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Abstract 

In the past century, we have witnessed the most substantial rise in global surface temperatures for 

millennia. A considerable increase in the emission of carbon dioxide (CO2) originating from 

human activities has been identified as the leading cause of this rapid climate change. The land 

and ocean sinks take up roughly one half of anthropogenic CO2. In response to rising atmospheric 

CO2 levels and global surface temperatures, an increasing quantity of CO2 has been absorbed by 

land vegetation each year. This land sink is, however, highly variable and the precise mechanisms 

behind the recent positive trend in carbon uptake are poorly understood. Overall, this thesis aims 

to answer the question of to what extent has land vegetation functioning adapted in response to 

climate change over the past decades. This work focuses largely on northern boreal ecosystems, 

which have accounted for up to one half of the total land sink over recent years. First, atmospheric 

CO2 records are compared with land surface temperature data, which was combined with an 

analysis of model simulations to determine the extent to which northern high-latitude vegetation 

uptake is still controlled by temperature. From this analysis, it is determined that high latitude 

spring carbon uptake remained strongly controlled by temperature during the 1979-2016 period, 

contrary to previous findings. Following on from this, the thesis analyses the carbon-13 (13C) 

isotope record in the atmosphere, which is a key indicator of land vegetation functioning. A suite 

of simulations is then produced to determine the key driving factors behind the variation of 13C in 

the atmosphere. Uncertainty in the oceans is determined to be the dominating factor over 

atmospheric 13C, with vegetation productivity and soil turnover times also emerging as important 

players. Finally, shifts in the coverage of Alaskan forests are examined using remote sensing to 

detect changes over time. A deep learning model is trained with the aim of enhancing the 

consistency of the satellite record and hence improving the robustness of the estimated long-term 

trends of tree cover. This deep learning model is demonstrated to be more effective at enhancing 

the consistency of satellite data than classical means and allowing more accurate reconstructions 

of tree cover change over time. 
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1 Background 

1.1 The global carbon cycle 

In recent decades, we have witnessed unprecedented changes to the earth’s climate. Global mean 

surface temperatures during 2010-2021 were 1.1˚C higher than the 1850-1900 average (Masson-

Delmotte et al., 2021). This has been attributed to the greenhouse effect, which is the phenomenon 

in which outgoing longwave (infrared) terrestrial radiation is reflected back to the surface by gases 

in the atmosphere which causes a heating effect. We refer to gases that absorb radiation in the 

infrared range that are abundant in the atmosphere as greenhouse gases, and the overall impact of 

their effect is measured using a quantity known as radiative forcing. Radiative forcing is defined 

as the influence of a given climatic factor on the amount of downward-directed radiant energy 

impinging upon the Earth's surface. The radiative forcing of a greenhouse gas is a function of its 

build up in the atmosphere and of its capacity to absorb radiation, known as its global warming 

potential (GWP). CO2 contributes the most to the earth’s radiative forcing budget, due to its 

relatively large build up in the atmosphere since pre-industrial times, as well as its long lifetime. 

Methane (CH4) is the second biggest contributor due to its high GWP and moderate increase in 

concentrations in the atmosphere since pre-industrial times (Figure 1.1). Radiative forcing has 

increased significantly over the past decades, driven largely by increases in atmospheric 

concentrations of CO2 and CH4 (Figure 1.1).
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Figure 1.1. Radiative forcing of emitted compounds. The first column lists the substance being 

emitted; the second column lists the substance causing the radiative forcing. Bars indicate radiative 

forcing estimates relative to values before the industrial era and black whiskers indicate uncertainty 

of estimates (these values are also printed to the right of the plots) (Stocker et al., 2013). 

 

The source of greenhouse gases comes primarily from the emission of fossil fuel burning during 

energy production, predominantly oil, coal, and gas. Other significant anthropogenic contributions 

include cement production and land-use change. Human activity in the industrial era (1751 to 

present) has caused large emissions of greenhouse gases into the atmosphere. Ice core data reveals 

that pre-industrial atmospheric CO2 concentration stood at 280ppm, and, as of 2020, measurements 

taken from the longest-running CO2 monitoring site at Mauna Loa in Hawaii reveal CO2 

concentrations to be 415ppm (Figure 1.2). Half of all fossil fuel emissions since 1751 have 
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remained in the atmosphere (Friedlingstein et al., 2020). This is because the land and oceans take 

up on average roughly half of all anthropogenic emissions. 

Figure 1.2. Atmospheric CO2 concentration estimates during the industrial era. Data obtained from 

ice core data during 1700-1958 after which Mauna Loa site measurements are used. Figure taken 

from https://keelingcurve.ucsd.edu/ 

 

Carbon in the earth system is stored in several reservoirs on land and the ocean. There is a large 

degree of variability in the quantity of carbon stored in each of the earth’s land biomes (Table 1.1). 

The total carbon in the soils is roughly 5 times larger than the sum of carbon in vegetation. Nearly 

half of all vegetation carbon is held in tropical forests, however, soil carbon is more evenly 

distributed around the biomes (Table 1.1). Boreal forests contain the largest amount of combined 

vegetation and soil carbon of all biomes, with 22% of the total carbon with only 9% of the land 

area. 
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Table 1.1. Global carbon stocks in vegetation and soil carbon pools down to a depth of 1m (Bolin 

et al., 2000). Mean NPP of ecosystems when dry, with the exception of wetland ecosystems 

(Colinvaux et al., 1973; Peregon et al., 2008).  

Biome Area (109 ha) Global Carbon Stocks (GtC) NPP (g m-2 y-1) 

Vegetation Soil Total 

Tropical forests 1.76 212 216 428 2000 

Temperate forests 1.04 59 100 159 1300 

Boreal forests 1.37 88 471 559 800 

Tropical savannas 2.25 66 264 330 700 

Temperate grasslands 1.25 9 295 304 500 

Deserts and semideserts 4.55 8 191 199 70 

Tundra 0.95 6 121 127 140 

Wetlands 0.35 15 225 240 790 

Croplands 1.6 3 128 131 650 

Total 15.12 466 2011 2477 657 

 

There is, however, considerable uncertainty in the quantification of global carbon stocks (Figure 

1.3). Scharlemann et al. (2014) provided a summary of published global soil organic carbon (SOC) 

estimates and found a range of 504-3000 PgC between all 27 studies. Furthermore, they found 

significant variation within studies using similar methodologies. There was a range of 504-2469.5 

PgC in the 7 spatially explicit studies and a range of 710-3000 PgC in the remaining 20 non-

spatially explicit studies (Scharlemann et al., 2014). 
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Figure 1.3. A summary of the estimates of global soil organic carbon stocks from the literature 

through time (Scharlemann et al., 2014). Labelled numbers indicate reference studies provided in 

the supplementary data of Scharlemann et al. (2014). Red (blue) points indicate spatially (non-

spatially) explicit studies. Lines connect the minimum and maximum estimates of soil organic 

carbon within studies. 

Large quantities of carbon are exchanged between the atmosphere and land vegetation and surface 

soils, as well as the shallow depths of the oceans (Figure 1.4). Far larger quantities of carbon are 

locked in the deep ocean and geosphere, but the timescales over which carbon is exchanged with 

the atmosphere are much longer when compared to the ocean and land. 
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Figure 1.4. A diagram of fast carbon cycle processes between the land, atmosphere, and ocean. 

Arrows indicate the direction of the movement of carbon. Yellow numbers indicate natural fluxes 

and red are the human contributions (GtC yr-1) at present day. White numbers indicate stored 

carbon. Figure taken from https://earthobservatory.nasa.gov/features/CarbonCycle. 

 

A CO2 sink is defined as a carbon pool that is a net absorber of carbon, whereas a CO2 source is a 

net releaser of carbon. The land and oceans have historically been sinks of CO2, thus removing 

CO2 from the atmosphere overall. The magnitude of both the ocean and land carbon sink has grown 

in recent decades. The ocean sink increased from 1.0 ± 0.3 GtC yr-1 in the 1960s to 2.5 ± 0.6 GtC 

yr-1 during 2010-2019 (Friedlingstein et al., 2020). The ocean takes up carbon passively through 

the process of atmospheric CO2 dissolving in the ocean. The land sink has increased by a similar 

magnitude, from 1.3 ± 0.4 GtC yr-1 in the 1960s to 3.4 ± 0.9GtC yr-1 during 2010-2019 

(Friedlingstein et al., 2020) (Figure 1.5). Key drivers behind this increase in the land sink include 

climate changes leading to higher productivity and CO2 fertilisation enhancing plant growth (see 

Section 1.2). The land sink has a far greater interannual variability than the ocean, with fluctuations 
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as high as 2 GtC yr-1 compared with the ocean which varies on the order of a few tenths of GtC yr-

1 (Figure 1.5) (Friedlingstein et al., 2020). The exact mechanisms of the land carbon sink are poorly 

understood and estimates of the total land sink are subject to relatively large uncertainties. 

 

Figure 1.5. Historical sources and sinks in the Global Carbon Budget (Friedlingstein et al., 2020). 

Bottom grey line indicates the budget imbalance. Fossil fuel emission data relied on energy 

statistics and cement production data, land-use change data relied on a combination of 

bookkeeping and model estimates from the literature. Land and ocean sink data were calculated 

from the multi-model mean of estimates in the literature. 
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The oceans freely exchange carbon with the atmosphere due to CO2 reacting with water to form 

carbonic acid and bicarbonate, leading to a phenomenon known as ocean acidification. The rate at 

which the ocean takes up carbon is affected by atmospheric CO2 concentrations as well as the 

overturning circulation in which deep, carbon-rich ocean water flows upwards towards the surface 

waters (Sarmiento & Bryan, 1982). Observational data of the growth rates of surface water partial 

pressure of CO2 (pCO2) and atmospheric CO2 are strongly correlated (Takahasi et al., 2006). Land 

vegetation takes up carbon through photosynthesis and releases it through plant and soil 

respiration, the controls of which are many and complex and discussed in Section 1.2. The high 

degree of interannual variability and uncertainty in the drivers behind the land sink emphasises the 

importance of understanding the uptake and release processes to predict the impact of future 

climate change on the land sink, as well as aiding our efforts to mitigate the damage to the earth’s 

ecosystems. 

1.2 Terrestrial carbon uptake processes 

If the land sink were to maintain its current carbon absorption rate, atmospheric CO2 is projected 

to reach 600ppm by 2050 for some fossil fuel emissions scenarios (Ciais et al., 2013), which would 

be nearly a 50% increase from current atmospheric concentrations. Projections for atmospheric 

CO2 vary significantly between climate-carbon cycle models, with additional atmospheric CO2 

ranging from 20-200ppm (leading to an additional climate warming of 0.1-1.5˚C), with the 

strongest disagreement between models originating from the land sink and fossil fuel emission 

scenarios (Friedlingstein et al., 2006). The sink/source status of the land depends on the balance 

between photosynthesis, respiration, and disturbance. Land net carbon uptake is influenced by 

climate change, CO2 fertilisation, nitrogen deposition, fire, and land-use/land cover changes (Bala 

et al., 2012; Devaraju et al., 2016; Piao et al., 2013; Shevliakova et al., 2013; Tharammal et al., 

2019; Zhu et al., 2016). 

1.2.1 Climate 

Climate change has led to changes in surface temperature and precipitation patterns, both of which 

are inextricably linked with land vegetation functioning and hence its ability to sequester carbon. 

Interannual variations in the atmospheric CO2 growth rate are significantly correlated with land 
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temperature (correlation coefficient r ranges from 0.5 - 0.7 depending on the method used), driven 

primarily by tropical ecosystem carbon uptake (Wang et al., 2013). Warming over the past decades 

has given rise to a lengthening of the growing season across northern ecosystems (Park et al., 

2016), as well as an increase in summer productivity and greening (Barichivich et al., 2013; Xu et 

al., 2016). In high latitude regions, warmer springs have historically led to a greater uptake of 

carbon during springtime (Randerson et al., 1999), known as the warmer spring – larger carbon 

sink hypothesis. 

 

Warming can lead to increased autumn respiration and carbon release which could cancel out 

additional gains during spring (Keenan et al., 2014; Piao et al., 2008). Furthermore, temperature 

rises can reduce net primary productivity (NPP) in certain ecosystems if the optimal temperature 

for photosynthesis is exceeded, leading to heat stress. Recent climate change has led to an increase 

in the frequency and severity of hot extremes and heatwaves (Masson-Delmotte et al., 2021) which 

have been shown to lead to substantial releases of carbon (Ciais et al., 2005). Warmer, drier 

conditions also lead to an increase in fire occurrence (see Section 1.2.4). 

 

Changes in precipitation patterns can affect primary productivity and respiration due to changes in 

soil moisture availability but can also increase the incidence of droughts or floods. Tropical 

droughts in particular can be powerful, driving the interannual variability in the land sink during 

large drought events (Gatti et al., 2014). The interplay between precipitation and temperature is 

complex, with an increased temperature sensitivity of tropical regions in recent years, driven by 

changing moisture availability (Wang et al., 2014). The CO2 growth rate is strongly sensitive to 

observed changes in terrestrial water storage, in which drier years are associated with a greater 

increase in atmospheric CO2 (Humphrey et al., 2018). The El Niño Southern Oscillation (ENSO) 

is a mode of atmospheric variability strongly linked to precipitation patterns. ENSO has been 

linked as a key driver behind variations in the CO2 growth rate (Bacastow, 1976; Bacastow, 1977; 

Humphrey et al., 2018). 

 

There are various feedback mechanisms associated with climate and carbon uptake and release 

processes. Surface warming leads to the melting of permafrost, which causes an increase in CH4 

emissions (a greenhouse gas), therefore inducing further warming. Tipping points within the earth 
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system have been suggested, defined as a critical threshold where the movement of the system 

beyond would result in a qualitatively different mode of operation taking hold (Lenton et al., 2008). 

The threshold for boreal forest dieback due to increased water stress, peak summer heat stress and 

vulnerability to disease and fire is estimated at 3˚C above pre-industrial levels (Lucht et al., 2006; 

Joos et al., 2001). Furthermore, warmer temperatures are expected to lead to widespread 

compositional shifts in boreal forests (Anderson et al., 2011). The response of the Amazon 

rainforest to climate change is more complex, however, where a possible dieback has been 

theorised. The threshold for a dieback tipping point may be determined by a combination of land-

use change and the responses of precipitation and ENSO to global environmental changes (Lenton 

et al., 2008). However, there is disagreement between some vegetation models that predict 

Amazon dieback (Li & Dickinson, 2006), and global climate models that do not predict it 

(Schaphoff et al., 2006). Thus, it is still an open question as to what the fate of the Amazon will 

be under future climate change and continuing deforestation in the Amazon. 

1.2.2 CO2 fertilisation 

Experimental evidence shows an increase in leaf photosynthesis when plants are exposed to 

elevated CO2 levels (Koerner, 2006). CO2 is a key component in photosynthesis; therefore, 

elevated CO2 fertilises primary productivity directly (Farquhar et al., 1980; Kimball et al., 1993). 

Furthermore, elevated CO2 levels lead to a reduced stomatal opening and therefore reduced water 

loss hence further benefitting plant water use efficiency (Cowan & Farquhar, 1977; Field et al., 

1995). CO2 fertilisation was tested under controlled conditions using the free-air CO2 enrichment 

(FACE) approach (Norby et al., 2005). Norby et al. measured a 23% increase in NPP after doubling 

CO2 concentrations from pre-industrial levels. The growth in the land sink has been attributed 

primarily to the CO2 fertilisation effect (Sitch et al., 2015), with 60% of the current sink attributed 

to it (Schimel et al., 2015). However, there are large uncertainties with estimates of the magnitude 

of the CO2 fertilisation effect on land vegetation functioning (Friedlingstein et al., 2013; Friend et 

al., 2014). There are also additional uncertainties with respect to the longer-term dynamics of the 

response of forests to CO2 fertilisation (Buggmann et al., 2020; Brienen et al 2020). Furthermore, 

a strong dependence is evident of CO2 fertilisation on plant species as well as soil and air 

temperature, and availability of water and nutrients (Mcgrath & Lobell, 2013). Projections of the 
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future impacts of CO2 fertilisation reveal a decrease in the sensitivity of terrestrial carbon storage 

to atmospheric CO2 levels (Walker et al., 2020). 

1.2.3 Nitrogen  

Nitrogen limitations can dampen the CO2 fertilisation effect because nitrogen is a major 

component in chlorophyll, which is essential for photosynthesis to occur. Projections of the future 

impacts of CO2 fertilisation reveal a decrease in the sensitivity of terrestrial carbon storage to 

atmospheric CO2 levels (Walker et al., 2020). Nitrogen deposition is caused by emissions of 

reactive nitrogen species into the atmosphere (Vitousek et al., 1997). Atmospheric nitrogen 

deposition originates from both biological and anthropogenic sources. However, anthropogenic 

emissions have increased substantially in recent years (Leonardi et al., 2012) and now dominate 

over biological sources in many regions (Galloway et al., 2008; Schlesinger et al., 2009). Nitrogen 

deposition can have damaging effects on human health due to ingestion of nitrites and nitrates in 

polluted drinking water, leading to a reduction in the oxygen-carrying capacity of haemoglobin 

(Camargo & Alonso, 2006). Furthermore, excessive nitrogen deposition can negatively impact 

growth (Liu et al., 2011) as well as reduce biodiversity (Bobbink et al., 2010) in terrestrial and 

aquatic ecosystems. However, increased nitrogen deposition has led to increases in nitrogen 

availability and leaf nitrogen (Hietz et al., 2011). An enhancement of the land carbon sink as a 

result of increased nitrogen inputs may be as high as 10% by 2030, although a more conservative 

estimate of 1-2% is more likely (Reay et al., 2008). 

 

Most terrestrial ecosystems are somewhat limited by nitrogen availability (Vitousek & Howarth, 

1991), with signs that when nitrogen is limiting, the influence of CO2 fertilisation on plant 

productivity is reduced and the sign of the feedback between climate and carbon uptake can be 

reversed (Sokolov et al., 2008). An initial increase in plant growth due to CO2 fertilisation leads 

to sequestration of nitrogen hence reducing soil mineral nitrogen and leading to nitrogen limitation 

on further growth (Luo et al., 2004). Increased nitrogen limitations on growth as a result of CO2 

fertilisation were confirmed using a terrestrial biosphere model (Bonan & Levis. 2010). 
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1.2.4 Fire 

Estimates of total fire emissions range from 1.8 - 3.0 PgC yr-1 (Van der Werf et al., 2017), with 

50% of global fire emissions originating from Africa. The next highest fire emissions originate 

from South America with 15% of global emissions. Roughly one-third of the variations in net land-

atmosphere fluxes are caused by fire emissions (Keppel-Aleks et al., 2014, Prentice et al., 2011). 

 

The climate is changing in regions with large quantities of organic carbon and where fires dominate 

the distribution of plants and soil carbon. Surface warming is associated with an increase in fire 

frequency, severity, and extent (Little et al., 2010; Skinner et al., 2006; Tymstra et al., 2007). 

Throughout the industrial era, human activity has had an increasing influence on fire occurrence 

(Bowman et al., 2011). A 2007 report linked 90% of fires directly or indirectly to human activities, 

power lines, or machinery (FAO, 2007). Deforestation zones have witnessed substantial increases 

in fire occurrence, however, intentional fire suppression techniques and conversion away from 

fire-prone landscapes (such as savannah to agriculture) has led to a reduction in fire activity 

(Andela & van der Werf, 2014; Bowman et al., 2009; Nowacki & Abrams, 2008). 

 

Fires lead to losses in vegetation and soil carbon during the event, but also a legacy effect has been 

identified (Wan et al., 2014). Wan et al. found that fire size and severity had positive effects on 

aspen regeneration. However, high severity fires have been demonstrated to greatly reduce the 

resilience of forests to future fire events, when compared with low-to-moderate severity fires 

(Harris et al., 2020). 

1.2.5 Land-use change 

Land-use and land cover change (LULCC) is the process through which human activities transform 

the natural landscape. It encompasses any conversion between land cover types, for example, the 

conversion of forest to croplands. LULCC is nearly always associated with changing carbon stocks 

(Watson et al., 2000). This is because there is an equilibrium between inflows and outflows from 

the carbon pools that are disrupted by LULCC such that a new equilibrium is created which alters 

the carbon stocks available (Fearnside & Barbosa 1998).  
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Since 1850, cumulative LULCC has accounted for roughly one-third of total anthropogenic CO2 

emissions (Boden et al., 2013; Friedlingstein et al., 2020). Before 1940, when the land sink was 

not growing significantly, LULCC accounted for nearly the entire net terrestrial flux to the 

atmosphere (Houghton, 2013). Over the past 20 years, however, the net flux of LULCC emissions 

accounted for only 15% of anthropogenic carbon emissions (Friedlingstein et al., 2020). However, 

LULCC emissions have increased steadily over the past 20 years, accompanied by an increase in 

the spread between model estimates of LULCC (Friedlingstein et al., 2020). The uncertainty in 

LULCC is due to uncertainties in the rates of deforestation and afforestation, as well as 

uncertainties in the carbon density of land going through change (Houghton et al., 2012). 

Bookkeeping models have been used to estimate LULCC (Hansis et al., 2015), but they do not 

account for the effects of environmental changes on carbon stocks before and after LULCC occurs 

(Pongratz et al., 2014). Alternatively, dynamic global vegetation models (DGVMs) are utilised to 

estimate LULCC emissions and are able to estimate legacy carbon fluxes. However, estimates of 

LULCC differ significantly between different DGVMs, even when using the same inputs of land 

cover change data. Accurate forest cover maps, such as those produced by Hansen et al. (2013) 

can improve our understanding of how vegetation responds to disturbances, and greatly enhance 

the accuracy with which we estimate carbon loss (DeFries et al., 2002). The maps produced by 

Hansen et al. (2013) have global coverage and high resolution, but the first percentage tree cover 

estimates date back to 2000, thus they do not provide information on disturbance responses over 

longer timescales. 

1.3 The high northern latitude carbon cycle 

1.3.1 The high northern latitude sink 

The high northern latitudes are significant sinks of carbon, accounting for up to 60% of the total 

land sink (Mcguire et al., 2009). The boreal zone has consistently been a net carbon sink for the 

past decades (Dolman et al., 2012). Boreal forests contain 88 GtC of vegetation carbon and 471GtC 

soil carbon and mean NPP of 800 g m-2 y-1 (Table 1.1). The relatively large soil carbon stocks 

present make the boreal zone an important region for the mitigation of climate change. However, 

the uncertainties of soil carbon stocks are very high (Figure 1.3). 
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Soil, sediment, or rock material that are continuously exposed to sub-zero temperatures are 

collectively referred to as permafrost. 24% of high northern latitude land is covered by permafrost, 

where vast quantities of carbon are stored (Zhang et al., 2000). Permafrost regions contain twice 

as much carbon as the total in the atmosphere (Tarnocai et al., 2009). The thawing of permafrost, 

and subsequent decomposition of the soils, may lead to large releases of CH4 (in addition to CO2) 

into the atmosphere, which is a concern for influencing future climate change due to the relatively 

large radiative forcing when compared with CO2. 

 

Estimates based on inventory data and process models indicate that forests across North America 

were near-neutral or small sinks of carbon (Balshi et al., 2007; Chen et al., 2000; Myneni et al., 

2001). In contrast, forest inventory data show that Eurasian forests provide a larger net carbon sink 

than those in North America (Beer et al., 2006; Myneni et al., 2001). Due to the large uncertainties 

in estimating the land sink, the precise contribution from different regions is poorly understood 

and the sink or source status of the Arctic is unknown (Mcguire et al., 2012).  

 

An increase in high latitude vegetation productivity has occurred over the past decades as a result 

of CO2 fertilisation (Norby et al., 2005) and longer growing seasons (Piao et al., 2007). However, 

the effects of climate change in this region are not straightforward. Hayes et al. (2011) used the 

Terrestrial Ecosystem Model to show that warming-induced increases in soil organic matter 

decomposition and increases in fire emissions are potential mechanisms behind possible reductions 

in the high latitude land sink in recent decades. Boreal wildfires have increased in occurrence due 

to climate warming and drying (de Groot et al., 2013), and burning of legacy carbon threatens to 

change the sink-or-source status of the boreal zone (Walker et al., 2019). 

1.3.2 Response to recent climate change 

Northern lands have undergone substantial warming over the past decades (0.3˚C – 1.0˚C decade-

1), with clear implications on vegetation functioning (Walther et al., 2002). The responses of 

vegetation to temperature rise include increased height and coverage of shrubs but also a decrease 
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in biodiversity across tundra regions (Walker et al., 2006). Warming has led to a northern advance 

of the treeline, which enhances the high northern latitude sink, as well as causing shifts in species 

abundance (Macdonald et al., 2007). The northern treeline advance has been ubiquitous, but with 

significant variation between sites (Lloyd, 2005). Warming has been shown to have both positive 

and negative effects on aboveground biomass at the treeline. Drought stress has emerged as an 

additional limiting factor, effectively changing the sign of the influence of temperature on tree 

expansion (Wilmking et al., 2005). 

 

Year-to-year variations in carbon uptake and release have historically been strongly controlled by 

temperature. Warmer springs have tended to result in earlier advancement of the growing season 

(Myneni et al., 1997; Menzel et al., 2006), leading to enhanced spring carbon uptake (Richardson 

et al., 2010; Randerson et al., 1999). Greater carbon release later in the year can be caused by 

earlier autumn senescence due to earlier springs (Keenan et al., 2015) and by warmer autumns 

(Piao et al., 2008). Buermann et al. (2018) confirmed the former hypothesis with an analysis of 

remotely sensed data, where they demonstrated significant adverse lagged effects of warmer 

springs on the accumulation of seasonal water deficits. 

 

Permafrost ecosystems currently account for up to 7% of global CH4 emissions (Kirschke et al., 

2013). However, temperature rises are expected to lead to large releases of CO2 from permafrost 

soils (Schuur & Abbott, 2011). As a result of rising temperatures driving permafrost thaw, tundra 

ecosystems have been predicted to transition from a sink to a source in the coming decade (Schuur 

et al., 2015), however, this has yet to occur in the years since this study. 

1.4 Inference of the carbon cycle from atmospheric data 

Land photosynthesis and respiration are the dominant controls over the seasonality of atmospheric 

CO2. As a result, the CO2 seasonal cycle is a useful tool in gaining insight into the workings of the 

terrestrial biosphere. Through analysis of the changes over time of the seasonal cycle, it is possible 

to infer changes in productivity, net carbon uptake or release during all times of the year, and the 

shifting or lengthening of the photosynthetic period. 
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In order to analyse the seasonal cycle, the long-term trend must be removed. Isolating the seasonal 

elements of the CO2 data can be done using various smoothing procedures. The most common 

procedures are Carbon Cycle Group CuRVe (Thoning et al., 1989), HPSpline (Bacastow et al., 

1985; Keeling et al., 1986; 1989) and Seasonal-Trend Decomposition Procedure Based on Loess 

(STL) (Cleveland et al. 1990). Each procedure has its own set of strengths and limitations for the 

type of analysis to be conducted (Pickers & Manning 2014). After detrending the time series and 

obtaining the seasonal cycle, there are a number of indices that are indicative of land vegetation 

functioning, which are discussed forthwith.  

1.4.1 CO2 amplitude 

The CO2 amplitude is calculated from the seasonal cycle yearly minima subtracted from the 

maxima. This is an indicator of seasonal variation in plant productivity and respiration. An increase 

in the amplitude implies that spring/summer productivity is increasing and/or winter release of 

carbon is increasing. The CO2 amplitude has a strong latitudinal gradient, as northern high latitude 

regions experience the largest amplitudes, and the most southerly regions experience very small 

amplitudes (Figure 1.6). This is due primarily to the northern hemisphere containing far more land 

than the southern hemisphere and because of greater intra-annual variability in climate across the 

high latitudes, where net land carbon uptake varies significantly over the course of the year. 
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Figure 1.6. Variation in atmospheric CO2 from measurement stations at a range of latitudes. Dots 

represent individual measurements from in-situ data and lines indicate the smoothed curve. Figure 

taken from Keeling et al. (2017). 

The CO2 amplitude has increased globally since the 1960s (Keeling et al., 1996), with amplitudes 

north of 45˚N increasing by 50% over the last 50 years, compared with less than 25% in the 10˚N 

to 45˚N region (Graven et al., 2013). The latitudinal gradient of CO2 amplitude increase has been 

attributed to climate-driven increases in photosynthetic carbon uptake, mediated by changing land 

cover in northern ecosystems (Forkel et al., 2016). There is some evidence that the relationship 

between CO2 amplitude and temperature is shifting. Yin et al. (2018) demonstrated that the 

correlation between detrended amplitude and detrended air temperature shifted from positive to 

negative around the year 2000 in the majority of northern hemisphere ground stations. The driver 
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behind this was suggested to be due to a breakdown in the warmer spring - larger carbon uptake 

and the warmer winter - larger carbon release hypotheses due to factors other than temperature 

controlling vegetation productivity, such as an increasing light limitation on spring growth. 

1.4.2 Spring and autumn zero crossings 

The spring zero crossing (SZC) is calculated from the day of the year when the CO2 seasonal cycle 

passes downwards through the yearly mean (Figure 1.7). The SZC is a misnomer, due to the fact 

that the occurrence of the SZC is often during summer at most northern latitude CO2 measurement 

sites. The SZC is indicative of the timing of spring vegetation green-up and is strongly associated 

with the mass of carbon that has been taken up by land vegetation during early spring. The SZC 

was correlated with the timing of spring thaw and the start of the thermal and photosynthetic 

growing seasons (Barichivich et al., 2013). More recently, Piao et al., (2017) showed that the SZC 

at the Barrow observatory was strongly correlated with land surface temperature averaged over 

vegetated land north of 50˚N during the 1979-1995 period, but the correlation broke down in the 

following years. From this, they deduced that the control of spring temperature on high northern 

latitude vegetation productivity has broken down. While intriguing, the analysis of Piao et al., 

(2017) did not account for several pertinent factors. Firstly, the comparison between the SZC at 

Barrow and spring temperature averaged over land north of 50˚N assumes that the air masses 

arriving at Barrow circulated uniformly across this region, with no significant year-to-year 

variability. Secondly, the factorial simulations conducted in the analysis did not include a run in 

which atmospheric transport was held constant. Rather, the influence of atmospheric transport was 

ascertained from the simulation in which net ecosystem exchange (NEP) fluxes were held constant, 

with atmospheric transport varying. The issue with this approach is that atmospheric transport and 

climate are inextricably linked, thus the full extent of the influence of atmospheric transport is not 

clear. A study by Murayama et al. (2007) demonstrated the powerful influence of atmospheric 

transport on the SZC at Barrow, hence ensuring the importance of re-examining the data from Piao 

et al. while probing deeper into the influence of atmospheric transport. The Autumn zero crossing 

(AZC) is calculated identically to the SZC, except it is the upward zero crossing later in the year 

(Figure 1.7). The AZC is indicative of the timing of autumn senescence, as well as a proxy for the 

release of carbon during autumn. Liu et al (2018) analysed the relationship between the AZC at 

Barrow and temperature averaged over the footprint region of Barrow. They found that warming 
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significantly enhanced net CO2 release from the land throughout the entire record, but with 

attenuation emerging in the late 1990s. This was attributed to a reduction in the respiration 

response to temperature because of plant-derived carbon inputs to the soil being no longer 

controlled primarily by temperature variations due to limited radiation available during the 

dormant season. 

 
Figure 1.7. Depiction of the smoothed CO2 seasonal cycle at the Barrow observatory (curved line). 

Horizontal line indicates the yearly mean of CO2 concentrations (zero-centred). Vertical lines 

indicate the (left) SZC and (right) AZC. 

1.4.3 Carbon-13 isotope 

Discrimination of carbon-13 (13C) during oxygen photosynthesis is a key indicator of water use 

efficiency in plants. 13C makes up roughly 1% of the carbon in the earth system. The global 

increase in atmospheric CO2 concentration throughout the industrial era has been accompanied by 

a corresponding decrease in the ratio between 13C and 12C. The depleted nature of fossil fuels is 

due to the carbon within it being originally fixed through photosynthesis, a process in which 12C 

is preferentially taken up over 13C, known as fractionation. C3 plants with higher water use 

efficiency will discriminate against 13CO2 more strongly than a C4 plant with lower water use 

efficiency. In general, land vegetation fractionates against 13C far more strongly than the oceans, 
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therefore having a greater effect on the isotopic composition of the atmosphere. Analysis of 

atmospheric 13C records have been used to distinguish between oceanic and land sinks in the 

carbon budget (Keeling et al., 1995; Quay et al., 1992; Trudinger et al., 2005). This is not 

straightforward, however, because land fractionation can vary significantly depending on 

environmental conditions, as well as the photosynthetic pathway used (Farquhar et al., 1989). Van 

der Velde et al. (2013) identified a gap in the global δ13C budget due to a discrepancy between 

modelled atmospheric δ13C and observations. Keeling et al. (2017) demonstrated, using a simple 

box model, that the δ13C budget could be closed with an increase in land C3 vegetation 

discrimination, leading to the conclusion that land vegetation has increased water-use efficiency 

in line with rising atmospheric CO2 levels. Thus, analysis of atmospheric δ13C levels can provide 

indications of land vegetation functioning at a global scale. 

1.5 Modelling the carbon cycle  

In order to better understand the mechanisms underlying carbon uptake and release processes, 

modelling procedures can be undertaken. Comparisons between modelled atmospheric CO2 given 

prescribed fluxes and atmospheric concentration data can provide insights into the functioning of 

the land and ocean carbon sinks. Modelling the global average fluxes of carbon can be achieved 

using ‘box models’, where each reservoir of carbon is treated as a well-mixed zero-dimensional 

box. Box diffusion models include vertical diffusion of carbon in the ocean (Oeschger et al., 1975) 

and advective-diffusion models include convection of carbon in the ocean (Bacastow & 

Björkström, 1981). The advantages of box models lie in their simplicity and the ease with which 

results can be interpreted. To produce simulations of atmospheric CO2 at a given location requires 

the production of gridded estimates of each of the significant sinks and sources of carbon in the 

earth system. These must then be fed into an atmospheric transport model so that CO2 can be 

simulated at a given sample location. The land-atmosphere carbon flux with the lowest uncertainty 

comes from fossil fuels, where high-quality 2D gridded data is available from the Carbon Dioxide 

Information Analysis Center (Andres et al., 2016). This source provides fossil fuel CO2 emissions, 

as well as 13CO2 emissions (which are also gridded). 
 

Simulating carbon uptake and release of the ocean can be done with various methods. The 

Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM) is a level-
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coordinate ocean model, in which the ocean is divided into boxes whose bottoms are located at 

fixed depths. This approach enables solving the equations of fluid motion in the model to be done 

efficiently, however, there are limitations with its ability to accurately model thin bottom boundary 

layers (Winton et al., 1998). Model setups with constant density layers can resolve this limitation 

but introduce new issues with representing the ocean mixed layer.  

 

The Carnegie-Ames-Stanford Approach (CASA) model was initially developed to simulate long-

term changes in vegetation carbon over a 2-dimensional grid (Potter et al., 1993). CASA estimates 

NPP using a light-use efficiency approach, a major component that incorporates satellite data 

estimating the fraction of photosynthetically active radiation (FPAR) at each grid cell. The carbon 

fixed via NPP is then split among the various vegetation, microbial, and soil pools in CASA, where 

a series of first-order differential equations are resolved at each time step to determine the flow of 

carbon between each of the pools and with the atmosphere. A more detailed description of CASA 

is given in Chapters 2 and 3. 

 

Modelling the atmospheric transport of CO2 accurately is an important process in order to 

accurately predict atmospheric concentrations given prescribed fluxes. TOMCAT is an 

atmospheric chemistry and transport model, which has been used to simulate the atmospheric 

chemistry of active atmospheric trace gases (Chipperfield et al., 1993). CO2 emissions can be 

prescribed in TOMCAT simulations, which uses European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim meteorology (Dee et al., 2011), to produce gridded fields of 

simulated atmospheric CO2. These simulations can then be compared with observational CO2 data 

from the vast network of monitoring sites in the National Oceanic and Atmospheric Administration 

Global Monitoring Laboratory Earth System Research Laboratories (NOAA GML/ESRL) or 

Scripps programs (Keeling & Keeling, 2017).  

1.6 Research Aims 

The overall objective of this thesis is to better understand the response of land vegetation to recent 

climate change. As discussed in the preceding sections, there are various methods of measuring 

the response of vegetation functioning to climate change. This thesis employs the use of remotely 
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sensed satellite imagery of vegetation, in-situ CO2 measurements, isotopic records in the earth 

system, and modelling procedures using classical and machine learning approaches. The variety 

of techniques utilised enables a wider net to be cast over the terrestrial biosphere and a fuller 

picture can be obtained of the underlying drivers behind global change. The specific aims that were 

constructed in order to achieve this are as follows: 

Aim 1: Investigate the temperature sensitivity of high northern latitude vegetation spring carbon 

uptake using atmospheric data. 

Aim 2: Quantify the sensitivities of simulated global atmospheric δ13C to uncertainties in the 

carbon cycle. 

Aim 3: Evaluate the effect of disturbance on tree cover using a novel deep learning technique in 

remote sensing. 

 

The importance of the high northern latitude land sink is outlined in Section 1.3, with temperature 

emerging as a key limitation on plant growth. Spring carbon uptake has historically been strongly 

controlled by land surface temperature in the boreal zone, however, Piao et al. (2017) suggested 

that this control has broken down. However, there are numerous issues with their approach due to 

the fact that atmospheric transport was not explicitly accounted for (see Section 1.4.2). Addressing 

Aim 1 requires the use of data from the NOAA GML/ESRL program (Thoning et al., 2020), from 

which the SZC and SCC indices were derived from data retrieved from the Barrow observatory. 

The research employed the use of the HYSPLIT4 trajectory model in order to ascertain the 

footprint regions of Barrow. This enabled the attribution of regions of influence over Barrow 

during each month of the study period. Following on from this, the CASA land surface model was 

combined with the TOMCAT atmospheric chemistry model to perform factorial simulations to 

analyse the relative importance of changes in climate and atmospheric transport. Finally, the 

analyses are framed in the context of whether or not high latitude spring terrestrial carbon uptake 

remains controlled by temperature. 

 

Changing water use efficiency is an important adaptation that plants may need to make in order to 

survive in a world with rapidly changing atmospheric CO2 and moisture availability. In section 

1.4.3 the importance of studying atmospheric δ13C for understanding terrestrial carbon uptake was 
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outlined. Such analyses have the potential to pertain to information about soil turnover times and 

the partitioning between the ocean and land sinks. Addressing aim 2 involves a modified CASA 

model, in which 13CO2 is modelled alongside 12CO2. Ocean-atmosphere fluxes of 12C and 13C are 

obtained from GFDL ocean simulations (Claret et al., 2021), which are used alongside fossil fuel 

emissions obtained from CDIAC (Boden et al., 2009; Andres et al., 2016). Using this setup, an 

investigation is undertaken into the sensitivities of atmospheric δ13C to various uncertainties of 

land and ocean uptake. 

 

The effects of climate and CO2 fertilisation on the functioning of vegetation were discussed in 

detail in Section 1.2. There, the importance of high-quality tree cover mapping was laid out as a 

key tool to further our understanding of the response of vegetation to disturbance events. Accurate 

mapping of forest growth over the past decades would further provide an indicator of the sensitivity 

of tree cover expansion to atmospheric CO2 (among other factors). However, without a consistent 

satellite record, it is difficult to apply tree cover estimation algorithms beyond the current 

generation of satellites. To address Aim 3, a deep neural network is trained to emulate Landsat 7 

imagery using Landsat 5 images. This is then combined with a tree cover random forests model to 

produce a continuous map of tree cover in a region in eastern Alaska. This study is one of the first 

to train a deep neural network model for remote sensing purposes, entirely using cloud-based 

resources. 

1.7 Layout of this thesis 

As detailed in section 1.6, this thesis aims to better understand the response of terrestrial 

ecosystems to environmental change in the past decades. Chapter 1 has laid out an overview of the 

literature to motivate the work carried out in this thesis and then outlined the primary research 

questions that are to be addressed. The remainder of this thesis consists of three research chapters 

and a synthesis chapter. 

 

Chapter 2 is a study of the temperature sensitivity of high northern-latitude lands using the CO2 

measurements at the Barrow observatory in Alaska alongside modelling of atmospheric CO2 using 

the land surface model CASA and the atmospheric chemistry model TOMCAT. Chapter 3 is an 
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analysis of the sensitivities of atmospheric δ13C using CASA, alongside simulations from the ocean 

GFDL model. Estimates of uncertainty of land and ocean processes are obtained from the 

literature, as well as the ocean simulations themselves. Chapter 4 is an exploration into the use of 

deep neural network techniques to improve the consistency of satellite data to enhance estimates 

of tree cover and quantify the effect of environmental change on tree cover.  

 

The key findings from Chapters 2-4 are synthesised and discussed in Chapter 5.  This section lays 

out a more in-depth analysis of the results, in which the methodologies are criticised. This is then 

followed by a discussion on the implications for further research as a result of the work carried out 

in this thesis. Finally, concluding statements are made about the extent to which the aims set out 

in the opening chapter have been achieved. 
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2 How robust is the apparent break-down of 

northern high-latitude temperature control on 

spring carbon uptake? 

Abstract 

Vegetation growth in northern high-latitudes during springtime is strongly temperature limited, 

and thus anomalously warm springs are expected to result in an increased drawdown of carbon 

dioxide (CO2). However, a recent analysis of the relationship between spring temperature 

anomalies and atmospheric CO2 anomalies at Point Barrow, Alaska, suggests that the link between 

spring carbon uptake by northern ecosystems and temperature anomalies has been weakening over 

recent decades due to a diminishing control of temperature on plant productivity. Upon further 

analysis, covering the 1982-2015 period, we found no significant change in the relationship 

between spring vegetation productivity derived from remote sensing data and air temperature. We 

showed that a reduction in spatial coherence of temperature anomalies, alongside a significant 

sensitivity to atmospheric transport, is likely responsible for the apparent weakening. Our results, 

therefore, suggest that spring temperature remains as an important control of northern high-latitude 

CO2 uptake. 

2.1 Introduction 

Land vegetation has been a significant sink of atmospheric CO2 over past decades, taking up 

roughly a quarter of emissions from fossil fuels and land-use change (Friedlingstein et al., 2019). 

Towards the end of the 20th century, the Arctic and boreal ecosystems took up between 0.3 and 0.6 

PgC yr-1 – representing a significant fraction of the global land sink of 1.0 PgC yr-1 during this 

period based on top-down and bottom-up carbon budget estimates (McGuire et al., 2009). Previous 

studies also indicate that this northern carbon sink has also accelerated in recent decades (Wang et 

al., 2013; Ciais et al., 2019). In a warming world, it is important to understand how the relationship 
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between climate and carbon uptake in the northern high-latitudes is evolving if we are to 

understand the future behaviour of the land carbon sink. 

 

A valuable metric for understanding the carbon cycle in the northern hemisphere is the atmospheric 

CO2 seasonal cycle. This cycle exhibits a yearly maximum during the colder months when CO2 

release processes (respiration) dominate, and a yearly minimum during the warmer months when 

photosynthesis dominates. Keeling et al. (1996) noted that the amplitude of CO2 seasonal cycle 

(defined as the difference between annual maximum and minimum) has been increasing over time 

and that the fastest changes were occurring in northern high latitudes. They also showed that the 

increase in the CO2 seasonal amplitude was correlated with northern temperature anomalies and 

accompanied by a phase advance during the declining phase of the seasonal cycle of CO2 giving 

rise to the hypothesis that longer growing seasons are associated with warmer temperatures. A 

more recent analysis of global CO2 records confirms that this phenomenon is continuing, showing 

that the CO2 seasonal amplitude at the Barrow (Nuvuk) Observatory in Alaska (hereafter referred 

to as Barrow) increased by 0.60% per year from 1961 to 2011 (Graven et al., 2013). 

 

Respiration and photosynthesis are both strongly affected by temperature, and the competition 

between them is expected to lead to different responses of net carbon uptake to temperature 

throughout the year. Observational and model evidence suggest that warming during spring leads 

to increased carbon uptake while warming during autumn leads to decreased carbon uptake during 

each respective period (Randerson et al., 1999, Piao et al., 2008). This is explained by the stronger 

response of photosynthesis (relative to respiratory processes) to warming during springtime, 

whereas in fall the respiration sensitivity to warming exceeds that of photosynthesis (Piao et al., 

2008).  

 

Recently, Piao et al. (2017) (hereafter P2017) showed that the springtime relationship between 

northern high-latitude temperature and concurrent CO2 uptake (inferred from atmospheric CO2 

data measured at Barrow) has substantially weakened since the mid-1990s. In their study, this 

phenomenon was attributed to a weakening of the temperature control on plant productivity based 

on factorial simulations with biospheric and atmospheric transport models (P2017). These results, 

therefore, challenge the “warmer spring – larger carbon sink mechanism”, and may be indicative 
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of approaching a new regime in which other climatic constraints, such as “reduced chilling during 

dormancy” and “an emerging light limitation”, play a more dominant role in determining spring 

carbon uptake across northern land (P2017). 

 

While these results are intriguing, influences of atmospheric circulation patterns on findings that 

are based on single CO2 monitoring stations cannot be ruled out. The Arctic Oscillation (AO), an 

atmospheric circulation regime which has a powerful influence over wind patterns and near-

surface climate patterns in the high northern latitudes (Thompson et al., 1998), could play an 

important role here. In this regard, it is notable that the change in correlation between spring 

vegetation activity and temperature between the two focal periods 1982-1996 and 1997-2012 

(which we refer to as the early/late period), as shown in Figure 3j of P2017, has a spatial pattern 

that strongly resembles an AO pattern (Figure S2.1). This led us to investigate further if the 

apparent weakening temperature control on spring carbon uptake (P2017) was influenced by large-

scale atmospheric circulation patterns. 

 

P2017 investigated the effect of holding land fluxes constant while atmospheric transport varies. 

They analysed the spring zero crossing (SZC), an indicator of the timing and magnitude of spring 

carbon uptake by land vegetation. P2017 found that the correlation between the SZC and 

temperature reduces significantly during the early period (when compared with the control), 

although there is still a clear difference in correlation between the two periods. However, there is 

no simulation in P2017 in which transport is held constant, so it is not possible to determine the 

strength of the interaction effect between land fluxes and transport.  

 

We therefore aim to explore the role of atmospheric transport in the apparent weakening of the 

link between springtime northern temperatures and carbon uptake in more detail. Unlike P2017, 

we use interannually-varying footprints of Barrow during spring calculated with the HYSPLIT4 

atmospheric trajectory model (Stein et al., 2015) to better understand corresponding influences. 

To gain additional information on the drivers of spring carbon uptake across northern land, we 

then performed factorial forward simulations combining modelled land-atmosphere carbon flux 

exchanges (based on the Carnegie-Ames-Stanford Approach (CASA) land-surface model (Potter 
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et al., 1993; Randerson et al., 1996)) and the TOMCAT atmospheric chemistry-transport model 

(Chipperfield, 2006). 

2.2 Materials and Methods 

2.2.1 Atmospheric CO2 and analysis of SZC 

We analysed the daily in-situ CO2 record at the Barrow Observatory, Alaska (71˚N, 156˚W) from 

the National Oceanic and Atmospheric Administration (NOAA) Earth Research 

Laboratory/Global Monitoring Division program (Thoning et al., 2020). The raw CO2 data were 

smoothed using the Carbon Cycle Group CuRVe (CCGCRV) routine (Thoning et al., 1989), from 

which we obtained the detrended smoothed seasonal cycle (see Text S2). The SZC is defined as 

the day of the year when the CO2 levels pass through zero in the detrended smoothed seasonal 

cycle. Similarly, an additional metric for spring carbon uptake known as spring carbon capture 

(SCC) is calculated from the difference between the first week of May and last week of June in 

the detrended smoothed seasonal cycle. Our definition of early and late period shifts to 1979-1995 

and 1996-2012, respectively, when analysing SZC and SCC due to the availability of data during 

the 1979-1981 period. 

2.2.2 Climate and vegetation data 

Satellite NDVI (or greenness) data were used as a proxy for vegetation productivity. Monthly data 

were obtained from the Global Inventory Modelling and Mapping Studies (GIMMS) Version 3g 

Advanced Very-High Resolution Radar (AVHRR) dataset (Pinzon and Tucker 2014) over the 

1982-2015 period, means-aggregated to a spatial resolution of 0.25˚ (from their native resolution 

of 8km). An additional satellite product used as a proxy for productivity is the Fraction of 

Photosynthetically Active Radiation (FPAR) (Zhu et al. (2013). Monthly 0.5˚ resolution air 

temperature, precipitation and cloud cover data were taken from the Climatic Research Unit TS 

4.01 datasets (https://crudata.uea.ac.uk/cru/data/hrg/; Harris et al., 2014), during the 1979-2016 

period, with spatial averages calculated over vegetated land, indicated by an NDVI value greater 

than 0.1. During years in which no NDVI data were available (1979-1981 and 2016), the NDVI > 

0.1 mask was calculated from averages taken of the 3 chronologically closest years. For calculating 
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the detrended spatial average of NDVI and climate data, we detrended the data at each pixel, then 

summed over the region of interest. The AO dataset was obtained from December to March 

averages taken from the NOAA teleconnections dataset. More information is available from 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml 

2.2.3 HYSPLIT4 footprints 

Back trajectories, calculated using National Centers for Environmental Prediction meteorological 

data, were used to track the source of the springtime CO2 signal. Trajectories starting at Barrow 

during the March-June period were computed every 6 hours. Each back trajectory was extended 

30 days backwards in time with locations sampled every hour. For footprint-weighting of 

temperature and NDVI, we multiplied the temperature and NDVI respectively by the monthly 

average footprint (units of hours), before averaging the March-June value for each year. 

2.2.4 Factorial simulations 

We used an observation-based modelling approach to simulate atmospheric CO2 at Barrow with 

the CASA land-surface model feeding Net Ecosystem Exchange (NEE) fluxes into the TOMCAT 

atmospheric chemistry model.   

 

CASA uses a simple light-use efficiency approach to estimate Net Primary Productivity (NPP) as 

follows: 

 
[2.1] 

where FPAR is the fraction of photosynthetically active radiation, SLR is ECMWF ERA-Interim 

1D solar radiation (Dee et al., 2011), LUEmax is the maximum light use efficiency which is based 

on estimated values for each biome type, the temperature and moisture scalars (ftemp and fmoist 

respectively) reduce NPP proportional to their deviation from optimal values, and solar conversion 

(SC) converts to solar units. NPP of herbaceous and woody vegetation is calculated separately with 

different moisture scalars. CASA uses a series of first-order, linear differential equations to 
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calculate heterotrophic respiration and the flow of carbon between each of the soil and vegetation 

pools. 

 

The NEE fluxes from CASA were applied as surface boundary conditions in TOMCAT, as well 

as fossil fuel emissions from the Carbon Dioxide Information Analysis Center (Andres et al., 2016) 

and monthly air-sea CO2 gas fluxes from an ice-ocean-biogeochemical coupled model of the 

NOAA Geophysical Fluid Dynamics Laboratory forced with COREv2 normal year atmospheric 

forcing and historical CO2 atmospheric concentrations (Claret et al., 2021). TOMCAT used 

ECMWF ERA-Interim meteorology (Dee et al., 2011), running on a 2.8˚ horizontal grid with 60 

vertical levels up to 0.1hPa to simulate transport and mixing of atmospheric CO2. Simulated CO2 

concentrations were then sampled at the locations of the measurement sites every 6 hours, after 

which, daily averages were taken, and the simulated daily CO2 time series treated identically to 

the observed CO2 data outlined in Section 2.2.1. 

 

We conducted several experiments where we changed components of the CASA model. 

Specifically, we performed simulations in which we kept the following CASA driver variables at 

their climatological mean values (with their referenced names in parentheses): Temperature scalar 

(TMP), temperature and moisture scalars (TMO), solar radiation (SLR), the fraction of absorbed 

photosynthetically active radiation (a satellite product indicative of assimilation of CO2 by 

vegetation - see Section 2.2.2) (FPAR), all of those previously mentioned (ALL). We then repeated 

these experiments with atmospheric transport repeating itself every year (using 2006 

meteorology). The runs using annually repeating transport fields are referred to with the ‘AT,’ 

prefix, e.g. AT,TMP is the run with annually-repeating transport and temperature. It should be 

noted that the temperature variable in CASA only influences NPP through temperature stress (the 

temp_scalar term from equation (1)), with the positive effects of temperature on productivity being 

modulated through FPAR. Similarly, the moisture scalars only relate to moisture stress in NPP. 
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2.3 Results and Discussion 

2.3.1 Temperature Sensitivity of SZC and NDVI 

In a first step, we reproduced and extended the analysis of P2017 by 4 years up to 2016 and 

compared the timing of the detrended CO2 spring zero crossing (SZC) of the seasonal cycle of 

atmospheric CO2 at Barrow with the spatially averaged (all vegetated land north of 50˚N) 

detrended spring temperature. Our results are consistent with those from P2017 and show for the 

1979-1995 time-period the strong correlation between detrended SZC at Barrow and spring 

March-June temperature (Figure 2.1a). However, and as pointed out by P2017, after 1996 this 

relationship weakens substantially (Figure 2.1a, 2.1b). P2017 repeated their analyses with SCC 

and obtained the same result. We also repeated this analysis with SCC (Text S1), confirming their 

conclusion. 
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Figure 2.1. Time series of the anomaly (˚C) in detrended spring (March to June) temperature (ST) 

averaged across vegetated land north of 50˚N along with (a) detrended SZC (days) at Barrow and 

(c) detrended spring NDVI (March to June) averaged over vegetated land north of 50˚N. Panels 

(b) and (d) show corresponding moving window (15 yr) partial correlations (accounting for 

precipitation and radiation). Shaded regions depict 5%, 1% and 0.1% significance levels (n=15). 

 

We next analysed a similar relationship between springtime temperature and NDVI, a satellite-

based proxy of photosynthetic activity (Pinzon and Tucker 2014). In contrast to the SZC-

temperature relationship, we found that the correlation between the 50˚N spatial average of 

springtime NDVI and temperature does not weaken significantly over time (Figure 2.1c, 2.1d). 
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The relationship between spring vegetation productivity and satellite-based NDVI (or greenness) 

is not straightforward with actual onset of photosynthesis potentially lagging spring green up 

(estimated from NDVI) depending on land cover type (Walther et al. 2016). However, these results 

do not support the hypothesised weakening of the temperature control of high latitude plant 

productivity during springtime put forward by P2017, opening the door for alternative explanations 

for the breakdown of the SZC-temperature relationship. 

 

One possible explanation is that interannually-varying atmospheric transport contributes to the 

decoupling of detrended SZC and spring temperature. This is because the CO2 signal recorded at 

Barrow has a spatial footprint representative of a limited region of influence, whereas the 

relationship between detrended NDVI anomalies and detrended temperature anomalies is based 

on the entire region above 50˚N. In the P2017 analysis, the temperature record used is a zonal 

average across vegetated lands north of 50˚N, which assumes that the atmospheric footprint of 

Barrow is influenced uniformly and exclusively by land in this zonal band for all years in the study 

period. This is despite their footprint analysis of Barrow demonstrating significantly larger 

contributions from fluxes in Alaska and Eastern Eurasia to the Barrow record than other high-

northern latitude regions (P2017).  

2.3.2 Footprint of Barrow 

In a next step, we analysed the influence of variations in atmospheric transport on CO2 

concentrations at Barrow using the HYSPLIT4 trajectory model (hereafter referred to as ‘Hysplit’). 

Hysplit footprints revealed strong spatial variation in the origin of the air arriving at Barrow 

(Figure S2.2). We found disproportionately large contributions from Alaska and up to 10% of the 

signal coming from vegetated land south of 50˚N. This suggests potential pitfalls with relating CO2 

data at Barrow to temperature data averaged uniformly over land north of 50˚N. 

 

We also observed significant interannual variability in the regions influencing Barrow (Figure 

S2.3), with contributions from Eurasia ranging from 30% to 65% of the total land footprint. These 

results suggest that atmospheric transport may have a strong influence on the variability of CO2 

sampled at Barrow. These findings are also in line with previous studies highlighting the necessity 
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to account for changing circulation patterns when inferring carbon dynamics from single-site 

analyses (Buermann et al., 2007; Wang et al., 2020). 

 

Nonetheless, when we weighted the temperature, precipitation, and cloud cover (a proxy for solar 

radiation) data using interannually-varying Barrow footprints (see Section 2.2.3), we found that 

the strong decoupling of the springtime temperature-SZC relationship after 1995 is retained 

(Figure S2.4a). Furthermore, we found that the springtime temperature sensitivity of vegetation 

productivity has weakened slightly more inside the footprint of Barrow than across the high 

latitudes as a whole (Figures S2.4c and 2.1b) although this weakened relationship inside the 

Barrow footprint occurs only from 2003 onwards and is also statistically not very robust (Figure 

S2.4b).  

2.3.3 Spatial variability of temperature 

An ensuing analysis of the influence of atmospheric transport on the temperature-SZC relationship 

showed that the method for averaging temperature (Barrow footprint-weighted vs all vegetated 

land above 50˚N) is unimportant in the early period 1979-1995 (corresponding temperature time 

series correlate strongly), but during the later period, these temperature time series diverge (Figure 

S2.5). This result points towards greater spatial variability in the temperature signal and thus an 

increase in the importance of atmospheric transport in the later period. 

 

To understand the reason for this behaviour, we looked at the spatial distribution of spring 

temperature anomalies. To do so, we compared the anomalies in the detrended large-scale mean 

spatial average temperature (across all vegetated regions above 50˚N) with the detrended spring 

temperatures at each pixel. Temperature anomalies for the period 1979-1995 generally agreed well 

with the spatial mean (mean correlation averaged over all pixels, 𝑟 = 0.37), but there was a shift in 

the second period towards less coherent temperature correlation pattern (𝑟 = 0.27) (Figure S2.5). 

If the correlations are weighted by the time-varying Barrow footprint, the correlation is even 

stronger in the early period (𝑟 = 0.42) and breaks down more significantly in the later period (𝑟 = 

0.21). 
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These results suggest that during the later period, the high latitude temperature anomalies are less 

coherent across large spatial scales and the footprint as seen by Barrow is less representative of 

the entirety of the high northern latitudes (Figure S2.6; Figure S2.5). The strong agreement in 

large-scale temperature anomalies in the early period (before the mid-1990s) may be due to the 

strong activity of the AO. During 1979-1995, the AO index maintained prolonged periods in its 

negative and positive phase, which promoted large-scale temperature coherence especially in 

footprint regions of Barrow (Figure S2.1; Figure S2.2). In contrast, during the later period, such 

extended periods of persistent AO phases were absent. Another indication for a strong AO 

influence during the early period is that the spatial pattern of correlations between local and large-

scale springtime temperature signals in the early period (Figure S2.5) is to a large extent 

reminiscent of the correlation pattern between spring temperature and the AO index (Figure 

S2.1b). 

 

The strong spatial coherence of temperature in the early period minimises the influence of transport 

on CO2 sampled at Barrow. In contrast, during the later period, transport will have been more 

important provided the CO2 signal (as a result of land NEE) was more spatially variable as 

indicated by greater spatial variability in spring temperature (Figure S2.5). 

 

The springtime temperature sensitivity of vegetation green-up exhibits significant nonlinear 

behaviour across the high latitudes (Park et al., 2015). Across the same region, there is also 

significant variability in the temperature sensitivity of spring productivity, as indicated by a 

regression between spring NDVI and temperature (Figure S2.7). The sensitivity of NDVI to 

temperature during springtime is more spatially variable in the later period (standard deviation of 

the sensitivity, σ = 95.5˚C-1) than the early period (σ = 78.1˚C-1) (Figure S2.6), hence exacerbating 

the effects of the reduced spatial coherence in temperature (Figure S2.5). As a result, in the later 

period when temperature coherence is reduced, the correlation between temperature averaged over 

Barrow footprints and SZC at Barrow would decrease, independently from a decrease in 

temperature sensitivity of vegetation. 
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2.3.4 Factorial simulations 

To further examine the relative influence of vegetation productivity (NPP) and atmospheric 

transport on the link between detrended SZC and spring temperatures, we conducted factorial 

forward simulations with land-based carbon NEE fluxes (based on the CASA model) feeding into 

the TOMCAT atmospheric chemistry-transport model (see Methods). Results based on a control 

run (hereafter referred to as CTR) in which all model drivers (e.g., climate, vegetation state 

(FPAR), and atmospheric transport) vary, showed that the observed seasonal amplitude and trend 

in atmospheric CO2 are well reproduced with our CASA_TOMCAT framework, albeit with a bias 

in the trend in recent years (Figure S2.8). In terms of SZC, while the modelled trend and magnitude 

show some bias (Figure S2.9a), its interannual variability is reproduced with fairly high accuracy 

(r=0.74, P<0.1%) (Figure S2.9b). The trend biases in recent years suggest limitations in our model 

framework, however, the interannual variability of simulated SZC is well reproduced, which is the 

focus of this work. Thus, we can further investigate within our model framework what could cause 

a breakdown using factorial simulations where the respective model driver of interest was held 

constant. 

 

The influence of each model driver was assessed by comparing the SZC obtained from that 

respective factorial simulation (SZC from the SLR simulation is denoted SZCSLR) with the SZC 

from the CTR simulation (SZCCTR). The SZC obtained from factorial simulations with constant 

climate drivers (SZCTMP, SZCTMO and SZCSLR) show nearly perfect correlations with SZCCTR, 

whereas keeping FPAR constant (SZCFPAR) leads to a significant reduction in correlation with 

SZCCTR, particularly in the later period (Table 2.1). SZCALL (climate and FPAR held constant) has 

very similar correlations with SZCCTR as SZCFPAR. These results show that NPP through FPAR is 

the most dominant CASA factor in controlling SZC variability, with an increase in influence in 

the later period. 
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Table 2.1. Correlations between simulated SZC from factorial simulations with observed SZC and 

spring temperature. The notations *, ** and *** indicate significance at 5%, 1% and 0.1% levels, 

respectively. Values over the 1997-2012 period are taken from the median correlation value after 

systematically removing each year from the chronology. Partial correlations take precipitation and 

cloud cover into account. The constant transport runs are referred to with the ‘AT’ prefix. Detailed 

plots on each of the simulations in supplementary materials (Figures S2.10-20). 
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Simulation Correlation of 

simulated SZC 

with complete 

model, and model 

with variables 

held constant 

Partial correlation of 

simulated SZC with 

footprint-averaged 

observed spring 

temperature 

Partial correlation of 

simulated SZC with 

50˚N-averaged 

observed spring 

temperature 

 1982-

1996 

1997-

2012 

1982-

1996 

1997-

2012 

1982-

1996 

1997-2012 

Control Run (CTRL) N/A N/A -0.83*** -0.47 -0.85*** -0.16 

Variable(s) held constant       

Temperature scalar 

(TMP) 

0.95*** 0.92*** -0.74** -0.53* -0.69** -0.05 

Temperature and 

Moisture scalars (TMO) 

0.95*** 0.92*** -0.75* -0.51* -0.70** -0.12 

Solar Radiation (SLR) 0.89*** 0.95*** -0.87*** -0.32 -0.82*** -0.12 

FPAR 0.82*** 0.67** -0.54* -0.05 -0.54* -0.08 

TMO, SLR and FPAR 

(ALL) 

0.82*** 0.70** -0.74** -0.07 -0.63* 0.00 

Transport (AT,CTRL) 0.74** 0.43 -0.55* -0.50 -0.50 -0.18 

Transport and 

Temperature scalar 

(AT,TMP) 

0.75** 0.33 -0.55* -0.61* -0.54* -0.27 

Transport and 

Temperature and 

Moisture scalars 

(AT,TMO) 

0.75** 0.44 -0.58* -0.62* -0.49 -0.29 

Transport and Solar 

Radiation (AT,SLR) 

0.67** 0.39 -0.73** -0.25 -0.73** -0.02 

Transport and FPAR 

(AT,FPAR) 

0.06 -0.07 0.03 -0.05 0.18 0.00 

Transport, TMO, SLR 

and FPAR (AT,ALL) 

0.22 -0.15 -0.24 0.07 -0.01 0.24 
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In the case of constant transport simulations (denoted by prefix ‘AT,’) the correlations with SZCCTR 

underwent a greater reduction during both periods than SZCFPAR (Table 2.1). This shows that 

atmospheric transport had the largest influence on SZC variability throughout the study period, 

with an increase in dominance in the later period. Simulations that combine interannually non-

varying transport with constant climate (SZCAT,TMP, SZCAT,TMO and SZCAT,SLR) show no 

significant deviation from SZCAT,CTR regarding correlations with SZCCTR. SZCAT,FPAR and 

SZCAT,ALL demonstrate near full absence of the correlation with SZCCTR, further indicating that 

NPP (through FPAR) and atmospheric transport are the two most important factors controlling 

interannual variability in SZC at Barrow (Table 2.1). 

 

In regard to correlations between simulated SZC at Barrow and footprint-weighted spring 

temperature, we first confirm that simulated SZC shows a breakdown with temperature similar to 

the observed breakdown (Table 2.1). We then determine the influence of each variable in CASA, 

as well as atmospheric transport in TOMCAT, on the SZC temperature sensitivity by holding the 

respective variables constant (while maintaining seasonal variations). If those simulations still 

show the breakdown, then we can conclude that this variable did not cause the breakdown between 

the two periods. According to this logic, we find for all CASA variables tested that the breakdown 

is still strong. The only simulations where we do not find a breakdown is when atmospheric 

transport is held constant. As we only observe a breakdown from the 1st to the 2nd period with 

varying transport simulations, but no breakdown when transport is held constant, we can conclude 

that temperature sensitivity has remained constant throughout the study period, and that 

atmospheric transport is a driving force behind the breakdown in temperature sensitivity of SZC. 

The correlations between simulated SZC and temperature averaged over 50˚N differ to a large 

extent from correlations between footprint-weighted temperature and simulated SZC (Table 2.1) 

which further indicates the importance of accounting for interannually-varying footprints. 

 

Our model reproduced interannual variations in SCC slightly better than SZC (Figure S2.23), 

although there was a similar bias in the trend and magnitude (Figure S2.24). Analysis of SCC from 

our factorial simulations yielded similar results to those obtained from SZC analysis, albeit with 

even greater dominance of atmospheric transport over temperature sensitivity, revealed by 
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consistent correlation between SCCATCTR and footprint-weighted spring temperature (r = 0.68, P 

< 0.01) during both periods (Table S2.1). 

 

Based on their process-based factorial simulation results, P2017 concluded that transport played 

no significant role in interannual correlations between SZC and temperature, and that net 

ecosystem productivity in boreal regions is the dominating factor. Our analysis differs from that 

of P2017 in that we also compare simulated SZC with the control run (in which all variables vary), 

as well as simulated SZC with footprint-averaged temperature. We found that atmospheric 

transport controls a significant proportion of SZC variability, particularly in the later period, which 

is consistent with our finding that the spatial coherence of temperature anomalies decreased 

significantly in the late period (Figure S2.5). Furthermore, when holding atmospheric transport 

constant (ATCTR), there was no breakdown in temperature sensitivity of SZC (Table 2.1), 

whereas when holding NEE constant (ALL), we did witness a breakdown. This illustrates that, 

contrary to the conclusions of P2017, atmospheric transport is the key driver behind the breakdown 

in temperature sensitivity of spring carbon uptake. We also compared the simulated SZC with 

50˚N averaged temperature and found differing results, which highlights the sensitivity of 

temperature to the footprint. Therefore, this suggests 50˚N is not an accurate representation of the 

air masses seen by Point Barrow, as used by P2017. 

2.4 Conclusions 

We are witnessing a phase of changing CO2 levels and climate to which land vegetation is exposed 

and is adapting. Over the past decades, atmospheric records and fossil fuel emission inventories 

indicate that the land carbon sink has been growing, taking up approximately 25% of CO2 entering 

the atmosphere as a result of fossil fuel burning and land-use change (Friedlingstein et al., 2019). 

Other indicators of changes in terrestrial carbon cycling include (amongst others) increasing trends 

in the seasonal amplitude of atmospheric CO2 exchanges in the northern high latitudes (Graven et 

al. 2013). In this regard, a weakening relationship between atmospheric CO2 drawdown measured 

at Barrow and above 50˚N land surface temperature during Boreal spring have been interpreted as 

a shift from spring temperature as the main control over plant productivity and consequently spring 

carbon uptake towards other controls, such as light limitation (P2017). This conclusion is based 
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on the breakdown of the correlation between SZC anomalies and spring temperature anomalies 

averaged over vegetated land north of 50˚N after 1995. Somewhat surprisingly, however, our 

analysis of NDVI (a proxy for plant productivity) does not indicate a similar breakdown of spring 

temperature controls on NDVI after 1995. We, therefore, have attempted to understand why these 

analyses come to different conclusions.  

 

One aspect which has not been studied in great detail so far is the role of site-specific regions of 

influence of atmospheric signals, as well as the interplay between the interannual variation of site-

specific regions of influence and homogeneity of temperature anomalies. We find that regions of 

influence are quite localised and vary substantially at an interannual timescale. For the Barrow 

site, the influence of fluxes from Eurasia versus North America varies interannually, contributing 

between 30% and 65% of the total land signal (Figure S2.3). Simulations of the CO2 signals at 

high-latitude sites for interannually varying land-atmosphere carbon exchange flux simulated with 

a data-driven model reveal that anomalies of CO2 drawdown signals can be very well reproduced 

when using site-specific regions of influence but not when using above 50˚N average surface 

temperature anomalies. This suggests a major role played by varying atmospheric transport when 

attempting to properly represent the influence of temperature on SZC anomalies. Furthermore, our 

factorial simulations reveal that atmospheric transport is strongly influential over SZC variability, 

particularly in the later period, playing a dominant role in the breakdown of the correlations 

between SZC and temperature.  Thus, the breakdown in correlation between SZC and temperature 

is not indicative of a breakdown in the temperature sensitivity of spring carbon uptake, and thus is 

in agreement with the consistent correlation between NDVI and temperature anomalies (Figure 

2.1c). 

 

We furthermore investigated the extent to which the homogeneity of temperature anomalies has 

changed over the study period. We find a significant shift towards greater spatial heterogeneity in 

anomalies (Figure S2.5), likely driven by a sustained, strong Arctic Oscillation during the 1979-

1995 period becoming comparatively inactive in the 1996-2012 period (Figure S2.1). The trend 

towards greater heterogeneity in the spring temperature anomalies across the northern latitudes in 

the later period (Figure S2.5) may explain the increased role of transport in the later period (Figure 
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2.1) and may also provide an alternative explanation for the breakdown in the correlations between 

SZC at Barrow and average northern high latitude spring temperatures as noted by P2017. 

 

Together, these findings suggest that the temperature sensitivity of vegetation during springtime 

has not changed as significantly across the high latitudes as previously suggested (P2017) and that 

the increased importance of atmospheric transport due to a change in spatial coherence of the 

temperature signal is the main factor responsible for the breakdown in correlation between SZC 

and spring temperature. We found that after accounting for atmospheric transport, the weakening 

of the temperature sensitivity of spring carbon uptake in the high northern latitudes is substantially 

smaller than previously asserted. Based on the atmospheric CO2 data and satellite vegetation data 

we thus conclude that temperature remains an important control of spring plant carbon uptake 

above 50 N. Improved understanding of the controls of carbon uptake and release of boreal and 

arctic ecosystems, primarily forests, helps to forecast how these ecosystems may evolve over 

coming decades. 

2.5 Additional information 

2.5.1 Repeating analyses with SCC  

The SZC and SCC are closely related, with strong correlation (r=, P<0.1%). Overall, we draw the 

same conclusions from using the SCC as with the SZC. We found a significant breakdown in 

correlation between SCC and spring temperature averaged over vegetated land north of 50 ̊N 

(Figure S2.20), and when averaging the temperature over Hysplit footprints (Figure S2.21). Our 

CASA-TOMCAT model simulates SCC with fairly high accuracy on interannual timescales 

(r=0.78, P<0.1%) (Figure S2.22), however the modelled trend and magnitude show some bias 

(Figure S2.23), similar to the simulated SZC. The factorial simulations yield similar results to 

those carried out with the SZC, however there appears to be a lower influence of FPAR and a 

higher influence of transport. The former is evidenced from the FPR run, in which the correlations 

between the simulated SCC and of the control are higher than seen in the SZC simulations (Table 

S2.1). Similarly, the ATCTR run produced SCC values that correlated lower with the control than 

seen in the SZC simulations (Table S2.1). Furthermore, the ATCTR simulations of SCC 

consistently correlated with Hysplit-averaged temperature at higher levels than in the SZC runs 
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(Table S2.1), further demonstrating the role of transport in the breakdown in control of temperature 

on spring carbon uptake. 

2.5.2 Snow melt  

A reviewer expressed the concern that snow melt may have been responsible for the consistent 

NDVI-Temperature relationship. Thus, we produced an NDVI time series in which regions where 

temperature was below zero were omitted from the NDVI and temperature reconstruction (Figure 

S2.25). 
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3 What can atmospheric δ13C tell us about the 

carbon cycle?  

Abstract 

Trends in the atmospheric 13C to 12C ratio, expressed as δ13Catm, are the result of uptake and release 

of carbon between the atmosphere, biosphere, and oceans, as well as fossil fuel emissions. Thus, 

the δ13Catm trend holds information about these processes. The record shows a decrease in δ13Catm 

due to fossil fuel emissions, also known as the Suess effect. The observed atmospheric decrease, 

however, is shallower than expected from fossil fuel emissions, which is due to a net uptake of 

CO2 by land vegetation and plant discrimination against heavier 13C. Atmospheric 13C records are 

thus affected by various factors, including land and ocean carbon uptake and changes therein, as 

well as by possible changes in plant isotope discrimination due to CO2 fertilisation. However, it is 

still unclear what the sensitivity of δ13Catm is to these various drivers, and thus how it can be used 

to improve our understanding of the earth carbon cycle. Here we estimate the sensitivity of δ13Catm 

to uncertainties in parameterisations involving processes in the land biosphere, as well as 

uncertainties of ocean and fossil fuel emissions using the global land surface model (CASA) along 

with air-sea 12C and 13C exchanges from the GFDL ocean model. The default values of net primary 

productivity (NPP), ocean uptake and C3 discrimination led to an overestimate of the decline of 

δ13Catm when compared to the observed trend. Uncertainties are large for soil turnover times, NPP, 

and ocean uptake and we find that δ13Catm is most sensitive to ocean uptake, followed by NPP. Our 

results thus show that uncertainty of ocean uptake strongly affects δ13Catm trends and that without 

better constraints on ocean net uptake, we cannot infer much about changes in plant isotope 

discrimination. 

3.1 Introduction 

Atmospheric CO2 has increased throughout the industrial era from 280ppm to over 415 ppm by 

end of 2021 and continues to increase. This has been accompanied by a global rise in earth surface 

temperature of approximately 1˚C, with temperature currently increasing at a rate of 0.2˚C per 

decade (Arias et al., 2021). Atmospheric CO2 records and estimates of fossil fuel and land-use 

change emissions reveal that on average 44% of fossil fuel and land-use change emissions 
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accumulate in the atmosphere over the past 6 decades (Friedlingstein et al., 2020) while the rest is 

taken up by oceans and processes on land. Models and data analysis to partition these fluxes 

suggest that processes on land cause a substantial net uptake of carbon roughly equivalent to 30% 

of fossil fuel emissions (Friedlingstein et al., 2020). Surface warming and CO2 fertilisation are key 

drivers behind this land vegetation carbon sink (Schimel et al., 2015; Sitch et al., 2015; Zhu et al., 

2016; Keenan et al. 2021). Nonetheless, the spread of estimates of ocean uptake is quite large, and 

thus substantial uncertainties of land versus ocean carbon uptake remain. Model-based estimates 

of ocean uptake over the period from 1982 to 2012 summarised by Friedlingstein et al. (2020) 

range from 1.72 to 2.51 PgC yr-1 where the mean of all models is 2.00 PgC yr-1, while data-based 

estimates range from 1.48 – 1.85 PgC yr-1 and a mean of 1.64 PgC yr-1. 

 

Understanding the responses of land vegetation sinks and soil carbon pools to increasing CO2, 

changes in nutrient deposition, and environmental change are also incomplete (Walker et al., 

2021). The spread of land sink estimates in the global carbon budget across 17 models is between 

1.36 and 4.25 PgC yr-1 during the period 1982-2012, with a multi-model mean of 2.65 PgC yr-1. 

The average budget imbalance in the global carbon budget is 0.61 PgC yr-1, which is thought to be 

primarily a result of uncertainty related to land processes (Friedlingstein et al., 2020). There is 

clear evidence that climate change and elevated atmospheric CO2 affects vegetation functioning 

(Stocker et al., 2013). For example, early season carbon uptake at high latitudes is strongly 

positively correlated with positive temperature anomalies (Randerson et al. 1999) (see Chapter 2), 

driven partially by longer growing seasons (Park et al., 2016). Vegetation productivity is further 

stimulated due to increased atmospheric CO2 concentration, i.e., CO2 fertilisation (Farquhar et al., 

1980; Kimball et al., 1993). This effect is often described as follows (Friedlingstein et al., 1995): 

 
[3.1] 

Where NPP is net primary productivity, ca is the ambient CO2 concentration is t0 is the reference 

time (pre-industrial commonly used). Experimental evidence shows indeed an increase in leaf 

photosynthesis when plants are exposed to elevated CO2 levels under controlled conditions 

(Körner, 2006). However, under natural conditions, the effect of CO2 fertilisation on terrestrial 

productivity does not only depend on atmospheric CO2 alone. For example, when nitrogen is 

limiting, the effect of CO2 fertilisation on plant growth is significantly reduced (Sokolov et al., 

2008). Indeed, some larger-scale free-air CO2 enrichment (FACE) studies do not show a significant 

growth stimulation effect caused by elevated CO2 (Norby et al., 2004; Norby et al., 2005). 
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However, bottom-up estimates of the land carbon sink agree with modelling studies which suggest 

that CO2 fertilisation may have given rise to significant growth in the net land sink over past 

decades (Sitch et al., 2015), with some of these studies attributing 60% of the current sink 

attributed to the effect of CO2 on photosynthesis (Schimel et al., 2015). Nonetheless, a meta-

analysis of the effect of CO2 on vegetation shows that most studies agree that CO2 increases 

resulted in increases in productivity, but there is still high uncertainty regarding the precise value 

of β due to diverging estimates based on different approaches (Walker et al. 2021). Elevated CO2 

levels are not only expected to cause growth stimulation but also lead to reduced stomatal opening 

and therefore reduced water loss and hence an increased plant water use efficiency (WUE) (Cowan 

& Farquhar, 1977; Field et al., 1995). 98% of the variation in high latitude tree WUE has been 

attributed to atmospheric CO2 levels (Wang & Feng, 2012). Meta-analyses of laboratory and 

FACE plots suggest that the stomatal response to rising CO2 concentrations varies by plant type 

(Curtis & Wang, 1998; Medlyn et al., 2001; Brodribb et al., 2009). 

 

Other elements of the global carbon cycle (relevant on timescales of the human perturbation of 

atmospheric CO2) are the size of soil carbon pools, their turnover times, and possible changes in 

turnover times. Estimates of total soil carbon stocks vary considerably (Raich & Schlesinger, 1992; 

Scharlemann et al., 2014; Jackson et al., 2017), and turnover times of soil carbon are well known 

to have significant uncertainties associated with them in general and across biomes (Trumbore, 

2000; Carvalhais et al., 2014). Furthermore, the response of soil respiration to temperature is 

poorly known and subject to significant spatial variation (Zhou et al., 2009). Studies on the 

response of soil microbial respiration to surface warming have yielded significant decreases 

(Bradford et al., 2008; Bradford et al., 2010; Crowther et al., 2013) and increases (Hartley et al., 

2008; Nie et al., 2013) in soil carbon losses due to warming. 

 

One compound which is involved in and holds information about all these processes is carbon-13 

(13C). Due to the difference in the degree to which 12C is preferentially taken up over 13C by 

vegetation and oceans, the atmospheric 13C record has been used to apportion between oceanic and 

land sinks in the carbon budget (Tans et al., 1993; Keeling et al., 1995; Quay et al., 1992; Trudinger 

et al., 2005; Heimann & Maier‐Reimer, 1996).  

 
13C makes up roughly 1% of the carbon in the earth system. The global increase in atmospheric 

CO2 concentration throughout the industrial era has been accompanied by a corresponding 
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decrease in the ratio between 13C and 12C in the atmosphere. This ratio is often presented as δ13C, 

with units per mille (‰), defined as follows: 

 
[3.2] 

Rsample is the abundance ratio of 13C to 12C in a sample, Rstandard is the 13C to 12C ratio in the Pee-

Dee Belemnite fossil commonly used as a standard, with a value of 0.0112372 (mol mol-1) (Craig 

et al., 1957). 13C parallels all 12C flux processes but at subtly differing rates varying with different 

flux processes. This process is called fractionation, and the resulting difference between the 

atmosphere (δ13Catm) and other pools (e.g., δ13Cplant) is called discrimination (Δ) and is calculated 

as: 

 

[3.3] 

In general, land vegetation carbon uptake discriminates against 13C far more strongly (i.e., Δ 

~18‰) than air-sea gas exchange (Δ ~ 7-10‰) (Vogel et al., 1980). Therefore, land vegetation is 

generally thought to have a greater effect on the isotopic composition of the atmosphere (Figure 

3.1). However, discrimination, by land vegetation can vary considerably depending on 

environmental conditions, as well as the photosynthetic pathway used (Vogel, 1980; Farquhar, 

1989). The δ13C composition of C3 plants is between -20 and -37 ‰ (Vogel, 1980; Kohn, 2010), 

whereas C4 plants are in the range of -12 to -16 ‰ (O’Leary et al., 1988), and thus C3 plants 

discriminate far more strongly against 13C than C4 plants. 

 



 

89 
 

 
Figure 3.1. Mean preindustrial δ13C distribution (‰) in the land, ocean, and atmosphere as well 

as the discrimination factors during land vegetation and ocean uptake (Δ). Arrows indicate net 

fluxes of carbon. 

 

The decrease in δ13Catm throughout the industrial era is known as the ‘carbon-13 Suess effect’ 

(Figure 3.2) and is due to vast emissions of fossil fuels with a low δ13C signature. Fossil fuels have 

a low value of δ13C as the carbon has been fixed through photosynthesis. The decrease in δ13Catm 

caused by fossil fuel emissions is counteracted by plant photosynthesis and ocean uptake which 

leaves relatively heavy 13C in the atmosphere, and thus has helped constrain land and ocean carbon 

uptake (Tans et al., 1993; Keeling et al., 1995; Quay et al., 1992; Trudinger et al., 2005; Heimann 

& Maier‐Reimer, 1996) (Figure 3.2).  
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Figure 3.2. Atmospheric CO2 (red) and δ13C (blue) are from a combination of the ice-core datasets 

(Etheridge et al., 1998; Graven et al., 2017) and Scripps (Keeling & Keeling, 2017) in-situ 

measurements at the Mauna Loa observatory. Inset image depicts the atmospheric records during 

the 1982-2016 period. 

 

One additional possible application of trends in δ13Catm is to provide insight on changes in 

vegetation discrimination, and thus its functioning, at the global scale (Keeling et al. 2017). The 

magnitude of discrimination is related to the ratio of the CO2 concentration within the stomatal 

cavities (ci) to the ambient CO2 (ca) according to the plant isotope discrimination model of 

Farquhar et al. (1982). Thus, changes in discrimination can be related to changes in ci/ca, which in 

turn allow inferring the so-called intrinsic water use efficiency (iWUE) (Ehleringer et al. 1993). 

iWUE of plants is expected to increase in response to atmospheric CO2, as plants tend to reduce 

stomatal conductance (gs) and increase their assimilation (A), allowing greater carbon uptake for 

the same amount of water (Ainsworth & Long 2005; Van der Sleen et al., 2015). iWUE is a 

measure of photosynthesis per unit stomatal conductance, and is given by the following:    

 
[3.4] 

Quantification of changes in discrimination from δ13C in the atmosphere could thus shed light on 

the debate regarding the strength of increases in plant iWUE (Keeling et al 2017).  
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Modelling efforts that use most up to date estimates of ocean and terrestrial carbon exchange show 

that decreases of δ13Catm are too rapid when compared with observations (Van der Velde et al., 

2013), which has been suggested to be due to a global increase in C3 discrimination over time 

(Keeling et al., 2017).  Keeling et al. (2017) modelled the land biosphere as consisting of three 

boxes and an ocean interior as a one-dimensional diffusive system and find that a simulation with 

C3 discrimination increases of 0.014 ‰ ppm-1 are most consistent with observations of δ13Catm. 

This would translate to a 20% increase in iWUE of earth vegetation for the 20th century. However, 

soil turnover times and air-sea exchange also affect δ13Catm, and while fluxes were tuned in the 

model to match estimates of atmospheric 14C they still carry significant uncertainties (Keeling et 

al, 2017). Comparing the discrimination trend estimates from Keeling et al. (2017) with the 

experimental and tree ring derived estimates of discrimination responses to CO2, yields mixed 

results. While some experimental data (e.g., Schubert & Jahren (2013)) compare well, tree ring 

data show a range of responses, some agreeing with Keeling’s estimates (e.g., Schubert & Jahren, 

2015; Voelker et al. 2016), and others showing opposite (negative) trends (Adams et al. 2020). It 

should be noted however that tree ring data are limited because isotopic discrimination trends can 

be confounded with ontogenetic trends (Vadeboncoeur et al., 2020; Brienen et al., 2017).  

 

In all, while δ13Catm has been used to constrain ocean and land uptake, as well as their 

discrimination trends, it is unclear how sensitive such estimates are to various components of the 

earth carbon cycle, such as soil turnover, plant productivity, and ocean uptake. Despite large efforts 

to constrain these fluxes, they still have relatively large uncertainties and their effect on trends in 

δ13Catm are poorly quantified. Thus, the power of δ13Catm to inform us about changes in plant 

functioning is reduced, as well as its use in partitioning between the land and ocean sinks. We here 

use a spatially explicit model to better understand to what extent the shallower than expected 

decreasing trend in δ13Catm can tell us about various poorly constrained aspects of the carbon cycle.  

 

In this study, we adapted the Carnegie Ames Stanford Approach (CASA) Global Fire Emissions 

Database (GFED) land surface model (Potter et al., 1993; Randerson et al., 2018) to simulate land-

atmospheric 13C and 12C fluxes. This was done in concert with ocean-atmosphere 12C and 13C 

simulations from the Geophysical Fluid Dynamics Laboratory (GFDL) simulations (Claret et al., 

2021). These simulations use the Biogeochemistry with Light Iron Nutrients and Gas (BLING) 

(Galbraith et al., 2010) model with the Modular Ocean Model version 5 (MOM5) (Griffies, 2012). 
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In the default model setup, we found that the trend in δ13Catm was far steeper than observations. As 

a result, we investigated the sensitivities of δ13Catm to perturbing a range of parameters in the 

model. Furthermore, we were interested in how well δ13Catm can be used to constrain the large-

scale global change in vegetation discrimination. For this to be possible, it was first necessary to 

determine the uncertainties of each of the major components of the model setup. We then assessed 

the sensitivity of the simulated δ13Catm to all relevant drivers in the model. This study presents the 

first comprehensive analysis of the sensitivities of atmospheric CO2 and δ13Catm using a land 

surface model with spatial variability in the land-atmosphere fluxes of CO2 and 13CO2. 

3.2 Materials and Methods 

3.2.1 Fossil fuel emissions and ocean fluxes 

Yearly mean emissions of CO2 and the corresponding δ13C signature of fossil fuel emissions were 

obtained from the Carbon Dioxide Information Analysis Center (Andres et al., 2016). Coal, oil, 

and gas have different δ13C signatures, thus the δ13C signature of fossil fuel emissions varied year-

to-year due to differing masses of coal, oil, and gas being burned each year. Monthly air-sea 12C 

and 13C gas fluxes were obtained from an ice-ocean-biogeochemical coupled earth system model 

of the NOAA Geophysical Fluid Dynamics Laboratory forced with COREv2 normal year 

atmospheric forcing and historical CO2 atmospheric concentrations (Claret et al., 2021). The ocean 

emissions were then summed into global total emissions at monthly resolution. 

3.2.2 CASA model setup 

We used an observation-based modelling approach using remotely sensed satellite observations to 

construct 2D grids of productivity to simulate global averages of atmospheric CO2 and δ13Catm 

with the CASA land-surface model operating at 0.25˚ resolution on a monthly timescale. The total 

carbon (12C + 13C) stored in land vegetation and soils was modelled at the same time as the 13C. 

3.2.2.1 Calculation of Net Primary Productivity 

We henceforth differentiate between pools and fluxes of total carbon, 12C and 13C variables using 

‘tot’, 12 and 13 respectively as the subscript following the variable in question. The Net Primary 

Productivity of total carbon (NPPtot) (g/month) was calculated in CASA using a simple light-use 

efficiency approach whereby the amount of carbon that is fixed during photosynthesis per 
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incoming photons in the frequency range that can be absorbed by chlorophyll is calculated as 

follows: 

 
[3.5] 

where FPAR is the fraction of photosynthetically active radiation estimated using satellite data, 

SLR is ECMWF ERA-Interim 1D solar radiation (Dee et al., 2011), LUEmax is the maximum light 

use efficiency which is based on estimated values for each biome type, and the temperature and 

moisture scalars (ftemp and fmoist respectively) reduce NPPtot proportional to the deviations of 

temperature and moisture optimal values, and solar conversion (SC) converts to the units of NPP 

(gC/month). NPPtot of herbaceous and woody vegetation were calculated separately using this 

formulation with different moisture scalars. NPP13 (gC/month), is related to NPP12 as follows: 

 
[3.6] 

where MRWR = 13/12 (g/mol)/(g/mol), the conversion between molar ratio and mass ratio, Rat is 

the atmospheric abundance ratio of 13C to 12C (mol/mol), and 𝛼 is the fractionation factor during 

uptake of carbon by plants (see section 3.2.2.3). CASA operates with total carbon rather than 12C, 

using 

 

[3.7] 

[3.6] thus translates into: 

 
[3.8] 

CASA time-steps a series of first-order, linear differential equations to calculate the flow of carbon 

between each of the soil and vegetation pools and heterotrophic respiration (Figure 3.3). To include 
13C in CASA, we introduced a series of 13C pools which mirrored the ‘total carbon’ pools in CASA 

with identical respiration processes and no additional discrimination occurring during respiration. 
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Figure 3.3. Schematic of the direction of atmosphere-land carbon inputs via NPP and outputs via 

respiration in CASA. Green boxes are the alive pools, yellow are the surface and litter pools, and 

brown boxes are the soil pools. Adapted from Schaefer et al. (2008) to include additional pools. 

3.2.2.2 Spin up and transition interannually-varying climatology 

The model runs began with a 1000-year spinup in which climatological and FPAR forcing data 

were kept at 1981 estimates, with intra-annual variability maintained throughout the year. This 

spinup allowed the soil pools to fill with carbon until reaching an equilibrium before 1982 when 

the model began using interannually-varying climatology based on satellite observations. During 

the spinup, Rat varied according to observational data of atmospheric CO2 and δ13Catm from a 

combination of ice core (Etheridge et al., 1998; Graven et al., 2017) and Scripps in-situ 

measurements at the Mauna Loa observatory (Keeling & Keeling, 2017). A linear interpolation 

was calculated between 1750 and 1850 for the δ13Catm time series between the known pre-industrial 

value of -6.35, and the first data point in the ice core data. From 1982 onwards, Rat began to vary 

as follows: 

 
[3.9] 

 
[3.10] 

 
[3.11] 
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Where Mat is the mass of carbon in the atmosphere (PgC), FF is fossil fuel emissions, OCN is the 

net ocean uptake, and NEE is the net land uptake (net ecosystem exchange).  

3.2.2.3 Discrimination of carbon-13 from Net Primary Productivity 

The discrimination constant, α in equation [3.8] varied spatially and was calculated as follows: 

 
[3.12] 

Where VEGC3 and VEGC4 are the fractions of vegetation inside each cell, derived from maps of 

the fraction of C4 vegetation (Still et al., 2003). The variables 𝛼C3 and 𝛼C4 are related to 

discrimination as follows: 

 

 
[3.13] 

where ΔC3, ΔC4 are the discrimination of C3 and C4 vegetation expressed in ‰ which is the 

difference in δ13C between the atmosphere and the plant. We did not include estimates for 

vegetation with the crassulacean acid metabolism (CAM) pathway due to the low prevalence of 

CAM vegetation (roughly 7%), coupled with relatively low growth rates when compared with C3 

and C4 plants. We thus assumed that all vegetated land had either C3 or C4 metabolic pathways. 

Farquhar et al. (1989) describe C3 and C4 discrimination as follows: 

 
[3.14] 

 
[3.15] 

 
[3.16] 

where a = 4.4‰ is the discrimination occurring due to diffusion in air, b = 30‰, am = 1.8‰, A is 

leaf-level gross photosynthesis, gi is mesophyll conductance, f is the discrimination due to 

photorespiration, and Γ* is the CO2 compensation point in the absence of day respiration (Farquhar 

et al., 1982; Cernusak et al., 2013; Seibt et al., 2008). Note that the final two terms in [3.15] are 

often neglected as they are close to zero. 
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Experimental evidence supports the simplification equation [3.14], thus short term C4 

discrimination varies little due to variations in ci/ca (Farquhar et al., 1989). We, therefore, assumed 

that ΔC4 would remain constant at 4.4‰. In our attempts to understand changes in global C3 

discrimination, we increased ΔC3 as a function of atmospheric CO2 as follows: 

 
[3.17] 

Where 𝛥ref = 17.8‰ is the global estimation of C3 discrimination in 1990 (Lloyd & Farquhar, 

1994), Cref is the atmospheric CO2 average in 1990, Ccur is the atmospheric CO2 variable in CASA, 

Cpre is atmospheric CO2 pre-industrial concentration, K is the sensitivity of C3 discrimination to 

atmospheric CO2. Keeling et al. (2017) estimated K to be equal to 0.014 ± 0.007 ‰ ppm-1. 

3.2.2.4 Pool turnover times 

In CASA, there are 14 gridded pools that turnover at varying rates with vastly different masses 

and δ13C signatures. Each of these pools and their turnover rate, mass and δ13C in the default model 

are summarised in Table 3.1. 
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Table 3.1. Summary of soil and vegetation pools in CASA at the end of spinup. In the pools 

column, the long-form name and shortened version are provided in brackets, where applicable. 
Pool Turnover times (yr) Mass (PgC) δ13C (‰) 

Leaf 0.37* 4.7 -24.3 

Wood 40 253.8 -22.8 

Grass 0.33 9.9 -21.9 

Root 40 63.3 -22.8 

Fine root (froot) 0.5 14.3 -21.4 

Course woody debris (cwd) 4 65.7 -23.2 

Surface metabolic (surfmet) 0.06 6.0 -22.7 

Surface structural (surfstr) 0.15 37.2 -23.4 

Surface microbial (surfmic) 0.10 4.7 -23.1 

Soil metabolic (soilmet) 0.05 3.9 -21.8 

Soil structural (soilstr) 0.2 31.5 -22.8 

Soil microbial (soilmic) 0.14 11.9 -22.1 

Slow 13.16* 752.4 -27.8 

Armored 1000* 592.2 -31.1 

*Turnover is spatially variable, so the value presented is the global mean. 

3.2.3 Sensitivity analyses to uncertainties 

We here lay out the key elements in the carbon cycle for which the trend in δ13Catm may be 

sensitive. 

3.2.3.1 Isotopic discrimination 

There were considerable uncertainties in various elements in the model setup. Estimates of long-

term change in plant isotope discrimination most consistent with δ13Catm indicate a C3 

discrimination trend of 0.014 ± 0.007 ‰ ppm-1 (Keeling et al., 2017). 

 

Contrary to Keeling’s result, studies of the isotopic composition of tree rings do not support an 

increase in C3 discrimination. In general, a decrease in discrimination is apparent from the 

available studies (Adams et al. 2020). However, due to the biases present in all studies par one 

(Van der Sleen et al., 2015), it is impossible to fully disentangle the actual response of plant 

discrimination to CO2 from the change in discrimination due to increases in tree height and crown 

light environment (Vadeboncoeur et al., 2020; Brienen et al., 2017; Brienen et al., 2021). 
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3.2.3.2 Land uptake 

In general, soil respiration is known to increase with surface temperature, and the factor by which 

soil respiration increases for every 10˚C temperature rise is known as Q10. A Q10 value of 2 is 

commonly used in land surface models, the likely uncertainty range of Q10 is between 1.43 and 

2.03 (Zhou et al., 2009). C3 vegetation maps were obtained from Still et al. (2003), where 

approximately 75% of gross primary production were C3. We here test the magnitude of the 

sensitivity of δ13Catm to estimates of C3 vegetation cover by increasing C3 cover to 100% as no 

alternative uncertainty is available. 

 

Soil turnover times and total soil carbon stocks are well known to have significant uncertainties 

related with them. Carvalhais et al. (2014) estimated that carbon resides in vegetation and soil on 

average for 15 years close at tropical latitudes, and 255 years at high latitudes. However, Trumbore 

(2000) estimated soil turnover times to be 3 and 30 years for tropical and high latitude regions 

respectively. Lastly, Raich and Schlesinger (1992) estimated soil turnover times to be 10 and 500 

years for tropical savannah and tundra or peaty wetlands respectively. Estimates of total global 

soil organic carbon (SOC) differ considerably, with estimates ranging from 504-3000 PgC 

(Scharlemann et al., 2014). A more recent analysis estimated SOC at depths 2 and 3 m to be 

between 2270 and 2770 PgC (Jackson et al., 2017). This could also be a gross underestimate 

because soils can be far deeper than 3 m (particularly in the tropics). The rate of soil respiration in 

response to warming is also subject to considerable uncertainty. The Q10 index is defined as the 

factor by which soil respiration would be expected to rise as a result of 10˚C of warming. The 

value of Q10 varies between biomes, and the global average Q10 likely lies between 1.43 and 2.03 

(Zhou et al., 2009). 

 

Within CASA, soil turnover is inextricably linked with the total mass of soils (longer turnover 

times led to larger pools of soil carbon). When comparing estimates from the literature with the 

CASA model, it is evident that tropical soil turnover (25˚S - 25˚N) is on the upper end of the 

estimates at 14.6 years (24.2 years if the armored pool is included). However, high latitude (<50˚S, 

>50˚N) soil turnover is relatively low compared with the estimates in the literature at 62.5 years 

(120.3 years if the armored pool is included). Total soil carbon in CASA is 1392.2 PgC, which is 

within the uncertainty range of Scharlemann et al., (2014), but lower than the range from Jackson 

et al. (2017). The high northern latitudes contain 530.9 PgC in CASA, and a fourfold increase in 

turnover time would cause a corresponding increase in soil carbon of roughly 1500 PgC, which 
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would be close to the upper estimate of Scharlemann et al. (2014). Thus, we test the sensitivity of 

δ13Catm to increasing the turnover time across the high latitude regions by 4 times. 

 

Calculated NPP in CASA from the light use efficiency model varies between 59.5 and 67.1 PgC 

depending on the year. Estimates of NPP range from 10.3 to 149 PgC based on 251 estimates from 

a range of estimates with differing methodologies (Ito, 2011). However, the vast majority of the 

estimates lie in the 30 to 90 PgC range, which is the uncertainty we utilised in this study. 

3.2.3.3 Ocean uptake uncertainty 

The ocean CO2 flux uncertainty was calculated by constructing a monthly time series between the 

years 1982 and 2012 of observation-based and modelled sea-air CO2 partial pressure (ΔpCO2) - 

the difference between sea surface pCO2 (pCO2sea) and atmospheric pCO2 (pCO2air). The ΔpCO2 

data (Landschützer et al. 2020) are based on pCO2sea from Surface Ocean CO2 Atlas version 2 

(SOCATv2) observations interpolated into a 1˚ x 1˚ grid using a neural network method 

(Landschützer et al. 2016) and on pCO2air derived from GLOBALVIEW-CO2 data. The modelled 

ΔpCO2 output comes from GFDL MOM5-BLING13C, which also has a nominal lateral resolution 

of 1˚ x 1˚. Both time series (observational-based and modelled) were constructed by performing a 

spatial average weighted by the cell grid area, the modelled piston velocity (PV), and the modelled 

CO2 solubility in seawater (Ks). The final uncertainty was obtained by computing the root mean 

squared error (RMSE) between the two ΔpCO2 time series (ΔpCO2RMSE) and propagating it to a 

sea-air CO2 flux (F) using the conventional formula:  

 
[3.18] 

That is, the sea-air CO2 flux uncertainty is as follows: 

 
[3.19] 

 In this expression, PVAVE and KsAVE were averaged in space, weighted by the area and by PV for 

Ks, and in time. The uncertainty is based on the RMSE of ΔpCO2 instead of F because ΔpCO2 is 

directly measurable while F depends on wind speed versus gas exchange parameterisations. 

Moreover, ΔpCO2 is a function of many processes, including the CO2 gas transfer velocity and 

phenomena influencing the sea surface temperature on which the pCO2sea solubility depends (e.g., 

the sea-air heat exchange and the ocean circulation). Therefore, ΔpCO2RMSE between model and 
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observational-based products is a metric that already contains model uncertainties in PVAVE and 

KsAVE. 

 

The 13CO2 ocean flux uncertainty was computed applying the same rationale. Monthly time series 

of observed and modelled 13C sea-air disequilibrium (Rdis) were constructed spanning over the 

same period as those of ΔpCO2. Here Rdis is defined as: 

 

[3.20] 

where RDIC and RCO2air are the 13C/12C ratios of dissolved inorganic carbon in seawater (DIC) and 

pCO2air respectively, and αDIC�g the isotopic fractionation from dissolved gas to DIC (Zhang et al. 

1995). This definition is consistent with the 13CO2 air-sea flux formulation of Quay et al. (2007, 

equation 3), based on Zhang et al. (1995), which can be rearranged in terms of a sea-air 13CO2 flux 

as: 

 

[3.21] 

where αk and αaqpg  are the isotopic fractionations during air-sea CO2 gas exchange and from gas 

to dissolved gas respectively. Observed Rdis data were computed from point observations of sea 

surface 13C of DIC (DI13C) (Quay et al. 2003; Quay et al. 2007; Quay et al. 2017) and atmospheric 

p13CO2 (p13CO2air) from Graven et al. (2017) at the same time. Rdis data were then binned over 5º 

x 2º longitude x latitude bands and spatially averaged, weighting by the area and the modelled PV, 

Ks, and RCO2air – all three properties binned over the same longitude and latitude bands. Modelled 

Rdis was computed analogously by extracting sea surface DI13C and p13CO2air output for the same 

location and/or time than point observations. Using these time series, the RMSE of Rdis (RdisRMSE) 

was computed between observations and model, weighting it by the number of observations over 

a given month in each bin. The model bias in Rdis was finally expressed in terms of a sea-air 13CO2 

flux by propagating the RMSEs of ΔpCO2 and Rdis using the equation for F13C [3.21] with averaged 

values of modelled PV, Ks, RCO2air, and pCO2air appropriately weighted, and constant values αk= 

0.99915 and αaq←g=0.99876 (Zhang et al., 1995).  
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During 1982-2017, the estimated global mean ocean sink was 2.323 PgC yr-1 and the 

corresponding uncertainty in the estimate was 1.02 PgC yr-1 (Claret et al., 2021). The estimated 

ocean sink from the global carbon budget is 2.08 PgC (Friedlingstein et al., 2020). Individual 

models vary between 1.82 and 2.60 PgC, and observation-based estimates range from 1.58 to 2.28 

PgC (Friedlingstein et al., 2020). Thus, the uncertainty estimated here is relatively high, but testing 

a lower bound of 1.6 - 1.8 PgC is within the bounds of the estimates. 

3.2.3.3 Fossil Fuel emission uncertainty 

The total (12C + 13C) fossil fuel emissions have an uncertainty of 5% (Friedlingstein et al., 2020), 

whereas the δ13C signature of fossil fuels have an uncertainty of 0.6‰ (Popa et al., 2014). As with 

the ocean emissions, we combine these uncertainties to estimate the sensitivity of δ13Catm to overall 

fossil fuel emission uncertainty. 

3.2.3.3 Overview of sensitivity analyses 

We conducted a number of sensitivity analyses to examine the relative influence of each of these 

parameters over δ13Catm in the CASA model (Table 3.2). All analyses were conducted as 

perturbations from the default CASA setup with discrimination as in Keeling et al. (2017) (unless 

otherwise stated). 
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Table 3.2 Summary of sensitivity analyses conducted in this chapter. 
Parameter Default 

value in 

model 

Minimum 

value(s) 

tested 

Maximum 

value(s) 

tested 

Reference for default 

value 

Reference for 

uncertainty range 

C3 discrimination 

trend (‰ ppm-1) 

0.014 0.007 0.021 Keeling et al. (2017) Keeling et al. 

(2017) 

C3 vegetation 

distribution (%) 

75 75 100 Still et al. (2003) N/A 

Q10 2 1.43 2 Potter et al., 1993; 

Randerson et al., 2018 

Zhou et al. (2009) 

Turnover times of 

fast soils in high 

latitudes (years) 

120 120 500 Potter et al., 1993; 

Randerson et al., 2018 

Raich & 

Schelsinger (1992); 

Carvalhais (2014) 

NPP (PgC yr-1) 60* 30* 90* Potter et al., 1993; 

Randerson et al., 2018 

Ito (2011) 

Ocean 12C uptake 

(PgC yr-1) 

2.28* 1.26* 3.30* Claret et al. (2021) Claret et al. (2021) 

Ocean 13C uptake 

(PgC yr-1) 

0.0269 0.0145 0.0393 Claret et al. (2021) Claret et al. (2021) 

Fossil fuel 12C 

emissions (PgC yr-1) 

9.67* 10.15* 9.19* Boden et al. (2009) Friedlingstein et al. 

(2020) 

Fossil fuel 13C 

signature (‰) 

-27.8* -28.4* -27.2* Andres et al. (1996) Popa et al. (2014) 

*Indicates a value that varies from year to year, so the mean value is presented. 

3.3 Results and discussion  

3.3.1 Default CASA model 

Running the model setup with the default conditions in CASA and the calculated ocean uptake and 

fossil fuel emissions led to an estimate of atmospheric CO2 that had a slightly steeper trend than 

observed values (Figure 3.4a). We thus added a slight CO2 fertilisation effect, whereby the land 

vegetation NPP calculated in [3.5] was then modified as follows: 

 
[3.22] 
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where β is an additional CO2 fertilisation parameter in addition to the already built-in response of 

vegetation to changing environmental conditions derived from FPAR calculated from satellite 

observations. After iteratively running the model with different values of β, 0.15 was found to be 

the optimal value to enable atmospheric CO2 to be well fitted to observations. However, the 

modelled trend in δ13Catm is far steeper than the observed trend (Figure 3.4b). 
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Figure 3.4. Default simulation of (a) atmospheric CO2 with and without CO2 fertilisation, and (b) 

δ13Catm with CO2 fertilisation. The CO2 fertilisation parameter in the ‘CO2 fert’ model run was 

0.15. 

 

Comparing the value of β directly with estimates from other studies would not be appropriate 

because CASA includes some stimulatory effect on vegetation due to the trends in temperature 

and FPAR obtained from satellite data. Thus, we analyse the total increase in NPP compared with 

the spinup NPP as a result of the combination of CO2 fertilisation and environmental effects which 

will serve as an upper bound on the total CO2 fertilisation effect. Using the CASA-calculated NPP 

and modelled atmospheric CO2, βtot was calculated as follows: 
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[3.23] 

3.3.2 Sensitivity Analyses 

We then tested the sensitivities of δ13Catm and CO2 (where appropriate) to each of the uncertainty 

ranges presented in Table 3.2. In each run, the β parameter was adjusted such that atmospheric 

CO2 was fitted to observed values (within an error of 1% of the default CO2 trend). The reasoning 

for this adjustment is that δ13Catm is calculated from atmospheric 12C and 13C [3.2], thus if the trend 

in 12C changes between simulations, δ13C will be affected in ways unrelated to the land and ocean 

processes we are interested in studying. In each set of runs, unless otherwise stated, all other 

parameters were held at their default values. 
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Figure 3.5. Modelled δ13Catm as (a) the trend of C3 discrimination, (b) soil turnover times, (c) 

ocean uptake, (d) C3 plant distribution, (e) Q10 index, (f) fossil fuel emissions, (g) NPP magnitude 

vary according to the upper and lower bounds from Table 3.2. Note that for the ocean uptake, the 

bounds are in terms of fluxes into the atmosphere and thus the upper bound is where the ocean-

atmosphere flux is highest. 

3.3.2.1 C3 discrimination 

We first tested the upper and lower bounds of the discrimination of C3 vegetation between the 

0.014 ± 0.007 ‰ ppm-1 bounds estimated by Keeling et al. (2017). The upper bound led to a small 

reduction in the steepness of the trend in δ13Catm, with a corresponding increase in the steepness 

with the lower bound in the discrimination trend (Figure 3.5a). Furthermore, increasing the 

coverage of C3 vegetation had very little impact on δ13Catm (Figure 3.5b). 

3.3.2.2 Soil respiration and turnover 

Next, we tested the effect of varying the Q10 parameter within CASA and found that there was 

very little sensitivity of the trend in atmospheric CO2 and δ13Catm. However, the seasonal amplitude 

was strongly influenced by Q10, where the lower Q10 value led to greater seasonal amplitude in 
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δ13C (Figure 3.5c). Slowing down soil turnover times over the high latitudes in CASA had little 

influence on the modelled trend in δ13Catm (Figure 3.5d). 

3.3.2.3 Net primary productivity 

Altering NPP from the default values calculated in CASA via multiplication by a scalar throughout 

the entire model simulation (including the spinup phase) led to significant shifts in δ13Catm with 

very little impact on atmospheric CO2 levels (Figure 3.5e), due to increased pool sizes after spinup 

and hence larger respiration during the 1982-2012 period. 

3.3.2.4 Fossil fuel and ocean uncertainties 

As discussed in section 3.2.3, the uncertainties in ocean uptake and fossil fuel emissions were 

evaluated by combining the upper and lower bounds of the total emissions and δ13C signature.  

The uncertainty range due to fossil fuel emission uncertainty was moderate for atmospheric CO2 

and δ13C (Figure 3.5f). However, the uncertainty range in ocean emissions led to a large 

uncertainty in δ13Catm (Figure 3.5g). The lower bound of ocean emissions alone reduced the trend 

in δ13Catm to nearly be in line with observed values. 

3.3.4 Summary of runs 

We present here a summary of all runs depicted in the preceding sections (Table 3.3).  
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Table 3.3. Key figures for each of the simulations presented in this study and observed values. 

Trends in atmospheric CO2 and δ13Catm were obtained from a 12-month moving average of the 

respective time series. βtot was calculated from [3.23] where the mean of all years was calculated 

during 1982-2012. N/A values present in the ‘Observed’ row when no estimate exists for the given 

quantity during the 1982-2012 period. 
 

Run 

Trend in 

atmospheric 

CO2 (ppm  

yr-1) 

Trend 

in 

δ13Catm 

(‰) 

Mean 

land 

sink 

(PgC 

yr-1) * 

Mean 

ocean 

sink 

(PgC 

yr-1) 

Mean 13C 

ocean 

sink (PgC 

yr-1) 

Mean 

land 

NPP 

(PgC 

yr-1) 

Mean 

δ13C of 

land 

NPP 

(‰) 

β βTOT 

Observed 1.72 -0.0253 1.36-

4.25 

1.48-

2.51 

N/A 30 - 

90 

N/A N/A N/A 

Default 1.78 -0.0636 3.26 2.28 0.0269 63.47 -22.95 0.15 0.30 

Upper bound 

discrimination 

trend 

1.77 -0.0588 3.26 2.28 0.0269 63.47 -22.93 0.15 0.30 

Lower bound 

discrimination 

trend 

1.77 -0.0688 3.26 2.28 0.0269 63.47 -22.98 0.15 0.30 

Upper bound 

C3 distribution 
1.78 -0.0600 3.26 2.28 0.0269 63.47 -26.35 0.15 0.30 

Lower bound 

Q10 
1.73 -0.0659 3.04 2.28 0.0269 63.47 -23.00 0.15 0.30 

Slower Soil 

Turnover 
1.88 -0.0558 3.23 2.28 0.0269 60.05 -22.79 0.3 -0.10 

Upper bound 

NPP 
1.76 -0.0492 4.36 2.28 0.0269 93.90 -22.73 0.05 0.20 

Lower bound 

NPP 
1.91 -0.0865 1.88 2.28 0.0269 32.22 -23.3 0.3 0.40 

Upper bound 

FF 
1.93 -0.0716 3.56 2.28 0.0269 64.38 -23.05 0.25 0.30 

Lower bound 

FF 
1.63 -0.0557 2.83 2.28 0.0269 62.17 -22.89 0 0.31 

Upper bound 

Ocean 
1.71 -0.0246 2.29 3.30 0.0313 60.55 -22.18 -0.2 -0.04 

Lower bound 

Ocean 
1.79 -0.0991 4.35 1.26 0.0145 66.74 -23.68 0.6 0.65 
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3.4 Discussion 

We here present an exploration into modelling δ13Catm using the CASA 2D land-surface model 

alongside ocean GFDL emissions and CDIAC fossil fuel data. We found in the default model setup 

that the increase in atmospheric CO2 was close to observations, but there was a large discrepancy 

between modelled and observed δ13Catm decreased with the model results showing an almost 2 

times stronger decrease. This is a steeper trend than was found by Van der Velde et al. (2013). Our 

series of sensitivity analyses within estimated uncertainties revealed significant sensitivity of 

δ13Catm to (in order of importance): Ocean uptake, NPP, the trend in C3 discrimination, and soil 

turnover time. The source of the uncertainty in ocean emissions originates from the uncertainties 

in ocean circulation, productivity, and gas exchange. Our study differs from other analyses that try 

to use δ13Catm to partition between ocean and land because we tested the uncertainties of each of 

the major components of the land biosphere, as well as the uncertainties of ocean uptake and fossil 

fuel emissions. This study has not touched on various other uncertainties of the land functioning, 

such as parameters involved with the carbon uptake and release of peat, as well as fire mortality 

of vegetation. 

 

The use of CASA in this study is justified by the accuracy of many elements within the model 

when compared with estimates from the literature. Firstly, the soil turnover times and total soil 

carbon stocks in CASA lie close to the estimates from the literature and within the uncertainty 

bounds (see section 3.2.3.2). Furthermore, the global NPP sum is very close to the majority of 

estimates in the literature (Ito, 2011). In our simulations, we modified the CO2 fertilisation 

parameter to fit the simulations to atmospheric CO2 observations. This was because the other 

components of our model setup are more tightly constrained than the terrestrial sink. Estimates for 

the terrestrial sink range from 1.36-4.25PgC yr-1 during 1982-2012, thus making it far more 

uncertain than all the major sinks/sources in the carbon budget (Friedlingstein et al., 2020). This 

compares with the uncertainty calculated from this study of 1.88-4.36PgC yr-1 (Table 3.3). The 

difference in the seasonal cycle of atmospheric CO2 and δ13C between CASA and the observations 

(Figure 3.4) is expected because the observed values come from the mean of data from the South 

Pole and Mauna Loa observatories. The data from these observatories are affected by regional 

variations in uptake and release processes by vegetation (which are the dominating factors behind 

CO2 amplitude). Whereas the CASA atmospheric record is a global mean, thus is not subject to 

this phenomenon. The estimates of the ocean fluxes are slightly higher than the multi-model mean 



 

110 
 

from the global carbon project (Friedlingstein et al., 2020), however, they lie well within the model 

range of 1.78-2.59. Most of the uncertainty of the 13C ocean net uptake originated from the 

uncertainty in the 12C net uptake, which we have demonstrated is large. 

 

Our study suggests that ocean (land) uptake is on the lower (upper) end of the range of model 

estimates from the global carbon budget (Friedlingstein et al., 2020) (Table 3.3). Estimates of the 

precise value of the CO2 fertilisation parameter β vary significantly between studies (Walker et al., 

2021). Keenan et al., (2021) found that gross primary productivity (GPP) estimated from only the 

fraction of absorbed photosynthetically active radiation (fAPAR) underestimates the CO2 

fertilisation effect, thus justifying the inclusion of an additional CO2 fertilisation effect in this 

study. In their study, they estimated that the CO2 fertilisation effect on gross primary productivity 

(βGPP) to be 0.54 ± 0.03. This compares with the upper bound estimated in this study of 0.65 (Table 

3.3), however, the β estimated here is calculated from NPP, thus not directly comparable with the 

estimate of Keenan et al. (2021). 

 

Estimates of C3 discrimination from experimental data Schubert & Jahren (2013) as well as 

discrimination changes over long (glacial-interglacial) time scales (Schubert & Jahren, 2015; 

Voelker et al. 2016) fell inside the uncertainty range estimated by Keeling et al. (2017). Adams et 

al. (2020) compiled tree ring studies with δ13C measurements across multiple decades and sites. 

Contrary to the finding of Keeling et al. (2017), the overall trend in tree ring δ13C demonstrates a 

decrease over time (after accounting for changing δ13Catm). However, this is not necessarily 

indicative of changes (or lack thereof) in C3 discrimination. This is because, as previously 

discussed, there is a significant influence of plant size on isotopic discrimination (Vadeboncoeur 

et al., 2020; Brienen et al., 2017; Brienen et al., 2021), thus size must be accounted for when 

deriving time trends of discrimination from tree ring isotopes. For all datasets included in Adams 

et al. (2020), bar one (Van der Sleen et al., 2015), the size effect on plant discrimination was not 

accounted for. The sensitivity of discrimination from Van der Sleen et al. (2015) was 0.0056‰ 

ppm-1, which is slightly below the lower bound estimated by Keeling et al. (2017) of 0.007‰. 

However, due to the lack of spatial and species coverage from a single study, it is not possible to 

generalise to a global scale from this estimate alone. We here find that we cannot use modelled 

δ13Catm to provide additional constraints on C3 discrimination due to the low sensitivity of δ13Catm 

to varying discrimination trends (Figure 3.5). 
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3.5 Conclusion 

Rising atmospheric CO2 concentrations and the accompanying surface warming of the earth is 

causing rapid changes to the biological landscape. Careful analysis of the δ13Catm signature has 

been used to estimate the ratio between the land and ocean sinks (Tans et al., 1993; Keeling et al., 

1995; Quay et al., 1992; Trudinger et al., 2005; Heimann & Maier‐Reimer, 1996). The magnitudes 

of the land and ocean sinks are still poorly understood. Thus, understanding the sensitivity of 

δ13Catm to various parameters within the earth system would help characterise the robustness of 

any studies that analyse model simulations of δ13Catm to infer information about land and ocean 

uptake processes. δ13Catm has also been used to estimate the trend in C3 discrimination as a result 

of rising atmospheric CO2 concentrations (Keeling et al., 2017).  The reported trend from Keeling 

et al. (2017) of C3 discrimination was estimated by running the model many times and choosing 

the trend where δ13Catm levels matched observations. In their study, they acknowledged the 

sensitivity of δ13Catm to the turnover of carbon in the land biosphere and air-sea gas exchange. The 

parameters strongly influencing both processes were tuned by modelling atmospheric 14C and 

fitted the model to match the atmospheric record. 

 

Our study has demonstrated that the significant uncertainties of the functioning of land and ocean 

processes lead to vastly different effects on δ13Catm. δ13Catm was found to be far more sensitive to 

ocean net carbon uptake (i.e., ocean sink) than any of the land uncertainties. Furthermore, because 

of the reduced ocean uptake, land uptake must have been larger. C3 discrimination was not found 

to influence δ13Catm as strongly when varying within the uncertainty bounds, thus we cannot make 

a strong argument about the extent to which that has changed over the past decades.  

 

This study differs from other analyses that try to use δ13Catm to partition between ocean and land 

because we tested the uncertainties of each of the major components of the land biosphere, as well 

as the uncertainties of ocean uptake and fossil fuel emissions. We have provided important insight 

into the sensitivities of δ13Catm to a range of parameters within the land and ocean sinks. We thus 

conclude that more work is needed in improving the robustness of estimates of vegetation 

productivity and global soil turnover over land, as well as circulation, productivity, and gas 

exchange in the oceans. 
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4 Cross calibration of Landsat 5 TM and 

Landsat 7 ETM+ using deep learning 

enhances tree cover mapping consistency 

Abstract 

To quantify ecosystem responses over large areas, long-term and continuous satellite data are 

essential. However, the longest-running remote sensing data, from the Landsat program, suffer 

from switches in sensors between successive satellite generations. Therefore, it remains difficult 

to use Landsat data to assess long-term shifts in land cover over periods longer than the lifetime 

of a single generation of satellites. We here aim to emulate reflectance values of Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) with Landsat 5 Thematic Mapper (TM) using a deep 

learning model to produce a consistent Landsat time series from 1985-2021. Our approach uses 

open-source cloud-based resources that enable our Tensorflow deep learning model to be trained 

and run using Google Collaboratory and Google Earth Engine entirely on the cloud. Our model 

successfully emulates Landsat 7 imagery, with greater similarity to the Landsat 7 ETM+ image 

than the original Landsat 5 TM (up to 40% reduction in squared error). We then applied a random 

forests model to estimate tree cover from the emulated images and provide a continuous record of 

tree coverage in a region in eastern Alaska from 1985 to 2021. Regions unaffected by fires showed 

a general increase in tree cover, whereas widespread reduction in tree cover was found following 

wildfires, followed by a recovery period. We thus conclude that our deep learning model is 

effective at emulating satellite data to improve the continuity of the satellite data record, hence 

enabling improved applications to remote sensing of vegetation using Landsat data. 
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4.1 Introduction 

The Earth’s land vegetation is a significant sink of atmospheric CO2 (Friedlingstein et al., 2020), 

a large part of which is due to northern ecosystems. Towards the end of the 20th century, the Arctic 

and boreal ecosystems took up between 0.3 and 0.6 Pg C yr-1, which makes up a significant fraction 

of the 1.0 Pg C yr-1 net land sink estimated during the 1990s (Mcguire et al., 2009). The primary 

drivers behind the increase of the northern CO2 sink are thought to be a stimulation of plant 

productivity due to warming and CO2 fertilisation (Wang et al., 2013; Cias et al., 2019). Global 

average surface temperatures increased by 1.1˚C during the 1880-2021 period (Masson-Delmotte 

et al., 2021), and high latitude regions have warmed twice as fast due to various climate feedbacks 

(Screen et al., 2010; Jeong et al., 2012). Atmospheric CO2 concentrations have increased from 280 

ppm pre-1751 to over 400 ppm present day, and the ensuing CO2 fertilisation of plants is thought 

to have contributed towards 60% of the current land sink (Schimel et al., 2015). 

 

The global carbon budget has significant uncertainties, largely attributed to poor quantification of 

the land carbon sink, which fluctuates on the order of several GtC from year to year (Friedlingstein 

et al., 2020). Climate-carbon cycle models disagree strongly on the magnitude of the future land 

sink when compared to other sinks and sources in the earth system (Friedlingstein et al., 2006). 

One of the largest uncertainties regarding predictions for the future carbon sink is the response of 

boreal forests to climate change (Friedlingstein et al., 2020). There is evidence of boreal forest 

expansion and greater seasonal uptake and release of CO2 (Graven et al., 2013), but also evidence 

for large-scale increases in disturbances, such as fire (de Groot et al., 2013) and insect outbreaks 

(Kurz et al., 2008). The ability to measure the summer photosynthetic uptake of carbon by the land 

depends heavily on accurate measurements of the changes in aboveground biomass (Houghton, 

2005). Greater accuracy in quantifying the land sink can be achieved with better estimates of 

carbon stock changes (Harris et al., 2021) and forest cover (Bonan et al., 2002; DeFries et al., 

2002). 

 

Natural disturbances, such as fire and insect outbreaks, disrupt vegetation functioning and can 

change the future composition of an ecosystem (White et al., 1985). Climate has emerged as the 

dominant driver behind disturbance regime change (Seidl et al., 2011).  Climate change has caused 

increases in fire (Pechony & Shindell, 2010; Westerling, 2016), insect outbreaks (Paritsis & 
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Veblen, 2011) and drought (Constance & Stephenson, 2025), potentially paving the way for large-

scale forest dieback. Furthermore, changes in disturbance regimes are soon predicted to be one of 

the most significant effects of climate change on the land biosphere (Lindner et al. 2010). Thus, it 

is of interest to document and understand the effect of past forest ecosystem disturbance to 

accurately predict and mitigate against future changes. One of the only methods of gaining insight 

into these systems over a large scale is with remote sensing. 

 

One of the most widely used satellite observations is from the Landsat program. This program 

began in 1972 and is still operational to this day, making it the longest continuous satellite record 

of moderate resolution at a global scale. However, over the course of the program, nine different 

satellites have been used, each containing onboard sensors with characteristics that have not been 

consistent from satellite to satellite. The number of bands, wavelengths of bands and image quality 

have varied significantly throughout Landsat’s history, making it difficult to combine imagery 

from successive satellites without introducing bias. This hinders the use of Landsat data in long-

term analyses. Consequently, remote sensing products from Landsat data, such as global high-

resolution percentage tree cover maps (Hansen et al., 2013) only cover a short period from 2000 

to 2019. As large-scale shifts in forest dynamics tend to occur over multi-decadal timescales, 

reconstruction of longer chronologies of, for example, tree cover would be advantageous. Longer 

timescales have been analysed in the Mapbiomas project, where they made detections of land cover 

across the Amazon from 1985 to present-day (Souza et al., 2020). Their method analysed changes 

in land cover classes to date the apparition of secondary forest (Heinrich et al., 2021), but the value 

of tree cover per pixel is still lacking. We here aim to emulate Landsat imagery to provide 

consistent characteristics of the data and produce 30 years of continuous estimates of percentage 

tree cover maps. 

 

The longest-running satellite of the Landsat mission currently in operation is Landsat 7 (L7), which 

shares a 14-year overlap with Landsat 5 (L5), which was launched in 1984. Together, these 

satellites provide uninterrupted satellite imagery from 1984 to present-day. L5 and L7 both have 

8-bit radiometric resolution with an identical spatial resolution of 30m and near-identical spectral 

resolution. L7 additionally has a pansharpened band (520-900nm) at 15m spatial resolution (see 

L7 user guide: https://www.usgs.gov/media/files/landsat-7-data-users-handbook for more details). 

Land cover studies have utilised data from a combination of Landsat generations, including L5 
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and L7 (Gong et al., 2013; Liu et al., 2018; Murray et al., 2019; Gong et al., 2020). However, 

‘tandem’ orbits where nearly coincident imagery was collected from L5 and L7 (Teillet et al., 

2001) show there are significant differences between spectral data obtained from these two 

satellites. Specifically, they found a difference in spectral response on the order of 2%, except in 

the short-wave infrared (SWIR) bands, where the difference was 3-7% depending on the band and 

region. Previous work has neglected these disparities between successive Landsat products, which 

suggests an additional error in calculations as a result of the change in satellites. This effect is 

particularly significant when there is a nonlinear dependence, or simply a high sensitivity of land 

cover class to the spectral signature. 

 

The long temporal overlap in which imagery for both satellites is available (1999-2013) ensures 

their suitability for training a deep learning (DL) model to enable cross-calibration (Chander et al., 

2005). We aim to emulate L7 images from L5 images for Alaska during the 1985-1999 period to 

obtain a continuous satellite record from 1985 to present-day with consistent spectral 

characteristics at a spatial resolution of 30m. Additionally, we will predict the L7 pansharpened 

band at 15 m resolution from the emulated 30 m resolution bands to further improve the accuracy 

of the emulated bands. This will enable greater precision of the mapping of areas for the period 

before L7 was launched. Improving the resolution of an image is known as image super-resolution 

(Dong et al., 2015), a technique that is still rarely used to supplement remote sensing techniques 

(Pouliot et al., 2018). We choose to do this for Alaska as its good quality coverage of Landsat 

images throughout the study period provides us with a suitable quantity of training data. Alaska is 

also important as it hosts the two largest national forests in the USA. Alaska contains ~77 PgC of 

soil organic carbon (Mishra et al., 2012), which makes up nearly 4% of global soil carbon (Bolin 

et al., 2000). 

 

Working with large-scale time-series images has been greatly improved with the development of 

the Google Earth Engine (GEE) platform. One of the first scientific works with the platform was 

the global tree cover dataset (Hansen et al., 2013), which was followed by the addition of large 

quantities of satellite data onto GEE. More recently, GEE has incorporated the capability to load 

deep learning models onto the platform, which we take advantage of in this study.  After deploying 

the DL model onto GEE, a random forests model will be used to predict tree cover percentage at 

a 15m scale in a region in east Alaska as a proof of concept. These maps will provide a continuous 
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estimate of tree cover spanning more than 3 decades. This technique will enable the possibility of 

providing land cover maps before 1999 with greater detail than was previously possible at a large 

scale. The primary advantage of these maps is that they will enjoy greater continuity during the 

transition from L5 to L7 data. 

 

In summary, our objectives are to emulate L7 images from L5 images using a deep learning model, 

which will be compared with a classical regression model, as well as the original L5 images. Then, 

we will use a tree cover model computed with the emulated L7 images from L5 (1985-1994) and 

on the L7 images (2002-2021) to produce percentage tree cover maps spanning from 1985 to 

present-day. 

4.2 Materials and Methods 

4.2.1 Experimental Design 

The overall methodology and workflow are shown in Figure 4.1. We first trained a percentage tree 

cover model (Section 4.3.1) and then emulated L7 images from L5 images using a deep neural 

network model and a regression model (Section 4.3.2 – 4.3.4). We then used these emulated L7 

images from these two approaches to produce continuous maps of percentage tree cover from 

1985-2021 using the tree cover random forests model (Section 4.4) (Figure 4.1). 
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Figure 4.1. The methodology presented in this chapter. Each coloured box is labelled with 

reference to the section in this study being depicted. Circle boxes indicate data origin, square boxes 

indicate stages of the methodology. 3 large, coloured backgrounds indicate stages of the 

methodology with labels of the sections of the paper pertaining to them. 

4.2.2 Study site and training data pre-processing 

The study area in this Chapter is located on the eastern edge of Alaska, United States of America 

(Figure 4.2). For this region, we used L5 Thematic Mapper (TM) and L7 Enhanced Thematic 

Mapper Plus (ETM+) ortho-rectified top-of-the-atmosphere (TOA) images in the GEE cloud 

computing platform. We chose to use the TOA images rather than surface reflectance products 

because of the availability of an additional pansharpened band with a greater spatial resolution of 

15m (instead of 30 m). 
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4.2.2.1 Training and testing data for L7 emulation 

Our training data consisted of 120 pairs of overlapping L5 and L7 images in Alaska and western 

Canada (Figure 4.2 middle panel) with a low probability of cloud cover (<10%) during the 1999-

2013 period. The maximum time separating the collection of each image in each pair was 2 days, 

and a maximum of 1-hour difference in the time of day of collection. This is because the conditions 

under which the pairs of L5 and L7 images were obtained needed to be as similar as possible in 

order to accurately train the DL and MR models.  

 

Each image was taken during the June to September period and located within or very close to the 

US state of Alaska. We used all the overlapping area of images taken before 2003, but due to 

failure of the scan line corrector (SLC) onboard Landsat 7 in 2003, we were only able to use the 

central strip of the L7 images for training thereafter (see Table S4.1 for a list of the L5 and L7 

image pairs used in training the model). 

 

The training images were imported onto Google Colab using the GEE Python application 

programming interface (API). We used the ‘simpleCloudScore’ GEE function to mask any pixels 

where there was a likelihood of 10% or higher of a cloud being present in that pixel. We then 

retiled the images into 128x128 pixels images for each of the 30m bands (and 256x256 for the 

15m pansharpened band). For each pair of images, the mean squared error (MSE) was calculated 

between the L5 and L7 images and all images with MSE greater than 2 standard deviations from 

the mean were examined visually for clouds or shadows. After removal of the poor-quality image 

pairs, 32119 pairs remained, 20% of which were set aside for validation. The images analysed in 

the study region in section 4.3.2 were also subject to the same set of restrictions in order to 

minimise the effects of differences in lighting, atmospheric conditions, and surface features. 
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4.2.2.2 Data for random forests model and final percentage tree cover maps 

 
Figure 4.2. Map showing the location of the region in Alaska, USA analysed in this study. Middle 

panel depicts the area used to collect training data for the models used in this chapter. 

4.2.3 Fire data 

The region of interest experienced three major fire events during the study period (1993, 1997 and 

2009). The 1993 fires lasted 58 days and 94 days respectively, the 1997 fire lasted 81 days and the 

2009 fire 100 days (Figure 4.3). The fire data were obtained from the Alaska Bureau of Land 

Management (data available here: https://fire.ak.blm.gov/predsvcs/maps.php). 
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Figure 4.3. Fires occurring in the study region in lighter colour during (a) 1993, (b) 1997, and (c) 

2009 overlaid on an RGB L7 image of the study region. Annotated on each fire geometry is the 

duration of the fire. This data is available here: https://fire.ak.blm.gov/predsvcs/maps.php. 

4.2.4 Tree cover random forests model 

To estimate tree cover, we used terrestrial field measurement data from the United States 

Department of the Interior Bureau of Land Management (USDI BLM) 

(https://landscape.blm.gov/geoportal/catalog/AIM/AIM.page). From this dataset, we obtained 

18998 data points across the contiguous United States and Alaska. Each data point contained 

information on percentage tree cover, location, and date of measurement. We then set aside 10% 

of this data for cross-validation and a further 10% for testing. The remaining 80% of the data was 

used to train a random forests model. 

 

The random forests model was tested using all the L7 bands, as well the normalised difference 

vegetation index (NDVI) which is calculated with the near-infrared band (NIR) and red band (Red) 

of the Landsat images as follows: 
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[4.1] 

Tuning of various parameters in the training of the random forests model was undertaken by 

assessing the accuracy of predictions in the cross-validation dataset. The highest accuracy was 

achieved by using NDVI as well as all the L7 bands, except for the high gain and low gain B6 

bands. Using 100 decision trees achieved a high degree of accuracy, with no measurable 

improvement when increasing this further. This optimal model obtained a root mean squared error 

(RMSE) of 8.2% tree cover. 

4.2.5 Deep learning model architecture 

We trained a deep learning neural network model with a structure similar to a residual neural 

network (Res-Net) (He et al., 2016) (Figure 4.4). Res-Net models are typically implemented with 

double-layer skip connections Rectified Linear Unit (ReLU) activation functions and batch 

normalisation in between (He et al., 2016). We disaggregated the L5 input bands to 15m resolution 

and implemented six two-dimensional convolutional layers. We then applied a sigmoid activation 

function to produce an output image containing emulations of the L7 bands disaggregated at 15m 

resolution (Figure 4.4). Next, we up-sampled the image (increase the spatial resolution by 

repeating each element) and applied three more convolutional layers and another sigmoid 

activation function to produce an emulation of the L7 15m resolution pansharpened band (Figure 

4.4). We chose to emulate the pansharpened band in order to improve the predictive power of the 

model (Wagner et al., 2021). We chose to emulate also the 15m band because deep learning models 

are capable of utilising spatial and spectral information to infer image characteristics at a higher 

spatial resolution (Dong et al., 2015). To ensure the model trained each band with equal 

importance, we weighted the error in the training such that each of the 30m bands had equivalent 

weights to the pansharpened band. Our model was initialised with random weights, after which, 

adjustments were made to the weights based on a standard batch gradient descent algorithm that 

aimed to minimise the cost function, for which we used MSE. The gradient descent algorithm was 

implemented after each pass through the entire dataset, defined as one epoch. Updating the weights 

takes the following form: 
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[4.2] 

Here θj is a given weight, α is the learning rate (between 0 and 1), J(θ) is the cost function (a 

function of all the weights), and := is the assignment operator. The accuracy of the model was 

evaluated by calculating the mean absolute error (MAE) from the test dataset, and the RMSprop 

optimiser was used for calculating the gradient of the descent (∂J/(∂θj) (Chollet et al., 2015). We 

did not apply any data augmentation techniques. 

 
Figure 4.4. Deep learning model architecture. In convolutional (conv) layers, the kernel size and 

number of filters are indicated. ‘sig’ refers to the sigmoid activation function. Arrows labelled with 

‘copy’ refer to the tensors from the start of the arrow being concatenated with the tensors at the 

end of the arrow to then be inputted into the next layer. ‘down1’, ‘up1’, ‘up2’ refer to the 3 stages 

of the ResNet model. 

4.2.6 Training models to emulate L7  

Preliminary training resulted in a model which had difficulty in accurately emulating the TIR band. 

The TIR band is subject to significant variability in surface reflectiveness, therefore we excluded 

it from the final model, which performed far better (see Section 4.3.4). Training of the deep 

learning model was coded in the Python programming language using the Keras API (Chollet, 

2015) and the Tensorflow package (Abadi et al., 2016) on Google Colab. 

 

We trained the deep learning model for 250 epochs using the maximum batch size available on 

Google Colab of 64 images and started with a learning rate of 0.001, which we reduced by a factor 

of 10 whenever there was no improvement in validation MAE for more than 10 epochs. Leading 

up to the 250th epoch, the MAE of the validation dataset had stopped decreasing, at which point 

the optimal value of MAE had reached 0.0058 for predicting the 30m resolution bands, and 0.0074 
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for predicting the 15m resolution pansharpened band. We then uploaded the model onto GEE 

through the Google Cloud Platform to make predictions in the study region (Figure 4.2). For every 

128x128 pixel prediction, the model included an overlap of 8 pixels. This was done in order to 

remove an effect whereby the borders of each prediction box were distorted (a known effect from 

regression-based deep neural networks (Wagner et al., 2021). The DL model took 20 hours to train 

on Google Colab, which (at time of writing) is a freely available service, although this study made 

use of the Colab Pro service (£8.10 per month) which allows longer running times of the GPUs 

while fine-tuning the model. 

 

In order to compare our DL model with classical methods of satellite cross-calibration, we then 

trained a multiple linear regression model (MR), in which each L7 band was emulated using a 

linear function of the L5 bands, as follows: 

 
[4.3] 

L7BN, L5Bi are bands of Landsat 7 and Landsat 5 respectively and the coefficients kNi are constants 

calculated from linear least squares regression between the L5 and L7 images in the same dataset 

used to train the deep learning model. Note that the k coefficients are different for each band of 

Landsat 7. 

4.2.7 Statistical Analysis: Validating predictions from L7 emulations 

After training, we tested the two models on the images that were held back for validation by 

calculating the error based on the MSE between the L7 image and its L5/MR/DL counterpart. The 

RGB images of the DL-emulated and MR-emulated images show a visible increase in similarity 

to the L7 image than the L5 image (Figure 4.5). The MSE from the L7 images is lower for the 

emulated images (MR and DL MSE) than the original (L5 MSE) for all bands save one (Table 

4.1). The MR model also produces an improvement on the L5 images, with lower MSE than the 

L5 images for nearly all bands. The DL model outperforms the MR model for half of the bands 

and has lower overall MSE (6.7e-5 vs 6.9e-5). In order to accurately model tree cover, we first 

tested the sensitivity of tree cover estimates to the time of year that the L7 satellite image was 

taken in 10-day increments. We used the region of interest for this sensitivity analysis, as well as 

all other regions in Alaska inside a similar latitude band (64.8˚N – 66.5˚N). There was little 

variability (range = 2.5%) in tree cover estimates in the 180th – 230th days of the year. Outside 
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this range, calculated tree cover started to decrease substantially, therefore we made sure to only 

use imagery during this period in order that seasonal variations in vegetation greenness and 

atmospheric conditions did not influence the results.  

 
Figure 4.5. RGB images from the validation dataset not seen during training of the MR and DL 

models. Each box depicts a 128x128 pixel scene where each pixel has dimensions 30m x 30m. (a), 

(b), (c) and (d) each depict a different scene from the validation dataset from different regions in 

Alaska. 
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Table 4.1. Summary of the bands used in training and their wavelengths and spatial resolutions 

from the Landsat 5 and Landsat 7 satellites. The 3 rightmost columns contain the mean squared 

error (MSE) of the validation images held back during training. DL refers to the deep learning 

model and MR refers to the multiple regression model. Improvements on the L5 image underlined 

for the MR MSE and DL MSE columns. The lowest MSE for each respective row is indicated in 

bold. No available Panchromatic MSE for L5 and MR because L5 images do not contain this band. 
Band L5 wavelength 

(μm) 

L7 wavelength 

(μm) 

Resolution L5 MSE MR 

MSE 

DL MSE 

Blue 0.45-0.52 0.45-0.52 30m 6.06e-5 4.91e-5 5.08e-5 

Green 0.52-0.60 0.52-0.60 30m 5.41e-5 2.85e-5 3.25e-5 

Red 0.63-0.69 0.63-0.69 30m 5.20e-5 4.15e-5 3.74e-5 

Near Infrared 0.76-0.90 0.77-0.90 30m 1.11e-4 1.12e-4 1.05e-4 

Shortwave 

infrared 1 

1.55-1.75 1.55-1.75 30m 1.21e-4 1.20e-4 1.25e-4 

Shortwave 

infrared 2 

2.08-2.35 2.08-2.35 30m 7.07e-5 6.33e-5 5.02e-5 

Panchromatic N/A 0.52-0.90 15m N/A N/A 8.55e-4 

 

For the red, blue, and green bands, the DL-emulated L5 images are visibly closer to the 1:1 line 

than the original L5 image (Figure 4.6). The difference is less clear in the SWIR1, SWIR2 and 

NIR plots, however, it is evident that the band values in the DL-emulated images change more 

smoothly than the L5 (Figure 4.6). Note that the striping effect visible in Figure 4.6 is due to the 

radiometric resolution limitations of L5 and L7 imagery. 
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Figure 4.6. Scatterplots of the (a) red, (b) green), (c) blue, (d) NIR, (e) SWIR1, (f) SWIR2 bands 

from a random sample of images in the validation dataset. Band values for each of the L5 bands 

used in training are plotted against their corresponding L7 band values. Darker points indicate the 

DL-emulated images, and lighter points indicate the original L5 images. 

 

Thus, the DL model has the lowest error and is less subject to variability in the accuracy of its 

estimates. Therefore, we have shown that the model enables us to perform (in part) a cross-

calibration between L5 TM and L7 ETM+. This effectively allows an improvement of the 

consistency of percentage tree cover estimates during the study period. 

4.3 Results 

4.3.1 Tree cover error in the validation dataset 

We first applied the tree cover model to the validation dataset to test the difference in estimates of 

tree cover using L7 with tree cover estimated from the L5, DL-emulated, and MR-emulated 

images. The error was greater for regions with higher tree cover, and the DL model produced lower 

error than the L5 images for all tree cover intervals (Table 4.2). The MR-emulated images 

produced similar or slightly higher error than the L5 images.  
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Table 4.2. Summary of RMSE in percentage tree cover estimates in the training dataset for each 

interval of tree cover. Each RMSE column depicts RMSE in calculated tree cover between the L7 

and each respective image type. Underlined values indicate RMSE lower than obtained by using 

the original L5 image. Bold values indicate the lowest RMSE obtained for that row. 

Tree cover L5 RMSE (% tree 

cover) 

MR RMSE (% tree 

cover) 

DL RMSE (% tree 

cover) 

0-10% 2.2 2.1 1.9 

10-20% 2.5 2.6 2.3 

20-30% 9.3 10.0 8.5 

>30% 7.9 8.5 6.9 

4.3.2 Tree cover error in the study region 

We tested the error of the DL-emulated, MR-emulated and L5 tree cover estimates in the images 

across the entire study region during the overlap period with the L7 images. We found that the 

overall error was lower for the DL-emulated images (RMSE=8.1% tree cover) than the MR-

emulated images (RMSE=9.6% tree cover) and the original L5 images (RMSE=12.9% tree cover) 

averaged over all 4 images (Table 4.3). Furthermore, the DL-emulated images produced lower 

error than the MR-emulated and original L5 images in all images (Table 4.3; Figure S4.1-4.4). 
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Table 4.3: Summary of RMSE in percentage tree cover estimates in the study region for each of 

the years in which low cloud cover L5 and L7 imagery exist. Each RMSE column depicts RMSE 

in calculated tree cover between the L7 and each respective image type. Underlined values indicate 

RMSE lower than obtained by using the original L5 image. Bold values indicate the lowest RMSE 

obtained for that row. The ‘All’ row indicates the overall RMSE from all 4 years. 

Image year L5 RMSE (% tree 

cover) 

MR RMSE (% tree 

cover) 

DL RMSE (% tree 

cover) 

2003 8.5 7.8 6.8 

2004 7.8 7.3 6.5 

2005 23.2 14.0 10.7 

2006 12.0 9.0 8.2 

All 12.9 9.6 8.1 

4.3.3 Mapping tree cover during 1985-2019  

As the DL-emulated images produced lower error compared with the MR-emulated and L5 

images, we here present the time series of tree cover from 1985 to 2021 using the DL-emulated 

images (1985-1994) combined with the L7 images (2002-2021) (Figure 4.7). The years where full 

composite images were available to produce this time series were: 1985, 1989, 1990, 1994, 2001-

2002, 2006-2007, 2010-2011, 2012-2013, 2014-2015, 2016-2017, and 2020-2021. We split up the 

study region depending on the existence of a fire during the study period. We found that in the 

region with no fires, the mean tree cover did not change significantly (slope=-1.6% tree cover 

decade-1, P=0.12) (Figure 4.7a). In the region with fires in 1993, mean tree cover dropped from 

43.3% to 30.1% between the 1990 and 1994 images, thereafter, tree cover further decreased in 

2002 to 20.7%, after which it increased significantly throughout the remainder of the study period 

(slope=5.8% decade-1, P=0.001) (Figure 4.7b). In the region with a fire in 1997, the fire resulted 

in a drop in tree cover from 43.4% to 17.6% between 1994 and 2002, although the immediate loss 

was likely to have been greater, no images are available 1995-2001. Following the fire, tree cover 

increased by 5.9% decade-1 (P=5.9e-5) (Figure 4.7c). Finally, the region containing a fire in 2009 

showed a steady decline in tree cover pre-fire (slope=-5.7% decade-1, P=0.003), after which, the 

fire led to a reduction in tree cover from 37.6% to 27.1%, without having time to recover in the 

ensuing years (Figure 4.7d). 
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Figure 4.7. Time series of a sample of 300 points inside the study region with (a) no fires 

occurring, (b) a fire in 1993, (c) a fire in 1997, (d) a fire in 2009. The timing of each fire is depicted 

on the corresponding plot with a dotted line. The year value on the x-axis is the later year in the 2-

year composite, when applicable. Vertical dotted lines indicate data points available during 1985, 

1989, 1990, 1994, 2002, 2007, 2011, 2013, 2015, 2017, and 2021. Legend indicates fires 

corresponding to each time series. 

 

The overall change in tree cover during the study period reveals domination by the fire in 2009, 

due largely to the recency of the event to the final data point (Figure 4.8). The majority of regions 

unaffected by the 2009 fire have experienced increases in tree cover over the study period, with 
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the exception of the region in the northwest affected by the 1993 fire lasting 94 days. The region 

in the southwest was affected also by a fire in 1993 but lasting only 58 days largely experienced 

an increase in tree cover, hence demonstrating the importance of the duration of fires on the 

recovery of tree growth. 
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Figure 4.8. (top) Percentage tree cover at the beginning and end of the study period, and after each 

fire event. Years labelling plots are the later year in the 2-year composite, when applicable. 

(bottom) The difference in percentage tree cover between the 2021 and 1985 images. Grey areas 

indicate masked regions due to scan line corrector failure or cloud cover. 
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4.4 Discussion 

In this study, we aimed to demonstrate a technique with the capability of estimating pixel-level 

resolution of percentage tree cover over a multi-decadal timescale. This was achieved by training 

a deep neural network model to emulate L7 images from L5 images with a reduction in error of 

predictions when compared with a classical regression approach to emulation. Our deep learning 

model has been successful in emulating L7 ETM+ imagery using only L5 TM images as input for 

the period 1985-2006 (Figure 4.5; Figure 4.6; Table 4.1; Table 4.2). The emulated images showed 

band values with a 15% reduction in MSE with the L7 images compared with the original L5 

(Figure 4.6; Table 4.1) and were thus deemed to give improved estimations of percentage tree 

cover. Using this same dataset, the calculated tree cover was 8-15% closer to the L7 estimates 

using the DL-emulated images than with the L5 images using a tree cover random forests model. 

The tree cover estimated from the DL-emulated images is closest to the L7 images estimates across 

all ranges of tree cover when looking at the RMSE in each tree cover percentage interval (Table 

4.3). This improvement is greatest in regions with higher tree cover. This could indicate that the 

model can recover the spectral information and spatial of the forests. However, for the regions 

with low tree cover, there could be more diversity in land cover types, explaining why the model 

is not so efficient and thus a larger volume of training data would likely be required to accurately 

emulate L7 imagery in such regions. 

 

In the study region, the DL-emulated images enabled a more accurate (37.2% decrease in RMSE) 

chronology of tree cover (Table 4.3; Figure S4.1-4.4) for the past 3 decades. This is a greater 

improvement than the average from the training data (Table 4.2), however, it is within one standard 

deviation of the errors derived from this dataset. Our percentage tree cover estimates were largely 

consistent from year to year, with much of the change caused by fires occurring in 1993, 1997, 

and 2009 (Figure 4.7). The DL model was trained only with data covering Alaska and western 

Canada (Figure 4.2). The capabilities of the model to emulate L7 imagery in new locations relies 

on the model being trained with a wide variety of atmospheric conditions and land types. 
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4.5 Conclusions 

Determining how forest disturbance history has changed over the past decades is of significant 

interest to the wider research community. Landsat presents the most suitable satellite dataset for 

carrying out long term analysis. However, there are differences in the band information collected 

by different satellites (Teillet et al., 2001) and changes in the wavelengths monitored by successive 

satellites. Here, we have demonstrated a method through which greater consistency can be 

achieved in long-term studies of land cover change using a deep neural network model to cross 

calibrate the Landsat satellites. Hence, we have illustrated the potential of these methods to open 

the door to vast improvements in the reconstruction of disturbance history over the past four 

decades. 

 

The spatiotemporal changes in tree cover over the boreal zone are still poorly quantified. This 

hinders our understanding of the drivers of large-scale disturbances. Remote sensing techniques 

can address questions such as whether disturbance rates are increasing over time, what the main 

drivers of disturbances are, and whether boreal forests are expanding in size. The approach 

presented in this Chapter could be transferred to, for example, regions in Siberia to assess the 

impact of recent unprecedented droughts (Lin et al., 2020) on forestry dynamics. Furthermore, this 

model framework can emulate satellite imagery in any region with sufficient training images (as 

little as 4000 images have previously been used to train such models (Wagner et al., 2021)). The 

potential for deep learning techniques in cross-validation of satellite images is high and an 

algorithm emulating L7 images at a global scale would have wide-ranging implications. Lastly, 

we recommend that future work should focus on validating remotely sensed estimates of forest 

cover with ground plot measurements to improve confidence in the techniques applied. 
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5 Discussion 

In this chapter I will first provide a summary of the aims and key methodologies of the work carried 

out in this thesis and present the key findings from Chapters 2-4. Following on from this, a critical 

analysis is undertaken of the quality of the research. Finally, the implications of the research will 

be discussed alongside suggestions for future work that can advance understanding of the earth 

system. 

5.1 Aims and methods 

Land vegetation from across the globe is impacted by recent climate change. Northern high latitude 

regions have experienced one of the strongest rates of warming, the Arctic has warmed more than 

twice as much as the global average (Masson-Delmotte et al., 2021). High latitude ecosystems take 

up a significant proportion of the net land sink (Mcguire et al., 2009), and their response to climate 

change plays an important role in atmospheric CO2 concentrations. Surface warming has resulted 

in considerable vegetation responses across a wide range of northern ecosystems (Walther et al., 

2002). Furthermore, uncertainties are high regarding the effects of climate change on the overall 

carbon sink or source status of high latitude lands, as well as regional differences in the response 

(Mcguire et al., 2009). Thus, it is important that a better understanding is gained of the response 

of vegetation in these regions, as well as globally, to changing climate and disturbance regimes. 

 

In this thesis, three different methods were utilised: the analysis of high latitude CO2 records, 

atmospheric δ13C, and remote sensing. All of these were combined with modelling to study the 

response of vegetation to climate change and rising atmospheric CO2 concentrations and determine 

the drivers behind such changes. The following specific aims were addressed: 

 

Aim 1: Investigate the temperature sensitivity of high northern latitude vegetation spring carbon 

uptake using atmospheric data. (Chapter 2) 

 

Aim 2: Quantify the sensitivities of simulated global atmospheric δ13C to uncertainties in the 

carbon cycle. (Chapter 3) 
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Aim 3: Evaluate the effect of disturbance on tree cover using a novel deep learning technique in 

remote sensing. (Chapter 4) 

5.1.1 How robust is the apparent breakdown of northern high-latitude 

temperature control on spring carbon uptake? (Chapter 2) 

Chapter 2 studied the temperature sensitivity of spring carbon uptake in northern high latitudes 

during the past 3 decades. The dominant limitations on plant productivity vary substantially across 

space, however, high latitude ecosystems have been thought to be limited by temperature during 

1982-1999 based on climate data and satellite observations (Nemani et al., 2003). Careful analysis 

of the seasonality of atmospheric CO2 concentrations at the Barrow observatory (73˚N) has been 

used to evaluate the timing (Barichivich et al., 2013), and length (Keeling et al., 1996) of the 

photosynthetic growing season and autumn release (Piao et al., 2008) by land vegetation in these 

high latitudes. Furthermore, a strong correlation between spring temperatures and spring CO2 

drawdown at four high northern latitude stations (55-76˚N) was found by Randerson et al. (1999). 

These studies used the Barrow observatory (73˚N) and thus provide insight into the northern high 

latitude region due to the limited footprint of this CO2 measurement site. Keeling et al. (1996) also 

analysed CO2 data at the Mauna Loa observatory (19˚N), which is a site that is often used in global 

analyses of CO2 uptake and release processes. In their study, the CO2 amplitude at Mauna Loa was 

demonstrated to be strongly controlled by land temperature in the 30˚N to 80˚N latitude range due 

to the dominance of the high latitude regions over the global CO2 amplitude. 

 

The investigation in Chapter 2 was prompted by an analysis of work by Piao et al. (2017). In their 

study, they demonstrated that the correlation between the spring zero crossing (SZC) at the Barrow 

observatory and the spatial average in spring temperature north of 50˚N reduced significantly 

around 1995. This was an intriguing result for several reasons: Firstly, the difference between SZC 

and spring temperature anomalies was only high for 4 years in the 1996-2012 period, which is not 

consistent with an overall loss in temperature sensitivity. Secondly, analysis of the temperature 

sensitivity of NDVI revealed no significant decoupling over the 1982-2012 period, which is also 

not consistent with a reduction in the temperature sensitivity of vegetation productivity. Lastly, a 

time series of the CO2 flux footprint of Barrow revealed strong interannual variability in the origin 

of air arriving at Barrow. Previous work has highlighted the influence of atmospheric transport on 

the SZC. Murayama et al., (2007) found significant changes to modelled SZC can be obtained by 

year-to-year changes in the atmospheric transport alone. In this thesis, the drivers behind the 
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change in correlation between surface spring temperatures north of 50˚N and SZC were further 

investigated. This was supplemented by the utilisation of a trajectory model to estimate the 

footprint of Barrow which was used to weigh the temperature data. Following on from this was a 

series of factorial simulations of atmospheric CO2 using the CASA-TOMCAT framework (Potter 

et al., 1993; Randerson et al., 1996; Chipperfield, 2006) to attribute specific drivers to the change 

in SZC-temperature correlation. The factorial simulations were composed of runs in which 

different climate variables in CASA were held constant, as well as runs in which atmospheric 

transport in TOMCAT did not vary from year to year. These runs enabled precise testing of the 

extent to which temperature sensitivity had broken down in the high northern latitude region. 

 

The main findings from this study are: 

a) The normalised difference vegetation index (NDVI) is a satellite-based product that is a 

measure of primary productivity and greenness of vegetation. During the 1982-2015 

period, there was no significant change in the overall temperature sensitivity of spring 

vegetation greenness. This result was consistent whether averaging temperature and NDVI 

over the entire region north of 50˚N or averaging over the footprint of Barrow. Thus, if 

greenness is a good measure of productivity, then this analysis indicates that there has been 

no weakening of the temperature sensitivity of vegetation. 

b) Analysis of the output from factorial simulations revealed that atmospheric transport has 

strong control over SZC variability. There was a simulated breakdown of temperature 

sensitivity of SZC when atmospheric transport varied, however, when holding transport 

constant, there was no significant drop in temperature sensitivity of SZC, contrary to the 

findings of Piao et al. (2017). 

c) The spatial coherence of temperature anomalies significantly reduced during the 1979-

2012 study period, hence providing a mechanism explaining the greater influence of 

atmospheric transport in the latter part of the study period. 

 

This thesis aimed to better understand high latitude vegetation temperature sensitivity, which was 

done by determining the robustness of the results from Piao et al. (2017). Accurate footprint 

analyses are critical when inferring information from site-specific data (Murayama et al., 2007). 

This analysis led to the conclusion that temperature sensitivity remained strong contrary to the 

findings from Piao et al., (2017), which directly addresses the primary aim of the chapter. 
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The research carried out by Piao et al., (2017) and in Chapter 2 both heavily relied on the CO2 data 

from a single measurement site. This was necessitated by the fact that the Barrow observatory is 

the only high northern latitude site with data extending from the early 1980s to present-day. As 

was demonstrated in the footprint analyses, Barrow shows very non-uniform, and inter-annually 

varying coverage of the high northern latitudes. Thus, the extent to which statements can be made 

about the functioning of the high northern latitudes as a whole is limited. Overall, while there are 

drawbacks with the research approach and methodology, the study presented in Chapter 2 provides 

important insights into the functioning of high northern latitude land vegetation. 

Implications for further work 

The influence of large-scale atmospheric modes of variability on site-specific measurements of 

atmospheric CO2 was demonstrated in this chapter. This work also illustrates the importance of 

accounting for atmospheric footprints when analysing site-level CO2 data. One area of further 

research could involve a more comprehensive analysis combining estimates of the climate 

sensitivity of all high-latitude CO2 sites. The inclusion of the atmospheric footprint of each site 

would provide a fuller picture of the response of spring carbon uptake across the high latitudes and 

the relative impact of atmospheric transport on the data retrieved from each site. The results from 

this analysis would additionally indicate spatial variations in climate sensitivity, which could be 

attributed based on the atmospheric footprint of each site. One additional possibility would be to 

use a dimensionality reduction technique, such as a principal component analysis (Hotelling, 1933) 

on the CO2 uptake indices. Following on from this, a similar analysis to that conducted in this 

chapter would enable the overall climate sensitivity of the high northern latitudes to be evaluated 

over the past decades. This was an approach taken by Russell & Wallace (2004), which could be 

improved upon with atmospheric footprint analyses and a more sophisticated index of CO2 uptake 

by vegetation, such as the SZC or SCC. The work in Chapter 2 also highlights the effectiveness of 

the CASA-TOMCAT setup to simulate atmospheric CO2, in particular, the model could reproduce 

seasonal cycle indices accurately, such as the SZC, SCC, and amplitude. Thus, this setup could be 

utilised further to examine the relative contributions of climatological drivers on uptake and release 

processes by the terrestrial biosphere. 
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5.1.2 What can atmospheric δ13C tell us about the carbon cycle? (Chapter 3) 

Chapter 3 explored the sensitivities of δ13Catm to uncertainties in the size of the land and ocean 

sinks, as well as soil and vegetation carbon stocks. Measurements of δ13Catm can provide additional 

clues about large-scale land vegetation functioning. The δ13Catm signature is influenced by the 

relative proportions of the land and ocean carbon uptake due to the far stronger fractionation of 

land vegetation compared with that of the ocean (Vogel et al., 1980). As a result, δ13Catm 

measurements have been proposed to allow partitioning of the ocean and land sinks (Tans et al., 

1993; Keeling et al., 1995; Quay et al., 1992; Trudinger et al., 2005; Heimann & Maier‐Reimer, 

1996). δ13Catm is strongly influenced by the extent to which land plants discriminate against 13CO2 

during photosynthesis. This varies depending on plant type and water-use efficiency (Farquhar, 

1989). Therefore, careful analysis of δ13Catm can reveal changes in vegetation composition and 

functioning in response to global environmental change (Keeling et al., 2017). To better 

understand future land sink behaviour, it is important that a firm understanding is gained of the 

response of land vegetation to changes in environmental conditions up to present-day. 

 

Previous efforts to accurately model 13C have yielded a gap between the observed and modelled 

δ13Catm levels (Van der Velde et al., 2013). However, Keeling et al., (2017) were able to close the 

budget with the assertion that land C3 discrimination has increased as a function of atmospheric 

CO2 throughout the industrial era. Thus, their study illustrated the sensitivity of δ13Catm to isotopic 

C3 discrimination. What was missing, however, was a comprehensive analysis of the primary 

sensitivities of δ13Catm to uncertainties of land and ocean functioning. 

 

For this purpose, 13C was added to the Carnegie Ames-Stanford Approach (CASA) model (Potter 

et al., 1993) to simulate 13C alongside 12C fluxes between vegetation and soil pools. Ocean 

emissions from the Geophysical Fluid Dynamics Laboratory (GFDL) and fossil fuel emissions 

from the Carbon Dioxide Information Analysis Center (CDIAC) were used for 12C and 13C 

alongside the CASA model to simulate changes in atmospheric CO2 and δ13C for the 1982-2016 

period. The default CASA setup produced simulated atmospheric CO2 with only a slight bias in 

trend (+0.1 ppm yr-1), however, the trend in δ13Catm was roughly twice that of the observed values. 

To understand this discrepancy, an investigation was performed into the various sensitivities of 

δ13Catm to uncertainties in the ocean, soil, and vegetation functioning. An increase in NPP was 
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implemented as a function of atmospheric CO2 to account for CO2 fertilisation that was not 

included in the standard CASA model. 

 

The main findings from this study are: 

a) The modelled atmospheric CO2 trend best matched the observed trend when explicitly 

adding an additional CO2 fertilisation effect on top of the growth stimulation present in the 

model from FPAR. 

b) Large uncertainties in ocean net uptake had a strong effect on modelled δ13Catm 

c) δ13Catm was also sensitive to the magnitude of global NPP, as well as soil turnover, and the 

trend of C3 discrimination. 

d) The response of soil respiration to temperature (Q10), and distribution of C3 vegetation 

has little effect on atmospheric δ13C. 

 

The ocean uptake, soil turnover, and C3 discrimination by earth vegetation have previously been 

identified as having a large effect on δ13Catm (Keeling et al., 2017). As such, each of these (among 

others) were explored systematically using the most appropriate uncertainty bounds indicated by 

previous research. While many factors were considered in the uncertainty analysis, it is not an 

exhaustive list. For example, uncertainties regarding peat and land-use change emissions were not 

considered. In particular, the δ13C signature of peat is known to vary significantly depending on 

environmental conditions (Royles et al., 2016), and depth (Drollinger et al., 2019). 

 

The uncertainty in ocean net uptake had the greatest effect on δ13Catm, from which, it was inferred 

that a greater understanding of ocean processes and better constraint of ocean net fluxes are 

necessary to utilise δ13Catm to constrain the response of land vegetation to CO2 and climate. The 

estimated upper and lower uncertainty bounds of the ocean uptake as estimated by GFDL were 

found to be within the spread of estimates in the global carbon budget (Friedlingstein et al., 2020). 

Other studies that attempted to model δ13Catm (Van de Velde et al., 2013; Keeling et al., 2017) did 

not report the size of the uncertainties of ocean 12C and 13C uptake. If the uncertainty ranges are 

similarly large as in this study, then δ13Catm cannot realistically be used as a tool to constrain land 

vegetation functioning. 
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Implications for further work 

δ13Catm has been used to constrain trends in discrimination (Keeling et al., 2017). However, the 

study presented here shows that δ13Catm trends are most sensitive to ocean uncertainty. If δ13Catm 

is to be used as an indicator for land vegetation functioning, then uncertainty must be significantly 

reduced for ocean uptake. Trends in δ13Catm were also found to be sensitive to other factors, such 

as NPP magnitude and soil turnover, which are both subject to considerable uncertainties (Raich 

& Schelsinger, 1992; Trumbore, 2000; Ito, 2011; Carvalhais, 2014). In addition, there are large 

uncertainties in estimates of total soil organic carbon stocks (Scharlemann et al., 2014; Jackson et 

al., 2017). In CASA, total soil organic carbon stocks are inextricably linked to soil turnover times, 

thus, both these uncertainties were tested simultaneously. The uncertainty of the trend in C3 

discrimination estimated by Keeling et al (2017) is equal to one half of the trend itself. Thus, 

greater accuracy of this estimate is pertinent to understanding the response of terrestrial vegetation 

to environmental changes. However, the comparably low sensitivity of δ13Catm to C3 

discrimination trend implies it may be difficult to further constrain discrimination trends using the 

δ13Catm record alone.  

 

Continuous, and consistent measurements of the δ13C signature of tree rings would provide strong 

observation-based evidence of the trend of plant discrimination. Tree rings also intrinsically record 

changes in discrimination due to other factors such as a change in tree height and light as trees 

grow (Brienen et al., 2017; Vadeboncoeur et al. 2020) and thus do not purely reflect plant 

physiological responses to CO2. Hence, it is essential that these biases are accounted for when 

using tree rings to infer changing isotopic discrimination of trees. There are strong variations in 

the responses of plant isotope discrimination to increasing atmospheric CO2 across environmental 

conditions and species (Saurer et al., 2004), requiring a wide variety of regions and plant types to 

be sampled (whilst accounting for the aforementioned biases) to obtain a representative global 

picture. Tree rings are increasingly being used in carbon cycle research, with many tree ring 

isotopes studies having been collected by Adams et al. (2020). Extension of this dataset may enable 

greater confidence of the estimated trend in C3 discrimination and hence the adaptation of land 

vegetation to enhanced ambient atmospheric CO2 concentrations. 

 

The CASA setup outlined in Chapter 3 could be used to produce net ecosystem exchange (NEE) 

fluxes, which could be combined with 2-dimensional net ocean uptake data and fossil fuel 

emissions to be inputted into an atmospheric transport model. Thus, such an analysis could provide 
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additional constraints on land vegetation functioning by comparing the seasonal cycles of the 

simulated and observed atmospheric CO2 and δ13C (similar to the analysis of Chapter 2). The 

seasonality of CO2 and δ13C fluxes are strongly controlled by vegetation functioning and allow a 

greater capability for constraining CO2 uptake and release processes. Furthermore, there are many 

sites with long-term data for CO2 and δ13C, thus it may be possible for significant constraints to be 

made on regional ocean uptake and land vegetation processes. 

5.1.3 Cross calibration of Landsat 5 TM and Landsat 7 ETM+ using deep 

learning enhances tree cover mapping consistency (Chapter 4) 

Chapter 4 presents a method through which the Landsat 7 ETM+ and Landsat 5 TM satellites can 

be cross calibrated using a novel deep learning technique. High-quality, consistently retrieved 

satellite data is one useful data source that can be analysed to monitor vegetation growth and 

mortality in response to climate change and disturbance events (Hansen et al., 2013; Guay et al., 

2014; Zhang et al., 2009). A primary benefit of this approach is that responses of individual regions 

are comparatively easier to tease out than with atmospheric data. However, far greater 

computational costs are necessary, and data quality and consistency vary considerably by decade 

and region. Using remote sensing to infer the responses of land vegetation to climate change often 

uses various indices of vegetation growth, such as the Normalised Difference Vegetation Index 

(NDVI) (Pinzon & Tucker, 2014), or by utilising the complete spectral signature obtained from 

satellite data and using a model trained by ground-truthing data (Souza et al., 2020). Furthermore, 

these data can be used as input for land-surface models and terrestrial ecosystem models. One 

limitation of such products is the limited lifetime of each generation of satellites, which can lead 

to artefacts in the data when crossing between satellites (Claverie et al., 2015). 

 

Improving the consistency of the Landsat record implies greater confidence with which vegetation 

can be analysed over multi-decadal timescales. This study was motivated by an observation that 

the tree cover maps of Hansen et al. (2013) only extended back as far as 2000, whereas consistent, 

global coverage of satellite data began in the Landsat programme in 1974. A longer analysis of 

satellite data is used in the Mapbiomas project (Souza et al., 2020), however, their analysis did not 

examine trends in percentage tree cover and was limited to the Amazon region. 

 

The study presented a novel approach using a deep learning model to cross calibrate successive 

generations of Landsat satellites to reduce the error created when changing between satellites for 
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image data. Simulated satellite data was used to estimate percentage tree cover over the 1985-2016 

period, which was combined with spatial data of fire events during this period to analyse the effect 

of the fire events on changes in tree cover. The study was thus successful in outlining the 

effectiveness of applying deep learning techniques to supplement remote sensing techniques over 

long timescales. 

 

A deep neural network model was trained using pairs of Landsat 5 TM and Landsat 7 ETM+ 

images across Alaska. The aim was to predict the 30m bands of Landsat 7 as well as the higher 

resolution 15m pansharpened band. The model converged to reach a high degree of accuracy at 

predicting images from the validation dataset. Using the same set of training and validation data, 

a classical multiple regression model was produced with the same aim of emulating Landsat 7 

imagery from Landsat 5. A random forests tree cover model was then trained using forestry data, 

which was then applied to Landsat 5, Landsat 7, and emulated Landsat 7 images from the deep 

learning and multiple regression models. The accuracy of all approaches was evaluated, and the 

percentage tree cover was mapped out across a region in Alaska from 1985 to present-day. 

 

The main findings from this study are: 

a) The deep learning model effectively emulated Landsat 7 ETM+ imagery, with evidence of 

greater spatial resolution achieved than the Landsat 5 TM original image. The error of the 

deep learning-emulated images was significantly reduced when compared with the original 

Landsat 5 images and performed better than producing emulated images using the classical 

multiple regression model. 

b) The emulated images produced lower error when the tree cover model was applied, with 

closer estimates to the Landsat 7 estimates than the original Landsat 5 and multiple 

regression model.  

c) The higher accuracy in tree cover estimates from the deep learning approach gave greater 

confidence in the predictions of tree cover pre-1999 when no Landsat 7 imagery existed. 

d) The legacy effects of fires early in the study period were now possible to analyse with 

higher accuracy due to the lower error in the predicted tree cover. 

 

This study was successful at improving the consistency of the satellite record during the study 

period. This method led to more accurate trends to be identified from the data in the study region. 

The improvement of consistency between satellite products was considerable but not as great as 
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that achieved by Wagner et al., (2021), possibly as a result of the high degree of variability of 

topography across the study region. 

 

Due to the large amount of processing power and memory required to perform the analysis, the 

study region was relatively small, and thus it was not possible to make generalisations about how 

the response of vegetation to disturbance has evolved at a large scale. Furthermore, when collecting 

Landsat tiles for this analysis, it was apparent that there were not sufficiently many images 

covering a large spatial range to analyse the response of global or even high northern latitude 

vegetation functioning since the 1980s. However, this study does provide a glimpse into the 

potential for deep learning to be used to enhance the consistency of more recent satellite imagery 

that vary in characteristics over successive generations. 

 

A key advantage of the approach used in this study is that the deep neural network model could 

feasibly be transferred to be trained on any pair of satellite products for cross-calibration with very 

little adjustment of the model architecture. The model training process can take a considerable 

amount of time, but once this has been completed, model predictions are near-instantaneous, thus 

can be included in larger-scale analyses without significantly increasing prediction time. 

Implications for further work 

The effectiveness of using deep neural networks to simulate satellite data and elongate the record 

of continuous satellite coverage was demonstrated here. This process enabled more accurate 

remote sensing data analysis techniques to be applied and thus provide greater confidence in the 

trends in vegetation cover and response to disturbance events. The Landsat programme has been 

running since the mid-1970s; however, few studies are able to effectively utilise the full extent of 

the period over which imagery is available. Thus, applying this type of deep learning model to 

accurately simulate Landsat data would be invaluable to studies on the long-term behaviour of 

land ecosystems. The model produced in this study was trained on Landsat data within the Alaskan 

region, however, it is unlikely to be accurate in predicting imagery in most other regions on the 

earth. Thus, training a model on a dataset with imagery from a wide variety of land cover types, 

altitude and latitude ranges would be invaluable in producing a generalised model for cross-

calibration of Landsat imagery. Furthermore, a cross-calibration with the earliest generations of 

Landsat could further extend the usable satellite record further back to 1972 and allow an even 
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longer analysis of land cover changes. However, the spectral signatures of the scanners onboard 

Landsat 1-4 differed more from Landsat 7 than Landsat 5, thus more errors will propagate through. 

 

More research around cross-calibration between different satellite programs, such as Landsat and 

Sentinel (Zhang et al., 2021) enables an additional improvement in spectral information available 

during certain periods. Another area in which more work would be effective is in the collection of 

forestry-based ground truthing data to validate land cover classifications. For example, 

measurements of basal area and tree species distribution would be essential in remote sensing 

techniques to estimate land cover classification. 

 

Machine learning methods have existed for decades, but their applications were limited until recent 

developments in general-purpose GPUs and neural network frameworks that could operate on 

them (Raina et al., 2009). This has led to their widespread use within data science practices in the 

private sector and academia. The frameworks in which machine learning models can be trained 

and deployed have improved vastly with application programming interfaces (APIs) such as Keras 

(Chollet et al., 2015). These APIs allow users to train and deploy deep neural networks without 

the need for extensive training in deep neural networks. This is supplemented by the growing 

ubiquity and shrinking costs of cloud computing servers, hence enabling machine learning models 

to be trained cheaply and quickly. Machine learning use is growing in the academic community, 

but the adaptation has been slow in general. It can be the only option for modelling relationships 

between variables that are too complex to do so with classical means. Thus, greater confidence 

and understanding of machine learning methods would greatly enhance the quality of research. 

Furthermore, developing more effective and efficient machine learning architectures is important 

if we are to continue to expand the utility of such models in science. 

5.2 Synthesis of research chapters 

In each research chapter of this thesis, one of the aims laid out in Chapter 1 were addressed. It was 

clear in each chapter that the land biosphere is changing rapidly in response to environmental 

change. 

 

A consistent theme in Chapters 2-4 was an emphasis on the importance of the necessary attention 

to detail that is necessary in order to successfully analyse the terrestrial biosphere using the tools 

we have available. In Chapter 2, it was made clear that one cannot directly compare the CO2 data 
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at a single site to infer changes in land vegetation functioning across a latitude range without 

careful analysis of the footprint of the site. In Chapter 3, it was demonstrated that significant 

uncertainties remain in the ocean emissions, and thus care must be taken when inferring changes 

in land vegetation functioning using the δ13Catm signature alone. Chapter 4 showed that the shift 

from Landsat 5 to Landsat 7 led to greater error in satellite retrievals and hence less certainty in 

the long-term trends in vegetation activity. A key focus of Chapters 2 and 4 was to remedy these 

issues and provide a method with which to work around these limitations. 

 

All the models developed in this thesis were demonstrated to be effective and were used 

successfully to supplement observational analyses. The CASA model simulating land processes 

well and hence is effective as a tool in carbon cycle research. However, the direct implications of 

the model output on understanding of the carbon cycle were less obvious. Some of the conclusions 

from the CASA-TOMCAT model simulations in Chapter 2 rely on correlational analyses that are 

not trivial to interpret. However, when combining the findings from the satellite NDVI and model 

simulations, they consistently demonstrate a sustained control of temperature over vegetation 

productivity. In Chapter 3, the considerable uncertainties present in net ocean uptake demonstrate 

that more research is needed to constrain the net ocean uptake if δ13C can be effectively used to 

constrain land carbon uptake processes. As a result, the model output cannot be used to determine, 

for example, to what extent C3 discrimination has changed. The effect of disturbance on tree cover 

in Alaska was analysed in Chapter 4, however, large scale application of these techniques over 

larger land surface areas is needed to determine the precise impact on the carbon cycle on a biome 

scale. For example, a terrestrial ecosystem model could be used in concert with the satellite data 

to determine the reduction in the land sink as a result of each disturbance event. 

   

While each model was validated when compared with observational data, it is not always clear 

how well they fit in with other modelling efforts. Previous attempts at modelling δ13Catm did not 

explicitly calculate the uncertainty of oceanic uptake (Van der Velde et al., 2013; Keeling et al., 

2017). Thus, these previous studies may have been subject to the same issues as a result of the 

high uncertainty of net ocean uptake. The modelled cross-calibration of the Landsat 5 & 7 satellites 

in Chapter 4 did not retrieve an error as low as that achieved by Wagner et al., (2021), the reasons 

for which are not certain. Lastly, the correlation between modelled and observed carbon uptake 

was high for the CASA-TOMCAT model in Chapter 2, however, the only other study in which 

this was simulated (Piao et al., 2017) did not report this correlation. 
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Each of the three chapters involved the development of a model and in each case, the model was 

able to provide important information about the state of terrestrial ecosystem research. Thus, 

continuing research involving the use of the models developed in this thesis would be beneficial. 

The models could be effective in investigating the functioning of the land biosphere over a larger 

spatial range. For example, the CASA-TOMCAT model developed in Chapter 2 could be 

employed to analyse the CO2 seasonal cycle in the tropics. Furthermore, the deep neural network 

developed in Chapter 4 could be employed in any region with sufficient satellite data coverage to 

improve the consistency of satellite data over successive satellite generations. 

 

It is clear that much work remains to be done to fully understand the changes in the functioning of 

the terrestrial biosphere. All three of the research chapters highlighted the value of high quality, 

consistently measured in-situ data. These include measurements of atmospheric CO2 and δ13C at 

ground measurement sites, as well as species information included as part of forestry data 

collection schemes. With more of such data being made available, reduced uncertainty can be 

achieved, and analyses can be undertaken at a wider range of locations in order to gain a more 

complete understanding of the response of the land carbon sink to climate change. 

5.3 Conclusions 

Evidence from atmospheric and satellite data indicates the expansion of terrestrial vegetation and 

a growing land carbon sink. In particular, the consistent increasing trend of CO2 amplitude, as well 

as the strong relationship between climate and the atmospheric growth rate are key indicators of 

increases in land CO2 sequestration. The primary aim of this thesis was to develop a deeper 

understanding of terrestrial carbon uptake processes and their response to recent climate change. 

Throughout the course of the research carried out in this thesis, the state of knowledge in this field 

has been expanded. The temperature sensitivity of high latitude lands was reanalysed using 

observed atmospheric CO2 data alongside model simulations. From this, it was revealed that 

atmospheric transport played a key role in the variability of CO2 uptake indices at a ground 

measurement site. As a result, it was concluded that the temperature sensitivity of high latitude 

lands remained strong during the study period, contrary to previous research suggesting otherwise. 

Simulations of δ13Catm were undertaken through a combination of land-surface and ocean uptake 

modelling. Following on from this, an analysis of the uncertainties present in land and ocean 

uptake processes was undertaken. Ocean uncertainty emerged as the most significant influence on 
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δ13Catm and thus presented the greatest limiting factor on using atmospheric isotopic analyses to 

determine changes in plant functioning. It was concluded that it was not possible to infer changes 

in isotopic discrimination from the atmospheric record alone due to the high ocean uncertainty. 

Finally, an attempt was made to improve the long-term consistency of percentage tree cover 

estimates from Landsat satellite data using a deep neural network model. The model produced 

significantly lower error when compared with the original data and with a classical approach. As 

a proof-of-concept, the improved satellite record was used to analyse the response of percentage 

tree cover to disturbance events. Overall, these results provide an important step forward in our 

understanding of the responses of the terrestrial biosphere to climate change that will enable more 

appropriate adaptations in the future. 
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Appendices 

Text S2.1. Repeating analyses with SCC  

The SZC and SCC are closely related, with strong correlation (r=, P<0.1%). Overall, we draw the 

same conclusions from using the SCC as with the SZC. We found a significant breakdown in 

correlation between SCC and spring temperature averaged over vegetated land north of 50 ̊N 

(Figure S2.20), and when averaging the temperature over Hysplit footprints (Figure S2.21). Our 

CASA-TOMCAT model simulates SCC with fairly high accuracy on interannual timescales 

(r=0.78, P<0.1%) (Figure S2.22), however the modelled trend and magnitude show some bias 

(Figure S2.23), similar to the simulated SZC. The factorial simulations yield similar results to 

those carried out with the SZC, however there appears to be a lower influence of FPAR and a 

higher influence of transport. The former is evidenced from the FPR run, in which the correlations 

between the simulated SCC and of the control are higher than seen in the SZC simulations (Table 

S2.1). Similarly, the ATCTR run produced SCC values that correlated lower with the control than 

seen in the SZC simulations (Table S2.1). Furthermore, the ATCTR simulations of SCC 

consistently correlated with Hysplit-averaged temperature at higher levels than in the SZC runs 

(Table S2.1), further demonstrating the role of transport in the breakdown in control of temperature 

on spring carbon uptake.  
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Text S2.2. Description of CCGCRV routine  

In order to extract the seasonal cycle from the raw CO2 data, we applied the Carbon Cycle Group 

CuRVe (CCGCRV) routine to the data (Thoning et al., 1989). The routine fitted a polynomial 

(quadratic) function for the long-term trend and a harmonic term (4 per year) for the annual cycle. 

We then calculated the residuals from this function fit and oscillations with periods shorter than 

45 days were removed using a Full Width at Half Maximum (FWHM) low-pass filter. We then 

added the filtered residuals to the fitted function. This process was repeated to remove oscillations 

with periods longer than 390 days using an FWHM high-pass filter, which were then added to the 

polynomial function. The CO2 seasonal cycle was obtained by subtracting the long-term trend from 

the smooth curve. We computed the residuals between this function fit and the data points and 

removed data that fell outside 5 standard deviations of the residuals. We then repeated the above 

steps until all residuals resided within 5 standard deviations. This is identical to the smoothing 

method employed in Piao et al. (2017) as we aimed to reproduce their results as closely as possible.  
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Text S2.3. Description of temperature and NDVI masks to eliminate the snow melt influence  

In order to remove the effects of snow melt timing on the NDVI and temperature time series, we 

imposed a constraint on all temperature and NDVI data points where the spring temperature must 

be greater than 0 and NDVI must be greater than 0.1 for each pixel used in the spatial average. 

Utilising these masks for the 50 ̊N spatial average and the footprint-weighted average yields 

consistent and significant positive correlations between NDVI and temperature (Figure S2.24). 

Therefore, we demonstrated that snow melt timing is not the cause for the consistent NDVI-

temperature relationship. 
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Figure S2.1. (a) December to March average Arctic Oscillation (AO) index time series. 

Negative values are blue and positive values are red, black line indicates 5-year moving 

average. (b) Spatial correlation between AO index time series and detrended spring 

temperature spatio-temporal fields over the 1979-2016 period. 
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Figure S2.2. Hysplit 30-day March-June footprints of Barrow summed over the 1979-2016 

period. Units expressed as trajectory hours, calculated as the amount of time an air mass 

trajectory spends within the boundary layer (0 to 2 km above ground level) over a specified 

region. Colour scale is logarithmic to ensure a wide range in magnitudes of footprint is 

visible. 
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Figure S2.3. Hysplit 30-day March-June footprints of Barrow detailing the contribution of 

Eurasia and North America. Units expressed as trajectory hours, calculated as the amount 

of time an air mass trajectory spends within the boundary layer (0 to 2 km above ground 

level) over vegetated land (NDVI > 0.1) inside the specified region. Eurasia and North 

America defined as 12˚W-190˚E, 30˚N-78˚N and 168˚W-52˚W, 30˚N-78˚N, respectively. 
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Figure S2.4. Times series of anomalies in detrended spring temperature (ST) weighed by 

footprints along with (a) detrended SZC at Barrow and (b) detrended NDVI averaged over 

footprints. Corresponding moving window (15 yr) partial correlations (accounting for 

precipitation and radiation) are also shown. Shaded regions depict 5%, 1% and .1% 

significance levels (n=15).
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Figure S2.5. Spatial correlation between the time series of detrended spring (March-June) 

temperature at each pixel and the detrended spatially averaged temperature of vegetated 

land north of 50˚N during the (a) 1979-1995 and (b) 1996-2012 periods. The Barrow 

observatory is located at 71˚N, 156˚W. 
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Figure S2.6. (a) Detrended spring temperature (ST) averaged over: all land north of 50˚N 

(orange) and Hysplit footprints (blue). (b) 15-year moving window correlation between the 

temperature time series. Shaded regions depict 5%, 1% and .1% significance for a two-

tailed correlation and n=15. 



 

183 
 

 
Figure S2.7. Sensitivity of NDVI to temperature derived from the pixel-to-pixel regression 

slope coefficient between spring NDVI and spring temperature (ST) values for the periods 

(a)1982-1996 and (b) 1997-2012. Panel (c) depicts values from the panel (a) subtracted 

from panel (b). Due to the longer time period used in panel (b), values shown were the 

median regression value after systematically removing each year from the chronology.



 

184 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.8. Observed values of atmospheric CO2 concentrations (black) and simulated 

CO2 concentrations from CASA-TOMCAT model (blue) at Barrow. 
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Figure S2.9. (a) Observed values of SZC (orange) and simulated SZC from CASA-TOMCAT 

(blue). Dashed lines indicate least squares regression, with the rate of change of SZC labelled 

above lines. (b) Observed and simulated SZC at Barrow, after linearly detrending both time 

series. The panel shows the Pearson’s two-tailed correlation coefficient labelled with 

significance level. 
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Figure S2.10. (a, c, e) Time series of detrended SZC anomalies from the TMP simulation 

plotted alongside (a) The CTR simulation and observations of SZC at Barrow, (c) footprint-

weighted, detrended spring temperature (ST), (e) detrended spring temperature (ST) 

averaged over all vegetated land north of 50˚N. (b, d, f) 15-year moving window correlation 

between (b) the detrended simulated SZC from the TMP and CTR simulations, (d) 

detrended simulated SZC and footprint-weighted, detrended ST and (f) detrended 

simulated SZC and spring temperature (ST) averaged over all vegetated land north of 50˚N. 

Shaded regions depict 5%, 1% and .1% significance for a two-tailed partial correlation and 

n=15.
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Figure S2.11. As Figure S2.9, but for simulation TMO, in which temperature and moisture 

scalars are constant. 
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Figure S2.12. As Figure S2.9, but for simulation SLR, in which solar radiation is constant.
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Figure S2.13. As Figure S2.9, but for simulation FPR, in which FPAR is constant. 
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Figure S2.14. As Figure S2.9, but for simulation ALL, in which temperature and moisture 

scalars, solar radiation, and FPAR are constant.
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Figure S2.15. As Figure S2.9, but for simulation ATCTR, in which atmospheric transport is 

constant
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Figure S2.16. As Figure S2.9, but for simulation ATTMP, in which atmospheric transport and 

the temperature scalar are constant.
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Figure S2.17. As Figure S2.9, but for simulation ATTMO, in which atmospheric transport and 

the temperature and moisture scalars are constant.
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Figure S2.18. As Figure S2.9, but for simulation ATSLR, in which atmospheric transport and 

solar radiation are constant.
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Figure S2.19. As Figure S2.9, but for simulation ATFPR, in which atmospheric transport and 

FPAR are constant.
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Figure S2.20. As Figure S2.9, but for simulation ATALL, in which atmospheric transport, the 

temperature and moisture scalars, solar radiation and FPAR are constant.
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Figure S2.21. Time series of the anomaly (˚C) in detrended spring temperature (ST) averaged 

across vegetated land north of 50˚N along with detrended SCC (ppm) at barrow. Panel (b) 

shows corresponding moving window (15 yr) partial correlations (accounting for precipitation 

and radiation). Shaded regions depict 5%, 1% and 0.1% significance levels (n=15).
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Figure S2.22. Time series of the anomaly (˚C) in detrended spring temperature (ST) weighed 

by footprints along with detrended SCC (ppm) at barrow. Panel (b) shows corresponding 

moving window (15 yr) partial correlations (accounting for precipitation and radiation). 

Shaded regions depict 5%, 1% and 0.1% significance levels (n=15).
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      r=0.78, P<0.1% 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.23. Observed and simulated SCC at Barrow, after linearly detrending both time 

series. The panel shows the Pearson’s two-tailed correlation coefficient labelled with 

significance level.



 

200 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.24. Observed values of SCC (orange) and simulated SCC from CASA-TOMCAT 

(blue). Dashed lines indicate least squares regression, with the rate of change of SCC labelled 

above lines. 

 

 

 

 

 

 

 

 

0.021 ppm yr-1 

0.079 ppm yr-1 



 

201 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.25. Times series of anomalies in detrended spring temperature (ST) and detrended 

NDVI averaged over (a) all vegetated land north of 50˚N and (b) footprints. Temperature > 

0˚C and NDVI > 0.1 masks applied when averaging temperature and NDVI data. 

Corresponding moving window (15 yr) partial correlations (accounting for precipitation and 

radiation) are also shown. Shaded regions depict 5%, 1% and .1% significance levels (n=15). 
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Table S2.1. Correlations between simulated SCC from factorial simulations with observed 

SCC and spring temperature. The notations *, ** and *** indicate significance at 5%, 1% and 

0.1% levels, respectively. Values over the 1997-2012 period are taken from the median 

correlation value after systematically removing each year from the chronology. Partial 

correlations take precipitation and cloud cover into account. The constant transport runs are 

referred to with the ‘AT’ prefix. To assess the importance of the forcing variables, we compare 

the correlations for each simulation with those of the CTR run – a large change in correlation 

indicates a large influence by the variable(s) held constant. 
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Simulation Correlation of 

simulated SCC 

with 

complete model 

and model with 

variables held 

constant 

Partial correlation 

of 

simulated SCC with 

footprint-averaged 

observed spring 

temperature 

Partial correlation of 

simulated SCC with 

50˚N-averaged 

observed spring 

temperature 

 1982- 

1996 

1997- 

2012 

1982- 

1996 

1997- 

2012 

1982- 

1996 

1997- 

2012 

Control Run (CTRL) N/A N/A 0.75**

* 

0.44 0.70** 0.27 

Variable(s) held 

constant 

      

Temperature scalar 

(TMP) 

0.97*** 0.97**

* 

0.66** 0.37 0.59* 0.19 

Temperature and 

Moisture scalars (TMO) 

0.97*** 0.96**

* 

0.68** 0.30 0.58* 0.18 

Solar Radiation (SLR) 0.95*** 0.95**

* 

0.79**

* 

0.35 0.81**

* 

0.36 

FPAR (FPAR) 0.87*** 0.84** 0.54* 0.1 0.38 0.00 

TMO, SLR and FPR 

(ALL) 

0.84*** 0.78**

* 

0.52* -0.05 0.39 -0.05 

Transport (AT,CTRL) 0.58* 0.22 0.68** 0.68** 0.66** 0.39 

Transport and 

Temperature scalar 

(AT,TMP) 

0.50 0.22 0.69** 0.61* 0.57* 0.43 

Transport and 

Temperature and 

Moisture scalars 

(AT,TMO) 

0.50 0.24 0.72** 0.61* 0.57* 0.43 

Transport and Solar 

Radiation (AT,SLR) 

0.59* 0.25 0.85**

* 

0.68** 0.83**

* 

0.48 

Transport and FPAR 

(AT,FPAR) 

0.57* -0.01 0.34 0.46 0.16 0.15 

Transport, TMO, SLR 

and FPAR (AT,ALL) 

0.30 -0.25 0.23 0.11 0.03 -0.11 
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Figure S4.1. (a-d) Estimated percentage tree cover in the study region during 2003 for the (a) L7 

image, (b) L5 image, (c) MR-emulated image, (d) DL-emulated image. (e-g) MSE between the L7 

image in 2003 and the (e) L5 image, (f) MR-emulated image, (g) DL-emulated image in 2003. 
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Figure S4.2 As for figure S4.1 but in 2004 
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Figure S4.3. As for figure S4.1 but in 2005 
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Figure S4.4. As for figure S4.1 but in 2006 

  



 

208 
 

 
Figure S4.5. Red band values from the (a) L7, (b) L5, and (c) DL-emulated images over 300 

random points in the study region during 2003, 2004, 2005, and 2006. 
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Figure S4.6. As for Figure S4.5 but with the green band. 
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Figure S4.7. As for Figure S4.5 but with the blue band. 
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Table S4.1: Comprehensive list of L7 and L5 images used to train the models used in this chapter. 

L7 code L5 code 
'LE07_073013_19990702' '1_LT05_072013_19990703' 

 'LE07_064016_19990804'  '1_LT05_065016_19990803' 

 'LE07_064016_19990804'  '1_LT05_063016_19990805' 

 'LE07_061013_19990730'  '1_LT05_060013_19990731' 

 'LE07_071013_19990805'  '1_LT05_070014_19990806' 

 'LE07_067014_20030719'  '1_LT05_066014_20030720' 

 'LE07_067014_20030719'  '1_LT05_066014_20030720' 

 'LE07_063016_20030808'  '1_LT05_062016_20030809' 

 'LE07_070014_20030809'  '1_LT05_069014_20030810' 

 'LE07_070015_20030809'  '1_LT05_069015_20030810' 

 'LE07_062012_20040702'  '1_LT05_063012_20040701' 

 'LE07_062013_20040702'  '1_LT05_063013_20040701' 

 'LE07_067013_20040806'  '1_LT05_068013_20040805' 

 'LE07_069013_20040804'  '1_LT05_068013_20040805' 

 'LE07_069014_20040804'  '1_LT05_068014_20040805' 

 'LE07_069012_20040820'  '1_LT05_068012_20040821' 

 'LE07_070012_20040827'  '1_LT05_069012_20040828' 

 'LE07_070013_20040827'  '1_LT05_069013_20040828' 

 'LE07_065015_20040909'  '1_LT05_066015_20040908' 

 'LE07_067017_20040907'  '1_LT05_066017_20040908' 

 'LE07_065015_20040909'  '1_LT05_064015_20040910' 

 'LE07_078013_20050721'  '1_LT05_077013_20050722' 

 'LE07_078014_20050721'  '1_LT05_077014_20050722' 

 'LE07_067015_20050809'  '1_LT05_066015_20050810' 

 'LE07_067015_20050809'  '1_LT05_066015_20050810' 

 'LE07_067016_20050809'  '1_LT05_066016_20050810' 

 'LE07_067017_20050809'  '1_LT05_066017_20050810' 

 'LE07_077012_20060903'  '1_LT05_076012_20060904' 

 'LE07_077013_20060903'  '1_LT05_076013_20060904' 

 'LE07_077013_20060903'  '1_LT05_076013_20060904' 

 'LE07_065012_20060915'  '1_LT05_064012_20060916' 

 'LE07_065013_20060915'  '1_LT05_064013_20060916' 

 'LE07_066014_20070808'  '1_LT05_065014_20070809' 

 'LE07_066012_20070824'  '1_LT05_065012_20070825' 

 'LE07_064014_20070826'  '1_LT05_063014_20070827' 

 'LE07_062014_20070828'  '1_LT05_061014_20070829' 
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 'LE07_072013_20080820'  '1_LT05_071013_20080821' 

 'LE07_072014_20080820'  '1_LT05_071014_20080821' 

 'LE07_079014_20080821'  '1_LT05_078014_20080822' 

 'LE07_062015_20080830'  '1_LT05_061015_20080831' 

 'LE07_062016_20080830'  '1_LT05_061016_20080831' 

 'LE07_067013_20080902'  '1_LT05_066013_20080903' 

 'LE07_075017_20090828'  '1_LT05_074017_20090829' 

 'LE07_067012_20090905'  '1_LT05_066012_20090906' 

 'LE07_067013_20090905'  '1_LT05_066013_20090906' 

 'LE07_074013_20100909'  '1_LT05_073013_20100910' 

 'LE07_070016_20100913'  '1_LT05_069016_20100914' 

 'LE07_073013_20100918'  '1_LT05_074013_20100917' 

 'LE07_073014_20100918'  '1_LT05_074014_20100917' 

 'LE07_075015_20100916'  '1_LT05_074015_20100917' 

 'LE07_075016_20100916'  '1_LT05_074016_20100917' 

 'LE07_073014_20100918'  '1_LT05_072014_20100919' 

 'LE07_073015_20100918'  '1_LT05_072015_20100919' 

 'LE07_073016_20100918'  '1_LT05_072016_20100919' 

 'LE07_064013_20100919'  '1_LT05_063013_20100920' 

 'LE07_064014_20100919'  '1_LT05_063014_20100920' 

 'LE07_064015_20100919'  '1_LT05_063015_20100920' 

 'LE07_064016_20100919'  '1_LT05_063016_20100920' 

 'LE07_078013_20100921'  '1_LT05_077013_20100922' 

 'LE07_078014_20100921'  '1_LT05_077014_20100922' 

 'LE07_076014_20100923'  '1_LT05_075014_20100924' 

 'LE07_076015_20100923'  '1_LT05_075015_20100924' 

 'LE07_076016_20100923'  '1_LT05_075016_20100924' 

 'LE07_076017_20100923'  '1_LT05_075017_20100924' 

 'LE07_074015_20100925'  '1_LT05_073015_20100926' 

 'LE07_074016_20100925'  '1_LT05_073016_20100926' 

 'LE07_074017_20100925'  '1_LT05_073017_20100926' 

 'LE07_067013_20030719'  '1_LT05_068013_20030718' 

 'LE07_065012_20030721'  '1_LT05_066012_20030720' 

 'LE07_069012_20040820'  '1_LT05_068012_20040821' 

 'LE07_065015_20040909'  '1_LT05_064015_20040910' 

 'LE07_077012_20060903'  '1_LT05_076012_20060904' 

 'LE07_065012_20060915'  '1_LT05_064012_20060916' 

 'LE07_074016_20100925'  '1_LT05_073017_20100926' 

 'LE07_063015_20030808'  '1_LT05_062016_20030809' 
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 'LE07_063015_20030808'  '1_LT05_062015_20030809' 

 'LE07_062013_20040702'  '1_LT05_063013_20040701' 

 'LE07_067013_20040806'  '1_LT05_068012_20040805' 

 'LE07_069013_20040804'  '1_LT05_068013_20040805' 

 'LE07_067013_20040806'  '1_LT05_066013_20040807' 

 'LE07_066013_20110819'  '1_LT05_067013_20110818' 

 'LE07_065013_20110913'  '1_LT05_064013_20110914' 

 'LE07_065012_20060915'  '1_LT05_064013_20060916' 

 'LE07_070012_20040827'  '1_LT05_069012_20040828' 

 'LE07_065015_20040909'  '1_LT05_066014_20040908' 

 'LE07_067015_20040907'  '1_LT05_066015_20040908' 

 'LE07_075016_20090828'  '1_LT05_074016_20090829' 

 'LE07_074013_20100909'  '1_LT05_073014_20100910' 

 'LE07_062015_20080830'  '1_LT05_061015_20080831' 

 'LE07_065015_20040909'  '1_LT05_064016_20040910' 

 'LE07_078013_20050721'  '1_LT05_077014_20050722' 

 'LE07_078014_20050721'  '1_LT05_077015_20050722' 

 'LE07_066013_20070824'  '1_LT05_065014_20070825' 

 'LE07_071012_20070827'  '1_LT05_070013_20070828' 

 'LE07_063013_20070904'  '1_LT05_064013_20070903' 

 'LE07_079012_20080821'  '1_LT05_080012_20080820' 

 'LE07_072013_20080820'  '1_LT05_071014_20080821' 

 'LE07_070014_20080822'  '1_LT05_069014_20080823' 

 'LE07_062016_20080830'  '1_LT05_061017_20080831' 

 'LE07_071013_20100920'  '1_LT05_072013_20100919' 

 'LE07_068014_20100915'  '1_LT05_067015_20100916' 

 'LE07_068015_20100915'  '1_LT05_067015_20100916' 

 'LE07_069013_20080831'  '1_LT05_068013_20080901' 

 'LE07_075016_20090828'  '1_LT05_074017_20090829' 

 'LE07_069014_20080831'  '1_LT05_068014_20080901' 

 'LE07_067013_20090905'  '1_LT05_068013_20090904' 

 'LE07_067012_20080902'  '1_LT05_066013_20080903' 

 'LE07_069014_20090717'  '1_LT05_070014_20090716' 

 'LE07_067014_20090905'  '1_LT05_068014_20090904' 

 'LE07_068016_20100915'  '1_LT05_067016_20100916' 

 'LE07_073014_20100918'  '1_LT05_074013_20100917' 

 'LE07_066012_20100816'  '1_LT05_067012_20100815' 

 'LE07_075014_20100916'  '1_LT05_074014_20100917' 

 'LE07_068013_20060904'  '1_LT05_069013_20060903' 
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 'LE07_075015_20100916'  '1_LT05_074016_20100917' 

 'LE07_069013_20070829'  '1_LT05_068013_20070830' 

 'LE07_063012_20070904'  '1_LT05_064012_20070903' 

 'LE07_070016_20100913'  '1_LT05_071016_20100912' 

 'LE07_070015_20100913'  '1_LT05_069015_20100914' 

 'LE07_061016_19990714'  '1_LT05_060016_19990715' 

 'LE07_065015_19990912'   '1_LT05_066015_19990911'  
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