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SUMMARY 

The main aim of the present research is to develop a method 

of analysis for structural frames exposed to fire including 

the effects of material and geometric non-linearities. A 

matrix stiffness method based on a secant stiffness approach 

is used providing a full temperature deformation history. 

The approach has previously been used for the analysis of 

continuous beams and is extended in the present work to 

include axial forces. These not only affect the 

longitudinal displacement, but also reduce the member 

stiffness and create secondary moments due to the p-delta 

effect. 

The influence of material unloading on the moment-axial 

force-curvature relationship is studied by examining a 

cross-section subjected to different combinations of bending 

moment and axial force at both ambient temperature and in 

fire. 

A computer program, based on the method is used to conduct a 

limited parametric study. This includes the influence of 

slenderness ratio, the magnitude of axial load and moment, 

the size of cross-section and grade of steel. Both uniform 

and non-uniform temperature profiles are considered for 

isolated beams, columns and simple portal frame. The 

important of the p-delta effect is also investigated. 

xix 
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CHAPTER ONE 

INTRODUCTION 

1.1 INTRODUCTION. 

In many countries steel has become the first choice of 

architects and structural engineers for the framework of 

multi-storey buildings. The material and the construction 

methods associated with it have proved the most cost 

effective and reliable in many different situations [1] due 

to advantages over other systems such as speed of erection, 

high strength/weight ratio, reliability and durability. 

However, although steel is very strong under normal 

conditions, this strength reduces dramatically when it is 

exposed to the high temperatures experienced in a building 

fire [2], [3]. Building designers must therefore include 

appropriate measures to minimise these effects, including 

suitable means of alarm and escape, and insulation of the 

steel elements to ensure structural stability. In the 

latter case it has been reported that the cost of such fire 

protection has accounted for about 30% of the total cost of 

various forms of building construction [4], [51, [61. Because 

of this, the subject of fire in steel framed buildings has 

in recent years received considerable attention in terms of 

research throughout the world. The aim has been to develop 
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a better understanding of the complexity of fire behaviour 

and its effect on steel structures, as well as developing 

more cost-effective methods for fire protection. 

The subject of fire and its effect on steel building frames 

is complex. For convenience research in this subject can be 

classified into four categories [71, [8]: 

1. General principles relating to fire and its spread in 

buildings. 

2. Properties of steel exposed to fire. 

3. Fire resistance tests on structural elements. 

4. Methods of calculating the behaviour of protected and 

unprotected steel structural elements and frame 

structures in fire. 

At present, the basic problems of prediction of hot gas 

temperature in an enclosure and the resulting steel 

temperatures, as stated in the first and second categories, 

are still not solved conclusively, but are being studied by 

a number of investigators in different parts of the world 

[11]. A considerable amount of work has been carried out 

on the third category, since in most countries fire safety 

design is based on standard fire resistance tests [1]. 

Contributions in the fourth category are relatively few in 
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number [7]. Thus the main aim of the present research is 

to establish a method of calculating the structural response 

of steel building frames in fire. The objective is to 

determine the deformation histories of steel frame 

structures in fire, as well as to obtain the critical 

temperatures and times of these structures. 

1.2 FIRE STATISTICS AND FIRE LOSSES. 

One notable fire which destroyed a very large area was The 

Great Fire of London in 1666 [9]. Two square miles of the 

city were ruined and 1300 houses were destroyed. Other 

fires which have caused a considerable loss of life are 

shown in Table 1.1 [9]. 

In Great Britain it has been estimated that fire losses for 

1987 were over £450 million [2]. Table 1.2 and Figure 1.1 

show the annual total for estimated fire losses for England, 

Wales and Scotland for 1975 - 1987 [2]. From Table 1.2 and 

Figure 1.1, even though the statistics are confined to Great 

Britain only, it is clear that fires can have a disastrous 

effect on both life and property. Safety measures shoula be 

taken to reduce or eliminate the risk of personal injury or 

death due to fire and to reduce the total loss of building, 

plant and goods. Fire safety policies will be discussed in 

the following section. 
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Figure 1.1: Annual total of fire losses for England, 

Wales and Scotland (1975-87) 



Year Place Country Lives 

Loss 

1970 Dance Hall, Saint Laurent du pont France 142 

1971 Hotel, Seoul Korea 163 

1972 Night Club, Osaka Japan 118 

1973 Department Store Japan 103 

1974 Jeolma Office Building Brazil 179 

1975 Discotheque, La Louvieres Belgium 15 

1976 Hotel Algeria 36 

1977 Night Club, Kentucky USA 164 

1977 Jail, Colombia, Tennessee USA 42 

1978 Hotel, Boras Sweden 20 

1979 Bank, Warsaw Poland 49 

1980 Drinking Club, London UK 37 

1980 MGM, Grand Hotel, Las Vegas USA 85 

1981 Stardust Disco, Dublin Ireland 48 

1982 Hotel, Tokyo Japan 32 

1983 Cinema, Turin Italy 40 

1983 Disco, Madrid Spain 80 

1985 Football stands, Bradford U. K 56 

1986 Old People's Home, Beauvais France 24 

Table 1.1: Notable fires which have caused large loss 

of life. 



Year £ Million 

1975 210.50 

1976 231.58 

1977 263.16 

1978 305.26 

1979 352.63 

1980 463.16 (1) 

1981 357.90 

1982 389.47 

1983 557.89 (2) 

1984 542.11 (3) 

1985 436.84 

1986 447.37 

1987 457.89 

Table 1.2: Annual total for fire losses for England, 

Wales and Scotland for 1975-1987. 

(1). Including British Aerospace, Weybridge ( £72.5 million) 

and Alexandra Palace ( £31 million ). 

(2). Including Army Ordnance Depot, Donnington ( £165 

million ). 

(3). Including two London warehouse totalling over £81 

million. 



1.3 FIRE SAFETY POLICIES. 

The common historical reference point for fire safety 

policies is The Great Fire of London which lasted for 3 

days. King Charles II issued a royal proclamation which 

required walls of new constructions to be made of brick or 

stone and streets to be widened. Surveyors were appointed 

to draft regulations on the construction of new buildings 

(9I. In principle the aims of fire safety policies cover 

many aspects including means of escape, preventing rapid 

growth of fire, preventing external fire spread and ensuring 

structural stability. These are described briefly as 

follows: 

(a) Providing adequate means for escape. 

Analysis of fire casualties over a 10-year period has shown 

that annually between 800 and 900 people lose their lives 

and 8000 people are injured [9]. Because of this the main 

aim of fire safety policies is to ensure rapid evacuation of 

all occupants to a safe place. These escape routes should 

be available from all parts of the building and should 

remain safe and effective for the duration for which they 

are needed. In addition they must be clearly visible to 

all users, and be suitably located and of sufficient size to 

meet the needs of all occupants. 
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(b) Preventing rapid growth of fire. 

The main aim is to ensure that the chance of fire occurring 

in a building is minimised. If a fire does occur its rate 

of growth and spread should be controlled to permit 

evacuation. 

(c) Preventing fire spread (i. e containment). 

The main aim is to ensure that under fully developed fire 

conditions the building and its structure will not suffer 

collapse or become unstable. The fire will be contained 

within boundaries in order to prevent further damage to 

adjacent compartments or buildings. 

(d) Preventing external fire spread. 

The main aim is to ensure that the possibility of a 

conflagration due to external fire exposure is reduced and 

fire spread from one building to another is prevented. Such 

measures which can be used include extinguishing systems, 

facilities for fighting fires and walls up to roof level. 

Based on the above policies more secure and safe buildings 

can be achieved. 
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1.4 RATE AND DEVELOPMENT OF FIRE IN A COMPARTMENT. 

In this section the behaviour of fire in a compartment is 

discussed. If a fire is left unattended, it will progress 

through three distinct stages, namely a growth period, a 

steady combustion period and a decay period. A curve 

representing the corresponding temperature development is 

shown in Figure 1.2. This shows that fire generally 

commences with a slow increase in temperature (growth 

period), followed by a rapid rise in temperature until a 

peak is reached (steady combustion period) and ending in a 

relatively slow decrease in temperature (decay period). The 

detailed features of each period are discussed below: 

(a) Growth period. 

The temperatures during this period are generally low, 

seldom exceeding 250°C [10]. Its duration depends on the 

nature of the combustible materials involved and the 

environmental factors such as fire load and air supply. The 

duration of this period is extremely important because the 

chance of escape is relatively high and the temperature is 

very low. Also evacuation of important properties and the 

most effective operation of fire brigades are best achieved 

during this period. 
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Figure 1.2: Typical temperature development in 

a natural fire. 



(b) Steady combustion period. 

The period commences at point B in Figure 1.2. The burning 

material begins to generate flammable vapours causing the 

spread of fire to accelerate very rapidly. The temperature 

continues to rise, but much more rapidly, and when it 

" exceeds 600°C [10] there is a spontaneous combustion of all 

organic materials in the compartment. This phenomenon is 

referred to as 'flashover' and is characterised by sharply 

rising temperature. During this period flaming can be 

observed throughout the compartment volume. The temperature 

continues to rise but at a decreasing rate until a balance 

is reached between the heat produced in the enclosure and 

the heat losses to walls and surroundings. 

(c) Decay period. 

The duration of the decay period depends upon the total 

amount of combustible materials and the rates at which they 

can decompose. After most of the material has been burnt, 

and assuming that fire has not been controlled, the fire 

reduces in intensity and the temperature reduces 

progressively to ambient temperature. Malhotra [10] has 

stated that "a well-designed building can withstand the 

complete burnout of the contents without suffering collapse 

or permitting the fire to escape from the protected areas". 

The second and third periods of fire development in a 
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compartment can lead to structural instability or collapse 

because the structural steel elements are at very high 

temperatures, and consequently the strength of the material 

is greatly reduced. These periods should therefore be of 

primary interest to structural engineers [5]. 

1.5 STANDARD TIME-TEMPERATURE CURVE. 

The behaviour of fire in a compartment is a very complex 

matter. This is due to the fact that the fire severity 

depends not only on the fire load density but also on other 

factors such as ventilation, burning rate, fire duration and 

the thermal construction of the enclosure [12], [13]. Such 

variations cannot be realistically represented in comparing 

fire characteristics of different systems, and a standard 

time-temperature curve has therefore been adopted 

internationally to represent the fire behaviour in a 

compartment. 

The equation of the standard fire curve relating gas 

temperature in a compartment to time was proposed by Inberg 

[5], [12]. It is defined in British Standard 476: Part 8 [13] 

and ISO 834 El], [12] and takes the form: 

T- To = 345logjo ( 8t +1).............. (1.1) 

where T= gas atmosphere temperature (°C) 

To = ambient temperature (°C) 

8 



t= time (min) 

In BS 476: Parts 20 and 30 [14] standard fire tests are 

required to operate according to the standard time- 

temperature relationship shown in Equation 1.2. 

T- 20 = 345loglo ( 8t + 1) ............ (1.2) 

The equation is shown graphically in Figure 1.3. 

However it is important to recognise that this does not 

represent the time-temperature relationship observed in real 

fires, in which temperatures may rise more rapidly and reach 

higher values than in the standard time-temperature curve. 

Figure 1.4 shows a comparison between BS 476: Part 8 and the 

results of natural fire tests [1], [12]. This shows the 

early growth of temperature may be greater than the standard 

curve, but unlike the standard curve the temperature peaks 

and then begins to fall. However the standard time- 

temperature curve does provide a basis for comparison. It 

can be related to natural fire behaviour using a time- 

equivalence concept as proposed, for instance, by Law as 

reported in [17]. The relationship relates the fire 

severity, fire load and ventilation as shown below: 

tt C(............. (1.3) 

where tf = fire severity expressed as duration of exposure 
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to a standard fire. 

L= total fire load. 

AM = area of the opening in the room. 

At = total bounding surface of the room. 

H= height of the opening in the room. 

C=a coefficient. 

1.6 STANDARD FIRE RESISTANCE TESTS. 

Building regulations define the required survival periods 

for structural steel elements which correspond to their 

performance as measured in the standard fire resistance 

test. Fire resistance is defined in BS 4422 : Part 1 [9] 

as the ability of an element of building construction to 

withstand the effects of fire for a specified period of time 

without the loss of its fire-separating or load-bearing 

functions. Internationally, the generally accepted method 

for design of load-bearing structural elements under fire 

action is still based on the standard fire resistance test 

as shown in Figure 1.5 [15]. In the UK the fire resistance 

of an element is determined in accordance with BS 476: Part 

8, now replaced by BS 476: Parts 20 to 23 [9], [13] which 

specify the laboratory procedure and test criteria. This 

test is based on the procedure first issued in 1932 

following work by the British Fire Prevention Committee and 

standardization by ASTM [9], [12]. 

The lengths of column and beam specimens for the test are 

10 



2 

1. Structural application. 
2. Requirement by public agencies. 
3. Building code. 
4. Required fire duration tfd. 
5. Structural element. 
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7. Fire resistance tfr. 
8. Standard fire resistance test. 
9. Yes. 
10. No. 
11. End. 

Figure 1.5: Standard fire resistance test in relation 
to fire safety design [15]. 



typically 3m and 4m respectively. The period of fire 

resistance of the element is obtained when it reaches a 

defined failure condition. In the case of beams this has 

been when the central deflection reaches 1/30 of the span 

[13]. However this criterion has now been superseded by an 

amendment of BS 4822: 1985 reflecting the suggestion of 

Robertson and Ryan [16]. This allows a maximum deflection 

of 1/20 of span, provided the rate of deflection R does not 

exceed the following limiting value: 

R= L2 / (900d) mm/min 

where L= span of the test element (mm). 

d= distance from the top of the cross-section to the 

bottom of the design tension zone (mm). 

1.7 THE FIRE ENGINEERING APPROACH. 

While the building regulation system has proved effective in 

that structural collapse in fire is extremely rare 

alternative methods, generally described as Fire 

Engineering, based on a more rational and analytical 

approach, are being developed. The motivating influences 

in the development of Fire Engineering are as follows 

[1], [15]: 

(a) The information needed to design structures rationally 

for fire safety cannot be provided solely by the results of 

11 



standardised tests, because the behaviour of structures in 

fire is extremely complex and testing facilities are both 

limited in size and are expensive. 

(b) On several occasions claims have been pressed for the 

abandonment of the present classification systems shown in 

Figure 1.5 and the standardised fire resistance test, which 

both present serious deficiencies [15]. 

(c) Analytical methods for predicting thermal and structural 

response are becoming increasingly sophisticated. The use 

of computers allows such an approach. 

The Fire Engineering approach can be divided into three 

steps [1] : 

1. Determination of a time-temperature curve of the 

atmosphere in a fire. 

2. Prediction of steel temperatures, taking account of any 

fire protection which is provided. 

3. Determination of the structural performance. 

The above mentioned categories will be discussed in the 

following section. 
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1.7.1 The time-temperature curve in a compartment. 

As mentioned in Section 1.4 the gas temperature in a fire is 

influenced by factors such as the fire load, ventilation and 

the thermal properties of the surrounding area [1], [2], [10]. 

The fire load in a compartment is established by listing the 

masses of its contents and the materials used in the 

construction. Conversion factors are then used to relate 

their calorific value to wood. The total fire load is then 

obtained by summing all the individual calorific values. 

The floor area is measured and the fire load in terms of kg 

of wood/m2 is established. As the fire load is increased 

the potential for fire severity is increased [1]. 

Gas temperatures in fire are often controlled by the air 

supply. A well ventilated fire will producerä' a shorter and 

hotter time-temperature curve compared with a restricted 

ventilation system [2]. The importance of fire load and 

ventilation on the rate of development in a compartment was 

demonstrated by studies carried out by the Fire Research 

Station [1]. Magnusson, Pettersen and Thor [18] have 

developed a mathematical model to represent the time- 

temperature curves in a compartment by considering the 

balance between the heat produced and that removed from the 

compartment. It should be noted that using these 

techniques the time-temperature curve used models the actual 

behaviour of a fire (that is the growth period, fully 
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developed period and decay period). This is not the case in 

the standard time-temperature curve. 

1.7.2 Steel temperatures attained in fire. 

The prediction of steel temperatures in fire is very 

important, since the strengths of the structural steel 

elements depend on their temperatures. The temperature and 

heating rate of a steel structure is influenced by several 

factors [1] , [2] such as: 

(a) Steel size and shape represented by the Hp/A factor, 

where Hp is the exposed perimeter of steel exposed in fire 

and A is the cross-sectional area of the member. The 

temperature of a member with low Hp/A ratio will rise at a 

slower rate than one with higher Hp/A. 

(b) Location, thickness and nature of any protection 

applied. The location of a steel member will affect the 

amount of heat transferred to it by radiation and 

convection. In reference [1] the position of the steel 

member is taken into account by using an emissivity variable 

which has values in the range 0.3 to 0.7. This effect is 

shown in Figure 1.6 in relation to the location of 

structural steel columns. In Figures 1.6(a) and 1.6(b) the 

emissivity variable has values 0.3 and 0.7 respectively. 

The thickness and nature of any fire protection material 
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will affect the steel temperature [19]. For example, a 

member which has 100 mm thickness of fire protection 

material will be heated at a much slower rate than a member 

with 10 mm thickness of the same material. 

Different forms of construction can also give widely 

differing steel temperatures in fire, as shown in Figure 

1.7. The figure shows that a concrete slab or concrete 

blocks placed between the flanges of the cross-section of 

beams and columns will act both as a heat sink and as 

shielding, resulting in a non-uniform temperature profile 

across the section [5] , [20] . 

The prediction of steel temperatures in fire has been 

studied by several authors [19], [22]. Such techniques have 

been used in computer programs such as FIRES-T3 [22]. 

1.7.3 Structural response of steel structures in fire. 

This area cover 

structures when 

concern of the 

fire conditions 

steel in fire 

temperature in 

stated below: 

s the structural behaviour of steel-framed 

exposed to fire conditions and is the main 

present research. Structural analysis for 

is very complicated since the behaviour of 

is influenced by the effect of increasing 

different ways. The principal effects are 

1. Degradation of stress-strain curves with increasing 
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temperature. 

2. Variation of steel temperature within the section and 

along the span of the member. 

3. Expansion of a confined or restrained member which may 

result in significant axial forces or in additional bending 

being applied to the member. 

1.8 SCOPE OF THE PRESENT RESEARCH. 

The main aim of this research is to develop an analytical 

tool which can analyse the behaviour of steel frame 

structures in fire. The method will be used to investigate 

the effects of material and geometric non-linearities at 

ambient temperature and also in fire. The material non- 

linearities are due to the non-linear stress-strain curves 

and also to the reduction of stiffness due to the presence 

of axial force within the steel element. Geometric non- 

linearities arise due to the effect of bowing affecting the 

longitudinal expansion, and also the effect of axial force 

which creates extra bending moments in the element. 

The matrix stiffness method was chosen as a basis for the 

analysis because of its practicality and suitability for 

computer analysis. 

In Chapter 2 the literature on the effect of increasing 
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temperature on the behaviour of steel structures in fire is 

reviewed. A review of several methods which have been 

adopted for the analysis of frame structures in fire is 

presented. The derivation of moment-axial force-curvature 

relationships at ambient temperature is also reviewed. 

In Chapter 3a practical approach for the analysis of plane 

frame structures at ambient temperature is developed. The 

analysis includes the effects of material and geometric non- 

linearities. The approach is based on the secant stiffness 

concept rather than the more usual tangent stiffness 

treatment. A validation of the theory is also presented. 

In Chapter 4 an investigation is carried out to highlight 

the effect of material unloading on the moment-axial force- 

curvature relationship at ambient temperature and in fire. 

In Chapter 5 the method which was discussed in Chapter 3 is 

extended to analyse the behaviour of frame structures in 

fire. It illustrates how the effect of increasing 

temperatures on the frame structure can be included in the 

method of analysis described in Chapter 3. Such effects 

include variation of stress-strain curves due to changes in 

temperature profile, thermal expansion, restraint conditions 

and also the effect of non-uniform temperature profiles. 

In Chapter 6a validation and calibration of the accuracy of 

the present method is presented. A series of comparisons 
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are made with some of the reported results from tests, and 

also from theoretical studies. 

In Chapter 7a parametric study is conducted in order to 

achieve a better understanding of the factors that may 

influence the behaviour of frame structures in fire. The 

studies are conducted on a single member and a simple portal 

frame in fire. 

Lastly, in Chapter 8 general conclusions are drawn and 

suggestions for future work are presented. 
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CHAPTER Two 

LITERATURE REVIEW 

2.1 INTRODUCTION. 

In this chapter the analysis of frame structures at ambient 

temperature is reviewed briefly, leading to a more detailed 

study of research work related to the behaviour of building 

frames in fire. The derivation of moment-axial force- 

curvature relationships in determining the flexural and 

axial stiffness coefficients at ambient temperature is also 

reviewed. A review of certain factors that influence the 

behaviour of steel frame structures in fire, including 

material softening and variation of steel temperature within 

the cross-section or span of the member, is also discussed 

in this chapter. 

2.2 THE ANALYSIS OF FRAME STRUCTURES AT AMBIENT 

TEMPERATURE. 

The deformation of a frame structure under applied loads 

depends on a number of factors including the mechanical 

properties of the material used, as represented by its 

stress-strain curve. In early methods of frame analysis the 
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material was assumed to behave in a linear elastic manner 

following Hooke's Law, ignoring the non-linear parts of the 

stress-strain curve. Based on this behaviour, in the middle 

of this century Maney, Cross, Southwell and Rani developed 

the slope-deflection, moment distribution, relaxation and 

shear distribution methods respectively [23]. These 

methods became very popular in engineering offices because 

of their simplicity and adaptability to hand calculation. 

With the development of powerful computer equipment, the so- 

called matrix stiffness method was developed [23]. In this 

method, the structure is represented by an assembly of beams 

and columns connected at nodes, and the analysis requires 

the solution of a large number of simultaneous equations. 

The form of each beam or column is assumed to be prismatic. 

This method offers advantages in cases where the structural 

analysis cannot be carried out by hand calculation or when 

the structure is very complex. 

However, if the applied load is irregular or the structural 

elements are nonprismatic the structure can no longer be 

represented so simply. This led to the development of the 

finite element method in the early 1960s [25] with plate as 

well as bar elements. It should be noted that the matrix 

stiffness method is essentially one form of finite element 

method. The finite element method has proved to be a very 

powerful tool but usually needs computers which are quite 

powerful in terms of speed and storage to accommodate the 
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software and data. Large amounts of data need to be 

prepared prior to performing the analysis. Such limitations 

need to be considered when a practical method of analysis is 

to be developed. For implementation on personal computers 

the matrix stiffness method offers a more practical and 

suitable basis for the analysis of frame structures because 

it requires much less data to be prepared prior to 

performing the analysis than does the finite element method. 

The matrix method has been applied successfully to a wide 

range of linear structural problems [23]. It has also been 

extended to include problems with material and geometric 

non-linearities. The non-linear effects are very important, 

especially when determining the maximum loads of frame 

structures in which some parts undergo elasto-plastic 

conditions which consequently affect the deflected shape of 

the structure. The subject of material non-linearities 

includes the nonlinear stress-strain curve of steel and also 

the reduction of member stiffness due to the presence of 

axial force [26], [27]. On the other hand geometric non- 

linearties include the effects of joint displacement, axial 

shortening due to bending and the presence of the "p-delta" 

effect [26] , [27] , [28] . 

A technique which is widely used to cater for these non- 

linear effects is the incremental solution procedure which 

was developed in the early 1960s [24], [26], [28]. The load 

is increased in small increments and local linear analysis 
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is carried out based on the tangent stiffnesses at the 

corresponding points of the stress-strain curve. A 

geometric stiffness matrix is also included in the element 

stiffness matrix in order to cater for the effect of 

geometric non-linearity [30]. The approach requires an 

iterative local correction of the calculated deformations at 

any load increment. This local correction is cumulative 

and the results from any iteration depend on the results of 

the previous iteration. At any load increment the results 

will be kept as initial values when the next load increment 

is to be analysed. The process is repeated until the 

corresponding external load is achieved as shown in Figure 

2.1. The accuracy of this analysis can be improved by 

reducing the size of load increments and/or implementing a 

Newton-Raphson method, but this can be time consuming. The 

method provides a full load-deformation history, and for 

each load increment the solution is obtained directly using 

conventional matrix stiffness analysis. 

An alternative method which can provide a more direct 

solution is the secant stiffness approach [35], [36], [37]. 

From Figure 2.1, a more direct solution can be achieved by 

introducing an appropriate linear relationship between the 

axial load and the corresponding deflection as shown in line 

OA. The approach offers more accurate results than the 

incremental approach because the secant stiffness relates 

the load to the actual deformation. Instead of stepping 

along the load-deflection curve to achieve a final solution 
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during the structural analysis, the secant stiffness can 

relate the load directly to the corresponding non-linear 

deformation. This approach offers an advantage for frame 

analysis, especially when the stress-strain characteristic 

of the material is in the form of a continuous curve, which 

consequently reduces the local errors during the structural 

analysis [35], [37]. 

Ramberg and Osgood [31] and Phillips [32] in 1943 and 1956 

respectively introduced analytical expressions for a non- 

linear stress-strain curve with a continuous change of 

slope. Instead of introducing a bi-linear form, a single 

equation can be established to represent closely the 

corresponding non-linear stress-strain curve. The 

expression takes the form: 

a= Ec - Bt ( n>1 ) ............... 
(2.1) 

in which B and n are parameters dependent on the shape of 

the stress-strain curve to be approximated. Thus the 

moment- curvature relationship corresponding to Equation 2.1 

is: 

M= EIO - BKo° ..................... (2.2) 

in which, for rectangular sections: 

K= bhn+2 / (n+2)(2n+1 ) .................. (2.3) 
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and for wide flange shapes: 

K= (bwhin42 + bt(hn+2 - hln+2))/(n+2) (2n*1)..... (2.4) 

where b and h= width and depth of cross-sections 

respectively. 

bf and bw = flange and web width of I sections. 

ht = web depth of wide flange section. 

The above expression for a stress-strain curve has been used 

by Chajes [36] in determining the inelastic deflections of 

beams. 

Szuladzinski in 1980 [38] developed a modified form of the 

Ramberg-Osgood stress-strain formula as shown in Equation 

2.5 which was used to analyse the deflected shape of beams 

with non-linear material characteristics. 

Z= o/E + (v/En )n ................... (2.5) 

2.3 THE EFFECT OF MATERIAL UNLOADING ON MOMENT-AXIAL FORCE- 

CURVATURE RELATIONSHIP AT AMBIENT TEMPERATURE. 

In linear elastic or elasto-plastic conditions the moment- 

axial force-curvature relationship is basic to the 

structural analysis, and the corresponding curvature will be 

used to obtain the value of axial and flexural stiffness 
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coefficients of beam-column elements. The curve can be 

determined from consideration of equilibrium, equating the 

internal and calculated axial force and bending moment of 

the element as shown in Equations 2.6 and 2.7. 

Pint = 
JA 

a(E)dA ...................... (2.6) 

and 

Mint = o(E)ydA ...................... 
(2.7) 

A 

where Pint = internal force. 

Mint = internal moment. 

In determining these relationships it is very important to 

recognise that there is a possibility that the order of 

application of the loads acting on the element is not 

necessarily coincident. It may be, for example, that the 

bending moment is applied first to the element, followed by 

the axial force, or vice versa. In elasto-plastic 

conditions the stiffness relationships due to these cases 

will be different, due to the fact that different elastic 

material unloading will happen from the respective plastic 

regions. 

The influence of different combinations of bending moment 
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and axial force on the strain and stress distributions of 

the cross-section is shown in Figure 2.2. The amount of 

bending moment and axial force for each case as shown in 

Figures 2.2a to 2.2c is the same except that they are 

applied in a different order to the element. For instance, 

Figure 2.2c shows the initial and final stress distributions 

when bending moment is first applied, taking some zones into 

the plastic region, followed by the axial force. In this 

condition the influence of material unloading in the plastic 

region is shown by the final stress profile. Figure 2.2b 

shows the initial and final stress distributions of the 

beam-column element, when axial force is first applied, 

followed by bending moment. The figures show that, despite 

having identical bending moment and axial force the two 

final stress patterns are totally different, consequently 

affecting the stiffness relationships. This has been 

considered in the derivation of moment-axial force- 

curvature relationships by a number of authors. 

Among the first to consider the subject of material 

unloading was Engesser in 1895 [30], when he proposed a 

method for evaluating the buckling behaviour of columns 

which was called the Reduced Modulus Theory. Material 

unloading happens because the load is assumed to remain 

constant during buckling, and as bending deformation 

increases material unloading occurs on the convex face of 

the column. 
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.......... initial state 
final state 

(a) 

strain distribution stress distribution 

Bending moment and axial force acting simultaneously 
from zero stress-state. 

(b) 

strain distribution stress distribution 

Axial force applied first and then followed by 
bending moment 

Bending moment applied first 
and then followed by 

axial force 

strain distribution stress distribution 

Figure 2.2: Influence of different loading sequence by 

axial load and bending moment on beam-column element 



In 1942, Shanley [41] developed a new theory of inelastic 

column buckling which proved to be more accurate than the 

theory that was proposed by Engesser. The axial load is 

assumed to act at the centroid of the cross-section. The 

analysis is based on the assumption that the column begins 

to bend as soon as the tangent modulus buckling load is 

reached. After reaching the tangent modulus buckling load 

and if the axial load is progressively increased, bending 

moment changes simultaneously. As the deformation 

increases, strain reversal will progressively occur on the 

convex face of the cross-section of the column. In deriving 

the moment-axial force-curvature relationship, he assumed 

that bending moment and axial force are caused 

simultaneously. To include the effect of material 

unloading the previous strain distribution of the cross- 

section was taken as the initial value when the next 

increment of axial load was applied. He then conducted a 

test in order to support his theory, in which a few electric 

strain gauges were placed around the cross-section to 

measure the strain distribution as the axial load was 

increased on the pin-ended column. The test results 

showed that material unloading does occur on the cross- 

section if the axial load is progressively increased beyond 

the tangent modulus buckling load. 

It should be noted that inelastic column buckling analysis 

is based on the assumption that the pin-ended column is 

axially loaded at the centroid of the cross-section 
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[41], [42]. This idealised problem is, however, of little 

significance for real structures due to the fact that 

initial imperfections always exist in real columns. These 

include eccentricity of axial loads, or subjection of 

columns to lateral loads or end moments. Thus, to 

determine the strength or deformed shape pof such members, 

the stiffness relationships should include both the 

influence of bending moment and axial load acting on the 

structural elements. 

In 1956, Horne [42] derived expressions for the curvature of 

an initially straight prismatic member of rectangular cross- 

section subjected to a combination of axial load and bending 

moment about its principal axis. He assumed that material 

unloading in the plastic range does not take place, provided 

that the loads on an initially stress-free structure are 

increased proportionately from zero, and consequently the 

degree of unloading appears to be very small. A previous 

investigation (Baker 1949) indicated that, if the unloading 

which does occur is neglected, then the predicted collapse 

loads will be conservative. 

In 1957, Driscoll and Beedle [43] conducted tests to 

demonstrate the reduction of plastic moment due to axial 

load. The tests were carried out by applying an axial force 

eccentric to the column. The load was progressively 

increased and the corresponding curvature was also recorded. 

It should be noted that in this case, axial force and 
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bending moment are happening simultaneously due to 

eccentricity of the axial load. The moment-curvature 

relationship was shown to be in very good agreement with the 

theoretical results based on the assumption that material 

unloading could be ignored. 

Timoshenko and Gere [44], [45], Galambos and Ketter [48] also 

described the derivation of a moment-axial force-curvature 

relationship based on the assumption that bending moment and 

axial force are both acting simultaneously and in proportion 

on an initially stress-free structure. A non-linear 

stress-strain curve was used and the influence of material 

unloading was ignored. 

In 1965, Lay and Gimsing [46] presented the results of an 

experimental study of the moment-axial force-curvature 

relationship. The experimental set-up was similar to that 

used by Driscoll and Beedle [43] with different test 

specimens. The moment-curvature relationship was then 

plotted and compared well with the theoretical results which 

were again based on the previous assumption (i. e material 

unloading was ignored). The moment carrying capacity, 

which ignored the influence of material unloading, was 

calculated and then compared with the values from the test 

results carried out by Hendry [40], [47]. In these tests, 

bending moment was first applied on the specimen and an 

axial force was subsequently increased until the member was 

fully plastified. The comparison of the moment carrying 
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capacities shows very good agreement with the results 

obtained from the theory which ignored the influence of 

material unloading. 

Nowadays the derivation of a moment-axial force-curvature 

relationship is based on the method suggested by Baker and 

reported, for instance, by Horne [42] in which the influence 

of material unloading was ignored. Chen and Lui in 1975 

[53] and Chen and Atsutsa in 1987 [30] developed empirical 

formulas for the moment-axial force-curvature relationship 

for rectangular and I-sections in which they ignored the 

influence of material unloading. 

2.4 MECHANICAL PROPERTIES OF STEEL IN FIRE. 

2.4.1 Stress-strain relationship. 

The relationship between stress and strain for a particular 

material is normally determined by means of tensile tests in 

which a specimen, usually in the form of a round bar, is 

placed in the testing machine and subjected to an increasing 

tension. The force and elongation of the bar are measured 

as the load is increased. The corresponding stress (force 

divided by the cross-sectional area) and strain (elongation 

divided by the gauge length over which it occurs) enables a 

complete stress-strain diagram to be plotted for the 

material. This diagram is assumed to be identical in 
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tension and compression [11], [55]. 

The relationship between stress and strain for steel at 

elevated temperatures has been studied experimentally by 

several authors such as Witteveen, Twilt and Bijlaard [56], 

Skinner [57], Jorgenson and Sorenson [58] and Saito [59]. 

The testing procedures in obtaining a stress-strain 

relationship can be classified into two types known as 

isothermal and anisothermal creep tests [57]. Even though 

the same material is used in each type of test, the stress- 

strain curves obtained for steel are different. This is 

because of the influence of creep, which is time dependent 

and only occurs at high temperature and/or high stress 

[57], [60], [61]. The experimental procedure for each type 

of test is as follows: 

1. Isothermal creep tests. 

This test is carried out in the manner of conventional 

constant temperature, constant load creep tests [5], [57]. 

Normally tests are made over the temperature range 350°C to 

650°C, due to the fact that creep has no significant 

influence on the stress-strain curve below 350°C [57]. At a 

constant temperature and constant load, the strain is 

measured and plotted against load, and further increase of 

strain is then recorded continuously against time. A wide 

range of loads is used during the tests in order to give a 

wide range of strain rates covering from low to high rates 
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of deformation. 

In reference [56], an isothermal test was carried out on 

steel using both high and low rates of deformation 

(200mm/min and 0.5mm/min). It was found that at 

temperatures below 400°C creep has no significant influence 

on stress-strain curves. The results also show that at 

higher temperatures the strain rates due to the creep effect 

increase considerably. The stress-strain curves measured 

from low speed tests are presented in Figure 2.3. 

2. Anisothermal creep tests. 

The specimen is subjected to constant load at increasing 

temperature [56], [57]. Witteveen, Twilt and Biijlaard [56] 

have used the corresponding tests, called warm-creep tests, 

carried out at heating rates between 5°C/min and 50°C/min, 

and it was noted that the effect of rate of heating is 

insignificant. The measured stress-strain relationships 

were then constructed by transforming the temperature-strain 

curves at constant loading to stress-strain curves at 

constant temperature. It should be noted that the 

influence of creep is implicitly included in these stress- 

strain curves since the tests are carried out in real time. 

Thus, in the analysis of steel structures in fire, the 

material properties determined from this test offer an 

advantage due to the fact that the effect of creep is 

implicitly included in the stress-strain curves. The 
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stress-strain curves obtained from a warm-creep test are 

shown in Figure 2.4. 

More recently, in 1985 Baba and Nagura [7] conducted a study 

on the effect of material properties on the deformation of 

steel frames in fire. In this study the authors used both a 

high- temperature tensile test and a high-temperature creep 

test to determine the modified stress-strain curves at 

elevated temperature. The analysis was carried out by using 

two material models, differing only in their consideration 

of the effect of creep. The results showed that creep had 

little effect on the total deformation. 

2.4.1.1 Mathematical representation of stress-strain 

curves. 

Normally the stress-strain curves of steel determined from 

test results are non-linear in form [7], [56]. The 

, idealised form of stress-strain curve is usually expressed 

as a perfectly elastic-plastic relationship which is 

characterised by Young's Modulus and yield stress at 

elevated temperature. The mathematical models for the 

variation of Young's Modulus and yield stress at elevated 

temperature postulated by several authors will be discussed 

in the following section. 

Bi-linear stress-strain representations for steel at 

elevated temperature have also been adopted by some authors 
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to represent approximately its material properties in fire 

[11], [63] , [64] , [65] , [66] . The general mathematical form 

for this approximation is given by: 

a= Eßt E5 ei 

..... 2.8 

a= Ei Ei + E2 (E - Ei) FZ Ei 

where a is stress, t is strain, El is 

and Ei and E2 are the slopes of the st: 

in Figure 2.5. However, to obtain a 

of the non-linear stress-strain curves, 

steps should adapt to the shape of the 

Figure 2.6. Cooke [20] introduced 

strain curves of steel in fire. 

the limiting strain 

raight lines as shown 

close representation 

the number of linear 

curves as shown in 

multi-linear stress- 

An alternative method of representing mathematically the 

stress-strain curves of steel in fire is by a single form of 

non-linear equation. The approach offers an advantage in 

describing curves with a continuous change of slope, which 

eliminates the analytical difficulty of dealing with 

discontinuous curves which are described by two or more 

equations [38]. Authors who have introduced such 

relationships include Nagura and Baba [7], Cheng [68], 

Burgess, El-Rimawi and Plank [67]. In the latter case a 

basic form of the Ramberg-Osgood equation was used to 

represent the family of curves for steel at elevated 
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temperature contained in the draft British Standard BS 5950: 

Part 8 [69], based on results given by Kirby [70]. The 

weakness of this approach is the difficulty of fitting a 

family of stress-strain curves with a single equation [38]. 

2.4.1.2 Young's Modulus. 

As was mentioned earlier the simplified form of stress- 

strain curves of steel at elevated temperature is in 

perfectly elasto-plastic form characterised by Young's 

Modulus and yield stress. Mathematical models have been 

introduced by several authors [60], [71], [73]. From the 

reported results it is generally agreed that Young's Modulus 

decreases with increasing temperature. However the precise 

rate of decrease depends on the exact composition and 

treatment of the material. As an example it is reported 

[75] that the Young's Modulus of cold drawn steel is lower 

than for hot-rolled steel by as much as 20% at 600°C. 

Several mathematical models have been suggested to represent 

the effect of temperature on Young's Modulus 

[60], [73] , [76] , [77] . The equations suggested by the ECCS 

and CTCIM are as follows: 

1. ECCS [73] . 

Et = E20 (1- 17.2x10-12 T4 + 11.8x10- 9 T3 - 34.5x107 T2 

+ 15.9x10-5T ) ........... (2.9) 
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2. CTCIM [60] . 

Et = Eso (1+T/( 20001n (T/1100))) 
....... (2.10) 

where Et = Young's Modulus at elevated temperature. 

Ezo = Young's Modulus at ambient temperature (20°C) 

T= temperature in °C. 

These two equations are plotted in Figure 2.7. 

Comparing the ECCS and CTCIM recommendations for Young's 

Modulus, the curves show a similar relationship up to a 

temperature of 450°C, after which they no longer coincide. 

It can be seen that the curve from ECCS is more conservative 

than CTCIM when the steel temperature is beyond 450°C. It 

is possible that this is due to different materials or 

different types of testing procedure. 

2.4.1.3 Yield Stress. 

For continuously varying stress-strain curves of steel at 

elevated temperature, there is no sharply defined yield 

point at which the elastic behaviour ends [5], [67]. 

However, for practical purposes a yield stress (or proof 

stress) is defined when the plastic strain reaches a 

considerable value such as 1%, as was proposed by Skinner 

[57]. In BS 5950: Part 8 [69], yield stress is defined 
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when the strain at elevated temperature reaches 1.5%. 

Mathematical models of the yield stress of steel from ECCS, 

MRL and CTCIM are shown below: 

1. ECCS [73] 

0STS 600°C 

(2.11) ayr = oyzo (1+T)........... 

7671n(T/1750) 

600°C STS 1000°C 

OyT = oY2o108 (1- (T/1000) ) 

T-440 

2. CTCIM [60]. 

05TS 600°C 

Cyt = oyzo (1+T 

............. 
(2.12) 

............ (2.13) 

9001n (T/1750) 
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600°C STS 1000°C 

OyT = ay2O ( 340 - 0.34T) .............. (2.14) 

T-240 

3. MRL [78] 

0STS 300°C 

Cyr = 0y20 (1- (T/2000)) ............ (2.15) 

300°C STS 895°C 

Cyr = ay20 ( 895 -T).............. (2.16) 

700 

where oYr = yield stress at elevated temperature. 

ay20 = yield stress at ambient temperature (2011C) 

T= temperature in °C 

The equations are plotted in Figure 2.8. 

It can be seen that the ECCS recommendation is more 

conservative than either of the others. 
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2.4.2 Thermal expansion. 

The effect of temperature increase on thermal expansion is 

normally characterised by the coefficient of thermal 

expansion at [57], [73] which is defined as the tangent of 

the temperature-strain curve at the corresponding 

temperature. A typical curve of expansion of steel with 

temperature is shown in Figure 2.9 [5] 
, 

[20] 
, 

[79] 
. The 

figure shows that thermal expansion increases steadily as 

temperature increases up to 700°C. Between 700°C and 900°C 

there is a discontinuity in the expansion due to the phase 

transformation from Ferrite to Austenite, but at higher 

temperatures the rate of expansion once again becomes 

almost constant. 

Mathematical models for free thermal expansion that have 

been suggested by certain authors [11], [73] are as follows: 

1. ET =CT 

where ET = thermal strain. 

T= temperature difference in °C. 

a= coefficient of thermal expansion 

= 1.4 x 10-5 °/C [73]. 

2. ET = 5.04x10-9T2 + 1.13x10-5T [11] . 

The equations are plotted in Figure 2.10. 
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Figure 2.9: Typical curve of expansion of steel 

with temperature. 
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Figure 2.10: Thermal strains from different 
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2.5 STEEL TEMPERATURE IN FIRE. 

The prediction of steel temperature in fire is a very 

complex matter because of the many variables involved, 

including the rate of development of the fire and its 

duration. In the ECCS, CTCIM and MRL recommendations, the 

simplified heat flow analysis is based on the fundamental 

heat transfer laws [19], [80], including conduction, 

convection and radiation [19]. One of the simplifying 

assumptions commonly made is that the steel temperature is 

uniform, that is that the thermal conductivity of the steel 

is infinite [57]. In general a high thermal conductivity 

will lead to a lower temperature gradient and hence less 

thermal distortion. This approach generates a very good 

approximation of the steel temperature in fire if the steel 

element is heated on all sides, or if it is fully protected 

by fire protection material. Several mathematical models 

have been developed based on this principle to determine the 

protected and unprotected steel temperatures in fire 

[1] , [19] , [81] . 

However, when the steel element is protected by floor slabs 

or walls or is not heated on all sides the steel temperature 

profile within the cross-section can become highly non- 

uniform. The floor slabs or walls can act as heat sinks 

which consequently decrease the adjacent steel temperatures 

[20]. The influence of the presence of floor slabs or 

walls and the direction of fire on the structural steel 
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elements are shown in Figures 2.11 and 2.12. In this case 

thermal conductivity is an essential parameter in 

determining the steel temperatures [57]. A lower value of 

thermal conductivity will increase the temperature gradient 

and hence increase the thermal distortion. It is very 

important to recognise that the variation of steel 

temperature within the section generates a variation of 

strength across the member and consequently affects the 

performance of an element [5], [82]. In addition thermal 

bowing will occur, consequently increasing the deflected 

shape of the structure [20]. Excessive thermal bowing 

alone can sometimes create a limiting deflection [20]. 

Several authors have been involved in developing methods to 

determine the steel temperature profiles in fire 

[22] , [83] , [84] , [85] , [86] . Among the computer programs 

which have been developed are FIRES-T3 [22], TASEF-2 [83] 

and CEFICOSS [84]. The program FIRES-T3 is a three 

dimensional finite element heat transfer program. It is 

suitable for use in evaluating the temperature history of 

solid composite materials such as fire-protected structural 

steel and reinforced concrete. The model allows 

consideration of the non-linear thermal properties of the 

materials and heat transfer from the fire exposure. The 

solution technique requires an iterative integration process 

within each time step throughout the exposure period. The 

model allows consideration of the following design 

parameters: 
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Figure 2.11: Typical variations of steel temperature 

within the cross-section of different construction 
forms. 
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Figure 2.12: Variation of steel temperature along 

a column and a beam span. 



1. Material properties - thermal properties (thermal 

conductivity and specific heat) and density of materials are 

considered with respect to their change in value at elevated 

temperature. 

2. Fire environment - the time-temperature history of the 

fire environment is considered by specifically defining the 

temperature at each time step during the solution. It can 

take any form, for example constant temperature, linear 

change or natural burning. 

3. Heat transfer - the heat transfer process due to fire 

exposure is modelled as convection and radiation across the 

fire boundary and as conduction through the member. The 

emissivity of the flame and surface, view factor and surface 

absorption are considered in calculating radiation effects. 

4. Geometry - The shape and size of the structural element 

can be considered in one, two, or three dimensions. 

The program TASEF-2 [83], is a two-dimensional finite 

element heat transfer program. Structures with voids, 

where heat exchange occurs by radiation and convection 

between enclosure surfaces can also be analysed. 

The results obtained from the two programs described above 

are intended to produce thermal data for separate computer 

programs for evaluating the structural response. However 
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there are cases in which the structural response can affect 

the thermal analysis. An example of this is the spalling 

of concrete or a fire-protective coating [84]. In this 

case alternate thermal and structural analyses can be 

carried out. The computer program CEFICOSS [84] implements 

such a procedure. The thermal analysis is based on a 

finite difference method, where the values of the 

temperature at a given time are obtained explicitly at the 

end of the previous time step. 

2.6 METHODS OF ANALYSIS OF FRAME STRUCTURES IN FIRE. 

In the early stages of development of analytical methods for 

steel structures in fire, the analysis evolved around the 

concept of "critical temperature", which rests on two major 

assumptions [881, [89], [90]: 

1. For protected and unprotected steel elements the steel 

provides the main strength of the structural unit. 

2. Fire resistance is only concerned with the time of 

collapse of a structural element, not with its deformation 

history prior to collapse or its possible reusability after 

a fire. 

The above assumptions were only valid for steel with 

perfectly elastic-plastic stress-strain curves, for which 

the critical temperature of a structural element is defined 
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-. 1, 

as the average cross-sectional temperature at which the 

element can no longer support the design loads [88]. 

However, in the case where the stress-strain curves in fire 

are non-linear, the maximum strength of the steel cannot be 

firmly defined due to the fact that no definite yield point 

exists. Because of this the collapse criterion is based on 

the concept of limiting deflection [20]. 

It is suggested that the response of a structural element 

can be calculated in two steps: 

1. Calculation of the thermal response; that is the steel 

temperature history after the commencement of the fire. 

2. Calculation of the deformation history of the element up 

to the point of collapse or limiting deflection. 

In the 1960s methods of analysis for steel structures in 

fire received the attention of a number of researchers from 

all over the world [91]. In 1967, Witteveen [3] applied 

plastic analysis to determine the ultimate carrying capacity 

of statically determinate and indeterminate beams in fire. 

For instance, the corresponding yield stress (oYT) and 

collapse temperature of a simply supported beam can be 

determined from the relationship given in Equation 2.17. 

MP = QyTZp ............. (2.17) 
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where Mp = wL2 /8 (for simply supported beam) 

ZP = plastic modulus of cross-section. 

w= uniformly distributed load (kN/m) 

In 1972, Marchant [75] reported a method of analysis to 

analyse the behaviour of steel frame structures in fire. 

The analysis was based on the concept of a limit state of 

collapse corresponding to the formation of plastic hinges, 

reducing the statically indeterminate structure into a 

mechanism. The analysis included the effect of material 

softening which is represented by variation of Young's 

Modulus and yield stress. A linear steel temperature 

variation within the section and thermal expansion were also 

included. The change of mechanical properties and thermal 

expansion in each element at increasing temperature were 

calculated from the steel temperature. In the analysis the 

end forces of each element were output for every temperature 

increment and were then compared with the ultimate moments 

of resistance. When the ultimate moment at any section in 

the elements is reached a plastic hinge forms and the 

location and value of the plastic moment are printed. Any 

excess moment which appears at the hinge is redistributed to 

the remainder of the building. A further process of 

redistribution of load is carried out if the moment of 

resistance is exceeded at any point. 

In 1972 [92], Knight developed a method of evaluating the 

structural performance of a beam subjected to temperature 
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increase. The analysis includes the effect of variation of 

Young's Modulus and yield stress, coefficient of thermal 

expansion and creep at elevated temperature. The beam 

analysis was carried out in two parts. The first is the 

elastic-plastic stage, which is governed by elastic-plastic 

bending theory and covers the temperature range from 20°C to 

about 250°C. The second stage is when the steel temperature 

is beyond 250°C, in which the creep effect is included in 

the analysis. Curvature conditions are calculated at 

various positions along the beam, and by integrating twice 

the deflected shape is found. The design stress level and 

any restraint to expansion were both reported to have a 

great bearing on the failure times of steel members. 

In 1973, Ossenbrugen, Aggarwal and Culver [93], [94], [95] 

presented a method of analysing the behaviour of axially 

loaded steel columns subject to thermal gradients across the 

cross-section. The stress-strain curves at elevated 

temperature were assumed to be elastic-perfectly plastic as 

suggested by Brockenbrough [55]. The method of analysis 

used by the authors is based on Newmark's numerical 

integration method. The column is discretised into segments 

along its length and a moment-axial force-curvature- 

temperature (m-p-k-T) relationship is developed. By using 

the numerical integration and the m-p-k-T relationship the 

deflected shape of the column can be determined. To 

determine the deflected shape of the column at elevated 

temperature, the following steps are followed: 
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1. The magnitude of the initial deflections must be chosen 

such that the maximum moment does not exceed the ultimate 

moment. 

2. Determine the moment at each node along the length of the 

column. The moment at each node will be equal to the axial 

force multiplied by the assumed deflection at the node. 

3. The curvature associated with the moment at each node can 

be determined from the m-p-k-T relationship. Since the 

curvature is now known, the deflection at each node can 

again be determined. The process is repeated until the 

calculated and assumed deflections agree to within an 

acceptable tolerance. 

In 1973, Lie and Stanzak [88], [98] 

calculating critical temperatures 

columns. The stress-strain cu: 

assumed perfectly-elastic plastic. 

steel temperature profile is assumed 

is given by: 

developed a method for 

of protected steel 

rves of the material are 

A uniformly heated 

and the buckling stress 

air = (12 Et /( KL/r)z ............. 
(2.18) 

where Et = E/ ((1+30 (F/FY) 9) /7 ) 

E= Young's Modulus at temperature T. 

a= stress. 

ay = yield stress at temperature T. 
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air= buckling stress. 

K= effective length factor. 

L= length of column. 

r= radius of gyration. 

For low slenderness ratios the calculated values of buckling 

stress will exceed the yield strength of the steel. In this 

case the failure stress is considered to be the yield 

strength of the steel at the temperature under 

consideration. 

In 1975, Cheng and Mak [61] developed a computer program to 

evaluate the large displacement elasto-plastic thermal creep 

deformation behaviour of steel frame structures. The 

method of analysis was based on the finite element 

displacement method which was then extended to include the 

instantaneous and creep deformations. In the analysis it 

was assumed that the total strain ¬ is a combination of 

instantaneous and time-dependent components which take the 

form of: 

E_ Le + Ep + Ec + Er ............. 
(2.19) 

where Ee and Ep = instantaneous elastic and plastic strain. 

Ec = temperature dependent creep strain. 

ET = thermal strain. 

A classical tangent stiffness method was used to determine 
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the deformation history. The applied load was assumed to 

remain constant during the fire and a small time increment, 

dt, is introduced until the failure criterion is reached. 

In 1978, Furumura and Shinohara [11], [100] studied the 

inelastic behaviour of protected steel columns, beams and 

frames in fire using an elastic-plastic finite element creep 

analysis. It was noted that the method is basically the 

same in principle as reference [61] except that they were 

using different material properties in respect of free 

thermal strain, stress-strain curves and creep equations. 

In 1976, Lie and Stanzak [17] proposed formulas for 

determining the critical temperatures of structural steel 

members such as columns, beams and trusses in fire. The 

formulas depend on the type of the structural member, the 

length of fire exposure, the material yield strength and its 

elastic or creep properties. 

In 1979, Kruppa [60] investigated the collapse temperatures 

of steel structures or components such as beams and columns. 

He also examined the case of elements which cannot freely 

expand. The stress-strain curves of steel under temperature 

increase were considered perfectly elastic-plastic and creep 

was considered as negligible. Various types of temperature 

profile within the section were considered to determine the 

collapse temperatures of the structural steel elements. For 

statically indeterminate beams the collapse temperature was 
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obtained from the static theorem of plasticity and solved by 

linear programming. 

In 1981, Contro and Giacomini [71] developed a method for 

analysing frame structures exposed to fire. The method was 

based on a combined elasto-plastic and limit analysis known 

as Restricted Basic Linear Programming. The stress-strain 

curves at elevated temperature assumed perfectly elastic- 

plastic behaviour characterised by Young's Modulus and yield 

stress. 

In 1982, Iding and Bresler [66] developed a computer program 

called FASBUS II specifically designed to analyse the fire 

endurance of steel framed floor systems. The model 

utilises the finite element method, in which beam elements 

and triangular plate bending elements are used to represent 

the frame and slab respectively. The incremental solution 

used by the model provides for consideration of changes in 

temperature, with corresponding changes in material 

properties, throughout the exposure period. Bi-linear 

stress-strain curves for steel were assumed for the 

analysis. Using an iterative process the model determines 

the displacements necessary to bring the structure to a 

point of static equilibrium under the loads and heating 

conditions imposed. In addition a creep model for steel at 

high temperature was also included. 

In 1983, Jain and Rao [102] developed a method of analysis 
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of steel frames in a fire environment. The analysis was 

based on the finite element 

and iterative procedures. 

by Young's Modulus at eleva 

the effect of geometric 

deformation) was included. 

strain is given by: 

method which adopted incremental 

A linear behaviour characterised 

ted temperature was assumed, and 

non-linearity (creep and large 

It was assumed that the total 

E= Ee + EC + ET ................. (2.20) 

where £e, Ec and LT are elastic, creep and thermal strains 

respectively. 

The Newton-Raphson technique was used in order to obtain the 

final solution for displacement at elevated temperature. An 

iterative process was carried out in order to meet the 

convergence criterion of displacement. 

In 1985, Baba and Nagura [7] developed a method of analysis 

which was used to evaluate the effect of time-dependent 

material properties on the structural behaviour of steel 

structures in fire. The method is based on the finite 

element method, and uses the incremental approach and an 

iterative process to determine a full deformation history. 

A non-linear stress-strain curve with a continuous change of 

slope, derived from experimental results in which the 

material was subjected to high-temperature tensile and creep 

tests, was included in the analysis. They concluded that: 
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1. Creep has a small effect on the total deformation. 

2. Strain hardening should not be neglected in the fire 

problem. 

In 1986, Proe, Bennetts and Thomas [82], proposed a method 

of calculating the collapse temperature for structural steel 

members such as beams, columns and frames. The method is 

based on plastic analysis which includes the effect of non- 

uniform temperature variation within the section. A 

simplified design method was also proposed and a comparison 

was made with the experimental results such as with 

reference [1031. 

In 1988, Dotreppe, Franssen and Schleich [84], developed a 

finite element program called CEFICOSS for composite and 

steel structures in fire. The simulation of the 

structure's behaviour when subjected to fire is performed in 

two steps. Firstly, the structure is analysed under small 

increments of load at ambient temperature. At each 

increment the internal forces and displacements are based on 

the linearised tangent-stiffness matrix. An iteration 

process based on the Newton-Raphson method is used in order 

to achieve static equilibrium. This procedure continues at 

ambient temperature until the design loads have been 

reached. These are then kept constant during the next 

stage. Secondly, a time-step is introduced for which a 

thermal analysis is performed. The current material 

properties of the cross-section are then calculated based on 
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the current temperature profile. Next the out-of-balance 

forces are calculated. These are applied incrementally to 

the structure until the level of the design loads is reached 

again and a Newton-Raphson correction is used in order to 

achieve convergence in displacements. The process is 

repeated until equilibrium can no longer be obtained. 

In 1988, Burgess, El-Rimawi and Plank [67], developed a 

method of analysis to investigate the behaviour of 

continuous beams under fire conditions. The analysis is 

based on the matrix stiffness formulation which utilises the 

secant stiffness concept. A beam finite element with four 

degrees of freedom was used which ignores axial 

deformations. The analysis incorporates material non- 

linearities and thermal loading due to temperature variation 

within the section, but geometric non-linearities were 

ignored. A modified version of the Ramberg-Osgood equation 

was established to represent the family of stress-strain 

curves of steel in fire obtained from the BS 5950: Part 8 

1985 draft version [70]. Because of the non-linear nature 

of the problem the solution is iterative. The iterative 

solution used resembles the mathematical formulation of the 

Newton-Raphson Method. 

2.7 CONCLUSION. 

As was mentioned earlier, the stress-strain relationships of 

steel at elevated temperatures are normally non-linear with 
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a continuous change of slope, so that a definite yield point 

cannot be determined. Because of this, the maximum 

strength of a structural steel element is normally 

determined on the basis of limiting deflection, as in BS 

476: Part 8: 1972 [13]. 

From the literature review, it was noted that the finite 

element method has been widely used to evaluate the 

deformation history of frame structures in fire. However 

this method requires very powerful computing equipment in 

terms of storage and computation speed. For implementation 

on personal computers, matrix stiffness analysis offers a 

more practical and suitable method than finite elements in 

evaluating the deformation history of frame structures in 

fire. This is because the former method requires much less 

data prior to performing the analysis, and this is of major 

concern in the present research. Matrix stiffness analysis 

is very well established as a tool for linear structural 

problems and can be extended to include non-linear effects. 

With regard to non-linear structural analysis the 

traditional way of implementing the matrix stiffness method 

is by an incremental approach. In this approach the 

applied load is divided into small increments, and at each 

load increment the unknown displacements are determined by 

the local matrix stiffness analysis. An iterative process 

is carried out in order to determine the correct value of 

displacements for each load increment by using the Newton- 
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Raphson method. It should be noted that the local error is 

cumulative due to the fact that the error on each load 

increment depends on the previous value. Greater accuracy 

can be achieved by reducing the size of load increment but 

this is time consuming. 

An alternative approach is called the secant stiffness 

method in which, instead of stepping along the load- 

deflection curve to achieve the final solution, a more 

direct solution can be achieved by introducing a linear 

relationship between the load and the actual displacement. 

The approach offers advantages compared with the incremental 

approach for the following reasons [38]: 

1. A full load-deformation history is not required. 

2. The computing time required for the incremental approach 

is greater than for the secant stiffness approach. 

3. The secant stiffness methods relates the load to the 

actual deformation which consequently increases the inherent 

accuracy of the analysis. This is unlike the incremental 

approach in which the local error is cumulative and the 

analysis at the current load increment depends on the 

previous analysis. 

The approach has been applied successfully in matrix 

stiffness analysis with which it has been used to evaluate 
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the deformation history of continuous beams at ambient 

temperature and in fire [67]. However, it has been noted 

that the degrees of freedom per member in this analysis were 

taken as four, so that axial deformation was ignored. In 

addition, geometric non-linearities were ignored in the 

analysis. This approach will be extended in the current 

work to enable it to incorporate the effect of material and 

geometric non-linearities. 

In the present research the matrix stiffness method which 

utilises secant stiffness will be used to evaluate the 

behaviour of steel frame structures in fire. The number of 

degrees of freedom of each member will be taken as six, in 

order to include axial deformation. The geometric non- 

linearities which result from the axial shortening due to 

bending of the member and the p-delta effect will be 

included in the analysis. The influence of axial force on 

the moment-curvature relationship will also be included. 

In the present research, an idealised form of multi-linear 

stress-strain curves of steel at elevated temperature are 

suggested by the author to represent the test results given 

by Kirby [70]. The data is presented in Table 2.1. The 

idealised form of the stress-strain curves is shown in 

Figure 2.13. The figure represents the stress-strain 

curves of steel for temperatures 20°C, 100°C, 200°C, 300°C, 

400°C, 500°C, 600°C and 700°C. In between these 

temperatures interpolation is used. 
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Figure 2.13: Idealised stress-strain curves 
of steel at elevated temperature. 



It should be noted that the stress-strain data of Table 2.1 

represents the stress at any temperature as a proportion of 

the yield stress at 20°C. A value of 205000 N/mm2 is 

assumed for Young's Modulus at 20°C and consequently the 

corresponding yield stress in Figure 2.13 is equal to 287 

N/mm2. The curves in Figure 2.13 will be modified in order 

to cater for any grade of steel which has a different value 

of yield stress at 20°C. To suit any grade of steel the 

initial yield strain at elevated temperature is modified to 

take the form: 

£T1 = a; zoEt1/287 ............. (2.21) 

where Erg = the yield strain at T°C for the steel grade 

considered. 

Esi = the yield strain at T°C of figure 2.13. 

Figs. 2.14 and 2.15 show a comparison of the proposed multi- 

linear stress-strain curves of steel of grades 43 and 50 

respectively against the results obtained from tests 

[5], [70]. It can be seen that the curves have shown very 

good agreement. In case of strains greater than 1%, the 

slope of stress-strain curves is taken as one tenth of the 

previous slope at the corresponding temperature level. 

The other aspect which is examined in some detail in the 

present work is the effect of material unloading on the 

moment-axial force-curvature relationship. A 'beam-column' 
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Figure 2.14: Comparison of idealised stress-strain- 
temperature curves with BS 5950: Part 8 data (draft) 

for grade 43. 
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element is defined as an element that is subjected both to 

bending moment and axial force, but the rates at which these 

loads are applied to the element are not clearly defined. 

From the literature review it has been demonstrated that the 

derivation of moment-axial force-curvature relationship is 

often based on the assumption that bending moment and axial 

force are applied simultaneously and in proportion from a 

zero stress-state. This is not necessarily the case when 

temperature effects are included and hence this problem will 

be investigated further. 

The effect of material unloading will be extended to the 

case of fire. This is because, apart from the variation of 

stress-strain curves in fire, material unloading inevitably 

happens to an element if it is fully restrained from 

longitudinal expansion. Suppose the element is subjected to 

bending moment at ambient temperature and fully restrained 

against thermal expansion. If heating is then introduced an 

axial force is induced, and consequently the position of the 

neutral axis shifts in order to create an equilibrium 

condition. As a result material unloading inevitably 

happens. 
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CHAPTER THREE 

GEOMETRIC AND MATERIAL NON-LINEARITIES 

IN MATRIX STIFFNESS ANALYSIS 

3.1 INTRODUCTION. 

When loading is applied to a structural frame, the frame can 

no longer maintain its geometrical shape. The method that 

is normally used to evaluate the corresponding deformation 

is the matrix stiffness method. This has been applied 

successfully to a wide range of linear elastic structural 

problems [23], [116] in which the flexural and axial 

stiffness in the element stiffness matrix are characterised 

by Young's Modulus 'E', cross-sectional area 'A', and second 

moment of area of the cross-section 'I'. The stress-strain 

curve of the steel material is assumed to behave in a 

linear-elastic manner without yielding. 

However the behaviour of a frame structure depends, beyond 

its initial loading range, on non-linear terms governing its 

material properties and its geometric behaviour. These 

effects are ignored in linear elastic analysis. Thus, in 

order to provide an accurate assessment of the behaviour of 

frame structures over a greater loading range, such non- 
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linear effects must be included in the formulation. 

Material non-linearities are caused by the non-linear nature 

of the stress-strain relationship of steel, and to the 

reduction of member strength and stiffness due to the 

presence of axial force. Geometric non-linearities include 

axial shortening due to bending of the structural members, 

and secondary bending caused by axial thrusts acting on the 

deflected shape, known as the "p-delta effect". 

As has been mentioned in the previous chapter the 

traditional method of solution where these non-linear 

effects are included in the matrix stiffness method is by 

using a load increment procedure. This requires gradual 

stepping along the load-deflection curve. An alternative 

which provides a more direct solution is the secant 

stiffness approach. This has been developed for flexural 

analysis (ignoring axial deformation) [36], [38], [67] and has 

proved to be more economic in terms of computation time. In 

the present work, the method is extended to include 

geometric non-linearities as well as axial load effects for 

the analysis of in-plane behaviour. In this chapter, the 

development of a general non-linear matrix stiffness method 

for structural analysis is discussed. The method is 

developed initially for ambient temperature conditions and 

is validated by comparison with other theoretical studies. 

It is then extended in Chapter 5 to enable non-linear 

analysis of frames in fire. 
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3.2 MATRIX STIFFNESS ANALYSIS. 

In matrix stiffness analysis of frames the structure is 

typically represented by an assembly of bar elements (or 

members) interconnected at nodes (or joints). A complete 

cycle of analysis involves the determination of both the 

internal forces and displacements at each node. The 

equilibrium condition of the structure is described by a 

system of simultaneous algebraic equations in which the 

nodal displacements are unknown. A brief review of the 

process of matrix stiffness analysis which is now well 

documented - see for example reference [116] - is given 

below: 

1. The number of degrees of freedom for every element is 

defined. In plane frame structures, in which both bending 

moment and axial force are considered, the number of degrees 

of freedom is 6 (i. e 3 at each end of the element). These 

are the rotation '60', and two displacement components at 

each node, as shown in Figure 3.1. A coordinate system is 

established to identify the location of nodes and direction 

of displacements at those nodes. 

2. The element forces, corresponding to each of the degrees 

of freedom, are introduced at the nodes as shown in Figure 

3.2. These forces are related to the displacements using 

an appropriate 'elastic' relationship and the condition of 

equilibrium for each individual element. 
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3. A complete analysis involves the determination of both 

displacements and forces at both ends of each element. The 

unknown nodal displacements can be determined by solution of 

simultaneous equations based on the condition of 

compatibility at each joint. In matrix notation: 

[K](DI = (P} ..................... (3.1) 

where [K] = the overall stiffness matrix. 

{D} = vector of displacements. 

(p} = vector of external loads. 

The overall stiffness matrix [K] is obtained from the 

combination of the individual element stiffness matrices and 

the procedure is described in [116]. The load vector {p1 is 

obtained from a combination of the fixed end forces for 

every element meeting at a joint. 

Having solved for the node displacements, the final stage of 

the analysis is to determine the forces in each element. To 

do this the equation takes the form: 

{plm = [K]m [T]m {dlm + (p}fo ............ 
(3.2) 

where (p1ID = end forces of each element. 

{p1fa = fixed end forces of each element which can be 

calculated from the standard tables [116]. 

[K]m = element stiffness matrix. 
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[T]o = the condensed element transformation matrix. 

{d}1 = end displacements of each element in terms of 

structure, not the element axis. 

The method has been applied successfully for linear elastic 

analysis [23], [116] which is based on the first order linear 

elastic relationships between member end forces and 

displacements. However, material and geometric non- 

linearities can be included by using appropriate force- 

displacement relationships. In the present work the secant 

stiffness approach is utilised to cater for the material 

non-linearity and an iterative procedure is adopted to 

account for geometric non-linearities. 

3.3 ELEMENT STIFFNESS MATRIX. 

A beam-column element is an element which is subjected to a 

combination of axial force and bending moment. In general 

all members in a frame structure are beam-columns and the 

corresponding element stiffness matrix will include both 

effects. 

In the present work the formation of the element stiffness 

matrix is based on small deflection theory, implying the 

assumption that the curvature of an element is expressed 

sufficiently accurately by d2y/dx2 In addition the flexural 

and axial stiffness coefficients are assumed constant along 

the element. The stiffness corresponding to each degree of 
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freedom is calculated by assuming a corresponding unit 

displacement while preventing or restraining others as shown 

in Figure 3.3. In the case of rotation and displacement 

perpendicular to the element the resulting forces are then 

calculated using the strain-energy method [116]. In the 

case of axial displacements the axial force is expressed in 

terms of the end displacements, neglecting the influence of 

curvature on end shortening. 

The nodal forces and displacements can be written in the 

form of an element stiffness equation: 

(P}m = [Klm(D}  ..................... 
(3.3) 

where (p1m and (D14 = vector of element force 

displacement. 

[K]m = element stiffness matrix. 

The stiffness matrix [K]m for a beam-column element is given 

by Equation 3.4 (shown in Figure 3.4). In linear elastic 

analysis the axial and flexural stiffness coefficients of a 

beam-column element, represented in Equation 3.4 by 

'(EA)erf' and '(EI)eff' respectively, are equal to 'EA' and 

'EI'. 

For non-linear materials such as those with multi-linear 

stress-strain curves described in Chapter 2, the stiffness 

of the material gradually decreases with load level and 
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there is no unique value of Young's Modulus to be used in 

calculating the stiffness coefficients. 

In cases where the material is assumed to be elastic- 

perfectly plastic, the effective area and second moment of 

area of a cross-section are typically calculated by ignoring 

the yielded part of the section [26]. These values are then 

multiplied by the Young's Modulus E to obtain the effective 

flexural and axial stiffness coefficients. However, the 

presence of axial force not only causes axial displacement 

but also changes the effective stiffness and strength of the 

section. The combined effect of material non-linearity and 

axial load can best be obtained from an appropriate moment- 

axial force-curvature relationship. This procedure is 

described in the following section. 

3.4 DERIVATION OF MOMENT-AXIAL FORCE-CURVATURE 

RELATIONSHIP. 

The curvature k of a beam-column element can be obtained 

from a consideration of equilibrium, equating the internal 

and external axial force and bending moment of the element 

as shown in Equations 2.6 and 2.7. 

The relationship between curvature k and the strain 

distribution across the section can be expressed as: 

k= (Ei - Ez)/h ...................... (3.5) 
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where E1 = strain at the top of the section. 

£2 = strain at the bottom of the section. 

h= depth of the section. 

In determining the curvature k, the cross-section is 

represented by horizontal strips at uniform strain, as shown 

in Figure 3.5. If the number of strips is increased, then 

their depth is decreased, resulting in a more accurate 

moment-axial force-curvature relationship. Each strip is 

identified by a subscript i, with i=1 at the bottom and i 

=s at the top of the cross-section in which s is the number 

of strips. Also, from the figure it can be seen that the 

elongation or contraction of any strip is given by: 

Ei = to + (kyt ) ................... (3.6) 

where to = axial strain at the centroid of the section. 

yi = distance from the centre of the i'th strip to 

the centroid of the section. 

The stress of corresponding to the strain in each strip can 

be calculated from the stress-strain curve for the material. 

Then the internal axial force dPi and bending moment dMi for 

each strip can be computed as: 

dPi = dAi ai .................. (3.7) 

dMi = dPiyi .................. (3.8) 
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where dAt = area of i'th strip. 

The internal axial force and bending moment for the complete 

cross-section can then be expressed as follows: 

S 

Pint =f dPi ...................... (3.9) 
1=1 

S 

Mint =E dPiyt ................. (3.10) 
1=1 

The determination of the moment-axial force-curvature 

relationship is summarised in the flow chart shown in Figure 

3.6. The figure shows the process of iteration which is 

used to satisfy the equilibrium condition. A curvature k 

and centroidal axial strain to are assumed and the 

corresponding stress is calculated for each strip. The 

internal axial force is then calculated using Equation 3.9, 

and is checked to see if it balances the external force. If 

not, a new centroidal axial strain to is assumed and the 

process repeated until the difference 'dN' between the 

assumed and external axial forces (as shown in Equation 

3.11) is sufficiently small. The internal moment is then 

compared with the external moment; if unbalanced a new 

curvature k is assumed and the process repeated until the 

difference 'dM' between the assumed and external moments (as 

shown in Equation 3.12) is also sufficiently small. 
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Figure 3.6: Logical sequence of the algorithm for obtaining 
the moment-axial force-curvature relationship 



dN = (Pint - PI .................... (3.11) 

dM = IMint - MI ..................... (3.12) 

where P= external axial force. 

M= external bending moment. 

The influence of axial force on the moment-curvature 

relationship for a rectangular cross-section is expressed in 

Figure 3.7. The curvature is achieved by initially 

imposing a constant value of axial force, and then 

progressively increasing bending moment until a large amount 

of curvature is achieved. The figure shows that in the 

absence of axial force, the fully plastic moment is equal to 

Mp. This reduces to 0.96Mp when the axial force is set at 

0.2Py and reduces further as the axial force is increased. 

It is clear that the strength and stiffness of the material 

is always reduced in the presence of axial force, 

irrespective of whether this is tensile or compressive. 

3.5 THE SECANT STIFFNESS. 

Generally the stress-strain curves of steel, particularly at 

high temperatures, are non-linear with a continuous change 

of slope. A load increment tangent stiffness method has 

often been adopted for structural analysis where such 

material properties are used but this can be time consuming. 

An alternative approach, providing a more direct solution, 
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Figure 3.7: The effect of axial force on moment-curvature 
relationship for a rectangular beam-column element. 



is to use the concept of secant stiffness. The basic 

principle of this can be illustrated by considering the non- 

linear behaviour of a spring as shown in Figure 3.8. The 

non-linear curve OA is represented by the functional 

relationship: 

F= f(6) ..................... (3.13) 

in which F= axial load 

5= deformation. 

If a load F1 is applied to the spring the deformation will 

be 5t, so that Fi =f (ö1) . This same state of equilibrium 

could be achieved if the load-deflection curve of the spring 

were given by the line OA. This can be represented by an 

equation of the form: 

F= f(61)S 

bi 

or 

......................... (3.14) 

F= SS ............................. (3.15) 

where S= secant stiffness of the spring. 

It should be noted that the secant stiffness relates the 

load directly to the actual deformation, which is not the 

case with the tangent stiffness. 

69 



Figure 3.8: Load deformation curve showing the secant 
stiffness line OA. 



The secant stiffness approach can be used in setting up the 

element stiffness matrix. The formation of the flexural 

secant stiffness coefficient will be considered first. In 

linear elastic analysis the basic flexural stiffness is EI; 

in secant analysis terms the moment-curvature relationship 

takes the form: 

S= M/k .................. (3.16a) 

where M= bending moment. 

S= flexural stiffness coefficient. 

In this case a linear relationship exists between the moment 

M and curvature k resulting in a constant flexural stiffness 

coefficient S. In addition, the curvature is independent 

of axial load P. 

However, for elasto-plastic conditions a non-linear 

relationship exists between the curvature and moment as 

shown in Figure 3.9a. In this case the flexural stiffness 

coefficient is no longer constant. Suppose an element is 

subjected to a combination of moment Mi and axial force Pt, 

and the corresponding curvature is ki (Figure 3.9a). The 

same state can exist by introducing a secant line relating 

the moment Mt and the corresponding curvature ki as shown in 

line OA. The relationship takes the form: 

Ss i= Mi/ki ................ (3.16b) 
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where Ssi = flexural secant stiffness coefficient. 

The concept of the axial stiffness coefficient is similar. 

In linear elastic analysis the basic axial stiffness is EA. 

Alternatively it can be determined from: 

AL = P/Eo ................ (3.17a) 

where AL = axial stiffness coefficient. 

P= axial force. 

Eo = average axial strain. 

In this case a linear relationship exists between the axial 

force P and average axial strain to. This results in a 

constant axial stiffness coefficient which is independent of 

bending moment M. 

However for elasto-plastic conditions a non-linear 

relationship exists between the axial force P and the 

average axial strain eo as shown in Figure 3.9b. As a 

result the axial stiffness coefficient is no longer 

constant. Suppose a beam-column element is subjected to a 

combination of bending moment Mi and axial force Pi, and the 

corresponding average axial strain is tot (Figure 3.9b). 

The same state can be established by introducing a secant 

line relating the axial force Pi with the corresponding 

axial strain poi as shown in line OA. The relationship 

takes the form: 
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Ast = Ps/toi ................... (3.17b) 

where Azi = axial secant stiffness coefficient. 

Having defined the axial and flexural secant stiffness 

coefficients in the manner of Equations 3.16b and 3.17b the 

element stiffness matrix given in Equation 3.4 is then 

modified with the values of (EA)eff and (EI)eff replaced by 

Asi and Ssi respectively. These are used in the present 

analysis, the average axial strain Lo and curvature k being 

determined from the derivation of moment-axial force- 

curvature relationship described in Section 3.4. 

3.6 THE EFFECT OF AXIAL SHORTENING DUE TO BENDING ON THE 

FORMULATION OF THE SECANT STIFFNESS COEFFICIENT. 

The approach can be extended to include the influence of the 

geometric non-linearity which results from axial shortening 

due to bending. This will affect the axial displacement of 

a beam-column element, and hence the corresponding secant 

stiffness coefficient. 

Suppose a beam AB is pinned at one end and is free to move 

longitudinally at the other end as shown in Figure 3.10. 

When the beam is bent, end B will move horizontally through 

a small distance d from B to B'. The displacement d is the 

difference between the initial length L of the beam and the 

length of the chord AB' of the bent beam. 
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Figure 3.10: Horizontal displacement of the end 

of the beam due to curvature. 

dx 

dv 

ds 

Fig. 3.11: Relationship between the chord length, ds, 

and horizontal projection, dx, of an element. 



To find this distance, consider an element of length ds 

measured along the curved axis of the beam as shown in 

Figure 3.11. The projection of this element on the x axis 

has a length dx. 'The difference between the length ds and 

its horizontal projection is 

ds - dx =J (dx2 + dv2) - dx 

= dx (d 1+( dv2 /dx2)) - dx 

= dx (1+ t)1/2 - dx ..... (3.18a) 

where v represents the vertical deflection of the beam. By 

expanding the term (1 + t)1/2 using the binomial theorem, 

this becomes: 

(1 + t)1/2 =1+ t/2 - t2/8 + t3/16 -....... (3.18b) 

Provided that t is numerically very small the terms 

involving t2, t3, and higher orders can be ignored. Thus: 

(1 + t)t/2 =1+ t/2 ......................... 
(3.19) 

Hence Equation 3.22 becomes: 

ds - dx = dx [1+ 1/2(dv/dx)2 ]- dx 

= 1/2 ( dv/dx)2 dx .................. (3.20) 
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The equivalent axial strain is therefore: 

£oa = (ds -dx)/dx = 1/2 (dv/dx)2 ................. (3.21) 

where Foe = average effective axial strain due to bending 

in each element. 

dx = length of an element 

dv = the difference of the lateral displacements of 

the two nodes in the element. 

The resultant average axial strain in each element is given 

by: 

It = 14) - Loa . ....................... (3.22) 

where Et = resultant strain in the element. 

Eo = centroidal axial strain obtained from m-p-k 

relationship 

In the secant stiffness method the axial stiffness shown in 

Equation 3.17b is modified because of the effect of axial 

shortening due to bending and becomes: 

Ast = P/Et ........................... (3.23) 

where P= axial force acting on the element. 

Ast = axial secant stiffness. 
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3.7 ANALYSIS OF FRAME STRUCTURES INCLUDING MATERIAL NON- 

LINEARITIES AND THE EFFECT OF AXIAL SHORTENING. 

The non-linear analysis of frame structures including both 

material and geometric non-linearities will now be 

considered. To start with, Equations 3.1 and 3.2 for the 

matrix stiffness method are modified and become: 

[K3] (Da l= {p} .............. (3.24) 

and 

(P)m = [Ks ]m [T]m fd}m + (p}tm ........... (3.25) 

where [Ks] = overall secant stiffness coefficient. 

{Dn} = non-linear displacement vector. 

(p1 = load vector. 

[T]m = condensed element transformation matrix. 

{d}m = end displacements of the element in global 

terms. 

[K$]m = element secant stiffness matrix. 

In the linear elastic condition, only one cycle of iteration 

is required to obtain a complete solution for displacements. 

In the current non-linear structural analysis an iterative 

process is used to satisfy the conditions of Equations 

3.16b, 3.23 and 3.24. The analysis is summarised in Figures 

3.14 and 3.12. The process is based on assumed curvature 
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Moment. M 

Initial secant stiffness 
based on ko 

Ml 
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ko kl k2 k3 ... kn 

Converge until the difference 
between the previous and 

current curvatures is 

sufficiently small. 

Curvature, k 

Figure 3.12: Schematic representation of non-linear 
frame analysis using secant stiffness approach. 



and stops when the difference between the current and 

previous curvatures in each element is sufficiently small. 

Initially the analysis is carried out by ignoring axial 

shortening in the members. A small value of curvature 'ko' 

and axial force 'Po' are assumed for each element. The 

corresponding moment 'Mo' is obtained from the moment-axial 

force-curvature relationship and the condition that the 

internal and external axial force are approximately equal as 

shown in Figure 3.13. The flexural and axial secant 

stiffness coefficients can then be calculated using 

Equations 3.16b and 3.23 respectively based on the 

corresponding curvature ko and centroidal axial strain to. 

The nodal displacements are calculated from the solution of 

the simultaneous algebraic equations given in matrix form in 

Equation 3.24. The element forces can then be calculated 

from Equation 3.25. 

It should be noted that the nodal displacements obtained 

from Equation 3.24 are in fact denoted in terms of the 

coordinate axes of the overall structure. These are then 

converted into the element axes based on Figure 3.1. Thus, 

the end displacements for each element take the form: 

IdmI = [T]in (dim ................. (3.26) 

where (dm1 = node displacements in terms of element axes. 
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Input curvature To' and axial force 'po' 

Assume centroidal axial strain 

Calculate Pint and Mint 

NO 
Is Pint=P? 

YES 

F Save Mo 

Stop 

Figure 3.13: Logical sequence of operations in determining 

the moment 'Mo' for each element. 



Start 

Input frame and load definition 

Assume initial curvature To' and axial force 'Po' 

Calculate the corresponding moment 'Mo' from equilibrium 
condition 

Calculate flexural and axial secant stiffness coefficient 
'Asi' and 'Ssi' 

Calculate displacement 

Calculate element forces 

Calculate average moment 'Ml' and define axial force as 'P1' 

Calculate new curvature 'k1' 

Calculate residual curvature 'dk' 

NO I --j YES 
11 1sdk=0? 

Set ko = kl and Po = P1 

Save result 

Stop 
Figure 3.14: Logical sequence of operations for the frame 

analysis including the effect of material non-linearity 



(dim = node displacements in global terms. 

[T]m = nondensed element transformation matrix. 

Having determined the node displacements in this way, the 

differential displacement of the two ends of an element, 6vi 

can be determined. The axial shortening due to bending for 

each element is then calculated using an Equation 3.21 and 

this is then used for the next cycle of iteration to 

determine the new axial secant stiffness coefficient. 

A new curvature, ki for each element can be established by 

using the approach outlined in Figure 3.12. By projecting 

the secant line of the previous moment 'Mo' and curvature 

'ko' to the new value of bending moment 'Mi', a new 

curvature can be calculated according to: 

ki = Mi ko /Mo .................. 
(3.27a) 

where ki = new curvature in each element. 

Mi = new average moment in each element. 

ko = previous curvature. 

Mo = previous average moment in each element. 

The new value of moment in each element, M, is taken from 

the average of the values at its ends, and the new axial 

force in each element is defined as Pi. In general the new 

values of curvature (ki), moment (Mi) and axial force (Pi) 

will not be the same as those assumed initially. Therefore 
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an iterative procedure must be adopted until there is 

sufficiently close agreement between the assumed and 

calculated values. El-Rimawi [5] used a similar approach 

when studying beam elements in the absence of axial load. 

He found that using the curvature as the basis for 

convergence was most secure, and therefore the same 

procedure has been adopted in the current analysis. 

The difference between the current and previous curvatures 

can be written: 

dk = (ki - kol ..................... (3.27b) 

where dk = residual curvature. 

If this difference is not sufficiently small the calculated 

values of curvature ki and axial force Pi are adopted as the 

initial values for the next iteration. The procedure is 

repeated until the difference between the current and 

previous curvatures in each element is sufficiently small. 

It should be noted that the results obtained from any 

iteration are independent of those obtained from the 

previous iteration. Moreover, once the correct curvature 

profile has been found the calculated forces and 

displacements are the actual non-linear ones. For these 

reasons the iteration can be started using any initial 

values. However it is most convenient to assume values of 
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curvature sufficiently small that the secant stiffness 

coefficient equals the elastic stiffness coefficient. By 

doing this the number of iterations required for special 

cases such as a linear analysis will be minimised without 

changing the iteration process. 

3.8 SECONDARY EFFECTS DUE TO AXIAL FORCE. 

In the previous section the influence of axial load inducing 

additional bending, the so-called p-delta effect, was 

ignored in the analysis. To obtain a more accurate 

analysis, this influence will now be included. 

3.8.1 Secondary moments due to axial force. 

If a member is perfectly straight, the axial load P acting 

on its own would produce no lateral displacement. However, 

if the member is subject to bending, for instance due to 

lateral loads or eccentricity of loading, or if the column 

had an initial curvature, deflections are increased if the 

member is subjected to axial compressive load or decreased 

for a tensile load. This is caused by the secondary moments 

generated by the load acting on the deformed member and is 

called the p-delta effect. This can be important, 

particularly for high axial loads. To obtain a relationship 

between bending moment and lateral deflection, suppose a 

beam is displaced by some means from its initial position to 
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the configuration v(x), as shown in Figure 3.15. 

At a position (x, y) the external bending moment M(x, y) is 

given by: 

M(x, y) = Pv ....................... (3.28) 

The increased be; 

bending stiffness 

equilibrium the 

axial forces must 

to include the 

analysis. 

zding moment due to P is resisted by the 

of the member. Since the member is in 

external and internal bending moments and 

be equal. These conditions can be used 

p-delta effect within the structural 

3.8.2 Derivation of fixed end moments and forces due to p- 

delta effect. 

To include the p-delta effect in the secant stiffness 

method, the moments and forces induced by the axial force 

must be included in the load vector. To start with, each 

element in the frame is assumed to be restrained against 

rotation and the element is then analysed incorporating the 

effect of the axial force as shown in Figure 3.15b. The 

element is assumed to be very small, and consequently has a 

high value of Euler load. Thus the ratio of the axial 

force to the Euler load is very small and the general 

element stiffness matrix shown in Equation 3.4 is almost 

unchanged. 
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Figure 3.15: Schematic representation in determining 
the fixed end forces of an element due to the 

p-delta effect. 
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4 

Suppose a member is subjected to an axial load P and the 

corresponding deformation is shown in Figure 3.15a. The 

i'th element is analysed and Figure 3.15b shows the 

arrangement of the fixed-ended element. The difference 

between the vertical displacements of the two nodes in the 

element is given by Si. The forces at each end of the 

element are then determined using the differential 

deflection equation [116]. Table 3.1 shows the fixed end 

forces for the element subjected to axial compressive and 

tensile forces. 

The terms 6EI5/L2 and 12EIS/L3 are in fact the fixed-end 

moment and shear force caused by the support displacements 

and these effects have already been included in the modified 

joint restraint conditions. Thus the modified fixed end 

forces for the element subjected to axial compressive and 

tensile forces are as shown in Table 3.2. 

3.8.3 Analysis of frame structures including second-order 

geometric and material non-linearities. 

The analysis which was described in Section 3.5.4 is now 

extended to include the p-delta effect. Since the analysis 

is non-linear, an iterative process is required to determine 

the final deflected shape. The analysis is summarised in 

Figure 3.16. 

Initially the normal first-order analysis is carried out as 
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Assume lateral displacement at each node equal to zero. Y1=0. 

Assume initial curvature To' and axial force 'Po' for each 

element. 

Determine the corresponding moment 'Mo' from equilibrium 
condition. 

Calculate axial and flexural secant stiffness coefficients. 

I Calculate the load vector due to applied loads and p-delta I 

effect. 

Calculate displacements and forces in each element. 

Define the new axial force as 'Pl' 

Calculate average moment 'M1' in each element. 

Determine new curvature 'kl' for each element. 

Calculate residual curvature for each element 'dk'. 

NO 

Isdk=O? 

YES 

Extract the lateral displacement at each node - 'Y2'. 

Calculate residual lateral displacement at each node 'Dv' 

YES 
Stop I Is Dv=0? 

NO 

Set Yl = Y2 at each node. 

Figure 3.16: Computer chart for the analysis of frame 

structures including the effect of geometric and material 
non-linearities. 



summarised in Figure 3.14 but with the lateral displacement 

for each node assumed zero, thus ignoring the influence of 

the p-delta effect. This provides values for displacement 

at each node and enables the additional fixed-end forces for 

each element to be calculated using the procedure described 

in Section 3.8.2. By performing a subsequent analysis in 

which the load vector is extended to incorporate these 

fixed-end forces, the p-delta effect can be included. This 

results in revised displacement values at each node. if 

these are not sufficiently close to the values assumed at 

the beginning of the calculation, the analysis must be 

repeated using the revised values. It should be noted that 

the fixed end forces due to the p-delta effect are assumed 

to remain constant during the iteration process until the 

residual curvature dk (see Equation 3.27b) for each element 

is within the tolerance limit. Although this is not 

strictly correct, any errors resulting from this assumption 

are likely to be very small, yet the savings in computation 

time are considerable. 

The analysis is stopped when the difference between the 

current and previous values of lateral displacement is 

sufficiently small. If not, the process is repeated with 

the current values of lateral displacements used as the new 

initial values. This forms the basis for a computer program 

written in QuickBasic and running on an IBM PC286. 
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3.9 VALIDATION OF THE PRESENT THEORY. 

The accuracy of the analysis is clearly dependent on the 

number of elements into which each member is divided, and 

the number of strips used to represent the cross-section as 

discussed in Section 3.4. With regard to the convergence 

of the results the influence of the number of elements and 

strips in the cross-section will be discussed fully in 

Chapter 5, which covers the analysis of frames both at 

ambient temperature and in fire. This shows that for 10 

elements per-member and with each cross-section divided into 

10 strips the results of the analysis give adequate 

accuracy. 

In this section this representation will be used to compare 

the behaviour of isolated beams and columns with previously 

published results. using the differential deflection equation 

derived by Chen and Lui [30] which is valid for members 

which behave in a linear elastic manner with constant 

flexural stiffness. For simplicity a rectangular cross 

section is used with breadth b= 100mm and height h= 200mm. 

The span of the member is taken as 8.66m, giving a 

slenderness ratio of 150 and ensuring a significant p-delta 

effect. The member is assumed to be simply supported and 

subjected to a combination of axial load and various types 

of lateral loads. Material properties are represented in a 

bi-linear elastic-perfectly plastic manner with Young's 

Modulus E= 205000 N/mm2 and yield stress oy = 250 N/mm2. 
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Unless otherwise stated the axial load P is 500 kN which is 

sufficiently small (i. e, 0.1Pq) to avoid inelastic behaviour 

of the member, and the comparisons can be made in the linear 

elastic region only (Sections 3.9.1 to 3.9.3). In 

subsequent sections inelastic behaviour is considered. 

3.9.1 Simply supported beam subject to a compression force 

P and end moment applied at both ends. 

Consider the simply supported beam with a span of 8.66m, 

subjected to end moments M= 10 kNm (0.04Mp) and axial force 

P of 500 M. 

The bending moment and vertical deflection at any point 

along the span can be determined from the differential 

deflection equation [30] and the results from this are 

compared in Figures 3.17 and 3.18 with those obtained using 

the present method. These show very good agreement between 

the two methods. The p-delta effect can be seen to have a 

significant influence on the bending moment. If the effect 

is ignored the bending moment is clearly constant at 10 kNm, 

but the mid-span bending moment increases to about 15 kNm 

when it is included. 
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3.9.2 Simply supported beam subject to a compression P and 

a uniformly distributed load applied along its span. 

Consider the same beam subjected to the same amount of axial 

load (P = 500 kN) and a uniformly distributed load of 1 kN/m 

(giving a mid-span bending moment of 0.38Mp in the absence 

of the p-delta effect). Again, the bending moment and 

vertical deflection at any point along the span can be 

determined from the differential deflection equation [30] 

and the results from this are compared in Figures 3.19 and 

3.20 with those obtained using the present method. The 

comparison shows very good agreement between the two 

methods. 

3.9.3 Simply supported beam subject to a compression P and 

a concentrated load applied at mid span. 

Consider the same beam subjected to the same magnitude of 

axial load ( P=500 kN) and a concentrated load Q of 3 kN 

(giving a mid-span bending moment of 0.26Mp in the absence 

of the p-delta effect). The bending moment and vertical 

deflection at any point along the span can be calculated 

using the differential deflection equation [30] and the 

results from this are compared in Figures 3.21 and 3.22 with 

those obtained using the present method. The comparison 

again demonstrates very good agreement between the two 

methods. 
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The structural analyses carried out in Sections 3.9.1 to 

3.9.3 demonstrate the potential significance of the p-delta 

effect on the deflected shape of steel members. Even with a 

fairly modest axial load, the bending moment at mid-span is 

increased by up to 50%. The very good comparison between 

the present method and the results of the differential 

equation approach [30] indicate that this aspect of the non- 

linear structural behaviour is being satisfactorily modelled 

in the current analysis. 

3.9.4 Load deflection curve for pin-ended column. 

Now consider the load-deflection behaviour of a pin-ended 

column subjected to various levels of end moment. Cross- 

section dimensions, length and slenderness ratio are as 

described in Section 3.9. An increasing value of axial 

load is applied and the corresponding lateral deflection is 

plotted in Figure 3.23 for a range of end moments from 

0.01Mp to 0.4Mp. This shows that the present theory 

predicts a load carrying capacity which is always less than 

the Euler load. In addition the load carrying capacity 

decreases as end moments increases. 

The results for an end moment of 10 kNm (0.04Mp) are 

compared with those obtained from the column deflection 

curve (CDC) [53) in Figure 3.24 and demonstrate very good 

agreement between the two methods. This lends support to 
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the present treatment of the moment-axial force-curvature 

relationship with respect to the p-delta effect. 

3.9.5 Interaction curve for axial load and bending moment 

acting on pin-ended column. 

The final comparison in this section is of the interaction 

curve for a pin-ended column of section 8WF31 and 

slenderness ratio of 120. The curve expresses the maximum 

axial load which the column can carry when subjected to a 

certain end moment. Figure 3.25 shows the results reported 

both by Chen and Atsutsa [53] and the present theory. These 

are clearly in very close agreement, indicating that both 

material and geometric non-linearities are treated in a 

satisfactory fashion in the current analysis. 

3.9.6 Conclusion. 

The comparisons outlined above demonstrate the accuracy of 

the present method for the analysis of individual structural 

members at ambient temperature. In particular the method 

has proved to be capable of handling material non-linearity 

and the p-delta effect on the structural analysis at ambient 

temperature. Although this is not an exhaustive validation 

it provides evidence that basic non-linear formulation of 

the element stiffness matrix is satisfactory and that the 

solution procedures are sound. This provides the basis for 

87 



P/Py 

0.! 

0.1 

0. ' 

0. 

0. 

0. 

0. 

0. 

o. 

Present theory 

Reference [53] 

3 

7 

5 

4 

3 

2 

1 

L 
n 

6401n 

12.21 in . 3061n 

6.585i n 

0 0.2 0.4 0.6 0.8 1 1.2 

Mo/Mp 

Figure 3.25: Comparison of interaction curves for an 
I-section pin-ended column (1/rx = 120) 



the analysis of frame structures in fire, which effectively 

requires a series of non-linear solutions at progressively 

increasing temperature, although other effects such as 

expansion also need to be included. A more detailed 

validation of the current method will be given in Chapter 6. 
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CHAPTER FOUR 

THE EFFECT OF MATERIAL UNLOADING ON MOMENT- 

AXIAL FORCE-CURVATURE RELATIONSHIP AT 

AMBIENT TEMPERATURE AND IN FIRE 

4.1 INTRODUCTION. 

In order to consider the subject of material unloading, it 

is necessary to trace the exact sequence of strain 

distribution produced as a cross-section is loaded. Strain 

reversal happens when the strain is reducing from a previous 

state and consequently induces unloading stress. If this 

happens to material in the elastic region there is a unique 

relationship between the stress and strain in which the 

loading and unloading paths are the same, but this is not 

the case in a plastic region. A non-unique relationship 

exists for the latter case due to the fact that the loading 

and unloading paths are different. 

The potential implication of material unloading for frame 

analysis can be illustrated by considering a section under 

combined bending moment and axial force, and examining its 

final stress profiles, initially at ambient temperature. 
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To start with, a 'strain controlled' loading system is 

discussed to show qualitatively the effect of material 

unloading on a beam-column cross-section by combining the 

axial and bending strain profiles corresponding to an 

independent axial force P and bending moment M. This is 

then developed towards a 'load controlled' loading system, 

to illustrate that there is a range of possible means of 

achieving a final strain profile which create the required 

axial force P and bending moment M. This is followed by 

numerical determination of moment-axial force-curvature 

relationships for different cross-sections. The influence 

of material unloading on the final stress profile is then 

extended to the case of fire where the effects of material 

expansion and softening are included. 

4.2 THE INFLUENCE OF MATERIAL UNLOADING ON THE FINAL STRESS 

PROFILE. 

4.2.1 'Strain controlled' loading system. 

The influence of material unloading on a stress profile can 

be examined by considering a 'strain controlled' application 

of axial and bending strains on a cross-section, 

corresponding to an independent axial force P and bending 

moment M. The entirely elastic condition is discussed 

first, considering the strain at the extreme fibres of the 

cross-section. 
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From Figure 4.1a, suppose Ea is the axial strain, and Ebi 

and Ebz are the bending strains at the top and bottom of the 

section, and both are in the elastic region. By combining 

these strain profiles in different orders (i. e. axial strain 

first, followed by bending strain, or vice versa) the stress 

and strain profiles are shown in Figures 4.1b and 4.1c 

respectively. It is evident that a unique relationship 

exists in which the final stresses for both cases are the 

same, so that superposition of stresses is valid. 

The influence of material unloading in the plastic range is 

considered next. Suppose an initial bending strain profile 

is itself elasto-plastic. Combinations of axial and 

bending strains, applied in alternate order, are shown in 

Figures 4.2a and 4.2b. From the figures, it can be seen, 

even though the final strain profiles are the same, that due 

to different material unloading the final stress profiles 

are different, particularly in the tensile region. Figure 

4.2b shows that, in the case where bending strain is applied 

first followed by an axial strain, material unloading 

happens in the tensile zone. This causes a different 

stress profile to that in which the strains are applied in 

the alternative order (Figure 4.2a). This demonstrates 

the non-uniqueness of stress states caused by material 

unloading in the plastic region. In addition, the final 

moment and axial force are clearly neither identical in the 

two cases nor to the required external forces. 
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4.2.2 'Load controlled' loading system. 

At all stages of equilibrium the internal force resultant 

must equate to the externally applied moment and thrust, but 

the final strain profile cannot simply be produced by 

superposing the strains as described in the previous 

section. Because of this, a 'load controlled' loading 

system is discussed to show a range of possible means of 

achieving a final strain profile which creates the required 

axial force P and bending moment M. 

Consider first the final strain profile produced by 

superposing the strains caused independently by the force 

components (i. e bending moment M and axial force P). It is 

evident from the previous section that both the internal 

moment and thrust will be less than these external values. 

In order to bring the internal and external forces into 

balance it is necessary to increase both the mean strain and 

the strain gradient. Whichever external 'force' is to be 

applied 'first' must first be rebalanced by adjusting the 

appropriate component of the strain profile (see Figure 

4.3). This will reduce the 'second' force component whose 

strain component must be increased. This process is 

clearly iterative, and shows that 'strain control' and 'load 

control' applications of axial force and bending moment do 

not necessarily result in the same final distribution of 

stress. 
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The main concern of this chapter is to identify the degree 

to which this non-uniqueness of the influence of material 

unloading affects the moment-axial force-curvature 

relationship. 

4.3 DETERMINATION OF FINAL STRESS BY INCLUDING THE EFFECT 

OF MATERIAL UNLOADING AT AMBIENT TEMPERATURE. 

The determination of the final stress distribution across a 

section due to the effect of material unloading is now 

discussed. It should be noted that, in order to quantify 

the effect of material unloading on the moment-axial force- 

curvature relationship, initial and final strain 

distributions must be known. Also the tension and 

compression zones must be clearly identified before 

proceeding to any further calculations, because in the 

presence of material unloading the condition of the material 

in a certain region may change from a tension zone to a 

compression zone or vice versa. The stress-strain curves 

in tension and compression are assumed to be identical, and 

a sign convention of tension positive and compression 

negative is adopted. 

In deriving the moment-axial force-curvature relationship 

the cross-section is divided into strips, each at a uniform 

level of strain and stress over its depth, as described in 

Section 3.4. The final stress of in each strip is 

determined according to the particular conditions applying 
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to the change of the initial strain do as shown in Figure 

4.4a. These show the logical sequence in determining the 

final stress due to loading and unloading conditions in the 

compression and tension zones of the cross-section 

respectively. 

If the magnitude of the final strain Eis is greater than the 

initial strain Fio the strip has undergone a process of 

loading. The corresponding final stress is therefore equal 

to the Young's Modulus multiplied by the final strain or to 

the yield stress, whichever is the smaller. On the other 

hand, if the magnitude of the final strain is less than the 

initial strain, or it has reversed, then the strip has 

undergone a state of unloading. If the initial strain is 

less than the yield strain the corresponding final stress is 

therefore equal to the Young's Modulus times the final 

strain. However, if the initial strain is greater than the 

yield strain the unloading path is different from the 

loading path and the final stress is then given by Equation 

4.1. 

aii = ay - E(Eto - Ell) ........... (4.1) 

where air = final stress. 

or = yield stress. 

Having determined the stress in each strip in this way, the 

internal bending moment and axial force in the cross- 
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Figure 4.4a: Algorithm for calculating the final stress 
accounting for loading and unloading conditions. 
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section can be computed from Equations 3.13 and 3.14 

respectively. The determination of the corresponding 

moment-axial force-curvature relationship based on this 

principle is described in detail in the following section. 

4.4 THE DERIVATION OF MOMENT-AXIAL FORCE-CURVATURE 

RELATIONSHIP BY INCLUDING THE EFFECT OF MATERIAL 

UNLOADING AT AMBIENT TEMPERATURE. 

The derivation of moment-axial force-curvature relationship 

described in Chapter 3 will now be extended to include the 

effect of material unloading. From the previous 

discussions this derivation clearly depends on how the axial 

force and bending moment are applied. To investigate this 

three cases are considered as follows: 

Case 1. Bending moment is applied first and then an axial 

force. 

Case 2. Bending moment and axial force are both applied 

simultaneously. 

Case 3. Axial force is applied first and then bending 

moment. 

The numerical determination of the curvature relationships 

due to the first and third cases will be discussed in the 

following section. The second, which implicitly ignores 
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the possibilities of material unloading, has been used by 

many authors in deriving moment-axial force-curvature 

relationships (45], [48] , [53] . This will used as a 

comparison for the other two cases. 

4.4.1 Determination of moment-axial force-curvature 

relationship by including the influence of 

material unloading. 

A computer program was developed to investigate the effect 

of material unloading on the moment-axial force-curvature 

relationship. A rectangular section and an I-section will 

be considered. The influence of material unloading on a 

beam-column cross-section for case 1 is considered first. 

The logical sequence of operations involved in this case is 

divided into two stages as shown in Figure 4.4b. The first 

stage is to determine the final strain distribution during 

the first equilibrium condition (i. e Mint = Mext =M and 

Pint = Pext = 0). This strain distribution is taken as the 

initial condition for the second stage, where an axial force 

is introduced and the new equilibrium condition must be 

determined (i .e Mint = Me xt =M and Pint = Pe xt= P). By 

comparing the initial and assumed values of the final strain 

distributions across the section, the loading and unloading 

regions can be identified. Thus, the internal axial force 

and bending moment of an element can be calculated. The 

normal process of iteration is then carried out until the 

second equilibrium condition is achieved. 

96 



n 

STAGE I NO 

Mext = M. Pext= 0 

Assume curvature. ko 

Assume centroidal axial strain 

I Is Pint=P=O? 

NO 4IsMint=Mext=M? 

YES 

Save results and assume the corresponding curvature 

and axial strain as the initial values 

Applied Pext =P 

Assume new curvature, kl 

Assume new centroidal axial strain 

I Calculate final stress in each strip by including the I 

effect of material unloading 

NO 

NO 

STAGE 2 

Is Pint. = Pext =P? 
vE: s 

Is Mint = Mexl =M? 

YES 

Save results 

Stop 

Figure 4.4(b): Logical sequence of operations in deriving 

moment-axial force-curvature relationship due for case I 
(bending applied first, followed by axial load). 



The logical sequence of operations for case 3 is identical 

to the above except that the initial equilibrium condition 

has Pint =P and Mint = 0. This is because axial force P is 

applied first without any bending moment. The corresponding 

strain distribution is then considered as the initial value 

for the second stage of the operation in which the bending 

moment M is applied. An iteration process is then carried 

out to determine the new curvature relationship which is 

similar to that shown in Figure 4.4b. 

4.4.2 The effect of material unloading on a rectangular 

cross-section. 

To illustrate the effect of material unloading on the 

moment-axial force-curvature relationship consider a 

rectangular cross-section with dimensions of depth h= 

400mm, width b= 200mm, Young's Modulus E= 205000 N/mm2 and 

yield stress cy = 250 N/mm2. Figure 4.5 shows a comparison 

of the curvature relationships between case 1, case 2 and 

case 3. It is clear that curvatures calculated for case 2 

and case 3 are exactly the same. This is because, for an 

elastic-perfectly plastic material, unloading for case 3 is 

always within the elastic region and consequently has no 

effect on the moment-axial force-curvature relationship. 

Comparing case 1 and case 2 when the axial load is 

relatively small (P = 0.2P7) there is a small difference in 

the curvature relationship. However when the axial load 
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increases (P = 0.4Py or P=0.6Py) this difference is no 

longer apparent. 

Figure 4.6 shows the moment-curvature relationship for case 

1 and case 2 for P=0.2Py and Figure 4.7 shows the 

corresponding stress profiles for increasing moment in case 

1. The continuous line represents the, initial stress 

distribution due to the effect of bending moment M while the 

dotted line represents the final stress block diagram when 

an axial force is subsequently applied to the element. For 

bending moments up to about 1. OOMy (0.67Mp), these two 

curvatures are the same. This is due to the fact that 

material unloading is entirely within the elastic range as 

shown in Figure 4.7. This is confirmed in Figure 4.8 which 

shows that during this period the final stress profile for 

cases 1 and 2 are exactly the same. 

When the bending moment M is increased to a value greater 

than 1. OOMy, the curvature for case 1 (in which the 

unloading effect is considered) is greater than the 

curvature obtained in case 2. This difference is due to 

the fact that material unloading is now occurring in the 

plastic range, as shown in the stress block diagrams of 

Figure 4.7. Further increase in bending moment up to about 

1.32My (0.92MP) results in a more marked difference between 

the two cases. This is due to the fact that the region 

subjected to material unloading in the plastic range 

increases as shown in Figure 4.7. However when the bending 
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moment M is increased above 1.32My (0.92Mp) the difference 

between the two curvatures decreases. This is because 

material unloading in the plastic range reduces. Even 

though a large bending moment is applied, initially causing 

a large plastic region, the final process of balancing the 

internal and external forces and moments results in a change 

in stress distribution in which very little unloading is 

occurring within the plastic region. 

Similar comparisons are made in Figures 4.9 to 4.14 for 

axial loads P=0.4PY and P=0.6Pq. Figure 4.9 shows a 

comparison between the moment-curvature relationships for 

case 1 and case 2 for P=0.4Py. A series of stress block 

diagrams is presented in Figure 4.10 showing initial and 

final stresses for case 1 and a comparison of the final 

stress levels for the two cases is shown in Figure 4.11. 

Figure 4.10 shows that material unloading in the plastic 

range is still occurring for bending in the range 1.071MY to 

about 1.134My. However, the affected area is very small and 

hence the difference in the curvature relationships between 

case 1 and case 2 is negligible. Figure 4.10 also shows 

that even though most of the section in the element is 

strained into the plastic region, the final process of 

balancing the internal and external forces and moments 

results in no material unloading in the plastic region. A 

similar pattern of behaviour was observed for higher axial 

loads as shown in Figures 4.12 to 4.14 for P=0.6Py. 
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Figure 4.9: Moment-curvature relationship for a 
rectangular cross-section when P=0.4Py. 
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Figure 4.12: Moment-curvature relationship for a 
rectangular cross-section when P=0.6Py. 
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This suggests that for rectangular cross-sections material 

unloading is a negligible effect. In the study of 

structural steelwork, other cross-sectional shapes, 

principally I sections, are normally used, and these are 

studied in the next section. 

4.4.3 The effect of material unloading on moment-axial 

force-curvature relationship for an I section. 

From the previous discussions material unloading in the 

plastic range is largely concentrated at the extremities of 

the cross-section. In the case of I sections, this is 

precisely where most material is concentrated, and it may 

therefore be that material unloading will have a more marked 

effect than for rectangular cross-sections. As an example 

consider a UC section 356x406x467 kg/m. Such a large 

section was chosen because of its bigger flanges and hence 

the greater possibility of material unloading affecting the 

moment-axial force-curvature relationship. 

Figure 4.15 shows a comparison of the moment-axial force- 

curvature relationships for different levels of axial force 

and indicates no perceptible difference between the two 

cases. A series of stress block diagrams is presented in 

Figure 4.16 for an axial force of P=0.2Py. These compare 

the behaviour of a beam-column element for cases 1 and 2. 

An important conclusion from this investigation is that even 
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Figure 4.15: Moment-axial force-curvature relationship 
of an I-section for cases 1 and 2. 
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though material unloading has the potential to affect the 

curvature relationship, this effect is very small and can 

safely be ignored. This study will be extended to the case 

of sections subject to increasing temperature in the 

following section. 

4.5 THE EFFECT OF MATERIAL UNLOADING ON MOMENT-AXIAL FORCE- 

CURVATURE RELATIONSHIP IN FIRE. 

The effect of material unloading on the moment-axial force- 

curvature relationship becomes more complicated for fire 

conditions because it involves another parameter, that is 

temperature. This results in modified stress-strain curves 

which, even for a constant bending moment M and axial force 

P, can lead to a change in strain distribution within the 

cross-section. The position of neutral axis may change and 

consequently material unloading may occur. 

Another possible cause of material unloading is when the 

member is restrained against longitudinal expansion. If it 

is exposed to fire, an axial force will be induced in the 

element and this, together with any bending stresses due to 

applied loads, may cause material unloading over parts of 

the cross-section. 

In this study the bending moment M and axial force P are 

assumed to remain constant as the temperature is increased. 

The cross-section is assumed to be uniformly heated and the 
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stress-strain curves based on the ECCS recommendation as 

described in Chapter 2 are used. 

4.5.1 Derivation of moment-axial force-curvature 

relationship in fire including the effect of 

material unloading. 

The analysis is similar to that for the ambient temperature 

study (Section 4.3) but at increasing temperature. A step 

temperature increase is adopted to calculate the current 

temperature level: 

T2 = Ti + dT .................. (4.2) 

where T2 = new temperature. 

Ti = previous temperature. 

dT = temperature increment. 

To include the effect of material unloading in this case 

the strain distribution at the previous temperature level 

must be recorded. This is then used as the initial strain 

value Erg when the new temperature level is considered. 

Material unloading happens when the strain at the current 

temperature level frs is less than at the previous 

temperature. 

The determination of the stress at the new temperature level 

ors is based on the same conditions as for the ambient 
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temperature study, except that the yield stress and Young's 

Modulus are now functions of temperature as shown in Figure 

4.17. The procedure described in Figure 4.4 still applies 

but with Young's Modulus E and yield stress a7 replaced by 

their values Etz and Oyt2 at the new temperature T2. 

A computer program was developed to investigate the effect 

of material unloading on the moment-axial force-curvature 

relationship in fire. Figure 4.18 illustrates the logical 

sequence of the operations involved. To start with the 

effect of material unloading at room temperature due to case 

1 and case 2 are considered based on Figure 4.4. The strain 

distribution is then considered as the initial value when 

the next temperature increase is introduced. Since the 

stress-strain curve is no longer the same an iteration 

process must be adopted in order to achieve the new 

equilibrium condition equating the internal and external 

bending moment and axial force. Material unloading is 

included in this process. 

4.5.2 The effect of material unloading on moment-axial 

force-curvature relationship in fire. 

From Figure 4.6 it was noted that the influence of material 

unloading can clearly be recognised for an axial force and 

bending moment equal to 0.2Py and 1.26Mg (0.84MP) 

respectively, and hence these values are used in this 

section. It should be noted that the loads are assumed to 
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Figure 4.17: Illustration of the effect of material 
unloading in the plastic region at elevated 

temperature. 



Determine final strain distribution at ambient temperature 

from Fig. 4.6 due to the effect of M and P. Temperature 

TI = 20C 

Set ET1 =, ET2 

Increase temperature. T2 = T1 + dT 

Assume new curvature, kt2 

Assume new centroidal axial strain 

Calculate final stress and include the effect of material 
unloading. 

NO 
Is Pint =P? 
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Save the final strain distribution 

NO 
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Figure 4.18: Logical sequence of the algorithm for deriving 

moment-axial force-curvature-temperature relationship 
including the effect of material unloading. 



remain constant while temperature increases and a 

rectangular cross-section will be examined first. The 

derivation of the curvature relationship is based on the 

logical sequence described in Figure 4.18. 

Figure 4.19 shows the moment-curvature-temperature 

relationship in fire for the rectangular cross-section. A 

series of final stress profiles is presented in Figure 4.20. 

This shows that even at low temperatures material unloading 

occurs in the plastic range resulting in the difference in 

curvature relationships shown in Figure 4.19 for case 1 and 

case 2. 

However, the difference between these two curvatures 

decreases slowly for temperatures above about 100°C. Even 

though material unloading still occurs at the higher 

temperatures, as shown in Figure 4.20 the affected area is 

very small and hence the difference between the moment-axial 

force-curvature relationships for case 1 and case 2 becomes 

negligible. 

To study the effect of material unloading in fire for an I 

section consider a UC section 356x406x467 kg/m subject to 

bending moment M and axial force P of 1. OOMy (0.87Mp) and 

0.2Py respectively. Figure 4.21 shows the corresponding 

curvature-temperature relationship and a series of stress 

block diagrams is shown in Figure 4.22 for increasing 

temperature. These figures show that the effect of material 
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Figure 4.19: Moment-curvature-temperature relationship 
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unloading on the curvature-temperature relationship is 

negligible. The same pattern of behaviour was also 

observed for smaller sizes of I section as shown in Figures 

4.23 and 4.24. 

4.6 CONCLUSION. 

From the above investigation it is clear that material 

unloading can give rise to a non-unique stress distribution 

where sections are subject to a combination of axial load 

and bending moment. This occurs both at constant (ambient) 

temperature when the sequence of loading is the controlling 

factor, and at increasing temperature when the initial 

stress state is fixed. However from the comparisons made 

it can be concluded that the effect of material unloading is 

negligible and can be safely ignored both at ambient 

temperature and in fire for the determination of moment- 

axial force-curvature relationships. In the present 

research the effect of material unloading in fire will 

therefore be ignored in the analysis of frame structures. 

The present work is concerned with sections subject to 

uniform temperature only. It may be that the effect of 

non-uniform temperature distributions in fire could create 

different conditions due to differential softening of the 

material causing a shift in the position of neutral axis. 

In addition, non-uniform heating patterns often lead to 

internal stresses which, although self equilibrating, could 
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also cause material unloading. However, such conditions 

have not been included in the scope of the present study of 

the effects of material unloading. 
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CHAPTER FIVE 

ANALYSIS OF FRAME STRUCTURES 

IN FIRE 

5.1 INTRODUCTION. 

The secant stiffness method described in Chapter 3 for the 

analysis of frame structures at ambient temperature is now 

extended and will be used to investigate the behaviour of 

steel frames in fire. The behaviour of such frames 

generally depends on both the thermal and structural 

response to an increasing temperature. Assuming that the 

problem of the thermal analysis can be treated separately, 

the work of the present research will be concentrated on the 

structural response of steel frames in fire. 

The analysis of frame structures in fire is a complicated 

process because of the many variables involved. These 

variables include temperature distribution in the structural 

elements, interaction between individual structural 

components, changes in material properties, and the 

influence of loads on the structural system. All of these 

effects will be discussed and included in the present 

analysis. 
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At elevated temperatures the mechanical properties of 

structural steel change dramatically with loss in both 

strength and stiffness, and this can be represented by a 

series of multi-linear stress-strain curves as described in 

Chapter 2. In addition the steel will expand, characterised 

by the coefficient of thermal expansion aT. For realistic 

analysis of frame structures in fire, both of these effects 

should be included in the analysis. 

The analysis of frames under fire conditions generally 

assumes a constant level of load, but at increasing 

temperature. The approach is therefore equivalent to 

performing a series- of analyses with modified material 

relationships, taking account of imposed deformations due to 

thermal expansion. As discussed in previous chapters, the 

secant stiffness approach provides an efficient means for 

doing this. This is based on a moment-axial force- 

curvature relationship, and the derivation of this 

relationship at increasing temperature is discussed in the 

following section. The effect of geometric non-linearity, 

uniform and non-uniform expansion are then considered. 

Finally a computer program for the analysis of frames in 

fire is described and validated. 

5.2 DERIVATION OF MOMENT-AXIAL FORCE-CURVATURE-TEMPERATURE 

RELATIONSHIP FOR UNIFORM TEMPERATURE PROFILES. 

Several recommendations for the determination of the 
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structural performance in fire are still based on a uniform 

temperature profile [17], [19], [89], [90] even though this may 

rarely occur in real conditions. In the case of 

unprotected steel columns heated on all sides the 

temperature profile may be approximately uniform, but in 

many cases beams and columns will receive partial protection 

from floor slabs and walls. 

The derivation of the moment-axial force-curvature 

relationship which is basic to the structural analysis is 

now extended to the case of fire. In this case the 

derivation is basically the same as described in Section 3.4 

but becomes more complicated because it involves another 

parameter, the steel temperature. The section is again 

divided into strips, each of which is assumed to be at a 

uniform temperature. 

The stress on corresponding to the strain in each strip can 

be calculated from the stress-strain curve according to its 

temperature level. Thus, the stress of stated in Equation 

3.7 is equal to aTi. The iterative process described in 

Section 3.4 and Figure 3.6 is then followed in order to 

bring the internal and external axial force and bending 

moment into balance. 

When a steel cross-section is uniformly heated, the material 

properties within the section (i. e for each strip) can be 

represented by a single stress-strain curve at any given 
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temperature. In this case the determination of the moment- 

axial force-curvature relationship is based on the same 

conditions as for the ambient temperature study except that 

the stress-strain curves are now functions of temperature. 

The structural analysis therefore follows the procedures 

developed previously for general non-linear behaviour. To 

give an indication of the effects o 

softening and geometric non-linearity 

separately in the following sections. 

expansion, material 

these are considered 

5.3 THE INFLUENCE OF UNIFORM EXPANSION AND RESTRAINT TO 

EXPANSION. 

In the case of steel elements heated uniformly within their 

cross-section, the expansion is uniform and thermal bowing 

does not occur since there is no differential expansion of 

the steel element. When the ends of the member are free to 

expand the structural behaviour is unaffected, but if the 

expansion is restrained in any way significant stresses can 

be induced in the section. This is illustrated in Figures 

5.1 and 5.2 which can be used to compare the behaviour of 

restrained and unrestrained UB 305x165x54 kg/m beams. 

The significance of this for frame structures restrained 

against free expansion is now considered. The behaviour of 

frame structures in fire is complicated due partly to the 

fact that the axial displacement and rotation of individual 
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members are influenced by the degree of restraint at the 

member ends, for instance where beams are connected to 

columns. 

The influence of thermal expansion on frame structures can 

be considered by examining a simple portal frame with pinned 

bases as shown in Figure 5.3. The structure is assumed to 

be free from external load and the stress-strain curve of 

steel is assumed to remain constant at its ambient 

temperature. The reason for this rather artificial 

condition is to demonstrate the effect of thermal expansion 

alone on the structural behaviour of frames in fire. The 

column and beam are of UB 305x102x33 kg/m sections. The 

frame is analysed for steel temperatures equal to first 

200°C and then 300°C. To do this supports A and D (Fig. 5.3) 

are initially assumed to be able to slide allowing the frame 

to expand freely such as from A to A' and D to D'. The 

structural analysis is then performed by introducing support 

displacements equal to 0/2 at each support due to the fact 

that both joints should remain in their original position 

(Figure 5.3). The support displacements at each base can be 

determined from: 

6/2 = arL(T-20) ................ (5.1) 

where L= span of beam. 

T= temperature. 
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Figure 5.3: Free thermal expansion of frame structure 
due to temperature increase. 



The resulting deflected shape and bending moment diagram for 

the column are shown in Figures 5.4a and 5.4b. These show 

that restraint to free expansion could have a very 

significant effect on the overall behaviour of steel portal 

frames in fire. Not only are bending moments induced in 

the unloaded frame, but considerable deformations are 

imposed on the structure. In the presence of axial loads 

these will create important additional bending effects. 

5.4 THE INFLUENCE OF MATERIAL SOFTENING AND AXIAL 

SHORTENING. 

The influence of material softening on structural analysis 

in fire is now discussed. Consider a simply supported beam 

of span 7. Om with a section size of UB 305x165x54 kg/m and a 

uniformly distributed load of 20 kN/m, equivalent to a 

maximum design stress of 165 N/mm2. The stress-strain 

curves for steel are based on the idealised curves shown in 

Figure 2.13. The beam was analysed at different 

temperatures using the corresponding curve, but ignoring any 

other temperature effects. 

Figure 5.5a shows the relationship between the central 

deflection of the beam and the steel temperature. The 

figure shows that by including the influence of material 

non-linearity in the analysis, the critical temperature of 

the beam is about 550°C for a limiting deflection of span/20 

(350mm). This is in keeping with test results [1], [20]. 
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Figure 5.5b shows the effect of excluding and including 

axial shortening due to bending on the horizontal (axial) 

deformation of the beam in fire. The curves start to 

deviate at temperatures beyond about 400°C. It should be 

noted that by including this effect the axial expansion is 

reduced, consequently reducing the potential axial force 

induced in the element due to restraint to expansion. The 

effect of this is likely to be smaller predicted 

deformations and hence higher predicted failure 

temperatures. 

5.5 INFLUENCE OF THE P-DELTA EFFECT. 

As discussed in Chapter 3, the presence of compressive or 

tensile axial force on a steel beam will change the bending 

moment and also the deformed shape. This p-delta effect is 

likely to be more significant at higher temperatures since 

the stress-strain curves are progressively reducing, and its 

influence on a simply supported beam in fire is discussed in 

this section. 

Consider a beam of section UB 305x165x54 kg/m with a span of 

15.71m giving a span/rx ratio of 120. A uniformly 

distributed load of 0.702 kN/m (equivalent to a bending 

stress at mid-span of 28.75 N/mm2) and a compressive force 

of 410.4 kN (0.24Pv) are applied. The beam is analysed at 

temperatures of 20°C and 300°C, both with and without the p- 

delta effect. Figures 5.6a and 5.6b show the deflection and 
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Uniformly distributed load = 0.702 kN/m 

p= 410.4 IN 

L= 15.71 m 

Bending moment (kNm) 

-to 

-20 

-30 

20C. 3000 

No P-delta 

20C (p-delta Included) 

-40 

-50'- 
0 2466 10 12 14 

Distance along the span (m) 

FIg. 5.6a: Bending moment of simply 
supported beam subjected to a uniformly 

distributed load and axial load. 
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300C (no p-delta) 

20C (p-dells Included) 

300C (p-d a Included) 
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Fig. 5.6b: Vertical deflections of simply 
supported beam subjected to a uniformly 

distributed load and axial load. 



bending moment respectively. These indicate that at 20°C 

the inclusion of the p-delta effect increases the mid-span 

bending moment and deflection by about 80% and 67% 

respectively. This effect is even more significant at the 

higher temperature of 300°C, in which case the bending 

moment and deflection are increased by 114% and 150% 

respectively. Although this is a very slender member, and 

beams and columns of more realistic proportions may not 

respond in a such a dramatic fashion, it nevertheless 

indicates the increased influence of geometric non- 

linearity even at 300°C. Of course, in fire analysis very 

much higher temperatures will often need to be considered 

and the inclusion of the p-delta effect would then seem very 

important. 

5.6 THE INFLUENCE OF NON-UNIFORM TEMPERATURE PROFILE WITHIN 

THE CROSS-SECTION. 

In reality the temperature within the cross-section of a 

steel element is often non-uniform due to the nature of the 

construction details such as: 

1. Where a concrete slab is placed on top of a steel beam, 

in which case the temperature at the bottom flange and web 

is often much greater than the temperature of the top 

flange. 

2. In shelf angle floor and slim floor construction, where a 
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considerable part of the beam is shielded from fire. 

3. When a wall is built into the web of a column again 

causing considerable shielding of the steel cross-section. 

In such cases the non-uniform temperature profile within the 

cross-section results in a variation in the strength of the 

steel, and the structural analysis becomes more complicated 

than for uniform heating. In addition thermal bowing will 

occur due to differential expansion within the cross- 

section. It should be noted that the deflection due to 

thermal bowing alone, excluding the external imposed loads, 

may exceed the limiting deflection stated in BS 476: Part 8. 

On the other hand, this could induce eccentric loading, 

particularly when a steel member is subjected to a 

compressive force. Because of this, the effect of non- 

uniform temperature profile within the cross-section has 

been included in the present analysis. 

5.6.1 Idealisation of temperature profile. 

The non-uniform temperature profile within the cross-section 

can be complex, and for simplification it is represented in 

an idealised fashion in the present analysis. 

As described in Chapter 3 the cross-section is divided into 

a number of strips for the purpose of structural analysis. 

The temperature in each strip is assumed to be constant and 
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equal to the value at its mid depth based on the idealised 

temperature profile. Clearly the more strips used the more 

accurate can be the representation of the steel temperature 

profile within the section. However in the present 

analysis a cross-section consisting of 10 strips will be 

used reflecting the study described in Section 5.9 which 

shows that this will provide adequate accuracy in frame 

analysis in fire. 

Different types of idealised temperature profile have been 

adopted in the present analysis and these are shown in 

Figure 5.7. In the case of a linear temperature variation 

over the cross-section as shown in types 3 and 4 the 

temperature used is that at mid-height of the strip, 

determined by interpolation. 

5.6.2 Derivation of free thermal curvature. 

When a cross-section is subjected to non-uniform heating 

differential expansion will occur. If strips of the cross- 

section were allowed to deform independently, free thermal 

expansion would occur as shown in Figure 5.8. However, 

shear bonding between the strips will prevent such 

expansion, and rotation will take place. Assuming that 

plane sections remain plane during bending, this can create 

internal stresses in each strip. This is illustrated in 

Figure 5.8 which shows the free thermal expansion in each 

strip and the corresponding final distribution of thermal 
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Figure 5.7: Different types of idealised temperature profile 
within the cross-section. 
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expansion across the section. It can be seen that some of 

the strips are in compression while the rest are in tension. 

The process of determining the free thermal curvature is in 

fact the same as was described in Section 5.2 except that 

the effect of thermal expansion is included. The analysis 

starts by assuming that each strip will expand freely 

according to its temperature level and is given by; 

ETi = aTTi ................... (5.2) 

where £ri = Free thermal strain of i' th strip. 

Ti = Temperature of i'th strip based on the idealised 

temperature profile. 

aT = coefficient of thermal expansion. 

A free thermal curvature kta is then assumed and the 

elongation or contraction of any strip can be calculated 

from Equation 5.3 as illustrated in Figure 5.9a. 

Ei = to + (kthyi )- ETS ....... """" 
(5.3) 

where Ei = resultant strain of i'th strip. 

ETI = free thermal strain of i'th strip. 

Eo = centroidal axial strain. 

The stress On corresponding to the resultant strain in each 

strip El can be calculated from the stress-strain curve 
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corresponding to the temperature level. Then the internal 

axial force dPi and bending moment dMi for each strip can be 

computed from Equations 3.7 and 3.8. The internal axial 

force and bending moment for the complete cross-section can 

be calculated from Equations 3.9 and 3.10 respectively. An 

iteration process is then required to bring the internal and 

external axial force and bending moment into balance (Figure 

5.9b). In this case the external axial force P and bending 

moment M are equal to zero due to the fact that no external 

forces are applied on the element. Having determined the 

free thermal curvature kth in this way provides a basis for 

the inclusion of thermal bowing in the present analysis, as 

is discussed in the following section. 

5.6.3 Derivation of fixed end moment due to thermal 

curvature. 

In the secant stiffness method the flexural stiffness 

coefficient is represented by Ssi. The effect of thermal 

curvature on the secant stiffness is included by treating it 

as an equivalent external load. To start with, consider a 

simply supported beam with a constant flexural stiffness 

along the span. If a non-uniform temperature profile is 

introduced over the cross-section thermal bowing will occur 

(Figure 5.10a). The free thermal curvature kth can be 

determined according to section 5.6.2. The same amount of 

curvature can also be achieved if end moments are applied to 

the element (Figure 5.10b). The equivalent external moment 
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Define the idealised temperature profile 

Assume free thermal curvature 'kth' 

Assume centroidal axial strain 

Calculate the internal forces 'Pint' 

Calculate internal moment 'Mint' 

NO 

4- Is Pint =0D 

YES 

-- NO 

I Is Mint = 0? 

YES 

L Save result 

I Stop 

Fig. 5.9b: Logical sequence of the operations in obtaining 
the free thermal curvature. 



i'th element 

(a) Deflection due to 
thermal bowing. 

(b) Enlargement of the i'th 
ktiy i'th element element showing the 

1, thermal curvature. 

Mfth 
1'th element 

Mfth 

... ................................. .... 

(c) Fixed end moments used to 

restrain the thermal curvature. 

Figure 5.10: Schematic representation for determining 
the fixed end moments due to thermal curvature. 



can be calculated from the relationship of the free thermal 

curvature kth to the flexural secant stiffness coefficient 

Ssi. The equation takes the form: 

Meq = Ssiktn ................ (5.4) 

where Meq = Equivalent external moment. 

If end restraint is introduced, by the ends of the element 

being fixed preventing rotation as shown in Figure 5.10c, 

the moment restraint Mrtn must be equal to this equivalent 

external moment. In frame analysis in fire this value 

Mfth is then considered as a fixed end moment due to thermal 

curvature in determining the total load vector. 

5.7 COMPUTER PROGRAM. 

The secant stiffness method described in Chapter 3 has been 

extended to include the analysis of statically determinate 

and indeterminate steel frame structures in fire. This has 

been developed into computer program called NASBIF for 

predicting the deformation history of such structures. 

The logical sequence of the analysis is shown in Figure 5.11 

which is in fact an extension of the flow chart described in 

Figure 3.18. The normal secant stiffness analysis is 

adopted but in addition the temperature is required in order 

to calculate the free thermal curvature kth, for inclusion 
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l. lnpul frame and load definition 
2. lnput temperature profile 

Determine free thermal bowing 

Assume lateral displacement at each node equal to zero, Y1=0. 

Assume initial curvature 'ko' and axial force 'Po' for each 
element 

Calculate the corresponding moment 'Mo' from equilibrium 

condition 

1. Calculate flexural and axial secant stiffness coefficient 

2. Calculate the load vector due to applied loads. 

p-delta effect and thermal bowing. 

Calculate displacements and forces in each element 

Calculate residual curvature in each element 'dk' 

NO 
Isdk=0? 

YES 

Extract the lateral displacement at each node-'Y2' 

Determine residual lateral displacement at each node 'Dv' 

1'CS 
Stop Is Dv =0? 

NO 

Set YI= Y2 at each node 

Figure 5.11: Computer chart for the analysis of frame 

structures in fire. 



in the load vector and the appropriate material properties 

in each strip in the cross-section. 

From Figure 5.11, the frame, loading and temperature 

profiles are first defined. The free thermal curvature 

'kth' for each element is then determined according to 

Section 5.6.3. This is used to calculate the fixed end 

moments due to thermal bowing which are then included in the 

load vector. The frame analysis described in Section 3.8.3 

can then be performed. 

As was described in Section 3.7 a curvature ko and axial 

force Po for each element are first assumed. The 

corresponding moment Mo is calculated from a consideration 

of equilibrium equating the internal and external axial 

forces Po as shown in Figure 5.12. The flexural secant 

stiffness coefficient Sat is then determined by dividing the 

moment Mo by the assumed curvature ko. This is used in 

calculating the fixed end moment due to thermal bowing. 

The flexural secant stiffness coefficient Ssi, which is 

independent of thermal expansion, is determined separately 

from the axial secant stiffness coefficient Asi, which 

varies with thermal expansion. The determination of the 

latter coefficient is considered next. The values of axial 

force Po and bending moment Mo for each element, as defined 

at the beginning of the cycle are used to determine the 

average axial strain t,. This is based on consideration of 
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Input curvature 'ko' 

Assume centroidal axial strain 

Determine the internal force and moment in each 

element according to the idealised temperature profile 

NO 
Is Pint = Po ? 

YES 

Save the intc"rwil moment and assumed Mo = Mint 

Stop 

Figure 5.12: Logical sequence of the operations for 

determining the internal moment 'Mo' of each element. 



equilibrium, equating the internal axial force and bending 

moment with Po and Mo respectively. The procedure is 

basically the same as described in Section 5.6.2, for free 

thermal curvature but must now be modified to account for 

restraint to this. In this case a total curvature kt due to 

both loading and thermal effects is assumed for each 

element. The elongation or contraction of any strip is 

then given by Equation 5.3 but with the free thermal 

curvature kth replaced by the total curvature kt. 

Having determined the strain in each strip in this way, the 

internal axial force and bending moment for each strip and 

the complete cross-section is determined in accordance with 

Section 5.6.2. An iteration process is then carried out in 

order to balance the internal axial force and bending moment 

with Po and Mo respectively. If the difference between the 

internal and external forces as described in Equations 3.11 

and 3.12 is sufficiently small the average axial strain Eo 

(at the centroid of the cross-section) is then recorded. 

This is then combined with the axial strain due to axial 

shortening to generate a resultant axial strain et (see 

Equations 3.21 and 3.22). By doing this the axial secant 

stiffness coefficient for each element can be determined 

according to Equation 3.23. 

Having determined the axial and flexural secant stiffness 

coefficients, the load vector is then calculated. This 

includes the effect of applied loads, thermal bowing and the 
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p-delta effect. Equations 3.24 and 3.25 are then used to 

calculate the nodal displacements and element forces. 

As mentioned in Section 3.8.3 the analysis is iterative and 

repeats until the previous and current displacements of each 

node are within the specified tolerance limit. 

5.8 ANALYSIS OF FRAME STRUCTURES WITHIN A TEMPERATURE RANGE. 

The non-linear stress-strain curves of steel at increasing 

temperature do not exhibit a clear yield stress and hence a 

collapse criterion cannot normally be used. Instead the 

failure condition can be related to a limit state of 

deformation. This is in keeping with the standard fire test 

which prescribes deformation limits to avoid damage to the 

furnace. Because of this the analysis needs to be performed 

over a temperature range in order to obtain the deformation 

histories up to the point of failure. 

In the secant stiffness method the curvature relationship is 

independent of any previous analysis. However to minimise 

computation time the calculated value of curvature in each 

element at one temperature is taken as an initial value when 

the next temperature increase is considered. This is shown 

diagrammatically in Figure 5.13. 

122 



Moment 

T1 

T2 

Final statu at TI 

M 

Initial assumption for Iteration at 
temperature T2. 

0 Curvature 

Figure 5.13: Schematic representation of frame 

analysis whithin a temperature range Ti to T2. 



5.9 FACTORS AFFECTING THE ACCURACY OF THE RESULTS. 

The effect of the number of beam-column elements and cross- 

section strips on the accuracy of analysis of frame 

structures is now studied. In the secant stiffness method 

the stiffness coefficient of each element is based on the 

average moment taken between the two ends of an element. 

Thus the accuracy of the result of the frame analysis is 

affected by the number of elements used. The smaller the 

size of the elements, the more accurate the results of 

analysis. 

One other factor which affects the accuracy of the results 

of the analysis is the number of strips into which the 

cross-section is divided. This is because the determination 

of the moment-axial force-curvature relationship depends on 

the size of the strips. The smaller the size of the strip, 

the closer the representation of strain distribution and the 

idealised temperature profile over the cross-section. The 

minimum number of elements and strips consistent with 

accuracy of results should be used to minimise computational 

time. Different types of beams and loads were chosen for 

this investigation. The cross-section is shown in Figure 

5.14, which also includes the effect of non-uniform 

temperature profile within the section. The Young's Modulus 

and yield stress at ambient temperature are assumed to be 

205000 N/mm2 and 328 N/mm2 respectively, with high- 

temperature properties based on the multi-linear stress- 
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Figure 5.14: Steel temperature history for an I-section [11] 



strain curves described in Chapter 2. 

A simply supported beam of 7m span subjected to a uniformly 

distributed load of 41 kN/m is considered first. Figure 

5.15a demonstrates the temperature-deflection relationship 

when the member and cross-section are divided into 10 

elements and 10 strips respectively. The influence of 

numbers of elements and strips is then examined by 

considering a bottom flange temperature of 540°C 

corresponding to an elasto-plastic condition. Figure 5.15b 

summarises the difference in the calculated deflection for 

different combinations of strips and elements. It should be 

noted that the results for 30 elements and 40 strips will be 

used as a comparison. The figure shows that when 10 

elements and 10 strips are used the error in the calculated 

deflection is less than 2%, and this number of strips will 

be used in the subsequent study on the influence of the 

number of elements on different forms of beams. 

A simply supported beam of 7m span and subjected to a point 

load of 142 kN is considered next (Figure 5.16a). Figure 

5.16a shows the temperature-deflection relationship for 10 

elements and 10 strips. The influence of the number of 

elements is then studied when the bottom flange temperature 

is equal to 568°C - that is within the elasto-plastic range. 

Figure 5.16b shows that the error in the calculated 

deflection is less than 2% for the elements is more than 10. 
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The influence of the number of elements on a fixed ended 

beam of 7m span, subjected to a uniformly distributed load 

of 61 kN/m (see Figure 5.17a) is also studied. Figure 

5.17a shows the temperature-deflection relationship for 10 

elements and 10 strips. The influence of the number of 

elements on the results for a bottom flange temperature of 

690°C is shown in Figure 5.17b. The figure shows that when 

10 elements are used the error in calculated deflection is 

less than 5%. 

The influence of the number of strips and elements on the 

analysis including the presence of axial force will now be 

discussed. The temperature profile is assumed uniform 

within the cross-section. The Young's Modulus and yield 

stress are equal to 205000 N/mmz and 250 N/mm2 respectively. 

The influence of number of elements will be considered 

first while the number of strips will be taken as 10. 

A simply supported beam of UB 305x165x54 kg/m subjected to a 

uniformly distributed load of 0.702 kN/m (equivalent to a 

mid-span bending stress of 28.75 N/mm2) and a span of 15.71m 

(L/rx = 120) is considered. An axial force of 410.4 kN 

(0.24Py) is applied to the member. The beam is analysed 

when the steel temperature is equal to 300°C. Figure 5.18 

shows the influence of number of elements on the results of 

the analysis. The figure shows that the error in the 

calculated deflection is less than 2% for the number of 

elements greater or equal to 10. 

125 



ý 
------ O 

O_ 
' 

X 
ü 

a, 
ý" ýv 
? ,n ua ý_ 

i°ýi 
nt "4 Co m cg 

ý' OOOO 

E 
E 
C 
O 

J 

Vd 

VL 
b 

I- 
L 

C 
V 

U 

O 
0 NN -+ -+ 

0 

u, 
c, 

O 

O °7 
N 

1 

.o 

-4 7 

O 

uo 

ýO 
0 

O 
O 
CO 

O 
O 
N 

O 

tC U 

O 
O 
O 

d 
a 
E 
d 

C 

0 

O0 

o Q' 
cli 

0 
O 

O 
O 

2 

U_ C 

C ý" C) 
mo yr 

U 

dd 
,ý 

, 21 
ýüO 

U i" O 

Äp 

a, 

y, O 

QO 
Ia, 

E 
ü 

u 

v 

'Ci c O 
. - 

tO -. O 

p 

U 
«ý 

e. ý 

b 
OD 
Co 

L ^ý 

C" C 
UO 

as 

41 

C_0 



0 
0 

u 
a. CA 
CA 
u 

z 
E 

M 
.. i 

I 

Z 

------------------ 

Co 
CLI 

o 

c 2; r- p 

aU -J 
.Z Z) 

ý ýb E 

JD rV 
Uv 

C7 
of 
y 

U 

t. dýý 

> O 

Z W 

4O 

oü 
ei 0 -0 
Ei ;ja, b to C) 

o a 
cJ co nNO 

OOOO 

E 
z 
xE N 1; 

Ö .R M 
v 
7 

s 

d 

ä 

0 
i ------------------ 
i 
i 

01 ,c 

O püv 

JV 
C Qý C4 

O 
1Ci C) L. V 

0 Z: 
C Ovv 

0 E %» Oi 1] 
N v d 

"nin 
0 

ö 
0 ör 

R w' cn -- 

2 4) 
u d-J 
cLö 

q_ In 

uf L. uW 

0 0o 0 q.. 
CO cv -+ co J7 Cl) 

OOOO 

O 
O_ 

X 

C 
C) m w 
V 
O 
Q 



The influence of the number of strips is considered next. 

A pin-ended column of UC 356x368x202 kg/m with a span of 

12.8 m( L/rx = 80 ) is chosen for the analysis. An axial 
force of 0.2Py (1289 kN) and end moments of O. 1Mp (101.8 

kNm) are applied on the member. The column is analysed 

when the steel temperature is equal to 400°C. The material 

properties are as before and the number of elements is 

assumed to remain constant (i. e equal to 10). Figure 5.19 

shows the influence of the number of strips on the results 

of the analysis. The figure shows that for 10 strips the 

error in the calculated deflection is less than 1%. 

From these investigations it can be concluded that the 

results of the analysis are sufficiently accurate when the 

number of cross-section strips and elements are each equal 

to 10, and these will be used in the subsequent analysis. 
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CHAPTER SIX 

COMPARISON BETWEEN THEORETICAL AND 

EXPERIMENTAL RESULTS 

6.1 INTRODUCTION. 

The aim of this chapter is to demonstrate the degree of 

accuracy that can be achieved using the secant stiffness 

method in the analysis of frame structures in fire. To 

achieve this a series of comparisons are made with results 

reported from previous experimental and theoretical studies. 

6.2 SIMPLY SUPPORTED BEAM WITH ROLLER AT ONE END. 

6.2.1 Comparison with test results. 

A series of tests on simply supported beams has been carried 

out by British Steel [109] and the results will be used as a 

comparison for the results obtained from the present theory. 

The present results are also compared with those obtained 

analytically by E1-Rimawi [5]. 

It should be noted that the central deflections of the test 

beams were measured after an initial deflection had taken 
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place at ambient temperature. Thus, to obtain the total 

deflection as calculated by the present method at a certain 

temperature level the deflection at ambient temperature must 

be added to the measured deflection at that corresponding 

temperature. 

Four simply supported beams with a span of 4.5 m have been 

used for comparison. During the test the beams were loaded 

through four point loads on the slab at the 1/8,3/8,5/8, 

7/8 points of the span. The loads were applied through the 

supported slab and were consequently distributed along the 

span. The tests were stopped when the central deflections 

were equal to L/30, corresponding to the failure condition 

specified in BS 476: Part 8. 

In the analysis the load acting on the beam is assumed to be 

a uniformly distributed load equal in magnitude to the total 

load acting during the test. The test parameters used in 

the furnace tests are shown in Table 6.1. The beams are 

denoted as SS1, SS2, SS3 and SS4. During the test the steel 

temperature in each of the beams was measured at the 

locations of the thermocouples as shown in Tables 6.2 to 

6.5. The steel temperature and the central deflection of 

the beam were recorded at a time interval of three minutes. 

In the present analysis a three-step temperature profile was 

adopted as shown in Figure 6.1. The temperature is assumed 

uniform in the web and each flanges of the cross-section. 
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Ambient 
Temperature 

Yield stress 
(N/mm2) Udl 

Beam Size N 
Web Flange 

(k /m) 

SSI 254*146 UB43 297 297 16.34 

SS2 254*146 UB43 304 300 31.92 

SS3 356*171 UB67 395 392 68.95 

SS4 356*171 UB67 280 , 240: 67.30 

Table 6.1: Test parameters used in BSC furnace 

tests on floor beams [109]. 



THERMOCOUPLE POSITIONS 

Span - 4.500 

0.93 a£0.93 a 

0.62 s 0.62 s 

0.31 0.31 
1I 

I1 

ýmal' 

(Not CO scale) 

1III11 
- -x- - Mid- -__ --X--- W4 

t"- 
V2" Y1- _ height 

ýI 
Iý 

II 7( YYY 

F6 77 r1 ra et 

Tire 

LONGITUDINAL SECTION 

I flange 
Concrete slab width 
11,11 A 

(F8.9) (F3.5) 

(W1-4) 

(F6 7) (F1 2.4) 

} flange 
width 

TRANSVERSE SECTION 

Thermocouple Temperature (C) After various times (min) 

Position 3 6 9, 12 15 18 21 24 27 

Lower flange 1 116' 221 335 467 560 625 671'714 742 
2 119 228 342 483 579 645 691 731 756 
4 117 223 333 468 567 632 679 722 742 
6 124 228 337 472 567 633 '680 722 743 
7 124 234 343 470 565 631 679 721 741 

Mean lower flange 120 227 338 472 568 633 680 722 745 

Web 1 145 255 357 475 561 612 653 697 731 
2 150 267 380 508 594 642 681 720 741 
3 152 277 387 512 598 646 683 725 746 
4 142 250 350 464 547 597 638 682 719 

Mean web 147 262 368 490 575 624 664 706 734 

Upper flange 3 69 112 156 224 282 341 398 457 525 
5 80 129 174 249 311 370 425 482 546 
8 81 133 183 270 344 415 477 532 581 
9 74 115 155 214 267 320 375 431. 490 

Mean upper flange 76 122 167 239 301 361 419 475 535 

Table 6.2: Steel temperature data for beam SSI 



Thermocouple Temperature (C) After various times (min) 

Position 3 6 9 12 15 18 21 

Lower flange 1 84 186 308 431 526 598 653 
2 126 220 329 442 529 604 654 
4 109 216 333 448 536 606 651 
6 110 213 330 456 535 605 653 
7 125 220 338 468 550 619 665 

Mean lower flange 111 211 328 449 535 606 655 

Web 1 114 223 340 457 533 594 640 
2 113 228 349 467 541 605 649 
3 130 244 -368 490 560 621 661 
4 144 251 367 488 558 619 659 

Mean web 125 236 356 475 548 610 652 

Upper flange 3 73 136 185 246 303 362 426 
5 63 115 175 241 307 371 434 
8 72 124 177 240 300 369 433 
9 64 115 169 242 301 365 430 

Mean upper flange 68 122 176 242 303 367 431 

Table 6.3: Steel temperature data for beam SS2 



Thermocouple Temperature (C) After various times (min) 

Position 3 6 9 12 15 18 21 24 24.5 

Lower flange 1 110 211 324 436 531 606 658 698 702, 
2 120 221 342 458 553 624 673 711 717 
4 97 199 325 449 548 619 668 705 711 
6 132 244 363 468 558 626 675 712 718 
7 106 220 353 469 564 632 680 716 721 

Mean lower flange 113 219 341 456 551 621 671 700 714 

Web 1 124 246 377 483 563 623 665 695 701 
2 142 273 410 517 596 652 690 721 724 
3 151 290 436 542 612 657 692 721 725 
4 136 258 392 501 578 630 666 698 703 
5 143 256 390 491 559 608 644 677 684 
6 129 253 372 468 542 601 643 676 652 

Mean web 138 267 404 511 587 641 678 709 713 

Upper flange 3 76 120 167 218 275 334 367 438 447 
5 79 129 188 255 318 380 437 496 507 

Mean upper flange 78 125 178 237 297 357 412 467 477 

Table 6.4: Steel temperature data for beam SS3 



Thermocouple Temperature (C) After various times (min) 

Position 3 6 9 12 15 18 21 24 27 

Lower flange 1 81 156 248 340 425 496 553 602 637 
2 76 157 256 352 438 510 569 618 653 
4 77 157 252 343 432 509 569 618 652 
6 72 147 235 327 418 494 553 604 639 
7 79 157 257 355 445 517 575 623 655 

Mean lower flange 77 157 250 344 432 505 564 613 647 

Web 1 114 205 295 384 460 520 567 604 630 
2 122 214 319 417 494 549 595 633 658 
3 127 228 337 429 502 556 600 636 663 
4 128 216 312 397 470 527 574 611 640 
5 130 211 297 371 437 492 535 576 607 
6 118 201 292 371 438 492 539 578 612 

Mean web 123 212 310 395 467 523 568 606 635 

Upper flange 3 76 91 137 173 214 259 303 354 399 
5 77 90 137 179 226 277 328 380 436 

Mean upper flange 77 91 137 176 220 268 316 367 418 

Table 6.5: Steel temperature data for beam SS4 



T3 

i'th strip 

............ 
T2 

... ...................... 

... ......................... 

.............................. ........................... 
T1 

Cross-section Idealised temperature 
profile 

Figure 6.1: Idealised temperature profile and 

subdivision of the section used to analyse the 

furnace tests [ 109]. 



The average steel temperatures of the web and both flanges 

are also plotted against time as shown in Figures 6.2 to 

6.5. 

Figures 6.6 to 6.9 show a comparison between the analytical 

and test results for the central deflections of the beams. 

The figures show that for each beam there is a very good 

agreement up to a certain temperature level, beyond which 

the curves diverge. In all cases the analytical results 

predict early collapse compared with the test, although the 

difference is very small. Table 6.6 shows the 'collapse 

temperature' for each beam indicating a difference between 

test and theory of up to 40°C. 

To highlight the difference between the analytical and test 

results, Figure 6.6 is considered in more detail. The 

curves show very good agreement up to a temperature of 

700°C, diverging beyond this point. A possible explanation 

is that the stress-strain curves used in the present 

analysis might be conservative. Slightly higher stress- 

strain curves, especially in the range of strain hardening, 

could result in closer agreement. 

The other possible reason is that in the present theory the 

temperature is assumed to be constant along the span. It 

is probable that the temperature was in fact somewhat lower 

near the supports which could result in less deformation. 
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Figure 6.6: Central deflection of beam SS1 in test. 
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Figure 6.7: Central deflection of beam SS2 in test. 
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Figure 6.8: Central deflection of beam SS3 in test. 
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Figure 6.9: Central deflection of beam SS4 in test. 



Critical temperature 

(C) 
Beam Size Theory Test Ref [5] 

SS1 254*146 111343 722 745 722 

SS2 254*146 UB43 630 655 630 

SS3 356*171 UB67 671 714 671 

SS4 356*171 UB67 613 647 613 

Table 6.6: Comparison of predicted and experimental 
critical temperatures of the steel beams in fire tests. 



in comparison with the analytical results obtained by El- 

Rimawi [5], very good agreement is obtained. 

6.2.2 Comparison with theoretical result. 

For comparison with a completely unrelated theoretical 

study, results obtained from the present formulation are 

compared with work carried out by Furumura and Shinohara 

[11]. 

A simply supported beam with a span of 7. Om is subjected to 

a uniformly distributed load equal to 29.43 kN/m. The 

cross-section is H400x200xl3x8 as shown in Figure 6.10. 

The mechanical properties of steel in fire and the free 

thermal strains are based on reference [11]. The steel 

temperature measured during the fire is shown in Figure 6.10 

and is represented for the present analysis by the idealised 

temperature profile (Figure 6.10). It should be noted that 

in reference [11] the steel temperature is only recorded up 

to 120 minutes, at which the maximum steel temperature is 

only 585°C. Because of this, an assumed steel temperature 

profile beyond 120 minutes has been introduced in the 

present work in order to determine the deformation history 

for steel temperatures greater than 600°C. 

The results of the comparison are presented in Figures 6.11 

and 6.12 which show the horizontal end displacement and 

central deflection of the beam respectively. The results 
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Time (min) 

Steel bottom 

Temperature 

Ti (C) 

Temperature difference 

between top and 
bottom flanges (T1-T3) 

(C) 

0 20 0 

15 50 30 

30 100 80 

45 230 200 

60 340 270 

75 420 320 

90 490 370 

105 540 340 

120 590 300 

135 620 250 

150 650 200 

165 690 150 

180 720 110 

195 760 70 

Table 6.7: Temperature details for the beam 

cross-section. - 
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Cross-section 

0 50 100 150 
Time (min) 

200 

Figure 6.10: Steel temperature history of a simply 
supported beam [11]. 
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Figure 6.11: Comparison of calculated horizontal deformatios 
of a simply supported beam [ 11 ]. 
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Figure 6.12: Comparison of calculated central deflections 
of a simply supported beam. 
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from the present theory show very good agreement with 

Furumura and Shinohara [11]. 

Figure 6.12 shows that the central deflection steadily 

increases with temperature up to about 540°C. This suggests 

that the effect of thermal bowing is predominant since the 

central part of the beam is still in an elastic condition as 

shown in the strain block diagrams in Figure 6.13. From 

Table 6.7 it can be seen that the temperature difference 

between the top and bottom flanges of the cross-section 

increases in this range, and the thermal bowing effect is 

dominant. For higher temperatures the central deflection 

shows a slight decrease up to 650°C. This behaviour is due 

to the temperature difference between the top and bottom 

flange of the cross-section decreasing as shown in Table 

6.7, resulting in less thermal bowing. During this period 

the central part of the beam is still elastic as shown in 

Figure 6.13 and the central deflection therefore decreases. 

It should be noted that the influence of Young's Modulus 

over this temperature range is relatively small. A rapid 

increase in deflection occurs for temperatures beyond 650°C. 

At this point the central part of the beam develops partial 

plasticity as shown in the strain block diagrams in Figure 

6.13. Even though the temperature difference between the 

top and bottom flanges of the cross-section is decreasing 

during this period and hence reducing the thermal bowing, 

the effect of plasticity clearly causes the beam to deflect 

very rapidly. 
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6.3 PIN-ENDED BEAM WITH FULL RESTRAINT AGAINST 

LONGITUDINAL EXPANSION. 

6.3.1 Comparison with theoretical results. 

A comparison of the present analysis will now be made with 

further finite element analysis results obtained by Furumura 

and Shinohara [11]. An analysis was carried out on a pin- 

ended beam of 7. Om span subjected as before to a uniformly 

distributed load of 29.43 kN/m. The cross-section, 

mechanical properties of steel, and the heating sequence are 

as presented in Section 6.2. The essential difference is 

that the roller under the right-hand support in Figure 6.12 

is eliminated, so that horizontal motion is prevented. 

The change of axial load induced at the joint due to the 

effect of this restraint condition at increasing temperature 

is illustrated in Figure 6.14. This shows that the axial 

load obtained from the present theory is in very good 

agreement with the result obtained by Furumura and 

Shinohara. For example when the bottom flange temperature 

reaches 420°C the difference between those two results is 

about 5%. 

The central deflection of the beam at increasing temperature 

is plotted in Figure 6.15. It can be seen that the central 

deflection obtained from the present theory is in very close 
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Figure 6.14: Comparison of end force 
_ 
for a restrained pin- 

ended beam showing the influence of p-delta effect. 
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Figure 6.15: Comparison of central deflection of a 
restrained pin-ended beam. 



agreement with the result from reference [11]. Once again, 

when the bottom flange temperature reaches 420°C the 

difference between these two results is about 4%. A similar 

comparison was also made with the mid-span bending moment as 

shown in Figure 6.16 and these are also in very good 

agreement. 

6.4 SIMPLE PORTAL FRAME. 

6.4.1 Comparison with theoretical results. 

Furumura and Shinohara [11] also carried out an analyis on a 

simple portal frame with fixed bases and uniformly 

distributed roof load of 29.43 kN/m as shown in Figure 6.17. 

The steel temperatures of the beam and columns are shown in 

Figure 6.18. 

Figures 6.19 and 6.20 respectively show the central 

deflection and axial force of the beam at increasing 

temperature. The bending moments at joints A, B and the 

mid-span of the beam are plotted against steel bottom flange 

temperature in Figures 6.21,6.22 and 6.23 respectively. 

Figures 6.19 to 6.23 show that the two analyses are in very 

good agreement. 
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Figure 6.16: Comparison of mid-span bending moment of a 
restrained pin-ended beam showing the influence of 

p-delta effect.. 
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Figure 6.17: Frame details as analysed by 

Furumura and Shinohara [11]. 
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Figure 6.18: Temperature histories for frame members 
used by Furumura and Shinohara [11]. 
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Figure 6.23: Comparison of bending moment at the 

mid-span of beam. BC. 



6.4.2 Comparison with experimental results. 

A test on a simple portal frame in fire was carried out by 

Cooke and Latham (96]. It comprised a 4.55 m beam of 

406x178x54 kg/m Universal Beam section and two 3.53 m 

columns of 203x203x52 kg/m Universal Column section. All 

steel was of grade 43A. 

The complete assembly is shown in Figure 6.24. Each column, 

which extends above the beam, was pinned at its base. The 

web of each column was protected by autoclave aerated 

concrete blocks built-in between the flanges. The test 

beam remained unprotected but four 1200xl55Oxl50 mm precast 

concrete slabs were placed on it to form part of the 

compartment roof. A maximum axial compressive load of 552 

kN was applied to each test column by a hydraulic ram. The 

test beam was loaded to 39.6 kN at four positions along the 

span using two jacks and two spreaders. 

The measured steel temperatures of the beam and column 

during the fire are shown in Figure 6.25. The idealised 

temperature profiles for beam and column are shown in 

Figures 6.26(a) and 6.26(b) respectively. The central 

deflection of the beam measured during the test is compared 

with the results obtained from the present theory in Figure 

6.27. This shows good agreement up to 16 minutes. After 

this time the theory indicates that the beam reaches its 

failure condition (deflection = L/30 ) at 17.5 minutes. 
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The bottom flange temperature of the beam at failure 

obtained from the present theory and the test are 725°C and 

750°C respectively. A comparison has also been made for 

the lateral deflection profile of the column at 16 minutes. 

Figure 6.28 shows that these two results are in very good 

agreement. 
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CHAPTER SEVEN 

PARAMETRIC STUDIES 

7.1 INTRODUCTION. 

Although the use of fire protection materials for structural 

steel elements can provide required periods of fire 

resistance this can be very costly. Considerable savings can 

be made if the need for such fire protection can be reduced 

or eliminated. The main aim of this chapter is therefore 

to demonstrate the structural response of unprotected steel 

members and to highlight the principal parameters which 

influence the behaviour. The behaviour of statically 

determinate and indeterminate structures including simple 

portal frames, pin-ended and propped cantilever columns will 

be considered. Both non-uniform and uniform temperature 

profiles are included and the effect of temperature gradient 

along member lengths is studied. Where appropriate, "the 

failure criterion is based on a limit state of'deflection 

equal to (L/20). The temperature and time at which this 

criterion is reached are called the critical temperature and 

the critical time respectively. 

In all cases the secant stiffness approach described in 

Chapters 3 and 5 is used for the analysis. The multi- 
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linear stress-strain relationship described in Chapter 2 is 

adopted unless otherwise stated. Various standard 

Universal Beam and Universal Column sections are used in 

this study. The temperature histories of the steel beams 

and columns are taken from test results [20] unless 

otherwise stated. The steel members are all designed 

according to BS 449: Part 2 which for the general case of 

combined bending and compression can be stated as: 

/PC........ (7.1) 

where (fc /pc) = Ratio of the actual to permissible axial 

stress. 

(fbc/pbc) = Ratio of the actual to permissible 

bending stress. 

7.2 PIN-ENDED COLUMN SUBJECTED TO END MOMENTS AND UNIFORM 

TEMPERATURE PROFILE. 

A typical beam/column connection is shown in Figure 7.1. In 

such cases the load from the beam is eccentric to the column 

and consequently generates a moment within the column. 

Because of this, a study will be carried out, on-the 

behaviour of a single pin-ended column subjected-to end 

moments and axial force, including the p-delta ., effect. 

Since the present approach is based on a two-dimensional 

plane frame analysis out of plane behaviour, and in 

particular minor axis buckling, is excluded. The results 
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Column 

Figure 7.1: Typical beam/column connection 



are therefore valid provided that such deformations are 

physically restrained. The slenderness of the structural 

member is considered as the (L/r: ) ratio in which L is the 

effective length of the member and rx is the radius of 

gyration in the x (major axis ) direction. 

Various parameters will be studied including slenderness 

ratio, the relative magnitudes of bending moment and axial 

load, the size of the cross-section, the grade of steel, the 

influence of varying temperature along the member length, 

and the influence of end restraint. 

The behaviour of pin-ended columns of different slenderness 

ratios (L/rx) subject to constant loads will be considered 

first. A cross-section of UC 203x203x52 kg/m and an ambient 

temperature yield stress of 250 N/mm2 are assumed for the 

analysis. Different slenderness ratios are considered by 

using different lengths. The amounts of end the moments and 

axial force applied to the column are assumed to be 0. lMp 

and O. 1P1 respectively which consequently would result in 

different (fc /pc ) and (fbc /pbc ) ratios for different 

slenderness ratios. 

Figure 7.2 shows the variation of central deflection with 

temperature for a range of slenderness ratios. This 

indicates that columns with higher slenderness ratios reach 

their failure condition faster than the stockier columns. 

For instance, the critical temperature for slenderness 

138 



Central deflection (mm) 
flit ovv 

500 

400 

300 

200 

100 

ýi ,ý 

0 100 200 300 400 500 600 700 

Steel temperature (C) 
800 

Figure 7.2: Change of deflection with temperature 
for pin-ended columns with different slenderness ratios 

subjected to a constant moment and axial load and a 
uniform temperature profile. 



ratios of 120 and 60 are equal to 575°C and 675°C 

respectively. This may be because for stocky columns the 

secondary moment generated by an axial force is relatively 

small compared with more slender columns. Furthermore, 

since the failure criterion is related to the central 

deflection, slender columns, which are likely to deform 

significantly more than stocky columns even when subject to 

the same amount of bending moment and axial force, are 

likely to reach the failure condition much earlier. Of 

course in practice slender columns are likely to be subject 

to much lower loads than stocky columns. 

7.2.1 Influence of slenderness ratio (L/rx). 

The influence of slenderness ratio on the critical 

temperature of columns subject to their maximum permissible 

axial load (fc/pc = 1.0), is considered next. Different 

magnitudes of end moments were applied ranging from 0.01Mp 

to 0.2MP . 

Figure 7.3 shows a family of curves representing the steel 

critical temperature for the various end moments. This 

indicates a significant variation of steel critical 

temperature with slenderness ratio. For shorter columns 

with little end moment the critical temperature is about 

550°C, which is almost the same as observed in the standard 

fire tests. For slenderness ratios in the range of 60 to 

90 the steel critical temperatures are significantly lower 
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than for either stockier or more slender columns. One 

possible explanation is that the permissible axial loads in 

this range are overestimated in BS 449. A bigger axial 

force will generate increased secondary bending moments 

along the member and consequently reduce the steel critical 

temperature. This observation is in keeping with the work 

of both Olawale (117] and Witteveen and Twilt [118], 

although in both cases the work was concerned with minor 

axis buckling. There are clearly significant implications 

for designers since slenderness ratios in the critical range 

are relatively common. 

Figure 7.3 also demonstrates that the critical temperature 

reduces significantly when even a small amount of end moment 

is introduced. This highlights the significance of the p- 

delta effect on the structural performance of beam-column 

members in fire. This particular aspect will be discussed 

in more detail in the following section. 

7.2.2 The influence of end moments. 

The influence of the magnitude of end moments on the fire 

performance of columns is discussed in this section. The 

Same section type is used as in Section 7.2.1. 

In this analysis the slenderness ratio (L/r: ) of the column 

and the axial load ratio (fc/pc) are taken as 80 and 0.3 

respectively while end moments are set at ratios fbc/pbc of 
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0.35 and 0.7. Figure 7.4 shows the variation of deflection 

with temperature for the two different moments. It can be 

seen that the steel critical temperature increases as the 

end moments reduce. For moment ratios of 0.7 and 0.35 the 

critical temperatures are about 450°C and 550°C 

respectively. This confirms the indications discussed in 

the context of Figure 7.3. Clearly design rules must 

account for this variation, although at present such rules 

are based largely on the behaviour of axially load columns 

only. 

7.2.3 The influence of axial force. 

Axial loads acting on a column normally result from the 

transmission of load from beams forming the frame structure, 

and the influence of the magnitude of this load on the 

critical temperature is considered in this section. The 

slenderness ratio (L/rx) and moment ratio (fbc/pbc) are 

taken as 80 and 0.3 respectively. The section type used in 

the previous two sections is again used. 

The variation of deflection with temperature for two 

different axial load ratios (fc/pc) of 0.7 and 0.35 is 

presented in Figure 7.5. This shows that the survival 

period of a steel column can be increased by reducing the 

axial load. The corresponding critical temperatures are 

equal to 450°C and 600°C respectively. This improvement at 

lower levels of axial load is clearly largely concerned with 

141 



400 

300 

200 

100 

0 

Central deflection (mm) 

0 100 200 300 400 500 600 700 

Steel temperature (C) 

Figure 7.4: Change of deflection with temperature for a 
pin-ended column with a constant axial load and 
different bending stress levels (l/rx = 80) and a 

uniform temperature profile. 

ý-' moment ratio=0.70 



400 

300 

200 

100 

0 

Central deflection (mm) 

Steel temperature (C) 

Figure 7.5: Change of deflection with temperature for a 
pin-ended column with a constant moment and different 
axial stress levels (1/rx=80) and a uniform temperature 

profile. 

0 100 200 300 400 500 600 700 



the additional reserve of strength but is also influenced by 

the smaller reduction in material stiffness in the presence 

of lower axial loads and also the reduced p-delta effect. 

For real construction the survival period of the steel 

column can therefore be increased by reducing the design 

load ratio (i. e, increasing the section size). However 

this must be justified economically and it may be that in 

order to achieve the necessary survival time in unprotected 

steelwork, excessively large section sizes would be 

required. This is the essence of the load ratio approach 

currently incorporated into BS 5950: Part 8 for axial loads 

only. A much more exhaustive study is required to include 

combinations of axial loads and end moments in the design 

rules. 

7.2.4 Influence of size of cross-section. 

The influence of the size of cross-section is considered in 

this section for the case of columns. Young's Modulus and 

yield stress at ambient temperature are assumed to be 205000 

N/mm2 and 250 N/mm2 respectively. The slenderness ratio 

(L/rx) is taken as 80 and the axial load (fc/pc) and moment 

(fei/pbc) ratios are taken as 0.7 and 0.3 respectively. 

Figure 7.6 shows the variation of deflection with 

temperature for three Universal Column sections 203x203x52, 

254x254x167 and 305x305x283 kg/m. It can be seen that the 

steel critical temperatures are almost identical in each 
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case. This implies that design rules can be applied 

generally for all column sections. It also suggests that 

small scale models can be used for experimental studies 

since the results can then be extrapolated to different 

sizes of cross-section provided that spot checks are made on 

full-scale sections. However, it must be remembered that 

more massive cross-sections heat up at a lower rate and 

hence, although the critical temperatures may be the same, 

the critical times will be quite different. 

7.2.5 Influence of grade of steel. 

In the United Kingdom the strength of structural steels is 

represented in terms of grades - 43,50 and 55 for most 

structural steels. For grades 43,50 and 55 the yield 

stress (prior to the publication of BS 5950: Part 1) were 

normally taken as 250 N/mmz, 350 N/mm2 and 425 N/mm2 

respectively. in this section the performance of columns in 

these grades are compared for a cross-section UC 203x203x52 

kg/m and a slenderness ratio (L/rx) of 80. The axial load 

(fc /pc ) and moment (fb c /pb c) ratios are equal to 0.7 and 0.3 

respectively. 

Figure 7.7 shows the variation of deflection with 

temperature for the different grades of steel. It can be 

seen that the difference in the critical temperatures for 

grades 43 and 50 is only about 20°C. If the heating rate is 

assumed to be 15 °C/min the difference in the critical times 
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is 1.5 minutes, which is not very significant. A similar 

improvement is observed for grade 55. 

These differences are so small that in economic terms the 

steel grade should be selected on the basis of ambient 

temperature design considerations rather than introducing 

any aspects of fire performance. Of course, if a column 

section is designed on the basis of grade 43 steel and a 

higher grade is in fact used this constitutes a reduction in 

load ratio and survival time will increase as discussed in 

7.2.3. 

7.2.6 Influence of temperature profile along the span. 

The influence of temperature profile along the member length 

is discussed in this section. This condition may occur 

when a column is heated at a certain location and the heat 

flows along the column length. A cross-section of UC 

203x203x52 kg/m and slenderness ratio (L/rx) of 80 are 

chosen for the analysis. The axial load (fc/pc) and moment 

(fbc/pbc) ratios are taken as 0.7 and 0.3 respectively and 

the idealised temperature profile is shown in Figure 7.8. 

Figure 7.9 shows the variation of deflection with 

temperature for a uniform and a non-uniform temperature 

profile along the column. The steel critical temperatures 

for the former and latter cases are 450°C and 590°C 

respectively. This represents a very significant change. 
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However the design implication of this must be limited since 

it is very difficult to predict, with any confidence, the 

precise distribution of temperature along a column length. 

In almost all cases it will therefore be necessary to base 

considerations of fire performance on a uniform temperature 

distribution along the column length. 

7.2.7 Influence of end restraint. 

Structural elements with increased end fixity have, in 

effect, extra strength and can consequently . carry higher 

load. In addition such end fixity allows 'moment 

redistribution' to take place along the length of the member 

if localised yielding occurs. This is unlike the 

statically determinate case where the bending moment 

distribution is independent of whether the member is in an 

elastic or elasto-plastic condition. In this section the 

influence of end restraint is considered by comparing the 

behaviour of a propped cantilever and a pin-ended column of 

cross-section UC 203x203x52 kg/m. The length of the column, 

L, was taken to be 7.12m, corresponding to a slenderness 

ratio (L/r: ) of 80 for the pin-ended column. The axial load 

(fc /pc ) and moment (fb c /pb c) ratios are taken as 0.7 and 0.3 

respectively. In the case of propped cantilever column the 

length and the load ratios were unchanged, but the axial 

load capacity, pc, was calculated for different effective 

length factors of 1.0,0.85 and 0.7. 
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Figure 7.10 shows the variation of deflection with 

temperature for the two different types of column. 

Comparing the behaviour of the pin-ended column and the 

propped cantilever under the same load (M = 25.43kN, P= 483 

kN) - that is based on an effective length factor of 1.0- 

the additional end restraint clearly results in a 

significant improvement in failure temperature, about 575°C 

compared with 425°C for the pin-ended condition. Of course 

in practice such restraint would be recognised in ambient 

temperature design and the axial load increased accordingly. 

For the end conditions considered, an effective length 

factor of 0.85 would be typically used in design resulting 

in a design load of P= 545 M. Under this increased axial 

load, the failure temperature is clearly less than for the 

propped cantilever subject to a design load based on an 

effective length factor of 1.0 but is still 100°C higher 

than for the pin-ended case. Even when the load is 

increased to 599 kN which corresponds to the design load 

when the effective length factor is reduced to its 

theoretical value of 0.7, the propped cantilever maintains 

an improved failure temperature about 75°C above that for 

the pinned column. This suggests that the restraint 

provided at the ends of columns is of great significance in 

assessing the performance of column in fire, even more so 

than at ambient temperature, and that considerable benefit 

could be obtained by making use of the reserve of strength 

provided. 

146 



500 

400 

300 

200 

100 

0 

Maximum deflection (mm) 

Propped cantilever column 
with axial loading based 

on an effective length 
factor of 

0.70 0.85 1.0 

Pin-ended col mit 

a 

0 100 200 300 400 500 600 700 

Steel temperature (C) 

Figure 7.10: Comparison of the deflection behaviour of a 
pin-ended column and a propped cantilever with different 

axial loads based on different effective length 
factors for a uniform temperature profile. 



7.3 PIN-ENDED COLUMN SUBJECTED TO END MOMENTS AND NON- 

UNIFORM TEMPERATURE PROFILE. 

The behaviour of unprotected steel beams under fire 

conditions has been extensively discussed in reference [5]. 

This demonstrated that beams can survive for longer periods 

if the concrete floor slab is placed between the flanges of 

the cross-section (slim-floor construction). This is 

because the floor slab is providing shielding and acting as 

a heat sink, decreasing the steel temperature over much of 

its cross-section. Although the temperature profiles 

resulting from this lead to significant thermal bowing this 

has little influence on failure. However, in the case of 

columns thermal bowing is more critical since it may induce 

additional bending moments along the member due to the p- 

delta effect. 

Typical types of partially protected steel columns include 

columns in walls and blocked-in-web columns as shown in 

Figure 7.11a. The behaviour of such partially protected 

pin-ended columns is discussed in this section. A cross- 

section of UC 203x203x52 kg/m with Young's Modulus of 205000 

N/mm2 and yield stress of 250 N/mm2 at ambient temperature 

are chosen for the analysis. For the column-in-wall 

condition (Fig. 7. lla-1) the steel temperature histories and 

the idealised temperature profile (as reported by Cooke 

[20]) within the cross-section given in Figure 7.11b are 

used. In the case of blocked-in-web columns (Fig. 7. lla-2) 
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the steel temperature histories and the idealised profile 

within the section are obtained from Figures 6.25 and 6.26b 

respectively. Various parameters are considered, including 

slenderness ratio (L/rx), axial load and moment. It should 

be noted that in the study on the influence of end moments a 

positive sign indicates that the moment is applied in the 

same sense as thermal bowing while a negative sign indicates 

that it is in the opposite direction. In all cases the 

moment distribution along the length of the column is 

uniform. 

7.3.1 The influence of different types of partially 

protected column. 

The influence of the different types of partial protection 

is illustrated in Figure 7.12 for the UC 203x203x52 kg/m 

with a slenderness ratio (L/rx) of 80. The steel 

temperature histories are as described in Section 7.3. The 

axial load (fc/pc) and moment (fb c /pb c) ratios are assumed 

to be 0.7 and 0.3 respectively. 

Figure 7.12 shows for the column-in-wall construction, that 

even though the wall is acting as a heat sink and 

consequently reducing the steel temperature, it causes 

significant thermal bowing. This in turn creates 

additional bending moment due to the p-delta'effect. As a 

result the critical temperature is only about 300°C, some 

100°C lower than for a bare column, which is also shown in 
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Figure 7.12: Comparison of the deflection history for 
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Figure 7.12 for reference. The blocked-in-web column 

achieves a higher steel critical temperature of about 425°C. 

This is because thermal bowing is avoided while the steel 

temperature is reduced. Although this is a relatively 

small improvement compared with the unprotected column, 

experimental evidence indicates that the rate of temperature 

increase is reduced considerably by blocking in of the web. 

The improvement in critical time is therefore much more 

significant. 

7.3.2 Influence of slenderness ratio. 

The behaviour of partially protected (column-in-wall) pin- 

ended columns has been analysed for slenderness ratios 

(L/r: ) of 40,60 and 80. The axial load (fc/pc) and moment 

(fbc/pbc) ratios are taken as 0.7 and 0.3 respectively. 

Figures 7.13 and 7.14 show the deformation histories of 

unprotected and partially protected steel columns for 

slenderness ratios of 40 and 80. These show that the effect 

of the partial protection is to increase the steel critical 

temperature for a column with a slenderness ratio of 40 but 

to reduce it in the case of the more slender column. This 

happens because, even though the steel temperature within 

the cross-section is relatively low, the influence of 

thermal bowing is dominant. This not only causes lateral 

deformation in its own right but also leads to a 

considerable amount of extra moment due to the p-delta 
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Figure 7.14: Comparison of the deflection behaviour of an 
unprotected column and a column in wall (l/rx = 40). 



effect. Clearly a much more detailed investigation of this 

is required if designers are to be able to take advantage of 

such partial protection. 

Figure 7.15 shows the variation of deflection of columns 

with temperature for the different slenderness ratios. The 

critical temperature for slenderness ratios of 40,60 and 80 

are equal to 750°C, 425°C and 310°C respectively. 

7.3.3 Influence of end moments. 

The influence of end moments on columns in walls is 

discussed in this section. A slenderness ratio (L/rx) of 

80 and an axial load ratio (fc/pc) of 0.7 are chosen for the 

analysis. Moment ratios of -0.3,0.1 and 0.3 are used in 

this study. The negative sign indicates that the moments 

cause bending in the opposite direction from the thermal 

bowing. 

Figure 7.16 shows the variation of deflection with 

temperature for a constant axial load but with different 

magnitudes of end moments. The figure shows that survival 

is enhanced with reduced end moments. For moment ratios of 

0.3 and 0.1 the critical temperatures are 310°C and 425°C 

respectively. This suggests that significant improvements 

could be achieved in practice by minimising the degree of 

eccentricity of the column loads. The figure also shows 

that by applying the same end moments but in the opposite 
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direction to the thermal bowing the steel critical 

temperature is increased up to 580°C. Further studies need 

to be carried, including the case with varying bending 

moment distribution along the column length, before these 

finding can be interpreted for practical design. 

7.3.4 Influence of axial force. 

The influence of axial force on partially protected steel 

columns (Fig. 7. lla-1) is discussed in this section. A 

slenderness ratio (L/rx) of 80, a moment ratio ' (fbc /pbc) of 

0.3 and axial load ratios (fc/pc) of 0.7 and 0.35 are 

assumed. 

Figure 7.17 shows the variation of deflection with 

temperature for constant end moment but at different 

magnitudes of axial load. This indicates that higher axial 

force results in a decrease in the steel critical 

temperature of the column from about 650°C to 310°C for 

axial load ratios (fc/pc) of 0.35 and 0.7 respectively. 

This is because of the effect of the design load ratio: the 

higher failure temperature corresponds to an equivalent load 

ratio (fc/pc + fb c /pb c) of 0.65 compared with 1.0 for the 

lower failure temperature. However, 'in practice this must 

be justified economically for design purposes if such 

oversizing of members is to be used. 
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7.4 SIMPLE PORTAL FRAME IN FIRE. 

The influence of factors which might affect the behaviour of 

simple portal frames in fire is discussed in this section. 

Frame details are shown in Figure 7.18a, with a column 

height H and beam span L equal to 3m and 5m respectively. 

A uniformly distributed load is applied to the beam while 

each column is subjected to an axial superimposed load P. A 

column of UC 203x203x52 kg/m and beam of UB 406x178x54 kg/m 

are used for the analysis. Young's Modulus and yield 

stress at ambient temperature are assumed to be"205000 N/mm2 

and 250 N/mm2 respectively. The steel temperature 

histories of the beam and columns are obtained from tests 

carried out on a similar frame [96]. Together with the 

idealised temperature profiles within the section these are 

shown in Figures 6.25 and 6.26. 

The loads were calculated on the basis of design loads 

considering the members to be independent - that is the beam 

is assumed to be simply supported on the column. 

7.4.1 Typical behaviour of beam and column in frames in 

fire. 

The performance of the steel members forming part of the 

frame in fire can be assessed by conducting standard fire 

tests. However, these tests cannot easily account for the 
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Figure 7.18a: Details of frame considered in all 
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interaction of the beam and column, which has a significant 

effect on the structural behaviour 

however, offer an opportunity 

interaction. For this reason the 

the frame is analysed and compared 

an isolated beam. It should be 

appropriate design loads are used. 

Analytical methods, 

to investigate this 

behaviour of beam within 

with the performance of 

noted that in both cases 

Figures 7.18b and 7.18c show the deformation histories for 

the beam under these two assumptions. The figures show 

that the isolated beam reaches its critical temperature 

earlier than when considered as part of the frame structure. 

The difference in critical temperature and time are about 

100°C and 2 minutes respectively. It can therefore be 

concluded that fire tests on a single member do not give a 

very good assessment of the structural performance for 

interconnected members although the results are 

conservative. More accurate results could be obtained from 

a full scale frame test but the cost'of such tests is likely 

to be prohibitive. Analytical methods however provide an 

efficient means of studying this problem. 

7.4.2 Effect of load level in beam. 

The influence of design stress on the structural performance 

of beams forming part of a frame structure is discussed in 

this section. The column is assumed to be subjected to 

its maximum design load (fc /PC + fbo /Pbo = 1.0) but the 

153 



E 

E 
31 
a 

A 

O 

O 

u 
C 
b 

U 
O 
O 
C7 

+v u+ u u+ 
týf Cat -- 

° 
Co b 

' 0 
o . Wm 

o 
40 

o 
d 

w aý v 
ö CO 

o -J 

p- 
O u 

o a Co 

A ö 
o 
N 

ö 
V 

O) 
s, 

o 
o m 

v7 

a) 

a) 

o vý 
m 

b 
ý 

q) d 
ý m w 

i O y 

& ýý ä 
o d w 

)c b 
r 0 o5 . N r. Co o a) b Mp Co 

l E 0 e '. 
a ä 

cq Co m :i 1 r. 
ö m 

ti 

r 

'd 
v 

ä 

o 
ä E 

C 

1 

I 
v 

a Y 
Y 

p 
w 
O 
R 
0 

C) 

C) Y 

Y 
b 
.0 
1 
VY 

V 

0000000ý, 



lateral load acting on the beam is varied. Again the 

design load for the beam is based on the assumption that the 

beam is simply supported. Two values of loads are 

considered, corresponding to full design load and 50% of 

design load. The load on the column is in fact a 

combination of the beam reaction (wL/2) and axial load P 

acting at the centre of the cross-section. The beam 

reaction gives rise to a bending moment in the column, Mecc. 

For the purpose of design this is assumed to be: 

Mocc = ewL/2 ......... (7.2) 

where e= eccentricity = h/2 

h= depth of column cross-section. 

w= uniformly distributed load along the beam. 

L= span of beam. 

This value of bending moment can then be used to determine 

the moment ratio (fbc/pbc). The additional axial load 

applied to the column is then calculated such that fe/pc + 

fbc/pbc = 1.0. 

Figures 7.19 and 7.20 show the influence of design stress 

within the beam on the deflected shapes of the beam and 

column in fire. Figure 7.19(a) shows that the critical 

bottom flange temperature of the beam is 640°C for a design 

stress equal to 0.66fy. This increases to 725°C for a 

design stress of 0.33fy. Again this indicates that the 
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Figure 7.20: Variation of maximum lateral deformation of 

column with time for fully loaded and half loaded beam. 



stocky (1/rx = 40). Clearly a wider range of slenderness 

ratios for both columns and beams within frames should be 

included in a more thorough investigation. 

Figures 7.21 and 7.22 show the deflected shape of the column 

and beam as part of a frame when both are subjected to their 

maximum design loads, at time intervals within the standard 

fire equal to 2.5,5.0 and 7.5 minutes. The figures show 

the increase in deformation as the temperature increases. 

7.4.3 Influence of axial load on column. 

The influence of axial load on the structural performance of 

the frame in fire is discussed in this section. The beam 

is assumed to be subjected to its maximum design stress 

(fbc/pbc = 1.0) but the axial load acting on the column is 

varied. 

Figures 7.23 and 7.24 show the lateral deflection of the 

beam and column with time and temperature respectively for 

design load ratios (fc/pc + fbo /pbc) for the column of 1.0 

and 0.75. The figures show that when the design load ratio 

of the column is reduced from 1.0 to 0.75 the difference in 

the critical temperature and time are about 125°C and 3 

minutes respectively. This again shows that the failure 

temperature can be increased by reducing the amount of axial 

load acting on the column even though the beam is still 

subjected to a maximum design stress. 
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respectively. This again shows that the failure 

temperature can be increased by reducing the amount of axial 

load acting on the column even though the beam is still 

subjected to a maximum design stress. 

7.5 CONCLUSIONS. 

Several conclusions are indicated by this limited study. 

The investigation is, no more than a preliminary study of 

various influences, and clearly more rigorous examination is 

needed if firm conclusions are to be drawn. *Nevertheless 

the following points can be noted: 

1. The variation of steel temperature along the span of a 

beam or column should be included in the frame analysis if 

this information is reliably available since the improvement 

in the critical temperature compared with the uniformly 

heated case is significant. 

2. The steel critical temperature can be increased by 

reducing the design load, that is by reducing the axial load 

or end moment as a proportion of the member capacity by 

using a bigger cross-section. However this must be 

justified economically. 

3. It has been noted that beam-columns subject to the same 

load ratio but due to different proportions of axial load 

and bending moment have the same critical temperature. This 
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should enable interaction curves relating the end moments, 

axial load and steel critical temperatures for any size of 

cross-section to be constructed. It also suggests that, 

fire tests on small scale models could be used to supplement 

full scale experimental data and analytical results. 

4. For columns in walls the influence of the location of the 

wall has been shown to be very significant. Even though the 

wall acts as a heat sink, thermal bowing occurs. Because of 

this, for slender columns the p-delta effect becomes more 

important, consequently decreasing the steel critical 

temperature. However, the presence of the wall increases 

the critical temperature for stockier columns. This is 

because the p-delta effect is almost insignificant in such 

cases and it is the shielding effect of the wall which is 

most significant. 

5. The survival period of steel columns can be increased by 

restraining their ends against rotation, transforming the 

member into a statically indeterminate structure. 

6. Frame structures appear to have better fire resistance if 

their structural continuity is recognised, rather than by 

treating the structure as a series of isolated elements. 

Thus, it can be concluded that in standard fire tests, the 

failure temperatures of steel beams and columns will 

represent a conservative estimate of the critical 

temperatures for real structures. 
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CHAPTER EIGHT 

CONCLUSIONS 

8.1 CONCLUSIONS. 

The main aim of the present research has been to develop a 

method for studying the deformation history of frame 

structures in fire, incorporating the influence of geometric 

and material non-linearities. These non-linearities include 

the inelastic nature of the stress-strain curves, the effect 

of curvature on longitudinal displacement, the influence of 

axial force in reducing the stiffness and the p-delta 

effect. 

The method is based on the proven matrix stiffness 

formulation and has been implemented on a personal computer. 

The material non-linearities are represented using a secant 

stiffness approach rather than the tangent stiffness method 

in order to reduce computation time. The analysis is for 

two-dimensional structural behaviour only, covering the in- 

plane behaviour of frames. Where columns are considered, 

the deformation is with regard to major axis bending only. 

The method is highly iterative with calculations based on 
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assumed curvatures and lateral displacements which are 

adjusted at each cycle of the analysis. The iteration 

process is considered complete when the condition of 

equilibrium is deemed to be satisfied - that is the 

difference between the internal and external axial force and 

bending moment are within a specified tolerance. 

This general non-linear analysis has been applied to study 

the behaviour of steel structures in fire. The inclusion 

of temperature as a variable requires consideration of not 

only material softening but also thermal expansion and 

thermal bowing (under non-uniform temperature conditions). 

The treatment of beam-column elements raised the question of 

material unloading. Although this is generally ignored in 

ambient temperature analysis it was recognised as a 

potentially important consideration in the studies conducted 

at increasing temperature. In such cases the source of the 

phenomenon is rather complex, with axial loads changing due 

to restraint to expansion and material softening causing a 

spread of inelastic behaviour and a redistribution of 

bending stresses. For this reason a detailed study was 

conducted to investigate the influence of material unloading 

on the moment-axial force-curvature relationship. The 

behaviour at ambient temperature and in fire were considered 

for both rectangular and I sections. The study was 

conducted by examining a cross-section subjected to 

different combinations of axial force and bending moment 

including the effect of increasing temperature. The results 
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demonstrated quite wide variations in stress distributions 

depending on the heating or loading history. However the 

main aim was to examine the degree to which material 

unloading might influence the moment-axial force-curvature 

relationship. Here the results were quite remarkable in 

that, despite marked differences in stress profile, the 

moment-axial force-curvature relationship was hardly 

affected. The study therefore concluded that the influence 

of material unloading can safely be ignored for the 

structural analysis. 

In the analysis the cross-section is divided depthwise into 

strips in each of which the strain, stress and temperature 

are assumed to be uniform. For the temperature 

distributions considered in this work a convergence test 

indicated that dividing the cross-section into 10 strips 

gave satisfactory accuracy. For an isolated member and 

accounting for both material and geometric non-linearities 

required a computation time of about 10 minutes for a single 

temperature level using a PC 286 personal computer with math 

co-processor. This time clearly increases for more 

extensive structures. For a simple rectangular portal 

frame the analytical time was between 30 and 45 minutes. 

However these times can be reduced if a more powerful 

computer is used. 

Several comparisons were made with other experimental and 

theoretical studies both for isolated steel members and also 
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a complete frame. Six simply supported beams were 

analysed, one of which was fully restrained against 

longitudinal expansion. In the case of simple portal 

frames both pinned and fixed bases were analysed. Such 

comparisons were made with the work carried out by the 

British Steel Corporation [109], and by Furumura and 

Shinohara [11]. The comparisons showed very good agreement. 

The analytical development and the investigation of the 

effect of material unloading was'followed by a parametric 

study which was rather more limited than was desired due to 

time constraints. A wide range of parameters has been 

considered, but not exhaustively. The aim was not to 

provide specific design guidance or to make conclusive 

observations with regard to isolated parameters which might 

affect the performance of steel structures in fire. Instead 

the program has been used to demonstrate its capabilities 

and to give some indication of the relative importance of a 

broad range of variables. The influence of slenderness 

ratio for major axis buckling, axial force, bending moment, 

size of cross-section and grade of steel have been 

considered for isolated members subject both to uniform and 

non-uniform temperature distributions. It should be 

recalled that the present research deals only with in-plane 

behaviour, and deformation about the minor axis is 

prevented. 

The results highlight some interesting . aspects of the 
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behaviour of steel structures in fire. The slenderness 

ratio was shown to have a significant effect on failure 

temperatures, with very stocky and very slender columns 

performing better than columns with intermediate slenderness 

ratios which are arguably more typical of current 

construction of multistorey frames. This pattern was 

repeated for all combinations of axial load and bending 

moment considered. 

No discernible difference was observed between the behaviour 

of beam-columns with identical load ratios and slenderness 

ratios but where different grades of steel or cross-section 

were used. Heavier sections may exhibit a slower rate of 

heating, but in terms of structural performance this 

suggests that a unified design approach independent of steel 

grade or size is satisfactory and that interaction curves 

relating slenderness ratio, axial load and end moments could 

be constructed. Of course substituting a larger section or 

a higher steel grade than is required for ambient 

temperature design conditions would reduce the load ratio 

and hence improve the failure temperature. 

The effect of end restraint was 

performance of individual member 

by comparing the behaviour of a 

equivalent propped cantilever. 

restraint would be recognised in 

and the axial load increased 

also, shown to improve the 

gis. This was demonstrated 

pin-ended column with an 

Of course in practice such 

ambient temperature design 

accordingly. However this 
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restraint still significantly increased the survival period 

even when an effective length factor of 0.7, based on the 

theoretical value, is used. The effective length factor of 

0.85, which is typically used in design, resulted in a 

slightly higher critical temperature than one of 0.7. 

The results generally indicated that the influence of the p- 

delta effect is very significant for beam-column behaviour. 

If this non-linearity is ignored, then gross errors can 

occur in the predicted performance of such elements. 

Clearly in analysing structures where bending and axial 

forces coexist it is essential that this feature is 

included. This is perhaps best illustrated by the case of 

a uniformly heated column subjected to its maximum 

permissible axial load. If even a small amount of end 

moment is applied the critical temperature dramatically 

reduces. In practice of course, columns are almost always 

exposed to some bending, whilst traditionally fire tests 

have been conducted under nominal conditions of axial load 

only. In association with this, thermal bowing is also very 

significant. This dramatically increases the moment due to 

the p-delta effect and consequently decreases the critical 

temperature. Where temperature variations exist throughout 

a cross-section, they must therefore be modelled in such a 

way that the thermal deformations are faithfully 

represented. 

It was also noted that the performance of a beam forming 
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part of a frame is significantly better than when it is 

considered in isolation. However, this is a particularly 

difficult area since the end connections are likely to be 

semi-rigid. Analysis of complete frames, or at least sub- 

frames, is essential if the real restraint conditions are to 

be represented, and the connection characteristics, varying 

with temperature, must also be included. Not only does each 

analysis therefore become very time-consuming but also the 

range of parameters to consider expands significantly. The 

study presented here is an attempt'to highlight which of 

those parameters should be the subject of a much more 

exhaustive study. The parameters which appear to have 

greater influence on failure temperature for individual 

beam-columns are slenderness ratio, temperature distribution 

through the cross-section and end restraint. In developing 

interaction curves, a comprehensive range of bending moments 

and axial loads should also be considered. For frames the 

influence of the relative sizes of beams and columns, the 

frame proportion (beam span to height of column) and 

location of walls or floor slabs which could result in 

different types of temperature distributions within the 

section are examples of parameters which need further 

investigation. The program developed during the work 

provides a powerful tool for performing an investigation of 

this nature. 
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8.2 RECOMMENDATIONS FOR FUTURE WORK. 

Although the method developed as part of this research could 

be used to conduct a detailed study of steel frame behaviour 

in fire, some development of the analysis would be 

beneficial in extending its capabilities. 

In the present formulation all members are assumed initially 

perfectly straight. Although this is a common assumption 

in analytical approaches it is not truly representative of 

real structural behaviour, and initial imperfections should 

ideally be included. In fact this could be achieved (for 

in-plane imperfections) quite easily since the main effect 

is the development of secondary moments which are already 

covered in principle. 

In the present analysis the steel temperature must be 

defined as part of the input data. This is not a major 

limitation for isolated structural elements, for which there 

is a reasonable amount of data for different conditions and 

where the temperature distribution can be defined by 

specifying the temperature at just a few points. However, 

this may not be the case for frames, even if these are only 

simple rectangular portals. In such cases not only might 

the steel temperatures for the columns and beams be 

different but there may be significant variations through 

their cross-sections and along their lengths. In 

, 
particular the temperature of the beam-column connection is 
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likely to remain cooler than the main elements, and since 

the degree of restraint at a joint has been shown to be an 

important parameter the temperature distribution should be 

determined quite precisely. It is therefore suggested that 

the thermal analysis should be integrated with the 

structural analysis, providing a detailed distribution of 

temperature without the need for excessive amounts of data 

input 

In the present method the stress-strain relationships for 

steel at elevated temperature are based on stress-strain 

data derived from tests conducted on specimens of structural 

grades of steel manufactured in the UK. This representation 

is therefore strictly applicable to those grades of steel 

only. It is suggested that a more general form of stress- 

strain curve should be included in the present method to 

ensure that the method can be applied for any grade of steel 

from different countries. This can be done quite simply by 

introducing a general form of multi-linear stress-strain 

curve. Of course implementation of this would depend on 

the availability of test data for-different steels, and this 

would be a useful supplement to the existing data. 

Probably the most significant limitation of the present 

method is that it deals only with in-plane behaviour of the 

structure, implying that out-of-plane deformation is 

prevented. In practice this is often not the case, and it 

is suggested that the analysis should be extended to cater 
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for three-dimensional behaviour. This would enable the 

important phenomenon of buckling to be included. This 

would constitute a major piece of development work and would 

also have significant implications concerning the 

computational scale of the problem and the speed of 

solution. 

In the present research the influence of material unloading 

on moment-axial force-curvature relationships has only been 

studied for uniform temperature conditions. In this case 

the material properties are represented by a single stress- 

strain curve which is a function of temperature. Although 

this simplifies the problem it is not typical of practical 

construction. It is therefore suggested that the study 

should be extended to include non-uniform temperature 

profiles within the section, in which case the stress-strain 

curve for each strip is in general different depending on 

the idealised temperature profile. In addition to the 

effects included in the present study, this non-uniformity 

of temperature will result in internal stresses within the 

section, further complicating the question of material 

unloading. 

With regard to the indicative results obtained, some 

parameters clearly need more detailed investigation, and 

others appear to be suitable for more simplified treatment 

in the form of design guidance. For instance interaction 

curves could be established relating axial load, end moments 
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and temperature for different slenderness ratios. 

The work presented in this thesis has been concerned with 

steelwork which has not been provided with additional fire 

protection, although the inherent shielding provided by 

slabs or walls has been shown to have a considerable effect 

on survival in fire. It is clearly desireable that 

designers should adopt a more rational, integrated way of 

designing economic steel-frames structures for ambient 

temperature strength and fire survival. This may include 

some reduction in load ratios and the elimination of 

retrospective fire protection in favour of inherently better 

shielded structural systems. If this more rational process 

is to come about, then it must surely be based on a better 

understanding of the behaviour of elements in fire, and this 

will be an important use for analytical tools such as that 

developed in the present work. 
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