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Summary

In this thesis we have developed a numerical eigensolver, which is capable of obtaining the magne-
toacoustic wave solutions of a given equilibrium in either a Cartesian or cylindrical geometry, for
which it is applied to a number of different case studies in the context of waveguides in the solar
atmosphere. The eigensolver is tested against known analytical results, with increasing complex-
ity, where the previously obtained solutions are correctly retrieved. The equilibrium is allowed to
be symmetrically non-uniform in the internal region of the waveguide, whereas the external region
must be uniform. The development of this eigensolver has endless possibilities and greatly advances
investigations of previous analytical studies.

Previous analytical studies of magnetoacoustic waves in solar waveguides have been restricted
to consider only a limited selection of possible equilibria, such that a mathematical analysis can
be conducted. If an equilibrium is too complex, an analytical description breaks down and a
relationship describing the wave dispersion cannot be obtained. The work presented in this thesis
aims to bridge the gap between realistic modelling of solar waveguides and providing a description
of the waves that can propagate. In Chapter 2 we introduce the numerical eigensolver and describe
the physics of the algorithm, along with the fundamental properties of MHD waves which it relies
on. Additionally, we discuss potential avenues to improve the eigensolver that were not possible
within the time frame of this project. Within the context of applying this numerical eigensolver,
we have made an original contribution to knowledge in three areas:

• In Chapter 3 “The effect of non-uniform plasma density and flow on magnetoacoustic wave
modes in a magnetic slab geometry”, we test the numerical eigensolver against previously
obtained results for magnetoacoustic waves in photopsheric and coronal slabs. Modelling the
waveguide in a Cartesian geometry, we then extend this study to consider a non-uniform
plasma with a density modelled as a series of Gaussian profiles and also a sinc(x) function.
The analysis is conducted under both photospheric and coronal conditions with the resulting
eigenfunctions displayed for both scenarios. A magnetic slab in the presence of a non-uniform
internal background plasma flow is then presented for which the governing equations are de-
rived, eigenvalues obtained and eigenfunctions displayed. The implications that these results
may have for observational interpretations of wave modes in the solar atmosphere is discussed.

• In Chapter 4 “The effect of non-uniform plasma density and flow on magnetoacoustic wave
modes in a magnetic cylinder geometry”, we conduct a similar analysis to that presented in the
previous chapter, however with a focus on the wave properties when the waveguide is modelled
as a magnetic cylinder. The numerical eigensolver is again tested against previously obtained
analytical results of a uniform cylinder before modelling the plasma density and background
flow inside the waveguide as spatially non-uniform. The eigenfunctions are again obtained
which then allows both a 2D and 3D visualisation of the perturbations to be shown. A
discussion about the effect that a non-uniform equilibrium has on the perturbed eigenfunctions
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is presented, with a focus on the possible onset of instabilities, comparison to previous similar
studies and the implications for observational results.

• In Chapter 5 “Effect of non-linear twist and rotational flow on MHD wave modes of a magnetic
cylinder”, we use the numerical eigensolver to retrieve the solutions of a more complicated
scenario investigating a twisted magnetic flux tube. The previously obtained analytical re-
sults are retrieved and our analysis compliments that of previous studies by considering the
modified continua due to the twisted magnetic field. We then investigate the wave modes
that can exist in a rotating flux tube under both coronal and photospheric conditions where
the rotational flow is modelled using a linear profile. This analysis is further extended to
investigate the effect that a nonlinear rotational flow has on the properties of MHD waves
and the resulting continuum regions. In both cases the eigenfunctions are calculated and we
find that in the presence of a background rotational flow under photospheric conditions, the
slow surface kink mode and the fast surface kink mode in the thin flux tube limit appear
indistinguishable to observers.

These findings have implications for the theory of MHD waves in non-uniform plasmas and
their use in providing accurate estimates of local plasma properties when used as a proxy for
atmospheric-seismology.

We summarise our findings and discuss potential further investigations and improvements in
Chapter 6.
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Chapter 1

Introduction

Despite recent advances and successes in the field of solar physics as a result of increased spatial
and temporal resolution of both ground and space based telescopes, there are still open questions
about many unexplained solar phenomena. The two big questions that have evaded researchers for
decades are the so called ‘coronal heating problem’ and the related issue of ‘solar wind acceleration’.
Fine scale resolution observations have revealed details and features on the solar surface and in the
solar atmosphere that has accelerated research into these two unsolved problems, however analytical
theory has not developed at a similar pace.

Two promising possible scenarios have been proposed to explain the high temperatures in the
corona both involve the magnetic field, one is magnetic reconnection and the other is magneto-
hydrodynamic (MHD) waves. It should be noted that whilst these two mechanisms are the most
common found in literature, that more scenarios do exist such as MHD turbulence and instabilities
(Zirker 1993) and quasi-periodic oscillations (Walsh & Ireland 2003). This thesis has a particular
focus on the properties of magnetic waves, in both a Cartesian and cylindrical geometry, however it
should be noted that these may not be the only contributor to explain the coronal heating problem.
MHD waves are considered to contribute to the solution of the coronal heating problem, as they
can provide a source of energy which may be dissipated by a number of mechanisms which are
discussed later in this section. This research addresses the coronal heating problem in the context
of MHD waves by identifying the possible regimes within which dissipative processes can occur in
observable non-uniform waveguides.

We first review (in the present chapter) basic concepts including an introduction to the solar
atmosphere and MHD wave studies on which our investigations have concentrated. The numerical
code developed over the course of the PhD project and implemented in later chapters is introduced
and explained in Chapter 2. Chapter 3 discusses the wave properties in a Cartesian geometry to
both (i) retrieve previously obtained analytical results and (ii) obtain new results for MHD wave
properties in the presence of a non-uniform plasma density and also a non-uniform plasma flow.
Chapter 4 compliments Chapter 3, however for the case of a cylindrical geometry with a non-
uniform plasma density and a non-uniform field aligned plasma flow. Furthermore, we also present
3D visualisations of the wave perturbations in the non-uniform flux tube. Chapter 5 analyses the
MHD wave behaviour in a magnetically twisted flux tube and the effect that a rotational flow has
on the observational properties of these waves, in an attempt to mimic solar vortex structures.
In Chapter 6 we draw our conclusions and summarise the obtained results, complemented by an
outlook on promising future research.

1
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1.1 The Sun

The Sun is one of many astrophysical objects which, in its hottest places, is made up of a fully
ionised soup of electrons and nuclei known as plasma. The extreme temperatures found on the
Sun cause thermal energy to overcome the electromagnetic force between protons and electrons
preventing them from forming neutral atoms. The presence of these charged particles results in
plasma being an efficient electrically conducting fluid and as a result has an associated magnetic
field. This magnetic field interacts with the fluid in a nonlinear coupling with the magnetic field
and with the motion of the plasma. The study of the interaction between the magnetic field and
the plasma is known as magnetohydrodynamics (MHD). MHD theory provides an appropriate
description of the physics and dynamics which is observed on the Sun. Throughout this thesis, a
number of physical assumptions are made about the MHD framework which we consider and are
summarised below.

1. In the analysis that follows, it is assumed that velocities are non-relativistic such that the
plasma velocity and wave phase velocities are much smaller than the speed of light.

2. The plasma is assumed to be single-fluid in the sense that the plasma (fluid) is composed of
one variety of particle, this assumption results in the plasma being collisionless.

3. The plasma is electrically neutral such that the total number density of particles comprising
the plasma is much larger than the difference between the number densities of individual
positive and negative ions.

4. The plasma is considered to be in thermodynamic equilibrium.

5. The characteristic length scales in our MHD framework are extremely large, that is, much
larger than the mean free path which can be thought of as the average distance a particle
will travel before colliding with another. Additionally, it is assumed that the length scales of
interest are much larger than the Debye length, which is a measure of the distance between
the deviation of number densities of positive and negative ions per unit volume.

6. The framework is under the assumption that the fluid is considered to fill up the space in
which it is contained, such that small-scale inhomogeneities caused by particle dynamics are
negligible. This means that local fluid properties such as pressure, temperature, velocity and
density can be defined.

7. The characteristic time scales of our MHD framework are much larger than the collision times
between particles in the plasma.

The Sun provides scientists with a large scale, functioning plasma laboratory with which to
test our current understanding of MHD theory. Solar conditions are largely non-achievable in
laboratories here on Earth, namely because it is too expensive to reproduce the temperatures of
solar plasma and requires extremely complicated laboratory setups. Therefore, high-resolution
observations of the Sun can aid our understanding of not only solar processes but MHD theory as
a whole.

Studying the Sun is not only essential in terms of advancing human knowledge, it is also
vital for protecting life on Earth. The Sun being such a massive body, located within a relatively
(astronomically speaking) close proximity to Earth, also presents potentially dangerous risks. Large
solar eruptions, such as coronal mass ejections and solar flares, launch energetic particles at very fast
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Figure 1.1: Sun’s structure. The distinct internal and atmospheric layers are labelled,
along with some notable features observed in the solar atmosphere. Image courtesy of
NASA.

velocities towards Earth, which can interfere with satellite communications and damage electrical
grids, as well as exposing pilots and astronauts to increased amounts of radiation. Whilst studying
and predicting these events is a separate field of solar physics entirely, understanding the physical
processes that occur on the Sun will provide another piece to the jigsaw.

1.2 The solar atmosphere

Inside the core of the Sun is where nuclear fusion (H −→ He) occurs, releasing energy in the form
of gamma ray photons. The energy produced here travels through the solar interior by means of
radiation in the radiative zone and convection in the convection zone, the photons produced as a
by-product from nuclear fusion in the core collide with atoms inside the solar interior and transfer
some of their energy. By the time these photons reach the edge of the solar interior, they have lost
sufficient energy such that their wavelength has increased into the visible part of the electromagnetic
spectrum and released into space in the form of photons which we see here on Earth. The solar
atmosphere is defined to begin at the ‘layer’ of the Sun beyond which photons can escape the
interior and travel into space. The term layer is used to describe separate physical regions in the
solar atmosphere although this word should not be taken explicitly, as these layers are not bounded
regions as the height and depth of solar atmospheric layers are time and space dependant. The
solar atmosphere can be thought of as consisting of three main layers namely the photosphere, the
chromosphere and the corona, based on their physical plasma properties such as temperature and
density. A sketch of the structure of both the Sun’s interior and the solar atmosphere is shown in
Figure 1.1.
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The photosphere is the most dense region of the solar atmosphere and here the plasma tempera-
ture is relatively cool (≈ 6000 K), such that some of the plasma can be considered as only partially
ionised. Partially ionised plasma is a mixture of charged particles (positive ions, electrons, and
neutral atoms) interacting through collisions, and is not the main focus of this thesis, however
there does exist excellent reviews discussing the importance of partially ionised plasma in the solar
atmosphere (in e.g. Ballester et al. 2018, Srivastava et al. 2021). The photosphere, named as such
as it emits most of the observable solar radiation, is optically thick in most spectral lines. As a
result, using techniques based on the splitting of observable spectral lines such as Zeeman splitting,
and quantum interference effects through e.g. the Hanle effect, the magnetic field is most reliably
measured in the photosphere.

The chromosphere lies above the photosphere and much is still unknown about this region. The
plasma temperature begins to rise in this region (≈ 104 K), increasing from the temperature mini-
mum in the photosphere (4300 K), whilst the plasma density begins to decrease by approximately
4 orders of magnitude from the photosphere. The chromosphere is host to complex dynamical
structures seen in observations, including a variety of plasma jets, such as spicules and fibrils.

A thin transition layer where the plasma density drops by 2 − 3 orders of magnitude and the
plasma temperature increases by 2 − 3 orders of magnitude, leads to the outermost layer of the
solar atmosphere - the solar corona. The temperature in the solar corona soars to above 106 K,
roughly 3 orders of magnitude hotter than the visible solar surface - which is much closer to the
core of the Sun where fusion occurs. This then raises the question of ‘why is the outermost layer
of the solar atmosphere much hotter than the surface?’ This concept is counter-intuitive and can
be imagined by being outside next to a campfire and feeling the air around you getting hotter
the further away from the campfire that you sit. This thermodynamic mystery is known as the
‘coronal heating problem’ (Kuperus et al. 1981, Ionson 1984, Gudiksen & Nordlund 2005, Klimchuk
2006, Van Doorsselaere et al. 2020). Previous studies, including work presented by Withbroe &
Noyes (1977), have shown that in order for coronal plasma to be maintained at the observed high
temperatures of roughly 2 MK, thermal losses due to the solar wind and radiation, must be balanced
with a corresponding energy input of 102 − 104 W m−2.

Throughout the corona, a complex, inhomogeneous magnetic field dominates the plasma dy-
namics. This magnetic field is responsible for providing the energy that drives many of the most
energetic events in the solar system, including blowout jets, coronal mass ejections, and solar flares.
These events, as well as convectional granular buffeting from the bubbling interior of the Sun, are
important for wave excitation in the solar atmosphere (Hasan & Kalkofen 1999, Hasan et al. 2000,
Chitta et al. 2012, Vigeesh et al. 2012) where the resulting waves can be guided by the inhomoge-
neous magnetic field. As the resulting waves are guided by the magnetic field, which contributes
partly to their restoring force, the resulting waves are known as magnetohydrodynamic waves. It
is widely accepted that MHD waves remain a strong candidate for explaining the unexpectedly
high coronal temperatures however much is still unknown about the importance of the role that
MHD waves may play. After the detection of ubiquitous MHD waves in the solar atmosphere, the
following question arises: can they contribute to the energy budget of the solar atmosphere which
ultimately results in the heating of the solar corona? To answer this fundamental question, it is
vital that MHD waves possess sufficient energy required to heat the corona, and also that there
exists a mechanism to convert this wave energy into thermal energy in the upper layers of the solar
atmosphere?

Heating of the upper solar atmosphere as a result of waves was first proposed over half a century
ago. Early work from Biermann (1946, 1948) and Schwarzschild (1948) suggested that sound waves
generated by turbulence in the convection zone may steepen to form shock waves which propagate
up through the solar atmosphere which may result in heating of the atmospheric plasma. Indeed,
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this phenomena has been well modelled numerically (Verwichte et al. 2008, Bareford & Hood 2015,
Arber et al. 2016), however, it is now known that the solar atmosphere, in particular the corona, is
dominated by the magnetic field and consequently the relevant wave models are MHD in nature, as
opposed to purely acoustic hydrodynamic waves. At this time, the widely accepted point of view in
the solar community is that damping of acoustic wave modes, which have steepened into shocks, is
the most probable mechanism of the lower chromospheric heating, however, it does not explain the
heating of the upper chromosphere and corona. Some numerical studies have shown that sufficient
energy, to heat the solar corona, can be found in other propagating MHD waves, e.g. Alfvén waves
(Srivastava et al. 2017). A discussion of the proposed mechanisms that may allow MHD waves
to dissipate their energy and heat local plasma is presented in Section 1.7.2. The primary aim of
the work presented in this thesis does not intend to investigate the plasma heating potential of
MHD waves, however a review of MHD wave heating can be found in a number of papers (see, e.g.
Mathioudakis et al. 2013, De Moortel & Browning 2015, Arregui 2015).

Studying and understanding the properties of the observed MHD waves propagating through
the solar atmosphere is important for a number of reasons. Firstly, MHD waves may be able to
dissipate some of their energy as they travel through the upper layers of the solar atmosphere. If
they are deemed to dissipate a sufficient amount of energy in the correct locations, they may play
a vital role in the local heating of the chromosphere and corona. Secondly, not only may they
contribute to the energy budget of the solar atmosphere, but they can also be used as a proxy to
determine the properties of local plasma. Directly measuring certain properties of solar plasma, such
as the magnetic field strength in the corona, is tremendously difficult through common techniques
such as Zeeman splitting, because the coronal plasma is optically thin and intensity from the lower
layers of the solar atmosphere would interfere with the splitting of observed spectral lines. Using a
tool known as solar magnetoseismology, it is possible to infer properties such as the magnetic field
strength, by combining observed wave properties with the corresponding analytical theory that
models waveguides approximating those in the solar atmosphere.

1.3 Ideal MHD equations

In order to enable us to discuss MHD waves in detail, it is essential that the standard procedure for
wave analysis is conducted. The starting point for all MHD wave motion analysis is a mathematical
investigation which requires perturbing an established equilibrium and seeking wave-like solutions
to the governing equations of MHD, to see whether the resulting disturbance propagates as a wave.

In MHD, the governing equations derive from the combination of the electromagnetic equations
and plasma equations and describe the motion of a perfectly conducting fluid interacting with a
magnetic field. A simplified form of Maxwell’s equations combined with Ohm’s law and the ideal gas
law together with fundamental theorems in physics such as the conservation of mass, momentum
and energy, form the basis for the ideal MHD equations.

The set of ideal, compressible MHD equations used in this thesis are the continuity equation
describing the conservation of mass (Priest 2014):

dρ

dt
+ ρ∇ · v = 0, (1.1)

the momentum equation (otherwise known as the equation of motion) describes the conservation
of momentum:

ρ

(
dv

dt

)
= −∇p+

1

µ0
(∇×B)×B, (1.2)
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the energy equation arising from the conservation of energy:

d

dt

(
p

ργ

)
= 0, (1.3)

the induction equation relates the motion of the plasma and the magnetic field:

∂B

∂t
= ∇× (v×B) , (1.4)

and the solenoidal (divergence-free) condition requiring that any magnetic field entering a volume
must also leave that volume:

∇ ·B = 0. (1.5)

Here ρ is the plasma (gas) density, v is the velocity field, p is the plasma pressure, B is the magnetic
field, µ0 and γ are the magnetic permeability of free space and the ratio of specific heats respectively
and d

dt = ∂
∂t + v ·∇ is the total (material) derivative. Traditionally, the value of γ is 5/3 in a model

solar atmosphere however this value is dependant upon the degrees of freedom of the plasma.
The Lorentz force present in the momentum Equation (1.2) can be decomposed using a vector

calculus identity into:
1

µ0
(∇×B)×B =

1

µ0
(B · ∇)B−∇

(
B2

2µ0

)
. (1.6)

The first term on the right hand side of Equation (1.6) represents the magnetic tension force
which acts perpendicular to B. Tension acts to straighten out curved magnetic field lines and
its magnitude is proportional to the field line curvature. The second term on the right-hand side
represents the magnetic pressure force, which acts along a negative gradient in magnetic field
strength. The effect of magnetic pressure is to spread out the magnetic field lines, in the sense that
neighbouring magnetic field lines in close proximity will have a force pulling them apart.

The key properties of ideal MHD include that it must obey the ‘frozen-in’ condition (Alfvén
1942). This states that the magnetic field is frozen into the plasma such that the magnetic flux and
magnetic field lines within a volume element is conserved over time, and that the magnetic topology
is preserved over time. Furthermore, fundamental properties of the plasma such as mass, momen-
tum, energy and helicity must be conserved. As a result of the magnetic field being ‘frozen-in’ to
the plasma, plasma can move freely along magnetic field lines, however can not move perpendicular
to magnetic field lines, resulting in a plasma which drags magnetic field lines, or magnetic field
lines which push a plasma. The plasma is assumed to be adiabatic, such that there is no transfer
of heat from the plasma to the surroundings, similarly, it is assumed that there is no dissipation in
ideal MHD. The effects of gravity and the Coriolis force are ignored throughout. The Coriolis force
alone acts perpendicular to the direction of plasma motion and is responsible for driving inertial
waves. When the magnetic field is strong, such as in the solar atmosphere, the effect of the Coriolis
force is negligible when compared to the magnetic field, as a result it is not considered in this
thesis. Gravity would appear as an extra term in the equation of motion. However, it should be
noted that equilibrium density stratification itself in the solar atmosphere can be a consequence of
gravity, although gravity can be ignored if the gravitational scale height is large when compared
to the wavelength of the oscillation and the thickness of the waveguide, which is an appropriate
assumption for many small-scale solar atmospheric structures. Furthermore, non-ideal MHD effects
are ignored in this thesis and thus not included in the set of Equations (1.1)-(1.5). Non-ideal MHD
effects would appear as additional terms in the set of Equations (1.1)-(1.5) including resistivity,
anisotropic thermal conduction and viscosity which describes the drag forces of the plasma resulting
from collisions between particles and manifests as an additional term in Equation (1.2).
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Without loss of generality, it is possible to linearise Equations (1.1)-(1.5) by writing each variable
as f = f0 + f1 where f indicates a plasma variable such as density, pressure, magnetic field etc.
and subscript 1 denotes a small perturbation to the equilibrium, shown by subscript 0 (Priest 1984,
Goedbloed & Poedts 2004, Priest 2014). The perturbations are assumed to be small and thus any
products of these perturbations are ignored as they will be small and negligible. The linearised
set of Equations (1.1)-(1.5) for a spatially non-uniform equilibrium including a background plasma
flow, but with a vertical straight magnetic field can be written as:

∂ρ1
∂t

+ ρ0(∇ · v1) + ρ1(∇ · v0) = 0, (1.7)

ρ0
∂v1

∂t
= −∇P1 +

1

µ
(∇×B1)×B0, (1.8)

∂P1

∂t
− c2∂ρ1

∂t
= 0, (1.9)

∂B1

∂t
= ∇× (v1 ×B0) +∇× (v0 ×B1), (1.10)

where c =
√
γp0/ρ0 denotes the sound speed. The square of the sound speed in a plasma is

proportional to the temperature of the plasma in an ideal gas which is assumed here.
Furthermore, it will be useful to define here some characteristic velocities that are commonly

encountered in analytical studies of MHD waves describing the background state. The Alfvén
speed, vA, arises due to the magnetic field and is defined as:

vA =
B0√
µ0ρ0

. (1.11)

Another common velocity in MHD is the tube (or cusp) speed, cT , defined as:

cT =
vAc√
v2A + c2

. (1.12)

It would also be useful to define here the plasma-β which is the ratio of plasma pressure P0 to
magnetic pressure:

β =
2µ0P0

B2
0

. (1.13)

When plasma-β � 1, the local plasma is said to be ‘low plasma-β’ and in this case the magnetic
field dominates the dynamics of the local environment. In some studies, it is assumed that the
plasma-β = 0, which can be a good approximation of coronal plasma (Ruderman & Roberts 2002,
Arregui et al. 2005, Pascoe et al. 2009, Arregui & Goossens 2019, Duckenfield et al. 2021). By
doing so, the plasma is taken to be ‘cold’ and the mathematical analysis is simplified with some
permittable wave modes, namely slow magnetoacoustic modes, being ignored.

1.4 MHD waves in uniform plasmas of infinite extent

What differentiates MHD waves from waves in fluids, such as sound waves in air, is the contribution
of the magnetic field to the waves’ restoring force. The properties of linear MHD waves in a uniform
plasma of infinite extent are often used to characterise MHD waves in general (Goossens et al. 2019).

In this section, we will discuss the predicted waves from theory that can exist in a uniform
plasma of infinite extent. The analysis in this section is based upon the assumption that the
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medium within which the MHD waves propagate is uniform, which is valid if the wavelength (λ) is
much smaller than the length scale of variations in the plasma properties. We can take the set of
linearised ideal MHD equations shown in Equations (1.7)-(1.10) and seek a general solution in the
form of a superposition of plane waves through:

v1, ρ1, P1,B1 ∝ ei(k·r−ωt),

where k is the wavevector, r the spatial vector which can take different forms depending upon the
geometry of the mathematical model and ω is the angular frequency of the wave. By substituting
into the system of linearised equations, one obtains the dispersion relation for MHD waves in a
uniform plasma:

ω2
(
ω2 − k2v2Acos2θ

) [
ω4 − ω2k2(v2A + c2) + k4v2Ac

2cos2θ
]

= 0, (1.14)

where θ denotes the angle between the wavevector and the magnetic field. Equation 1.14 pro-
vides the general dispersion relation describing waves in a uniform plasma of infinite extent. The
dispersion relation contains the eight solutions of our system, one of which is a spurious solution
corresponding to ω = 0. The other seven, however, are physical solutions and for a more detailed
discussion the interested reader is referred to Goedbloed & Poedts (2004). The first solution to
Equation 1.14 is known as the entropy wave, and corresponds to ω = 0 (not to be confused with the
spurious solution), which only involves entropy perturbations (no perturbation in velocity, pressure
or magnetic field). The second solution is the sound wave, which can be retrieved in the special case
by setting the magnetic field to be zero. In this case, and neglecting the entropy wave, Equation
1.14 becomes:

ω2 = k2c2, (1.15)

which is the dispersion relation for sound waves travelling isotropically across the domain. The
other solutions are found by the terms inside the brackets of Equation 1.14 and correspond to
magnetoacoustic and Alfvén waves, which are discussed in more detail below.

1.4.1 Magnetoacoustic waves

MHD waves whose restoring force is a combination of the gas pressure gradient and the magnetic
pressure gradient, but not other forces such as gravity and the Coriolis force, are known as mag-
netoacoustic waves. Magnetoacoustic waves are compressible perturbations and, as a result, their
propagation can be inferred by indirectly observing periodic perturbations in plasma properties
such as density and temperature. One of the two fundamental properties of magnetoacoustic waves
include that they do not propagate parallel vorticity, however they do create horizontal vorticity.
Vorticity, as used here, is defined as the curl of the velocity field and is a measure of the rotational
behaviour of the plasma. By referring to ‘parallel’ and ‘horizontal’ we describe with respect to the
magnetic field. In a uniform medium, the dispersion relation for magnetoacoustic waves has two
solutions; which are retrieved from the bi-quadratic term in Equation 1.14:

ω4 − ω2k2(v2A + c2) + k4v2Ac
2cos2θ = 0.

The solutions for magnetoacoustic waves correspond to a higher frequency mode known as the fast
magnetoacoustic wave (fast mode) and a lower frequency mode known as the slow magnetoacoustic
wave (slow mode). The fast mode can propagate at any angle across the magnetic field lines and
has a dominant transversal motion to the magnetic field, whereas the slow mode is restricted to
propagation along the magnetic field lines only and has a dominant parallel motion. Both wave
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modes are physically similar but different in the sense that the fast mode’s restoring force has the
magnetic pressure and gas pressure in phase with each other whereas for the slow mode, the gas
pressure and magnetic pressure are out of phase with each other.

1.4.2 Alfvén waves

There is another type of MHD wave whose restoring force is solely magnetic tension, known as
the Alfvén wave (Alfvén 1942), which is described by the second term in Equation 1.14 and has a
dispersion relation:

ω2 = k2v2Acos2θ.

The Alfvén wave exists purely due to the presence of the magnetic field. The perturbation in this
case is incompressible, therefore this wave mode does not perturb plasma density or temperature
and so can be difficult to detect directly in the solar atmosphere. Unlike magnetoacoustic waves,
Alfvén waves do propagate parallel vorticity and do not have a component of the displacement
parallel to the magnetic field. The waves are anisotropic since they transfer their energy along the
magnetic field.

1.5 Analytical modelling of solar MHD waveguides

In Section 1.4, the typical MHD waves which exist in a magnetised plasma were introduced. That
analysis assumed that the plasma was infinite, unbounded and homogeneous. However, it is clear
that solar atmospheric plasma is not infinite and unbounded, neither is it homogeneous. A basic
example of an inhomogeneous plasma would be to consider a tangential interface, created by a
single discontinuity perpendicular to the magnetic field. A simple discontinuous jump in some
plasma property such as density, creates two semi-infinite plasma regions separated by a tangential
interface. This specific scenario was studied by e.g. Zajtsev & Stepanov (1975), Roberts (1981b),
where the authors showed the existence of MHD surface waves that can be either fast or slow,
depending on the phase difference between the pressure gradient and magnetic restoring forces.
These waves are known as surface waves as they exhibit their maximum amplitude at the boundary
of the tangential discontinuity. A more detailed discussion of these MHD waves is present in Section
1.6.

In reality, the plasma in the solar atmosphere is heavily structured, thanks to the magnetic
field which permeates throughout plasma. These regions of inhomogeneities give rise to possible
magnetic waveguides within which MHD waves can propagate. These waveguides provide a nat-
ural conduit for mass and energy transport from the lower solar atmosphere to the upper layers.
Examples of magnetic waveguides commonly observed in the solar atmosphere include sunspots,
pores, spicules, prominences and coronal loops. In the majority of cases, a boundary can be deter-
mined, either in intensity observations which is proportional to plasma density, or in the magnetic
field strength. Therefore, it would be insightful to conduct an analytical investigation into the
wave modes observed propagating throughout these waveguides by modelling these waveguides in
a particular geometry.

Two appropriate models that are commonly used in the analytical analysis of MHD waves in
solar structures are the magnetic slab (Cartesian geometry) and the magnetic cylinder (cylindrical
geometry). Early analytical works have previously investigated the properties of MHD waves in
uniform magnetic slabs and cylinders (Hain & Lüst 1958, Spruit & Zweibel 1979, Wilson 1980,
Roberts 1981b,a, Spruit 1982, Edwin & Roberts 1982, 1983). Both methods have their individual
advantages and disadvantages.



CHAPTER 1. INTRODUCTION 10

Firstly, consider modelling solar waveguides in a Cartesian geometry, alternatively the waveg-
uide in this case is known as a magnetic slab. Usually in this case, the model is two dimensional,
with x denoting the horizontal direction and z denoting the vertical direction. Therefore, the lin-
earised ideal MHD Equations (1.7)-(1.10) can be Fourier decomposed with respect to the ignorable
coordinate z. The benefits of modelling solar waveguides using a magnetic slab geometry are that
it has mathematical simplicity over alternative geometries. The vector operators in Cartesian ge-
ometry adopt a simpler form than that of, e.g. cylindrical geometry which results in a Cartesian
geometry providing a strong starting point to begin any analytical investigation. Furthermore, in
principle, the magnetic slab model is a good approximation for some structures observed in the
solar atmosphere, such as light bridges (Rouppe van der Voort et al. 2010, Borrero & Ichimoto
2011, Sobotka et al. 2013). Rather contradictory, the magnetic slab model can also be a poor
model of other observed waveguides in the solar atmosphere, such as jets, sunspots and coronal
loops, because these waveguides are seen to have a curved boundary, which may be better modelled
using a cylindrical model, see Figure 1.2b. Furthermore, the magnetic slab model is typically two
dimensional. In this case the vector component into or out of the plane is ignored, and with it, so
is a lot of physics, for example studies of the Alfvén wave and other torsional/rotational dynamics.
On the other hand, modelling solar waveguides using a magnetic cylinder model has both benefits
over the slab model and some complications. The benefits have already been briefly mentioned,
including that a cylindrical geometry is a better approximation for the observed waveguides in the
solar atmosphere with rounded-like boundaries. Additionally, the cylinder model is a three dimen-
sional model which allows investigations into the azimuthal behaviour of the background and the
perturbations. However, the cylinder model creates more complicated mathematical analysis, the
results of which may be difficult to interpret without a good initial understanding.

MHD waves have been observed throughout features across all layers in the solar atmosphere
such as pores, sunspots, spicules and coronal loops (Morton et al. 2012, 2013, Verth & Jess 2016,
Jess et al. 2017, Keys et al. 2018). The observable signatures of MHD waves depends on the type
of mode and a more detailed discussion on this with additional observational evidence is found in
Section 1.6.

1.6 MHD waves in uniform waveguides

Solar atmospheric plasma is in reality extremely non-uniform both spatially and temporally. How-
ever, it is instructive to conduct an analysis into wave modes in a uniform waveguide first, to create
the foundations upon which to build an understanding into the MHD waves observed in the solar
atmosphere.

In this section, let us introduce a waveguide where the MHD waves can be trapped, which is
represented by an discontinuous inhomogeneity in, e.g. density, magnetic field strength, tempera-
ture etc. The analysis in this section assumes a cylindrical geometry where the boundary of the
waveguide is located at r = a, with a being the tube radius. The magnetic field in both regions
(r > a and r < a) is taken to be straight and uniform although of different magnitudes in each
region. Likewise the equilibrium plasma density and pressure inside and outside the tube are taken
to be ρi, ρe and Pi, Pe respectively, (see Figure 1.2b). The subscript i indicates plasma inside the
waveguide whereas the subscript e indicates plasma outside the waveguide. There are numerous
studies which investigate wave propagation in such an equilibrium (see, e.g. Wilson 1979, Wentzel
1979, Wilson 1980, Edwin & Roberts 1983).

Traditionally, conducting an analytical study into waves in the solar atmosphere is carried out
analytically. This requires solving the (ideal or non-ideal) linearised MHD Equations (1.7)-(1.10)
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(a)

(b)

Figure 1.2: Schematic diagram showing examples of how to model magnetic waveguides
in the solar atmosphere analytically. (a) A magnetic waveguide in a Cartesian coordinate
system can be modelled by a uniform magnetic slab, where the magnetic field is shown by
the red arrows. (b) A magnetic waveguide in a cylindrical coordinate system is modelled
by a uniform magnetic cylinder. The plasma both inside and outside the waveguide is
uniform, however may be of different magnitudes. The magnetic field is assumed to
be vertical and straight. If a background plasma flow is included, this is considered to
be steady and aligned with the magnetic field. For a magnetic slab, the width of the
waveguide is denoted as 2x0, whereas the radius of a magnetic cylinder is taken to be a.
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and seeking plane wave solutions that are oscillatory in space and time. Equations (1.7)-(1.10)
are Fourier analysed by taking the perturbations proportional to exp(ik · r − iωt) as before. In
this section we will analyse the equilibrium in a cylindrical geometry, however, it should be noted
that a similar analysis can be carried out in Cartesian geometry by simply modifying the vector
operators.

Assuming a cylindrical geometry, the spatial vector can be written in component form as r =
(r, ϕ, z) and the wavevector can be written as k = (kr,m, kz) where kr is the radial wavenumber, m
is the azimuthal wavenumber and kz the longitudinal wavenumber. From now on, the longitudinal
wavenumber kz will be expressed as k.

After some algebra, and seeking wave-like solutions, the linearised MHD Equations (1.7) - (1.10)
yield the governing equations:

D
d

dr
(rξ̂r) =

(
v2A + c2

) (
ω2 − k2c2T

)(
κ2 +

m2

r2

)
rP̂T , (1.16)

dP̂T
dr

= ρ0
(
ω2 − k2v2A

)
ξ̂r, (1.17)

D = ρ0
(
v2A + c2

) (
ω2 − k2v2A

) (
ω2 − k2c2T

)
,

and κ2 =

(
k2v2A − ω2

) (
k2c2 − ω2

)(
v2A + c2

) (
k2c2T − ω2

) ,

where P̂T is the total pressure perturbation and ξ̂r denotes the radial displacement perturbation.
Equations (1.16)-(1.17) apply to both the internal and external regions of the cylinder, however,
characteristic quantities will be denoted by subscripts i or e respectively. The effective internal
radial wavenumber, κi, also controls an important aspect regarding the physical properties of the
resulting waves. The square of the effective internal radial wavenumber κ2i can be expressed as:

κ2i =

(
k2c2i − ω2

) (
k2v2Ai − ω2

)(
c2i + v2Ai

) (
k2c2T i − ω2

) . (1.18)

If this quantity is positive (κ2i > 0) then the amplitude of the resulting eigenmodes is located near
the boundary r = a of the flux tube, these are called ‘surface modes’. However, when κ2i < 0 then
the resulting spatial behaviour of the eigenmodes is oscillatory in nature, and the solution may
possess an infinite number of radial nodes within the waveguide, these wave modes are referred to
as ‘body modes’.

It is possible to combine Equations (1.16)-(1.17) to form a single differential equation in one
eigenfunction, for example P̂T . Inside the waveguide, this equation takes the form:

(
ω2 − k2v2Ai

) [ d2
dr2

+
1

r

d

dr
−
(
κ2i +

m2

r2

)]
P̂T = 0. (1.19)

Equation 1.19 takes the same form outside the cylinder, however, the subscript i will be replaced
by subscript e. It can be seen from Equation 1.19 that these are two unique solutions. The first
solution which satisfies Equation 1.19 can be written as:

ω = kvAi,

vph =
ω

k
= vAi,
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and corresponds to torsional Alfvén waves propagating with a phase speed vph at the local internal
Alfvén velocity. It can be seen from Equation 1.19 that the solution for the Alfvén wave is indepen-
dent on the azimuthal wavenumber m. This means that there exists an infinite number of Alfvén
wave solutions for the uniform magnetic cylindrical waveguide. The second solution is given by
the solution of the differential equation in square brackets and corresponds to the magnetoacous-
tic waves with different azimuthal wavenumber m. In previous studies, such as that analysed in
this section by Edwin & Roberts (1983), the differential equation describing magnetoacoustic wave
modes in Equation 1.19 has coefficients which are of sufficient mathematical simplicity that a known
closed form analytical solution exists. The solution to the differential equation under consideration
takes the form of Bessel functions of different kinds, dependant upon the sign of the effective ra-
dial wavenumber κ2i . Furthermore, it is required by the model that waves must be trapped inside
the flux tube, therefore there must be no wave energy infinitely far from the waveguide. Mathe-
matically speaking, this means that the solution outside the cylinder must be evanescent, i.e. the
wave energy must decay as it approaches r = ∞ such that the energy is spatially concentrated
within the waveguide. This can be achieved by requiring the external effective wavenumber, κ2e, to
be positive. Waves which propagate energy away from the waveguide are known as ‘leaky waves’
and are discussed in Section 1.7.2. The resulting dispersion relation can be derived in a relatively
straight forward way by applying relevant boundary conditions on the boundary of the waveguide.
There are two physical boundary conditions in this case; the continuity of the perturbation of total
pressure across the interface r = a, and the continuity of the perturbation of radial displacement. If
the initial model does not take into account any background plasma flow, then the second boundary
condition here can be replaced by the continuity of radial velocity perturbation, arising from the
MHD stress tensor describing the forces acting on the boundary of the waveguide. Application of
these boundary conditions yields the dispersion relation for surface magnetoacoustic modes in a
uniform cylindrical waveguide (Edwin & Roberts 1983).:

ρe
(
ω2 − k2v2Ae

)
κi
I ′m (κia)

Im (κia)
− ρi

(
ω2 − k2v2Ai

)
κe
K ′m (κea)

Km (κea)
= 0, (1.20)

where Im and Km are modified Bessel functions of order m and a prime denotes a derivative with
respect to the argument of the Bessel function. Solutions to Equation (1.20) provide the discrete
magnetoacoustic modes that exist in a uniform magnetic cylinder and the dispersion relation gives a
relationship between ω and k. As the frequency of the resulting waves depends on the wavenumber,
these waves are said to be dispersive. Wave dispersion is caused by a well defined geometric
boundary, in this case by the waveguide. Finally, with regards to Equation (1.20), for body mode
solutions that are oscillatory in nature, κ2i < 0 will result in the modified Bessel function Im
becoming Bessel Jm.

Magnetoacoustic waves can be divided into sub classes by their azimuthal wavenumber. Setting
m = 0 yields the ‘sausage mode’ solution which has no nodes in the azimuthal direction. This
wave mode can be observed in e.g. density or velocity perturbations as a periodic expansion and
contraction of the waveguide and does not perturb the axis of the waveguide. The sausage mode
solution has a total pressure perturbation which is a maximum or minimum at the centre of the tube.
Whilst the sausage mode is fundamental in theory, it has proven to be difficult to observe in the
solar atmosphere until recent times, due to limitations in the spatial resolution of many observing
instruments. These waves are typically identified through simultaneous periodic intensity and area
fluctuations in magnetic waveguides, and recently have interpretations of the m = 0 sausage mode
has been reported propagating in solar pores (Morton et al. 2011, Gilchrist-Millar et al. 2021) and
in chromospheric fibrils on the solar disk (Gafeira et al. 2017).
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Figure 1.3: Schematic diagram of the magnetoacoustic wave modes observed in a mag-
netic cylinder taken from Jess et al. (2015). In this diagram the azimuthal wavenumber is
denoted by n rather than m. The sausage (m = 0) and kink (m = 1) mode are shown as
a periodic expansion/contraction and swaying motion of the waveguide, respectively. The
solid lines outline the perturbation of the cylindrical waveguide with the corresponding
arrows displaying the resulting velocity field. The magnetic field in all cases is considered
vertical and uniform. A similar cartoon can be found in Morton et al. (2012).
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On the other hand, the m = 1 wave mode, which has one node in the azimuthal direction,
retrieves a solution known as the ‘kink mode’. The kink mode corresponds to a waveguide that
appears to undergo a periodic transverse ‘swaying’ motion. This mode does perturb the axial
structure of the waveguide and the total pressure perturbation is zero at the centre of the flux tube.
Conversely, the radial displacement perturbation is a maximum at r = 0. A cartoon depicting the
fast and slow m = 0 and m = 1 magnetoacoustic modes is shown in Figure 1.3. Kink waves have
been observed in coronal loops (Aschwanden et al. 1999, Nakariakov et al. 1999, Li et al. 2017) in
spicules (Kukhianidze et al. 2006, De Pontieu, McIntosh, Carlsson, Hansteen, Tarbell, Schrijver,
M., Shine, Tsuneta, Katsukawa, Ichimoto, Suematsu, Shimizu & Nagata 2007, Ebadi & Ghiassi
2014, Tavabi et al. 2015), in their on-disk counterparts Rapid Blue- (Red-) shifted Excursions
(RBE/RREs) (Rouppe van der Voort et al. 2009), in mottles (Kuridze et al. 2012) and in fibrils
(Pietarila et al. 2011). A mix of both propagating and standing transverse waves along spicule
structures was reported by Okamoto & De Pontieu (2011). The observational study by Sekse et al.
(2013) revealed that transverse displacements along with rotational motions and mass plasma flows,
a common characteristic of solar spicules, are present in RBE/RREs (Kuridze et al. 2016).

It is possible to plot the solutions to Equation (1.20) for different values of m (e.g. for the
sausage and kink modes) but also for different values of characteristic speed orderings. The choice
of characteristic speed orderings determines the plasma environment of which the magnetic flux
tube is embedded. For example, speed orderings of the choice vAe < ci < ce < vAi would represent
plasma embedded in a photospheric environment. On the other hand, speed orderings of the choice
ce < ci < vAi < vAe would be representative of plasma embedded in a coronal environment.

In Figure 1.4 we show the solutions for the uniform magnetic slab and cylinder model by solving
the analytical dispersion relation, for example Equation (1.20) for the case of a uniform magnetic
cylinder. Modes with phase speeds larger than the minima of the sound and Alfvén speeds are
fast mode solutions, whereas those with phase speeds slower than one minimum or the other are
slow mode solutions. The regions of different types of modes are labelled in Figure 1.4 based upon
whether the solution is a surface mode (maximum perturbation at the boundary) or a body mode
(internal oscillatory perturbation). It can be seen that only body mode solutions are present under
coronal conditions for both a magnetic slab and cylinder. Under photospheric conditions, fast
surface modes are present for speeds greater than ci and slower than ce and slow surface modes for
speeds slower than cT i and faster than vAi (see Figure 1.4a). The slow surface kink mode approaches
vAi in the long wavelength limit (as kx0 tends to 0). Both the slow body kink and sausage modes
are trapped between cT i < ω/k < ci and tend towards cT i in the long wavelength limit. For the
case of a uniform magnetic cylinder, as shown in Figure 1.4c, the slow body waves are trapped
within the same regions as their slab counterparts and possess similar properties. However, the fast
surface kink mode approaches the kink speed ck in the long wavelength limit and the slow surface
sausage and kink modes are almost identical in a cylindrical geometry. The kink speed ck is an
average of the internal and external Alfvén speeds relative to the magnetic waveguide:

ck =

√
ρ0iv2Ai + ρ0ev2Ae

ρ0i + ρ0e
. (1.21)

Under coronal conditions for a magnetic slab, shown in Figure 1.4b, and a magnetic cylinder,
shown in Figure 1.4d, the eigenvalues are similar. However, there is one main difference, which is the
appearance of the fundamental kink mode in the magnetic cylinder case. This mode tends to ck in
the long wavelength limit and is widely believed to be the mode reported in the majority of coronal
loop oscillations. For both a magnetic slab and a magnetic cylinder under coronal conditions, the
slow body sausage and kink modes are bounded by the interval cT i < ω/k < ci, the same as slow



CHAPTER 1. INTRODUCTION 16

(a) (b)

(c) (d)

Figure 1.4: The wave phase speeds plotted on a dispersion diagram. The solutions are
obtained by solving the analytical dispersion relations from Edwin & Roberts (1982) for a
magnetic slab and Edwin & Roberts (1983) for a magnetic cylinder. Solutions are shown
for a magnetic slab under (a) photospheric conditions and (b) coronal conditions and also
for a magnetic cylinder under (c) photospheric conditions and (d) coronal conditions.
The blue dots denote the kink mode solutions whereas the red dots show solutions for the
sausage mode.
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body modes under photospheric conditions. The m = 0 sausage mode and m = 1 kink mode are
not the only magnetoacoustic modes predicted by theory. In principle, there can be an infinite
number of nodes in the azimuthal direction of the resulting MHD wave, therefore the azimuthal
wave number m can be infinitely large. Magnetoacoustic waves which have azimuthal wavenumber
m ≥ 2 are known as fluting modes, however, they are not analysed in this thesis.

1.7 MHD waves in non-uniform waveguides

In the Section 1.6, we have discussed the possible modes that can exist in simple magnetic ge-
ometries such as slabs or flux tubes. We have discussed how the modes that exist in magnetic
waveguides can be identified by their distinguishing properties, such as body, surface, sausage and
kink modes. However, in reality, due to the inhomogeneous magnetic field which permeates the
solar atmosphere, the plasma is likely to be spatially non-uniform. This makes observations difficult
to interpret, but also consequently rich in diagnostic potential. In a non-uniform plasma, MHD
waves have different properties to their uniform counterparts, such that there is no longer a clear
division between Alfvén, magnetoacoustic, body and surface waves. MHD waves in non-uniform
plasmas have mixed properties and can propagate both parallel vorticity, such as the classical Alfvén
wave, and compression, such as classical magnetoacoustic waves. In other words, in a non-uniform
plasma, wave modes with different azimuthal wavenumbers will be coupled and hence display mixed
properties. For example, the torsional Alfvén wave in a cylindrical flux tube can only be described
as a ‘pure’ wave when it is not coupled to another wave (e.g. kink mode), and only then the nature
of the wave remains the same as it propagates along the tube. Recently Giagkiozis et al. (2015)
and Giagkiozis et al. (2016) showed that, even in the linear regime, the presence of a magnetic
background twist could couple the m = 0 torsional Alfvén wave to the sausage mode, resulting in
wave modes of mixed properties.

The properties of MHD waves in a non-uniform plasma have been investigated before and the
general formalism for any 1D inhomogeneity, including stratification along the direction of non-
uniformity, has previously been presented in (see e.g. Goedbloed et al. 2010, Goedbloed et al.
2019, Roberts 2019). In some circumstances, such as in the plasma-β = 0 approximation, the
fast kink mode is almost completely incompressible, similar to that of the Alfvén wave. These
nearly incompressible kink modes are referred to as Alfvénic and have ubiquitous presence in the
solar atmosphere (Tomczyk et al. 2007, Morton et al. 2015, 2019). Previous reports regarding the
detection of Alfvén waves in the corona (Tomczyk et al. 2007) are, in fact, likely to have been kink
waves (Van Doorsselaere et al. 2008). More probable reports of Alfvén waves have since been made
in X-ray jets (Cirtain et al. 2007) and in magnetic bright points (Jess et al. 2009). A review of the
theory and observations of solar Alfvén waves can be found in Mathioudakis et al. (2013).

1.7.1 Governing equations for a non-uniform cylinder

The guided waves within a waveguide are otherwise known as the trapped modes. These modes
correspond to solutions with a purely real wave frequency, such that it has no imaginary component.
The guided wave modes are traditionally obtained by finding the solutions to a transcendental
dispersion relation, such as Equation (1.20) as shown in Section 1.6. In the previous section
it was assumed that the waveguide was spatially uniform, that is, in each region (internal and
external to the waveguide) the plasma properties were radially constant, although the plasma was
inhomogeneous due to a discontinuity at the waveguide boundary. In a non-uniform waveguide,
where all variables are a function of the radial component only, the initial magnetic field can be
written as B0 = (0, Bϕ(r), Bz(r)) with equilibrium velocity field modelled as v0 = (0, vϕ(r), vz(r)).
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From here, for simplicity, we drop the notation that all variables may depend on r and the ideal
MHD equations can be Fourier decomposed with respect to the invariant directions ϕ and z to
yield:

D
d

dr

(
rξ̂r

)
= C1rξ̂r − C2rP̂T , (1.22)

D
dP̂T
dr

= C3ξ̂r − C1P̂T , (1.23)

where,
D = ρ

(
c2 + v2A

) (
Ω2 − ω2

A

) (
Ω2 − ω2

c

)
, (1.24)

Ω = ω − m

r
vϕ − kvz, (1.25)

ω2
A =

f2B
µρ
, ω2

c =
ω2
Ac

2(
c2 + v2A

) , (1.26)

fB =
m

r
Bϕ + kBz, (1.27)

C1 = QΩ2 − 2m
(
c2 + v2A

) (
Ω2 − ω2

c

) T 2

r2
, (1.28)

C2 = Ω4 −
(
c2 + v2A

)(m2

r2
+ k2

)(
Ω2 − ω2

c

)
, (1.29)

C3 = D

{
ρ
(
Ω2 − ω2

A

)
+ r

d

dr

[
1

µ

(
Bϕ
r

)2

− ρ
(vϕ
r

)2]}
+

+Q2 − 4
(
c2 + v2A

) (
Ω2 − ω2

c

) T 2

r2
,

(1.30)

Q = −
(
Ω2 − ω2

A

) ρv2ϕ
r

+
2Ω2B2

ϕ

µr
+

2ΩfBBϕvϕ
µr

, (1.31)

T =
fBBϕ
µ

+ ρΩvϕ. (1.32)

This full set of Equations (1.22)-(1.32) was previously introduced in literature by Goossens et al.
(1992). The quantities c2, v2A, ω2

A and ω2
c define the squares of the local sound speed, Alfvén speed,

Alfvén frequency and cusp frequency respectively. Equation (1.25) describes the Doppler shifted
frequency due to the presence of the background plasma flow. It is clear that with no plasma flow
present in the model that this equation simply reduces to the wave frequency. Furthermore, it can
be seen that if the plasma flow is bulk and steady, i.e., spatially uniform and unchanging in time,
then this expression describes the Doppler shift shown previously in Nakariakov & Roberts (1995a)
and Terra-Homem et al. (2003). Finally, the presence of a background rotational flow will have no
effect on Ω for the m = 0 sausage mode. The set of Equations (1.22)-(1.32) provide the full set of
equations for any cylindrical equilibrium with magnetic twist and plasma flow either rotational or
aligned with the axis. It should also be noted that Equations (1.22)-(1.32) describe any cylindrical
equilibrium which is non-uniform in the direction of spatial coordinate r, as a result all quantities
would also depend on r in such an equilibrium.

The Doppler shifted frequency due to background plasma flow, Ω, and the characteristic frequen-
cies ωA, ωc all depend on the spatial variable r. Under these conditions, the differential Equations
(1.22)-(1.23) become singular as ω −→ ωA and ω −→ ωc, giving rise to a continuous spectrum of
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wave frequencies. These two continua are closely related to resonant processes which are discussed
in more detail in Section 1.7.2.

The Doppler shifted continua, where wave modes can be resonantly damped due to the presence
of a background plasma flow, are bounded within the regions:

ω = ωf (r)± ωA(r), (1.33)

ω = ωf (r)± ωc(r), (1.34)

where ωf = mvϕ/r+kvz. Within these regions the wave frequency becomes a complex quantity, as a
result these are the regions which are not considered in this work. For an equilibrium which models
a uniform plasma, such as constant density and magnetic field, Equations (1.33) - (1.34) define
the flow continuum (or resonance location), however in the absense of equilibrium flow, Equation
(1.33) describes the Alfvén continuum and Equation (1.34) describes the slow/cusp continuum.

Equations (1.22)-(1.23) can be combined to create a single differential equation in either rξ̂r:

d

dr

[
f(r)

d

dr

(
rξ̂r

)]
− g(r)

(
rξ̂r

)
= 0, (1.35)

where,

f(r) =
D

rC2
, (1.36)

g(r) =
d

dr

(
C1

rC2

)
− 1

rD

(
C3 −

C2
1

C2

)
, (1.37)

or:
d

dr

[
f̃(r)

dP̂T
dr

]
− g̃(r)P̂T = 0, (1.38)

where,

f̃(r) =
rD

C3
, (1.39)

g̃(r) = − d

dr

(
rC1

C3

)
− r

D

(
C2 −

C2
1

C3

)
. (1.40)

Both the governing differential Equations (1.35) and (1.38) are analytically complicated in the
sense that, similar to the case of a non-uniform magnetic slab, no closed form analytical solution
exists for them. Ultimately, boundary conditions cannot be matched analytically and a dispersion
relation cannot be derived. For later use it may be important to note that the components of the
displacement vector of magnetic surfaces both parallel to the magnetic field lines ξ̂‖ = ξ̂ ·B/B and

perpendicular to the magnetic field lines ξ̂⊥ = (ξ̂ϕBz − ξ̂zBϕ)/B can be related to ξ̂r and P̂T by:

(
Ω2 − ω2

A

)
ξ̂⊥ =

i

ρB

(
gBP̂T −

2BzT ξ̂r
r

)
, (1.41)

(
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ifB
ρB

(
c2
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) (Ω2P̂T −Qξ̂r
)

Ω2
−

−i
(
Ω2 − ω2

c

) (
2ΩBϕvϕ + fBv

2
ϕ

)
ξ̂r

BΩ2r
,

(1.42)
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where B =
√
B2
ϕ +B2

z and

gB = (k×B)r =
m

r
Bz − kBϕ,

as given in Sakurai et al. (1991), Goossens et al. (1992). It is possible to combine Equations (1.41)
and (1.42) to isolate the component of perturbed azimuthal displacement ξ̂ϕ or the component of

perturbed vertical displacement ξ̂z:

ξ̂ϕ =
i

B

{
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ρ
(
Ω2 − ω2

A

) (gBP̂T − 2BzT ξ̂r
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+
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(1.43)

ξ̂z =
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(1.44)

For the case of a uniform cylinder, Equation (1.43) reduces to:

ξ̂ϕ =
i

ρ(ω2 − k2v2A)

m

r
P̂T , (1.45)

which is a previously obtained analytical result for the traditional uniform cylinder (Goedbloed &
Poedts 2004, Goossens et al. 2009, Ruderman & Erdélyi 2009, Priest 2014).

The components of the Eulerian perturbation of velocity can be related to the components of
the Lagrangian displacement by (see, e.g. Goossens et al. 1992):

v̂r = −iΩξ̂r, (1.46)

v̂ϕ = −iΩξ̂ϕ − ξ̂rr
d

dr

(vϕ
r

)
, (1.47)

v̂z = −iΩξ̂z − ξ̂r
dvz
dr

, (1.48)

where vϕ and vz are the azimuthal and vertical components of the background plasma flow re-
spectively. Equations (1.46)-(1.48) describe the velocity perturbations of the plasma due to a
combination of the background environment and the resulting displacement perturbations. For an
equilibrium that is uniform, Equations (1.46)-(1.48) remain uncoupled and independent of each
other. However, for an equilibrium that has a nonlinear vϕ in the sense that the azimuthal compo-
nent of flow is not proportional to r, the radial plasma motions become coupled to the azimuthal
plasma motions, an interesting scenario which is discussed in further detail in Chapter 5.

1.7.2 Continuum modes

In Section 1.7.1, we have discussed how, in reality, the plasma in the solar atmosphere is non-
uniform in nature. As a result, a broad spectrum, i.e. a continuous spectra given by a broad range
of frequencies, of MHD waves is likely to exist within such a medium. This includes waves with



CHAPTER 1. INTRODUCTION 21

frequencies that lie within either the Alfvén or slow continua described by Equations (1.33) - (1.34).
Waves inside these regions are expected to undergo resonant processes. Analytically this is due to
the regular singularities that are present in the governing Equations (1.35) and (1.38). In order
for wave based models to be a genuine suggestion as a way to heat local plasma, there must exist
a mechanism that can rapidly transfer the wave energy from large to small length scales, where
classical dissipation, such as resistive or viscous dissipation, is effective.

Many physical mechanisms have been proposed as a possible way for waves to damp and/or
dissipate their energy including, but not limited to, the transformation of waves via parametric
processes (Voitenko & Goossens 2002, Fedun et al. 2004, Voitenko & Goossens 2004, Vásconez
et al. 2015), resonant absorption and phase mixing. Perturbations of the plasma by a sideways
driver from e.g. eruptions in the solar atmosphere such as flares or CMEs, would generate waves
that propagate (on the whole) at an angle across the magnetic field. Waves propagating across a
non-uniform plasma are likely to heat the local plasma by resonant absorption when the waves reach
a location where their frequency matches the local Alfvén or slow frequency (Ionson 1978, Hollweg
& Yang 1988, Ruderman & Roberts 2002, Aschwanden et al. 2003, Howson et al. 2019). We can
see, from Equation 1.17, that when the excited mode has a frequency which falls inside one of the
two continua, this results in D = 0. The physical location of the resonance is called the resonant
layer, and is located within the region where the plasma is non-uniform. In many studies, both
analytical and numerical, a magnetic flux tube is modelled with a thin non-uniform boundary layer
at the edge of the magnetic flux tube, where resonant absorption can occur and has been proposed
as a possible explanation behind the observed damping of coronal loop oscillations (Goossens et al.
2002, Magyar & Van Doorsselaere 2016, Van Doorsselaere et al. 2021). Resonant absorption can
only take place for modes with m ≥ 1, because for m = 0 Equation (1.45) decouples from Equations
(1.16) and (1.17), making resonance impossible. We need to stress that resonant absorption is not
a true energy dissipation mechanism, but a damping mechanism. Resonant absorption is an ideal
MHD method to transfer energy from the global mode to the localised Aflvén wave, leading to
damping of the global mode. In order to dissipate the enhanced wave energy, much smaller spatial
scales need to be created, for example via the mechanism of phase mixing.

On the other hand, another proposed mechanism of wave dissipation is the concept of phase
mixing, as described by Heyvaerts & Priest (1983), which aims to enhance the rate of wave dissi-
pation through the creation of small length scales in an inhomogeneous medium. Phase mixing is
most likely to affect waves propagating along the magnetic field lines, excited by footpoint driv-
ing motions. Phase mixing occurs when a local gradient in the Alfvén speed is present; as waves
propagate along field lines with different Alfvén speeds, the wave front turns and the waves become
increasingly out of phase (Ofman & Aschwanden 2002, Pagano et al. 2020). Although resonant
absorption and phase mixing are often discussed as individual mechanisms, there is a natural link
between these mechanisms, as both rely on the presence of a variation in the local Alfvén speed
profile (Soler & Terradas 2015). Hence, the small-scale oscillations in the non-uniform region will
naturally undergo phase mixing due to local variation in the Alfvén speed (e.g. Ruderman et al.
1997). However, the damping caused by phase mixing depends on the actual value of the resistiv-
ity, while the damping of resonant absorption does not (as resonant absorption itself is an ideal
process).

Whilst it is not the main aim of this thesis to investigate the properties of waves that exist
within the continua, there are excellent reviews regarding the processes behind local heating of
solar plasma (Erdélyi & Ballai 2007, Klimchuk 2015, Van Doorsselaere et al. 2020).



Chapter 2

Numerical eigensolver

In this chapter the numerical procedure utilised throughout this thesis will be introduced and
explained. This numerical eigensolver obtains the eigenvalues and resulting eigenfunctions for
any symmetric radially non-uniform waveguide in either a slab or cylindrical geometry. The code
assumes that the internal region can be inhomogeneous, whereas the external region must be
uniform. The code was written in Python programming language from scratch.

2.1 Obtaining an equilibrium

Structures observed in the solar atmosphere that are thought to be effective waveguides (e.g. coronal
loops, sunspots, spicules etc.), must be in equilibrium in order to exist on the timescales which
they are seen to live for. Therefore, when conducting any study into waves propagating within
such structures, it is essential that the mathematical model is in a stable equilibrium before small
perturbations are considered. A stable equilibrium is obtained by ensuring that the spatial gradient
of total pressure is equal to zero. In a uniform plasma, this is numerically straightforward as there
are only two variables that need to balance, namely the plasma pressure and the magnetic field.
However, for more complicated equilibria that may include e.g. inhomogeneous plasma, magnetic
twist and/or rotational background flows, obtaining an equilibrium can be more difficult. The gas
pressure is determined by an equation of state simply defined by the ideal gas law:

P =
kB
m
ρT, (2.1)

where kB is the Boltzmann constant (1.381×10−23 J deg−1), m is the mean particle mass and T the
temperature of the plasma. Therefore, from Equation (2.1) it is possible to keep the background
gas pressure radially constant, even with a non-uniform plasma density, by, for example, balancing
the change with a spatial variation of temperature. This scenario is investigated in later chapters.

It is vital to ensure that, no matter if the equilibrium is uniform or non-uniform, that a pressure
balance is maintained across the boundary of the waveguide of choice. Consider first a simple case
of a uniform magnetic slab. In each region there is a contribution to the total pressure by both the
plasma and the magnetic field, the expression ensuring that these are equal across the boundary
can be written as:

d

dx

(
P +

B2

2µ0

)
= 0, or, Pi +

B2
i

2µ0
= Pe +

B2
e

2µ0
, (2.2)

where subscript i denotes plasma variables inside the waveguide and with subscript e for external
parameters. Equation (2.2) yields a relationship between the equilibrium plasma densities, sound

22
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speeds and Alfvén speeds across the waveguide boundary, which can be expressed by:

ρe
ρi

=
c2i + 1

2γv
2
Ai

c2e + 1
2γv

2
Ae

. (2.3)

Numerically speaking it is possible to obtain a simple equilibrium by defining ρi, ci, VAi, ce
and vAe for either photospheric or coronal conditions, and by using Equation (2.3), the necessary
value of ρe can be calculated such that the waveguide is in equilibrium. For example, under coronal
conditions given by ce < ci < vAi < vAe, we can assign a value of ci = 1 and say let ce = 0.4ci,
vAi = 1.2ci and vAe = 3ci with ρi = 1. These conditions will result in a value for ρe = 0.287
and resulting equilibrium plasma profiles as shown in Figure 2.1. The equilibrium density profile
and characteristic speed profiles of the example case of a uniform magnetic slab under coronal
conditions are shown in Figure 2.1a. Meanwhile, the radial profiles for plasma parameters such as
temperature, pressure and magnetic field are displayed in Figure 2.1b. Furthermore, Figure 2.1b
shows the spatial distribution of total pressure, which can be seen to be both continuous across
the boundary of the waveguide located at x0 = 1 and −x0 = −1 and also spatially constant. This
is the ultimate requirement for obtaining an MHD equilibrium. Once an equilibrium is obtained,
the relevant analysis of MHD waves can begin as it can be assured that small perturbations will
behave in a wave-like manner with no contribution from background perturbations.

The previous discussion had a focus on a magnetic slab geometry. In that scenario, it is only
possible to have non-uniformity in one direction, the radial direction (as y direction is infinite and
homogeneous and the MHD equations are Fourier decomposed with respect to z). However, if
a cylindrical geometry is considered, there is now an additional direction which may have plasma
properties that can be radially non-uniform. In the more complicated case of a magnetic cylinder, it
is likely that the background magnetic field and velocity field will have both azimuthal and vertical
components which are radially dependant. In such a scenario, the pressure balance equation would
be (Goossens et al. 1992):

d

dr

(
P +

B2

2µ0

)
=
ρv2ϕ
r
−
B2
ϕ

µ0r
, (2.4)

with vϕ and Bϕ the azimuthal components of the velocity and magnetic field respectively.
Now that an equilibrium has been established, for both a Cartesian and cylindrical geometry,

let us now go into more detail describing the physics of the numerical algorithm to obtain the
eigenvalues of the system.

2.2 Magnetic Slab (Cartesian geometry)

In this section the numerical approach which adopts the shooting method to solve the relevant
boundary conditions of a magnetic slab in the presence of a spatially non-uniform density is de-
scribed. Due to the presence of a non-uniform plasma, the equilibrium sound, Alfvén and cusp
speeds may all be spatially non-uniform, too. The general differential equation for the eigenfunc-
tion, v̂x, takes the following form for a non-uniform density magnetic slab:

v̂′′x + F (x, ω, k, c0, vA, cT )v̂′x +G(x, ω, k, c0, vA, cT )v̂x = 0, (2.5)

where F and G are both arbitrary functions. The corresponding total pressure perturbation ex-
pression for a non-uniform density magnetic slab takes the form:

P̂T = A(x, ω, k, c0, vA, cT ) B(x, v̂x, v̂
′
x), (2.6)
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(a)

(b)

Figure 2.1: Equilibrium profiles for uniform slab in coronal environment. (a) The
density and characteristic speed profiles, (b) plasma properties including plasma pressure,
temperature, magnetic field strength and total pressure. The dashed lines indicate the
external value (outside the waveguide) for each variable shown in the separate panels.
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(a) (b)

Figure 2.2: Example of how initial sampling is divided up on dispersion diagram for
numerical method as a function of (normalised) wavenumber for (a) phase speed (b)
frequency. Only regions containing trapped modes are considered with narrower bands
containing samples located closer together.

with A and B again arbitrary general functions. Utilising the known properties of the sausage and
kink modes, namely those of P̂T or v̂x, it is possible to solve for the symmetric or anti-symmetric
solutions in P̂T or v̂x dependant upon what the initial governing equation is (see Section 1 for
information about kink and sausage solutions being symmetric or anti symmetric). MHD waves can
be classified into ‘trapped’ or ‘leaky’ modes based on the physical nature of their wave frequencies.
If the frequency is purely real, then this wave mode is said to be ‘trapped’ and can be an observed
eigenmode. However if the wave frequency has an imaginary component (e.g. ω = ωR + iωi) then
the wave will radiate energy away from the waveguide and is said to be ‘damped’ if ωi < 0, will
be unstable if ωi > 0 and for the case of trapped modes ωi = 0. There is one more requirement
that this work considers which is that the waves under investigation are all trapped modes. This
allows the frequency domain used in the investigation to consider only real values of both the
wave frequency and wavenumber. The eigenvalues (wave frequency and wavenumber) are initially
unknown, therefore it is required to sample through values of ω = ωR and k to locate solutions
that satisfy both boundary conditions. In Figure 2.2 we show an example of the initial sampling
of the eigenvalues that are fed into the code. For example, the value of k can be fixed and the
code will loop/scan through the values of ω. The more samples used in the initial sampling (initial
resolution) then the greater the number of obtained solutions.

Restricting the investigation to purely trapped modes provides a physical constraint on the
waves infinitely far away from the waveguide boundary that they must be evanescent, that is, the
amplitude of wave perturbation and the gradient of the perturbation must be zero. Numerically it
is not convenient to consider a point located at infinity with a value of zero, as such, ‘numerical
infinity’ is considered as a point sufficiently far away from the waveguide boundary that allows the
wave amplitude to decay outside the waveguide. Using the condition that waves must be evanescent
outside the waveguide provides the initial conditions at infinity needed to numerically solve the
governing differential equation outside the waveguide. In all cases, we consider that the external
medium is uniform, therefore, a known analytical expression exists describing perturbations in this
region. The known initial conditions at ‘numerical infinity’ and the closed form analytical solution
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describing the dynamics outside the waveguide are combined to solve for v̂x externally up to and
including the boundary location. The differential equation such as that provided in Equation (2.5)
can be reduced to a first order ordinary differential equation (ODE) by a simple change of variables
which simplifies the numerical solver.

The external region to the waveguide can be considered an Initial Value Problem (IVP). The
governing ODE can be solved numerically by using a numerical integrator. In Python, a function
that can achieve this is ODEINT which stands for ordinary differential equation integration.
ODEINT adopts a number of different numerical schemes to find an approximate solution for
such ODEs but mainly implements explicit methods from a number of families including explicit
‘Runge-Kutta’, extrapolating techniques and for implicit schemes it uses implicit ‘Runge-Kutta’. In
addition to these families of algorithms, odeint introduces stepper categories corresponding to the
functionality of the method to optimise the iteration time step. Solving the ODE in the external
domain provides a value located at x = −x0 for both P̂T and v̂x which, for trapped modes, must be
continuous across the boundary. The value of P̂T or v̂x at the opposite boundary x = x0 is known
for both the sausage and kink mode solutions using their (anti)symmetric properties discussed in
Chapter 1. Therefore, inside the waveguide we have a Boundary Value Problem (BVP), however,
not enough initial information is known at the boundary to allow an IVP solver to be used. What
is unknown are the gradients at each spatial location in the domain to obtain the correct boundary
value at x = x0, therefore, the shooting method approach can be applied as the opposite boundary
value is known. The values of P̂ ′T and v̂′x do not need to be continuous across the boundary, so
even though the gradients are known in the external region, their values inside need to be found.
The shooting method takes the initial value of P̂T or v̂x at the location x = −x0 and estimates
the derivatives such that an integration can be carried out. If the derivative estimation is good,
then the eigenfunction P̂T or v̂x will satisfy the condition for either the kink or sausage mode at
x = x0. It could be possible to try and guess the correct gradient at the boundary, however,
this would either require remarkable luck or an incredible amount of trial and error, therefore we
use a numerical integrator. In Python, the function FSOLVE can aid with obtaining the correct
gradient. FSOLVE finds the roots of a given linear or non-linear function using Powell’s method
(Powell 1964). Obviously, this method is conducted for one eigenfunction so far, for the differential
equation of choice, which in this case is v̂x. However, it is a requirement for trapped waves that
both P̂T and v̂x are continuous across the boundary. Therefore a technique to satisfy the other
eigenvalue P̂T must be considered. The expression for the total pressure perturbation inside a
non-uniform magnetic slab is:

P̂T i = i
ρi(x)

ω

(
ci(x)2 + vAi(x)2

) (k2cT i(x)2 − ω2
)

(k2ci(x)2 − ω2)

dv̂x
dx

, (2.7)

and the same expression for the total pressure perturbation outside but variables will possess
subscript e. Fortunately, when calculating the spatial values of v̂x using the shooting method, the
gradient v̂′x (where a prime denotes a derivative with respect to space) is also calculated at each
point in the spatial domain as the governing differential equation has been reduced to a first order
differential equation. Therefore it is straightforward to calculate the value of P̂T everywhere inside
the magnetic slab as all the variables in Equation (2.7) are now known. The value of v̂x is trivially
matched at the boundary due to the shooting method using the known boundary value obtained
from the external region as the starting point for the internal shooting method. However, for P̂T ,
the value at the boundary depends on v̂′x and will only be continuous for a specific combination of
ω and k.

The numerical algorithm continuously loops through wave frequency when the wavenumber is
fixed. Therefore, for each eigenvalue combination, the values for P̂T i and P̂Te at x = x0 are calcu-
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(a)

(b)

Figure 2.3: Example of how the numerical algorithm implements the bisection method
when locating eigenvalues that are solutions to the governing differential equation. This
case represents the sausage mode in a magnetic slab. In both plots sample can be seen
indicated by the red dot on the top two panels, the resulting total pressure perturbation
eigenfunction is shown in the bottom panel. In panel (a) the sample produces a value
of δP̂T which is positive, i.e. the value of P̂Ti at x = x0 is greater than that of P̂Te at
x = x0. However, in panel (b), we have passed a known analytical solution (marked by
the small red crosses) and the value of δP̂T has changed sign.
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lated. Using this information it is possible to calculate the difference in total pressure perturbation
δP̂T across the boundary:

δPT = PTe

∣∣∣
x=x0

− PT i
∣∣∣
x=x0

. (2.8)

Using Equation (2.8), the variable δP̂T will be either positive or negative for a specific combination
of eigenvalues. Consider a case, say ω = ω1 and k = k1 returns a values of δP̂T < 0. In this
particular example, the value of P̂T i at the boundary is greater than that of P̂Te at the same
location. In this assumption we also consider that, so far, the two values of P̂T i and P̂Te are not
very close to each other. With this information, the code will not do anything special, because the
total pressure perturbation is not continuous across the boundary, it will continue onto the next
eigenvalue pair to seek a solution. However, lets suppose that the second iteration for ω = ω2 and
k = k1, that δP̂T is now positive. It is clear that now the difference in total pressure perturbation
has changed sign in between the two sample eigenvalues ω1 and ω2. This change in sign across
the boundary indicates that a root lies somewhere in between ω1 and ω2, this is the same physical
procedure applied in the bisection method for solving transcendental equations. Now that this
change in sign of δP̂T has occurred, the numerical code will recognise this and assume that a
solution lies somewhere in the range ω1 < ωroot < ω2, where ωroot represents a root satisfying the
eigenvalue problem. As a result, the code will return to eigenvalue ω1 and repeat the shooting
method process, solving the governing differential equation for ω1 and k1, however, the frequency
range is now divided into two such that the second iteration will solve the governing differential
equations for ω = ω1.5 and k = k1. By doing so, the value of δP̂T will change sign again, either
between ω1 < ω < ω1.5 or between ω1.5 < ω < ω2. This will isolate the root within one of the two
regimes. When the value of δPT changes sign again, the bisection method is implemented again,
until the frequency range is narrowed to isolate the root. Numerically, it can be computationally
expensive to repeat this process to locate the root to a high level of precision. Therefore, a new
variable is introduced that determines how small the absolute value of δP̂T must be such that
the eigenvalues being sampled can be classified as a solution. This variable denoted by ε can be
altered, however, must provide a reasonable balance between the accuracy and precision of the
solution. Setting ε to be a very large number will result in the code running faster and being less
computationally expensive, however, will also result in a poor accuracy of solution. On the other
hand, setting ε very small may result in a highly accurate solution, however, may take a long time
to find it, which is not ideal particularly in the case when a lot of sample points are considered.
Of course the boundary conditions should be analytically continuous anyway, however, numerically
this may not be possible, which is the purpose of the variable ε. Figure 2.3 outlines the method
adopted by the numerical eigensolver to locate solutions to the governing differential equations by
implementing the bisection method. The bottom panel shows the spatial structure of the total
pressure perturbation eigenfunction. The value of δP̂T changes sign when the sample eigenvalue
passes a known solution, in doing so, the internal eigenfunction solution passes the external value
at the boundary. This process repeats until δP̂T < ε in which case this condition satisfies that of a
solution and the code moves onto the next eigenvalue pair.

Finally, due to the linearity of this problem, it would be a wise idea to expand the numerical
code to include multiprocessing techniques to optimise the algorithm. At an early stage in the
development, it became obvious that multiprocessing would significantly improve the quality of
the code. As a result, multiprocessing commands were added such that each wavenumber k value
would be submitted to a separate processor where the algorithm could be run independently. This
would allow the integration and shooting method to be conducted for multiple wavenumber values
at once until an eigenvalue pair is located. Once this is achieved the solutions are saved to an
array on that processor and the next available wavenumber value is sent to that same processor.
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When all eigenvalues are located, the eigenvalue arrays are combined from all processors where the
elements of each array correspond to the eigenvalue pairs. It is then straightforward to sort the
arrays in ascending (or descending) values of, e.g. wavenumber.

2.2.1 Resonance locations

It is expected that when considering a non-uniform plasma, where the inhomogeneity is transversal
to the magnetic field, that there are going to be locations at which the governing differential
equation(s) become singular, that is, the eigenfunction tends to infinity. Physically, this represents
a resonant point where interesting physics can occur, including resonant absorption and phase
mixing (see Section 1.7.2). The regions within which this phenomenon can occur are known as the
Alfvén and cusp continuum’s. Unfortunately, when considering only the ideal MHD equations, the
shooting method fails when it encounters a resonant point, as these correspond to singularities in
the governing equations. Derivatives at these locations become very large over a very small spatial
step and the solution is no longer defined. Numerically this is an issue and can be complicated to
fix without including non-ideal effects in the MHD equations to remove these resonances.

During part of the PhD a short practical investigation was conducted to determine whether it
was possible to solve this problem during the time frame of the project. This involved considering
a variety of thought experiments that could be conducted within a short time frame.

Initially, the step size of the spatial domain was decreased such that the spatial array inside the
non-uniform region consisted of more points, located closer to each. The idea was that reducing
the step size could reduce the size of gradients in between each point where calculations had
to be made. The problem with this is that by increasing the size of the spatial arrays in the
numerical calculation, the time required to complete the calculation is also increased. However, it
was found that decreasing the step size alone did not make a sufficient improvement to compensate
the additional computation run time. It appeared that even with decreasing the step size in the
spatial domain and interpolating the result, that it was not sufficient to avoid the singularities and
provide a smooth solution.

One approach that was not investigated that may be useful in future improvements of the code
involves applying jump conditions (Sakurai et al. 1991, Goossens et al. 1992), this classifies as
a driven problem. The jump conditions were derived to provide an analytical expression which
keeps the continuity of the relevant eigenfunctions across a singular point. It considers taking a
point at either side of the resonance point and ensuring that the relevant boundary conditions on
the continuity of total pressure perturbation and radial displacement perturbation are maintained
across the resonance point.

Finally, another approach that was explored was to consider the wave frequency as a complex
quantity, which corresponds to an eigenvalue problem. By doing this, it would allow the eigenvalue
solution to stray away from the real axis and possess an imaginary component. The benefit of
doing this would be that solutions inside the continua could still be obtained and investigated.
However, numerically integrating the ODE such that both the real and imaginary components of
the ODE were continuous across the waveguide boundary was complicated. A short analysis into
whether this would be possible was undertaken and although some early results were positive,
which is explained in more detail below, the progress was slow and a decision was made to ignore
the complex components for the time being and focus solely on the real part of the solutions
corresponding to trapped wave modes. A simple case study which considered a second order ODE
in the form y′′ + Ay′ + By = 0, where A and B can be coefficients with imaginary components,
e.g. ω = ωr + iωi, was modelled. The ODE was solved analytically between two spatial values, 0
and 1, with known initial conditions, with the aim to use the numerical shooting method to match
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Figure 2.4: Basic plot showing the obtained solutions, using a similar numerical tech-
nique to the eigensolver outlined in this chapter, applied to an ODE with complex co-
efficients. The yellow dots indicate the obtained roots of either the real part, or the
imaginary component, of the governing function. These solutions trace out straight lines
that intersect at the known full solution, denoted by the red cross.

the required value at the second spatial point, to test the feasibility of the shooting method when
the wave frequency is modelled as an imaginary value. We found that it is possible to apply the
bisection method for the real and imaginary component simultaneously to eventually converge at
the correct solution. It was deduced that, in the frequency plane with the real part, ωr, plotted
over one axis and the imaginary part, ωi, on the other, each component has roots that trace out a
diagonal line intersecting at the solution upon which the root of the function y is obtained for both
the real and complex components. Therefore, the actual solution that satisfies both conditions on
the real and imaginary components is where these two lines intersect. By examining the change in
sign in the difference between the known analytical value and the numerical value of either the real
or imaginary component these two lines can be obtained. For example, the very basic plot shown
in Figure 2.4 displays the obtained solutions (the yellow dots) for frequency values where either
the real or imaginary root is found. It can be seen clearly that these obtained solutions path out a
straight diagonal line. The exact solution (given analytically from the start of the investigation) lies
where these lines intersect each other denoted by the red cross in Figure 2.4. Applying this to the
boundary conditions of a solar waveguide would require using this method to match the boundary
conditions of the external values of each eigenfunction P̂T and ξ̂r separately. This scenario is more
complicated than the single ODE study presented here, however it offers exciting future work to
extend the endless capabilities of this numerical tool.

Our results show that whilst it is definitely possible to overcome this problem, the strict time
frame of the project and the other objectives that wanted to be achieved, resulted in this target
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being beyond the scope of the PhD project. Using the ideas presented in this section, inclusion of
a method to investigate resonance behaviour should definitely be considered in future work.

2.3 Magnetic Cylinder (cylindrical geometry)

Similar to the scenario encountered in the magnetic slab analysis, the governing differential Equa-
tions (1.35) and (1.38) in a cylindrical geometry have no known closed form analytical solutions
without making assumptions that somehow reduce the mathematical complexity. Therefore, in-
vestigating the properties of wave modes propagating within a cylindrical equilibrium which is
non-uniform must be carried out numerically.

In this case, the fundamental procedure to obtain the eigenvalues for any symmetrically non-
uniform equilibria is essentially the same for that of a magnetic slab. However, due to the changes
in geometry between Cartesian and cylindrical, minor adaptations must be made to overcome any
new numerical issues which may arise. The major numerical implication of switching to cylindrical
geometry can be seen in Equations (1.35) and (1.38). At the centre of the cylinder, where r = 0,
both these equations become singular due to the coefficients tending towards an infinite value.
Following the brief discussion in Section 2.2.1 the shooting method will ultimately fail when trying
to calculate gradients at or across the regular singularity (r = 0). Therefore, an alternative approach
must be adopted in a cylindrical geometry in order to obtain the permittable eigenvalues in a non-
uniform cylinder. In the scenario for a magnetic slab, the relevant boundary conditions on total
pressure perturbation and continuity of radial displacement were applied at the opposite boundary
for both the sausage and kink modes. In a cylindrical geometry, a vertical cross cut through the
centre of the cylinder would reveal a ‘slab like’ structure in the sense that two boundaries would
exist. However, as mentioned previously, it is not possible to solve at the opposite boundary in
a magnetic cylinder as the shooting method will fail before the opposite radius value is reached.
Therefore, instead of the second boundary condition being applied at the opposite boundary, it is
applied at the (numerical) centre of the waveguide. Obviously, for numerical reasons, the second
boundary value cannot be applied at r = 0 because this is where the governing equations become
singular, instead a value as close as numerically possible to r = 0 is chosen. Assuming that the
waveguide is symmetric about r = 0 means that the opposite region (in Cartesian geometry) does
not need to be solved, as this is taken care of by the azimuthal wavenumber m. Note that the same
approach could have been applied in the Cartesian case however as no fundamental issue occurred
at x = 0 it was not a problem at that time.

Properties of the sausage and kink mode also apply at the centre of the cylinder. It is well
known that the sausage mode is the axisymmetric mode, as a result it does not perturb the axis
of the waveguide. Therefore, the first boundary condition is that for the sausage mode, ξ̂r = 0 at
the numerical centre of the waveguide, where the numerical centre is taken to be somewhere close
to r = 0, for example r = 0.001. On the other hand, it is known that the kink mode does perturb
the axis of the structure and as a result has a maximum value at the numerical centre. As this
exact value is unknown, an alternative variable must be used, which is the spatial gradient ξ̂′r. If
the displacement is a maximum at the centre of the waveguide, then mathematically, the gradient
must be equal to zero (the same mathematical principle applies for a minimum value of a function
too).

In Table 2.1 we show a summary of the physical properties for the sausage and kink modes
that are used in the numerical shooting method. The conditions in Table 2.1 satisfy the governing
differential equations (1.22) and (1.23) for both the sausage and kink modes. Equation (1.22) is
satisfied trivially for the m = 1 kink mode at r = 0, whereas Equation (1.23) reduces to C1 = 0.
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Azimuthal mode number P̂T at r = 0 P̂ ′T at r = 0 ξ̂r at r = 0 ξ̂′r at r = 0

m = 0 - sausage min/max 0 0 min/max
m = 1 - kink 0 min/max min/max 0

Table 2.1: Properties for both the m = 0 sausage mode and m = 1 kink mode that are
used in the shooting method of the numerical tool. The governing differential equations
are for eigenfunctions which must be continuous across the boundary and have particular
properties at the center of the waveguide also.

For a uniform cylinder with no background magnetic twist or plasma flow, this condition is also
satisfied trivially for the sausage mode using Equation (1.31). However, when background magnetic
twist or plasma flow is present, care must be taken to ensure that this condition is still satisfied
such that the code retrives the correct eigenvalues. In this work, we consider profiles of either vϕ or
Bϕ to be proportional to the radial distance r. When this is the case, the variable Q in Equation
(1.31) has the presence of r in the numerator of each term, which will satisfy the condition in Table
2.1 trivially. In this thesis, we do not study higher order wave modes (m > 1), however this may be
possible to study in future work as the value of m can be explicitly given, the only other conditions
that would need to be known would relate to those shown in Table 2.1.

We need to stress that the numerical eigensolver presented in this chapter is not unique in that
we suggest it presents new analytical or numerical methods to solve an eigenvalue problem in the
context of MHD. The simple numerical procedure which we present has been applied before, in a
similar fashion, in solar physics by, e.g. Tirry & Goossens (1996), Pinter et al. (1998), Andries et al.
(2000), Taroyan & Erdélyi (2002, 2003), although the precise application may vary slightly on a case
by case basis. It should also be noted that these works utilise the jump conditions, briefly discussed
in Section 2.2.1, such that they can conduct their analysis by considering the wave frequency as an
imaginary quantity, providing a greater insight into instabilities and wave damping. On the other
hand, one aspect of novelty in the present methodology is the application of multiprocessing in
seeking solutions to the eigenvalue problem. As the problem is linear, solutions can be numerically
obtained on separate processors and combined later on, significantly reducing computation time.
The benefit of this is that either the solutions can be obtained in a shorter timescale to previous
studies, or more samples can be analysed in the same timescale to improve the resolution (data
points) of the resulting dispersion diagram.

2.4 Summary

A summary of the procedure which the numerical eigensolver follows is:

1. Set up the initial equilibrium ensuring that radial pressure balance is achieved across the
boundary of the waveguide, either in Cartesian or cylindrical geometry.

2. Define the initial sampling grid by creating arrays for wavenumber k and wave frequency
ω. It is possible to split the frequency ranges such that the same number of samples are
considered in different phase speed bands (i.e. 10 samples between cT i and ci and also 10
samples between ci and vAi).

3. Using multiprocessing, separate wavenumbers are sent to different processors such that the
procedure is more numerically efficient. As the eigenvalues are independent on k for each
eigenvalue pair this is permittable. When the procedure is complete, the solution arrays from
each processor are combined.
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4. The code then solves for the m = 0 sausage mode and the m = 1 kink mode separately
using the relevant boundary conditions and/or conditions at the centre of the waveguide.
The governing differential equations are solved using the shooting method and the bisection
method to locate the solutions.

5. If the condition δP̂T < ε is satisfied, then the current values for k and ω are saved to separate
arrays but take the same element number in each array.

6. The solution arrays, for both k and ω, are saved and then are read into a separate script for
further analysis.



Chapter 3

The effect of non-uniform plasma
density and flow on magnetoacoustic
wave modes in a magnetic slab
geometry 1

Abstract
Realistic analytical models of MHD wave propagation in different solar magnetic configurations

are required to explain observational results, allowing magneto-seismology to be conducted and
provide more accurate information about local plasma properties.

The numerical approach described in Chapter 2 allows the eigenvalues to be obtained for any
arbitrary symmetric model of solar atmospheric features. In this chapter the magnetic slab model
of a solar waveguide is considered. The dispersion diagrams for a number of analytic cases which
model magnetohydrodynamic waves in a magnetic slab are successfully reproduced. These include
a uniform slab under both photospheric and coronal conditions, with and without the inclusion of
a bulk background plasma flow. A discussion between the obtained numerical solutions and the
previously obtained analytical solutions is included.

This study is then extended by considering a non-uniform background plasma density modelled
as a series of Gaussian profiles and a sinc(x) function. These specific profiles cannot be studied
analytically. A further case study investigates properties of MHD wave modes in a uniform coronal
slab with a non-uniform background plasma flow, for which the governing equations are derived.
For all cases the eigenvalues are obtained and compared to the uniform slab. Following this, the
resulting eigenfunctions are calculated and analysed with respect to the equilibrium inhomogeneity.

We find that the dispersive properties of slow body modes are more greatly altered than those
of fast modes when any equilibrium inhomogeneity is increased, including background flow. The
spatial structure of the eigenfunctions is also modified, introducing extra nodes and points of
inflexion which may be of interest to observers. Furthermore, regions of continua are identified and
waves with frequencies within this range will undergo resonant processes.

1The content of this chapter appeared as S. Skirvin, V. Fedun and G. Verth, 2021, MNRAS, 504, 4077S (Skirvin
et al. 2021)

34
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3.1 Introduction

The understanding of excitation and propagation of MHD waves (see Chapter 1.6) is an important
field of research in solar and plasma physics. It is thought that these waves may contribute to
coronal heating due to their observed ubiquity throughout the solar atmosphere. These waves
may be able to transfer sufficient amounts of energy to the upper layers of the solar atmosphere
and undergo dissipation, consequently locally heating up the plasma. A complete understanding
of the properties of these waves including their dispersive nature is essential in determining their
contribution to the energy budget of the solar atmosphere.

The dispersion diagram provides a useful tool in understanding the properties of various MHD
waves. It indicates the permittable phase speeds at which trapped waves propagate and provides
information about their dispersive characteristics. Previously, there has been a number of studies
devoted to the analysis of MHD wave properties in different magnetic configurations. As discussed
previously in Chapters 1.5, Roberts (1981a) and Edwin & Roberts (1982) investigated MHD waves
in Cartesian geometry modelled as a magnetic interface and a magnetic slab, respectively. The
magnetic slab has been investigated in both magnetic and a field-free environment. A visual
representation of the uniform slab was shown earlier in this thesis in Figure 1.2a and a cartoon of
the non-uniform magnetic slab is shown in Figure 3.1.

These theoretical studies have provided the fundamental models which describe wave propaga-
tion for magnetic waveguides found in the solar atmosphere. Further extensions of these models
were provided by introducing steady background plasma flows (Nakariakov & Roberts 1995a), linear
background flows (Zaqarashvili 2011) and also moving to cylindrical geometry (Edwin & Roberts
1983) which is discussed further in Chapter 4, with magnetic twist (Erdélyi & Fedun 2007b, 2010)
(discussed in Chapter 5) and curvature of the waveguide (Verwichte et al. 2006a,b, Van Doorsselaere
et al. 2009), to name but a few.

Generalising the traditional slab model of a solar waveguide to a more realistic case has been an
extensive area of research. For example, coronal loops have been modelled in planar geometry with
smooth density profiles (Lopin & Nagorny 2015a), although these studies consider a continuous
background plasma profile and do not match any boundary conditions, simply because there are
no distinct boundaries in the model. The period ratio of the fundamental mode to twice the first
overtone P1/2P2 was investigated by Macnamara & Roberts (2011) for a coronal loop with an
Epstein density profile. The authors found that there were striking similarities to that of the step
function considered traditionally, suggesting that the step function profile for density may actually
be a useful model for wave investigations. Chen et al. (2018) derived a generalised dispersion relation
for fast waves in a coronal slab with a finite plasma-β and compared the results to those for fast
waves in zero plasma-β coronal slabs. However, in this investigation, continuous transverse profiles
are considered to be split into three regions where the outer two regions are uniform separated by
the middle regime which is allowed to be arbitrarily non-uniform.

Previous works have developed a number of techniques to numerically solve the differential
equation with carefully chosen profiles for plasma density or Alfvén speeds (Oliver et al. 1993,
Verwichte et al. 2006a, Soler et al. 2017, Thackray & Jain 2017). These studies also focus on
coronal structures, namely coronal loops, where plasma pressure is assumed negligible and the
plasma-β is zero. The cold plasma-β limit restricts these investigations to fast magnetoacoustic
waves only as it is assumed that the Lorentz force dominates. The behaviour of MHD waves
propagating in coronal loops with specific inhomogeneous density profiles has also been studied
before in both planar and cylindrical geometries, see, e.g. Edwin & Roberts (1988), Nakariakov
& Roberts (1995b), Lopin & Nagorny (2015a,b), Li, Guo, Yu & Chen (2018). The specific choice
of the density profile could result in an analytical derivation of the dispersion relation. However,
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Figure 3.1: A cartoon displaying a magnetic slab which is traditionally used to model
waveguides in the solar atmosphere. The red arrows represent magnetic field lines and
intend to show the different magnetic configurations in each regime internal and exter-
nal to the waveguide. Blue arrows represent the vertical equilibrium velocity field which
may be non-uniform in spatial coordinate x. The slab is assumed to be homogeneous and
unbounded in the y-dimension. Parameters ρ, P , U0 and B denote plasma density, pres-
sure, background flow and magnetic field respectively. Subscripts i and e relate to internal
and external properties respectively. The case studies considered in this Chapter inves-
tigate a spatially varying density profile ρ0i(x) and vertical background flow U0i(x). In
reality any/all equilibrium background plasma variables are allowed to be inhomogeneous
and the numerical eigensolver is capable of handling such a scenario. The specific spatial
profiles considered in this chapter are shown in Figures (3.4), (3.9) and (3.12) for inho-
mogeneous equilibrium density and also Figure (3.15) for an inhomogeneous background
flow.

in the majority of these cases a continuous density profile is considered, such that there are no
boundaries of the waveguide and as a result, no boundary conditions to be matched. In this case,
the kink and sausage mode are not determined by the motion of the waveguide, but instead the
behavior of the driver of the perturbations, as kink and sausage modes appear only in waveguides.

Studies of wave behaviour in the context of different realistic background plasma profiles are
important as they provide information on group velocity as a function of density structure (Edwin &
Roberts 1988), and, therefore, on how the waves may transfer their energy. Whilst this research has
greatly advanced understanding of wave phenomena in coronal structures, the dispersion relation
is derived in all cases through carefully chosen plasma profiles allowing an analytical solution to be
obtained. To model wave propagation in a realistic magnetic configuration with a spatially varying
plasma equilibrium in the presence of background flows, a numerical approach has to be used. Very
recently Claes et al. (2020) have developed a numerical code to solve the full MHD spectrum for any
given 1D equilibrium. In the approach presented by the authors a finite element method (FEM)
was implemented to identify the permittable eigenvalues.

In this chapter, the numerical methodology for obtaining solutions located on the dispersion
diagram based on the shooting method approach will be compared to previous studies of wave
propagation and analytically derived dispersion relations in a magnetic slab geometry. These com-
parisons are carried out under the context of both static background plasma and steady background
plasma flow. In Section 3.3 the developed method will be applied to inhomogeneous density profiles
which take the form of a Gaussian distribution and a sinc(x) function, better known as sin(x)/x,
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(a) (b)

Figure 3.2: The obtained numerical solutions for the case of a uniform magnetic slab
under (a) photospheric conditions given by ce = 1.3ci, vAi = 1.9ci and vAe = 0.8ci. (b)
Coronal conditions given by ce = 0.4ci, vAi = 1.2ci and vAe = 3ci. Red curves indicate
the sausage mode solutions, whereas the blue curves show solutions for the kink mode.

which have not been previously investigated and can not be solved analytically. Finally, in Sec-
tion 3.4 the properties of MHD waves in a coronal slab in the presence of a Gaussian non-uniform
background flow is investigated. A graphical representation of a non-uniform magnetic slab can
be seen in Figure 3.1. In this cartoon, the non-uniform internal plasma density is denoted by the
contour inside the waveguide, which is free to vary provided it remains symmetric around x = 0.
The slab is uniform in the z direction and the waveguide boundaries are shown by the solid lines
at x = ±x0. In all cases the plasma outside the waveguide is uniform. The blue arrows show
the vertical profile of the background plasma flow, which can be non-uniform in the transversal
direction, again providing symmetry around x = 0. In all cases the magnetic field is taken to be
vertical and uniform in each region, shown by the red arrows.

3.2 Recovering previous analytical results

3.2.1 Uniform magnetic slab

In this section the results of the method will be compared to results previously obtained by Edwin
& Roberts (1982) in which a magnetic slab embedded in a magnetic environment in the absense of
background plasma flow is investigated. The visual model of this problem is shown in Figure 1.2a
where the plasma in the internal and external regions is assumed to be uniform. The boundaries of
the slab are located at ±x0 and by matching the necessary boundary conditions with an analytical
expression, the dispersion relation can be derived. The analytic dispersion relation is derived with
a closed form solution by assuming that all plasma quantities including sound and Alfvén speed are
uniform in all regions. The known analytic dispersion relation is given by Equation (11) in Edwin
& Roberts (1982) and is written below for reference:
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ρe
(
k2v2Ae − ω2

)
mi

{
tanh
coth

}
(mix0) + ρi

(
k2v2Ai − ω2

)
me = 0, (3.1)

where the tanh function corresponds to sausage mode solution, whereas the coth function corre-
sponds to kink mode solution.

The solutions of Equation (3.1) give the resulting dispersion diagram. Here, the functions F
and G in Equation (2.5) are constant and, therefore, Equation (2.5) describing motions inside the
slab can be written as:

v̂′′x −m2
i v̂x = 0, (3.2)

where

m2
i =

(
k2v2Ai − ω2

) (
k2c2i − ω2

)(
c2i + v2Ai

) (
k2c2T i − ω2

) .
The corresponding total pressure perturbation inside the slab, given by Equation (2.6), can be
written as:

P̂T = i
ρi
ω

(
c2i + v2Ai

) (k2c2T i − ω2
)(

k2c2i − ω2
) dv̂x
dx

, (3.3)

which is proportional to the derivative in the velocity perturbation. Equations (3.2) and (3.3)
provide the two expressions that must be matched, both inside and outside, at the waveguide
boundary. All variables outside of the slab will have indexes e but take the same form as Equations
(3.2) and (3.3). Following the procedure outlined in Section 2, the shooting method is applied to
solve equation (3.2). A solution will only be obtained if a value of frequency and wavenumber
simultaneously satisfies Equations (3.2) and (3.3) for v̂x and P̂T .

Using the numerical tool, the obtained solutions can be seen in Figure 3.2a that the obtained
solutions for surface waves and body waves fits well those results found previously by Edwin &
Roberts (1982, see Figure 3) under photospheric conditions (vAe < ci < ce < vAi). Typically, ob-
taining solutions for body modes, located between cT i < vph < ci (vph = ω/k) for the photospheric
case, tends to be more difficult due to the reduced step size required when numerically solving the
dispersion relation by the bisection method, however, this method finds the exact solutions with no
alterations in the algorithm. More MHD wave modes could be retrieved by increasing the number
of samples in the domain, however this comes at a cost of increased numerical intensity, so a balance
must be found. This also includes higher harmonics of body modes which will be retrieved also
with increasing resolution.

The results of the calculation for the scenario of a magnetic slab under coronal conditions
(ce < ci < vAi < vAe) are shown in Figure 3.2b and can be compared to Figure 4 in Edwin &
Roberts (1982). Similarly to the photospheric case, the phase speed solutions are recovered well for
both the sausage and kink modes. Under coronal conditions as stated by Edwin & Roberts (1982)
only body modes exist, indicating here the power of this method to recover body mode solutions
with no additional steps required in the algorithm. It can be seen that only specific branches of
the fast body waves are recovered, presumably these are the first harmonics and higher harmonics
will be identified with greater resolution.

3.2.2 Uniform magnetic slab with steady background plasma flow

The magnetic slab model can be further extended to investigate observed features in the solar
atmosphere such as jets, by the inclusion of a background steady flow. In this case, a steady flow
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(a) (b)

Figure 3.3: The numerical solutions plotted on the dispersion diagram for a magnetic
slab with a steady background plasma flow under (a) photospheric conditions given by
ci = 0.67vAi, ce = 0.75vAi and vAe = 0 with an external flow of Ue = −0.15vAi and no
internal flow. (b) Coronal conditions given by ci = 0.3vAi, ce = 0.2vAi and vAe = 2.5vAi

with an internal flow of Ui = 0.35vAi and no external flow. Same as Figure (3.2) but for
a slab model with a steady background flow.

refers to a plasma flow that is spatially and temporally constant. Previous studies have included the
addition of a steady background plasma flow, see e.g. Nakariakov & Roberts (1995a), Zaqarashvili
(2011), Ebadi et al. (2011) and found that the introduction of a background flow into the model
increases the amplitude of the wave perturbations. Furthermore, the flow also gives the waves an
observed Doppler shift when compared to the static magnetic slab model, a frequency shift which
is proportional to the speed of the flow. Furthermore, introducing a background flow supports
development of the KHI at the boundary of the flux tube. A study into the evolution of the KHI
is beyond the scope of this thesis as this would correspond to a value ωi > 0, which, as discussed
in Chapter 2, is not supported by the numerical code as of yet.

In the presence of a steady background plasma flow, the structure of Equation (2.5) remains
the same, but the wave frequency, ω, is now shifted by a magnitude proportional to the plasma
flow speed U0, i.e. ω − kU0. As a result the coefficient in Equation (2.5) becomes:

m2
i =

(
k2v2Ai − Ω2

) (
k2c2i − Ω2

)(
c2i + v2Ai

) (
k2c2T i − Ω2

) ,
with:

Ω0i = ω − kU0i,

where Ω is the Doppler shifted frequency. A similar variable for the region external to the slab takes
the same form but is concerned with the external flow, U0e. Now that a flow has been introduced,
two conditions at the boundaries of the slab are still required to be satisfied. Whereas before, in
the case of a static magnetic slab, the continuity of total pressure and transversal velocity pertur-
bation were the conditions, the latter is replaced by the continuity of the horizontal displacement
perturbation in a slab model which includes a background flow. This is because the homogeneous
background flow, U0, can locally amplify the wave displacement at the boundary and must be
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accounted for. Therefore the new boundary conditions which need to be satisfied are given by:

vxi(x = ±x0)
Ω0i

=
vxe(x = ±x0)

Ω0e
, (3.4)

as explained in Nakariakov & Roberts (1995a) where ±x0 are the locations of the slab boundaries
(see Figure 3.1).

Equations (2.5) and (2.6) along with the condition in Equation (3.4) are used in order to
attempt to retrieve the eigenvalues ω and k to be plotted on the dispersion diagram. Nakariakov
& Roberts (1995a) have found that the properties of magnetoacoustic waves in a magnetic slab
with a background flow were similar to those of the static model. Although, for specific values of
external flow, some eigenvalues disappeared from the dispersion diagram and can be absorbed into
the shifted continua modified by the background flow.

Figure 3.3a shows the results of the methodology under photospheric conditions with a down-
ward steady flow external to the slab. The phase velocity axis is normalised relative to the internal
Alfvén speed so that direct comparison can be made with the results of Figure 2b in Nakariakov &
Roberts (1995a). The obtained results show a good agreement of those first retrieved by Nakariakov
& Roberts (1995a) and it is possible to sample regions between specific characteristic speeds such
that higher resolution can be obtained in the regions of trapped modes which are narrowed due
to the presence of the background flow. The corresponding coronal solutions are shown in Figure
3.3b with a steady internal flow of v0 = 0.35vAi and no external flow. Again, the same solutions
are obtained as those shown in Figure 1c in Nakariakov & Roberts (1995a) including the backward
propagating body modes at small vph. It is reassuring that the numerical tool can recover previ-
ously obtained analytical eigenvalues for waveguides modelled as a magnetic slab in both a uniform
plasma and with the inclusion of a background flow. In these cases the ideal MHD equations have
analytical solutions, therefore the next step is to model a scenario which cannot be investigated
analytically by implementing our numerical tool.

3.3 Non-uniform density magnetic slab

In this section, a transversal dependant internal plasma density is introduced into the model. This
significantly changes the expression given by Equation (2.5) from the case of a uniform slab, namely
the function F (x) is no longer equal to zero. The governing equation now reads:

v̂′′x +
F ′(x)

F (x)
v̂′x +m2

i (x)v̂x = 0, (3.5)

where:

F (x) = ρi(x)

(
c2i (x) + v2Ai(x)

) (
k2c2T i(x)− ω2

)(
k2c2i (x)− ω2

) ,

and

m2
i (x) =

(
k2v2Ai(x)− ω2

) (
k2c2i (x)− ω2

)(
c2i (x) + v2Ai(x)

) (
k2c2T i(x)− ω2

) .
The equivalent expression for P̂T is given by equation (3.3) where all quantities are now a function
of x.

Consider a magnetic slab embedded in a stationary, uniform and magnetised environment under
coronal conditions (ce < ci < vAi < vAe). Background plasma flow is ignored and the characteristic
speeds are chosen to match those given in the coronal case in Section 3.2.1. Shown in Figure 3.4
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Figure 3.4: The profiles of internal non-uniform plasma density considered in this
section. The density is modelled as a series of Gaussian’s with varying inhomogeneity in
a coronal slab. The profiles are normalised such that they possess their maximum value,
which is equal to unity, at xc. The width of the inhomogeneity is given by W = 105

(black), W = 3 (yellow), W = 1.5 (green), W = 0.9 (red). A spatial profile proportional
to a sinc(x) (e.g. sin(x)/x) function (blue) is also modelled. In all cases the density is
discontinuous at the waveguide boundary and tends towards ρe (shown) at the boundary.
The boundaries of the slab are located at x = ±1 and indicated by the red dashed lines.

are the radial profiles for the plasma density structuring considered in this section. A number of
cases modelling the density as a Gaussian profile with a varying standard deviation are shown. A
case study with a large width (i.e. orders of magnitude larger than the width of the waveguide)
corresponds to a uniform plasma as the gradients of inhomogeneity are extremely small. The
analytical expression describing the Gaussian profiles is given by:

ρi(x) = ρe + (ρ0i − ρe) exp

(
−(x− xc)2

W 2

)
,

where xc is the centre of the Gaussian located at xc = 0, W is the standard deviation (i.e. the
width) of the density distribution and ρ0i is the maximum internal density given by the value in
Section 3.2.1.

When the equilibrium density is non-uniform, then of course, to maintain pressure balance
and achieve a stable system, this non-uniform plasma density must be balanced by changing other
properties of the plasma. Figure 3.5 shows how the other parameters of the plasma behave for
the specific case study when the coronal slab is modelled with a background plasma density with
a Gaussian profile and W = 0.9. The non-uniform plasma density is compensated by a change
in temperature of the plasma such that the gas pressure remains constant across the slab. In the
specific case of a slab under coronal conditions where the plasma density decreases towards the
boundary of the slab, then the plasma temperature possesses a minimum at the centre of the slab,
increasing up to the boundary. This overdense waveguide, balanced by the plasma temperature
manages to keep a constant magnetic field across the slab and as a result the total pressure is still
continuous across the boundaries.

The other equilibrium density structuring investigated in this section considers a sinc(x) func-
tion. The motivation behind modelling a sinc(x) profile comes from observations of magnetic bright
points (MBP’s) which have been observed to have spatial intensity distributions similar to such a
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Figure 3.5: Profiles of all plasma properties for the specific case of Gaussian density
distribution with W = 0.9. Plots showing how the magnetic field, gas pressure, plasma
temperature and total pressure along with the characteristic speeds of the system behave
for the case of a non-uniform plasma density.
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profile (see, e.g. Jess et al. 2010). To fit the numerical domain, the normalised sinc(x) function is
modelled here using:

ρi(x) =
ρ0i
4

(sinc(10x) + 3) ,

for a coronal slab and is normalised such that the maximum is comparable to the uniform slab
case. Pressure balance is accounted for by a change in temperature inside the slab. The width of
the Gaussian profile determines the gradient of the inhomogeneity. The characteristic speeds are
therefore also spatially dependant. This specific case corresponds to a cool magnetic flux tube.

3.3.1 Coronal non-uniform density magnetic slab case study

The solar atmosphere is highly inhomogeneous and types of inhomogeneity could arise from non-
uniform density and magnetic field structuring, or unsteady flows. Investigating the trapped wave
modes of a solar waveguide within a non-uniform background plasma is relevant to study from a
theoretical point of view such that models can be created which more accurately represent those seen
in observations. Typically this investigation is done analytically, however, when plasma variables
are non-uniform in space, the governing MHD equations become more complicated to solve. Some
specific plasma profiles have been previously extensively investigated, chosen such to allow the
derivation of an analytic dispersion relation and retrieve solutions on the dispersion diagram. A
review of the density profiles which have been studied before are given in Table 4 of Li, Guo, Yu &
Chen (2018). Here, the proposed numerical approach will be applied to investigate density profiles
which can not be analysed analytically.

For a wide Gaussian profile, the inhomogeneity inside the slab is weak and the plasma is the
same as the uniform case described in Section 3.2.1, therefore corresponding to the same results as
the uniform case. This case is shown in Figure 3.6a, where the characteristic speeds at the boundary
(subscript ’B’) correspond to the uniform speeds in Figure 3.2b. The width of the profile here is
chosen to be W � 2x0, i.e. many orders of magnitude larger than the width of the waveguide. By
changing the width of the inhomogeneity (i.e. the standard deviation W ), the value of ρ0i decreases
at the boundary compared to the uniform case and alters the trapped modes of the system. Figures
3.6b, 3.6c, 3.6d show the resulting dispersion diagrams for the density profiles given by Figure 3.4.
The fast body solutions are still bounded between vAe and vAi, however, these are cut off by the
internal Alfvén speed at the boundary for a narrow Gaussian profile (W < 1) as it is not possible
for trapped modes with purely real global eigenfrequencies to enter this continua. Slow body waves
in an inhomogeneous coronal slab are bounded between the tube speed at the boundary of the
waveguide (cTB) and the maximum internal sound speed due to the density structuring for small
inhomogeneity. This can be seen in Figures 3.6b and 3.6c, unlike the uniform case, where the
slow body waves are trapped between ci and cT i. Furthermore, the band located between cTB
and maximum cT i is a continuous spectrum known as the cusp (slow) continuum. This band is
due to the singularity in Equation (3.5), when ω = kcT i which provides great interest as resonant
absorption can occur here and has been subject to previous analytical investigation. Keppens (1996)
studied this effect in a cylinder with an unmagnetised surrounding and later Yu et al. (2017b,a)
in a photospheric slab with a weakly magnetised surrounding. It is worth further noting that the
work by Keppens (1996) also investigated the leaky modes, which can radiate energy away from the
waveguide. This study however is beyond the scope of the current study and will be investigated
in future work.

Let us now focus on the spatial profile modelled as a sinc(x) function. This profile is shown by
the blue line in Figure 3.4. The value of ρ0i at the boundary for the sinc(x) profile is similar to that
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(a) (b)

(c) (d)

Figure 3.6: Dispersion diagrams showing the trapped solutions in a coronal slab with
density structuring of a Gaussian form shown by the profiles in Figure 3.4. Here we show
the cases when the width of the density profile, W , is, (a) W � 2x0, (b) W = 3, (c)
W = 1.5, (d) W = 0.9. The characteristic speeds at the boundaries are sub scripted ’B’
with the maximum value of each characteristic speed denoted by the opposite edge of the
shaded regions. The blue region corresponds to the slow continuum cTi(x), green region
the inhomogeneous sound speed band and orange region is the Alfvén continuum vAi(x).
Darker shades occur where there is an overlap of two inhomogeneous regions.
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Figure 3.7: The dispersion diagram showing the eigenvalues for a spatial profile propor-
tional to sinc(x) under coronal conditions. Labels and colours are consistent with Figure
3.6.

of a Gaussian profile with W = 1.5, however, the structuring inside the slab is much different. The
dispersion diagram shown in Figure 3.7 has similar characteristics to those shown in Figure 3.6c
with slight change in the positioning of slow body modes such that the majority of these branches
now lie inside the green shaded region which represents the spatial sound speed band.

Comparisons of the eigenfunctions P̂T and v̂x for all possible modes are shown in Figure 3.8. For
the fast modes, both sausage and kink, equilibrium inhomogeneity has a minor effect on the physical
properties of the wave mode. It can be seen in Figure 3.8a that as the Gaussian inhomogeneity is
increased, the anti-nodes of the fast sausage mode shift towards the center of the waveguide, an
effect which has been shown in coronal loop analysis by Verth et al. (2007). The amplitude of the
total pressure perturbation is also locally increased at the centre of the waveguide as the Gaussian
inhomogeneity is increased. Figure 3.8b indicates the nodes of the total pressure perturbation
become more pronounced as the inhomogeneity increases, a similar albeit more minor effect can be
seen in the spatial structure of the v̂x eigenfunction. It is worth mentioning here that the profile
proportional to sinc(x), similar to varying the width of the Gaussian profiles, does not appear to
affect the physical spatial distribution of the eigenfunctions for fast modes in a coronal plasma,
suggesting that these fast modes may not be a suitable choice to use for spatial coronal-seismology.

However for the slow modes, the inhomogeneity has a much greater effect. Figure 3.8c shows
the perturbed eigenfunctions for the slow body sausage mode. It is obvious that increasing the
inhomogeneity away from a uniform plasma has a clear effect on the physical properties of this
mode. Decreasing the Gaussian width creates extra nodes and anti-nodes in the resulting v̂x
perturbation, these extra anti-nodes may be misinterpreted in observational data as an entirely
different mode. Increased inhomogeneity also has an effect on P̂T , changing the center of the
waveguide from having a maximum to having a minimum at this location for the slow sausage
mode. The slow body kink mode is also greatly affected by small inhomogeneity compared to
the uniform slab. As the Gaussian width is decreased, the maximum of the v̂x perturbation is
achieved closer to the boundaries of the waveguide, rather than obtaining a single maximum at the
centre in the uniform scenario. The total pressure perturbation shown in Figure 3.8d is still zero
at the center of the waveguide as expected for the kink mode however displays an anti-symmetric
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(a) (b)

(c) (d)

Figure 3.8: Comparisons of the eigenfunctions P̂T and v̂x for all the spatial profiles
considered in Figure 3.4. The colour scheme is consistent with Figure 3.4. (a) Fast
sausage mode, (b) fast kink mode, (c) slow sausage mode and (d) slow kink mode. An
eigenvalue of k = 2 was chosen for all plots. All curves are normalised such that their
values are equal to unity at the boundary.
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Figure 3.9: Density profile modelled as a Gaussian with a varying width in a pho-
tospheric slab. Width of inhomogeneity given by W = 105 (black), W = 3 (yellow),
W = 1.5 (green), W = 0.9 (red). The spatial profile proportional to a sinc(x) is shown
by the blue curve. In all cases the density is discontinuous at the waveguide boundary
and tends towards ρe (shown) at the boundary. The boundaries of the slab are indicated
by the red dashed lines.

behaviour to the uniform scenario as the Gaussian profile in density becomes more pronounced.
The slow body modes in a coronal plasma may be a good indicator into the underlying plasma
density structure. The distributions of v̂x in Figure 3.8c appear to be proportional to the derivative
of the corresponding equilibrium density profiles shown in Figure 3.4.

3.3.2 Photospheric non-uniform density magnetic slab case study

For photospheric conditions (i.e. vAe < ci < ce < vAi), the density profiles investigated are shown
in Figure 3.9 to model an evacuated magnetic slab. Under these conditions, the Gaussian density
maintains the same expression as that for the coronal case, however the sinc(x) function must be
normalised to the numerical domain and now takes the form:

ρi(x) =
ρ0i
4

(sinc(10x) + 5) .

This model may better represent those conditions found in sunspot umbrae and penumbrae, with
a continuous internal density profile. The case when the width of the profile is large compared to
the width of the waveguide is shown in Figure 3.10a and is comparable to the uniform case shown
in Figure 3.2a, as expected. Adding extra density inhomogeneity into the internal region alters the
plasma properties at the boundary compared to the centre.

The shaded regions in Figures 3.10b, 3.10c and 3.10d denote the area covered by the inhomo-
geneity for each characteristic speed, which is dependent on the non-uniform background density.
Slow surface waves are trapped at speeds below cTB and above vAe. This result is expected from
theory presented by Edwin & Roberts (1982). In Figure 3.10c we show that the value of cTB
surpasses vAe and, as a result, slow surface waves cease to exist. An interesting region to note is
the area contained within cB < vph < ci, where ci = 1 is shown by the opposite edge of the green
shaded region. As extra inhomogeneity is added into the equilibrium, this region becomes larger.
Due to the presence of the inhomogeneity in the model, this region varies continuously between the
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(a) (b)

(c) (d)

Figure 3.10: Dispersion diagrams showing the trapped solutions in a photospheric slab
with density structuring given by a Gaussian profile. This figure is the same as Figure
3.6 with (a) W � 2x0, (b) W = 3, (c) W = 1.5, (d) W = 0.9.
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Figure 3.11: Dispersion diagram for a spatial profile proportional to sinc(x) (i.e.
sin(x)/x) under photospheric conditions.

boundary, cB, and minimum value of internal sound speed, ci. Similarly, compared to the coronal
case this introduces regular singularities in the governing differential equations and provides the
possibility for dissipation processes to occur. Figure 3.11 is the resulting dispersion diagram for a
photospheric equilibrium with a density structure modelled as a sinc(x) function. The algorithm
finds eigenvalues very similar to the Gaussian scenario with a width equal to 0.9 as shown in Fig-
ure 3.10d. Interestingly, the shape of the equilibrium inhomogeneity, does not appear to have a
great affect on the eigenvalues of the equilibrium system. Similar to the coronal case, the resulting
eigenfunctions appear very similar for fast modes, which may not feel the inhomogeneity as much
as slow modes, as they are able to travel across magnetic field lines and as such travel more freely
across any inhomogeneity.

Figure 3.13 shows the perturbed eigenfunctions for the fast surface sausage and fast surface kink
mode under photospheric conditions. It is clear that inhomogeneity in the form of a Gaussian or a
sinc(x) function has very little effect on the physical behaviour of the total pressure and velocity
perturbation.

Due to the decreasing density ratio at the boundary for Gaussian widths with larger inhomo-
geneity, the cusp continuum band becomes larger, therefore cutting off the slow surface and body
modes. To investigate these further, we consider initial density profiles with a similar Gaussian
width but smaller inhomogeneity, see Figure 3.12.

Displayed in Figure 3.14 are the perturbed eigenfunctions for body sausage and body kink modes
under photospheric conditions and equilibrium density structure shown in Figure 3.12. Again, it
is clear that any equilibrium inhomogeneity, even minor changes in the form of a Gaussian profile,
has a significant effect on the properties of slow modes. The v̂x perturbation for the sausage mode
has anti-nodes which shift again towards the centre of the waveguide, an affect mirrored by the P̂T
perturbation of the kink mode, due to the asymmetry of the kink and sausage modes.
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Figure 3.12: Modified density profiles modelled as a Gaussian curve with a varying
width in a photospheric slab. The width of the profile is given by W = 105 (black),
W = 3 (yellow), W = 2 (magenta), W = 1.5 (green), W = 1.25 (indigo). In all cases
the density is discontinuous at the waveguide boundary and tends towards ρe (shown) at
the boundary. The boundaries of the slab are indicated by the red dashed lines.

(a) (b)

Figure 3.13: Comparisons of the eigenfunctions P̂T and v̂x for all the photospheric
spatial profiles considered in Figure 3.9. The colour scheme is consistent with Figure
3.9. (a) Eigenfunctions for the fast surface sausage mode, (b) eigenfunctions for the fast
surface kink mode. An eigenvalue of k = 2 was chosen for all plots. In all plots the
curves have been normalised such that their values are equal to unity at the boundary.
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(a) (b)

Figure 3.14: Comparisons of the eigenfunctions P̂T and v̂x for all the photospheric
spatial profiles considered in Figure 3.12. The colour scheme is consistent with Figure
3.12. (a) Body sausage mode, (b) body kink mode. An eigenvalue of k = 3 was chosen for
all plots. All curves normalised such that their values are equal to unity at the boundary.

3.4 Uniform magnetic slab with a non-uniform background plasma
flow

In this section, an analysis of magnetoacoustic wave properties in the case of a magnetic slab of
uniform plasma in the presence of a non-uniform background flow will be conducted. The governing
equations are derived under the context that the background plasma flow is symmetrically-arbitrary
and spatially varying. This situation may be encountered in features in the solar atmosphere as
jet-like features and other waveguides with a background plasma flow are routinely observed in the
solar atmosphere, including spicules, fibrils and prominences to name a few (De Pontieu, McIntosh,
Hansteen, Carlsson, Schrijver, Tarbell, Title, Shine, Suematsu, Tsuneta, Katsukawa, Ichimoto,
Shimizu & Nagata 2007, Berger et al. 2010, Pereira et al. 2011). Due to current spatial resolution
limits of ground and space based telescopes, the spatial profiles of these flows are still unknown,
however, it is common in fluid dynamics that flows are not steady (e.g. Orszag & Kells 1980).

The discussed magnetic configuration in the form of a uniform magnetic slab in the presence of a
non-uniform plasma flow is shown in Figure 3.1. In this model, it is assumed that the plasma flow is
aligned with the background magnetic field and the plasma flow is present only inside the magnetic
slab, e.g. v0i = (0, 0, U0i(x)). This particular choice of equilibrium flow profile does not effect the
initial pressure balance of the equilibrium. As a vertical flow, even one that is radially non-uniform,
does not introduce any additional radial forces, the pressure balance equation still maintains the
same form as Equation (2.2). Furthermore, the divergence of this equilibrium velocity field is zero,
resulting in the linearised ideal MHD equations taking a simplified form.

The governing equation attained exterior to the slab is the same as that shown in by Equation
(3.2) in Section 3.2.1. The general formulation for a non-uniform equilibrium, including background
plasma flow, has been previously derived in Frieman & Rotenberg (1960), Goedbloed et al. (2019).
Here we present a specific case of Equation (13.11) from Goedbloed et al. (2019), in which the
plasma properties are uniform expect for a symmetric inhomogeneous background plasma flow,
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which unlike previous studies, is allowed to be discontinuous across the slab boundary. This cho-
sen configuration of an inhomogeneous vertical background flow aligned with the magnetic field
eliminates any magnetic shear effects, including those associated with the background flow.

The set of linearised, Fourier-decomposed MHD Equations (1.1)-(1.5) for each perturbed quan-
tity in the presence of an inhomogeneous background plasma flow described above are:

− iΩ(x)ρ̂1 + ρ0
(
v̂′x + ikv̂z

)
= 0, (3.6)

− iρ0Ω(x)v̂x = −P̂ ′1 +
B0

µ0

(
ikB̂x − B̂′z

)
, (3.7)

− iρ0Ω(x)v̂z + ρ0U
′
0i(x)v̂x = −ikP̂1, (3.8)

− iΩ(x)P̂1 + c20ρ0
(
v̂′x + ikv̂z

)
= 0, (3.9)

− iΩ(x)B̂x = ikB0v̂x, (3.10)

− iΩ(x)B̂z = B̂xU
′
0i(x)−B0v̂

′
x, (3.11)

where Ω(x) = ω − kU0i(x) is the Doppler shifted frequency and a prime denotes a differentiation
with respect to the spatial coordinate x.

Equations (3.6)-(3.11) can be combined by eliminating all perturbed quantities but v̂x, and as
such, the governing equation for velocity amplitude becomes:

v̂′′x +D(x)v̂′x +

[
−Ω′′(x)

Ω(x)
− Ω′(x)

Ω(x)
D(x)−m2

i (x)

]
v̂x = 0. (3.12)

The coefficient D(x) can be expressed as,

D(x) =
2Ω′(x)

Ω(x)

[
Ω2(x)

Ω2
c(x)

−
k2c2T i
Ω2
T (x)

]
, (3.13)

where,
Ω2
s(x) = k2c2i − Ω2(x)

Ω2
T (x) = k2c2T i − Ω2(x)

Ω′(x) = −kU ′0i(x), Ω′′(x) = −kU ′′0i(x),

m2
i (x) =

[
k2v2Ai − Ω2(x)

] [
k2c2i − Ω2(x)

](
c2i + v2Ai

) [
k2c2T i − Ω2(x)

] =
Ω2
A(x) Ω2

s(x)(
c2i + v2Ai

)
Ω2
T (x)

,

with,
Ω2
A(x) = k2v2Ai − Ω2(x).

Equation (3.12) has no known closed-form analytical solution due to its complicated nature caused
by the spatially varying coefficients. A detailed derivation of Equation (3.12) is given in Appendix
A. It can be seen that if the spatial dependence on flow is removed (i.e. an initial constant flow) that
Ω(x) → ω − kU0i = Ω, and m2

i (x) is also no longer a function dependant on space. Furthermore,
Ω′′(x) = Ω′(x) = 0 such that Equation (3.13) becomes equal to zero. Equation (3.12) now becomes:

v̂′′x −m2
i v̂x = 0, (3.14)
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Figure 3.15: Background plasma flow modelled as a Gaussian profile with a varying
width in a uniform coronal slab. Width of inhomogeneity given by W = 105 (black),
W = 3 (yellow), W = 2.5 (dark blue), W = 2 (magenta), W = 1.75 (red), W = 1.5
(green) and W = 1.25 (cyan). In all cases the flow is discontinuous at the waveguide
boundary. The boundaries of the slab are indicated by the red dashed lines. The maximum
flow speed is 0.3 such that the flow is both subsonic (ci = 1) and sub Alfvénic (vAi = 1.2)
to avoid any flow related instabilities.

which is the same result as shown in Equation (3.2) but with a Doppler shifted frequency in the
expression of m2

i . If magnetic field is neglected (B = 0) such that vAi, cT i = 0 and assume an
incompressible plasma (ci →∞), the governing Equation (3.12) becomes:

v̂′′x −
(

Ω′′(x)

Ω(x)
+ k2

)
v̂x = 0, (3.15)

as given in Timofeev (2000). Equation (3.15) is a form of Rayleigh’s equation (see e.g Chandrasekhar
1961), a well-known expression in hydrodynamics concerning inviscid shear flows (Rayleigh 1879,
Hirota et al. 2014). The corresponding expression for the total pressure perturbation, P̂T , inside a
magnetic slab with a spatially varying background plasma flow is given by:

P̂T = −i ρi
Ω(x)

(
c2i + v2Ai

) Ω2
T (x)

Ω2
s(x)

(
v̂′x −

Ω′(x)

Ω(x)
v̂x,

)
(3.16)

The set of Equations (3.12) and (3.16) provides the required expressions for the numerical
analysis. Similar to the analysis conducted in Section 3.3, an internal Gaussian flow profile is
considered with the spatial profiles analysed shown in Figure 3.15 given by the expression:

U0i(x) = Aexp

(
−(x− xc)2

W 2

)
,

where A is the velocity amplitude and similar to the previous case xc = 0 and W are the center
of the waveguide and the width of the Gaussian profile, respectively. In all cases studied in this
section there is assumed to be no plasma flow exterior the slab.

The resulting dispersion diagrams for a magnetic slab under coronal conditions for the inhomo-
geneous internal background plasma flow cases considered in this section are shown in Figure 3.16.
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(a) (b)

(c) (d)

Figure 3.16: The dispersion diagrams show the trapped solutions in a coronal slab with
a background Gaussian flow of selected profiles from Figure 3.15. Diagrams are shown
for cases where the width of flow profile is given by (a) W � 2x0, (b) W = 3, (c)
W = 1.75, (d) W = 1.25. The plasma slab under coronal conditions given by ci = 1,
vAi = 1.2ci, ce = 0.4ci, vAe = 3ci, U0i = 0.3ci. Red curves denote the sausage mode
solutions and blue curves show the kink mode.
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As the maximum of the Gaussian flow located at xc = 0 remains constant for all cases, the maxi-
mum Doppler shift on the waves in all cases also remains constant. There is not much difference in
the dispersive properties between the fast body modes - both forward and backward propagating,
as the inhomogeneity is increased. The dispersive properties of the slow body modes however, are
much more affected by the non-uniformity of the background plasma flow. The region bounded
between −cT i+UB < vph < −cT i+U0i is a band in which resonances due to the background flow are
present. This region is not shown in Figure 3.16, and although this phenomena is not investigated
further in this section, it has been studied before analytically (Taroyan & Erdélyi 2002).

In Figure 3.17, we display enlarged regions of the dispersion diagrams in Figure 3.16 to highlight
the region of forward and backward propagating slow body modes in detail. In Figure 3.17a, we plot
the slow body modes for a magnetic slab under coronal conditions with a background plasma flow
which is effectively uniform, i.e. W � 2x0. The forward and backward propagating waves in this
case are symmetric in the sense that they are trapped between the respective positive and negative
phase speed bands, but asymmetric around the wave frequency caused by the Doppler shift of the
steady background flow. A more detailed explanation of this can be found in Nakariakov & Roberts
(1995a). In their study, equations (7) − (8) provide the dispersion relations for surface and body
magnetoacoustic waves, which can be algebraically derived due to the uniformity of their model.
The dispersion relations are similar to that of a uniform magnetic slab in the absense of plasma
flow given in Edwin & Roberts (1982), however, they are modified in the presence of a steady
background flow. It can be seen that the dispersion relations are now not symmetric for forward
(aligned with the magnetic field) and backward (against the magnetic field) propagations in the
slender slab limit, which is provided by an expansion in the limit where kx0 → 0 in their equations
(16) − (17). It should be noted that these expressions are independent on the wavenumber, and
instead, depend on the value of the flow. We also retrieve this result which is shown in Figure
3.17a. As the inhomogeneity of the background flow is increased, this symmetry is further broken
as shown in Figures 3.17b, 3.17c, 3.17d. This is due to forward propagating slow modes being
trapped between cT i + U0i and ci + UB, where U0i is the maximum flow speed and UB being the
flow speed at the boundary of the slab. The backward propagating modes are trapped between
−cT i + UB and −ci + U0i. Furthermore, this causes certain branches on the dispersion diagram to
be absorbed into the slow continuum modified due to the non-uniform background plasma flow.

The eigenfunctions P̂T and v̂x in the presence of an inhomogeneous background flow are shown in
Figure 3.18. Similar to the study of inhomogeneous density profiles, the equilibrium inhomogeneity
appears to have little effect on the spatial properties of fast propagating wave modes. In Figure 3.19
we show the eigenfunctions for the slow forward and backward propagating sausage and kink modes
for the model shown in Figure 3.15. Figures 3.19a and 3.19b show the spatial behaviour of the
eigenfunctions for a forward propagating slow body mode. The perturbation of v̂x corresponding to
the sausage mode obtains an extra point of inflexion caused by the inhomogeneity of the background
plasma flow, which may be of interest for interpreting observational results. For both the v̂x
perturbation, which corresponds to the sausage mode, and the P̂T perturbation corresponding to
the kink mode, the maximum value of the eigenfunction anti-node shifts towards the centre of
the waveguide, where the flow speed is a maximum and it’s gradient is zero. If it were possible to
model a Gaussian flow stretching to infinity, the corresponding spatial eigenfunctions would become
discontinuous at the centre of the waveguide.
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(a) (b)

(c) (d)

Figure 3.17: Same as Figure 3.16 but the figures show a zoom in on the region of
forward and backward propagating slow body modes. For the cases when W = 1.75 and
W = 1.25 we show a higher overtone of the attained body modes as the flow has shifted
the fundamental modes into the continua.
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(a) (b) .

Figure 3.18: Comparisons of the eigenfunctions P̂T and v̂x for all the flow profiles
considered in Figure 3.15. (a) Fast forward sausage mode, (b) fast forward kink mode.
An eigenvalue of k = 3 was chosen for all plots. All curves normalised such that their
values are equal to unity at the boundary

3.5 Summary & Discussion

In this chapter the numerical technique presented in Chapter 2 has been tested against previously
obtained analytical results for magnetoacoustic waves in a uniform magnetic slab under different
atmospheric environments. Additional tests included the addition of a constant steady field aligned
plasma flow, for which the solutions (known from analytical studies) were retrieved under both
photospheric and coronal conditions.

The method was then applied to a waveguide in which the internal plasma structuring is non-
uniform and modelled as a Gaussian profile. The dispersion relation cannot be derived analytically
when modelling the plasma density as a Gaussian function, therefore the numerical technique is
applied instead. We find that the cut-off values for slow body modes are dependant upon the
values of the sound speed at the boundary, cB, cusp speed at the boundary, cTB, and the size of
internal inhomogeneity in both coronal and photospheric conditions. This technique can be useful
to identify the bands in which resonance can occur and potentially lead to dissipation processes such
as resonant absorption and phase mixing. Whilst fast surface and body modes are not modified by
the equilibrium inhomogeneity when compared with the uniform magnetic slab case, the physical
eigenfunctions of slow body modes are more significantly altered. We have found that even for an
equilibrium Gaussian density distribution of sufficient width, an extra node and point of inflexion
appears in the spatial structure of the eigenfunctions. This result is important for the interpretation
of observational signatures of MHD wave modes as it shows non-uniform equilibria may lead to the
misunderstanding of their spectral patterns.

A possible explanation for this observed behaviour in slow modes rather than fast modes could
be as follows. Fast magnetoacoustic modes propagate perpendicular to the magnetic field, which in
all of our case studies is taken to be vertical, straight and uniform. Furthermore, the non-uniformity
in all of our case studies are taken to be in the horizontal direction, which is also perpendicular
to the magnetic field. Due to the nature of fast modes, they can propagate across the magnetic
field lines and, thus, across the inhomogeneity, therefore feeling less of the effect of the non-uniform
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(a) (b)

(c) (d)

Figure 3.19: Comparisons of the eigenfunctions P̂T and v̂x for all the flow profiles
considered in Figure 3.15. (a) Slow forward sausage mode, (b) slow forward kink mode,
(c) slow backward sausage mode, (d) slow backward kink mode. An eigenvalue of k = 1.1
was chosen for plots (a) and (b). An eigenvalue of k = 0.9 was chosen for plots (c) and
(d). All curves normalised such that their values are equal to unity at the boundary. The
eigenfunction plot for the case when W = 1.25 is not shown in (d) due to the kx0 value
beyond the cut off regime.
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plasma. On the other hand, slow magnetoacoustic modes, which propagate along the magnetic
field lines, will feel the effect of the non-uniform plasma, as neighbouring magnetic field lines will
be under a different local plasma environment. As a result, the properties of slow modes could be
affected more than those of the fast modes, as our analysis of the eigenfunctions show in Figures
3.8, 3.14 and 3.19. Another possible explanation may be that the plasma non-uniformity shifts
the phase speeds of the modes into different propagation windows. This may explain the observed
additional nodes and anti-nodes in the resulting eigenfunctions when the inhomogeneity is increased.
As the non-uniformity is increased, the wave modes we recover may actually be higher harmonics
of the fundamental mode in the uniform scenario. This observed shifting of the phase speed with
increasing non-uniformity may be a result of the changing density ratio at the boundary between
the internal and external value.

To further show the strength of this technique, an example of a coronal slab with a non-uniform
background flow was investigated. The general governing equations for the perturbations of total
pressure and velocity were derived, which reduce to the known expressions when inhomogeneity is
ignored. These equations were then solved numerically to obtain eigenvalues and plot the dispersion
diagrams for a number of different non-uniform background flow profiles. The non-uniform flow
created an asymmetry between the bands in which forward and backward propagating slow body
waves are trapped within the waveguide. A similar behaviour to a non-uniform plasma density
is observed with the resulting eigenfunctions. As the inhomogeneity of the background flow is
increased, by decreasing the width of the Gaussian profile, the spatial structure of slow body
waves - both forward and backward propagating - become distorted, while the fast modes remain
unaltered.

The major benefit of the presented methodology is that more complicated plasma equilibrium
can be introduced into the original slab model. Non-uniform plasma flow profiles which more
accurately reflect those observed in, e.g. sunspots can be included and the resulting wave analysis
can be conducted. It is well-known that the resonant absorption and phase mixing mechanisms rely
upon the presence of a non-uniform transversal plasma or inhomogeneous boundary layer - for which
this method could locate the appearance of the resulting continua. This would previously not have
been achievable due to the complicated mathematics involved and the numerous simplifications and
assumptions needed to be able to obtain an analytical solution to the MHD equations.

Immediate future steps involve extending the current work to investigate the wave properties in
a cylindrical model, which more accurately models solar features such as sunspots, jets and coronal
loops. This will be possible using the introduced methodology as the physics remains the same,
however, the differential operators take a different form in cylindrical geometry. Further exten-
sions could include modelling asymmetric profiles, for example non-steady asymmetric background
plasma flows, in which the physics for MHD wave modes would be modified slightly. Another very
important aspect which can be studied is the behaviour of complex wave frequencies. Complex
frequencies would provide more information on the physical behaviour of wave damping and any
instabilities that are present in a static or steady equilibrium. Implementation of asymmetry, extra
geometries and complex frequencies will help move a step closer to developing a technique which
can be used in wave analysis for a general arbitrary model. The power of our numerical eigensolver
is that it can be used alongside observational data to conduct magnetoseismology with a realistic
model to best fit observational results and provide a greater insight into the physical properties of
these waves and their potential contribution to the energy budget of the solar atmosphere.



Chapter 4

The effect of non-uniform plasma
density and flow on magnetoacoustic
wave modes in a magnetic cylinder
geometry 1

Abstract
In this chapter, a natural extension of the study considered in Chapter 3 is presented. The

magnetic slab model is replaced by a magnetic cylinder model and a similar investigation into the
properties of MHD waves is presented using the numerical eigensolver presented in Chapter 2.

In this chapter we investigate the properties of magnetoacoustic waves under non-uniform equi-
libria in a cylindrical geometry. Again, previously obtained analytical results are retrieved to
emphasise the power and applicability of this numerical technique in multiple geometries. Fur-
ther case studies investigate the effect that a radially non-uniform plasma density and non-uniform
plasma flow, modelled as a series of Gaussian profiles, have on the properties of different MHD
waves. For all cases the dispersion diagrams are obtained and spatial eigenfunctions calculated
which display the effects of the equilibrium inhomogeneity. It is shown that as the equilibrium
non-uniformity is increased, the radial spatial eigenfunctions are affected and extra nodes intro-
duced, similar to the results of a non-uniform magnetic slab, as seen in Chapter 3. Furthermore, it
is found that the azimuthal perturbations are increased with increasing equilibrium inhomogeneity
which introduces vortical motions inside the waveguide. These excited vortical motions due to the
equilibrium inhomogeneity may be responsible for exciting torsional MHD waves inside magnetic
waveguides.

Finally, 2D and 3D representations of the velocity fields are shown which may be useful for
observers for wave mode identification under realistic magnetic waveguides with ever increasing
instrument resolution.

1The content of this chapter appeared as S. Skirvin, V. Fedun, S. Silva and G. Verth, 2021, MNRAS, 510(2),
2689–2706 (Skirvin et al. 2022)
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4.1 Introduction

Observations of the solar atmosphere show that it is replete with MHD waves (see, e.g. Nakariakov
et al. 1999, Aschwanden et al. 1999, De Pontieu, McIntosh, Carlsson, Hansteen, Tarbell, Schrijver,
M., Shine, Tsuneta, Katsukawa, Ichimoto, Suematsu, Shimizu & Nagata 2007, Morton et al. 2012,
Keys et al. 2018). The combination of observational data with analytical models allows for the
practice known as ‘solar atmospheric seismology’. This technique allows researchers to calculate
properties of the solar atmospheric plasma, that may be difficult to determine directly from ob-
servations, by analysing the propagation of waves through the medium. However, for this to be a
useful technique, there is a need for a high degree of accuracy in both the observations and the the-
oretical models. Whilst great improvement has been made on the observational side, there is still
a large amount unknown about modelling wave propagation in general realistic solar waveguides.

Adaptations and extensions of the uniform magnetic waveguide studies have been undertaken to
explore the properties of MHD waves under more complicated yet realistic plasma configurations.
A non exhaustive list includes investigating waves in non-uniform magnetic slabs (Arregui et al.
2007, Lopin & Nagorny 2015a,b, Li, Zhang, Yang, Hou & Erdélyi 2018, Skirvin et al. 2021), curved
magnetic slabs (Verwichte et al. 2006c), twisted magnetic cylinders (Erdélyi & Fedun 2007b, 2010,
Terradas & Goossens 2012, Terradas et al. 2018) and magnetic cylinders with vortex flows (Cherem-
nykh et al. 2017, 2018, Tsap et al. 2020). It is widely known that within a non-uniform plasma
in ideal MHD, waves propagating at specific frequencies may resonate with the local plasma. This
occurs in continuum regions where the wave propagates at either the local Alfvén speed or the local
tube (cusp) speed. At these locations, wave energy can be extracted by processes such as resonant
absorption (Goossens et al. 1995, Keppens 1996, Goossens et al. 2011). Undertaking an investiga-
tion into wave damping mechanisms relies on treating the wave frequency as a complex quantity,
where the imaginary component provides information on either wave damping or any wave related
instabilities, (see e.g. Section 1.7.2). This phenomenon is not considered in this chapter, however,
relevant studies can be found in, e.g. Heyvaerts & Priest (1983), Yu et al. (2021). The present
study includes plasma (gas) pressure in the analysis however avoids resonantly damped modes by
assuming that the wave frequency is purely real. It should be noted that previous works have inves-
tigated the resonantly damped modes, however, in their analysis assume that the plasma-β is zero,
which ultimately removes the slow magnetoacoustic modes from their analysis (Van Doorsselaere
et al. 2004, Soler et al. 2013, Soler 2017, 2019).

It is well-known that the solar atmosphere and features within are highly non-uniform, mainly
due to the fine magnetic fields which permeate throughout (e.g. Williams et al. 2020). This non-
uniformity has an important affect on the propagation and observation of MHD waves. It was
shown in Chapter 3 (Skirvin et al. 2021) that an inhomogeneous plasma equilibrium changes the
eigenvalues for trapped modes dependant upon the scale of the inhomogeneity. If the plasma is
highly non-uniform, then the permittable bands within which MHD waves can propagate become
narrower, whereas the continuum regions, where physical damping processes can take place, spread
a wider range of phase speeds. The non-uniform equilibrium can also affect the spatial distributions
of observable eigenfunctions produced by MHD wave propagation. It was found that in non-uniform
coronal slab structures, slow body modes are more affected by large inhomogeneities in density over
the width of a magnetic slab, the same is true for the body modes of a non-uniform photospheric
slab.

Furthermore, the effect of non-uniformity has important implications for identifying wave modes
in observations. It is well known that the theoretical Alfvén mode along with the slow and fast
magnetoacoustic modes only exist in pure form in a uniform plasma of an infinite extent. In such
a scenario the Alfvén wave propagates as a purely incompressible vortical perturbation with only
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magnetic tension acting as the restoring force. Furthermore, magnetoacoustic waves propagate as
compressible disturbances which can be identified through observations of plasma intensity pertur-
bations with a combination of magnetic tension and total pressure acting as the restoring forces.
In reality however, the solar atmosphere is highly non-uniform and not infinite. Consequently it
is difficult to interpret observations of MHD wave modes as one of the three distinct wave modes
in a uniform plasma. In a non-uniform plasma, MHD waves have mixed properties and cannot be
classified as pure Alfvén or pure magnetoacoustic waves (Goossens et al. 2019).

It has been shown analytically that even a simple discontinuity in plasma equilibrium such as
a piece-wise true discontinuous density (similar to that modelled as a magnetic cylinder) that the
fundamental radial non-axisymmetric magnetoacoustic mode (kink mode) should in fact be inter-
preted as a surface Alfvén wave (Wentzel 1979, Goossens et al. 2012). The analytical investigation
conducted by Goossens et al. (2012) focused on the role that vorticity plays when the plasma
is non-uniform. For a pure Alfvén wave the displacements are vortical everywhere, however, for
a pure magnetoacoustic wave we have zero vorticity. As the piece-wise discontinuity is replaced
with a continuous profile, vorticity is spread out over the whole interval covered by the Alfvén
continuum, where the density is inhomogeneous. We investigate further the role of vorticity in
a non-uniform magnetic flux tube for both a non-uniform equilibrium density and a non-uniform
background plasma flow.

The effect of a steady background plasma flow on the properties of MHD waves has been
previously studied in a cylindrical geometry. An investigation by Terra-Homem et al. (2003) derived
and solved the dispersion relation for MHD waves in a uniform magnetic cylinder with a uniform
background plasma flow. Further studies have looked at the potential a steady flow may have for
the onset of the Kelvin-Helmholtz instability, which may provide a turbulent cascade of energy that
could heat localised plasma (Zhelyazkov 2012, 2013). However, little research has been conducted
which investigates the effect a non-steady plasma flow may have on the properties of MHD waves
in a magnetic cylinder due to the difficulty of analytically deriving a dispersion relation.

In this Chapter, the approach to that described in Chapter 3 is slightly modified with the main
difference in the coordinate system used which affects the vector operators in the analytical analysis.
In this investigation, the numerical technique developed previously is applied to initially uniform
cylindrical waveguides to reproduce previously obtained analytical results including also a steady
background flow. Thereafter, the internal spatial profile of plasma density and background flow is
allowed to be non-uniform in the shape of a series of Gaussian profiles, which cannot be investigated
purely analytically, with discussions about the observable differences in wave properties due to this
non-uniform equilibria.

This Chapter is organised as follows: the simplified ideal MHD equations describing motions
in a radially non-uniform cylinder are presented in Section 4.2. In Section 4.3 the numerical tool
is applied to previously studied cases with known analytical results, the analytical and numerical
results are compared. Further investigations of non-uniform density cases which cannot be studied
analytically are discussed in Section 4.4. The MHD wave behaviour in a uniform coronal cylinder
with a non-uniform background plasma flow is analysed in Section 4.5. Lastly, a summary and
discussion of the results obtained in this chapter can be found in Section 4.6.

4.2 Governing equations

The studies presented in this chapter adopt a cylindrical geometry, with coordinates in the form
(r, ϕ, z). The initial equilibrium is allowed to be radially spatially dependant for plasma density
and background plasma flow and has background magnetic field vector components in the form
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(0, 0, B0z) with the background velocity field vector components (0, 0, U0z(r)). The flow, U0z, is
taken to be positive which corresponds to a flow in the positive vertical direction.

The system of linearised ideal MHD equations in a cylindrical geometry for a radially non-
uniform equilibrium is described by Equations (1.22)-(1.32). It should be noted that these equations
consider an equilibrium that includes background magnetic and velocity azimuthal components.
The case studies considered in this section, do not assume that all plasma properties are taken to
be inhomogeneous, therefore the system of Equations (1.22)-(1.32) reduces to a simplified form:

D
d

dr

(
rξ̂r

)
= −C1rP̂T , (4.1)

D
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)
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Equation (4.4) describes the Doppler shifted frequency due to the presence of the background
plasma flow considered in this model. This quantity is now a function of radially variable r and,
as a result, the effect of the Doppler shifted frequency depends on the local background plasma
flow at that location. The set of Equations (4.1)-(4.7) provide the full equations for any cylindrical
equilibrium with a radially varying field aligned flow. It should also be noted that they describe any
cylindrical equilibrium which is non-uniform in the direction of spatial coordinate r, as a result all
quantities would also depend on r in such an equilibrium. Equations (4.1)-(4.2) can be combined
to create a single differential equation in either rξ̂r:
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D
, (4.13)
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similar to the governing Equations (1.35) and (1.38).
As in the previous chapter, investigating the properties of wave modes propagating within an

equilibrium which is non-uniform, such as the case presented here, must be done numerically. The
numerical algorithm, described in Chapter 2, employed in the following studies is the cylindrical ap-
proach presented in Section 2.3. The numerical shooting method is implemented to solve Equations
(4.8) and (4.11) ensuring continuity of P̂T and ξ̂r across the boundary.

The component of the displacement vector of magnetic surfaces perpendicular to the magnetic
field lines ξ̂ϕ can be related to P̂T and general plasma properties by modifying Equation 1.43 to
yield: (

Ω2 − ω2
A

)
ξ̂ϕ =

i

ρB0z

(
gBP̂T

)
, (4.14)

where,

gB = (k×B)r =
m

r
B0z.

4.3 Comparison with known solutions

In this section the numerical approach is tested against analytical results previously obtained for
MHD waves in a uniform magnetic cylinder, which may represent the majority of structures ob-
served in the solar atmosphere that may support the propagation of such waves. In all of these
cases, the analytical dispersion relation is not required and the eigenvalues are obtained purely
numerically. These numerically obtained solutions can be directly compared to their analytical
counterparts which can be found in the respective references from previous studies.

4.3.1 Uniform magnetic cylinder

The foundations of investigating MHD waves in a cylindrical geometry with an application to solar
physics were presented by Edwin & Roberts (1983) where the dispersion relations were derived
for MHD waves propagating in a uniform cylinder embedded in a magnetic environment under
both photospheric and coronal conditions. This work was an extension of previous studies by
Wentzel (1979), Spruit (1982), which analysed specific types of oscillations in a magnetic cylinder.
Recovering the dispersion diagrams introduced by Edwin & Roberts (1983) is the starting point for
testing the numerical algorithm in a cylindrical geometry. Both photospheric and coronal dispersion
diagrams are shown in Figure 4.1 and can be directly compared to Figure 3 and Figure 4 in Edwin
& Roberts (1983). Figure 4.1a shows the resulting dispersion diagram for a uniform cylinder under
photospheric conditions, where the correct eigenvalues are identified that agree with the analytical
results of Edwin & Roberts (1983). The branches of fast kink and surface sausage waves are trapped
between ck and ce, slow body modes are trapped between cT i and ci and slow kink and sausage
surface waves are seen propagating at speeds just below cT i. Figure 4.1b displays the obtained
dispersion diagram for a uniform cylinder under coronal conditions. Fast body modes propagate
at speeds above vAi and experience a cut-off at vAe where at speeds faster than this they become
leaky (Wilson 1981, Stenuit et al. 1998, 1999), also see Section 1.7.2. The fundamental kink branch
can be seen trapped between vAi and ck which tends towards ck in the long wavelength limit,
in agreement with the analytical results of Edwin & Roberts (1983). Furthermore, in a coronal
environment, slow body modes are found to be trapped between cT i and ci. This uniform cylinder
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(a) (b)

Figure 4.1: The numerical solutions plotted on the dispersion diagram for a uniform
magnetic cylinder under (a) photospheric conditions given by ce = 1.5ci, vAi = 2ci and
vAe = 0.5ci, and (b) Coronal conditions given by ce = 0.5ci, vAi = 2ci and vAe = 5ci.
Red curves denote sausage mode, blue curves show kink mode. Figures replicate those
shown in Figure 3 and Figure 4 in Edwin & Roberts (1983).

is a very basic model of waveguides observed in the solar atmosphere, yet it is reassuring that
the numerical algorithm obtains the known real eigenvalues under the new geometry and relevant
boundary conditions.

4.3.2 Magnetic cylinder with steady flow

It is well known that the addition of a bulk background plasma flow introduces new physics into the
observed wave modes. Nakariakov & Roberts (1995a) conducted an analytical study into the effect
that a steady plasma flow has on magnetoacoustic waves in a magnetic slab. The authors found that
the presence of a background flow introduces an observed Doppler shift of the wave frequency. This
frequency shift alters the physics slightly as wave modes may be shifted into windows where they
are not permitted to propagate as trapped modes. These results were also recovered in Chapter 3
using the numerical shooting method rather than the analytical approach.

In this section, the analytical results from a previous study (Terra-Homem et al. 2003) are
recovered which investigates the effect that a steady flow has on the MHD wave modes of a magnetic
cylinder. In this work, the authors took a uniform magnetic cylinder model adopted from Edwin
& Roberts (1983) and incorporated a steady background plasma flow, similar to that done by
Nakariakov & Roberts (1995a) but in a cylindrical geometry. The authors came to a very similar
conclusion to that of the magnetic slab with a steady flow counterpart. Namely, the inclusion of a
steady background plasma flow changes the properties of magnetoacoustic waves, in the sense that
the flow provides an observed Doppler shift to the wave modes which may shift the cut off values
and propagation speeds in both the short and long wavelength limits. In Figure 4.2, we display the
resulting dispersion diagrams obtained using the numerical technique for waves under photospheric
and coronal conditions in a magnetic cylinder with a background steady flow. Figure 4.2a shows the
dispersion diagram for a magnetic cylinder under typical photospheric conditions with an internal
plasma flow of U0i = 0.2vAi. This Figure is representative of Figure 10 in Terra-Homem et al.
(2003). The asymmetry between forward propagating and backward propagating waves can be
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(a) (b)

Figure 4.2: The numerical solutions plotted on the dispersion diagram for a uniform
magnetic cylinder with a steady background plasma flow under (a) photospheric conditions
given by ce = 0.6vAi, ci = 0.53vAi, vAe = 0 and U0i = 0.2vAi. (b) Coronal conditions
given by ce = 0.07vAi, ci = 0.11vAi, vAe = 2vAi and U0i = 0.35vAi. Red curves denote
the sausage mode, blue curves show the kink mode. Figures (a) and (b) replicate those
shown by Figure 10 and Figure 5 in Terra-Homem et al. (2003), respectively.

clearly seen by the structure and cut-off values of the fast forward and backward surface modes.
A more qualitative explanation of this is given by the expression in equation (24) in Terra-Homem
et al. (2003), which shows the expansion of the dispersion relation in the thin-tube limit, albeit for
the incompressible case. Due to the non-uniformity of our model, an analytical description in this
limit is not possible, however this study provides a good insight into the behavior of the waves in
this regime and more importantly, shows how the behaviour of the waves is dependent on the flow,
creating the asymmetry between forward and backward propagating modes, similar to the magnetic
slab case (Nakariakov & Roberts 1995a). Under these conditions the backward sausage and kink
body modes are shifted into a region where they no longer exist as trapped modes. However, the
background plasma flow is not strong enough to shift the forward body and surface modes into
the leaky regime, instead these modes are shifted relative to the flow speed. Figure 4.2b shows
the dispersion diagram for magnetoacoustic waves in a coronal magnetic cylinder with an internal
steady background flow of U0i = 0.35vAi. Similar to the photospheric case, it is clear that all wave
modes are shifted by a constant frequency due to the background flow. This effect can be clearly
seen by the cut-off wavenumbers between the forward and backward propagating fast body modes.

In this section, the numerical approach has been further tested against previously obtained
analytical results in a cylindrical geometry. The predicted eigenvalues have been correctly obtained
and it would now be instructive to investigate a scenario which cannot be investigated analytically.

4.4 Inhomogeneous plasma density

In this section, the equilibrium internal plasma density is considered to be inhomogeneous in the
radial direction r. For all the following case studies, the spatially non-uniform plasma density is
modelled as a series of Gaussian profiles, exactly the same principle as the investigation in Chapter



CHAPTER 4. MHD WAVES IN NON-UNIFORM MAGNETIC FLUX TUBES 67

y

x

y

z

a

r
4

U0i

B0eB0e B0eB0i

0e

0i

r

r

(r)

B0e

x

z

a

r
4

B0i

0e

0i

r

r   (r)

U0i = 0 U0e= 0

y

x

z

a

r
4

B0i

0er

U0i = 0 U0e = 0 U0e = 0

a b c

0ir   (r)

Figure 4.3: Cartoon depicting the equilibrium configuration of a radially dependant non-
uniform magnetic flux tube in the solar atmosphere. Three separate cases are studied
in this chapter. An inhomogeneous density magnetic flux tube under (a) photospheric
conditions and (b) coronal conditions with no plasma flow. These types of equilibria
may represent features observed in the solar atmosphere, e.g. sunspots and coronal loops,
respectively. The equilibrium density profile inside the magnetic flux tube ρ0i(r) is denoted
by the shaded contours, with a darker shade representing a (locally) more dense plasma.
The actual profiles of ρ0i(r) investigated for the non-uniform density photospheric case
are shown in Figure 4.4) and for the coronal case shown in Figure 4.8. Finally a uniform
magnetic flux tube with a non-uniform internal background plasma flow (U0i(r)) shown
as 3D Gaussian shape (see panel (c)) is considered, with radial profiles as demonstrated
in Figure 4.14. This case is applicable for some jet-like structures observed in the solar
atmosphere.
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Figure 4.4: The non-uniform background density modelled as a series of Gaussian
profiles studied in this section for a non-uniform magnetic cylinder under photospheric
conditions. W = 105 (black), W = 3 (yellow), W = 1.5 (green) and W = 0.9 (red).

3. These profiles are modelled using the expression:

ρi(r) = ρ0e + (ρ0i − ρ0e) exp

(
−(r − r0)2

W 2

)
,

where r0 is the centre of the Gaussian profile located at r = 0. The width of the inhomogeneity
is again controlled by W . ρ0i is the internal plasma density at r0 and ρ0e is the uniform value of
the external plasma density. A sketch of the non-uniform cylinder is shown in Figure 4.3. Total
pressure balance is achieved by a variation in equilibrium temperature to maintain a constant gas
pressure across the flux tube, through the ideal gas law, similar to that shown in Figure 3.5.

4.4.1 Photospheric conditions

In this section, we consider a photospheric magnetic flux tube with a non-uniform background
density profile. Under photospheric conditions, the non-uniform background density is shown
in Figure (4.4). Here, the centre of the flux tube is a local minimum for the internal density
distribution, where the density increases towards the boundary at a rate which depends on the width
of the Gaussian distribution. In all non-uniform cases the density at the boundary tends towards
the external density. This also introduces bands on the dispersion diagrams for all characteristic
speeds which depend on the plasma density. The internal sound, Alfvén and tube speeds all now
range from the value at the centre of the flux tube to the value at the boundary, denoted as cB, vAB
and cTB. The resulting characteristic frequencies where the discrete wave modes are resonantly
damped are shown in Figure 4.5. The frequency where the waves are resonantly damped is single-
valued for the case of a uniform density, as would be expected, and is linear in k. As the equilibrium
inhomogeneity is increased, the resonant frequencies occupy a larger range and possess a maximum
at the centre of the cylinder

As would be expected, the case for a large Gaussian width, Figure 4.6a, corresponding to a uni-
form distribution produces the same dispersion diagram as shown for the uniform scenario in Figure
4.1a. As the width of the Gaussian density profile is decreased, the fast sausage and kink modes
remains relatively unaffected, however are shifted to slightly slower phase speeds with increasing
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Figure 4.5: The Alfvén (blue line) and cusp frequency (green line) are shown as a
function of spatial variable r for a non-uniform cylinder under photospheric conditions.
For frequencies lying inside this range, the discrete wave modes are swallowed by the
continua. These continua are shown for different wavenumber k. (a) The frequencies for
the uniform density case, (b) W = 3, (c) W = 1.5, (d) W = 0.9.
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(c) (d)

Figure 4.6: Dispersion diagrams for magnetoacoustic waves in a photospheric cylin-
der with a background plasma density in the form of Gaussian profiles shown in Figure
4.4. (a) W = 105 corresponding to a uniform flow, (b) W = 3, (c) W = 1.5 and (d)
W = 0.9. Red curves denote sausage mode, blue curves show kink mode. Shaded regions
represent the non-uniform bands due to the equilibrium inhomogeneity. The slow con-
tinuum (blue shaded region), inhomogeneous sound speed band (green shaded region) and
inhomogeneous kink speed band (orange shaded region) are all shown.
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background non-uniformity. Figure 4.6 shows the behaviour of all wave modes as the inhomogene-
ity of background plasma density is increased. The slow body modes remain trapped between cT i
and ci although appear to also have slower phase speeds as the inhomogeneity is increased. For
sufficient non-uniformity certain slow body modes can be cut off below cT i. Similar to the study
in Chapter 3 into waves in a non-uniform density photospheric slab these modes exist within a
band shown by the green shaded region but this band does not represent a continuum therefore
this is physically permittable. Furthermore, as the level of background density non-uniformity is
increased, the slow surface modes in the photospheric case propagate with speeds similar to cTB,
which obviously changes with the inhomogeneity. At sufficiently large inhomogeneity, these modes
disappear from the dispersion diagram, as they are shifted into the slow continuum. It is clear from
Figure 4.6 that a non-uniform background density has the effect of decreasing the phase speeds of
wave modes in a photospheric cylinder.

Turning attention now to the physical appearance of the eigenfunctions of the wave modes in a
non-uniform photospheric magnetic cylinder. Figure 4.7 shows the spatial behaviour of fast surface
and slow body modes for both the kink and sausage mode in a photospheric cylinder under all
scenarios displayed in Figure 4.4. Similar to the results of a magnetic slab, both the kink and
sausage fast surface modes appear to be unaffected by the background inhomogeneity for P̂T and
ξ̂r. However Figure 4.7b shows that the azimuthal perturbation ξ̂ϕ becomes more pronounced at
the boundary as the background plasma inhomogeneity is increased. The slow body modes for
both sausage and kink are shown in Figures 4.7c and 4.7d. Coinciding with the previously obtained
results for a non-uniform magnetic slab, it was found that these modes were most affected by the
background inhomogeneity, this is again true for a cylindrical waveguide. Both P̂T and ξ̂r are
greatly affected for both sausage and kink modes and show the appearance of extra nodes and
points of inflexion as the background inhomogeneity is increased. The azimuthal component, ξ̂ϕ,
also shows this behaviour for the slow kink mode. Finally, Figure 4.7 highlights the differences
that a non-uniform background plasma density has on surface modes and body modes. Surface
modes are defined as having a positive squared radial wavenumber and have maximum amplitude
at the surface of the waveguide. Body modes have a negative squared radial wavenumber and, as
such, exhibit oscillatory behaviour throughout the waveguide, possessing nodes inside the cylinder.
Introducing a non-uniform background plasma density changes the spatial behaviour of surface
modes at the boundary, most notably the azimuthal component, with the internal structure near
the centre remaining locally constant. On the other hand a non-uniform background plasma density
changes the local internal structure of the eigenfunctions for body modes, with the boundary values
remaining unchanged no matter the scale of inhomogeneity of background equilibrium.

4.4.2 Coronal conditions

Unlike the similar case studied in Section 3.3 for a magnetic slab, the characteristic speeds chosen to
represent coronal conditions are slightly changed in the case of a cylindrical magnetic flux tube, to be
comparable to previous studies. This changes the characterstics of the dispersion diagram, namely
that the slow body modes are absorbed into the slow continuum at certain values of inhomogeneity,
which was not present in Section 3.3 due to the smaller speed of vAe used in the analysis. The
background density profiles investigated in this paper are the same as before and displayed in Figure
4.8 for increasing non-uniformity where the internal density gradually tends towards the external
density at the boundary. In Figure 4.9, we show the resulting characteristic frequencies where the
wave modes are resonantly damped in the non-uniform coronal cylinder cases investigated in this
section.

Figure 4.10 shows the behaviour of sausage and kink modes in a coronal cylinder with a back-
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Figure 4.7: Resulting eigenfunctions for MHD wave modes in a photospheric cylinder
with a non-uniform background plasma density given by the distributions shown in Figure
4.4 where the colour scheme is consistent. (a) Fast sausage surface mode for all cases
with ka = 2.7, (b) fast kink surface mode for all cases with ka = 1.3, (c) slow sausage
body mode with ka = 2.7, (d) slow kink body mode for three cases all with ka = 3.2. No
azimuthal component is shown for the sausage mode as this wave mode does not produce
an azimuthal perturbation. The case for W = 0.9 not shown in (d) as this wave mode
is absorbed into the slow continuum. All plots are normalised to the external boundary
value for each eigenfunction.
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Figure 4.8: Gaussian background density profiles studied for a non-uniform cylinder
under coronal conditions. W = 105 (black), W = 3 (yellow), W = 1.5 (green) and
W = 0.9 (red).

ground spatial density profile as a Gaussian distribution. The case of a large width when the
Gaussian distribution is given by W = 105 and the resulting dispersion diagram is shown in Figure
4.10a. As expected, this case produces the exact result as the uniform investigation by Edwin
& Roberts (1983) and shown earlier in this chapter in Figure 4.1b. As the inhomogeneity of the
background plasma density is increased, the density value at the boundary becomes smaller (tends
towards the external value however is still discontinuous across r = a). As a result, the variables
which depend on density such as ci, vAi and cT i become a continuous band across multiple possible
phase speeds, these are shown by the shaded regions in Figure 4.10. It is well known that the
Alfvén and cusp continuum are regions in which dissipative processes are possible, such as phase
mixing and resonant absorption, due to local resonances occurring within these bands. The wave
frequency becomes complex here and, as such, the solution no longer appears on the dispersion
diagram between vAB and cTB, as the solution moves away from being a purely real value. In
a cylinder with a large enough inhomogeneity of plasma density, the slow body modes disappear
from the dispersion diagram as no real frequency band exists in which they can propagate, without
becoming resonantly damped.

In a non-uniform plasma, it is well known that a smooth inhomogeneity such that the density
varies linearly from one value (ρ1) to another (ρ2), that quasi-modes are introduced (Sedláček 1971,
Tirry & Goossens 1996, Priest 2014). The real part of the quasi mode phase speed is defined as√

(ρ1v2A1 + ρ2v2A2)/(ρ1 + ρ2), which is simply the kink speed between the minimum and maximum

value. Replacing the smooth linear non-uniform density by an external ρ0e and internal ρ0i value
yields the well known kink speed for a uniform cylinder. In Figure 4.10, we show that the funda-
mental kink branch does not tend to either of these values in the thin-tube limit. Instead, it tends
towards a value in between which is due to the fact that the inhomogeneity is not smooth from
outside to inside the cylinder, in all cases the density is discontinuous across r = a.

Figure 4.11 displays the spatial eigenfunctions for both the fast sausage mode and fundamental
kink mode in a coronal cylinder with a non-uniform background density. We have previously
concluded that fast modes are unaffected by the background inhomogeneity in a magnetic slab,
however, their behaviour may be different in a magnetic cylinder, therefore we investigate the
behaviour of their eigenfunctions here. It can be seen clearly in Figure 4.11 that, as the plasma
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Figure 4.9: Same as Figure 4.5 but for the case of a non-uniform density cylinder under
coronal conditions.
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Figure 4.10: Dispersion diagrams for magnetoacoustic waves in a coronal cylinder with
a background plasma density in the form of Gaussian profiles shown in Figure (4.8). (a)
W = 105 corresponding to a uniform flow, (b) W = 3, (c) W = 1.5 and (d) W = 0.9.
Red curves denote sausage mode, blue curves show kink mode. Shaded regions represent
the non-uniform bands due to the equilibrium inhomogeneity. The slow continuum (blue
shaded region), inhomogeneous sound speed band (green shaded region), Alfvén continuum
(pink shaded region) and inhomogeneous kink speed band (orange shaded region) are all
shown.



CHAPTER 4. MHD WAVES IN NON-UNIFORM MAGNETIC FLUX TUBES 76

(a) (b)

Figure 4.11: Resulting eigenfunctions for MHD wave modes in a coronal cylinder with
a non-uniform background plasma density given by the distributions shown in Figure 4.8
where the colour scheme is consistent. (a) Fast sausage body mode for all cases with
ka = 2.75, (b) fundamental kink body mode for all cases with ka = 1.5. No azimuthal
component is shown for the sausage mode as this wave mode does not produce an az-
imuthal perturbation in this case. All plots are normalised to the external boundary value
for each eigenfunction.

density inhomogeneity is increased, both the fast sausage mode and fundamental kink mode display
different spatial characteristics for both P̂T and ξ̂r and also ξ̂ϕ for the kink mode. The fundamental
kink mode was not present in the magnetic slab analysis and this is the mode which is routinely
observed in the thin-tube limit in the solar atmosphere when a cylindrical analytical model is
considered. The difference in spatial eigenfunction behaviour is also more pronounced for ka < 1
for the fundamental kink mode. As the fast sausage mode experiences a cut-off around ka = 1.5,
it is unlikely that these eigenfunctions would be observed for this mode in non-uniform coronal
structures, which are frequently observed in the thin-tube limit.

A snapshot in time of the resulting velocity field at maximum displacement for the fundamental
kink mode is shown in Figure 4.12 for all cases of equilibrium Gaussian density. The velocity field
corresponds to the eigenfunctions shown in Figure 4.11b converted into Cartesian components to
be visualised in a uniform Cartesian grid. Any given vector Q = (Qr, Qϕ, Qz) in a cylindrical
geometry can be easily converted to a similar vector Q = (Qx, Qy, Qz) in a Cartesian geometry
through the transformation:

Qx = Qrcosϕ−Qϕsinϕ, (4.15)

Qy = Qrsinϕ+Qϕcosϕ, (4.16)

Qz = Qz. (4.17)

The case for uniform density retrieves the theoretical kink mode displacement in that the velocity
field is uniform inside the cylinder and has a dipole configuration in the external region as seen in
Figure 4.12a. As the equilibrium inhomogeneity is increased, the resulting velocity field inside the
cylinder becomes curved, as azimuthal perturbations dominate the plasma motions. For the case of
maximum inhomogeneity given by W = 0.9 shown in Figure 4.12d, this increasing azimuthal com-
ponent results in the boundary of the cylinder becoming distorted. This result can be understood
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Figure 4.12: Snapshots of the velocity field in time at the moment of maximum displace-
ment for the different Gaussian profiles modelling plasma density for the fast fundamental
kink mode. (a) W = 105, (b) W = 3, (c) W = 1.5 and (d) W = 0.9. The eigenfunctions
shown in Figure 4.11b are converted into Cartesian components and shown in a Carte-
sian grid. The same value of ka = 1.5 is chosen in all plots. The colour contour shows
the normalised total pressure perturbation where blue is negative and red is positive. The
solid blue line outlines the shape of the perturbed boundary.
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Figure 4.13: 3D visualisation of P̂T and the perturbed velocity vector field in the presence
of a uniform and non-uniform background plasma density for the fundamental kink mode
with eigenfunctions shown in Figure 4.11b. These correspond to the 2D velocity field
vectors shown in Figure 4.12a and Figure 4.12d respectively. (a) Case for uniform plasma
density (b) case with Gaussian density with W = 0.9.

by looking at the azimuthal component of the eigenfunction in Figure 4.11b where the magnitude
of discontinuity at the boundary increases with increasing inhomogeneity. The nature of the az-
imuthal displacement component for the kink mode can be understood by examining Equation
(4.14) when the location r = 1 is crossed. At this position, ω2 − k2v2A changes sign discontinu-

ously whereas the total pressure perturbation P̂T remains continuous. Furthermore, in the case for
maximum inhomogeneity, the frequency, ω, approaches the local resonant Alfvén frequency k2v2A
which results in the large amplitude for ξ̂ϕ. The increased discontinuity in displacement creates
counter-streaming flows that can generate the Kelvin-Helmholtz instability (KHI). These results
can be compared to the linear stage of Antolin et al. (2014) (see their Figure 1) in which similar
behaviour of the boundary is seen but in the case of a thinner boundary layer with a non-uniform
density profile. This behaviour has also been detected in previous numerical studies investigating
straight cylinders with a non-uniform density layer in the radial direction (Terradas et al. 2008)
including non-ideal MHD (Howson et al. 2017) and also an analytic study with a velocity shear in
the azimuthal component across the boundary (Soler et al. 2010).

Figure 4.13 shows a 3D representation of the 2D velocity fields seen in Figure (4.12) for a prop-
agating wave in vertical coordinate z. It can be clearly seen in Figure 4.13b that at maximum
displacement for the kink mode, the boundary becomes distorted due to the non-uniform equi-
librium plasma density. This perturbation of the boundary propagates with the wave vertically
through the magnetic flux tube, unlike the uniform scenario shown in Figure 4.13a which main-
tains the structure of the tube. It was suggested that the fundamental kink mode in a non-uniform
plasma should actually be called a surface Alfvén wave due to the mixed properties and increased
vorticity, which is not a property associated with magnetoacoustic waves (Goossens et al. 2012).
The results presented in this section further strengthen this debate as the kink mode does not
display traditional properties when the equilibrium plasma is non-uniform.



CHAPTER 4. MHD WAVES IN NON-UNIFORM MAGNETIC FLUX TUBES 79

Figure 4.14: Gaussian flow profiles inside an otherwise uniform coronal magnetic cylin-
der. W = 105 (black), W = 3 (yellow), W = 1.5 (blue), W = 1 (magenta) and W = 0.6
(red).

4.5 Inhomogeneous flow in a coronal cylinder

In this section, a magnetic cylinder of uniform plasma is modelled with a vertical straight magnetic
field with a field-aligned and radially non-uniform internal background plasma flow embedded in
a coronal environment. A sketch of this equilibrium configuration is shown by panel (c) of Figure
4.3. A similar case study was investigated in a magnetic slab in a Cartesian geometry in Section
3.4. The flow magnitude is chosen to be small in comparison with the internal sound speed, i.e.
U0i = 0.05ci. This allows a clearer investigation into the physical effects of the spatial flow to be
undertaken as a large flow magnitude will shift certain wave modes into the leaky regime. Adopting
a small magnitude of the background plasma flow speed also avoids the possibility of the onset of
flow related instabilities such as Kelvin-Helmholtz. Similar to the previous investigation of a non-
uniform plasma density, the background plasma flow in this section is also modelled as a series of
Gaussian profiles, of the form:

U0i(r) = U0e + (U0i − U0e) exp

(
−(r − r0)2

W 2

)
,

where U0e is the flow outside the waveguide, assumed to be 0.
These inhomogeneous flow profiles investigated are shown in Figure 4.14. The case of a large

width (i.e. W = 105) corresponds to a uniform steady flow which is well-known to create an
observed Doppler shift to the waves in the direction of flow (Nakariakov & Roberts 1995a). Due
to the small amplitude of flow chosen, it is found that there is very little effect on the fast modes
in the dispersion diagram, there is a more observable affect on the slow body modes. A zoom in
region of the resulting dispersion diagrams are shown in Figure 4.15 for the forward and backward
propagating slow body modes. As expected, these waves are shifted with respect to the maximum
flow speed. As the non-uniformity of flow is increased, the branches of the forward and backward
slow body modes are shifted with a clear asymmetry between the forward and backward propagating
modes. With increasing spatial non-uniformity of the background plasma flow, the permittable
backward propagating kink and sausage slow body modes propagate in the thin tube limit, whereas
the opposite is true for forward propagating slow body modes. This effect is due to the flow
speed at the boundary UB which depends on the initial non-uniformity of the background plasma
flow, therefore, a non-uniform background plasma flow may further shift some modes into possible
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Figure 4.15: Zoom in on dispersion diagrams for forward and backward propagating
slow body modes in a coronal cylinder with a background plasma flow in the form of
Gaussian profiles shown in Figure 4.14. (a) W = 105 corresponding to a uniform flow,
(b) W = 3, (c) W = 1.5 and (d) W = 0.6. Red curves denote sausage mode, blue curves
show kink mode. The red shaded bands indicate the flow modified slow continuum where
the modes become resonantly damped.



CHAPTER 4. MHD WAVES IN NON-UNIFORM MAGNETIC FLUX TUBES 81

(a) (b)

(c) (d)

Figure 4.16: Eigenfunctions for a coronal cylinder with a background Gaussian flow as
shown in Figure 4.14 where the colour scheme is consistent with the equilibrium profiles.
(a) Fast sausage body mode with ka = 3, (b) fast kink body mode with ka = 3, (c) slow
sausage body mode with ka = 1, (d) slow kink body mode with ka = 2.
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Figure 4.17: Background vorticity field (left), perturbed velocity field (middle) and back-
ground plus perturbed vorticity field (right) plots for all cases of Gaussian plasma flow
shown in Figure 4.14. These snapshots all correspond to the slow body kink mode with
eigenfunctions shown in Figure 4.16d. Top row corresponds to W = 105 with inhomo-
geneity increasing down the plot through W = 3, W = 1.5, W = 1 to bottom row where
W = 0.6. The colour contour in centre plots shows the total pressure perturbation whereas
the colour contours in the right column plots denote the vorticity component perpendicular
to the xy plane.
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Figure 4.18: 3D visualisation of P̂T and the perturbed velocity vector field in the presence
of a uniform and non-uniform background plasma flow for the slow body kink mode with
eigenfunctions shown in Figure 4.16d. These correspond to the 2D velocity field vectors
shown in the middle panel of Figure 4.17. (a) Case for uniform plasma flow (W = 105)
(b) case with Gaussian flow with W = 0.6. Movies of these 3D visualisations can be
found online on the PDG visualisations web-page.



CHAPTER 4. MHD WAVES IN NON-UNIFORM MAGNETIC FLUX TUBES 84

propagation windows. The red shaded bands in Figure 4.15 indicate the Doppler shifted continua
given by Equation 1.34, where the modes become resonantly damped. It can be seen that as the
inhomogeneity of the background flow is increased, these continuum bands become wider, providing
a larger frequency domain for resonant processes to occur.

The resulting eigenfunctions of P̂T , ξ̂r and ξ̂ϕ are shown in Figure 4.16. It is clearthat fast
modes are not heavily affected by the inhomogeneity of the equilibrium background plasma flow.
This is mainly down to the before-mentioned amplitude of the non-uniform flow. The background
plasma flow has the affect of Doppler shifting the waves which is much less clear for the dispersive
fast waves. Unlike in Section 4.4.2, where the amplitude of plasma density non-uniformity was
large, here the equilibrium plasma density is uniform. Slow body modes, however, feel the non-
uniformity much more greatly. The local perturbation amplitude for all eigenfunctions is increased
with the non-uniformity of the background flow and extra nodes and points of inflexion become
visible. Furthermore, the maximum local azimuthal perturbation, ξ̂ϕ, is increased with a more
inhomogeneous background plasma flow.

Another quantity which can be investigated is vorticity, which we define as the curl of the
velocity field, ∇ × v. Vorticity plays an important role in the dynamics of the solar atmosphere.
Granular motions in the photosphere produce a ubiquitous number of observed vortices in inter-
granular lanes. These vortices can have the effect of twisting the magnetic field lines which are
rooted into the photosphere and exciting torsional Alfvén waves (Fedun, Shelyag, Verth, Math-
ioudakis & Erdélyi 2011, Fedun, Verth, Jess & Erdélyi 2011, Vigeesh et al. 2012, Moll et al. 2012,
Shelyag et al. 2013, Silva et al. 2020). The background vorticity field, perturbed velocity field and
the background plus perturbed vorticity field are plotted in Figure 4.17 for the slow body kink
mode with eigenfunctions shown in Figure 4.16d. The left hand side column shows the background
vorticity due to the equilibrium background plasma flow. Obviously, with a uniform bulk flow,
there is no inhomogeneity and as a result, no associated vorticity. As the background plasma flow
becomes more non-uniform in the radial direction, the curl of the velocity field now has components
perpendicular to the direction of the flow. The background vorticity is localised to the interior of
the magnetic cylinder, where the non-uniform plasma flow is located. The centre column in Figure
4.17 shows the perturbed velocity field for the slow body kink mode in the presence of a non-uniform
flow. The uniform case on the top row has two clear nodes as predicted by uniform theory. As
the background plasma flow becomes more non-uniform, these nodes shift closer together and a
resulting vortical motion becomes clearer around the centre of the waveguide, where the magnitude
of the background flow is greatest. It can be seen in all plots that the boundary of the waveguide,
plotted as a blue line, is unaffected in all cases of non-uniform flow. This result is expected from
the eigenfunctions shown in Figure 4.16d which are locally unchanged at the boundary for all back-
ground flow profiles. The right hand column of Figure 4.17 shows the resulting background plus
perturbed vorticity field. It can be seen that as the non-uniformity of background plasma flow is
increased (further down the Figure column), the vorticity is spread out over the whole region of
inhomogeneity. Vortical motions become more apparent with increasing non-uniform flow which
may act as a driver for other forms of MHD waves. Figure 4.18 again displays the 3D representation
of the 2D velocity field seen in Figure 4.17. Locations of the nodes in the slow body kink eigenfunc-
tions can be seen in Figure 4.18a in the velocity field vector for the uniform flow case. However,
as expected, the locations of these nodes are pushed together when the background plasma flow is
modelled as a Gaussian profile, and is transported up through the tube with the propagation of
the wave seen in Figure 4.18b.
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4.6 Summary & Discussion

In this chapter, the technique described in Chapter 2 and implemented in a magnetic slab in Chap-
ter 3 and Skirvin et al. (2021) has been employed to obtain the eigenvalues for trapped MHD
waves in cylindrical environments representing some cases observed in the solar atmosphere. The
algorithm has been tested against well-known analytical results in a simple uniform cylindrical ge-
ometry and a scenario that takes into account the inclusion of a bulk background plasma flow. For
both case studies the correct eigenvalues were obtained compared to those from previous analytical
studies that derive and solve the corresponding dispersion relation. The tool was then applied to
investigate the properties of MHD waves in non-uniform magnetic cylinders modelled by an in-
homogeneous equilibrium plasma density and an inhomogeneous background plasma flow. When
the equilibrium plasma density is modelled as a series of Gaussian profiles with varying widths,
the eigenfunctions are changed under both photospheric and coronal conditions. Firstly, under
photospheric conditions, slow surface waves are absorbed into the slow continuum when the back-
ground density is sufficiently non-uniform. For our studies, a width (W ≈ 0.9) that corresponds
to the internal density at the boundary being halfway between ρ0i and ρ0e is sufficient enough to
absorb these modes into the slow continuum. Furthermore, in the thin tube limit the fundamental
kink branch no longer tends to the kink speed but instead favours an averaged value between ck
and ckB due to the discontinuous nature of the density profile at the boundary. Finally, as the
non-uniformity is increased, the frequency of magnetoacoustic waves decreases such that the band
of body modes is also absorbed into the slow continuum at larger inhomogeneities. Comparisons
of the spatial eigenfunctions for different modes revealed that the fast axisymemtric modes are
not affected by the radial equilibrium inhomogeneity. The fast non-axisymmetric (kink) modes
however, experience an increase in the azimuthal displacement at the boundary as the equilibrium
plasma density becomes more non-uniform. The internal spatial structure of slow body sausage
and kink modes is greatly affected. Similar to the results found in Chapter 3, additional nodes
and points of inflexion appear as the background plasma density is modelled with a profile that is
increasingly non-uniform. In both cases for the slow body modes of a non-uniform photospheric
cylinder, the local amplitude of the eigenfunctions at the boundary is unaffected. Under coronal
conditions, similar behaviour is observed with regards to the eigenfunctions. The fundamental kink
mode tends to an averaged value between ck and ckB in the thin tube limit as the background
plasma density becomes more inhomogeneous. The slow body modes are absorbed into the slow
continuum with increasing non-uniform equilibria and these modes are no longer trapped solutions.
Comparison between the eigenfunctions for the fast body sausage and kink modes reveal similar
results to the photospheric cylinder. The local maximum amplitude of perturbation for the fast
body sausage mode increases with increasing non-uniform plasma density, although this is not a
significant change. The boundary value of the azimuthal displacement perturbation for the fun-
damental kink mode increases as the background plasma density is modelled as a clear Gaussian
profile. To aid understanding in observations, a visual representation of this effect was provided. It
is shown that as the background plasma density is increased, the boundary shape of the fundamen-
tal kink mode becomes distorted, possibly due to the linear regime of the onset of Kelvin-Helmholtz
instability (Antolin et al. 2014).

The second case study analysed in this chapter investigated the behaviour of magnetoacoustic
MHD wave modes in a coronal magnetic cylinder with a non-uniform background plasma flow.
The plasma flow was again modelled as a series of Gaussian profiles with differing widths and the
amplitude was kept small to avoid any effects of flow related instabilities. The inhomogeneous
plasma flow affected the forward and backward propagating slow body modes more than any other
wave mode. Similar to the results found in Chapter 3, we have found that the non-uniform flow
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creates an asymmetry between the phase speeds of forward and backward propagating slow body
modes. Furthermore, like the case study investigating a background inhomogeneous density, the
spatial eigenfunctions for slow kink and sausage body modes are affected due to the background flow.
The eigenfunctions do not exhibit any changes at the boundary, similar to the behaviour of slow
body modes in a photospheric cylinder with a non-uniform density. This is because body modes,
unlike fast surface modes, propagate throughout the internal structure of the waveguide and not
just amplified at the boundary. The background plasma flow introduces extra nodes into the spatial
eigenfunctions at sufficient inhomogeneity and also changes the location of the local maximum in
the spatial eigenfunction, this may indicate a different mode or the modification of the mode.
Further investigation of vorticity due to the presence of a non-uniform background flow reveals
that as the inhomogeneity of the background flow is increased, the resulting vorticity associated
with the velocity perturbation also increases. We have shown that while the background vorticity
increases with increasing equilibrium non-uniformity, the perturbed vorticity also increases. This is
an important note to realise because it suggests that a non-uniform flow can produce a rotational
perturbation. This motion may act as a driver to excite other forms of MHD waves e.g. Alfvén
waves. Therefore MHD modes in an inhomogeneous equilibrium can possibly self excite other MHD
wave modes within the solar atmosphere.
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Abstract
Modelling magnetic flux tubes in the solar atmosphere in the presence of background magnetic

twist or rotational flows is expected to have an impact on the properties of magnetoacoustic waves.
Previous studies have analytically modelled magnetic twist as a linear profile and in this chapter
we use the numerical eigensolver to reproduce these results, as well as extending previous analysis
to consider the modified continua.

Further investigations considering a magnetic flux tube embedded in both a coronal and pho-
tospheric environment with a linear background rotational flow are conducted. We find that the
obtained eigensolutions for the kink mode in this scenario are similar to those of the linear magnetic
twist case. For both the inclusion of a background magnetic twist and rotational flow, there is no
effect on the axisymmetric m = 0 sausage mode. The presence of a linear background rotational
flow causes the modified slow continuum to shift to faster phase speeds in the thin-tube limit. This
results in the slow body modes, and slow surface modes in the photospheric cylinder, following
this trajectory therefore changing their dispersive behaviour. For a photopsheric flux tube in the
thin-tube limit, it is almost impossible to distinguish the slow surface and fast surface kink modes
upon comparison of their eigenfunctions.

This study is then extended to consider a nonlinear radial profile of background rotational flow.
It is found that when the azimuthal component of the background velocity field is nonlinear, the
resulting modified continua are no longer reduced to single point values at each wavenumber. The
continua now occupy a band of frequencies absorbing more modes depending on the amplitude
of the flow and the power of the nonlinear profile. We present a comparison between these two
parameters and discuss which modes can be resonantly damped in each case. These results may
have an implication for atmospheric-seismology and also provide a deeper understanding of the
properties of kink modes in solar vortices.
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5.1 Introduction

It is important to reiterate that the understanding of MHD waves in realistic solar structures is
essential as they may play a role in chromospheric and coronal heating, in addition they can be used
as a proxy to conduct solar atmospheric-seismology. However, MHD waves may also be responsible
for exciting some observed phenomena, e.g. jets in the solar atmosphere (Scullion et al. 2011).
The properties of MHD waves in a uniform plasma of infinite extent was presented in Section
1.4. This discussion was then extended to consider waves in uniform solar waveguides in Section
1.6, in which the m = 0 sausage and m = 1 kink modes were introduced. These particular case
studies of uniform plasma can be investigated analytically, however, more complicated waveguides
hosting inhomogeneous plasma, such as those investigated in Chapters 3 and 4, must be done
so using a numerical approach once an analytical description breaks down, for example by using
the numerical tool described in Chapter 2. Whilst the study of a radially non-uniform plasma
density and flow has been essential for advancing our understanding of MHD waves in models
which better represent observed solar structures, the model can be further improved to incorporate
additional physical environments that may be common in magnetic flux tubes, such as magnetic
twist and rotational (vortex) flow. The presence of a background magnetic twist or rotational flow
would manifest themselves as non-zero azimuthal components of the background magnetic field
and velocity field vectors, respectively. Considering m = 1 transverse kink modes, the effect of a
background rotational flow or magnetic twist into the model breaks the symmetry of the system
with respect to the direction of wave propagation.

Previously analytical investigations have considered a linear profile of magnetic twist, as in
doing so the governing Equations (1.22)-(1.32) reduce to a simplified form. For example, Erdélyi &
Fedun (2007b) modelled a magnetic flux tube as a uniform cylinder but with a small Bϕ component
and studied the effect on the m = 0 sausage mode. The authors derived and solved the govern-
ing equations in terms of Kummer’s functions and obtain the analytical dispersion relation. They
found that the presence of a background magnetic twist has no major change on the eigensolutions,
however, may modify the period of the sausage mode on the order of a few percent when compared
to the uniform cylinder model. An extension of this work was to also consider the m = 1 kink
mode, which was presented by Erdélyi & Fedun (2010). In this work the authors again derived and
solved the governing linearised MHD equations, this time using Whittaker’s functions, which ulti-
mately resulted in a complicated dispersion relation in terms of Kummer’s functions. The resulting
eigenvalues and eigenfunctions were calculated numerically for various azimuthal wavenumbers. It
was shown that under both photospheric and coronal conditions, the obtained phase speeds for
the m = 1 kink mode tend towards infinity in the long wavelength limit. Whilst the authors did
not present an argument describing the physical reasoning behind this, they proposed that this
may have important consequences when conducting coronal seismology of coronal loop oscillations.
Furthermore, an analytical study by Ruderman (2007), investigated the m = 1 kink mode in lin-
early magnetically twisted flux tubes in both the zero plasma-β limit and also in the thin-tube
limit. As this study made some mathematical simplifications, the author came to the conclusion
that ‘the magnetic twist does not affect the kink mode’. This statement, although true for the
analysis conducted in the paper, was later proven to be only true for a linear profile of magnetic
twist. A follow up study by Terradas & Goossens (2012) showed that when the magnetic twist is
modelled as ‘nonconstant’ (or nonlinear) in a thin coronal flux tube, that the standing kink solu-
tions are characterised by a change in polarisation of the transverse displacement along the tube.
This finding is important in the context of coronal seismology, as the detection of this variation
in polarisation could potentially be used as an indirect method to estimate the magnetic twist in
oscillating loops.
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The stability of a magnetic flux tube with a linear background magnetic twist and rotational
flow component was studied by Cheremnykh et al. (2018). In order for the dispersion relation of
such an equilibrium to be obtained, a simplifying assumption that waves in the thin-tube limit
were only considered (Cheremnykh et al. 2018). The authors found that the m = 0 sausage mode
becomes unstable for azimuthal flow speeds that create a centrifugal force which can overcome the
magnetic tension. In other words, if v2ϕ is sufficiently larger than ≈ (B2

ϕ +B2
z )/ρi then the sausage

mode is unstable. Furthermore, for the kink mode in a rotating twisted flux tube, the authors
found that the kink mode can only become unstable for sufficiently large values of longitudinal
flow speed, with the stability independent of the azimuthal component of flow speed. Due to the
mathematical simplifications made in this study, a discussion of the properties of the wave modes
in such an equilibrium was not possible.

Magnetic flux tubes with background rotational flows are a common configuration observed in
astrophysical features including structures within the solar atmosphere, e.g. intergranular lanes,
solar tornadoes and spicules (Bonet et al. 2008, 2010, Wedemeyer-Böhm et al. 2012, Tziotziou et al.
2018). Furthermore, they naturally appear in numerical MHD simulations of regions in the solar
atmosphere with vortex drivers (see, e.g. Fedun, Shelyag, Verth, Mathioudakis & Erdélyi 2011,
Fedun, Shelyag & Erdélyi 2011, Shelyag et al. 2011, 2012, 2013, González-Avilés et al. 2017, 2018,
Snow et al. 2018) and also magnetoconvection simulations (Yadav et al. 2020, 2021, Silva et al.
2021). Vortex motions and flows, related to solar convective turbulent dynamics at granular scales
and its interplay with magnetic fields within intergranular lanes, are ubiquitous on the solar surface
and the atmosphere above. Such structures exhibit complex characteristics and excite a wide range
of different waves which couple different layers of the solar atmosphere, thus enabling the channeling
and transfer of mass, momentum and energy from the solar surface up to the low corona. It is
to be expected that a background rotational flow should modify the observed properties of MHD
waves, however, few previous analytical investigations exist for such a model, namely due to the
mathematical complexity which it creates. Previous studies have investigated the stability status of
rotating flux tubes, as the azimuthal velocity shear across the boundary may be susceptible to KHI
(Soler et al. 2010, Zaqarashvili et al. 2015, Zhelyazkov & Chandra 2019). However, these studies
assume zero plasma-β and focus on coronal conditions only, ignoring the slow modes completely.

5.2 Governing equations

The governing equations describing the perturbed plasma motions relevant to a wave investigation
in a non-uniform magnetic cylinder with a background magnetic twist and plasma flow are given in
Chapter 1 by Equations (1.22)-(1.32). These equations describe an initial equilibrium which is ra-
dially spatially dependant for all variables, however, for simplicity, in this chapter the equilibrium
plasma density and magnetic field are taken to be spatially uniform. We will conduct separate
investigations modelling the magnetic field vector in the form (0, Bϕ(r), Bz(r)) and the velocity
field vector as (0, vϕ(r), vz(r)) for which Equations (1.22)-(1.32) are still valid. The modified con-
tinua given by Equations (1.33) and (1.34) are still important in the analysis of the configurations
considered in this chapter. For photospheric studies, the modified Alfvén continuum exists in the
leaky regime and does not overlap into the trapped wave mode domain, due to our choice of speed
orderings. Unsurprisingly, for an equilibrium containing a linear (or nonlinear) magnetic twist or
rotational flow, Equations (1.22)-(1.32) cannot be combined to produce an analytical dispersion
relation, even when assuming the other plasma properties are uniform. As a result, the numerical
tool developed in Chapter 2 is again applied in this chapter to obtain the eigensolutions.

One of the main requirements when applying the numerical tool are that the boundary con-
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ditions are satisfied for P̂T and ξ̂r. In a magnetic flux tube with a background magnetic twist
or rotational plasma flow, the continuity conditions are affected by the presence of these physical
parameters. Firstly, lets consider the case of a uniformly twisted magnetic flux tube (Erdélyi &
Fedun 2007b, 2010):

ξ̂re

∣∣∣
r=a

= ξ̂ri

∣∣∣
r=a

, (5.1)

P̂Te
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r=a
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r=a

. (5.2)

As it is assumed that the magnetic twist exists only inside the flux tube, there is a modification
to the continuity of total pressure perturbation when compared with e.g. a uniform magnetic flux
tube.

On the other hand, another case study examined in this chapter considers a uniform magnetic
flux tube in the presence of a background rotational flow. In this case, the resulting boundary
conditions state (Zaqarashvili et al. 2015):
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The change in boundary conditions are accounted for in the shooting method of the numerical tool,
and an eigensolution pair will only be found for values satisfying the above conditions for each
respective case study.

5.3 Linear magnetic twist

It would not be unreasonable to assume that the magnetic fields permeating the solar corona may
become twisted. Magnetic twist may arise from rotational motions in the photospheric intergranular
lanes where the footpoints of, e.g. coronal loops, are located. Coronal loops have been shown to
possess a twisted magnetic field at their footpoints (Magyar & Nakariakov 2020). Magnetic twist
may have the effect of altering the observed properties of MHD waves or providing conditions where
resonant absorption could take place (Ebrahimi & Karami 2016). The rate of the twist should not
be very high, as otherwise the equilibrium can become unstable (see, e.g. Mei et al. 2018). Previous
studies have investigated the properties of MHD waves propagating in a magnetic cylinder with
a linear profile of magnetic twist (Erdélyi & Fedun 2007b, 2010, Cheremnykh et al. 2018). These
models take into consideration that the majority of features observed in the solar atmosphere are
likely to have twisted magnetic field due to rotational plasma motions in the photosphere. These
works derive an analytical dispersion relation containing complicated Kummer functions that can
be used to obtain the eigenvalues plotted on the dispersion diagram. A further test for our numerical
algorithm described in Chapter 2 would be to reproduce these results without requiring the complex
analytical derivations shown in Erdélyi & Fedun (2007b, 2010), for both the sausage and kink modes
under photospheric and coronal conditions.

In the above studies, magnetic twist is incorporated into the model by taking the equilibrium
magnetic field inside the cylinder as B0i(r) = (0, Ar,B0zi), where A is the amplitude of linear
magnetic twist. The magnetic field external to the cylinder is assumed vertical, straight and
uniform. This choice of magnetic twist results in the governing equations taking a simplified form,
as it can be seen that some quantities disappear from Equations (1.22)-(1.32) when Bϕ is linear in
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(a) (b)

(c) (d)

Figure 5.1: A handful of chosen numerical solutions plotted on the dispersion diagram
for a magnetic cylinder with uniform magnetic twist replicated from Erdélyi & Fedun
(2010). (a) fast surface sausage modes in a photospheric cylinder (b) slow body sausage
modes under coronal conditions (c) slow body and surface kink modes under photospheric
conditions, (d) slow body kink mode under coronal conditions. The amplitude of linear
twist in each case is shown in the legend, with increasing twist ranging from no twist
A = 0 (black), A = 0.001 (red), A = 0.01 (blue) and A = 0.1 (green).
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(a) (b)

Figure 5.2: Slow body and slow surface kink mode solutions under photospheric con-
ditions as shown in Figure 5.1c for the cases where A = 0.01 and A = 0.1. Here the
modified slow continuum is highlighted by the red curve, showing how the slow surface
modes and body modes follow the same trajectory of this continuum.

r. The full set of equations for this specific case study are given by Erdélyi & Fedun (2010) and
the necessary boundary conditions are given by Equations (5.1) and (5.2).

In Figure 5.1, we show selected zoom regions of cases under both photospheric and coronal cases
for different magnitudes of linear magnetic twist. Figure 5.1a and Figure 5.1b show the behaviour
of the sausage mode under different configurations of magnetic twist which, as Erdélyi & Fedun
(2010) have shown, has very little effect on the sausage mode and can be seen clearly in these
figures. On the other hand, Figure 5.1c and Figure 5.1d show the behaviour of the slow kink modes
under both photospheric and coronal conditions. These results reaffirm those found by Erdélyi &
Fedun (2010) that the kink mode phase speed tends to infinity in the long wavelength limit as the
magnitude of magnetic twist is increased. These results are not surprising when Equations (1.22)-
(1.32) are compared under both the m = 0 sausage mode and the m = 1 kink mode. When m = 0
these equations are much simplified, with many terms disappearing from the equations, especially
those which are proportional to the magnetic twist, Bϕ. These equations are also simplified when
the magnetic twist is linear, as is the case here.

Not considered in the work by Erdélyi & Fedun (2010) was the effect that the modified Alfvén
and cusp continuum may have on the resulting wave modes. Equations (1.33) and (1.34) occupy a
range of frequencies when the magnetic field is not constant and vertical. Even a small component
of magnetic twist in the azimuthal direction modifies these continuum bands, even in the linear
case considered here, where the Alfvén and cusp continua occupy varying speeds depending on the
wavenumber, k. Figure 5.2 displays a couple of cases shown in Figure 5.1c but with the modified
slow continuum shown. For the case of a linear magnetic twist, the modified slow continua reduces
to single-point values for each value of wavenumber, indicated by the red shaded curve in Figure
5.2. It can be seen that both the slow surface modes, which are present at phase speeds underneath
this continuum line, and the slow body modes which lie above it, follow the continuum which tends
towards infinity in the thin tube limit. As the continuum reduces to a single value for the case
of linear twist. The slow body modes are eventually absorbed into the continuum, at wavelengths
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that increase with the amplitude of the twist parameter. The slow surface modes survive until
extremely small values of k where, they too, become absorbed by the continuum.

5.4 Linear rotational plasma flow

In this section, a uniform magnetic cylinder in the presence of a linear rotational background flow
is investigated. A profile comparable to the magnetic twist profile incorporated by Erdélyi & Fedun
(2007b) and Erdélyi & Fedun (2010) is chosen but applied to the azimuthal velocity field component
vϕ instead. A rotational flow can be either clockwise or counter-clockwise in the reference frame
relative to the observer. Physically speaking, the direction of the flow does not affect the properties
of the waves in a dramatic manner, similar to how a forward or backward steady field aligned
flow does not alter the fundamental behaviour of the resulting MHD waves (Nakariakov & Roberts
1995a). The only difference between a clockwise rotational flow and an anti-clockwise rotational
flow will be the sign in front of vϕ and the shifted wave frequency due to the flow.

Obtaining an equilibrium in a magnetic cylinder with a background rotational velocity compo-
nent is not as mathematically simple as the scenario of a uniform magnetic cylinder. In order for
total pressure balance across the waveguide the following expression must be satisfied:

d

dr

(
P +

B2
0z

2µ

)
=
ρv2ϕ
r
, (5.5)

for the case of a background straight vertical magnetic field. Integrating Equation (5.5) with respect
to spatial variable r provides more insight into the permittable function(s) of the equilibrium
background flow and the relevant expression(s) for the plasma pressure in order to maintain an
equilibrium. Integration of (5.5) yields:

P +
B2

0z

2µ
= ρ

∫
v2ϕ(r)

r
dr, (5.6)

before conducting the integral of the flow on the right hand side. Equation (5.6) allows us to choose
specific profiles of vϕ under the constraint that it must satisfy Equation (5.5). One possible method
to determine the integral on the right hand side of Equation (5.6), and hence provide insight into
the required plasma pressure to maintain equilibrium, is through trial and error and seeking a
relationship between the equilibrium vϕ profile and the resulting integral. A summary of this trial
and error process is shown in Table 5.1. It can be seen that there is a clear relationship between
whichever profile for vϕ is chosen, be it linear or nonlinear, and the resulting integral on the right
hand side of the pressure balance Equation (5.6). Therefore, it does not matter whether or not
the initial profile for vϕ is linear or nonlinear, an equilibrium can be obtained. The presence of
a background rotational flow not only modifies the equilibrium pressure balance relationship, but
also affects the continuity conditions on the boundary of the waveguide. For all the following case
studies investigating the effect of a background rotational flow, the necessary boundary conditions
implemented in the numerical tool are given by Equations (5.3) and (5.4).

For all the cases considered in this chapter investigating the effect of a rotational background
flow, the magnetic flux tube is otherwise uniform. Explicitly, this means that the equilibrium plasma
density and magnetic field is constant across the flux tube. The presence of a background rotational
flow must be accounted for in the pressure balance Equation (5.5) by balancing the background
rotational flow with a change in plasma pressure (i.e. in temperature) with a modification by e.g.
those shown in Table 5.1. For configurations where the amplitude of the rotational flow is weak (e.g.
A < 0.5), then the change in spatial behaviour of the plasma pressure and temperature is small but
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vϕ p
v2ϕ(r)

r

∫ v2ϕ(r)

r dr Relationship (profile & integral)

Ar 1 A2r A2r2

2 + C A2r2p

2p

A
√
r 0.5 A2 A2r + C A2r2p

2p

Ar2 2 A2r3 A2r4

4 + C A2r2p

2p

Ar1.5 1.5 A2r2 A2r3

3 + C A2r2p

2p

Table 5.1: The relationship between the initial choice of equilibrium profile for rotational
flow vϕ and the resulting integral in the pressure balance equation. For each choice of
profile, the power p is indicated along with the expressions for the term inside the integral
as well as the result after conducting the integration. The constant of integration is
denoted by C and is absorbed into the gas pressure. The same relationship between the
initial profile and resulting integration is obtained for all trial and error case studies.

must not be dismissed. To aid visualising the effect of a background rotational flow on the plasma
equilibrium in these case studies, we show in Figure 5.3, an example scenario of the effect of a
rotational background flow in a photopsheric flux tube. This figure shows the case of a background
rotational flow given by vϕ = 0.5r, i.e. a linear rotational flow with an amplitude of 0.5 under
photospheric conditions. The amplitude of the rotational flow in this case is much greater than the
case studies analysed in this chapter, however is chosen for graphical purposes to highlight how the
presence of a background rotational flow affects other equilibrium plasma parameters. Figure 5.3
shows how the plasma temperature compensates for the background rotational flow to maintain
constant total pressure across the flux tube by balancing the internal and external gas and magnetic
pressures, which ultimately affects the plasma pressure. It can be seen that in order to achieve
pressure balance in this photospheric configuration, the plasma temperature must increase towards
the boundary of the flux tube, which then causes the plasma pressure and resulting sound speed
to also increase in this region.

5.4.1 Rotating cylindrical magnetic flux tube under coronal conditions

In this section, a magnetic cylinder in a coronal environment with a linear background rotational
flow is considered. The rotational flow is linear, such that inside the flux tube the amplitude of
the flow is proportional to the radial distance r from the center of the flux tube vϕ = Ar, where
A is the flow amplitude. The profiles of the rotational flow analysed in this section are shown
in Figure 5.4, for varying cases of flow amplitude ranging from A = 0 which corresponds to no
background rotational flow up to a maximum amplitude of A = 0.05. It should be noted here that
this flow speed is incredibly small when compared to the local sound and Alfvén speeds which,
under these coronal conditions, are ci = 1 and vAi = 2. Therefore the flow is both subsonic and
subalfvénic, and below the threshold for the onset of KHI. As a result, any modifications to the
plasma eigenfunctions due to MHD waves are simply a result of the azimuthal component of the
background velocity field.

Figures 5.5 and 5.6 show a horizontal and vertical cross-cut of the background velocity field for
two amplitude cases of A = 0.01 and A = 0.05. Whilst the chosen values of A are arbitrary, they
are shown to highlight the differences from an observers point of view of a rotating magnetic flux
tube in the solar atmosphere. In particular, Figure 5.6 would represent the integral line of sight
Doppler shift of a rotating flux tube observed at the limb of the Sun, for example that of those
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Figure 5.3: Plots of vϕ, plasma pressure, sound speed and plasma temperature inside
the flux tube for an example configuration of a photospheric magnetic flux tube in the
presence of a linear background rotational flow.
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Figure 5.4: Equilibrium background rotational flow profiles for cases with increasing
amplitude. In all cases the profiles are linear with respect to spatial coordinate r. The
amplitude of the rotational flow increases from 0 (black line), 0.01 (green line), 0.025
(yellow line) and 0.05 (blue line).

Figure 5.5: Background velocity field for a magnetic cylinder in the presence of a
background rotational flow for two cases considered with (a) A = 0.01 (b) A = 0.05.
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Figure 5.6: The y component of the background velocity field which would be seen by
observers looking at the Doppler velocity of the structure from side on. (a) A = 0.01 (b)
A = 0.05. Cross cut is taken at y = 0, i.e. across the centre of the flux tube.

observed in spicules (Sharma et al. 2017, Sharma et al. 2018). It can be seen that the rotational
flow is only a function of r, or a function of x and y in the case of a Cartesian geometry as shown
in Figures 5.5 and 5.6. The rotational flow is constant with height in all cases considered in this
Chapter. In Figure 5.7, we show the resulting dispersion diagrams for both the sausage mode
and kink modes in a coronal flux tube under a linear background rotational flow with varying
amplitude. The whole spectrum of forward and backward propagating modes are shown. Whilst
the rotational flow appears to have little effect on the fast modes, the slow modes are more greatly
affected. The effect of a background rotational flow on slow modes can be seen in greater detail
in Figure 5.8, which shows a zoomed-in region of the slow body mode branches on the dispersion
diagrams. As expected, for the case when the velocity twist is zero, the eigenvalues of a uniform
magnetic cylinder are recovered and the forward and backward slow body modes approach cT i
and −cT i, respectively in the long wavelength limit. However, as the amplitude of the background
rotational flow is increased, the dispersive properties of the m = 1 kink modes are altered. Similar
to the comparable case of magnetic twist, the phase speeds of the slow surface and body kink
modes tends to infinity in the long wavelength limit, where, beyond this, they may become leaky.
As the amplitude of the rotational flow is increased, the phase speed of the obtained solutions also
increases for all wavenumbers. Similar to the conclusions made by Erdélyi & Fedun (2010) for a
twisted magnetic flux tube, this may have important consequences for observational findings, as
the majority of observations of coronal loop oscillations are conducted in the thin tube limit (e.g.
Nakariakov & Verwichte 2005). It is widely accepted that these oscillations are due to the fast body
kink modes, however this result suggests that even a small background rotational flow component,
similar to the case of a twisted background magnetic field, may shift the permittable phase speeds
of the slow body modes into the observed phase speed ranges. For all cases of background rotational
flow, the m = 0 sausage mode remains unaffected, suggesting that the analysis of sausage mode
observations may not be appropriate for the use of coronal-seismology in flux tubes with background
rotational flows.

Given that the eigenvalues are altered by a rotational background flow in a coronal flux tube for
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(a) (b)

(c) (d)

Figure 5.7: Dispersion diagrams for all cases of linear anti-clockwise rotational flow with
increasing amplitude under coronal conditions (a) A = 0 which corresponds to uniform
case with no azimuthal flow component. (b) A = 0.01, (c) A = 0.025, (d) A = 0.05.
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(a) (b)

(c) (d)

Figure 5.8: Same as Figure 5.7, however, here we show a zoom region of the dispersion
diagrams on the forward and backward slow body modes for all cases of linear anti-
clockwise rotational flow with increasing amplitude. (a) A = 0, (b) A = 0.01, (c) A =
0.025, (d) A = 0.05.
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(a) (b)

Figure 5.9: Eigenfunctions for all cases of linear clockwise rotational flow with increas-
ing amplitude. The fast fundamental kink mode is shown in (a) whereas (b) shows the
slow body kink mode. A wavenumber value of ka = 0.55 was chosen for all cases in both
plots.

the discussed cases, it is possible to calculate the eigenfunctions to determine what affect this result
may have for observational parameters. It can be seen in Figure 5.9 that the spatial eigenfunctions
are unchanged for both the fast sausage and fast (fundamental) kink modes under a linear back-
ground rotational flow of different amplitudes. When compared to previous investigations discussed
in earlier chapters, it may have been expected that the inclusion of a background rotational flow
should have altered the spatial structure of the resulting eigenfunctions. However, it has become
a common theme in this work to discover that a non-uniform background has little effect on the
properties of fast magnetoacoustic modes. The same conclusion is reached here for these modes
in the presence of a linear background rotational flow in a coronal flux tube, a similar analysis for
slow modes in a photospheric flux tube is conducted further on in this chapter.

5.4.2 Rotating cylindrical magnetic flux tube under photospheric conditions

In this section, we consider a magnetic cylinder under photospheric conditions (vAe < ci < ce < vAi)
with a linear background rotational flow. It is likely to find rotational flows in photospheric flux
tubes in the solar atmosphere, due to the plasma motions in the lower solar photosphere as a result
of granular buffeting. There is assumed to be no vertical plasma flow such that the background
velocity vector inside the waveguide can be written as v0i = (0, Ar, 0). Similar to the coronal case,
all profiles are considered linear at this stage, with the aim to investigate how varying the amplitude
of rotational flow affects the resulting perturbations. The flow outside the cylinder is zero, which
results in a velocity shear across the cylinder boundary at r = a, however the value of A is chosen
to be small and both sub-sonic and sub-Alfvénic such that the onset of KHI is avoided. In Figure
5.10, we show the linear profiles of background rotational flow considered in this section. In all
cases the flow amplitude is proportional to the radial distance from the center of the flux tube up
to the boundary, however the amplitude is allowed to vary.

Figure 5.11 highlights the change in eigenvalues for the different cases of flow profiles considered
in Figure 5.10. The axisymmetric m = 0 sausage mode remains unaffected by the background flow
in the long wavelength limit, although resulting phase speeds seem to increase slightly as the
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Figure 5.10: Equilibrium background rotational flow profiles for cases with increasing
amplitude for a photospheric cylinder. In all cases the profiles are linear with respect
to spatial coordinate r. The amplitude of the rotational flow increases from 0.01 (green
line), 0.05 (black line), 0.1 (yellow line), 0.15 (red line) and 0.25 (blue line).

amplitude of the rotational flow is increased. On the other hand, there is a considerable effect on
the m = 1 kink mode solutions due to the presence of a background rotational flow. The kink mode
solutions in the thin-tube limit tend to infinity and may exceed ce and enter the leaky regime. As
the amplitude of the flow is increased, the solutions of the phase speeds also increases. Figure
5.12 shows the resulting dispersion diagrams for a photospheric cylinder with a linear background
rotational flow.

These results bare a striking resemblance to a similar scenario of a magnetic cylinder with an
equilibrium linear twisted magnetic field, such that in the long wavelength (thin-tube) limit, the
phase speeds of these slow body kink modes tend to an infinite phase speed. As the amplitude of
the azimuthal flow is increased, the corresponding phase speeds of the slow body kink modes is also
increased for all wavelengths. The modified slow continuum given by Equation (1.34) is shown by
the red shaded line in Figure 5.12. For the specific case of a linear background plasma flow, this
continuum reduces to point values at every wavenumber. The wave modes follow this continuum
line in the long wavelength limit and even undergo an avoided crossing where the ‘slow surface
mode’ approaches the ‘fast surface mode’. Avoided crossings occur when the phase speeds of two
wave modes avoid intersecting when a parameter of the system is varied, in this case vϕ. This
occurs when there are constraints preventing two solutions from being equal and it demonstrates
a transferal of properties between the two modes. Analysis of this phenomenon can be used to
give insight into the modal structure. There is rich literature regarding avoided crossings for the
eigensolutions of a wide range of physical processes including coupled spring oscillations in classical
mechanics (Novotny 2010) and energy level repulsion in quantum physics (Naqvi & Brown 1972).
In MHD wave theory, the subject has been covered previously, for example, between fast and
slow magnetoacoustic gravity waves in a magnetically stratified plasma by Abdelatif (1990) and
Mather & Erdélyi (2016) and for magnetoacoustic sausage and kink modes in asymmetric magnetic
slabs (Allcock & Erdélyi 2017). Furthermore, avoided crossings have been discussed in the context
of negative energy waves in hydrodynamics (Cairns 1979), in helioseismology (Pintér & Goossens
1999) and in the context of the Kelvin-Helmholtz and resonant flow instabilities (Taroyan & Erdélyi
2002, 2003). In the long wavelength limit it may not be appropriate to refer to the ‘slow surface
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Figure 5.11: Dispersion diagrams for a photospheric cylinder with a background ro-
tational flow of varying flow amplitudes. The different cases with varying amplitude,
displayed on the top of each panel are shown corresponding to those in Figure 5.10. The
red dots indicate solutions for the m = 0 sausage mode and the blue dots show the m = 1
kink mode.
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Figure 5.12: Dispersion diagrams for the m = 1 kink mode for a photospheric cylinder
with a background rotational flow. The different cases with varying amplitude are shown
where the red shaded curve indicates the modified slow continuum due to the flow.
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Figure 5.13: The resulting dispersion diagrams for all linear cases of rotational flow
with the colour scheme consistent with Figure 5.10. These dispersion diagrams display the
kink mode only, with the larger dots indicating the chosen eigenvalues for later analysis.
The slow surface and slow body modes merge into a singular branch in the long wavelength
limit.

mode’ as a slow mode anymore as, in the reference frame of the observer, it possesses phase speeds
similar to that of the fast surface mode. In the case of a uniform photospheric cylinder, the body
modes tend toward cT i in the long wavelength limit (Edwin & Roberts 1983, Priest 2014), however
with the inclusion of a background rotational flow, these modes are now absorbed into the slow
continuum where they become resonantly damped.

Figure 5.13 shows the resulting dispersion diagrams over-plotted on each other for the linear
cases of rotational flow in a photospheric cylinder given by the profiles in Figure 5.10. The dots
chosen at the same wavenumber value ka = 0.6 are further used for analysis of the eigenfunctions
for the slow surface kink modes. Additional dots for the fast surface kink mode are shown at a
wavenumber value of ka = 2. This figure shows nicely the effect that changing the amplitude of
the background linear rotational flow has on the resulting eigensolutions of the system, such as
their phase speeds increasing with flow amplitude and further how the modified slow continuum is
shifted in the thin-tube limit.

In Figure 5.14, we show the spatial eigenfunctions for the slow surface kink mode for a fixed
wavenumber ka = 0.6 but different rotational flow amplitudes. The colour scheme shown in the
eigenfunctions is consistent with that for the rotational flow profiles shown in Figure 5.10. It can
be seen that increasing the amplitude of the equilibrium linear rotational flow, changes the spatial
behaviour of the observable eigenfunctions. For the case of A = 0.01 which corresponds to a very
small rotational flow parameter, the eigenfunctions still obey a ‘surface-like’ structure, that is,
the amplitude of the radial displacement and velocity perturbations possesses a maximum at the
boundary of the flux tube. However, increasing the amplitude of the background rotational flow
causes the radial displacement perturbation to increase towards the centre of the flux tube, such
that the maximum displacement perturbation is no longer at the point where r = a. This results
in an eigenfunction that shares striking similarities to that of the fundamental kink mode, and may
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Figure 5.14: The resulting eigenfunctions for the slow surface kink mode for all linear
cases of rotational flow with the colour scheme consistent with Figure 5.10. A wavenum-
ber value of ka = 0.6 was chosen for all plots.

therefore be misinterpreted in observational data.
To further emphasise this point, it is possible to plot the eigenfunctions P̂T and ξ̂r for eigenvalues

of a similar phase speed on either side of the modified slow continuum. One of these solutions
corresponds to the slow magnetoacoustic kink mode and the other is the fast magnetoacoustic kink
mode. In Figure 5.15, we show these eigenfunctions for the slow and fast magnetoacoustic kink
modes at a similar phase speed. It can be seen that the eigenfunctions are difficult to distinguish
from one another and that the modes no longer display characteristics of the typical surface mode
anymore. In particular, the main characteristic of a surface mode is that it possesses a maximum
amplitude of radial displacement perturbation at the boundary of the waveguide, which is no longer
the case when a rotational background plasma flow is present. To further investigate the similar and
mixed behaviour of the perturbed eigenfunctions, it may be instructive to analyse the magnitude of
the parallel and perpendicular components of the displacement. This will provide a greater insight
for seismological purposes into whether the mode is slow or fast in nature, however this is a study
to be conducted in future work.

5.5 Non-linear rotational plasma flow in a photospheric flux tube

In this section, we build upon the work presented in the previous section by considering a back-
ground rotational flow inside a magnetic flux tube which is non-linear in radial distance, r. The
case of a non-linear rotational flow is of particular interest as it may offer a better description of
the radial profiles of the observed velocity fields in solar vortex structures (Silva et al. 2020). Fur-
thermore, a non-linear rotational flow will not cause Equations (1.22)-(1.32) to reduce to simpler
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(a) (b)

Figure 5.15: Plots showing the eigenfunctions P̂T and ξ̂r for the (a) fast and (b) slow
magnetoacoustic kink mode solutions in a photopsheric flux tube with a background rota-
tional flow given by vϕ = 0.1r1. Both plots are for the same vph = ω/k = 1.3 indicated
by the red dot on the dispersion diagram. For both cases the resulting eigenfunctions are
indistinguishable from one another.

expressions, as the radial spatial gradient of vϕ/r no longer becomes a constant value.
A magnetic flux tube in a photopsheric environment is presented with an equilibrium azimuthal

flow component which is spatially non-linear in the sense that:

vϕ = Arp, (5.7)

where p 6= 1 for a nonlinear flow and A is, again, the amplitude of the flow. This scenario sig-
nificantly complicates Equations (1.22)-(1.32) and furthermore, the continua modified by the flow
described in Equations (1.33) and (1.34) now cover a wide range of spatial values rather than being
limited to a single point for a fixed wavenumber. It should be noted that the modified Alfvén
continuum is still present for these cases, however, under photopsheric conditions is not important
in the context of trapped modes, as it covers a range of frequencies located in the leaky regime.

As the nonlinear rotational flow contributes to the pressure balance expression given by Equation
(5.5), this additional term must be accounted for by varying other plasma properties, such as plasma
temperature in the case of a linear rotational flow scenario. The procedure for a nonlinear rotational
flow is no different and the total pressure is balanced across the waveguide by varying the radial
plasma temperature. An example of the equilibrium configuration for a photopsheric flux tube
with a nonlinear background rotational flow is shown in Figure 5.16. In this example, the flow is
defined by vϕ = 0.5r0.5, such that the azimuthal velocity describes a square root radial profile. The
difference between the radial structure of plasma properties such as pressure and temperature can
be seen by comparing Figure 5.3 and Figure 5.16. The difference between the linear and nonlinear
examples is striking and can be expected to be important when analysing the properties of the
resulting wave behaviour.

Figure 5.17 shows a comparison between the two separate variables analysed in this section.
We incorporate background rotational flow into the model and compare the differences between
varying the amplitude of the flow by keeping the power p constant and the alternative case by fixing
the amplitude and varying the power of the rotational flow profile. By doing so, this allows us to
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Figure 5.16: Plots of vϕ, plasma pressure, sound speed and plasma temperature inside
the flux tube for an example configuration of a photospheric magnetic flux tube in the
presence of a nonlinear background rotational flow given by the expression vϕ = 0.5r0.5.
The green shaded regions shows the inhomogeneous band of the internal sound speed, ci,
as a result of the background rotational flow.
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(a) (b)

Figure 5.17: Radial profiles of the rotational flow considered in this chapter. (a) Ex-
ample case where the power of the profile is kept constant but the amplitude varies (b)
example case when the flow amplitude is kept constant and the power of the profile varies.

conduct a thorough analysis of the effect of the radial profile of rotational flow and its amplitude
independently of one other for seismological purposes.

5.5.1 Fixed azimuthal flow profile

Similar to the analysis conducted in Section 5.4, let us assume now that the background rotational
flow is non-linear and compare cases where the flow amplitude varies at the boundary, for a non-
linear profile of constant power p (see e.g. Figure 5.17a). Figure 5.18 shows the resulting dispersion
diagrams for the non-linear case where the power is fixed p = 0.8, corresponding to the profiles
of the curves in Figure 5.17a. A few interesting points are deduced from this diagram. Firstly,
the introduction of a non-uniform background rotational flow causes the modified cusp continuum
to occupy a band of frequencies. This modified slow continuum, as a result of the background
flow, becomes wider as the amplitude of the flow is increased and also shifts away from the long-
wavelength limit with increasing amplitude. Secondly, the modified continuum occupies faster phase
speeds as the amplitude of the flow is increased, this results in the body modes being absorbed into
the continuum at larger rotational flow amplitudes for the case when p = 0.8, where these modes
lying inside the continuum can then undergo resonant processes. For all cases when p = 0.8, the
slow surface kink modes survive being consumed by the modified slow continuum, even for cases
of larger amplitude. As the amplitude of the flow is increased, the slow surface kink modes possess
similar phase speeds to those of the fast surface kink modes in the thin-tube limit, which should be
considered when conducting wave analysis of propagating waves within a rotating solar structure
such that the correct wave mode can be interpreted. Similarly, the obtained eigenvalues are plotted
on the dispersion diagram for the case when p = 1.25 in Figure 5.19. For this case when p > 1, the
notable differences when compared to the nonlinear case of p < 1 are that different wave modes
are absorbed into the modified slow continuum. When the power of the profile is greater than
unity, the slow body modes are initially absorbed by the continuum, whereas for the case when
p > 1, the body modes initially survive unless the flow amplitude is increased sufficiently. The
case of p = 1.25 still causes the modified slow continuum to occupy a band of frequencies, opposed
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Figure 5.18: Dispersion diagrams for the m = 1 kink mode for a photospheric cylinder
with a non-linear background rotational flow with p = 0.8. The different cases with vary-
ing amplitude are shown where the red shaded curve indicates the modified slow continuum
due to the flow.



CHAPTER 5. MHD WAVES IN TWISTED AND ROTATING FLUX TUBES 110

Figure 5.19: Dispersion diagrams for the m = 1 kink mode for a magnetic photospheric
cylinder with a non-linear background rotational flow with p = 1.25. The different cases
with varying amplitude are shown where the red shaded curve indicates the modified slow
continuum.
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to the single-valued nature of a linear rotational flow. Although whereas a p < 1 values caused
the continuum to expand to faster phase speeds, a value of p < 1 causes this continuum to shift
downwards on the dispersion diagram and consume modes with slower phase speeds.

5.5.2 Fixed azimuthal flow amplitude

Figure 5.17b shows the non-linear spatial profiles of the background rotational flow considered in
this section. For all cases the amplitude of the flow is kept constant at the boundary, however the
radial linearity is changed such that the power p in Equation (5.7) varies from p < 1 to p > 1.
Conducting an investigation in this way will allow us to create a clearer picture of the effect that the
power of the velocity profile has on the properties of the wave modes with respect to the modified
slow continuum. In Figure 5.20, we show the obtained solutions for a magnetic cylinder with a
nonlinear background rotational flow with a fixed amplitude of A = 0.05. In these plots, it is clearly
seen that the width of the modified continuum depends heavily on the value of p. As the numerical
code employed only seeks real solutions, the number of obtained solutions depends on the width of
this region. When p = 1 and the flow is linear, the continuum reduces to accumulation points and
the maximum number of solutions are retrieved as more eigenvalues lie on the real frequency axis.
In Figure 5.20, we show the effect that the modified slow continuum has on the nature of modes
entering the resonant frequency band. As explained in Section 5.5.1, when p < 1 the continuum
consumes the slow body modes (in a photospheric cylinder) and when p > 1 the continuum absorbs
the slow surface modes. When p = 1 the modes merge at the continuum line where their properties
become of mixed behaviour. This nature can be seen better in Figure 5.20 as the evolution of the
modified slow continuum can be compared by varying p. In all cases, the fast surface kink modes
are absorbed into the continuum in the thin-tube limit.

5.6 Summary

In this chapter we have extended studies from previous chapters, which have investigated the
properties of MHD waves in radially non-uniform magnetic waveguides, by including a linear and
nonlinear azimuthal component to the background velocity field. In order to conduct this investi-
gation, we ensured that the numerical code presented in Chapter 2 was capable of retrieving the
correct eigenvalues for a magnetic cylinder with a background magnetic twist. The reason for this
was that previous analytical studies have obtained the dispersion relation for MHD waves in linear
magnetically twisted flux tubes (Erdélyi & Fedun 2007a, 2010). The eigenvalues for this particular
model were retrieved and the analysis was further developed by consideration of the modified slow
continuum due to the azimuthal component of the magnetic field. We managed to compliment
the previous studies of magnetically twisted flux tubes by showing that the kink modes follow the
trajectory of the modified slow continuum due to the background Bϕ component.

A similar investigation modelling a magnetically rotating flux tube considered a uniform mag-
netic cylinder with a background vϕ flow component that was allowed to be either linear or non-
linear in radial direction, r. Firstly, for the case of a linear rotational flow, very similar results to
those of the linear magnetic twist were recovered. Under both coronal and photopsheric conditions
it was found that the obtained kink mode solutions possess phase speeds which enter the leaky
regime in the long wavelength limit. This was also shown to be a result of the modified slow con-
tinuum due to the background flow. The modified slow continuum reduces to single-point values
in the cases of linear rotational flow and magnetic twist. Therefore, there becomes a point where,
under photopsheric conditions, the slow surface kink mode and the slow body kink mode merge at
the point of the continuum, and their properties become mixed. Comparison of the eigenfunctions
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Figure 5.20: Dispersion diagrams for the m = 1 kink mode for a photospheric cylin-
der with a non-linear background rotational flow with A = 0.05. The different cases
with varying power are shown where the red shaded curve indicates the modified slow
continuum.
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for the slow surface kink mode and fast surface kink mode in the presence of a linear background
rotational flow at similar phase speeds, indicated that identification of the two modes becomes
extremely difficult in the long wavelength limit. This is because the radial structure of the dis-
placement and pressure perturbations for each mode become identical to each other. This could
have consequences for the interpretation of these wave modes in observable solar waveguides.

An extension of this study which modelled the rotational flow as a nonlinear radial profile was
then conducted in Section 5.5. A variety of case studies were compared against each other and
focused on the influence of two variables, namely the amplitude of the rotational flow and the
power of the spatial profile on the resulting MHD wave modes. It was found that the power of the
flow profile has a significant importance on the behaviour of the modified slow continuum. The
width of the modified continuum depends on both the amplitude of the flow and the power of
the profile, whereas the direction of the continuum band (shifted to either faster or slower phase
speeds) depends solely on the power of the profile. This has important consequences for which
wave modes are absorbed into the continuum where they can undergo resonant processes, such as
resonant absorption. For a linear rotational flow, with radial power equal to one, we have deduced
that the continuum band reduces to single-point values, where, under photospheric conditions, the
slow surface and body modes merge at the continuum point. However, for a power p > 1, the
modified slow continuum expands from single-point values and occupies phase speeds just below
the continuum line for the linear case. As a result, this causes the slow surface kink mode to
enter the continuum, and is no longer present for rotational flow amplitudes that exceed a small
percentage of the local sound speed, roughly 5%. However, for the case where the power of the
rotational flow profile is less than linear, e.g. p < 1, the modified slow continuum expands to
greater phase speeds and the slow body modes are now consumed by the continuum. The width of
the continuum is larger as p becomes smaller and more nonlinear, causing slow body kink modes
at smaller wavenumbers to become absorbed into the continuum band. For all cases of nonlinear
rotational flow, the fast surface kink mode is consumed by the modified slow continuum in the thin-
tube limit, suggesting that these modes may be susceptible to damping in thin rotating magnetic
flux tubes that are common in the lower solar atmosphere.

For all the cases of a magnetically twisted flux tube, linear rotating flux tube and a nonlinear
rotating flux tube, it was found that the axisymmetric m = 0 sausage mode remains unaffected
by any background azimuthal component. Analytically this can be understood by examining the
governing set of Equations (1.22)-(1.32) when setting m = 0 and noticing many terms either sim-
plifying or disappearing altogether. Furthermore, it also suggests that sausage mode observations
in the lower solar atmosphere in e.g. pores and sunspots, may not provide a suitable wave mode to
conduct magnetoseismology if the structure is in the presence of any magnetic twist or background
flows.



Chapter 6

Conclusions & Outlook

In this thesis we have developed a new numerical eigensolver which can be applied to multiple
geometrical coordinate systems, such as Cartesian and cylindrical, to obtain the eigenvalues and
resulting eigenfunctions for any arbitrary symmetrically non-uniform equilibria. The numerical
algorithm utilises the shooting method and bisection method along with well known properties of
fundamental trapped MHD wave modes. A more detailed explanation of the numerical code is found
in Chapter 2. We have comprehensively tested this code against a number of well known, previously
derived analytical results including a uniform magnetic slab with and without the inclusion of
a steady background plasma flow in both coronal and photospheric environments in Chapter 3.
Further testing then focused on a cylindrical geometry in Chapter 4 for which the eigenvalues for
a uniform magnetic cylinder, again with and without the inclusion of a steady background plasma
flow, were correctly obtained in both coronal and photospheric environments. More complex testing
required retrieving the same solutions for a magnetic cylinder with a linear background magnetic
twist, as done previously in Erdélyi & Fedun (2007b) and Erdélyi & Fedun (2010). The numerical
code recovered the same eigenvalues as the previous analytical studies demonstrating the power of
the newly developed algorithm to be successful in a wide variety of equilibrium configurations. The
presented numerical tool has endless possible applications and, with further development, could be
vital in aiding with the understanding of MHD wave properties in observed solar features.

We have found that, by modelling solar waveguides as a two-dimensional magnetic slab, that
the spatial properties of slow magnetoacoustic modes are altered in the presence of a spatially
non-uniform equilibrium, due to e.g. inhomogeneous plasma density and background flow (Skirvin
et al. 2021). We have found that modelling the equilibrium plasma density as a Gaussian profile
creates additional nodes and anti-nodes in the resulting eigenfunction solutions when compared
to the eigenfunctions of a uniform magnetic slab predicted by theory. This result may have an
implication for observers when interpreting observations in waveguides with a similar environment
as the existence of either (a) an overtone of the mode or (b) a separate wave mode entirely.
Furthermore, our results have shown that the same effect is not present for the fast magnetoacoustic
modes, for which we suggest this may be because fast magnetoacoustic wave modes can propagate
across the magnetic field and hence across the inhomogeneity. A full detailed discussion of the work
conducted can be found in Chapter 3.

This work was then extended to investigate the properties of MHD waves in a non-uniform
magnetic cylinder in Chapter 4 (Skirvin et al. 2022). A similar analysis was conducted which
modelled the plasma density as a Gaussian profile under both coronal and photospheric conditions.
Striking results to the case of a non-uniform magnetic slab were found that included additional
nodes and anti-nodes appearing in the resulting eigenfunctions when compared to the case of a
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uniform cylinder. Furthermore, it was found that the internal azimuthal displacement perturbation
increased towards the cylinder boundary with increasing density non-uniformity. This creates
a larger discontinuity across the boundary which results in greater shearing and may cause the
onset of KHI. Similar to previous studies we have shown that a non-uniform waveguide may be
susceptible to KHI and could be responsible for the disappearance of e.g. spicules fading in the
upper chromosphere (De Pontieu, McIntosh, Carlsson, Hansteen, Tarbell, Schrijver, M., Shine,
Tsuneta, Katsukawa, Ichimoto, Suematsu, Shimizu & Nagata 2007). An additional study of a
uniform magnetic cylinder with a non-uniform background plasma flow under coronal conditions in
an attempt to model a solar jet-like behaviour. We showed that the perturbed vorticity is greater
in the case of maximum non-uniformity of plasma flow. This may excite torsional MHD waves in
the upper layers of the solar atmosphere (González-Avilés et al. 2017, 2019).

Another study presented in this work modelled magnetic flux tubes in the presence of back-
ground magnetic twist and rotational flow. In Chapter 5 we introduced a linear magnetic twist
into the model and retrieved previous analytical results. We showed how the kink mode is affected
by the modified slow continuum and the wave solutions follow the trajectory of this continuum
line, explaining the observed phase speed behaviour in the thin-tube limit. We then considered
the effect of a linear background rotational flow on a coronal and photopsheric flux tube. In both
environments, it was found that there was little effect on the sausage mode, however the kink mode
displayed similar characteristics to a magnetically twisted flux tube. It was determined that this
behaviour was again due to the modified continuum which may have implications for interpreting
observational data and conducting atmospheric-seismology. A final case study investigated the ef-
fect of a nonlinear background rotational flow in a photospheric flux tube. It was found that when
the rotational flow was modelled using a nonlinear profile, the modified continua no longer reduce
to single point values and instead occupy a band of wave frequencies. This results in more wave
modes being consumed by the continuum where they can undergo resonant processes.

In every case study investigated in this thesis, it has become a common theme to observe that
the slow magnetoacoustic modes, both body and surface, are more greatly affected than fast modes
under both coronal and photospheric environments. A possible explanation of this was provided
in the summary of Chapter 3. It is based on the fact that slow modes, in general, propagate along
the lines of magnetic field, whereas fast modes can propagate across the magnetic field, hence can
propagate across the inhomogeneity and feel the effect of non-uniform equilibria less than their
slow counterparts. This result could have implications for determining which wave modes are more
suitable to use when conducting solar atmospheric seismology.



CHAPTER 6. CONCLUSIONS & OUTLOOK 116

6.1 Future work

1. Complex solutions
In Chapter 2 we explained the physics behind how the numerical eigensolver obtains solutions
for MHD wave modes in non-uniform waveguides. One of the assumptions to allow this to be
done was that the wave amplitudes are evanescent outside the waveguide, such that they are
zero infinitely far from the waveguide. However, through this assumption, the investigation of
complex solutions that describe leaky modes, solutions which lie inside the continua and/or
instabilities are instantly ignored. Through this, a lot of interesting physics can not be studied
and it would be a great advancement of the numerical eigensolver if the complex solutions were
included. This can be done using a variety of techniques. Firstly, continuation of the method
described in Section 2.2.1 that involves implementing the shooting method for both the real
and complex components of the eigenfunctions may successfully obtain the full frequency
eigenvalues, including the imaginary component. Secondly, using an alternative method than
the numerical shooting method may be a more accessible approach, such as discretising the
linearised MHD equations using a Finite Element approach such as the one described by the
Legolas code (Claes et al. 2020).

2. Interactive eigenfunctions
Whilst the numerical eigensolver developed in this thesis has demonstrated its abilities at
obtaining the correct solutions for a number of different uniform and non-uniform case studies,
there is endless scope of possible improvements. One example would be to expand the usability
aspect of the code, by incorporating an interactive graphical interface as a method to visualise
e.g. the eigenfunctions of a particular wave solution. For example, within a separate script,
the obtained solutions could be displayed on the dispersion diagram and the user could
physically select each mode separately to view the eigenfunctions instantly. There could also
be an option to create instant 3D snapshots/movies of this wave mode to gauge an idea
as to what this mode would look like when observed propagating within a solar structure.
Incorporating improved usability such as this would make the tool more accessible to the
wider community.

3. Magnetoseismology with high resolution observations
In recent decades, significant progress has been made with both ground, and space-based
telescopes, such as SDO/AIA, Hinode/SOT, SST, IRIS. However, even greater observations
are required if we are to fully understand the physics and associated wave phenomena oc-
curring on smaller scales in observed solar features such as jets, thin coronal loops, magnetic
bright points, etc. Fortunately, the new high-resolution observational facility DKIST will
provide new important information on the small-scale, fine structure and dynamics of such
features. DKIST is capable of capturing the dynamic evolution of solar features with high ca-
dence (3 seconds) and making simultaneous measurements (with 15-second cadence) of both
chromospheric and photospheric magnetic fields and flows (Rast et al. 2021). The new high
resolution data obtained by this telescope will create fresh opportunities to conduct detailed
atmospheric-seismology using observed MHD waves. This data, complimented with the nu-
merical tool presented in this thesis, will allow insights into the properties of MHD waves
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which is at the forefront of human knowledge, surpassing what is possible from a purely ana-
lytical approach and ultimately advancing our understanding of the properties of MHD waves
in non-uniform plasmas.

4. Realistic equilibrium configurations

The case studies presented in each chapter of this thesis have considered equilibria that
is more representable of conditions within a solar waveguide. Although modelling of solar
plasma as spatially non-uniform with background magnetic twist or rotational flows is a huge
step beyond what is capable from an analytical perspective, the numerical eigensolver is
capable of handling much more complex equilibria. For example, in future work it would be
possible to model some of the case studies presented here, combined with each other, such as
a non-uniform density flux tube with a background magnetic twist. Configurations with non-
uniform plasma including a background Bϕ and vϕ component are impossible to investigate
purely from a theoretical point of view and must be done, at least in some part, numerically.
The numerical eigensolver presented in this work is more than capable of obtaining the wave
modes in observed solar configurations, so long as an equilibrium can be obtained.

5. Torsional Alfvén waves

In this thesis we have discussed and presented only the magnetoacoustic wave solutions in
non-uniform magnetic waveguides. However, as we have mentioned in Chapter 1, there does
exist another wave solution to Equation (1.19) that describes the Alfvén wave. It would
be possible to repeat the analysis conducted in this thesis under the assumption that the
perturbations are incompressible, which corresponds to the properties of Alfvén waves. This
may be an interesting avenue to explore, because the presence of a non-uniform background
may affect the properties of Alfvén waves in such a way that they may produce observational
signatures. Because torsional Alfvén waves are incompressible, and do not perturb the plasma
density or temperature, they do not leave obvious observational signatures, however, their
properties in non-uniform waveguides are not well understood.
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AlfvÉn waves in 1-dimensional magnetic flux tubes’, Solar Phys. 157(1-2), 75–102.

Goossens, M., Terradas, J., Andries, J., Arregui, I. & Ballester, J. L. (2009), ‘On the nature of kink
MHD waves in magnetic flux tubes’, Astron. Astrophys. 503(1), 213–223.
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Hain, K. & Lüst, R. (1958), ‘Zur Stabilität zylindersymmetrischer Plasmakonfigurationen mit Vol-
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Jess, D. B., Mathioudakis, M., Erdélyi, R., Crockett, P. J., Keenan, F. P. & Christian, D. J. (2009),
‘Alfvén Waves in the Lower Solar Atmosphere’, Science 323(5921), 1582.

Jess, D. B., Morton, R. J., Verth, G., Fedun, V., Grant, S. D. T. & Giagkiozis, I. (2015), ‘Multi-
wavelength Studies of MHD Waves in the Solar Chromosphere. An Overview of Recent Results’,
Space Sci. Rev. 190, 103–161.



BIBLIOGRAPHY 123

Jess, D. B., Van Doorsselaere, T., Verth, G., Fedun, V., Krishna Prasad, S., Erdélyi, R., Keys,
P. H., Grant, S. D. T., Uitenbroek, H. & Christian, D. J. (2017), ‘An Inside Look at Sunspot
Oscillations with Higher Azimuthal Wavenumbers’, Astrophys. J. 842(1), 59.

Keppens, R. (1996), ‘Hot Magnetic Fibrils: The Slow Continuum Revisited’, Astrophys. J.
468, 907.

Keys, P. H., Morton, R. J., Jess, D. B., Verth, G., Grant, S. D. T., Mathioudakis, M., Mackay, D. H.,
Doyle, J. G., Christian, D. J., Keenan, F. P. & Erdélyi, R. (2018), ‘Photospheric Observations
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Fedun, V., Fischer, C. E., González Manrique, S. J., Hahn, M., Harra, L., Henriques, V. M. J.,
Hurlburt, N. E., Jaeggli, S., Jafarzadeh, S., Jain, R., Jefferies, S. M., Keys, P. H., Kowalski,
A. F., Kuckein, C., Kuhn, J. R., Kuridze, D., Liu, J., Liu, W., Longcope, D., Mathioudakis, M.,
McAteer, R. T. J., McIntosh, S. W., McKenzie, D. E., Miralles, M. P., Morton, R. J., Muglach,
K., Nelson, C. J., Panesar, N. K., Parenti, S., Parnell, C. E., Poduval, B., Reardon, K. P., Reep,
J. W., Schad, T. A., Schmit, D., Sharma, R., Socas-Navarro, H., Srivastava, A. K., Sterling,
A. C., Suematsu, Y., Tarr, L. A., Tiwari, S., Tritschler, A., Verth, G., Vourlidas, A., Wang, H.,
Wang, Y.-M., NSO and DKIST Project, DKIST Instrument Scientists, DKIST Science Working
Group & DKIST Critical Science Plan Community (2021), ‘Critical Science Plan for the Daniel
K. Inouye Solar Telescope (DKIST)’, Solar Phys. 296(4), 70.

Rayleigh, L. (1879), ‘On the stability, or instability, of certain fluid motions’, Proceedings of the
London Mathematical Society s1-11(1), 57–72.
URL: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-11.1.57



BIBLIOGRAPHY 126

Roberts, B. (1981a), ‘Wave Propagation in a Magnetically Structured Atmosphere - Part Two -
Waves in a Magnetic Slab’, Solar Phys. 69, 39–56.

Roberts, B. (1981b), ‘Wave propagation in a magnetically structured atmosphere. I - Surface waves
at a magnetic interface.’, Solar Phys. 69, 27–38.

Roberts, B. (2019), MHD Waves in the Solar Atmosphere, Cambridge University Press.

Rouppe van der Voort, L., Bellot Rubio, L. R. & Ortiz, A. (2010), ‘Upflows in the Central Dark
Lane of Sunspot Light Bridges’, Astrophys. J. Lett. 718(2), L78–L82.

Rouppe van der Voort, L., Leenaarts, J., de Pontieu, B., Carlsson, M. & Vissers, G. (2009), ‘On-
disk Counterparts of Type II Spicules in the Ca II 854.2 nm and Hα Lines’, Astrophys. J.
705, 272–284.

Ruderman, M. S. (2007), ‘Nonaxisymmetric Oscillations of Thin Twisted Magnetic Tubes’, Solar
Phys. 246(1), 119–131.

Ruderman, M. S., Berghmans, D., Goossens, M. & Poedts, S. (1997), ‘Direct excitation of resonant
torsional Alfven waves by footpoint motions.’, Astron. Astrophys. 320, 305–318.
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Verth, G., Van Doorsselaere, T., Erdélyi, R. & Goossens, M. (2007), ‘Spatial magneto-seismology:
effect of density stratification on the first harmonic amplitude profile of transversal coronal loop
oscillations’, Astron. Astrophys. 475(1), 341–348.

Verwichte, E., Foullon, C. & Nakariakov, V. M. (2006a), ‘Fast magnetoacoustic waves in curved
coronal loops’, Astron. Astrophys. 446(3), 1139–1149.

Verwichte, E., Foullon, C. & Nakariakov, V. M. (2006b), ‘Fast magnetoacoustic waves in curved
coronal loops. II. Tunneling modes’, Astron. Astrophys. 449(2), 769–779.

Verwichte, E., Foullon, C. & Nakariakov, V. M. (2006c), ‘Seismology of curved coronal loops with
vertically polarised transverse oscillations’, Astron. Astrophys. 452(2), 615–622.

Verwichte, E., Haynes, M., Arber, T. D. & Brady, C. S. (2008), ‘Damping of Slow MHD Coronal
Loop Oscillations by Shocks’, Astrophys. J. 685(2), 1286–1290.
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Appendix A

Derivation of governing equation for a
non-uniform flow in a magnetic slab

Here we will derive the governing differential equation for horizontal velocity perturbation v̂x in a
magnetic slab with a non-uniform vertical background plasma flow in the form U0i(x)

First start from the linearised ideal MHD Equations (1.7)-(1.10):

∂ρ1
∂t

+ ρ0(∇ · v1) + ρ1(∇ · v0) = 0, (A.1)

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇×B1)×B0, (A.2)

∂p1
∂t
− c20

∂ρ1
∂t

= 0, (A.3)

∂B1

∂t
= ∇× (v1 ×B0) +∇× (v0 ×B1). (A.4)

Seeking wave-like solutions where each perturbed variable (denoted subscript 1) is put proportional
to exp(ikz − iωt) yields:

− iΩ(x)ρ̂1 + ρ0
(
v̂′x + ikv̂z

)
= 0, (A.5)

− iρ0Ω(x)v̂x = −P̂ ′1 +
B0

µ0

(
ikB̂x − B̂′z

)
, (A.6)

− iρ0Ω(x)v̂z + ρ0U
′
0i(x)v̂x = −ikP̂1, (A.7)

− iΩ(x)P̂1 + c20ρ0
(
v̂′x + ikv̂z

)
= 0, (A.8)

− iΩ(x)B̂x = ikB0v̂x, (A.9)

− iΩ(x)B̂z = B̂xU
′
0i(x)−B0v̂

′
x, (A.10)

where Ω(x) = ω − kU0i(x) is discussed in the text and a prime denotes a differential with respect
to spatial coordinate x. Combining Equations (A.9) and (A.10) isolates B̂z:

B̂z = −iB0

(
v̂′x

Ω(x)
− Ω′(x)

Ω2(x)v̂x

)
, (A.11)

and Equation (A.11) can be differentiated with respect to spatial coordinate x to yield:

B̂′z =
−iB0

Ω2(x)

[
Ω(x)v̂′′x − Ω′′(x)v̂x − 2Ω′(x)v̂′x + 2

(Ω′(x))2

Ω(x)
v̂x

]
. (A.12)
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Substituting Equation (A.12) into Equation (A.6) and multiplying the resulting expression by iΩ(x)
after dividing the expression by ρ0 yields:

Ω2(x)v̂x =
c2

[Ω2(x)− k2c2]

[
Ω′′(x)Ω(x)v̂x −

2 (Ω′(x))2 Ω2(x)

[Ω2(x)− k2c2]
v̂x − Ω2(x)v̂′′x +

2Ω3(x)Ω′(x)

[Ω2(x)− k2c2]
v̂′x

]
+

+v2A

(
k2v̂x −

1

Ω(x)

[
Ω(x)v̂′′x − 2Ω′(x)v̂′x − Ω′′(x)v̂x +

2 (Ω′(x))2

Ω(x)
v̂x

])
.

(A.13)
Using Equation (A.13) it is possible to now collect the coefficients of v̂′′x, v̂′x and v̂x separately.
Introducing a new variable m2

0(x) which can be written as:

m2
0(x) =

[
k2v2A − Ω2(x)

] [
k2c2 − Ω2(x)

](
c2 + v2A

) [
k2c2T − Ω2(x)

] , (A.14)

the coefficients become:
v̂′′x :

(
c2 + v2A

) (
Ω2(x)− k2c2T

)
, (A.15)

v̂′x :
2Ω′(x)

Ω(x)

[
c2Ω4(x)

[Ω2(x)− k2c2]
+ v2A

[
Ω2(x)− k2c2

]]
, (A.16)

v̂x :
Ω′′(x)

Ω(x)

(
c2 + v2A

) (
Ω2(x)− k2c2T

)
− 2 (Ω′(x))2

Ω2(x)

[
Ω2(x)

[
Ω2(x)− k2v2A

]
m2

0

− k2c2v2A

]
−

−
(
Ω2(x)− k2c2

) (
Ω2(x)− k2v2A

)
.

(A.17)

Dividing all Equations (A.15)-(A.17) by the factor
(
c2 + v2A

) (
Ω2(x)− k2c2T

)
such that the coeffi-

cient of the largest derivative is equal to 1 yields the governing equation:

v̂′′x +D(x)v̂′x +

[
−Ω′′(x)

Ω(x)
− Ω′(x)

Ω(x)
D(x)−m2

0(x)

]
v̂x = 0, (A.18)

with,

D(x) =
2Ω′(x)

Ω(x)

[
Ω2(x)

Ω2
c(x)

−
k2c2T

Ω2
T (x)

]
. (A.19)

Given that the non-uniform flow is taken inside the waveguide, the parameters in this expression
can be sub-scripted by i.
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