The EPOCH code is sometimes referred to as a QED-PIC code, as it contains physics packages

beyond the conventional PIC loop shown in Figure 4.1. Radiation is achieved by allowing

macro-particles to emit secondary macro-particles (photons), according to a Monte Carlo al-

gorithm [47,114,126]. Monte Carlo sampling allows the stochastic nature of photon emission
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to be captured, and its implementation is discussed in the remainder of this section.

Let λ describe the rate of secondary particle emission, such that λdt describes the prob-

ability of an emission during some small time dt. The probability of no emission by time

t = Ndt would then be

P (L) = lim
N→∞

(1− λt/N)N (4.19)

≈ e−τ (4.20)

where we can define the optical depth, τ as

τ =

∫ t

0
λ(t′)dt′. (4.21)

Hence, the cumulative distribution function for photon emission by time t, F (t) is

F (t) = 1− e−τ . (4.22)

An optical depth for emission, τe can be sampled for each macro-electron by rearranging

(4.22) to τ = − ln (1− F (t)), and replacing F (t) with a uniformly distributed random num-

ber between 0 and 1. In each time-step, the optical depth travelled by each electron is saved,

and an emission event is triggered when the total optical depth travelled exceeds τe. In

emission, a new macro-particle is added to the simulation at the emitting macro-electron

position, with a momentum drawn from a relevant distribution for the emission process and

a weight matching the emitting macro-electron. Hence, X-ray photons are treated as parti-

cles in the code, and are distinct from the low frequency electromagnetic radiation tracked

by the field solver (see Section 4.3). Once the secondary particle is created, the emitting

macro-electron has its momentum reduced to conserve momentum, then its saved optical

depth is reset and a new τe is sampled for the next emission.

The calculation of the optical depth depends on the emission mechanism. For processes

described with an emission rate, the optical depth update in a given step is found from

integrating this rate over the step interval as in (4.21). For emissions described by a cross

section σ, we replace the idea of “emissions per unit time” with “emissions per unit length”,

and consider the step-length instead of the time-step. By the definition of σ, the probability

of emission for a macro-electron taking a step of length dL, is naσadL, where σa is the cross-
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section per particle of species a, and na is the number density of that species at the macro-

electron position. In cross section based systems, the τe sampling and emission behaves the

same, but in each step the particle τ value evolves according to

∆τ =
∑
a

naσav∆t (4.23)

for a particle moving at speed v. Here the sum refers to a sum over all background species

which can contribute to the emission process, and different species may have different cross

sections.

4.5.1 Synchrotron

At the start of this project, the only X-ray generation module present in EPOCH was for

synchrotron radiation [47, 114], as discussed in Section 2.4. These emissions are described

by a rate of photon production, and so the synchrotron optical depth evolves according to

(4.21).

In updating the optical depth travelled by a specific particle, the EPOCH algorithm first

computes η by interpolating the local fields over the macro-particle shape, and using the η

definition (2.52). It is assumed the rate is constant over a simulation time-step ∆t, and so

the change in synchrotron optical depth ∆τ is

∆τ =
∆tηα

√
3mec

2hs(η)

2πhγ
(4.24)

which comes from the synchrotron photon production rate (2.69). In EPOCH, the values

of hs(η) =
∫ η/2

0 dχF (η, χ)/χ are logarithmically interpolated from a pre-calculated table

hsokolov.table which contains η values from 10−5 to 10 [126]. A sample of this table is shown

in Table 4.1.

The energy of the emitted photon is sampled using a cumulative density function, ξ(χ)

of the double differential, d2Nγ/dχdt (2.66), where

ξ(χ) =

∫ χ
χmin

(d2Nγ/dχ
′dt)dχ′∫ η/2

χmin
(d2Nγ/dχ′dt)dχ′

(4.25)

and we recall from Section 2.4.2 that the maximum χ for a given η is η/2. Here, the η

parameter characterises the hot electron energy in the current field configuration (2.52), and
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log10(η) log10(hs(η))

-5 0.7189960759048358
-4.987975951903808 0.7189959234513367
-4.975951903807616 0.7189957678439705

...
...

1 0.3459150912836859

Table 4.1: A sample of tabulated log10(hs(η)) values, as present in the file hsokolov.table in
the EPOCH source code. There are 500 data pairs in total.

χ describes the energy of the emitted photon in the background fields (2.67). The χ values

between 0 and χmin are neglected for computational efficiency, and χmin is chosen such that

the neglected low-energy photons account for only 10−9 of the total emitted energy. Values of

χmin have been pre-calculated for each tabulated η, and are stored in the table chimin.table.

By replacing ξ(χ) with a random number sampled from a uniform distribution between 0

and 1, we may re-arrange (4.25) to sample an emission χ. This corresponds to a photon

energy

Eγ =
2χ

η
Ee (4.26)

where Ee is the electron total energy, and we have assumed the electron is ultra-relativistic

such that the photon is emitted in the electron momentum direction.

To sample this in EPOCH, the code generates a 2D array with 100 rows corresponding

to logarithmically spaced η values from 10−5 to 10, where each row contains 100 logarith-

mically spaced χ values between χmin and η/2. The code also loads ξ values from the file

ksi sokolov.table, which is another 100× 100 array such that each element in the table corre-

sponds to the ξ value for the (η, χ) pair in the generated array. Interpolation proceeds with

η first (from particle), creating a list of 100 χ values from the generated array and 100 ξ

values from the file, with χ being taken from interpolation of ξ (from random sample).

4.5.2 Bremsstrahlung

While EPOCH was already capable of synchrotron emission at the start of this Ph.D. project,

there was no bremsstrahlung module present in the code. This section details the work that

was undertaken as part of this Ph.D. to create the bremsstrahlung capability. We were not

the first group to write bremsstrahlung modules for PIC codes - various groups had already
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η = 10−5 η = 10
log10(χ) ξ log10(χ) ξ

-17.30 0.004993870735451265 -6.30 0.005472539720644287
-17.18 0.0054807618431451655 -6.23 0.005777738754227076
-17.06 0.006015122525404382 -6.16 0.0060999584181248

...
...

-5.30 1 0.70 1

Table 4.2: A sample of values used in assigning synchrotron photon energies. These show
the first three and final generated log10(χ) values and their corresponding ξ for two different
η. In the code, there are an additional 98 logarithmically spaced η values between these
limits, and each η has 100 (χ, ξ) pairs.

implemented some form of bremsstrahlung radiation [28, 30, 31, 127–130], using different

models to describe the cross section of this interaction. Pandit [31] used a classical form

of the bremsstrahlung cross section [33], equivalent to our (2.29). While this approach can

approximate the quantum result [41], it neglects the effect of screening. This is accounted for

by other groups [28, 30, 127] who use the Seltzer-Berger bremsstrahlung cross sections [38],

which are covered in Section 2.2.3. However, as discussed by Wu et al [128], the Seltzer-

Berger cross sections come from models describing the screening effects due electrons orbiting

atoms, whereas particle in cell simulations are mostly concerned with ions in plasma.

Wu et al [128] describe an approximate differential bremsstrahlung cross section for

partially ionised targets. By combining the dχ/dω values for atomic targets (2.32) and fully

ionised targets (2.35), a general dχ/dω may be written

dχ

dω
=

e2

12π3ε30c

(
e2

mec2

)2

Q2

(
Z2

Q2
ln
∣∣∣amev

~

∣∣∣+ ln

∣∣∣∣λDa
∣∣∣∣) . (4.27)

which is parametrised by the ion charge Q (in units of e). For neutral atoms (Q = 0), this

returns the atomic screened case, and the plasma case is returned for fully ionised materials

(Q = Z). A simple interpolation between these limits is performed by (4.27) to estimate the

differential radiation cross section for partially ionised materials. Wu et al report that for a

significantly heated target, the bremsstrahlung cross section could be 2-3 times higher than

that predicted by models which don’t include these screening corrections [128]. It should be

noted that the form presented in Wu et al is slightly different to our (4.27), as they quote

the stopping power dE/dx = niχ in the relativistic approximation where v = c.

Equation (4.27) provides a good cross section approximation, but it is derived from
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(a) Aluminium (b) Argon

Figure 4.5: Values of the cross section enhancement factor Fσ for plasma screening, as
described in equation (4.28). The average charge state for a given temperature was found
using FLYCHK data. For reference, aluminium at solid density has ni = 6.02 × 1022 cm−3,
and argon at standard pressure and temperature has ni = 2.56× 1019 cm−3.

classical theory which is only valid in the complete screening limit (electron energies >

192Z−1/3mec
2, about 42 MeV in Al) [33]. The limitations of classical modelling are shown

in Section 6.1.4, where equation (4.27) is benchmarked against an equivalent set-up using

the quantum Seltzer-Berger cross sections. Instead, the theory of Wu et al can be used to

derive a cross section multiplication factor Fσ, where

Fσ =
dχ(Q)/dω

dχ(Q = 0)/dω
= 1 +

Q2

Z2

ln(λD/a)

ln(amev/h)
(4.28)

and this factor can be applied to the quantum differential cross sections of Seltzer and Berger

[38, 39]. Figure 4.5 shows how this cross section enhancement varies with electron number

density, ne and electron temperature in two different targets (Al and Ar). Information

on the average ionisation state Q for a given temperature and density was obtained using

FLYCHK [37], and ion number density was found from ne = Qni.

Unlike the synchrotron process, bremsstrahlung radiation uses an emission cross-section

and so its optical depth evolves according to (4.23). Hence each time-step, the ion number

density in each cell must be computed and interpolated to each macro-electron position for

calculation of ni, and the cross section must be known for each macro-electron kinetic energy

εk. The tabulated Seltzer-Berger cross sections list (v/Zc)2Eγdσ/dEγ in millibarns [38, 39],

and so pre-processing must be performed to obtain σ. The form of the original tables is

shown in Table 4.3.



CHAPTER 4. EPOCH 92

ln (εk/(1 MeV)) Eγ/εk
10−12 0.025 · · · 1

-6.9078 7.85327 7.84905 · · · 4.35999
-6.5023 7.25292 7.03983 · · · 3.75610

...
...

...
...

9.2103 36.8182 35.4044 · · · 0.04685

Table 4.3: Sample of the raw data from one of the Seltzer-Berger tables (Z = 1). For each pair
of electron kinetic energy and photon energy, (εk, Eγ), the tables quote (v/Zc)2Eγdσ/dEγ
in millibarns where v is the electron speed. Tables exist for Z = 1 to 100.

Interpolation of the Seltzer-Berger tables mirror the treatment performed in Section 4.5.1,

where η is replaced with εk, and Eγ plays a similar role to χ. For each atomic number Z,

a new set of tables is constructed with parameters more useful to EPOCH simulations. The

total cross section at each tabulated electron energy is calculated from

σ =

∫ γmec2

Eγ,cut

dσ

dEγ
dEγ (4.29)

where Eγ,cut is defined such the energy radiated by photons with 0 < Eγ < Eγ,cut accounts

for the fraction 10−9 of the full radiated energy

∫ Eγ,cut

0
Eγ

dσ

dEγ
dEγ = 10−9

∫ γmec2

0
Eγ

dσ

dEγ
. (4.30)

The use of Eγ,cut is essential because dσ/dEγ →∞ as Eγ → 0, and the factor 10−9 was chosen

to be consistent with the synchrotron cut-off already present in the code. Enhancements to

σ due to Fσ (4.28) are calculated after the cross section has been sampled. A 2D table is

then constructed to hold a line of Eγ sample points for each εk, where photon energies range

from Eγ,cut to εk. The cumulative density function, ξ(Eγ) is calculated for each (εk, Eγ) pair

using

ξ(Eγ) =
1

σ

∫ Eγ

Eγ,cut

dσ

dE′γ
dE′γ (4.31)

which is used to calculate emitted photon energies in the same way as in the synchrotron

algorithm.

In order to correctly describe the angular distribution of bremsstrahlung radiation from

electrons which aren’t ultra-relativistic, we must consider the scatter produced in the emis-
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sion process itself. We have opted to use an algorithm documented in the Geant4 Physics

Reference Manual [104], which samples the emission angle using a fit to the Tsai differential

cross section (DCS) [131,132].

By using an approximate form of the full Tsai DCS, the polar angle θ is obtained using

the following reject/accept algorithm:

b =


0.625 r1 < 0.25

1.875 r1 ≥ 0.25

(4.32)

u =− ln(r2r3)

b
(4.33)

where r1, r2 and r3 are uniformly distributed random numbers between 0 and 1. If u ≤ γπ

where γ is the electron Lorentz factor, then the polar angle θ = u/γ. Otherwise we generate

three new random numbers and calculate a new u value, and repeat until we have u ≤ γπ.

The azimuthal angle, φ is assigned the value φ = 2πr4, where r4 is also a random number

taken from a uniform distribution between 0 and 1.

4.6 Limitations

PIC codes are useful as they provide a general code framework for calculating kinetic effects

in a variety of problems. Despite this, some limitations can still arise when using these codes.

While typically more versatile than Vlasov codes, PIC simulations can still be considered

computationally expensive when compared to fluid codes - particularly when simulating cold

dense plasmas. These computational demands impact the length and time-scales which can

be simulated by PIC, and laser-solid simulations are typically restricted to 2D simulations

over times on the order of 1 ps, with simulation windows only spanning tens of microns in

each direction.

Performance can be enhanced through fine-tuning of the simulation parameters, although

at low resolutions the code can suffer from problems such as self-heating. The specifics of

these points are dealt with in the following sections.
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4.6.1 Convergence parameters

If computational expense was no issue, each real particle could be represented by its own

macro-particle. In this ideal world, the cell size and time intervals between steps could

both be made small enough to achieve arbitrary spatial and temporal resolution in the

simulation. In the real world, this would never work - computational limitations restrict the

number of cells and time-steps available to us. By simulating larger time-steps for fewer

macro-particles in larger cells, a computer can simulate larger volumes over longer times.

However, as we relax the simulation parameters, the code will start to lose the ability to

resolve fine details which can start to affect the results. In convergence testing, we seek a

set of computational parameters such that further increases in resolution no longer produce

any significant difference in our results.

The first parameter to consider is cell size. In a simulation window of fixed size, a

larger cell size allows the system to be modelled with fewer cells. However, laser-solid

simulations are often set-up with a vacuum layer between the simulation edge and the target

to allow expansion - the laser must propagate through space in order to reach the solid.

This propagation proceeds through Maxwell’s equations, but this can only work if the laser

wavelength is well resolved, otherwise the electro-magnetic fields would be too noisy to return

a wave equation solution. As the typical wavelengths of interest are ∼ 1 µm, an upper limit

on cell size would be placed ∼ 100 nm, although this scale-length may fail to resolve the

plasma fully and self-heating may further restrict the cell size, as discussed in Section 4.6.2.

The most computationally expensive process in EPOCH is the particle-pusher, which up-

dates the position and momentum of all particles in each step. Hence reducing the number of

macro-particles per cell is a good way to speed up the code, but this can lead to less resolved

currents and fewer macro-electrons result in fewer macro-photon emission events. Due to

the Monte Carlo emission algorithm, many emitting macro-electrons lead to less statistical

noise in bremsstrahlung energy/angular spectra, but there are other ways to achieve the

same effect. By artificially increasing the bremsstrahlung cross section by some amount and

reducing the macro-photon weight by the same amount, we can sample more bremsstrahlung

emissions and retain the same total photon count/energy.

Finally we may consider the time-step. An upper limit on the EPOCH time-step is placed

by the Courant-Friedrichs-Lewy (CFL) condition [133] for the stability of explicit numerical

integrators. The CFL condition requires that the numerical information propagation speed
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must be greater than the physical speed information can travel at. When updating the

electro-magnetic fields of the cells, each update relies on a neighbouring cell and so field

information can travel at a rate of one cell-length ∆x per time-step ∆t. In EPOCH, the

physical speed limit of information propagation is set by c, so the CFL condition implies

∆t <
∆x

c
(4.34)

for a 1D code. Further restrictions on the time-scale must be applied to ensure that macro-

electrons do not emit multiple secondary particles for a given process per time-step, as the

implementation restricts emission to one secondary per process per macro-electron [113].

4.6.2 Self-heating

The Debye length provides an appropriate length-scale for measuring plasma effects, but in

a cold, solid density plasma this is often significantly smaller than the region of interest,

and cannot be resolved by any reasonable cell size. However, large cells and time-steps can

give rise to non-physical stochastic fields as macro-particles move around, which have the

effect of heating the plasma [134, 135]. This self-heating is often unavoidable in laser-solid

simulations, and sets an upper limit on how long the simulation results can be trusted. Self-

heating is especially problematic when modelling radiation, as energy gained by electrons can

be radiated away producing false X-ray signals. It is difficult to impose a “correct cell size”,

and simulation parameters are chosen to minimise the uncertainties caused by self-heating.

The rate of self-heating has been characterised by Arber et al in EPOCH simulations with

a plasma of electron density ne = 1.11 × 1029 m−3 [113]. An order of magnitude estimate

for this rate in simulations with cell size, ∆x and particles per cell, Nppc was found to be

∂T

∂t
≈ 3.2× 10−14αH

e

kB

n
3/2
e ∆x2

Nppc
(4.35)

where αH = 300 for the default EPOCH settings, and all parameters are evaluated in SI units.

As shown in (4.35), the effects of self heating can be reduced by decreasing the cell size

or increasing the number of particles per cell. Additional improvements may be achieved

by considering higher-order macro-particle shapes, which span over more cells than those

shown in Section 4.2 and reduce αH to 20 [113]. However, as these larger particle shapes are

distributed over more cells, interpolation of cell fields to the particle position becomes more
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computationally expensive - especially in 2D and 3D simulations. EPOCH also comes with

current-smoothing capabilities, in which currents are averaged over surrounding cells [136].

This has the effect of reducing the stochastic error fields which arise in low resolution codes,

resulting in lower αH values of 60 and 2 for the default and higher-order particle shapes

respectively.

Thus, self-heating can be reduced with smaller cells, more macro-particles, larger macro-

particle shapes and current smoothing, although all of these reduce the performance of the

code and ultimately limit the run-time and simulation size. In running PIC simulations

of laser-solid interactions, one must balance the damaging effects of self-heating against

the performance hit from each of these improvements. In order to run large, long time-

scale laser-solid simulations in 3D, we must reduce the PIC algorithm into something more

computationally efficient. This leads us to our hybrid-PIC extension for EPOCH, which is the

focus of Chapter 5.



Chapter 5

Hybrid code

5.1 Overview

Particle-in-cell (PIC) simulations offer a computationally feasible framework for studying the

interaction of high intensity lasers with matter, and have seen widespread use in modelling

laser-wakefield [137], laser-electron-beam [51], and laser-solid systems [28, 30, 128]. In order

to model solid materials in PIC codes, the user must represent them as a cold, dense plasma,

which requires a very high resolution spatial grid and many macro-particles per cell to

suppress the effects of numerical self-heating. These computational demands place heavy

restrictions on the size and time-scales of these systems, and most authors limit themselves

to only 2D simulations.

Hybrid-PIC codes (also called electron transport codes) present an alternative way to

model solids in the PIC framework, treating the solid as a background fluid. This offers a

significant speed boost as we no longer have huge numbers of solid macro-particles to track,

which opens the possibility for 3D simulations of laser-solid systems. Additional hybrid

routines are added to PIC codes which describe how electron temperatures and currents in

the solid evolve over time, which influence the electric and magnetic fields within the solid.

The laser is replaced by a hot electron injector which roughly characterises the expected hot

electron distribution from the laser pulse, and further hybrid routines describe the interaction

of hot electrons with the solid by modifying their trajectories and energies.

Several groups have already developed hybrid-PIC codes to describe laser-solid physics,

but existing hybrid codes like ZEPHYROS (RAL) [138] and THOR (AWE) [139] are designed for

low energy electrons, and LSP (Northrop Grumman) [140] is a commercial code which isn’t

97
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open-source. As multi-petawatt lasers start to become readily available, hot electron energies

could exceed 100 MeV in these targets, which would require high energy physics packages

like bremsstrahlung radiation and Møller scatter to model their propagation accurately.

We have developed a hybrid extension [141] to EPOCH, which follows the traditional

hybrid-PIC framework of codes like ZEPHYROS, with additional high-energy subroutines taken

from Geant4 [142–144]. The hybrid mode consists of two main changes to EPOCH, the first of

which being the hybrid-PIC loop which includes additional hybrid processes and is shown in

Figure 5.1. Hybrid geometries are specified in the code using a new solid data-type, which

stores all the relevant solid parameters. New field variables track the resistivity, ηr (3.56),

and background electron, Te and ion, Ti temperatures in each cell.

As in the normal PIC loop, the field update is split into two halves, such that we have

time-centred fields for leap-frogging the particle push. This allows us to use the same particle

pusher as in the traditional PIC code, with additional momentum-changing scripts like elastic

scatter and ionisation loss occurring separately. The loop starts and finishes with the time-

variable evaluated half a time-step ahead of the particles and fields, and we output with

fields evaluated half a time-step behind the particles for consistency with the normal PIC

loop.

The increase in computational efficiency comes at the expense of failing to fully model

certain aspects of the laser-solid interaction. The background density is non-evolving, so

target deformation due to hole-boring and expansion cannot be modelled. This restricts the

upper limit of laser intensity which may be reliably modelled, however, such deformation

is expected to be small for our lasers of interest. Thermal conduction between cells has

been ignored, which limits the accuracy of the resistivity calculation. This accuracy is

further limited by the field-solver, which lacks some magnetic transport properties such as

the Nernst effect [145]. However, such background treatment is expected to have a limited

effect on the X-rays produced by short (40 fs) electron bunches, which quickly diverge to low

current densities inside the target. The remainder of this chapter will describe the additions

made to the code in this hybrid extension.
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Figure 5.1: A flow chart which demonstrates the main subroutines called in a hybrid-PIC
loop. For extra clarity, we also include the current timestep associated with the EPOCH time
variable, the fields, and the particle positions. Ionisation loss, Ohmic heating, and thermal
equilibration of electron and ion species all fall under the label of “heating scripts” in this
figure.
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5.2 Solids

To describe the solid materials which hot electrons interact with, we introduce a new “solid”

concept to EPOCH. Solids are defined by an atomic number, Z, mean excitation energy, Iex,

and atomic mass number, A. For each solid that is introduced to the simulation window,

three new field arrays are added to describe the heat capacity, C, and electron, ne and ion,

ni number densities for the solid in each cell. By setting ni to zero in some cells, complex

targets of spatially separated materials may be defined. While individual solid types refer to

a single elemental material, compound targets can be created by spatially overlapping solids.

For example, plastic could be made by defining a carbon solid and a hydrogen solid in the

same cells, with the ion densities of each solid summing to the ion density of the plastic as

a whole.

The hybrid-PIC code described by Davies uses the heat capacity (3.66), and the heating

equations of Ohmic (3.67) and collisional (3.77) heating [110]. When applying these equations

to compound targets, Davies creates a single “average solid” in each cell, using a target-

averaged atomic number (for example, 〈Z〉 ≈ 2.7 for plastic). While this works for the

heating subroutines, this would lead to inaccuracies in the bremsstrahlung spectra as the

bremsstrahlung cross section scales roughly with Z2 as in (4.27). In bremsstrahlung radiation

from electrons in plastic, the parameter 〈Z2〉 ≈ 12.7 is important, yet the target-averaged

〈Z〉2 ≈ 7.1 which demonstrates the limitation with an average-target approach. To fix this,

we treat each solid independently and have extended the Davies heating model to consider

the heating of multiple targets within a single PIC cell.

The heat capacity of each solid is worked out independently using (3.66), and these are

combined in compound targets by defining an effective inverse heat capacity term, C−1
eff

C−1
eff =

∑
sol

(
Zsolnsol

i

Csol

)
(5.1)

where we sum over each solid (sol) present in a given cell. Here, Zsol, nsol
i and Csol refer

to the atomic number, ion number density and heat capacity of a solid respectively. This

variable can be used to obtain the solid-averaged inverse heat capacity

〈
1

C

〉
sol

=
C−1

eff∑
sol

(
Zsolnsol

i

) =
C−1

eff

ntot
e

(5.2)
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where we have written the total electron number density in the cell as ntot
e for conciseness.

Hence, the Ohmic and collisional heating equations for compound targets may be written as

∆Te =
j · jηrdt
ntot
e kB

〈
1

C

〉
sol

(5.3)

∆Te =
Σh∆εh
ntot
e VckB

〈
1

C

〉
sol

(5.4)

using (3.67) and (3.77), where we have considered the cell volume Vc as our small volume d3xxx.

While solids are treated independently, there is a global background electron/ion temperature

present in each cell, and thermal equilibration subroutines allow background electrons to

share thermal energy with the background ions. This is achieved using a discretised form of

the thermal equilibration equations (3.84-3.85). Thus, if the time between steps n and n+ 1

is ∆t, the temperature of species s at step n+ 1, Tn+1
s can be written

Tn+1
e = Tne + ∆t

2

3(2πkB)3/2

(Z∗)2e4ni
√
memi ln Λ

ε20(Tne mi + Tni me)3/2
(Tni − Tne ) (5.5)

Tn+1
i = Tne + ∆t

2

3(2πkB)3/2

(Z∗)3e4ni
√
memi ln Λ

ε20(Tne mi + Tni me)3/2
(Tne − Tni ) (5.6)

where s has been swapped for i and e to describe ions and electrons respectively. Here we

have written the electron number density as Z∗ni for ion charge state Z∗, and ln Λ is the

Coulomb logarithm (see Section 5.5 for calculation).

5.3 Electron injection

In general, the nature of hot electrons in a laser-solid interaction will depend on the pre-

plasma density profile, laser intensity, and the temporal and spatial structure of the laser-

pulse. Electron transport codes often approximate this distribution by considering a small

number of easily customisable parameters, including an efficiency parameter ηl→e describing

the fraction of laser energy absorbed by the electrons in the pre-plasma.

The mean energy of the electron distribution is approximately a0mec
2, as given by Wilks

scaling (3.50). To determine how many electrons must be injected at a given point and time

through a simulation boundary, (r, t), we have to characterise the spatial f(r) and temporal

g(t) distributions of the laser respectively. If these represent fractions of the peak laser

intensity I0, then we have the laser intensity I(r, t) = I0f(r)g(t). The laser energy passing
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through a small area dA at position r over times t to t+ dt is I(r, t)dAdt, and if the fraction

ηl→e is transferred to hot electrons of average kinetic energy 〈εk〉 = a0(r, t)mec
2, then the

number of electrons to inject, N(r, t) is

N(r, t) =
I0f(r)g(t)dAdtηl→e

〈ε〉
, (5.7)

where a0(r, t) is evaluated using I(r, t), according to the pump strength definition (3.45).

Typically hot electrons follow an exponential energy distribution, and for a laser of normal

incidence, we expect electrons to be injected into a cone with a peak angle described by Moore

scaling (3.49) [93]. In the code, particle rotation routines have been developed to rotate an

electron from its initial momentum direction through polar angle θ and azimuthal angle φ,

and are described in Section 5.3.1.

5.3.1 Particle rotation

When particles undergo any kind of scatter, their trajectories are deflected by a polar angle

θ relative to their initial direction. An azimuthal rotation about the polar axis, φ is also

applied, sampled from a uniform distribution between 0 and 2π in all cases of rotation used

in the code. To apply this rotation to an arbitrary momentum 3-vector, we find the direction

cosines using the same geometric arguments as presented by Peplow [146]. The derivation of

this method starts by noting that any vector in spherical polar coordinates can be written

as

ΩΩΩ = r cos θẑ̂ẑz + r sin θ cosφx̂̂x̂x+ rsinθ sinφŷ̂ŷy (5.8)

where ẑ̂ẑz is a unit vector in the polar direction, with x̂̂x̂x and ŷ̂ŷy forming two additional unit

vectors, such that all three are mutually perpendicular. As our rotations are relative to the

initial momentum, ppp, let us label the momentum direction unit vector such that

ppp

|ppp|
=


u

v

w

 = ẑ̂ẑz. (5.9)
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As shown by Peplow [146], we can form mutually perpendicular unit vectors x̂̂x̂x and ŷ̂ŷy in terms

of the momentum direction components

x̂̂x̂x =
1√

1− w2


uw

vw

w2 − 1

 (5.10)

ŷ̂ŷy =
1√

1− w2


−v

u

0

 (5.11)

and so ppp′, the momentum vector of a particle after rotation through a polar angle θ and an

azimuthal angle φ, can be calculated using

ppp′ = |ppp|


u cos θ + cosφ sin θ uw√

1−w2
− sinφ sin θ v√

1−w2

v cos θ + cosφ sin θ vw√
1−w2

+ sinφ sin θ u√
1−w2

w cos θ + cosφ sin θ w2−1√
1−w2

 . (5.12)

These equations become undefined at w = ±1, so in the case where the polar direction is on

the z axis, we resort to the standard polar case and retain the sign of w

ppp′ = |ppp|


sin θ cosφ

sin θ sinφ

w
|w| cos θ

 . (5.13)

By using the fraction w/|w| in the final component of (5.13), we can apply this rotation to

w values which are very close to one in machine precision, and still generate a unit vector to

prevent momentum loss.

5.4 Field solver

The hybrid field solver follows the method described by Davies et al [109, 110]. We assume

the propagation of hot electrons is neutralised by a return current of background electrons,
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which establishes an Ohmic electric field, E due to the resistivity, ηr of the solid

E = ηrjb (5.14)

where jb is the current density of the background electrons. Assuming total current density

j is the sum of jb and the hot electron current density jh, the Ampère-Maxwell law can be

written as

E = ηr

(
1

µ0
∇×B− jh

)
(5.15)

where µ0 is the permeability of free space. We have neglected the displacement current using

the arguments of Davies et al [109], where they assert this is only important while the return

current establishes itself. They calculate this time-scale to be of order ε0ηr (about 0.02 fs for

aluminium targets), which is negligible over picosecond pulses. The magnetic field evolves

according to the Faraday-Lenz law (2.3) as in regular PIC codes. Discretisation of the hybrid

field equations (5.15) and (2.3) can be achieved in a similar way to the traditional PIC field

solver. The step is performed in two half-steps, but with a simple first-order step for the

electric field. In 3D, the update for the x-component of the magnetic field in a given cell,

B
n+1/2
x (ix, iy, iz) reads:

Bn+1/2
x (ix, iy, iz) = Bn

x (ix, iy, iz)−
∆t

2∆y
(Enz (ix, iy + 1, iz)− Enz (ix, iy, iz))

+
∆t

2∆z

(
Eny (ix, iy, iz + 1)− Eny (ix, iy, iz)

) (5.16)

where ∆t denotes the timestep, n denotes the time index, and ∆y, ∆z are the cell sizes in

the y and z directions. The hybrid field solver is only a first order method, as the electric

fields are simply recalculated at the B timestep after B has been updated, via

En+1/2
x (ix, iy, iz) =

1

2
(ηr(ix + 1, iy, iz) + ηr(ix, iy, iz))[

1

µ0∆y

(
Bn+1/2
z (ix, iy + 1, iz)−Bn+1/2

z (ix, iy, iz)
)

− 1

µ0∆z

(
Bn+1/2
y (ix, iy, iz + 1)−Bn+1/2

y (ix, iy, iz)
)

− Jx(ix, iy, iz)]

(5.17)
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where we note that the resistivity, ηr is a cell-centred variable, and the current density, J

shares the same Yee stagger as the electric field [123]. The resistivity and current density in

(5.17) are evaluated at different times relative to the B in the two half steps, and could be

written as ηnr , Jnx for the update after bremsstrahlung radiation, and η
n+1/2
r , J

n+1/2
x for the

update before synchrotron radiation (see Figure 5.1).

We must also consider the boundary conditions of our new field solver. The distribution

of field evaluation points on the staggered grid has been shown for a 2D grid in Figure

4.4. The field point Ez(1, 1) depends on the neighbouring values By(1, 1), Bx(1, 1), and also

ghost cell field points Bx(1, 0) and By(0, 1). If these ghost cell points were set to match

their closest simulation-cell counterparts, the gradient across Ez(1, 1) would always be zero,

and no magnetic field could contribute to the electric field in this point. To correct for this,

we update the fields in all cells from indices 0 to nx + 1 (for x, where nx is the number

of simulation cells). We then apply zero-curl boundary conditions to cells which are not

directly involved in the calculation of simulation window fields. This boundary condition

sets the values of ghost cells to match the first ghost cell, for example, Ex(−1, 1), Ex(−2, 1),

... Ex(1− ng, 1) would be set to Ex(0, 1), where ng is the number of ghost cells.

5.5 Reduced Lee-More resistivity model

The Lee-More resistivity model discussed in Section 3.4.2 provides a model for calculating

the resistivity in heated solid-density targets. However, the full form involves calculation

of polylogarithm functions for the Fermi-Dirac integrals, and calculation of the chemical

potential, µ which also requires a Fermi-Dirac treatment. This results in a model which is

computationally expensive - especially for a process which must be calculated in every cell

for each time-step. Instead, we introduce a reduced Lee-More model as is present in the

ZEPHYROS code [138], which avoids direct calculation of µ and varies between the high and

low temperature limits of the full model. In the following discussion, several terms have been

pre-defined in Section 3.4.2.

In the Lee-More resistivity (3.56), the only terms which depend on the chemical potential

are the electron relaxation time τ (3.57), and the Aα factor (3.62). The original Lee-More
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paper [98] quotes these terms in the non-degenerate plasma limit µ→ −∞,

Aα → 32

3π
(5.18)

τ → 12π2ε20
e4

√
me

2π

(kbTe)
3/2

(Z∗)2ni ln Λ
(5.19)

which are the SI equivalents of the paper’s (27 [98]) and (28a [98]) respectively, and the

terms have the same meaning as in Section 3.4.2. The Lee-More paper also provides a low

temperature relaxation time, τcold given by (3.59), with a corresponding Aα value of 1.

Our ZEPHYROS-style reduced Lee More model starts with an effective hot electron relax-

ation time, τhot = Aατ evaluated in the non-degenerate limit. As the temperature falls, τhot

becomes unphysically small and we switch to an effective cold relaxation time, τcold

τcold = λ1
R0

ve
(5.20)

which is the low temperature relaxation time (3.59) with an additional fitting parameter,

λ1. Our reduced Lee-More resistivity formula reads

ηr =
me

Z∗nie2τeff
λ2 (5.21)

τeff = max(τhot, τcold) (5.22)

where λ2 is a second fitting parameter for scaling the total resistivity.

The ion charge state, Z∗ can be calculated using a fit to the Thomas-Fermi ionisation

states given by More [147] in their Table IV, reproduced in our Table 5.1 for completeness.

The equations used in calculating the Coulomb logarithm for (5.19) are presented in

Section III.B of the Lee-More paper [98], and are summarised in SI units in here. The

authors use a Coulomb logarithm of the form

ln Λ = max

(
1

2
ln

(
1 +

(
bmax

bmin

)2
)
, 2

)
(5.23)

where bmax and bmin denote the upper and lower cut-offs of the Coulomb interaction respec-

tively. The upper limit, bmax is taken to be the largest of the ion sphere radius R0 (3.60)
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Algorithm Parameters

T0 = Te,eV Z
−4/3 a1 3.323× 10−3

R = ρg/cm3/AZZ a2 0.9718

TF = T0/(1 + T0) a3 9.26148× 10−5

A = a1T
a2
0 + a3T

a4
0 a4 3.10165

B = − exp(b0 + b1TF + b2T
7
F ) b0 -1.7630

C = c1TF + c2 b1 1.43175
Q1 = ARB b2 0.31546

Q = (RC +QC1 )1/C c1 -0.366667
x = αQβ c2 0.983333
Z∗ = Zx/(1 + x+

√
1 + 2x) α 14.3139

β 0.6624

Table 5.1: Algorithm for determining the ionisation state of the solid background [147]. Here
we have used the solid mass density (in g/cm3), ρg/cm3 , with AZ and Z representing the
mass number and atomic number of the solid atoms respectively, and Te,eV denoting the
background electron temperature in eV.

and the Debye-Hückel screening length λDH , such that

bmax = max(λDH , R0) (5.24)

where

1

λ2
DH

=
Z∗e2ni
ε0

 1√
(kBTe)2 + ε2F

+
Z∗

kBTi

 (5.25)

and Ti is the temperature of the background ions. The Fermi energy, εF has the form

εF =
~2

2me

(
3π2Z∗ni

)2/3
. (5.26)

The lower limit, bmin is taken to be the largest of the de Broglie wavelength, λdB and the

classical distance of closest approach bimpact, where

bimpact =
Z∗e2

4πε0mev2
e

(5.27)

λdB =
h

2meve
(5.28)



CHAPTER 5. HYBRID CODE 108

Figure 5.2: A comparison between the reduced Lee-More resistivity model in Section 5.5 and
the Spitzer resistivity (3.55). The fitting parameters (λ1, λ2) have been set to (7, 3.5). The
Z∗ and ln Λ parameters in the Spitzer equation have been calculated in the same way as in
the reduced Lee-More model.

and so

bmin = max(bimpact, λdB) (5.29)

where we have evaluated the background electron velocity again using the mean thermal

speed (3.61).

A comparison between this reduced Lee-More resistivity and the Spitzer resistivity (3.55)

has been presented in Figure 5.2 for an Al target. Here, the model fit parameters λ1 and

λ2 have been set to 7 and 3.5 respectively, following a fit to experimental data shown in

Section 6.6. The drawback of this approach is that the model now over-estimates the Spitzer

resistivity at high temperatures by a factor of λ2. The sensitivity of resistive heating to these

fitting parameters has been explored in Section 6.7.
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5.6 Ionisation energy loss and Møller scatter

As discussed in Section 3.4.4, ionisation energy loss treatment can be split between a contin-

uous energy loss due to the creation of low energy δ-rays, and discrete emission considering

the recoil due to high energy δ-rays. Here, the term δ-ray is used to describe background

electrons which are excited by incident hot electrons. The hybrid model treats ionisation en-

ergy loss and Møller scatter as two separate processes performed one after another. First the

hot electron is slowed using a continuous stopping power, then the optical depth increase is

calculated for the Møller scatter emission. In this way, ionisation energy loss and secondary

hot electron production for all δ-ray energies is considered.

The continuous energy loss treatment calculates the density correction (3.73), then cal-

culates the energy loss, dε from the stopping power (3.68) and the step size. After applying

this loss to the macro-electron, the dε values are summed in each cell and are used for heating

calculations.

Just as in bremsstrahlung and synchrotron emission, high energy δ-rays are emitted

according to an optical depth model, with an emission mechanism characterised by a cross

section and so their optical depth evolves according to (4.23). Here, σ refers to the cross

section for high energy δ-ray emission (3.79), and the background species density, na is

replaced with ni, the background ion number density evaluated at the hot electron position.

Once a discrete Møller scatter event takes place, the δ-ray energy is sampled from the

Møller scattering differential cross section using the following algorithm:

1. Generate two uniformly distributed random numbers between 0 and 1 (r1 and r2)

2. Draw a ξ using

ξ =
ξ0

1− (1− 2ξ0)r1

3. Calculate g(ξ) using

g(ξ) =
4

9γ2 − 10γ + 5

(
(ξ(γ − 1))2 − (2γ2 + 2γ − 1)

ξ

1− ξ
+

γ2

(1− ξ)2

)
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Figure 5.3: A comparison between the analytic differential cross section for Møller scatter,
and that produced by employing the Geant4 sampling algorithm. Here, ε = εk,cut/εk, for hot
electrons with εk = 100 MeV, εk, cut = 1 MeV in an Al target.

4. Reject or accept δ-ray kinetic energy

εδk =


εkξ r2 ≤ g(ξ)

Go back to step 1. r2 > g(ξ)

where ξ0 = εk,cut/εk. This algorithm is shown to reproduce the δ-ray energy distribution in

Figure 5.3, and is taken from the Geant4 Physics Reference Manual [104].

The direction of the δ-ray momentum, pδ with respect to the incident hot electron mo-

mentum pi can be expressed in terms of azimuthal, φδ and polar, θδ deflection angles, with

an equivalent pair of angles, φe, θe describing the momentum of the scattered hot electron

pe. We firstly assume that emission is isotropic in the azimuthal direction, so we randomly

sample φδ and let φe = π+φδ. As we have already sampled the δ-ray kinetic energy, we can
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solve for the polar angles through conservation of energy and momentum

pi = pe cos(θe) + pδ cos(θδ) (5.30)

pe sin(θe) = pδ sin(θδ) (5.31)

pe =
1

c

√
((εk +mec2) +mec2 − (εδk +mec2))2 −m2

ec
4 (5.32)

pδ =
1

c

√
(εδk +mec2)2 −m2

ec
4 (5.33)

which can be rearranged to give

cos(θe) =
p2
e − p2

δ + p2
i

2pipe
(5.34)

cos(θδ) =
p2
δ − p2

e + p2
i

2pipδ
(5.35)

where we have assumed our δ-ray electron is initially at rest. Particle rotation then proceeds

via the method presented in Section 5.3.1.

5.7 Target normal sheath acceleration

The hybrid-PIC code simulates electrons travelling through the solid, but we must also

consider what happens to the electrons when they break out from the target. As hot electrons

pass from the solid out into the vacuum, they establish negatively charged sheath fields on

the solid surface which reflect electrons back into the solid, and accelerate ions out in target

normal sheath acceleration (TNSA). Recent studies [30, 76] have found that hot electrons

lose energy when refluxing in the sheath field, providing an additional energy-loss mechanism

in these systems as energy is transferred to ion acceleration.

In order to incorporate these effects into the hybrid-PIC code, we created special bound-

ary conditions to emulate the complex electron refluxing behaviour. This behaviour was

studied in both 1D and 2D full-PIC simulations of electrons refluxing in the sheath field,

which were performed using the unmodified version of EPOCH. This characterisation study was

similar to that performed by Rusby et al [76], and our simulation set-up, characterisation,

and hybrid-PIC implementation is discussed in the remainder of this section.
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Figure 5.4: Schematic diagram to show how the end states of particles are characterised, and
the path of the laser pulse. We monitor electrons starting in an exponential pre-plasma with
2 µm scale-length between x = −4 µm and x = 0 µm. Once these electrons pass the rear
surface of the solid (x = 10 µm), they can reflux back into the solid (blue), remain outside
the solid but within the simulation window (orange), or escape in the longitudinal (yellow)
or transverse (purple) directions.

5.7.1 Simulation setup

Our 2D simulations study 10 µm fully ionised carbon targets, and 2 µm gold targets with

an ionisation state of 51+ (corresponding to a 5 keV ionisation potential, as in Vyskočil et

al [30]). The solid-density regions of C and Au targets had electron number densities of

6.8 × 1029 m−3 [148] and 3.0 × 1030 m−3 [149] respectively. Both targets included a 4 µm

exponential pre-plasma on the laser-facing side, with a 2 µm exponential scale length. The

targets were simulated with shots from 1020 Wcm−2 and 1022 Wcm−2 laser pulses, creating

4 simulations in total.

In the C target simulations, square cells of side 20 nm were used, with 300 macro-particles

per cell (1 in 6 were macro-ions, the rest macro-electrons). The simulation domain ranged

−30 µm to 90 µm in x, and the target and simulation window spanned −10 µm to 10 µm in

y. The laser pulse had a Gaussian profile with a 40 fs full width half maximum, and had a

focal spot size of 5 µm, as shown schematically in Figure 5.4.

It was found that Au51+ targets required a greater resolution to suppress self-heating

(see Section 5.7.2), and so these simulations ran with 5 nm cells and 150 ppc, for 160 fs in

a smaller simulation window. This reduced window spanned −10 µm to 10 µm in x (pre-

plasma x = −4 µm to 0, solid x = 0 to 2 µm), and from −4 µm to 4 µm in y. The temporal

and spatial profiles of the laser pulse remained the same as the C runs, and all runs were

performed with current smoothing.



CHAPTER 5. HYBRID CODE 113

To test the effects of refluxing over long time-scales, the C 1022 Wcm−2 simulation was

repeated in 1D for an extended run-time of 10 ps. This simulation studied a target with

the same pre-plasma structure as the 2D case, but had a larger solid density region between

(0 < x < 20) µm, in a simulation window which spanned (−100 < x < 130) µm. The cell

size was reduced to 10 nm, and the macro-particle per cell counts were increased to 600 for

macro-electrons and 120 for macro-ions.

Simulations were run without collisions for computational efficiency. While this is a poor

approximation for the cold background particles, the sheath fields develop according to the

hot electron characteristics, which are mostly unaffected by collisions over the considered

time-scales [150, 151]. Using the equation for calculating the elastic scatter angle (3.89),

the time taken for a hot electron of energy a0mec
2 to scatter 90 degrees is at least eight

times greater than the simulation run-time in all cases. The energy lost to collisions for this

electron is estimated to be under 10% for all simulations according to the collisional stopping

power (3.68).

In our simulations, we used enhanced particle probes which output particle momentum,

ID and the time the particle passes the probe. By placing probes at x = {−29, 0, 10, 89} µm

in C simulations, we could categorise electrons leaving the solid by their four possible end-

states, also summarised in Figure 5.4. Electrons could be reflected by the sheath field and

reflux back into the target, or could possess enough energy to overcome the sheath field and

escape through the xmax boundary. Electrons could also escape through a y-boundary in 2D

simulations, but this doesn’t tell us if they would escape the solid or if they would eventually

reflux if we simulated more space in the y direction, so we consider these electrons lost.

Finally, electrons could be absorbed into the sheath field, and end the simulation outside

the solid region but still within the simulation window. Note that this “absorbed” category

will also include refluxing and escaping electrons when the simulation ends before they can

complete their journey.

In these characterisation studies, we only track the evolution of electrons which initially

started in the pre-plasma (x < 0 µm), and only after passing the rear target surface for the

first time. This is because the electrons may trigger the front probe multiple times on their

way into the target, but they won’t act like hot electrons until they possess the energy to

fully traverse the solid. Hot electrons may reflux multiple times on both boundaries before

escaping or becoming lost or absorbed, and each reflux event is treated separately.
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The probe positions remain fixed throughout the simulation, although the plasma density

distribution is expected to change over the simulation run-time. At later times, the rear

probe will no longer describe a target-vacuum interface due to target expansion, but the

probe information is still useful for two reasons. Firstly, if an appreciable plasma density

exists beyond the probe, then electrons refluxing at the new target edge would be missed if

the electron stops before returning to the probe. However, such electrons may no longer be

considered hot if they lack the energy to return to the probe, and “absorbed” would still be

a suitable label for them. Secondly, this characterisation is done to support a hybrid-PIC

code with fixed edges, so only the properties of electrons passing the initial solid density

boundaries are important.

5.7.2 Self-heating checks

When performing these PIC simulations, it is important to minimise the effects of self-

heating. We are interested in the change in momentum when electrons reflux through

boundaries, and so a non-physical increase in momentum would introduce errors into the

analysis. To determine an acceptable level of self-heating, we turn to the sheath field charac-

terisation study performed by Rusby et al [76]. Their study identified changing field strength

on the electron as the dominant source of reflux energy loss, and they measured the change

in electron temperature when refluxing on the rear surface. To perform these simulations,

Rusby et al used the EPOCH PIC code to model He targets set to 50 times the critical density

(5.58× 1028 m−3 assuming λ = 1 µm), with 30 macro-particles per cell, Nppc in square cells

of side ∆x = 20 nm. Their 2D simulations run for up to 1 ps, and while they make no

mention of current smoothing or higher-order particle shapes, let us assume they are using

the default EPOCH particle shape with current smoothing for comparison to our 2D runs. As

1D simulations have a reduced computational cost, it was possible to perform these with

higher-order (5th-order) particle shapes.

To measure the extent of self-heating from our Section 5.7.1 parameters, we may simulate

a small grid (10 × 10 cells) with the same Nppc and ∆x as the full simulation, and apply

periodic boundary conditions. The particle number densities in these cells are set to match

the solid-density region in the full simulations, and an initial temperature of 1.2 × 107 K

(1 keV) is set for the electron and ion populations. It was found that 1D simulations had

negligible self-heating over these time-scales, but some self-heating was present in 2D. The
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Figure 5.5: Self-heating in small-scale test simulations with the same parameters as the larger
sheath-field characterisation studies. The heating present in Rusby et al [76] is compared
to the simulation parameters described in Section 5.7.1. Each simulation is labelled in the
legend with the target material, particle per cell count, square-cell width, and the run-time
on 4 processors.

evolution of the cell-averaged temperature in 2D simulations is shown in Figure 5.5, where a

comparison to the Rusby et al [76] parameters has been made. These quick test simulations

verify that even though the rate of self-heating is higher in our simulations, the absolute

heating is less than observed in similar studies due to our reduced run-time in 2D. We also

show that the computation times are roughly comparable to those of Rusby et al, although

we have to simulate shorter time-scales for our higher density simulations.

This level of self-heating is also acceptable from a physics perspective. The temperature

increase in Figure 5.5 describes the heating of background particles, which remain cool

compared to the hot electron population at all points in the simulation. Secondly, the typical

time-scale for a hot electron reflux event was found to be 10-100 fs (see Section 5.7.3), and

so any hot electron numerical heating would have a minimal effect when tracking the energy

change over a reflux.
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(a) C 1020 Wcm−2

(b) C 1022 Wcm−2

Figure 5.6: The number spectra of electrons leaving the solid through the rear surface for
the two carbon 2D simulations, binned by outgoing time. The plots are coloured to show
the proportion of particles going into each of the four end-states. A normalised fraction of
end-states is provided in the sub-figures to show areas which are under-represented in dN/dt.

5.7.3 Characterisation in 2D simulations

In Section 5.7.1, we discuss the set-up for the modelling of hot electrons exiting the solid

density region in laser-solid interactions, and also the four possible end-states for particles

once they have left the solid (Figure 5.4). We will begin by discussing the results of the

2D simulations in order to demonstrate the observed behaviour of electron refluxing. The

1D results are included in Section 5.7.4 to demonstrate how the 2D characterisation may be

extrapolated to long time-scales.

Firstly, let us consider the fate of particles leaving the solid-density region at different

times in the 2D simulations. In Figure 5.6, electrons are binned by the times they leave

solid through the x = 10 µm (rear) probe in the C target runs, and the number spectrum of

these particles was plotted and coloured according to the end-state of particles in each bin.

Electrons can be counted more than once if they reflux back in and leave the target again.

Figure 5.6 shows that most electrons reflux back into the target, and we only see particles

escaping through xmax early in the simulation before a sheath field is established (as seen in

the Figure 5.6(a) insert for low t). While some electrons end the simulation in the vacuum

region behind the solid, this mostly occurs for electrons exiting towards the simulation end.

This rise in the “out” population is expected at later times, as some of these may be refluxing

electrons which just happen to be outside the target at the simulation end. The lack of lost

electrons suggests the transverse simulation window size is sufficient for capturing most
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Figure 5.7: Solid lines depict the mean time taken for a reflux event on the rear (solid-
vacuum) and front (pre-plasma to solid) surfaces, for electrons binned by outgoing times in
the C 1022 Wcm−2 2D simulation. The dashed lines denote the average deviation above and
below the mean in each bin.

electron end-states.

To test if the rise in the “out” population could be explained by incomplete refluxing, re-

fluxing electrons were binned by their outgoing time and the mean reflux time was calculated

in each bin. These mean times are shown graphically in Figure 5.7 for the C 1022 Wcm−2

simulation. It was found that the typical time taken to reflux on the rear surface was around

10-20 fs, which can explain some of the rise in “out” states in Figure 5.6(b).

We then inspected the end states of particles after binning by outgoing total momentum,

as shown in Figure 5.8. Again, in both C simulations we find the majority of electrons reflux

back into the target, except for the highest energy electrons which escape. We also find that

it is typically the lower energy electrons which end the simulation outside the solid. This

implies that the high energy electron population still refluxing at the simulation end is small,

as we would expect to see some caught outside mid-reflux if they were still refluxing at this

point.

Figures 5.6 and 5.8 confirm that electrons mostly reflux back into the target when escap-

ing through the rear solid boundary, but we can also look at how electron energy changes

when refluxing. We binned refluxing electrons by the outgoing x-component of momen-

tum on the rear boundary, pout
x in all four simulations, and calculated the average value of

|pin
x /p

out
x | in each bin. These curves have been shown in Figure 5.9, along with a shaded area
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(a) C 1020 Wcm−2 (b) C 1022 Wcm−2

Figure 5.8: The number spectra of electrons leaving the solid through the rear surface for the
two carbon 2D simulations, binned by outgoing total momentum. The plots are coloured
to show the proportion of particles in each of the four end-states. A normalised fraction
of end-states is provided in the sub-figures to show areas which are under-represented in
dN/dp.

to show the variation of the momentum change in each bin.

We find the momentum loss behaviour is quite similar for targets of different thickness

and density, and is qualitatively similar at different laser intensities. The highest energy

electrons seem to lose the most energy when refluxing, with the lower energy electrons

staying at similar px magnitude when returning. The lowest energy electrons appear to

gain energy when refluxing, but these results may be less accurate as self-heating will have

a larger proportional effect on lower energy electrons. The different qualitative behaviours

at different laser intensities may be due to different laser absorption characteristics. In C

simulations, the ratio of injected hot electron energy to total laser energy, ηl→e was 0.27 in

the 1022 Wcm−2 run, but only 0.03 in the 1020 Wcm−2 run. This reduction in absorbed

energy could explain the reduced peak momentum achieved relative to the ponderomotive

momentum a0mec for the 1020 Wcm−2 simulations.

As seen in Figure 5.8, the majority of probe-hits occur for lower energy electrons. Hence,

it is also useful to look at the total momentum loss in each bin to see where the electron

energy is going, as shown in Figure 5.10. Figure 5.10(a) shows that most of the longitudinal

momentum is lost by the lower energy electrons. A loss of longitudinal momentum agrees

with observations by Vyskočil et al [30], who suggest the loss would explain the increase

in bremsstrahlung emission angle. Our results go further, and suggest that an increased

angle can be attributed to both a decrease in px, and an increase in py when refluxing.
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Figure 5.9: The longitudinal momentum loss in a refluxing event on the rear solid surface,
binned by outgoing hot electron momentum in 2D simulations. The solid line shows the
average momentum change in a bin, and the shaded regions represent the average deviation
both above and below the solid line. The dotted line represents no change in the momentum
magnitude - everything below has lost momentum, everything above has gained it. The out-
going momentum is in units of the ponderomotive momentum p0 = a0mec, and simulations
are labelled by the target material, and the laser intensity in Wcm−2.

This relationship is less clear in the higher intensity Figure 5.10(b), but we still observe a

dominant loss in longitudinal momentum and a gain in transverse momentum.

We also note that the gain in py is less than the loss in px, and so on average, electrons

lose energy when refluxing. The average loss of total momentum during a reflux event has

been calculated for each boundary in each simulation, and is given in Table 5.2.

Target 〈∆p〉 [keV/c]
Front Rear Total

1020 Wcm−2, C -28.2766 -3.82309 -7.46456
1020 Wcm−2, Au -112.953 -3.04252 -6.95298
1022 Wcm−2, C -159.474 -196.172 -180.774
1022 Wcm−2, Au -139.194 -141.853 -141.149

Table 5.2: Mean total momentum changes for all refluxing electrons, broken down into front
reflux events (solid into pre-plasma), rear reflux events (solid into vacuum), and all reflux
events combined.

As the momentum components are changing in different ways, the angular spectrum of

electrons leaving the solid will be different to the spectrum of electrons coming back in.

These spectra are compared for rear boundary refluxing electrons in Figure 5.11 for the two
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(a) C 1020 Wcm−2 (b) C 1022 Wcm−2

Figure 5.10: Electrons which reflux on the rear surface are binned by their outgoing total
momentum. The changes in the momentum component magnitude (∆|pi| = |pin

i |−|pout
i |) are

summed over all electrons in the bin, and d(Σ(∆|pi|))/dpout is plotted for px and py. Thus,
the area under the curve between two pout limits represents the total pi change for refluxing
electrons exiting between these pout limits. No pz change has been plotted, as this remained
0 for all particles in our 2D simulations.

(a) C 1020 Wcm−2 (b) C 1022 Wcm−2

Figure 5.11: Angular distributions of refluxing electrons when escaping the solid target
(outgoing) and returning to the solid (incoming) for rear surface reflux events.

C simulations. In Figure 5.11(a) we see the angular spectra tending to a more uniform

distribution, while we see little change in the total spectrum in the higher intensity Figure

5.11(b).

We can characterise the angular distributions for refluxing electrons further. In Figure

5.12, we bin refluxing electrons by their outgoing angle, and compare it to their incoming

angle. On average, we find that electrons with low θ typically come back in with a larger

angle to the laser axis, and electrons leaving with high θ come back lower.

Despite little change in the Figure 5.11(b) data, we can see from Figure 5.12 that there
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Figure 5.12: Refluxing electrons were binned by their outgoing angle with respect to the laser
axis θ when leaving the solid on either the front or rear surfaces. The mean angle change
upon returning to the solid has been calcuated in each bin, and is shown as the solid line
for all 4 simulations. The upper and lower shaded regions span up to the average deviation
|∆θ − 〈∆θ〉| for all electrons above and below 〈∆θ〉 respectively.

is still some scatter when refluxing. As the shaded area of uncertainty remains a similar

size for all outgoing θ, this could provide a useful measure in characterising the amount of

scatter in a reflux event. The average values of the bin uncertainty range σ〈∆θ〉, weighted by

the number of electrons in each bin, have been provided in Table 5.3.

Target σ〈∆θ〉 [◦]

Front Rear Total

1020 Wcm−2, C 27.609 25.398 27.2838
1020 Wcm−2, Au 10.2631 14.8376 10.4962
1022 Wcm−2, C 27.3305 34.8999 31.7729
1022 Wcm−2, Au 15.0984 30.796 21.7208

Table 5.3: Mean widths of the shaded error region in Figure 5.12. This mean-width is
calculated using an average weighted by the number of electrons in each bin.

5.7.4 TNSA boundaries

As shown in Section 5.7.3, hot electrons execute complex behaviours when leaving the solid.

Such sheath fields cannot be modelled in our hybrid-PIC code, so we instead seek to create

special boundary conditions which can emulate the observed behaviour. This has led to the

introduction of a reduced reflux model, characterised by 3 empirical parameters: κesc, κtnsa
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and σ〈∆θ〉.

The κesc parameter is prompted by the sharp switch in end-states seen in Figure 5.8,

and describes the energy required to escape the solid in the x direction. Here, κesc is defined

such that κesca0mec
2 is the energy associated with the first bin in Figure 5.8 which had all

electrons escape after passing into the vacuum. In our boundary conditions, all electrons

which reach the boundary with energy below κesca0mec
2 are reflected back into the simulation

window, and the rest are removed from the simulation. This characterisation is limited by

the dimensionality of the code, as 2D sheath fields will decay slower with distance than fields

in 3D space, so these cut-off energies are likely over-estimates.

From figures 5.6 and 5.8 it is clear that most electrons reflux, and figures 5.9 and 5.10

show that reflux events typically result in some energy loss. Hence, the κtnsa parameter is

defined such that κtnsaa0mec is the average momentum loss for all hot electrons exiting and

re-entering the solid on both the front and rear sides. When macro-electrons reflux in the

hybrid-PIC code, their momentum will be reduced by κtnsaa0mec to model this reflux energy

loss. The limitation in this parameter is the over-simplification of the energy loss properties.

In Figure 5.9, we see that high energy electrons typically lose a large proportion of their total

energy in a reflux. Hence, we may over-estimate how far high energy refluxing electrons will

travel in the solid.

Finally, to describe the angular scatter seen in Figure 5.12 we use the σ〈∆θ〉 parameter.

The actual 〈∆θ〉 values are ignored as there seems to be a large and roughly constant range

of scatter angles for all outgoing angles, which suggests refluxing provides a random scatter

process. We define σ〈∆θ〉 as the average size of the shaded area across all bins in Figure

5.12, weighted by the total electron weight in each bin. These shaded regions denote the

upper and lower average deviation from the bin-average in each bin. When electrons reflux

from a simulation boundary in the hybrid-PIC code, the reflected momentum will undergo

deflection by an angle randomly sampled from ±0.5σ〈∆θ〉, with an azimuthal angle randomly

sampled between 0 and 2π.

These parameters were calculated for all four 2D simulations (160-700 fs), and the 1D

simulation (10 ps), and have been summarised in Table 5.4. The parameters are shown to

be similar across the 2D simulations, although there are some disagreements at longer time-

scales. In the 1D simulation, it was found that there was no electron energy bin which had

a 100% escape chance, and so no κesc parameter could be assigned. This can be attributed
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to the field solver in 1D simulations, as the electric field does not decay with distance as

it does in 2D or 3D. The lower value of σ〈∆θ〉 may also be a feature of 1D simulation, as

this code could not model a transverse sheath field structure which may have influenced the

change in py during a reflux. Despite this, the comparable value of κtnsa suggests the 2D

characterisations may still hold over multi-picosecond time-scales.

Run Parameters
κesc κtnsa σ〈∆θ〉 [deg]

1020, C (2D) 0.81 1.7× 10−3 27
1020, Au (2D) 0.75 1.6× 10−3 10
1022, C (2D) 1.9 4.2× 10−3 32

1022, Au (2D) 1.6 3.2× 10−3 22
1022, C (1D) N/A 1.2× 10−3 9

Table 5.4: Reflux boundary characterisation parameters from full-PIC simulations, labelled
by laser intensity in Wcm−2, and target material.



Chapter 6

Benchmarking

The bremsstrahlung radiation routines of Section 4.5.2 and the hybrid-PIC code presented

in Chapter 5 both introduce many new physics packages to the EPOCH code. To ensure

these modules are working accurately, we have created a suite of benchmarks designed to

test each individual addition. Some benchmarks test the code against actual experimental

results, which helps to verify the usefulness of the code for real-world applications. Here

we expect only qualitative agreement with the data, as true experimental conditions are

difficult to reproduce. Our simplified macro-electron injector in hybrid-PIC simulations

will only approximately describe the true injection characteristics, as these are complicated

by non-perfect focal spots and pre-plasmas which are not typically reported alongside the

experimental results.

For precision tests of individual routines, we turn to numerical benchmarks. Here the

outputs from our code are tested against other codes or analytic solutions. These benchmarks

allow more control over the initial conditions in each code, and more direct quantitative

agreement can be sought. However, such benchmarks are less rigorous as they do not test

the code against real results, only simulated ones. These numerical benchmarks have been

grouped in Section 6.1, with the remaining sections describing experimental benchmarks.

6.1 Numerical benchmarks

In some cases, experimental evidence was not available, and we instead compare the re-

sults of EPOCH against the Monte Carlo electron transport code Geant4. These presented a

greater degree of control over initial conditions than experimental results, and a high level of

124
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agreement between the codes could be expected. Whenever Geant4 lacks the functionality

to test the physics of interest, simple prototype programs have been written in MATLAB for

comparison.

6.1.1 Møller scatter δ-rays

To test the creation of δ-rays, the hybrid-PIC code ran simulations which injected 105 elec-

trons of kinetic energy 50 MeV into an aluminium target. This injection was achieved by

passing 105 macro-electrons of unit weight through the xmin boundary, for a simulation

window which spanned 0-101 µm over 128 cells in x. Higher dimensions were 8 cells wide

spanning 20 µm, with periodic boundary conditions to simulate targets of infinite transverse

area. In the input deck, the fields and electron physics routines were switched off with only

ionisation energy loss remaining on. Discrete emission and hot electron recoil were consid-

ered for δ-rays over 1 keV kinetic energy, but only δ-rays above 50 keV energy were actually

added to the simulation window as macro-particles. An EPOCH probe was positioned at 100

µm to detect passing electrons and δ-rays, and the angular distributions and energy spectra

of the particles were recorded.

This set-up was repeated in Geant4 for simulations using ionisation energy loss, but

which had all other electromagnetic physics processes removed from the physics library.

Here, electron and δ-ray momenta were output as they escaped through the rear surface of a

100 µm aluminium volume. Figure 6.1 shows the energy and angular spectra of all electrons

(both original and δ-rays) passing the 100 µm point.

This figure shows that the two codes have good agreement. It can be seen that most

electrons remain close to 50 MeV, but a smaller peak in the energy spectra is also present

at low electron energies, which corresponds to the δ-rays added to the simulation. The

angular distributions of electrons passing the probe are similar in both codes, but EPOCH

over-estimates the large angle scatter. This is because Geant4 also considers the binding

energy of the δ-ray electron when calculating the energy and momentum conservation (5.30).

As this is a small effect which mostly affects lower energy electrons, this is ignored in EPOCH

and δ-rays are initially considered free and at rest.
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(a) Electron energy spectrum (b) Electron angular distribution

Figure 6.1: The energy spectrum (a) and angular distribution (b) of electrons passing 100 µm
in an Al target. The initial bunch consisted of 105 forwards-propagating electrons (θ = 0),
with kinetic energy 50 MeV. Simulations were performed in both EPOCH and Geant4.

6.1.2 Thermal equilibration

Thermal equilibration describes the rate of thermal transfer between background electron

and ion populations, and is derived from Coulomb collisional theory as discussed in Section

3.4.6. We were unable to find experimental data for the temporal evolution of electron

and ion temperatures in a solid, so a simple numerical integrator was built for the thermal

equilibration equations (5.5) and (5.6) in MATLAB. This analytic solution was tested against

a hybrid-PIC EPOCH simulation, where the only physics package switched on was thermal

equilibration, and no macro-particles were injected. The electron and ion temperatures

were initialised to 100 eV and 50 eV respectively, and an aluminium target was considered.

Figure 6.2 shows the temporal equilibration of temperature for both MATLAB and EPOCH,

demonstrating a good agreement between the two codes.

6.1.3 TNSA boundaries

The boundary conditions for the hybrid-PIC code allow high energy macro-electrons to

escape, while lower energy macro-electrons are reflected with some energy loss and scatter

as discussed in Section 5.7. To test the correct implementation of these conditions, an input

deck was constructed to trigger all the boundary physics. This simulation injected two

electron bunches, one with a mean kinetic energy of 100 MeV, the other with 5 MeV. Here,

the escape kinetic energy threshold was set to 10 MeV, momentum loss was set to 1 MeV/c,
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Figure 6.2: The temporal evolution of temperature for ions Ti and electrons Te in an alu-
minium target. The EPOCH hybrid-PIC code is tested against a MATLAB prototype to demon-
strate that the thermal equilibration routines are behaving as expected.

and the scatter angle uncertainty was set to 20◦. These simulations had the field solver

and electron physics switched off, and so the only feature capable of changing the injected

electron momenta was the boundary treatment.

In these simulations, it was found that all 100 MeV electrons passed through the TNSA

boundary as expected from the escape energy threshold. All of the 5 MeV electrons were

reflected with a momentum magnitude change of -5.341 × 10−22 kgms−1, also as expected

from the κtnsa parameter chosen. To demonstrate the scatter behaviour, Figure 6.3 shows

the outgoing angles for the reflected electrons. This figure shows scatter into angles which

are uniformly distributed between ±10◦, which demonstrates the desired behaviour.

6.1.4 Classical bremsstrahlung

Two potential implementations of bremsstrahlung radiation are discussed in Section 4.5.2:

a method by Wu et al [128] based on classical theory and another following the quantum

theory from Seltzer and Berger [38]. Both methods were tested in EPOCH simulations, and

were compared to the Seltzer-Berger implementation in Geant4. In this section, the classical

EPOCH model is compared to the quantum Geant4 model for systems of interest to this

project, to study the usability of a classical description. These simulations followed the

passage of 105 electrons (initial energy 100 MeV) traversing to a plane displaced 5 mm away

from the injection point in the initial electron momentum direction.
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Figure 6.3: Angular distribution of an electron bunch below the escape energy threshold
after refluxing through a hybrid TNSA boundary. All electrons approached the boundary
with θ = 0. The solid red line shows the expected reflected distribution from our empirical
model, corresponding to a uniform distribution between ±10◦.

In EPOCH, these electrons were represented by macro-particles of unit weight which pop-

ulated the first cell in the x-direction. Each cell had a width of 21.5 µm (the first cell

spanned x = 0 to x = 21.5 µm), and the background material was represented by immobile

neutral macro-particles at solid density for Al and Au targets. The self-generated fields in

the electron bunch were negligible over the distances considered, and the only other process

acting on the electrons was bremsstrahlung radiation. The electron energy spectra were

recorded as electrons passed the x = 5 mm probe, and are plotted in Figure 6.4. The clas-

sical bremsstrahlung model used the differential cross section given in (4.27) for Q = 0, and

assumed photons were emitted in the electron direction (ultra-relativistic electron approxi-

mation).

The electron energy spectra from Geant4 were computed in a similar way, using a reduced

physics library which only sampled bremsstrahlung emission. Electron energies were recorded

as electrons escaped the 5 mm thick target, and make up the Geant4 (Seltzer-Berger) curves

in Figure 6.4. This figure demonstrates the limitations of the Wu et al [128] model for

bremsstrahlung radiation, as the emitted spectrum deviates from the quantum results outside

the complete screening limit.
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Figure 6.4: Electron energy spectra obtained after 105 electrons of initial energy 100 MeV
passed through 5 mm of different atomic targets. The results of Geant4 are compared to
equivalent runs in EPOCH using the classical bremsstrahlung model given by (4.27).

6.1.5 Quantum bremsstrahlung

Following the inadequacy of the classical implementation of bremsstrahlung radiation (see

Section 6.1.4), the Seltzer-Berger cross section tables [38] were incorporated into EPOCH and

are now included in the official EPOCH release. In order to test that this has been implemented

correctly, a comparison experiment was set-up between EPOCH and Geant4 as in Section 6.1.4.

In this section, we also sought to benchmark the angular distribution routines for photon

emission and electron recoil.

A version of Geant4 was modified such that the electromagnetic physics library only

contained bremsstrahlung routines. In these bremsstrahlung-only simulations, a beam of

105 electrons of total energy 100 MeV was injected into a 5 mm gold target. The momenta

of electrons as they passed the 5 mm point were recorded, and photon momenta were recorded

after the photons had taken their first step. This simulation was performed twice: once with

Grichine’s dipole model for angular bremsstrahlung emission [152], and again with the Tsai

sampling method [104,131,132]. While the Grichine sampling method is the default angular

distribution model in Geant4, we chose to use the Tsai model in EPOCH as this is the method

discussed in the Geant4 documentation. The equivalence of these methods is shown in these

simulations.

The simulation was repeated in EPOCH, where an electron bunch was initialised in the

first cell of a gold target, and travelled to a particle probe positioned at 5 mm. This bunch



CHAPTER 6. BENCHMARKING 130

(a) Electrons (b) Photons

Figure 6.5: Energy distributions from a 100 MeV electron bunch (105 electrons) when passing
the probe at 5 mm, from the Geant4 and EPOCH simulations. Geant4 data is given for both
Tsai and Grichine angular bremsstrahlung models.

consisted of 105 real particles, and was given a drift momentum equivalent to setting a

total electron energy of 100 MeV for consistency with the Geant4 run. The bremsstrahlung

photons were made immobile, but electron recoil due to photon emissions was still applied.

Photons below 500 keV energy were not added to the simulation (and the angular scatter is

neglected), and so these photons were also ignored in the Geant4 data when plotting spectra.

Once these simulations were run, a set of spectra was obtained for comparison between

the two codes. Figure 6.5 measures the energy distributions of electrons at 5 mm and

photons upon creation. This verifies agreement between the quantum implementation of

bremsstrahlung radiation in EPOCH, and the models used in Geant4. Figure 6.6(a) shows the

angular distribution of electrons as they pass the probe at x = 5 mm. In the absence of

angular scattering, we would expect all particles to register θ = 0 (no deflection from the

original direction).

As can be seen, the angular electron distribution from EPOCH shows good agreement

with the two different Geant4 models, which suggests the electron recoil is being calculated

correctly. The slight discrepancies at high θ come from the finite run-time of the EPOCH

simulations, as electrons with larger scattering angles take longer to reach the x = 5 mm

particle probe than can be reasonably simulated. However, the Geant4 simulations run until

all particles escape the volume, and so even electrons with high θ run to completion. Figure

6.6(b) shows the angular distribution of photons upon creation, and demonstrates that the

photon directions are being sampled correctly too.
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(a) Electrons (b) Photons

Figure 6.6: Angular distributions from a 100 MeV electron bunch (105 electrons) when pass-
ing the probe at 5 mm, from the Geant4 (Tsai and Grichine models) and EPOCH simulations.
Here the angle is with respect to the initial direction of the electron bunch.

6.2 Elastic scatter

The elastic scatter routines in the hybrid-PIC code can be benchmarked against the experi-

mental results of Hanson et al [153]. Their experiment measured the elastic scatter of 15.7

MeV electrons traversing gold foil targets, and we attempt to recreate the scatter distribu-

tion shown in their Figure 3, for the 18.66 mg/cm2 (9.67 µm) target. The EPOCH input deck

injected 15.7 MeV (kinetic energy) electron bunches into gold targets with a particle probe

positioned at 9.67 µm. The field solver and all electron physics were switched off, with the

exception of electron elastic scatter routines. The decision to switch off physics processes

was due to the short target size, low electron current and high electron energy present in

this simulation, which implies field effects and radiation play a negligible role in the electron

scatter. The code injected electrons from the xmin boundary, with open boundaries on xmin

and xmax, and reflective boundaries in y and z. In total, 4.8 × 104 macro-electrons were

injected into the simulation window, and passed through cubic cells of side 100 nm. The

resulting scatter distribution is shown in Figure 6.7.

For most electrons the scatter distribution has good agreement with the Hanson data, but

EPOCH does a poor job recreating the rarer large angle scatter events. This is unsurprising,

as the equations used to derive the elastic scatter model, (3.89) assumed small angle scatter

events only. As large angle scatter events are rare in these systems, it is unclear from Figure

6.7 how much this uncertainty would affect the macroscopic properties of the system. This
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Figure 6.7: The fraction of injected 15.7 MeV electrons passing a particle probe placed 9.67
µm away from the injection point in a gold target. This number is normalised to the solid
angle traced by each θ bin, in units of square degrees. The simulated scatter results are
compared to the experimental findings of Hanson et al [153].

is addressed in Section 6.3.

6.3 Ionisation loss

This benchmark tests both the elastic scatter and continuous ionisation energy loss rou-

tines. The experimental data comes from Lockwood et al [154], where energy deposition was

measured from electron beams passing through a variety of targets from different angles of

incidence. Here, we reproduce the depth-dose curve for normal incidence 0.5 MeV electrons

in tantalum, as shown in pages 100 and 101 of their report [154]. These simulations injected

0.5 MeV electron bunches, and the deposited energy was inferred from the temperature in-

crease and heat capacity of the solid. This benchmark only tests heating of the target due to

ionisation energy loss, as the electron currents in this beam are assumed too low to generate

significant Ohmic heating.

The EPOCH simulations modelled elastic scatter and ionisation energy loss, with all other

physics switched off. Due to the low electron energy present, δ-ray emission was not consid-

ered. Cells of dimensions 590×250×250 nm3 split up a simulation window of size 150×2×2

µm3, labelled in x× y × z order. In total, 3200 macro-electrons of unit weight were injected

through the xmin boundary, where x boundaries were treated as open, and y and z bound-

aries were periodic. These open x boundaries were important as it was found some electrons



CHAPTER 6. BENCHMARKING 133

Figure 6.8: Energy deposition as a function of depth for 0.5 MeV electrons in tantalum.
The depth, x is measured in units of expected range of electrons in the material, using the
continuous slowing down approximation (CDSA). The energy deposition is quoted as the
total energy deposited in MeV per x bin size (cm) per material density (g/cm3), divided by
the total number of incident electrons. The EPOCH results are compared to the experimental
data of Lockwood et al [154].

were deflected over 180◦, and open boundaries allowed electrons to escape from the front of

the target. Figure 6.8 shows depth-dose curves created using the EPOCH hybrid-PIC mode.

The code produces reasonable agreement with the experimental data, with the greatest

uncertainties appearing at low x (high scatter). These discrepancies may be attributed to

approximations made in the elastic scatter routines, as ionisation energy loss is incapable

of scattering electrons without δ-ray emission, and the scatter controls how far electrons

penetrate into the target.

6.4 Electron stopping power

In order to test the ionisation and bremsstrahlung energy loss mechanisms for electrons,

we repeat the test performed by Wu et al [128] and measure the total electron stopping

power. This benchmark injected five electron bunches at different energies, and calculated

their energy loss and step size each step. The electrons in these bunches had kinetic energies

sampled from uniform distributions with mean energies given by 〈εk〉, and energy ranges

between 0.01〈εk〉 and 1.99〈εk〉. To sample enough electrons to span multiple orders of mag-

nitude, the five injectors used 〈εk〉 values of 50 keV, 500 keV, 5 MeV, 50 MeV and 500 MeV.
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Figure 6.9: Stopping power of electrons in Al targets, as a function of the electron kinetic
energy.

Each injector added 104 macro-particles to the simulation window, which spanned 35×2×2

µm3 and was split into cells of size 68 × 250 × 250 nm3 (using x × y × z order). In order

to get a smoother bremsstrahlung curve, the photon weight was reduced to 0.005, which

makes emission 200 times more likely. The bremsstrahlung macro-photons were assigned re-

duced macro-particle weights, equivalent to 0.005 the weight of the emitting macro-electron

to conserve real particle number, which also reduced the electron recoil from momentum

conservation.

The electron stopping powers are shown in Figure 6.9 for an Al target, plotted alongside

the expected NIST stopping powers [155]. These results were obtained from tracking elec-

trons by their particle ID in the output dumps, and saving the kinetic energy and particle

position at each dump. Electrons could then be binned by the kinetic energy in each step,

and stopping powers were calculated by taking the ratio of energy lost to distance travelled by

each electron between subsequent steps, with the average stopping power calculated for each

bin. The simulation was run for 100 fs, and output dumps were written every 1 fs. Figure 6.9

shows excellent agreement between EPOCH and NIST, recreating both the ionisation-driven

peak at low electron energies, and the high energy bremsstrahlung-driven regime.
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(a) EPOCH vs Rester (1970) (b) EPOCH vs Geant4 without photo-electric effect

Figure 6.10: Energy spectra of bremsstrahlung radiation from 2.8 MeV electrons traversing
a 1.176 mm gold target. Bremsstrahlung photons have been grouped by outgoing direction
relative to the electron injection axis, θ. The energy spectrum is given as the total X-ray
energy in a photon energy bin, divided by the product of the bin energy range, the total
number of injected electrons, and the solid angle range of the θ bin (which spans ±5◦ of the
quoted angle for simulated data). The solid line in both figures is the EPOCH data, and the
crosses denote the experimental Rester data in (a), and results from a Geant4 simulation
with all physics switched on apart from the photo-electric effect in (b).

6.5 Bremsstrahlung photon production

While Section 6.4 considered the electron energy loss due to bremsstrahlung radiation, the

emission of X-rays was not tested. We benchmark X-ray production by reproducing the

experimental bremsstrahlung spectra shown by Rester et al in their Figure 17 [156]. This

experiment measured the X-ray energy spectrum created when 2.8 MeV electrons passed

through a 2.27 g/cm2 thick (1.176 mm) gold target, for X-rays escaping the target at 10◦

and 60◦ to the electron injection direction.

The EPOCH simulations injected 5×104 electrons of energy 2.8 MeV and weight 0.2 into a

1.176 mm gold target, with elastic scatter, ionisation loss and bremsstrahlung switched on.

The minimum photon energy added to the simulation was 200 keV, and no bremsstrahlung

macro-photon weight modification was used. Photon macro-particles were made immobile

to speed up the simulation. The simulation window spanned 1176× 120× 120 µm3 and was

split into cells of size 2.3×15×15 µm3 (using x×y× z order), where electrons were injected

through xmin.

Bremsstrahlung X-rays within ±5◦ of the angles used by Rester were grouped, and their

energy distributions have been plotted in Figure 6.10. It was found that using angular
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bremsstrahlung emissions made almost no difference to the angular distribution of X-rays,

as elastic scatter of electrons dominated. The EPOCH results show generally good agreement

with the Rester data, but EPOCH overestimates the low energy X-ray spectra, particularly in

the 60◦ data. This benchmark was repeated in Geant4, and while full Geant4 simulations

successfully reproduced the Rester data, we could also reproduce the EPOCH data when

switching off attenuation from the photo-electric effect. This effect provides an energy loss

mechanism for lower energy X-rays which is not included in EPOCH, explaining the deviation

in this thick, high-Z target. Hence, EPOCH bremsstrahlung spectra can only be trusted for

high energy X-rays, or in thin targets where X-ray attenuation is negligible.

6.6 Resistivity

In Section 5.5, we introduced the ZEPHYROS-style reduced Lee-More resistivity model which

switched between the hot and cold limits of Lee-More theory [98]. The accuracy of this

reduced model may be tested by comparing it to the experimental resistivity values found

by Milchberg et al in heated aluminium targets [157].

To test the EPOCH implementation, an input deck was used in which the initial cell

temperatures rose linearly in the x-direction between 0.1 K and 3.4 × 106 K (8 µeV to 300

eV). The resistivity was then calculated by the code in each cell, and this variable was output

when the simulation ended. No macro-electrons were injected, and nothing changed during

the short run-time of 1 fs. This benchmark tested the reduced Lee-More resistivity model

in two simulations, one without any model parameter modification, and another where λ1

and λ2 have been changed to show better agreement with the data. The resistivity output

in each cell was paired with the temperature of that cell to create the curves of Figure 6.11.

The model parameter λ1 has the effect of causing the peak resistivity to occur at a higher

electron temperature, and λ2 changes the height of the peak. While the parametrisation

allows for greater control over the low temperature side of the resistivity curve, changing λ2

from 1 will prevent the resistivity from reproducing the high temperature limit of the full

Lee-More model.
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Figure 6.11: Resistivity curves using the reduced Lee-More resistivity model, plotted against
the experimental Milchberg data [157]. The model parameters λ1 and λ2 have been varied
between the two curves, one modified to overlap with the data, the other without any
modification.

6.7 Ohmic heating

Ohmic heating has been neglected in the previous benchmarks, as the low current densi-

ties reached by electron beams are insufficient to generate any significant resistive fields in

the target. To adequately test these routines, we must instead consider a full laser-solid

interaction. A good candidate for this is the experimental work of Evans et al [158], which

measured the temperature as a function of depth in solid targets after exposure to a high-

intensity short-pulse laser. These 800 fs shots focused 300 J of laser energy into a 10 µm

focal spot, corresponding to a peak intensity of around 3.1 × 1020 Wcm−2. Plastic targets

were used for this experiment, with a 0.2 µm Al tracer layer sandwiched at various depths

in different targets for experimental temperature measurements. While we can roughly re-

produce these laser parameters, we have had to make assumptions on the electron injection

angle (set to 20◦), and absorption efficiency (set to 4%), so we are not expecting a perfect

fit to the data.

The EPOCH simulation set up to reproduce these results used an exponential distribution

of injected electrons, with the energy dependent Moore angle (3.49) also applied. The input

deck used ionisation loss with Møller scatter, but only added δ-rays over 50 keV kinetic

energy to the simulation. Below this energy, the δ-ray kinetic energy was dumped to the cell

for background electron heating. It is assumed that the temperatures reported by Evans et

al [158] refer to the peak electron temperatures reached at each depth, and so the transfer
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Figure 6.12: Electron temperature distributions for the CH-Al-CH target after exposure to
a 800 fs laser of peak intensity 3.1×1020 Wcm−2. The main figure shows a line-out of the
temperature averaged over the central 5 × 5 cells, and a heat-map of the temperature dis-
tribution is provided in the insert. This heat-map corresponds to the temperature averaged
over the central 5 cells in the z direction, and the central 5 cells in y used to calculate the
line-out are marked by the pink dashed lines.

of thermal energy from the electrons to the ions was not considered. Bremsstrahlung energy

loss and recoil for the electrons was switched on, but no X-ray macro-particles were added

to the simulation. Reflective boundaries were used for xmin and xmax, and boundaries in y

and z were left open. The full target in these simulations spanned 0 to 32.2 µm in x, with

an Al tracer layer present between 28 µm and 28.2 µm. The simulation window was 20 µm

long in y and z, and was populated with cells of size 100× 400× 400 nm3 (x× y× z order).

The laser temporal envelope, g(t) was modelled as a 1D Gaussian with a fwhm (full width

at half maximum) of tfwhm = 800 fs, and the spatial envelope f(r) at the injection point

was modelled by a 2D Gaussian with fwhm rfwhm = 10 µm. This simulation injected a

total of 1.5 × 106 macro-electrons into cells with f(r) > 0.5 over time-steps which satisfied

g(t) > 0.1. The temperature distribution is shown in Figure 6.12 at a 1.57 ps snapshot,

where little change was found at later times. This simulation was repeated for both the

default resistivity λ1 and λ2 values (7, 3.5), and for a run which ignored fitting parameters

(1, 1).

This figure shows a fairly accurate qualitative agreement with the experimental data,

given the uncertainties of the over-simplified electron injection model. The influence of the

Al layer can be seen by the slight temperature change at 28 µm, which demonstrates the

complex target capability of the code. It can also be seen from the heat-map that the
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electron beam has broken into filaments, which is causing hot-spots to form outside the

central averaging region. This creates additional uncertainty in presenting a single line-out

for the temperature data.

The sensitivity of the results to the fitting parameters λ1 and λ2 are low, as the variants of

the reduced Lee-More resistivity model used here produced very similar temperature curves.

The greatest difference is seen where the Al tracer layer has been positioned, as the fitted

curve shows a temperature increase, while the non-fitted curve shows both a rise and fall

in temperature. This suggests a greater resolution is required to adequately measure thin

complex targets.

6.8 Laser-solid bremsstrahlung emission

While Section 6.7 benchmarked Ohmic heating in a laser-solid interaction, there were no

bremsstrahlung results to compare against in the paper of Evans et al [158]. In this section,

the code attempts to benchmark the bremsstrahlung emission in laser-solid interactions by

recreating the results of a similar experiment by Clarke et al [159]. Here, a bremsstrahlung

spectrum was measured for photons travelling into a 40◦ forward cone, from 4×1020 Wcm−2

Vulcan shots on thick Au targets. The code modelled a 3 mm ×1002
µm2 Au solid (cubic

cells of length 0.7 µm), and ran to 12 ps. Hot electrons were injected with tfwhm = 800 fs,

rfwhm = 5 µm, and ηl→e = 0.3, using the same envelope treatment and angular distribution

as in Section 6.7.

Figure 6.13 shows the number spectrum of bremsstrahlung photons created with angle

less than 20◦ to the mean injection direction. While we expect to over-estimate the low energy

bremsstrahlung emission as our code lacks photoelectric attenuation [160], we see that low

energy X-rays are actually under-estimated here. Due to the success of the bremsstrahlung

benchmarks in sections 6.1.4 and 6.1.5, we conclude that these discrepancies must come from

the hybrid injector, and not the bremsstrahlung routines.

6.9 Summary

In general, we are capable of qualitatively reproducing relevant experimental results, and

demonstrate good agreement with other simulation codes like Geant4. One inaccuracy re-

vealed in these tests is the lack of the photo-electric effect, which causes EPOCH to overestimate
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Figure 6.13: Number spectrum of X-ray photons from a 4 × 1020 Wcm−2 shot on a 3 mm
Au target, for X-rays falling within a 40◦ cone (20◦ half-angle) about the injection direction.
Experimental data is compared to an equivalent run using the hybrid-PIC code.

the X-ray spectra of low energy X-rays escaping thick targets. The code also overestimates

the large-angle scattering of δ-ray emission, as we do not consider the binding energy of

electrons as they are excited.

It was found that the dominant form of uncertainty when comparing to experimental

results is the over-simplified hot electron injection. This could be improved by simulating

the laser absorption using a PIC code, and injecting the resultant hot electron distribution

into the hybrid-PIC code. However, this is still prone to uncertainty, as the pre-plasma

conditions on the target surface and distribution of laser intensity over the focal spot must

still be approximated. Additionally, such simulations would include high density regions,

making them unsuitable for 3D full-PIC simulation of long pulses. Electron injection is a

complicated issue, and instead of optimising our initial conditions to reproduce a particular

experimental set-up, we will instead use a simple, consistent method for modelling our hot

electron injection in this thesis.



Chapter 7

Bremsstrahlung characterisation

7.1 Introduction

As discussed in previous chapters, a high-intensity laser pulse can ionise the front surface of

a solid target and form a plasma. This plasma is further heated by the laser, and a large

current of high energy (hot) electrons can be injected into the solid [161]. Multipetawatt

laser facilities such as ELI [23] and Apollon [24] are expected to reach intensities between

1022-1023 Wcm−2, creating hot electrons over 100 MeV in energy. Such electrons could

lead to efficient X-ray generation through either synchrotron radiation in the laser focus, or

through bremsstrahlung as the electrons traverse the solid. Referring back to Chapter 1, such

multi-MeV X-rays could act as a source for photonuclear reactions [162], radiotherapy [163],

radiography [164], or in pair production for laboratory astrophysics [165]. As X-rays are

emitted in the direction of motion for ultra-relativistic particles, angular distributions may

also act as a diagnostic for electron motion and divergence within the solid.

Laser-solid interactions provide a promising source for brilliant multi-MeV X-rays, but

characterisation is difficult. Estimation of the conversion efficiency from hot electron energy

to bremsstrahlung X-rays is complicated by competing energy loss mechanisms, shown graph-

ically in Figure 7.1. There are five channels for hot electron energy loss in these systems:

bremsstrahlung radiation, ionisation energy loss, resistive fields, reflux losses and escaping

energies, all of which must be characterised separately. The escaping electron energy is

sketched differently in Figure 7.1, as only the highest energy electrons were found to escape

in Section 5.7. Hence, once these electrons escape, the rest remain trapped by the sheath

fields and lose energy through the remaining four processes.

141
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Figure 7.1: Visual representation of different processes simultaneously competing for the
same electron energy. Labelled processes include bremsstrahlung (Br.), ionisation energy
loss (Io.), resistive field losses (Fi.), reflux losses in the sheath fields (Re.) and escaping
electron energy (Es.).

Previous attempts [28, 30] have been made to characterise the bremsstrahlung efficiency

with full-PIC codes, but these considered the energy radiated in 36 fs and 300 fs, which are

insufficient to capture a full bremsstrahlung emission. Other groups [166–169] have used

Monte Carlo codes like Geant4 [142–144] to model X-ray production in these systems, with

assumed electron injection characteristics from PIC modelling or theory. While Monte Carlo

codes can sample the full bremsstrahlung emission, each electron is treated independently

and collective effects such as reflux losses, resistive fields and self-generated magnetic fields

are neglected.

In this section, we use our hybrid-PIC code [141] to model the efficiency of hot-electron

energy to bremsstrahlung X-rays over 1 MeV. While similar functionality may be achieved

with the commercial hybrid-PIC code LSP [140] (with the exception of reflux boundaries),

our code is open source with freely available documentation, which is advantageous for this

kind of research. We have performed 3D (cartesian) simulations of the full bremsstrahlung

emission with some collective effects, which cannot be done using traditional PIC or Monte

Carlo codes. The simulation set-up is presented in Section 7.2, with bremsstrahlung char-

acteristics reported in Section 7.3. An analysis of the hot electron motion which gives rise

to these characteristics has been presented in Section 7.4. The bremsstrahlung efficiency

is given in Section 7.5, and Section 7.6 provides figures and scaling laws which show how
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electron energy is distributed between the five channels. In this chapter, we are interested

in electron loss after injection into the solid, so we ignore X-rays produced in the laser focal

spot by synchrotron emisison. A discussion of the results is present in Section 7.7.

7.2 Simulation setup

Hybrid-PIC simulations were run to model the hot electron to bremsstrahlung efficiency, ηe→γ

for a variety of targets at different intensities. To improve statistics, the bremsstrahlung cross

section was increased by a factor of 10, and macro-photon weights were reduced by the same

factor to conserve real particle number. The efficiency of laser energy to hot-electron energy

was set to ηl→e = 0.3, and the background electron and ion temperatures were initialised at

300 K.

Hot electrons were injected into the simulation through the xmin boundary, with spatial

and temporal envelope functions, f(r) and g(t) respectively. A 2D Gaussian was used for

f(r), characterised by a radial fwhm, rfwhm = 5 µm. Similarly, a 1D Gaussian was used for

g(t), described by the fwhm, tfwhm = 800 fs. To cut off low-weight macro-electrons, nothing

was injected when g(t) < 0.1, or into cells with f(r) < 0.5. This gave a mean envelope of

〈fg〉 ≈ 0.41 for cells injecting electrons, with a mean root envelope 〈
√
fg〉 ≈ 0.61. The laser

intensity was varied in the range 1020-1022 Wcm−2, and 1226 macro-electrons per time-step

were injected into each cell which satisfied the envelope conditions. Macro-electrons were

uniformly injected into a cone where the half angle was the smaller of 20◦ or the Moore angle

(3.49). The empirical refluxing parameters were assigned values κesc = 2, κtnsa = 2.7× 10−3

and σ〈∆θ〉 = 23◦, based on averaged values from Table 5.4. Here we have chosen a high κesc

value to closely match the C 1022 Wcm−2 simulation, as this had the most similar ηl→e out

of all the sheath field characterisation runs.

The cell-size was determined by seeking convergence in the Bz field in test runs on a

10 × 10 × 10 µm3 Al target, which ran for 3.3 ps. The laser intensity was set to 4 × 1020

Wcm−2, and one macro-electron was injected per cell with f(r) > 0.5, for each time-step

when g(t) > 0.1. Figure 7.2 shows the Bz values averaged over all cells in the y and z

directions for two cell sizes, which shows that cells of size 700 nm appear to reproduce the

results of the smaller 300 nm cells. Thus, cubic cells of side length 700 nm were chosen in

this simulation.
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Figure 7.2: Magnetic field component Bz averaged over cells in the y and z directions for a
4× 1020 Wcm−2 shot on Al, simulated by the hybrid-PIC code for two different cell sizes.

7.3 Full bremsstrahlung emission

To estimate the run-times required to capture a full bremsstrahlung emission, the X-ray

characteristics were found for different targets shot by a 1022 Wcm−2 pulse. Figure 7.3

shows the rate of X-ray production for photons over 1 MeV in energy. The emission lasts on

the order of 10-100 ps, with a strong dependence on target shape when using the empirical

reflux boundaries, as electrons in smaller targets spend less time between reflux events and

lose energy faster. The emission from lower Z targets lasts longer, as ionisation loss and

bremsstrahlung have reduced stopping powers. This plot shows X-rays created within the

solid and not the X-rays measured outside, as the code lacks target self-attenuation from the

photoelectric effect.

The angular distribution of X-ray energy also varied with target geometry as shown in

Figure 7.4, although no target reproduced the lobes observed by Vyskočil et al [30]. While

these results do produce lobes when plotting energy per radian, dE/dθ, in 3D simulations it

is more appropriate to plot energy per steradian, dE/dΩ which re-weights the bins and shows

a dominant emission in the forwards and backwards directions. A novel angular distribution

is observed for the small foil 10× 502
µm3 target, which shows some emission perpendicular

to the injection direction. This is because electrons deflected into a transverse direction can

travel for a long time in a foil target, and emit many X-rays before hitting another boundary

and scattering away. The perpendicular emission is less visible in the large foil 50 µm×1

mm2 target as electrons experience reflux scatter less often, and so more energy is lost by
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Figure 7.3: Temporal distribution of bremsstrahlung radiation from hybrid-PIC simulations,
with a laser of intensity 1022 Wcm−2 on cubic targets of various compositions and sizes
(labelled l3 for side-length l).

Figure 7.4: Angular distribution of bremsstrahlung radiation from hybrid-PIC simulations
(1022 Wcm−2, Cu). The injection direction is given by the arrow, and the sign of py deter-
mines the deviation direction for the macro-photon angles. Target dimensions are labelled as
l×w2, where l is the length parallel to electron injection, and the transverse area is w ×w.
The dashed line result refers to a test where the magnetic field was held at 0 in all cells
throughout the simulation.

the time they scatter into a perpendicular direction.

Figure 7.4 also shows that magnetic B fields reduce the emission. While B fields cannot

take energy from the electrons, it was found that their presence led to more energy loss by

resistive fields. This suggests B fields reduce electron divergence, leading to higher current

densities and stronger electric fields according to the resistive field equation (5.14).

In Figure 7.5, the bremsstrahlung energy spectra are given for some Cu targets. These

spectra have a sharp gradient change at Eγ ≈ 86 MeV, as the only electrons which can
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Figure 7.5: Photon energy distribution of bremsstrahlung radiation from hybrid-PIC simu-
lations (1022 Wcm−2, Cu). Target dimensions are labelled as in Figure 7.4. The pink line
denotes the electron escape energy.

radiate above this energy escape the target after only one pass. The size of the target in x

determines the length of this pass, and the energy spectra beyond 86 MeV are grouped by

this size. Smaller targets produce less bremsstrahlung radiation overall, as reflux events are

more common and take away a greater proportion of the hot electron energy.

To test the effects of δ-ray production on bremsstrahlung emission, the 10 × 502
µm3

Cu target was repeated without δ-ray emission. Instead of adding δ-rays as macro-electrons

which can go on to produce photons, their energy was instead dumped to the local cell as

a temperature increase. The resulting spectrum showed no significant difference to the case

with δ-rays, which suggests the rare high-energy photon emissions from rare high-energy

δ-rays play a negligible role in the total bremsstrahlung emission.

7.4 Electron transport

The bremsstrahlung characteristics are best understood when the evolution of the hot elec-

tron population within the target is considered. To illustrate this point, additional diagnos-

tics were performed for the simulation which modelled a 1022 Wcm−2 shot on a 100×100×100

µm3, Al target. Figure 7.6 shows snapshots of the x-component of the hot electron current

density, Jx, in simulations with and without magnetic field evolution. In both cases, the

electron bunch initially propagates in the laser-direction (direction of increasing x). Due to
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Figure 7.6: Hot electron current density Jx distributions at different snapshots from a 1022

Wcm−2 shot on Al. The top row comes from a simulation with B field evolution, and the
lower has B = 0 in all cells. These 2D heatmaps represent Jx values averaged over the
central 11 cells in the z-direction.

the high intensity laser pulse, most of the hot electrons have sufficient energy to travel at

speeds close to c, and so there is little bunch dispersion in the x-direction.

As the electron bunch moves forwards, resistive fields are set up which lead to magnetic

B-field generation. These B-fields are shown in Figure 7.7 for the simulation which allowed

magnetic field evolution. It can be seen that in early times, the B-fields form a ring around

the electron bunch position, and persist when the bunch moves on. At 0.2 ps, the effect of

this B-field is to pinch the hot electron bunch, leading to a slightly higher current density

in Figure 7.6 when compared to simulations with no B-fields.

Once the electron bunch reaches the rear boundary, the highest energy electrons escape

and the rest reflect with some scatter. By 0.6 ps, the reflected bunch has crossed halfway

along the x-direction, and the greatest difference between the B-field and no B-field simula-

tions becomes apparent. In Figure 7.6, the 0.6 ps no-B snapshot shows a bunch spread out

in the transverse direction by reflux scatter, but the B snapshot shows an electron bunch

with less transverse spread and a greater current density. This is because the hot electrons

have been reflected into a pre-existing B-field channel, which has not yet had time to diffuse

away. These differences are clearly seen in Figure 7.8, which shows how the peak current

density in the simulation window changes over time in both cases.
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Figure 7.7: Magnetic field Bz at different snapshots, averaged over the 11 central cells in the
z direction. These heatmaps correspond to the simulation in Figure 7.6 with magnetic fields
enabled.

Figure 7.8: Temporal evolution of the peak current density J , from the simulations in Figure
7.6.
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Figure 7.9: Background target electron temperature Te distributions at different snapshots,
averaged over the 11 central cells in the z direction. These heatmaps correspond to the same
simulations as in Figure 7.6.

After a few more refluxes at 3.3 ps, the hot electrons have spread throughout the target,

causing the current density to drop further. The resultant resistive electric fields are now

much lower, and Ohmic heating becomes less important. This can be seen in Figure 7.9,

which shows how the background electron temperature of the target evolves over time. Here

it can be seen that heating is important in the first electron pass, but little heating occurs

after this when the electrons scatter from the reflux.

As the system evolves, the differences between the B and no-B simulations becomes less

apparent. With the low current densities after the first reflux, the resistive fields become

much weaker, and the self-induced magnetic fields become negligible. The pre-existing B-

field channel from the first pass diffuses over time, and with little to replace it, the peak

magnetic field in the simulation drops. This decay has been plotted in Figure 7.10. The

diffuse hot electron population then continues to scatter inside the target, and the remaining

energy is lost to bremsstrahlung radiation, ionisation energy loss and reflux losses.

It can be seen that the drop in resistive fields and heating occurs much faster than the

bremsstrahlnug emission, on time-scales of a few picoseconds. Despite this, these effects occur

at the beginning of the simulation when the hot electron energies are highest, and during

peak production of the high-energy bremsstrahlung photons. As a result, these short-lived

resistive effects can influence the bremsstrahlung properties, as seen in Figure 7.4. The
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Figure 7.10: Temporal evolution of the peak magnetic field B, from the simulation in Figure
7.6 with magnetic fields enabled.

Figure 7.11: A snapshot of background target electron temperature, averaged over the central
11× 11 cells in the y and z direction. These curves correspond to the simulations in Figure
7.6.

reduction of X-ray energy in B-field simulations is related to the increase in resistive energy

loss, as seen by the increased background electron temperatures shown in Figure 7.11.

7.5 Efficiency scaling

There are three significant energies used when calculating efficiencies in laser-solid simula-

tions: the total energy carried by the laser pulse (l), the sum of initial kinetic energies for
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Figure 7.12: Efficiency of hot electron kinetic energy to bremsstrahlung X-rays over 1 MeV
photon energy in cubic targets of side-length 100 µm. The data-points show hybrid-PIC
simulations, and the background heatmap comes from a simple scaling model (see Section
7.6.1). Regions where different energy loss mechanisms dominate are split by the pink lines.

injected hot electrons (e), and the sum of X-ray energies for photons over 1 MeV (γ). The

laser to X-ray efficiency ηl→γ = ηl→eηe→γ , and it is the electron to X-ray efficiency ηe→γ

which is measured in these simulations.

Figure 7.12 shows ηe→γ evaluated for multiple 100×100×100 µm3 targets in 3D hybrid-

PIC simulations. The target materials considered were Al, Cu, Sn and Au, and plastic CH

targets are also shown plotted at atomic number Z = 2.7. The peak efficiency of hot electron

energy to X-rays over 1 MeV occurs for the 1022 Wcm−2 shot on Au with ηe→γ = 0.25, which

corresponds to a laser to X-ray efficiency of ηl→γ = 0.074.

These simulations consider the full bremsstrahlung emission, and observe efficiencies

higher than those reported from full-PIC simulations. Previous estimates [28,30] for ηl→γ in

Al targets at 1022 Wcm−2 have ranged from 4×10−6 to 8×10−5 compared to 0.014 in these

simulations, although the larger target size here also contributes to the greater efficiency.

The main difference between the full-PIC and our hybrid-PIC results are the time-scales.

We model bremsstrahlung radiation over tens of picoseconds, whereas the PIC campaigns

both simulated under 500 fs and only caught a small fraction of the total emission [28, 30].

These high efficiencies are significant in experiments where bremsstrahlung is a background,

suggesting measurement of X-rays from other processes (for example synchrotron radiation)

may be much more difficult than currently expected.
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7.6 Scaling laws

For some of the simulations present in this chapter, additional diagnostics were performed on

the hot electrons as they propagated through the target. Each time-step, the energy lost by

each macro-electron was tracked for each energy loss process, and so the total energy lost to

each channel could be deduced. A breakdown of these energy losses is shown in Figure 7.13

for the 1020 and 1022 Wcm−2 simulations in 1003
µm3 Al and Au targets. It was found that

28% of all lost energy in the Au 1022 Wcm−2 simulation was due to bremsstrahlung radiation

(from all photon energies), which dominated all other forms of energy loss. Ionisation loss

dominated at 1020 Wcm−2, taking 47% of the hot electron energy in Al and 59% in Au.

Reflux energy loss dominated in 1022 Wcm−2 Al, accounting for 51% of the energy loss.

Escaping energy took away 17-22% in all simulations, and resistive fields accounted for 8-

19%. While some electrons gained energy from these electric fields, field gains were less than

2% of the field losses in all four simulations.

The energy loss mechanisms are also important over different time-scales. The escaping

electrons leave the target after one pass, and field losses are also greatest during the initial

injection when electron densities are high (around 1 ps in Figure 6.12). Bremsstrahlung,

ionisation and reflux losses are important for the remainder of the electron motion, although

more bremsstrahlung radiation occurs earlier when hot electron energies are high, and more

ionisation loss occurs later as electron energies decrease. It was found that these results

could be approximated using a simple analytic model, which is discussed in Section 7.6.1.

7.6.1 Analytic efficiency model

A simple model was constructed to quickly estimate the efficiencies of hot electron energy

loss mechanisms, and to demonstrate how these scale with laser and target parameters. This

model condenses the exponential injection of electron kinetic energies, εk into three macro-

electrons, characterised by the high-energy X-ray threshold, εthγ (1 MeV here), and the escape

energy εesc = κesca0mec
2. The “warm” macro-electron describes all electrons with εk < εthγ ,

the “emitting” macro-electron holds εthγ ≤ εk < εesc, and the “escaping” macro-electron holds

εk ≥ εesc. The macro-electron weights are found from integrating

dNe

dεk
=

Ne

〈εk〉
e−εk/〈εk〉 (7.1)
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Figure 7.13: Hot electron energy loss breakdown for four hybrid-PIC simulations from Figure
7.12. The remaining electron energy in these simulations was less than 0.03% of the total
energy lost over the run-time.

between the defining kinetic energy limits, where the mean injected kinetic energy 〈εk〉 =

a0mec
2〈
√
fg〉. Using the hybrid particle injector model (5.7), the total number of injected

electrons is

Ne =

I0〈fg〉
(
πr2fwhm

4

)(
tfwhm

√
ln 10
ln 2

)
ηl→e

〈εk〉
(7.2)

after substitution of the full injection area and pulse duration for our envelopes. Similarly,

the three macro-electron εk values are found from integrating εkdNe/dεk between the defining

energies.

Four stopping-powers are used to characterise energy loss from the individual energy loss

mechanisms. For bremsstrahlung, a stopping power is derived from the classical radiation

differential cross section for atomic targets (2.32), which takes the form

− dε

dx

∣∣∣∣
brem

=
γe6

12π3ε30mec3~
niZ

2 ln

(
5.6πε0~c
Z1/3e2

)
(7.3)

and describes bremsstrahlung emission into photons of all energies. The stopping power from
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photons over energy εthγ is

− dε

dx

∣∣∣∣
εγ>εthγ

= − dε

dx

∣∣∣∣
brem

(
εk − εthγ
εk

)
(7.4)

which can be used to calculate ηe→γ . Another continuous-slowing-down approximation has

been used to describe ionisation energy loss

− dε

dx

∣∣∣∣
ion

=
Znie

4

4πε20mev2

(
ln

(
εk
Iex

)
+

1

2
ln(γ + 1) +

0.909

γ2
− 0.818

γ
− 0.246

)
(7.5)

which is given by Davies et al [109]. Equation (7.5) is similar to the continuous model

in (3.68), but extended to δ-rays of all energy and with an approximate density correction

factor. A simple continuous stopping power for reflux energy loss can be made by substituting

parameters into our empirical model. In a target of size Lx × Ly × Lz, the typical path

between two boundaries is roughly (Lx + Ly + Lz)/3, and with a known energy lost per

reflux, a stopping power of the form

− dε

dx

∣∣∣∣
tnsa

=
3κtnsaa0mec

2

Lx + Ly + Lz
. (7.6)

may be assumed. This approximation is most applicable to small targets with many reflux

events, and would be a poor model in targets where electrons never reach a boundary. For

fields, the stopping power is equivalent to the Lorentz force −eE, where the electric fields in

this system are described in (5.14). Assuming the hot electron current density, jh is balanced

by the background electron current, the stopping power may be written as −eηrjh for a solid

with resistivity, ηr. By approximating a suitable form for jh(x), we have

− dε

dx

∣∣∣∣
field

= e2〈ηr〉
I0〈fg〉

(
1
2rfwhm

)2
ηl→e

(x tan θc + 1
2rfwhm)2〈εk〉

(7.7)

where a constant typical resistivity 〈ηr〉 has been used. Here we have assumed the injected

current begins with a circular area of radius rfwhm/2, where electrons move into a cone of

half-angle θc, such that the current radius at x includes the x tan θc term. This ensures the

field stopping power diminishes as electrons spread out in the solid.

The “warm” and “emitting” macro-electrons are integrated through these stopping pow-

ers until they have no more energy, and the “escaping” macro-electron is integrated to



CHAPTER 7. BREMSSTRAHLUNG CHARACTERISATION 155

Figure 7.14: Electron to X-ray efficiency line-outs from Figure 7.12 at constant laser-intensity.
The hybrid-PIC data is compared to the results from the simple analytic scaling model.

x = Lx, at which point the remaining energy is considered to be escaped. Using θc = 20◦

and 〈ηr〉 = 10−6 Ωm, ηe→γ was calculated over the simulation range shown in Figure 7.12,

and forms the background heatmap. While calculating this heatmap, a constant ni = 6×1028

m−3 was used, along with the approximation Iex ≈ 11eZ. The dominant emission mecha-

nisms were identified in each calculation, and are grouped by the pink lines in Figure 7.12.

This simple analytic model shows good agreement with the simulation results, as can be

seen more clearly in Figure 7.14, where line-outs of ηe→γ from Figure 7.12 at fixed intensities

have been plotted.

7.7 Discussion

Using a hybrid-PIC code specially developed for tracking X-ray production in laser-solid

interactions, it has been found that the laser to X-ray efficiencies from bremsstrahlung ra-

diation may be significantly higher than was previously thought. Through benchmarking

the code against Vulcan shots at 1020 Wcm−2 in sections 6.7 and 6.8, the hot electron in-

jection was found to form the dominant source of uncertainty. PIC simulations were shown

to underestimate the bremsstrahlung efficiency by orders of magnitude, as they are unable

to capture the full emission. Monte Carlo codes are expected to overestimate the emission,

as they lack collective energy loss mechanisms. In these 3D simulations, we did not ob-



CHAPTER 7. BREMSSTRAHLUNG CHARACTERISATION 156

serve the lobes in the bremsstrahlung angular distribution found in 2D full-PIC simulations.

Our results instead reveal a novel angular distribution for radiation, where X-rays may be

strongly emitted in directions perpendicular to the laser injection direction for thin foil tar-

gets. Previous PIC campaigns may have missed this due to using spatial simulation windows

which were too small in the transverse directions, and the use of outflow boundaries may

have removed perpendicularly propagating electrons before significant photon emission [30].

These results also demonstrate the importance of self-induced magnetic fields, which are

shown to reduce hot electron divergence, increase the resistive fields, and ultimately reduce

the bremsstrahlung emission.

Different energy-loss mechanisms were found to dominate at different laser intensities and

target atomic numbers, with bremsstrahlung dominating in high-intensity high-Z set-ups.

A simple analytic model was provided for estimating efficiencies ηe→γ , and good agreement

was found when comparing against the predictions of the hybrid-PIC simulations. For high

Z targets at lower intensities, the injected hot electrons were at lower energies and it was

found that ionisation loss dominated over bremsstrahlung. In lower Z targets, the stopping

power associated with these processes decreases and reflux energy loss becomes the dominant

process, making these set-ups especially unsuitable for modelling using traditional Monte

Carlo codes which lack collective effects.

These results rely on an empirical treatment for electron refluxing, which has some un-

certainties. For instance, we have used a typical κtnsa value of 2.7×10−3, but this parameter

varied between (1.2−4.2)×10−3 in Table 5.4. To demonstrate the effect of this uncertainty,

the simple scaling model was re-run over the Figure 7.12 parameter range, and the lines split-

ting regions of different dominant energy loss mechanisms have been recalculated in Figure

7.15 for various κtnsa values. While there is some uncertainty in the ionisation/reflux bound-

ary, there still seems to be a region where reflux loss dominates, which would be unsuitable

for modelling with Monte Carlo simulations. The κtnsa value was also varied in the simple

scaling model to estimate uncertainties in the ηl→γ results from the 1022 Wcm−2 hybrid-PIC

simulations. These efficiencies were found to be ηl→γ = (1.4±0.7)% for Al, and (7.4±1.0)%

for Au.

At these time-scales (over 10 ps), the code could be improved by evolving the immobile

background ion fluid with a hydrodynamic code to model decompression, and the target

temperatures could be diffused by a thermal conductivity model. Lower laser intensities



CHAPTER 7. BREMSSTRAHLUNG CHARACTERISATION 157

Figure 7.15: Separation lines for dominant energy loss mechanisms using the simple scaling
model. These are calculated in the same way as in 7.12, but with different κtnsa values.

could be better modelled if the code was extended to include photon transport effects like

photoelectric attenuation, to address the uncertainties revealed in Figure 6.10. For higher

laser intensities, pair production through the Bethe-Heitler process [41] would be needed to

model the propagation of high energy photons produced from hot electrons.



Chapter 8

Signatures of synchrotron radiation

8.1 Introduction

The results of Chapter 7 characterised bremsstrahlung radiation in laser-solid interactions

for petawatt-class lasers, and ignored the synchrotron radiation which occurs as electrons

are expelled from the laser focal spot. This treatment can be justified at low intensities,

as bremsstrahlung radiation is the dominant source of X-rays in these interactions [28, 31].

However, as laser intensity increases it is expected that the efficiency of synchrotron radia-

tion will rise faster than that of bremsstrahlung, with synchrotron eventually becoming the

dominant emission process [29]. Such results are especially relevant as experimental cam-

paigns move to multi-petawatt laser-pulses, where intensities exceeding 1022 Wcm−2 may be

achieved. Some groups predict synchrotron laser-to-X-ray efficiencies on the order of 10%,

for generated X-rays over 1 GeV in energy [170, 171], with others finding laser absorption

over 90% [172]. The high energy electrons produced in these laser-solid interactions could

radiate X-rays of high enough energy to create dense pair plasmas, or beams of exotic par-

ticles. Hence, a detailed understanding of synchrotron radiation would be required to make

full use of these next generation lasers for X-ray sources.

The term responsible for the efficiency of the synchrotron emission process is η, which was

defined in equation (2.52). The η parameter varies with the electromagnetic fields and the

electron momentum, but the value is heavily influenced by the momentum direction relative

to the fields. For example, in the case of electron refluxing, the electron oscillates back and

forth in the target due to strong EEE fields on the boundaries (with negligible BBB). Despite the

158
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acceleration in strong fields, ppp moves parallel and anti-parallel to EEE in this set-up, and

η2 ≈ 1

E2
s

(
γE2 − E2p2

m2
ec

2

)
= 0 (8.1)

which produces very little synchrotron radiation. Conversely, electrons travelling into a

counter-propagating laser beam experience perpendicular EEE and BBB such that ppp× cBBB ≈ pEEE,

resulting in

η2 ≈ 4γ2E2

E2
s

(8.2)

and synchrotron radiation which increases with the laser intensity and electron momentum.

Several models have been developed to describe the synchrotron emission in laser-solid

interactions, with the exact mechanism changing with different set-ups. For targets near

relativistic critical density, electrons may be ionised and pushed away from their ions in

the laser direction, creating a longitudinal space-charge electric field. Eventually this field

can be strong enough to pull electrons back, and these radiate strongly as they counter-

propagate with the laser. As electrons are injected into the next laser front, this process is

termed re-injected electron synchrotron emission (RESE) [32]. A similar phenomenon has

been observed in simulations with over-dense targets, where this time it is the laser-pulse

which has its direction reversed as it reflects off the solid boundary. Forwards propagating

electrons collide with the reflected laser in the process of skin-depth emission (SDE), although

this creates X-rays less efficiently than the RESE mechanism as electrons are accelerated

over a short distance, and the reflected laser intensity is weak [173, 174]. A third process,

transversely oscillating electron synchrotron emission (TOEE), has been shown to occur for

intermediate target parameters where the force from the laser balances the space-charge

force [174]. Electrons can also counter-propagate with the laser after refluxing through the

target rear [29], or in transverse oscillations on the edge of a laser channel (termed “edge-

glow”) [173].

With all these channels available to achieve prolific X-ray generation, various groups have

studied ways to optimise this emission [29,32,170,171,173–180]. Target enhancements have

been considered to boost the synchrotron efficiency, including nano-wire arrays to improve

laser absorption [176], concave targets to enhance the laser intensity [178], and sinusoidally

“bumpy” targets to set up radiating plasma waves [179]. Specially tailored pre-plasma may
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provide a good target density for the laser pulse to interact with, and optimal pre-plasma

scale lengths have been reported between 4−20 µm [170,175,177]. Some groups have focused

on comparisons between synchrotron emission and bremsstrahlung [28,31,180], although the

PIC methods were only run over short time-scales [28, 180], and the work of Pandit [31]

used a reduced radiation transport solver for bremsstrahlung which misses some energy-loss

channels.

Previous literature has relied on simulations which may not fully capture the extent of

the bremsstrahlung background. In this chapter we seek to re-evaluate this problem. A

more detailed analytic model for RESE-based synchrotron emission is considered in Section

8.2, and the hybrid-PIC code has been used to estimate the bremsstrahlung background in

Section 8.3. A final discussion of the results is also included in Section 8.4.

8.2 Re-injected electron synchrotron emission

The RESE process was first proposed by Brady et al [32], and is based on observations from

laser-solid PIC simulations for near-critical density targets. When plotting the evolution of

the electron phase-space, it was seen that electrons were initially pushed forwards by the

laser and formed a dense electron bunch. After some time had passed, the bunch breaks up

and some electrons reverse direction back into the laser. This breakdown event is linked to

an emission of X-rays also travelling back towards the laser, and it is this collective motion

which was termed RESE.

The authors present a simple analytic model to deduce the laser to X-ray efficiency of

this process. Firstly, the ion motion was assumed to be negligible, and the attraction from

these static ions was used to explain the electron reversal. Using a 1D geometry, the electric

field established by a forwards-travelling electron bunch moving at speed c grows as

Ex(t) ≈ neect

ε0
(8.3)

using Gauss’ law (2.1). Eventually, the electric field on the electron bunch due to the ions

will compete with the electric field of driving laser, E0, and electron reversal may occur for

Ex = E0. From re-arranging (8.3), this electron bunch breakdown time τbd can be estimated
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as

τbd =
ε0E0

cene
(8.4)

and it is assumed the electrons are pulled back into the next laser peak. The laser-pulse

then proceeds deeper into the target, forming a new electron bunch at the laser front which

will travel until the next break-down event. The X-ray energy radiated in these periodic

emissions can be approximated using the head-on collision η parameter from (8.2), with the

equation for the Landau-Lifshitz force, FLL (2.51). Here, the radiation power, Ps(η) from a

single electron of velocity, vvv would be FFFLL · vvv, or

Ps(η) =
e2m2

ec
2

6πε0~2
η2g(η) (8.5)

for v ≈ c. This power also includes the Gaunt factor, g(η) from (2.71) to account for

quantum effects. The number of electrons in the electron bunch, N is calculated from the

size of the ion volume left behind, N = neAcτbd for a laser of transverse area, A. Assuming

the electron bunch counter-propagates at speed c and travels one full laser wavelength during

the breakdown, the emission time would be half the laser period τp. Thus, the efficiency of

a single breakdown event is

ηl→γ =
NPs(η)τp

2εl
(8.6)

for a laser pulse of energy εl.

When creating this analytic model for the RESE efficiency, Brady et al find good agree-

ment to the data after applying a scaling factor of 0.6, and assuming there are τl/τbd break-

down events for a laser of pulse duration τl [32]. There is some ambiguity surrounding the

latter condition here, which implies the breakdown events are periodic and last only as long

as the laser is running. This seems to contradict the earlier description of a laser propagating

through the target, forming new electron bunches at the laser front when previous bunches

are re-injected downstream. In such a set-up, the laser will always find new electrons at the

laser front, and the number of bunches would be set by the size of the target and not the pulse

duration. Alternatively, if the re-injected electrons re-neutralised the entire ion channel and

the laser energy in this channel was absorbed, then we may expect τl/τbd breakdowns as the
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target would return to its original state after each event (although the electron temperature

would be higher due to laser absorption). However, in this alternate set-up, some electrons

would travel further than others and the laser to X-ray efficiency of each breakdown would

not be described by equation (8.6). Hence, it is clear that while the estimates of Brady et

al provide good scaling agreement, it may not accurately describe the temporal emission

behaviour. In the remainder of this section, we describe a simple framework for modelling

electron motion in RESE regimes, and compare these results to 1D full-PIC simulations.

8.2.1 Single particle model

To study the dynamics of electron motion due to acceleration from laser fields in relativisti-

cally transparent targets, we may use a model proposed in an unpublished report by Arefiev.

In this section we will re-derive these equations, but while Arefiev only considered linearly

polarised laser pulses, we shall keep our treatment in terms of a general vector potential, AAA

which may have the form given in (3.38).

The derivation proceeds using Lagrangian dynamics, with a canonical momentum, PPP and

a Hamiltonian H such that

PPP = ppp− eAAA (8.7)

H = c
√
m2
ec

2 + (PPP + eAAA)2 − eφ (8.8)

for an electron of momentum ppp under the influence of a scalar potential φ. If the laser

propagates in the x direction, and φ is assumed to be a function of x only, then Py and Pz

must be constant according to Hamilton’s equations:

−∂H
∂xxx

=
dPPP

dt
(8.9)

∂H

∂PPP
=
dxxx

dt
(8.10)
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and so the canonical momenta can be shown to give

dPx
dt

= − e

γme
(PPP + eAAA) · ∂A

AA

∂z
+ e

∂φ

∂z
(8.11)

dPy
dt

= 0 (8.12)

dPz
dt

= 0 (8.13)

using (8.9). Similarly, the particle position evolves according to

dxxx

dt
=

1

γme
(PPP + eAAA) (8.14)

which can be derived from either (8.7) or (8.10). The Landau-Lifshitz force can be added

into these equations of motion, which we write as FFFLL = −Ps(η)n̂nn/c, where the unit vector,

n̂nn is

n̂nn =
PPP + eAAA√
γ2 − 1mec

(8.15)

as this force acts in the opposite direction to the electron momentum. Finally, the scalar

potential gradient is taken to be

∂φ

∂x
=
−Z∗e
ε0

∫ x

x0

ni(x
′)dx′ (8.16)

which comes from Gauss’ law (2.1) and the φ definition (2.6) for ions of charge state Z∗ and

number density ni. Here the electron starts at position x0, and it is assumed that electrons

do not overtake each other, and that ions are immobile. Combining all results yields the

equations of motion

dPx
dt

= − e

γme
(PPP + eAAA) · ∂A

AA

∂z
− Z∗e2

ε0

∫ x

x0

ni(x
′)dx′ − Px√

γ2 − 1mec2
Ps(η) (8.17)

dPy
dt

= − Py + eAy√
γ2 − 1mec2

Ps(η) (8.18)

dPz
dt

= − Pz + eAz√
γ2 − 1mec2

Ps(η) (8.19)

which can be solved using a 4th-order Runge-Kutta numerical integration method. Power

can be deduced by tracking Ps(η) over time.
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Figure 8.1: Electron trajectory in the single particle model. A laser at 2 × 1023 Wcm−2

intensity and 30 fs duration travels through a target of initial electron density 1028 m−3.

An example trajectory is shown in Figure 8.1 for a linearly-polarised 30 fs step-pulse laser,

with intensity I = 2× 1023 Wcm−2. A uniform, ionised hydrogen target with ni = 1028 m−3

was chosen to model a classically over-dense but relativistically under-dense plasma, relevant

to the RESE regime. The electron shows a trajectory consistent with the RESE description,

starting at (0,0) and moving with the laser at first, then falling back into the laser at x = 2.9

µm. The electron then oscillates around x = 0.5 µm where the laser push in the positive

x direction is roughly balanced by the Coulomb force from the ions. Once the laser pulse

ends, the Coulomb force drives oscillations in x about the start position, while the drift in

y is caused by the remaining py at the time of the pulse end. This is a non-physical y-drift,

as the simple 1D theory does not model target variation in the y direction.

8.2.2 RESE model comparisons

The single particle model can be used to calculate the electron motion and temporal distri-

bution of synchrotron radiation when lasers strike relativistically under-dense plasma. The

temporal emission from the full interaction can be estimated by summing this single electron

synchrotron power over all electrons in the target, with the contributions of each electron

off-set by the time taken for the laser-pulse to reach the electron start position, x0. The

synchrotron emission corresponding to the trajectory in Figure 8.1 has been summed in such

a way, and the resultant full emission is shown in Figure 8.2 (labelled as Aref.). In this figure,
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the laser reaches the first electron at a time t = 17 fs, corresponding to a 5 µm vacuum gap

between the initial laser pulse-front and the plasma.

It was found that the synchrotron power radiated by the electrons was comparable to the

energy carried by the 30 fs laser pulse, εl, and so a simple modified model was created using

energy conservation arguments. The curve in Figure 8.2 labelled Aref. Mod. was calculated

with the same method used to obtain the Aref. result, but the power at time t was reduced

by the fraction, fs(t) where

fs(t) = 1− 1

εl

∫ t

0
P (t′)dt′ (8.20)

and P (t) is the radiated power of all electrons. Here we assume X-ray energy is drawn from

the laser fields, and so there will be less laser energy available for future electron acceleration.

The factor fs(t) ensures that the power radiated by subsequent electron motion is reduced

by the same factor as the lost laser energy fraction at time t.

Both Aref. and Aref. Mod. show a fast rise in synchrotron power followed by a steady

emission, which is in sharp contrast to the periodic breakdown model of Brady et al in Section

8.2. The breakdown time and re-injection energy were calculated using the same model

parameters as in the single particle simulations, and the expected temporal distribution is

also sketched in Figure 8.2 according to the Brady description.

In order to test the validity of the models, a series of 1D PIC simulations was performed

in EPOCH for this laser-target set-up. As the Arefiev and Brady models are semi-classical in

nature (classical with a Gaunt factor quantum correction), the quantum synchrotron Monte-

Carlo module in EPOCH was replaced with a semi-classical Landau-Lifshitz drag force. In

these simulations, a 2 × 1023 Wcm−2 laser pulse with a 30 fs step-profile travelled through

a vacuum of 5 µm, then passed into a uniform electron-proton plasma with ni = 1028 m−3.

Recall that the other models have their temporal distributions off-set by 17 fs, as this allows

for direct comparison with these PIC simulations. The code ran with cells of size 15 nm and

used a total of 5.2 × 105 macro-particles, of which half were macro-electrons and the other

half were macro-protons. Both electron and proton species started with zero temperature,

as the comparison models also neglected thermal effects. The plasma length was set to 28

µm so the laser would not reach the simulation boundary by the 100 fs end-point (enough

time for four RESE breakdown events). The radiated power from this PIC set-up has been
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Figure 8.2: A comparison of different emission models for the RESE process. These list the
Arefiev single particle model in its original (Aref.) and modified (Aref. Mod.) forms, the
Brady breakdown model, and EPOCH1D simulations with immobile (PIC) and mobile ions
(PIC ion).

simulated and plotted in Figure 8.2, both with and without ion motion.

It can be seen that the single particle model modified for energy conservation is in good

agreement with the PIC simulation without ion motion. This is to be expected, as the

single particle treatment is derived also assuming immobile ions. However, it can be seen

that ion motion complicates this agreement, which suggests that the collective motion of

particles is important for RESE radiation, and a single particle model may be of limited use

(particularly for the light hydrogen ions used here). Despite this, the qualitative form of

the Arefiev treatments seem in better agreement with the PIC simulations than the Brady

model, as neither mobile nor immobile ion runs demonstrate the characteristic breakdown

events. It is clear from these simulations that the analytic models alone cannot fully describe

the synchrotron emission in laser-solid interactions, and for detailed characterisation we must

turn to PIC methods.
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8.3 Synchrotron and bremsstrahlung in laser-solid interac-

tions

Experimental verification of the synchrotron emission in laser-solid interactions is compli-

cated by the background of bremsstrahlung photons. While various groups have simulated

synchrotron radiation dominating the emission at high laser intensities [28,31], these simula-

tions were unable to capture the full bremsstrahlung emission. With the high bremsstrahlung

efficiencies found in Chapter 7, it is unclear whether synchrotron radiation can still dominate

at the intensities achieved by petawatt-class lasers. To test this, we performed simulations

which tracked both synchrotron and bremsstrahlung photons in targets optimised for syn-

chrotron emission and bremsstrahlung suppression.

In simulations performed by Martinez et al [129], it was found that synchrotron emissions

dominated bremsstrahlung at high intensity (1022 Wcm−2) and in thin targets. This is

consistent with our characterisation of the bremsstrahlung emission in Chapter 7, as it

was found that hot electrons in thinner targets encountered boundaries more frequently,

resulting in more reflux energy loss. Parameter scans by other groups [170, 175] have found

that synchrotron emission becomes more efficient when lasers interact with long pre-plasmas,

with scale-lengths on the order of 10-20 µm. Thus, to find the strongest synchrotron signal in

experiment, the optimal target would seem to be thin and of low atomic number to suppress

bremsstrahlung, with a long pre-plasma in front. A laser intensity of 1022 Wcm−2 will be

used, as this is roughly the highest intensity which can be achieved with petawatt class

lasers. We will again consider a laser with a 5 µm fwhm Gaussian focal spot, and a temporal

fwhm of 40 fs. The laser will be fired at a 20 µm exponentially decaying pre-plasma with

scale-length 10 µm, positioned in front of a plastic foil target of dimensions 10× 1000× 1000

µm3. A plastic target was chosen due to the low atomic numbers of C and H, the pre-plasma

length was chosen to maximise laser absorption and NCS emission, and a thin target was

chosen to maximise reflux energy loss (minimising bremsstrahlung radiation). A large target

transverse area was chosen in an attempt to direct the remaining bremsstrahlung radiation

into a transverse direction, to allow a clearer angular signature of synchrotron radiation.

The detailed simulation set-up is presented in Section 8.3.1, and the resulting hot electron

and X-ray characteristics are shown in sections 8.3.2 and 8.3.3 respectively.
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8.3.1 Simulation set-up

Immediately we are faced with a problem when trying to simulate both synchrotron and

bremsstrahlung radiation in the same simulation. A full-PIC run can model both processes,

but only in short time-scales compared to the bremsstrahlung emission. Hybrid-PIC simula-

tions can be run for long enough to model bremsstrahlung but these codes do not model the

laser, and so synchrotron emission from hot electron acceleration in the laser-fields cannot

be simulated. The solution is to run both codes on the same problem. We initially start

with a 2D full-PIC simulation of the target pre-plasma extending up to the solid-density

surface. The laser-pulse travels through the target, and synchrotron emissions from the hot

electrons are recorded upon the creation of the macro-photons. A particle probe is posi-

tioned within the solid density region to record the position, momentum, and time of each

hot macro-electron passing into the solid. These macro-electrons are then injected into a 3D

hybrid-PIC simulation, with the positions and momenta randomly rotated in the y-z plane

by ±90◦ to model a 3D cone injection. The weights of the macro-electrons are multiplied

by the laser fwhm to scale the 2D weights down to sensible values for 3D simulation. Once

injected, the modified macro-electrons travel through the hybrid-PIC simulation as normal,

and the bremsstrahlung emission is recorded.

The full-PIC simulation window spanned 26 × 40 µm2, with square cells of size 20 nm.

A vacuum was initialised between −5 < x < 0 µm, followed by a plasma of profile ni =

ni0 exp((xµm − 20)/10), where xµm is the position in microns. The ion number density of

the solid region, ni0 was 3.7 × 1028 m−3 for the carbon species, and 7.4 × 1028 m−3 for

the hydrogen species. These ions were assumed to be fully ionised, and all particles were

initialised at 1 keV temperature. The code used 300 particles per cell, split 1:2:6 for H:C:e−

macro-particles respectively. Beyond x = 20 µm, the target was initialised to solid density.

Open boundaries were used for most electrons, but boundary particles starting with |y| > 15

µm or x > 20.5 µm were made to reflect off boundaries, to prevent leakage of low energy

macro-particles. A particle probe positioned at x = 20.5 µm recorded electrons over 100

keV passing into the solid-density region. Synchrotron photons over energy 1 MeV were

recorded, and bremsstrahlung was ignored in this simulation. A simulated run-time of 250

fs was used, which was sufficient for the full laser pulse to cross the entire simulation length

twice (for reflection).

Electrons were injected into a hybrid-PIC simulation of size 10× 1000× 1000 µm3, with
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Figure 8.3: A schematic diagram sketching out the physical domains simulated by the 2D
full-PIC, and 3D hybrid-PIC codes. This figure is not to scale. The laser comes in from the
left hand side travelling through the pre-plasma in the full-PIC simulation, and electrons
passing the particle probe are injected into the hybrid-PIC foil simulation.

cubic cells of side 0.7 µm. A plastic background was initialised, with all hybrid physics

switched on. The empirical reflux parameters were set to match those of Chapter 7. The

code ran for a simulated time of 125 ps, and recorded bremsstrahlung photons of energy over

1 MeV. This set-up is shown graphically in Figure 8.3.

8.3.2 Hot electron population

Before discussing the X-ray characteristics of synchrotron and bremsstrahlung radiation, it is

worth inspecting the hot electron population passing the particle probe. To better describe

the energies involved in 3D space, the 2D macro-particles have had their weights reduced

by the factor 5 × 10−6 in the figures of this section. This scale-factor was chosen to match

the fwhm of the laser focal spot, as this is expected to set the length scale of the omitted



CHAPTER 8. SIGNATURES OF SYNCHROTRON RADIATION 170

Figure 8.4: The kinetic energy spectrum of electrons passing the particle probe at the end
of the PIC simulation. The total electron kinetic energy and laser to electron efficiency are
also provided. Particle weights are multiplied by the laser fwhm in metres (5.0 × 10−6) to
account for 2D to 3D conversion.

dimension. The energy spectrum of electrons passing into the hybrid simulation is given in

Figure 8.4. In this simulation, 80 J of laser energy was injected through the xmin boundary,

and the particle probe recorded a total kinetic energy of 20 J from electrons over 100 keV in

energy. A simple exponential fit to the data yields a hot electron temperature of 31 MeV,

which is comparable to the 43 MeV temperature expected from ponderomotive scaling. The

25% laser to electron efficiency is also consistent with the injection models we have assumed

so far.

The angular distribution of hot electrons at the particle probe is plotted in Figure 8.5,

and shows consistency with previous estimates. In the hybrid-PIC simulations of Chapter

7, the electron distribution was also modelled as a cone between some angular cut-off limits

(here 41◦ compared to our earlier 20◦). The transverse boundaries in the PIC simulation

were made to be open for electrons starting near the laser axis, so it is expected that electrons

with a large injection angle may escape the simulation window before reaching the particle

probe. In the worst case scenario at the front of the pre-plasma, such an electron would

have to travel 20 µm in y before travelling 20.5 µm in x, suggesting a maximum cut-off angle

of 45◦. As 45◦ is greater than the observed cut-off angle, the limits of Figure 8.5 are not

expected to be an artefact of the simulation window size.

We finally consider the temporal distribution of hot electron passage shown in Figure
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Figure 8.5: The angular distribution of electrons passing the particle probe at the end of the
PIC simulation. Macro-particle weights have been adjusted as in Figure 8.4.

Figure 8.6: The temporal distribution of electrons passing the particle probe at the end of
the PIC simulation. Macro-particle weights have been adjusted as in Figure 8.4.

8.6. The fwhm of this electron injection is measured to be 38 fs, which is consistent with the

40 fs fwhm used by the laser pulse. While the injection profile does show the characteristic

rise and fall with laser intensity, there is also a high energy tail which is not fully resolved

in the simulation run-time. As it takes 67 fs for an electron travelling close to c to pass our

20 µm pre-plasma, it is assumed that such a tail would not extend for much longer, as hot

electrons would quickly leave the simulation window. Alternatively, these late probe events

may be due to non-physical self heating of macro-electrons, which could also be ignored.
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Figure 8.7: The temporal distributions of synchrotron and bremsstrahlung emissions from the
full-PIC and hybrid-PIC codes respectively. Synchrotron macro-photon weights are adjusted
as in Figure 8.4. The bremsstrahlung emission appears delayed as the hybrid-PIC code only
writes to file 100 times, and these outputs do not resolve the femtosecond time-scale.

8.3.3 X-ray characteristics

In this simulation, it was found that synchrotron emission provided the dominant source

of X-ray radiation. The ηl→γ value for synchrotron radiation was 0.84%, which is compa-

rable to the ηl→γ ≈ 1% estimate of Brady et al at 1022 Wcm−2 [32]. The efficiency into

bremsstrahlung radiation was found to be an order of magnitude lower, with ηl→γ = 0.083%.

The key differences between these radiation mechanisms can be seen in Figure 8.7, which

illustrates the temporal emission of the two processes. Synchrotron radiation occurs in a

bright flash as it can only generate photons while interacting with the fields of the short-

pulse laser, whereas bremsstrahlung radiates less power, but for a much longer time-scale

(particularly in the case of plastic). The smaller peaks in the synchrotron signal are likely due

to simulation noise which appears exaggerated on the log-scale. While the short time-scale

flash would be a clear signature of synchrotron radiation, it is not experimentally feasible to

resolve the emission of multi-MeV photons over a femtosecond time-scale.

In Figure 8.8, it can be seen that the synchrotron emission dominates that of bremsstrahlung

between photon energies of 1-20 MeV. While photons will be created below this energy, these

macro-photons were not added to the simulation for computational speed. Synchrotron radi-

ation also appears to dominate at high photon energies, as the escaping hot electron popula-

tion restricts the bremsstrahlung emission over 80 MeV. However, it can also be seen that the
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Figure 8.8: Energy spectra of synchrotron and bremsstrahlung radiation. Synchrotron
macro-photon weights are adjusted as in Figure 8.4.

bins have become much wider at these high photon energies, which shows that the photon

spectra are under-sampled here. Due to the poor photon statistics, the high photon-energy

synchrotron domination may be an artefact of statistical noise.

Lastly, the angular distributions of synchrotron and bremsstrahlung radiation have been

provided in Figure 8.9. This plot depicts dE/dθ (energy per unit radian), and so the curve

integrated between two θ limits shows how much radiation would be detected by a ring of

detectors catching all escaping photons with these angles. This is distinct from the dE/dΩ

(energy per steradian) plots of Figure 7.4, which describe how much energy passes through

a detector of constant solid-angle positioned at different θ positions. While dE/dΩ is more

experimentally relevant, the choice to plot dE/dθ is justified for the synchrotron data as the

photon momentum was mostly confined to the x-y plane. In the 2D full-PIC simulation,

the mean 〈|py|〉 was 1.6 MeV/c for the synchrotron photons, compared to 〈|pz|〉 = 665 eV/c.

Thus, it would be misleading to re-weight the bins to dE/dΩ assuming photons were spread

out azimuthally for a given θ. Bremsstrahlung is also plotted by dE/dθ to allow direct

comparison against the synchrotron signal, despite the 3D nature of the bremsstrahlung

emission.

In Figure 8.9, it can be seen that bremsstrahlung is restricted to emissions in the trans-

verse direction. Due to using a thin target with low atomic number, the bremsstrahlung

stopping power is low and electrons do not lose much energy before reflux scattering. The
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Figure 8.9: Angular distribution of synchrotron and bremsstrahlung radiation. Synchrotron
macro-photon weights are adjusted as in Figure 8.4. The incident laser direction for PIC,
and the electron injection direction for hybrid-PIC are both directed along θ=0.

electrons will then continue to reflux between x boundaries until they are scattered into a

transverse direction, where they may travel a long distance and emit many X-rays before

scattering away. This provides a more extreme example of the transverse electron travel

highlighted in Figure 8.9. The synchrotron emission peaks along lobes which are directed

off the laser axis in the forwards direction, alongside a non-negligible emission in the back-

wards direction. Such an angular distribution is consistent with the synchrotron radiation

pre-plasma modelling of Vyskočil et al [29].

8.4 Discussion

This chapter sought to model synchrotron radiation in the laser focal spot for petawatt-class

laser pulses, with a particular emphasis on near-critical density targets, and pre-plasmas

passing critical density. It was found that at high intensities, it was still possible to have syn-

chrotron radiation dominate bremsstrahlung radiation in thin, low-Z targets. Synchrotron

radiation was found to be particularly dominant in lobe directions around 30◦ to 60◦ off the

laser axis in the forwards direction, for X-rays of energies between 1 and 20 MeV.

While such results are a promising start, they do not represent a clear signature for syn-

chrotron emission. Detectors cannot distinguish synchrotron photons from bremsstrahlung,

and so a simple bright spot of X-rays at 40◦ for 1-20 MeV photons would not guarantee an
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observation of synchrotron radiation. A more robust signature may be found in the X-ray

scaling. In all the RESE models of Section 8.2, it was assumed that the power roughly

scaled with η2 (8.5), which scales with γ2E2 when electrons collide with the laser head-on

(8.2). In ponderomotive scaling, γ ≈ a0, and the laser intensity, I scales with both E2 (3.37)

and a2
0 (3.45), hence the synchrotron power may be expected to scale with I2. Meanwhile,

the bremsstrahlung stopping power only scales with γ (7.3), and so it may be expected that

bremsstrahlung is proportional to
√
I. Hence, a possible synchrotron signature may be found

by looking at how the radiated power scales with laser intensity, performing multiple shots on

targets and varying I between 1021 and 1022 Wcm−2. Detectors sensitive to X-ray energies of

a few MeV and positioned in a lobe direction would be most likely to record the synchrotron

I2 scaling. In such an experiment, synchrotron radiation may be 100 times weaker at 1021

Wcm−2, so this range may include both bremsstrahlung and synchrotron scaling at low and

high intensities respectively.

In practice, the scaling behaviour may be more complicated. The synchrotron scaling

arguments assume a RESE-like emission, but the observed lobes in Figure 8.9 show a for-

wards emission component as well. Ion motion may further complicate the synchrotron

scaling theory. Furthermore, the bremsstrahlung path length is not fixed - a reduction in

the bremsstrahlung stopping power does not necessarily imply the same reduction in the

total emitted power, as electrons may radiate the same amount of energy over a longer time.

However, the reduced stopping power will give the other energy loss mechanisms more time

to drain hot electron energy in non-radiative ways. As seen in Figure 7.13, ionisation loss

will start to dominate at lower laser intensities, so the bremsstrahlung efficiency will still de-

crease with I. Further work on synchrotron signatures could look to repeat the simulations

of Section 8.3 at different intensities, to explicitly model these scaling behaviours.



Chapter 9

Conclusion

The hot electrons produced when high intensity (>1020 Wcm−2) lasers strike solid targets

have the potential to produce a bright source of X-rays, with photon energies in excess of

1 MeV. These X-rays are generated from both electron acceleration in the laser focal spot

(synchrotron) and from acceleration in the electric fields of target nuclei (bremsstrahlung).

While previous groups have sought to compare the radiation generated from these two mech-

anisms, the results were limited by full-PIC simulation time-scales which prevented simula-

tion of the entire bremsstrahlung emission. A hybrid-PIC extension to the PIC code EPOCH

has been written to achieve this simulation capability, and it was demonstrated that the

bremsstrahlung emission lasted on the order of 10-100 ps, with a strong dependence on laser

intensity, along with the shape and material of the target.

In benchmarking the hybrid-PIC code against experiment, it was found that one source

of uncertainty appeared to be the simple model used for electron injection. This limits the

results to seeking general X-ray characteristics, instead of recreating the initial conditions

of a particular experimental set-up. While electron transport routines have been included,

photon transport effects like photoelectric attenuation and Bethe-Heiter pair production

are omitted, although these effects are less important for photons over 1 MeV at the laser

intensities of interest here (see Figure 6.10). Another source of uncertainty comes from the

simple empirical boundary model, which was devised to approximate the electron refluxing

behaviour (reflux energy loss, scatter and escaping electrons). This boundary treatment is an

improvement over traditional hybrid-PIC modelling methods which used open or reflective

boundaries, but it does introduce uncertainties into the results.

In 3D hybrid-PIC simulations modelling the bremsstrahlung emission, it was found that

176
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different energy loss mechanisms dominated the hot electron stopping power in different

regimes. Bremsstrahlung radiation dominated in high intensity shots on targets with high

atomic number, while ionisation energy loss dominated lower intensities. In targets of lower

atomic number, electron refluxing was found to provide an important energy loss mechanism,

as the low stopping powers of bremsstrahlung and ionisation loss allowed the electrons to

complete more refluxes before running out of energy. Despite these competing processes, it

was found that the bremsstrahlung efficiency was significantly higher than full-PIC estimates,

with a laser to X-ray (>1 MeV) conversion efficiency peaking at (7.4±1.0)% for 1022 Wcm−2

shots on thick gold targets. A simple model for estimating the bremsstrahlung efficiency has

also been included, and shows good agreement with the hybrid-PIC simulation data.

While the long run-times distinguish these results from those found using full-PIC codes,

the inclusion of resistive fields, refluxing and self-generated magnetic fields separates the

hybrid-PIC model from Monte Carlo simulations too. It was found that the combination of

fields and refluxing took away a large proportion of the hot electron energy, which would

not be modelled by a Monte Carlo code. The magnetic fields within the target helped to

maintain a high electron beam density, which lead to further energy loss through resistive

fields and Ohmic heating. The large scatter of reflux boundaries also contributed to a novel

angular distribution of radiation in large foil targets. It was found that X-ray lobes emerged

in the transverse direction, as electrons scattered into these directions could travel a long

time before encountering another boundary and scattering away. This result relies on using

both the reflux boundary model and the large spatial domain of the hybrid-PIC simulation

window, which would be difficult to reproduce with full-PIC or Monte Carlo codes.

Despite the high efficiency of laser energy to bremsstrahlung radiation found in hybrid-

PIC simulations, there may still be regimes accessible with petawatt class lasers where syn-

chrotron radiation dominates. Using a combination of 2D full-PIC and 3D hybrid-PIC mod-

elling, it was found that a 1022 Wcm−2 shot on a plastic foil target yielded a synchrotron

laser-to-radiation efficiency of 0.84%. This was found to be roughly 10× higher than the

corresponding bremsstrahlung efficiency (0.083%). A single particle model can be used for

general synchrotron scaling predictions, and seems to provide a more accurate representa-

tion of the temporal evolution of radiation through the RESE mechanism. However, this

model is limited by its immobile ion approximation, as 1D full-PIC simulations demonstrate

a reduction in synchrotron power when ion motion is permitted.
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Further work may be performed to improve both bremsstrahlung and synchrotron radia-

tion modelling using these codes. Including photon transport effects like Bethe-Heitler pair

production will allow the propagation of high energy photons to be treated more realistically,

which would be important when simulating intensities over 1023 Wcm−2 for multi-petawatt

lasers. Additions to the hybrid-PIC code could also be made to model the changing nature

of the target over long time-scales. The background ion number density could be updated

according to a hydrodynamic model, which would describe the deformation of the target

and thermal expansion. Further results could also be generated with the code in its current

form. For example, by sampling the synchrotron and bremsstrahlung emissions for a variety

of laser intensities and target parameters, we expect to find additional synchrotron signa-

tures in the radiation scaling. To conclude, our hybrid-PIC code has provided new insights

into the radiation produced in high intensity laser-solid interactions. With multi-petawatt

lasers on the horizon, we anticipate this code leading to even more interesting results in the

future.
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kräfte. Zeitschrift für Physik, 70(11-12):786, 1931.

[108] V. Ivin, M. Silakov, G. Babushkin, B. Lu, P. Mangat, K. Nordquist, and D. Resnick.

Modeling and simulation issues in monte carlo calculation of electron interaction with

solid targets. Microelectronic engineering, 69(2-4):594, 2003.

[109] J. Davies, A. Bell, M. Haines, and S. Guerin. Short-pulse high-intensity laser-generated

fast electron transport into thick solid targets. Physical Review E, 56(6):7193, 1997.

[110] J. Davies. How wrong is collisional monte carlo modeling of fast electron transport in

high-intensity laser-solid interactions? Physical Review E, 65(2):026407, 2002.

[111] A. Robinson, D. Strozzi, J. Davies, L. Gremillet, J. Honrubia, T. Johzaki, R. Kingham,

M. Sherlock, and A. Solodov. Theory of fast electron transport for fast ignition. Nuclear

Fusion, 54(5):054003, 2014.

[112] L. Gremillet, G. Bonnaud, and F. Amiranoff. Filamented transport of laser-generated

relativistic electrons penetrating a solid target. Physics of Plasmas, 9(3):941, 2002.

[113] T. Arber, et al. Contemporary particle-in-cell approach to laser-plasma modelling.

Plasma Physics and Controlled Fusion, 57(11):113001, 2015.



LIST OF REFERENCES 189

[114] C. Ridgers, C. Brady, R. Duclous, J. Kirk, K. Bennett, T. Arber, A. Robinson, and

A. Bell. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated

solids. Physical Review Letters, 108(16):165006, 2012.

[115] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. CRC

press, 2004.

[116] R. Kingham and A. Bell. An implicit vlasov–fokker–planck code to model non-local

electron transport in 2-d with magnetic fields. Journal of Computational Physics,

194(1):1, 2004.

[117] A. Bell, A. Robinson, M. Sherlock, R. Kingham, and W. Rozmus. Fast electron trans-

port in laser-produced plasmas and the kalos code for solution of the vlasov–fokker–

planck equation. Plasma Physics and Controlled Fusion, 48(3):R37, 2006.

[118] N. J. Sircombe and T. D. Arber. Valis: A split-conservative scheme for the relativistic

2d vlasov–maxwell system. Journal of Computational Physics, 228(13):4773, 2009.

[119] J. Dawson. One-dimensional plasma model. Physics of Fluids, 5(4):445, 1962.

[120] R. Morse and C. Nielson. Numerical simulation of warm two-beam plasma. Physics of

Fluids, 12(11):2418, 1969.

[121] C. K. Birdsall and D. Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body

plasma simulation. Journal of Computational Physics, 3(4):494, 1969.

[122] J. P. Boris. Relativistic plasma simulation-optimization of a hybrid code. In Proceedings

of the 4th Conference on Numerical simulation of plasmas, pages 3–67. 1970.

[123] K. Yee. Numerical solution of initial boundary value problems involving maxwell’s

equations in isotropic media. IEEE Transactions on antennas and propagation,

14(3):302, 1966.

[124] J. Villasenor and O. Buneman. Rigorous charge conservation for local electromagnetic

field solvers. Computer Physics Communications, 69(2-3):306, 1992.

[125] T. Z. Esirkepov. Exact charge conservation scheme for particle-in-cell simulation with

an arbitrary form-factor. Computer Physics Communications, 135(2):144, 2001.



LIST OF REFERENCES 190

[126] R. Duclous, J. G. Kirk, and A. R. Bell. Monte carlo calculations of pair production

in high-intensity laser–plasma interactions. Plasma Physics and Controlled Fusion,

53(1):015009, 2010.

[127] R. Ward and N. Sircombe. Fast particle bremsstrahlung effects in the pic code epoch:

Enhanced diagnostics for laser-solid interaction modelling. Technical report, Central

Laser Facility, 2014.

[128] D. Wu, X. He, W. Yu, and S. Fritzsche. Particle-in-cell simulations of laser–plasma

interactions at solid densities and relativistic intensities: the role of atomic processes.

High Power Laser Science and Engineering, 6, 2018.

[129] B. Martinez, M. Lobet, R. Duclous, E. d’Humières, and L. Gremillet. High-energy

radiation and pair production by coulomb processes in particle-in-cell simulations.

Physics of Plasmas, 26(10):103109, 2019.

[130] Y. Sentoku, K. Mima, T. Taguchi, S. Miyamoto, and Y. Kishimoto. Particle simulation

on x-ray emissions from ultra-intense laser produced plasmas. Physics of Plasmas,

5(12):4366, 1998.

[131] Y.-S. Tsai. Pair production and bremsstrahlung of charged leptons. Reviews of Modern

Physics, 46(4):815, 1974.

[132] Y.-S. Tsai. Erratum: Pair production and bremsstrahlung of charged leptons. Reviews

of Modern Physics, 49(2):421, 1977.

[133] P. D. Lax. Hyperbolic difference equations: A review of the courant-friedrichs-lewy

paper in the light of recent developments. IBM Journal of Research and Development,

11(2):235, 1967.

[134] C. K. Birdsall and N. Maron. Plasma self-heating and saturation due to numerical

instabilities. Journal of Computational Physics, 36(1):1, 1980.

[135] R. Hockney. Measurements of collision and heating times in a two-dimensional thermal

computer plasma. Journal of Computational Physics, 8(1):19, 1971.

[136] O. Buneman. Computer Space Plasma Physics: Simulations Techniques and Software,

pages 72–73. Terra Scientific, 1993.



LIST OF REFERENCES 191

[137] D. Woodbury, et al. Laser wakefield acceleration with mid-ir laser pulses. Optics

letters, 43(5):1131, 2018.

[138] S. Kar, A. Robinson, D. Carroll, O. Lundh, K. Markey, P. McKenna, P. Norreys, and

M. Zepf. Guiding of relativistic electron beams in solid targets by resistively controlled

magnetic fields. Physical Review Letters, 102(5):055001, 2009.

[139] N. Sircombe, S. Hughes, and M. Ramsay. Integrated calculations of short-pulse laser

interactions with matter. New Journal of Physics, 15(2):025025, 2013.

[140] T. Daykin, H. Sawada, Y. Sentoku, F. Beg, H. Chen, H. McLean, A. Link, P. Patel,

and Y. Ping. Characterization of fast electron divergence and energy spectrum from

modeling of angularly resolved bremsstrahlung measurements. Physics of Plasmas,

25(12):123103, 2018.

[141] Hybrid-PIC code available at https://github.com/Status-Mirror/epoch last ac-

cessed 30 June 2021.

[142] S. Agostinelli, et al. Geant4—a simulation toolkit. Nuclear instruments and methods

in physics research section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 506(3):250, 2003.

[143] J. Allison, et al. Geant4 developments and applications. IEEE Transactions on nuclear

science, 53(1):270, 2006.

[144] J. Allison, et al. Recent developments in geant4. Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 835:186, 2016.

[145] C. Walsh, J. Chittenden, D. Hill, and C. Ridgers. Extended-magnetohydrodynamics

in under-dense plasmas. Physics of Plasmas, 27(2):022103, 2020.

[146] D. E. Peplow. Direction cosines and polarization vectors for monte carlo photon scat-

tering. Nuclear Science and Engineering, 131(1):132, 1999.

[147] R. More. Pressure ionization, resonances, and the continuity of bound and free states.

In Advances in atomic and molecular physics, volume 21, pages 305–356. Elsevier,

1985.

https://github.com/Status-Mirror/epoch


LIST OF REFERENCES 192

[148] D. R. Lide. CRC handbook of chemistry and physics, volume 85. CRC press, 2004.

[149] W. Shang, et al. Experimental demonstration of laser to x-ray conversion enhancements

with low density gold targets. Applied Physics Letters, 108(6):064102, 2016.

[150] S. P. Hatchett, et al. Electron, photon, and ion beams from the relativistic interaction

of petawatt laser pulses with solid targets. Physics of Plasmas, 7(5):2076, 2000.

[151] S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pen-

nington, A. MacKinnon, and R. Snavely. Energetic proton generation in ultra-intense

laser–solid interactions. Physics of plasmas, 8(2):542, 2001.

[152] V. Grichine. Electromagnetic angular models. Geant4 progress meeting, CERN.

[153] A. Hanson, L. Lanzl, E. Lyman, and M. Scott. Measurement of multiple scattering of

15.7-mev electrons. Physical Review, 84(4):634, 1951.

[154] G. J. Lockwood, L. E. Ruggles, G. H. Miller, and J. Halbleib. Calorimetric measure-

ment of electron energy deposition in extended media. theory vs experiment. Technical

report, Sandia Labs., Albuquerque, NM (USA), 1980.

[155] M. Berger, J. Coursey, and M. Zucker. Estar, pstar and astar: Computer programs

for calculating stopping-power and range tables for electrons, protons and α-particles

(version 1.2. 2). NIST, Gaithersburg, 2000.

[156] D. Rester, W. Dance, and J. Derrickson. Thick target bremsstrahlung produced by

electron bombardment of targets of be, sn, and au in the energy range 0.2–2.8 mev.

Journal of Applied Physics, 41(6):2682, 1970.

[157] H. Milchberg, R. Freeman, S. Davey, and R. More. Resistivity of a simple metal from

room temperature to 10 6 k. Physical Review Letters, 61(20):2364, 1988.

[158] R. Evans, et al. Rapid heating of solid density material by a petawatt laser. Applied

Physics Letters, 86(19):191505, 2005.

[159] R. Clarke, et al. Radiological characterisation of photon radiation from ultra-high-

intensity laser–plasma and nuclear interactions. Journal of Radiological Protection,

26(3):277, 2006.



LIST OF REFERENCES 193

[160] F. Biggs and R. Lighthill. Analytical approximations for x-ray cross sections iii. Tech-

nical report, Sandia National Labs., Albuquerque, NM (USA), 1988.

[161] T. Cowan, et al. High energy electrons, nuclear phenomena and heating in petawatt

laser-solid experiments. Laser and Particle Beams, 17(4):773, 1999.

[162] S. Belyshev, A. Ermakov, B. Ishkhanov, V. Khankin, A. Kurilik, A. Kuznetsov,

V. Shvedunov, and K. Stopani. Studying photonuclear reactions using the activa-

tion technique. Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 745:133, 2014.

[163] B. Girolami, B. Larsson, M. Preger, C. Schaerf, and J. Stepanek. Photon beams

for radiosurgery produced by laser compton backscattering from relativistic electrons.

Physics in Medicine & Biology, 41(9):1581, 1996.

[164] R. Edwards, et al. Characterization of a gamma-ray source based on a laser-plasma

accelerator with applications to radiography. Applied Physics Letters, 80(12):2129,

2002.

[165] H. Chen, et al. Scaling the yield of laser-driven electron-positron jets to laboratory

astrophysical applications. Physical Review Letters, 114(21):215001, 2015.

[166] A. Henderson, E. Liang, N. Riley, P. Yepes, G. Dyer, K. Serratto, and P. Shagin.

Ultra-intense gamma-rays created using the texas petawatt laser. High Energy Density

Physics, 12:46, 2014.

[167] S. Jiang, A. G. Krygier, D. W. Schumacher, K. U. Akli, and R. R. Freeman. Enhancing

bremsstrahlung production from ultraintense laser-solid interactions with front surface

structures. European Physical Journal D, 68(10):283, 2014.

[168] C. Armstrong, et al. Bremsstrahlung emission from high power laser interactions

with constrained targets for industrial radiography. High Power Laser Science and

Engineering, 7, 2019.

[169] A. Compant La Fontaine, C. Courtois, E. Lefebvre, J. Bourgade, O. Landoas, K. Thorp,

and C. Stoeckl. Effects of electron recirculation on a hard x-ray source observed during

the interaction of a high intensity laser pulse with thin au targets. Physics of Plasmas,

20(12):123111, 2013.



LIST OF REFERENCES 194

[170] K. Lezhnin, P. Sasorov, G. Korn, and S. Bulanov. High power gamma flare gener-

ation in multi-petawatt laser interaction with tailored targets. Physics of Plasmas,

25(12):123105, 2018.

[171] Z. Gong, R. Hu, H. Lu, J. Yu, D. Wang, E. Fu, C. Chen, X. He, and X. Yan. Brilliant

gev gamma-ray flash from inverse compton scattering in the qed regime. Plasma

Physics and Controlled Fusion, 60(4):044004, 2018.

[172] P. Zhang, C. Ridgers, and A. Thomas. The effect of nonlinear quantum electrodynamics

on relativistic transparency and laser absorption in ultra-relativistic plasmas. New

Journal of Physics, 17(4):043051, 2015.

[173] C. Brady, C. Ridgers, T. Arber, and A. Bell. Gamma-ray emission in near critical

density plasmas. Plasma Physics and Controlled Fusion, 55(12):124016, 2013.

[174] H. Chang, B. Qiao, Y. Zhang, Z. Xu, W. Yao, C. Zhou, and X. He. Ultraintense laser

absorption and γ-ray synchrotron radiation in near critical density plasmas. Physics

of Plasmas, 24(4):043111, 2017.

[175] C. Brady, C. Ridgers, T. Arber, and A. Bell. Synchrotron radiation, pair production,

and longitudinal electron motion during 10-100 pw laser solid interactions. Physics of

Plasmas, 21(3):033108, 2014.
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