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Abstract 
 

Increased neural noise is proposed to be a potential endophenotype of Autism Spectrum Conditions 

(ASC) (Simmons, 2009; David et al, 2016; Haigh, 2018), capturing disrupted neural synchrony 

dynamics inherent to the condition (Rubenstein & Merzenich, 2003). Nevertheless, the neural noise 

hypothesis of ASC has not been previously examined systematically. Using 

Electroencephalography (EEG), the present thesis investigates neural noise by measuring the degree 

of phase angle alignment of neural oscillations between experimental trials through the Inter-trial 

Phase Coherence (ITPC) metric and the steepness of 1/f noise slope of Power Spectral Density 

(PSD), a variable quantifying broadband changes in power spectra as a function of temporal 

frequency (Gao et al., 2017; Donoghue et al., 2020) in a visual task-based and a resting state 

condition. The present thesis comprises of four studies: a) an investigation of neural noise in clinical 

samples of adults with ASC and ADHD b) the presentation of a new accessible method of studying 

brain activity of autistic individuals at home, using mobile EEG technology, c) a study of neural 

noise in a large sample of children with ASC (n=67) and d) an investigation of the relationship 

between neural noise and behavioural symptoms associated with the ASC phenotype. In the present 

thesis it was established that increased neural variability in the form of low ITPC occurs only in a 

group of children with ASC. Although levels of ITPC differed significantly between children with 

and without ASC at a group level, low ITPC could not differentiate participants with ASC from 

participants without ASC with adequately high accuracy to be considered a biomarker of ASC, as 

proposed in the literature (David et al., 2016). In addition, it was demonstrated that ITPC, as 

measured in response to visual stimulation, is not linked to primary phenotypic expressions of ASC 

but is associated with anomalous visual experiences and visual distortions, a group of 

visuoperceptual symptoms shown to manifest with varying prevalence in individuals with ASC and 

other people in the general population. Finally, it was established that 1/f noise power spectral 

dynamics, measured during processing of simple visual stimuli and during rest, were intact in the 

ASC and ADHD samples tested, providing evidence against the pathological undercoupling 

hypothesis proposed by Voytek & Knight (2015).  
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1.1 Autism Spectrum Condition (ASC)  
 

Autism Spectrum Condition (ASC) is a heterogeneous disorder with a complex underlying genetic 

etiology (Bill & Geschwind, 2009). Formal diagnosis of ASC is provided on the basis of the 

presence of two core clusters of symptoms, a) social communication difficulties and b) repetitive 

and restricted patterns of behaviour (American Psychiatric Association, 2013). Growing evidence 

suggests that atypical sensory processing, manifesting as “hyper- or hypo- reactivity to sensory input 

or unusual interest in the sensory environment” (American Psychiatric Association, 2013) also lies 

at the core of ASC, captured within the restricted and repetitive behaviour diagnostic symptom 

domain (Simmons et al., 2009; Haigh, 2018). ASC symptom severity varies, ranging from mild to 

severe (American Psychiatric Association, 2013). Behavioural expressions of ASC are shown to 

change as the individual transitions from childhood to adulthood (Shattuck et al., 2007; Esbensen et 

al., 2009; Bal et al., 2019) and are shown to differ in females compared to males (Lai et al., 2012; 

Frazier & Hardan, 2017; Parish-Morris et al., 2017). Such factors contribute to greater behavioural 

heterogeneity within the condition (see Jeste & Geschwind, 2014 for a review). Behavioural 

heterogeneity is also amplified by the high prevalence of comorbid psychiatric (e.g. anxiety 

disorders, depressive disorders, bipolar and mood disorders, attention-deficit/hyperactivity disorder, 

see Rosen et al., 2018; Hossain et al., 2020) and other medical conditions in ASC (e.g. epilepsy, 

motor impairment and sleep disturbances, see Croen et al., 2015; Lukmanji et al., 2019), revealing 

a complex, multidimensional aspect of ASC not accounted for in the current diagnostic framework. 

In addition, Intellectual Disability (ID) is one of the most frequently co-occurring conditions, with 

prevalence rates varying from 16.7% (de Bildt et al., 2005) to 28% (Bryson et al., 2008; Van 

Naarden Braun et al., 2015). This means that the current diagnostic schema, which classifies 

individuals as autistic based on whether they exhibit behaviours in both symptom clusters above or 

below an artificial threshold of severity, is inherently flawed and fails to capture important clinical 

nuances resulting in diagnostic instability and a difficulty to uncover etiological factors linked to 

ASC (Dalgleish et al., 2020).  

 

Early studies treated autism as a unitary disorder, attributed to a single cause, an idea heavily 

promoted by the categorical structure of the diagnostic process. In that context, a number of single 

deficit cognitive theories have been proposed to explain ASC. The Theory of Mind hypothesis 

(Baron-Cohen et al., 1985; Frith, 2003), Weak Central Coherence (Frith, 2003), Executive 

Dysfunction (Pennington & Ozonoff, 1996) and the theory of Hypo-Priors (Pellicano & Burr, 2012) 

are some examples of such single deficit theories. These cognitive theories provide a basis for 
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exploring very complex aspects of ASC symptomatology and indeed they validly describe many 

facets of the condition (Belmonte et al., 2004). However, recent advances in autism research suggest 

that a single cognitive deficit is unlikely to be the main cause of the wide range of behavioural 

features observed across the autism spectrum (Happe et al., 2006; Happe & Frith, 2020). For 

example, social deficit theories provide a framework to explain aspects of social communication 

difficulties but fail to provide sufficient evidence of how these lead to the manifestation of rigid and 

repetitive patterns of behaviours, particularly sensory perceptual differences in autistic individuals. 

In addition, the ASC profile is shown to be associated with cognitive peaks and troughs, i.e strengths 

in visual perception, language, abstract reasoning but weaknesses in cognitive speed and language 

comprehension, a cognitive profile that varies greatly from one individual to the other  (Mandy et 

al., 2015).  On that note, as Happe et al. (2006) eloquently point out, maybe it’s “time to give up on 

a single explanation for autism”.  

 

Emerging evidence suggests that behavioural symptoms of ASC are in fact “fractionable”, meaning 

that core ASC symptom domains are independent from each other at a genetic and cognitive level 

(Happe et al., 2006; Brunsdon & Happe, 2014; Happe & Frith, 2020). Growing support for this 

hypothesis stems from large population-based studies such as the one by Ronald et al. (2006) who 

found that ASC core symptom domains correlate moderately or very little. Social communication 

difficulties and repetitive and restricted patterns of behaviour are very weakly related both in the 

general population and in children with high ASC traits (Ronald et al., 2006). Dworzynski et al. 

(2009) report similar results in clinical ASC samples i.e. in autistic twins. The development of 

genetic data repositories (e.g. Simons simplex collection) allowed for large-scale molecular genetic 

studies such as the one conducted by Warrier et al. (2019), which used polygenic score analysis to 

further demonstrate that social and non-social ASC symptom domains are genetically dissociable. 

The above studies suggest that separate genes contribute to social, communicative and 

repetitive/restricted behaviours, reinforcing the message that autism does not exist on a single 

dimension. 

 

Does this mean that ASC as a condition does not exist? On the contrary, despite the fact that ASC 

behavioural features are independent from each other, the probability of them co-occurring is at 

above-chance levels (Happe et al., 2006). Although ASC shares behavioural features and genetic 

influences with other disorders, the two symptom clusters of ASC interact in a complex way and 

give rise to a distinct condition (Happe & Frith, 2020). The “fractionable” nature of ASC 
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nevertheless has shaped the thinking of newly emerging research work in a number of different 

ways. First, ASC symptom domains begin to be studied separately (Bal et al., 2019; Uljarevic et al., 

2020). In addition, if the genetic and cognitive causes of ASC symptoms are distinct, this implies 

that a single, unique neural feature that gives rise to the range of phenotypic expressions may not 

exist. For that reason, ASC symptom expressions are also studied in the context of specific neural 

correlates (Lo et al., 2019; McKinnon et al., 2019; Jasmin et al., 2019). Second, a growing number 

of studies acknowledge that heterogeneity in ASC is the outcome of large variability within two (or 

more) independent clusters of symptoms, each one with distinct neural underpinnings and with a 

distinct genetic basis (Happe & Frith, 2020). In an effort to uncover the etiology behind ASC, more 

and more studies are using cluster analysis to study phenotypically homogeneous subgroups (Kim 

et al., 2016; Zheng et al., 2020). Others are reversing the problem and are investigating ASC traits 

in genetically homogeneous samples such as 22q13 deletion syndrome (see hypothesis for hyper-

expression of SHANK3 at Harony et al., 2013), Fragile X or other single-gene neurodevelopmental 

disorders, conditions shown to share synaptic plasticity defects with ASC (Baudouin et al., 2012). 

Third, considering that ASC behavioural symptoms exist on a continuous dimension, measured both 

in the general population and in other clinical groups (Constantino et al., 2004; Ruzich et al., 2015; 

Bralten et al., 2018), the transdiagnostic approach of studying ASC traits across multiple 

neurodevelopmental disorders is proving to be a useful method of disentangling the genetic 

influences on behavioural expressions (see Bruining et al., 2010). Taken together, we see a shift in 

direction towards the study of specific behavioural symptoms in relation to their underlying neural 

mechanisms and their specific genetic basis (see recent work by Warrier at al., 2019 which links 

polygenic scores with specific symptoms).  
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1.2 Identification of biomarkers in ASC 
 

ASC is primarily caused by genetic factors (Tick et al., 2016; Bai et al., 2019; Thapar & Rutter, 

2020). Genetic studies suggest that the environmental effect is not strong enough to explain the 

biggest portion of the variance of ASC phenotypic expressions (Mandy & Lai, 2016). Thirty decades 

of research in the field has revealed that ASC is a highly heritable disorder. It is characterized not 

only by great behavioural heterogeneity but also a great genetic heterogeneity and a complex genetic 

architecture (Shaaf et al., 2020; Thapar & Rutter, 2020). The majority of evidence supporting the 

genetic risk of ASC has come from twin and family studies. Monozygotic twins- that is twins who 

share all of their genes- demonstrate 36-96% concordance rate depending on whether the diagnosis 

is narrowly or strictly defined (Folstein & Rutter, 1977; Rosenberg et al., 2009; Hallmayer et al., 

2011; Gaugler et al., 2014; Tick et al., 2016) and dizygotic twins from 0% to 40% (Folstein & 

Rutter, 1977; Colvert et al., 2015). The estimated probability of a second sibling being diagnosed 

with ASC is 2 to 14% (Rutter, 2000) compared to only 0.6% in the typically developing population 

(Wing & Potter, 2002).  

 

Despite the advances in interdisciplinary research of ASC, it has proven extremely difficult to locate 

autism risk genes and delineate their impact on phenotypic expressions (Schaaf et al., 2020). In the 

cases where susceptibility loci have been reported in more than one study- mainly on chromosomes 

2, 7, 15 and 16 (Benayed et al., 2005; Campell et al., 2006; Sanders et al., 2011)- significance levels 

are low and lack of replicability remains an important burden (Viding & Blakemore, 2007). Efforts 

to identify genes leading to the ASC phenotype or else the “gene-phenotype” pathways, have not 

been fruitful for two main reasons; a) genetic studies have been striving to identify specific genes 

linked to autism as a single entity encompassing both social communication difficulties and 

rigid/repetitive patterns of behaviour (Happe et al., 2006) and b) ASC is characterised by great 

behavioural heterogeneity i.e great diversity in the levels of cognitive functioning, symptom severity 

and the high number of comorbidities manifesting in the condition (Bill & Geschwind, 2009). Even 

when research efforts are made to link genes to specific behavioural expressions, causal routes 

leading to the same behavioural symptom can vary (Morton, 2008) and although reliable tools are 

used to measure clusters of behavioural symptoms in ASC, it has proven challenging to identify 

etiologically homogeneous groups solely based on clinical symptoms (Rutter, 2011; Loth & Evans, 

2019 for a first effort to identify behavioural markers). In other words, there is a large number of 

biological processes that occur between the one endpoint- the specific gene- and the other endpoint- 

the specific behaviour (Betancur, 2011). Therefore, associating intermediate phenotypes or 
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biomarkers with specific behavioural expressions may be more useful for shedding light on the 

gene-phenotype pathways as these carry meaningful information about gene expression and act as 

a “middle stop”, directly bridging the gap between gene and behaviour. 

 

A biomarker is a quantifiable feature that indicates “a normal biological or a pathological process” 

or is objectively used to measure “the biological responses to a therapeutic intervention” 

(Biomarkers Definitions Working Group, 2001). Importantly, it is considered as an inherent part of 

the causal chain by which psychiatric disorders arise (Viding & Blakemore, 2007). The discovery 

of disorder-specific biomarkers in psychiatric disorders allows for further investigation of the 

genetic influences on specific symptoms (Abrahams & Geschwind, 2008; Geschwind, 2008). They 

can be anatomical, electrophysiological, metabolic, developmental or cognitive (Flint & Munafo, 

2007). Certain criteria have to be met for a marker to be characterized as an endophenotype of a 

psychiatric disorder; it should represent a reliable and consistent characteristic of the phenotype, it 

should be heritable, explained by shared genes and it should highly correlate with a particular 

symptom of the diagnostic category (DeGeus & Boomsma, 2001). In ASC, it is likely that these 

quantifiable features do not take the strict form of a biomarker or an endophenotype but rather, they 

are neural features linked to some aspect of the ASC phenotype, indicative of one of the many 

pathophysiological routes to disorder expression (Scarr et al.; 2015; Carroll et al., 2021).  

 

The identification of clinically relevant markers in psychiatric conditions ultimately allows for the 

identification of cohesive subgroups within a highly heterogeneous psychiatric group, thereby 

allowing for personalised interventions and care (Bridgemohan et al., 2019). While acknowledging 

that a single genetic or neurocognitive cause of autism as a whole is unlikely to exist, this is a very 

promising avenue for studying ASC in particular as it also recognizes that a single “treatment” is 

unlikely to work for every person with ASC (Happe et al., 2006). Unlike other conditions, in ASC 

there is a lack of pharmacological interventions, therefore early diagnosis and individualised 

intervention practices currently remain the two most effective approaches to care for individuals 

with ASC. The shift towards the use of neural signatures to identify homogeneous subgroups of 

individuals with similar neurocognitive profiles (Viding & Blakemore, 2007), has the potential to 

lead to improved diagnostic processes (i.e early diagnosis), more accurately defined intervention 

recommendations and more precisely determined prognostic outcomes (Geschwind & State, 2015; 

Bridgemohan et al., 2019).  
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1.3 Scope of the present thesis 
 

A plethora of research studies propose that increased neural noise may be a potential endophenotype 

of ASC (see Simmons, 2009; David et al., 2016 and Haigh, 2018 for a review), capturing disrupted 

neural communication dynamics inherent to the condition. This proposal is based on a growing 

number of experimental findings indicating that levels of neural noise in the form of intra-individual 

neural variability are increased in samples of individuals with ASC as compared to their typically 

developing counterparts (see Section 1.5.5 for a detailed discussion). Nevertheless, the neural noise 

hypothesis of ASC has not been previously examined systematically. Using 

Electroencephalography (EEG), the present thesis investigates neural noise by measuring the degree 

of phase angle alignment of neural oscillations between experimental trials through the Inter-trial 

Phase Coherence (ITPC) metric and the steepness of 1/f noise slope of Power Spectral Density 

(PSD), a variable quantifying broadband changes in power spectra as a function of temporal 

frequency (Gao et al., 2017; Donoghue et al., 2020). As discussed in more detail in Section 1.4.3 

and  1.4.4, the two metrics provide unique insights into both periodic and aperiodic neural dynamics, 

allowing to study neural noise locally and globally in the brain of individuals with ASC.  

1.4 Definitions 
 
1.4.1 Neural communication 

 
In his Communication through Coherence theory, Fries (2016) defines neural communication as 

the signal transmission from a presynaptic group of neurons to a postsynaptic group, mechanistically 

facilitated by neural synchrony. Neural synchrony refers to rhythmic synchronization of pre- and 

postsynaptic groups of neurons in response to an event, such that the output sent by the presynaptic 

group arrives at phases of maximal excitability of the postsynaptic group, a mechanism allowing 

for greater effective connectivity (Fries, 2005; Fries, 2015). A set of postsynaptic group of neurons 

receiving synaptic input from multiple presynaptic groups will selectively respond to the group of 

cells whose phase is most coherent with theirs, in other words, inputs arriving at random phases of 

excitation are largely ignored (Fries, 2015; Perez-Cervera et al., 2020). This mechanism places the 

notion of phase-locking and phase coherence at the core of neural communication (Sauseng & 

Klimesch, 2008).  
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1.4.2 Neural oscillations 
 
Neural oscillations refer to rhythmic patterns of electrical activity, of varying frequency, amplitude 

and phase, generated naturally in the brain. Depending on the number of wave cycles occurring in 

a second, they are classified in frequency bands. Slow rhythms include delta (0.5-3Hz), theta (4-

8Hz) and alpha band oscillations (8-12Hz), whereas fast(er) rhythms include beta (12-30Hz) and 

gamma band oscillations (40-70Hz).    

 

How does such a vast number of neural cells, transmitting and re-transmitting signals, coordinate 

their rhythms to give rise to higher-order cognitive processes? Neural oscillations and their 

interactions are the building blocks of effective communication in the human brain (Fries, 2015). 

Low and high frequency oscillations do not exist independently but interact in a complex way to 

give rise to higher-order cognitive processes; their interplay is integral for the synthesis of 

information and for the orchestration of multisensory integration (Engel, Senkowski & Schneider 

in Murray & Wallace, 2011). 

 

Theta oscillations (4-8Hz) play a fundamental role in working memory processes (Wang et al., 

2018; Quirk et al., 2021) and in top-down adaptive control (Cavanagh & Frank, 2014). They emerge 

across the various levels of cortical hierarchy and are particularly prominent in the medial temporal 

lobe i.e the hippocampus and the parahippocampal cortices (Quirk et al., 2021; Barbeau et al., 2005), 

the visual cortex (Kienitz et al., 2021) as well as distal areas that are part of the hippocampal memory 

circuit such as the prefrontal cortex (Simons & Spiers, 2003). Theta oscillations are integral to the 

formation of episodic memory associations and the effective “binding” of different sensory and 

cognitive representations in memory (Herweg et al., 2020). Numerous studies in humans have 

showed that a) power increases of theta oscillations in the hippocampus and the neocortex predict 

successful episodic memory retrieval (Klimesch, 1996; Klimesch, 1997; Khader et al., 2010; 

Herweg et al., 2016), b) the strength of theta phase-locking in the visual and auditory cortices 

predicts memory performance (Wang et al., 2018) and c) phase-locking increases during the P1 and 

N1 time window, particularly at occipital electrodes, during episodic memory encoding and retrieval 

(Klimesch et al., 2004). Other lines of work have shown that rhythmic activity in the theta range is 

enhanced in frontal midline areas during tasks that require increased cognitive control- for example 

during the processing of novel information, conflict, punishing feedback and error (Hanslmayr et 

al., 2008; Cavanagh et al., 2009; Nigbur et al, 2012; Anguera et al., 2013). It is therefore proposed 
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that frontal midline theta facilitates goal-specific information transfer to other task-relevant neural 

regions i.e sensory or motor cortices oscillating at a similar frequency (McLoughlin et al., 2021).   

 

Alpha band oscillations (8-12Hz) are the dominant rhythms in the brain of humans (Klimesch, 

1999). For a long time they were considered to reflect “cortical idling” as they were shown to be 

more prominent when participants are in an awake state but not engaged in any cognitive task 

(Pfurtscheller, Stancak & Nueper, 1996). More recent experimental work has demonstrated that 

alpha oscillations are linked to alertness and are responsible for the inhibition of activity in task-

irrelevant regions by suppressing distracting information (Klimesch, Sauseng & Hanslmayr, 2007; 

Jensen & Mazaheri, 2010). The power of alpha oscillations is shown to increase in disengaged 

cortical areas but decrease in engaged regions (Thut, 2006; Klimesch et al., 1999; van Diepen et al., 

2015). Groups of neurons oscillating in the alpha rhythm are shown to propagate activity from 

higher to lower-order assemblies- for the visual stream for example from anterosuperior regions to 

the occipital pole (Halgren et al., 2019). 

 

Beta oscillations (12-20Hz) have been traditionally linked to sensorimotor processing.  In the 

sensorimotor cortex, a well-replicated finding is the tendency of beta oscillations to decrease their 

power in preparation of movement, but increase their power post-movement, further interpreted as 

desynchronization and synchronization of local neurons in the area respectively (Kilavik et al., 

2013). However, newly emerging evidence has shown that beta oscillations play an important 

functional role in other cognitive processes such as visual perception (Kloosterman et al., 2015), 

working memory (Siegel, Warden & Miller, 2009), episodic memory formation and retrieval 

(Griffiths et al., 2021) and decision-making (Wong et al., 2016). Growing evidence also postulates 

that beta oscillatory networks facilitate the contextual gating of information (Limanowski, Litvak 

& Friston, 2020). They are proposed to maintain the current “status-quo” state of the brain (Engel 

& Fries, 2010) and project information from higher to early sensory systems about the behavioural 

context of a cognitive task (Foxe & Snyder,2011). Experimental work has shown that low beta 

oscillations behave similarly to alpha oscillations (i.e increased power in task-irrelevant cortical 

areas and decreased power in task-relevant regions), whereas high beta oscillations (20-30 Hz) 

display similar behaviour to gamma oscillations and therefore increase in power in task-engaged 

areas (Tallon-Baudry et al., 1998). 

 

Gamma band oscillations (>40Hz) have received considerable scientific attention. They are 

proposed to play a fundamental role in the perceptual binding process. Multiple lines of work 
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indicate that gamma oscillations facilitate bottom-up feature binding and information flow from 

primary sensory areas to higher areas of the brain to create a unified perceptual representation of an 

event (Fries, 2015). Experimental evidence has showed that fast-oscillating gamma rhythms 

generate bursts of excitation very rapidly, followed by bursts of inhibition, with a 3ms lag (Atallah 

& Scanziani, 2009). It is proposed that these fluctuations take place quickly enough to allow network 

excitation to escape the neural assembly and reach remote projection targets in higher cortical 

regions, subsequently activating postsynaptic neural cells in those areas (Fries, 2015). Cannon et al. 

(2014) and Lowet et al. (2015) also demonstrated that assemblies oscillating at a faster frequency 

are more likely to entrain slower-oscillating groups, when competing against each other to reach 

higher areas (e.g from V1 to V4 in the visual cortex). In addition, selective attention is shown to 

strengthen gamma-mediated synchrony in multiple experiments (Fell et al., 2003; Tallon-Baudry, 

2009), allowing for task-relevant information to be prioritized over task-irrelevant information 

(Doesburg, Roggeveen, Kitajo & Ward, 2008).   Taken together, when neural assemblies are 

oscillating at the gamma rhythm, they are able to entrain post-synaptic neurons in distant structures 

through a bottom-up process.  

 

This feedforward influence of gamma oscillations on the activity of higher-order neural assemblies 

is suggested to be attenuated by alpha and beta band top-down cortical influences (Fries, 2015). In 

support of this notion, Van Kerkoerle et al. (2014) showed that electrical stimulation of V1 trigger 

increases in gamma power in V4, whereas stimulation of V4 trigger subsequent increases in alpha 

power in V1, in line with the idea of bottom-up influence of gamma and top-down influence of 

alpha oscillations. Similarly, top-down signalling from V4 is carried over to V1/V2 through beta 

oscillations prior to the presentation of the expected stimulus and becomes more phase-synchronised 

with increasing task-demands (Brovelli et al., 2004; Richtrer, Coppola & Bressler, 2018). 

 
1.4.3 Neural noise 

 
In the neurodevelopmental literature, neural noise is conceptualised in the context of neural 

variability. Neural variability is defined in terms of reliability and precision of neuronal responses; 

for example the neural response of the neural assembly is reliable when similar number of nerve 

impulses is observed from one trial to the other and precise when the impulses are observed at 

similar time points from one trial to the other (Faisal et al., 2008). Neural noise in the form of neural 

variability characterises both single neuron and neural ensemble/neural circuit behaviour (Faisal et 

al., 2008). Although individual neurons’ states are highly variable, neural ensembles, which consist 
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of millions of neurons, demonstrate a reliable, precise, highly consistent response to stimuli, which 

is shown to vary minimally from trial-to-trial in the neurotypical brain (Faisal et al., 2008).  

 

Both intrinsic and extrinsic parameters may contribute to increased levels of neural variability 

(Renart & Machens, 2014). Intrinsic sources of neural variability involve the study of small 

structural components of neural cells such as ion channels and pumps, where noise is related to the 

ion flow fluctuations on the cell membrane (White et al., 1998) and synapses, where noise is 

generated during synaptic transmission (Brunel et al., 2001). Synaptic noise is the dominant intrinsic 

source of variability that influences information transmission. It occurs predominantly due to large 

amounts of incoming spikes changing the cell’s membrane potential, a phenomenon known as 

synaptic bombardment (Shu et al., 2003). Extrinsic sources of neural variability on the other hand 

include differing tuning properties of neurons at the time when a stimulus is presented and random 

top-down signals affecting neuronal firing rates (Masquelier, 2013).  

 

1.4.4 Inter-trial Phase Coherence (ITPC) 
 
Inter-trial phase coherence, also known as inter-trial phase clustering, indicates the degree of 

alignment of the phase angles of a frequency-specific oscillating sine wave at a given time point 

across a number of epochs (Delorme & Makeig, 2003; Garrett et al., 2013). Specifically, ITPC is 

calculated from the average vector length of the phase angles captured at each time-point over 

experimental trials and is extracted through time-frequency analysis. The application of a sliding 

window of Fast Fourier Transform (FFT) for a given time-frequency point returns complex numbers 

with a real and an imaginary part, describing the position vector in the two-dimensional plane of 

time and frequency, values representing the power and phase of the signal. Because Fourier 

coefficients are measured on a unit circle around the origin, if phase angles are close to being 

perfectly aligned, they will approach the maximum value of 1, whereas if they are misaligned from 

one trial to the other, with a distribution approaching uniformity, they will be characterised by values 

closer to 0 (with 0 being the minimum value). In that respect, a reliable, precise, highly consistent 

evoked response across epochs will exhibit high ITPC, whereas a highly variable, noisier evoked 

response will be characterized by low ITPC (David et al., 2016).  

 

Why does phase coherence matter? Ongoing oscillations are shown to become phase-locked to the 

onset of an external stimulus or experimental event (Makeig et al., 2002). The degree of precision 

with which phase angles reach a specific reference point in the oscillatory cycle tells us something 
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integral about the biology of the neural system under scrutiny and the ability of neuronal oscillations 

to phase-reset effectively in response to external stimulation. From that perspective, ITPC indicates 

whether a stimulus triggers trial-to-trial changes in phase synchrony of ongoing oscillatory activity 

across a wide range of frequencies and- depending on the electrode site it is computed from- in 

distinct regions. It is important however to note that the ITPC metric is different from other 

connectivity and phase coherence metrics, as it specifically quantifies the degree of phase 

consistency over successive trials at a single electrode or a specific electrode cluster of interest 

rather than phase relationships between regions (i.e phase differences). For that reason, the literature 

review below focuses on studies that have primarily measured ITPC.  

 

ITPC has been primarily studied in low frequency oscillations in response to a wide range of stimuli. 

High ITPC in the alpha range is proposed to facilitate stimulus encoding and information transfer 

through the prioritization of task-relevant information and the suppression of task-irrelevant 

information (Van Diepen et al., 2015). In animal studies, the phase of low-frequency oscillations is 

shown to adjust so that it reaches an optimal point within the excitatory cycle during stimulus 

presentation (Lakatos et al., 2008). Behzad et al. (2020) demonstrated that alpha band ITPC 

increases in the visual cortex of macaque monkeys when spatial cues are presented signalling the 

arrival of the visual stimulus. In human studies, top-down attention and temporal expectation of 

sensory stimuli are suggested to modulate the phase of alpha oscillations in some studies (Tallon-

Baudry et al., 1996; Samaha et al., 2015) but not in others (Van Diepen et al., 2015).  

 

Stimulus-induced phase-alignment of theta oscillations in frontal cortices is proposed to provide a 

mechanism of exerting adaptive control over behaviour (Cavanagh & Frank, 2014). It is particularly 

prominent at electrode clusters covering the medial prefrontal cortex but is also reported in regions 

connected to the medial prefrontal cortex during conflict (Cohen & Cavanagh, 2011), error 

processing (Zavala et al., 2016) and performance feedback (Crowley et al., 2014). Cooper et al. 

(2017) showed that high ITPC at the frontal and parietal electrode clusters during proactive 

cognitive control (i.e the anticipation of conflict) is associated with lower behavioural variability 

and Papenberg et al. (2013) reported a link between levels of ITPC and reaction time variability 

during performance monitoring. Taken together, a growing body of experimental work in humans 

has demonstrated that the strength of theta ITPC in the frontal midline electrode site is associated 

with behavioural performance (Klimesch et al., 2004; Papenberg et al., 2013; Cooper et al., 2017) 

and is subjected to developmental changes across the lifespan (Papenberg et al., 2013).  
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Regions in the hippocampal-prefrontal memory circuit and the sensory systems are previously 

shown to become strongly phase-locked to the theta rhythm during various memory tasks (Buzsaki, 

2002; Siapas et al., 2005). Theta oscillations are known to promote long-range communication and 

temporally influence the rate code of the hippocampus by facilitating the translation of segmented 

units of sensory inputs into memory representations (Ravassard et al., 2013; Bosch et al., 2014; 

Grion et al., 2016). A recent study by Guntekin et al. (2020) found that high ITPC in the theta range 

occurs at the parietal and occipital electrode locations and is associated with successful short-term 

auditory and visual memory encoding in children. In addition, Hickey et al. (2020) showed that low-

frequency auditory cues presented during the processing of visual objects enhance levels of ITPC 

at electrode Cz and bias memory retrieval of visual information, as shown in a subsequent memory 

retrieval task.  Although research measuring theta ITPC during the investigation of  memory 

functions is sparse, the small number of studies presented above can be interpreted in the context of 

the literature pointing towards the role of the hippocampus as the “switchboard” between memory 

and sensory perception (Treder et al., 2021).  

 

 A larger body of literature has explored ITPC in response to auditory stimuli. During the processing 

of speech sounds, Koerner & Zhang (2015) report ITPC reductions of low frequency oscillations 

(delta/theta/alpha) at electrode Cz at time windows corresponding to the N1 and P2 auditory ERPs 

with the introduction of distracting background noise. Ponjavic-Conte et al. (2013) report grand 

averaged theta/alpha ITPC reductions at electrode Cz around the N1 latency in the high distraction 

condition of a selective-listening pitch discrimination task. A more recent study by Sorati & Behne 

(2019) found reduced alpha ITPC in a group of participants with greater musical experience during 

the processing of a syllable presented using audio-visual methods, as compared to audio or video 

alone. The above evidence indicate that alpha oscillations modulate selective attention to the visual 

cue presented, leading to the prediction of the anticipated sound in participants with more plastic 

brains (i.e musicians) and overall, the introduction of distraction modulates the gain of the auditory 

ERP and disrupts ITPC of low frequencies locally at Cz.  

 

In summary, available evidence suggests that high ITPC is linked to improved cognitive 

performance in human participants, including improved visual discrimination (Hanslmayr et al., 

2005), visual attention (Ding et al., 2006) and memory encoding (Fell et al., 2008; Guntekin et al., 

2020), whereas low ITPC is reported in pathophysiological processes in ASC (Milne, 2011), 

schizophrenia (Light et al., 2006; Koh et al., 2011), ADHD (Groom et al., 2010; Saville et al., 2015), 

dyslexia (Soltesz et al., 2013), and sleep disorders (Eidelman-Rothman et al., 2019).  
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1.4.5 1/f noise of Power Spectral Density (PSD) 

 
1/f noise of Power Spectral Density (PSD), also known as “1/f neural electrophysiological noise”, 

is suggested to capture broadband changes in power spectra as a function of temporal frequency, 

reflecting dendritic activity in response to an experimental event (Gao, 2016; Lombardi et al., 2017; 

Haller et al., 2018; Donoghue et al., 2020). It refers to fluctuations of PSD such that the dissipated 

energy per frequency interval is inversely proportional to the frequency of the signal, with a scaling 

exponent of one, also known as “noise exponent”, “fractal” or “1/f slope” (Gao, 2015; Voytek et 

al., 2015; Donoghue et al., 2020). White noise is represented in a spectrogram as a flat line with a 

scaling exponent of zero. In that context, the closer the exponent is to zero, the flatter the line of the 

slope will be, indicating a more variable, less synchronized neural response (Voytek et al., 2015). 

On the other hand, a more negative noise exponent indicates that the system produces a less variable, 

highly synchronized neural response (Voytek et al., 2015). As proposed in the relevant literature 

(Voytek et al., 2015; Voytek & Knight, 2015; Donoghue et al., 2020), there is an optimal balance 

between the two and extreme deviations from the mode- steeper or flatter slope- are strong evidence 

for disruptions in neural communication across the cortex. Figure 1.1 shows an example of how 

power recorded from a single electrode is distributed in the frequency domain and its corresponding 

1/f noise slope.  

 

The origin of 1/f noise is a heavily debated topic in theoretical physics and the exact nature of the 

underlying processes that give rise to power law behaviour is yet to be precisely determined. Neural 

networks perform exceptionally complex computations, very efficiently and with great precision. 

Like many other complex systems in nature, neural circuits are shown to achieve optimal 

information processing capabilities when they are in a state of ‘criticality’ allowing for increased 

information storage capacity (Beggs & Plenz, 2003; Beggs, 2008), computational power 

(Bertschinger & Natschlager, 2004) and sensitivity to inputs (Kinouchi & Copelli, 2006). 1/f noise, 

suggested to be a signature of criticality in the brain, is regularly observed in the statistical properties 

of observables computed from electrophysiological data (Miller et al., 2009; Markovic & Gros, 

2014). From a theoretical physics standpoint, computational modelling efforts link 1/f noise of 

spectral power to a fine balance of synaptic excitation and inhibition in neuronal avalanche 

formations operating at a critical point (Poil et al., 2012; Lombardi et al., 2017; Gao et al., 2017). 

On the other hand, irregularities in 1/f properties of power spectral density suggest deviations from 
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criticality, impacting the efficiency of neural communications within and between regions (Voytek 

et al., 2015; Peterson et al., 2017). 

 

Even though both 1/f slope of PSD and ITPC have been proposed to quantify the degree of neural 

variability in the cortex, very little is known about the precise neurobiological mechanisms behind 

the two metrics and their link. Thus far, the two metrics have not yet been investigated in tandem; 

the 1/f noise literature in particular is at its infancy. Existing work points out that EEG is a mixture 

of periodic signal (i.e neural oscillations) and aperiodic signal (i.e the 1/f slope and offset) 

(Donoghue et al., 2020). In that context, a fundamental difference between the two metrics seems 

to be the fact that ITPC is extracted from oscillatory activity defined within canonical frequency 

bands, whereas the 1/f slope component is extracted from aperiodic activity, operating in the 

background. From that perspective, it is likely that they are capturing distinct neural processes.  

 

 

Figure 1.1 

 

 
Figure 1.1: Power Spectral Density of signal coming from a single electrode presented as a function 

of frequencies (f) ranging from 0-250Hz (A) and its corresponding 1/f noise slope for frequencies 

ranging from 2-24 Hz (B). 
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1.5 Increased neural noise in the autistic brain 
 
1.5.1 The theoretical framework 
 

Converging evidence supports the notion that ASC is a disorder of neural communication. Multiple 

theoretical frameworks have been developed to explain how atypical neural network behaviour 

gives rise to ASC phenotypic expressions. An influential study by Just et al. (2004) was one of the 

first to suggest that cognitive deficits in ASC manifest as a result of the difficulty to coordinate 

neuronal activity between brain regions. In an effort to refine this idea, Belmonte et al. (2004) 

proposed that increased functional connectivity locally leads to a computational structure where 

signal is not adequately differentiated from noise, ultimately causing reductions in long-distance 

connectivity and affecting the efficiency of overall information transmission in the cortex. Given 

that many of these cortical regions are implicated in higher order processing, this has been suggested 

to be a plausible mechanism according to which some of ASC phenotypic expressions emerge 

(Brock et al., 2002; Belmonte et al., 2004; Rippon et al., 2007). A surge of research investigating 

how patterns of neural communication arise in the autistic brain was seen in the following 15 years 

after the two papers were published and multiple reviews on functional connectivity have been 

published since (MEG/EEG: Schwartz et al., 2017; O’Reilly et al., 2017, fMRI: Monk et al., 2009; 

Muller et al., 2011; Rane et al., 2015).  

 

Other theoretical models of ASC such as the one proposed Rubenstein & Merzenich, (2003)- 

recently revisited in Sohal & Rubenstein (2019)- suggests that some subtypes of ASC are associated 

with reductions in signal-to-noise ratios (SNRs) in key neural circuits underlying sensory and social 

behaviour, likely to be caused by an increased ratio of excitation and inhibition (E/I) in those key 

networks. Disproportionally high excitation or weak inhibition impedes functional differentiation 

of processing systems. If excitation swamps the neural circuit and is greater than the level of 

inhibition, activity in the neural circuit will increase until it reaches the threshold of maximum 

activity capacity or until sufficient inhibition from neighbouring neurons is recruited to achieve a 

balanced state. In this circuit, we would observe a reduction in SNRs; balance is achieved at a higher 

activity point, therefore the excessive noise generated will lead to poorer neuronal gain and poor 

responsiveness to true signal. On the other hand, if levels of inhibition are greater than levels of 

excitation, neural activity will decrease until the system enters a quiescent state or until a phase 

transition causes greater reductions in inhibition, ultimately reaching a balanced state. Reduction in 



 35 

SNRs follows a different causal mechanism here; balance is achieved at a lower activity point, which 

decreases the strength of the signal.  

 

In support of this hypothesis, experimental studies report greater occurrence of epileptic seizures 

and sharp spike activity in ASC (Gillberg & Billstedt, 2000; Wheless et al., 2002) indicative of 

noisy, unstable neural circuitry and symptom improvement following pharmacological intervention 

(i.e bumetadine) targeting GABA receptors (Zhang et al., 2020). Genetic studies demonstrate that 

altered expression of GABA receptors is linked to ASC symptomatology (Fatemi et al., 2009; 

Coghlan et al., 2012), whereas computational and animal models manipulating GABA/glutamate 

concentrations have shown an imbalance in key circuits associated with ASC (Horder et al., 2018). 

It is important to note that this theoretical model is not necessarily contradictory to the one proposed 

by Belmonte et al. (2004) and Just et al. (2004) but rather complimentary, providing a biological 

explanation on how the atypical patterns of functional connectivity may arise in ASC. 

 

Hyperexcitability in the autistic brain has been suggested to result from sparser, less “sharp” neural 

representations, further affecting behavioural sensitivity to incoming information (i.e poor 

discrimination of stimuli) (Uzunova et al., 2016; Ward, 2018). In the sensory cortices for example, 

an increased GABA/glutamate ratio implies a larger neural response to the sensory input and worse 

behavioral discrimination of sensory stimuli. During stimulus presentation, GABA-ergic and 

glutamatergic neurons are selectively activated within the cortical space of minicolumns in the 

neocortex. An important role of GABA-ergic neurons is to increase the contrast or else “sharpen” 

the receptive field by mediating activity between neighbouring minicolumns through lateral 

inhibition (Cree, 2014). In the neurotypical brain, this is an important mechanism through which 

global noise in the circuit decreases and activation of higher order neurons takes place only when a 

strong and consistent signal is transmitted (Cree, 2014). In the autistic brain, a breakdown of this 

“cross-talk” on a synaptic transmission level, occurring early in development and continuing 

through developmental phases as “chronic noise” (Simmons et al., 2008), is implicated in cognitive 

deficits at a behavioural level (Uzunova et al., 2016). To demonstrate that “sharpness” matters, 

Hibbard & O’Hare (2015) modeled neural responses of the primary visual cortex to images of 

different spatial frequencies and demonstrated that low spatial frequency images activate a sparser 

neural response, whereas aversive, mid- and low-frequency images trigger a larger, less sparse 

response. Therefore, sparser, less “sharp” neural representations is therefore likely to be a 

mechanism that gives rise to some of the behavioural symptoms observed in ASC (Casanova, 2006; 

Uzunova et al., 2016).  
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In extension to the theory developed by Rubenstein & Merzenich, (2003), Simmons and colleagues 

(2009) propose that increased endogenous neural noise underlies sensory perceptual symptoms in 

ASC, manifesting both as hypo- and hyper-sensitivity to sensory stimuli, a core phenotypic 

expression of ASC (Simmons et al., 2009). Although fairly loosely defined (i.e authors do not 

distinguish between additive or multiplicative noise), they attribute increased neural noise to failures 

in synaptic transmission or neuronal cross-talk, resulting in increased neural variability at large-

scale neural circuits. Adding noise to the neural system leads to reduced SNRs and difficulties to 

detect signal, therefore reduced sensory sensitivity to incoming sensory stimuli (i.e hyposensitivity). 

They also propose that the phenomenon of stochastic resonance (McDonnell & Abbott, 2009) can 

increase SNRs by raising the sensory signal above the threshold, leading to increased sensory 

sensitivity to sensory input (i.e hypersensitivity). Support for this theory comes from studies using 

transcranial random noise stimulation (tRNS) to add noise to the neural circuit and transcranial 

magnetic stimulation (TMS) to manipulate excitation. Van der Groen & Wenderoth (2016) found 

that by adding an optimal amount of random noise to the visual system, detection performance 

improves significantly.  Another study by Terhune et al. (2015) showed that lower TMS phosphine 

thresholds, indicative of greater cortical excitability and therefore greater neural noise, are 

associated with increased levels of glutamate but not GABA in the primary visual cortex. These 

studies demonstrate that it is plausible that increased neural noise can lead to suboptimal cognitive 

performance. 

 

Theoretical accounts of reduced neural noise in the autistic brain have also been presented (Davis 

& Plaisted-Grant, 2014). The current debate on whether neural circuits in ASC are characterized by 

high or low levels of noise highlights the importance of spatial scale in the theoretical framework 

outlined above. Simmons & Milne (2015) propose that neural circuits are characterized by increased 

neural noise but as they suggest in a commentary, this is a feature of large-scale neural networks in 

ASC. In contrast, Davis & Plaisted-Grant (2014) argue that sensory perceptual abnormalities in 

ASC arise as a result of reduced neural noise. At first these two perspectives look contradictory, 

however Davis & Plaisted-Grant (2014) suggest that low noise is a feature of small-scale neural 

networks, giving rise to less stable neural responses and greater inter-trial variability. An 

explanation by Sohal & Rubenstein (2019) encompasses both possibilities; although large-scale 

networks establish and maintain a constant E/I ratio at a global level (He & Cline, 2019), local 

networks within a large circuit (i.e small-scale circuits) experience continuous changes in the levels 

of excitation and inhibition at very fast time scales, therefore some of them will have reduced E/I 
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ratio and some increased. As they point out, excitation and inhibition are not unidimensional 

concepts. Excitation and inhibition are generated in different sites of the circuit and have an effect 

on multiple projection targets (Sohal & Rubenstein, 2019). In that respect, an E/I balance at a global 

level can be achieved through numerous configurations of neuronal activations (Sohal & 

Rubenstein, 2019). Thus, an E/I imbalance of a large-scale circuit involves a change in the relative 

activity of different types of excitatory or inhibitory neurons within small-scale circuits, such that 

the threshold at which global balance is achieved shifts (Sohal & Rubenstein, 2019).  

 

1.5.2 A computational modelling perspective 
 

Let’s try now to understand mathematically how increased neural noise in a neural circuit may be 

giving rise to atypical behaviour in ASC and demonstrate this in the context of visual stimulation. 

One assumption driving the majority of research  is that a hypersensitive behavioural response to a 

sensory stimulus is directly linked to an increase in neural activation in sensory cortices in response 

to a sensory stimulus. However, it is crucial to understand whether this manifests as increased signal, 

a scenario where an excess of neural sensitivity is associated with greater behavioural sensitivity or 

increased noise, in which case increased neural sensitivity comes hand-in-hand with reduced 

behavioural sensitivity.  

 

Zhaoping (2006)- adopted in O’Hare and Hibbard (2016) and Ward (2018)- modeled this 

relationship from a simple signal processing perspective. In an additive model, during visual 

stimulation, the output activity of a group of visual cells is the sum of two types of information; the 

behaviour of neurons, which are firing in response to the visual stimulus presented and the 

background spontaneous neuronal activity that is irrelevant to the input signal. This process can be 

modeled in the following way:  

O=K(S)+Na     (1) 

Where O is the output activity, given a specific visual stimulus S, K() is the encoding rate or activity 

gain and Na is the spontaneous background noise term. Na is stimulus independent; it refers to 

neuronal firing that is not triggered by the visual stimulus. Neural noise in this form is constant 

across stimulus magnitudes and therefore additive in nature. An increase in neural activation O can 

take place either if the encoding rate K() to the input is greater, taking the form of hypersensitivity 

to the visual stimulus or if levels of spontaneous noise Na increase, in which case the output activity 

will be increased but the SNR in the system will be decreased. Essentially, the group of neurons has 

to modify its activity gain i.e encoding function K() to account for the strength of the stimulus. A 
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high SNR implies that the strength of activity gain or responsiveness to the visual stimulus is low, 

whereas a low signal-to noise ratio implies greater encoding rate to process the stimulus.  

 

Neural noise can also be multiplicative, proportional to the magnitude of a response to a stimulus 

(Zhaoping, 2006; Davis & Plaisted-Grant, 2014). If multiplicative noise Nm is added to the system, 

the above equation will take this form: 

O=K(S) (1+ Nm )+Na     (2) 

This means that the output response can vary randomly depending on the magnitude of the visual 

input. Visual stimulation may lead to an increase in output activity, however, unlike equation 1, no 

information can be extracted about the strength of the visual stimulus in case of equation 2.  In ASC, 

an increase in Nm could manifest as a result of atypical propagation of signal from pre- to 

postsynaptic neurons within the sensory region i.e breakdown in neural communication taking 

multiple forms, affecting signal flow in higher order cortical areas and further resulting in increased 

neural variability at large-scale neural circuits. It is important to note that if an increase in output 

response O is observed in an experiment, we have no means of distinguishing whether this increase 

is due to an increase in multiplicative noise Nm in the network or an increase in encoding rate K() 

and additive noise Na. For that reason, increased activation or hyperexcitability in a neural network 

can describe both possibilities of neural noise arising in the system (O’Hare & Hibbard, 2016). 

 
1.5.3 Methodological challenges 
 

As demonstrated above, aspects of the ASC symptomatology (i.e sensory sensitivities) could be 

interpreted in the context of increased neural noise or increased inter-trial neural variability 

(Simmons et al., 2007; Simmons et al., 2009; Milne, 2011). Considering the theoretical framework 

presented in Section 1.5.1,  the focus of the present thesis is to understand atypical patterns of neural 

communication by studying how increased neural noise manifests in ASC. In order to do that, it is 

important to identify robust variables to quantify neural noise in ASC and appropriate analytical 

methods to effectively capture differences between ASC and TD groups. This requires careful 

examination of the literature to identify variables that are less volatile and are repeatedly shown to 

be different in ASC as compared to the typically developing population and thereafter in ASC 

compared to other psychiatric conditions. If ASC is characterised by disrupted neural 

communication, researchers need to be able to address which particular pattern of atypical neural 

network behaviour is linked to the disorder and why this pattern leads to one specific disorder and 
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not another. This brings to light the need to examine definitions and key metrics utilised in study 

designs with a critical eye and identify more stable variables of discriminant neural features in ASC.  

 

Episodes of synchronous firing takes place within a very short time window of tens of milliseconds, 

therefore it has been suggested that changes in neural network interactions are unlikely to be 

detectable using traditional fMRI cross-correlation techniques (Ulhhaas & Singer, 2007). As 

pointed out, fMRI does not allow for these changes to be sufficiently captured due to its poor 

temporal resolution and as a result fMRI findings provide only indirect evidence for disrupted neural 

communication in ASC (Ulhhaas & Singer, 2007). In contrast to this view, there is discussion that 

long-range interactions cannot be reliably detected using EEG due to volume conduction/leakage 

and the field-spread effect (Winter et al., 2007; Palva et al., 2018), which induces spurious 

correlations between electrodes, making it hard to separate signal coming from closely-spaced 

channels (Picci et al., 2016). For that reason, the focus of this thesis will not be the synchronization 

or functional connectivity of neural assemblies within the network at a given time point in the 

experimental trial but will look at neural communication from a different perspective, the degree of 

phase angle alignment of neural oscillations between experimental trials as measured by EEG. It 

can be argued that in order to understand how neural networks behave and interact in ASC and 

identify clinically relevant neural features, it is important to explore neural communication in ASC 

through the lens of neural oscillations and captured by EEG at the source level. As it will be 

demonstrated in the following sections, recent methodological advances in the EEG field, including 

more advanced analytical techniques of signal processing, allow for greater confidence in the 

research findings, making it a good avenue for experimentation in ASC (see McLoughlin et al., 

2014 for a review on EEG-based biomarkers in psychiatry). For that reason, the literature review 

presented in the subsequent sections focuses primarily on EEG/MEG studies.  

 

With that in mind, Section 1.5.5 brings forward evidence supporting the idea of disrupted neural 

communication in ASC, from the perspective of neural noise. This section is not intended to provide 

a comprehensive assessment of the validity of the different theoretical models of ASC outlined 

above, but rather aims to identify variables likely to be capturing pathophysiological processes that 

may be distinct in ASC compared to other psychiatric conditions and typical development. 

Following a review of the literature, it is demonstrated that Inter-trial Phase Coherence (ITPC), a 

variable indexing the amount of trial-to-trial neural variability in the cortex, is a promising metric 

that could inform current thinking about how neural noise arises in ASC. 
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1.5.4 Measuring neural noise using Electroencephalography (EEG) 
 

1.5.4.1 Advantages of EEG 
 

First, it is important to discuss what EEG can and cannot do as a method of experimentation in order 

to facilitate interpretation of findings in the subsequent experimental chapters. EEG measures 

voltage fluctuations coming from a large population of neurons (Kirschstein & Kohling, 2009). The 

source of this electrical activity is not action potentials but rather the dendritic activity of cells and 

their excitatory and inhibitory postsynaptic potentials (Kirschstein & Kohling, 2009). Although it 

is characterized by poor spatial resolution of 5-9cm (Nunez et al., 1994), its temporal resolution of 

millisecond precision is an advantage for studying neural network behaviour in particular. Due to 

its millisecond precision, it directly captures interactions between large groups of neurons in real 

time (Sauseng & Klimesch, 2008). EEG can provide useful insights on the behaviour of groups of 

neurons at a macroscopic scale, which are shown to operate in a near-equilibrium state and be linear 

in nature, however small scale network dynamics cannot be captured sufficiently as they are chaotic 

and non-linear in nature (Pritchard, 1996; Wright & Liley, 1996).  

 

1.5.4.2 EEG metrics used to quantify neural noise 
 

Given the wide range of concepts, an equally large number of metrics has been developed and 

utilised across studies to quantify neural noise. EEG/MEG studies have previously measured SNRs 

by calculating the power of the signal at a peak latency of interest divided by the mean power of 

spontaneous activity (Weinger et al., 2014; Butler et al., 2017). However, as it will be discussed in 

Section 1.5.4.3, using trial averaging to calculate the amplitude of the signal may not reveal existing 

atypicalities in evoked responses in ASC, therefore more refined analytical techniques need to be 

deployed to study neural noise in the autistic brain. Other studies have measured the degree of phase 

angle alignment of neural oscillations between experimental trials through the Inter-trial Phase 

Coherence (ITPC) metric (Milne, 2011; van Noordt et al., 2017; Yu et al., 2018; Milne et al., 2019). 

This is a well-established method of quantifying the degree of phase-locking  at a specific location 

(i.e electrode) or signal source of interest (ICA component). In that respect, it is a very effective 

method of measuring the functional integrity of the neural circuit or signal source activated in 

response to a stimulus locally.  
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Newly emerging work also quantifies neural noise from the perspective of 1/f noise of Power 

Spectral Density (PSD), a global variable capturing broadband changes in power spectra as a 

function of temporal frequency (Gao et al., 2017; Donoghue et al., 2020). In contrast to traditional 

approaches computing and comparing oscillatory power between canonical frequency bands in the 

form of band ratios, 1/f slope of PSD captures aperiodic properties of the neural signal. It indicates 

how power spectra change in relation to its underlying temporal frequency across the full spectrum 

(Haller et al., 2018), taking the form of  greater power at low frequencies and a decrease of power 

at higher frequencies (Voytek et al., 2015; Dave et al., 2018). The 1/f noise exponent is proposed to 

capture random background electrical fluctuations of neuronal spiking activity (Voytek et al., 2015). 

A flatter 1/f slope of power spectra indicates that spiking activity is decoupled from synchronised 

oscillatory dynamics, whereas a steeper 1/f slope of PSD indicates that fewer temporally 

uncorrelated spikes occur and population-based neural oscillations are more strongly synchronised. 

In that context, 1/f slope is a measure of variability of temporal correlations of background 

population spiking activity. Original work by Voytek et al. (2015) demonstrated that the PSD of 

older adults is characterised by flatter 1/f slopes compared to younger adults, suggesting that noise 

exponents provide valuable information about the amount of neural noise in the system and the 

strength of neural synchrony patterns. Following this research effort, a growing number of studies 

have been conducted measuring 1/f slopes in disorders of the brain, further discussed in Section 

1.7.1. 

 

1.5.4.3 Trial averaging vs single-trial analysis 
 

Levels of neural variability of sensory-evoked responses in ASC are consistently reported as high 

when single-trial analysis is performed, even when trial averaging does not reveal differences in the 

average amplitude of the neural responses (Milne, 2011). ERP averaging is a common method of 

reducing noise in electrophysiological data, however it appears to be problematic when used in 

pathophysiology as it ignores the rich trial-to-trial variability, which has been shown to be highly 

informative in neurodevelopmental disorders (David et al., 2016).  Conventional ways of ERP 

analysis aim to extract ERP averages of trial datasets or ERP epochs, time-locked to a specific 

stimulus. ERP epochs are a mixture of event-related activity but also activity that is not contributing 

to the evoked response and is “event- unrelated”. ERP averaging removes signal properties that are 

not phase- locked to the experimental event of interest at all frequencies and latencies (Onton &  

Makeig, 2009). Therefore, using trial averaging to analyse ERPs does not allow us to study the full 

dynamics of evoked responses because it only retains activity that influences the phase distribution 
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of a signal (Onton & Makeig, 2009). This is particularly relevant in ASC research, where the shape 

of the ERP waveforms has been shown to differ in ASC samples compared to neurotypical groups, 

consequently reducing the amplitude artificially may not reveal existing atypicalities in evoked 

responses (David et al, 2016).  

 

ERP averaging is the most prominent method of analyzing ERP data and is often preferred to single-

trial analysis. Considering the limitations of the former, it is important to discuss methodological 

techniques that facilitate single-trial analysis. Bandpass filtering (Salajegheh et al., 2004), maximum 

likelihood estimation (Jaskowski & Verleger, 1999; De Munck et al., 2004), stochastic modeling 

(Von Spreckelsen & Bromm, 1988), multivariate version of the matching pursuit algorithm (Mallat 

& Zhang, 1993; Durka et al., 2005; Sieluzycki et al., 2009), application of wavelet networks 

(Heinrich et al., 1999), hierarchical general linear model analysis (Pernet at el., 2011) and 

Independent Component Analysis (ICA) (Makeig et al., 1996; Jung et al., 2001; Delorme & Makeig, 

2004) are some of the techniques that have been applied successfully in previous studies.  

 

Taking into account the advantages of single-trial analysis, ICA decomposition was performed to 

extract neural signal in the experimental studies of the present thesis measuring ITPC. Multiple 

authors have highlighted the significance of decomposing EEG data into independent components 

to tackle the problem of trial averaging, amongst other limitations that arise as a result of analyzing 

the “mixed” EEG signal recorded at the scalp. The EEG signal recorded at the scalp is the sum of 

signals originating from multiple independent neural and artifact related sources. ICA is a way of 

“blindly” separating those distinct sources of signal, without any prior knowledge of the nature of 

the source (Jutten & Herault, 1991). This is based on the assumption that two neural time series are 

temporally separated and therefore independent from one another, as the value of one at a specific 

time point does not inform us about the value of the other at the same time point (Onton & Makeig, 

2009). ICA ultimately leads to the construction of component scalp maps consisting of spatially 

independent components of source signal (Stone, 2004; Onton & Makeig, 2009). Going back to 

neural variability, ICA is a valuable analytical step as it provides a way of separating the signal of 

interest (i.e. from a specific neural source) from the noise (artifacts and signals from other sources 

in the EEG). This facilitates single trial analysis and allows to look at variability across trials. Its 

efficacy as a single-trial analysis step has been pointed out in a number of studies including the one 

by De Vos et al. (2012) who found that compared to regression-based estimation and bandpass 

filtering, ICA is the most effective single-trial analysis tool.  
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1.5.5 Experimental studies investigating neural noise in ASC 
 

Shifting away from the idea of a deficit or surfeit of connectivity in specific networks, studies 

indicate that neural networks are characterized by sub-optimal properties in line with the idea of a 

disconnected brain (Peters et al., 2013). Emerging evidence speaks for greater homogeneity and 

more uniform neural network structure in the brain of individuals with ASC. Using graph theory 

analysis, Zeng et al. (2017) found disrupted network topology, manifesting as longer path length, 

reduced clustering, and a decline in global efficiency. The brain consists of multiple segregated, 

highly specialised groups of neurons working together as an integrated functional network. Longer 

path length in ASC is indicative of difficulties with regional integration, whereas reduced clustering 

suggests reductions in local specialization. Peters et al. (2013) also report decreased ratio of long- 

over short-range coherence and greater resilience of complex networks to targeted attacks when 

nodes were removed from the network, an indicator of greater randomness and decreased efficiency 

and specialization in the ASC brain, likely to be the outcome of redundant connectivity in the cortex. 

In addition, examples of EEG signal complexity reductions in the temporo-parietal and occipital 

regions are widespread in the literature, providing further evidence for the degradation of small-

world architecture in ASC (Catarino et al., 2011; Milne et al., 2019).  

 

Sub-optimal network properties may also be presented as increased neural noise swamping the 

neural system (Rubenstein & Merzenich, 2003). Indeed, multiple lines of work have shown that 

ASC is associated with increased neural noise in the form of increased neural variability. In the 

EEG/MEG literature, neural variability is primarily studied from the perspective of ITPC, a measure 

of phase consistency over experimental trials. Converging evidence suggests that low ITPC, i.e. 

reduced phase-consistency / increased phase-inconsistency across trials, occurs in ASC at a group 

level in response to a variety of stimuli, irrespective of the developmental stage of the participants 

(see Table 1.1 for a summary of studies). For example, Milne (2011) found lower ITPC in response 

to Gabor patches in children with ASC as compared to typically developing children. A larger study 

by Milne et al. (2019) concludes that low ITPC is capturing atypical neural features prominent in 

the brain of some individuals with ASC but not all, indicating that reduced ITPC is likely to be one 

of many neurological features that is associated with ASC. This may also explain the contradictory 

results brought forward by Butler et al. (2017), who employed a similar methodology but did not 

find differences in levels of ITPC between groups. In the auditory modality, Edgar et al. (2015) 

report reduced ITPC in the superior temporal gyrus in response to sinusoidal tones. Yu and 
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colleagues (2018) report an increase in ITPC of the theta band computed for the P1 time window- 

a positive ERP component occurring ~100ms after stimulus onset- followed by a reduction in ITPC 

for the N2 time window- a negative ERP component occurring ~200ms post-stimulus presentation- 

during processing of pure tones and words. Reductions in ITPC of theta oscillations are also 

observed in the frontal electrode site during feedback processing of rewards and errors (van Noordt 

et al., 2017). Taken together, ITPC is consistently reported as low in a wide range of studies aiming 

to quantify the degree of neural noise in ASC, indicating that the metric may be capturing 

pathophysiological processes that are distinct in the autistic brain as compared to typical 

development. This is also reflected in a research review suggesting that low ITPC may be an 

endophenotype of ASC (David et al., 2016). 

 

In support of the increased neural noise hypothesis, other lines of enquiry report poorer SNRs in 

groups of children with ASC. Using EEG but a different metric to the above studies, Weinger et al. 

(2014) showed weaker SNRs in electrophysiological responses of children with ASC, computed 

from steady state visual evoked potentials. A few studies utilised fMRI paradigms to investigate 

intra-individual trial-to-trial variability in metabolic responses across a number of sensory 

modalities. Dinstein et al. (2009) demonstrated that ASC participants show significantly larger 

standard deviations of BOLD response from one trial to the other during the observation and 

execution of hand movements. In subsequent studies, Dinstein et al. (2012) conducted three 

independent fMRI experiments and measured neural variability in key regions in a group of children 

with ASC during processing of simple visual (moving dots), somatosensory (air puffs) and auditory 

stimuli (pure tones). The results showed larger trial-by-trial standard deviations and smaller SNRs 

in the ASC group compared to the typically developing group. In line with Dinstein et al. (2012), 

Haigh et al.  (2015) replicated and extended these results in adults with ASC. Of note, in a  follow-

up study Haigh et al. (2016b) offer further insights and clarify that this pattern of reduced SNRs in 

key sensory cortices is a characteristic of ASC in specific and does not characterise the brain of 

patients with schizophrenia, despite the genetic and phenotypic overlap of the two conditions.  

 

An important hypothesis to establish is whether increased neural noise is linked to a specific aspect 

of the ASC phenotype. Theoretical accounts propose that increased neural noise in the sensory 

systems explain individual differences in sensory sensitivities (Simmons et al., 2007). However, 

none of the studies investigating neural noise have provided adequate mechanistic insight on this 

process. Current studies on neural noise do not provide clarity on the relationship, potentially due 
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to methodological pitfalls, as it will be demonstrated. In non-clinical populations, Vilidaite et al., 

(2017) showed that the global internal noise factor computed from EEG signal in response to three 

types of sensory stimuli positively correlated with autistic traits as measured by AQ. This is in line 

with Orchard & vanBoxtel (2019) and computational models by Park et al. (2017). In clinical 

populations on the other hand, Dinstein et al. (2012) did not find a significant relationship between 

ASC symptom severity, as assessed by the ADOS, and SNRs extracted from BOLD signal in 

response to visual, auditory and somatosensory stimuli. Overall ADOS symptom severity scores are 

unlikely to be capturing the degree of behavioural sensitivity to visual, auditory and somatosensory 

stimuli; therefore greater specificity in the behavioural measures used is necessary (see Happe et 

al., 2006 for a discussion on the use of global measures to quantify autism severity). Similarly, 

Milne et al. (2019) demonstrated that although increased neural noise, measured in the form of low 

ITPC and reduced multi-scale entropy is observed in the cortex in response to visual stimulation, 

these variables are not associated with core diagnostic domains of ASC as assessed by the Social 

Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) and the Adult Repetitive-Behaviors 

Questionnaire (RBQ-2A, Barrett et al., 2015). Despite the fact that the study was designed to evoke 

neural responses in the sensory cortices, Milne et al. (2019) did not investigate the relationship 

between neural noise and sensory sensitivity, an integral aspect of the ASC phenotype. It is still 

unknown how neural noise manifests in relation to the subjective sensory experience and/or 

behavioural sensitivity to the sensory stimuli presented. Understanding autism symptoms in the 

context of neural noise has the potential to be a scientific “breakthrough” (Davis & Plaisted-Grant, 

2014). Particularly with regards to ITPC, more evidence is needed to understand whether low ITPC 

in response to sensory stimuli is associated with sensory sensitivities in ASC. This issue is 

investigated in great detail at Chapter 5 of the present thesis. 

1.6 Inter-trial Phase Coherence (ITPC) 
 
1.6.1 Inter-trial Phase Coherence in disorders of the brain 
 

Increased levels of neural variability in the form of low ITPC are reported not only in ASC but also 

in other psychiatric disorders such as ADHD and psychosis as well as neurogenerative conditions 

such as Parkinson’s disease (see Table 1.1 for an overview of studies investigating ITPC in ASC 

and Table 1.2 for an overview of studies measuring ITPC in other clinical groups). In the visual 

domain, groups of adults and children with ASC demonstrate ITPC reductions in the electrode 

cluster covering the visual cortex in response to low-level visual stimulation (i.e Gabor patches, 

checkerboard stimuli, see Milne, 2011). A similar pattern of phase-alignment difficulties is observed 
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in ADHD and psychotic disorders, conditions known to be characterized by neural circuitry 

abnormalities (Mazaheri et al.; 2014; Lenartowicz & Loo, 2014; Janssen et al., 2017; Hager et al., 

2017; Murphy et al., 2020) and previously shown to share genetic and phenotypic features with 

ASC (McCarthy et al., 2014; Satterstrom et al., 2019). In a similar study design to the one by Milne 

et al. (2019), Gonen-Yaacovi et al. (2016) demonstrated that adults with ADHD show reductions in 

theta and alpha band ITPC as extracted from selected electrodes and Independent Components 

capturing participant’s early sensory response to black and white checkerboard stimuli. Adults with 

psychosis also show reductions in ITPC at the occipital regions during visual processing of black 

and white checkerboards, although it is still unclear whether these reductions characterize lower or 

higher frequencies (Basar-Eroglu et al., 2008; Grent-t-Jong et al., 2020). Although Parkinson’s 

disease and ASC seem to be unrelated at surface, recent evidence has shown that neural circuitry 

structures in both conditions are characterized by increased neural noise (Milne, 2011; Yeener et 

al., 2019). However, in Parkinson’s disease ITPC reductions in response to visual stimulation are 

evident not just at the occipital electrode site but at all electrode sites, indicating more widespread 

phase alignment difficulties (Yeener et al., 2019).  

 

In the auditory domain, the picture is more blurry. Depending on the timing and stage of information 

processing, children with ASC have previously shown ITPC increases within the P1 window and 

ITPC reductions within the N2 window of theta oscillations (Yu et al., 2018). On the other hand, 

Edgar et al. (2015) report reduced ITPC at all frequencies during processing of sinusoidal tones in 

the superior temporal gyrus of children with ASC . ITPC reductions in response to simple tones is 

also reported in adults with ADHD (Gonen-Yaacovi et al., 2016) and to a wide range of auditory 

stimuli in adults with psychosis (Koh et al., 2011; Shin et al., 2015). In these studies however it is 

evident that the stimulus type (clicks, tone pips, binaural tones etc.), spatial cluster (superior 

temporal gyrus, electrode Fz, electrode with maximum ITPC, etc.) and the developmental stage of 

participants (children vs adults) differ enormously from one study to the other, therefore findings 

cannot be directly comparable. 

 

Studies utilizing more complex task designs to target executive functioning processes have shown 

similar results. Reduced phase clustering in the frontal electrode site is reported in both ASC and 

ADHD. In ASC, van Noordt et al. (2017) report reduced theta band ITPC in the frontal cortices of 

adolescents with ASC in response to a reward prediction task, consisting of “win” or “lose” 
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feedback trials. In ADHD, Groom et al. (2010) report a reduction in early and late theta band ITPC, 

computed from fronto-central electrodes, in response to visual go/no- go trials. 

 

Taken together, the ability of neuronal oscillations to phase-reset effectively in response to a wide 

range of external stimuli- simple and more complex- is shown to be diminished not only in ASC but 

also in other conditions, some of which share genetic influences with ASC (i.e ADHD and 

schizophrenia). Different patient groups show different patterns of ITPC reductions, with some 

overlaps between ASC, ADHD and psychosis, particularly in the visual domain. It is important 

however to note that the wide range of task designs and methodological approaches employed for 

the measurement of ITPC impedes direct comparisons across disorders. No studies have previously 

compared levels of neural noise in individuals with different conditions, for example ASC and 

ADHD. Task characteristics such as type of stimuli, duration of stimulus presentation and targeting 

modality as well as methods of computing ITPC vary widely from one study to the other. In addition, 

samples with different characteristics (i.e age, developmental stage, IQ) are recruited in each study. 

For that reason and although phase clustering abnormalities are evident in all the aforementioned 

conditions, the wide range of tasks and data analysis techniques used in these studies do not allow 

to draw firm conclusions regarding neural processes that differ or may be common in these groups.
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Table 1.1 
 
Studies measuring ITPC in individuals with a clinical diagnosis of ASC 

 
 

Author Year Participants* Modality  Stimulus  Method Location Frequency 
band 

Result** 

EEG 
studies 

Milne 2011 Adolescents (n=13) Visual Gabor patches ITPC1 Electrode with the highest P1 
amplitude 
 
ICA component that best captures 
the early visual evoked response 

Alpha Reduced ITPC 

 
 

 

van Noordt et al. 2017 Adolescents (n=27) Visual Coloured balloon 
images, 
win feedback image, 
lose feedback image 

ITPC Frontal midline electrode cluster (5, 
6 (Fz), 11, 12) 
 

Theta Reduced ITPC 

 Butler et al. 2017 Children (n=20) Visual, 
somatosensory 

Black and white 
checkerboard, 
somatosensory stimuli 

ITPC Not mentioned. Theta, 
Alpha, 
Beta 

No difference between the ASC vs 
control group  

 Yu et al. 2018 Children (n=15) Auditory Pure tones and words ITPC Maximum ITPC within the two 
designated time windows 70-140ms 
(P1) and 150-250ms (N2) 

Theta Increased theta ITPC during the early 
time window  
Reduced theta ITPC during the late 
time window 

 Milne et al. 2019 Adults (n= 22) Visual Black and white 
checkerboard 

ITPC ICA component with maximum 
ITPC 

4-9 Hz Reduced ITPC in the diagnosed group 
vs undiagnosed group 

MEG 
studies 

Edgar et al. 2015 Children and adolescents 
(n=17) 

Auditory Sinusoidal tones  ITPC Superior temporal gyrus 4-80 Hz Reduced gamma ITPC  

*Sample size given for the ASC group 
**The result is reported for the ASC group relative to the control group 
1 Inter-trial Phase Coherence 
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Table 1.2 
 
Studies measuring ITPC1 in other clinical groups 
 

Condition Year Author Method Sample* Modality  Stimulus Location Freq Result** 

ADHD 2010 Groom et al. 
 

EEG Adolescents 
(n=23) 

Visual Go/no-go letters ‘X’, ‘K’ Electrode FCz 
 

Theta Reduced ITPC 

 2016 Gonen-Yaacovi et al. 
 

EEG Young adults 
(n=17) 

 

Visual, 
auditory 
 
 

Black triangles/circles  
 
Pure tones 
 

Electrode with the highest P1/N1 amplitude 
 
PO8 and FCz electrodes  
 
ICA component that best captured the early 
sensory response 

Theta, 
Alpha 

Reduced ITPC in all conditions 
 

Schizophrenia 2008 Basar-Eroglu et al. EEG Adults 
(n=10) 

Visual Black and white 
checkerboards with target-
non-target fixation dot 
(visual oddball task) 

Frontal, central, parietal, occipital electrodes Theta, 
Alpha 

Reduced theta ITPC at all locations 
for target stimuli 
 
Reduced alpha ITPC at the occipital 
locations for all stimuli but increased 
ITPC in the frontal, central, parietal 
locations 

 2020 Grent-t-Jong et al. MEG Adults with 
first episode 
of psychosis 

(n=26) 

Visual Circular sine wave 
gratings  
 

Medial superior frontal gyrus 
 
Occipital cortex (i.e primary visual cortex, 
dorsal-stream area, ventral-stream area) 

Delta, 
Theta, 
Alpha, 
Beta, 
Gamma 

Reduced ITPC for beta and gamma 
bands but not for lower frequencies 
at the occipital cortex 

 2011 Koh et al. MEG Adults 
(n=10) 

Auditory Tone pips (auditory 
oddball task) 

Average ITPC computed from 8 regions: left 
and right frontal, temporal, parietal, 
occipital, frontal clusters of electrodes 

Alpha Reduced ITPC 

 2012 Kirihara et al. EEG Adults 
(n=234) 

Auditory Clicks Electrode Fz Theta, 
Gamma 

Reduced gamma ITPC 
No difference in theta ITPC 

 2015 Shin et al. MEG Adults 
(n=21) 

Auditory Binaural tones  Left and right frontal and temporal clusters 
of electrodes 

Theta, 
Alpha 

Reduced ITPC in both bands  

 2018 Kim et al. EEG Adults  
(n=45) 

Auditory Clicks (auditory oddball 
task) 

Electrode with maximum ITPC in the 
parietal electrode site (Pz)  

Delta, 
Theta 

Reduced ITPC 
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Dyslexia 2013 Soltezs et al. EEG Adults  
(n=16) 

Auditory Continuous rhythmic 
streams 

Electrode with maximum ITPC (FCz) Delta Reduced ITPC 

 2020 Meyer & Schaadt EEG Children 
(n=28) 

Auditory Syllables /pa/ and /ga/, 
video of standard mouth 
movements 
(audio-visual oddball task) 

Electrode with maximum ITPC  Alpha Increased prestimulus ITPC 

Parkinson’s 
disease 

2019 Yeener et al. EEG Elderly adults 
(n=25) 

Visual Target and standard visual 
stimuli (visual oddball 
task) 

Frontal (F3, Fz, F4), central (C3, Cz, C4), 
parietal (P3, Pz, P4), and occipital (O1, Oz, 
O2) electrode clusters 

Theta, 
Alpha 

Reduced theta and alpha ITPC in all 
locations 

Alzheimer’s 
disease 

2019 Guntekin et al. EEG Elderly adults 
(n=30) 

Visual Photos of three basic 
facial expressions (angry, 
happy, neutral) of three 
different female faces 

Maximum ITPC in a given frequency band at 
the specific time window 
(0‒500 ms for theta and 0‒350 ms for alpha) 

Theta, 
Alpha 

No difference in ITPC 

*Sample size given for the clinical group 
**The result is reported for the clinical group relative to the control group 
1 Inter-trial Phase Coherence 
 

 



1.7 1/f noise of Power Spectral Density (PSD) 
 

1.7.1 1/f noise of Power Spectral Density (PSD) in disorders of the brain 

One of the recently emerging questions concerns the relevance of 1/f noise for the medical 

discipline and for psychiatric disorders specifically. Recent work from Voytek and Knight 

(2015) provides a framework to study disorders of neural synchrony such as ASC in the context 

of 1/f noise- although it is also important to note that no data currently exists that investigates 

this aspect of neural functioning in ASC. Network communication disruptions in the brain can 

take two forms, both equally detrimental for information transmission. They can manifest a) 

either as a result of ‘overcoupling’ or ‘hypersynchronsation’, meaning that two clusters of 

neurons are too strongly synchronized or b) ‘undercoupling’, involving difficulties to establish 

communication (Voytek & Knight, 2015). Noise, in the form of noisy, serially uncorrelated 

spikes arriving at a moment of low excitability, is introduced in the healthy brain as a corrective 

mechanism to smooth the threshold of action potentials and prevent overcoupling (Fries, 2005). 

However, excessive noise works to the expense of the system, resulting in weakened 

interregional oscillatory coherence and pathological undercoupling (Voytek & Knight, 2015).  

Changes in 1/f slope of PSD are suggested to reflect this process. In the first occasion, we 

expect to observe a steeper 1/f slope of spectral power, as stronger extracellular fields result in 

stronger dendritic outputs, a larger number of simultaneously triggered spikes and therefore 

reduced temporal variability in spike timings. In the second scenario, the 1/f slope of PSD will 

be flatter as weaker oscillatory coupling results in weaker dendritic activity and increased 

variability of spike timings. It is therefore evident that 1/f slope captures rich information about 

the underlying synaptic activity of neural ensembles (Gao, 2015), which can be utilized to 

understand the nature of neural synchronization patterns in disorders of neural connectivity. In 

extension, 1/f signal opens up new avenues for the development of interventions, aiming to 

optimise network communications (Voytek & Knight, 2015).  

Steeper or flatter 1/f spectral power slope- revealing disruptions in dynamic network 

communication in the brain- may be a core symptom or a causal mechanism of a number of 

neurological conditions, particularly those characterized by widespread neural synchrony 

abnormalities. Although plausible, this hypothesis has only been tested in a very limited 

number of clinical groups. Five published papers have examined power law scaling in clinical 

data and only three have computed 1/f properties of PSD.  Meisel et al. (2012) demonstrated 
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that during epileptic attacks, the distribution of phase-locking intervals (PLI) deviate from the 

characteristic power law 1/f shape. In ASC, Tinker and Velazquez (2014) found that power 

law scaling in the distributions of phase synchrony indices captured by MEG during an auditory 

and a Stroop task, does occur but not frequently and vanishes as a result of increased task 

complexity. More recently, using data from a selective attention EEG task, Peterson et al. 

(2017) computed 1/f slopes of PSD in patients with schizophrenia and healthy participants from 

three distinct electrode sites (central, posterior and midline). 1/f noise slope was significantly 

steeper in the schizophrenia group compared to the control, reliably predicting clinical status. 

The authors concluded that 1/f slope, together with band-limited power, may serve as a valid 

biomarker of schizophrenia. In contrast to schizophrenia, where 1/f slope is shown to be 

steeper, subsequent work in ADHD, has shown that 1/f slope of PSD becomes more negative, 

less flat, when methylphenidate is administered, a drug known to be restoring SNRs by 

increasing dopaminergic neurotransmission (Pertermann et al., 2019). This is in line with 

Ostlund et al. (2021) who demonstrated that adolescents with ADHD show smaller aperiodic 

exponents in their ongoing oscillatory activity, indicative of a flatter 1/f slope of PSD, 

compared to their typically developing counterparts. It is important to note that no studies have 

previously computed 1/f properties of PSD in ASC. In summary, recent evidence demonstrates 

that 1/f slope of spectral power may be clinically relevant, capturing complex underlying neural 

dynamics that differ in psychiatric conditions. 

1.7.2 What can Phase/Amplitude Coupling (PAC) tell us about the pathological 

undercoupling hypothesis in ASC? 

 

Voytek & Knight (2015) hypothesized that ASC is likely to be characterized by noise-induced 

pathological undercoupling, which would in turn be reflected in flatter 1/f slopes of PSD. 1/f 

neural electrophysiological noise has not been previously examined in clinical samples of ASC. 

Nevertheless, support for the pathological undercoupling hypothesis is currently coming from 

studies that have previously investigated Phase/Amplitude Coupling (PAC) in ASC. PAC is 

the most common method of quantifying cross-frequency relationships between oscillations 

and describes the statistical dependence between the phase of low-frequency oscillations and 

the amplitude of high-frequency oscillations in response to a stimulus (Canolty et al., 2006; 

Canolty & Knight, 2010).  A well-established PAC relationship is that of gamma and alpha 

oscillations.  The amplitude of gamma oscillations (>40Hz), suggested to be emerging from 

local neuronal interactions (Singer & Gray, 1995), is shown to modulate the phase of alpha 
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frequency oscillations (8-12Hz), responsible for establishing neural synchrony across multiple 

populations of neurons at a systems level, thereby facilitating interregional neural 

communication (Jensen & Mazaheri, 2010).  This push and pull relationship is suggested to be 

highly sensitive to noise i.e temporally decorrelated spikes occurring at random time points in 

the oscillatory phase cycle (Voytek & Knight, 2015). Computational models have indicated 

that even when temporal correlations between spike trains change minimally, the impact on 

PAC is large (Deco et al., 2009). If noisy spikes decoupled from oscillatory dynamics occur in 

a network, it is expected that these will degrade the strength of PAC. From that perspective, it 

has been proposed that reduced PAC can serve as an indirect indicator of excessive neural noise 

in the system.  

 

In the ASC literature, experimental findings on PAC vary greatly and can be contradictory 

depending on the nature of the task, the network it is targeting and the developmental stage of 

participants. Patterns of reduced alpha-to-gamma PAC are reported in functional networks of 

executive functioning (Velazquez et al., 2009), the social brain (Khan et al., 2013) and the 

sensory system (Seymour et al., 2019). Studies examining intra-regional connectivity, have 

shown reduced alpha-to-gamma PAC in adolescents with ASC at V1 in response to visual 

stimulation (Seymour et al., 2019) and at the Face Fusiform Area (FFA) in response to active 

viewing of emotional faces (Khan et al, 2013). Port et al. (2019) report region-specific 

alterations in alpha-to-gamma PAC; increased at central midline regions and decreased at 

lateral regions. In contrast, greater alpha-to-gamma PAC has been observed in children with 

ASD as computed from resting-state data (Berman et al., 2015 but see Murias et al., 2007 for 

a contradictory result). Although ASC is linked to general patterns of reduced alpha-to-gamma 

PAC, it is evident that findings are heavily influenced by task requirements or developmental 

factors, making it very difficult to draw firm conclusions on whether excessive neural noise is 

present. Importantly, this remains an indirect metric of evaluating levels of neural noise in the 

neural system. For that reason, direct measurement of 1/f slopes of PSD is necessary to clarify 

whether noise-induced pathological undercoupling underpins neural dynamics in ASC. 
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1.7.3 Parameterisation of Power Spectral Density (PSD) 
 

Careful parameterisation of the power spectrum is suggested to be a crucial step to be able to 

successfully isolate noise exponents of power spectra from task-related power influences. 

Multiple methods of separating oscillatory dynamics (central frequency and amplitude) from 

non-oscillatory dynamics (broadband offset and 1/f noise exponent) have been proposed in the 

literature. Voytek et al. (2015) originally utilised a regression-based model fitting method, 

according to which a line of best fit describing the relationship between PSD and frequency 

was fitted to the observed data and alpha band peaks (7-14Hz) of PSD were then subtracted. A 

limitation of this approach is that the width of the alpha band window remains fixed, therefore 

it is not accounting for individual differences in alpha peaks, an issue directly tackled in the 

present thesis by adjusting the window to capture the start and end of alpha band peak for each 

participant. More recently, Donoghue et al. (2020a) proposed parameterising PSD through an 

iterative model fitting process, using the ’Fitting Oscillations and One-Over-f’ (FOOOF) 

toolbox. This algorithm removes periodic activity via an iterative peak-finding process, where 

the peaks of residuals are identified and if they are above the noise threshold, a Gaussian is 

fitted and then subtracted from the original PSD (see p.3, Donoghue et al., 2020a). Other 

methods of parameterising power spectra involve parametric curve fitting based on the 

summation of alpha, modelled as a bell function instead of a Gaussian and 1/f noise, a method 

known as ‘α+1/f’ (Ouyang et al., 2020). A very different method of disentangling periodic and 

aperiodic properties of the neural signal is suggested by Wen & Liu (2016), who propose 

extracting 1/f from resampled signal to deal with the issue of spectral leakage, a method known 

as Irregular-resampling auto-spectral analysis (IRASA, see Wen & Liu, 2016).  

 

Taken together, in the present thesis the regression-based method was employed to remove 

periodic activity and this approach was further refined to adjust the width of the alpha bump 

by picking the start and end of the alpha peak for each participant individually. This method of 

parameterisation was preferred over other methods because it is a well-established way of 

parameterising power spectra in previous experimental studies (see Voytek et al., 2015; Dave 

et al., 2018). At this early stage of research, keeping such parameters constant allowed for 

greater comparability across studies and greater confidence in the interpretation of results. 
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1.8 Overlap of Autism Spectrum Conditions (ASC) and Attention 

Deficit Hyperactivity Disorder (ADHD) 
 

ADHD is a neurodevelopmental condition shown to share behavioural features and genetic risk 

factors with ASC (McCarthy et al., 2014; Satterstrom et al., 2019). Although at surface the two 

diagnostic categories seem distinct, behavioural profiles of individuals with ASC and 

individuals with ADHD frequently overlap. From a phenotypic perspective, an ASC diagnosis 

is provided if social communication difficulties and repetitive and restricted patterns of 

behaviour are present, whereas core ADHD diagnostic symptoms include inattention, 

hyperactivity and impulsivity (American Psychiatric Association, 2013). However, social 

interaction difficulties and repetitive behaviours are often reported in individuals with a clinical 

diagnosis of ADHD (Antrop et al., 2000; Reiersen et al., 2008), whereas inattention and 

executive functioning difficulties are well-documented in ASC clinical samples (Sinzig et al., 

2009; Demetriou et al., 2018). In addition, ASC and ADHD frequently co-occur; 28% of 

individuals with ASC are also diagnosed with ADHD (Simonoff et al., 2008) and 11- 12.4% 

of individuals with a primary diagnosis of ADHD hold a comorbid ASC diagnosis (Jensen & 

Steinhausen, 2015; Giacobini et al., 2018). Along those lines, an important hypothesis yet to 

be disentangled is whether those behavioural features are characterised by overlapping or 

distinct underlying pathophysiologies.  

In an effort to shed light on the causal pathways of disorder manifestations in ASC and ADHD, 

genomic studies have further demonstrated that the two conditions share genetic risk factors. 

Clinical studies have shown that siblings of children with ASC are at higher risk of being 

diagnosed with ADHD (Jokiranta-Olkoniemi et al., 2016) and that first-born offsprings of 

mothers with a clinical diagnosis of ADHD are at higher risk to be diagnosed with ADHD and 

ASC (Musser et al., 2014). Similarly, population-based twin studies have found that symptom 

domains of ASC and ADHD are distinct but show high genetic overlap (Ronald et al., 2008; 

Taylor et al., 2011; Ronald et al., 2014). From a molecular genetics standpoint, Genome-Wide 

Association studies (GWAS) have identified pleiotropic genes linked to both ASC and ADHD 

(Grove et al., 2017; Byrne et al., 2020), providing further supporting evidence for the partial 

genetic overlap of the two conditions.  

Shared genetic risk factors imply that some underlying neurobiological mechanisms may also 

be common. Existing studies have revealed disorder-specific but also overlapping neural 

patterns (see Section 2.1.2 of Chapter 2 for a breakdown of studies and Lau-Zhu et al., 2019 
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for a review). Functional networks responsible for attentional control and executive functions 

as well as error and feedback processing, involving regions such as the prefrontal and the 

anterior cingulate cortex, are shown to be affected in both ASC and ADHD (Henderson et al., 

2006; Lau-Zhu et al., 2019; Kaiser et al., 2020). Nevertheless, the very few existing 

comparative ERP studies indicate that ADHD is characterized by attentional orienting and 

inhibitory control abnormalities and ASC by conflict monitoring and response preparation 

difficulties (Tye et al., 2014). Distinct patterns of neural functioning also emerge with regards 

to functional connectivity patterns. ASC is associated with global hypoconnectivity, whereas 

ADHD demonstrates widespread patterns of global hyperconnectivity in large-scale networks 

during attentional control and social tasks (Shephard et al., 2019). In resting state conditions, 

there are reports of hypoconnectivity in ASC (Dickinson et al., 2018; Shephard et al., 2019) 

but the picture becomes more blurry in ADHD as studies report both patterns of 

hyperconnectivity (Barry et al., 2002; Robbie et al., 2016) and lack of alterations in global/local 

connectivity (Alba et al., 2016; Shephard et al., 2019). Atypicalities in oscillatory power are 

also reported in resting-state conditions, taking the form of decreased theta and alpha power in 

ASC and decreased delta power in ADHD (Shephard et al., 2018). Although the exact 

biological mechanisms giving rise to specific network abnormalities in the two conditions are 

still not very well understood, a growing number of studies attribute some of these differences 

to synaptic transmission imbalances in the brain of individuals with ASC and those with ADHD 

(Kim et al., 2020).  

Despite the fact that both disorders are characterised by widespread neural communication 

abnormalities, neuroscientific data on the integrity of neural circuitry dynamics coming from 

comparative study designs in ASC and ADHD are scarce. With respect to neural noise, 

increased levels of neural noise in the form of reduced ITPC have been previously reported in 

both ASC and ADHD (Milne, 2011; Gonen-Yaacovi et al., 2016, see also Ostlund et al., 2021 

about flatter 1/f slopes in ADHD). Nevertheless, there have been no direct studies to date 

measuring and comparing levels of neural noise in clinically diagnosed ASC and ADHD 

samples.  

Understanding how neural noise manifests in the brain of participants with ASC and ADHD 

could provide new insights on the gene- brain- behaviour pathways and the causal mechanisms 

giving rise to phenotypic expressions in ASC and ADHD. Such direct comparisons could shed 

light on the ongoing debate of whether an overarching disorder underlies both conditions, 

thereby some individuals with a diagnosis of ASC and those with ADHD are expected to share 
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neural underpinnings or they are two distinct nosological entities, therefore ASC and ADHD 

are expected to be characterised by distinct underlying neurological features (Rommelse et al., 

2010). Chapter 2 provides an in-depth discussion of how comparative study designs of ASC 

and ADHD could advance current knowledge of pathophysiological processes and aid 

biomarker discovery. 
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1.9 Experimental approach followed in the present thesis 
 

Neural oscillations tune their phases to be at an optimal point in the excitatory cycle during the 

onset of a stimulus (Makeig et al., 2002). If some subtypes of ASC are indeed associated with 

an imbalance in E/I ratio, resulting in increased endogenous neural noise, as proposed by 

Rubenstein & Merzenich (2003) and Simmons et al. (2007), disproportionally high excitation 

or weak inhibition is expected to be affecting the ability of neural oscillations to reach this 

optimal point in the excitatory cycle and phase-reset effectively in response to external 

stimulation.  In the neurotypical brain, levels of neural noise are usually quantified by 

measuring SNRs. Nevertheless, as it will be discussed in Section 1.5.4.3, metrics using trial 

averaging to calculate the amplitude of the signal may not reveal existing differences in ASC 

as compared to neurotypical samples. Therefore, failures in synaptic transmission are more 

likely to be captured by ITPC, as extracted from electrodes or Independent Components of 

interest. For that reason, the present thesis directly investigates neural noise in ASC in the form 

of ITPC. In those subgroups of individuals with ASC characterised by synaptic transmission 

abnormalities, phase angles of stimulus-evoked neural oscillations are expected to be 

“misaligned” from trial-to-trial in key electrode sites (e.g. in close proximity to the sensory 

cortices), with a phase distribution approaching uniformity, reflecting a more variable, noisier 

neural response.  

 

Considering the inconsistencies in the literature, evident when spectral features are strictly 

studied within canonical frequency bands (see Section 1.7.2 about Phase/Amplitude Coupling), 

the present thesis also investigates neural noise in ASC from the perspective of 1/f noise of 

PSD, a metric not confined within a specific frequency band. Excessive noise in key neural 

circuits is suggested to lead to weakened interregional oscillatory coherence and manifest as 

pathological undercoupling in ASC, involving difficulties to establish neural communication 

(Voytek & Knight, 2015). If the pathological undercoupling hypothesis proposed by Voytek & 

Knight is true, 1/f slopes of PSD will be flatter in the ASC samples tested in the present thesis, 

as weaker oscillatory coupling from weaker dendritic outputs results in smaller numbers of 

simultaneously triggered spikes and therefore reduced temporal variability of spike timings.  

In terms of spatial scale, an E/I imbalance manifesting in a large-scale circuit involves a change 

in the relative activity of different types of excitatory or inhibitory neurons within small-scale 

circuits, such that the threshold at which global balance is achieved changes (Sohal & 
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Rubenstein, 2019). Although it is also important to know what microscopic sources may be 

contributing to a global E/I imbalance as observed in larger scale circuits, small-scale neural 

network dynamics cannot be captured sufficiently by EEG as they are chaotic and non-linear 

in nature (Pritchard, 1996; Wright & Liley, 1996). For that reason, the focus of the present 

thesis is not small-scale network behaviour, but rather, the main objective is to explore whether 

global E/I balance is affected in specific regions (e.g. visual cortices), with metrics such as 

ITPC and in the whole brain, with metrics such as 1/f slope of PSD. In addition, this approach 

allows to directly interrogate periodic oscillatory dynamics but also aperiodic properties of the 

neural signal under scrutiny.  

 

Given that ERP trial averaging may not reveal existing atypicalities in evoked responses of 

participants with ASC (see Section 1.5.4.3 for a discussion), single-trial analysis was 

performed to extract neural signal in the experimental studies of the present thesis measuring 

ITPC. Independent Component analysis was utilised to “blindly” separate distinct sources of 

signal, which are less contaminated with noise generated by other cortical and non-cortical 

sources. In addition, recent evidence by Van Diepen & Mazaheri (2018) demonstrated that 

ITPC computed from the same channel across participants is impacted by differences in dipole 

orientations, resulting in null findings when compared across samples. For that reason, ITPC 

was extracted from source reconstructed signal i.e. Independent Components projecting to the 

visual cortex, rather than EEG channels.  This approach is well-documented and has previously 

been utilised in ASC (see Milne, 2011; Milne et al., 2019) and ADHD (Gonen-Yaacovi et al., 

2016).  

 

On the other hand, 1/f slopes were calculated from PSD recorded from scalp EEG signals. In 

contrast with ITPC, the study of aperiodic signal properties is a newly emerging field. Very 

few experimental studies have previously examined 1/f slope of PSD and as a result it is still 

unclear what signal source PSD should be extracted from (i.e ICs or EEG channels) and 

consequently which electrode cluster 1/f noise analysis should be performed on. Previous 

literature does not provide a clear picture, as the majority of the studies measuring noise 

exponents do not report on the signal source utilised to extract PSD from. In the present thesis, 

two methods of comparing levels of 1/f noise across groups were utilized with the aim to 

scrutinize whole-brain dynamics; either the grand average value of the aperiodic exponent was 
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extracted from all EEG channels and was compared across groups and/or single electrode 

comparisons were performed across the whole brain.  

 

1.10 Aims of the present thesis 
 

1.10.1 General aims 
 

Following proposals that increased neural noise may serve as a biomarker of ASC, primary 

aim of the present thesis was to systematically investigate the increased neural noise hypothesis 

in ASC. Initial exploration of the literature indicated that levels of neural noise may be elevated 

not only in ASC but also in ADHD, a neurodevelopmental condition that shares genetic risk 

factors with ASC. However, current research findings are mixed and, despite the clear 

etiological link between ASC and ADHD, there are no previous studies that have directly 

compared patterns of neural noise in individuals with a clinical diagnosis of ASC and those 

with a diagnosis of ADHD. The experimental study summarised in Chapter 2 aimed to bridge 

this gap in knowledge and investigate whether levels of neural noise as measured by ITPC and 

1/f slope of PSD are increased in adults with ASC as compared to adults with  ADHD and 

typically developing (TD) adults (Aim 1).  

 

Due to limitations related to the fact that many of the autistic adults were later diagnosed in 

adulthood and therefore may be characterised by less severe forms of autism, it was unclear 

how generalisable the findings of Chapter 2 were. In addition, it remained unclear whether 

levels of neural noise follow a similar pattern in childhood compared to adulthood. For that 

reason and in order to consolidate the findings of Chapter 2, the increased neural noise 

hypothesis was also tested in a child sample (Aim 3).  The desire to recruit a large and 

representative sample to look at this hypothesis motivated the drive to set up a mobile EEG 

paradigm and collect data in children’s homes (Aim 2). Methodological details on how this 

was achieved are presented in Chapter 3.  

 

Similarly to the first experimental study, the child study indicated that only a subgroup of 

children with ASC are characterised by reduced ITPC. Further to the group comparisons, an 

important next step was to understand whether those reductions in ITPC occur in participants 

with a specific behavioural profile. In order to do this, we investigated whether levels of neural 
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noise can be predicted by core ASC symptoms but also extended the analysis beyond primary 

diagnostic symptoms and looked into secondary behavioural expressions such as sensory 

symptoms (Aim 4). Previous studies- albeit small in number- have not revealed a relationship 

between neural noise and global measures of ASC symptom severity (see Milne et al., 2019). 

Although core phenotypic expressions of ASC were previously assessed,  sensory symptoms 

have not been previously examined in the literature. Therefore, Chapter 5 presents findings on 

the relationship between neural variability as indexed by ITPC and 1/f slope of PSD, and 

variability in ASC symptomatology across a range of cognitive domains. 

 

1.10.2 Aim 1 

 

If increased neural noise is capturing pathophysiological dynamics that are distinct in ASC- 

neural features prominent in the brain of individuals with ASC characterized by synaptic 

transmission abnormalities- it is important to know whether the neural correlate is possible to 

distinguish between ASC and other neurodevelopmental conditions such as ADHD. A key 

limitation of the studies outlined in Section 1.6.1 and Section 1.7.1 is that they have not 

examined neural noise in a comparative study design and as a result, we cannot draw firm 

conclusions regarding neural processes that differ or may be common. In addition, they use a 

wide variety of methods and analytical approaches to measure neural variability, which often 

leads to conflicting results within the literature. Therefore, the question of whether increased 

neural noise describes ASC alone or is a pathophysiological feature of other psychiatric 

conditions characterized by imbalances in synaptic transmission such as ADHD, remains 

unanswered.  

 

The first aim of this thesis is to understand whether increased neural noise in the form of 

increased neural variability is likely to be specific to ASC, taking the form of an ASC 

biomarker as suggested by David et al. (2016), or whether it also characterises ADHD, 

therefore taking the form of a transdiagnostic marker that cuts through diagnostic boundaries. 

Recent research work proposes that ADHD is characterized by low ITPC and flatter 1/f slopes 

of PSD, indicating disrupted information processing which mirrors the pattern of neural 

functioning observed in ASC. Failures in synaptic transmission have been previously reported 

in both conditions, therefore it is plausible that increased neural noise is not exclusively a 

feature of the autistic brain. Section 2.1.4 of Chapter 2 discusses those studies in detail and 

elaborates on similarities and differences between the two clinical groups.  
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In the present thesis, using EEG, we examine neural noise as indexed by ITPC and 1/f slope of 

PSD, two variables that provide insight into both periodic and aperiodic brain dynamics. In 

order to test the above hypothesis, in Chapter 2, ITPC and 1/f slope of PSD are computed both 

in response to visual stimulation and during a resting state condition in three samples; a group 

of adults with ASC, a group  of adults with ADHD and an age and ability-matched group of 

typically developing adults. Direct comparisons across the three groups using the same task 

and data processing pipeline are necessary to describe patterns of neural communication in 

ASC with greater precision. Considering previous experimental findings, it is expected that 

participants in both clinical groups will demonstrate increased neural noise, operationalised as 

reduced ITPC and flatter 1/f slopes of PSD, in line with a growing body of literature speaking 

for an E/I imbalance and pathological undercoupling in the two conditions.  

 

1.10.3 Aim 2 

 

Traditional laboratory-based EEG experiments, such as the one described above, are by nature 

less inclusive and less accessible by more severely affected individuals with ASC (Lau-Zhu et 

al., 2019). A significant barrier to their participation is that these experiments usually take place 

in a fixed location, the EEG laboratory, under demanding experimental conditions where 

participants have to communicate effectively with the experimenter, successfully follow a 

sequence of activities and limit movement during the experimental task. The transition to a 

new social environment to participate in unknown activities with an unfamiliar person i.e the 

researcher posits a substantial challenge for individuals with ASC and their carers. Social 

communication difficulties ranging from mild to more severe, extreme sensory sensitivities 

and repetitive behaviours, symptoms exacerbated by high levels of anxiety contribute to the 

difficulty individuals with ASC face to visit the EEG laboratory and comply with EEG 

experimental procedures. Comorbid intellectual disability further contributes to reduced 

participation rates. As a result, a selection bias is observed towards the inclusion of more able 

individuals with ASC in clinical studies aiming to investigate neurophysiological biomarkers 

of ASC and a lack of electrophysiological data recorded from more severely affected 

individuals with ASC (Russell et al., 2019). The systematic underrepresentation of these 

individuals in biomarker research ultimately hinders the identification of valid behaviour-

brain-gene pathways in ASC and the opportunity to accurately describe neural patterns in the 

clinical group.  
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Enabling data collection to take place in a more familiar environment, e.g. at home, may 

increase access to research participation in this group. In Chapter 2 we present a new accessible 

method of studying brain activity of autistic individuals outside the laboratory in their home 

environment, using mobile EEG technology. The primary aim of this chapter is to test the 

feasibility of acquiring good quality EEG data from autistic children at home, assessed via a 

set of objective data quality metrics, and to develop a list of practical guidelines on how to 

successfully conduct an EEG experiment in such a naturalistic setting based directly upon 

participants’ views.  

 

1.10.4 Aim 3 

 

In childhood, studies such as the one conducted by Milne (2011) indicate that ASC is associated 

with reduced alpha ITPC in response to visual stimulation, however, in an effort to replicate 

the study by Milne (2011), Butler et al. (2017) do not report significant differences in levels of 

ITPC between the ASC and TD group. Of note, these studies are characterized by small sample 

sizes ranging from 13-20 participants, raising questions about whether these findings can be 

generalised. Some useful mechanistic insights are provided by a well-powered study by Milne 

et al. (2019) who report low ITPC during visual processing only in a subsample of adults with 

ASC, a finding indicating that increased neural variability is likely to be characterising the 

brain of some participants with ASC but not all. Due to ASC heterogeneity, it is expected that 

such neurological differences between participants will be evident at any given sample, 

explaining some of the inconsistencies in the child studies. However, it is still unclear whether 

children with ASC show a similar pattern of neural functioning to the adults with ASC, as 

documented in Milne et al. (2019). 

 

Considering the above, the third aim of the present thesis is to investigate patterns of neural 

noise in a much larger sample of children with ASC and clarify whether increased neural noise 

occurs in children with ASC. In addition, we aim to understand whether increased neural noise 

is a characteristic of evoked responses or ongoing oscillatory activity. Following a similar 

analytical approach to the experimental study outlined in Chapter 2, neural noise is measured 

by computing ITPC and changes in 1/f slope of PSD in a group of children with ASC and a 

group of typically developing children. Children were tested at their home environment using 

a gel-based mobile EEG system. Consistent with the experimental approach followed 
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throughout this thesis, these measures are extracted from both a visual task-based condition 

and a resting-state ‘eyes-closed’ condition.  

 

1.10.5 Aim 4 

 

The fourth aim of this thesis is to investigate the relationship between neural noise and core 

diagnostic symptoms of ASC. If increased neural noise is a neural signature of ASC, a 

measurable feature in the brain of those autistic individuals with synaptic transmission 

disruptions, it should also be linked to some aspect of the ASC phenotype (Carroll et al., 2021). 

Thus far, studies investigating neural noise in ASC have primarily focused on linking the 

variable indexing neural noise (i.e ITPC, SNRs etc.) with global measures of ASC symptom 

severity (see Dinstein et al., 2012). In addition such studies have not revealed any relationship 

between global measures of ASC symptom severity and neural noise (see Milne et al., 2019). 

However, this framework is somewhat simplistic as aspects of sensory perception, known to 

be integral to the pathophysiology of ASC, are neglected. In the visual modality, which is the 

focus of the present research work, reports of illusions and visual distortions in response to 

gratings with low spatial frequency such as black and white checkerboards are widespread in 

the ASC literature (Ludlow, Wilkins & Heaton, 2006; Ludlow & Wilkins, 2016; Ludlow et al., 

2020). Given that the stimuli used to measure neural noise are likely to generate a hyper-active 

neural response in key regions, it is plausible that low ITPC would be more likely to be seen 

in those who are characterised by perceptual sensitivity to such patterns. However, the 

relationship between neural noise, as measured in response to visual stimulation, and the 

sensitivity of the visual cortex to such incoming stimuli has not been previously examined.  

Thus, Chapter 4 aims to systematically examine whether neural noise in the form of IPTC and 

1/f slope of PSD is linked to clusters of symptoms specific to the autism phenotype. Phenotypic 

traits examined in the study include not only social communication impairments and restricted 

and repetitive patterns of behaviour but also sensory symptoms. Based on previous research by 

Milne et al (2019), it is hypothesised that social communication impairments and restricted 

patterns of behaviour will not predict levels of ITPC, as this is what was previously found in a 

group of autistic adults.   
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Chapter 2:  

Neural noise in adults with Autism Spectrum Conditions (ASC) 
and Attention Deficit Hyperactivity Disorder (ADHD) 
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2.1 Introduction 
 

Autism Spectrum Conditions (ASC) and Attention Deficit Hyperactivity Disorder (ADHD) are 

childhood onset neurodevelopmental disorders, which persist into adulthood and often co-

occur (Ronald et al., 2008). ASC is diagnosed on the basis of social communication difficulties 

and repetitive and restricted patterns of behaviour, whereas diagnostic symptom domains for 

ADHD include inattention, hyperactivity and impulsivity (American Psychiatric Association, 

2013). The distinct core diagnostic criteria for ASC and ADHD reflect a unique underlying 

genetic aetiology that leads to heterogeneous patterns of behavioural symptoms in both 

conditions. However, phenotypic profiles in ASC and ADHD frequently overlap; core ASC 

diagnostic symptoms such as social interaction difficulties (Reiersen, et al., 2008), language 

delay (Rohrer-Baumgartner et al., 2016), and repetitive and ritualistic behaviours (Antrop et 

al., 2000) often occur in ADHD. Similarly, primary ADHD symptom domains such as 

inattention (Sinzig et al., 2009), and executive functioning impairments frequently manifest in 

ASC (Demetriou et al., 2018). Prevalence rates of ASD-ADHD co-occurrence reach 28% in 

ASC samples (Simonoff et al., 2008) and range from 11- 12.4% in ADHD samples (Jensen & 

Steinhausen, 2015; Giacobini et al., 2018), suggesting that some genetic and neurobiological 

pathways may be common.  

2.1.1 Genetic overlap 
 

Indeed, a growing number of genetic studies suggest that genetic risk factors are partly shared, 

explaining the moderate degree of phenotypic overlap. Twin studies have shown overlapping 

genetic influences of ASC and ADHD trait measures in general population- based cohorts of 

children (Ronald et al., 2008) and adults (Reiersen et al., 2008). Large studies including 

clinically diagnosed samples however have been more scarce. Three large-scale birth registry 

studies have examined the familial transmission of ASC and ADHD. Musser et al.  (2014) 

studied the genetic and phenotypic profiles of >35000 children and their mothers and found 

that first-born offsprings of mothers with a clinical diagnosis of ADHD are 6 times more likely 

to be diagnosed with ADHD and 2.5 times more likely to be diagnosed with ASC. Jokiranta- 

Olkoniemi et al. (2016) showed that siblings of children with ASC are at higher risk of being 

diagnosed with ADHD. This is in line with Ghirardi et al. (2018) who also report that family 

members of individuals with ASC with varying degrees of genetic relatedness are at elevated 

risk of ADHD. Gene-specific candidate-driven and genome-wide association studies (GWAS) 

provide further support for the existence of genetic cross- disorder links. Deletions of ASTN2 
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and TRIM32 genes in chromosome 9 are implicated in both ASC and ADHD (Lionel et al., 

2014). After combined analysis of ASC and ADHD exome sequences, a recent study by 

Satterstrom et al. (2018) demonstrated that ASC and ADHD samples carry a strikingly similar 

number of protein-truncating variants (PTVs) and identified the novel gene MAP1A and the 

DYNC1H1, POGZ, SCN2A and ANK2 genes as some of the primary loci where these mutations 

reside, further confirming the genetic overlap of two disorders. These results speak for a 

partially shared genetic aetiology between ASC and ADHD; we now understand that there are 

multiple gene-environment interactions contributing to the expression of complex traits in each 

disorder separately, however the above literature suggests that shared genetic factors give rise 

to particular aspects of disorder manifestations in both conditions. 

 
2.1.2 Neurocognitive overlap  
 

Shared genetic etiology suggests that some underlying neural pathways may also be common. 

Separate lines of work point towards altered structural and functional patterns of brain 

organisation in both conditions. These have so far revealed disorder-specific but also 

overlapping neural patterns. Based on evidence from structural MRI studies, a shared 

anatomical feature seems to be a smaller corpus callosum and cerebellum (ASC: Piven et al., 

1997; Freitag et al, 2009, ADHD: Hutchinson et al., 2008; Stoodley, 2014). Other studies report 

reductions in grey matter density in the left temporal medial lobe-attributed to delayed brain 

maturation in the region- and an increase in the left inferior parietal cortex, potentially linked 

to attentional processing abnormalities (Brieber et al., 2007). Some morphological differences 

are also apparent; ASC is characterised by larger subcortical brain volume (Freitag et al., 2009), 

whereas ADHD by reduced whole- brain volume (Greven et al., 2015).  

Functional networks implicated in attention and executive functioning are shown to be 

compromised in both ASC and ADHD. In the fMRI literature, diminished BOLD signal 

activation is consistently shown to occur in the fronto-parietal network during a wide range of 

executive functioning tasks. Both ASC and ADHD are associated with atypicalities in the 

amplitude and latencies of P300 ERP subcomponents, as demonstrated in EEG studies utilising 

visual or auditory oddball paradigms. Other lines of evidence indicate that both disorders are 

characterised by functional abnormalities in the anterior cingulate cortex and lateral prefrontal 

cortex, a network playing a key role in error and feedback processing. Using flanker tasks, ERP 

studies have shown differences in error-related negativity (ERN) and error-related positivity 

(Pe) amplitudes between clinical group and controls, in both ASC (Henderson et al., 2006) and 
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ADHD samples (McLoughlin et al., 2009). These suggest reduced capacity to monitor error 

responses in both conditions. Comparative study designs have revealed some disorder-specific 

patterns too, with ADHD showing more negative amplitude and shorter latency of the ERN 

during an illusory figure categorization task compared to ASC (Sokhadze et al., 2012). 

Shephard et al. (2019) also demonstrated that ASC is associated with global hypoconnectivity, 

whereas ADHD demonstrates widespread patterns of global hyperconnectivity in large-scale 

networks during attentional control and social tasks. Other studies have shown an absence of 

post-error slowing, which suggests difficulties to adjust subsequent behaviour in order to 

optimise outcomes (ASC: Vlamings et al., 2008; McMahon & Henderson, 2014, ADHD: 

Balogh, 2016). In contrast with ADHD, in ASC post-error slowing abnormalities are observed 

primarily in response to social stimuli (McMahon & Henderson, 2014). Early sensory 

processing of low-level auditory and visual stimuli is also shown to be abnormal in both 

conditions. This is reflected in atypicalities in the amplitude and latency of P1 in response to 

visual stimuli (ASC: Kovarski et al., 2016, ADHD: Kim et al., 2015; Nazhvani et al., 2013) 

and the mismatch negativity ERP component, elicited by deviant changes in the presentation 

of a sequence of standard sounds (ASC: Fan & Cheng, 2014, ADHD: Cheng et al., 2016).  

In resting-state paradigms, power fluctuations of the EEG signal appear to be abnormal in both 

ASC and ADHD, however conflicting evidence is presented regarding the magnitude and the 

frequency band these atypicalities occur at. Some studies report a U-shape resting-state EEG 

profile in ASC (Machado et al., 2015) and others propose an elevated slow-wave, followed by 

reduced fast-wave activity pattern in ADHD (Kitsune et al., 2015). The increased theta/beta 

power ratio (TBR) is proposed to be a sensitive marker, differentiating ADHD from non-

ADHD participants in several studies (Lubar, 1991; Monastra et al., 1999; Markovska-Simoska 

& Pop-Jordanova, 2017), although a meta-analysis by Arns and colleagues (2013) argues that 

excessive TBR only characterizes a subgroup of individuals of ADHD (also see Kiiski et al., 

2020). In contrast with the above, the only comparative study design of resting-state neural 

correlates in ASC and ADHD has shown reduced theta and alpha power in ASC and reduced 

delta power in ADHD (Shephard et al., 2018). The same study reports limited evidence for 

elevated theta band activity in ADHD, questioning the reliability of the increased TBR finding 

as a diagnostic measure of ADHD. To conclude with, ASC and ADHD have shown divergent 

patterns of resting-state brain activity. However, more work is necessary to replicate the results 

by Shephard et al. (2018) and understand how these resting-state network alterations impact 

cognition.  
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Existing neuroscientific studies, including the ones reviewed above, do not address the two 

neurodevelopmental disorders in tandem, often include a single diagnostic group (either ASC 

or ADHD) and very rarely include a comparison group with comorbid ASC and ADHD or 

account for high ASC and ADHD traits. Notable exceptions include the studies by Bink et al. 

(2015), Saunders et al. (2016), Shephard et al. (2018), Shephard et al. (2019) and Bellato et al. 

(2020), who measured resting state dynamics in children with ASC and ADHD and Tye et al. 

(2013), Tye et al. (2014), Tye et al. (2014) and Shephard et al. (2019) who investigated 

attentional and social cognition mechanisms in children with ASC and ADHD. This problem 

is not trivial as existing evidence, stemming from divergent fields, provides a fragmented 

overall picture and does not allow for firm conclusions regarding the overlapping 

pathophysiological mechanisms underlying ASD and ADHD. The lack of evidence is mainly 

attributed to the fact that previous diagnostic criteria did not permit a dual diagnosis of ASC 

and ADHD in the same individual, therefore studies comparing ASC, ADHD and ASC+ADHD 

clinical samples were not feasible prior to the revisions of the Diagnostic and Statistical Manual 

of Mental Disorders in 2013 (American Psychological Association, 2013). In addition, 

neuroscientific data directly comparing ASC and ADHD brain architectures are limited or non-

existent in some key functional domains, for example with respect to neural noise patterns. 

Addressing those issues will provide new insights on the shared and unique neural correlates 

underpinning both conditions, which will in turn inform biomarker research and nosological 

models. 

Given the shared genetic influences, a key question is whether behavioural features in ASC 

and ADHD are based on overlapping or distinct underlying pathophysiologies. It is yet unclear 

whether ASC and ADHD are different manifestations of an overarching disorder as suggested 

by van der Meer (2012) or truly distinct clinical entities (Rommelse et al., 2010). If the latter 

is true, we would expect neural correlates linked to phenotypic features to be different in ASC 

vs ADHD, therefore independent from each other. If there is an interactive effect of ADHD on 

traits which depends on ASC (and vice versa), we would expect to observe the presence of 

subgroups with a similar neural profile in both conditions. This distinction is important to be 

made, in order to better characterize the gene-brain-behaviour pathways to ASC and ADHD. 

For this distinction to be clarified, it is necessary to employ study designs which directly 

compare the neural profiles of the two patient groups using the same neurophysiological 

measures. Identifying neural correlates that may be common or different in the two conditions 

will provide new insights on the causal pathways linking genetic variants to atypical neural 
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patterns and ultimately phenotypic expressions in ASC and ADHD.  Importantly, this fine- 

grain approach will help disentangle etiological heterogeneity in ASC and ADHD (Hodgson, 

McGuffin & Lewis, 2017), regarded as one of the biggest obstacles in the identification of 

candidate susceptibility genes. 

2.1.3 Neural variability 
 

A recent review by Lau-Zhu et al. (2019) of the neurophysiological overlap and distinctions 

between ASC and ADHD, highlights the importance of investigating neural variability as a 

candidate neural substrate, likely to explain aspects of the phenotype i.e atypical sensory 

processing in both ASC and ADHD. In the present study we aim to fill this gap in the literature 

and investigate neural variability in ASC and ADHD. As outlined in Chapter 1, here we focus 

on neural variability- also referred to as “neural noise”- from two different perspectives; the 

degree of phase angle alignment across experimental trials, known as inter- trial phase 

coherence (ITPC) and the degree of variation of the spiking activity as indexed by 1/f noise 

slope of Power Spectral Density (PSD).  

 

Effective communication between regions is known to depend upon the synchronization of 

oscillatory activity of neurons. For optimal information processing, groups of neurons tend to 

align the phase angles of their oscillations, so that spikes arrive at a time window of high 

excitability, rather than low. If spikes arrive at random phases of the oscillation cycle, the 

information stream will be characterised by greater neural variability or else greater “noise” 

and lower effective connectivity (Fries, 2015). It is important to note that noise, in the form of 

noisy, serially uncorrelated spikes arriving at a moment of low excitability, is often introduced 

in the healthy brain as a corrective mechanism to smooth the threshold of action potentials and 

prevent hypersynchronisation (Fries, 2005). However, excessive noise works to the expense of 

the system, resulting in weakened interregional oscillatory coherence and pathological 

undercoupling (Voytek & Knight, 2015). According to Voytek & Knight (2015), network 

communication disruptions in the brain can manifest either as a) “undercoupling”, involving 

difficulties to establish communication or as b) “overcoupling”, meaning that two clusters of 

neurons are too strongly synchronized and are both equally detrimental for information 

processing within the circuitry. This process is fundamental for information transmission and 

is a candidate mechanism for a pervasive network impairment in ASC and ADHD. It is 

therefore surprising that neural variability has not been previously investigated in a 

comparative study design of ASC and ADHD, particularly considering that both disorders are 
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characterised by functional brain connectivity abnormalities (see Hull et al., 2017 and 

Kowalczyk et al., 2021 for a review), which are not localised to a specific brain region but 

rather, they seem to be widespread, affecting interconnections between neural networks.  

 

A well-established way of measuring neural variability is by computing the oscillatory phase 

angle alignment in single experimental trials- a variable known as inter- trial phase coherence 

(ITPC). ITPC is a particularly effective method of studying within subject trial- to trial 

variability of electrophysiological signal; it indicates whether the phase-angle of an oscillating 

sine wave at a specific time point is coherent across trials (Cohen, 2014). A reliable, precise, 

highly consistent evoked response exhibits high ITPC from trial to trial (David et al., 2016). 

The opposite happens when the evoked response is noisier or highly variable; lower ITPC is 

expected (David et al., 2016).  

 

The 1/f slope component of Power Spectral Density (PSD) is another method of quantifying 

neural variability. As described in Section 1.4.4 and Section 1.7 of Chapter 1, 1/f slope of 

spectral power reflects variability of spike arrival timings at a local level in relation to the 

strength of interregional oscillatory coupling (Voytek & Knight, 2015). If spiking activity in 

the neural ensemble is highly synchronised with only a few spikes reaching the nearby neurons 

in their non-excitatory phases, then 1/f slope of PSD will be steeper, i.e. more negative. A more 

negative 1/f slope indicates that spike trains are highly correlated, therefore characterised by 

smaller amount of variability. On the other hand, if spike trains in the neuronal population are 

firing asynchronously, 1/f slope will be flatter. White noise is represented in a spectrogram as 

a flat line with a noise exponent of 0. The closer the 1/f slope is to 0, the flatter the line of the 

slope will be, indicating more variable, less synchronized spiking activity. As proposed in the 

relevant literature, there is an optimal balance between the two and extreme deviations from 

the mode- steeper or flatter slope- is strong evidence for disruptions in neural communication. 

In the context of Voytek & Knight’s dynamic network communication framework (2015), it is 

possible that electrophysiological responses in ASC and ADHD are characterised by a flatter 

1/f power slope, indicating undercoupling of oscillatory dynamics. In turn, a steeper 1/f slope 

of PSD would suggest overcoupling or hypersynchronisation, meaning that two clusters of 

neurons are too strongly synchronized (see Section 1.7.1 in Chapter 1 about the dynamic 

network communication framework).  
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We propose that ITPC and 1/f slope of PSD are two complementary ways of quantifying neural 

variability. ITPC characterises evoked neural activity in response to a stimulus presentation, 

therefore it is task-specific. It is also band-specific as it describes narrowband changes in phase 

synchrony and is computed locally. On the other hand, 1/f slope of PSD is a variable that can 

be computed from both task-based and resting-state data. It is not focused on a specific 

frequency band but rather describes how the distribution of power contained in a signal changes 

as a function of all frequencies. Compared to traditional spectral power analysis approaches, 

1/f slope is focusing on broadband, rather than narrowband changes in power density, therefore 

it may be a better indicator of global neural synchrony and coherence. In addition, 1/f slope of 

PSD captures aperiodic features of the electrophysiological signal, which are largely ignored 

in other study designs. For that reason, we believe that 1/f slope of PSD is a more holistic way 

of conceptualising neural variability in the brain. 

 

2.1.4 Neural variability in ASC and ADHD 
 
In search for more concrete, quantifiable neural features indexing genetic susceptibility to 

ASC, a number of studies have examined neural variability as a promising neural correlate, 

believed to be capturing underlying network communication disruptions (Milne et al., 2019). 

In support of the undercoupling hypothesis (Voytek & Kinight, 2015), multiple lines of 

research have shown that ASC is associated with excessive neural noise in the form of 

increased neural variability and poorer SNRs. Reduced ITPC occurs at both low and high 

frequency bands in response to a wide range of cognitive tasks, including visual, auditory, 

somatosensory and error-processing. In the visual domain, Milne (2011) analysed scalp EEG 

data of children with ASC and found lower ITPC in the alpha band during visual processing of 

Gabor patches. Similarly, Weinger et al. (2014) showed weak SNRs in electrophysiological 

responses of children with ASC, computed from steady state visual evoked potentials. 

Reductions in the Phase-Locking Factor (PLF) of beta rhythms in the occipital lobe is also 

reported during picture-naming (Buard et al., 2013). A more recent EEG study by Milne et al. 

(2019) found reduced ITPC in response to visual stimulation in a group of adults with ASC 

and concluded that increased neural variability is likely to be reflecting one of the many 

pathophysiological routes to ASC symptomatology. In the auditory domain, reduced ITPC and 

Phase-locking Factor (PLF) is reported in the gamma band in response to tones of various 

frequencies (Rojas et al., 2008; Edgar et al, 2015). Some contradictory results were presented 

by Yu and colleagues (2018), who found an increase in ITPC of theta oscillations computed 
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for the P1 time window, followed by a reduction in ITPC for the N2 time window during 

processing of pure tones and words. The authors concluded that slow waves in ASC tend to 

exhibit phase asynchrony 200ms after stimulus presentation but not before this time window, 

whereas faster waves show reduced synchrony in earlier time windows. Other lines of work 

have shown reductions in ITPC of theta oscillations in the frontal electrode site during feedback 

processing of rewards and errors (van Noordt et al., 2017). In line with the EEG and MEG 

literature, Dinstein et al.  (2012) and Haigh et al. (2014) conducted three fMRI experiments 

measuring neural variability in response to simple visual, somatosensory and auditory stimuli 

and report low SNRs in all sensory modalities. Taken together, these findings highlight that 

short- range network communication patterns are altered in ASC. Increased neural noise in the 

form of neural variability is likely to be degrading the oscillatory activity of the neural circuit, 

affecting synchronisation- mediated information flow locally.  

 

Increased neural variability is also reported in ADHD. Thus far, only five studies have 

examined the neural noise hypothesis in clinical ADHD samples (see Table 2.1 for a summary 

of studies). Groom et al. (2010) report a reduction in early and late theta band ITPC, computed 

from fronto-central electrodes, in response to visual go/no- go trials. In a similar task design, 

Pertermann and colleagues (2019) showed that 1/f slope of PSD is significantly flatter in 

ADHD compared to controls in the NoGo trials but not in the go trials. They concluded that 

ADHD is not characterised by excessive neural noise as such, but rather it increases with 

increasing task demands and requirements for greater inhibitory control, a domain known to 

be impaired in ADHD. In extension to this finding, they demonstrated that 1/f slope of PSD 

becomes more negative, less flat, when methylphenidate is administered, a drug known to be 

restoring SNRs by increasing dopaminergic neurotransmission (Pertermann et al., 2019). It is 

important to mention that error-processing abnormalities of this nature are observed in both 

ADHD (Groom et al., 2010) and ASC (van Noordt et al., 2017). In line with these preliminary 

findings, Gonen-Yaacovi et al. (2016) showed that reductions in ITPC of theta and alpha 

oscillations occur not only in the visual but also the auditory modality. In this experiment, ITPC 

was reduced in pre and post stimulus intervals as well as in trials where there was no stimulus 

present. In contrast to the conclusions of Pertermann et al. (2019) however, the authors propose 

that ongoing, rather than stimulus- evoked neural activity is characterised by greater noise in 

ADHD.  In support of this hypothesis, Ostlund et al. (2021) found flatter 1/f slopes in a large 

sample of adolescents with ADHD, as computed from resting state data (i.e eyes open and eyes 

closed conditions). In the auditory domain, contradicting findings are presented by Yordanova 
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et al. (2001) who found increased levels of phase-locking in the gamma band during auditory 

processing of tones. This contrasting result is likely to be explained by the use of a less 

conventional method of computing neural variability, known as ‘single-sweep wave 

identification’. In summary, converging evidence points towards reductions in phase 

synchrony of the theta and alpha rhythms in individuals with ADHD during sensory and error-

processing tasks. It is still unclear whether excessive neural noise is a feature of stimulus-

evoked neural activity, ongoing or both, or whether it characterises short-range or long-range 

network communication in ADHD. The majority of these studies utilise task designs targeting 

executive functioning processes and examine exclusively the fronto-central electrode site, 

providing limiting insights into whole-brain neural synchronisation patterns in ADHD.
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Table 2.1 
 
Studies measuring neural variability in individuals with a clinical diagnosis of ADHD 
 

 Author Year Participants* Modality  Stimulus  Method Location Frequency Result** 

EEG 
studies 

Yordanova et al. 2001 Children  
(n=14) 

Auditory Non-target tones, 
high target tones 

single-sweep 
wave 
identification  

Electrode cluster F3, Fz, 
F4, C3, Cz, C4, P3, P4 

Gamma More strongly phase- locked 
gamma oscillations 

 Groom et al. 2010 Adolescents 
(n=23) 

Visual Go/NoGo letters 
‘X’, ‘K’  

ITPC1 Electrode FCz  Theta Reduced ITPC 

 Gonen-Yaacovi et al.  2016 Young adults 
(n=17) 

Visual, 
auditory  

Black 
triangles/circles, 
pure tones 

ITPC 
 
 

Electrode with the highest 
P1/N1 amplitude 
 
PO8 and FCz electrodes 
in all subjects 
 
ICA component that best 
captured the early sensory 
response 

Theta, 
Alpha 

Reduced ITPC in all conditions  

 Pertermann et al. 2019 Children  
(n=29) 

Visual Go/NoGo words 
‘DRUCK’, ‘STOP’ 

1/f slope of 
PSD2 

Electrode cluster FC1, 
FC2, FCz, Cz 

Theta,  
Beta 

Flatter 1/f slope during NoGo trials 
in the ADHD group vs TD group 
but not during Go trials. 
Methylphenidate treatment 
improved the steepness of the 1/f 
slope. 

 Ostlund et al. 2021 Adolescents 
(n=87) 

N/A 8 min baseline 
period (eyes 
closed/open) 

1/f slope of 
PSD2 

Not known N/A Smaller aperiodic exponents  

*Sample size given for the ADHD group 
**The result is reported for the ADHD group relative to the TD control group 
1 Inter-trial Phase Coherence 
2 1/f slope of Power Spectral Density 
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The wide range of tasks and data analysis techniques used in the above studies do not allow to 

draw conclusions regarding neural processes that differ or may be common in ASC and ADHD. 

A key limitation of the above studies is that they use a wide variety of neuroscientific methods 

(i.e EEG, MEG, fMRI) and analytical approaches to measure neural variability (i.e. ITPC, PLF, 

SDs, single-sweep wave identification etc), which may lead to conflicting results within the ASC 

and ADHD literature. In addition, samples with different characteristics (i.e age, developmental 

stage, IQ, diagnostic status, comorbid conditions) are recruited in each study, limiting the 

possibility of comparing findings in the ASC literature with that of the ADHD. Even when the 

same neurocognitive domain is investigated, task characteristics such as type of stimulus, 

duration of stimulus presentation, baseline measurements and input modality vary remarkably 

from one experiment to the other (Lau-Zhu et al., 2019). Linked to this, existing work focuses 

primarily on childhood ADHD and although ADHD is known to persist into adulthood, studies 

investigating neural underpinnings in older adults with ADHD are largely lacking. Hartman et 

al. (2016) explicitly highlight the need to “go beyond childhood” in a recent review. Importantly, 

there are currently no studies directly comparing neural variability in clinically diagnosed ASC 

and ADHD samples of any age.  Evidence regarding neural variability in adult samples in 

specific is missing. Direct comparisons across disorders using the same methodology and design 

are necessary to determine distinct and overlapping neural patterns in ADHD and ASC.  

 

2.1.5 Aims of the current study  
 

In the present study, we aim to bridge this gap in the literature and investigate neural noise in a 

comparative study design of ASC and ADHD. Direct comparisons across the two clinical groups 

and a typically developing group using the same task and data processing pipeline will allow us 

to explore whether ASC and ADHD, two conditions that share genetic risk factors, demonstrate 

similar or distinct levels of neural noise. This comparison will ultimately allow us to describe 

with greater precision patterns of neural synchrony in the two conditions. For the purposes of the 

study, we utilized already existing data from a diagnosed group of adults with ASC published in 

Milne et al. (2019) (see Section 2.2.1 for further details), recruited an additional group of non-

medicated adults with ADHD and a group of adults without a clinical diagnosis of mental health 

conditions. Using electroencephalography (EEG), we examine neural noise in the form of neural 

variability from two different perspectives; as indexed by ITPC and 1/f slope of PSD. Although 

numerous studies have measured neural variability by computing ITPC in ASC, there is no 

previous research on 1/f properties of PSD. To our knowledge this is the first study to examine 

1/f slope of PSD in this clinical group. In order to clarify whether increased neural variability 
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manifests in stimulus-evoked activity, ongoing or both, we first compute ITPC and changes in 

1/f slope of PSD in a visual task-based condition in the three groups and then measure 1/f slope 

of PSD in a resting-state ‘eyes-closed’ condition. Taking into account the relevant literature (see 

Table 2.1 and Table 2.2), we hypothesise that the ASC and the ADHD group will exhibit lower 

ITPC in response to visual stimulation compared to the TD group. A recent study has shown 

flatter 1/f slope of PSD in NoGo trials in ADHD and a reduction of the 1/f noise exponent through 

methylphenidate treatment (Pertermann, et al., 2019). In addition, Ostlund et al. (2021) found 

flatter 1/f slopes as computed from eyes open and eyes closed conditions in a large sample of 

adolescents with ADHD. In this line of argument, we also expect to observe flatter slopes in the 

non-medicated ADHD group compared to the TD group. In addition, we hypothesise that both 

the ASC and ADHD group will show flatter 1/f slope of PSD compared to the TD group; if 

confirmed, this would indicate oscillatory undercoupling, as suggested by Voytek & Knight 

(2015). However, given that no studies have tested the 1/f noise hypothesis in ASC, it is difficult 

to predict with certainty the direction of the comparison between the ASC and the TD group or 

the comparison between the two clinical groups. As an exploratory analysis, we finally 

investigate the relationship between ITPC and 1/f slope of PSD to determine whether participants 

that exhibit low ITPC also exhibit flatter 1/f slope of PSD.  

  



 

 78 

2.2 Materials and Methods 
 

2.2.1 Participants 
 
34 typically developing (TD) participants, 36 participants with ADHD and 28 participants with 

ASC were recruited for the study. The TD and ADHD data were primary data collected for the 

sole purpose of the study, however 71% of the ASC datasets (20 out of 28) were secondary data 

previously published (Milne et al., 2019). Participants were age, gender and cognitive ability-

matched (Table 2.2). Groups did not differ in age, gender and IQ as determined by one- way 

ANOVA (age: F(2, 91)= 0.10, p= 0.89, gender: F(2, 91)= 1.17, p=0.31, IQ: F(2, 91)= 0.06, p= 

0.93). Participants with ADHD were primarily recruited via online advertisement on social 

media, TD participants were recruited via the University of Sheffield and the local community 

and the ASC sample via a volunteer emailing list maintained by the Sheffield Autism Research 

Lab and the Sheffield Adult Autism and Neurodevelopmental Service (SAANS). Participants in 

the ADHD group held a diagnosis of either ADHD (n=29) or ADD (n=5). Similarly, participants 

in the ASC group had a diagnosis of ASC or Asperger Syndrome provided by a private or NHS 

mental health service. Participants with ADHD did not have a comorbid ASC diagnosis and 

participants with ASC did not hold a co-occurring ADHD diagnosis. A comprehensive overview 

of the formally diagnosed co-occurring conditions in the three groups is provided in Table 2.3. 

Twenty-four participants in the ADHD group were on regular ADHD medication, however they 

all remained non-medicated for 16 hours prior to the experiment. Eight participants in the ASC 

group were medicated (Table 2.4). All participants had normal or corrected to normal visual 

acuity.  
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Table 2.2 

Participant demographics  
 TD (n=34) ADHD (n=32) ASC (n=28) 

Gender    

Female 11 9 13 

Male 23 23 15 

Age    

Mean 41.2 39.8 41.0 

SD 11.9 10.7 15.0 

Range 18-69 18-64 18-67 

MRS scorea    

Mean 59.1 59.6 59.7 

SD 5.7 5.6 8.0 

Range 43-70 47-72 29-72 

SRS-2 scoreb    

Mean 45.4 62.6 68.8 

SD 4.8 10.6 11.1 

Range 38-55 49-83 48-89 

ASRS scorec    
Mean 8.5 19.4 13.4 

SD 4.1 2.7 3.4 

Range 2-19 13-24 8-20 

 

aMRS score, Matrix Reasoning Subscale score, Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) 
bSRS- 2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 
cASRS, Adult ADHD Self- Report Scale (ASRS, Kessler et al., 2005) 
 
 

Table 2.3 

Number of participants in each group with formal diagnosis of a co-morbid condition  

 Major 
depressive 
disorder 

Generalised 
Anxiety 
Disorder 

Obsessive 
Compulsive 

Disorder 

 
Dyspraxia 

 
Dyslexia 

TD (n=34) 0 0 0 0 0 

ADHD (n=32) 8 9 1 1 0 

ASC (n=28) 13 11 0 3 3 
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Table 2.4 

Drug intake of participants recorded up to 16 hours prior to the EEG experiment 

 Citalopram Venlafaxine Lansoprazole Propranolol 

TD (n=34) 0 0 0 0 

ADHD (n=32) 0 0 0 0 

ASC (n=28) 3 3 1 1 

 

The following exclusion criteria were applied to all three groups: participants (a) with a known 

intellectual disability, that (b) did not speak English, (c) had epilepsy and/or (d) a mental health 

condition such as personality disorder, bipolar disorder, psychotic disorder did not take part in 

the study. Psychometric and neurophysiological data were initially collected from 98 

participants, however, four participants from the ADHD group were excluded from the study, as 

there was a substantially large amount of noise in their EEG recordings. Data channel rejection 

for those participants crossed the cut-off of 25% (16 channels out of 64) and/or the amount of 

remaining artefact- free epochs was <75%, which rendered the quality of the EEG data 

inadequate for further analysis.  Subsequently, data from a total of 94 participants was further 

analysed. Participant consent was provided in written form prior to the testing session and ethical 

guidelines were followed throughout according to the standards set by the Ethics Committee at 

the University of Sheffield. Table 2.2 provides descriptive information about the three groups, 

TD, ADHD and ASC. 

 

2.2.2 Psychometric assessments 
 
Participants completed three standardized questionnaires aiming to assess their perceptual 

reasoning and the presence or absence of ADHD and ASC symptoms. The Matrix Reasoning 

subtest of the Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) 0.99) was 

used to measure non-verbal abstract reasoning. Subjects viewed a number of geometric patterns 

and were asked to identify the missing piece from a selection of four or six answers. Raw scores 

were converted into t-scores based on the participant’s chronological age. Adult ADHD 

symptoms were measured using the Adult ADHD Self-Report Scale (ASRS, Kessler et al., 

2005). The ASRS is a self-report questionnaire used to address ADHD symptoms in adults. 

Respondents were asked to rate the extent to which they meet six criteria, which are indicative 

of ADHD. Each question was answered on a 6-item Likert scale, ranging from “never” to “Very 

often”. The Social Responsiveness Scale- Revised Adult Self Report version (SRS-2, 

Constantino & Gruber, 2011), a self-report questionnaire containing 65 4-point Likert scale 

items, was used to identify the presence and severity of social impairments associated with ASC. 
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The SRS “self-report” provides a t-score, which is indicative of the severity of the social 

communication impairments. The “other-report” version of the SRS was also completed. This 

version of the SRS is identical to the “self-report” but is designed to be completed by a parent, 

spouse, friend or other relative of the participant. The multiple perspectives approach with 

regards to behaviour facilitates validation of data through cross verification and therefore was 

preferred in the current study design. A two-way mixed intraclass correlation coefficient analysis 

indicated excellent agreement between the two raters (ICC = 0.89) (Cicchetti, 1994). 

 

2.2.3 Procedure 
 
Upon their arrival at the University of Sheffield, participants underwent a short background 

history interview. Information about demographics, medication intake and known mental health 

conditions was acquired for descriptive purposes. Participants then completed the ASRS, SRS-

2 and the matrix-reasoning subtest of the WASI followed by the EEG recording. 

 

2.2.3.1 Apparatus 
 
A 64-channel BioSemi ActiveTwo EEG system and BioSemi ActiView Software (Biosemi 

Instrumentation BV, Amsterdam, The Netherlands) were used for EEG data acquisition. Visual 

stimuli were presented on a Viglen LCD display screen with a spatial resolution of 1280 × 1024 

pixels and a temporal resolution of 60 Hz. Data acquisition took place in a shielded room to 

eliminate electrical interference in the measurement cables and the ground electrode DRL 

(Metting Van Rijn et al., 1990).  

 

2.2.3.2 EEG experiment 
 
The EEG experiment consisted of a task- based condition followed by a resting state condition, 

explained in detail at Section 2.2.3.4 and Section 2.2.3.5. 

 

2.2.3.3 Data acquisition  
 
EEG data was recorded continuously from 64 Ag/AgCl mounted in an elastic 64- channel cap. 

The data quality was ensured by keeping the impedance values of the electrodes below 25 kΩ. 

The signal was amplified (midband gain of 103), bandpass filtered at 0.01- 80Hz, then digitalised 

at a sampling rate of 2048Hz. ActiveTwo Biosemi system does not store signal in a referenced 

format, therefore the raw data was reference-free when acquired.  
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2.2.3.4 Task- based EEG 
 
Stimuli 

The first part of the EEG experiment involved presentation of a checkerboard stimulus on a 

display screen and lasted approximately ~13 minutes (see Figure 2.1). The checkerboard 

appeared on the screen for an average of 2000ms, jittered between 1500 and 2500ms, followed 

by an image of a red cross. The duration of the inter- stimulus interval (ISI) was 2000ms, jittered 

between 1500ms and 2500ms. The checkerboard stimulus was presented 200 times in 2 blocks 

of 100. Participants were instructed to press the spacebar when the checkerboard disappeared 

from the screen and the red cross appeared to ensure that they were continuously engaged and 

did not orient attention towards a different point. 

 

Figure 2.1 

 
Figure 2.1: Schematic representation of the EEG experiment 
 
 
2.2.3.5 Resting- state EEG 
 
Following 200 trials, participants were instructed to close their eyes while EEG data was 

acquired for 120 secs. Figure 2.2 provides a schematic representation of the resting- state 

condition. 
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Figure 2.2 

 
Figure 2.2: Schematic representation of the resting- state condition 

 
2.2.4 General data preprocessing  
 
All EEG datasets were analysed using EEGLAB (Delorme & Makeig, 2004) running on Matlab 

2014a (The Mathswork, Inc.). A number of preprocessing pipeline steps were followed to ensure 

that high quality signal was extracted. Signal was downsampled from 2048Hz to 512Hz. For 

ITPC analysis, Cz was selected as the reference electrode, following previous work by Milne et 

al. (2019). In contrast, the preprocessing steps followed for 1/f slope analysis remained similar 

to the ones outlined by Voytek et al. (2015) and, for that reason, the average reference was used. 

In both analyses, a high- pass filter of 1Hz was applied to remove large drifts or signal deviations.  

Channels exhibiting noise due to poor scalp connection were removed from the analysis.  

Continuous data was visually inspected and noisy time segments containing muscle or eye 

movement artefacts affecting multiple channels were manually rejected. This resulted in fewer 

epochs being retained and used for further analysis than the initial number of trials. Independent 

Component Analysis (ICA) was then applied on the clean data, using the runica function of 

EEGLAB (see Section 2.2.6.2). Figure 2.3 provides a summary of the preprocessing steps 

followed, in preparation for extraction of the variable of interest i.e. ITPC and 1/f slopes. Sections  

2.2.6.1 and  2.2.8.1 provide a description of the analysis-specific preprocessing steps to extract 

ITPC and 1/f slopes  of PSD respectively. 
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Figure 2.3 

 

 

Figure 2.3: Summary of A) the general and B) analysis specific preprocessing steps followed. 
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2.2.5 Data integrity 
 

Following the preprocessing analysis, a series of extra analysis steps were carried out in order to 

ensure that EEG data quality is adequate for further analysis, as well as similar across different 

datasets and amongst different groups. We first established that the number of epochs were the 

same in the final ITPC vs 1/f noise task-based datasets. Secondly, we ensured that the number of 

epochs was similar across groups. The mean number of epochs extracted from the task-based 

data (ADHD: 187 [170 200], ASC: 182 [100 198], TD: 188 [178 197]) did not differ significantly 

between groups as determined by a one- way ANOVA (F(2,91) =2.26 , p = 0.11). Thirdly, only 

signal from Independent Components or channels with signs of a visual evoked potential (VEP)  

(e.g. P1 or N1 deflection) was kept for further analysis. The ERP of the selected IC and the 

selected channel was examined, confirming that a VEP was present in the neural signal of all 

participants in the three groups (Figure 2.4 and Figure 2.5 for the ASC group and Annex 1 for 

the TD and ADHD groups). In addition to the above, the ITPC values of the ASC group, which 

were falling below the minimum value of the ITPC distribution for the TD and ADHD group 

(see Figure 2.10), were examined in relation to the ERP trace of the respective IC or channel. 

Visual inspection of their topographic map and ERP image revealed that the signal quality was 

adequate.  
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Figure 2.4 

 

Figure 2.4: ERPs of the selected Independent Components (ICs) included in the group analysis, 

presented for the ASC group(n=28). 
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Figure 2.5 

 

Figure 2.5: ERPs of the selected channels included in the group analysis, presented for the ASC 

group(n=28). 
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2.2.6 EEG data preparation for Inter- Trial Phase Coherence analysis 
 

2.2.6.1 Data preprocessing 
 

Additional preprocessing steps were followed to prepare the task-based data for ITPC analysis 

(Figure 2.3). Data was segmented into epochs, from -1 to 1.5 secs around stimulus onset, and 

corrected to baseline, using the average signal between 1 sec before stimulus onset to stimulus 

onset. 

 

2.2.6.2 Data selection 
 

In the present chapter, ITPC was extracted from two distinct sources of signal, both from 

Independent Components (ICs) and EEG scalp electrodes. 

 

Independent Component selection 

Independent Component Analysis (ICA) is a method of blindly separating sources of signal, 

which are linearly mixed when recorded from several sensors of scalp EEG. The ICA algorithm 

separates the mixed signal into spatially independent components of source signal, which are 

less contaminated with noise generated by other cortical and non- cortical sources. 

 

ICA decomposition was performed using the runica function of EEGLAB, which utilises the 

informax ICA algorithm of Bell & Sejnowski (1995) with the natural gradient characteristics 

suggested by Amari et al. (1996). ICs are computed using the following mathematical process: 

neural data X is defined as a matrix of n channels multiplied by t time points, n x t. ICA 

decomposition produces a matrix U of ICs which is equal to a component ‘unmixing’ matrix W 

multiplied by the neural data matrix X:  

U= W X  

where U and X are equal dimension matrices (n x t) and W is defined as n x n (Stone, 2002; 

Onton & Makeig, 2009). Therefore, the number of ICs recovered for each participant is always 

equal to the number of channel inputs. ICA, applied on individual participant scalp data, returned 

as many components as the number of channels kept for further analysis after preprocessing. 

Time-frequency analysis was then performed on all ICs (see Section 2.2.6.2). For each 

participant, we calculated ITPC for every IC and selected the single IC with maximum ITPC for 

further analysis. Visual inspection of the IC scalp maps of the IC selected from each participant 

revealed that the selected ICs were projected at the occipital lobe, suggesting that they were 
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reflection activation of the visual cortex. Scalp maps of the IC with max ITPC chosen for each 

participant in the ASC group is presented in Figure 2.6 (also see Annex 2 for the TD and ADHD 

max ITPC IC scalp maps). The ERP of the selected components was also examined further 

confirming that the signal source was at the visual cortex. 

 
 
Channel selection 

Although signal from individual electrodes is known to be more contaminated with noise 

artefacts as compared to signal from ICs, we conducted supplementary channel analysis and 

extracted ITPC from an electrode cluster covering the occipital region of the brain. Following a 

similar approach to the IC selection, for each participant we calculated ITPC for every electrode 

in the cluster P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7, PO3, POz, PO4, PO8, O1, O2, 

Oz, O2, Iz and selected the single electrode with maximum ITPC for further analysis.  
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Figure 2.6 

 
 

Figure 2.6: Scalp maps of the Independent Component with maximum ITPC selected for each participant (n=28) in the ASC group.  
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2.2.7 Data analysis 
 

Time-frequency analysis 

Time-frequency decomposition of EEG single- trial data was performed using the newtimef 

function of EEGLAB (Delorme & Makeig, 2004). The time series data was convolved with a 

complex Morlet wavelet, defined as a sinusoid with a Gaussian shape. The wavelet ranged from 

3 to 12.5 cycles at 556.56ms intervals. The length of the average vector of the phase angles was 

computed for 200 evenly spaced time-frequency points, extracted from the epochs and for 47 

frequencies, ranging from 4 to 50Hz. The result of the averaging was a complex number, 

containing information about the length and the angle of the average vector. ITPC, theoretically 

defined as a measure of how uniform the distribution of phase angles is in the polar space (Cohen, 

2014), can be mathematically conceptualized as the absolute value of the averaging of complex 

vectors: 

	
where n is the number of trials,  "!"!" is a complex number representing the position of a phase 

angle k on trial t at time frequency point p. If the distribution of phase angles is perfectly uniform, 

therefore less coherent, the average vector will have a length of 0, whereas if phase angles are 

closely clustered, the average vector will be closer to 1. A single ITPC value, representing the 

maximum ITPC generated from any independent component or any channel in the electrode 

cluster of interest at any frequency and at any time point, was extracted for each participant in 

the TD, ADHD and ASC group and used for group analysis. 

 

2.2.8 EEG data preparation for 1/f noise analysis 
 
2.2.8.1 Data preprocessing 
 

Task-based and resting state data were further preprocessed in preparation for 1/f noise analysis 

(see Figure 2.3 for a summary of steps). The preprocessing approach we followed here differs 

from the approach taken in the preparation of the task- based data for ITPC analysis. Main 

objective of the ITPC analysis pipeline was to separate the mixed signal and select one source of 

signal to analyse, whereas primary aim of the 1/f preprocessing analysis is to ensure that the 

mixed EEG signal is clean and free of noise artefacts so that power spectral estimations are 

accurate and attributed to brain functions rather than external sources of electrical interference.  
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Eye- blink components were visually identified from the ICA maps and removed as suggested 

in the 1/f analysis pipeline followed by Peterson et al. (2017). In order to replace the missing 

channels, all datasets were interpolated using the channel interpolation function from the 

EEGLAB gui. Data were then referenced to average reference and segmented into epochs. Task- 

based data were epoched from -1 to 1.5 secs around stimulus onset and pre- stimulus baseline 

removal was performed at 1 sec. Resting state data were segmented into 2 secs epochs as 

suggested in Milne et al. (2019). 

 

2.2.8.2 Data selection 
 

Power Spectral Density estimation 

 

Power Spectral Density (PSD) was computed using the Welch’s method (Welch, 1967). The 

Welch method is preferred over other methods i.e the Bartlett method as it improves the accuracy 

of the classic periodogram, which is biased towards assuming stationarity in the statistical 

properties of the signal- the signal in each time window is very rarely a sum of perfectly formed 

sines and therefore varies immensely. The Welch method minimises this variance by averaging 

out the spectral content of short windows of signal. 

 

The original time- series data were segmented into blocks with 50% overlap between them. A 

modified periodogram was then computed for each block using a 2-second Hamming data 

window. The periodograms for each block were averaged out to produce the final PSD 

periodogram: 

(1)	
where N represents the total number of Hamming windows and &'# refers to the consecutive 

segmented windows of the original signal &′,transformed using the Discrete Fourier Transform 

(DFT). 

A linear regression line was fitted to the data to model an inversely proportional relationship 

between PSD and frequency, of the form , where Pf is the power spectra per frequency 

interval f, k is a random constant and α is the scaling exponent: 
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Power spectra was plotted in log coordinates (Eq. 1). As shown above, the log- transform of the 

power function is a straight line with a negative slope α and an intercept c (Eq. 2, Figure 2.7, 

also see Annex 3 for the slope of all electrodes as computed from Participant 6). It is important 

to note that 1/f slopes of PSD were estimated from frequencies between 2- 24Hz (Voytek et al., 

2015). High frequency bands were excluded from the analysis, as they are more likely to reflect 

intrinsic channel noise, rather than neural processes. Alpha band power (7-14Hz) was also 

excluded as it represents changes in periodic EEG patterns, biasing estimations of the non-

periodic properties of the signal i.e. 1/f noise (Voytek et al., 2015).  

 

Figure 2.7 

 
Figure 2.7: Log- transformed Power Spectral Density (log10 Power) of signal coming from a 

single electrode F8, is presented here as a function of frequencies (f) ranging from A) 0-250Hz, 

B) 2-24 Hz including alpha band and C) 2-24 Hz excluding alpha band. A regression line with a 

negative slope a= -0.056175 is fitted to the data in graphs B and C. 

A

B

C

Example electrode:  F8

Participant 6
ASC Group
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2.2.9 Data analysis 
 

A single value representing the 1/f slope of PSD at each electrode was first calculated for all 

electrodes and for all participants in the three groups, TD, ADHD, ASC. We followed two 

methods of preparing the data for group comparisons to be able to check and cross-validate the 

consistency of the findings. The first method involved computing the mean slope of all 64 

electrodes for every participant and then calculating and comparing the grand mean slope for 

each group, TD, ADHD and ASC (Figure 2.8). However, such analysis is likely to mask 

location-specific group differences that may exist. Similarly, cluster specific analysis would 

require some arbitrary selection of electrode clusters to compare, which is also likely to mask 

other underlying location-specific differences. To deal with this problem, we followed a second 

method of analysing the data. The second method involved computing the mean slope for each 

electrode in one group, by adding the channel specific slopes, and comparing it to the mean slope 

of the same electrode in the other group, a process resulting in 192 electrode-specific slope 

comparisons in three pairs of groups, ADHD vs ASC, ADHD vs TD and ASC vs TD group 

(Figure 2.9). 

 

2.2.10 Statistical analysis  
 

We utilised frequentist methods of hypothesis-testing throughout the present chapter. Frequentist 

statistics were conducted using IBM SPSS Statistics for Windows, version 25 (IBM Corp., 

Armonk, N.Y., USA). In the group comparisons of the key variables of interest ITPC and 1/f 

slopes- where appropriate and possible- Bayesian statistical analysis was also performed 

alongside frequentist statistical analysis (see Sections 2.3.1 and 2.3.2) using the free software 

JASP (JASP Team, 2017). This allowed us to evaluate with greater certainty which of the two 

hypotheses i.e the null hypothesis H0 or the alternative hypothesis H1 is more likely given the 

experimental data (H0: there is no overall group difference, H1: there is overall group difference). 

Bayes factors  (BF) assessing the strength of evidence were presented, with 1-3 indicating weak 

evidence, 3-10 indicating moderate evidence and Bayes factors >10 indicating strong evidence 

in favour of H1 (van Doorn et al., 2020). In the Bayesian ANCOVA analysis specifically, the 

inclusion probability of each component (i.e., model term) was computed across a number of 

different models; a) the null model, b) a model containing a single predictor variable and c) a 

model containing both predictor variables. The Bayes factor BFM indicating the change from 

prior to posterior model odds is reported as well as the effect size for each predictor. 
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Figure 2.8 

 
 

Figure 2.8: Method 1 involved a) computing the mean slope of all 64 electrodes for every participant, b) calculating the grand mean slope for each group 

and c) comparing the grand mean slopes. Here we present the comparison between the ADHD and the TD group. 
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Figure 2.9 

 
Figure 2.9: Method 2 involved a) computing the mean slope for each electrode in one group and b) comparing it to the mean slope of the same electrode in 

the other group. Here we present the comparison between the ADHD and the TD group.
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2.3 Results 
 
 
2.3.1 Group comparisons: Inter- Trial Phase Coherence 
 
Independent Component Analysis 

 
Descriptive statistics for the three groups are presented in Table 2.5.  

 

Table 2.5 

Mean values (M) and Standard Deviations (SD) of the max ITPC extracted from the Independent 

Components presented for the three groups ADHD, ASC and TD 

 TD (n=34)  ADHD (n=32)  ASC (n=28)  

 M SD  M SD  M SD  

Max ITPCa  0.92 0.03  0.92    0.04  0.88  0.08  

 
aMax ITPC, Maximum Inter-Trial Phase Coherence extracted from the Independent Components 

 

Parametric test assumptions such as the requirement of observations to be independent and the 

data to be normally distributed were met, however Levene’s test for equality of variances showed 

that the three groups were characterized by unequal variances (see Figure 10, F(2,91)=7.09, 

p=0.00). Although extreme outliers were not present, ITPC values for two participants within 

the ASC group were falling below the interquartile range of the third quartile (Figure 10). 

ANCOVA-specific assumptions of the independence of the covariate (i.e lack of interaction 

between the “age” variable and the “group” variable) as well as the homogeneity of regression 

slopes were met.  

 

A one-way ANCOVA was performed to assess whether the means of maximum ITPC are equal 

across groups, while also adjusting for age differences. The result showed that there were 

statistically significant differences in ITPC between the three groups after controlling for age 

effects (F(2,90)=2.99, p=0.03). However, further analysis showed that the two outliers in the 

ASC group had a significant impact on the group comparisons outcome. When the outliers were 

removed from the ANCOVA analysis, the significant result disappear (F(2,89)=1.42, p=0.14), 

therefore we do not consider this to be strong evidence for a group difference. Average maximum 
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ITPC maps computed separately for the TD, ADHD and ASC group are presented in Figure 2.11 

(also see Annex 4 for maximum ITCP heat maps for all participants in the three groups).  

 

Alongside frequentist statistics, we performed Bayesian analysis of covariance on ITPC values, 

including “group” as a fixed factor and “age” as a covariate. The Bayesian ANCOVA compared 

a few models with varying predictors of ITPC: a) a  null model, b) a model containing only “age” 

as a predictor, c) a model containing only “group” as a predictor and d) a model containing both 

“group” and “age” as predictors. Only the null model had their model odds increased after 

observing the data (BFM = 3.6). Analysis of effects demonstrated that the data were only 0.4 

times more likely under models containing “group” as a predictor and 0.2 times as likely when 

including “age”. This is evidence in favour of the null hypothesis H0, in line with frequentist 

statistics, which demonstrated that the differences between groups were not significant when the 

outliers were removed from the analysis. 

 

Figure 2.10 

 

 
Figure 2.10: Boxplots of maximum ITPC for the three groups, TD, ADHD and ASC (range of 

values= 0-1), showing differences in central tendency between groups. 
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Figure 2.11 
 

 
Figure 2.11: Average maximum ITPC maps computed for the TD, ADHD and ASC group. 

 

Maximum ITPC extracted from the Independent Components was observed primarily in the theta 

band (4-7Hz) for all groups (Figure 2.12). Maximum ITPC for the ADHD group occurred at 4Hz 

for the majority of participants (43%) and for the ASC group it covered a wider range of 

frequencies compared to the TD group. However, the differences between groups were not 

significant as determined by a one-way ANOVA (F(2,91)=1.01, p=0.36). Bayes factors 

indicated that the data were about 4.66 times more likely under the null hypothesis H0 than under 

the alternative hypothesis H1. This is strong evidence in favour of the null hypothesis and is in 

line with the results of frequential analysis.  
 

Figure 2.12 

 
Figure 2.12: Frequency (Hz) where maximum ITPC was observed for each group, TD, ADHD, 

ASC 
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Channel Analysis 

 

Descriptive statistics for the three groups are presented in Table 2.6.  

 

Table 2.6 

Mean values (M) and Standard Deviations (SD) of the max ITPC extracted from the occipital 

electrode cluster, presented for the three groups TD, ADHD and ASC 

 TD (n=34)  ADHD (n=32)  ASC (n=28)  

 M SD  M SD  M SD  

Max ITPCa  0.83 0.09  0.86  0.06    0.82 0.09   

aMax ITPC, Maximum Inter-Trial Phase Coherence extracted from the Independent Components 

 

Inspection of the ITPC distributions showed that the data were approximately normally 

distributed for the ADHD and ASC groups but not for the TD group, further confirmed by 

Shapiro-Wilk tests for normality (TD: W(34)=0.92, p=0.01, ADHD: W(32)=0.94, p=0.09, ASC: 

W(28)=0.93, p=0.06). Efforts to square root-transform the ITPC distributions did not change the 

normality test results (TD: W(34)=0.91, p=0.00, ADHD: W(32)=0.94, p=0.09, ASC: 

W(28)=0.93, p=0.06). Additionally, Levene’s test for equality of variances showed that the three 

groups were characterised by unequal variances (F(2,91)=4.45, p=0.01). Data distributions are 

presented in the form of boxplots in Figure 2.13. ANCOVA-specific assumptions were met; 

regression slopes in the three groups were homogeneous and the variable of “age” was 

independent from the categorical predictor variable “group”. 

 

A one-way ANCOVA was performed to assess whether maximum ITPC extracted from the 

selected electrodes differs across groups, while also adjusting for age. The model did not indicate 

a statistically significant effect of “group” on levels of ITPC, therefore it is concluded that there 

are no differences in ITPC between the three groups (F(2,90)=1.34, p=0.26). Additionally, this 

analysis showed that age effect was negligible (F(2,90)=1.36, p=0.24). The above result was in 

agreement with Bayesian analysis of covariance on ITPC values with “group” added as a fixed 

factor and “age” as a covariate. This showed that only the null model had its model odds 

increased after observing the data (BFM =4.01).  
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Figure 2.13 

 

 
Figure 2.13: Boxplots of maximum ITPC for the three groups, TD, ADHD and ASC (range of 

values= 0-1), showing differences in central tendency between groups. 

 

For all three groups, maximum ITPC was observed at the electrode Oz out of the electrode cluster  

P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7, PO3, POz, PO4, PO8, O1, O2, Oz, O2, Iz (TD: 

56%, ADHD: 38%, ASC: 39%) and in the theta (4-7Hz) frequency band (TD: 91%, ADHD: 

79%, ASC: 75%) (Figure 2.14, Figure 2.15). For the TD group, maximum ITPC occurred at 

4Hz for the majority of participants (47%), whereas for the ADHD group, it occurred at 5 Hz 

(35%). For the ASC group, it covered a wider range of frequencies compared to the TD and 

ADHD groups, ranging from low theta to high alpha. A one-way ANOVA showed that the 

frequency where maximum ITPC is captured is not significantly different in the ASC group as 

compared to the TD and ADHD group (F(2,91)=1.65, p=0.19). In line with those results, Bayes 

factors indicated that the data were about 2.88 times more likely under the null hypothesis H0 

than under the alternative hypothesis H1, providing moderate evidence in favour of the null 

hypothesis (i.e there are no differences between groups). 
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Figure 2.14 

 

 
Figure 2.14: Electrode where maximum ITPC was captured for each group, TD, ADHD, ASC. 

 

Figure 2.15 

 
Figure 2.15: Frequency (Hz) where maximum ITPC was observed for each group, TD, ADHD, 

ASC. 
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2.3.2 Group comparisons: 1/f noise of Power Spectral Density 
 

2.3.2.1 Method 1 
 

Descriptive statistics of the 1/f slope of PSD were computed for the three groups TD, ADHD 

and ASC. A summary is presented in Table 2.7.  

 

Table 2.7 

Mean values (M) and Standard Deviations (SD) of the 1/f slope of PSD, computed for the three 

groups TD, ADHD and ASC 

 TD (n=34)  ADHD (n=32)  ASC (n=28)  

 M SD  M SD  M SD  

Task- based EEG: Slope -0.037 0.016  -0.036  0.016  -0.040 0.013  

Resting- state EEG: Slope  -0.038 0.020  -0.037   0.018  -0.041  0.016  

 

Outliers- observations within the inner and outer lower fence of the boxplot-  were detected in 

both the task-based and resting-state data (see Figure 2.16). For that reason, parametric test 

assumptions and results were computed with and without the outliers. The outlier data points did 

not affect the assumptions and parametric test results; therefore, the analysis presented below 

includes these. Data was normally distributed as shown by the Shapiro-Wilk test in both the task-

based (TD: W(34)=0.97, p=0.58, ADHD: W(32)=0.97,  p=0.56, ASC: W(28)=0.98,  p=0.90) 

and the resting-state condition (TD: W(34)=0.95, p=0.12, ADHD: W(32)=0.97,  p=0.49, ASC: 

W(28)=0.98,  p=0.91). The three groups had equal variances as determined by the Levene’s test 

(Task-based Condition: F(2,90)=0.18, p=0.83, Resting-state Condition: F(2,90)=0.38, p=0.68).  

 

Given that the data satisfied the assumptions of independence of observations, normality and 

homogenous variance, parametric methods of hypothesis-testing were used. In the task-based 

condition, a one-way ANCOVA with age added as a covariate in the linear model, revealed no 

significant differences in 1/f slope between the TD, ADHD and ASC group (F(2,90)=0.64, 

p=0.52) (Figure 2.16). Similar analysis in the resting- state condition, revealed that there is no 

difference in the steepness of 1/f slope between groups (F(2,90)= 0.40, p=0.67) (Figure 2.16). 

However, as expected, age was found to be significantly interacting with 1/f slope in both the 

task-based (F(1,90)=15.41, p=0.00) and the resting-state condition (F(1,90)=11.15, p=0.00).  
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In line with the above findings, Bayesian analysis indicated that only models containing “age” 

as a predictor had their model odds increased in presence of the experimental data (Task-based 

condition: BFM = 17.84, Resting state condition: BFM =16.92). Analysis of effects demonstrated 

that in the task-based condition the data were 134.7 times more likely under models containing 

“age” as a predictor but only 0.16 times as likely when including “group”. Similarly, in the 

resting state condition the data were 25.36 times more likely under models containing “age” as 

a predictor but only 0.13 times as likely when including “group”. This is in agreement with 

frequentist statistics, which demonstrated that the effect of “age” was large and that the main 

effect of “group” on “1/f slope” was not significant. Scalp maps representing the 1/f slope 

measured from all electrode locations for the three groups in the two conditions, task-based and 

resting state, are presented in Figure 2.17. 

 

Figure 2.16 

 
 

Figure 2.16: Boxplots of 1/f slopes for the three groups, TD, ADHD and ASC, showing central 

tendency group differences in the task-based (A) and resting-state condition (B).
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Figure 2.17 

1/f slopes 

 
Figure 2.17: Scalp maps representing the mean slope computed from different electrode 

locations for the TD (A), ASC (B) and ADHD (C) group in the task- based condition and for the 

TD (D), ASC (E) and ADHD (F) group in the resting-state condition. 

 

2.3.2.2 Method 2 
 
64 independent samples t- tests were performed comparing individual electrode slopes between 

the ADHD and TD group, ASC and TD group, ADHD and ASC group in both the task- based 

and resting- state conditions (192 tests in total for all groups and all conditions). This process 

generated 192 raw p- values, which did not cross the 0.05 significance cut-off (Figure 2.18). 

Multiple comparisons are known to increase the probability of Type I error and the observation 

of false positives. To ensure that the above result is robust, we controlled for the False Discovery 

Rate (FDR) by implementing the Benjamini- Hochberg procedure (1995). We compared each 

individual p value to its Benjamini-Hochberg critical value, (i/m)Q, where i is the rank, m is the 

total number of tests, and Q is the FDR value set at 0.05. Following the Benjamini- Hochberg 

procedure, none of the raw p- values approached significance. 
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Figure 2.18 

 

Uncorrected p- values 

 
 

Figure 2.18: Scalp maps representing uncorrected p-values produced from the comparison of 

individual electrode slopes in the ADHD vs TD group (A), ASD vs TD group (B), ASD vs 

ADHD group (C) in the task- based condition and the ADHD vs TD group (D), ASD vs TD 

group (E), ASD vs ADHD group (F) in the resting- state condition. 
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2.3.3 Association between age and ITPC 
 
Spearman’s rank-order correlation analysis was performed to determine the relationship between 

age and ITPC (Figure 19). The correlation analysis was performed a) for all participants and b) 

the three groups TD, ASC and ADHD separately. Age and ITPC were not found to be associated 

in the full sample (rs=0.08, p=0.40). Similarly, the two variables were not correlated in the TD 

(rs=0.23, p=0.18), ASC (rs=0.02, p=0.88) and ADHD group (rs=0.08, p=0.66). 

 

Figure 2.19 

 
Figure 2.19: Scatterplot of age and maximum ITPC computed from the task-based data and 

plotted for the TD, ADHD and ASC group. 
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2.3.4 Association between age and 1/f slope of PSD 
 

Spearman’s rank-order correlation analysis was performed to determine the relationship between 

age and the average 1/f slope of PSD computed from the task-based and the resting state data 

using Method 1 (Figure 2.20). In the task-based condition, age and 1/f slope were correlated in 

the full sample (rs=0.35, p=0.00). Further analysis showed that the two variables were highly 

correlated in the TD (rs=-0.51, p=0.00) and the ADHD group (rs=0.54, p=0.00) but not the ASC 

group (rs=-0.00, p=0.99). In the resting state condition, age and 1/f slope of PSD were correlated 

in the full sample (rs=0.29, p=0.00). When the full sample was split into groups, the two variables 

were found to be correlated in the TD (rs=0.43, p=0.01) and the ADHD group (rs=0.42, p=.01) 

but not the ASC group (rs=0.03, p=0.84). 

 

Figure 2.20 

 
Figure 2.20: Scatterplots of age and average 1/f slope of PSD computed from the task-based (A) 

and resting state data (B) and plotted for the TD, ASC and ADHD groups.
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2.3.5 Association between ITPC and 1/f noise 
 

Spearman’s rank-order correlation analysis was performed to determine the relationship 

between ITPC and 1/f noise of PSD (Figure 2.21). The two variables ITPC and the mean slope 

of PSD computed from all participants (n=94) in the task- based condition using Method 1, 

were not found to be correlated (rs=0.05, p=0.59).  

 

Figure 2.21 

 
Figure 2.21: Scatterplot of ITPC and 1/f mean slope of PSD computed from individual 

channels for all participants (n=94). 
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It is important to note that, in the above analysis, the source of signal for the 1/f noise slopes 

was individual channels (see Method 1). To ensure this result is robust, 1/f slope of PSD was 

also computed from the independent component identified to have maximum ITPC for each 

participant and was compared to the ITPC values extracted, as above. This analysis step 

confirmed that the ITPC and 1/f slopes of PSD are not correlated (rs=0.01, p=0.86) (Figure 

2.22). 

 

Figure 2.22 

 

 
Figure 2.22: Scatterplot of ITPC and 1/f mean slope of PSD computed from Independent 

Components for all participants (n=94). 
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2.4 Discussion 
 

The primary aim of this study was to establish whether adults with ASC and adults with ADHD 

demonstrate similar or different levels of neural noise, in the form of neural variability, 

compared to typically developing adults. Neural variability was measured by computing ITPC 

and 1/f slope of PSD in a visual task condition, involving the presentation of checkerboard 

stimuli. 1/f slope was also computed in a resting ‘eyes-closed’ condition. In the task-based 

condition, we did not observe significant differences between groups in levels of maximum 

ITPC as extracted from selected ICs and selected occipital electrodes. Maximum ITPC was 

primarily observed in the theta band for all groups, but for the ASC group it covered a wider 

range of frequencies. In addition, 1/f slope of PSD did not differ between the ASC, ADHD and 

TD group in the task-based condition. When neural variability was examined in the ‘eyes-

closed’ condition, the steepness of the 1/f slope was also found to be similar across groups. 

The strength of association between age and neural variability as measured by ITPC and 1/f 

noise of PSD was also examined. The two variables were found to be associated in the TD and 

the ADHD group but not the ASC group. Finally, the strength and direction of association 

between ITPC and 1/f slope of PSD was assessed. No association between the two variables 

was found and therefore it was concluded that ITPC and 1/f slope of PSD are not related.  

 

It is important to note that in the present study adults with ASC exhibited similar levels of 

ITPC to the ADHD and TD adult samples. This finding is in line with previous reports of no 

difference in ITPC between the ASC and the TD group (Butler et al., 2017) but does not agree 

with other research efforts which document reductions in ITPC locally in the visual cortex of 

adults and children with ASC (Milne, 2011; Weinger et al., 2014; Milne et al., 2019). In a 

similar study design, Milne (2011) found lower alpha ITPC during visual processing of Gabor 

patches in children and adolescents with ASC. Using a slightly different analytical approach 

but similar stimulus characteristics (i.e check patterns), Weinger et al. (2014) showed reduced 

SNRs in electrophysiological responses of children with ASC, computed from steady state 

visual evoked potentials. On the other hand, EEG studies such as the one conducted by Butler 

et al. (2017), in an effort to replicate the study by Milne (2011), do not report differences in 

levels of ITPC between groups, as extracted from selected ICs. Given the small sample sizes 

ranging from 11-22 participants for the above studies and the issue of ASC heterogeneity, these 

inconsistencies in existing published work are not surprising; underpowered studies are known 
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to have a reduced chance of detecting a true effect and there is also a reduced likelihood that a 

statistically significant result reflects a true effect (Button et al., 2013). Taken together, the 

present study showed that neural variability in the form of low ITPC is not increased in adults 

with ASC,  a finding speaking against accounts of phase-alignment difficulties and disrupted 

interregional synchrony during visual processing in ASC. Nevertheless, given that outliers 

determined the group comparisons outcome, this finding should be interpreted with caution 

and further replication is necessary to consolidate those results. 

 

To our surprise, the study of Milne et al. (2019)- which shares 71% of the ASC data with the 

present study but includes a different TD cohort- report significant differences in levels of 

ITPC between adults with a diagnosis of ASC and TD adults, in contrast to the findings 

presented here.  Although the methodological approach of extracting ITPC in the two pieces 

of work was identical and subsequent unpublished analysis indicated that inter-rater reliability 

was high, the inclusion of additional 16 participants with ASC in the ASC group and a different 

control group substantially influenced the outcome of the group comparisons. This difference 

further demonstrates that low statistical power in the present study may have increased the 

probability of Type II error.  

 

The above finding also suggests that reduced ITPC is not possible to accurately differentiate 

participants with ASC from participants without ASC. Therefore, ITPC lacks the necessary 

specificity and sensitivity to be used as a diagnostic tool. In extension to this, it is unlikely that 

it can serve as a valid endophenotype of the condition, as suggested by David et al. (2016). 

Efforts to detect endophenotypes or neural signatures of ASC assume that there is a single, 

independent pathophysiological mechanism in the brain with clear genetic connections, which 

is altered in the affected individuals. Yet, current understanding of how psychiatric conditions 

occur, suggests that behavioural manifestations of such disorders are very rarely the result of a 

single disease process but rather, they arise from multi- factorial gene- environment 

interactions resulting in heterogeneous behavioural profiles (Beauchaine & Constantino, 

2017). Behavioural manifestations of autism are attributed to multiple genetic and 

environmental etiologic factors (Amaral, 2017); therefore, it is unlikely that there is a single 

pathophysiological route to the large range of phenotypic expressions in ASC. Linked to this, 

recent advances in autism research speak against a single neural profile underlying ASC (Milne 
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et al., 2019); multiple authors recognize the existence of sub-groups within the autism spectrum 

with clear neurological differences (Ousley & Cermak, 2014). 

 

In the present study, maximum ITPC was primarily observed at electrodes O2 and Oz and, for 

both channel and IC analyses, the strongest ITPC was captured primarily in the theta band for 

the majority of participants. Multiple lines of work suggest that theta band oscillations facilitate 

sensory encoding. The phase of theta oscillations, in particular, is shown to act as an 

endogenous “clock”, able to partition spike trains efficiently and provide a temporal reference 

point in the oscillatory cycle signaling a dynamic change in the sensory environment i.e the 

onset of an event (Kayser, Ince & Panzeri, 2012).  In addition, animal studies have 

demonstrated that visual stimulation triggers strong phase-locking of theta oscillations locally 

in early visual areas such as V1 and V2 through to V4, which receives feedforward input from 

V1/V2 (Spyropoulos, Bosman & Fries, 2018; Kienitz et al., 2021). Studies have also shown 

that strong phase-locking to the theta rhythm in visual cortices is coupled with an increase in 

gamma amplitude (Canolty et al., 2006), allowing for information to travel through the visual 

hierarchy and reach higher-order areas (Fries, 2015). Considering the above, strong trial-to-

trial phase-locking in the theta band of the visual cortices may occur in order to facilitate long-

range communication.  

 

Other lines of work posit that theta oscillations facilitate episodic memory formation through 

the integration of sensory representations from different sensory modalities (Herweg et al., 

2020). In support of this hypothesis, Klimesch et al. (2004) demonstrated that increased phase-

locking in the occipital and parietal electrode sites  (O2 and P4 electrodes) is associated with 

the P1 and N1 ERP components and is linked to memory performance. From that perspective, 

strong theta phase-locking in the visual cortex, may be providing a mechanism that allows for 

the synchronous activation of the hippocampal circuitry, responsible for forming memory 

associations between sequential visual inputs (Hasselmo et al., 2002).  

 

In the ASC group, maximum ITPC was observed in a wide range of frequencies, from low 

theta to high alpha. This is  in contrast to the TD and ADHD participants, whose strongest 

phase-locked activity trial-on-trial was concentrated in the theta band alone. Alpha oscillations 

are proposed to play a critical role in the gating information flow to sensory cortices by 

selectively suppressing task-irrelevant input, thereby facilitating processing of task-relevant 

input (Jensen & Mazaheri, 2010; Palva & Palva, 2011). Studies in typically developing 
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populations have shown that top-down attentional influences, in anticipation of an expected 

stimulus, modulate the phase of ongoing alpha oscillations and shift it so that it is at an optimal 

point in the cycle at the arrival of the stimulus (Tallon-Baudry et al., 1996; Klimesch, Sauseng 

& Hanslmayr, 2007; Jensen & Mazaheri, 2010; Bennefond & Jensen, 2012). It is therefore 

plausible that in some participants, top-down attentional influences are greater, reflected in 

stronger ITPC of alpha rhythms locally.  

 

When the steepness of 1/f slope of PSD was examined, we did not find a difference in 1/f slope 

of PSD across the three groups. The above result contradicts Voytek and Knight’s theory about 

pathological undercoupling in ASC, which was suggested to reflect weakened interregional 

oscillatory coherence in the clinical group. This is a surprising finding, particularly given the 

large number of studies pointing towards disrupted short-range and long-range synchronous 

activity in the brain of individuals with ASC.  

 

Our effort to understand the nature of those disruptions generates discussion about what 

underlying neural processes may be captured by background 1/f noise dynamics and raises 

important questions about what the best method of conceptualising neural noise might be. 

Further analysis showed that the two variables used here to index neural noise, ITPC and 1/f 

slope of PSD, are not associated, which indicates that they may be measuring two different 

constructs. Indeed, it can be argued that 1/f slope of PSD is computed by measuring the total 

energy distribution of the signal which is a real-valued quantity and does not contain phase 

information, whereas ITPC is calculated by averaging phase angles at each time point over 

trials, therefore is independent of power. In addition, 1/f slope was extracted from all electrodes 

in the cortex, in contrast to ITPC, which was calculated from visual ICs or the occipital 

electrode cluster, therefore was more localised to a specific region. Another key difference 

highlighted in the 1/f literature relates to the signal periodicity. Electrophysiological signal 

consists of periodic and aperiodic activity, the former referring to neural oscillations, where 

ITPC is extracted from and the latter referring to 1/f noise dynamics. The two components are 

fundamentally different constructs, likely to explain the lack of association between ITPC and 

1/f slope in the present study. 

 

Perhaps the finding that adds most value to the literature, is the outcome of the ADHD-ASC 

group comparison as it is the first time that has been reported and answers an important 
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theoretical question regarding the underlying neurobiology of the two conditions. This 

comparison did not  reveal significant ASC-ADHD group differences in the levels of neural 

noise as measured by ITPC and 1/f noise of PSD. This result was confirmed using two different 

variables indexing neural variability, ITPC (as extracted from both ICs and scalp electrodes) 

and 1/f slope of PSD and replicated in two different conditions, task-based and eyes-closed.  

 

Using a larger sample size than previous studies, a robust methodology and statistical approach, 

it was shown that neither ongoing nor stimulus-evoked oscillatory activity is characterised by 

increased neural noise in the ADHD sample tested in the present study. The adults with ADHD 

tested here demonstrated intact ITPC patterns locally in the visual cortex and 1/f slopes of PSD 

of comparable steepness to the TD group. This finding contradicts previous work by Ostlund 

et al (2021) who found flatter 1/f spectral slopes, computed from resting state data, in 

adolescents with ADHD as compared to their typically developing counterparts. This 

discrepancy in findings however may be explained by differences in the way PSD was 

parameterised; in the present study the regression-based method was used, whereas Ostlund et 

al. (2021) utilised the FOOF algorithm. Studies such as the one by Pertermann et al. (2019), 

who used the same method of parameterising PSD, indicated that the brain of adolescents with 

ADHD is not characterised by flatter 1/f slopes per se but rather, slopes become flatter when 

there is greater demand for inhibitory control. Therefore, it may be that, as shown by 

Pertermann et al. (2019), neural responses become less reliable and more variable in affected 

areas such as the prefrontal region during tasks targeting neurocognitive processes known to 

be deficient in ADHD (eg. executive functions). Differences between groups may be apparent 

as task demands increase and requirements for executive function control become greater 

(Pertermann et al., 2019).  

 

In addition to the above, it was established that 1/f slope of PSD and age were associated in 

the TD and the ADHD group but not the ASC group. This finding is in line with studies 

demonstrating that aging is associated with flatter spectral slopes in TD samples (Voytek et al, 

2015). Voytek et al. (2015) showed that older adults are characterised by a flatter 1/f slope of 

PSD compared to younger adults and that 1/f slope mediates the relationship between age and 

cognitive decline in a visual working memory task. The fact that this relationship was not 

evident in adults with ASC may suggest differences in neural aging in ASC.  
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A few parameters are considered, which may influence the interpretation and generalization of 

the research findings. The current study used a large sampling interval, with participant age 

starting from 18 years old (late adolescent) ranging up to 69 years old (late adulthood).  The 

broad age range implies that participants were at different developmental stages at the date of 

testing; in the younger samples, brain maturation may not have been complete (Somerville, 

2016), whereas in the older cases, the brain may have been characterised by age-related decline 

(Lodato & Walsh, 2019) known to be affecting the speed of neural encoding and overall 

effectiveness of information processing (Ishii et al., 2017). The present study did not focus on 

developmental trajectories as such, however participants in each group were age and cognitive 

ability-matched with participants in the other two groups, therefore such differences were 

accounted for in the statistical analysis.  

 

Another important limitation of the current study is the medication effects that may have 

influenced the EEG neural dynamics measured by ITPC. This is a common problem in 

neuroscientific studies of this nature. Although, participants with ADHD remained medication- 

free for 12 hours prior to the experiment, 3 participants with ASC were on regular medication 

for generalized anxiety disorder and depressive disorder (i.e. selective serotonin reuptake 

inhibitors such as Citalopram and serotonin-norepinephrine reuptake inhibitors such as 

Venlafaxine). Without baseline measurements, it is impossible to accurately determine what 

effects pharmacological intervention may have had on neural functioning and levels of ITPC 

in those participants. Serotonergic stimulation is known to be increasing P3a amplitude in a 

No/Go paradigm (Fischer at al., 2015), however serotonin neurotransmission is not likely to 

be a central mechanism influencing phase synchrony of EEG dynamics and to our knowledge, 

there are currently no studies available having investigated the effect of SSRIs on ITPC. Future 

studies should put in place stringent exclusion criteria and recruit non-medicated participants 

or conduct relevant statistical analysis to isolate interaction effects.  

 

In the current study, we used self-report instruments to confirm diagnostic status and obtain 

phenotypic information about participants with ADHD and ASC. Score discrepancies have 

been reported between self and carer/teacher’s ratings of behaviour in ASC, which questions 

the validity of self-assessment tools and suggests caution when using self-report measures in 

ASC (Mazefsky et al., 2011). To ensure that the data provided a reliable representation of the 

clinical profile of the participants with ASC, we compared the total score calculated from the 
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SRS self-report questionnaire with the total score computed from the SRS- other report, a 

questionnaire completed by a close relative or friend of the participant with ASC. The result of 

this analysis showed symptom overlap, confirming that the information provided by the 

participants with ASC was valid. Second, the SRS rather than a clinician- administered 

observational tool such as the commonly used Autism Diagnostic Observation Schedule 

(ADOS), was chosen as the optimal tool for measuring autism symptoms in the current sample 

for a number of reasons. Empirical evidence has shown that ADOS is less sensitive to detect 

autism symptoms in adult populations (Bastiaansen et al., 2011). The majority of the adults 

with ASC recruited for this study were later diagnosed in adulthood and exhibited less severe 

forms of ASC symptomatology, symptoms often missed in a short clinical interview such as 

the ADOS. Linked to this, adults with less severe ASC often camouflage their symptoms in 

social situations (Hull et al., 2017), which means that ASC symptoms are less likely to surface 

in a clinical one-to-one interview with the experimenter. Future studies aiming to include 

samples of adults with ASC, should utilise a combination of methods- both self-report and 

observational tools- to ensure comprehensive and accurate assessment of ASC symptoms 

(Pearl & Mayes, 2015).  

 

An important future direction is to include a larger sample size to tackle sampling errors and 

investigate whether low ITPC characterises the brain of individuals with more severe forms of 

ASC. Given that the presence of outliers in the current study determined the direction of group 

comparisons and considering the contradictory results by Milne et al (2019), it is important to 

replicate the ITPC finding in a larger group of adults with ASC.  In addition, the hypothesis 

about increased neural variability in ASC emerged primarily from studying the brain of 

individuals with high-functioning autism, it is therefore strongly biased towards less impaired 

individuals. Inadequate representation of those severely affected in studies exploring subtypes 

of ASC, leads to a blurry picture of the neural profiles that may exist and their characteristics 

(Stedman et al., 2019).  
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Chapter 3:  

Investigating neural dynamics in Autism Spectrum Conditions 
(ASC) outside of the laboratory using mobile EEG 
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3.1. Introduction 
 
EEG is a commonly used neuroimaging method for those with neurodevelopmental conditions. 

Although despite being one of the more accessible neuroimaging methods, it is not without 

barriers to participation, including the requirement to visit a specific, usually unfamiliar 

location and the requirement to limit movement during the recording. For individuals with 

ASC, entering a new environment to take part in unknown activities with an unfamiliar social 

partner- the experimenter- can be a daunting prospect. This can pose challenges for both the 

individual and the experimenter, as well as caregivers who accompany the participant to the 

appointment. Consequently, there is a tendency for research to be biased towards the inclusion 

of more able autistic individuals and a paucity of EEG data recorded from more severely 

affected individuals with ASC. This bias ultimately hinders the identification of behaviour-

brain-gene pathways and limits opportunity to fully describe and understand variations in 

neural dynamics in ASC. Here we describe a new accessible method of studying the brain of 

autistic individuals at home, using mobile EEG technology. 

 

An understanding of how mobile EEG hardware and software interact with specific features of 

the ASC phenotype is necessary to maximise the likelihood that individuals with ASC can 

participate in EEG research and allow for the acquisition of low-noise EEG signal (Webb et 

al., 2015). Certain elements of EEG hardware have previously been systematically assessed 

and solutions for capturing high-quality data proposed (Ratti et al., 2017; Kam et al., 2019). 

Aspects important for ASC research include the material of the cap, the speed with which the 

cap can be applied and engineering elements that allow for good SNRs. For example, soft 

lightweight fabric EEG caps are likely to be more tolerable than caps made of hard plastic. 

Head caps with integrated “hidden” electrodes look less intimidating than caps with protruding 

wires and can also reduce the length of time required for preparation. Similarly, it’s important 

to balance the length of time it takes to prepare the participant for the recording, with the 

number of channels used to record data. Active electrodes show better SNRs and require fewer 

trials to detect significant effects compared to passive electrodes (Mathewson et al., 2017).  

 

Researchers should strive to maintain the fine balance between procedural adaptation and 

standardisation. Although processes should be adapted to meet the autistic individual’s needs, 

which will ultimately allow for better quality of EEG data, this should not be to the expense of 

standardisation of procedures, which allows for comparability across non-clinical and clinical 
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groups (Kylliainen et al., 2014; Webb et al., 2015). Shared understanding on how to achieve 

this is currently limited.  In an effort to address the need for practical guidelines, Kylliainen et 

al. (2014) and Webb et al. (2015) have presented guidelines to consider when planning and 

implementing an EEG experiment with children with ASC. However, these are based on 

empirical data and the authors’ personal recommendations and focus on data acquisition in the 

laboratory. To shed light on best practice when collecting data outside of the laboratory 

environment, it is important to define what consists of an optimal home-testing protocol for 

this group and develop practical guidelines that directly map onto the experiences of the 

children and adults with ASC that take part in such studies, rather the perspective of the 

researcher alone.  

 

Considering the above, the primary aim of the present study was to test the feasibility of 

acquiring high quality EEG data from autistic children at home using mobile EEG technology 

and to explore children’s views on the experimental process, which would in turn inform 

practical guidelines for EEG experimentation at home. To the best of our knowledge, this study 

is the first to directly record EEG signal from individuals with ASC in their own homes and 

also the first to systematically gather data on user-experience regarding children’s participation 

in EEG research.  

 

To demonstrate the utility of this method, a simple visual paradigm, based on the paradigm 

used in Chapter 2 to measure neural noise in autistic adults and adults with ADHD was 

administered, designed to elicit visual evoked potentials across multiple trials. This approach 

was selected as it is similar to many paradigms that are used to investigate neural dynamics in 

ASC and related conditions (Milne et al., 2009). EEG data were recorded from 69 children 

with ASC who had diverse neurocognitive profiles (see Methods section). There is currently 

no consensus on a single method of assessing EEG data quality (Clayson, 2020). Therefore, in 

an attempt to objectively define the quality of data obtained via this method, we evaluated the 

EEG signal by computing five key indicators of data quality: a) the proportion of artefact-free 

channels, b) the proportion of artefact-free epochs, c) the number of components to which 

dipole models could be fitted with residual variance below 15% after ICA decomposition, d) 

the presence of P1 and N1 Event Related Potential (ERP) deflections- common ERP 

components that one would expect to be elicited by this paradigm, metrics previously used in 

the literature to evaluate EEG data quality in ASC (Milne et al., 2009) and in validation of 

other mobile EEG devices (Badcock et al., 2015; Raduntz, 2018), and e) an indicator of 
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reliability based on the comparison of the aggregated standard error of the mean of trials for 

each subject to the variance of mean ERP response across subjects (Luck et al., 2021). We also 

explored the user experience of the participants by asking each participant to rate specific 

aspects of the protocol and to comment on what they liked and disliked about the procedure. 

This information is essential to refine the ideas by Killiainen and colleagues (2014) and Webb 

et al. (2015) and promote experimental practices taking into account the experiences of the 

individuals with ASC participating in mobile EEG experiments. 

 

3.2 Materials and Methods 
 
3.2.1 Participants 
 

Seventy-three children with ASC were initially recruited for the study. From this cohort, four 

participants could not tolerate the EEG process. EEG data were therefore acquired from sixty-

nine children with a diagnosis of ASC.  Of these participants, thirteen were using limited or no 

language and could not complete the user experience survey. Fifty-six participants completed 

the evaluation questionnaire. Participants were recruited via online advertisement on social 

media, the local community and special schools. Participant demographics are presented in 

Table 3.1. Parents of all participants confirmed that their child had been given a diagnosis of 

ASC from a qualified clinical professional. A comprehensive overview of the formally 

diagnosed co-occurring conditions in the group is provided in Table 3.2, as reported by the 

carers. Thirteen participants were taking medication at the time of the testing session (see Table 

3.3).  All participants had normal or corrected to normal visual acuity. Consent from both the 

child and the carer was acquired in written form. The study was approved by the Department 

of Psychology Ethics Committee of the University of Sheffield.  

  



 

 122 

Table 3.1 

Participant demographics  

 ASC (n=69) 

Gender  

Female 17 

Male 52 

Age  

Mean 11.0 

SD 2.3 

Range 6-15 

WASI Performance IQ scorea 

Mean 109.0 

SD 14.7 

Range 78-147 

SRS-2 T-scoreb  

Mean 84.0 

SD 6.7 

Range 68- >90 
 

aWASI Performance IQ score, Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) 
bSRS- 2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 
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Table 3.2 

Number of participants with a diagnosed comorbid condition 

Diagnosis   

 Frequency  Percent (%) 

Total  42  62.68 

Sensory Processing Disorder 7  10.44 

ADHD 7  10.44 

Dyspraxia 4  5.97 

Anxiety Disorder 6  8.95 

Social Communication Disorder 2  2.98 

Intellectual Disability 1  1.49 

ADHD & Sensory Processing Disorder 2  2.98 

ADHD & Intellectual Disability 1  1.49 

ADHD & Dyspraxia 1  1.49 

ADHD & Anxiety Disorder 1  1.49 

Intellectual Disability & Sensory Processing Disorder 1  1.49 

Intellectual Disability & Dyspraxia 1  1.49 

Sensory Processing Disorder & Dyspraxia 1  1.49 

Sensory Processing Disorder & Anxiety Disorder 1  1.49 

Anxiety disorder & Depressive Disorder  1  1.49 

Sensory Processing Disorder, Dyspraxia & Anxiety Disorder 2  2.98 

Sensory Processing Disorder, Intellectual Disability & 
Dyspraxia 

1  1.49 

Intellectual Disability, Social Communication Disorder & 
Anxiety Disorder 

1  1.49 

Tourette's Syndrome, Sensory Processing Disorder, Dyspraxia 
& Anxiety Disorder 

1  1.49 

Tourette's Syndrome, ADHD, PDA, Sensory Processing 
Disorder & Motor Disorder 

1  1.49 
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Table 3.3 

 

Drug intake of participants recorded up to 24 hours prior to the EEG experiment 

 Frequency Percent (%) 

Total 13 19.38 
ADHD medication   

Lisdexamfetamine 1 1.49 

Atomoxetine 1 1.49 

Methylphenidate 2 2.98 

Depression medication   
SSRIs 2 2.98 

Sleeping disorder medication  

Melatonin  6 8.95 

Antipsychotic medication   

Risperidone 1 1.49 

 
 
3.2.2 Psychometric assessments 
 

64 participants completed the Matrix Reasoning and the Block Design subtests of the Wechsler 

Abbreviated Scales of Intelligence (WASI, Wechsler, 1999), a tool used to measure cognitive 

abilities of individuals aged 5-85 years old. The Matrix Reasoning and the Block Design scores 

combined form the Performance Scale and yield a Performance IQ (PIQ) score, summarised 

in Table 3.1 for the present sample. All caregivers completed an online version of the Social 

Responsiveness Scale-Revised Child/Adolescent version (SRS-2, Constantino & Gruber, 

2011). A T-score of 59 or below is not associated with clinically significant symptoms of ASC, 

whereas T-scores above 60 are indicative of clinically significant deficiencies in reciprocal 

social behaviour associated with ASC, symptoms ranging from moderate (n=9) to severe 

(n=60) for the present sample. 
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3.2.3 Procedure 
 
3.2.3.1 Apparatus 
 

A 32-channel EegoTM sports ANTneuro EEG system and ANTneuro EegoTM Software were 

used for EEG data acquisition. Stimuli were presented on a Dell Latitude 5490 with an Intel ® 

Core™ i5-8250U CPU at 1.60GHz processor, running on a Windows 10 and a 64-bit operating 

system. Visual stimuli were presented on an LCD display screen with a spatial resolution of 

1920 × 1080 pixels, refresh rate of 60 Hz, bit depth of 6-bits and colour space of Standard 

Dynamic Range (SDR). The screen was connected to an Intel® UHD Graphics 620. 

 

To solve the problem of sending triggers without a parallel port, the Lab Streaming Layer 

(LSL) was utilised for trigger transmission. The core transport library liblsl and its Matlab 

application programming interface (API), was used to transmit event marker data (Figure 3.1). 

A single hardware system, a Dell Latitude 5490, was used to send and receive data. LSL 

transmitted data through the Local Area Network (LAN) using a UDP protocol (Kothe, 2014). 

Matlab executables (.mex files) provided in the downloaded folders were recompiled using a 

64-bit C/C++ compiler. All relevant liblsl folders and subfolders were added to the path of the 

Matlab script file of the experimental task. A new stream outlet was created by declaring a new 

lsl_streaminfo object, storing core information about the data stream (i.e name, type, channel 

count, sampling rate, channel format, source ID). Event markers were pushed into the inlet 

chunk-by-chuck (using the function outlet.push_sample).  

 

Figure 3.1 

 
Figure 3.1: Schematic representation of the Lab Streaming Layer (LSL) protocol. 
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3.2.3.2 Visual task 
 

A checkerboard stimulus was presented 100 times on the display screen (2 blocks of 50). Each 

sub-block consisted of a random number of checkerboard presentations each time ranging 

between 5-7, followed by an image of a red cross. The checkerboard appeared on the screen 

for an average of 1250ms, jittered between 1000 and 1500ms. The duration of the inter-

stimulus interval (ISI) was a uniform distribution between 1000 and 1500ms. Similarly, the 

inter-trial interval (ITI) varied randomly between 1000 and 1500ms. At the end of each sub-

block a black and white image of a spaceship was shown on the screen (deviant stimulus), in 

order to provide some interest for the participant and thus facilitate engagement. Participants 

were instructed to press the spacebar when the spaceship image appeared on the screen (Figure 

3.3). Following 100 trials, participants were instructed to close their eyes while resting-state 

data were acquired for 120 secs.  

 

3.2.3.3 User experience measures 
 

Participants were asked to complete a brief user experience questionnaire at the end of the 

study when both parts of the experiment, the EEG task and the questionnaires were completed 

(Figure 3.2). A few participants had a shower to remove the gel and then completed the user 

experience questionnaire. Participants pointed at the right answer for Questions 1 to 3 and 

verbally provided an answer for Questions 4 and 5. In the first two questions children were 

asked to rate specific elements of the EEG equipment on a smiley face Likert 6-point scale, 

corresponding to “Very poor”, “Poor”, “Okay”, “Good”, “Very good”, “Excellent”. Question 

3 asked children to rate how they felt about the experiment taking place at home. The last two 

questions were open-ended, aiming to understand more about the child’s overall experience of 

the EEG session, without biasing their responses. Children were asked to comment freely on 

aspects of the EEG session they liked (Question 4) and disliked (Question 5), questions that 

aimed to provide richer information about their individual experience.  
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Figure 3.2 

 
Figure 3.2: User experience questionnaire. 
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Figure 3.3 

 

 
 

Figure 3.3: Schematic representation of the EEG experiment. 

 

3.2.3.4 Standardisation of study parameters  
 

Carers were instructed to turn off all electrical devices in close proximity of the location of 

testing to minimise power line noise interference.  To avoid inter-site biases and minimise 

sources of variability, known to impact EEG outcomes (Farzan et al., 2017), the time of data 

acquisition and environmental conditions during data acquisition were kept as consistent as 

possible across sites. All children were tested in the evening after school (between 4pm and 

7pm). To ensure consistency of environmental conditions across sites, the EEG experiment 

took place in a darkened room, where curtains were closed and lights were turned off. 

Caregivers were instructed to remain silent and outside the participant’s visual reach but 

remained present during the testing session.  

 

The visual task remained the same for all participants. However, the task was designed so that 

it could be either active or passive depending on the ability of the participant. Participants with 

greater developmental delay were encouraged to look at the red cross on the screen only (n=5), 

whereas more able participants were instructed to press spacebar when the spaceship image 

appeared on the screen (n=64). 
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3.2.3.5  Adaptation of procedures 
 

The home visit involved a warming-up phase, aiming to familiarise participants with the 

communication style of the experimenter and allow for preparation of the testing environment. 

The length and content of the warm-up period differed from one child to the other, depending 

on their developmental level and need at the time of testing. The session was presented as a 

“science lesson” to more able participants, during which they could learn more about the 

human brain. For less able children, the experimenter engaged the child in active play, using 

their favourite toys (e.g building Lego blocks). Communication style involved exaggerated 

body, facial and vocal expressions, imitation, short sentences, very simple words and/or 

communication cards (see Annex 5). The experimenter introduced each element of the 

equipment and explained what the study would involve. During the warm-up period, the child 

chose their preferable seating arrangement. Cap preparation started as soon as the experimenter 

judged the participants to be engaged and relaxed to reduce the risk of the child getting bored. 

The time taken for the electrodes to reach the desirable scalp impedance levels of 20kohms or 

less ranged from 15 to 45 mins, depending on the individual’s skin properties as well as their 

sensitivity to sensory input. 

 

Clear instructions about the experimental process were given to all participants. Language was 

adjusted to establish a stream of communication between the experimenter and the participant. 

Prior to the visit, carergivers were asked whether their child uses alternative and augmentative 

communication techniques prior to the visit. For those participants (n=9) as well as for younger 

children aged 6-7 years old (n=6), the experimenter utilised laminated Picture Exchange 

Communication System (PECS) flash cards to communicate the exact steps of the process. 

Both verbal instructions and visual aids were utilised to ensure that the child understood task 

requirements. Visual cues were used to make the process predictable and help with transitions. 

The user interface of the EEG acquisition system was used in most cases as a visual aid to 

show how movement affects the EEG signal in real time and the number of electrodes subjected 

to impedance check (see Annex 6 for pictures illustrating experimenter-participant interactions 

during the testing session).  

 

For children demonstrating sensitivity to tactile input, we gradually exposed the child to the 

gel and the cap until they felt comfortable with it. The desensitisation procedure lasted from 5 

mins to 20 mins, depending on the child’s needs. The experimenter first put gel on their own 
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hand, then on the child’s hand and encouraged them to touch it. Similarly, we asked the child 

to touch the material of the cap before wearing it. On some occasions, the cap was put on their 

favourite teddy bear or was placed on the carer’s scalp. The EEG cap was presented as being 

similar to a “swimming hat”, which helped some children relate previous experiences of 

wearing a tight hat to the new. A 3cc syringe with a blunt tip was utilised which ensured 

minimal noise during gel application. Rewards and positive reinforcement were the 

behavioural strategies used to increase motivation. Children could choose from a pool of 

rewards such as stickers, LEGO minifigures or time with their favourite toy at the end of the 

EEG experiment.  

 

3.2.4 Data analysis 
 
3.2.4.1 Temporal accuracy of LSL triggers 
 

In order to validate the temporal precision of LSL event markers, the hardware clock of the 

data acquisition device was used to compute the temporal error, also known as jitter, between 

scheduled time and actual time of triggers being recorded in the hardware. LSL event markers 

were fired at different time points: when the checkerboard and spaceship stimulus appeared 

and disappeared from the screen, when the participant pressed space bar in response to the 

spaceship stimulus and when the resting state period started and ended. Every time one of the 

above markers was fired, the start stopwatch timer- in-built within Matlab- recorded the 

elapsed time between the two time points. Jitter time was computed for all triggers and all 

participants in the experiment. 

 

3.2.4.2 Evaluation of EEG data quality 
 

EEG data preprocessing 

 

A number of preprocessing steps were followed to separate physiological signal of interest 

from sources of noise, non-neuronal in origin (Makeig & Onton, 2012). All EEG datasets were 

analysed using EEGLAB (Delorme & Makeig, 2004) running on Matlab 2014a (The 

Mathswork, Inc.). Electrode Cz was selected as the reference electrode. A high-pass filter of 

1Hz was applied to the continuous data in order to remove large drifts or signal deviations. 

Channels exhibiting noise due to poor scalp connection were identified by visual inspection 
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and were removed from the analysis.  Channels visually identified as having unusual peaks 

following high-pass filtering were also excluded from the analysis. Continuous data were 

visually inspected and noisy time segments containing muscle or eye movement artefacts 

affecting multiple channels were manually rejected. This resulted in fewer epochs being 

retained and used for further analysis than the initial number of trials. Independent Component 

Analysis (ICA) was then applied using the runica function of EEGLAB. Data were interpolated 

and dipole source localisation of Independent Components (ICs) was performed using the dipfit 

plug-in of EEGLAB (Oostenveld & Oostendorp, 2002; Delorme et al., 2012). Data were 

segmented into epochs, from -1 to 1 secs around stimulus onset, and corrected to baseline, 

using the average signal between 1 sec before stimulus onset to stimulus onset. 

 

EEG data quality measures 

 

The first indicator of data quality was the number of good channels retained for further analysis 

after the artefact rejection procedures described above. The greater the number of channels 

maintained for downstream analysis, the smaller the EEG signal loss. The second metric was 

the number of epochs retained after artefact rejection. This is a good indicator of how 

contaminated the raw EEG signal was with motion, or other, artefacts. As a third indicator of 

signal quality, we measured the number of Independent Components (ICs) to which dipole 

models could be fitted with residual variance below 15%. It is expected that a single equivalent 

dipole is projected onto ICs, representing neuronal activity within a cortical area. For this 

reason, the goodness of fit of the dipole model fitted for each IC is an indicator of signal quality 

as low residual variance of the model fit suggests that ICA has successfully resolved neural 

signals that can be localised to a single source (Makeig & Onton, 2012).  

 

The fourth metric of signal quality was the reliable detection of the visual P1 and N1 event-

related potential (ERP) components. As early visual ERP components are more prominent in 

signal recorded from electrodes placed at or near the visual cortex (Novitskiy et al., 2011), we 

measured P1 and N1 amplitude and latency of a cluster of channels (P3, P4, Pz, POz, O1, Oz, 

O2) covering the occipital and posterior regions of the brain. First, the mean amplitude of the 

baseline period (-100– 0ms) was computed for each electrode in the electrode cluster of interest 

and for each participant (Step 1). Second, we computed the mean amplitude of each electrode 

for each participant in two time windows which correspond to P1 and N1 deflections (Step 2). 

These time windows were based on previous literature and were defined as 130-200ms for P1 
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and 220-280ms for N1. We then identified the number of participants who did not show P1 

and N1 deflections in at least one of the occipital and posterior electrodes (Step 3). If the mean 

value of the P1 window was greater than the mean +2 standard deviations of the baseline 

period, then P1 was considered as being present. Similarly, if the mean value of the N1 window 

was lower than the mean -2 standard deviations of the baseline period, then N1 deflection was 

considered as being present.  

 

The fifth metric was a ‘reliability’ measure which compares the aggregated standard error of 

the mean of trials for each subject to the variance of mean ERP response across subjects (Luck 

et al., 2021). In order to find out what proportion of the participants’ amplitude or latency score 

variability (Vartotal) is due to true variability i.e true signal of interest rather than measurement 

error, we computed the ‘psychometric reliability’ of the scores obtained from the ERP 

waveform, as proposed by Luck and colleagues (2021, p.25, Equation 8):  

!"#$%&$#$'( = 	 (,%-!"!#$ −/"%0	123%-"	(456),%-!"!#$
 

This gives an indication as to whether any differences in ERP magnitude or latency across 

subjects are due to genuine inter-subject variability or due to inter-trial variability within a 

subject. If the inter-trial variability is greater than that observed between subjects, data quality 

is considered to be poor.  Values returned range between 0 and 1, with values closer to 1 

indicating higher reliability.   

 

3.2.4.3 Statistical analysis of user experience measures 
 
We used a mixed method approach to analyse the questionnaire data. A percentage frequency 

distribution of responses is presented for Questions 1-3. We present the percentage of children 

who felt positive (“Excellent”, “Very good”), neutral (“Good”, “Okay”) and negative (“Poor”, 

“Very poor”) about a) the material of the cap, b) the gel and c) taking part in an experiment at 

their home environment. Open-ended survey questions (Questions 4 and 5) were manually 

analysed using thematic analysis, a data-driven approach, which captures the richness of 

information provided by the participants (Braun et al., 2019). Key themes were assigned to the 

data using a coding frame that was not pre-defined but rather, it emerged from the participant 

text entries (inductive coding) (Thomas, 2006). Codes were first assigned to the raw data and 

text entries were re-coded to ensure test-retest reliability (Roberts et al., 2019). Given the 

exploratory nature of this work, the experimenter encouraged children to elaborate on their 

experience and there was no limit in the number of given answers. Similar codes were put 
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under the same thematic category, which allowed the emergence of main and overarching 

themes and subthemes.  

3.3 Results  
 
3.3.1 Temporal accuracy of LSL triggers 
 
23.866 LSL event markers were fired in total. The latency distribution between scheduled time 

and actual time of triggers being recorded in the hardware, presented in Figure 3.4, 

demonstrates that temporal accuracy of LSL trigger markers is high, within millisecond 

precision or better (M=0.0003s, SD=0.0007, Min=0.00004s, Max=0.02s).  

 

Figure 3.4 

 
Figure 3.4: Histogram of jitter time (x axis), presented in seconds (s) for all triggers (y axis). 

 

3.3.2 EEG data quality assessment  
 
The number of channels and epochs retained after artefact rejection, extracted from the data 

recordings using the Eego Sports mobile system, is presented in Table 3.4.  
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Table 3.4 

Mean (M), Standard Deviation (SD), Minimum (Min) and Maximum (Max) number of EEG 

channels and epochs retained, as computed from data acquired using the 32-channel Eego 

Sports mobile system 

 

 

ICA applied on individual participant scalp data, returned as many components as the number 

of channels kept for further analysis after preprocessing.  

 

The number of ICs with residual variance lower than 15% was also computed from the EEG 

recordings. We found that dipole scalp projections adequately fit the IC scalp maps for  an 

average of 18 ICs per participant (M=18, SD=3, Min=10, Max=25). A previous laboratory-

based study using similar methods to those reported here found a mean number of retained 

components of ~10, extracted from signal acquired from children with ASC using  a static wet 

electrode EEG system that is frequently used in neurodevelopmental research (Milne et al., 

2009). The number of ICs that likely reflect neural sources extracted from the mobile EEG 

signal is therefore comparable to laboratory-based alternatives. Figure 3.5 shows  a single IC 

from each participant to highlight the topographic projection of the IC to the EEG data in sensor 

space. For each participant, we selected an IC that projected at the occipital lobe, to demonstrate 

the consistency of these components across participants. 

Metric M SD Min Max 

1. EEG channels retained 26 2.93 16 30 

2. Epochs retained 89 5.35 71 96 
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Figure 3.5 

 

 
Figure 3.5: Example Independent Component (IC) scalp maps. 
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Further to this analysis, we identified which electrode, from the electrode cluster P3, P4, Pz, 

POz, O1, Oz, O2, showed the largest P1 and N1 deflection (see Table 3.5). For most 

participants, the largest P1 deflection occurred at electrode O2 around 175ms and the largest 

N1 amplitude occurred at electrode O1 around 246ms. For 91% of the group, maximum P1 

amplitude was observed in one of the three channels O2, Oz and O1, whereas for maximum 

N1 amplitude, the spread was greater, across all posterior channels.  

 

We also computed reliability values for all electrodes in the cluster  P3, P4, Pz, POz, O1, Oz, 

O2. Reliability values were computed for the peak amplitude and peak latency of the P1 and 

N1 deflections. Reliability values range between 0 and 1, with those closer to 1 indicating 

higher reliability of ERP components. Reliability values for the peak amplitude of P1 and N1 

ERP components at electrodes P3, P4, Pz, POz, O1, Oz, O2 are close to 1, ranging from 0.907 

to 0.966 for P1 ‘peak’ and 0.825 to 0.965 for N1 ‘peak’. Similarly, the latency where the peak 

amplitude for P1 and N1 occurs shows reliability ranging from 0.666 to 0.902 for P1 and 0.824 

to 0.922 for N1 (Table 3.5). Therefore, is it established that both P1 and N1 ERP components 

show high reliability. 

 

Table 3.5 

P1 and N1 Amplitude (uV) and Latency (ms) computed from electrodes P3, P4, Pz, POz, O1, 

Oz, O2 from all participants (Mean, Minimum, Maximum) and the reliability values (R) given 

for the peak P1 and N1 Amplitude and Latency. 

 

Electrode Amplitude (uV) 

 

 Latency (ms) 

  
P1 

 
R 

  
N1 

 
R 

  
P1 

 
R 

  
N1 

 
R 

P3 
6.99 

[0.09  17.72] 0.907 
 -5.67 

[-17.86  1.35] 0.825 
 172.20 

[134   200] 0.733 
 243.74 

[220   280] 0.824 

P4 
5.81 

[0.10  16.72] 0.937 
 -4.16 

[-13.98  3.82] 0.883 
 176.46 

[108  200] 0.715 
 245.88 

[220  278] 0.840 

Pz 
8.05 

[1.92  24.05] 0.911 
 -6.39 

[-18.38  5.90] 0.876 
 170.67 

[132  200] 0.666 
 241.45 

[220  274] 0.828 

POz 
13.11 

[1.21  33.12] 0.945 
 -5.47 

[-24.00  12.82] 0.925  
 177.01 

[100  200] 0.836 
 248.67 

[220  280] 0.892 

O1 
19.79  

[0.99  47.40] 0.955 
 -7.17 

[-40.59   7.02] 0.926 
 175.04 

[130  200] 0.874 
 246.67 

[220  280] 0.919 

Oz 
21.21 

[1.06  47.87] 0.966 
 -4.96 

[-40.50  14.20] 0.955  
 177.04 

[130  200] 0.897 
 251.10 

[220  280] 0.922 

O2 
22.14 

[1.10  50.51] 0.964 
 -6.40 

[-41.23  14.56] 0.956 
 175.42 

[132  200] 0.902 
 249.48 

[220  280] 0.920 
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As Figure 3.6 demonstrates, P1 and N1 deflections are evident in grand-average ERP traces 

computed from occipital and posterior electrodes as well as the ERPs of individual channels- 

here we present ERP traces computed from electrode O2. This figure shows that visual ERPs 

were reliably detected in the signal. Table 3.6 presents the number of participants showing P1 

and N1 deflections at each electrode of the electrode cluster covering the occipital and posterior 

locations of the head. The majority of participants (99% and 97% respectively) showed clear 

P1 and N1 deflections in at least one electrode from the electrode cluster.  Overall, P1 voltage 

deflections were completely absent in only one participant, whereas two participants did not 

show N1 ERP traces in any of the aforementioned channels. 

 

Table 3.6 

Number and percentage of participants in the group showing P1 and N1 deflections at each of 

the electrodes P3, P4, Pz, POz, O1, Oz, O2 

 

  

Electrode  ERP Component  

  
P1 

  
N1 

 Frequency 
(n=69) 

Percent 
(%) 

 Frequency 
(n=69) 

Percent 
(%) 

P3 53 77  65 94 

P4 53 77  58 84 

Pz 61 88  66 96 

POz 60 87  50 72 

O1 63 91  46 67 

Oz 60 87  23 33 

O2 62 90  44 64 



 

 138 

 

Figure 3.6 

 

 
Figure 3.6: a) Grand-average ERPs computed from electrodes P3, P4, Pz, POz, O1, Oz, O2 for 

all participants and b) ERP traces plotted for the example electrode O2, as extracted for all 

participants. 

 

 

3.3.3 User experience  
 

The majority of children found the EEG cap pleasant and felt positive about the experiment 

taking place at home, but the responses to the electrolyte gel were more mixed. Figure 3.7 

summarises children’s responses to Questions 1-3.  
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Figure 3.7 

 
 

Figure 3.7: Proportion of children that responded positively (“Excellent”, “Very good”), 

neutrally (“Good”, “Okay”) and negatively (“Poor”, “Very poor”) to Questions 1-3 

 

 

Five themes emerged from Question 4 (“What did you like about the EEG session?”, see Table 

3.7 for a summary). The first theme relates to aspects of the equipment. A large number of 

children (n=25) pointed out that they were fascinated by software features of the EEG such as 

the interactive screen showing a) EEG data in real time and b) the impedance check view 

feature (e.g “I liked seeing my brain waves”). A smaller number of participants commented on 

the design of the cap (n=3) and the overall technology (n=2). A small number of children 

enjoyed the tightness of the cap and the cold feeling of the gel on the scalp (n=2).  

 

The second theme that emerged relates to aspects of the experimental task. A large number of 

children found the task very engaging; incorporating play into the process made the 

experimental task very appealing (n=13). They explicitly commented on the alien/spaceship 

picture and pointed out that “the game was fun”. Others mentioned that the task was “easy” 

and “not stressful” (n=2) and that they liked the rewards offered by the experimenter (n=2). 
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The third theme encompasses aspects of the environment. Children enjoyed taking part in a 

scientific experiment at home (n=2) and in a quiet environment (n=1).  

 

The fourth theme relates to intrinsic motivation. Some children mentioned that they enjoyed 

improving their sense of social responsibility by taking part in the research study, “knowing 

that they are helping others” (n=2). This highlights the importance of communicating the aim 

and purpose of the study in an accessible way. Linked to this, the fifth theme relates to the 

experimenter. A subset of children (n=3) commented on the accessible and inclusive 

communication style of the researcher (e.g. “[Name of the experimenter] communicated well 

the information”). 

 

Five themes emerged from Question 5 (“What did you not like about the EEG session?”). The 

first theme relates to the equipment used during testing. Some children found the sensation of 

the gel touching their skin uncomfortable (“I didn’t like it when the gel wet my hair”) (n= 23). 

Oher children did not like the experience of wearing the tight cap (n=3), fastening the strap 

around their chin (n=1) or having the wire touching their neck (n=1). Other children 

commented negatively on the “squirting noise” of the liquid dispenser/syringe used to inject 

gel. The second theme relates to the subject preparation and equipment set-up. Some children 

found the time taken to prepare the wet electrodes very long (n=4). They report that “it took so 

long” and “I didn’t like waiting to get ready for the spaceship”. The third theme relates to the 

task itself. Two of the children found the task boring due to its repetitiveness (“It was boring, 

I was drifting off”). The fourth theme is about the environment. Even though all children chose 

freely their sitting arrangement, in one occasion, the child found the chair uncomfortable to sit 

for a long time. The fifth theme relates to the participant’s physical state during the experiment. 

One child reported difficulty staying still during the EEG and another child found keeping their 

eyes closed in the resting-state condition challenging. To strengthen this point, five children 

could not complete the eyes-closed condition because they were unable to keep their eyes 

closed for two minutes.   
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Table 3.7  

Key themes and subthemes, as emerged from children’s responses to Question 4 and 5 
 

Questions Theme Subtheme Example answers 

4. “What did you 
like about the 
EEG session?” 

Equipment Interactive screen- Software “I liked seeing my brain waves”,  
“I liked watching the dots changing colour” 
 

  Design- Cap “I liked the style of the hat” 

  Sensory experience- Cap “I liked the tight cap” 

  Sensory experience- Gel “I liked the gel going into the hair”, 
 “I liked the gel being cold” 

  Overall technology “It had brilliant technology” 

 Task Engaging task/use of play “Spaceship was fun”,  
“I liked the alien picture”, 
“I liked the game” 

  Easy task “Task wasn’t too hard”,  
“The EEG wasn’t stressful to do” 

  Use of rewards “I was offered stickers” 

 Environment Being tested at home “I liked that it took place at home” 
 

  Quiet “I liked that it was quiet” 

 Intrinsic motivation Altruism “I might be helping people” 

  Fascination with science “I liked the science of it” 

 Experimenter Accessible communication style “[Name of the experimenter] communicated well 
the information”, 
“[Name of the experimenter] was really nice to 
me” 
 

5. “What did you 
not like about the 
EEG session?” 

Equipment Sensory experience- Cap “The cap was too itchy”,  
“I didn’t like the colours of the cap” 

    Sensory experience- Strap “The strap around the chin was uncomfortable”, 
“The bottom bit of the cap was too loose” 

  Sensory experience- Wire “I didn’t like the wire at the back of the head” 

  Sensory experience- Gel “I didn’t like it when the gel wet my hair” 

  Sensory experience- Syringe “I didn’t like the needle squirting” 

 Task Boring task “It was boring, I was drifting off” 

 Environment Uncomfortable sitting arrangement “Back was hurting half way through, I had bad 
chair” 

 Subject preparation/equipment set-up Length of time “It took so long”, “I didn’t like waiting to get ready 
for the spaceship” 
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3.4 Discussion 
 
The present study was the first to use mobile EEG technology to record data from children 

with ASC in their home environment. The primary aim of the present study was to test the 

feasibility of acquiring good quality EEG data from autistic children in such a setting. We 

evaluated the EEG signal quality recorded from 69 children with ASC at their home 

environment using a gel-based Eego Sports mobile EEG system. In order to evaluate the quality 

of data obtained via this method, we examined the number of channels and epochs retained 

after artifact rejection, the number of returned independent components with residual variance 

of the fit of the dipole to the scalp map that is smaller than 15%, detection of P1 and N1 ERP 

deflections in the visual task-based data the reliability of  these ERP deflections. The majority 

of participants showed clear P1 and N1 deflections in at least one electrode from the electrode 

cluster covering the posterior and occipital sites. N1 deflections were absent in 3% of the group, 

whereas only 1% did not show P1 deflections. In addition, both P1 and N1 ERP deflections 

demonstrated high reliability of close to 1. These values are comparable with reliability 

measures of EEG data collected in a lab-setting from neurotypical adults (Luck et al., 2021). 

We therefore established that visual ERP deflections can be reliably measured in the signal. 

Furthermore, the fact that many of the independent components derived from the continuous 

data could be fit with a dipole model with <15% residual variance, and no participants 

generated data from which less than 10 components where the dipole models were fit with 

residual variance of < 15%, suggests high quality of the EEG signal and its potential utility in 

studying a range of neural processes in this group. 

 

Based on the above metrics, it was demonstrated that the EEG signal quality acquired using 

the Eego Sports mobile system and collecting data in the participants’ homes was satisfactory 

to perform EEG analysis such as ICA decomposition and ERP examination. It was also 

demonstrated that the LSL protocol can be reliably used to send trigger markers through the 

network, enabling more complex task-based EEG designs to be implemented at home or other 

settings, where parallel port technology is not available.  

 

Taking a more holistic approach to experimentation, the present study was also the first to 

explore the user experience of children with ASC in relation to the mobile EEG experiment; 

this is crucial to understand how experimenters could acquire optimal signal quality from 

participants with ASC at home. Based directly upon the views and experiences of the children 
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who participated in this experiment, we identified important aspects to consider when planning 

and implementing an EEG experiment with children with ASC at their homes. 

 

In our sample, certain elements of the EEG cap interacted with individual differences in 

sensory sensitivity. A subsample of the children found the EEG cap, the chin strap and the wire 

connecting the cap with the amplifier to be uncomfortable, whereas a different subgroup 

enjoyed the tightness of the EEG cap. Therefore we suggest that EEG systems relying heavily 

on chin straps to ensure the electrodes are in place should be avoided. Wireless EEG systems 

may also be a good solution, solving the problem of the back wire touching the child’s neck.  

 

Due to heightened tactile sensitivity, the electrolyte gel was uncomfortable or just about 

tolerable for a third of the children tested in the present study. Considering the neurocognitive 

profile of participants with ASC, this is not surprising. In the present study, wet electrodes 

were chosen over dry electrodes to maintain low skin-electrode impedances and therefore 

achieve high signal quality. In addition, EEG signal recorded using dry electrodes is shown to 

be more prone to movement artefacts (Meziane et al., 2013), a parameter to be taken into 

consideration when testing young participants with neurodevelopmental conditions. As dry 

EEG technology is rapidly evolving, dry electrodes may be a good option to be used with 

children with ASC to minimise sensory reactions and maximise rates of participation in the 

future. Preliminary evidence has shown that dry electrodes can record EEG signal of similar 

quality to wet electrodes in a laboratory setting (Kam et al., 2019), although these results are 

necessary to be extended to a naturalistic setting such as the home environment and to clinical 

groups such as ASC.  

 

In the present study, it is likely that the familiar environment together with the manipulation of 

experimental parameters helped children tolerate the EEG and cope with the experimental 

procedure. Although a hypothesis not directly tested in this research work, low levels of 

emotional arousal are likely to have played an important role in the successful acquisition of 

low-noise signal. In support of this proposition, a recent study by DiStefano et al. (2019) 

showed that elevated participant state, captured as vigilance or agitation displayed during 

testing, is linked to lower EEG data retention rates and greater reduction in alpha spectral power 

in a sample of children with ASC of various cognitive abilities. We therefore suggest that 

conducting the EEG experiment in a familiar environment such as the home setting has the 

potential to be a very effective method of achieving low levels of emotional arousal, allowing 
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for higher quality EEG data acquisition from subjects with ASC, particularly those with more 

challenging behaviour that would not otherwise comply with experimental processes.  

 

Mobile EEG technology is a rapidly developing field and there are a number of different 

options available for experimentation, including wireless EEG systems and systems utilising 

dry electrode technology (see Table 3.8 for a summary). Multiple research lines have compared 

dry-wet electrode EEG solutions (Marini et al., 2019). An important next step for future 

research is to compare the performance of dry and wet electrodes on similar metrics in a 

naturalistic environment such as the home setting, where access to a shielded room is not 

possible and the environmental conditions are more variable. Future work should also aim to 

test the functionality of using a wireless system instead of a wired EEG device, shown to 

exacerbate sensory sensitivities in our ASC sample and restrict participant’s mobility in other 

studies. 

 

A strength of this study is the sample size (n= 69), however potential sampling bias remains an 

important limitation of the work. Of the seventy-three participants who originally consented to 

take part, four children were not able to comply with the experimental process due to severe 

communication deficits, hindering effective communication between the experimenter and the 

participant. As our recruitment method was an opt-in method (i.e. we were contacted by parents 

who wanted their child to take part after seeing advertisement of the study) it is  likely that  the 

high success rate of successful recordings is due, in part, to the sample being this will have 

skewed  towards children who were more able to engage with the protocol.  Therefore, the 

limitation of increasing accessibility to research for children who are profoundly affected by 

ASC remains. Nevertheless, anecdotally, our impression of the data collection phase was that 

being able to complete the testing session in the participants’ homes increased uptake to the 

study and allowed us to gain data from a larger sample than has been possible in previous 

studies where data collection is consigned to the lab.  In conclusion, here we provided evidence 

and developed guidelines to support EEG data collection at home, potentially opening up 

possibilities for increased access to research for a range of participants. 
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Table 3.8 
 
Available mobile EEG systems and their technical specifications 
 

   
                                          Hardware 

  
Overall device 

 

 
 

 
Electrodes 

  
Amplifier 

  
Head cap 

  
General characteristics 

 

 

 
Model/Company 

 
Number 

 
Type 

 
Sensor 
shielding 

 
Material 

  
Max 
sampling 
rate  
(Hz) 

 
Bandwidth 
(Hz) 

 
Resolution 
(bit) 

 
CMRR 
(dB) 

 
Input 
impedance 
(MΩ) 

 
Input 
noise 
(mV) 

  
Material 

 
Cable 
shielding 

  
Weight 
(gr) 

 
Battery 
life 
(h) 

 
CE 
mark 

 
Price* 
 

 
Prep 
time 
(mins) 

 
MindWave 
(NeuroSky) 

 
1 

 
dry 

 
passive 

 
stainless steel 

  
512 

 
1-100 

 
12 

 
N/A 

 
20 

 
 
Not stated 

  
plastic, 
rubber 

 
yes 

  
90 

 
6-8 

 
no 

 
low 

 
0 

 
4S JellyFish 
(Mindo) 

 
4 

 
dry  

 
passive 

 
spring-loaded 
pins 

  
256 

 
0.23-1300 

 
24 

 
110 

 
3 

 
<1.25 

  
plastic 

 
no 

  
95 

 
10 

 
no 

 
low 

 
Not stated 

 
BR8  
(BRI) 

 
8 

 
dry  
 

 
passive 

 
spring-loaded 
pins, polymer 
foam 

  
500 

 
0.12-125 

 
24 

 
 
Not stated 

 
 
Not stated 

 
 
Not stated 

  
plastic 

 
no 

  
269 

 
10 

 
no 

 
low 

 
Not stated 

 
EPOC X 
(EMOTIV) 

 
14 

 
wet 
(saline) 
 

 
passive 

 
gold-plated, 
felt 

  
256 

 
0.16-43 

 
14-16 

 
 
85 

 
 
1 

 
 
N/A 
passive 
amplifier 

  
plastic 

 
no 

  
1000 

 
6-12 

 
no 

 
low 

 
10-15 

 
B-Alert X24 
(ABM) 

 
20  

 
wet 
(gel) 

 
passive 

 
polymer foam 

  
256 

 
0.1-100 

 
16 

 
105 

 
>102 

 
1.5 

  
plastic 

 
no 

  
110 

 
8-15 

 
yes 

 
high 

 
Not stated 

 
Smarting 
(mBrainTrain) 

 
24 

 
wet 
(gel) 
 

 
passive 

 
sintered 
Ag/AgCI 

  
550 

 
0-250 

 
24 

 
>140 

 
>103 

 
<1 

  
soft 
fabric  

 
no 

  
60 

 
5 

 
no 

 
low 

 
5-10 

 
EPOC Flex 

(EMOTIV) 

 
32 

 
wet 
(saline 
or gel) 

 
passive 

 
sintered or 
electroplated 
Ag/AgCl 
 

  
 
1024 

 
 
0.16-43 

 
 
14 

 
 
85 

 
 
30 

 
 
N/A 
passive 
amplifier 

  
soft 
fabric 

 
 
no 

  
 
500 
(saline)
1500 
(gel) 

 
 
9 

 
 
no 

 
 
low 

 
 
20 

 
32 Trilobite 
(Mindo) 

 
32 

 
dry  
 

 
passive 

 
spring-loaded 
pins, polymer 
foam 

  
512 

 
0.23-1300 

 
24 

 
110 

 
3 

 
<1.25 

  
plastic 

 
no 

  
578 

 
10 

 
no 

 
low 

 
Not stated 
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*low <6000 GBP, medium 6000-15000 GBP, high >15.000 GBP 
 
 
 
 

 
actiCAP Xpress, 
V-amp  
(BrainProducts) 

 
32 

 
dry 

 
active 

 
gold-plated 

  
20.000 

 
0-320 

 
24 

 
100 

 
>102 

 
<1 

  
soft 
fabric 

 
no 

  
430 

 
Not stated 

 
no 

 
medium 

 
Not stated 

 
ENOBIO 
(Neuroelectrics) 

 
8, 20, 32 

 
dry or 
wet 
(gel) 

 
passive 

 
Ag/AgCl (dry, 
wet) 
 

  
500 

 
0-125 

 
24 

 
115 

 
>103 

 
<1 

  
thick 
elastic 
fabric 

 
no 

  
<97 

 
5.5-24 

 
yes 

 
low, 
medium 

 
1-3 
(dry), 
10-30 
(wet) 
 

 
SAGA (TMSI, 
BIOPAC) 

 
32, 64 

 
wet 
(gel or 
water) 

 
passive 

 
Ag/AgCI 

  
4096 

 
0-800 

 
24 

 
100 

 
>102 
 

 
<0.8 

  
soft 
fabric 

 
yes 

  
700 

 
8-10 

 
yes 

 
medium 

 
10-20 

 
Eego Sports (Ant-
neuro) 

 
32, 64 

 
wet 
(gel) 
 

 
passive 

 
Ag/AgCI 

  
2048 

 
0-532 

 
24 

 
>100 

 
>103  

 
<1 

  
soft 
fabric 

 
yes 

  
<500 

 
5 

 
yes 

 
medium 

 
10-15 

 
g.NAUTILUS 
RESEARCH 
 (g.tec) 

 
8,16,32,
64 

 
 dry 
or wet 
(gel) 

 
active 

 
spring-loaded 
graphene pins 
(dry) or 
sintered 
Ag/AgCI 
(wet) 

  
500 

 
0-104 

 
24 

 
>90 

 
>102 

 
<0.6 

  
hard 
fabric 

 
no 

  
<140 

 
>10 

 
no 

 
medium 

 
5-10 

 
g.NAUTILUS 
PRO 
(g.tec) 

 
8, 16, 32 

 
dry or 
wet 
(gel) 

 
active 

 
spring-loaded 
graphene pins 
(dry) or 
sintered 
Ag/AgCI 
(wet) 

  
500 

 
0-104 

 
24 

 
>90 

 
>102 

 
<0.6 

  
hard 
fabric 

 
no 

  
<110 

 
>10 

 
yes 

 
high 

 
5-10 

 
Mobile 
(Cognionics) 

 
64, 128 

 
wet 

 
active 

 
Ag/AgCI 

  
1000 

 
0-131/262 

 
24 

 
Not stated 

 
Not stated 

 
<1 

  
hard 
fabric 

 
no 

  
460 

 
6-8 

 
yes 

 
high 

 
10-40 



3.5 Conclusions 
 
The present study demonstrated that it was possible to record high quality EEG signal from 

children with ASC at a home environment. Here, we used a gel-based Eego Sports mobile system 

to record EEG signal and the LSL protocol was successfully used to send trigger markers through 

the network, paving the way for more complex EEG experiments to be implemented at home by 

ASC researchers. In addition, we developed a protocol for home visits in ASC. The user 

experience survey flagged up a few areas experimenters should take into consideration when 

designing an EEG experiment aiming to acquire EEG data from children with ASC at a home 

setting.  
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Chapter 4:  

Neural noise in children with Autism Spectrum Conditions (ASC) 
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4.1 Introduction 
 

1/f noise dynamics have not been systematically investigated in ASC. ASC studies examining 

neural noise in the form of 1/f noise of PSD are limited to the work presented in the present 

thesis. Chapter 2 demonstrated that visual-evoked and resting state electrophysiological 

responses of adults with ASC are not characterized by a flatter 1/f slope of PSD compared to 

typically developing adults, contradicting theories about pathological undercoupling in ASC. 

What remains unclear is whether spike trains behave similarly in younger ASC populations. It is 

still unclear whether the slope of power decay follows the trajectory of neurotypical development 

in children with ASC or shows distinct patterns of functioning. Initial evidence suggests that 1/f 

slope of PSD is unlikely to be capturing neurophysiological underpinnings that are distinct in 

ASC compared to typically developing populations, however there is some evidence that alpha-

to-gamma phase coupling is reduced in the visual cortex of children with ASC (Seymour et al., 

2019). Further research in children is necessary to understand whether there is a different 

developmental trajectory of power decay in autism; although no difference was seen in 1/f slope 

of PSD between adults with and without ASD in previous chapters, this difference may be 

observable in autistic children.  

 

In contrast to 1/f noise, a greater number of ASC studies have investigated neural noise in the 

form of ITPC. The majority of these indicate that ASC is associated with reduced ITPC across 

all developmental stages, although some contradicting results are also reported (see Table 1.1 of 

Chapter 1 for a summary). In childhood, existing evidence is inconclusive. Milne (2011) reports 

reduced ITPC in the alpha band during visual processing of Gabor patches in a sample of children 

and adolescents with ASC. On the other hand, Butler et al. (2017), using a similar methodology, 

do not report differences in levels of ITPC between groups. Similarly, Yu and colleagues (2018) 

found an increase in ITPC of theta oscillations computed for the P1 time window, followed by a 

reduction in ITPC for the N2 time window during processing of pure tones and words. In early 

adulthood, reductions in ITPC of theta oscillations are observed in the frontal electrode site 

during feedback processing of rewards and errors (van Noordt et al., 2017). In mid and late 

adulthood, Milne et al. (2019) found reduced ITPC in response to visual stimulation but only in 

a subgroup of adults with ASC and concluded that increased neural variability is likely to be 

reflecting one of the many pathophysiological routes to ASC symptomatology. This conclusion 

may also explain some of the inconsistencies in the rest of the literature, particularly evident in 

the child studies. It is likely that due to low power (sample sizes ranging from 13-20) and the 

large variability in neural profiles of participants with ASC, these neurological differences are 
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captured in the brain of children recruited for some studies i.e Milne (2011) but not others i.e 

Butler et al. (2017). 

 

4.1.2 Aims of the current study  
 

Considering the above, the present research work seeks to extend the findings of Chapter 2 and 

establish whether atypical patterns of neural noise are observed in children with ASC. The 

primary aim of the present study was to investigate whether children with ASC demonstrate 

similar or distinct levels of neural variability compared to their typically developing counterparts. 

In order to clarify this, a group of children with a clinical diagnosis of ASC and a group of 

typically developing children were recruited for the present study. Children were tested at their 

home environment using a gel-based mobile EEG system (see Chapter 3 for a detailed 

description of the methodology followed). To ensure consistency and facilitate comparisons of 

findings between studies, children took part in an adapted version of the visual task utilized in 

Chapter 2. Following a similar approach to the study outlined in Chapter 2, neural noise in the 

form of neural variability was measured by computing ITPC and changes in 1/f slope of PSD 

from the signal recorded from both groups. Consistent with the experimental approach followed 

thus far, these measures were extracted from both a visual task-based condition and a resting-

state ‘eyes-closed’ condition.   

 

4.2 Materials and Methods 
 
4.2.1 Participants 
 
Seventy-three participants with ASC and twenty-five typically developing (TD) children were 

initially recruited for the study. From this cohort, four participants with ASC could not tolerate 

the EEG process and parents of two participants did not complete the psychometric assessments, 

therefore sixty-seven participants with ASC were included in the present study. Participants were 

recruited via online advertisement on social media, mainstream and special schools and the local 

community. Participants in the ASC group held a diagnosis of either Autism Spectrum 

Disorder/Condition (n=56) or Asperger’s Syndrome (n=11). A comprehensive overview of the 

formally diagnosed comorbid conditions in both groups is provided in Table 4.2. Descriptive 

information for the two groups are provided in Table 4.1. A few participants from the ASC and 

TD groups were on regular medication at the time of testing (see Table 4.3 for a detailed 

breakdown), however all participants remained non-medicated for twenty-four hours prior to the 

experiment. All participants had normal or corrected to normal visual acuity.  



 

 151 

 

Participants that (a) their carers did not speak English to a sufficient level to be able to complete 

the questionnaires, (b) had epilepsy and/or (c) a mental health condition such as personality 

disorder, bipolar disorder, psychotic disorder did not meet the eligibility criteria for participation 

in the study. In addition to the above exclusion criteria, TD participants had to not hold a 

diagnosis of ASC, Asperger’s Syndrome, Atypical Autism and Pervasive Developmental 

Disorder. This was confirmed both by parental report for each participant and by a T-score of 60 

or below in the Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011), indicating 

that TD participants did not have clinically significant difficulties in reciprocal social behaviour, 

suggestive of ASC (see Table 4.1 and Table 4.4). Consent from both the child and the carer was 

acquired in written form. Ethical guidelines were followed throughout according to the standards 

set by the Ethics Committee at the University of Sheffield.  

 

Table 4.1 
 
Participant demographics  

aWASI Performance IQ score, Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) 
bSRS- 2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 

*p<0.5, **p<0.01, ***p<0.001 

 ASC Group  

(n=67) 

TD Group  

(n=25) 

 

t-statistic 

 

Hedges’ g 

Gender     

Female 15 2   

Male 52 23   

Age     

Mean 11.0 9.56 2.74*** 0.64 

SD 2.3 2.48   

Range 6-15 5-14   

WASI scorea     
Mean 109.0 113.54 -3.74*** 0.88 

SD 14.7 14.15   
Range 78-147 84-144   

SRS-2 T-scoreb     

Mean 84.0 44.32 27.31*** 5.89 

SD 6.7 6.76   

Range 68- >90 36-59   
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Table 4.2 
 
Number of participants with a diagnosed comorbid condition 
 

Diagnosis Frequency 

 ASC Group 
(n=67) 

 TD Group 
(n=25) 

Total  42  0 

Sensory Processing Disorder 7  0 

ADHD 7  0 

Dyspraxia 4  0 

Anxiety Disorder 6  0 

Social Communication Disorder 2  0 

Intellectual Disability 1  0 

ADHD & Sensory Processing Disorder 2  0 

ADHD & Intellectual Disability 1  0 

ADHD & Dyspraxia 1  0 

ADHD & Anxiety Disorder 1  0 

Intellectual Disability & Sensory Processing Disorder 1  0 

Intellectual Disability & Dyspraxia 1  0 

Sensory Processing Disorder & Dyspraxia 1  0 

Sensory Processing Disorder & Anxiety Disorder 1  0 

Anxiety disorder & Depressive Disorder  1  0 

Sensory Processing Disorder, Dyspraxia & Anxiety Disorder 2  0 

Sensory Processing Disorder, Intellectual Disability & 
Dyspraxia 

1  0 

Intellectual Disability, Social Communication Disorder & 
Anxiety Disorder 

1  0 

Tourette's Syndrome, Sensory Processing Disorder, Dyspraxia 
& Anxiety Disorder 

1  0 

Tourette's Syndrome, ADHD, PDA, Sensory Processing 
Disorder & Motor Disorder 

1  0 
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Table 4.3 

Regular drug intake of participants in the ASC and TD group 

Drug intake Frequency 

 ASC Group 
(n=67) 

 TD Group 
(n=25) 

Asthma medication    

Ventolin 0  2 

Corticosteroids (i.e Pulmicort, Montelukast, 
Beclometasone) 

2  1 

ADHD medication    

Methylphenidate (i.e Equasym, Delmosart) 2  0 

Lisdexamfetamine 1  0 

Atomoxetine 1  0 

Sleeping disorder medication   

Melatonin (i.e Circadian)  6  0 

Diabetes medication    

Insulin 1  0 

Depression medication    

SSRIs 2  0 

Antipsychotic medication    

Risperidone 1  0 

Constipation medication    

Sodium picosulfate 2  0 
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4.2.2 Psychometric assessments 
 

Cognitive abilities  

Participants completed the Matrix Reasoning and the Block Design subtests of the Wechsler 

Abbreviated Scales of Intelligence (WASI, Wechsler, 1999), a tool used to measure cognitive 

abilities of individuals aged 5-85 years old. The Matrix Reasoning and the Block Design scores 

combined form the Performance Scale and yield a Performance IQ (PIQ) score, summarised in 

Table 4.1 for the present sample.  

 

Social communication  

All caregivers completed an online version of the Social Responsiveness Scale-Revised 

Child/Adolescent version (SRS-2, Constantino & Gruber, 2011). The SRS-2, consisting of sixty-

five 4-point Likert scale items, was used to identify the presence and severity of social 

impairments associated with ASC. A single raw score was produced by summing the scores of 

the “Social Awareness”, “Social Cognition”, “Social Communication”, “Social Motivation” and 

“Restricted Interests and Repetitive Behaviour” treatment subscales. The raw score was then 

converted into a T-score for every participant, taking into account their gender and age. Table 

4.4 indicates the severity of social communication impairments associated with ASC in the ASC 

and TD group, as measured by the SRS-2. A T-score of 59 or below is not associated with 

clinically significant symptoms of ASC, whereas T-scores above 60 are indicative of clinically 

significant deficiencies in reciprocal social behaviour associated with ASC, symptoms ranging 

from mild (60-65) and moderate (66-75) to severe (76 or higher).      

 

Table 4.4 

Severity of social communication impairments in the ASC and TD group as indicated by the SRS-

2 

aSRS-2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 

 

 SRS-2a T-score 

  

59 or below 

(no association 

with ASC) 

  

60-65 

(mild) 

  

66-75 

(moderate) 

  

76 or higher 

(severe) 

ASC Group (n=67) 0  0  11  56 

TD Group    (n=25) 25  0  0  0 
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4.2.3 Procedure 
 

4.2.3.1 Apparatus 
 

A 32-channel EegoTM sports ANTneuro EEG system and ANTneuro EegoTM Software were used 

for EEG data acquisition. The experiment was presented on a Dell Latitude 5490 with an Intel 

® Core™ i5-8250U CPU at 1.60GHz processor, running on a Windows 10 and a 64-bit operating 

system. Visual stimuli were presented on an LCD display screen with a spatial resolution of 

1920 × 1080 pixels, refresh rate of 60 Hz, bit depth of 6-bits and colour space of Standard 

Dynamic Range (SDR). The screen was connected to an Intel® UHD Graphics 620. 

 

4.2.3.2 EEG experiment 
 
The EEG experiment consisted of a task- based condition followed by a resting state condition, 

explained in detail at Section 4.2.3.4. 

 

4.2.3.3 Data acquisition  
 
EEG data was recorded continuously from a 32-channel ANTneuro cap. The data quality was 

ensured by keeping the impedance values of the electrodes below 25 kΩ. The signal was 

digitalised at a sampling rate of 512Hz. EegoTM sports ANTneuro EEG system does not store 

signal in a referenced format, therefore the raw data was reference-free when acquired.  

 

4.2.3.4 EEG task 
 
A checkerboard stimulus was presented 100 times on the display screen (2 blocks of 50). Each 

sub-block consisted of a random number of checkerboard presentations each time ranging 

between 5-7 (U(5, 7)), followed by an image of a red cross. The checkerboard appeared on the 

screen for an average of 1250ms, jittered between 1000 and 1500ms. The duration of the inter-

stimulus interval (ISI) was a uniform distribution between 1000 and 1500ms. Similarly, the inter-

trial interval (ITI) varied randomly between 1000 and 1500ms. At the end of each sub-block a 

black and white image of a spaceship was shown on the screen (deviant stimulus). Participants 

were instructed to press spacebar when the spaceship image appeared on the screen (Figure 4.2). 

The task-based part of the experiment lasted for approximately ~5 minutes. Following 100 trials, 

participants were instructed to close their eyes while EEG data was acquired for 2 minutes. 

Figure 4.1 provides a schematic representation of both the task-based and resting- state part of 

the EEG experiment. 
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Figure 4.1 

 

 

Figure 4.1: Schematic representation of the EEG experiment.
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4.2.4 General data preprocessing  
 

EEG datasets were analysed using EEGLAB (Delorme & Makeig, 2004) running on Matlab 

2014a (The Mathswork, Inc.).  A number of preprocessing pipeline steps were followed to ensure 

that high quality signal was extracted. For ITPC analysis, Cz was selected as the reference 

electrode, based on previous literature (Milne et al., 2019). In contrast, the preprocessing steps 

followed for 1/f slope analysis remained similar to the ones outlined by Voytek et al. (2015) and, 

for that reason, the average reference was used. In both analyses, a high- pass filter of 1Hz was 

applied to remove large drifts or signal deviations.  Channels exhibiting noise due to poor scalp 

connection were removed from the analysis. Continuous data were visually inspected and noisy 

time segments containing muscle or eye movement artefacts affecting multiple channels were 

manually rejected. This resulted in fewer epochs being retained and used for further analysis than 

the initial number of trials. Independent Component Analysis (ICA) was then applied on the 

clean data, using the runica function of EEGLAB (see Section 4.2.6.2). Figure 4.2 provides a 

summary of the preprocessing steps followed in preparation for extraction of the variable of 

interest i.e. ITPC and 1/f slope of PSD.
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Figure 4.2 

 

 

Figure 4.2: Summary of A) the general and B) analysis specific preprocessing steps followed 
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4.2.5 Data integrity 
 

Following the preprocessing analysis, a series of extra analysis steps were carried out in order to 

evaluate whether EEG data quality was similar across different datasets and amongst different 

groups. We first established that the number of epochs were the same in the final ITPC vs 1/f 

noise task-based datasets. Secondly, we assessed whether the number of epochs was similar 

across groups. The mean number of epochs extracted from the task-based data did not differ 

significantly between groups (see Table 4.5).  

 

Third, similarly to the analysis in Chapter 2, the ERPs of the Independent Component and the 

channel selected for further group analysis were examined to assess the quality of the signal for 

each participant. This step confirmed that signs of a visual evoked potential (VEP)  (e.g. P1 or 

N1 deflection) was present in the neural signal of sixty-five out of sixty-seven participants in the 

ASC group and all twenty-five participants in the TD group (Figure 4.3 for ASC group and 

Annex 7 for the TD group). Two participants in the ASC group did not show a clear VEP (see 

Figure 4.3 in red), therefore their data were excluded from the group analysis. For the channel 

analysis, a VEP was present in all selected channels and for that reason all participants were 

included in the analysis (Figure 4.4 for ASC group and Annex 7 for the TD group). In addition 

to the above, the ITPC values of the ASC group, which were falling below the minimum value 

of the ITPC distribution for the TD group (see Figure 4.11), were examined in relation to the 

ERP trace of the respective IC or channel. Visual inspection of their topographic map and ERP 

image revealed adequate signal quality.  
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Figure 4.3 

 

 

 

Figure 4.3: ERPs of the selected Independent Components (ICs) included in the group analysis 

(n=65), presented for the ASC group. Participants with a less clear VEP were excluded from the 

group analysis and are marked in red (n=2). 
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Figure 4.4 
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Figure 4.4: ERPs of the selected channels included in the group analysis (n=67), presented for 

the ASC group. 

 

Table 4.5 

Mean (M), Standard Deviation (SD, Range of artefact-free EEG channels and experimental 

trials and the t-statistic presented for the comparison of the means in the ASC and TD group 

 ASC Group 
(n=67) 

TD Group 
(n=25) 

 
t-statistic 

EEG channels retained    

Mean 26 26 0.44 

SD 2.8 2.7  

Range 16-30 20-30  

Experimental trials retained    

Mean 88.54 86.52 1.35 

SD 5.60 7.70  

Range 71-96 67-96  

*p<0.5, **p<0.01, ***p<0.001 
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4.2.6 EEG data preparation for Inter- Trial Phase Coherence analysis 
 
4.2.6.1 Data preprocessing 

 

Additional preprocessing steps were followed to prepare the task-based data for ITPC analysis 

(Figure 4.2). Data was segmented into epochs, from -1 to 1 secs around stimulus onset, and 

corrected to baseline, using the average signal between 1 sec before stimulus onset to stimulus 

onset. 

 

4.2.6.2 Data selection 

 

In the present chapter, ITPC was extracted from two distinct sources of signal, both from 

Independent Components (ICs) and EEG scalp electrodes. 

 

Independent Component selection 

ICA decomposition was performed using the runica function of EEGLAB, which utilises the 

informax ICA algorithm of Bell & Sejnowski (1995) with the natural gradient characteristics 

suggested by Amari at al. (1996). ICA, applied on individual participant scalp data, returned as 

many components as the number of channels kept for further analysis after preprocessing. Time-

frequency analysis was then performed on all ICs (see Section 4.2.6.2). For each participant, we 

calculated ITPC for every IC and selected the single IC with maximum ITPC for further analysis. 

Inspection of the IC scalp maps of the IC selected from each participant revealed that the selected 

ICs were projected at the occipital lobe and had clear signs of a visual evoked potential, 

suggesting that they were reflection activation of the visual cortex. Scalp maps of the IC with 

max ITPC chosen for each participant in the ASC group is presented in Figure 4.5 and Figure 

4.6. The ERP of the selected components was also examined further confirming that the signal 

source was at the visual cortex. 

 

Channel selection 

Although signal from individual electrodes is known to be more contaminated with noise 

artefacts as compared to signal from ICs, maximum ITPC was also extracted from an electrode 

cluster covering the occipital region of the brain to provide greater confidence in the direction of 

the results. Following a similar approach to the IC selection, for each participant we calculated 

ITPC for every electrode in the cluster P7, P3, P2, P4, P8, POz, O1, Oz, O2 and selected the 

single electrode with maximum ITPC for further analysis.  
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Figure 4.5 

ASC Group 

 

 
Figure 4.5: Scalp maps of the Independent Component with maximum ITPC for participants 1-67 in the ASC group. Data of two participants outlined in 

red were excluded from further analysis. 
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Figure 4.6 

 

TD Group 

 

 
Figure 4.6: Scalp maps of the Independent Component with maximum ITPC selected for participants 1-25 in the TD group.
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4.2.7 Data analysis 
 

Time-frequency analysis 

Time-frequency decomposition of EEG single-trial data was performed using the newtimef 

function of EEGLAB (Delorme & Makeig, 2004). The time series data was convolved with a 

complex Morlet wavelet, defined as a sinusoid with a Gaussian shape. The wavelet ranged from 

2 to 12.5 cycles at 558 ms intervals (equivalent to 279 samples). The length of the average vector 

of the phase angles was computed for 200 evenly spaced time-frequency points (-720.7 to 720.7 

ms) and was estimated for 23 log-spaced frequencies, ranging from 4 to 50Hz (see Chapter 2, 

Section 2.2.7 for a detailed explanation of time-frequency analysis). A single ITPC value, 

representing the maximum ITPC generated from any independent component or any channel at 

any frequency and at any time point, was extracted for each participant in the group and was 

used for group analysis. 

 

Epoch length was shorter in the adapted version of the paradigm used in Chapter 2 to 

accommodate for the short attention span of young children and render the paradigm more child-

friendly. For that reason, compared to the methodology followed in Chapter 2, frequencies were 

logarithmically rather than linearly spaced. This allowed to capture the lower end of the 

frequency spectrum, which could not be captured if linear scaling had been used (see p.165, 

Cohen, 2014 for a discussion on logarithmic vs linear scaling). An independent samples t-test 

confirmed that there were no significant differences between ITPC derived from logarithmically 

spaced vs linearly spaced frequencies in the ASC and TD group (ASC: F(132)=0.23, p=0.34, 

TD: F(48)=0.19, p=0.36). 

 

4.2.8 EEG data preparation for 1/f noise analysis 
 

4.2.8.1 Data preprocessing 
 

Task-based and resting state data were further preprocessed in preparation for 1/f noise analysis. 

The preprocessing approach we followed here differs from the approach taken in the preparation 

of the task- based data for ITPC analysis. The main objective of the ITPC analysis pipeline was 

to separate the mixed signal and select one source of signal to analyse, whereas primary aim of 

the 1/f preprocessing analysis was to ensure that the mixed EEG signal is clean and free of noise 

artefacts so that power spectral estimations are accurate and attributed to brain functions rather 

than external sources of electrical interference.  
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Eye-blink components were visually identified from the ICA maps and removed as suggested in 

the 1/f analysis pipeline followed by Peterson et al. (2017). In order to replace the missing 

channels, all datasets were interpolated using the channel interpolation function from the 

EEGLAB gui. Data were then referenced to average reference and segmented into epochs. Task- 

based data were epoched from -1 to 1 secs around stimulus onset and pre- stimulus baseline 

removal was performed at 1 sec. Similar to the methodology followed in experimental Study 1, 

resting state data were segmented into 2 secs epochs. 

 

4.2.8.2 Data selection 
 

Power Spectral Density estimation 

 

Welch’s method (Welch, 1967) was used for Power Spectral Density (PSD) estimation. The 

Welch’s method is explained in detail in Chapter 2. In brief, the Welch method minimises this 

variance by averaging out the spectral content of short windows of signal. Each dataset was 

segmented into blocks with 50% overlap between them. A modified periodogram was then 

computed for each block using a 2- second Hamming data window. The periodograms for each 

block were averaged out to produce the final PSD periodogram. A linear regression line was 

then fitted to the data to model an inversely proportional relationship between PSD and 

frequency, of the form , where Pf  is the power spectra per frequency interval f, k is a 

random constant and α is the scaling exponent. Power spectra was plotted in log coordinates. 

The log-transform of the power function is a straight line with a negative slope α and an intercept 

c (Figure 4.7, also see Annex 8 for the 1/f slope of all electrodes computed from Participant 26). 

1/f slopes of PSD were estimated from frequencies between 2-24Hz (Voytek et al., 2015), 

effectively excluding high frequency bands from the analysis, as they are more likely to reflect 

intrinsic channel noise, rather than neural processes. Alpha band power (7-14Hz) was also 

excluded prior to 1/f slope estimation, as it represents changes in periodic EEG patterns, biasing 

estimations of the non-periodic properties of the signal i.e. 1/f noise (Voytek et al., 2015). Alpha 

band power was not excluded a priori (for example by band pass filtering) instead an identical 

method to previous research (Voytek et al., 2015) was used in which the alpha component of the 

calculated power spectra was removed simply by replacing the characteristic peak of the alpha 

wave with a straight line between the data points of the power associated with 7 and 14Hz 

frequencies.  
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Figure 4.7 

 
Figure 4.7: Log-transformed Power Spectral Density (log10 Power) of signal coming from a 

single electrode CP5 from a participant in the ASC  group, is presented here as a function of 

frequencies (f) ranging from A) 0-250Hz, B) 2-24 Hz including alpha band and C) 2-24 Hz 

excluding alpha band. A regression line with a negative slope a= -0.063614 is fitted to the data 

in graphs B and C. 
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4.2.9 Data analysis 
 

In contrast with ITPC, there are very few studies having previously measured 1/f slopes of PSD, 

therefore there is very limited prior knowledge on what consists of an optimal analytical  

approach of analysing 1/f slopes of PSD. In Chapter 2, we followed two distinct methods of 

preparing the data for group comparisons, the first analytical method compared grand average 

1/f slope values across groups, whereas the second method involved single electrode 

comparisons. In this chapter, we utilised the former method only, so that age effects can be taken 

into consideration in subsequent analysis. As demonstrated in Section 4.2.1 (Table 4.1), the two 

samples differed significantly in age. In addition, further analysis in Section 4.3.2 showed that 

1/f slope of PSD is associated with age, therefore the age difference between the samples should 

be accounted for. To the best of our knowledge, there is not an analytical approach that can adjust 

for multiple comparisons and add age as a covariate. For that reason, in the present study only 

the first method of computing 1/f noise is utilised (comparison of grand average 1/f slope values 

across groups). A single value representing the 1/f slope of PSD at each electrode was first 

calculated for all electrodes and for all participants in the ASC and TD groups. The mean slope 

of all 32 electrodes for every participant was then computed and the grand mean slope was 

calculated for each group, ASC and TD (Figure 4.8).   

 

4.2.10 Statistical analysis  
 

We utilised frequentist methods of hypothesis-testing throughout the present chapter. Frequentist 

statistics were conducted using IBM SPSS Statistics for Windows, version 25 (IBM Corp., 

Armonk, N.Y., USA). In the group comparisons of the key variables of interest ITPC and 1/f 

slopes- where appropriate and possible- Bayesian statistical analysis was also performed 

alongside frequentist statistical analysis in Sections 2.3.1 and 2.3.2, in order to decide with 

greater certainty which of the two hypotheses i.e the null hypothesis H0 or the alternative 

hypothesis H1 is more likely given the experimental data (H0: there is no overall group 

difference, H1: there is overall group difference) (van Doorn et al., 2020). Bayes factors  (BF) 

assessing the strength of evidence were presented, with 1-3 indicating weak evidence, 3-10 

indicating moderate evidence and Bayes factors >10 indicating strong evidence in favour of H1 

(van Doorn et al., 2020). In the Bayesian ANCOVA analysis, the inclusion probability of each 

component (i.e., model term) was computed across a number of different models; a) the null 

model, b) a model containing a single predictor variable and c) a model containing both predictor 

variables. The Bayes factor BFM indicating the change from prior to posterior model odds is 
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reported as well as the effect size. Bayesian statistics were conducted using the free software 

JASP (JASP Team, 2017). 
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Figure 4.8 

 
Figure 4.8: Method 1 involved a) computing the mean slope of all 32 electrodes for every participant in the ASC and TD group, b) calculating the grand 

mean slope for each group and c) comparing the grand mean slopes.
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4.3 Results 
 

4.3.1 Group comparisons: Inter-Trial Phase Coherence 
 

Independent Component Analysis 
 
Descriptive statistics of the maximum ITPC extracted from the Independent Components 

presented for the ASC (n=65) and TD groups (n=25) is presented in Table 4.6.  

 

Table 4.6 

Mean values (M) and Standard Deviations (SD) of the max ITPC extracted from the Independent 

Components presented for the ASC and TD groups 

 ASC (n=65)  TD (n=25)  

 M SD  M SD  

Max ITPCa  0.77 0.13  0.86    0.09  

aMax ITPC, Maximum Inter-Trial Phase Coherence extracted from the Independent Components 

 
Kendall’s tau-b correlation analysis was performed to determine the relationship between age 

and ITPC (Figure 4.9). The correlation analysis was performed a) for all participants and b) the 

two groups ASC and TD separately. Age and ITPC were not found to be associated in the full 

sample (τb=0.10, p=0.18). The two variables were correlated in the TD group (τb =0.35, p=0.02) 

but not in the ASC group (τb =0.14, p=0.12).  

Figure 4.9 

 

Figure 4.9: Scatterplot of age and maximum ITPC computed from the task-based data and 

plotted for the ASC and TD group. 
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Additionally, Kendall’s tau-b correlation analysis was performed to determine the relationship 

between Performance IQ and ITPC (Figure 4.10). Performance IQ and ITPC were not found to 

be associated in the full sample (τb =0.10, p=0.16). When analysis was performed on the specific 

groups, the two variables were not found to be statistically dependent, neither in the TD group 

(τb =0.07, p=0.64) nor in the ASC group (τb =0.00, p=0.98) (see Table 4.7). Taking into account 

the above results, we accounted for the effect of age but not IQ in the group comparisons.  

Figure 4.10 

 

Figure 4.10: Scatterplot of Performance IQ and maximum ITPC computed from the task-based 

data and plotted for the ASC and TD group. 

 

Average maximum ITPC maps computed separately for the ASC and TD group are presented in 

Figure 4.12 (also see Annex 9 for maximum ITPC heat maps for all participants in the two 

groups). Exploration of the ITPC boxplots revealed that the ASC group was characterized by a 

larger range, standard deviation and variance compared to the TD group (Figure 4.11). Levene’s 

test for equality of variances indicated that the two groups were characterized by unequal 

variances (F(88)=4.35, p=.04). The data in both the ASC and TD group were not normally 

distributed as indicated by the Kolmogorov-Smirnov (ASC: D(65)=0.94, p=0.04) and the 

Shapiro-Wilk test of normality (TD: W(25)=0.91, p=0.03). Square root-transformation of the 

data did not change ITPC distributions sufficiently (TD: W(25)=0.90, p=0.02, ASC: D(65)=0.13, 

p=0.00). 

 

Because the TD group was younger, on average, than the ASC group, a one-way ANCOVA was 

performed so that age can be added as a covariate in the linear model. This analysis allowed us 

to evaluate whether maximum ITPC differs across groups, while also adjusting by the 

confounding variable “age”. Assumptions that underlie the use of ANCOVA were met. 
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Inspection of the “age” vs “ITPC” scatterplots, split by group, indicated that the strength and 

direction of association between the covariate and the outcome variable were similar across the 

two groups. Regression slopes were homogeneous and the covariate “age” was shown to be 

independent from the categorical predictor variable “group”. As expected, “age” significantly 

adjusted the association between “group” and “ITPC” (F(1,87)=6.35, p=0.01). Further to this, 

the corrected model indicated that there were statistically significant differences in ITPC between 

the two groups when controlling for age effects and that the effect size of this result was large 

(F(1,87)=7.53, p=0.00, partial η2 = 0.15).  

 

The Bayesian ANCOVA compared a few models with varying predictors of ITPC: a) a  null 

model, b) a model containing only “age” as a predictor, c) a model containing only “group” as a 

predictor and d) a model containing both “group” and “age” as predictors. Only models c and d 

had their model odds increased after observing the data (BFM =0.96 and BFM = 7.27 respectively). 

To account for model uncertainty, we performed Bayesian model averaging to test the effects of 

both predictors. The data were 19.05 times more likely under models containing “group” as a 

predictor but only 2.6 times as likely when including “age”, demonstrating that Bayesian analysis 

was in line with frequential statistical analysis. 

 

Figure 4.11 

 

Figure 4.11: Boxplots of maximum ITPC for the ASC and TD group, showing differences in 

central tendency between groups. 
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Figure 4.12 

 

Figure 4.12: Average maximum ITPC maps computed for the ASC and TD group. 

 

Maximum ITPC extracted from the Independent Components was observed primarily in the theta 

band (4-7Hz) in both groups (Figure 4.13). Maximum ITPC occurred at 4Hz for the majority of 

participants (ASC: 45%, TD: 56%). However as illustrated in Figure 4.13, for the ASC group it 

covered a wider range of frequencies compared to the TD group. An independent samples t-test 

indicated that the mean frequency where maximum ITPC was captured was significantly 

different between groups (t(78.47)=-2.05, p=0.04). Bayes factors indicated that this finding was 

equally likely under both hypotheses H0 and H1 (BF01=1.39). 

 

Table 4.7 

Mean values (M), Standard Deviations (SD), Minimum (Min) and Maximum (Max) of the 

frequency, where maximum ITPC occurred at, presented for the ASC and TD groups 

 ASC (n=65)  TD (n=25) 

 M SD Min Max  M SD Min Max 

Frequency  5.70 2.13 4 14  4.99    1.14 4 8 
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Figure 4.13 

 

Figure 4.13: Frequency (Hz) where maximum ITPC was observed for the TD and ASC group. 

 
 
Channel Analysis 
 

Descriptive statistics for the two groups are presented in Table 4.8.  

 

Table 4.8 

Mean values (M) and Standard Deviations (SD) of the max ITPC extracted from the occipital 

electrode cluster, presented for the ASC and TD groups 

 ASC (n=67)  TD (n=25)  

 M SD  M SD  

Max ITPCa 0.72  0.11  0.78 0.10     

aMax ITPC, Maximum Inter-Trial Phase Coherence 

 

Parametric test assumptions were partially met. Outliers were not detected in the data (see Figure 

4.14). Levene’s test for equality of variances indicated that the groups were characterised by 

equal variances (F(1,90)=0.23, p=0.63). Although the data were approximately normally 

distributed in the ASC group (D(67)= 0.07, p=0.20), the data were not normally distributed in 

the TD group, as shown by the Shapiro-Wilk test (W(25)=0.92, p=0.04). Square root-

transformation of the data did not change ITPC distributions sufficiently (TD: W(25)=0.91, 
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p=0.02, ASC: D(67)=0.08, p=0.20). ANCOVA-specific assumptions were met; regression 

slopes i.e the covariate coefficients were homogeneous and the interaction term between the 

covariate “age” and the categorical predictor variable “group” was not significant. 

 

Considering the above, a one-way ANCOVA was performed to assess whether maximum ITPC 

extracted from the selected electrodes differs across the ASC and TD groups, while also adjusting 

for age. This analysis showed that the covariate “age” was not significantly adjusting the 

association between “group” and “ITPC” (F(1,89)=0.26, p=0.60). The corrected model showed 

that there was a statistically significant effect of  the “group” variable on levels of  ITPC, after 

controlling for “age” (F(1,89)=3.39, p=0.03). 

 

Bayesian analysis of covariance was also performed on ITPC values with “group” added as a 

fixed factor and “age” as a covariate. As above, the Bayesian ANCOVA compared a few models 

with varying predictors of ITPC: a) a  null model, b) a model containing only “age” as a predictor, 

c) a model containing only “group” as a predictor and d) a model containing both “group” and 

“age” as predictors. Only the model containing “group” as a predictor had their model odds 

increased after observing the data (BFM =5.45). Bayesian model averaging demonstrated that the 

data were 3.94 times more likely under models containing “group” as a predictor but only 0.23 

times as likely when including “age”. This is in line with frequentist statistics, which 

demonstrated that the effect of “age” was negligible and that the main effect of “group” was 

significant. 

 

 
Figure 4.14 
 

 

Figure 4.14: Boxplots of maximum ITPC for the TD and ASC (range of values= 0-1), showing 

differences in central tendency between groups. 
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For the majority of participants in both groups, maximum ITPC was observed at the electrode 

O2 (TD: 40%, ASC: 39%) and in the theta (4-7Hz) frequency band (TD: 91%, ASC: 60%) (see 

Figure 2.14, Figure 2.15). For 47% of the TD group, maximum ITPC occurred at 4Hz (M=5.28, 

SD=1.46). In contrast, the ASC group showed a very different frequency profile; for the majority 

of participants maximum ITPC occurred either at 4Hz (19%) or 7Hz (19%) but for many 

participants it was captured at higher frequency bands (i.e alpha and beta), as compared to the 

TD group (M=7.52, SD=5.28). An independent samples t-test indicated that the frequency where 

maximum ITPC was captured was significantly different between groups (t(90)=1.01, p=0.00). 

In line with this analysis, Bayes factors showed that this was strong evidence for the alternative 

hypothesis H1 i.e there is a difference between groups (BF01=0.03). 

 

Figure 4.15 
 

 

Figure 4.15: Electrode where maximum ITPC was captured for each group, TD and ASC. 
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Figure 4.16 

 

Figure 4.16: Frequency (Hz) where maximum ITPC was observed for each group, TD and ASC. 

 
4.3.2 Group comparisons: 1/f noise of Power Spectral Density 
 

Descriptive statistics of the 1/f slope of PSD for the two groups ASC (Task-based condition: 

n=67, Resting state condition: n=62) and TD (n=25) are presented in Table 4.9.  

 

Table 4.9 

Mean values (M), Standard Deviations (SD), Minimum (Min) and Maximum (Max) of the 1/f 

slope of PSD computed for the task-based and resting-state condition, for the ASC and TD group 

 ASC (n=67, n=62)  TD (n=25) 

 M SD Min Max  M SD Min Max 

Task-based EEG: 1/f Slope  -0.07 0.01 -0.1 -0.04  -0.07 0.01 -0.09 -0.05 

Resting-state EEG: 1/f Slope -0.07 0.02 -0.12 -0.04  -0.08 0.02 -0.11 -0.05 

Kendall’s tau-b correlation analysis was performed to determine the relationship between age 

and the average 1/f slope of PSD computed from the task-based and the resting state data (see 

Figure 4.17). In the task-based condition, age and 1/f slope were correlated in the full sample 

(τb=0.41, p=0.00). Further analysis showed that the two variables were associated in both the 

ASC (τb=0.36, p=0.00) and the TD group (τb=0.41, p=0.01).  
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In the resting state condition, age and 1/f slope of PSD were positively correlated in the full 

sample (τb=0.45, p=0.00). Similarly, the two variables were found to be statistically dependent 

in the ASC (τb=0.40, p=0.00) and TD group (τb=0.49, p=0.00). 

Figure 4.17 

 

Figure 4.17: Scatterplots of age and average 1/f slope of PSD computed from the task-based (A) 

and resting state data (B) plotted for the ASC and TD group. 

 

Kendall’s tau-b correlation analysis was also performed to determine the relationship between 

Performance IQ and the average 1/f slope of PSD computed from the task-based and the resting 

state data (see Figure 4.18).  

In the task-based condition, Performance IQ and 1/f slope were not correlated in the full sample 

(τb=-0.09, p=0.24). Further analysis showed that the two variables were not associated,  neither 

in the ASC (τb=0.03, p=0.75) nor the TD group (τb=-0.13, p=0.37). 

In the resting state condition, Performance IQ and 1/f slope of PSD were not correlated in the 

full sample (τb=-0.12, p=0.11). Similarly, the two variables were not found to be correlated in 

the ASC (τb =-0.03, p=0.74) and TD group (τb =-0.24, p=0.09). 

Given that age and the average 1/f slope of PSD were associated in both conditions but 

Performance IQ and the average 1/f slope of PSD were not, we accounted for the group difference 

in age but not IQ in all subsequent analyses. 
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Figure 4.18 

 

Figure 4.18: Scatterplots of Performance IQ and average 1/f slope of PSD computed from the 

task-based (A) and resting state data (B) plotted for the ASC and TD group. 

The two groups had equal variances as determined by the Levene’s test (Task-based Condition: 

F(90)=3.49, p=0.06, Resting-state Condition: F(85)=0.22, p=0.64). The Kolmogorov-Smirnov 

test showed that the resting state data of the ASC group were not normally distributed (Task-

based condition: p=0.20, Resting-state condition: p=0.00), however the data of the TD group 

were shown to be normally distributed in both conditions (Task-based condition: p=0.40, 

Resting-state condition: p=0.91). In line with the ITPC finding, the boxplots in the task-based 

condition indicated that the ASC group was characterized by a larger range, standard deviation 

and variance compared to the TD group (Figure 4.19). Although extreme outliers were not 

present, 1/f slope values for four participants within the TD group in the task-based condition 

and two participants within the ASC group in the resting state condition were falling below the 

interquartile range of the third quartile (Figure 4.19). Further analysis showed that those values 

did not have a significant impact on the group comparisons outcome and for that reason they 

were included in the ANCOVA analysis.  

 

In both the task-based and resting state condition, a one-way ANCOVA was performed to 

compare mean 1/f slope in the ASC and TD group, whilst controlling for the confounding effects 

of age, a variable added as a covariate in the linear model. Scalp maps representing the 1/f slope 

measured from all electrode locations for the ASC and TD group in the two conditions are 

presented in Figure 4.20. Neither in the task-based condition nor in the resting state condition 

the model indicated any significant differences between groups (Task-based condition: 

F(1,89)=3.09, p=0.08,  Resting state condition: F(1,84)=0.13, p=0.71). Similarly, Bayesian 

analysis showed that only the model including “age” and the model containing both “age” and 
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“group” as predictor variables had their model odds increased in light of the experimental data 

(BFM = 2.90 and BFM =3.09 respectively). Bayesian model averaging demonstrated that the data 

were 7339.47 times more likely under the model containing “age” as a predictor but only 1.03 

times as likely when including “group”.  Considering both analyses, it is therefore concluded 

that 1/f slope of PSD is not different in the ASC group as compared to the TD group but age is a 

predictor of the steepness of 1/f slope. 

 

Figure 4.19 
 

 
 

Figure 4.19: Boxplots of 1/f slopes for the two groups, ASC and TD, in the task-based (A) and 

resting-state condition (B).
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Figure 4.20 

 

1/f slopes 

 

 

Figure 4.20: Scalp maps representing the mean slope computed from different electrode 

locations for the ASC (A) and TD group (B) in the task- based condition and for the ASC (C) 

and TD group (D) in the resting-state condition. 

 
In addition to the analysis presented in Sections 4.3.1 and 4.3.2, the relationship between neural 

noise and comorbid conditions was further examined in the samples tested (Appendix 1). 

Inspection of the scatterplots of ITPC and 1/f noise of PSD did not reveal any clear relationship 

between variables indexing neural noise and the number and type of comordid condition in the 

ASC group (see Figure 1 in Appendix 1). 
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4.4 Discussion 
 

The present study aimed to investigate whether the atypical patterns of neural noise observed in 

adults with ASC in Chapter 2 are also observed in children with ASC. Following a similar 

method to the study outlined in Chapter 2 and benefitting from home-testing protocol described 

in Chapter 3,  neural noise was measured by computing ITPC and changes in 1/f slope of PSD 

in a visual task condition, involving the presentation of checkerboard stimuli.  Consistent with 

the experimental approach followed in Chapter 2, 1/f slope was also computed in a resting-state 

condition. In the present study, the ASC group consisted of somewhat older children with lower 

cognitive abilities compared to the TD group. Further analysis showed that age significantly 

correlated with 1/f slope of PSD and ITPC, so it was controlled for in the group-comparison 

analysis. After controlling for age effects, maximum ITPC, as extracted from both selected ICs 

and electrodes, was significantly lower in the ASC group compared to the TD group. In addition, 

it covered a wider range of frequencies from theta to beta rhythms for the ASC participants, in 

contrast to the TD participants, whose strongest ITPC was consistently found in the theta and 

alpha band. With regards to the 1/f analysis, ASC participants did not show differences at a group 

level in the steepness of 1/f slope of PSD compared to the TD participants, neither in the task-

based nor in the resting state condition.  

  

Using a similar experimental approach and method of quantifying neural noise to previous 

chapters, the current study established that increased levels of neural noise, demonstrated as 

reductions in ITPC, manifest in children and adolescents with ASC. This result agrees with 

previous accounts of low ITPC during visual processing in groups of children and adolescents 

with ASC (Milne, 2011). In line with the findings of the present study, Milne (2011) report 

reduced alpha ITPC in children with ASC during visual processing of Gabor patches and Milne 

et al. (2019) in adults with ASC during processing of checkerboard stimuli. The authors conclude 

that low ITPC is capturing atypical neural features prominent in the brain of some individuals 

with ASC, indicating that reduced ITPC is likely to be one of many neurological features that is 

associated with ASC. On the other hand, EEG studies such as the one conducted by Butler et al. 

(2017), in an effort to replicate the study by Milne (2011), do not report differences in levels of 

ITPC between groups. As discussed in Chapter 2, the lack of consistency in experimental 

findings can be partially explained by ASC heterogeneity, which often results in disparate 

findings in groups of participants with a clinical diagnosis of ASC and the small sample sizes 

ranging from 11-20 participants for the aforementioned studies (Button et al., 2013).  
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For the ASC group the strongest phase-alignment was observed in a wide range of frequencies 

ranging from low theta to low beta (4-16Hz), whereas for the TD group maximum ITPC occurred 

in the theta and alpha band (4-8Hz) alone. Through the coordination of local and regulation of 

inter-regional neuronal interactions, slow oscillations are “context-defining” and play a 

fundamental role in early sensory encoding and attention (Palva, Palva & Kaila, 2005). 

Therefore, strong phase entrainment of  theta/low alpha oscillations may reflect dynamic visual 

input processing, which is stimulus-driven (Kietel, Thut & Gross, 2017). Given that alpha 

oscillations are biasing the probability of a weak signal to be detected, subsequently enhancing 

the attended stimulus, strong phase-alignment of alpha rhythms may also indicate a greater effort 

to suppress unattended stimuli (Palva & Palva, 2011; Zareian et al., 2020; Lemi et al., 2021).  

 

The fact that a small number of participants with ASC demonstrated strong phase-locking in the 

beta rhythm, captured consistently at the electrode O2 in the channel analysis, is striking. Beta 

oscillations are previously shown to exert top-down influences on the visual cortices (i.e from 

high to low-order visual areas or from fronto-parietal to visual cortices) (Spitzer & Haegens, 

2017; Richter, Coppola & Bressler, 2018) and to be associated with functional aspects of sensory 

gating (Kisley & Cornwell, 2006), sensorimotor coordination (Kilavik et al., 2013) and working 

memory (Kulashekhar et al., 2016). It is possible that stronger alignment of the phase of beta 

oscillations in areas in close proximity to the visual cortices indicate greater effort to maintain 

the current sensorimotor state of the brain (Engel & Fries, 2010) and highlight if the visual 

stimulus presented on the screen is novel or salient (Kisley & Cornwell, 2006). Another 

possibility is that beta oscillations strongly align their phases in preparation of the movement 

execution i.e spacebar presses in anticipation of the deviant spaceship stimulus (see Kilavik et 

al. 2013), therefore strong phase-locking may reflect contextual gating of  information related to 

visual action feedback (Limanowski, Litvak & Friston, 2020).  

 

Building upon the above finding, it is still unclear what the primary biological source 

contributing to increased neural variability in the ASC group might be, however a few plausible 

theories have been suggested in the literature. Difficulties to synchronise the activity of neurons 

consistently across experimental trials may be explained by an increase in E/I ratio locally, 

resulting from a glutamatergic/GABA-ergic imbalance (Rubenstein & Merzenich, 2001). In an 

effort to maintain optimal information flow, this is likely to result into increased firing rates in 

local microcircuits of the visual cortex. Other lines of work suggest that astrocytes and microglia- 

two types of glial cells known to play a central role in synaptic formation and function- interfere 

with neural circuit development in ASC, affecting neural synchrony and connectivity (Kanner et 
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al., 2018; Rosso et al., 2018). Nonetheless, there is currently no experimental evidence directly 

linking the reductions in ITPC with the above theories. Oscillatory processes are dynamic in 

nature and phase-alignment of neural oscillations to a rhythmic stimulus can be affected by 

numerous factors such as pathophysiology, state of arousal, task characteristics and attention 

(Uhlhaas et al., 2009). 

 

Despite the significant ITPC reductions at a group level, the steepness of 1/f slope of PSD did 

not differ between the ASC and TD group. Further to this and in contrast to the findings in adults 

with ASC presented in Chapter 2, we found a significant relationship between 1/f slope of PSD 

and age in the samples of children tested here, irrespective of whether they were in the ASC or 

TD group. This is in line with previous research by Dave et al. (2018) who found a significant 

relationship between 1/f slope and age in both younger and older adults and a flatter slope in the 

older group tested in response to two language comprehension tasks.  

 

To our knowledge, this is the first study to explore 1/f properties of PSD in children with ASC. 

Here, we demonstrated that ASC participants show a 1/f slope of similar steepness to TD 

controls, a finding which replicates the result reported in adults reported in Chapter 2. As outlined 

in Chapter 2, this experimental finding contradicts theoretical accounts proposing that ASC is 

likely to be characterised by pathological undercoupling, involving an excess number of 

temporally decorrelated spikes occurring in the background.  

 

A number of limitations characterise the research work summarised here. The present study did 

not adopt common group-matching design approaches to eliminate confounding factors such as 

the effect of age and cognitive ability. However, we followed the approach suggested by Jarrold 

& Brock (2004) as optimal in ASC and assessed the extent to which significant group differences 

occur after controlling for the factors interacting with the variable of interest (i.e age). In addition, 

this methodology allowed us to deal with the problem of the large sampling interval ranging 

from 6 to 15 years old for the ASC group and 5-14 years old for the TD group and statistically 

account for the significant difference in age between groups in the analysis. Another limitation 

relates to the use of carer-reported measures to confirm ASC diagnostic status and obtain 

information about participants’ comorbid conditions as well as drug intake. This information was 

acquired from carers, who were instructed to complete a number of questionnaires online via the 

platform Qualtrics. Therefore, we cannot rule out response biases related to tiredness, distraction 

and/or confusion when interpreting the questions but also personal attitudes affecting perceptions 

of the child’s behaviour. Nevertheless, this study design allowed us to balance clinical accuracy 
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and speed of data acquisition. A strength of the present study is the inclusion of a large number 

of participants with ASC (n=67), which would not be possible if tools requiring longer 

administration time had been employed. Future work however should incorporate direct 

measures of evaluation to confirm both ASC symptom severity and comorbidity status.  

 

An important next step for future research is to explore whether low ITPC is linked to a specific 

aspect of the ASC behavioural phenotype. Theoretical accounts propose that increased neural 

noise in the sensory systems explain individual differences in sensory sensitivities (Simmons et 

al., 2007). However, previous studies investigating neural noise in the form of low ITPC  have 

not provided adequate mechanistic insight on this process. Milne et al (2019) demonstrated that 

although increased neural noise, measured in the form of low ITPC is observed in the cortex in 

response to visual stimulation, these variables are not associated with core diagnostic domains 

of ASC as assessed by the Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 

and the Adult Repetitive-Behaviors Questionnaire (RBQ-2A, Barrett et al., 2015). Despite the 

fact that the study was designed to evoke neural responses in the sensory cortices, Milne et al. 

(2019) did not investigate the relationship between neural noise and sensory sensitivity, an 

integral aspect of the ASC phenotype. It still unknown how neural noise manifests in relation to 

the subjective sensory experience and/or behavioural sensitivity to the sensory stimuli presented. 

Particularly with regards to ITPC, more evidence is needed to understand whether low ITPC in 

response to sensory stimuli is associated with sensory sensitivities in ASC. The relationship 

between neural noise and autism symptoms, including sensory symptoms, will be directly 

investigated in Chapter 5. 
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Chapter 5:  

The relationship between neural noise and the Autism Spectrum 
Conditions (ASC) phenotype 
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5.1 Introduction 
 

ASC includes large variations in clinical profiles, often explained by distinct genetic etiologies 

(Betancur, 2011). There is now growing recognition that ASC is a heterogeneous condition 

(Happe & Ronald, 2008) and the phenotypic traits associated with it are the result of a complex 

interaction between genetic and environmental factors (Bill & Geschwind, 2009). The 

identification of autism subtypes or subgroups that share common genetic causes has been 

suggested as an alternative approach to the current classification system (Grzadzinski et al., 

2013) ultimately allowing for more targeted interventions and predictive power over treatment 

outcomes. In order to disentangle the complex relationship between genotype and phenotype in 

ASC and understand how gene-environment interactions give rise to such variable clinical 

manifestations, it is paramount to understand individual differences. A more dimensional 

approach, linking phenotypic variations with distinct patterns of neural functioning could 

potentially aid the discovery of endophenotypes, a subset of heritable biological traits indicative 

of genetic vulnerability to ASC (Beauchaine & Constantino, 2017). 

 

5.1.1 Neural variability as a marker of ASC 
 

Although on a theoretical basis, it has been previously suggested that ASC may be associated 

with flatter 1/f noise slope of PSD, indicating pathological undercoupling of oscillatory 

dynamics, evidence provided in previous experimental chapters showed that visual-evoked and 

resting state electrophysiological responses of participants with ASC are not characterized by a 

flatter 1/f slope of PSD compared to typically developing and ADHD participants. In two 

separate experimental studies (Chapter 2 and Chapter 4), the slope of the 1/f noise function did 

not differ between individuals with and without ASC. No other studies have previously 

investigated 1/f noise dynamics in ASC, meaning that these results should be generalized with 

caution. Nevertheless, the above evidence suggests that 1/f slope of PSD is unlikely to be 

capturing neurophysiological underpinnings that are distinct in ASC, therefore it may not be 

meaningful to examine the variable in the context of a neural signature of ASC. 

 

On the other hand, multiple lines of research have shown that ASC is associated with excessive 

neural noise in the form of low ITPC. This is a well-replicated finding both in the present thesis 

and in the wider literature, raising the question of whether it could indeed serve as a valid marker 

of ASC (David et al., 2016). Reduced ITPC is observed in response to a wide range of cognitive 

tasks targeting the visual and auditory modality. In the visual domain, Milne (2011) and Milne 

et al. (2019) report low ITPC in children and adults with ASC during low level visual stimulation. 
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This is in line with Edgar et al. (2015) and van Noordt et al. (2017), who also found that ITPC 

reductions occur in response to tones of various frequencies and during feedback processing of 

rewards and errors respectively. Nevertheless, contrasting evidence is coming from Butler et al. 

(2017) and Yu et al. (2018) (see Table 1.1 of Chapter 1 for an overview of studies measuring 

ITPC in ASC and Section 1.5.5 for a discussion of studies investigating ITPC in clinical ASC 

samples). In summary, low ITPC is reported in the majority of the studies investigating 

electrophysiological dynamics in ASC. 

 

Despite these promising first findings, a closer inspection of the existing literature reveals that 

ITPC may not meet the target levels of sensitivity and specificity to be utilised as a diagnostic tool. 

In previous chapters it was demonstrated that participants with ASC exhibit significantly lower 

ITPC in response to repeated visual stimulation at a group level as compared to an ADHD and a 

typically developing group, both in childhood and adulthood. After careful examination of the 

ITPC distributions, it is evident that at an individual level, some participants with ASC 

demonstrate low ITPC but other participants exhibit similar levels of ITPC to controls, a consistent 

finding suggesting that the variable may not be possible to accurately differentiate between 

participants with and without ASC, despite differing between those with and without ASC at a 

group level. This is in line with a growing body of literature speaking against a single neural profile 

underlying ASC (Milne et al., 2019) but rather recognizes the existence of sub-groups within the 

autism spectrum with clear neurological differences (Ousley & Cermak, 2014). Along this 

argument and as it was demonstrated above, difficulties to synchronise the activity of local neurons 

consistently from trial to trial are reported in some ASC studies but not all. Increased neural 

variability in the form of low ITPC only characterises electrophysiological responses of a subgroup 

of individuals with ASC. Regarding the specificity of the neural correlate, low ITPC in response 

to sensory stimulation is also reported in multiple studies in schizophrenia. For instance, patients 

with schizophrenia have shown reduced alpha band phase-locking at occipital brain regions in 

response to repeated visual stimulation (Basar-Eroglu et al., 2008) and reduced gamma band 

phase-locking in response to both auditory (Light et al., 2006; Perez et al., 2013; Tada et al., 2014) 

and visual stimulation (Koychev et al., 2011).  

 

Therefore, it may not be meaningful to study ITPC in the context of an ASC marker as it lacks 

the relevant sensitivity and specificity to a single disorder, but rather in the context of a 

transdiagnostic marker that cuts through diagnostic boundaries and is linked to clusters of 

symptoms common in a number of conditions. Most importantly, the transdiagnostic marker may 

be indicative of subgroups within clinical groups characterised by neural substrates and 
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phenotypic traits, that are unique to, or more prevalent, in that subgroup. Linked to this, a 

common phenotypic feature amongst the aforementioned clinical groups exhibiting low ITPC is 

the sensory perceptual abnormalities. Sensory symptoms are well-documented in both ASC and 

schizophrenia. Sensory overload (Jones et al., 2003; Javitt & Freedman, 2015), heightened 

perception (Ashburner et al., 2013; Javitt & Freedman, 2015; Zeljic et al., 2021), hallucinations 

(Waters et al., 2014), sensory distortions (Bogdashina, 2003; Davis et al., 2006), altered local-

global processing (Coleman et al., 2009; van der Hallen et al., 2016), are only some of the sensory 

perceptual abnormalities regularly reported in both conditions. It is yet to be confirmed whether 

the presence of more severe sensory symptoms explains why some participants exhibit low ITPC 

as compared to participants that exhibit high ITPC. Further research is necessary to test this 

theory; first establish whether a relationship between sensory symptoms and neural variability 

exists and secondly investigate whether the neural correlate can be used to identify subgroups 

with unique brain-behaviour ‘fingerprints’ within and across clinical groups. 

 

5.1.2 Neural variability and the ASC phenotype  
 

A few studies have previously explored the relationship between neural variability and core ASC 

symptoms but yielded inconsistent results. For example, Dinstein et al. (2012) found moderate 

correlations between ASC symptom severity, as assessed by the Autism Diagnostic Observation 

Schedule (ADOS), and SNRs in three sensory domains, visual (r=-0.24), somatosensory (r=-

0.3), auditory (r=-0.36), providing some evidence that a relationship between trial to trial neural 

variability and ASC phenotypic severity may be present- although this result did not reach 

significance, possibly due to sample size related limitations (n=14). In support of this hypothesis, 

Ethridge et al. (2017) showed that decreased gamma band phase-locking in response to auditory 

stimuli was associated with behavioural measures of sensory sensitivities and social 

communication impairments in a Fragile X Syndrome sample, a single-gene disorder known to 

be linked with high rates of ASD comorbidity (Belmonte & Bourgeron, 2006). In contrast to 

these findings, a recent, larger-scale and more statistically powerful study by Milne et al. (2019) 

found no association between ITPC and cardinal ASC features, including social communication 

difficulties and repetitive and restricted patterns of behaviour, contradicting the above results. 

This study however did not measure sensory symptoms in detail.  

 

A key limitation of the above studies is that they use a wide variety of neuroscientific methods 

(i.e EEG, fMRI) and different analytical approaches to measure neural variability (i.e. ITPC, 

PLF, SNRs etc). Linked to this, Milne et al. (2019) only examined the relationship between ITPC 

and the ASC phenotype in adults with ASC. In addition, as discussed in Chapter 2, the ASC 
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sample recruited by Milne et al. (2019) may not be entirely representative of the ASC profile. 

Therefore, an important next step would be to identify whether there is a relationship between 

ASC symptomatology and ITPC in a potentially more representative sample. It is also important 

to point out that no studies have previously investigated the relationship between 1/f slope of 

PSD and ASC symptoms. Given the inconsistencies of the literature and the gaps in knowledge, 

it is still unclear whether the severity of core diagnostic symptoms influence levels of neural 

noise, therefore more evidence is necessary to clarify this.  

 

As shown above, a key aspect of the ASC phenotype that has not been previously studied in 

relation to neural variability, are the sensory symptoms. From a behavioural perspective, atypical 

response to sensory stimulation is a well-established finding in ASC research, shown to predict 

not only the severity of socio-communicative impairments and repetitive patterns of behaviours 

but also diagnostic outcomes (Turner-Brown et al., 2013). Atypical sensory processing is studied 

primarily in the realm of hyper-reactivity (e.g. aversion to lights, hypersensitivity to sounds, 

avoidance of tactile stimuli, other sensory avoiding behaviours) and hypo-reactivity to incoming 

sensory stimuli (e.g. diminished response to sensory information in the environment, 

insensitivity to pain, tolerance of extreme heat, cold or pressure, visual fascination with bright 

lights, other sensory seeking behaviours) (Baum et al., 2015). However, this framework is 

somewhat simplistic and limiting as other aspects of sensory perception are neglected and not 

integrated into the wider picture. Recently, anomalous perception has received attention, with 

findings suggesting that anomalous sensory experiences are highly prevalent in ASC (Milne et 

al., 2017). Those are assessed in the form of perceptual distortions, hallucinations and unusual 

sensory experiences covering a range of sensory domains.  

 

In the visual modality, this new body of literature came to compliment findings about the 

increased vulnerability of subjects with ASC to pattern-induced illusions and visual distortions 

(Ludlow et al., 2006; Ludlow & Wilkins, 2016; Ludlow et al., 2020); a phenomenon widely 

known as sensitivity to pattern glare (Wilkins & Evans, 2001; Evans & Stevenson, 2008). Pattern 

glare, also known as “visual stress”, refers to a group of visuoperceptual symptoms experienced 

in response to striped and/or checkerboard patterns with specific spatial and temporal 

characteristics (Wilkins et al., 1984; Wilkins, 1995; Wilkins & Evans, 2001; Evans & Stevenson, 

2008). These are taking the form of visual discomfort, headaches, eyestrain and illusions of 

colour, motion and/or shape (Evans & Stevenson, 2008). The strength of discomfort can vary 

and depends on parameters such as the properties of the visual image as well as the person’s 

susceptibility to pattern glare (Evans & Stevenson, 2008). Sensitivity to pattern glare is shown 
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to become greater when patterns have a spatial frequency greater than 3 cycles per degree (cpd), 

a 50% duty cycle and a high contrast (Wilkins et al., 1984; Wilkins, 1995; Evans & Stevenson, 

2008, see Figure 5.1). Such images are “unnatural”, with greater contrast flicker and luminance 

structure deviating from the natural range i.e a Fourier amplitude spectrum of different slope and 

shape to that of natural images (Fernandez & Wilkins, 2008; Penacchio et al., 2015). Figure 5.2 

provides an example of natural and unnatural patterns in the environment; text is a common 

striped pattern known to be eliciting visual perceptual distortions (Wilkins et al., 2007). It has 

been further proposed that uncomfortable images are associated with inefficient encoding in the 

visual cortex manifesting as over-activation of neurons locally (O’Hare & Hibbard, 2011). A 

failure to modulate run-away excitation is suggested to be leading to an E/I imbalance, causing 

the symptoms of visual distortions and discomfort (Evans & Stevenson, 2008; Takarae & 

Sweeney, 2017). In support of this hypothesis, several studies have demonstrated that the 

magnitude of haemodynamic response in the visual cortex is greater when susceptible individuals 

are processing uncomfortable patterns (Migraine: Huang et al., 2003, Photophobia: Alvarez-

Linera Prado et al., 2007, General population: Haigh et al., 2013; Haigh et al., 2015), requiring 

greater metabolic load and that the use of precision tints reduces the strength of cortical activation 

(Migraine: Huang et al., 2011). Multiple lines of research have now shown that coloured lenses 

and coloured overlays can alleviate symptoms of visual discomfort (Evans et al., 2002; Ludlow 

et al., 2008; Evans & Allen, 2016), potentially redistributing excitation in the visual cortex 

(Wilkins, 2021).  

 

Linked to this, a closer look at the literature shows that Gabor patches and checkerboard stimuli 

are frequently used to trigger electrophysiological responses in ASC studies measuring ITPC 

(e.g. Milne, 2011; Milne et al., 2019). As demonstrated above, such visual patterns with high 

spatial frequency and high contrast are shown to cause increased discomfort and induce 

anomalous visual perceptual distortions in individuals susceptible to pattern glare (Wilkins & 

Evans, 2001; Evans & Stevenson, 2008). Additionally, it has been previously established that 

those symptoms are more prevalent in some clinical groups such as patients with photosensitive 

epilepsy (Wilkins et al., 1975; Soso et al., 1980; Radhakrishnan et al., 2005; Millichap, 2005; 

Wilkins et al., 2005), migraine (Harle et al., 2006; Conlon et al., 2012; Shepherd et al., 2013; 

Hayne & Martin, 2019) but also ASC and Tourrette’s Syndrome (Ludlow & Wilkins, 2016). It 

has also been previously suggested that cortical hyperexcitability in response to uncomfortable 

patterns is further captured by reduced SNRs in EEG and fMRI studies (O’Hare & Hibbard, 

2011). It is therefore possible that a relationship between neural noise and anomalous visual 

experiences exists. Given that the stimuli used to measure ITPC are likely to generate a 



 

 194 

“hyperexcitable” visual response in susceptible individuals, it is plausible that atypical levels of 

ITPC would be more likely to be seen in those who are characterised by perceptual sensitivity to 

such patterns. However, this relationship has not been previously examined.  

 

Figure 5.1 

 

 
 

Figure 5.1: A striped pattern of high spatial frequency and high contrast. Reproduced with the 

kind permission of Prof Arnold Wilkins and Prof Bruce Evans. 

 

 

 

Figure 5.2 

 

 
 

Figure 5.2: “Natural” (A) vs “Unnatural” (B) patterns in the environment  
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5.1.3 Aims of the current study  
 

In the present study, we aim to bridge this gap in the literature and investigate the relationship 

between neural variability and core diagnostic symptoms of ASC in a group of children with 

ASC. This will allow us to systematically examine whether neural variability is linked to clusters 

of symptoms specific to the autism phenotype. Phenotypic traits assessed in the study include 

not only social communication impairments and restricted and repetitive patterns of behaviour 

but also sensory symptoms. The analysis presented in this chapter therefore uses the data 

presented in Chapter 4 regarding potential group difference in ITPC and 1/f slope between 

children with and without ASC and uses regression analysis to investigate whether either of these 

two variables predict ASC symptomatology. Although Milne et al (2019) has previously shown 

that social communication impairments and restricted patterns of behaviour do not predict a 

significant proportion of the variance in ITPC in a group of adults with ASC, the present study 

is the first to investigate the relationship between core ASC symptoms and neural noise in 

children with ASC. The present study is also the first to explore the relationship between sensory 

symptoms and neural noise. For that reason, it is not clear what the direction of predictions would 

be. In Chapters 2 and 4, it was demonstrated that the steepness of 1/f slope of PSD does not differ 

in ASC participants compared to typically developing and ADHD sample groups. For that reason 

and in contrast with ITPC, we do not expect autistic traits to be good predictors of 1/f slope of 

PSD.  

 

The relationship between neural variability and sensory symptoms specific to the visual modality 

is also examined. Task characteristics of the EEG study i.e the spatial frequency of checkerboard 

stimuli repeatedly presented on a screen, are likely to be triggering perceptual distortions better 

measured in the context of anomalous perceptual experiences specific to the visual stream, rather 

than the overall sensory symptomatology. Sensory symptoms, as measured in the first 

hypothesis, cover a wide range of sensory modalities i.e visual, auditory, tactile and others, 

providing a general picture of sensory processing abnormalities in the sample. Vision-related 

sensory symptoms in the second hypothesis refer to perceptual distortions, hallucinations and 

unusual sensory experiences specific to the visual domain. These are measured in the present 

study in the form of visual symptoms and pattern-induced visual distortions. By focusing 

specifically on anomalous visual experiences, one can assess whether increased neural variability 

in the form of low ITPC is associated with subclusters of sensory symptoms that are not specific 

to ASC, but rather they occur in other clinical and nonclinical populations characterised by visual 

cortical hyperexcitability, such as migraine and photosensitive epilepsy (Haigh et al., 2012; 

Wilkins et al., 1984). To our knowledge this is the first study to investigate the relationship 



 

 196 

between neural variability as measured by two distinct variables, ITPC and 1/f noise slope of 

PSD, and anomalous visual symptoms. Given that no studies have previously examined this 

relationship, it is difficult to predict with certainty the outcome of this analysis. Nevertheless, 

there is abundant evidence that participants with ASC are more sensitive to pattern glare, which 

is biologically attributed to cortical hyperexcitability of the visual cortex and on this basis, we 

expect a relationship between neural variability, visual symptoms and visual distortions to exist. 

 

5.2 Materials and Methods 
 

5.2.1 Participants 
 
Seventy-three participants with ASC were initially recruited for the study. From this cohort, four 

participants could not tolerate the EEG process and parents of two participants did not complete 

the psychometric assessments, therefore sixty-seven participants were included in the present 

study in total. The flow of participants from recruitment to final participation is shown in Figure 

5.3. Descriptive information for the group is provided in Table 5.1. Participants were primarily 

recruited via online advertisement on social media, mainstream and special schools and the local 

community. Participants held a diagnosis of either Autism Spectrum Disorder/Condition (n=56) 

or Asperger’s Syndrome (n=11). A comprehensive overview of the formally diagnosed comorbid 

conditions in the group is provided in Table 5.3. The majority of the participants remained non-

medicated for twenty-four hours prior to the experiment (n=55). However, twelve participants 

were taking medication at the time of data collection (Table 5.2). All participants had normal or 

corrected to normal visual acuity.  

 

The following exclusion criteria were applied to the group: participants that (a) their carers did 

not speak English to a sufficient level to be able to complete the questionnaires, (b) had epilepsy 

and/or (c) a mental health condition such as personality disorder, bipolar disorder, psychotic 

disorder did not take part in the study. Neurophysiological data were collected and analysed from 

sixty-seven participants in total. Five participants did not complete the resting-state part of the 

experiment (see Figure 5.3). For that reason, the task-based EEG analysis was performed on data 

acquired from sixty-seven participants and the resting-state EEG analysis on data acquired from 

sixty-two participants. Consent from both the child and the carer was acquired in written form. 

Ethical guidelines were followed throughout according to the standards set by the Ethics 

Committee at the University of Sheffield. 
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Table 5.1 

Participant demographics  

 ASC (n=67) 

Gender  

Female 15 

Male 52 

Age  

Mean 11.0 

SD 2.3 

Range 6-15 

WASI Performance IQ  scorea 

Mean 109.0 

SD 14.7 

Range 78-147 

SRS-2 scoreb  

Mean 84.0 

SD 6.7 

Range 68- >90 
aWASI Performance IQ score, Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) 
bSRS- 2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 
cCPRS-R:S, Conners' Parent Rating Scale- Revised, Short version (CPRS-R: S, Conners, 1997) 
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Table 5.2 

Regular drug intake of participants  

Drug   

 Frequency  Percent (%) 

Asthma medication    

Corticosteroids (i.e Pulmicort, Montelukast, 
Beclometasone) 

2  2.98 

ADHD medication    

Methylphenidate (i.e Equasym, Delmosart) 2  2.98 

Lisdexamfetamine 1  1.49 

Atomoxetine 1  1.49 

Sleeping disorder medication   

Melatonin (i.e Circadian)  6  8.95 

Diabetes medication    

Insulin 1  1.49 

Depression medication    

SSRIs 2  2.98 

Antipsychotic medication    

Risperidone 1  1.49 

Constipation medication    

Sodium picosulfate 2  2.98 
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Table 5.3 

Number of participants with a diagnosed comorbid condition 

Diagnosis   

 Frequency  Percent (%) 

Total  42  62.68 

Sensory Processing Disorder 7  10.44 

ADHD 7  10.44 

Dyspraxia 4  5.97 

Anxiety Disorder 6  8.95 

Social Communication Disorder 2  2.98 

Intellectual Disability 1  1.49 

ADHD & Sensory Processing Disorder 2  2.98 

ADHD & Intellectual Disability 1  1.49 

ADHD & Dyspraxia 1  1.49 

ADHD & Anxiety Disorder 1  1.49 

Intellectual Disability & Sensory Processing Disorder 1  1.49 

Intellectual Disability & Dyspraxia 1  1.49 

Sensory Processing Disorder & Dyspraxia 1  1.49 

Sensory Processing Disorder & Anxiety Disorder 1  1.49 

Anxiety disorder & Depressive Disorder  1  1.49 

Sensory Processing Disorder, Dyspraxia & Anxiety Disorder 2  2.98 

Sensory Processing Disorder, Intellectual Disability & 
Dyspraxia 

1  1.49 

Intellectual Disability, Social Communication Disorder & 
Anxiety Disorder 

1  1.49 

Tourette's Syndrome, Sensory Processing Disorder, Dyspraxia 
& Anxiety Disorder 

1  1.49 

Tourette's Syndrome, ADHD, PDA, Sensory Processing 
Disorder & Motor Disorder 

1  1.49 
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Figure 5.3 

 

Figure 5.3: Number of participants included in the study after exclusion criteria was applied 

  



 

 201 

5.2.2 Psychometric measures 
 
Caregivers completed four online questionnaires assessing social communication deficits, 

restricted and repetitive patterns of behaviour and sensory symptoms associated with ASC: the 

Social Responsiveness Scale-Revised Child/Adolescent (SRS-2, Constantino & Gruber, 2011), 

the Repetitive Behaviours Questionnaire (RBQ-2, Leekam et al., 2007), the Sensory Behaviour 

Questionnaire (SBQ, Neil, Green & Pellicano, 2017) and the “Hallucinations” subscale of the 

Specific Psychotic Experiences Questionnaire (SPEQ, Ronald et al., 2013).  

 

Participants completed three tasks aiming to assess their perceptual reasoning and the degree of 

visual distortions experienced. The Matrix Reasoning and the Block Design subtests of the 

Wechsler Abbreviated Scales of Intelligence (WASI, Wechsler, 1999) were used to measure 

performance IQ and the Pattern Glare Test (Wilkins & Evans, 2001) was used to assess the 

degree of sensitivity to pattern glare.  

 

Social communication impairments 

The Social Responsiveness Scale-Revised Child/Adolescent version (SRS-2, Constantino & 

Gruber, 2011), containing sixty-five 4-point Likert scale items, was used to identify the presence 

and severity of social impairments associated with ASC. A single raw score for social 

communication and interaction was produced by summing the scores of the “Social awareness”, 

“Social Cognition”, “Social Communication” and “Social Motivation” treatment subscales (53 

items in total). The raw score produced, was converted into a T-score for every subject, taking 

into account the gender and age.  

 

Repetitive and restricted patterns of behaviour 

The Repetitive Behaviours Questionnaire (RBQ-2, Leekam et al., 2007), a 20-item questionnaire 

was used to assess the severity of restricted and repetitive patterns of behaviour linked with the 

autism phenotype. A total score, indexing the severity of restricted and repetitive behaviours was 

calculated from the three factors “repetitive motor movements”, “rigidity/adherence to routine”, 

“preoccupation with restricted patterns of interest” (15 items in total). Items referring to sensory 

symptoms (factor 4) were not included in the total score to ensure the assumption of 

multicollinearity is not violated in the multiple regression analysis. Sensory symptoms are 

assessed by a separate variable in the regression model (see Sensory symptoms (general) section 

below).   
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Sensory symptoms (general) 

In addition to the above, caregivers completed the Sensory Behaviour Questionnaire (SBQ, Neil 

et al., 2017), a 50-item carer report instrument designed to measure both the frequency and 

intensity of twenty-five sensory symptoms in a number of different sensory modalities: auditory, 

visual, vestibular, proprioceptive, tactile, gustatory and olfactory. SBQ has been standardised in 

an ASC child sample and has shown excellent internal consistency and concurrent validity (Neil 

et al., 2017). The tool assesses unusual reactions to a number of sensory stimuli, rather than just 

hypo, hyper- sensitivity to sensory input, and therefore is a good indicator of the presence of 

sensory processing abnormalities. Each question is scored on a 6-point Likert scale with lower 

scores showing greater frequency/intensity of sensory symptoms (ranging from “All the time- 

Never” for the frequency part, “An extreme problem-Not at all” for the intensity part). The 

frequency subscale scores were used to calculate a total score, which is indicative of the unusual 

sensory behaviours occurring in the sample tested.  

 

Visual symptoms (domain specific) 

The 9-item “Hallucinations” subscale of the Specific Psychotic Experiences Questionnaire 

(SPEQ, Ronald et al., 2013) was used to measure anomalous sensory experiences of each subject, 

as reported by their caregiver. Given the lack of reliable anomalous perception instruments, 

developed for children in specific, the SPEQ is the only existent tool measuring- amongst other 

constructs- anomalous experiences in the form of hallucinations in young individuals.  

 

SPEQ was initially designed to assess both positive and negative psychotic symptoms in 

typically developing adolescence, the former via self-report and the latter via caregiver-report. 

The Hallucinations subscale in specific, was developed as a self-report measure, however in the 

present study it is used as a caregiver measure. This is because individuals with ASC are known 

to experience difficulties with self-report (Mazefsky et al., 2011) and SPEQ questions can 

present as difficult and confusing, particularly to younger children with ASC, some of which 

have limited communicative abilities or have comorbid intellectual disability. 

 

For the purposes of the present study, a composite score, providing an indication of the sensory 

symptoms specific to the visual modality of the individual was computed from the SBQ and the 

SPEQ, by summing the visual items of each scale (4 and 2 items respectively).  
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Visual distortions (domain specific) 

The Pattern Glare Test (Wilkins & Evans, 2001) was used to measure the degree of visual 

distortions experienced by participants in response to three square wave gratings, each one 

presented in a different spatial frequency, 0.5, 3 and 12 cycles per degree (cpd). Gratings are 

shown in Figure 5.4. During the testing session, participants were asked to fixate on a dot in the 

middle of the striped pattern and report the number of visual distortions experienced post pattern 

presentation. The total sensitivity to pattern glare was calculated by summing the number of 

reported distortions on the three gratings (Wilkins & Evans, 2001).  

Figure 5.4 

 

 

Figure 5.4: The Pattern Glare Test. Reproduced with the kind permission of Prof Arnold Wilkins 

and Prof Bruce Evans 
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It is important to note that comprehensive investigation was initially conducted to ensure that the 

psychometric tools used to measure the variables of interest (predictor variables) are age and 

gender appropriate and are standardised in ASC samples. For example, a comprehensive 

overview of the current psychometric tool availability and the caveats associated with each tool 

is presented for the sensory domain in Annex 10. Reliability statistics for the scores used for 

further analysis are presented below (Table 5.4). 

 

Table 5.4 

Reliability statistics for the predictor variables Social Communication Impairments (SCI), 

Repetitive and Restricted Patterns of Behaviour (RRB), Sensory Symptoms (SS) and Visual 

Symptoms (VS) used for further analysis 

Subscale Scale Predictor 
variable 

No. 
items 

Cronbach’s 
Alpha 

M SD 

SCI t-score SRS-2a SCI 53 0.90 83.37 7.15 

Total of Factor 1,2,3 RBQ-2b RRB 15 0.83 41.48 8.53 

Total of “Frequency” subscale SBQc SS 25 0.90 62.45 22.26 

Composite score for visual items SBQ, SPEQd VS 6 0.77 8.21 6.13 
aSRS-2, Social Responsiveness Scale (SRS-2, Constantino & Gruber, 2011) 
bRBQ-2, Repetitive Behaviours Questionnaire (RBQ-2, Leekam et al., 2007) 
cSBQ, Sensory Behaviour Questionnaire (SBQ, Neil, Green & Pellicano, 2017) 
dSPEQ, Specific Psychotic Experiences Questionnaire (SPEQ, Ronald et al., 2014) 
 
 
5.2.3 Procedure 
 
Upon arrival, the experimenter explained in detail what the EEG process entails. The participant 

then completed a test-trial to familiarise themselves with the EEG task. Participants first 

completed the EEG experiment, followed by the Pattern Glare test, the matrix-reasoning and the 

block-design subtest of the WASI. Parents were asked to complete the questionnaires online on 

the same day of the testing session via the online platform Qualtrics. 

 
5.2.4 EEG experiment 
 
The EEG experiment consisted of a task-based condition followed by a resting state condition, 

explained in detail in Section 4.2.3 of Chapter 4. 
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5.2.5 Data preprocessing  
 
A summary of the preprocessing steps followed in this study to extract the variables indexing 

neural noise are presented in Section 4.2.4 of Chapter 4.  

 
5.2.6 Data integrity 
 

A series of extra analysis steps were carried out in order to ensure that EEG data quality was 

similar across different datasets. For each participant, it was established that the number of 

epochs were the same in the final ITPC vs 1/f noise task-based dataset.  

 

Table 5.5 

Mean (M), Standard Deviation (SD, Range of artefact-free EEG channels and experimental 

trials retained for further analysis 

EEG channels retained  

Mean 26 

SD 2.9 

Range 16-30 

Experimental trials retained  

Mean 88.48 

SD 5.53 

Range 71-96 

*p<0.5, **p<0.01, ***p<0.001 

 

 

5.2.7 EEG data preparation for Inter- Trial Phase Coherence analysis 
 

5.2.7.1 Data preprocessing 
 

Additional preprocessing steps were followed to prepare the task-based data for ITPC analysis. 

Data was segmented into epochs, from -1 to 1 secs around stimulus onset, and corrected to 

baseline, using the average signal between 1 sec before stimulus onset to stimulus onset. 
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5.2.7.2 Data selection 
 

Independent Component selection 

ITPC was extracted from Independent Components (ICs) rather than channels (Milne, 2011; 

Milne, Gomez, Giannadou & Jones, 2019). Independent Component Analysis (ICA) is a method 

of blindly separating sources of signal, which are linearly mixed when recorded from several 

sensors of scalp EEG. The ICA algorithm separates the mixed signal into spatially independent 

components of source signal, which are less contaminated with noise generated by other cortical 

and non- cortical sources. For that reason, we performed further analysis on ICs rather than 

channels, which are known to be sensitive to such noise artefacts.  

 

ICA decomposition was performed using the runica function of EEGLAB, which utilises the 

informax ICA algorithm of Bell & Sejnowski (1995) with the natural gradient characteristics 

suggested by Amari, Cichocku & Yang (1996). ICA, applied on individual participant scalp data, 

returned as many components as the number of channels kept for further analysis after 

preprocessing. Time-frequency analysis was then performed on all ICs (see Section 5.2.7.2). For 

each participant, we calculated ITPC for every IC and selected the single IC with maximum 

ITPC for further analysis. Visual inspection of the IC scalp maps of the IC selected from each 

participant revealed that the selected ICs were projected at the occipital lobe, suggesting that 

they were reflection activation of the visual cortex. Scalp maps of the IC with max ITPC chosen 

for each participant is presented in Figure 5.5 and Figure 5.6. The ERP of the selected 

components was also examined further confirming that the signal source was at the visual cortex. 
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Figure 5.5 

 
Figure 5.5: Scalp maps of the Independent Component with maximum ITPC selected for participants 1-35. 
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Figure 5.6 

 
Figure 5.6: Scalp maps of the Independent Component with maximum ITPC selected for participants 36-67.
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5.2.7.3 Data analysis 
 

Time-frequency analysis 

Time-frequency decomposition of EEG single-trial data was performed using the newtimef 

function of EEGLAB (Delorme & Makeig, 2004). The time series data was convolved with a 

complex Morlet wavelet, defined as a sinusoid with a Gaussian shape. The wavelet ranged from 

2 to 12.5 cycles at 558 ms intervals (equivalent to 279 samples). The length of the average vector 

of the phase angles was computed for 200 evenly spaced time-frequency points (-720.7 to 720.7 

ms) and was estimated for 23 log-spaced frequencies, ranging from 4 to 50Hz (see Section 

2.2.6.2 for a detailed explanation of time-frequency analysis). A single ITPC value, representing 

the maximum ITPC generated from any independent component at any frequency and at any 

time point, was extracted for each participant in the group and was used for group analysis. 

 

Compared to the methodology followed in Chapter 2, frequencies were logarithmically rather 

than linearly spaced. This allowed to capture the lower end of the frequency spectrum, which 

could not be captured if linear scaling had been used (see p.165, Cohen, 2014 for a discussion 

on logarithmic vs linear scaling). To ensure that this step did not change maximum ITPC values 

we measured maximum ITPC using both logarithmic and linear scaling and compared the results. 

An independent samples t-test showed that there was no difference between the maximum ITPC 

computed using linear versus logarithmic scaling (F(132)=0.22, p=0.33).  

 

Table 5.6 

Mean (M), Standard Deviation (SD), Minimum (Min) and Maximum (Max) value of maximum 

ITPC and the average Frequency (Hz) it occurs at, as computed from a) linearly and b) 

logarithmically spaced frequencies 

 
 M SD Min Max Frequency (Hz) 

max ITPC using linear scaling 0.74 0.14 0.40 0.96 7 

max ITPC using logarithmic scaling 0.76 0.13 0.39 0.97 4 
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5.2.8 EEG data preparation for 1/f noise analysis 
 

5.2.8.1 Data preprocessing 
 

Task-based and resting state data were further preprocessed in preparation for 1/f noise analysis 

(see Section 4.2.4 in Chapter 4 for a summary of steps). The preprocessing approach we followed 

here differs from the approach taken in the preparation of the task- based data for ITPC analysis. 

The main objective of the ITPC analysis pipeline was to separate the mixed signal and select one 

source of signal to analyse, whereas primary aim of the 1/f preprocessing analysis is to ensure 

that the mixed EEG signal is clean and free of noise artefacts so that power spectral estimations 

are accurate and attributed to brain functions rather than external sources of electrical 

interference.  

Eye-blink components were visually identified from the ICA maps and removed as suggested in 

the 1/f analysis pipeline followed by Peterson et al. (2017). In order to replace the missing 

channels, all datasets were interpolated using the channel interpolation function from the 

EEGLAB gui. Data were then referenced to average reference and segmented into epochs. Task- 

based data were epoched from -1 to 1 secs around stimulus onset and pre- stimulus baseline 

removal was performed at 1 sec. Similar to the methodology followed in experimental study 1, 

resting state data were segmented into 2 secs epochs. 

 

5.2.8.2 Data selection 
 

Power Spectral Density estimation 

The Welch’s method (Welch, 1967) was used for Power Spectral Density (PSD) estimation. The 

Welch’s method is explained in detail in Chapter 2. In brief, the Welch method minimises this 

variance by averaging out the spectral content of short windows of signal. Each dataset was 

segmented into blocks with 50% overlap between them. A modified periodogram was then 

computed for each block using a 2- second Hamming data window. The periodograms for each 

block were averaged out to produce the final PSD periodogram. A linear regression line was then 

fitted to the data to model an inversely proportional relationship between PSD and frequency, of 

the form , where Pf  is the power spectra per frequency interval f, k is a random constant 

and α is the scaling exponent. Power spectra was plotted in log coordinates. The log-transform 

of the power function is a straight line with a negative slope α and an intercept c (Figure 5.7). 

1/f slopes of PSD were estimated from frequencies between 0- 24Hz (Voytek et al., 2015), 
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effectively excluding high frequency bands from the analysis, as they are more likely to reflect 

intrinsic channel noise, rather than neural processes. Alpha band power (7-14Hz) was also 

excluded prior to 1/f slope estimation, as it represents changes in periodic EEG patterns, biasing 

estimations of the non- periodic properties of the signal i.e. 1/f noise (Voytek et al., 2015). Alpha 

band power was not excluded a priori (for example by band pass filtering) instead an identical 

method to previous research (Voytek et al., 2015) was used in which the alpha component of the 

calculated power spectra was removed simply by replacing the characteristic peak of the alpha 

wave with a straight line between the data points of the power associated with 7 and 14Hz 

frequencies (Figure 5.7B versus Figure 5.7A, previous chapter too). Spectral slopes of all 

electrodes for participant 26 are presented in Annex 8. 

 

Figure 5.7 

 
Figure 5.7: Log-transformed Power Spectral Density (log10 Power) of signal coming from a 

single electrode CP5, is presented here as a function of frequencies (f) ranging from A) 0-250Hz, 

B) 2-24 Hz including alpha band and C) 2-24 Hz excluding alpha band. A regression line with a 

negative slope a= -0.063614 is fitted to the data in graphs B and C. 
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5.2.8.3 Data analysis 
 

A single value representing the 1/f slope of PSD at each electrode was calculated for all 

electrodes and for all participants in the group. The mean slope of all 32 electrodes was computed 

for every participant as shown in Figure 5.8. The same approach was followed to extract the 

value of the slope from both the task-based and the resting state datasets. 

 

Figure 5.8 

 
Figure 5.8:  The mean slope of all 32 electrodes was computed for every participant  
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5.2.9 Regression analysis 
 
Task-based condition 

A series of multiple regression analyses were performed to examine the relationship between 

neural noise (dependent variable) and core diagnostic symptoms of ASC (independent 

variables). To investigate the extent to which social communication impairments (SCI), 

repetitive and restricted patterns of behaviour (RRB) and sensory symptoms (SS) can predict 

levels of neural noise, two regression models were fitted into the data. Model 1 examined the 

relationship between neural noise, as measured by ITPC and core diagnostic symptoms of ASC. 

Model 2 examined the relationship between neural noise, as indexed by 1/f slope of PSD 

(extracted from the task-based data) and core diagnostic symptoms.  

 

Multiple regression analysis was also conducted to investigate the relationship between neural 

noise (dependent variable) and sensory symptoms specific to the visual modality (independent 

variables). Visual perceptual symptoms were represented in the regression equation by two 

predictor variables, visual symptoms (VS) as measured by a composite score derived from 

SBQ and SPEQ and visual distortions (VD) as measured by the Pattern Glare test (see Section 

4.2.2 for a detailed description). To investigate the extent to which VS and VD can predict 

neural noise, two models were constructed; maximum ITPC was entered as a dependent 

variable in Model 3 and 1/f slope of PSD was entered as a dependent variable in Model 4.  

 

Resting state condition  
Following the same approach as above, model 5 examined the relationship between neural 

noise, as measured by 1/f slope of PSD (extracted from the resting state data) and core 

diagnostic autism symptoms. Model 6 examined the relationship between neural noise, as 

measured by 1/f slope of PSD (extracted from the resting state data) and sensory symptoms 

specific to the visual modality.  
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5.3 Results 
 
5.3.1 Descriptive statistics 
 
Descriptive statistics for the dependent and independent variables used in the regression 

analysis are presented in Table 5.7. Further details about the specific psychometric measures 

used are provided in Section 4.2.2. 

 

Table 5.7 

Number of participants (N), Mean values (M), Standard Deviations (SD), Minimum (Min) 

and Maximum (Max) values of the variables used in the regression analysis 

 

 

Maximum ITPC extracted from the Independent Components was observed primarily in the 

theta band (4-7Hz) (Figure 5.9). Average maximum ITPC maps computed for the group are 

presented in Figure 5.10. Scalp maps representing the mean 1/f slope of PSD computed for the 

task-based condition and the resting-state condition are presented in Figure 5.11. Individual 

maximum ITPC heat maps computed for all participants are presented in Annex 9 (see ASC 

group). 

  

 n M SD Min Max 

Independent Variables      

Social Communication Impairments 67 83.37 7.15 66 90 

Repetitive and Restricted Behaviours 67 41.48 8.53 25 58 

Sensory Symptoms 67 62.45 22.26 2 115 

Visual Symptoms 65 8.29 6.18 0 22 

Visual Distortions 65 7.20 3.39 0 15 

Dependent Variables      

Maximum ITPC (task-based) 67 0.76 0.13 0.39 0.97 

1/f slope of PSD (task-based) 67 -0.06 0.01 -0.09 -0.03 

1/f slope of PSD (resting state) 62 -0.07 0.01 -0.11 -0.04 
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 Figure 5.9 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Figure 5.9: Frequency (Hz) where maximum ITPC was observed 

 

 

Figure 5.10 

 

 
Figure 5.10: Average maximum ITPC maps computed for all participants (n=67) 

 

  

Theta band (4-8Hz) Alpha band (8-12Hz) Beta band (12-30Hz) 

Theta band (4-8Hz) 

Alpha band (8-12Hz) 

Beta band (12-30Hz) 
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Figure 5.11 

 

1/f slopes 

 

 
 

Figure 5.11: Scalp maps representing the mean slope computed for the task-based condition 

(n=67) and the resting-state condition (n=62). 

 

5.3.2 Regression Analysis 
 
Task-based condition 
 
Model 1 

Scatterplots revealed that the relationship between maximum ITPC (dependent variable) and 

SCI, RRB and SS scores (independent variables) was linear. Inspection of both the histogram 

and the normal Q-Q plot of the residuals showed that the errors between observed and predicted 

values were approximately normally distributed. Residuals versus predicted values were 

plotted and showed that residual variance is homoscedastic. The Durbin-Watson test, as a 

measure of autocorrelation, was also computed and confirmed that the assumption of 

independence of residuals was met (d=1.58). The assumption of multicollinearity was also 

tested a) by estimating a Pearson’s bivariate correlation matrix amongst the SCI, RRB and SS 

scores (independent variables) and b) by computing the Variance Inflation Factor (VIF). 

Collinearity statistics indicated that the predictor variables were not too highly correlated. The 
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correlation matrix of the independent variables produced small eigenvalues of the range 0.00-

0.06. Eigenvalues close to 0 indicate that an exact linear dependence exists. Correlation 

coefficients were below 0.8 and VIF scores were below 10 with tolerance scores above 0.2 

(Table 5.8).  

 

Table 5.8 

Pearson's correlation coefficients, Tolerance and Variation Inflation Factors (VIF), for the 

independent variables included in Model 1, Model 2 and Model 5  

*indicates p<0.05, **indicates p < 0.001 

 

The above indicated that all assumptions for regression analysis were satisfied. Multiple 

regression analysis was performed to investigate the relationship between maximum ITPC and 

core diagnostic symptoms of ASD. The results of the multiple regression analysis indicated 

that the overall Model 1 fitted to the data was not significant and therefore the SCI, RRB and 

SS scores together were not good predictors of maximum ITPC (F(3, 63)=1.17, p=0.32, 

R2=0.05). A non-significant result was also yielded when each independent variable was 

isolated from all others in the model (see p-values, Table 5.9). 

 

Table 5.9 

Regression analysis summary of core diagnostic symptoms of ASC predicting maximum ITPC 

(Model 1) 

*indicates p<0.05, **indicates p < 0.001 

  

Variable 1 2 3 Tolerance VIF 

1. Social Communication Impairments    0.70 1.42 

2. Repetitive and Restricted Behaviours 0.51**   0.38 2.60 

3. Sensory Symptoms 0.51** 0.77**  0.38 2.61 

Variable B 95% CI b t p 

1. Social Communication Impairments -0.00 [-0.01, 0.00] -0.21 -1.48 0.14 

2. Repetitive and Restricted Behaviours -0.00 [-0.00, 0.00] -0.06 -0.31 0.75 

3. Sensory Symptoms 0.00 [-0.00, 0.00] 0.04 0.21 0.83 
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Model 2 
Having established that the assumption of multicollinearity was not violated, scatterplots of 1/f 

slope of PSD (dependent variable) and SCI, RRB and SS scores (independent variables) were 

visually inspected to assess whether the assumption of linearity in the model was met. These 

revealed a linear relationship between dependent and independent variables. Subsequent 

inspection of the histogram and the normal Q-Q plot of the residuals showed that the residuals 

were normally distributed. A scatterplot of the residuals plotted against the predicted values 

indicated that the error term was the same width for all values of the predicted data and 

therefore homoscedastic. The Durbin-Watson test showed that autocorrelation in the residuals 

were within the acceptable levels, in the range of 1.5 to 2.5 (d=1.62). 

 

Given that all assumptions were met, multiple regression analysis was performed to examine 

the relationship between 1/f slope of PSD (extracted from the task-based data) and core 

diagnostic symptoms of ASD. The probability value for Model 2 did not reach the threshold of 

0.05, indicating that the SCI, RRB and SS scores together can only explain a very small amount 

of the variance of the dependent variable 1/f slope of PSD (F(3, 63)=0.34, p=0.79, R2=0.01). 

The results remained non-significant both when the overall model was fitted and when the 

independent variables were considered separately (Table 5.10).  

 

Table 5.10 

Regression analysis summary of core diagnostic symptoms of ASC predicting 1/f slope of PSD 

as extracted from the task-based data (Model 2) 

*indicates p<0.05, **indicates p < 0.001 

 
 
  

Variable B 95% CI b t p 

1. Social Communication Impairments 0.00 [0.00, 0.00] 0.09 0.65 0.51 

2. Repetitive and Restricted Behaviours 0.00 [-0.00, 0.00] -0.10 -0.50 0.61 

3. Sensory Symptoms -0.00 [0.00, 0.00] -0.05 -0.28 0.77 
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Model 3  
Scatterplots revealed that the relationship between maximum ITPC (dependent variable) and 

VS and VD scores (independent variables) was linear. Inspection of both the histogram and the 

Q-Q plot of the residuals showed that the errors between observed and predicted values were 

approximately normally distributed. A scatterplot of the residuals versus predicted values 

showed that residual variance was homoscedastic. The Durbin-Watson test confirmed that the 

assumption of independence of residuals was met (d=1.85). Collinearity statistics indicated 

that the assumption of multicollinearity was satisfied. The predictor variables were not too 

highly correlated; the correlation matrix of the independent variables produced small 

eigenvalues of the range 0.09-0.24, correlation coefficients were below 0.8 and VIF scores 

were below 10 with tolerance scores above 0.2 (Table 5.11).  

 

Table 5.11 

Pearson's correlation coefficients, Tolerance and Variation Inflation Factors (VIF), for the 

independent variables included in Model 3, Model 4 and Model 6  

*indicates p<0.05, **indicates p < 0.001 

 

The above shows that all assumptions for regression analysis were satisfied. Multiple 

regression analysis was performed to investigate the relationship between maximum ITPC and 

sensory symptoms specific to the visual modality. The results indicated that VS and VD scores 

combined were moderately predicting maximum ITPC (F(2, 62)=6.84, p=0.00), accounting 

for 18% of the total variance in maximum ITPC (R2=0.18). When the effects of these predictor 

variables were examined separately, VD was a statistically significant predictor of maximum 

ITPC, explaining 15% of the variation in maximum ITPC, but VS did not account for a 

significant amount of variance in the dependent variable (Table 5.12). The relationship between 

maximum ITPC and VD is captured by the scatterplot in Figure 5.12. Although Model 3 

reaches statistical significance, only, leaving a large amount of variance unexplained.  

 

  

Variable 1 2 Tolerance VIF 

1. Visual Symptoms   0.95 1.04 

2. Visual Distortions 0.20  0.95 1.04 
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Table 5.12 

Regression analysis summary of sensory symptoms specific to the visual modality predicting 

maximum ITPC (Model 3) 

*indicates p<0.05, **indicates p < 0.001 

 

 

Figure 5.12  

 

 
Figure 5.12: Scatterplot showing the relationship between maximum ITPC and Visual 

Distortions. 

 

 

 

 

 

  

Variable B 95% CI b t p 

1. Visual Symptoms -0.00 [-0.01, 0.00] -0.18 -1.56 0.12 

2. Visual Distortions  0.02 [0.00, 0.03] 0.42  3.61    0.00** 
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Model 4 
Scatterplots revealed that the relationship between 1/f slope of PSD (dependent variable) and 

VS and VD scores (independent variables) was linear. Inspection of both the histogram and the 

Q-Q plot of the residuals showed that the errors between observed and predicted values were 

approximately normally distributed. A scatterplot of the residuals versus predicted values 

showed that residual variance was homoscedastic. The Durbin-Watson test confirmed that the 

assumption of independence of residuals was met (d=1.67).  

 
Subsequently, multiple regression analysis was performed to examine the relationship between 

1/f slope of PSD (extracted from the task-based data) and sensory symptoms specific to the 

visual modality. Model 4 did not reach significance, indicating that VS and VD combined can 

only explain a very small amount of the variance of the dependent variable 1/f slope of PSD 

(F(2, 62)=0.22, p=0.66, R2=0.02). The results remained non-significant both when the overall 

model was fitted and when effects of the independent variables were isolated (Table 5.13).  

 

Table 5.13 

Regression analysis summary of sensory symptoms specific to the visual modality predicting 

1/f slope of PSD as extracted from the task-based state data (Model 4) 

*indicates p<0.05, **indicates p < 0.001 

 

 
 
 
 
  

Variable B 95% CI b t p 

1. Visual Symptoms 0.00 [-0.00, 0.00] 0.13 1.00 0.31 

2. Visual Distortions  0.00 [-0.00, 0.00] -0.09  -0.76  0.44 



 

 222 

Resting state condition  
 
Model 5 

Scatterplots of 1/f slope of PSD (dependent variable) plotted against SCI, RRB and SS scores 

(independent variables) revealed a linear relationship between them. A histogram with a 

superimposed normal curve and a normal Q-Q plot of the residuals showed that they are 

approximately normally distributed. A scatterplot of the residuals plotted against the predicted 

values indicated that the data is homoscedastic. The Durbin-Watson statistic showed that the 

assumption of independence of residuals was also met (d=1.76). 

 

Given that all the relevant assumptions were satisfied, multiple regression analysis was 

performed to examine the relationship between 1/f slope of PSD as extracted from the resting 

state data and core diagnostic symptoms of ASD. Model 5 was not statistically significant, 

indicating that the SCI, RRB and SS scores together can only explain a very small amount of 

the variance of the dependent variable 1/f slope of PSD (F(3, 58)=0.45, p=0.71, R2=0.02). The 

results remained non-significant both when the overall model was fitted and when the 

independent variables were considered separately (Table 5.14).  

 

Table 5.14 

 Regression analysis summary of core diagnostic symptoms of ASC predicting 1/f slope of PSD 

as extracted from the resting-state data (Model 5) 

**indicates p < 0.01 

 

 
 
 
 
  

Variable B 95% CI b t p 

1. Social Communication Impairments 0.00 [-0.00, 0.00] -0.04 -0.28 0.78 

2. Repetitive and Restricted Behaviours 0.00 [-0.00, 0.00] -0.17 -0.80 0.42 

3. Sensory Symptoms 0.00 [0.00, 0.00] 0.24 1.16 0.24 
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Model 6 
 Scatterplots revealed that the relationship between 1/f slope of PSD (dependent variable) and 

VS and VD scores (independent variables) was linear. Inspection of both the histogram and the 

Q-Q plot of the residuals showed that the errors between observed and predicted values were 

approximately normally distributed. A scatterplot of the residuals versus predicted values 

showed that residual variance is homoscedastic. The Durbin-Watson test confirmed that the 

assumption of independence of residuals was met (d=1.96).  

 
Given that all the relevant assumptions were satisfied, multiple regression analysis was 

performed to examine the relationship between 1/f slope of PSD as extracted from the resting 

state data and sensory symptoms specific to the visual modality. Model 6 did not reach 

significance, indicating that VS and VD combined can only explain a very small amount of the 

variance of the dependent variable 1/f slope of PSD (F(2, 59)=1.60, p=0.21, R2=0.05). The 

results remained non-significant both when the overall model was fitted and when effects of 

the independent variables were isolated (Table 5.15).  

 

Although not statistically significant, results showed a trend which suggested that VS may be 

a predictor of 1/f slope of PSD. Nevertheless, further analysis showed that VS can predict less 

than 10% of the variance in 1/f slope. The lack of a relationship between the two variables was 

further confirmed by a scatterplot, presented in Figure 5.13.  

 

Table 5.15 

Regression analysis summary of sensory symptoms specific to the visual modality predicting 

1/f slope of PSD as extracted from the resting-state data (Model 6) 

*indicates p<0.05, **indicates p < 0.001 

 

 

 

 

  

Variable B 95% CI b t p 

1. Visual Symptoms  0.00 [0.00, 0.00] 0.22 1.75 0.08 

2. Visual Distortions -0.00 [-0.00, 0.00] -0.00  -0.02  0.98 
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Figure 5.13  

 

 
Figure 5.13: Scatterplot showing the relationship between 1/f slope of PSD as computed from 

resting state data and Visual Symptoms. 

 

5.4 Discussion 
 

In the context of previous research proposing that neural noise may be a biomarker of ASC, 

the present study aimed to investigate in greater detail the relationship between neural noise 

and core diagnostic symptoms of ASC in a group of children with ASC. Neural noise was 

indexed by two variables, ITPC and 1/f slope of PSD and was computed using EEG from a 

visual task involving repeated presentation of a checkerboard stimulus. 1/f slope of PSD was 

also computed from a resting state, eyes closed condition. Core diagnostic symptoms of ASC 

were assessed in the realm of social communication impairments, restricted and repetitive 

patterns of behaviour and sensory symptoms covering a wide range of sensory modalities. As 

the data illustrated, we found no relationship between neural variability and phenotypic traits 

associated with ASC. Most importantly, it was established that in the sample tested, there was 

no association between neural variability and general sensory sensitivity, an aspect of the ASC 

phenotype not previously examined in the literature. 

 

At a second level, the relationship between neural variability and sensory symptoms specific 

to the visual modality was examined, taking into account participants’ perceptual sensitivity to 

the stimulus presented during the experimental task. Domain specific sensory symptoms were 

quantified in the context of anomalous visual symptoms and visual distortions, measured via 
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the pattern glare test. The work presented here shows that there is no association between 1/f 

slope of PSD, as computed from the task-based data and visual symptoms. A similar conclusion 

was reached about the 1/f slope of PSD measured from the resting state data; although visual 

symptoms predicted some of the variance in 1/f slope of PSD (5%), this relationship was not 

strong enough to cross significance. We also found no relationship between 1/f slope of PSD, 

as measured from both task-based and resting-state data, and visual distortions. Nevertheless, 

results showed that visual symptoms and visual distortions together can predict a significant 

proportion of the variance of ITPC (18%). Visual distortions in particular was the variable 

driving this relationship, explaining 15% of the variance; the more visual distortions a 

participant reported in our sample, the higher the ITPC value was, indicating lower levels of 

neural noise in the cortex.  

 

Neural noise as measured by ITPC and 1/f slope of PSD, was found not to be associated with 

core diagnostic features of ASC, as shown by the lack of a significant relationship between the 

variables indexing neural noise and either SRS scores or RRB scores. This suggests that ITPC 

is not likely to be a biomarker of ASC, as previously proposed in the literature (David et al., 

2016). The finding about the lack of relationship between ITPC and core diagnostic features of 

ASC is not surprising and is in line with previous research work by Milne et al. (2019). Using 

a similar task design, Milne et al. (2019) demonstrated that ITPC is not related to the two main 

ASC symptom domains, social communication impairments and repetitive and restricted 

patterns of behaviour. In addition, the present work also established that ITPC cannot be 

explained by sensory perceptual abnormalities. Adding to the above finding, this is the first 

study to show the lack of a relationship between 1/f slope of PSD and core phenotypic traits of 

ASC. One of the strengths of the present work compared to other studies, is that it included 

participants with very diverse neurocognitive profiles, covering a wide range of abilities within 

the autism spectrum, therefore is much more representative of the ASC population. Using two 

different methods of computing neural variability in a very diverse sample, we demonstrated 

that autism severity does not determine levels of ITPC, nor does levels of 1/f slope of PSD. For 

that reason, literature referring to neural noise as a biomarker of ASC should be interpreted 

with caution.  

 

Moving away from primary phenotypic symptoms and the idea of a single pathophysiological 

route to ASC, the second hypothesis allowed us to evaluate whether levels of neural noise can 

be predicted by clusters of secondary symptoms, commonly found in other clinical and non-
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clinical groups. Indeed, this is the first study to report a link between ITPC, anomalous visual 

experiences and visual distortions, a group of visuoperceptual symptoms shown to occur not 

only in individuals with ASC but also patients with photosensitive epilepsy (Wilkins et al., 

1975; Soso et al., 1980; Radhakrishnan et al., 2005; Millichap, 2005; Wilkins et al., 2005), 

migraine (Harle et al., 2006; Conlon et al., 2012; Shepherd et al., 2013; Hayne & Martin, 2019) 

and others in the general population (Braithwaite et al., 2013). Stripes and checkerboard 

patterns such as the ones utilised in the EEG task of the present study are shown to cause 

increased discomfort and induce anomalous visual perceptual distortions in some individuals- 

potentially those with a hyperexcitable visual cortex- but not in others; some people remain 

relatively unaffected by pattern glare (Wilkins & Evans, 2010). This is evident in the number 

of illusions reported in the present study by the participants in the Pattern Glare Test, ranging 

from zero to fifteen (the maximum amount of visual distortions a participant can report). It was 

also established that the total number of visual distortions reported in response to gratings with 

0.5, 3 and 9 cpd is the strongest predictor of ITPC, meaning that the total sensitivity to pattern 

glare can partially predict the strength of phase-locking of neurons in the visual cortex. In the 

present study, the greater sensitivity to pattern glare a participant demonstrated, the higher their 

ITPC was in response to the checkerboard stimulus, translated into a less variable neural 

response. This further suggests that EEG stimulus characteristics may have a direct effect on 

ITPC, although it is still unclear what task parameters specifically might drive this relationship. 

In addition, we found no association between the steepness of the 1/f slope of PSD as computed 

from the same task-based data and anomalous visual symptoms. Subsequently, this suggests 

that different variables have predictive power over 1/f slope of PSD as compared to ITPC, 

strengthening the argument that they are likely to be capturing distinct processes.  

 

From a biological perspective, the exact processes behind the ITPC- anomalous visual 

symptoms link remain poorly understood. The primary visual cortex (V1) comprises of arrays 

of vertical columns of cells with different orientation preferences and different spatial tuning 

for sine-wave gratings, producing a highly selective response to specific stimulus features. 

Checkerboard patterns of a particular orientation and spatial frequency are expected to activate 

some highly specialized columns of cells at V1 but not others (Wood et al., 2017). In a scenario 

of extreme cortical stimulation, it is likely that automatic homeostatic mechanisms at a local 

network level in these columns are disrupted; inhibitory interneurons, which are shared with 

adjacent columns, may fail to regulate excessive levels of neural excitation in these neural areas 

leading to an imbalance in the ratio of E/I locally (Evans & Stevenson, 2008; Wilkins, 2021). 
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It has been previously suggested that if the excessive activity remains contained within the 

cortical columns, it could cause visual distortions at a cognitive level (Meldrum & Wilkins, 

1984; Evans & Stevenson, 2008). It has also been established that coloured lenses can reduce 

distortions, potentially “redistributing” excitation in the visual cortex (Evans et al., 2002; 

Wilkins & Evans, 2010; Ludlow et al., 2020; Wilkins, 2021). Although the underlying neural 

mechanisms are not yet understood, increased phase-locking in response to a high-contrast 

checkerboard pattern with a spatial frequency of 3 cpd and above, viewed binocularly, may 

reflect cortical hyper-reactivity of neurons locally in the visual cortex of participants 

demonstrating greater sensitivity to pattern glare. It is likely that ITPC as a method of 

measuring phase angle alignment of neurons in a specific electrode site, can capture this 

biological process occurring locally in the visual cortex. In contrast, 1/f slope of PSD as a 

measure of variability in the whole brain and an indicator of global neural synchrony and 

coherence, is connected to a specific ratio of E/I in the whole brain (Lombardi et al., 2017) and 

is less sensitive to local changes in neurotransmission. Despite the above, the link between 

cortical hyperexcitability and ITPC remains speculative. At this stage, due to limitations of 

EEG, it is not possible to draw definite conclusions with regards to the exact microscopic 

processes underlying the ITPC-anomalous visual experiences relationship solely based on EEG 

recordings.  

 

The present study is subject to a few limitations. Although participants with known eyesight 

issues had corrected vision during the experiment, it is possible that visual distortions are 

attributed to undiagnosed ophthalmological pathologies rather than atypical functioning of the 

visual cortex in some subjects. Given the remarkably high prevalence of ophthalmological 

anomalies in individuals with ASC (Little, 2018), future research endeavours should include a 

comprehensive optometric examination as part of their study design to ensure that atypical 

visual responses to gratings are not due to underlying ophthalmological impairments.  

 

In addition, there are some limitations regarding the method used to assess visual symptoms. 

The Hallucinations subscale of the SPEQ was completed by the caregiver and not the 

participant with ASC, despite the fact that the tool was initially developed as a self-report 

measure. This is because subjects with ASC are known to experience difficulties with self-

report (Hill et al., 2004; Mazefsky et al., 2011) and questions about anomalous experiences can 

present as difficult and confusing to young children with ASC, some of which had limited 

communicative abilities or have comorbid intellectual disability. Along this line of argument, 
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a few participants could not complete the Pattern Glare Test, as they could not communicate 

effectively with the experimenter about the visual distortions they were experiencing during 

active viewing of gratings, strengthening the argument that caregiver-report was a more reliable 

measure to be used in the present study. Linked to this, it is important to point out that there is 

a lack of standardised tools designed to assess perceptual abnormalities in specific sensory 

modalities of children with ASC, therefore any effort to capture anomalous visual experiences 

is likely to be based upon a mixture of questions deriving from other tools and will be of 

questionable reliability. Nevertheless, in the present study, Cronbach’s alpha for the composite 

score constructed to assess visual symptoms showed acceptable internal consistency/reliability.  

Another limitation concerns the sample size used to estimate the multiple regression models. 

Although the minimum sample size requirements of the initial power analysis were met, 

meaning that the sample size is regarded as adequate to detect a relationship between variables 

and provide a reasonably precise estimate of the strength of that relationship, the adjusted R-

squared is a biased, very rough estimate of how well the regression prediction approximates 

the real data points and its accuracy depends upon the size of the sample. A larger sample size 

is likely to have provided greater precision in our parameter estimation and a more accurate 

estimate of R-squared. More data points would reduce the existing amount of error variance 

around the line of best fit in the histograms of ITPC and visual distortions (see Section 4.3.2, 

Figure 5.12). A greater sample size could also shed more light on the relationship between 1/f 

slope of PSD as computed from the resting state condition and visual symptoms, which 

approached but did not cross the probability cut-off of 0.05 (p=0.08).  

 

Future studies should investigate in greater detail the relationship between ITPC and visual 

distortions. For example, it is still unclear whether manipulation of the parameters of the 

stimulus i.e orientation and spatial frequency, will have an impact on ITPC. In the present 

thesis, stimulus parameters were kept constant across experimental studies so that results are 

comparable- parameter manipulation goes beyond the scope of the present work. Nevertheless, 

the literature on pattern glare suggests that in order to trigger maximum pattern glare, the 

gratings should have a spatial frequency of 3 cpd, a 50% duty cycle, high contrast and should 

be viewed binocularly. Do gratings that don’t meet these characteristics and are of a lower 

spatial frequency induce a less excitable neural response in the visual cortex and is this reflected 

on levels of neural variability as indexed by ITPC? It will be informative to compute ITPC in 

response to the standardised Pattern Glare test gratings of 0.5, 3 and 12 cpd to assess the 

behaviour of the local neural networks in the visual cortex. Linked to this, an important future 
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direction would be measuring ITPC in populations susceptible to pattern glare that are known 

to be characterised by a hyperexcitable visual cortex such as individuals with migraine (Palmer 

et al., 2000; Harle & Evans, 2006), photosensitive epilepsy and/or individuals with a diagnosis 

of Meares-Irlen Syndrome (Chouinard et al., 2012). Thus far, there are no studies having 

investigated levels of ITPC in the visual cortex of these populations in response to repeated 

visual stimulation and compared it with individuals without sensitivity to pattern glare. 

Research efforts should also focus on recruiting a larger sample and narrowing down the age 

range of the children with ASC. Visual distortions elicited by the Pattern Glare Test are known 

to reduce with age but remain stable across genders (Evans & Stevenson, 2008), therefore it is 

important to examine whether the relationship between ITPC and visual distortions changes in 

different age groups, for example young children compared to older children and/or 

adolescents. 
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Chapter 6: 

Discussion 
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6.1 Summary of key findings 
 
Building upon early theoretical work by Simmons et al. (2009) and Rubenstein & Merzenich 

(2003), an overarching aim of the present thesis was to experimentally investigate the increased 

neural noise hypothesis of ASC. Using Electroencephalography (EEG), neural noise was 

examined by measuring the degree of phase-alignment across experimental trials occurring in 

response to visual stimulation as indexed by ITPC and the degree of variation of the spiking 

activity in the aperiodic signal as indexed by 1/f noise slope of PSD. The experimental 

approach followed throughout this thesis involved interrogating signal recorded from both a 

visual task-based condition and a resting-state condition. Across experimental studies, ITPC 

and 1/f slope of PSD were computed from evoked neural responses generated during repeated 

presentation of black and white checkerboard stimuli. In addition, 1/f slope of PSD was 

computed from spontaneous brain activity recorded while participants had their eyes closed, in 

absence of an experimental event.   

 
The first aim of this thesis was to investigate whether ASC and ADHD- two conditions that 

share genetic risk factors and behavioural features- are characterized by increased neural noise 

in the form of low ITPC and flatter 1/f slopes of PSD. Increased levels of neural noise in the 

form of reduced ITPC have been previously reported in separate studies in ASC and ADHD 

(Milne, 2011; Gonen-Yaacovi et al., 2016). 1/f noise slope of PSD has previously been 

examined in ADHD (Ostlund et al., 2021) but not in ASC. Importantly, to date, there have been 

no direct studies measuring and comparing levels of neural noise in clinically diagnosed ASC 

and ADHD samples. Although further work is required to consolidate this finding, in Chapter 

2, it was demonstrated that ITPC was not significantly different in a group of adults with ASC 

compared to a group of TD adults and a group of adults with ADHD. This result suggests that 

low ITPC is not possible to accurately differentiate participants with ASC from participants 

without ASC, despite differing between those with and without ASC at a group level. In 

addition, it is important to note that the strongest phase-alignment from trial-to-trial was 

observed in the theta band for the majority of participants. For the ASC group in specific it 

covered a wider range of frequencies, extending from theta to the alpha band. 

 
The lack of difference between the ASC group and the TD and ADHD groups in the strength 

of phase-locking agrees with previous accounts of no difference in levels of ITPC in response 

to visual stimulation (Butler et al., 2017), however this finding is contradictory to research 
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efforts reporting significant reductions in ITPC at a group level in adults and children (Milne, 

2011; Milne et al., 2019). To illustrate this, in a similar study design, Milne (2011) found lower 

alpha ITPC during visual processing of Gabor patches in children and adolescents with ASC. 

Similarly, the study by Milne et al. (2019), using the same datasets in their ASC group as the 

ones utilised in Chapter 2 of the present thesis (71% of the data were previously published in 

Milne at al., 2019)  but different datasets for their TD cohort, report significant differences in 

levels of ITPC between adults with ASC and TD adults. In contrast, EEG studies such as the 

one conducted by Butler et al. (2017), in an effort to replicate the study by Milne (2011), do 

not report ITPC differences between groups. These discrepancies can be explained by the small 

sample sizes in some of these studies and the issue of ASC heterogeneity, which means that 

the probability of recruiting participants with similar neurological profiles is diminished in any 

given set of studies. Notably, Milne et al. (2019) conclude that only a small subsample of the 

ASC group demonstrates low ITPC in the cortex. This highlights the need for larger sample 

sizes to be able to identify subgroups demonstrating distinct patterns of neural functioning in 

the first place and for more detailed reporting in published work to characterise variation and 

tease out individual differences at a second stage. As Trembath & Vivanti (2014) eloquently 

point out individual differences in ASC can be “problematic but predictive” of outcomes, 

therefore it is essential to understand how they manifest.  

 

On the other hand, the lack of significant group difference in levels of ITPC between the ADHD 

and TD group is striking. Studies measuring ITPC in the visual modality of individuals with a 

clinical diagnosis of ADHD are scarce, which minimizes the ability to draw firm conclusions 

and explain our results within the realm of existing literature. A study by Gonen-Yaacovi et al. 

(2016) has previously examined ITPC in response to visual stimulation and in contrast to our 

finding, it reports low ITPC in the ADHD group compared to typical development. This study 

reports reduced ITPC in both the ICA component that best captured the early sensory response 

and the electrode with the strongest P1/N1 amplitude in young adults with ADHD.  These 

discrepancies however may be explained by a difference in the way ICA components were 

isolated and selected for further analysis (ICA component with maximum ITPC in the present 

thesis vs ICA component that best captured the early sensory response in Gonen-Yaacovi et 

al., 2016). The smaller sample size in Gonen-Yaacovi et al. (2016) and the age difference of 

the samples may have also played a role in these divergent results.  
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When the steepness of 1/f slope of PSD was examined, a difference in 1/f slope of PSD was 

not evident across the ASC, ADHD and TD groups in either the visual-evoked or spontaneous 

neural activity. This is the first time this finding is reported in ASC and contradicts theoretical 

accounts of pathological undercoupling in ASC (Voytek & Knight, 2015), suggested to reflect 

weakened interregional oscillatory coherence in the clinical group. In ADHD, it is the first time 

1/f slopes of PSD were examined as extracted from visual-evoked responses. In line with the 

experimental findings presented here, Pertermann et al. (2019) employed a Go/NoGo paradigm 

and found that children with ADHD do not generally show flatter 1/f spectral slopes but slopes 

appear to become flatter in NoGo trials as task demands increase and the requirements for 

inhibitory control become greater.  In contrast to the findings presented in the present thesis, 

Ostlund et al. (2021) demonstrated that adolescents with ADHD show smaller aperiodic 

exponents in their ongoing oscillatory activity compared to their typically developing 

counterparts, however methodological differences in the way PSD was parameterised may 

have played a role in these divergent results (regression-based method in the present thesis vs 

FOOF algorithm in Ostlund et al., 2021).   

 

In summary, adults with ASC displayed similar amounts of neural noise in the cortex to TD 

adults and adults with ADHD, a result confirmed using two different variables indexing neural 

variability, ITPC and 1/f slope of PSD and replicated in two different conditions, visual task-

based and eyes-closed. Considering Pertermann et al.’s study (2019), it is very likely that 

atypicalities in levels of neural noise surface in ADHD only in paradigms that engage networks 

known to be deficient in the condition (i.e executive functions) and become prominent in trials 

that require greater executive function control (Pertermann et al., 2019). This remains an 

important aspect to disentangle in future work. 

 

The second aim of this thesis was to test the feasibility of acquiring good quality EEG data 

from autistic children at home using a gel-based mobile EEG system and to develop a list of 

practical guidelines on how to successfully conduct an EEG experiment in such a naturalistic 

setting based directly upon participants’ views. This was important to facilitate EEG data 

acquisition from children with ASC and a more diverse set of participants compared to the 

cohort recruited in Chapter 2. Based on a number of objective metrics, in Chapter 3 it was 

demonstrated that the signal acquired was of high quality and it was possible to perform not 

only basic ERP analysis but also more complex signal processing analysis such as ICA 

decomposition. It was also demonstrated that the LSL protocol can be reliably used to send 
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trigger markers through the network, enabling more complex task-based EEG designs to be 

implemented at home or other settings, where parallel port technology is not available. In 

addition, the user experience survey identified areas of good practice, which researchers should 

take into consideration when designing mobile EEG studies aiming to acquire data from 

children with ASC at home.  

 

The third aim of the present thesis was to investigate whether the atypical levels of neural noise 

are observed in children with ASC. Using a similar experimental approach and method of 

quantifying neural variability, in Chapter 4 it was established that, in contrast to adults with 

ASC, reductions in ITPC do manifest in children and adolescents with ASC. Of note is that the 

strongest phase-locking in the ASC group was observed in a wide range of frequencies ranging 

from theta to beta band, an experimental finding previously reported in Chapter 2 for adults 

with ASC. Additionally, in line with the findings of Chapter 2, it was demonstrated that despite 

the ITPC reductions, the steepness of 1/f slope of PSD did not differ between the ASC and TD 

groups, after controlling for age effects. Taken together, it is concluded that 1/f noise dynamics 

during processing of simple visual stimuli and as measured from spontaneous neural activity 

were intact in our ASC samples.  

 
In the context of previous work proposing that increased neural noise may be a biomarker of 

ASC (David et al., 2016), the fourth aim of the present thesis was to investigate in greater detail 

the relationship between neural noise and core diagnostic symptoms of ASC, including sensory 

symptoms. In Chapter 5, ITPC and 1/f slope of PSD were found not to be associated with 

primary diagnostic features of ASC such as social communication impairments and repetitive 

and restricted patterns of behaviour in a group of children with ASC. The finding about the 

lack of relationship between ITPC and core diagnostic features of ASC is in line with previous 

research work by Milne et al. (2019). Not directly comparable but perhaps complimentary 

findings are coming from the fMRI literature. Dinstein et al. (2012) also did not find a 

significant relationship between ASC symptom severity, as assessed by the ADOS, and SNRs 

extracted from BOLD signal in response to visual, auditory and somatosensory stimuli. Taken 

together, the result of the present thesis consolidated previous findings speaking against a 

relationship between neural noise and primary diagnostic symptoms of ASC, further suggesting 

that low ITPC is not likely to be a biomarker of ASC (David et al., 2016).  
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Although core phenotypic symptoms of ASC did not predict levels of neural noise as indexed 

by the two variables of interest, it was established that levels of neural noise as measured by 

ITPC can be partially predicted by clusters of secondary symptoms (18% of the variance 

explained), commonly found in other clinical and non-clinical groups. Indeed, this is the first 

study to report a link between ITPC, anomalous visual experiences and visual distortions, a 

group of visuoperceptual symptoms shown to manifest with varying prevalence in individuals 

with ASC, patients with photosensitive epilepsy (Wilkins et al., 1975; Soso et al., 1980; 

Radhakrishnan et al., 2005; Millichap, 2005; Wilkins et al., 2005), migraine (Harle et al., 2006; 

Conlon et al., 2012; Shepherd et al., 2013; Hayne & Martin, 2019) and other individuals in the 

general population (Braithwaite et al., 2013). In our ASC sample, the greater sensitivity to 

pattern glare and the greater number of anomalous visual symptoms a participant with ASC 

demonstrated, the more phase-aligned their neuronal response was to the checkerboard 

stimulus- a relationship likely to be reflecting cortical hyper-reactivity of neurons locally in the 

visual cortex in response to that stimulus (although see Section 6.2 for a discussion on the 

relationship between ITPC and cortical hyperexcitability). In addition, we found no 

relationship between the steepness of the 1/f slope of PSD and the same cluster of visual 

symptoms. This result indicates that different variables have predictive power over 1/f slope of 

PSD as compared to ITPC.   

 

In conclusion, the two variables ITPC and 1/f slope of PSD are likely to be capturing distinct 

neural processes. In support of this, it was also shown that ITPC and 1/f slope of PSD are not 

associated, further demonstrating that the two metrics are tapping upon different neural 

mechanisms. This finding may be explained by methodological differences in spatial scale; 1/f 

slope was extracted from all electrodes in the cortex, in contrast to ITPC, which was calculated 

from visual ICs or the occipital electrode cluster, therefore was more localised to a specific 

region. In addition, 1/f slope of PSD is computed by measuring the total energy distribution of 

the signal which is a real-valued quantity and does not contain phase information, whereas 

ITPC is calculated by averaging phase angles at each time point over trials, therefore is 

independent of power (Cohen, 2014). Another key difference relates to the signal periodicity; 

ITPC was calculated from periodic signal, whereas 1/f slope captures aperiodic signal 

properties. Taken together, ITPC constitutes a metric of the temporal synchrony of  a set of 

oscillations locally in the visual cortices, whereas the aperiodic 1/f slope indicates excessive 

noise in the cortex globally.  
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6.2 Implications 
 

In the present thesis, it was established that increased neural noise in the form of low ITPC 

occurs in the visual-evoked activity of children with ASC. Although further work is necessary 

to consolidate this finding, in contrast to children, adults with ASC showed similar patterns of 

phase-locking to their TD counterparts and adults with ADHD. The above result agrees with 

previous accounts of low ITPC during visual processing in children with ASC (e.g Milne et al., 

2011, also see Table 2.1 in Chapter 2 for a summary of studies having investigated ITPC in 

other modalities) and provides further evidence for disrupted patterns of neural noise in ASC. 

In both children and adults with ASC the strongest phase-alignment was observed in a wide 

range of frequencies ranging from theta to beta band, whereas for the TD groups maximum 

ITPC occurred in the theta and alpha band alone. This was a consistent finding replicated across 

different samples in Chapter 2 and 4. 

 

The exact biological mechanism that gives rise to low ITPC in children with ASC remains 

unknown, however a few theories have previously been proposed. Rubenstein & Merzenich 

(2003) previously suggested that some subtypes of ASC are associated with reductions in SNRs 

in key neural circuits underlying sensory behaviour, likely to be caused by an increased ratio 

of E/I in those key networks. Difficulties to align phase-angles from trial to trial may be 

explained by an imbalance in E/I ratio, resulting from disproportionally high excitation (i.e 

excessive GABA) or weak inhibition (i.e low levels of glutamate) (Rubenstein & Merzenich, 

2001). Along those lines, hyperexcitability in the autistic brain has been also suggested to result 

from sparcer, less “sharp” neural representations, further affecting behavioural sensitivity to 

incoming information (i.e poor discrimination of stimuli) (Uzunova et al., 2016; Ward, 2018). 

During stimulus presentation, GABA-ergic and glutamatergic neurons are selectively 

activated. Within the cortical space of minicolumns in the neocortex, GABA-ergic neurons 

increase the contrast or else “sharpen” the receptive field by mediating activity between 

neighbouring minicolumns through lateral inhibition (Cree, 2014). A breakdown of this “cross-

talk” on a synaptic transmission level may be giving rise to irregular and “imprecise” phase-

locking during processing of visual stimuli in ASC. Other lines of work suggest that astrocytes 

and microglia- two types of glial cells known to play a central role in synaptic formation and 

function- interfere with neural circuit development in ASC, affecting neural synchrony and 

connectivity (Kanner et al., 2018). It is however important to note that there is currently no 

direct experimental evidence linking the reductions in ITPC with the above theories.  
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Although levels of ITPC differed significantly between children with and without ASC at a 

group level, low ITPC could not differentiate participants with ASC from participants without 

ASC with adequately high accuracy to be considered a valid endophenotype of ASC. The lack 

of specificity and sensitivity to a single disorder implies that the neural correlate cannot be used 

as a diagnostic tool. This is not surprising as behavioural manifestations of ASC are known to 

arise from multi-factorial gene-environment interactions, leading to great behavioural 

heterogeneity accompanied by a large number of comorbid conditions (Beauchaine & 

Constantino, 2017; Masi et al., 2017). As a result, a single pathophysiological route to the range 

of ASC phenotypic expressions is unlikely to exist (Happe et al., 2006). In addition, emerging 

evidence suggests that there is not a single neural profile underlying ASC and recent 

experimental studies point towards the existence of subgroups within ASC with potential 

neurological differences  (Ousley & Cermak, 2014; Milne et al., 2019).  

 

In the present thesis, difficulties to consistently align phase angles from trial-to-trial were 

prominent in early development but findings were less clear in mid and late adulthood. This 

result may be explained by a sampling bias or alternatively it could reflect true differences in 

the strength of phase-locking in adulthood vs childhood. It is plausible that due to the small 

sample sizes in the adult study, there was lower power to detect any difference in ITPC amongst 

groups- also explaining the presence of outliers in the data. In addition, the ASC adult sample 

consisted of participants later diagnosed in adulthood, therefore their cognitive profile differed 

substantially from the profiles of children with ASC recruited for the child study. However, an 

intriguing possibility is that the strength of phase-locking changes from one developmental 

stage to the other in ASC. In a study of cognitive maturation, Marek et al. (2018) showed that 

theta band phase-locking reduces with development in neurotypical populations, in line with 

Papenberg et al. (2013). However, it is unclear if a similar pattern characterises ASC and 

therefore, further work is required to disentangle how network development unfolds in ASC 

and whether ITPC degrades as part of the neural maturation process and aging. 

 

For the majority of participants, the strongest phase-locking occurred in slow rhythms (i.e theta 

and alpha band). In a similar study design, Butler et al. (2017) also found the largest ITPC to 

occur within 3-8Hz in both the ASC and TD samples. Insights into oscillatory network 

dynamics from other studies investigating ITPC in ASC are limited. For example, studies such 
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as the one by Milne et al. (2011) measure ITPC in a pre-defined frequency band (i.e. alpha 

band), whereas other experimental work (see Table 1.1) focuses on different types of stimuli 

(e.g. auditory) and different electrode clusters of interest, therefore there are substantial spatial 

differences in the analytical approach. On the other hand, a large number of animal studies 

have previously established that visual stimulation reliably elicits strong phase-locking of theta 

rhythms locally at the visual cortex, with the hippocampal circuit likely to be driving this neural 

pattern in an effort to “bind” sensory representations in memory (Fournier et al., 2020). Those 

have shown that a) naturalistic stimuli i.e a coloured movie modulate the firing rate of multiunit 

spikes and low-frequency LFP phase at V1 of macaques (Montemurro et al., 2008) and b) with 

increasing visual stimuli intensity (low, medium, high) there is greater enhancement of theta 

band spike phase-locking at V1 in mice (Huang et al., 2020). Human studies using a wide 

variety of metrics to quantify phase coherence have also shown that temporal expectation and 

attention modulate phase entrainment of slow oscillations in the visual cortex (Cravo et al., 

2013; Mazaheri et al., 2010). Considering the studies outlined above and the literature 

implicating theta oscillations in episodic memory formation, strong phase-alignment of slow 

oscillations is likely to be directly linked to the active processing of the checkerboard stimulus 

in the visual cortices during task engagement in an effort to integrate the sensory representation 

into visual working memory (Herweg et al., 2020). It is also likely that the predictive attentional 

cue (i.e the cross) presented prior to the checkerboard may have enhanced slow rhythm phase-

locking at the time of checkerboard stimulus presentation.  

 

The fact that maximum ITPC was captured in faster oscillating networks for some participants 

with ASC- high alpha for some adults with ASC and high alpha/low beta for some children 

with ASC- is striking. Beta oscillations, particularly at the visual cortices, have not been 

systematically examined in ASC. In the visual domain, some evidence coming from the ASC 

literature has shown that beta band oscillatory activity is altered across local and distant cortical 

networks in children with ASC during a visual crowding task (Ronconi et al., 2020) and a long 

latency flash visual evoked potentials paradigm (Isler et al., 2010). Authors conclude that 

differences between the ASC and TD groups tap upon underling E/I imbalances in participants 

with ASC- which may also be explaining the finding of enhanced ITPC of beta oscillations in 

some participants in the experimental work summarized here- but without providing further 

mechanistic insights.  
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Nevertheless, we propose that this finding is better interpreted in the context of literature 

suggesting that feedback alpha and beta rhythms mediate feedforward theta and gamma signal 

projections according to the behavioural context (Bastos et al., 2015). In the present thesis, it 

is plausible that a high degree of phase consistency trial on trial in the high alpha/low beta band 

indicates greater attentional top-down influences in an effort to adapt to the visual task 

demands. In the brain’s parallel processing oscillatory architecture, if theta rhythms are 

responsible for setting the scene by conveying early visual information, alpha and beta rhythms 

are fundamental for modulating attentional inputs (Fries, 2009; Fries 2015). As Fries (2015) 

points out, the exact differences between alpha and beta neighbouring frequencies have not yet 

been precisely determined, however strong beta phase-locking is shown to be associated with 

top-down gating of contextual information to the early visual cortices (Donner et al., 2007; 

Spitzer & Haegens, 2017; Richter, Coppola & Bressler, 2018) and alpha phase-locking with 

the inhibition of task-irrelevant input and the enhancement of task-relevant activity locally 

(Jensen & Mazaheri, 2010; Klimesch, 2012). It is also possible that the task design employed 

in the present thesis may have had an influence on this finding. Strong phase-locking of beta 

oscillations in the visual cortex may reflect contextual gating of  information related to visual 

action feedback (Limanowski, Litvak & Friston, 2020). Therefore, it may be that ITPC was 

stronger in the beta oscillatory network than other networks due to the fact that those 

participants with ASC were preparing for the movement execution i.e spacebar presses in 

anticipation of the deviant spaceship stimulus. 

 

The present thesis was the first to demonstrate that a cluster of visual symptoms can predict 

levels of ITPC in a group of children with ASC. In the present study, the greater sensitivity to 

pattern glare a participant demonstrated, the higher their ITPC was in response to the 

checkerboard stimulus. This was an unexpected finding, which is difficult to explain in the 

context of existing ASC theories. Rubenstein & Merzenich’s (2003) theory postulates that a 

disruption in E/I balance would lead to increased levels of neural noise and a hyper-excitable 

cortex, which in turn gives rise to specific aspects of ASC symptomatology (e.g. sensory 

symptoms).  Following Rubenstein & Merzenich’s (2003) line of argumentation, it was 

hypothesized that increased occurrence of visual symptoms would be associated with greater 

levels of neural noise, taking the form of lower ITPC in the cortex. However, the opposite 

pattern was observed in Chapter 5 and greater number of visual symptoms were associated 

with stronger phase coherence. In the pattern glare literature, cortical hyperexcitability is 

suggested to be the neurobiological mechanism underlying increased sensitivity to pattern glare 
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(Wilkins, 2021). It has been previously proposed that inhibitory interneurons, which are shared 

with adjacent columns within V1, may fail to modulate excessive levels of neural excitation in 

the visual cortex of some individuals, leading to an E/I imbalance locally and causing visual 

distortions and discomfort at a cognitive level (Meldrum & Wilkins, 1984; Evans & Stevenson, 

2008).  If this theory is true, one would expect high ITPC to be indicative of a hyperexcitable 

visual cortex, in contrast to Rubenstein & Merzenich’s (2003) proposals. Considering the 

above, the link between ITPC and neural hyperexcitability remains poorly understood and 

further experimental work is necessary to shed light on the relationship beyond theory.  

 

Although the link between ITPC and cortical hyperexcitability is yet to be established, the 

experimental findings presented in the present thesis are promising and indicate that ITPC can 

provide valuable information on how prone an individual with ASC would be to visual 

distortions and anomalous visual perceptual experiences. ITPC may not be satisfying the 

criteria for an ASC endophenotype, however perhaps it can be further utilized for the 

identification of more cohesive subgroups within a highly heterogeneous psychiatric group. 

Increased ITPC could be indicative of a subgroup of individuals within ASC, characterised by 

visuoperceptual disturbances, unique to or more prevalent in that particular subgroup. On the 

other hand, low sensitivity to pattern glare and smaller number of anomalous visuoperceptual 

experiences is linked to low ITPC, potentially indicating a “less excitable” visual cortex in 

some children with ASC. 
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6.3 Limitations 

 

The ability profiles of individuals with ASC vary substantially within the autism spectrum. In 

the present thesis, the ASC samples recruited consist of individuals characterized by lower 

ASC symptom severity and higher cognitive ability (IQ>70), therefore findings cannot be 

generalised to those with more severe forms of ASC. Despite the efforts to eliminate sampling 

biases by employing innovative recruitment strategies (eg. testing participants at home), 

individuals with more severe forms of ASC may have had a lower sampling probability to be 

included in the studies conducted for the present thesis. The opt-in recruitment method 

employed in the experimental studies summarised in Chapter 2 and 4 is likely to have skewed 

sampling towards adults and children with ASC who were more able to communicate 

effectively, and tolerate the experimental procedure. In addition, although a large proportion 

of those with ASC have a comorbid intellectual impairment, the ASC samples recruited for the 

two studies were limited to individuals without an intellectual disability, therefore they were 

not representative of the ASC population at its entirety. For that reason, the question of whether 

increased neural noise is a feature of the brain of individuals with more severe forms of ASC, 

remains unanswered.  

 

Another limitation of the present thesis relates to use of clinical questionnaires such as the SRS 

to ascertain ASC diagnosis, as opposed to the use of direct observational measures such as the 

ADOS and/or parent focused structural interviews such as the ADI-R . In Chapter 1, SRS was 

utilised in order to ensure the severity of ASC behaviours is assessed as accurately as possible. 

Adults with ASC are known to display camouflaging behaviours (Lai et al., 2017), therefore 

there was a greater chance that some of the ASC behaviours would not surface during a semi-

structured observational interaction with the experimenter. Another disadvantage of gold-

standard tools such as the ADOS and the ADI-R is the length of administration time, ranging 

from thirty to sixty minutes for ADOS (Lord et al., 2012) and from one and a half to three 

hours for ADI-R (Lord et al., 1994). In Chapter 4 and 5, the aim was to utilise a short screening 

tool which would allow to balance out the speed of data acquisition and the quality of clinical 

information acquired. This methodological approach allowed to collect data from a large 

number of children with ASC and meet power requirements to perform regression analysis. 

Linked to this, in the child studies diagnostic status of comorbid conditions was not confirmed 

using any clinical tools, but rather, this information was acquired through parent reporting. As 
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a result, it is still unclear whether specific non-ASC clinical symptoms are linked or have 

played a role in modulating levels of neural noise in the experimental studies presented in the 

present thesis. Scatterplots in Appendix 2 indicated that this is unlikely; a relationship between 

comorbid conditions and levels of neural noise is not clearly evident in these graphs. Future 

work however should confirm diagnostic status directly using clinical tools and look at the 

impact of comorbid clinical symptoms on levels of neural noise in greater detail. 

 

In Chapters 2 and 4, although the confounding effect of age was taken into account when 

comparing average levels of neural noise between groups, it is possible that age effects were 

not fully eliminated. This is more relevant for the experimental study outlined in Chapter 4, 

than Chapter 2, as in the child study, the TD group was younger on average compared to the 

ASC group. In addition, although a link between ITPC and age was not evident, 1/f noise of 

PSD and age were significantly correlated in the samples tested. Therefore, the fact that there 

was an age difference between the ASC and TD groups made it difficult to fully rule out the 

effect of age in the statistical analyses, particularly when comparing 1/f noise of PSD between 

groups. In addition, electrode-to-electrode comparisons were not possible due to difficulties to 

statistically control for these age effects, while also correcting for multiple comparisons.  

 

An important limitation of the present thesis relates to the method by which the ITPC measure 

was computed. Following the analytical approach implemented by Milne et al. (2019), we 

extracted maximum ITPC from any independent component at any frequency and at any time 

point and utilised this value to quantify the amount of neural noise in the cortex for each 

participant. This approach prioritises the maximum ITPC over similarity in the source across 

participants and as a result it is difficult to interpret in the context of specific neural processes. 

In addition, inspection of the topographic scalp maps of the selected ICs revealed that the 

selected IC was projected at the occipital lobe for the majority of participants but not for all. It 

is unclear whether in some instances selected ICs reflected mu rhythm, as suggested in Onton 

et al. (see Fig 2, 2006, p.816) or they were true reflection activations of the visual cortex. 

Source localisation of the specific ICs was not performed, therefore it remains unclear whether 

the signal captured visual activity.  

 

Another limitation concerns the method by which narrowband oscillatory ‘humps’ were 

separated from non-oscillatory dynamics i.e 1/f noise in the signal. The present thesis adopted 
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a regression-based method to parameterise power spectra, originally used in Voytek et al. 

(2015) and further refined this approach to identify the start and the end of the alpha band peak 

for each participant individually. Considering that the majority of experimental studies 

measuring 1/f noise utilise the regression-based method of parameterisation (see Voytek et al., 

2015; David et al., 2018), this approach allowed for greater standardisation and comparability 

of findings across studies. For example, the finding about the relationship between age and 1/f 

noise of PSD, first reported in Voytek et al. (2015), was replicated in our ASC samples. 

However, other methods of parameter fitting have also been developed, which were not 

adopted in the present thesis (i.e see ‘α+1/f’, ‘FOOF’ and ‘IRASA’ method in Section 1.7.3 of 

Chapter 1). The FOOF algorithm in particular identifies secondary non-alpha related humps, 

likely to result in more accurate parameterisation of power spectra. Related to the above, it is 

still unknown whether this difference in the way periodic activity is calculated and subtracted 

can impact the direction of group comparison outcomes. First evidence from Ouyang and 

colleagues (2020) has shown that all methods yield similar results (see Fig 2 in Ouyang et al., 

2020). In addition, in the studies of the present thesis, inspection of the individual channel 

power spectra figures before and after line fitting and alpha band peak subtraction showed that 

the gradient does not change between the two stages of processing. Therefore, this provides 

confidence that the results of group comparisons are robust. 

 

Very few studies have previously examined 1/f slope of PSD and as a result it is still unclear 

what the optimal analytical method of estimating aperiodic exponents may be. For example, 

there is currently no consensus on the signal source PSD should be extracted from and 

consequently the electrode cluster 1/f analysis should be performed on. In the existing 

literature, this information is often not reported. In the present thesis, two methods of 

comparing levels of 1/f noise across groups were utilized in order to scrutinize whole-brain 

dynamics; either the grand average value of the aperiodic exponent was compared across 

groups and/or single electrode comparisons were performed. It is unclear whether group 

differences would be evident if a different source of signal had been chosen for analysis. Taken 

together, the study of aperiodic signal properties is a newly emerging and rapidly evolving 

field. More refined ways of parameterising PSD are already emerging and as more studies 

begin to investigate 1/f noise, these will advance scientific thinking regarding best analytical 

practices. 
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6.4 Future directions 
 

Another important future direction is to investigate whether low ITPC characterises the brain 

of individuals with more severe forms of ASC, as well as those with ASC and comorbid 

intellectual disability. Inadequate representation of those severely affected in studies exploring 

neural correlates of ASC, leads to a blurry picture of the neural profiles that may exist and their 

characteristics (Stedman et al., 2018). In order to facilitate participation of this group in EEG 

studies, it is important to adhere to good autism practice as outlined in the present thesis (i.e 

data acquisition at home) but also use appropriate strategies to accommodate for the extreme 

sensory sensitivities participants with more severe forms of ASC may experience. Future work 

should aim to test the functionality of using a wireless system instead of a wired EEG device 

and dry electrodes instead of gel-based alternatives. Wireless EEG solutions may be more 

suitable for children with lower cognitive ability that tend to pull away electrodes or wander 

during an experiment and dry EEG systems may be more tolerable for those demonstrating 

extreme sensory reactions to sensory input.  

 

Building upon the finding of reduced ITPC in children with ASC, future studies should also 

investigate in comparative study designs whether reduced ITPC occurs in children with ASC 

in response to stimuli targeting different modalities such as somatosensory, auditory and tactile. 

Studies have previously measured ITPC in all sensory modalities but have not studied these in 

conjunction and only report group level analysis (for somatosensory modality see Butler et al., 

2017, auditory: Edgar et al., 2015; Yu et al., 2018, tactile: Coskun et al., 2009). It is also 

important to clarify whether ITPC reductions are observed only during low level processing of 

sensory stimuli or whether these are apparent in more complex task designs which require the 

engagement of not only the sensory cortices (i.e visual) but also other regions such as the 

prefrontal cortex. 

 

The literature will also benefit from an in-depth investigation of the relationship between ITPC 

and visual distortions. Due to the nature of EEG as a neuroscientific method of 

experimentation, it is not possible to draw definite conclusions with regards to the exact 

microscopic processes underlying the ITPC-anomalous visual experiences relationship. In 

follow-up EEG studies, the manipulation of stimulus parameters could shed light on the link 

between cortical hyperexcitability and ITPC. ITPC should be computed in response to the 
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standardised Pattern Glare test gratings of 0.5, 3 and 12 cpd to assess whether the strength of 

phase-locking changes depending on the spatial frequency of the visual stimulus.  

 

In the present thesis, it was established that levels of neural noise as measured by ITPC can be 

partially predicted by a cluster of visuoperceptual symptoms in a group of children with ASC. 

An important future direction would be to replicate and consolidate those findings by 

comparing levels of ITPC in groups susceptible to pattern glare such as individuals with 

migraine (Palmer et al., 2000; Harle & Evans, 2004), photosensitive epilepsy and/or individuals 

with a diagnosis of Meares-Irlen Syndrome (Chouinard et al., 2012) against control groups of 

individuals less prone to pattern glare. In addition, given that visual hallucinations and 

anomalous visual experiences are more prominent in schizophrenia, it would be informative to 

measure levels of ITPC, together with the individual’s susceptibility to pattern glare and their 

predisposition to anomalous perceptual experiences, in a group of individuals with ASC and a 

group of patients with schizophrenia. These future experiments will help disentangle whether 

individuals experiencing higher occurrence of visual distortions demonstrate a strongly phase-

aligned neural response in response to patterns of higher spatial frequency, irrespective of their 

clinical diagnosis. In that respect, such a study design could shed light on whether ITPC takes 

the form of a transdiagnostic marker cutting through diagnostic boundaries.  

6.5 Conclusion 
 

In the present thesis it was established that increased neural variability in the form of low ITPC 

occurs only in children with ASC. Adults with ADHD showed similar levels of ITPC to the 

TD group and adults with ASC. Although levels of ITPC differed significantly between 

children with and without ASC at a group level, low ITPC could not differentiate participants 

with ASC from participants without ASC with adequately high accuracy to be considered a 

biomarker of ASC, as proposed previously in the literature (David et al., 2016). In addition, it 

was demonstrated that ITPC is not linked to primary phenotypic expressions of ASC but is 

associated with anomalous visual experiences and visual distortions, a group of 

visuoperceptual symptoms shown to manifest with varying prevalence in individuals with ASC 

and other individuals in the general population. Finally, it was established that 1/f noise power 

spectral dynamics measured during processing of simple visual stimuli and during rest were 

intact in the ASC and ADHD samples tested, providing evidence against the pathological 

undercoupling hypothesis proposed by Voytek & Knight (2015).  
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Appendix 1 

Chapter 4 

 

Relationship between neural noise and comorbid conditions  

 

Inspection of the scatterplots of ITPC and 1/f noise of PSD (Figure 1) did not reveal any clear relationship between variables indexing neural 

noise and the number of comordid conditions (A)  and the type of comorbid condition (B) in the ASC group. 

 

Figure 1.1 

Figure 1.1: Scatterplot of ITPC and 1/f slope of PSD grouped by the number of additional diagnoses and the type of diagnoses for the ASC 

group (A, B) and the TD group (C).
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Annex 1 

 
Chapter 2 

 

Independent Component Analysis 

 

Figure 1.1 

 
 
Figure 1.1: ERPs of the selected Independent Components (ICs) included in the group analysis, 

presented for the TD  group (n=34) 
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Figure 1.2 

 

 
 
Figure 1.2: ERPs of the selected Independent Components (ICs) included in the group analysis, 

presented for the ADHD group (n=32) 
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Figure 1.3 

 

 
 
Figure 1.3: ERPs of the selected Independent Components (ICs) included in the group analysis, 

presented for the ASC group (n=28) 
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Channel Analysis 

 

Figure 1.4 

 
 
Figure 1.4: ERPs of the selected channels included in the group analysis, presented for the TD  

group (n=34). 
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Figure 1.5 

 
 
Figure 1.5: ERPs of the selected channels included in the group analysis, presented for the 

ADHD  group (n=32). 
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Figure 1.6 

 

 
 
Figure 1.6: ERPs of the selected channels included in the group analysis, presented for the 

ASC  group (n=28).
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Annex 2 

Chapter 2 

 

Figure 2.1 

 
TD Group (n=34) 

 

 
 

ADHD Group (n=32) 
 

 
 

ASC Group (n=28) 
 

 
 
 

Figure 2.1: Independent Components with maximum ITPC for the TD, ADHD and ASC group.
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Annex 3 

Chapter 2 

 

Figure 3.1 

 
Figure 3.1: 1/f slope of all electrodes computed from Participant 6 in the ASC group.
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Annex 4 

Chapter 2 

 

Independent Component Analysis 

 
Figure 4.1 

TD Group 
 

 
ADHD Group 

 
ASC Group 

 
 
Figure 4.1: Maximum ITPC heat maps for the TD (n=34), ADHD (n=32) and ASC group 
(n=28) 
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Annex 5 

Chapter 3 

 
Figure 5.1 
 
 

 
 

 
 

 
 

Figure 5.1: Communication cards used during the mobile EEG session 
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Annex 6  

Chapter 3 

 
Figure 6.1 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Participant and experimenter interactions during the mobile EEG testing session 
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Annex 7 

Chapter 4 

 

Independent Component Analysis 

 

Figure 7.1 

 

 

Figure 7.1: ERPs of the selected Independent Components (ICs) included in the group 

analysis, presented for the TD  group (n=25). 
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Figure 7.2 

 
 

 
Figure 7.2: ERPs of the selected Independent Components (ICs) included in the group analysis, 

presented for the ASC  group (n=65). 
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Channel Analysis 
 

Figure 7.3 

 
 
Figure 7.3: ERPs of the selected channels included in the group analysis, presented for the TD  

group (n=25). 
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Figure 7.4 
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Figure 7.4: ERPs of the selected channels included in the group analysis, presented for the 

ASC  group (n=67). 
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Annex 8 

 

Chapter 4 

 

Figure 8.1 

 

 
 

Figure 8.1: 1/f slope of all electrodes computed from Participant 26 in the ASC group. 
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Annex 9 

Chapter 4 

 

Independent Component Analysis 

 
Figure 9.1 

TD Group 
 

 
ASC Group 

 
 

 
 
 
 
 
 
 
 

 
 

 
Figure 9.1: Maximum ITPC heat maps for the TD (n=25) and ASC group (n=65). Participants 

12 and 17 in the ASC group were excluded from further analysis.  
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Annex 10 

 
Chapter 5 

 
Table 10.1 
 
Psychometric tools assessing Sensory Symptoms 
 

Scale Type Authors Subscales Group N of items Comments 

Sensory Experiences Questionnaire  

(SEQ) caregiver report 

Baranek, David, Poe, 

Stone, & Watson, 

2006 

 

PART A: assesses the frequency of 

occurrence of a child's sensory experience 

(5‐point Likert scale).  

PART B: asks the caregiver to choose if 

he/she attempts to change (e.g., intervene 

with) the child's sensory behaviour, and 

uses a binary scale –‘yes’ or ‘no’.  

PART C: requests the caregiver to 

describe the specific strategies used to 

change the behaviour (i.e., support, cope, 

intervene). 

Children with ASD 5 

months- 6 years (see 

Brakek et al., 2005; Little 

et al., 2011) 21 items 

Internal consistency:  
Cronbach’s alpha=0.80  

Test–retest reliability: 
ICC = .92. 

Sensory Perception Quotient  

(SPQ) self-report 

Tavassoli, Hoekstra 

& Baron- Cohen, 

2014 

Sensory modalities assessed: vision 

(acuity, brightness, colour, motion), 

hearing (amplitude, frequency, vestibular, 

complexity), touch (pressure, temperature, 

pain, vibration), smell (social, danger, 

food, neutral) and taste (salty, sweet, sour, 

bitter).  Adults with ASD 

92 items or 35 items 

(short version) 

Internal consistency:  
Cronbach’s alpha=0.92 for full 92 item 

version  

Cronbach’s alpha=0.93 for the reduced 

35-item version  

Sensory Processing Measure 

(SPM) 

 

caregiver, teacher or 

other school personnel 

report (home form, 

classroom form, school 

environments form) 

Parham & Ecker, 

2007 

Social participation, vision, touch, body 

awareness (proprioception), balance and 

motion (vestibular function), planning and 

ideas (praxis), total sensory systems 

Standardised in children 

5-12 years old but not in 

ASC 75 items None 

Sensory Over-Responsivity 

Inventory  

(SensOR Inventory) caregiver report 

Schoen, Miller & 

Green, 2008 

Sensory modalities assessed: tactile, 

auditory, gustatory, proprioceptive, 

vestibular, visual, olfactory 

Standardised in TD 

participants and 

participants with sensory 

overresponsivity, aged 3 

to 55 but not in ASC 76 items None 

Sensory- Overresponsivity 

Assessment  

(SensOR Assessment) self- report 

Schoen, Miller & 

Green, 2008 

 

Sensory modalities assessed: tactile, 

auditory, gustatory, proprioceptive, 

vestibular, visual, olfactory (28 tactile 

items, 20 auditory items, 9 taste items, 9 

movement items, 5 vision items, 5 smell 

items) 

Standardised in TD 

participants and 

participants with sensory 

overresponsivity, ages 3 

to 55 but not in ASC 76 items None 

Sensory Behavior Questionnaire 

(SBQ) caregiver report 

Green, 2009; 

Gringras et al. 2014 

Sensory modalities assessed: auditory 

processing, visual processing, movement 

(vestibular and proprioceptive) processing, 

tactile processing, oral motor (including 

gustatory and olfactory) processing and 

general reactions and organisation.  

66 children with ASD, 

age range 6-16 years old 

(see Neil, Green 

&Pellicano, 2017) 50 items 

 
Internal consistency:  

Cronbach’s alpha=0.93 for the frequency 

scale 

Cronbach’s alpha=0.94 for the impact 

scale  

 

No significant associations between total 

SBQ scores and gender (r = 0.02, p = .90), 

age (r = 0.18, p = .15) or IQ (r = 0.05, 

p = .68).  

 

Initially used with individuals with a 

moderate-to-severe learning disability or 

pervasive developmental disorder, with 

or without a physical disability 
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Glasgow Sensory Questionnaire 

(GSQ) self-report 

Robertson & 

Simmons, 2012 

 

Each item asks how often the respondent 

performs a particular behaviour 

(‘‘Never’’, ‘‘Rarely’’, ‘‘Sometimes’’, 

‘‘Often’’ and ‘‘Always’’, scored on a 5‐

point Likert scale). Example item: ‘‘Do 

you like to spin yourself round and 

round?’’.  

 

Sensory modalities assessed: vision, 

hearing, taste, touch, smell, vestibular, 

proprioception.  Adults with ASD 42 items 

Internal consistency:  
Cronbach’s alpha (r = .935) 

Child Sensory Profile 2 caregiver report Dunn, 2014 

Sensory modalities assessed: Auditory, 

Visual, Touch, Movement, Body Position, 

Oral 

Children aged 3-14 (used 

with children with ASD  

too) 86 items 

 

Author's report: "During the development 
of the Sensory Profile 2, children with 
Autism Spectrum Disorders engaged in 
behaviours depicted on Child Sensory 
Profile 2 more often than their peers, 
with the exception of visual sensory 
processing items. This is not surprising 
since visual processing has been reported 
as a relative strength for children with 
Autism Spectrum Disorders". 

Short Sensory Profile 

 (SSP) caregiver report 

McIntosh, Miller & 

Shyu, 1999 

Tactile, taste/smell, movement, 

visual/auditory sensitivity, under‐

responsive/seeks sensation, auditory 

filtering, low energy/weak 

400 children with ASD 

between the ages of 3 

and 6 38 items 

 

Internal consistency:  
Cronbach’s alpha=0.70 to 0.90  

 

Internal validity: 
Correlations ranged from 0.25 to 0.76 and 

were all significant at p < .01. 

Behaviour and Sensory Interests 

Questionnaire  

(BSIQ) 

semi- structured 

interview, self- report Hanson et al., 2016 

 

6 categories of behaviour assessed: 

stereotypes behaviours, compulsive and 

ritualistic behaviours, rigidity, aggression 

and self-injurious behaviour, language 

perseveration, perseverative interests children with ASD 174 items 

Assessing RRB not sensory sensitivities 

per se 

Sensory Sensitivity Questionnaire 

 (SSQ) 

self- report or parent 

report (2 versions) 

Minshew & Hobson, 

2008 

 
Sensory modalities assessed: Low 

temperature/Pain tolerance (2 items), High 

temperature/Pain tolerance (2 items), 

tactile (3 items), overall sensory 

sensitivities covering questions about 

light, sounds, odor, covering ears in 

response to sounds, becoming easily upset 

(6 items) 

 

tested in 60 individuals 

with high functioning 

ASD, 6-54 years old 

(Minshew & Hobson, 

2008) 13 items Not standardised 
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