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Abstract

The aim of this thesis is two-fold. First we investigate the class of right ideal

Howson semigroups inspired by a question posed by Steinberg. Right ideal

Howson semigroups are defined by the finitary property that the intersec-

tion of any two finitely generated right ideals is also finitely generated. We

obtain semigroup presentations for right ideal Howson semigroups which are

universal in a certain sense. In addition, we provide examples of right ideal

Howson semigroups with a specific focus on coherent monoids, varieties of

bands and other finiteness conditions. Dual results hold for left ideal How-

son semigroups. The second part of this thesis concerns finding semigroup

presentations for semigroups of the form ST , where S and T are subsemi-

groups of some common semigroup U , such that for every a ∈ T we have

aS ⊆ Sa and if xa = yb then x = y for every x, y ∈ S and a, b ∈ T . Sig-

nificantly, we obtain a semigroup presentation for the singular part of the

partial endomorphism monoid of a free G-act of finite rank. This builds on

the work of Al-Aadhami, Dolinka, East, Feng and Gould. We also use our

methods to give presentations for almost-factorisable inverse semigroups.
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Introduction

In many ways, one may regard a semigroup as a generalisation of a group,

as its name would suggest. That being said, it is rather surprising that the

notion of a group largely predates the notion of a semigroup; an observation

made persistently by the modern day semigroup community. In 2002, Schein

remarked that “irreversible processes are much more common than reversible

ones, one meets function and transformation semigroups much more often

than groups (and much more often than one thinks he does)” [89]. To better

understand the way in which semigroup theory developed as a theory, we

start by summarising the origins of group theory.

It is often accredited to Cayley, the mathematician well-known amongst

group theorists and of whom the terms ‘Cayley table’ and ‘Cayley graph’ are

in honour, for first attempting to define a group abstractly in his landmark

1854 paper ‘On the theory of groups as depending on the symbolic equation

θn = 1’ [11, 54]. Specifically, he remarked that a group is a “set of symbols,

all of them different, and such that the product of any two of them (no

matter what order), or the product of any one of them into itself, belongs

to the set” [11, 54].

In the late 1800’s it was of particular interest to mathematicians to in-

tertwine the existing theories of finite groups with those of infinite groups.

However, it became apparent to De Séguier that many of the existing for-

mulations of finite groups did not give rise to infinite groups when infinitely

many elements were being considered [54]. It is for that reason De Séguier

talked of so called ‘non-groups’ and eventually the terms ‘semigroup’ and

‘semigroupe’ were used [54]. However, the usage of these terms differed con-

siderably from how we use them today, and were closer, in a certain sense, to

our modern definition of a group. After many years of adjustments made to

the definitions, Hilton set up the modern definition of a semigroup of which

we are so fond [53, 54].

Armed with an associative binary operation, semigroup theorists soon

took to work uncovering the complex and beautiful mathematics that semi-

group theory had to offer. In 1940 Rees developed the first structural result
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for semigroups: he provided a construction for a particular family of matrix

semigroups (later known as Rees matrix semigroups) [56, 87]. Later, in 1954,

Vagner and Preston famously showed that if S is an inverse semigroup then

there exists some set X such that there is a faithful representation from S to

the symmetric inverse monoid on X [56, 85]: this is an analogous result to

Cayley’s Theorem for groups [11]. The symmetric inverse monoid consists

of all partial one-to-one maps of X under composition of partial maps. We

will comment more on the development of the symmetric inverse monoid

below. In 1965, Krohn and Rhodes showed that every finite semigroup can

be decomposed into a special kind of wreath product [66, 36]. Their the-

ory generalised the existing Jordan-Hölder decomposition for finite groups

[83]. Semigroup theory has continued to flourish since and remains a very

lively area of research within the mathematical community. In particular,

the study of inverse semigroups is of special interest.

The origin of the theory of inverse semigroups lies deep within geometry,

rather than merely as a natural generalisation of group theory. The primary

focus of the Erlangen Programm, organised by Klein in the late 1800’s, was

to classify geometries using groups [54, 64]. The idea was that groups of

automorphisms could be assigned to geometries in such a way that they

could then be used as invariants. For example, affine geometry considers

invariants of the affine group [89]. However, it was soon observed by Ve-

blen and Whitehead that such an approach would not suffice for differential

geometry (where the group of automorphisms is trivial) [54, 93]. Together,

they attempted to generalise the idea of a group in their paper ‘The foun-

dations of differential geometry’ to something they called a ‘pseudogroup’,

in the hopes that this would broaden the scope of the Erlangen Programm

[54, 93]. These ‘pseudogroups’ involved partial bijective maps with a corre-

sponding partial composition. However, the partial compositions in which

Veblen and Whitehead were interested were not closed, posing several prob-

lems for the geometer duo.

This sparked interest from the mathematician Vagner, who understood

that such partial maps could be identified with binary relations [54, 91].

Equipped with this understanding, it was not long until Vagner could ex-
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tend the operation and called such a structure a ‘generalised group’ [54, 92].

The phraseology was later changed to ‘inverse semigroup’ by Preston, who

had simultaneously and independently produced a formulation of such a

structure [54, 84]. Thus, the theory of inverse semigroups emerged and it

quickly attracted the attention of semigroup theorists and group theorists

alike [56, 80, 74]. As above, both Vagner and Preston developed a represen-

tation of inverse semigroups by partial one-to-one mappings.

Inverse semigroups are, as the name would suggest, a special kind of

semigroup involving inverses of elements in a sense weaker than that of

group theory. It is not so surprising, given the nature of pseudogroups, that

‘local’ identities and ‘local’ inverses will be important. The emergence of the

textbooks of Clifford and Preston [15], and then Howie [56], (in the English

speaking world) inspired a rapid development of the subject; both within

and away from inverse semigroups.

In this thesis, we focus on a particular venture within semigroup theory:

that of finding semigroup presentations. At a very basic level, a presentation

for a semigroup is a certain kind of description for a semigroup consisting

of two parts: a generating set and a set of relations between the generators.

Moreover, every identity that can possibly hold true, in terms of the gen-

erators in the semigroup, can be derived from the set of relations. Using a

board game analogy, one can think of the pieces you are playing with and

the rules of the game as the generating set and set of relations respectively.

The benefit of such an analogy, which highlights the appeal of finding semi-

group presentations, is clear: for a board game with potentially infinitely

many moves, a finite ‘simple-to-use’ set of rules would be preferred. It is for

this reason that obtaining semigroup presentations is of special interest for

a range of semigroups, and likewise, groups and monoids.

In 1998, Lavers provided an explicit construction of a monoid presen-

tation for a general product of monoids in terms of the monoid presenta-

tions for the constituent monoids [68]. Likewise, semigroup presentations

for semidirect products, in which the first co-ordinate is a monoid element

and the second co-ordinate is a semigroup element, were considered by Al-

Aadhami, Dolinka, East, Feng and Gould [2].
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The seemingly innocuous question of whether or not a subsemigroup of

a finitely presented semigroup is finitely presented was answered, in special

cases, by Campbell, Robertson, Ruškuc and Thomas in 1996 [9]. Among

other interesting results, they showed that any finitely generated right ideal

of a free semigroup is finitely presented. In 2009, for instance, Cain success-

fully proved that every finitely generated subsemigroup of the direct product

of a virtually free group and a commutative group is finitely presented [7].

Word problems for groups and monoids for which the presentations con-

tain a single relation (so-called one-relator presentations) have also received

special attention. In 1932, Magnus showed that the word problem for one-

relator group presentations was decidable [73]. This work was later extended

by Adian who showed in 1966 that the word problem is also decidable for

special one-relator monoid presentations, where the single relation is of the

form w = 1 [1, 49]. More recently, Gray showed in 2020 that there is

a one-relator inverse monoid presentation with undecidable word problem

[49]. Semigroup presentations remain a highly attractive area of research

for semigroup theorists.

The first aim of this thesis is to obtain semigroup presentations for a class

of semigroups which we call right ideal Howson semigroups. An algebra

exhibits the Howson property if the intersection of two finitely generated

subalgebras is also finitely generated. This term is in honour of the author of

[57], who showed that the intersection of finitely generated subgroups of free

groups is finitely generated. There have been a number of investigations of

the Howson property for other classes of algebras. In particular, the Howson

property for inverse semigroups has been studied by several authors such as

Jones and Trotter [59, 60], Lawson and Vdovina [71] and Silva and Soares

[90]. By contrast to the situation for groups, free inverse semigroups have

the Howson property if and only if they are free on a one-element set [60].

The aim of [10], of which Chapter 5 is based, is to change tack and to

consider the Howson property for semigroups regarded as semigroup acts

over themselves, so that the right subacts of a semigroup S are precisely its

right ideals. We consider ∅ as being a right ideal with empty set of gener-

ators. We say that a semigroup S is right ideal Howson if the intersection
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of any two finitely generated right ideals of S is finitely generated. The

notion of a left ideal Howson semigroup is dually defined. Notice that since

intersection distributes over union, we have that a semigroup is right ideal

Howson if and only if the intersection of principal right ideals is finitely gen-

erated. This is a fact we will continually call upon throughout Chapter 5. In

this thesis we will explicitly refer to and give results for right ideal Howson

semigroups; clearly, the dual results hold for left ideal Howson semigroups.

Certainly for a commutative semigroup, the notions of right ideal Howson

and left ideal Howson coincide; similar remarks apply to related definitions.

The property of being right ideal Howson is a finiteness condition for

a semigroup; that is to say any finite semigroup is right ideal Howson. In

Section 5.2 we show how it is connected to other finiteness conditions that

have been studied recently, such as that of being right coherent [42, 43] or

right Noetherian [79].

Semigroups that are right ideal Howson abound. We list some examples

here, that may easily be verified by consulting any standard semigroup text

such as [15, 56]: groups, inverse semigroups (which we visit in Lemma 5.2.6),

completely (0-)simple semigroups, free semigroups and free monoids. We

present many others subsequently in this thesis. The reader may note that

any of the semigroups in the previous list display the extra condition that

the intersection of principal right ideals is empty or principal. Monoids that

satisfy this extra condition have been well-studied by Clifford, Cherubini

and Petrich: the latter authors referring to this condition (for left ideals) as

Clifford’s condition [13]. Indeed, Clifford [14] showed that bisimple inverse

monoids can be viewed as inverse hulls of right cancellative monoids satis-

fying Clifford’s condition. This connection has been developed by a number

of authors such as Lawson [70], McAlister [75] and Reilly [88]. The notion of

being finitely aligned [25] is closely connected with that of being right ideal

Howson, and coincides for many semigroups, including monoids. Indeed, it

is noted in [25] that finitely aligned semigroups may be called right How-

son. It is true that every finitely aligned semigroup is right ideal Howson.

However, as we show in Remark 5.4.9, a right ideal Howson semigroup need

not be finitely aligned. These discrepancies are essentially due to the way in
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which principal right ideals and adjoined identities are handled. We intro-

duce the term right ideal Howson to distinguish from that of being finitely

aligned, and to make clear we are talking of right ideals and not right con-

gruences. Explicit connections between finitely aligned semigroups, higher

rank graphs and constructions of C∗-algebras are given in [25].

The motivation for the second part of this thesis was initially to find

a semigroup presentation for the singular part of the partial endomorphism

monoid of a free G-act of finite rank n (where G is a group), which is denoted

by SPEndFn(G). Endomorphism monoids of free G-acts, and ultimately of

independence algebras (as introduced by Gould in [41]), have been studied

in a variety of contexts. Fountain and Lewin considered products of idempo-

tent endomorphisms of an independence algebra of finite rank [35]. Dolinka,

Gould and Yang investigated free idempotent-generated semigroups and en-

domorphism monoids of free G-acts [17]. This work was later built upon

by Gould and Yang who investigated idempotent-generated semigroups and

endomorphism monoids of independence algebras more generally [47]. Ob-

taining a presentation for SPEndFn(G) builds on the work of Al-Aadhami,

Dolinka, East, Feng and Gould: in which they provided a semigroup pre-

sentation for the wreath product MnoST n where M is a monoid and ST n
denotes the singular part of the full transformation monoid [2]. Indeed,

the singular part of the endomorphism monoid of a free G-act, denoted by

S EndFn(G) is isomorphic to GnoST n. Understandably, the degree of dif-

ficulty is increased in the case of SP EndFn(G) given the interplay between

‘singular’ and ‘partial’ elements within the semigroup.

While obtaining a presentation SPEndFn(G) is our primary focus, we

develop a method by which we arrive at semigroup presentations for other

classes of semigroups too, namely almost-factorisable inverse semigroups (as

described by Lawson [69]). This extends and adds to the body of work on

factorisable inverse monoids given by Easdown, East and FitzGerald [20, 28].

We organise this thesis in the following way. The first three chapters are

purely prelimary: general background material for semigroup (and monoid)

theory. In Chapter 1 we cover preliminary material on what is meant by

a semigroup, a monoid, and a group. We include a number of examples
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and some very basic results. Next, in Chapter 2, we talk about regular

semigroups, inverse semigroups and their generalisations (all of which form

examples of the semigroups for which we are finding presentations). Along-

side the definitions, we provide some very basic examples to illustrate the

distinctions between them. We also prove some elementary observations

for regular and inverse semigroups. We introduce the notion of a presen-

tation for semigroups and monoids in Chapter 3 where we offer a number

of examples and some important terminology. In Chapter 4 we provide the

definitions for noetherianity and coherency for semigroups and monoid re-

spectively. We conclude this chapter by offering some basic examples. In

Chapter 5, we define what is meant by a right ideal Howson semigroup and

give some important classes of examples. We then provide semigroup pre-

sentations for right ideal Howson where we deal with non-commutative and

commutative presentations separately. We show how these presentations

are, in some sense, universal for the class of right ideal Howson semigroups.

In the last part of the thesis, we discuss the question of finding presentations

for the class of semigroups that exhibit a certain uniqueness property. In

Chapter 6, we look at semigroups which display left-uniqueness (in a par-

ticular sense) and and provide semigroup presentations for them. Finally,

we look at semigroups exhibiting a certain right-uniqueness and show how

to find semigroup presentations for this class of semigroups in a very special

case in Chapter 7.
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To Vicky

The bicyclic limerick:

Which semigroup has an identity?

And with one-sided inverse aplent-ity?

Admits finite presentation

Without hesitation?

It never fails to amaze-zes me.

For this, you won’t have to be psychic,

But the lecture is starting, so be quick!

This monoid supreme,

And for Vicky– a dream,

And, as we all know, is bicyclic.
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Chapter 1

Semigroups, monoids and

groups

In Section 1.1 we introduce the basic theory of semigroups that will be

made use of throughout this thesis. We start by giving the definitions of a

semigroup, monoid and a group as well as their corresponding substructures.

In Section 1.2 we define binary relations focussing on equivalence relations

(notably Green’s equivalence relations) and congruences. We also discuss

quotient semigroups. We introduce the notions of external and internal

general products and highlight the relationship between these two structures

in Section 1.3.

1.1 Basic definitions

Throughout Section 1.1, and indeed throughout this thesis, we assume a

basic knowledge of sets (including direct products of sets), n-ary functions

and n-ary operations for n ∈ N. As a convention, for an n-ary operation on

a non-empty set X, say ∗ : Xn → X, we will write x1 . . . xn in the place

of (x1, . . . , xn)∗ where ∗ is understood. We may, however, omit the explicit

mention of a binary operation entirely and refer to ‘multiplication’ on a set

when the binary operation is unambiguous.
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Definition 1.1.1. [56] A binary operation on a set S is associative if

(xy)z = x(yz) (1.1)

for every x, y, z ∈ S.

Often we will say that a binary operation on S satisfies the Associative

Law whenever Equation 1.1 holds. Examples of associative binary operations

abound. For instance, composition of functions on a set is familiar to almost

every mathematician.

Example 1.1.2. The usual notions of addition and multiplication defined

on

N = {1, 2, . . .}

Z = {. . . ,−1, 0, 1, . . .}

Q =
{a
b

: a ∈ Z, b ∈ Z \ {0}
}

R and

C = {x+ iy : x, y ∈ R}

are binary operations.

Of course, not every binary operation is associative. This is a fact wit-

nessed in the next example.

Example 1.1.3 (Rock, paper, scissors!). Let S = {r, p, s} and consider the

binary operation on S given by the rule that

rp = pr = p, ps = sp = s, sr = rs = r

and xx = x for every x ∈ S. Then, for example, we see that

(rp)s = ps = s and r = rs = r(ps).

It follows from s 6= r that (rp)s 6= r(ps) and so this is an example of a binary

operation on S that is not associative.
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Often it may be more suitable to represent a binary operation on a finite

set S via a multiplication table. Specifically, if we wish to show that xy = z

in S, we have an entry z in the row labelled by x and the column labelled

by y as seen in Figure 1.1. Such a representation of the binary operation on

S is called a Cayley table for S.

· · · y · · ·
...

...

x · · · z · · ·
...

...

Figure 1.1: A Cayley table showing that xy = z in S.

Definition 1.1.4. [56] A semigroup (S, ∗) is a non-empty set S together

with an associative binary operation ∗ on S.

As a convention, we will write S to denote the semigroup (S, ∗) where

the associative binary operation ∗ on S is already understood. The intuition

behind associativity here is that any expression of the form x1 . . . xn, for

x1, . . . , xn ∈ S and n ∈ N, is unambiguous; by which we mean that there is

unique way to interpret such an expression via addition of brackets. This is

an immediate consequence of Definition 1.1.1. For a given semigroup S and

element x ∈ S, we will write

xn = x . . . x︸ ︷︷ ︸
n times

for any n ∈ N. With this notation in mind, we note that

xaxb = xa+b and (xa)b = xab

for every x ∈ S and a, b ∈ N. These rules are known as the index laws. We

proceed by letting S denote a semigroup throughout this thesis.

Definition 1.1.5. [56] The order (or cardinality) of a semigroup S is the

number of elements in S and is denoted by |S|.
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We now highlight some well-known examples of semigroups.

Example 1.1.6 (Trivial semigroup). If |S| = 1, say S = {e}, then a binary

operation on S can only be given by the rule that ee = e. It is straightfor-

ward to see that such a binary operation is associative since

(ee)e = e2 = e and e(ee) = e2 = e.

This is called the trivial semigroup.

Example 1.1.7 (Left-zero semigroups). Let S be a non-empty set where

multiplication is given by xy = x for every x, y ∈ S. Then we see that

(xy)z = xz = x and x(yz) = xy = x

for every x, y, z ∈ S and so S is a semigroup. Such a semigroup is known as

a left-zero semigroup. A right-zero semigroup is defined dually.

Example 1.1.8 (Null semigroups). Let S be a non-empty set and fix some

a ∈ S. Define multiplication on S by the rule that xy = a for every x, y ∈ S.

Then we have that

(xy)z = az = a and x(yz) = xa = a

for every x, y, z ∈ S and so S is a semigroup. A semigroup S of this form

with |S| > 2 is called a null semigroup.

Example 1.1.9 (Free semigroup on X). Let X be a non-empty set and let

S = {x1 . . . xn : x1, . . . , xn ∈ X,n ∈ N}

with multiplication on S given by the rule that

(x1 . . . xn)(y1 . . . ym) = x1 . . . xny1 . . . ym

for any n,m ∈ N with x1, . . . , xn, y1, . . . , ym ∈ X. Two elements, say

x1 . . . xn and y1 . . . ym ∈ S, are equal if and only if n = m and xi = yi

for every 1 6 i 6 n.
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It is clear to see

(
(x1 . . . xn)(y1 . . . ym)

)
(z1 . . . zp) = (x1 . . . xny1 . . . ym)(z1 . . . zp)

= x1 . . . xny1 . . . ymz1 . . . zp

and similarly

(x1 . . . xn)
(
(y1 . . . ym)(z1 . . . zp)

)
= (x1 . . . xn)(y1 . . . ymz1 . . . zp)

= x1 . . . xny1 . . . ymz1 . . . zp

for every x1 . . . xn, y1 . . . ym, z1 . . . zp ∈ S. This semigroup is called the free

semigroup on X and is denoted by X+. Here, the term ‘free’ is used in

relation to free objects in a categorical sense: free semigroups are free objects

in the category of semigroups.

In the case where xy = yx for every x, y ∈ S, we say that S is com-

mutative. For instance, any null semigroup is commutative. Otherwise we

say that S is non-commutative; for example, any left-zero semigroup S with

|S| > 2 is non-commutative.

Definition 1.1.10. Let S and T be semigroups. If T is a non-empty subset

of S and xy ∈ T for every x, y ∈ T then we say that T is a subsemigroup of

S and we denote this by T 6 S. We also say that S is an oversemigroup of

T .

Certainly, every semigroup can be thought of as a subsemigroup, as well

as an oversemigroup, of itself. In the case where T is a subsemigroup of S

but T 6= S, we say that T is a proper subsemigroup of S and this may be

denoted by T < S.

Example 1.1.11. Consider any left-zero semigroup S as in Example 1.1.7

where |S| > 1. Then any non-empty subset T of S, with |T | < |S|, forms a

proper subsemigroup of S.

Let S1, . . . , Sn be a collection of subsets of a semigroup S for some n ∈ N.
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We write

S1 . . . Sn = {x1 . . . xn : xi ∈ Si for all 1 6 i 6 n}.

We say that S1 . . . Sn is a semigroup product. Let X ⊆ S. If every element

of S can be written in the form x1 . . . xn where xi ∈ X for every 1 6 i 6 n

then we write S = 〈X〉, and say X generates S. If S is a commutative

semigroup then S1 . . . Sn 6 S for any S1, . . . , Sn 6 S.

Definition 1.1.12. [56] We say that I is a left ideal of S if I ⊆ S such that

SI ⊆ I. A right ideal of S is defined dually. An ideal of S is both a left and

a right ideal of S. A principal left ideal of S is of the form xS∪{x} for some

x ∈ S. We define a principal (right) ideal dually.

In Definition 1.1.12, it should be noted that we are using the convention

that xS means {x}S. As with subsemigroups, every semigroup is an ideal of

itself. In the case that I is a (left, right) ideal of S, but I 6= S, we say that I

is proper. For example, the set of even natural numbers under multiplication

is a proper ideal of the set of natural numbers. Note that, any ideal of a

semigroup is a subsemigroup by definition, but the converse is false as seen

in the following example.

Example 1.1.13. Let S be the semigroup of natural numbers under multi-

plication. Notice that I = {2n : n ∈ N} forms a subsemigroup of S. However

sI 6⊆ I for any s /∈ I and so I is not an ideal of S.

Definition 1.1.14. A left ideal is finitely generated if it is the finite union

of principal left ideals. Dually for (right) ideals being finitely generated.

For instance, if S is the set of natural numbers under multiplication then

the set of natural numbers divisible by 2 or 3 is a finitely generated ideal of

S.

Definition 1.1.15. [56] An element x ∈ S is called a left-zero element of S

if

xy = x
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for all y ∈ S; a right-zero element is defined dually. An element x ∈ S is

called a zero element of S if it is both a left zero and right zero element of

S.

For instance, as seen in Example 1.1.7, every element of a left-zero semi-

group S is a left-zero element of S. Likewise, in Example 1.1.8, the element

a ∈ S is a zero element of S.

Lemma 1.1.16. Let S be a semigroup. If S contains a zero element then

it is unique.

Proof. Let S be a semigroup and let x, y ∈ S be zero elements of S. This

means that xy = x (as x is a zero element) and xy = y (as y is a zero

element). Therefore we have shown that x = y.

Often, we will write 0 as the zero element of a semigroup. In the case

where S and T both contain zero elements, we will write 0S and 0T to

distinguish between the zero elements of S and T respectively.

Definition 1.1.17. [56] Let S be a semigroup and 0 be a formal symbol

such that 0 /∈ S. Then we extend the multiplication in S to S ∪ {0} by

setting

0x = x0 = 0 and 00 = 0

for all x ∈ S. We write S0, called S with-zero-adjoined if necessary, to mean

the semigroup

S0 =

{
S if S contains a zero element;

S ∪ {0} otherwise.

Notice that S0 is a semigroup with a zero element.

Definition 1.1.18. [56] An element x ∈ S is a left-identity element of S if

xy = y

for every y ∈ S, where a right-identity element of S is defined dually. An
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element x ∈ S is called an identity element of S if it is both a left-identity

and right-identity element of S.

As an example, one can choose to think of a left-zero semigroup as a

semigroup in which every element is also a right-identity. In contrast, a null

semigroup S contains a zero element and there is no identity element.

Lemma 1.1.19. Let S be a semigroup. If S contains an identity element

then it is unique.

Proof. Let S be a semigroup and let x, y ∈ S be identity elements of S.

This means that xy = x (as y is an identity element) and xy = y (as x is an

identity element). Therefore we have shown that x = y.

We will normally denote the identity element of a semigroup by 1. For

any semigroup S with identity we define x0 = 1 for any x ∈ S (the index

laws then hold for all m,n ∈ N0. As before, if S and T both contain identity

elements then we will write 1S and 1T to separate the identity elements of

S and T respectively.

Definition 1.1.20. [56] Let S be a semigroup and 1 be a formal symbol

such that 1 /∈ S. Then we extend the multiplication in S to S ∪ {1} by

setting

1x = x1 = x and 11 = 1

for all x ∈ S. We write S1, called S with-identity-adjoined if necessary, to

mean the semigroup

S1 =

{
S if S contains an identity element;

S ∪ {1} otherwise.

Notice that S1 is a semigroup. Semigroups which contain identity el-

ements have special properties and have long been of particular focus to

semigroup theorists.

Definition 1.1.21. [56] A monoid is a semigroup S that contains an identity

element.
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Typically, we will denote an arbitrary monoid by M instead of S or S1

(where appropriate) and we use this notation for the rest of the thesis. As

with the case for semigroups, there is a corresponding notion of a monoid

within a monoid: a submonoid N of a monoid M is a subsemigroup of M

such that 1 ∈ N . In what follows, we provide an interesting example of a

monoid where, for convenience, we will set N0 = N ∪ {0}.

Example 1.1.22 (Bicyclic monoid). Let B be the set of formal symbols

B = {xayb : a, b ∈ N0}

with multiplication given by

(xayb)(xcyd) = xa−b+tyd−c+t where t = max{b, c}

for every a, b, c, d ∈ N0. We verify that this is a semigroup and that it

contains an identity element.

Let a, b, c, d, h, k ∈ N0, then

(
(xayb)(xcyd)

)
(xhyk) = (xa−b+tyd−c+t)(xhyk) where t = max{b, c}

= xa−b+c−d+uyk−h+u where u = max{d− c+ t, h}

(xayb)
(
(xcyd)(xhyk)

)
= (xayb)(xc−d+syk−h+s) where s = max{d, h}

= xa−b+vyk−h+d−c+v where v = max{b, c− d+ s}.

From this point, it will suffice to show that c − d + u = v in order to show

that B forms a semigroup. Using the fact that max is associative

c− d+ u = c− d+ max
{
d− c+ max{b, c}, h

}
= max

{
max{b, c}, c− d+ h

}
= max{b, c, c− d+ h}

= max
{
b,max{c, c− d+ h}

}
= max

{
b, c− d+ max{d, h}

}
= v
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and so B is a semigroup. To show that B has an identity element, consider

x0y0 ∈ B. For any a, b ∈ N0

(x0y0)(xayb) = xtyb−a+t where t = max{0, a}

= xayb

(xayb)(x0y0) = xa−b+uyu where u = max{b, 0}

= xayb

and so B is a monoid, called the bicyclic monoid.

The bicyclic monoid is given by a monoid presentation on two generators,

x and y, where yx = 1 (but where we cannot deduce xy = 1). It may

be realised by taking y to be the successor function on N0 and x to be

the operation that sends 0 to 0 and otherwise subtracts 1. We discuss

presentations in Chapter 3.

Example 1.1.23 (Power sets). Let X be any set (possibly empty). The

power set of X, denoted P(X) and given by

P(X) = {A : A ⊆ X}

forms a monoid under set union where the identity element is ∅. Equally

P(M) forms a monoid under subset multiplication with identity element

{1}.

Definition 1.1.24. [56] An element x ∈M is a left inverse of y ∈M if

xy = 1

where dually, y ∈ M is a right inverse of x ∈ M is defined. An element

x ∈M is an inverse of y ∈M if it is both a left inverse and right inverse of

y ∈M .

In the special case where x ∈ M is a inverse of itself, that is x = x−1,

we say that x is self-inverse. Certainly, the identity element of any monoid

is a simple example of a self-inverse element.
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Definition 1.1.25. [56] A group is a monoid such that each element has an

inverse.

Alternatively, we may define groups in the following way.

Definition 1.1.26. [56] A group is a semigroup S such that

Sx = xS = S

for every x ∈ S.

Proposition 1.1.27. The definitions of a group given in Definition 1.1.25

and Definition 1.1.26 are equivalent.

Proof. Suppose we begin by assuming G is a group in the sense of Definition

1.1.25. As xG ⊆ G is clear for every x ∈ G, we continue by showing that

Gx ⊆ xG and G ⊆ Gx for every x ∈ G. For every x ∈ G there exists a

unique inverse element, say x−1 ∈ G such that xx−1 = x−1x = 1. Thus, for

any x, y ∈ G, we have that yx = xx−1yx and so Gx ⊆ xG. Similarly, for

every x, y ∈ G, we have that y = yx−1x and so G ⊆ Gx. Therefore we have

shown that

G ⊆ Gx ⊆ xG ⊆ G

for every x ∈ G. Hence, G is a semigroup in which Gx = xG = G for every

x ∈ G. This is exactly Definition 1.1.26.

For the reverse implication, we suppose for a semigroup S that

Sx = xS = S

holds for every x ∈ S. Fix x ∈ S. It follows immediately that there exists

some a, b ∈ S such that ax = xb = x. In turn, for every y ∈ S there exists

c, d ∈ S such that cx = xd = y. Together, this implies that

ay = a(xd) = (ax)d = xd = y and yb = (cx)b = c(xb) = cx = y

which give us that a and b are a left-identity and right-identity element of

S respectively. As such, we have that a = b = 1 is the unique identity
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element of S. Lastly, for every h ∈ S, there exists some k, ` ∈ S such that

kh = h` = 1. It is clear from here to see that

k = k1 = k(h`) = 1` = `

and so k = ` = h−1 is the unique inverse element of h ∈ S. Thus S is a

group as defined in Definition 1.1.25.

A subgroup H of a group G is a submonoid of G such that for every

x ∈ H we have x−1 ∈ H. Moreover, a subgroup H in which for every

x ∈ H and y ∈ G we have yxy−1 ∈ H is called normal (where y−1 is the

inverse element of y). We proceed throughout this thesis by adopting the

convention that G will denote an arbitrary group.

Definition 1.1.28. [56] A semigroup homomorphism is a map φ : S → T

such that

(xφ)(yφ) = (xy)φ

for every x, y ∈ S. A monoid homomorphism φ : M → N between monoids

M and N is a semigroup homomorphism with the additional property that

1Mφ = 1N .

For the sake of brevity, we will just write homomorphism where semi-

group (or monoid) is understood.

Definition 1.1.29. [56] An isomorphism is a bijective homomorphism.

If there exists a isomorphism between S and T then we say S and T

are isomorphic and write S ' T . A homomorphism from S to itself is

called an endomorphism and similarly an isomorphism from S to itself is

known as an automorphism. We denote by EndS and AutS the monoid of

endomorphisms and the group of automorphisms of S (under composition of

functions) respectively. It is worth emphasising here that EndS and AutS

form a monoid and a group respectively.

Definition 1.1.30. [56] Let φ : S → T be a homomorphism. The kernel of
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φ is denoted kerφ and given by

kerφ =
{

(x, y) ∈ S × S : xφ = yφ
}

and similarly, the image of φ, written imφ, is given by

imφ = {xφ : x ∈ S}.

For instance, if φ is a isomorphism then

kerφ =
{

(x, x) : x ∈ S
}

and imφ = T.

A point worth emphasising in Definition 1.1.30 is that kerφ is in fact a

binary relation on S, not a subset of S. We are now going to discuss binary

relations in Section 1.2.

1.2 Equivalence relations, congruences and quo-

tient semigroups

Throughout this section we let X be a non-empty set and use R for a binary

relation on X. For clarity, we will write RS whenever we wish to emphasise

that R is a relation on a set X. With regards to notation, we will use

(x, y) ∈ R and xR y interchangeably (or say x and y are R-related).

Definition 1.2.1. [56] An equivalence relation R on X is a binary relation

on X satisfying the following conditions:

(ER1) (x, x) ∈ R;

(ER2) if (x, y) ∈ R then (y, x) ∈ R;

(ER3) if (x, y), (y, z) ∈ R then (x, z) ∈ R;

for every x, y, z ∈ X. We will refer to a binary relation as being reflexive if

(ER1) holds; symmetric if (ER2) holds and transitive if (ER3) holds.
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For an equivalence relation R on a set X, we will write [x]R to mean the

equivalence class of x with respect to R where

[x]R =
{
y ∈ X : (x, y) ∈ R

}
.

Where R is understood, we will write [x] instead of [x]R. Notice that any

equivalence relation R on a set X leads to a partition of the set. Specifically,

for any X and R, we have [x] 6= ∅,

⋃
x∈X

[x] = X and [x] ∩ [y] =

{
[x] if x ∈ [y];

∅ otherwise

for every x, y ∈ X.

Of course, not every binary relation on a set will for an equivalence

relation, as seen in the next example.

Example 1.2.2 (Partial orders). Consider the set of natural numbers N
and the binary relation R where (n,m) ∈ R if and only if n 6 m. It is

clear that n 6 n for every n ∈ N. It is also easy to see that if n 6 m and

m 6 p then n 6 p for every n,m, p ∈ N. However, it is not true that R is

symmetric since n 6 m and m 6 n only when n = m. Therefore R is not

an equivalence relation. Such a binary relation R that satisfies the following

conditions:

(PO1) (x, x) ∈ R;

(PO2) if (x, y), (y, x) ∈ R then x = y;

(PO3) if (x, y), (y, z) ∈ R then (x, z) ∈ R

for every x, y, z ∈ R is known as a partial order. We refer to a binary relation

satisfying (PO2) as being anti-symmetric.

We illustrate some important examples of equivalence relations which,

as we will see, are used in abundance throughout this thesis.
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Example 1.2.3 (Green’s L -relation). [56] Let L be the relation on a

semigroup S given by the rule that

(x, y) ∈ L ⇐⇒ S1x = S1y

for every x, y ∈ S. Clearly L satisfies (ER1) since S1x = S1x for every

x ∈ S trivially. Likewise, if (x, y) ∈ L , for x, y ∈ S, then S1x = S1y and so

too it is straightforward to see that (y, x) ∈ L . Finally, if (x, y), (y, z) ∈ L

for x, y, z ∈ S, then we have S1x = S1y and S1y = S1z. Altogether this

gives S1x = S1z and so (x, z) ∈ L . Hence L is an equivalence relation on

S known as Green’s L -relation.

As it happens, Green’s L -relation is one of a family of equivalence rela-

tions introduced by Green. The following, along with L , form a complete

set of Green’s equivalence relations for any semigroup S:

xRy ⇐⇒ xS1 = yS1

xH y ⇐⇒ xL y and xRy

xDy ⇐⇒ xL z and zRy for some z ∈ S1

xJ y ⇐⇒ S1xS1 = S1yS1

for every x, y ∈ S and for some z ∈ S. The bright-eyed and bushy-tailed

reader may make the additional observation that, for instance, if (x, y) ∈ L

then (xz, yz) ∈ L for every z ∈ S. This is a important property that we

define next.

Definition 1.2.4. [56] An equivalence relation R on S is left-compatible if

(x, y) ∈ R implies that (zx, zy) ∈ R for every z ∈ S. A right-compatible

equivalence relation is defined dually. An equivalence relation on S is com-

patible if it is both left-compatible and right-compatible.

If an equivalence relation is left-compatible, we call it a left congruence;

a right congruence is defined dually. With Green’s equivalence relations in

mind, R is a left congruence and L is a right congruence. An equivalence

relation is called a congruence if it is both a left and right congruence. It
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is easily seen that an equivalence relation R is a congruence if and only if

for all (a, b), (c, d) ∈ R we have (ac, bd) ∈ R. Hence the terms ‘compatible

equivalence relation’ and ‘congruence’ are synonymous. We highlight some

special congruences below.

Example 1.2.5 (Universal congruence). Let ω = ωS be the equivalence

relation on S given by the rule that (x, y) ∈ ω for all x, y ∈ S. It follows

immediately that (zx, zy) ∈ ω and similarly (xz, yz) ∈ ω for all x, y, z ∈
S, and so ω defines a congruence on S. This is known as the universal

congruence on S.

Example 1.2.6 (Identity congruence). Let ∆ = ∆S be the equivalence

relation on S defined by

∆ =
{

(x, x) : x ∈ S
}
.

Clearly, if (x, y) ∈ ∆ then (zx, zy) ∈ ∆ for any z ∈ S, since x = y. Dually,

one can argue that (xz, yz) ∈ ∆ and so ∆ defines a congruence on S called

the identity congruence on S.

Definition 1.2.7. [56] Let R be a congruence on S. The quotient semigroup,

denoted by S/R, is the semigroup with elements

S/R =
{

[x] : x ∈ S
}

and multiplication given by

[x][y] = [xy]

for every x, y ∈ S.

It is clear to see that this multiplication is well-defined for if [x] = [a] and

[y] = [b] then (x, a), (y, b) ∈ R. As R is a congruence this gives (xa, yb) ∈ R
and so [xy] = [yb]. In this way, for every semigroup S we have S/ω is

trivial and S ' S/ι. We illustrate a couple of (more interesting) examples

of quotient semigroup in what follows.
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Example 1.2.8 (Rees quotient semigroups). [56] Let I be any ideal of a

semigroup S and let

R = (I × I) ∪∆S\I

be a binary relation on S. If x ∈ I then (x, x) ∈ I × I and if x ∈ S \ I
then (x, x) ∈ ∆S\I . Hence R satisfies (ER1). If (x, y) ∈ I × I then x, y ∈ I
and so (y, x) ∈ I × I. On the other hand, if (x, y) ∈ ∆S\I then x = y and

so (y, x) = (x, x) ∈ ∆S\I . Therefore R satisfies (ER2). Lastly, to verify

that R satisfies (ER3) we consider a couple of cases. If (x, y), (y, z) ∈ I × I
then x, y, z ∈ I and so (x, z) ∈ I. Alternatively, if (x, y), (y, z) ∈ ∆S\I then

x = y = z ∈ S \ I and so (x, z) = (x, x) ∈ ∆S\I . Thus R satisfies (ER3) and

so is an equivalence relation on S. On the other hand, if (x, y) ∈ I × I and

(y, z) ∈ ∆S\I , then we see y = z so that (x, z) ∈ R; similarly for the final

case.

To show that R is a congruence on S, we show that it is left-compatible,

where the proof of right-compatibility is entirely dual. Suppose that (x, y) ∈
I × I and a ∈ S, then clearly ax, ay ∈ I as I is an ideal. It follows that

(ax, ay) ∈ I × I. Conversely, if (x, y) ∈ ∆S\I and a ∈ S then ax = ay as

x = y. This gives us that (ax, ay) = (ax, ax) ∈ ∆S . Hence R is a congruence

on S. The resulting quotient semigroup S/R is known as a Rees quotient

semigroup where R is called a Rees congruence on S.

In the Rees quotient S/I, effectively we identify all the elements of I and

set them to be a zero.

Example 1.2.9. Let S and T be semigroups and let φ : S → T be a homo-

morphism. It is clear that kerφ is an equivalence relation on T . That kerφ

is a (left, right) congruence follows from the fact that φ is a homomorphism.

We conclude this section by proving some important results regarding

congruences on semigroups.

Lemma 1.2.10. Let S be a semigroup and let R be a congruence on S.

Then there exists a homomorphism φ : S → S/R given by

xφ = [x]
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for every x ∈ S.

Proof. Let S be a semigroup and R be a congruence on S. Let φ : S → S/R

be a map given by xφ = [x]. Then

(xy)φ = [xy] = [x][y] = (xφ)(yφ)

for every x, y ∈ S.

Theorem 1.2.11 (The Fundamental Theorem of Homomorphisms for Semi-

groups). Let S, T be semigroups and let φ : S → T be a homomorphism.

Then kerφ is a congruence on S, imφ is a subsemigroup of T and

S/ kerφ ∼= imφ.

1.3 General products

General products of semigroups generalise the familiar notion of direct prod-

ucts of semigroups. We begin by introducing what is meant when one semi-

group acts on another. This will be crucial in defining general products.

Definition 1.3.1. Let S and T be semigroups. Then we say that T acts on

the left of S (by •) if there exists a map T × S → S given by (a, x) 7→ a • x

such that

a • (b • x) = (ab) • x

for every a, b ∈ T and x ∈ S. Dually we have the notion of when S acts on

the right of T (by ∗).

Equivalently, we may say that T has a left action on S or dually S has

a right action on T . Wherever a left action, say • , and right action, say ∗ ,

are understood, we will simply write ax and ax instead of a • x and a ∗ x
respectively. If T acts on the left of S such that

ax bx = abx
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for every a, b ∈ T and x ∈ S, we say that T acts on the left of S by homomor-

phisms. Dually we define when S acts on the right of T by homomorphisms.

Definition 1.3.2. Let T act on the left of S and S act on the right of T

such that the following conditions are satisfied:

(GP1) a(xy) = ax a
x
y;

(GP2) (ab)x = a
bx bx;

for all x, y ∈ S and a, b ∈ T . An external general product of S and T ,

denoted S ./ T , is the semigroup with elements

S ./ T =
{

(x, a) : x ∈ S, a ∈ T
}

and multiplication given by

(x, a)(y, b) =
(
x ay, ay b

)
.

In the special cases where ax = x (ax = a) for every x ∈ S and a ∈ T , the

resulting external general product is known as a semidirect product and is

written as S n T (S o T ).

We verify below that S ./ T forms a semigroup. Indeed, we see that

(
(x, a)(y, b)

)
(z, c) =

(
x ay, ay b

)
(z, c)

=
(
x ay (ay b)z, (ay b)z c

)
=
(
x ay (ay)(bz), (ay)(

bz) bz c
)

=
(
x a(y bz), a(y

bz) bz c
)

= (x, a)
(
y bz, bz c

)
= (x, a)

(
(y, b)(z, c)

)
for every x, y, z ∈ S and a, b, c ∈ T .

Definition 1.3.3. Let S and T be subsemigroups of a semigroup U . Then

U is an internal general product of S and T if U = ST and every element of

U can be expressed in the form xa for a unique x ∈ S and unique a ∈ T .

33



Note that general products are also referred to as Zappa-Szép products.

We will simply refer to a general product whenever internal or external

general product is understood. Interestingly, we demonstrate below how one

cannot simply pass between the two definitions: they are separate notions.

Proposition 1.3.4. Let U be an internal general product of subsemigroups

S and T . Then S ./ T exists.

Proof. If a ∈ T and x ∈ S then it follows that ax ∈ U . Since U is an internal

general product of S and T , there must exist some unique y ∈ S and unique

b ∈ T such that ax = yb. We show that by setting ax = y and ax = b

we define a left action of T on S and a right action of S on T respectively

satisfying (GP1) and (GP2).

We see that

abx(ab)x = (ab)x = a(bx) = a(bxbx) = (a bx)bx = a(bx)a
bx bx

for all a, b ∈ T and x ∈ S. Therefore

abx = a(bx) and (ab)x = a
bx bx

by uniqueness. Similarly, one can show that

axy = (ax)y and a(xy) = ax axy

for every a ∈ T and x, y ∈ S. Hence we may form the external general

product S ./ T .

Proposition 1.3.5. Let S ./ T be an external general product of semi-

groups. Then S1 ./ T 1 is an external general product and an internal general

product of subsemigroups S1 ./ {1T } and {1S} ./ T 1.

Proof. Suppose that S ./ T is an external general product of semigroups.

We can extend the left action of T on S to a left action of T 1 on S1 by

setting a1S = 1S and 1T x = x for every x ∈ S1 and a ∈ T 1. Dually, we can

extend the right action of S on T to a right action of S1 on T 1 by setting
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1xT = 1T and a1T = a for every x ∈ S and a ∈ T . It is routine to verify that

(GP1) and (GP2) hold under this rule. As such, we can form the external

general product S1 ./ T 1.

To see that S1 ./ {1T } is a subsemigroup of S1 ./ T 1 we notice that

(x, 1T )(y, 1T ) = (x 1T y, 1yT 1T ) = (xy, 12T ) = (xy, 1T )

for every x, y ∈ S1. Dually one can see that {1S} ./ T 1 is a subsemigroup

of S1 ./ T 1 dually. For any x ∈ S1 and a ∈ T 1 we have

(x, a) = (x1S , 1Ta) = (x 1T 1S , 1
1S
T a) = (x, 1T )(1S , a).

Clearly this factorisation is unique. Hence S1 ./ T 1 is an external general

product and an internal general product of S1 ./ {1T } and {1S} ./ T 1 as

required.

To summarise Proposition 1.3.4 and Proposition 1.3.5, there are clear

differences in going from an internal general product to an external general

product and vice versa. Starting from an internal general product of the

form ST , one can form the external general product S ./ T . From an

external general product S ./ T , one can form the external general product

S1 ./ T 1 so that

S1 ./ T 1 = (S1 ./ {1T })({1S} ./ T )

where S1 ' S1 ./ {1T } and T 1 ' {1S} ./ T 1. For if we have an external

general product S ./ T where S and T are semigroups, then unless S and T

are monoids we cannot necessarily express this as an internal product, since

S and T may not embed into S ./ T .
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Chapter 2

Regular semigroups, inverse

semigroups and their

generalisations

In Section 2.1 we begin by introducing the notion of regular elements and

regular semigroups. We then give the definition of an inverse semigroup

along with a few examples, some basic concepts and important results, in

Section 2.2. To conclude, we briefly look into generalisations of regular

and inverse semigroups; namely abundant semigroups in Subsection 2.3.1,

adequate semigroups in Subsection 2.3.2 and ample semigroups in Subsec-

tion 2.3.3.

2.1 Basic definitions

We will let E(S) denote the set of idempotents of a semigroup S, given by

E(S) = {x ∈ S : x2 = x}.

Where S is clear, we will write E instead of E(S).

Definition 2.1.1. [56] An element x ∈ S is regular if there exists some

y ∈ S such that xyx = x.
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Examples of semigroups that contain regular elements are plentiful: for

instance, every monoid contains the identity element, which is regular. We

highlight another family of semigroups that exhibit regular elements in the

next example.

Example 2.1.2 (Bands and semilattices). Let S be a semigroup such that

E = S. Then it is clear that

x3 = x2x = xx = x

for every x ∈ S and so every element of S is regular. Such a semigroup is

called a band. A commutative band is known as a semilattice.

If S is a semilattice then S is partially ordered under x 6 y if and only

if xy = x. Under this partial order, for any x, y ∈ S we have that xy is the

greatest lower bound of x and conversely, if Y is a partially ordered set in

which every pair of elements a, b has a greatest lower bound, denoted x∧ y,

then Y becomes a semilattice under the operation of ∧.

Definition 2.1.3. [56] A semigroup S is regular if every element x ∈ S is

regular.

Regular semigroups are a well-studied class of semigroups and exam-

ples abound: groups, semilattices, left-zero semigroups, full transformation

monoids, the trivial semigroup, the power set of a semigroup under union

or intersection, and the set of natural numbers under max. We highlight a

less straightforward example.

Example 2.1.4 (Bicyclic monoids). Let B be the bicyclic monoid and let

xayb ∈ B. It is easy to check that for any a ∈ N0 we have yaxa = x0y0 and

then

xayn(xbya)xayb = xayb.

Therefore the bicyclic monoid B is regular.

Certainly there are natural examples of semigroups lurking in the semi-

group wilderness that are not regular: free semigroups, null semigroups and

the set of natural numbers under addition or multiplication to name a few.
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Proposition 2.1.5. [56] If S is regular then for every x ∈ S there exists

y ∈ S such that xyx = x and yxy = y.

Proof. Let S be a regular semigroup and x ∈ S. Then there exists some

y ∈ S such that xyx = x by definition. Now we set z ∈ S such that z = yxy.

With this in mind, it follows that

xzx = xy(xyx) = xyx = x

and similarly

zxz = yxy(xyx)y = y(xyx)y = yxy = z

which completes the proof.

2.2 Inverse semigroups

We start by defining a (new) notion of an inverse element for semigroups.

Definition 2.2.1. [56] Let S be a semigroup and suppose for an element

x ∈ S there exists some y ∈ S such that xyx = x and yxy = y. Then we

say that y is an inverse of x and dually x is an inverse of y.

For every x ∈ S, we let V (x) ⊆ S be the subset defined by

V (x) = {y ∈ S : xyx = x and yxy = y}.

Thus V (x) is referred to as the set of inverses of the element x ∈ S. With

this in mind, Definition 2.1.3 is equivalent to saying that a semigroup S is

regular if and only if |V (x)| > 0 for every x ∈ S.

Definition 2.2.2. A semigroup S is inverse if every element x ∈ S has a

unique inverse x−1 ∈ S.

We remark that if e ∈ E then e−1 = e. Note that every group is an

inverse semigroup. To deal with the obvious difficulty posed by two separate

notions of an inverse, we will use the following convention: x′ will denote the

inverse of an element x in an arbitrary semigroup whereas x−1 will denote
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the inverse of an element x in an inverse semigroup sense. In this way, we

will see there will be no ambiguity with using x−1 to denote the inverse of a

group element x ∈ G. We prove the following important property of inverse

semigroups.

Proposition 2.2.3. [56] Let S be a regular semigroup. Then S is inverse

if and only if E forms a commutative subsemigroup of S.

Proof. Suppose first that S is inverse. Clearly S is regular. Let e, f ∈ E;

we set x = (ef)−1. This implies that x ∈ S satisfies

(ef)x(ef) = ef and x(ef)x = x.

With this in mind, we see that

(fxe)2 = f(xefx)e = fxe

so fxe ∈ E and fxe = (fxe)−1 by an earlier comment. Further, this gives

(fxe)ef(fxe) = f(xefx)e = fxe and (ef)(fxe)(ef) = efxef = ef

so that ef = (fxe)−1. Since S is inverse this implies that fxe = ef ∈ E.

Dually one can argue that fe ∈ E. Lastly, we see

(ef)(fe)(ef) = (ef)2 = ef and (fe)(ef)(fe) = (fe)2 = fe.

Therefore ef = (fe)−1 = fe.

For the converse, suppose that S is regular and the idempotents of E

commute. It is easy to see that products of idempotents are then idempotent,

so that E forms a semilattice. If x ∈ S and y ∈ S is such that x = xyx,

then xy and yx are idempotent. Consequently, if y and z are inverses of x

then one can show that y = z. For,

y = yxy = y(xzx)y = (yx)(zx)y = (zx)(yx)y

= z(xyx)y = zxy = · · · = zxz = z.
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We illustrate Proposition 2.2.3 with the following counterexample.

Example 2.2.4. Let S be a left-zero semigroup with |S| > 1. We have

E = S which immediately gives us that S is regular. However, for any

distinct elements x 6= y ∈ S, we see xy = x and yx = y. Thus S is not

inverse as the idempotents do not commute.

We make immediate use of Proposition 2.2.3 in the next result.

Proposition 2.2.5. [56] If S is an inverse semigroup then every L -class

and R-class contains a unique idempotent.

Proof. Let S be an inverse semigroup. By definition, for any x ∈ S there

exists an x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. Certainly

(x, x−1x) ∈ L and (x, xx−1) ∈ R. We have

(xx−1)2 = (xx−1x)x−1 = xx−1 and (x−1x)2 = x−1(xx−1x) = x−1x

so that xx−1, x−1x ∈ E by definition.

Suppose that e, f ∈ E such that (e, f) ∈ L . This implies S1e = S1f

and so there exists some x, y ∈ S1 such that xe = f and yf = e. Then

e = yf = yf2 = ef = fe = xe2 = xe = f

since idempotents commute in S. This gives us that e = f is the unique

idempotent in the L -class of e. A dual argument shows that each R-class

contains a unique idempotent.

We now give some well-known examples of inverse semigroups.

Example 2.2.6 (Symmetric inverse monoids). [56] Let X be a non-empty

set and let IX be the monoid

IX =
{
α : X → X | α is an injection}.
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The composition in IX is given by

dom(αβ) = (imα ∩ domβ)α−1

and for any x ∈ dom(αβ) we have

x(αβ) = (xα)β.

For every α ∈ IX , we define α−1 with domα−1 = imα, imα−1 = domα and

xα−1 = y where yα = x for every x ∈ domα−1. Clearly V (α) = {α−1} for

every α ∈ IX with α−1 defined as described in the above. Such an inverse

semigroup is referred to as the symmetric inverse monoid on X.

Example 2.2.7 (Brandt semigroups). [15, 56] Let G be a group and let I

be a non-empty set. Then we let B0 = (I ×G× I) ∪ {0} be a set of formal

symbols with multiplication given by

(i, x, j)(k, y, `) =

{
(i, xy, `) if j = k;

0 otherwise

and with

(i, x, j)0 = 0(i, x, j) = 00 = 0

for every (i, x, j), (k, y, `) ∈ B0.

Then for every (i, x, j) ∈ B we see that

(
(i, x, j)(j, x−1, i)

)
(i, x, j) = (i, xx−1, i)(i, x, j)

= (i, 1, i)(i, x, j)

= (i, 1x, j)

= (i, x, j).

It follows that (i, x, j)−1 = (j, x−1, i). Finally, we always have that 0−1 = 0

since (00)0 = 00 = 0. The inverse semigroup B0 is known as a Brandt

semigroup.

Groups and semilattices are also perfectly good examples of inverse semi-
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groups. In addition, it is easy to see that the idempotents of the bicyclic

monoid are {xaya : a ∈ N0} and they commute. Therefore the bicyclic

monoid is another example of an inverse monoid.

2.3 Generalisations of regular and inverse semi-

groups

As we will see, many natural generalisations of regular and inverse semi-

groups exist.

2.3.1 Abundant semigroups

Before we proceed, it will be important to first recall Green’s equivalence

relations L and R defined on any semigroup as seen in Section 1.2. We

begin with a motivating example of a relation, defined for any semigroup,

closely related to that of a Green’s equivalence relation.

Definition 2.3.1 (Generalised Green’s equivalence relations). [29] Let S be

a semigroup. The equivalence relation L ∗ on S is given by the rule that

(x, y) ∈ L ∗ if and only if for any a, b ∈ S1 we have

xa = xb⇐⇒ ya = yb.

We define R∗ dually and

H ∗ = L ∗ ∩R∗.

These equivalence relations form the Generalised Green’s equivalence rela-

tions.

Alternatively, an equivalent definition of the relation L ∗ on a semigroup

S is to say that (x, y) ∈ L ∗ in S if and only if (x, y) ∈ L in some oversemi-

group of S. That L ∗ is a right congruence on S follows precisely from L

being a right congruence on an oversemigroup of S. Dually, one can argue

that R∗ is a left congruence on S.
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Definition 2.3.2. [34, 30] A semigroup S is left abundant if every R∗-class

contains an idempotent. The definition of right abundant is dual. We say

that S is abundant if it is both left abundant and right abundant.

Any regular semigroup is automatically abundant. Of course, many

familiar examples of semigroups are not abundant: any semigroup S with

E = ∅, such as the free semigroup on a non-empty set X, is certainly not

abundant. On the other hand, the free monoid X∗ is abundant, with a single

idempotent.

Example 2.3.3 (Monoid of n× n integer matrices). For an example of an

abundant, non-regular monoid with a plethora of idempotents, we cite the

monoid of n×n integer matrices Mn(Z) [32]. In the case of M2(Z), we have[
0 −1

0 1

]
,

[
0 0

−1 1

]
∈ E

(
M2(Z)

)
however [

0 −1

0 1

][
0 0

−1 1

]
6=

[
0 0

−1 1

][
0 −1

0 1

]
.

One can easily extend the 2× 2 idempotent matrices above to n× n idem-

potents in Mn(Z) which do not commute.

2.3.2 Adequate semigroups

It is straightforward to see that semilattices are abundant semigroups since

they are regular. That being said, semilattices satisfy the additional condi-

tion that idempotent elements in a semilattice commute: by virtue of how

they are defined. This special property is shared by other well-known classes

of abundant semigroups and consequently given a separate name.

Definition 2.3.4. [29] We say S is left adequate if S is left abundant and the

idempotents of S commute. A right adequate semigroup is defined dually.

We say that S is adequate if it is both left and right adequate.

While it is clear from Definition 2.3.4 that every adequate semigroup

is abundant, there are examples of semigroups that are abundant yet not
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adequate: for instance the free left adequate semigroup as described by Kam-

bites [61]. Any regular semigroup in which idempotents do not commute is

not adequate. It is worthwhile mentioning here that adequate semigroups

are to abundant as inverse semigroups are to regular semigroups.

2.3.3 Ample semigroups

So-called ample semigroups can be defined in a couple of different ways and

we begin this subsection by describing these.

Definition 2.3.5. [23, 32] A semigroup S is left ample if S is left adequate

and

S1x ∩ S1e = S1xe

for every x ∈ S and e ∈ E. Dually, we form the definition of a right ample

semigroup. We say that S is ample if S is left ample and right ample.

Ample semigroups were initially referred to as type A semigroups: the

exact etymology behind this terminology is unclear (we refer the reader to

wiser minds and semigroup folklore).

Definition 2.3.6. [23, 32] Let S be a semigroup such that F is a commu-

tative subsemigroup of idempotents of S and let + : S → F be a unary

operation. Then S satisfies the left ample condition with respect to F if the

following condition holds

xf = (xf)+x

for every x ∈ S and f ∈ F . The right ample condition with respect F is

defined dually.

In the case where S exhibits the left ample condition with respect to E(S),

then S is left ample as in Definition 2.3.5 (dually for right ample). IfM is any

submonoid of a symmetric inverse monoid, closed under α 7→ α+ = αα−1,

then M is left ample. Ample semigroups are always adequate by the very

nature of how ample semigroups are defined.
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Example 2.3.7 (Inverse semigroups). As inverse semigroups are regular

we always have that R = R∗ on any inverse semigroup S. Using Propo-

sition 2.2.5, every R-class contains a unique idempotent and so we set

x+ = xx−1 to be the unique idempotent in the R-class of x.

For every x ∈ S and e ∈ E we see that

xe = (xx−1x)e = x(x−1x)e = xe(x−1x) = xe2(x−1x)

= x(ee−1)(x−1x) = (xe)(e−1x−1)x = (xe)(xe)−1x = (xe)+x

and so S satisfies the left ample condition.

Example 2.3.8 (Right cancellative monoids). Let M be a monoid with the

property that

mp = np =⇒ m = n

for every m,n, p ∈ M . Such a monoid is called right cancellative. It is

easy to see that in a right cancellative monoid M , the identity is the only

idempotent and that every element is R∗-related to the identity. We have

a+ = 1 for every a ∈M and it is then clear that M is left ample. Conversely,

any one idempotent right ample monoid must be right cancellative.
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Chapter 3

Semigroup presentations

We begin in Section 3.1 by explaining what is meant by a semigroup presen-

tation, as well as presentations for groups and monoids. In Section 3.2 we

cover Adian presentations and their important connection with cancellative

properties. Last, in Section 3.3, we provide a definition of rewriting systems,

confluence and normal forms.

3.1 Basic definitions

Recall the free semigroup X+ on X as described in Example 1.1.9. One can

form the free monoid X∗ on X by adjoining an identity element (normally

denoted by ε or 1) to X+. With regards to X+ and X∗, we refer to the set

X as an alphabet; the elements of which we call letters. We call an element

w ∈ X+ a word and let |w|x be the number of times the letter x appears in

the word w (counting repeats). The context of a word w ∈ X+, denoted by

c(w), is the set

c(w) = {x1, . . . , xn : w = x1 . . . xn where x1, . . . , xn ∈ X}.

For any binary relation R on X+, we let R] be the congruence on X+ given

by the rule that (x, y) ∈ R] if and only if x = y or there exists some n ∈ N
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such that

x = a1x1b1, a1y1b1 = a2x2b2, . . . , anynbn = y (3.1)

where ai, bi ∈ X∗ and (xi, yi) ∈ R ∪ R−1 for every 1 6 i 6 n. We will refer

to such a sequence 3.1 as an R-sequence where the pair (aixibi, aiyibi) is an

elementary R-transition for every 1 6 i 6 n. We remark that R] is the

smallest congruence on X+ containing R. We define the congruence R] on

X∗ in precisely the same way.

Definition 3.1.1. Let X be a non-empty set and let R be a binary relation

on X+. A semigroup presentation, denoted by Sgp〈X : R〉, defines the

quotient semigroup X+/R]. If R is a binary relation on X∗ then a monoid

presentation, denoted by Mon〈X : R〉, defines the quotient monoid X∗/R].

Throughout this thesis, we will identify the semigroup (monoid) presen-

tations with the semigroups (monoids) which they define. Where it is clear

that a given presentation is for a semigroup or monoid, we will write 〈X : R〉
instead of Sgp〈X;R〉 or Mon〈X : R〉 respectively. Where X = {xi : i ∈ I},
for some index I, we will often write

〈
xi (i ∈ I) : R

〉
in the place of 〈X : R〉. In the special case where I is finite, say I =

{1, . . . , n}, we use 〈x1, . . . , xn : R〉 to denote 〈X : R〉 instead. Similarly, for

an index J , we will sometimes use

〈
X : uj = vj (j ∈ J)

〉
instead of 〈X : R〉 where R is the set of pairs (uj , vj), j ∈ J . In this

convention, we are using u = v in the place of (u, v) ∈ R. If R is a finite set,

say J = {1, . . . ,m}, then we write 〈X : u1 = v1, . . . , um = vm〉 instead. We

may use both of these conventions simultaneously.

Definition 3.1.2. A semigroup S has a presentation 〈X : R〉 (via φ) if

there exists a surjective homomorphism φ : X+ → S such that kerφ = R].
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A monoid M has presentation 〈X : R〉 via φ if there exists a surjective

homomorphism ψ : X∗ →M such that kerφ = R].

v

u

uφ = vφ

xφ
x

[u]R]

X+
S

Figure 3.1: R]-related words in X+ map to equal elements in S under φ.

Explicitly, this means that uφ = vφ ∈ S if and only if [u]R] = [v]R]

for u, v ∈ X+, that is, S is isomorphic to Sgp〈X : R〉 as in Definition 3.1.1.

Certainly, every semigroup S has a presentation 〈X : R〉 via φ, where X = S,

we take φ : X → S as the identity map and

R =
{

(x1 . . . xn, x) ∈ X+ ×X : x1 . . . xn = x ∈ S
}
.

A diagram illustrating Definition 3.1.2 is given in Figure 3.1.

Definition 3.1.3. A semigroup S is finitely presented if it has a presentation

〈X : R〉 such that X and R are finite.

In the case where |x| = |y| for every (x, y) ∈ R, we say that the re-

sulting presentation is homogeneous. The question as to whether or not a

given semigroup can be finitely presented is still very much an open problem:

special cases such as finite presentability of semidirect products of inverse

semigroups [19] and finite presentability of HNN-extensions of inverse semi-

groups [18] have been studied. The following result concerning quotient

semigroups follows from standard homomorphism theorems but we provide

a proof for completeness.
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Proposition 3.1.4. Let X be a non-empty set and let P and Q be binary

relations on X+. Then X+/(P ∪Q)] ' (X+/P ])/R] where R is the binary

relation on X+/P ] given by the rule that

R =

{(
[x]P ] , [y]P ]

)
: (x, y) ∈ Q

}
.

Proof. Let X be a non-empty set and let P,Q and R be binary relations as

above. We will use [x] to denote the P ]-class of x ∈ X+ and [[x]] to denote

the R]-class of [x]. Define a map φ given by the rule

[[x]]φ = [x](P∪Q)]

for every x ∈ X+.

Suppose that x, y ∈ X+ such that [[x]] = [[y]]. This implies that either

[x] = [y] or there is a finite sequence of the form

[x] = [c1][x1][d1], [c1][y1][d1] = [c2][x2][d2], . . . , [cm][ym][dm] = [y] (3.2)

where ci, di ∈ X+ and ([xi], [yi]) ∈ R ∪R−1 for every 1 6 i 6 m. If [x] = [y]

then clearly (x, y) ∈ (P ∪ Q)] so we suppose that a sequence 3.2 exists

instead. This means that there exists r0, . . . , rm ∈ N such that

x =z
(0)
1 , . . . , z(0)r0 = c1x1d1,

ciyidi =z
(i)
1 , . . . , z(i)ri = c

(i)
i+1x

(i)
i+1d

(i)
i+1,

cmymdm =z
(m)
1 , . . . , z(m)

rm = y

where z
(`)
j = h

(`)
j p

(`)
j k

(`)
j and z

(`)
j+1 = h

(`)
j q

(`)
j k

(`)
j where h

(`)
j , k

(`)
j ∈ X+ and

(p
(`)
j , q

(`)
j ) ∈ P ∪ P−1 for every 0 6 ` 6 m and 1 6 j 6 r` − 1. As we have

(xi, yi) ∈ Q ∪ Q−1 for every 1 6 i 6 m, it follows that (x, y) ∈ (P ∪ Q)].

Therefore φ is a well-defined map as [[x]]φ = [[y]]φ.

Clearly φ is a surjective homomorphism. To show that φ is one-to-one,

we see that if [[x]]φ = [[y]]φ then either x = y or there exists some n ∈ N
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such that

x = a1x1b1, a1y1b1 = a2x2b2, . . . , anynbn = y (3.3)

where ai, bi ∈ X∗ and (xi, yi) ∈ (P ∪Q) ∪ (P ∪Q)−1 for every 1 6 i 6 n. If

x = y then we are done, so we suppose instead that such a finite sequence

exists. It follows directly from Equation 3.3 that

[x] = [a1x1b1], [a1y1b1] = [a2x2b2], . . . , [anynbn] = [y].

If (xi, yi) ∈ P ∪P−1 then [xi] = [yi] and so [[xi]] = [[yi]]. On the other hand,

if (xi, yi) ∈ Q then [xi] is R-related to [yi] by definition. Dually in the case

that (xi, yi) ∈ Q−1. With this in mind, we have from Equation 3.3 that

[[x]] = [[a1x1b1]] = [[a1y1b1]] = [[a2x2b2]] = . . . = [[anynbn]] = [[y]]

where ai, bi ∈ X∗ and (
[xi], [yi]

)
∈ R ∪R−1

for every 1 6 i 6 n. This gives us that (x, y) ∈ R] and so [[x]] = [[y]]. Hence

φ is an isomorphism.

We will write CX+ to denote the quotient semigroup X+/P ] where

P =
{

(xy, yx) : x, y ∈ X
}
.

Definition 3.1.5. A commutative semigroup presentation, denoted 〈CX :

R〉, defines the quotient semigroup CX+/R].

In light of Proposition 3.1.4, it is clear that 〈CX : R〉 and 〈X : P ∪ Q〉
define isomorphic quotient semigroups.

3.2 Adian presentations

We begin this section with a brief introduction to graphs. We introduce spe-

cial kinds of graphs that can be used to understand cancellative properties

of semigroups (from a given presentation).
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Definition 3.2.1. A (undirected) graph (V,E) consists of a set of vertices

V together with a set of edges E between the vertices.

We represent edges as a binary relation where (a, b) ∈ E means there is

an edge between the vertices a and b. Of course, in this way, we identify

the pairs (a, b) and (b, a) in E. Often it will be more helpful to represent

graphs visually. That is to say, a graph drawing of a graph (V,E) is a planar

diagram obtained by drawing a line between distinct vertices x and y if and

only if (x, y) ∈ E.

Definition 3.2.2. A cycle within a graph (V,E) is a finite sequence of

distinct vertices v1, . . . , vn ∈ V with n > 3 such that

(v1, v2), (v2, v3), . . . , (vn, v1) ∈ E.

We will denote such a cycle by [v1, . . . , vn]. If a graph does not contain a

cycle, it is said to be cycle-free.

Notice that in Definition 3.2.2, since v1, . . . , vn ∈ V are distinct, we are

not regarding [x] or [x, y] as a cycle for any (x, x), (x, y) ∈ E. Given a cycle

in (V,E) of the form [v1, . . . , vn], it follows [vi, . . . , vn, v1, . . . , vi−1] is also a

cycle in (V,E) for every 1 6 i 6 n.

Example 3.2.3. Let (V,E) be the graph given by V = {x, y, z, a, b} and

E = {(x, y), (x, z), (x, a), (y, z), (z, a), (a, a)
}
.

Then (V,E) is not cycle-free since [x, y, z], [x, z, a] and [x, y, z, a] are all

examples of cycles. Conversely if

F = E \ {(x, y), (x, z)}

then (V, F ) is a cycle-free graph. The graph drawing of (V,E) and (V, F ) is

given below in Figure 3.2.
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Figure 3.2: Graph drawing of (V,E) and (V, F ) (from left to right).

Definition 3.2.4. [1, 3] Let Sgp〈X : R〉 be any fixed semigroup presenta-

tion. The left Adian graph of Sgp〈X : R〉 is the graph (X,E) where E is

given by

E =
{

(x, y) ∈ X ×X : (xa, yb) ∈ R ∪R−1 for some a, b ∈ X∗
}
.

Dually we can define a right Adian graph of some fixed semigroup presenta-

tion.

Suppose for a semigroup presentation 〈X : R〉 that (x, y) ∈ R where

x, y ∈ X. Then it follows immediately from Definition 3.2.4 that (x, y) ∈
E ∩F where (X,E) and (X,F ) represent the left and right Adian graphs of

〈X : R〉 respectively.

Theorem 3.2.5. [1, 3, 58] Let S be a semigroup that has a presentation

Sgp〈X : R〉. If the left Adian graph and right Adian graph of Sgp〈X : R〉
are both cycle-free then S can be embedded into a group.

We highlight Theorem 3.2.5 in the following example.

Example 3.2.6. Consider the semigroup S that has semigroup presentation

〈x, y, z : x2 = yx, xz = zx, yz = yz2.〉

The left and right Adian graphs are both cycle-free and so S can be em-

bedded into a group. In contrast, if we were to adjoin the relation yx = z2

into this presentation, then the left Adian graph of the resulting presenta-

tion would permit the cycle [x, y, z]. Thus we would not be able to deduce
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Figure 3.3: Graph drawing of a left and right Adian graph (from left to
right) used in Example 3.2.6.

that the semigroup presentation defines a cancellative semigroup using The-

orem 3.2.5. One can show (in this alternate case) that S cannot be embedded

into a group since

[yx2] = [z2x] = [xz2] = [x3]

but [x] 6= [y]. The Adian graphs of this semigroup presentation are repre-

sented by graph drawings are shown above.

Adian’s Theorem will be crucial in helping us prove some of the main

results of Chapter 5.

3.3 Rewriting systems and normal forms

We conclude this chapter by providing a brief overview of rewriting systems

and their applications with regards to semigroup presentations.

Definition 3.3.1. [50, 65] Let A be a non-empty set. A rewriting system

R on A is a subset of A × A where the elements of R are called rewriting

rules.

While rewriting rules are defined as ordered pairs of the form (a, b) ∈
A × A, they are more commonly denoted by a → b for a, b ∈ A. We will

proceed by adopting this convention.

Definition 3.3.2. [50, 65] Let X be a set and R be a rewriting system on

X+. A single-step reduction relation is the binary relation on X+ denoted
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by
R−→ and defined by the rule that x

R−→ y for x, y ∈ X+ if there exists

a, b, c, d ∈ X∗ such that a→ b ∈ R, x = cad and y = cbd.

Definition 3.3.3. [50, 65] Let X be a set and R be a rewriting system on

X+. A reduction relation on X+ is the binary relation on X+ denoted by
∗,R−−→ where x

∗,R−−→ y if x = y or there exists n ∈ N such that

x = z1
R−→ z2

R−→ · · · R−→ zn = y

for some zi ∈ X+, 1 6 i 6 n.

The relation
∗,R−−→ is known as the transitive and reflexive closure of

R−→.

Definition 3.3.4. [50] A rewriting system R is noetherian if every sequence

of the form

a1
R−→ a2

R−→ · · ·

is finite.

We give an example of a noetherian rewriting system on a free semigroup

in the following example

Example 3.3.5. Let X = {x, y} and R be a rewriting system on X+ given

by

R =
{
xy → x, yx→ x, x2 → x}.

It is straightforward to see that R is a noetherian rewriting system since

every rewriting rule in R is of the form u→ v with |v| < |u|.

We give a name to an important property of rewriting systems.

Definition 3.3.6. [50] Let X be a set and R be a rewriting system on X+.

We say R is locally confluent if for every x, y, z ∈ X+ with x
R−→ y and x

R−→ z

there exists some a ∈ X+ such that y
∗,R−−→ a and z

∗,R−−→ a. We say R is

confluent if for every x, y, z ∈ X+ with x
∗,R−−→ y and x

∗,R−−→ z there exists

some a ∈ X+ such that y
∗,R−−→ a and z

∗,R−−→ a.

It is immediate that any confluent rewriting system is locally confluent.

It is known that one can obtain a partial converse to this statement in the

case of noetherian rewriting systems.
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Theorem 3.3.7. [8] Let X be a set and R be a rewriting system on X+. If

R is noetherian then R is confluent if and only R is locally confluent.

Given a noetherian and confluent rewriting system, we can identify those

elements for which sequences of single-step reductions eventually terminate.

Definition 3.3.8. Let X be a set and R be a rewriting sytem on X+. An

element x ∈ X+ is in normal form (or irreducible) if there exists no y ∈ X+

such that x
∗,R−−→ y.

Words in normal form become particularly useful when considering semi-

group presentations. In particular, they can help us to identify when two

words are equal in the free semigroup sense. The next result is known how-

ever we prove it for completeness.

Theorem 3.3.9. Let X be a set and R be a rewriting system on X+. If R

is noetherian and confluent then the relation ∼ given by

x ∼ y ⇐⇒ x
∗,R−−→ z and y

∗,R−−→ z for some z ∈ X+

for x, y ∈ X+ is an equivalence relation. In addition, every ∼-class contains

a unique word in normal form.

Proof. Let X be a set and let R be a noetherian and confluent rewriting

system on X+. By definition it is true that x
∗,R−−→ x for every x ∈ X+ and

so ∼ is reflexive. It is clear that ∼ is symmetric. If x ∼ y and y ∼ z then

there exists some a, b ∈ X+ such that

x
∗,R−−→ a, y

∗,R−−→ a, y
∗,R−−→ b and z

∗,R−−→ b.

Since R is confluent, there exists some c ∈ X+ such that a
∗,R−−→ c and

b
∗,R−−→ c. As

∗,R−−→ is transitive, this implies that x
∗,R−−→ c and z

∗,R−−→ c.

Therefore x ∼ z which means ∼ is transitive. Hence ∼ is an equivalence

relation.

That every ∼-class of X+ has a word of normal form follows from the

fact that R is noetherian.
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Let 〈X : R〉 be a semigroup presentation and suppose we consider R as

a rewriting system on X+. If one can show that R is noetherian and locally

confluent then it follows that we can find a unique word in normal form in

every ∼-class. Two words in normal form are equal in the free semigroup if

and only if their corresponding R]-classes are equal. This is a technique we

employ later in Chapter 5 to prove some cancellativity properties.
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Chapter 4

Coherency and noetherianity

In Section 4.1, we explain what is meant by an S-act for a monoid S. Fol-

lowing that, we give the definition of a (left, right) coherent monoid as well

as a weakly (left, right) coherent monoid in Section 4.2. We end Chapter 4

by recalling the definition of a (left, right) noetherian semigroup alongside

providing some examples in Section 4.3. We also introduce weakly (left,

right) noetherian semigroups in addition to decribing the relationship be-

tween coherent monoids and noetherian monoids.

4.1 S-acts

It will be useful to first recall Definition 1.3.1 in which we define what it

means for a semigroup to act on the left of another semigroup.

Definition 4.1.1. Let S be a semigroup. A left S-act is a set A together

with a map S ×A→ A given by (x, a) 7→ x • a satisfying

x • (y • a) = (xy) • a

for every x ∈ S and a ∈ A. If S is a monoid then we also require that

1 • a = a

is satisfied for every a ∈ A. Right S-acts are defined dually.
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Simply put, Definition 4.1.1 says that if S is a semigroup that acts on

the left of a set A, then A is a left S-act. It is for this reason that we return

to our previous notation where, if A is a left S-act, we will write xa instead

of x • a for every x ∈ S and a ∈ A (dually for a right S-act). For any fixed

semigroup S, we can always consider the map S × S → S given by xy = xy

for every x, y ∈ S to obtain a left S-act. It follows that the set of left or

right S-acts is always non-empty as we may regard S as a left and right

S-act of itself. Note that we will regard ∅ as being a left and right S-act for

any semigroup S. We highlight a more interesting example of a right S-act

below.

Example 4.1.2. Let X be a non-empty set and let S be the semigroup

of all functions from X to itself under composition. We consider the map

P(X) × S → P(X) given by Uα = Uα for every U ∈ P(X) and α ∈ S.

Clearly we have that

(Uα)β = (Uα)β = (Uα)β = U(αβ) = Uαβ

for every U ∈ P(X) and α, β ∈ S. Therefore P(X) with the map Uα = Uα

can be regarded as a right S-act.

We provide an example of a right M -act below to help build a broader

picture.

Example 4.1.3. Let X be a non-empty set and consider the map given by

N×X∗ → N given by nx = n+ |x| for all n ∈ N and x ∈ X∗. It follows that

(nx)y =
(
n+ |x|

)y
=
(
n+ |x|

)
+ |y|

= n+
(
|x|+ |y|

)
= n+ |xy|

= nxy

for every n ∈ N and x, y ∈ X∗. Lastly, it is straightforward to verify that

nε = n+ |ε| = n for every n ∈ N. Therefore, N can be considered as a right
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X∗-act by setting nx = n+ |x| as above.

Definition 4.1.4. Let A be a left S-act. Then B is a left S-subact of A if

B ⊆ A is such that xb ∈ B for every b ∈ B and x ∈ S.

Notice that if B is a left S-subact of A, then it is a left S-act in its own

right by Definition 4.1.1. In the context of Example 4.1.3, it is certainly

true that {n : m 6 n} is a right X∗-subact of N for any fixed m ∈ N.

Definition 4.1.5. Let A be a left S-act. A congruence on A is an equiv-

alence relation θ on A such that for every a, b ∈ A and x ∈ S we have

(a, b) ∈ θ implies (xa, xb) ∈ θ. A congruence on a right S-act is defined in

dual way.

Given a congruence θ on a left S-act A, we may form the quotient left

S-act

A/θ =
{

[a] : a ∈ A
}

with x[a] = [xa] for every a ∈ A and x ∈ S. We define a quotient right S-act

dually.

Definition 4.1.6. Let A be a left S-act. A congruence θ on A is finitely

generated if it is the smallest congruence containing a given finite set of

elements of A × A. A left S-act A is finitely generated if A = ∅ or there

exists n ∈ N such that

A = (S1 • a) ∪ · · · ∪ (S1 • an)

where S1 • ai = {xai : x ∈ S1} and ai ∈ A for every 1 6 i 6 n.

Of course, with Definition 4.1.6 in mind, it is routine to verify that ∆A

is always finitely generated as a left and right congruence. For any right

S-act, say A, and for every a ∈ A we define r(a) on S by

r(a) =
{

(x, y) ∈ S × S : ax = ay
}
.

One can show that r(a) is a right congruence on S as follows.
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Lemma 4.1.7. Let A be a right S-act and let a ∈ A. Then r(a) is a right

congruence on S.

Proof. It is straightforward to show that r(a) is an equivalence relation on

S. For any (x, y) ∈ r(a) and z ∈ S, we have that

axz = (ax)z = (ay)z = ayz

and so (xz, yz) ∈ r(a) as required.

Dually, for any left S-act A and for every a ∈ A, we define l(a) on S in

a similar way.

4.2 Coherent monoids

We begin by introducing the notion of coherency for monoids as well as a

related weaker notion.

Definition 4.2.1. [40, 95] A monoid is weakly right coherent if every finitely

generated right ideal is finitely presented. A monoid is right coherent if every

finitely generated right M -subact of every finitely presented right M -act is

finitely presented. Dually for (weakly) left coherent monoids. A monoid is

(weakly) coherent if it is both (weakly) left and (weakly) right coherent.

For example, Gould, Hartmann and Ruškuc were able to show that free

monoids are coherent [43]. Moreover, Gould and Hartmann proved that free

left ample monoids are right coherent [42]. It is clear that any finite monoid

will also be coherent. We illustrate an example more explicitly below.

Example 4.2.2 (Finitely presented groups). Let G be a group. Then we

know that every principal right or principal left ideal of G is G itself by Def-

inition 1.1.26. Thus every finitely generated left or finitely generated right

ideal of G is also equal to G. Since G is finitely presented it is immediate

that G is weakly coherent.

We are interested in these notions here due to the result below.
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Theorem 4.2.3. [40, Corollary 3.3, 3.4] A monoid M is weakly right co-

herent if and only if for any a, b ∈ M the right congruence r(a) is finitely

generated, and the right ideal aM ∩ bM is finitely generated. A monoid M

is right coherent if and only if for any finitely generated right congruence θ

on M and any [a], [b] ∈ M/θ we have the right congruence r([a]) is finitely

generated and the M -subact [a]M ∩ [b]M of M/θ is finitely generated.

This theorem may be regarded as analogous to that of Chase for rings

[12].

4.3 Noetherian semigroups

In a similar way to Section 4.2, we begin by introducing the notion of noethe-

rian and weakly noetherian semigroups.

Definition 4.3.1. [79] A semigroup S is weakly right noetherian if every

right ideal of S is finitely generated. A semigroup S is right noetherian if

every right congruence on S is finitely generated and (weakly) noetherian if

it is both (weakly) left and (weakly) right noetherian.

Any right noetherian monoid is right coherent, but weakly right noethe-

rian monoids need not even be weakly right coherent [40]. Certainly it is

true any group is weakly right noetherian but is not necessarily right noethe-

rian. In addition, every finite semigroup and every semigroup where R is

precisely the universal congruence ω, is trivially weakly right noetherian.

We conclude this section, and chapter, by providing another example of a

weakly right noetherian semigroup.

Example 4.3.2. Let S be a semigroup and with exactly two distinct R-

classes, say [x] and [y] for some x, y ∈ S. Let I be the intersection of two

finitely generated right ideal of S. As I is a right ideal in its own right, I

is either empty, or the union of R-classes. That is to say, I is either empty,

[x], [y] or [x] ∪ [y]. In each case I is a finitely generated right ideal.

It was remarked by Miller that any semigroup with finitely-many R-

classes is weakly noetherian [78]. Miller also showed that if S is a weakly
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right noetherian semigroup and R is a congruence on S then the quotient

semigroup S/R is also weakly right noetherian [78]. A partial converse

occurs: if a quotient semigroup S/R is weakly noetherian and R ⊆ R then

S is weakly noetherian [78].
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Chapter 5

Right ideal Howson

semigroups

We organise this chapter as follows. In Section 5.1 we recall essential ter-

minology and fundamental results. In Section 5.2 we provide examples of

right ideal Howson semigroups, with a particular focus on bands and co-

herent monoids. For each variety of bands, we give an explicit presentation

of a right ideal Howson band belonging to the variety, and show that the

lattice of varieties of bands splits into two with regard to Clifford’s condi-

tion. We show that any semigroup given by a commutative presentation

with finite set of relations is (right) coherent, and hence certainly (right)

ideal Howson. In Section 5.3 we explore a number of closure results for

the classes of right ideal Howson monoids and semigroups. We show that

both the classes of right ideal Howson semigroups and right ideal Howson

monoids are closed under free products. Right ideal Howson semigroups are

not closed under direct products but, on the other hand, right ideal Howson

monoids are closed under direct but not semidirect products. Finally, in Sec-

tion 5.4, we consider a number of semigroup presentations, reflecting those

given for bands in Section 5.2. We give presentations of right ideal Howson

semigroups (which are also cancellative), commutative (right) ideal Howson

semigroups and commutative cancellative (right) ideal Howson semigroups,

all of which are universal in a given sense.
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5.1 Basic definitions

We begin by defining the semigroups of which this chapter is concerned with.

Definition 5.1.1. A semigroup S is right (left) ideal Howson if the intersec-

tion of any two finitely generated right (left) ideals of S is finitely generated.

As intersection distributes over union, it is easy to see that the following

lemma holds.

Lemma 5.1.2. A semigroup is right (left) ideal Howson if and only if the

intersection of principal right (left) ideals is finitely generated.

Our next observations will be useful in what follows.

Lemma 5.1.3. Let S be a semigroup such that for all x, y ∈ S we have

xS ∩ yS = x1S ∪ · · · ∪ xnS

where xi ∈ xS1 ∩ yS1 for all 1 6 i 6 n. Then S is right ideal Howson.

Proof. Let S be as given. Then, for any x, y ∈ S, we may write

xS1 ∩ yS1 =
(
{x} ∩ {y}

)
∪
(
{x} ∩ yS

)
∪
(
xS ∩ {y}

)
∪ (xS ∩ yS).

Clearly, if there exists z ∈ S1 such that xz = y then xS1 ∩ yS1 = xS1 (the

case where there exists z ∈ S1 with yz = x is entirely dual). However, if

such a z ∈ S1 does not exist (in either case) then we have by the above that

xS1 ∩ yS1 = xS ∩ yS. Therefore, for such an x, y ∈ S, we have

xS1 ∩ yS1 = x1S ∪ · · · ∪ xnS ⊆ x1S1 ∪ · · · ∪ xnS1 ⊆ xS1 ∩ yS1

which gives us that xS1 ∩ yS1 = x1S
1 ∪ · · · ∪ xnS1 as required.

Semigroups satisfying the hypothesis of Lemma 5.1.3 are called finitely

aligned in [25]. However, as we show in Remark 5.4.9, a right ideal Howson

semigroup need not be finitely aligned. For semigroups that are right fac-

torisable, that is, semigroups S such that xS = xS1 for any x ∈ S, the two
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notions coincide. This is the situation for monoids, inverse semigroups and

bands, for example, but not for free semigroups.

The next observation we make follows quickly from the definition of a

semigroup being right ideal Howson.

Lemma 5.1.4. A semigroup S is right ideal Howson if and only if the

monoid S1 is right ideal Howson.

We will say a right ideal I of S is exactly n-generated for some n ∈ N0, if

there are n elements of S that generate I, but no n− 1 elements will suffice.

With this in mind, we note that I = ∅ if and only if I is exactly 0-generated.

Definition 5.1.5. A semigroup S satisfies (Rn) for n ∈ N0 if there exists

some x, y ∈ S such that xS1 ∩ yS1 is exactly n-generated. The condition

(Ln) is defined dually.

Example 5.1.6. Let X+ be the free semigroup over X where |X| > 1.

Then it follows that xX+ ∩ yX+ = ∅ if and only if x 6= y, otherwise the

intersection is principal (or exactly 1-generated). Therefore X+ satisfies

(Rn) if and only if n = 1.

From Lemma 5.1.4, one may derive another example, similar to that of

Example 5.1.6, regarding free monoids.

5.2 Examples

Now we provide some natural examples of right ideal Howson semigroups.

It will be helpful, in what follows, to recall the notions of coherency and

noetherianity (as applied to monoids and semigroups respectively) as seen

in Chapter 4.

5.2.1 Coherency and noetherianity

Any finite semigroup, (weakly) right noetherian semigroup or semigroup

S such that S1 is (weakly) right coherent is right ideal Howson: this is

clear from the material covered in Chapter 4. There are many examples
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of right coherent monoids [45, 40]. Rédei’s Theorem states that the free

commutative monoid X∗, for any finite set X, is (right) noetherian [86].

Gould used this result to show that for any set X, the free commutative

monoid CX∗ is (right) coherent [40, Theorem 4.3]. Our next result is a

significant extension of the latter fact. The proof makes essential use of

the fact that for a commutative monoid, right congruences and congruences

coincide.

Theorem 5.2.1. Let M be a monoid given by a commutative presentation

〈CX : R〉, where R is finite. Then M is (right) coherent.

Proof. Let ρ] be a finitely generated congruence on M = CX∗/R] where

ρ =

{(
[a]R, [b]R

)
: (a, b) ∈ σ

}
for some finite subset σ of CX∗ × CX∗. We let ν = R ∪ σ so that ν] is

a finitely generated congruence on CX∗. For convenience, we will let [w]

denote the R]-class of w ∈ CX∗ and by [[w]] the ρ]-class of [w] ∈M . Taking

care with the generators, it follows from the second isomorphism theorem

[56, Theorem 1.5.4] that there exists a monoid isomorphism

θ : M/ρ] → CX∗/ν] : [[w]]θ = [w]ν .

for every w ∈ CX∗. We are considering the monoid M acting on the right

of the M -act M/ρ]. To this end, note that for [u] ∈M and [[w]] ∈M/ρ] we

have

[[w]][u] = [[w][u]] = [[wu]].

Similarly, CX∗ acts on CX∗/ν] by [w]νu = [wu]ν .

Proposition 5.2.2. Let [[w]] ∈M/ρ] and [u], [v] ∈M , where w, u, v ∈ CX∗.
Then (

[u], [v]
)
∈ r
(
[[w]]

)
⇐⇒ (u, v) ∈ r

(
[w]ν

)
.
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Proof. Let w, u, v ∈ CX∗. From the remarks above we have(
[u], [v]) ∈ r

(
[[w]]

)
⇐⇒ [[wu]] = [[wv]]

⇐⇒ [wu]ν = [wv]ν

⇐⇒ [w]νu = [w]νv

⇐⇒ (u, v) ∈ r
(
[w]ν

)
and this concludes the proof.

Let w ∈ CX∗. Since ν is finite and CX∗ is coherent, it follows that there

exists a finite set of generators κ for r([w]ν), say

κ =
{

(ui, vi) : 1 6 i 6 n
}

for some n ∈ N0 (where we will suppose for convenience that κ = κ−1). We

define

η =

{(
[ui], [vi]

)
: 1 6 i 6 n

}
so that η is also finite and symmetric.

Proposition 5.2.3. If w ∈ CX∗ then, with the notation above, we have that

r
(
[[w]]

)
= 〈η〉.

Proof. That η ⊆ r([[w]]) follows from Proposition 5.2.2.

Suppose for the converse that ([u], [v]) ∈ r([[w]]), so that (u, v) ∈ r([w]ν),

again by Proposition 5.2.2. Since κ generates r([w]ν) there exists ` ∈ N0 and

a finite sequence of the form

u = z0, z1, . . . , z` = v

where zi−1 = cipi and zi = ciqi with (pi, qi) ∈ κ and ci ∈ CX∗ for all

1 6 i 6 `. It follows that there is a sequence

[u]R = [z0]R, [z1]R, . . . , [z`]R = [v]R
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where [zi−1] = [cipi] = [ci][pi] and [zi] = [ciqi] = [ci][qi] with ([pi], [qi]) ∈ η
for all 1 6 i 6 `. Thus r([[w]]) ⊆ 〈η〉 and we therefore have equality.

Let a, b ∈ CX∗ and let I and J denote the intersections

[[a]]M ∩ [[b]]M and [a]νCX∗ ∩ [b]νCX∗

respectively. We proceed to show that I is finitely generated.

Proposition 5.2.4. If w ∈ CX∗ then [[w]] ∈ I ⇐⇒ [w]ν ∈ J .

Proof. Suppose that w, u, v ∈ CX∗. If [[w]] = [[a]][u] = [[b]][v] then

[[a]][u] = [[b]][v] ⇐⇒ [[au]] = [[bv]]

⇐⇒ [au]ν = [bv]ν

⇐⇒ [a]νu = [b]νv

and so [w]ν ∈ J as required.

Since ν is finitely generated, and CX∗ is coherent, J is generated by a

set {
[ac]ν : c ∈ Y

}
for some finite subset Y of X∗. Proposition 5.2.4 then gives us that I is

finitely generated by the set

{
[[ac]] : c ∈ Y

}
and this completes the proof of Theorem 5.2.1.

Using the fact that right coherent monoids are right ideal Howson and

Theorem 5.2.1 we immediately deduce the following.

Corollary 5.2.5. Let M be a monoid given by a commutative presentation

〈X : R〉, where R is finite. Then M is (right) ideal Howson.

In particular, any finitely presented commutative semigroup or monoid

is (right) ideal Howson. Changing tack, the following is well known.
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Lemma 5.2.6. Let S be an inverse semigroup. Then S is right ideal How-

son, and S satisfies (Rn) if and only if n = 1.

Proof. For any a, b ∈ S we have aS = aa−1S and bS = bb−1S. Since

idempotents commute it follows that

aS ∩ bS = aa−1S ∩ bb−1S = aa−1bb−1S.

It follows from the definition that S is right ideal Howson.

5.2.2 Varieties of bands

As the free band on a finite set is finite, any finitely generated band is finite

[56]. Hence, every finitely generated band is right and left ideal Howson.

Definition 5.2.7. [56] Let X be a countable set. For some x, y ∈ X+,

we say that a semigroup S satisfies an identity x = y if for every choice of

homomorphism θ : X+ → S we have xθ = yθ. A semigroup variety denotes

a class of semigroups containing precisely all semigroups that satisfy a given

collection of identities.

Throughout we let V be a variety of bands. We recall the variety of

right regular bands RR (variety of rectangular bands RB) is determined by

the identities x2 = x and xy = yxy (x2 = x and x = xyx) (in addition to

the identity guaranteeing associativity).

Theorem 5.2.8. Let V be a variety of bands. If V ⊆ RR or V ⊆ RB, then

every band B ∈ V is right ideal Howson. Further, in this case B satisfies

(Rn) if and only if n = 1, that is, B satisfies Clifford’s condition.

Proof. Suppose that B ∈ V. Since B is a band, we note that for any

a, b ∈ B we have aB ∩ bB ⊆ abB. If B ∈ RR then we have ab ∈ aB and

ab = bab ∈ bB, so that in this case aB∩bB = abB is principal. On the other

hand, if B ∈ RB then for all a, b ∈ B we have aB ∩ bB is either principal if

(a, b) ∈ R or empty else.
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In order to prove the next therorem, we must draw upon Fennemore’s

result [27] concerning the defining identities of varieties of bands. This yields

that if V is a variety of bands not contained in RR or RB, then V is defined

by an identity of the form p = q where c(p) = c(q) and the first letter of p

and q are equal.

Theorem 5.2.9. Let V be a variety of bands not contained in RR or RB.

Then there exists a band B∞ ∈ V that is not right ideal Howson, and for

each n ∈ N0 a band Bn ∈ V that satisfies (Rn).

Proof. Fix some n ∈ N0 and let Xn be the set of generators

Xn = {a, b, ui, vi : 1 6 i 6 n}.

If n = 0 then we simply put X0 = {a, b}. Define two subsets ρn and σn of

X+
n ×X+

n as follows

ρn =
{

(aui, bvi) : 1 6 i 6 n
}

and σn =
{

(w,w2) : w ∈ X+
n

}
.

In this way, if n = 0 then ρ0 = ∅.
Suppose V is the defining identity for V and let Bn be the band with

semigroup presentation 〈Xn : ρn∪σn∪V 〉. From this point we will write X,

ρ, σ and B instead of Xn, ρn, σn and Bn respectively. Moreover, for ease of

notation we will let τ = ρ∪ σ ∪ V . It follows immediately the fact that B is

finitely generated (as a band) that B is right ideal Howson.

Suppose that there exists some s, t ∈ X∗ such that (as, bt) ∈ τ ]. This

implies that there exists a finite sequence of the form

as = z0, z1, . . . , z` = bt

where zi−1 = cipidi and zi = ciqidi with (pi, qi) ∈ τ ∪ τ−1 and ci, di ∈ X∗

for all 1 6 i 6 `.

If (zi−1, zi) is an elementary (σ ∪V )-transition for all 1 6 i 6 `, then we

immediately reach a contradiction since (w, x) ∈ (σ ∪ V )] implies that the

first letter of w and x are equal. Therefore, we may assume that (zi−1, zi)
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is an elementary ρ-transition for some 1 6 i 6 `. In order to avoid a similar

contradiction, we may also assume that for at least one such 1 6 i 6 `, we

have ci = ε. Thus, we have shown zi ∈ {aujdi, bvjdi} for some 1 6 i 6 `

and 1 6 j 6 n. It follows that

I ⊆
⋃

16i6n

[aui]B.

The reverse inclusion is clear from the form of the presentation.

To show that I is exactly n-generated, we note that if (w, x) ∈ τ ] for

some w, x ∈ X∗ and ui ∈ c(w) then {ui, vi} ∩ c(x) 6= ∅. If 1 6 i, j 6 n

with i 6= j, then for no t ∈ X∗ do we have that (aui, aujt) ∈ τ ]. Thus

[aui]B 6⊆ [auj ]B and so I is exactly n-generated.

Concerning the latter part of the theorem, let

X∞ = {a, b, ui, vi : i ∈ N},

ρ∞ =
{

(aui, bvi) : i ∈ N
}
,

σ∞ =
{

(w,w2) : w ∈ X+
∞
}

and let B∞ be the band with semigroup presentation 〈X∞ : ρ∞ ∪ σ∞ ∪ V 〉.
It is easy to see that the intersection [a]B∩ [b]B cannot be finitely generated

and so B∞ is not right ideal howson.

5.2.3 Other finiteness conditions

We end this section with a brief discussion of another finiteness condition

for a monoid M , namely R [44]. This condition arises from axiomatisability

properties of classes of right M -acts and states that for any a, b ∈ M the

right M -subact of the direct product of the right M -act M ×M given by

R(a, b) = {(u, v) ∈M ×M : au = bv}

is finitely generated. It was shown that the property of satisfying R is

independent of being weakly right noetherian for a monoid [44].
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Lemma 5.2.10. If M is a monoid satisfying R then M is right ideal How-

son.

Proof. Let a, b ∈ M . It is clear that if H is a finite set of generators for

R(a, b), then aK is a finite set of generators for aM ∩ bM , where K is the

set of first co-ordinates of elements of H.

On the other hand, there certainly exist examples of semilattices that do

not satisfy R [42]; since semilattices are inverse they are right and left ideal

Howson. The next corollary comes from Lemma 5.2.10 and the results of

[42]. We refer the reader to [46] for a description of restriction semigroups.

Corollary 5.2.11. The free inverse monoid, the free ample (restriction)

monoid, and the free left ample (restriction) monoid on any set is right and

left ideal Howson.

5.3 Closure results

In this section we explore a number of closure results regarding the class of

right ideal Howson semigroups. Our first result is immediate, since any free

semigroup X+ is right ideal Howson.

Proposition 5.3.1. The class of right ideal Howson semigroups is not

closed under morphic image.

We now consider free products of right ideal Howson semigroups.

5.3.1 Free products

We begin by defining a free product of semigroups and a free product of

monoids.

Definition 5.3.2. [56] Let I be a non-empty set and let SI be a semigroup

(monoid) for every i ∈ I. Let

X =
⋃
i∈I

Si
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where we write the product of x, y ∈ X+ (or X∗) as x ∗ y. Consider the

subsets µ ∈ X+ ×X+ and ν ⊆ X∗ ×X∗ where

µ =
{

(x ∗ y, xy) : x, y ∈ Si, i ∈ I
}

and ν = µ ∪
{

(1Si , 1Sj ) : i, j ∈ I
}
.

The free product of semigroups Si (i ∈ I) may be given by the quotient

X+/µ], and the free product of monoids Si (i ∈ I) may be given by the

quotient X∗/ν].

If I = {1, . . . , n} for some n ∈ N, we may write S1 ∗ · · · ∗ Sn for the

semigroup or monoid free product, where the distinction will be clear from

the context.

Proposition 5.3.3. The class of right ideal Howson semigroups is closed

under free products of semigroups.

Proof. Let S be the semigroup free product of right ideal Howson semigroups

Si (i ∈ I). Let [a], [b] ∈ S where [a] = [a1 ∗ · · · ∗ an] and [b] = [b1 ∗ · · · ∗ bm]

and consider the intersection [a]S1∩ [b]S1. We show that this intersection is

finitely generated. We may assume that n and m are least in the sense that

there does not exist an 1 6 k 6 n− 1 such that akak+1 ∈ Si for some i ∈ I.

It is clear that this intersection is either empty, [a]S1, [b]S1, or there exists

some [u], [v] ∈ S such that [a ∗u] = [b ∗ v]. In the second and third cases the

intersection is principal: we consider the final case.

Here we take

[u] = [u1 ∗ · · · ∗ uk] and [v] = [v1 ∗ · · · ∗ v`]

for some least k, ` ∈ N, so that

[a ∗ u] = [a1 ∗ · · · ∗ an ∗ u1 ∗ · · · ∗ uk]

and [b ∗ v] = [b1 ∗ · · · ∗ bm ∗ v1 ∗ · · · ∗ v`].

Let us assume n ≤ m and proceed with a case-by-case consideration.
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(i) If n < m then ai = bi for all 1 6 i 6 n− 1 and bn = an or bn = anu1.

In either case, [a]S1 ∩ [b]S1 = [b]S1 is principal. Dually if m < n.

(ii) If n = m then again ai = bi for all 1 6 i 6 n − 1. Suppose that

an, bn ∈ Sj ; if an = bn, an = bnw or bn = anw for some w ∈ S1
j ,

then clearly [a]S1 ∩ [b]S1 is principal. If this is not the case, then

anu1 = bnv1.

Now consider the intersection anS
1
j ∩ bnS1

j . Since Sj is right ideal

Howson this intersection is finitely generated, say

anS
1
j ∩ bnS1

j =
⋃

16i6r

anwiS
1
j .

Clearly ⋃
16i6r

[a1 ∗ · · · ∗ anwi]S1
j ⊆ [a]S1 ∩ [b]S1.

Conversely, suppose that anu1 = anwiw for some 1 6 i 6 r and

w ∈ Sj . Then it follows that [a ∗ u] ∈ [a1 ∗ · · · ∗ anwi]S1 for some

1 6 i 6 r. Thus ⋃
16i6r

[a1 ∗ · · · ∗ anwi]S1 = [a]S1 ∩ [b]S1

so that I is finitely generated as required.

In each case, the intersection is finitely generated and so this concludes the

proof.

The corresponding result holds for the free product of monoids.

Proposition 5.3.4. The class of right ideal Howson monoids is closed under

free products.

Proof. The argument runs along the same lines as that of Proposition 5.3.3,

but with added technicalities due to the extra relations in ν.

Let S be the (monoid) free product of right ideal Howson monoids Si

(i ∈ I). Let [a], [b] ∈ S and consider the intersection [a]S ∩ [b]S. If [a] is
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the identity of S, or an element that has a right inverse, then the result is

clear. Thus we may suppose [a] = [a1 ∗ · · · ∗ an] where n ∈ N is least and

aj ∈ Sjk \ {1Sjk
} for 1 6 j 6 n. Now observe that if n′ is greatest such that

an′ is not right invertible, then ([a], [a1 ∗ · · · ∗ an′ ]) ∈ R. We may therefore

assume from the outset that an ∈ Snk
is not right invertible. Similarly, we

can assume [b] = [b1 ∗ · · · ∗ bm] where m ∈ N is least and b` ∈ S`h \ {1S`h
}

for 1 6 ` 6 m and bm ∈ Smh
is not right invertible.

If [a]S ∩ [b]S = ∅, or if [a] = [b ∗ v] or [b] = [a ∗ u] for some [u], [v] ∈ S,

then we are done. Suppose therefore that [a∗u] = [b∗v] for some [u], [v] ∈ S.

Given the fact that an, bm are chosen to be not right invertible, the proof

proceeds as in that of Proposition 5.3.3.

5.3.2 Direct and semidirect products

We begin with a negative result for direct products of semigroups.

Proposition 5.3.5. The class of right ideal Howson semigroups is not

closed under direct products.

Proof. Consider the free monogenic semigroup S = 〈a〉. Clearly S is right

ideal Howson since S is weakly (right) coherent (see Subsection 4.2). Indeed,

for any n,m ∈ N we have that anS1 ∩ amS1 = akS1 where k = max{n,m}.
Let T = S × S. One may then easily verify that the intersection (a, a)T 1 ∩
(a, a2)T 1 is generated by the set {(a2, ak) : k > 3} and that for every k, ` > 3

there does not exist some h > 3 such that (a2, ak)(a2, ah) = (a2, a`). As

every generating set for (a, a)T 1 ∩ (a, a2)T 1 must contain {(a2, ak) : k > 3}
it follows that T is not right ideal Howson.

On the other hand we have a positive result for right factorisable semi-

groups.

Proposition 5.3.6. The class of right factorisable right ideal Howson semi-

groups is closed under direct products.

Proof. Let S and T be right factorisable right ideal Howson semigroups.
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Notice that for any s ∈ S and t ∈ T we have sS = sS1, tT = tT 1 and also

(s, t)(S × T )1 = (s, t)(S × T ) = sS × tT = sS1 × tT 1.

It then follows easily that S × T is right ideal Howson.

If S is free monogenic, then S1×S1 is right ideal Howson from Proposi-

tion 5.3.6, but Proposition 5.3.5 tells us that S×S is not right ideal Howson.

Corollary 5.3.7. The class of right ideal Howson semigroups is not closed

under taking subsemigroups.

We now turn our attention to semidirect products. Let S and T be

semigroups such that S acts on the left of T via morphisms. If the action of

S on T is trivial, then T oS is simply the direct product T ×S. Proposition

5.3.5 therefore tells us that the class of right ideal Howson semigroups is not

closed under semidirect products. Considering now the case for monoids,

S and T , where S acts as a monoid on T by monoid homomorphisms, the

semidirect product T × S becomes a monoid. In view of Proposition 5.3.6

we know that the direct product of right ideal Howson monoids is right ideal

Howson. By way of contrast we have the following.

Proposition 5.3.8. The class of right ideal Howson monoids is not closed

under semidirect product.

Proof. Let X = {a, b, ai : i ∈ N} and A = {ai : i ∈ N}. We consider the left

action of X∗ on P(X) where, for all U ∈ P(X), we have bU = ∅ = aiU for

all i ∈ N and

aU =

∅ if U ∩A = ∅;

{a, b} ∪ U otherwise.

One may verify that this is a left action of X by monoid endomorphisms of

the semilattice P(X) under union. The only case that needs thought is that

of a(U ∪ V ) where U ∩A 6= ∅ but V ∩A = ∅ (or the dual). In this case

a(U ∪ V ) = {a, b} ∪ U ∪ V = {a, b} ∪ U = aU ∪ ∅ = aU ∪ aV,
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the second equality following since V ⊆ {a, b}. We may then extend the

action of X to that of the monoid X∗. Let S = P(X) oX∗ and consider

I =
(
{a}, a

)
S ∩

(
{b}, a

)
S.

Notice that if we set Zi = ({a, b, ai}, a) for any i ∈ N we have

Zi =
(
{a, b, ai}, a

)
=
(
{a}, a

)(
{ai}, ε

)
=
(
{b}, a

)(
{ai}, ε

)
∈ I.

Further, if (Z, z) ∈ I then it is easy to see that Z = {a, b} ∪ (Z ∩ A) where

Z ∩A 6= ∅, and z = az′ for some z′ ∈ X∗. In this way, if ai ∈ Z we have

(Z, z) =
(
{a, b, ai}, a

)
(Z, z′).

As there does not exist some s ∈ S1 such that Zis = Zj for any i 6= j, it

follows that I cannot be finitely generated.

5.4 Semigroup presentations for right (left) ideal

Howson semigroups

In Corollary 5.2.5 we show that any commutative semigroup presentation

〈CX : R〉, where R is finite, gives rise to a (right) ideal Howson semigroup.

In fact, one can show that both conditions (that of commutativity and the

fact R is finite) are strictly necessary. We illustrate this by way of the

examples below.

Example 5.4.1. Let S be given by the commutative semigroup presentation

〈
a, b, ui, vi, i ∈ N : aui = bvi (i ∈ N)

〉
.

Then S is not ideal Howson.

Proof. This presentation is the commutative semigroup version of the band

presentation of B∞ given in Theorem 5.2.9. It is easy to see from the form
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of the presentation that

[a]S1 ∩ [b]S1 =
⋃
i∈N

[aui]S
1

and is not finitely generated.

It is also easy to see that the (non-commutative) semigroup on the same

presentation as that in Example 5.4.1 is not right ideal Howson; the presen-

tation, however, is not finite. We now give an example of a finitely presented

semigroup that is not right ideal Howson.

Example 5.4.2. Let S be given by the semigroup presentation

〈a, b, c, d, p, q, u, v : auvc = bpqd, au = ua, ub = bp, uv = u2v2〉.

Then S is not right ideal Howson.

Proof. Let X = {a, b, c, d, p, q, u, v} and define subsets ρ and σ of X+×X+

by

ρ =
{

(auvc, bpqd)
}

and σ =
{

(au, ua), (ub, bp), (uv, u2v2)
}

and let τ = ρ ∪ σ. First, we note for any t ∈ X∗ that [auhvc] = [aukvct] for

h, k ∈ N if and only if h = k and t = ε. This is a fact witnessed by verifying,

by induction on the length of a τ -sequence, that

[auhvc] =

umauh+`−mv`+1c, urbpsqd :

`, r, s > 0

0 6 m 6 h+ `

r + s = h

 .

It follows that there does not exist some [x], [y] ∈ S1 such that

[auhvc][x] = [aukvc] or [aukvc][y] = [auhvc]

for any distinct h, k ∈ N. Furthermore notice that [auhvc] ∈ I = [a]S1∩[b]S1

for any h ∈ N, since

auhvc σ] uh−1auvc ρ] uh−1bpqd σ] bphqd.
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To complete the proof, we must show that if (aw, bx) ∈ τ ] for some w, x ∈ X∗

then [aw] ∈ [auhvc]S1 for some h > 1. Suppose therefore that (aw, bx) ∈ τ ],
so there exists a finite sequence of the form

aw = z0, z1, . . . , zn = bx

where zi−1 = cisidi and zi = citidi with ci, di ∈ X∗ and (si, ti) ∈ τ ∪ τ−1 for

all 1 6 i 6 n. We claim that at least one elementary τ -transition must be

an elementary ρ-transition of the form

(zi, zi+1) = (ukauvcdi, u
kbpqddi)

where k > 0 and di ∈ X∗. Suppose for contradiction that this is not the

case; we argue that for each 0 6 i 6 n we have zi = ukiaz′i for some ki > 0

and z′i ∈ X∗. Clearly this is true for i = 0. Suppose for induction that

zi = ukiaz′i as given where 0 6 i 6 n. Avoiding the elementary ρ-transition

of the form above, our possibilities for (zi, zi+1) are

(zi, zi+1) =


(ukiaz′i, u

ki−1auz′i) if ki > 1;

(ukiaz′i, u
ki+1az′′i ) if zi = uz′′i ;

(ukiaz′i, u
kiaz′i+1) (z′i, z

′
i+1) an elementary τ -transition.

Thus if the first letter of zn is not u, then it is certainly a, which forms a

contradiction. Therefore for some 0 6 i 6 n we must have zi = ukauvcdi

where k > 0, and then

[ax] = [ukauvcdi] ∈ [auhvc]S

where h = k + 1 ∈ N. This completes the proof.

5.4.1 The case where S is non-commutative

We now turn to positive results, constructing semigroup presentations that

are right (left, right and left) ideal Howson, which are, by construction,

universal in a specific sense. The semigroups we construct in this subsection
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are also all cancellative. For n,m ∈ N0 we define an alphabet Xnm by

Xnm =
{
a, b, ui, vi, pj , qj : 1 6 i 6 n, 1 6 j 6 m

}
and a relation ρnm on X+

nm by

ρnm =
{

(aui, bvi), (pja, qjb) : 1 6 i 6 n, 1 6 j 6 m
}

Let Sρnm be the semigroup with presentation 〈Xnm : ρnm〉. If n = 0 then

we simplify our ingredients considerably; we have

X0m =
{
a, b, pj , qj : 1 6 j 6 m

}
and ρ0m =

{
(pja, qjb) : 1 6 j 6 m

}
and similarly if m = 0. If m = n = 0 then X = {a, b} and ρ00 = ∅.
In this case, Sρ00 = {a, b}+, being free, is certainly right and left ideal

Howson, with intersections of right (left) ideals being empty or principal.

Since n,m ∈ N0 are fixed, we simplify notation and denote Xnm, ρnm and

Sρnm by X, ρ and S, respectively. Keeping this notation in mind, we consider

a specific factorisation of elements of X+.

Definition 5.4.3. Let U(n) and P (m) be the sets given by

U(n) = {ui, vi : 1 6 i 6 n} and P (m) = {pj , qj : 1 6 j 6 m}

where we regard U(n) and P (m) to be empty if n = 0 and m = 0 respec-

tively. Let

C(ρ) =
{
pc, cu, pcu : c ∈ {a, b}, u ∈ U(n), p ∈ P (m)

}
and notice that C(ρ) is closed under ρ]. For any w ∈ X+ we may uniquely

factorise w as

w = w0r1w1 . . . wp−1rpwp

for p ∈ N0 and subject to the following conditions for all 1 6 i 6 p and

0 6 j 6 p:

(i) ri ∈ C(ρ);
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(ii) wj ∈ X∗ does not contain an element of C(ρ) as a subword;

(iii) if the first letter of ri is a or b then the last letter of wi−1 is not in

P (m);

(iv) if the last letter of ri is a or b then the first letter of wi−1 is not in

U(n).

We call such a factorisation the ρ-factorisation of w with corresponding

ρ-length equal to p.

Notice that, in Definition 5.4.3, we have |ri| ∈ {2, 3} for all 1 6 i 6 p.

Claim 5.4.4. For w, x ∈ X+ have (w, x) ∈ ρ] if and only if w and x have

ρ-factorisations

w = w0r1w1 . . . wp−1rpwp and x = w0s1w1 . . . wp−1spwp

respectively, where (ri, si) ∈ ρ] for every 1 6 i 6 p.

Proof. If w and x are as given and (ri, si) ∈ ρ] for every 1 6 i 6 p, then

clearly (w, x) ∈ ρ].
For the converse, suppose that w is as given and we obtain the word

y by applying a single relation of ρ on w. Then (from the definition of ρ-

factorisation) we must have y = w0s1w1 . . . wp−1spwp where, for all but one

1 6 i 6 p, we have si = ri and for a single 1 6 j 6 p we have rj , sj ∈ C(ρ)

with (rj , sj) ∈ ρ]. Therefore y has the form required. The result then follows

by induction on the length of a ρ-sequence starting from w and ending at

x.

Claim 5.4.5. The semigroup S is right and left ideal Howson.

Proof. We show that S is right ideal Howson, the argument for left ideals

being dual.

Let w, x ∈ X+ and put I = [w]S1 ∩ [x]S1. Suppose that I 6= ∅, so that

(wh, xk) ∈ ρ] for some h, k ∈ X∗. By Claim 5.4.4 we have ρ-factorisations

wh = w0r1w1 . . . wp−1rpwp and xk = w0s1w1 . . . wp−1spwp for some p ∈ N0
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where (ri, si) ∈ ρ] for all 1 6 i 6 p. Without loss of generality we may

assume |w| 6 |x| and then consider all possible cases for the ρ-factorisation

of h.

(i) Suppose that w = w0r1w1 . . . ri−1s and h = tri . . . wp−1rpwp where

wi = st for some 0 6 i 6 p and s, t ∈ X∗. Since x = w0s1w1 . . . si−1sy

for some y ∈ X∗, we have that

wy = w0r1w1 . . . ri−1sy ρ
]w0s1w1 . . . rsi−1sy = x

and so I = [x]S1 is principal.

(ii) Suppose now that w = w0r1w1 . . . wi−1s and h = twi . . . wp−1rpwp

where ri = st for some 1 6 i 6 p and s, t ∈ X∗. We write x =

w0s1w1 . . . wi−1siy for some y ∈ X∗ and see

wty = w0r1w1 . . . wi−1sty

= w0r1w1 . . . wi−1riy

ρ]w0s1w1 . . . wi−1siy = x,

so that I = [x]S1 is principal.

(iii) Lastly, we suppose that w is as in case (ii) and x = w0s1w1 . . . wi−1u

where si = uv for some 1 6 i 6 p and u, v ∈ X∗ with |s| 6 |u|. If

s = u then [w] = [x] and we are done. Otherwise, let us define

R(ρ) =
{

(p, q) : (sp, uq) ∈ ρ] ∩
(
C(ρ)× C(ρ)

)}
.

It follows R(ρ) is finite since C(ρ) is finite and certainly (wp, xq) ∈ ρ]

for all (p, q) ∈ R(ρ). Since (t, v) ∈ R(ρ) we have

I =
⋃

(p,q)∈R(ρ)

[wp]S1

and so I is finitely generated.
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Therefore, in each case for the ρ-factorisation of h, we have shown that the

intersection is finitely generated and so S is right ideal Howson.

Claim 5.4.6. The semigroup S satisfies (Rn) and (Lm). Moreover, the

intersection of any two principal right (left) ideals of S requires at most n

(m) generators.

Proof. Again we only give the proof for right ideals. Let w, x ∈ X+; we

show the intersection I = [w]S1 ∩ [x]S1 requires at most n generators. The

only situation where I is not empty or principal is in the second situation

of (iii). Here we consider all the possibilities for (p, q) ∈ R(ρ); we can have

|ri| = |si| = 2 with |s| = |u| = 1 or |s| = 1 and |u| = 2, or |ri| = |si| = 3

with |s| = |u| = 1 or |s| = 1 and |u| = 2, or 3, or |s| = 2 and |u| = 2 or 3.

A case-by-case analysis for all the possibilities, paying special attention to

the case where m = 0 or n = 0 or both, now gives the result. In particular,

when n > 1 with w = a and x = b we have

I = [au1]S
1 ∪ · · · ∪ [aun]S1

which achieves the bound n as required.

We are now in a position to given the main result of this subsection.

Theorem 5.4.7. Let n,m ∈ N0. The semigroup Sρnm is cancellative, right

and left ideal Howson, and satisfies (Rn) and (Lm). Further, the inter-

section of any two principal right (left) ideals of S requires at most n (m)

generators.

Proof. From Adian’s Theorem, it is immediate that there is an embedding

of Sρnm in a group: cancellativity follows from this. The remainder of the

result comes from Claims 5.4.4, 5.4.5 and 5.4.6.

We now show that our semigroup Sρnm is in a specific sense universal.

Proposition 5.4.8. Let n,m ∈ N0. Suppose U is a semigroup contain-

ing elements α, β such that αU1 ∩ βU1 and U1α ∩ U1β are each exactly n-

and m-generated, respectively, by αγ1 = βδ1, . . . , αγn = βδn and µ1α =
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π1β, . . . , µmα = πmβ, respectively. Then there is a homomorphism θ :

Sρnm → U such that

[a]θ = α, [b]θ = β, [ui]θ = γi, [vi]θ = δi, [pj ]θ = µj and [qj ]θ = πj

for all 1 6 i 6 n and 1 6 j 6 m.

Proof. Let ψ : X+
nm → U be given by determining its values on the elements

of Xnm by

aψ = α, bψ = β, uiψ = γi, viψ = δi, pjψ = µj and qjψ = πj

for all 1 6 i 6 n and 1 6 j 6 m. Clearly ρnm ⊆ kerψ so that ψ induces a

morphism θ : Sρnm → U as in the statement of the proposition.

Remark 5.4.9. Let n > 1. The semigroup S = Sρmn is not finitely right

aligned. To see this, suppose that

[a]S ∩ [b]S = [w1]S ∪ . . . ∪ [w`]S

for some wk ∈ X+ such that [wk] ∈ [a]S1 ∩ [b]S1 for all 1 6 k 6 `. We have

[au1] = [bv1] ∈ [a]S ∩ [b]S, so that [au1] = [bv1] = [wk][z] for some k ∈ ` and

z ∈ X+. We must have that wkz = aui or bvi. If wk = a then we would not

have wk ∈ [b]S1 and similarly if wk = b we reach a contradiction.

In fact, an easier approach to obtain a semigroup presentation that sat-

isfies (Rn) and (Lm) for some fixed n,m ∈ N0, but producing a less tight

result, runs as follows. For n,m ∈ N0 we define an alphabet Ynm by

Ynm =
{
a, b, c, d, ui, vi, pj , qj : 1 6 i 6 n, 1 6 j 6 m

}
and a relation σmn on Y +

mn by

σnm =
{

(aui, bvi), (pjc, qjd) : 1 6 i 6 n, 1 6 j 6 m
}

and, as a convention, we will let Tσnm be the semigroup with presentation
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〈Ynm : σnm〉. If n = 0 then (as before) we have

Y0m =
{
a, b, c, d, pj , qj : 1 6 j 6 m

}
and σ0m =

{
(pjc, qjd) : 1 6 j 6 m

}
and similarly when m = 0. If in fact n = m = 0 then we simply have

Y00 = {a, b, c, d} and σ00 = ∅. The proof for the following theorem is similar

to that of Theorem 5.4.7 but rather simpler, since the complications of

overlapping generators for σ]nm do not occur.

Theorem 5.4.10. Let n,m ∈ N0. The semigroup Tσnm is cancellative,

right and left ideal Howson, and satisfies (Rn) and (Lm). Further, the

intersection of any two principal right (left) ideals of Tσnm requires at most

n (m) generators.

There is also a corresponding universal type result for Tσnm , analogous to

that of Proposition 5.4.8. Namely, if U is a semigroup containing elements

α, β, γ and δ such that αU1∩βU1 and U1γ∩U1δ are each exactly n- and m-

generated respectively, then U1 contains a morphic image of Tσnm obtained

as in Proposition 5.4.8.

5.4.2 The case where S is commutative

For any n,m ∈ N0, the semigroup Sρnm is not commutative. For instance, we

have clearly have that [ab] 6= [ba]. In this section, we provide a commutative

semigroup presentation that satisfies (Rn), which now coincides with (Ln),

for any fixed n ∈ N. Unlike the case for Sρnm we do not automatically

have that the semigroups we construct are cancellative. However, we can

construct natural quotients that satisfy (Rn) and are cancellative. For a

fixed n ∈ N0 we define the alphabet Xn by

Xn = {a, b, ui, vi : 1 6 i 6 n}
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and the relations τn and υn on X+
n by

τn =
{

(aui, bvi) : 1 6 i 6 n
}

and υn =
{

(aui, bvi), (uivj , ujvi) : 1 6 i, j 6 n, i 6= j
}
.

Similarly to the conventions in Subsection 5.4.1, we let Sτn and Sυn be

the semigroups with commutative presentations 〈CXn : τn〉 and 〈CXn : υn〉
respectively. If n = 0 then we simply put X0 = {a, b} and

τ0 =
{

(ab, ba), (ba, ab)
}

= υ0.

Since n ∈ N0 is fixed, we will write X, τ , υ, Sτ and Sυ instead of Xn, τn, υn,

Sτn and Sυn respectively. Also, note that we will continue to refer to words

but we now mean elements of CX+ rather than X+.

Theorem 5.4.11. The semigroups Sτn and Sυn satisfy (R(n+1)).

Proof. From Corollary 5.2.5, we have that both Sτ and Sυ are right and

left ideal Howson. A straightforward argument, using the fact that both

presentations are homogeneous, verifies that

[a]κS
1
κ ∩ [b]κS

1
κ = [ab]κS

1
κ ∪

⋃
16i6n

[aui]κS
1

for κ = τ or κ = υ. In each case, no given generator is redundant.

Notice that in Sτ for any 1 6 i, j 6 n we have [auivj ]τ = [aujvi]τ but

if i 6= j then [uivj ]τ 6= [ujvi]τ , so that if n > 2 the semigroup Sτ is not

cancellative. However, we now set out to show that Sυ is cancellative. We

begin by making some immediate observations about words in the same

τ ]-class or υ]-class.

Remark 5.4.12. For w, x ∈ CX+ with (w, x) ∈ τ ] or (w, x) ∈ υ] we notice

that

(i) |w| = |x| since the presentations are homogeneous;
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(ii) we may write w = ap0bq0up11 v
q1
1 . . . upnn v

qn
n for some pi, qi ∈ N0 for all

0 6 i 6 n.

With this in mind, for w ∈ X+ we define K(w) and ki(w) to be

K(w) = |w|b +
∑

16i6n

|w|ui ,

k0(w) = |w|a + |w|b
and ki(w) = |w|ui + |w|vi

for all 1 6 i 6 n. Notice that for any w, x ∈ CX+ we have

K(wx) = K(w) +K(x) and ki(wx) = ki(w) + ki(x)

for any 0 6 i 6 n. We say that w, x ∈ CX+ are balanced if ki(w) = ki(x)

for all 0 6 i 6 n. The next claim is clear from the definition of τ and υ.

Claim 5.4.13. If w, x ∈ X+ are such that (w, x) ∈ τ ] or (w, x) ∈ υ], then

w and x are balanced and K(w) = K(x).

An easy argument gives:

Claim 5.4.14. If w, x ∈ X+ are such that k0(w), k0(x) > 0, then (w, x) ∈ τ ]

if and only if (w, x) ∈ υ].

As τ and υ are homogeneous relations on CX+, the question follows of

when (w, x) ∈ τ ] or (w, x) ∈ υ] for two arbitrary words w, x ∈ CX+. To

enable our proof of cancellativity, we establish explicitly the existence of a

normal form in each τ ]-class and υ]-class. First, we introduce a linear order

on words in CX+. Let w, x ∈ CX+ where

w = ap0bq0up11 v
q1
1 . . . upnn v

qn
n and x = ar0bs0ur11 v

s1
1 . . . urnn v

sn
n .

We say that w 6 x if and only if there exists some 0 6 i 6 n such that

pj = rj for all j < i and pi < ri (or in fact p0 < r0 if indeed i = 0). One

may verify the following.
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Claim 5.4.15. The relation 6 is a partial order on CX+.

In particular, 6 is a partial order when restricted to any set of balanced

words; certainly any τ ]-class or υ]-class. Hence, let wτ and wυ be the unique

words in [w]τ and [w]υ respectively that are greatest under 6 (by which we

mean if wτ 6 w then wτ = w and similarly for wυ). We now draw upon

some well-known results regarding rewriting systems, as seen in Section 3.3,

to obtain wτ and wυ.

Claim 5.4.16. The rewriting system on [w]τ for all w ∈ X+, given by the

rewriting rules bvk → auk and aviuj → auivj for all 1 6 i, j, k 6 n with

i < j, is confluent.

Proof. If w = ybvk and x = yauk for some y ∈ X∗, then clearly (w, x) ∈ τ ]

and w < x. Correspondingly, if w = yaviuj and x = yauivj for some y ∈ X∗

with i < j then again (w, x) ∈ τ ] and w < x. It follows that this is a

noetherian rewriting system. It is routine to check that it is also locally

confluent and thus confluent.

Consequently, if w ∈ CX+, then applying the rewriting rules to w yields

a unique reduced word x ∈ [w]τ , and x is independent of the choice of w. We

know that x 6 wτ and we deduce from wτ 6 xτ = x that x = wτ . We say

that wτ is the word in normal form in [w]τ . An entirely similar argument

can be made for a rewriting system consisting of rewriting rules bvk → auk

and viuj → uivj (for all i, j, k ∈ N such that i 6 j) on elements of [w]υ for

any w ∈ CX+.

Claim 5.4.17. If wτ is in normal form in the τ ]-class of w, then it must

be one of the following types:

(NF1A) wτ = ap0up11 u
p2
2 . . . u

pi−1

i−1 u
pi
i v

qi
i v

qi+1

i+1 . . . v
qn
n for p0 > 0 and qi >

0 or i− 1 = n;

(NF2) wτ = ap0bq0up11 u
p2
2 . . . upnn for q0 > 0;

(NF3) wτ = up11 v
q1
1 . . . upnn v

qn
n .
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Similarly, if wυ is in normal form in the υ]-class of w, then either it is type

(NF1B) or (NF2) where

(NF1B) wυ = ap0up11 u
p2
2 . . . u

pi−1

i−1 u
pi
i v

qi
i v

qi+1

i+1 . . . v
qn
n for qi > 0 or i− 1 = n.

To see this, one can verify that it is not possible to apply a rewriting

rule (from the respective rewriting systems) to wτ or wυ as above. We now

give a partial converse to Claim 5.4.13.

Claim 5.4.18. Suppose w, x ∈ X+ are in normal form and balanced with

k0(w) = k0(x) > 0. Then:

(i) if |w|a < |x|a then |w|u` > |x|u` for all 1 6 ` 6 n and K(w)−K(x) > 0;

(ii) if |w|a = |x|a and |w|uk > |x|uk for some 1 6 k 6 n, then |w|u` > |x|u`
for all 1 6 ` 6 n and K(w)−K(x) > 0.

Proof. Suppose that w, x ∈ X+ and that k0(w) = k0(x) > 0 as in the

statement above.

(i) If |w|a < |x|a, then as k0(x) > 0, we must have that

w = ap0bq0up11 u
p2
2 . . . upnn for q0 > 0

is of type (NF2). Either

x = ar0bs0up11 u
p2
2 . . . upnn for s0 > 0

is also of type (NF2) or

x = ar0up11 u
p2
2 . . . u

pi−1

i−1 u
ri
i v

si
i v

pi+1

i+1 . . . vpnn for r0 > 0, si > 0 or i− 1 = n

is of type (NF1A). In both cases we see that certainly |w|u` > |x|u`
for all 1 6 ` 6 n. Since |w|a < |x|a if and only if |w|b > |x|b it is then

clear that K(w)−K(x) > 0.

(ii) Suppose that |w|a = |x|a and |w|uk > |x|uk for some 1 6 k 6 n. Since

|w|a = |x|a, either w and x are both of type (NF1A) or both of type
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(F2). In the latter case, it is easy to see that w = x, contradicting the

hypothesis. Thus

w = ap0up11 u
p2
2 . . . u

pi−1

i−1 u
pi
i v

qi
i v

qi+1

i+1 . . . v
qn
n for p0 > 0, qi > 0 or i− 1 = n

and

x = ap0ur11 u
r2
2 . . . u

rj−1

j−1 u
rj
j v

sj
j v

sj+1

j+1 . . . v
sn
n for p0 > 0, sj > 0 or j−1 = n

are of type (NF1A). We know that |w|uk > |x|uk for some 1 6 k 6 n,

and the only way this can occur is if i > j or i = j and pi > ri. In

either case, |w|u` > |x|u` for all 1 6 ` 6 n. Again, it is clear that

K(w)−K(x) > 0.

The next claim is now immediate.

Claim 5.4.19. Suppose w, x ∈ X+ are in normal form and balanced with

k0(w) = k0(x) > 0. Then w = x, equivalently (w, x) ∈ τ ], if and only if

K(w) = K(x).

Theorem 5.4.20. The semigroup Sυ is cancellative.

Proof. Let [w]υ, [x]υ, [h]υ ∈ Sυ such that [wh]υ = [xh]υ. We may assume

that w, x, h are in normal form. We have (wh, xh) ∈ υ] so that

ki(w) + ki(h) = ki(wh) = ki(xh) = ki(x) + ki(h),

giving ki(w) = ki(x) for all 0 6 i 6 n and, similarly, K(w) = K(x). If

k0(w) = k0(x) > 0, then by Claim 5.4.14 we have (w, x) ∈ τ ] if and only

if (w, x) ∈ υ], so that w = x from Claim 5.4.19. Suppose therefore that

k0(w) = k0(x) = 0; it follows that w, x are of the form (NF1B). Using the

fact that w, x are balanced and K(w) = K(x) a now familiar analysis again

gives us that w = x. Certainly in each case we have [w]υ = [x]υ.

Our semigroups Sτ and Sυ have universal properties corresponding to

those for Sτ in Proposition 5.4.8.
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Proposition 5.4.21. Let S be a commutative (commutative and cancella-

tive) semigroup such that S contains two principal right ideals αS1 and βS1

such that αS1 ∩ βS1 has exactly n generators αγ1 = βδ1, . . . , αγn = βδn.

Then there is a homomorphism θ : Sτ → S (θ : Sυ → S) such that

[a]θ = α, [b]θ = β, [ui]θ = γi and [vi]θ = δi for all 1 6 i 6 n.
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Chapter 6

Semigroup products with

uniqueness in the first

co-ordinate

We structure Chapter 6 in the following way. In Section 6.1, we begin by

introducing some important definitions for this chapter including what is

meant by a left-product (right-product) pair of semigroups. We concen-

trate further on such pairs that are so-called left-unique and right-unique.

Then, in Section 6.2, we show how one may construct quotients of an exter-

nal semidirect product of semigroups via certain ‘left-unique’ congruences.

We change tack to some extent in Section 6.3 and consider internal semidi-

rect products. We draw connections between the previous two sections in

Section 6.4. In Section 6.5 we describe how to construct semigroup presen-

tations for semigroups that arise as left-unique left product pairs. Finally,

we give examples of classes of semigroups for which we can obtain semigroup

presentations for in Section 6.6. Specifically, we show how SPEndFn(G) is

isomorphic to a semigroup product of a monoid M and semigroup S which

arise as a left-unique left-product pair (and describe how to arrive at a

semigroup presentation using this).
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6.1 Basic definitions

We begin by giving a name to a special property exhibited by pairs of sub-

semigroups of a given semigroup.

Definition 6.1.1. Let U be a semigroup with subsemigroups S and T .

Then we say S and T form a left-product pair (S, T ) of U if aS ⊆ Sa for

every a ∈ T . We say (S, T ) is a right-product pair if xT ⊆ Tx for every

x ∈ S. A product pair is both a left-product and right-product pair.

Of course, it is immediate from Definition 6.1.1 that (S, T ) being a left-

product pair of U implies that (T, S) is a right-product pair of U . This also

means that (S, T ) is a product pair of U if and only if (T, S) is a product pair

of U . However, less can be said in general regarding the connection between

(S, T ) being a left-product pair of U implying that (S, T ) is a right-product

pair. We show in the following example that not every left-product pair of

semigroups is a right-product pair.

Example 6.1.2 (Left zero semigroups). Let U be a left zero semigroup and

let S and T be subsemigroups of U such that T ⊂ S. Then

ax = aa = a

for every a ∈ T and x ∈ S. Therefore (S, T ) is a left-product pair of U . Fix

some y ∈ S \ T . Then

ya = y 6= b = by

for every a, b ∈ T . This gives us that (S, T ) is not a right-product pair of U .

Conversely, examples of product pairs abound. We provide some exam-

ples below.

Example 6.1.3. Let P be a monoid and let M be a subsemigroup of P .

Then we see that

1m = m1 and m1 = 1m

for every m ∈ M . This gives us that (M, {1}) is a left-product and right-

product pair of P respectively. Hence (M, {1}) is a product pair of P .
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Example 6.1.4 (Commutative semigroups). Let U be a commutative semi-

group with subsemigroups S and T . Then clearly we have that

ax = xa and xa = ax

for every a ∈ T and x ∈ S. This gives us that (S, T ) is a left-product and

right-product pair of U respectively. Therefore (S, T ) is a product pair of

U .

Example 6.1.5 (Normal subgroups). Let G be a group and let N be a

normal subgroup of G. Then it is clear that

gn = (gng−1)g and ng = (ngn−1)n

for every g ∈ G and n ∈ N . It follows gN ⊆ Ng and nG ⊆ Gn respectively

for every g ∈ G and n ∈ N . Therefore (N,G) is a product pair of G by

definition.

Example 6.1.6 (Partial transformation monoids). Consider Tn, the full

transformation monoid on {1, . . . , n}, and the submonoid Mn of PT n with

elements

Mn =
{

idA : A ⊆ {1, . . . , n}
}

where idA : A→ A is defined by the rule that

i idA =

{
i if i ∈ A;

undefined otherwise.

Let α ∈ Tn and A ⊆ {1, . . . , n} so that idA ∈Mn. We set

B = (imα ∩A)α−1
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so that idB ∈Mn. Then we see that

x ∈ dom(α idA)⇐⇒ x ∈ (imα ∩ dom idA)α−1

⇐⇒ x ∈ (imα ∩A)α−1

⇐⇒ x ∈ (imα ∩A)α−1 ∩ domα

⇐⇒ x ∈ B ∩ domα

⇐⇒ x ∈ im idB ∩domα

⇐⇒ x ∈ (im idB ∩domα)(idB)−1

⇐⇒ x ∈ dom(idB α).

Therefore we have αMn ⊆ Mnα for every α ∈ Tn and so (Mn, Tn) is a

left-product pair of PT n.

The benefit of identifying such (left-, right-) product pairs of subsemi-

groups within some common oversemigroup is summarised in the next result.

Lemma 6.1.7. Let U be a semigroup with subsemigroups S and T such that

(S, T ) is a left-product pair of U . Then ST is a subsemigroup of U .

Proof. Let U be a semigroup with subsemigroups S and T such that (S, T )

is a left-product pair of U . Then we see that

(xa)(yb) = x(ay)b = x(za)b = (xz)(ab)

for every x, y ∈ S, a, b ∈ T and z ∈ S such that ay = za. Therefore ST is a

subsemigroup of U .

Note that the choice of U in Definition 6.1.1 is not unique; any oversemi-

group of U will also contain (S, T ) as a left-product pair. From this point,

we will omit explicit mention of a semigroup U , as in Definition 6.1.1, when-

ever we suppose such a left-product (right-product) pair exists. Certainly,

not every semigroup admits a left-product or right-product pair; considering

any left zero or right zero semigroup respectively. We now concentrate on a

special kind of (left-, right-) product pairs of semigroups that will become

the main focus of this chapter.
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Definition 6.1.8. Let (S, T ) be a left-product pair. Then (S, T ) is left-

unique if

xa = yb =⇒ x = y

for every x, y ∈ S and a, b ∈ T . A left-product pair being right-unique is

dually defined.

The next result follows in a straightforward way.

Lemma 6.1.9. Let S and T be semigroups such that (S, T ) forms a left-

unique left-product pair. Then for every a ∈ T and x ∈ S, there exists a

unique y ∈ S such that ax = ya.

Proof. Let S and T be semigroups such that (S, T ) forms a left-unique left-

product pair. As (S, T ) is a left-product pair, it follows that there exists a

y ∈ T such that ax = ya for every a ∈ T and x ∈ S. Using the fact that

(S, T ) is left-unique, if there also exists some z ∈ S such that ax = za then

ya = za and so y = z.

We conclude this section with an interesting observation regarding left-

unique product pairs.

Theorem 6.1.10. Let S and T be semigroups such that (S, T ) is a right-

unique product pair of U . Then xa = ax for every x ∈ S and a ∈ T .

Proof. Let S and T be semigroups such that (S, T ) is a left-unique product

pair. For every a ∈ T and x ∈ S there exists y ∈ S and b ∈ T such that

xa = bx and bx = yb (by virtue of (S, T ) being a right-product and left-

product pair, respectively). As (S, T ) is right-unique, this implies that a = b

and so

xa = bx = ax

for every x ∈ S and a ∈ T .

6.2 External setting

The aim of this section is to construct congruences on external semidirect

products of semigroups such that elements of the semidirect product, equiv-
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alent under the congruences, have the same first coordinate. We start by

defining an important property of equivalence relations.

Definition 6.2.1. Let S and T be semigroups such that SoT exists. We say

that a family R = {ρx : x ∈ S} of equivalence relations on T is right-aligned

if the following properties are satisfied:

(RA1) if (a, b) ∈ ρx then x ay = x by;

(RA2) if (a, b) ∈ ρx then (ca, cb) ∈ ρy cx;

(RA3) if (a, b) ∈ ρx then (ac, bc) ∈ ρx ay;

for every x, y ∈ S and a, b, c ∈ T .

We highlight that this notion of right-aligned is unrelated to the notion of

finitely aligned for semigroups in [25]. Next, we give a name to a certain kind

of congruence on a semidirect product of semigroups that will be important

throughout this chapter.

Definition 6.2.2. Let S and T be semigroups such that S o T exists and

such that θ is a congruence on S o T . We say θ is left-unique if

(
(x, a), (y, b)

)
∈ θ =⇒ x = y

for every x, y ∈ S and a, b ∈ T .

Using our notion of right-aligned equivalence relations, we proceed by

constructing left-unique congruence on a semidirect product of semigroups.

Lemma 6.2.3. Let S and T be semigroups such that SoT exists. Suppose

that there is a right-aligned family R = {ρx : x ∈ S} of equivalence relations

on T . Then the relation ρ, given by the rule

(
(x, a), (y, b)

)
∈ ρ⇐⇒ x = y and (a, b) ∈ ρx

defines a left-unique congruence on S o T .
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Proof. To see that ρ defines an equivalence relation, we use the fact that ρx

is an equivalence relation on T for every x ∈ S.

To see that ρ is a congruence on S o T , we suppose ((x, a), (y, b)) ∈ ρ;

this implies that x = y and (a, b) ∈ ρx by definition. Let (z, c) ∈ S o T and

consider the products

(z, c)(x, a) = (z cx, ca) and (z, c)(y, b) = (z cy, cb).

It follows from x = y that z cx = z cy and we deduce from (RA2) that

(ca, cb) ∈ ρz cx. Hence ρ is a left congruence. To verify that ρ is also a right

congruence, we consider the products

(x, a)(z, c) = (x az, ac) and (y, b)(z, c) = (y bz, bc).

That x az = y bz is derived from (RA1) and x = y. Hence we get that

(ac, bc) ∈ ρx az from (RA3). Therefore ρ is a (right) congruence on SoT .

Therefore, for any semigroups S and T such that S o T exists, we have

constructed a left-unique congruence on S o T by utilising a right-aligned

family of right congruences. Conversely, we show that the existence of a

left-unique congruence on a semidirect product gives rise to a right-aligned

family of equivalence relations.

Lemma 6.2.4. Let S and T be semigroups such that S o T exists. If ρ is

a left-unique congruence on SoT then there exists a right-aligned family of

equivalence relations R = {ρx : x ∈ S} on T where

ρx =

{
(a, b) ∈ T × T :

(
(x, a), (x, b)

)
∈ ρ
}

for every x ∈ S.

Proof. Let S and T be semigroups and ρ be a left-unique congruence on

S o T .

To prove that R = {ρx : x ∈ S} is a right-aligned family of equivalence

relations on T , we suppose first that (a, b) ∈ ρx so that ((x, a), (x, b)) ∈ ρ.
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For any y ∈ S and c ∈ T we have the product

(x, a)(y, c) = (x ay, ac) and (x, b)(y, c) = (x by, bc).

By virtue of ρ being a (right) congruence, we have ((x ay, ac), (x by, bc)) ∈ ρ
and by virtue of ρ being left-unique we have x ay = x by. Hence (RA1) is

satisfied. In turn, we have

(
(x ay, ac), (x ay, bc)

)
=
(
(x ay, ac), (x by, bc)

)
∈ ρ.

This gives us that (ac, bc) ∈ ρx ay which satisfies (RA3). Next we consider

the product

(y, c)(x, a) = (y cx, ca) and (y, c)(x, b) = (y cx, cb).

This gives us by definition that (ca, cb) ∈ ρy cx and so (RA2) is satisfied. We

have shown that R defines a right-aligned family of equivalence relations on

T as required.

6.2.1 The case that S and T are monoids

In the case where S and T are both monoids, the conditions required for a

set of equivalence relations to be right-aligned are stronger and we examine

them here.

Definition 6.2.5. Let S and T be monoids such that S o T exists. We

say that a family R = {ρx : x ∈ S} of equivalence relations on T is strongly

right-aligned if the following properties are satisfied:

(SRA1) if (a, b) ∈ ρx then x ay = x by;

(SRA2) if (a, b) ∈ ρx then (ca, cb) ∈ ρcx;

(SRA3) if (a, b) ∈ ρx then (ac, bc) ∈ ρx ay;

(SRA4) ρx ⊆ ρyx

for every x, y ∈ S and a, b, c ∈ T .
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Theorem 6.2.6. Let S and T be monoids such that S o T exists. Let

R = {ρx : x ∈ S} be a strongly right-aligned family of equivalence relations

on T . Then R is a right-aligned family of equivalence relations on T .

Proof. Suppose that S and T are monoids such that S o T exists. Let

R = {ρx : x ∈ S} be a strong right-aligned family of equivalence relations

on T . Clearly if (SRA1) holds then (RA1) holds as they are exactly the

same. Similarly if (SRA3) holds then (RA3) holds. It remains to show that

(RA2) is satisfied.

If (a, b) ∈ ρx then (ca, cb) ∈ ρcx for every c ∈ T by (SRA2). It follows

from (SRA4) that (ca, cb) ∈ ρy cx for every y ∈ S. Therefore we have shown

that (RA2) is satisfied.

6.3 Internal setting

We turn our attention to internal semidirect products. Specifically, we start

with an internal semidirect product of semigroups ST and construct a con-

gruence ρ such that ST ' (SoT )/ρ. We begin by building on Lemma 6.1.9

mentioned in Section 6.1.

Lemma 6.3.1. Let S and T be semigroups such that (S, T ) is a left-unique

left-product pair. For every a ∈ T and x ∈ S with ax = ya, by setting
ax = y, we define a left action of T on S by homomorphisms.

Proof. First, we verify that this defines a left action of T on S. For every

a, b ∈ T and x ∈ S, we see that

a(bx) = a(bxb) = (a bx)b =
(
a(bx)a

)
b and (ab)x = abxab.

If follows from (S, T ) being left-unique that a(bx) = abx for every a, b ∈ T
and x ∈ S. Hence this defines a left action of T on S and we are left to

check that this is a left action by homomorphisms. To see this, we notice

a(xy) = a(xy)a and (ax)y = (axa)y = ax(ay) = ax( aya) = (ax ay)a
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which gives a(xy)a = (ax ay)a. This implies, using the fact that (S, T ) is

left-unique, that a(xy) = ax ay for every a ∈ T and x, y ∈ S. Therefore this

defines a left action of T on S by homomorphisms as required.

Lemma 6.3.2. Let S and T be semigroups such that (S, T ) is a left-unique

left-product pair. Let ρx be a relation on T defined as

ρx =
{

(a, b) ∈ T × T : xa = xb
}

for every x ∈ S. Then R = {ρx : x ∈ S} is a right-aligned family of right

congruences on T .

Proof. To show that R is a right-aligned family of right congruences on T ,

we must show that each ρx ∈ R satisfies (RA1), (RA2) and (RA3). For

every x ∈ S, if (a, b) ∈ ρx then xa = xb. It follows that

x ay = (xa)y = (xb)y = x by

and so (RA1) is satisfied.

If (a, b) ∈ ρx then xa = xb and we see that

(y cx)(ca) = y(cxc)a = y(cx)a = yc(xa)

= yc(xb) = y(cx)b = y(cxc)b = (y cx)(cb)

for every y ∈ S and c ∈ T . This means that (y cx)(ca) = (y cx)(cb) which

gives (ca, cb) ∈ ρy cx by definition. Therefore (RA2) is satisfied.

Lastly, if (a, b) ∈ ρx then xa = xb and we see that

(x ay)(ac) = x(aya)c = x(ay)c = (xa)yc

= (xb)yc = x(by)c = x(byb)c = (x by)(bc)

for every y ∈ S and c ∈ T . From (RA1) we know that x ay = x by and

so (x ay)(ac) = (x ay)(bc). This gives us that (ac, bc) ∈ ρx ay by definition

and so (RA3) is satisfied. It is clear that ρx as defined above is a right

congruence on T for every x ∈ S.
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6.4 A main result

In this section, we show how one can amalgamate the results of Section 6.2.

Theorem 6.4.1. Let S and T be subsemigroups such that (S, T ) is a left-

unique left-product pair. Then there exists a left action of T on S by homo-

morphisms given by ax = y, where y is the unique element of S such that

ax = ya, for all x ∈ S and a ∈ T . Moreover, if

ρx =
{

(a, b) ∈ T × T : xa = xb
}

then R = {ρx : x ∈ S} is a right-aligned family of right congruences on T .

If ρ is the relation on S o T given by

(
(x, a), (y, b)

)
∈ ρ⇐⇒ x = y and (a, b) ∈ ρx

then ρ is a left-unique congruence on S o T with ST ' (S o T )/ρ.

Proof. Let (S, T ) be a left-unique left-product pair. By Lemma 6.3.1, T acts

on the left of S by homomorphisms such that ax = axa for all x ∈ S and

a ∈ T . Thus we can form the semidirect product S o T . It follows from

Lemma 6.3.2 that R = {ρx : x ∈ S} where

ρx =
{

(a, b) ∈ T × T : xa = xb
}

is a right-aligned family of right congruences on T . In addition, we showed

in Lemma 6.2.3 that the relation ρ on S o T given by

(
(x, a), (y, b)

)
∈ ρ⇐⇒ x = y and (a, b) ∈ ρx

is a (left-unique) congruence. Hence, we can form the quotient semigroup

(S o T )/ρ. It remains to show that the map φ : ST → (S o T )/ρ given by

φ : ST → (S o T )/ρ : (xa)φ =
[
(x, a)

]
is an isomorphism.
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First, we show φ is well-defined. If x, y ∈ S and a, b ∈ T such that

xa = yb then x = y from the fact that (S, T ) is left-unique. In turn this

gives us that (a, b) ∈ ρx and so ((x, a), (y, b)) ∈ ρ. Therefore (xa)φ = (yb)φ.

That φ is onto is clear from its definition. To show that φ is one-to-one and

well-defined we see

(xa)φ = (yb)φ⇐⇒
[
(x, a)

]
=
[
(y, b)

]
⇐⇒

(
(x, a), (y, b)

)
∈ ρ

⇐⇒ x = y and (a, b) ∈ ρx
⇐⇒ xa = yb

for every x, y ∈ S and a, b ∈ T .

Lastly, to show that φ is a homomorphism, we have

(
(xa)(yb)

)
φ =

(
(x ay)(ab)

)
φ

=
[
(x ay, ab)

]
=
[
(x, a)(y, b)

]
=
(
(xa)φ

)(
(yb)φ

)
for every x, y ∈ S and a, b ∈ T . Therefore φ is an isomorphism and so

ST ' (S o T )/ρ.

6.5 Semigroup presentations

We now turn our attention to obtaining semigroup presentations for semi-

groups of the form ST where (S, T ) is a left-unique left-product pair, using

results from Subsection 6.2 and Section 6.3. We start by recalling from Sec-

tion 6.3 that, for a semigroup product of this kind, we may immediately

form the semidirect product SoT where ax ∈ S is defined to be the unique

element satisfying ax = axa for every x ∈ S and a ∈ T .
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Lemma 6.5.1. Let Ψ : S o T → ST be given by

(x, a)Ψ = xa

for every x ∈ S and a ∈ T . Then Ψ is a surjective homomorphism.

Proof. For every x, y ∈ S and a, b ∈ T we have

(
(x, a)(y, b)

)
Ψ = (x ay, ab)Ψ = x ayab = xayb =

(
(x, a)Ψ

)(
(y, b)Ψ

)
and so Ψ is a homomorphism. It is clear that Ψ is surjective since for

every xa ∈ ST , with x ∈ S and a ∈ T , we have (x, a) ∈ S o T such that

(x, a)Ψ = xa.

It is clear to verify that Lemma 6.5.1 follows directly from Theorem 6.4.1.

We recall in this next result the congruence ρ on SoT defined in Section 6.2.

Lemma 6.5.2. Let S and T be semigroups such that (S, T ) is a left-unique

left-product pair. Then ker Ψ = ρ.

Proof. For every x, y ∈ S and a, b ∈ T we have

(
(x, a), (y, b)

)
∈ ker Ψ⇐⇒ (x, a)Ψ = (y, b)Ψ

⇐⇒ xa = yb

⇐⇒ x = y and (a, b) ∈ ρx
⇐⇒

(
(x, a), (y, b)

)
∈ ρ

and so ker Ψ = ρ.

We introduce some conventions and notation which will be useful through-

out the remainder of this chapter. Let S and T be semigroups such that

SoT exists and has semigroup presentation 〈X : R〉 via φ. As φ is surjective,

we let w(x,a) be a fixed word over X such that

w(x,a)φ = (x, a)

for every x ∈ S and a ∈ T .
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As a convention, for any formal symbol ?, we will write u ∼? v and

u ≈? v instead of (u, v) ∈ R? and (u, v) ∈ R]? respectively.

Theorem 6.5.3. Let S and T be semigroups such that (S, T ) is a left-unique

left-product pair and suppose that SoT has presentation 〈X : R〉 via φ. Let

Ψ : S o T → ST be given by (x, a)Ψ = xa and suppose that

ρx =

{(
(x, a), (x, b)

)
: xa = xb

}
.

If we define

Rρ =
{

(w(x,a), w(x,b)) : x ∈ S, (a, b) ∈ ρx
}

then ST has presentation 〈X : R ∪Rρ〉 via φΨ.

Proof. That the map φΨ is a surjective homomorphism follows from the fact

that φ and Ψ are both surjective homomorphisms, using Lemma 6.5.1. For

convenience we will set α = φΨ for the remainder of this proof. We verify

now that (R ∪Rρ)] = kerα.

As SoT has presentation 〈X : R〉 via φ, it is immediate that if (u, v) ∈ R
then (u, v) ∈ kerφ by definition. This in turn gives us that (u, v) ∈ kerα

since kerφ ⊆ kerα.

On the other hand, let (u, v) ∈ Rρ be such that u = w(x,a) and v = w(x,b)

with (a, b) ∈ ρx. From the definition of ρx, we have xa = xb and so

uα = (uφ)Ψ = (w(x,a)φ)Ψ = (x, a)Ψ = xa = xb

= (x, b)Ψ = (w(x,b)φ)Ψ = (vφ)Ψ = vα.

This gives us that (u, v) ∈ kerα. Altogether we have shown that R ∪ Rρ ⊆
kerα and hence (R ∪Rρ)] ⊆ kerα.

For the reverse inclusion, we suppose (u, v) ∈ kerα. We suppose that

uφ = (x, a) = w(x,a)φ and vφ = (y, b) = w(y,b)φ

for x, y ∈ S and a, b ∈ T . It implies from uα = vα that (x, a)Ψ = (y, b)Ψ

and so xa = yb. Since (S, T ) is left-unique, it follows that x = y which
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means (a, b) ∈ ρx by definition. Hence, we have

(w(x,a)w(y,b)) = (w(x,a), w(x,b)) ∈ Rρ.

Therefore

u ≈ w(x,a) ∼ρ w(y,b) ≈ v

and so kerα ⊆ (R ∪Rρ)] as required.

For the next main result of this section, our intention is to reduce the

size of the set of relations Rρ by considering a certain special case. For

each x ∈ S we define a subset ρx ⊆ ρx such that ρx generates ρx as a right

congruence.

Theorem 6.5.4. Let S and T be semigroups such that (S, T ) is a left-

unique left-product pair and suppose that S o T has presentation 〈X : R〉
via φ. Suppose that for every a ∈ T there exists an x ∈ S such that a = xa.

Let Ψ : S o T → ST be given by (x, a)Ψ = xa and suppose that

ρx =

{(
(x, a), (x, b)

)
: xa = xb

}
is generated as a right congruence by ρx ⊆ ρx. If we define

Rρ =
{

(w(x,a), w(x,b)) : x ∈ S, (a, b) ∈ ρx
}

then ST has presentation 〈X : R ∪Rρ〉 via φΨ.

Proof. With Theorem 6.5.3 in mind, given that Rρ ⊆ Rρ, we only need to

check that Rρ ⊆ (R ∪Rρ)]. Let x ∈ S and a, b ∈ T such that (a, b) ∈ ρx, so

that (w(x,a), w(x,b)) ∈ Rρ. Given that ρx generates ρx as a right congruence,

either a = b or there exists a finite sequence of the form

a = a1, . . . , an = b (6.1)

such that ai = ciqi and ai+1 = diqi for some (ci, di) ∈ ρx ∪ ρ−1x and qi ∈ T 1

for each 1 6 i 6 n− 1. We emphasise here that (w(x,ci), w(x,di)) ∈ Rρ ∪R
−1
ρ
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by definition. If a = b then clearly (w(x,a), w(x,b)) ∈ Rρ so we proceed by

supposing that a 6= b so that the sequence 6.1 exists. For the remainder of

this proof, we fix some 1 6 i 6 n.

If qi = 1, then ai = ci and ai+1 = di so that

w(x,ai) = w(x,ci) ∼ρ w(x,di) = w(x,ai+1). (6.2)

Therefore we have shown that (w(x,ai), w(x,ai+1)) ∈ Rρ in this first case.

Now suppose that qi ∈ T . By assumption, there exists y ∈ S such that

qi = yqi. We consider the product

(x, ci)(y, qi) = (x ciy, ciqi) = (x ciy, ai).

By virtue of Ψ being a homomorphism from Lemma 6.5.1, we see that

x ciyai = (x ciy, ai)Ψ =
(
(x, ci)Ψ

)(
(y, qi)Ψ

)
= xciyqi = xciqi = xai.

Hence, by the fact (S, T ) is left-unique, this implies that x ciy = x. This

immediately gives us that

(x, ci)(y, qi) = (x ciy, ai) = (x, ai). (6.3)

A similar argument shows that

(x, di)(y, qi) = (x diy, ai+1) = (x, ai+1). (6.4)

It follows from Equation 6.3 and Equation 6.4 that

w(x,ci)w(y,qi) ≈ w(x,ai) and w(x,di)w(y,qi) ≈ w(x,ai+1)

respectively. In turn, we have that

w(x,ai) ≈ w(x,ci)w(y,qi) ≈ρ w(x,di)w(y,qi) ≈ w(x,ai+1). (6.5)

Altogether, Equation 6.2 and Equation 6.5 show that (w(x,ai), w(x,ai+1)) ∈
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(R ∪ Rρ)] for every 1 6 i 6 n. Therefore we have Rρ ⊆ (R ∪ Rρ)] and so

(R ∪ Rρ)] = (R ∪ Rρ)]. We already have shown from Theorem 6.5.3 that

(R ∪Rρ)] = ker(φΨ) and so we are done.

Note that the assumption in the previous claim can be simplified in

certain circumstances, as seen in the following result.

Theorem 6.5.5. Let S and T be semigroups such that (S, T ) is a left-unique

left-product pair. If S is such that every element of S has a left identity,

then the following conditions are equivalent:

� for every a ∈ T there exists x ∈ S such that a = xa;

� T ⊆ ST .

Proof. The forwards implication is straightforward to verify. For the reverse

direction, suppose T ⊆ ST and let a ∈ T . Since T ⊆ ST , it follows that

a = yb for some y ∈ S and b ∈ T . By assumption, if x ∈ S satisfies y = xy,

then a = yb = (xy)b = xa.

For instance, Theorem 6.5.5 includes the cases where S is regular or

indeed where S is a monoid.

6.6 Applications

Now we consider a number of applications of the results obtained in Sec-

tion 6.5. We demonstrate how a number of semigroups, of the form ST ,

arise as left-unique left-product pairs (S, T ). As we will see, there are a

whole host of important classes of semigroups that arise in this way.

6.6.1 Singular part of the partial endomorphism monoid of

a free G-act of finite rank

We introduce the notion of a free G-act for a group G.
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Definition 6.6.1. Let G be a group and fix n ∈ N. Let {xi : 1 6 i 6 n} be

a set of formal symbols. The free G-act of rank n is the set

Fn(G) = {gxi : g ∈ G, 1 6 i 6 n}

where two elements gxi, hxj ∈ Fn(G) are equal if and only if g = h and

i = j. We define g(hxi) = (gh)xi for every g, h ∈ G and 1 6 i 6 n.

Definition 6.6.2. The singular part of the partial endomorphism monoid

of a free G-act of rank n is a semigroup denoted by SPEndFn(G) with

elements

SPEndFn(G) =
{
α : Fn(G)→ Fn(G) | imα ⊂ Fn(G)

}
under composition of functions.

We recall the following semigroups:

PT n =
{
α : A→ B | A,B ⊆ {1, . . . , n}

}
SPT n =

{
α ∈ PT n : imα ⊂ {1, . . . , n}

}
T n =

{
α ∈ PT n : domα = {1, . . . , n}

}
ST n =

{
α ∈ T n : imα ⊂ {1, . . . , n}

}
For a fixed group G and n ∈ N, we let G and G0 denote the direct

product of n copies of G and the direct product of n copies of the (0-group)

G0 respectively.

Lemma 6.6.3. Let G be a group and n ∈ N. For every (g1, . . . , gn) ∈ G0

and α ∈ PT n, we define

α(g1, . . . , gn) = (g1α, . . . , gnα) (6.6)

where giα = 0 if i /∈ domα. Then Equation 6.6 defines a left action of PT n
on G0.
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Proof. If α, β ∈ PT n and (g1, . . . , gn) ∈ G0 then

α
(
β(g1, . . . , gn)

)
= α(g1β, . . . , gnβ)

= α(h1, . . . , hn) where hi = giβ

= (h1α, . . . , hnα)

= (g(1α)β, . . . , g(nα)β)

= (g1(αβ), . . . , gn(αβ))

= αβ(g1, . . . , gn).

It is routine to see that such an argument holds where gi = 0. So Equa-

tion 6.6 defines a left action of PT n on G0.

Lemma 6.6.4. Let G be a group and n ∈ N. Then Equation 6.6 defines a

left action of PT n on G0 by homomorphisms.

Proof. We have already proved in Lemma 6.6.3 that Equation 6.6 defines

a left action of PT n on G0. To show that this is, in fact, a left action by

homomorphisms, if α ∈ PT n and (g1, . . . , gn), (h1, . . . , hn) ∈ G0 then

α
(
(g1, . . . , gn)(h1, . . . , hn)

)
= α(g1h1, . . . , gnhn)

= α(k1, . . . , kn) where ki = gihi

= (k1α, . . . , knα)

= (g1αh1α, . . . , gnαhnα)

= (g1α, . . . , gnα)(h1α, . . . , hnα)

=
(
α(g1, . . . , gn)

)(
α(h1, . . . , hn)

)
.

One can verify that this argument holds where gi = 0 or hi = 0 for some

1 6 i 6 n. Therefore Equation 6.6 defines a left action of PT n on G0 by

homomorphisms.

Hence, we can form the semidirect product G0oPT n using Lemma 6.6.4.

We now consider a special subsemigroup Pn of G0 o PT n.
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Lemma 6.6.5. Let G be a group and n ∈ N. Then

Pn =

{(
(g1, . . . , gn), α

)
∈ G0 × SPT n : gi 6= 0⇐⇒ i ∈ domα

}
is a subsemigroup of G0 o PT n.

Proof. Let α, β ∈ SPT n and (g1, . . . , gn), (h1, . . . , hn) ∈ G0 such that

(
(g1, . . . , gn), α

)
,
(
(h1, . . . , hn), β

)
∈ Pn.

Then the product

(
(g1, . . . , gn), α

)(
(h1, . . . , hn), β

)
=
(
(g1, . . . , gn) α(h1, . . . , hn), αβ

)
=
(
(g1, . . . , gn)(h1α, . . . , hnα), αβ

)
=
(
(g1h1α, . . . , gnhnα), αβ

)
.

We are left to show that gihiα = 0 if and only if i /∈ dom(αβ). To check

this, we see that

gihiα = 0⇐⇒ gi = 0 or hiα = 0.

We deal with each of these cases separately. In the case that gi = 0, this

occurs if and only if i /∈ domα and in turn this gives i /∈ dom(αβ) as

dom(αβ) ⊆ domα. On the other hand, if hiα = 0 then iα /∈ domβ. This

implies that i /∈ dom(αβ).

For the reverse implication, suppose that i /∈ dom(αβ). This implies

that i /∈ (imα ∩ domβ)α−1. If i /∈ domα then gi = 0 and if iα /∈ domβ

then hiα = 0. In each case we have that gihiα = 0.

For any A ⊆ {1, . . . , n}, we define

ai =

{
1 if i ∈ A;

0 otherwise.

With this, we consider the subsemigroup GoST n and the submonoid En of
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G0 o PT n where

En =

{(
(a1, . . . , an), idA

)
: A ⊆ {1, . . . , n}

}
and use them in our next result.

Theorem 6.6.6. Let G be a group and n ∈ N. Then (En,G o ST n) is a

left-product pair of G0 o PT n.

Proof. Let A ⊆ {1, . . . , n}, (g1, . . . , gn) ∈ G and α ∈ ST n. Then we consider

the product

(
(g1, . . . , gn), α

)(
(a1, . . . , an), idA

)
=
(
(g1, . . . , gn) α(a1, . . . , an), α idA

)
=
(
(g1, . . . , gn)(a1α, . . . , anα), α idA

)
=
(
(g1a1α, . . . , gnanα), α idA

)
.

We set B ⊆ {1, . . . , n} to be

B =
{
i ∈ {1, . . . , n} : iα ∈ A

}
and recall our notation that

bi =

{
1 if i ∈ B;

0 otherwise.

Then we see

(
(b1, . . . , bn), idB

)(
(g1, . . . , gn), α

)
=
(
(b1, . . . , bn) idB (g1, . . . , gn), idB α

)
=
(
(b1, . . . , bn)(g1 idB , . . . , gn idB ), idB α

)
=
(
(b1g1 idB , . . . , bngn idB ), idB α

)
and so we are left to show that α idA = idB α and giaiα = bigi idB for every

1 6 i 6 n. We consider the possibilities: iα ∈ A and iα /∈ A for some

fixed 1 6 i 6 n. If iα ∈ A then i ∈ B by definition. It follows that

(iα) idA = iα = (i idB)α. In this case, we have aiα = 1 and bi = 1 so that

giaiα = gi = bigi idB . Conversely, if iα /∈ A then i /∈ B by definition. This
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implies that (iα) idA and (i idB)α are both undefined. Here we have aiα = 0

and bi = 0 so that giaiα = 0 = bigi idB .

Theorem 6.6.7. Let G be a group and n ∈ N. Then (En,G o ST n) is a

left-unique left-product pair of G0 o PT n.

Proof. We have already shown in Theorem 6.6.6 that (En,GoST n) is a left-

product pair of G0oPT n . Next, we show that (En,GoST n) is left-unique.

Suppose A,B ⊆ {1, . . . , n} and ((g1, . . . , gn), α), ((h1, . . . , hn), β) ∈ GoST n
such that

(
(a1, . . . , an), idA

)(
(g1, . . . , gn), α

)
=
(
(b1, . . . , bn), idB

)(
(h1, . . . , hn), β

)
.

If this holds then

(
(a1g1 idA , . . . , angn idA), idA α

)
=
(
(b1h1 idB , . . . , bnhn idB ), idB β

)
.

It follows from idA α = idB β that A = B and so (En,G o ST n) is left-

unique.

Theorem 6.6.8. Let G be a group and n ∈ N. Then En(G o ST n) = Pn.

Proof. Let A ⊆ {1, . . . , n}, (g1, . . . , gn) ∈ G and α ∈ ST n. Consider the

product

(
(a1, . . . , an), idA

)(
(g1, . . . , gn), α

)
=
(
(a1, . . . , an) idA(g1, . . . , gn), idA α

)
=
(
(a1, . . . , an)(g1 idA , . . . , gn idA), idA α

)
=
(
(a1g1 idA , . . . , angn idA), idA α

)
.

We must show that aigi idA = 0 if and only if i /∈ dom(idA α) = A. We

remark first that

aigi idA = 0⇐⇒ ai = 0 or gi idA = 0;

either of the conditions on the right hand side is equivalent to i /∈ A.
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We now show that every element of Pn can be written as a product of

En and G o ST n. Let ((g1, . . . , gn), α) ∈ Pn. Then we set A = domα and

choose β ∈ ST n such that iβ = iα for every i ∈ domα. Then

(
(a1, . . . , an), idA

)(
(g1, . . . , gn), β

)
=
(
(a1, . . . , an) idA(g1, . . . , gn), idA β

)
=
(
(a1, . . . , an)(g1 idA , . . . , gn idA), idA β

)
=
(
(a1g1 idA , . . . , angn idA), idA β

)
.

Clearly we have idA β = α. If i ∈ domα then i ∈ A. This gives us that

ai = 1 and aigi idA = gi 6= 0. If i /∈ domα then i /∈ A and so ai = 0 which

gives aigi idA = 0.

Since we have shown that:

� (En,G o ST n) is a left-unique left-product pair of G0 o PT n from

Theorem 6.6.7;

� En(G o ST n) = EGST n from Theorem 6.6.8

it follows that we may obtain a semigroup presentation for EGST n using

Theorem 6.5.3. Of course, this requires us to know a presentation for the

semidirect product Eno (GoST n) in advance. One can obtain a semigroup

presentation for semidirect products of the form MoS (where M is a monoid

and S is a semigroup) in the case where a semigroup presentation of S is

known [2]. As En is a monoid and G o ST n is a semigroup, this means

finding a presentation for En o (G o ST n) reduces to finding a presentation

for G o ST n. Again, since G is a monoid and ST n is a semigroup, we

can obtain a presentation for G o ST n by knowing a presentation for ST n.

East provided a presentation for the singular part of the full transformation

monoid in [21].

6.6.2 Almost-factorisable inverse semigroups

Almost-factorisable inverse semigroups, or covering semigroups, were first

introduced by McAlister in 1967 [69]. As the term ‘almost-factorisable’
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might suggest, there is a stronger notion of ‘factorisable’ that can be applied

to inverse monoids. We start by defining such a notion.

Definition 6.6.9. [28, 69] Let M be an inverse monoid with E = E(M)

and G the group of units of M . Then M is factorisable if M = EG.

Certainly, any group is factorisable in this way. It is also easy to see that

any band with an identity adjoined will be factorisable.

Example 6.6.10 (Full transformation monoids). Let n ∈ N and consider

Tn the full transformation monoid on {1, . . . , n}. It is clear that E = E(Tn)

and Sn are subsemigroups of Tn and ESn ⊆ Tn.

For the reverse inclusion, let α ∈ Tn and consider the element ε ∈ TX
given by

iε = min
{
j ∈ {1, . . . , n} : jα = iα

}
= imin

for every 1 6 i 6 n. With this in mind, we let β be a fixed bijection such

that

domβ = {1, . . . , n} \ im ε and imβ = {1, . . . , n} \ imα.

We define σ ∈ Tn given by

iσ =

{
iα if i ∈ im ε;

iβ otherwise

for every 1 6 i 6 n. If i, j ∈ im ε then i = imin and j = jmin by definition.

If iα = jα then imin 6 j and dually jmin 6 i. It follows that i = j and so α

is one-to-one when restricted to im ε.

To see that ε ∈ E we first set

iε2 = (iε)ε = min
{
j ∈ {1, . . . , n} : jα = (iε)α

}
= k.

It follows from (iε)ε, iε ∈ im ε and (iε2)α = ((iε)ε)α = kα = (iε)α that

iε2 = iε using the fact that α is one-to-one on im ε.

To prove that σ ∈ Sn, we must be able to show that σ is a bijection.

To start, we suppose that iσ = jσ for some 1 6 i 6 j 6 n. If iσ = iα

and jσ = jα then iα = jα which gives i = j as α is one-to-one on im ε.
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If iσ = iα and jσ = jβ then we reach an immediate contradiction since

iα ∈ imα but jβ /∈ imα. Dually if iσ = iβ and jσ = jα. Lastly, if iσ = iβ

and jσ = jβ then iβ = jβ which gives i = j since β is one-to-one. Thus σ

is one-to-one.

To see that σ is onto, suppose that 1 6 j 6 n. If j ∈ imα then there

exists 1 6 i 6 n such that iα = j. It follows that iminσ = iminα = j. If

j /∈ imα then j ∈ imβ. Therefore there exists i ∈ domβ such that iβ = j.

Hence iσ = iβ = j and so we have shown that σ is onto. This means that

β ∈ Sn.

For any 1 6 i 6 n we see that

iα = iminα = (iε)α = (iε)σ

and so α = εσ. Therefore we have shown that Tn ⊆ ESn and hence Tn =

ESn.

We draw on two results of Lawson that will be incredibly useful in obtain-

ing almost-factorisable inverse semigroups from factorisable inverse monoids.

It was proved that any inverse monoid is factorisable if and only if it is

almost-factorisable [69]. Moreover Lawson proved that, for every almost-

factorisable inverse semigroup S, there exists a factorisable inverse monoid

M = EG such that S is isomorphic to EG \ G. It follows from the next

theorem that EG \G will always be a semigroup.

Theorem 6.6.11. Let S be an almost-factorisable inverse semigroup iso-

morphic to EG \ G for a factorisable inverse monoid M = EG. Then

(E \ {1}, G) is a left-unique left-product pair of M .

Proof. To show that (E \{1}, G) is a left-product pair, we see ge = (geg−1)g

for every e ∈ E \ {1} and g ∈ G. Note that geg−1 6= 1, otherwise this would

imply that e = 1 ∈ E \ {1}. Hence g(E \ {1}) ⊆ (E \ {1})g for every g ∈ G.

To see that (E \ {1}, G) is left-unique, suppose that e, f ∈ E \ {1} and

g, h ∈ G such that eg = fh. This implies that e = fhg−1 and f = egh−1

and so (e, f) ∈ R by definition. From Proposition 2.2.5 we know that every
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L -class and every R-class contains a unique idempotent. It follows that

e = f and so (E \ {1}, G) is left-unique.

It is straightforward to see that EG \ G = (E \ {1})G and so we may

find presentations for almost-factorisable inverse semigroups using Theo-

rem 6.5.3. However, this requires us to know of a presentation for (E \
{1})oG beforehand. Unlike in the case of Subsection 6.6.1, we cannot rely

on an existing contruction of a presentation for MoS, where M is a monoid

and S is a semigroup [2]. One can easily adapt this construction to reach a

presentation for a semidirect product of the form S oM . Since E \ {1} is a

semigroup and G is a monoid, it follows that we can obtain semigroup pre-

sentations for (E \ {1})oG given we have a semigroup presentation for the

semilattice E \ {1}. The question as to whether this semidirect product can

be finitely presented was answered by Ruškuc and Dombi [19]. Note that

this approach differs considerably from the approach of finding presentations

of factorisable inverse monoids used by Easdown, East and FitzGerald [20].
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Chapter 7

Semigroup products with

uniqueness in the second

co-ordinate

In this chapter we focus on right-unique left-product pairs, as described

in Chapter 6. However, for reasons we will see, the results which arise in

this chapter differ considerably from those in the previous chapter. In Sec-

tion 7.1, we construct quotients of external semidirect products via congru-

ences that are ‘right-unique’ (which is simply a dual notion of a congruence

being left-unique). We change tack and consider internal semidirect prod-

ucts instead in Section 7.2. Finally, in Section 7.3, we investigate semigroup

presentations for a very special case.

7.1 External setting

In a similar fashion to Section 6.2, in this section we construct right-unique

congruences on semidirect products of semigroups. To begin, we introduce

a dual notion to that of being right-aligned for a family of equivalence rela-

tions.

Definition 7.1.1. Let S and T be semigroups such that SoT exists. We say
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that a family Λ = {λa : a ∈ T} of equivalence relations on S is left-aligned

if the following properties are satisfied:

(LA1) if (x, y) ∈ λa then (z bx, z by) ∈ λba;

(LA2) if (x, y) ∈ λa then (x az, y az) ∈ λab

for every x, y, z ∈ S and a, b ∈ T .

We introduce a dual notion to that of a left-unique congruence on a

semidirect product of semigroups.

Definition 7.1.2. Let S and T be semigroups such that S o T exists and

θ is a congruence on S o T . Then θ is right-unique if

(
(x, a), (y, b)

)
∈ θ =⇒ a = b

for every x, y ∈ S and a, b ∈ T .

Utilising a family of left-aligned congruences, we construct a right-unique

congruence on a semidirect product of semigroups.

Theorem 7.1.3. Let S and T be semigroups such that SoT exists. Suppose

that there is a left-aligned family Λ = {λa : a ∈ T} of equivalence relations

on S. Then the relation λ on S o T defined by

(
(x, a), (y, b)

)
∈ λ⇐⇒ (x, y) ∈ λa and a = b

defines a right-unique congruence on S o T .

Proof. Let S and T be semigroups such that S o T exists and that Λ =

{λa : a ∈ T} is a left-aligned family of equivalence relations on S. Suppose

that ((x, a), (y, b)) ∈ λ so that a = b and (x, y) ∈ λa. Then we consider the

products

(z, c)(x, a) = (z cx, ca) and (z, c)(y, a) = (z cy, ca)
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for every z ∈ S and a ∈ T . It follows from (LA1) that (z cx, z cy) ∈ λca and

so λ is a left congruence on S. On the other hand, we see that

(x, a)(z, c) = (x az, ac) and (y, a)(z, c) = (y az, ac).

By considering (RA2) it is evident that (x az, y az) ∈ λac and so λ is a

right congruence. Therefore λ is a congruence on S o T . We see that λ is

right-unique by definition.

Conversely, we show in the next result that given a right-unique congru-

ence on a semidirect product of semigroups, one can obtain a left-aligned

family of equivalence relations on S.

Theorem 7.1.4. Let S and T be semigroups such that S o T exists. Let λ

be a right-unique congruence on S o T and λa be defined as

λa =

{
(x, y) ∈ S × S :

(
(x, a), (y, a)

)
∈ λ
}
.

Then Λ = {λa : a ∈ T} is a left-aligned family of equivalence relations on S.

Proof. Let S and T be semigroups such that S o T . Now we suppose that

λ is a right-unique congruence on S o T . It is clear to see that λa is an

equivalence relation, for every a ∈ T , since λ is an equivalence relation.

If x, y ∈ S with (x, y) ∈ λa then ((x, a), (y, a)) ∈ λ. Since λ is a congru-

ence, we have

(
(z, b)(x, a), (z, b)(y, a)

)
=
(
(z bx, ba), (z by, ba)

)
∈ λ (7.1)

and (
(x, a)(z, b), (y, a)(z, b)

)
=
(
(x az, ab), (y az, ab)

)
∈ λ (7.2)

for every z ∈ S and b ∈ T . From Equation 7.1 and Equation 7.2 it follows

that (LA1) and (LA2) hold respectively.
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7.1.1 The case where S and T are monoids

The conditions of Theorem 7.1.3 simplify considerably in case where S and

T are monoids, and T acts unitarily on the left of S.

Definition 7.1.5. Let S and T be semigroups such that S o T exists. We

say that a family Λ = {λa : a ∈ T} of equivalence relations on S is strongly

left-aligned if the following properties are satisfied:

(SLA1) λa ⊆ λab;

(SLA2) if (x, y) ∈ λa then (bx, by) ∈ λba;

(SLA3) if (x, y) ∈ λa then (x az, y az) ∈ λa;

for every x, y, z ∈ S and a, b ∈ T .

With this definition in mind, we show that a strongly left-aligned family

of equivalence relations is always left-aligned.

Theorem 7.1.6. Let S and T be semigroups such that S o T exists. Let

Λ = {λa : a ∈ T} be a strongly left-aligned family of left congruences on S.

Then Λ is a left-aligned family of left congruences on S.

Proof. Let λa ∈ Λ where Λ is a strongly left-aligned family of left congru-

ences on S. If (x, y) ∈ λa then by (SLA2) it follows (bx, by) ∈ λba for every

b ∈ T . Since λba is a left congruence this gives (z bx, z by) ∈ λba for every

z ∈ S. Hence (LA1) is satisfied.

Similarly, if (x, y) ∈ λa then by (SLA3) we have (x az, y az) ∈ λa for very

z ∈ S. Then, by using (SLA1), we have (x az, y az) ∈ λab for every b ∈ T .

This shows that λa satisfies (LA2).

We provide a partial converse to the previous theorem in the case that

S and T are both monoids.

Theorem 7.1.7. Let S and T be monoids such that SoT exists. Let Λ be a

left-aligned family of left congruences on S. Then Λ is a strongly left-aligned

family of left congruences on S.
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Proof. Let λa ∈ Λ where Λ is a left-aligned family of left congruences on

S. Using (LA2), we see that if (x, y) ∈ λa then (x a1, y a1) ∈ λab and so

(x, y) ∈ λab for every b ∈ T . Therefore (SLA1) is satisfied.

By using (LA1), we see that if (x, y) ∈ λa then (1 bx, 1 by) ∈ λba which

gives (bx, by) ∈ λba for every b ∈ S. This gives us that (SLA2) is satisfied.

Lastly, by considering (LA2), if (x, y) ∈ λa then (x az, y az) ∈ λa1 and

thus (x az, y az) ∈ λa. This satisfies (SLA3).

7.2 Internal setting

We briefly consider internal semidirect products. However, the connection

with external semidirect products is not as tight as in Chapter 6, as we later

explain. As in Section 6.3 it is the stronger set of conditions that allow us

to realise (S o T )/λ, where S and T are semigroups and λ is a right-unique

congruence, as an internal product.

Remark 7.2.1. Suppose we begin with a left action of T on S by morphisms.

We can extend such an action to an action by morphisms of T 1 on S1 by

setting
1T s = s and 1T 1S = 1S

for every s ∈ S.

If Λ = {λa : a ∈ T} is a family of left congruences on S satisfying (LA1)

and (LA2), then one can naturally extend each λa to

λ1a = λa ∪
{

(1S , 1S)
}

with λ11T = ∆S1 .

For every a ∈ T 1, we have λ1a is a left congruence on S1 such that Λ1 =

{λ1a : a ∈ T 1} is a strongly left-aligned family of left congruences on S1.

With Remark 7.2.1 in mind, we let Λ1 = {λ1a : a ∈ T 1} and use Λ1 to

define a congruence θ1 on S1 o T 1. By considering θ1, we may form the

quotient (S1oT 1)/θ1 of the semidirect product S1oT 1. As before we have

that (S o T )/θ naturally embeds into (S1 o T 1)/θ1.
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Theorem 7.2.2. Let S and T be semigroups such that S o T exists. Let λ

be a right-unique congruence on S o T . If we define

S =

{[
(x, 1T )

]
θ1

: x ∈ S
}

and T =

{[
(1S , a)]θ1 : a ∈ T

}
then S ∼= S and T ∼= T . Moreover (S1 o T 1)/θ1 is the union of the four

disjoint semigroups

(S1 o T 1)/θ1 =

{[
(1S , 1T )

]}
∪ S ∪ T ∪ (S o T )/θ.

such that (S, T ) is a right-unique left-product pair.

Finding a converse argument to Theorem 7.2.2, in a similar fashion to

Theorem 6.4.1, is not as straightforward as one may expect. The problem lies

within the fact that one cannot obtain a left action of T on S by morphisms

as previously achieved in Section 6.3.

7.3 A special case

We give a very special case of a right-unique left-product pair for which a

semigroup presentation may be obtained.

Lemma 7.3.1. Let S and T be semigroups such that (S, T ) is a right-unique

left-product pair. We define

aU =
⋃
x∈U
{y ∈ S : ax = ya} (7.3)

for every a ∈ T and U ∈ P(S). Then the following are satisfied:

(PA1) aU aV ⊆ a(UV );

(PA2) a(bU) ⊆ abU ;

for every a, b ∈ T and U, V ∈ P(S).
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Proof. Let a ∈ T and U, V ∈ P(S). If x ∈ aU aV then x = yz where y ∈ aU

and z ∈ aV . Hence ah = ya and ak = za for some h ∈ U and k ∈ V . It

follows that hk ∈ UV is such that

a(hk) = (ya)k = y(ak) = y(za) = (yz)a = xa

and so x ∈ a(UV ) by definition. Hence we have shown that aU aV ⊆ a(UV )

holds and so (PA1) is satisfied.

Now we let a, b ∈ T , U ∈ P(S) and x ∈ a(bU). Then ay = xa for some

y ∈ bU , so bz = yb for some z ∈ U . Since z ∈ U , we see that

(ab)z = a(bz) = a(yb) = (ay)b = (xa)b = x(ab)

and so x ∈ abU . This concludes the proof as we have shown a(bU) ⊆ abU

which means (PA2) is satisfied.

We remark that, using the notation from Lemma 7.3.1, we have aU = ∅
if and only if U = ∅ since (S, T ) is a left-product pair. We proceed by

proving some important results which will be crucial in forming some of the

main theorems of this chapter.

Lemma 7.3.2. For every a ∈ T and U ∈ P(S) we have that aUa = aU .

Proof. Let a ∈ T and U ∈ P(S). Then we see that

x ∈ aUa⇐⇒ x ∈ a{u}a for some u ∈ U

⇐⇒ x = va for some v ∈ a{u}

⇐⇒ x = va where au = va for some u ∈ U

⇐⇒ x = au for some u ∈ U

⇐⇒ x ∈ aU.

Therefore aU = Ua as required.

Lemma 7.3.3. Let a ∈ T , I be some non-empty index and let Ui ∈ P(S)\∅
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for every i ∈ I. Then

a

(⋃
i∈I

Ui

)
=
⋃
i∈I

aUi.

Proof. For ease of notation, we begin by setting V and W to be

V =
⋃
i∈I

Ui and W =
⋃
i∈I

aUi.

With this in mind, we see that

x ∈ aV ⇐⇒ ay = xa for some y ∈ V

⇐⇒ ay = xa where y ∈ Ui for some i ∈ I

⇐⇒ x ∈ aUi for some i ∈ I

⇐⇒ x ∈W.

Therefore we have shown that aV = W as required.

It is worthwhile noting, in the following definition, that the converses of

(PA1) and (PA2) do not necessarily hold.

Definition 7.3.4. Let S and T be semigroups such that (S, T ) is a right-

unique left-product pair. Then we say that (S, T ) is complete if the following

conditions are satisfied:

(CA1) a{xy} ⊆ a{x} a{y};

(CA2) there exists y ∈ b{x} such that ab{x} ⊆ a{y}

for every a, b ∈ T and x, y ∈ S.

As we will see, it will be useful in what follows to adopt the following

notation:

(PA3) a(UV ) ⊆ aU aV ;

(PA4) abU ⊆ a(bU);

for every a, b ∈ T and U, V ∈ P(S).
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Lemma 7.3.5. Let S and T be semigroups such that (S, T ) is a right-unique

left-product pair. Then (CA1) holds if and only if (PA3) holds. Additionally,

(CA2) holds if and only if (PA4) holds.

Proof. Suppose that (CA1) holds and let a ∈ T and U, V ∈ P(S). If x ∈
a(UV ) then

x ∈ a(UV )⇐⇒ x ∈ a{uv} for some u ∈ U and v ∈ V

=⇒ x ∈ a{u} a{v} for some u ∈ U and v ∈ V

⇐⇒ x ∈ aU aV.

Therefore we have shown a(UV ) ⊆ aU aV and so (CA1) implies (PA3). To

see that (PA3) implies (CA1) we set U = {x} and V = {y}. Altogether we

have shown that (CA1) holds if and only if (PA3) holds.

On the other hand, suppose that (CA2) and a, b ∈ T and U ∈ P(S). If

x ∈ abU then

x ∈ abU ⇐⇒ x ∈ ab{u} for some u ∈ U

=⇒ x ∈ a{v} for some v ∈ b{u}

⇐⇒ x ∈ a{v} for some v ∈ bU

⇐⇒ x ∈ a(bU).

Therefore we have shown that abU ⊆ a(bU) and so (CA2) implies (PA4). If

we suppose that (PA4) holds with a, b ∈ T then ab{x} ⊆ a(b{x}) by setting

U = {x} for any x ∈ S. Hence we have

z ∈ ab{x} =⇒ z ∈ a
(
b{x}

)
⇐⇒ z ∈ a{y} for some y ∈ b{x}

and so there exists some y ∈ b{x} such that ab{x} ⊆ a{y}. Thus (PA4)

implies (CA2) so that (CA2) holds if and only if (PA4) holds.

Equation 7.3 defines a left action of T on P(S) if conditions (PA2) and

(PA4) hold for (S, T ). In addition, Equation 7.3 defines a left action of T on
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P(S) by morphisms if (PA1) and (PA3) are satisfied for (S, T ). The follow-

ing observation follows immediately from a combination of Definition 1.3.1,

Definition 7.3.4, Lemma 7.3.1 and Lemma 7.3.5.

Lemma 7.3.6. Let S and T be semigroups such that (S, T ) is a right-unique

left-product pair. Then (S, T ) is complete if and only if Equation 7.3 defines

a left action of T on P(S) by homomorphisms.

With this in mind, for any semigroups S and T such that (S, T ) forms a

complete right-unique left-product pair we can form the semidirect product

P(S) o T .

Lemma 7.3.7. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair and define

λa =
{

(U, V ) ∈ P(S)× P(S) : Ua = V a
}

for every a ∈ T . Then Λ = {λa : a ∈ T} is a left-aligned family of left

congruences on P(S).

Proof. If a ∈ T then it is routine to see that λa is an equivalence relation

on P(S). If (U, V ) ∈ λa and W ∈ P(S) then it is also clear (WU,WV ) ∈ λa
so that λa is a left congruence. We continue the proof by verifying that

(SLA1), (SLA2) and (SLA3) are satisfied.

Suppose U, V ∈ P(S) and a ∈ T such that (U, V ) ∈ λa. Then clearly

(SLA1) holds since (Ua)b = (V a)b for every b ∈ T . Further, if (U, V ) ∈ λa
then using Lemma 7.3.2 we see that

bU(ba) = (bUb)a = (bU)a = b(Ua)

= b(V a) = (bV )a = (bV b)a = bV (ba)

and so (SLA2) holds. Lastly, with U, V,W ∈ P(S) and a ∈ T such that

(U, V ) ∈ λa. Then Ua = V a and it follows from Lemma 7.3.2 that

(U aW )a = U(aWa) = U(aW ) = (Ua)W

= (V a)W = V (aW ) = V (aWa) = (V aW )a
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so (SLA3) holds.

Lemma 7.3.8. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. Then the relation

(
(U, a), (V, b)

)
∈ λ ⇐⇒ (U, V ) ∈ λa and a = b

is a right-unique congruence on P(S) o T .

Proof. To verify that λ is an equivalence relation on P(S)oT is straightfor-

ward. Therefore we proceed to show that λ is a left and a right congruence

on P(S) o T .

Let U, V ∈ P(S) and a, b ∈ T be such that (U, a) and (V, b) are λ-related.

This means that (U, V ) ∈ λa and a = b by definition. If W ∈ P(S) and

c ∈ T then

(U, a)(W, c) = (UaW,ac) and (V, b)(W, c) = (V bW, bc) = (V aW,ac).

That (UaW,V aW ) ∈ λac follows from (SLA1) and (SLA3) and so λ is a

right congruence. On the other hand, we have

(W, c)(U, a) = (W cU, ca) and (W, c)(V, b) = (W cV, cb) = (W cV, ca).

That (W cU,W cV ) ∈ λca follows from (SLA2) and the fact that λca is a left

congruence. Therefore λ is a (right and left) congruence.

Clearly λ is right-unique as a congruence by definition.

Lemma 7.3.9. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. For every U, V ∈ P(S) and for every a, b ∈ T
we have (Ua)(V b) = UaV (ab).

Proof. If U, V ∈ P(S) and a, b ∈ T then using Lemma 7.3.2 we get that

(Ua)(V b) = U(aV )b = U(aV a)b = (U aV )(ab)

and so we are done.
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Theorem 7.3.10. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. Then

(
P(S) o T

)
/λ ∼= P(S)T

Proof. In this proof, we will write P instead of P(S) \ ∅. With this in mind,

we define a map θ : (P o T )/λ→ PT by

[
(U, a)

]
θ = Ua

for every U ∈ P and a ∈ T . It is clear to see that θ is well-defined. That is,

if [(U, a)] = [(V, b)] then ((U, a), (V, b)) ∈ λ which gives (U, V ) ∈ λa and so

Ua = V a. Therefore

[
(U, a)

]
θ = Ua = V a =

[
(V, a)

]
θ =

[
(V, b)

]
θ.

We now verify that θ defines an isomorphism. Firstly, θ is a homomor-

phism since ([
(U, a)

][
(V, b)

])
θ =

[
(U, a)(V, b)

]
θ

=
[
(UaV, ab)

]
θ

= UaV ab

= (Ua)(V b)

=

([
(U, a)

]
θ

)([
(V, b)

]
θ

)
To verify that θ is one-to-one, we see that if (U, a)θ = (V, b)θ then Ua = V b.

In turn this gives us a = b since (S, T ) is right-unique. Thus (U, V ) ∈ λa
and a = b which gives us that (U, a) and (V, b) are λ-related. Lastly, it is

clear to see that θ is onto; given any U ∈ P and a ∈ T , we have that

[
(U, a)

]
θ = Ua

by definition.
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With Theorem 7.3.10 in mind, we make an immediate observation.

Theorem 7.3.11. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. The subset

P1 =

{
(U, a) ∈

(
P(S) \ ∅

)
o T : |Ua| = 1

}
forms a subsemigroup of P o T where P1/λ ∼= ST .

Proof. Let S and T be semigroups such that (S, T ) is a complete right-

unique left-product pair. Let (U, a), (V, b) ∈ P1 so that |Ua| = |V b| = 1.

Then we see that

1 = |Ua||V b| =
∣∣(Ua)(V b)

∣∣ =
∣∣U(aV )b

∣∣ =
∣∣U( aV a)b

∣∣ =
∣∣(U aV )(ab)

∣∣
and so (U aV, ab) ∈ P1.

It is clear that θ, as described in Theorem 7.3.10, restricted to the sub-

semigroup P1 of P o T , is an isomorphism where im θ = ST .

7.3.1 Semigroup presentations

For the very special case of complete right-unique left-product pairs dis-

cussed in Section 7.3, in Subsection 7.3.1 we offer semigroup presentations

for semigroup products obtained from those pairs. It will be important to

recall the notation used in Section 7.3 for this subsection. We begin by

introducing a map Ψ : P1 → ST given by

(U, a)Ψ = xa

where Ua = {xa} for every U ∈ P(S) and a ∈ T . It is clear to see that Ψ is

a surjective map, although it may not necessarily be one-to-one.

Lemma 7.3.12. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. Then ker Ψ = λ.

Proof. Let U, V ∈ P(S) and a, b ∈ T such that Ua = xa and V b = yb (where
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we identify elements of ST with singleton subsets). Then

(
(U, a), (V, b)

)
∈ ker Ψ ⇐⇒ (U, a)Ψ = (V, b)Ψ

⇐⇒ xa = yb

⇐⇒ Ua = V b

⇐⇒ (U, V ) ∈ λa and a = b

⇐⇒
(
(U, a), (V, b)

)
∈ λ

and so ker Ψ = λ as required.

Suppose that P1 has the semigroup presentation 〈X : R〉 via φ. That

is to say there exists surjective homomorphism φ : X+ → P1 such that

kerφ = R]. For each a ∈ T and U ∈ P(S), we let w(U,a) be a fixed word over

X+ such that w(U,a)φ = (U, a). We also recall our notation from Section 6.5

where ∼∗= R∗ and ≈∗= R]∗ for any formal symbol ∗.

Theorem 7.3.13. Let S and T be semigroups such that (S, T ) is a complete

right-unique left-product pair. Let Ψ : P1 → ST be given by (U, a)Ψ = xa,

where we identify elements of ST with singleton subsets, and suppose that

λa =

{(
(U, a), (V, a))

)
: Ua = V a

}
.

for every a ∈ T . If we define

Rλ =
{

(w(U,a), w(V,a)) : (U, V ) ∈ λa and a ∈ T
}

then ST has presentation 〈X : R ∪Rλ〉 via φΨ.

Proof. For convenience we set α = φΨ. That α is surjective follows immedi-

ately from the fact that φ and Ψ are surjective in their own right. Thus we

continue by proving that kerα = (R ∪Rλ)] in order to complete the proof.

Suppose that (p, q) ∈ kerα for some p, q ∈ X+, say

p(φΨ) = xa = (w(U,a)φ)Ψ and q(φΨ) = yb = (w(V,b)φ)Ψ

131



where Ua = {xa} and V b = {yb} for some x, y ∈ S and a, b ∈ T . Then it is

clear that

xa = (pφ)Ψ = (qφ)Ψ = yb

and since (S, T ) is right-unique, this implies that a = b. In turn, this gives

us Ua = V a and so (U, V ) ∈ λa which means (w(U,a), w(V,b)) ∈ Rλ. It then

follows that

p ∼ w(U,a) ∼λ w(V,b) ∼ q

and so (p, q) ∈ (R ∪Rλ)]. Thus kerα ⊆ (R ∪Rλ)] as required.

For the reverse inclusion we notice the following observations. Firstly,

since kerφ ⊆ ker(φΨ) we have that R ⊆ ker(φΨ). Secondly, we have Rλ ⊆
kerφΨ since

(w(U,a)φ)Ψ = (U, a)Ψ = xa = ya = (V, a)Ψ = (w(V,a)φ)Ψ

for every U, V ∈ P(S) and a ∈ T such that (U, V ) ∈ λa with Ua = {xa}
and V a = {ya}. This implies that (R ∪ Rλ)] ⊆ ker(φΨ) and so kerφΨ =

(R ∪Rλ)].

The next main result seeks to reduce the number of generators in the

presentation provided in Theorem 7.3.13. We achieve this by supposing a

generating set for λa for every a ∈ T . That is, for every a ∈ T , we let

λa ⊆ λa such that λa generates λa as a left congruence.

Lemma 7.3.14. Let S and T be semigroups such that (S, T ) is a right-

unique left-product pair. Suppose there exists some a ∈ T such that xa = x

for every x ∈ S. Then ab = b for every b ∈ T .

Proof. Let a ∈ T such that xa = x for every x ∈ S. Then

x(ab) = (xa)b = xb

for every x ∈ S and b ∈ T . Since (S, T ) is right-unique we deduce that

ab = b for every b ∈ T .

Theorem 7.3.15. Let S and T be semigroups such that (S, T ) is a complete
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right-unique left-product pair and suppose that P1oT has presentation 〈X :

R〉 via φ. Suppose that there exists b ∈ T such that xb = x for every x ∈ S.

Let Ψ : P1 → ST be given by (U, a)Ψ = xa, where we identify elements of

ST with singleton subsets, and suppose that

λa =

{(
(U, a), (V, a)

)
: Ua = V a

}
is generated as a left congruence by λa. If we define

Rλ =
{

(w(U,a), w(V,b)) : (U, V ) ∈ λa, a ∈ T
}

then ST has presentation 〈X : R ∪Rλ〉 via φΨ.

Proof. It follows in precisely the same way as in Theorem 7.3.13 that φΨ is a

surjective homomorphism. We proceed by setting α = φΨ for convenience.

We must now show that kerα = (R ∪Rλ)].

First, we know R ⊆ kerφ and so R ⊆ kerα since kerφ ⊆ kerα. Similarly,

since Rλ ⊆ Rλ we have that Rλ ⊆ kerα as we have already shown that

Rλ ⊆ kerα from Theorem 7.3.13. Thus (R ∪Rλ)] ⊆ kerα.

For the reverse inclusion, we show that kerα ⊆ (R ∪ Rλ)]. In order

to do so, we will rely heavily on the fact that kerα = (R ∪ Rλ)] from

Theorem 7.3.13. That is, if we can show that R ∪ Rλ ⊆ (R ∪ Rλ)] then

(R ∪Rλ)] ⊆ (R ∪Rλ)] and we are done. As R ⊆ (R ∪Rλ)] is clear, we now

show that Rλ ⊆ (R ∪Rλ)].

Let (w(U,a), w(V,a)) ∈ Rλ so that (U, V ) ∈ λa and Ua = V a. Since λa

generates λa as a left congruence, either U = V or there exists a sequence

of the form

U = Z1, Z2, . . . , Zn = V

where Zi = CiWi and Zi+1 = CiWi+1 with (Wi,Wi+1) ∈ λa ∪ (λa)
−1 and

Ci ∈ P(S)1 for all 1 6 i 6 n − 1. If U = V then certainly we have that

(U, a) = (V, a) so that trivially w(U,a) ≈λ w(V,a).

On the other hand, suppose that U 6= V and fix some 1 6 i 6 n. If

Ci = 1P(S) then Zi = Wi and Zi+1 = Wi+1. Since (Wi,Wi+1) ∈ λa ∪ λ
−1
a it
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is then clear that Zi ≈λ Zi+1. If Ci ∈ P(S) then, by the assumption, there

exists some b ∈ T such that xb = x for all x ∈ S. With this in mind we see

that

bU = bUb = bU

for all U ∈ P(S). Now we consider the product

(Ci, b)(Wi, a) = (Ci
bWi, ba)

=
(
Ci(bWi), ba

)
=
(
(Cib)Wi, ba

)
= (CiWi, ba)

= (Zi, ba)

where Cib = Ci follows from the fact that xb = x for every x ∈ S. Likewise

we see that (Ci, b)(Wi+1, a) = (Zi+1, ba) in the same manner as above. Using

Lemma 7.3.14 we know that ba = a for every a ∈ T . Therefore

w(Zi,a) = w(Zi,ba) ≈ w(Ci,b)w(Wi,a)

≈λ w(Ci,b)w(Wi+1,a)

≈ w(Zi+1,ba) = w(Zi+1,a).

This gives us that (w(Zi,a), w(Zi+1,a)) ∈ (R ∪ Rλ)] for every 1 6 i 6 n and

so we deduce that (w(U,a), w(V,a)) ∈ (R ∪ Rλ)]. Hence Rλ ⊆ (R ∪ Rλ)]

as required. A further inductive argument will show us that (R ∪ Rλ)] ⊆
(R ∪Rλ)] as required.

7.4 Applications

In this section, we discuss applications of right-unique left-product pairs.

7.4.1 Left restriction semigroups

We introduce a class of semigroup which remains highly popular amongst

semigroup theorists (especially those from York).
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Definition 7.4.1. [48] A unary semigroup S is left restriction with the

unary operation denoted by x 7→ x+, if

(LAM1) x+x = x;

(LAM2) x+y+ = y+x+;

(LAM3) (x+y)+ = x+y+;

(LAM4) (xy)+x = xy+

for all x, y ∈ S. Dually, we define when a unary semigroup is right restriction

with the unary operation given by x 7→ x∗. A semigroup is said to be

restriction if it is both left and right restriction such that

(x+)∗ = x+ and (x∗)+ = x∗.

Many natural examples of (left, right) restriction semigroups exist. Ev-

ery inverse semigroup S can be regarded as a restriction semigroup by set-

ting x+ = xx−1 and x∗ = x−1x respectively for every x ∈ S. We provide an

explicit example in what follows.

Example 7.4.2 (Partial transformation monoids). Let X be a non-empty

set and let PT X denote the set

PT X = {α : A→ B |A,B ⊆ X}.

The composition in PT X is given by

dom(αβ) = (imα ∩ domβ)α−1

and x(αβ) = (xα)β for all x ∈ dom(αβ). For every A ⊆ X, we let idA ∈
PT X be given by

x idA =

{
x if x ∈ A;

undefined otherwise.
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In the case where A = domα for some α ∈ PT X we will use idα and iddomα

interchangeably. It is clear to see that idA ∈ E for every A ⊆ X and that

{idA : A ⊆ X} forms a commutative subsemigroup of PT X . To this end,

we define a unary operation + : PT X → E by α+ = idα and for every

α ∈ PT X . It is routine to verify (LAM1) and (LAM2) are satisfied under

this unary operation.

Let α, β ∈ PT X and x ∈ X. That (α+β)+ = α+β+ then follows from

x ∈ dom(α+β)+ ⇐⇒ x ∈ dom(α+β)

⇐⇒ x ∈ (imα+ ∩ domβ)(α+)−1

⇐⇒ xα+ ∈ imα+ ∩ domβ

⇐⇒ xα+ ∈ imα+ ∩ domβ+

⇐⇒ x ∈ (imα+ ∩ domβ+)(α+)−1

⇐⇒ x ∈ dom(α+β+).

So this unary operation satisfies (LAM3). We deduce that (αβ)+α = αβ+

by observing

x ∈ dom
(
(αβ)+α

)
⇐⇒ x ∈

(
im(αβ)+ ∩ domα

)(
(αβ)+

)−1
⇐⇒ x(αβ)+ ∈ im(αβ)+ ∩ domα

⇐⇒ x(αβ)+ ∈ dom(αβ) ∩ domα

⇐⇒ x(αβ)+ ∈ (imα ∩ domβ)α−1 ∩ domα

⇐⇒ x(αβ)+ ∈ (imα ∩ domβ)α−1

⇐⇒ x(αβ)+ ∈ (imα ∩ domβ+)α−1

⇐⇒ x(αβ)+ ∈ dom(αβ+)

⇐⇒ x ∈ dom(αβ+).

One can then verify that x(αβ)+α = xαβ+ for all x ∈ dom(αβ+). Hence

the unary operation satisfies (LAM4). Thus S is left restriction.

It was shown by Branco, Gomes and Gould that the free left restriction

monoid F is generated by a set of idempotents E and a free monoid over
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a certain set X [4]. They showed that if e, f ∈ E and x, y ∈ X∗ such that

ex = fy then, by Theorem 5.1 of [4], we have x = y. That (E,X∗) is a

left-product pair follows from (LAM4). Therefore (E,X∗) is a right-unique

left-product pair of the free left restriction monoid F = EX∗.
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