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Abstract 

A magnetic skyrmion is a type of vortex magnetic structure that is stabilized by its 

topological structure. An example of this type of spin structure can be found in thin 

magnetic films with perpendicular magnetic anisotropy and Dzyaloshinski-Moriya 

interactions. It has a size range between nanometers and microns, and a variety of 

excitation mechanisms can be used to modulate its dynamics, including electric 

current and electric fields. Novel spintronic storage devices can be constructed with 

magnetic skyrmions as a form of information carrier. Hence, magnetic bimerions can 

be seen as the in-plane topological counterpart of magnetic skyrmions. Despite this, 

there are few studies that have been able to use systematic research into spin 

topological features to explain their random thermal motions. In this project, a micro-

magnetic method based on the Landau-Lifshitz-Gilbert equation has been used to 

study the dynamics of bimeron in magnetic nanodots under the influence of thermal 

effects. An investigation was conducted to determine the impact of anisotropy, DMI, 

damping, and geometric size on the Brownian motion of bimerons. According to our 

results, the thermal Brownian motion of the magnetic bimeron under thermal effects 

is different from the thermal Brownian motion of the magnetic skyrmion with 

symmetry protected topological states (SPT). The thermal stability of bimeron is 

lower than that of magnetic skyrmion as a result of its lack of topology protection and 

rotational symmetry. This study contributes to the understanding of the dynamics of 

topological magnetic structures and provides some recommendations for the 

development and application of spintronic devices in the future. 
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Introduction 

Spintronics aims to develop next generation electronic devices that rely on the 

intrinsic properties of electrons rather than the properties of their charges. The subject 

of this study is an important one in condensed matter physics, including electron 

transport. Electrons have two spin components of half their size in either direction. In 

the conductor, electron spin is random, and there is no macroscopically apparent state 

of spin. In macroscopic terms, ferromagnetic materials appear magnetic due to the 

Heisenberg exchange interaction, which aligns the spins of unpaired electrons in the 

same direction. Due to the discovery of the giant magneto resistance effect in multilayer 

magnetic thin films[1], it is now possible to influence the electron spin transport in 

magnetic materials by applying an external magnetic field, therefore affecting the 

charge transport. By applying the giant magneto resistor effect to the read-write 

magnetic head of the hard disk in the 1990s, IBM greatly improved the sensitivity of 

its magnetic probes. After the discovery of the tunneling magnetoresistance effect, the 

magneto resistance value increased even further. Additionally, the discovery of the spin 

moment effect and the spin-orbit moment effect confirmed the interaction between the 

electron spin and the local magnetization intensity. Thus, the electron spin can affect 

the magnetic state of magnetic materials. Currently, the field of electronic spin-based 

devices is becoming more diversified, such as magnetic random access memory[2], 

race-track memory[3], spin nano oscillator[4], spin microwave detector[5], electronic 

spin-based logic gate devices[6], etc. According to current spintronics research, a new 

generation of electronic spin-based devices will be developed through the study of the 

control and transport of electronic spins. 

In 1962, Tony Skyrme[7] described some qualitative aspects of the interactions 

between particles when he introduced the concept of the skyrmion. Skyrme predicted 

the existence of particle-like stable field structures with topological shields[7]. In 1975, 

Belavin and Polyakov described a particle-like metastable state in two-dimensional 
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ferromagnets, known as the magnetic skyrmion [8]. Due to its topological discontinuity 

in energy, this is a chiral spin structure with a vortex configuration that is non-trivial 

topologically[9]. Comparatively to a trivial magnetic structure, skyrmion exhibits 

higher stability. Additionally, theoretical physicists predicted the existence of 

skyrmions in the quantum hall state of a two-dimensional electron gas in the 1990s. In 

contrast, it was not until 2006 that Rößler et al.[10] established for the first time that 

stable skyrmion states exist widely in magnetic films or bulk materials. Among them, 

bulk materials include magnets with B20 lattice structures such as FeGe, MnSi, etc.  

In 2009, magnetic skyrmion was first observed experimentally in a magnetic material 

system, namely in MnSi chiral materials[1]. Subsequently, the Heinze 

group[1] observed two skyrmion arrays in Fe/Ir magnetic thin films in 2011[11]. A 

magnetic skyrmion is nanoscale, robust and relatively stable, protected by chiral spin 

textures, and having two types of topological spin structures: the Néel-type and the 

Bloch-type. As they move from the core towards the periphery, Néel skyrmion spins 

rotate in parallel to radial directions, whereas in a bloch skyrmion spins rotate in radial 

directions starting from the core. Fert et al., winner of the Nobel Prize in Physics, used 

skyrmion as a storage medium in 2013. By recording their existence, it can be possible 

to capture the "1" and "0" of binary information, which can be read or written non-

contact. Research reports have recently shown that, by using piezoelectric microscopy 

(PFM)[12], researchers discovered a variety of topological structures in perovskite 

ferroelectric thin films. It has been demonstrated that topological states with electric 

field control have unique electrical conduction properties, and these properties can be 

utilized for non-destructive writing and reading[13]. The development of scanning 

transmission electron microscopy (STEM) has led to the identification of nanoscale 

topological domains in perovskite ferroelectric thin films. The polarization topology 

can be stable at room temperature, without external force, with a similar magnetic spin 

behavior of a topological structure, is relatively straightforward to achieve behavior 

research and regulation[14]. 
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As an in-plane counterpart of a magnetic skyrmion, is known in topology as the 

magnetic bimeron. Meron was originally proposed by De Alfaro et al. [15] as a classical 

solution of the Yang-Mills equation. The particle physicist meron describes a 

phenomenon known as quark confinement, wherein a quark can exist only in paired 

form and not in an independent form, such as bimeron. Phatak et al. [16] observed the 

meron pair in magnetic nanocrystals of the Permalloy alloy /Cr/ Permalloy. Wintz et al. 

[17] have also observed meron states in Co/Rh/NiFe nanocrystals. As a magnetic vortex, 

the meron is another topologically protected state, topologically equivalent to one-half 

of a skyrmion. As with vortices, meron also has a core whose core spins up or down 

(with respect to a given crystallographic). On the other hand, the spin is distributed 

along the radial direction (outwards or inwards) far from the core in the XY plane. 

Towards the end of the intermediate transition zone, the spin gradually shifts from the 

Z-direction into the plane. The topological number of magnetic bimerons is similar to 

skyrmions, which are topological spin textures with topological number  𝑁 =
1

4𝜋
∫ 𝒏 ⋅

(
∂𝒏

∂𝑥
×

∂𝒏

∂𝑦
) d𝑥d𝑦  (where 𝒏 =

𝑴

|𝑴|
 and 𝑴  is the magnetic moment). The topological 

number of Meron is 𝑁 = ±1/2, which is related to the polarity of the nucleus. Meron's 

topological density distribution is also located near the center of its radius. One of the 

key differences between bimerons and skyrmions is the peripheral spin texture of the 

former. The spin textures on the bimerons are aligned in the inplane, whereas those on 

the skyrmions are pointing out of the plane. The meron possesses two topological 

charges, one of which is 𝑁 = +1/2 and the other is 𝑁 = −1/2, as a result of which 

these spin textures can interact strongly together. 
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Figure 1.1 The differences in structure between skyrmion and bimeron.  

 

According to recent research, skyrmion may serve as an ideal carrier of information 

in the future for spintronic devices. This structure has unique topological properties, is 

small, easy to drive, and is stable. A 2009 experiment led to the discovery of the 

properties and applications of skyrmion. Since then, research into its properties and 

applications has become a major focus. However, there are still a number of scientific 

and technical challenges to overcome before its practical application can be made. A 

bimeron is a spin structure with an integer topological charge, which is analogous to 

the skyrmion in an easy-plane magnet. On the other hand, a 𝑁 = +1  skyrmion, 

compared with a meron and a bimeron, will induce a Magnus force and then are subject 

to the Hall effect. For example, different particles moving along an isotropic 

ferromagnetic track will exhibit different behaviors due to their rigidity, structural 

differences, and small changes in mass[18]. It is crucial for practical applications that a 

bimeron can be controlled to create and operate according to a topological spin structure. 

So far, the writing, operating, and reading functions required by the skyrmion as an 

information carrier have been independently verified in experiments. Nevertheless, 

some of these experiments must be carried out at low temperatures. To illustrate, the 

Wiescountry team[19] used STM to observe and read the skyrmion or used the 

skyrmion array[14]. In recent years, skyrmion has been found in various materials 

structures at room temperature[20, 21]. For nucleation and detection, it still relies on 
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LTEM, MFM, and other external experimental equipment. As mentioned previously, 

one of the challenges will be to integrate the generation, transport, and detection of a 

single skyrmion into a single micro-nano electronic device at room temperature. 

Thus, the generation, transport, and detection of a single skyrmion using electrical 

methods at room temperature and integrated into a single micro-nano electronic device 

is a major challenge. Yan Zhou (2019) studied the Brownian motion of skyrmion at 

room temperature using a polar-magneto-optical effect (MoKE) microscope with time 

and space resolution[22]. 

As discussed above, the Brownian motion of bimeron in a high-temperature 

environment is not clear yet. So the high-temperature Brownian motion of bimeron is 

the research direction of this paper. To show the difference between bimeron and 

skyrmions, this paper will compare them under the same conditions. 

The purpose of this work is to give a stability and brownian motion comparsion 

between skyrmion and bimeron, under the same conditions, such as DMI, anisotropic 

strength and temperature. Despite the topological equivalence between the skyrmion 

and the bimeron soliton, their magnetic static and dynamical properties are distinct. In 

chapter 3, we investigate the influence of thermal effects on solitons and bi-solitons by 

using finite difference methods and lattice based methods. By comparing the two 

methods, we first determine which method is most appropriate for calculating the 

topological number (Q) of particles, and after that we determine the stability of particles 

through the calculated topological number. Using these differences, we can explain the 

different thermal stability of particles resulting from different topological structures.  In 

Chapter 4, we compare the stability and thermal performance of skyrmion and bimeron 

microprocessors. During multiple sets of DMI and anisotropy, the position and velocity 

of skyrmion and bimeron are recorded, along with their instantaneous displacements 

and velocities. Due to the fact that the bimeron is composed of two merons, we will 

calculate the values for each separately. As a conclusion, we discuss the structural and 

topological properties of skyrmion and bimeron. By the end of this section, we discuss 
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and compare the thermal stability and Brownian motion of skyrmion and bimeron using 

the topological number and mean square displacement (MSD). 
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Chapter.1 Fundamentals 

The research involves simulation of Dzyaloshinskii-Moriya Interactions (DMI) of 

the type skyrmion and bimeron. In this study, the main software used is the 

micromagnetic simulation software MUMAX3[23], which is based on the finite-

difference discretization method. 

 

1. 1 Static micromagnetics 

Maxwell's equations describe the macroscopic magnetic properties of a materials' 

magnetic permeability and susceptibility. The quantum mechanics describes an atomic 

level microscopic mechanisms and the particle theory describes magnetic properties of 

particles. The magnetization precession and hysteresis loop of magnetic order cannot 

be described by either of these two theories on a mesoscopic scale. Thus, a new theory 

for linking the macroscopic Maxwell's electromagnetic theory with the microscopic 

quantum mechanics theory becomes more necessary. This is especially true after the 

confirmation of the Barkhausen jump and the motion of the domain wall. Landau and 

Lifshitz[24] derived the domain wall structure in reverse magnetic domains in 1935. 

Followed by similar work published by Brown in 1940~1941[25]. In 1958, he made a 

report titled "Micromagnetics: Follower to Domain Theory" in an academic conference, 

in which the concept of micro-magnetism was first proposed[26]. Brown's equation 

solves the equivalent field calculation, and LL equation describes the dynamics of 

atomic spin moment. They make the dynamics of magnetism solvable. 

According to the theory of micromagnetism, the magnetization field can be replaced 

by a continuous magnetization vector field 𝑀(𝑟), where 𝒓 is the position vector. Thus, 

the vector expression of magnetization intensity in different Spaces is as follows: 

𝑴(𝒓) = 𝑴𝒔𝒎(𝒓); 𝒎 · 𝒎 = 𝟏                                                        (1-1) 
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Where 𝑴𝒔  is the saturation magnetization intensity of the magnet. When the 

temperature is fixed and below the Curie temperature, 𝑴𝒔 is a constant value. 𝒎 is the 

normalized local magnetization vector, and all the energy items can be assembled 

together by 𝑴(𝒓). The total energy in the system is expressed as: 

 

𝑬𝒕𝒐𝒕 = 𝑬𝒆𝒙 +  𝑬𝒂𝒏𝒊 +  𝑬𝒅𝒆𝒈 +  𝑬𝒛𝒆𝒆𝒎 +  𝑬𝒅𝒎                              (1-2) 

 

𝑬𝒆𝒙 is exchange energy, 𝑬𝒂𝒏𝒊 is anisotropy energy, 𝑬𝒅𝒆𝒈 is demagnetization energy, 

𝑬𝒛𝒆𝒆𝒎 is Zeeman energy, and 𝑬𝒅𝒎 is DMI energy. In the following chapters, we will 

discuss the five energies of appeal. 

1. 1. 1 Exchange energy 

A ferro-magnetic material is characterized by spontaneous magnetism. In classical 

electrodynamics, adjacent spins are advantageous to antiparallel alignment in 

energy. Material that aligns its magnetic moments in parallel is ferromagnetic. If the 

magnetic moments align in an antiparallel fashion, the material is antiferromagnetic. 

However, the magnetic moments in ferromagnetic materials undergo what is called 

an exchange interaction. A consequence of this quantum mechanical effect is that 

adjacent spins align in parallel, leading to macroscopic magnetization configurations 

that are uniform.  

Using the classical Heisenberg Hamiltonian of two adjacent spins as a starting point, 

we will arrive at the micromagnetic expression for the energy exchanged  

 

𝐸𝑖,𝑗 = −𝐽𝑺𝑖 ⋅ 𝑺𝑗                                                                              (1-3) 

Where 𝐸𝑖,𝑗 is the exchange energy between two adjacent magnetic moments 𝑺𝑖 and 

𝑺𝑗, and 𝐽 is the exchange integral.  If the total exchange energy of the system is zero 

when the magnetic moments are arranged in parallel, then when the angle 𝜑𝑖𝑗 between 
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the adjacent spins of atoms is small and close to zero, the total exchange energy of the 

system is approximately equal to 

𝜀ex = 2𝐽𝑆2∑(1 − cos 𝜑𝑖𝑗) = 4𝐽𝑆2∑sin2 (
1

2
𝜑𝑖𝑗) ≈ 𝐽𝑆2∑𝜑𝑖𝑗

2     (1-4) 

 

1. 1. 2 Anisotropy energy 

 

Figure 1.2 Uniaxial anisotropy energy density. (left) easy axis anisotropy (𝑲𝟏 > 𝟎). (right) easy 

plane anisotropy ((𝑲𝟏 < 𝟎).[27] 

Anisotropy is a dependence of energy level on some 

direction. In other words, ‘anisotropy’ means "directionally dependent". Magnetocryst

alline anisotropy is one of the origin of magnetic anisotropic energy in magnetic mate

rials [22]. This spontaneous orientation of atoms in ferromagnets is often called the "e

asy" orientation, meaning that the atoms is in the lowest energy state compare with ot

her orientation. When studying magnetocrystalline anisotropy, current energy is appli

ed to the magnetic system, the external fields drive the crystals to deflect from the "ea

sy" plane to "hard" plane. Anisotropic energy is defined as the energy required to perf

orm this operation. In other words, the magnetization energy required for 

magnetization along the hard and easy magnetization axes of ferromagnets differs, with 

the minimum magnetization energy required in the easy magnetization direction and 

the maximum required in the hard magnetization 

direction. The energy in the magnetic system is induced by the interaction between th
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e magnetic atoms and the crystal lattice of the material under study. Mostly, the mater

ials with magnetically anisotropic energy have two lowest energy states directions to 

magnetize the material, with an angle as 180 degree. However, the magneto-

crystalline anisotropy energy is defined as the energy consumed when the magnetizati

on vector deflects from the easy axis, and its magnitude does not change with the reve

rsal of the magnetization vector by 180 degrees. Therefore, the density of magnet crys

tal anisotropic energy surface is a function of direction cosine, which is defined as foll

ows: 

𝜀k = 𝑘0 + ∑  𝑖 𝑘𝑖𝛾𝑖
2 + ∑  𝑖 𝑘2𝑖𝛾𝑖

4 + ∑  𝑖≠𝑗 𝑘3𝑖𝑗𝛾𝑖
2𝛾𝑗

2 + ⋯                       (1-5) 

An example is hexagonal crystals, which are also known as uniaxial crystals. There 

are two easy magnetization directions for uniaxial crystals, and they are 180 degrees 

apart. Both of these directions of the magnetization curves and the anisotropic energy 

of magneto crystals are the same. If the Z axis is taken to be the main symmetry axis 

of the crystal, and angle 𝜃 between the direction of magnetization and the Z axis. The 

expression for the energy density of uniaxial anisotropy is 

𝜀k = 𝐾0 + 𝐾1sin2 𝜃 + 𝐾2sin4 𝜃 + 𝐾3sin6 𝜃 + ⋯                              (1-6) 

Where, K0, K1, K2, and K3 are uniaxial anisotropic constants. Due to the fact that 

K0 represents zero energy, K0 is of no practical significance and can be ignored. 

For higher-order terms, they can be ignored in most cases. Then formula 1-6 can be 

simplified as:     

𝜀k = 𝐾1sin2 𝜃                                                                                    (1-7) 

It is evident that the behavior of uniaxial anisotropy depends on the sign of 𝐾1. 

Accordingly, when 𝐾1 > 0, the energy density of uniaxial anisotropy has a minimum 

value in the case of  𝜃 = 0 and 𝜋, so that the z axis represents the direction of the 

easy axis, as shown in Figure 1.2 (a). When 𝐾1 < 0, The uniaxial anisotropic energy 

density has a minimum value when 𝜃 = 𝜋/2, and, thus, the Z axis is in the direction 

of the hard axis, and the easy axis is located in any direction of the X-Y plane, as 

shown in figure 1.2 (b).     
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1. 1. 3 Zeeman energy 

The Zeeman energy of a ferromagnetic body is the energy of the magnetization 𝑴 in 

an external field 𝑯ext given by 

𝜀zeem = −𝜇0𝑴 ⋅ 𝑯ext                                                                  (1-8) 

Where 𝜇0 is the vacuum permeability. Thus, the total zeeman energy of magnetic 

materials is 

𝐸zeem = −𝜇0∫ 𝑴 ⋅ 𝑯extd𝑉                                                          (1-9) 

Thus, the Zeeman can have its minimum when 𝑴 is parallel to the direction of 𝑯ext. 

1. 1. 4 Energy of the demagnetizing field 

A magnetized material's surface and inhomogeneous areas accumulate magnetic 

charges. Due to these magnetic charges, a magnetic field is produced in the opposite 

direction to the original magnetization. This magnetic field is known as the 

demagnetization field.  The energy generated by the magnetization vector of the 

material itself in order to overcome the demagnetization field is called demagnetization 

energy, also known as stray field (outside the magnet).  Determining the energy density 

of a demagnetization field is similar to the zeeman energy density, whose specific 

expression is as follows:   

𝜀deg = −𝜇0𝑴 ⋅ 𝑯deg,                                                                  (1-10) 

The demagnetization energy of magnetic materials can be obtained by integrating: 

𝜀deg = −𝜇0𝑴 ⋅ 𝑯deg𝑑𝑉                                                              (1-11) 

The magnetic charge 𝑯deg originates from the bulk density and surface density of 

the magnetic field. The expression for 𝑯deg is: 

𝐻deg = −
1

4𝜋
(− ∫  

𝑉
∇ ⋅ 𝑴(𝒓′)

𝒓−𝒓′

|𝒓−𝒓′|3 d3𝑟′ + ∫  
𝑆

𝒏 ⋅ 𝑴(𝒓′)
𝒓−𝒓′

|𝒓−𝒓′|3 d2𝑟′),           (1-12) 

Where 𝒏 is the normal direction of the magnet surface. 
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1. 1. 5 Dzyaloshinskii-Moriya interaction energy 

 

Figure 1.3 (a) Block DMI ,(b) Interface DMI 

 

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange 

interaction that stabilizes chiral spin textures. The expression of Hamiltonian is 

𝐻DM = −𝑫𝑖𝑗 ⋅ (𝑺𝑖 × 𝑺𝑗)                                                  (1-13) 

Where 𝑫𝑖𝑗 is vector of DMI, and  𝑺𝑖 𝑺𝑗 are two adjacent spins ions.  Figure 1.3 (a) 

illustrates the block structure of DMI found in materials with lacking central symmetry 

of atomic structure, such as MnSi, FeCoSi and FeGe. The DMI vector 𝐃𝑖𝑗 ∝ 𝐫𝑖 × 𝐫𝑗 =

𝐫𝑖𝑗 × 𝐱, where 𝐷  is the constant of DMI strength.  Another type of DMI has been 

demonstrated to exist in magnetic films with broken interface geometric symmetry, 

usually at the junction of magnetic films and heavy metals , which call interface DMI. 

As shown in figure 1.3 (b), the DMI vector 𝑫𝑖𝑗 = 𝐷𝑟𝑖𝑗 × 𝑧. DMI may induce various 

types of topological magnetic structures in magnetic materials, such as chiral domain 
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walls and skyrmion. At position 𝑟, the direction of magnetization is 𝑚(𝑟). Therefore, 

the energy expression for block DMI is as follows [28, 29]:   

𝐸BulkDMI = ∭ 𝐷 [𝑚y
∂𝑚z

∂𝑥
− 𝑚z

∂𝑚y

∂𝑥
+ 𝑚z

∂𝑚x

∂𝑦
− 𝑚x

∂𝑚z

∂𝑦
] d3𝒓               (1-14) 

The interface DMI energy is distributed evenly in the t thickness magnetic film, and 

therefore the interface DMI can be expressed as: 

𝐸InterDMI = 𝑡∬ 𝐷 [𝑚x
∂𝑚2

∂𝑥
− 𝑚z

∂𝑚x

∂𝑥
+ 𝑚y

∂𝑚z

∂𝑦
− 𝑚z

∂𝑚y

∂𝑦
] d2𝒓.             (1-15) 

 

1. 2 Gibbs free energy 

When the Gibbs free energy of the entire system is at its minimum, the 

thermodynamic system reaches an equilibrium position.  

The minimum value of free energy is obtained by a variational solution of the total 

energy of the system. When the magnetization vector in a ferromagnet is in equilibrium, 

its direction should be parallel to the total effective magnetic field. At this point, the 

moment acting on the magnetization vector is zero, and the expression of Brown's 

equation is as follows:  

Ə𝑬𝒕𝒐𝒕

Ə𝒎
= 𝒎 ×  𝑯𝒆𝒇𝒇 = 𝟎                                                (1-16) 

𝑯𝒆𝒇𝒇  is the sum of effective magnetic fields, including exchange field 𝑬𝒆𝒙 , 

anisotropic field 𝑬𝒂𝒏𝒊, demagnetization field 𝑬𝒅𝒆𝒈, Zeeman field 𝑬𝒛𝒆𝒆𝒎 and DMI field 

𝑬𝒅𝒎: 

𝑬𝒆𝒇𝒇 = 𝑬𝒆𝒙 +  𝑬𝒂𝒏𝒊 +  𝑬𝒅𝒆𝒈 +  𝑬𝒛𝒆𝒆𝒎 +  𝑬𝒅𝒎                    (1-17) 

The relationship between the total effective magnetic field and Gibbs free energy of 

the system is as follows: 

𝑯𝒆𝒇𝒇 =  −
𝟏

𝝁𝟎𝑴𝒔

𝝏𝑬𝒕𝒐𝒕

𝝏𝒎
                                                  (1-18) 

When the magnetization is parallel to the effective field, the system energy is the 

lowest. 
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1. 3 Dynamic micromagnetics 

Even though Brown's equation provides a solution to the energetic equilibrium 

equation, some non-steady conditions, such as the application of a field pulse or an AC 

field, need to be solved by the Landau-Lifshitz-Gilbert equation. 

1. 3. 1 Magnetization dynamics 

 

Figure 1.4 Magnetisation precession without damping.[30] 

A ferromagnet derives its magnetism from the extranuclear electron, which includes 

an orbital magnetic moment and a spin magnetic moment. Since the magnetic moment 

of a nucleus is small, it can be ignored in the problems we consider.  When 𝑴 is the 

magnetization of an atom, 𝑱 is the angular momentum, and the equation is as follows 

𝜇0𝑴 = −𝛾𝑱,                                                         (1-19) 

where 𝜇0 is the vacuum permeability, 𝛾 is the spin magnetic ratio, for electrons:   

𝛾 =
𝜇0|𝑒|

2𝑚e
𝑔, 𝑔 = 2                                                  (1-20) 

In the total effective field 𝑯𝒆𝒇𝒇, the magnetization 𝑴 will be affected by a torque as 

follows:   

𝑳 = 𝜇0𝑴 × 𝑯eff                                                  (1-21) 

It is the change in angular momentum of the magnetization with time that is the 

torque. Therefore, we have:   
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d𝑱

d𝑡
= 𝑳 = 𝜇0𝑴 × 𝑯eff                                            (1-22) 

Substituting equation 2-22 into equation 2-20, then we can reach equation 1-23 after 

rearranging.  

d𝑴

d𝑡
= −𝛾𝑴 × 𝑯eff                                                      (1-23) 

Equation 1-23 represents magnetisation precession without damping. According to 

figure 1.4, when a vertical upward effective field 𝑯eff is applied to magnetization 𝑴, 

and the vector of magnetization 𝑴  performs a continuous circular motion around 

−𝑴 × 𝑯eff. It is the magnetization precession for undamped motion. 

 

1. 3. 2 Magnetization dynamics with damping 

 

Figure 1.5 Magnetisation precession with damping.[30] 

The equation 1-23 could be used only in a case of small damping. The strong 

damping in thin films also causes a damping torque that pulls 𝑴 towards 𝑯eff as it 

precesses around 𝑯eff. In this case, we need to add the damping term 𝑻𝑫 to the right-

hand side of the equation 1-23.  Therefore, we have:  

d𝑴

d𝑡
= −𝛾𝑴 × 𝑯𝒆𝒇𝒇 + 𝑻𝑫                                                 (1-24) 

There are three forms of expression for the damping term. First, there is Landau-Lifshitz 

damping form[31], which is as follows: 

𝑻D = −
𝛼𝛾

𝑀s
𝑴 × (𝑴 × 𝑯eff)                                           (1-25) 
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Where 𝛼 is a dimensionless constant called the damping factor, represents the rate of 

magnetization 𝑴 to 𝑯𝒆𝒇𝒇. And 𝑀s is the saturation magnetization. The second is Bloch 

damping form[32], which is described as follows: 

𝑻D = −
1

𝑇
(𝑴 − 𝜒0𝑯eff)                                                      (1-26) 

Where T is represent relaxation times, and 𝜒0 is longitudinal susceptibility. The third 

is Gilbert damping form[33], which is described as follows: 

𝑻D =
𝛼

𝑀s
(𝑴 ×

d𝑴

d𝑡
)                                                             (1-27) 

As mentioned above, all three types of damping terms are equivalent, but since the 

Gilbert form is more convenient in application and generalization than the other two 

kinds, we now use the Gilbert form for damping terms. Landau-Lifshitz-Gilbert (LLG) 

equation is expressed as follows: 

d𝑴

d𝑡
= −𝛾𝑴 × 𝑯eff +

𝛼

𝑀s
(𝑴 ×

d𝑴

d𝑡
)                                            (1-28) 

Figure 1.5, is subject to two torques: one is −𝑴 × 𝑯eff, which causes 𝑴 to rotate in 

a circle around 𝑯eff; another is 𝑴 ×
d𝑴

d𝑡
, which tends 𝑴 towards the direction of the 

effective field 𝑯eff. In the combined action of the two torques, the arrow's trajectory of 

𝑴 no longer resembles a circle, but rather a spiral that gradually leans toward 𝑯eff. In 

1996, Slonczewski extended the model to include spin-transfer torque, i.e. torque 

generated by spin-polarized current flowing through the ferromagnet during 

magnetization. Commonly, this expression is written as 𝑚 = 𝑴/𝑴𝒔: 

d𝒎

d𝑡
= −𝛾𝒎 × 𝑯eff + 𝛼𝒎 ×

d𝒎

d𝑡
                                           (1-29) 

 

https://en.wikipedia.org/wiki/Relaxation_(NMR)
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1. 4 Magnetic skyrmion 

 

Figure 1.6 Two types of magnetic skyrmions[34] :(a) Bloch skyrmion; (b) Neel skyrmion 

In condensed matter systems, magnetic skyrmions have been observed 

experimentally and predicted theoretically. As well as in bulk magnetic materials such 

as MnSi, skyrmions can also be formed in thin magnetic films. It is possible for 

skyrmions to be achiral, or chiral (figure 1.5 a and b are both chiral skyrmions) in nature, 

and to exist both as dynamic excitations or as stable or metastable states. Even though 

the broad contours of magnetic skyrmions have been established de facto, a variety of 

ideological interpretations exist with slight variations. 
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1. 4. 1 Definition of skyrmion 

 

Figure 1.7 Motion of skyrmions driven by an applied current and the topological Hall effect 

(THE).[35] 

The skyrmions are vector fields with a spherical topology characterized by 

topological charges. It is usually referred to as a skyrmion number, which can be 

expressed mathematically as 

𝑛 =
1

4𝜋
∫ 𝐌 ⋅ (

∂𝐌

∂𝑥
×

∂𝐌

∂𝑦
) 𝑑𝑥𝑑𝑦                                        (1-30) 

Where 𝑛 is the skyrmion number, which is the number of times spins wind around 

the unit sphere. The unit vector 𝐌 indicates the direction of the local magnetization 

within the magnetic thin, and the integral is taken over a two-dimensional 

space. Alternatively, one can obtain 𝑛 by wrapping the spin unit vector 𝐌 around a unit 

sphere, then 𝑛 = 1. By determining structure stability, which is the subject of this thesis, 

this concept remains valid for magnetic skyrmions and bimerons.  

1. 4. 2 Skyrmion nucleation 

As skyrmion structures are topologically protected, the barrier of topological stability 

needs to be overcome in the process of nucleation [36]. There are a number of means 
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to achieve this objective, including external magnetic fields, local thermal effects, 

Dipole-dipole interaction, Dzyaloshinskii-Moriya interaction, etc. If the external 

magnetic field and temperature of the system are in an A-phase, then the spin 

distribution in the structural material system of material B20 (MnSi, FeGe, etc.) 

produces an energy ground state composed of skyrmion[1, 37]. Nevertheless, the 

resulting skyrmions will first nucleate at defects[38] or edges[39] in the material. It is 

true that external means such as magnetic fields and lasers have been used to overcome 

these problems, however, they are not applicable to our simulation 

of skyrmions. Compared to skyrmions by DMI, skyrmions are much larger (10^2). In 

the Dzyaloshinskii-Moriya interaction, neighboring spins are chiral-interacted so that a 

skyrmion lattice is nucleated in the presence of a magnetic field. For calculation of the 

quantity of a system with a length of a micrometer or greater, a large amount of CPU 

will be required. Consequently, the DMI type skyrmion with a scale of nanometer is 

the focus of the computational research presented.  

 

1. 5 Numerical analysis 

Micromagnetism uses the Finite Difference Method (FDM) or Finite Element 

Method (FEM) to separate a continuum into approximating the discrete elements by 

replacing the derivatives in the equation with differential quotients. The finite 

difference method is easy to implement but exhibits deviations when applied to 

irregular systems. Although the finite element method is suitable for all kinds of 

systems, it can be complicated in some irregular areas and requires strict continuity of 

the area to be considered. For both cases, the basic assumption is that the magnetization 

is constant, as illustrated in formula 1-1. Thus, the total energy of the system can be 

determined from formula 1-2, and the corresponding effective field from formula 1-14. 

https://en.wikipedia.org/wiki/Numerical_analysis
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1. 5. 1 Finite difference method 

 

Figure 1.8 (a) A schematic diagram of FDM mesh pattern of domain. (b) A schematic diagram 

of FEM mesh pattern of domain.[40] 

As shown in figure 1.8 (a), the finite-difference method always divides the simulated 

system into cuboids. Instead of continuous regions, finite cuboids are used, and the 

spatial derivative at each point is approximated by the difference quotient of the 

cuboids. In general, the differential equation solution is transformed into the solution 

of the cuboid field value difference equations, hence the name "finite difference 

method.". On the basis of whether the scheme is discrete in time, it can be classified as 

semi-discrete or fully discrete. It can be used to obtain different accurate 

approximations for the derivatives: first-order, second-order, and higher-order. At 

present, the Taylor series is commonly used to construct the difference. For systems 

with a regular magnetic structure, the finite difference method is applicable. As a result 

of the irregular system or the presence of a surface, the rectangular partition element is 

approximated with a step shape at the boundary or surface, resulting in a deviation in 

the calculation of the demagnetization field. The deviation can be corrected by adopting 

the boundary numerical method. Based on the method of calculation, it can be divided 

into two discrete methods: energy and field. By using the discrete method based on 

energy, the energy value can be calculated accurately by 𝒎(𝒓), while the effective field 

represents the average value for the partition element. With the field-based discrete 

method, the effective field value is accurately calculated by 𝒎(𝒓) and the energy is an 

incidental result.   
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1. 5. 2 Finite element method 

As shown in figure 1.8 (b), the finite element method divides a complex structure 

into non-overlapping polyhedral elements, such as triangular, tetrahedra in 3-D or 

higher-order simplexes in multidimensional spaces. Taking nodes as the point of 

solving the difference, the related variables are replaced by an expression 

corresponding to the nodes within each element and the corresponding difference 

within the partition element, and the partial differential equation is constructed by 

utilizing the variational methods and weight functions. Since the subdivision element 

of finite element is a polyhedron structure, in a more complex system, a relatively 

smooth boundary can also be obtained, resulting in higher accuracy in the calculation 

of demagnetization energy. For this reason, the finite element method is more accurate 

than the finite difference method when dealing with complex systems. Although, the 

calculation speed of the finite difference method is slower than that of the subdivision 

at the boundary due to the refinement of the subdivision.   

1. 5. 3 Mumax3 

The Mumax3 software, developed by Arne Vansteenkiste and colleagues at the 

Ghent University in Belgium[23], is an open-source micromagnetic simulation 

program. As Mumax3's source code is written in Golang and CUDA, the software is 

dependent on NVIDIA CPUs for computation. It is currently available for Linux, 

Windows, and Mac, and updates quickly and frequently. In addition to being based on 

the same finite-difference method as OOMMF, MUMAX3 is 100 times faster for large-

scale systems compared with CPU-based OOMMF, which is the primary reason for its 

popularity. Furthermore, the input script is in MUMAX3 format and the code is 

relatively simple.   

 



 

 30 / 75 

 

1. 5. 4 Summary 

The purpose of this chapter is to introduce the history of skyrmion and bimeron, as 

well as the fundamental physical principles of magnetic systems, such as Heisenberg 

Hamiltonian for static micromagnetism and LLG equation for dynamic 

micromagnetism. A description of the MUMAX3 calculation method and of its 

theoretical basis is given. Furthermore, the meanings and uses of skyrmion and bimeron 

are discussed, followed by the introduction of the basic features of magnetic skyrmion 

and bimeron. The next chapter will be devoted to discussing the thermal stability of 

skyrmion and bimeron. 
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Chapter.2 Effects of thermal effects on bimeron 

topology and comparison with skyrmion  

 

The concept of micromagnetism is based on a continuum approximation of exchange 

interactions, including boundary conditions, and on Maxwell's equations of motion in 

the static limit. The total micromagnetic energy is the sum of exchange energy, 

anisotropy energy, Zeeman energy, demagnetization energy, and DMI energy. The 

properties of micromagnetism can be accurately described by a time-evolution equation, 

such as field-induced magnetization precession or damping when applied in space and 

time. With mathematical micromagnetism, it is possible to study the complexity of 

magnetic bodies of small sizes, such as calculating the topological charge 

numbers. Unfortunately, there are generally fewer calculation methods available. The 

topological charge number of skyrmion and bimeron is calculated using the finite-

difference derivative method and lattice-based finite difference method in this study. 

The skyrmion and bimeron in magnetic materials can be characterised by a skyrmion 

number, which follows from the topological invariant. The skyrmion number can be 

written as: 𝑄 =  
1

4𝜋
∫ 𝑑2𝑟𝑆 ∙ (𝜕𝑥𝑆 × 𝜕𝑦𝑆)  . The equation is only valid under the 

continuum condition, in which the spins in the system are almost parallel with their 

neighbours. 

The results calculated using these two discretization methods are compared, so that 

the most appropriate scheme may be selected for calculating the topological charge 

number of thermal effects. A finite-difference method was proposed by Miltat and 

Donahue in 2007 to describe exchange interactions, boundary conditions, and 

demagnetization evaluation, and to monitor the time integrals[41]. Methods based on 

field data and energy data are described respectively. Under boundary conditions, the 

field-based method can be used to solve the LLG equation by directly identifying the 
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effective field components. The energy density only works in this method if the 

effective field is a gradient of the energy density. Using the energy-based method, the 

magnetic energy calculated by discrete magnetization is primary, while the effective 

field is calculated from the total energy. The unit mean field is obtained with this 

method, and the equilibrium magnetization mode can be found directly by minimizing 

the energy. Even though this method is simpler and energy as an integral component is 

smaller and easier to approximate than changes in the field, it does not reflect variations 

in the demagnetization along the normal direction of the film. Moreover, they failed to 

account for disorders such as thermal effects, which can affect the accuracy of cells. In 

2020, Joo-von Kim and Jeroen Mulkers proposed an implementation of finite-

difference micromagnetism[42]. It is a lattice-based approach based on B Berg and M 

Luscher's work[43].  To verify the implementation, three examples are provided: An 

isolated skyrmion with periodic boundary conditions, soliton pair generation in the 

ferromagnetic orbit, and an isolated skyrmion in a constrained structure at finite 

temperature. This article discusses that the finite difference method based on the lattice 

can well remedy the false change of topological charge owing to the inaccurate finite 

difference derivative, and the calculated topological number can well quantify the 

process of skyrmion nucleation and annihilation. Since the topological charge is often 

substituted for the gradient of magnetization in the annihilation process, it remains 

impossible to describe the gradient of magnetization of skyrmion.   

 

2. 1 Finite difference methods and lattice-based 

implementation 

 

A ferromagnetic state or a trivial state is determined by topological charge Q, which 

describes the internal winding number of the classical spin ( Π2(𝑆2)  homotopy 

group)[44, 45] of 2+1 dimensions. Skyrmions contribute to the topological charge in 

the universe by contributing ±1 to it. The formula 2-1 is used to compute topological 
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charge Q in general. Through topological charge Q there is also a possibility of 

determining whether skyrmion or bimeron exist in the sample on the basis of 

topological charge Q. 

𝑄 =
1

4𝜋
∫ 𝑑2𝑥𝐦 ⋅ (

∂𝐦

∂𝑥
×

∂𝐦

∂𝑦
)                                          (2-1) 

An application of this quantity is to describe the topology of the spin structure in a 

two-dimensional system, for example e.g.,[46], where 𝐦 represents the direction of the 

magnetic moment. The number of torques around the unit sphere is measured by Q 

when 𝑀(𝑟) is projected onto it. In vortices and merons, Q equals 1/2, and in skyrmions, 

Q equals 1. For numerical micromagnetism, one of the most commonly used methods 

is to discretize 𝑀(𝑟, 𝑡)  using finite difference methods[23, 41]. Based on this 

assumption, the energy exchange in 𝐦 between the two cells (approximately equal to 

the lowest order (m)2) makes sense. 

When 𝐦  varies greatly in space, problems occur, such as in nucleation and 

annihilation of vortices and storms, or in stochastic dynamics with random fields, which 

leads to inaccurate values of Q. Figure 2.1(a)(b) depicts the equilibrium profile 

calculated with the parameters in MUMAX3 codes [4] and [5], showing skyrmion and 

bimeron at 0K. Eq. (2-1) gives the 𝑄𝑠𝑘𝑦𝑟𝑚𝑖𝑜𝑛 = −1.0026203   and 𝑄𝑏𝑖𝑚𝑒𝑟𝑜𝑛 =

−1.0001248 Qbimeron= of this configuration, which is close to the theoretical value 

Q =−1, which is acceptable. Considering the effects of disorder, such as caused by 

thermal fluctuations, in figure 2.1(a), each torque randomly deviates from its 

equilibrium orientation, as shown in figure 2.1. (c). Figure 2.1(c)(d) illustrates the 

corresponding distribution of this disorder on the unit sphere. Despite the distortion in 

the mesh, it retains the same topology as in figure 2.1(b)(d) and thus retains the same 

charge. The values of 𝑄𝑠𝑘𝑦𝑟𝑚𝑖𝑜𝑛 = −0.99686474  and 𝑄𝑏𝑖𝑚𝑒𝑟𝑜𝑛 = −0.93721527 

given in equation (2-1) are indicative of the loss of precision of finite difference 

derivatives. The thermal effect in the system is considered as a random distribution 

effective field which will influence the effective magnetic properties. 
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Figure 2.1 (a) Projection of skyrmion structure in a 2d plane at zero temperature. (b) An example 

of a disordered 𝒎𝒛 of skyrmion at a finite temperature. (c) Projections of bimeron structures on 

two-dimensional surfaces at zero temperature. (d) Examples of disordered bimeron 𝒎𝒛 at finite 

temperatures.   

 

Berg and Luscher derived the explicit expression for the topological charge of the 

lattice spin field [43], which has been applied in atomic spin dynamics and Monte Carlo 

simulations[47, 48]. The three moments in figure 2.2(a) represents the average 

magnetization direction of the finite difference element. These moments are viewed as 

lattice spins, and the interactions between them are ignored. Figure 2.2(a) illustrates the 

average magnetization orientation in a finite-difference cell. On the unit sphere, the 

topological charge is given by the sum of the set of elementary triangles, 
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𝑄 =
1

4𝜋
∑  ⟨𝑢𝑣𝑤⟩ 𝑞𝑢𝑣𝑤                                                      (2-2) 

Where 

tan (
𝑞𝑢𝑣𝑤

2
) =

𝐦𝑢⋅(𝐦𝑣×𝐦𝑤)

1+𝐦𝑢⋅𝐦𝑣+𝐦𝑢⋅𝐦𝑤+𝐦𝑣⋅𝐦𝑤
                                        (2-3). 

Here, it's constant under the exponential uvw cycle. Figure 2.2(a) shows the two 

signed triangles that make up the cell, 𝑞124  (gray) and  𝑞234  (white). Figure 2.2(b) 

represents another equally valid definition (uvw) equation (2-2) indicating that the sum 

is limited to the unique triangle shown in figure 2.2(a) or 2.2(b). 

 

 

Figure 2.2 Calculate the topological charges by using the lattice scheme. (a) The cell is comprised 

of two signed triangles, 𝒒𝟏𝟐𝟒 and  𝒒𝟐𝟑𝟒. (b) An alternative definition of a signed triangle. (c) An 

algorithm for calculating the local charge density at a site (u, v) by averaging the two cells 

intersected by a triangle formed by the nearest neighbor. (d) Scheme for an arbitrary finite-size 

geometry, where the number corresponds to the weight and the cross corresponds to the vacant 

spaces.  
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As shown in figure 2.2(c), a variation of this scheme may be employed in order to 

define a local charge density similar to equation (2-1) at a site (u,v) associated with the 

coordinates of the finite difference element defining 𝒎𝒖𝒗. It consists of four triangles 

spanned by (u,v) and their neighboring spins (u + 1,v), (u,v + 1), (u - 1,j) and (u,v - 1), 

each of which has at least two unit cells. This method uses two conventions in figure 

2.2 (a) and (b), and averages the two, thereby allocating 1/2 of the weight of each 

triangle 𝒒𝒖𝒗𝒘 . With a system of limited size, the same average process cannot be 

applied to the curve boundary edge because there are only three defined triangles, for 

example, in figure 2.2 (d) of the upper left and lower right blue triangles. Weights are 

assigned to isolated signed triangles in this case. 

 

2. 2 Simulation skyrmion and bimeron examples with the 

lattice-based approach 

 

For the isolated ferromagnetic skyrmions in the 120 × 120 × 0.6 𝑛𝑚 film, the film 

plane is separated by a 120 × 120 × 1  𝑛𝑚 finite difference element and has periodic 

boundary conditions. We use an exchange constant 𝐴 = 15𝑝𝐽𝑚−1 , saturation 

magnetization 𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , A vertical magnetic anisotropy constant 𝐾𝑢 =

0.6𝑒^6 𝑗/𝑚3 , and an interfacial Dzyaloshinskii-Moriya interaction (DMI) constant 

𝐷 = 0.6𝑒^6 𝑗/𝑚2 , gilbert damping αlpha= 0.05. The demagnetization enerigy is 

included in the simulations. Figure 2.3 shows the evolution of Q(t) above 10ns at three 

different temperatures, in which the adaptive time-step integration method is used to 

solve the Landau Lifshitz equation [13]. In MUMAX3, the topological number is 

calculated at 0.2ns intervals, using finite-difference derivatives (Equation 2-2). Q(t) 

calculated using finite difference derivatives fluctuates greatly, and its distribution 

expands with an increase in temperature, as illustrated by the histogram in figure 2. 

3. Consequently, the resulting time average Q coincides with the peak value of the 
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distribution function P(Q), but does not coincide with the expected value of -1. The 

lattice-based approach, on the other hand, gives a near-constant Q over temperature and 

simulation time ranges, where the fluctuation (invisible) is mainly related to the 

limitations of the single-precision floating-point algorithm (e.g., Q = -1.0000001, -

1.0000004, -1.0000008, -1.0000002, And -0.9999996 at T = 400 K). At 80 K, the bias 

of Q = 1 can be detected by lattice-based method, where the transient 1/2 and 1 states 

are also shown in figure 2.3. They represent nucleation and annihilation of thermally 

driven pion states and isolated pion states respectively. 
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Figure 2.3 Compare Q(time) calculated with (1)(' derivative ') and (2)(3)(' lattice ') at skyrmion 

(a) 40 K, (b) 60 K, and (c) 80 K at different temperatures. The figure on the right is the probability 

density functions of Q obtained by formula (1). 
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Figure 2.4 studies the isolated ferromagnetic bimeron in a 120 × 120 × 1 𝑛𝑚 film. 

The sample, is discrete by a 120 × 120 × 1 𝑛𝑚 finite-difference element. Exchange 

constant 𝐴 = 15𝑝𝐽𝑚−1 , saturation magnetization 𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , A vertical 

magnetic anisotropy constant 𝐾𝑢 = 0.6𝑒^6 𝐽/𝑚3 , an interfacial Dzyaloshinskii-

Moriya interaction (DMI) constant 𝐷 = 0.6𝑒^6 𝑗/𝑚2, gilbert damped αlpha= 0.05, the 

three different temperatures are 20K, 40K and 80K respectively, which are the same as 

skyrmion above. As shown in figure 2.4, finite-difference derivatives (Equation (2-1)) 

and latel-based method(Equation (2-2) (2-3)) have a large gap, Finite-difference 

derivatives are generally smaller than latel-based method. Moreover, Q fluctuates less 

under finite-difference derivatives method, mainly concentrated near the peak value, 

but it is more discrete. In the latel-based method, the particles are concentrated near 

Q=-1, indicating that the particles have a certain thermal stability in the current 

environment. 
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Figure 2.4 Compare Q (time) calculated using (1)(' derivative ') and (2)(3)(' lattice ') at bimeron(a) 

40 K, (b) 60 K, and (c) 80 K at different temperatures. The figure on the right is the probability 

density functions of Q obtained by formula (1). 
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2. 3 Simulation bimeron domain and annihilation examples 

with the lattice-based approach 

In this chapter, we examine the effect of the magnetic domain of a bimeron and its 

annihilation on Q values. The conversion between skyrmion and domain walls has been 

shown to be reversible, and bimeron, which is a topology of skyrmion, is also 

convertible with domain walls. The change of the bimeron Q from -1 to 0 signifies that 

the bimeron in the sample has become a domain wall or annihilation. Moreover, we are 

able to adjust the temperature to observe the bimeron Q changes in order to determine 

the bimeron status. By adjusting the temperature under identical conditions, however, 

the thermal stability of particles can be better compared. In figure 2.5, the transition 

between the bimeron and the domain walls is illustrated, while figure (a) illustrates the 

instantaneous change in Q. Figure 2.5(b) shows that Q=-1.0140985 is near -1, 

suggesting that the current bimeron topology is preserved. Based on figure 2.5(c), Q at 

this point is between -0.44121385 and -0.7069561, representing annihilation of meron. 

In the end, under the influence of the thermal effect, it becomes figure (d), completely 

transformed into magnetic domain walls. 
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Figure 2.5 (a) Changes in instantaneous Q values, Figure (b)- Figure (d), bimeron conversion 

into domain walls. Here Ms = 470 kA/m, A=15pJ/m, D=4.2e^-3J/𝒎𝟐, Ku=0.6e^6J/𝒎𝟑, T=120K. 

(b) t=7.2ns, (c) t=7.56ns, (d) t=8ns. 

 

Figure 2.6 depicts the bimeron annihilation process, while figure 2.6(a) depicts the 

instantaneous change in Q values. In this case, Q=-0.93794507, as illustrated in figure 

2.6(b), indicates that the current bimeron topology still exists. At this point, Q equals -

0.98566586, which has not yet begun annihilation, as shown in figure 2.6(c). Figure 

2.6(d) represents the annihilation of meron as Q=-0.032889273 close to 0. The 

distribution of finite difference derivatives also represents the bimeron change process, 

but the deviation caused by the thermal effect is too large, so the bimeron's state change 

cannot be accurately quantified. 
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Figure 2.6 (a) Changes in instantaneous Q values, Figure (b)- Figure (d), bimeron annihilation 

process. Here Ms = 470 kA/m, A=15pJ/m, D=4.75e^-3J/𝒎𝟐 , Ku=0.8e^6J/𝒎𝟑 , T=100K. (b) 

t=3.98ns, (c) t=4.02ns, (d) t=8ns. 

 

 

2. 3. 3 Summary 

Our study of the stability of the skyrmion and bimeron has demonstrated that the 

inaccuracy of limited difference derivatives, especially in thermodynamic settings, can 

be resolved by using lattice-based methods which can be obtained through the 

MUMAX3 electromagnetic code. The use of lattice-based approaches does highlight 

the interpretation of nonintegral values for Q(t), especially when processes such as 

annihilation and thermal fluctuations are at work. 
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Chapter.3 Brownian motion comparison between 

skyrmion and bimeron under thermal effect   

Brownian motion of non-interacting particles has been observed in a variety of 

scientific situations, including molecules suspended in liquids, optically captured 

microspheres, and spin structures in magnetic materials. For thermally stable spintronic 

devices, the study of spin texture Brownian motion is crucial. The experimental group 

of Yan Zhou and Wanjun Jiang et al. published a study in 2020 on isolated topologically 

dependent Brownian gyromotion[22]. In an asymmetric Ta/CoFeB/TaOx multilayer, 

the thermal wave-induced random walks of a single Néel-type magnet were observed 

experimentally by means of a polar magneto-optical Kerr effect (MOKE) microscope 

with both time and spatial resolution. Using the stochastic Thiele equation, a Brownian 

rotation motion with temperature-dependent diffusion coefficients and topologically 

dependent rotation motion is derived for a single skyrmion. Our research has been 

greatly benefited by the simulation of single skyrmion Brownian gyromotion. Thermal 

fluctuations affect spin forces in magnetic materials, especially when the magnetic 

anisotropic energy is equal to the thermal excitation. From the time-varying trajectory 

of skyrmion driven by thermal fluctuations, the random walk characteristics of 

skyrmion are revealed by introducing a stochastic Gaussian random wave field and 

using the Landau-Lifshitz-Gilbert equation (LLG). Lastly, it is shown that the trajectory 

amplitude increases with temperature, indicating a heat-induced diffusion. Brownian 

motion predicts this behavior. Essentially, as temperature increases, the size of the 

skyrmion grows, causing interaction and dissipation between it and the edge. A 

study by Y Yao, X Chen, and colleagues (2020) are also practical[49]. Known as 

TRNG (True Random Number Generators), they are built using continuous thermal 

Brownian motion. Initially, the behavior of the TRNG based on skyrmion is verified by 

micro-magnetic simulation[50, 51]. Second, a probability-adjustable TRNG is 

proposed, in which voltage-controlled magnetic anisotropy (VCMA) effects are 
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controlled by voltage, and an anisotropy gradient is used to obtain desired 0 or 1 

ratios. Following the random number calculation, the random 0 and 1 are combined into 

a truly random number in bitstream through Bernoulli's law of large numbers and a 

specific logic gate. The application of skyrmion can now be seen from a new 

perspective. We plan to test the performance of bimeron, another in-plane topological 

counterpart of magnetic skyrmion, in thermal effects based on our above work. The fact 

that skyrmion and bimeron have topologically equivalent dynamics and statics, but their 

statics and dynamics differ, makes them equally attractive from the standpoint of 

physics and spintronic applications.   

 

3. 1 Mean-squared displacement 

We calculate the MSD(mean-squared displacement) from the trajectory to precisely 

quantify its behavior. MSD calculates the initial position of bimeron, and then 

calculates the deviation between the position of all subsequent time nodes and the initial 

position, and finally sums up the average[22]. Two dimensions MSD can be calculated 

as.  

𝑀𝑆𝐷 =  
1

𝑛
∑ [(𝑋(𝑡 + 𝑡∗)  −  𝑋(𝑡))

2
+  (𝑌(𝑡 +  𝑡∗)  −  𝑌(𝑡))

2
] = 4𝐷𝑑𝑐𝑡∗𝑛−1

𝑖=0     (3-

1) 

where 𝑡∗ being the time between two subsequent events, 𝑛 ≡  𝑁𝑟 − 𝑡/∆𝑡 + 1 is the 

overlapping segments of time steps to be averaged and 𝑁𝑟 is the total number of time 

steps. (𝑋(𝑡), 𝑌(𝑡)) represents the reference position of the skyrmion at the real time 𝑡.  

 

3. 2 Example of Brownian motion 

This section discusses the thermal Brownian motion of skyrmion and bimeron 

separately and compares them at the end. In the simulation experiment, we use a 

circular sample in order to reduce the effects of shape anisotropy on the Brownian 

dynamics of skyrmion. In addition, in order to better reflect the difference between 
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skyrmion and bimeron, skyrmion and bimeron will conduct simulation experiments 

under the same conditions at different temperatures. We used the following material 

parameters:   𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , 𝐴 = 15𝑝𝐽𝑚−1 , 𝐷 = 3.5𝑒^6 𝑗/𝑚2 , 𝐾𝑢 = 0.6𝑒6𝐽/

𝑚^3, alpha=0.05. In this chapter, in order to better reflect the difference between 

skyrmion and bimeron, skyrmion and bimeron will conduct simulation experiments 

under the same conditions at different temperatures. At the same time, we record the 

instantaneous trajectory and velocity of the particle and draw a broken line graph to 

better reflect the Brownian motion of the particle. Each temperature was simulated 

under five different random seeds. 

𝑟(𝑡) = (𝑋(𝑡), 𝑌(𝑡)) is the skyrmion position measured from the space-dependent 

output file of MUMAX3, the transient velocity is 𝑣(𝑡) = (𝑣𝑥(𝑡), 𝑣𝑦(𝑡)) 

𝑣(𝑡) =
d𝑟(𝑡)

d𝑡
= {

d𝑋(𝑡)/d𝑡 = (𝑋(𝑡 + Δ𝑡) − 𝑋(𝑡))/Δ𝑡 = 𝑣𝑥(𝑡)
d𝑌(𝑡)/d𝑡 = (𝑌(𝑡 + Δ𝑡) − 𝑌(𝑡))/Δ𝑡 = 𝑣𝑦(𝑡)

               (3-2) 

The period of time between two consecutive frames is indicated by Δ𝑡.   

 

3. 2. 1 Example of skyrmion Brownian motion 

Figure 3.1 illustrates, from the simulation result recorded for a skyrmion 

at several temperatures, the x- and y-components of the skyrmion trajectory 

(𝑋(𝑡), 𝑌(𝑡)), and the transient velocity (𝑣𝑥(𝑡), 𝑣𝑦(𝑡)) with their individual statistical 

distributions. Here, we study the isolated ferromagnetic skyrmion in 120 × 120 ×

0.6 𝑛𝑚  film, using 120 × 120 × 1   finite difference element discrete. Exchange 

constant 𝐴 = 15𝑝𝐽𝑚−1 , saturation magnetization 𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , A vertical 

magnetic anisotropy constant 𝐾𝑢 = 0.6𝑒^6𝐽/𝑚3 , an interfacial Dzyaloshinskii-

Moriya interaction (DMI) constant 𝐷 = 0.42𝑒^6 𝑗/𝑚2, gilbert damped αlpha= 0.05. 

With (a1), (a2), (a3), (a4) and (a5) are trajectory (𝑋(𝑡), 𝑌(𝑡)) of skyrmion of 20K, 40K, 

60K, 80K and 100K respectively, (b) and (c) represent cumulative distribution 

functions (CDF) and probability density functions (PDF), respectively. CDF describes 

the distribution of probabilities for random variables of trajectory and PDF describes 
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the probability that the value of a random trajectory falls within the region. For all real 

numbers x, the cumulative distribution function is defined as follows:  

 𝐹𝑋(𝑥) = P(𝑋 ≤ 𝑥).                                                           (3-3) 

Here suppose 𝑋  is uniformly distributed on the unit interval [0,1] . For the one-

dimensional real random variable 𝑋 , let its cumulative distribution function be 

𝑋.[52]  If there is a measurable function 𝑓𝑋(𝑥), it satisfies:   

∀ − ∞ < 𝑎 < ∞, 𝐹𝑋(𝑎) = ∫  
𝑎

−∞
𝑓𝑋(𝑥)𝑑𝑥.                                        (3-4) 

Then 𝑋  is a continuous random variable, and 𝑓𝑋(𝑥)  is its probability density 

functions. In this section, X indicates trajectory.     

 

(a1) 20K 

 

(a2) 40K 

 

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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(a3) 60K 

 

(a4) 80K 

 

(a5) 100K 
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(b) CDF 

 

(c) PDF 

 

Figure 3.1 (a1) to (a5): Trajectories of the x- and y-components of the diffusive skyrmions and 

their cumulative frequency and relative frequency in (b) and (c). 

Figure 3.1(a1)-(a5) illustrate the trajectory of Brownian motion in the X and Y 

directions of skyrmion at different temperatures of 20K, 40K, 60K, 80K, and 100K. 

The trajectory is very gentle at 20K, as can be seen in figure 3.1(a1). As the temperature 

increases from 40K to 100K, the trajectory changes dramatically. The trajectory of the 

skyrmion changes roughly in accordance with the temperature. Overall, the X-axis and 

the Y-axis change about the same amount. As shown in figure 3.1(b) and (c), the 

probability density of a trajectory is calculated. The trajectory mainly ranges from 

60mm to 61mm when the temperature is 20K. As the temperature rises, the trajectory 

changes gradually and the distribution ranges from 57mm to 64mm. This indicates 
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again the randomness of the Brownian motion of the soliton. The Gaussian distribution 

is well suited to fit the PDF of the instantaneous position of the soliton. 

Figure 3.2 shows, based on simulation results recorded for a skyrmion at several 

temperatures, the x- and y-components of the skyrmion transient velocity with their 

respective statistical distributions. There are five velocities of skyrmions for 20K, 40K, 

60K, 80K, and 100K, respectively. (e) and (f) are theoretical cumulative distribution 

functions (CDF) and probability density functions (PDF). As illustrated in figure 3.1, 

CDF, and PDF describe the probability distribution of random variables.     

 (a1) 20K 

 

(a2) 40K 
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(a3) 60K 

 

(a4) 80K 

 

(a5) 100K 
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（b）CDF 

 

(c) PDF 

 

Figures 3.2 (a1)-(a5) Illustrate the velocities of the x- and y-components as v(x) and v(y) and their 

distribution frequencies in (b) and (c), respectively.  

Figure 3.2(a1)-(a5) represents skyrmion's instantaneous velocity. The y axis of the 

particle was affected by the thermal effect at the beginning of the simulation, so the 

violent jitter could be ignored. The figure illustrates that the instantaneous velocity of 

Brownian motion of skyrmion is not violent and that the variation range of 

instantaneous velocity only gradually increases with temperature. In the meantime, the 

X-axis and Y-axis velocity components of skyrmion are approximately the same. As 

the PDF and CDF changes in fig.2.3 (b) and (c) are combined, it can be seen that the 

velocity changes tend toward zero at low temperature while the velocities on the X-axis 

and Y-axis increase slightly as the temperature rises. Thus, the soliton velocity is 
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relatively insensitive to thermal effects. As shown in figure 3.2(c), at 20K, the velocity 

is generally 0mm/s, while at 100K, the velocity is significantly less, averaging -

0.5mm/s-+0.5mm/s. Similarly, the Gaussian distribution can well fit the PDF of the 

instantaneous velocity of the soliton, confirming the randomness of the Brownian 

motion of the skyrmion. 

 

Figure 3.3 Results of the temperature-dependent MSD curves, illustrate the MSD increase 

linearly and continuously where time becomes larger. 

Figure 3.3 depicts the MSD changes of skyrmion at different temperatures. As 

temperature increases, the MSD of particles also increases, meaning that the diffusion 

range of particles on the sample also increases as temperature increases. We use a 

circular sample in the simulation experiment in order to reduce the effects of shape 

anisotropy on the Brownian dynamics of the skyrmion. Due to the defect, skyrmion 

was unable to spread its thermal motion throughout the sample. Specifically, skyrmion 

was not able to reach all parts of the sample during the actual duration of the experiment 

at lower temperatures. As can be seen in figure 3.3, the area of skyrmion reached by 

skyrmion increases with increasing temperature.    
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Figure 3.4 Probability of skyrmion occurrence at various temperatures. At higher temperatures, 

skyrmion is able to attain a larger area on the sample, as shown by the more widespread 

distribution of data points.   

 

 

Figure 3.5 Simulated Brownian-motion trajectories of a single isolated skyrmion for different 

random seeds at (a) T = 20 K, (b) T = 40 K, (c) T = 60 K, (d) T = 100K and (d) T = 80 K.   

 

As illustrated in figure 3.5, we independently simulate Brownian motion for a single 

soliton at different temperatures using different random numbers. With a given 
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temperature, the soliton shows a different trajectory for different random numbers, and 

the amplitude of soliton diffusion is independent of the random number. 

3. 2. 2 Example of bimeron Brownian motion 

In this chapter, we describe the bimeron by separating the two merons of the bimeron 

with q = +1 and q = -1, corresponding to spin-up merons and spin-down merons, 

respectively. Here we analyze the isolated ferromagnetic bimeron, discrete with a 

120 × 120 × 1 𝑛𝑚  finite-difference element, in a 120 × 120 × 0.6 𝑛𝑚  film. 

Exchange constant 𝐴 = 15𝑝𝐽𝑚−1 , saturation magnetization 𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , A 

vertical magnetic anisotropy constant 𝐾𝑢 = 0.6𝑒^6 𝐽/𝑚3 , an interfacial 

Dzyaloshinskii-Moriya interaction (DMI) constant 𝐷 = 0.42𝑒^6𝑗/𝑚2, gilbert damped 

αlpha= 0.05.  To provide a better comparison with skyrmion, bimeron's simulated 

sample and parameter environment are in line with skyrmion's above. The figure 

3.6(a1)-(a5) illustrates the changes in the trajectory of the bimeron at 20K, 40K, 60K, 

80K, and 100K, respectively. As a result, the x and y axes of the meron with spin up 

and spin down are calculated, as well as the overall x and y trajectories of the 

bimeron. Figure 3.6(b) and (c) illustrate the calculation of the statistical distribution of 

each component and bimeron particle.  
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(a1) 20K 

 

(a2) 40K 
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(a3) 60K 

 

(a4) 80K 
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(a5) 100K 

 

(b) CDF 
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(c) PDF 

 

Figure 3.6 (a1)-(a5) Depict the X- and Y-axis trajectories of a meron with Q=+1 and a meron 

with Q=-1 in bimeron. (b)(c) Diagram illustrating the trajectory for cumulative frequency and 

relative frequency of bimeron and each meron at the X- and Y-axes. 

Figure 3.6 (a1)-(a5) illustrates that when the X-axis component of meron with 

upward spin is subjected to the thermal effect, the trajectory value is larger for meron 

with downward spin than for meron with upward spin. Moreover, the Y-axis component 

of Q=+1 and Q=-1 has roughly the same value. Figure 3.6(c) PDF behavior is not 

uniform, the bimeron's instantaneous displacement does not follow a Gaussian 

distribution. According to figure 3.6(c), the trajectory distribution of the x axis of meron 

with Q=+1 mainly ranges from 80nm to 85nm, and for meron with Q=-1 mainly ranges 

from 40nm. The Y-axis trajectory of each meron is approximately 60nm. Temperature 

differences are primarily evident in the X-axis trajectory of each meron. The trajectory 

of the X axis of each meron is relatively close to one another as the temperature rises.  
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(a1) 20K 

 

(a2) 40K 

 

(a3) 60K 
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(a4) 80K 

 

(a5) 100K 
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(b) CDF 

 

(c) PDF 
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(d) statistical test 

 

Figure 3.7 (a1)-(a5) Illustrate the velocities of the x- and y-components as v(x) and v(y) and their 

distribution frequencies in (b) and (c), respectively. (d) Provide a description of the distribution 

frequencies of the x- and y-axis velocities for five different random seeds at 60 K. 

 

According to figure 3.7, the instantaneous velocity will change dramatically at the 

beginning of the simulation due to thermal effects, and the meron with q=+1 will 

produce an opposite velocity to that of the meron with q=-1. Figures 3.7(b) and (c) 

illustrate that the bimeron's instantaneous velocity does not match the uniform 

variability of the Gaussian distribution curve, and therefore the bimeron's instantaneous 

velocity does not match the Gaussian distribution. Under the influence of the thermal 

effect, the bimeron's instantaneous velocity will be random. In the X-axis direction, the 

instantaneous velocity of Q=+1 and Q=-1 meron is significantly different as the 

temperature rises. According to figure (c), at 60K-100K, the peak value of Q=+1 meron 

is close to -1 and 1, and the peak value of Q=-1 meron is still close to 0. This indicates 

that the instantaneous velocity of Q=+1 is highly likely to be greater than the 

instantaneous velocity of Q=-1. According to figures 3.7(d), the Gaussian noise of 

MUMAX3 corresponds to a Gaussian distribution, whereas under different random 

seed frequencies, the velocity distribution frequency varies greatly. Due to the weak 

topology protection of the bimeron, its deformation speed will be disorderly and violent 

as a result of the thermal effect.   
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Figure 3.8 (a) to (c): The MSD curve of 20K-60K illustrates that MSD increases linearly and 

continuously over time. With a temperature rise from 60K to 100K, MSD reaches its limit and 

does not continue to increase.     

Figure 3.8 illustrates the MSD of the bimeron and the MSD of each meron. In the 

range of 20K to 60K, the MSD of the bimeron and meron gradually increases. The 

MSD changes at the same rate and value when the temperature exceeds 60K. 
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Figure 3.9 (a) to (e): Probability of bimeron occurrence at various temperatures. At higher 

temperatures, bimeron is able to attain a larger area on the sample, as shown by the more 

widespread distribution of data points.   

 

According to figure 3.9, bimeron's experimental sample has the same size as 

skyrmion's experimental sample. As the temperature is raised, the bimeron trajectory 

tends to expand. With respect to figure 3.8, figure 3.9(a), (b) and (c) demonstrate that 

the bimeron's diffusion range changes with temperature while (c), (d), and (e) 

successfully demonstrate that the diffusion range does not change significantly after 60 

K is reached.   

 

 

Figure 3.10 (a1) to (a5): Simulated Brownian-motion trajectories of a single isolated bimeron for 

different random seeds at (a) T = 20 K, (b) T = 40 K, (c) T = 60 K, (d) T = 100K and (d) T = 80 K. 

Figure 3.10 illustrates an independent simulation of Brownian motion of a single 

bimeron based on different random numbers at different temperatures. The bimeron 

exhibits different trajectory behavior at a given temperature for different random 

numbers, and the amplitude of bimeron diffusion is independent of random numbers. 
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3. 2. 3 Brownian motion comparison between skyrmion and 

bimeron   

Using skyrmion and bimeron in the same particle size and parameters environment, 

we calculate the MSD and instantaneous velocity through the instantaneous 

displacement of particles (Formula 3-1), in order to compare the difference between 

their thermal Brownian motions. Furthermore, the topological number of particles was 

quantified using a lattice-based approach. At a temperature of 120 K, Brownian motion 

of two particles was simulated by ten random seeds, and the effect of each particle on 

the thermal effect was observed. Finally, the average topological number is calculated 

to compare the thermal stability of skyrmion and bimeron.     

 

Figure 3.11 Simulated Brownian-motion MSD of a single bimeron for different damping at (a) a 

= 0.05 (b) a = 0.08 (c) a = 0.1. Simulated performance of three damping. Here, T = 80K. 
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As shown in figure 3.11, The size of the simulated sample is a circular nanodot of 

diameter 2  𝑅𝑑  = 120nm and thickness of 1 nm. We performed systematic 

micromagnetic simulations to calculate each meron of the bimeron MSD of temperature 

(from 0 to 120K). We used the following material parameters:  𝑀𝑠 = 47𝑒^4 𝐴/𝑚, 𝐴 =

15𝑝𝐽𝑚−1, 𝐷 = 3.5𝑒^6 𝑗/𝑚2, 𝐾𝑢 = 0.4𝑒^6 𝐽/𝑚3. A single bimeron will do random 

exercise at various temperatures.  

 

 

Figure 3.12 Simulated Brownian-motion MSD of a single bimeron for different DMI. Here, T = 

40K, Ku=0.60MJ/𝒎𝟑. 

The competition between perpendicular magnetic anisotropy (PMA) and 

dzyaloshinskii-Moriya interaction (DMI) determine the stabilization of chiral spin 

textures, thus we increased the strength of both PMA and DMI. As shown in figure 

3.12, The size of the simulated sample is a circular nanodot of diameter 2 𝑅𝑑 = 120nm 

and thickness of 1 nm. Here are the following material parameters: 𝑀𝑠 = 47𝑒^4 𝐴/𝑚, 

𝐴 = 15𝑝𝐽𝑚−1, 𝛼𝑙𝑝ℎ𝑎 = 0.03. When PMA was constant, MSD decreased significantly 

with the increase of DMI strength. 
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Figure 3.13 Simulated and compared Brownian-motion MSD of bimeron and skyrmion at 

different temperature. The dot lines represents bimeron, while the solid line represents skyrmion. 

Here, Ku=0.40MJ/𝒎𝟑, D=3.5mJ/𝒎𝟐. 

Figure 3.13 compares MSD between skyrmion and bimeron at different temperature. 

Brown movement of bimeron under thermal effects is more intense than skyrmion, on 

the same size of circular nanodot of diameter 2 𝑅𝑑 = 120nm and thickness of 1 nm, and 

material parameters: 𝑀𝑠 = 47𝑒^4 𝐴/𝑚, 𝐴 = 15𝑝𝐽𝑚−1, 𝛼𝑙𝑝ℎ𝑎 = 0.05. 
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Figure 3.14 (a) Number of skyrmion topologies on average. (b) Number of bimeron topologies 

on average. 

Figure 3.14 displays the average topology number for skyrmion and bimeron under 

different random seeds (100-1000).  Exchange constant 𝐴 = 15𝑝𝐽𝑚−1 , saturation 

magnetization 𝑀𝑠 = 47𝑒^4 𝐴/𝑚 , A vertical magnetic anisotropy constant 𝐾𝑢 =

0.6𝑒^6𝐽/𝑚3 , an interfacial Dzyaloshinskii-Moriya interaction (DMI) constant 𝐷 =

0.6𝑒^6 𝑗/𝑚2, gilbert damped αlpha= 0.08. Currently, the temperature is 100 k. Figure 

3.14 shows that the topological number of skyrmion remains stable near -

1. Annihilation of the bimeron occurs when seed is 200, 300, 400, 600, 700, 800, 900, 

1000. As a result, bimeron's thermal effect has a significant impact on the structure and 

its thermal stability is less than skyrmion's.   

 

3. 3 Summary 

As discussed in this chapter, we calculate the instantaneous displacement, 

instantaneous velocity, and the MSD for the skyrmion and bimeron respectively, as 

well as the influence of DMI on the MSD for the bimeron. Additionally, the MSD and 

topology numbers of skyrmion and bimeron are compared. Under thermal effect, it is 

obvious that bimeron is more effective than skyrmion. In combination with figures 3.6 

and 3.14, each meron will shift in a different direction under the influence of thermal 

effect, which is one of the reasons for the poor thermal stability of bimeron.    
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Cheater.4 Summary and future work 

4. 1 Summary 

Skyrmion-based devices have the potential to be used in future digital computing 

devices. Recent research has focused on skyrmion, while bimeron has been relatively 

infrequently studied as its in-plane counterpart. Through simulation experiments, 

skyrmion and bimeron are stabilized in the same environment and the thermal 

Brownian motion and thermal stability of the two particles are compared by comparing 

experimental phenomena and quantitative experimental results.     

In Chapter 2, we calculate the topological number of skyrmion and bimeron under 

thermal effect, respectively, by finite difference methods and lattice-based methods and 

conclude that the difference between the finite difference derivative method and the 

lattice-based method is small. There is, however, a large difference between the 

topology number of bimeron based on the finite-difference derivative method and the 

actual experimental results. Thus, we chose the lattice-based method for determining 

the topology number of the bimeron and achieved positive results. By calculating 

topological numbers, we can better understand the effects of thermal fluctuations on 

particles, such as nucleation, annihilation, or magnetic domains.   

As we illustrate in Chapter 3, skyrmion and bimeron demonstrate thermal Brownian 

motion, and bimeron calculates the trajectory and velocity of each of the two merons. 

It is explained that the two merons in the bimeron are of varying trajectories and 

velocities based on the experimental data obtained and compared to the skyrmion data. 

Furthermore, the different activities of skyrmion and bimeron under thermal effect were 

quantified by MSD(mean-squared displacement). By comparing the two kinds of 

particles, the different effects of thermal effects on skyrmion and bimeron are 

demonstrated. 
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4. 2 Future work 

For further research purposes, it is suggested that the following ideas could be 

considered. I will continue my research after the MSc study. 

 

Machine learning in skyrmion 

 

An increasing number of modern devices rely on machine learning in order to build 

smart, energy-efficient societies. One of the most popular applications of artificial 

intelligence is in the area of audio and facial recognition. Researchers have analyzed 

large data sets in micromagnetism by training models that can be used to categorize 

observations into discrete groups, determine performance indicators, or predict the 

results of new experiments. The algorithms for machine learning are designed to solve 

various types of problems and then are trained for specific tasks based on the types of 

data available. The process of supervised machine learning requires the labeling of the 

input data, usually by the characteristics of the data. The trained model is generally 

employed for prediction and classification, such as identifying and categorizing the 

magnetization process of skyrmion. Clustering and component analysis are usually 

performed using unsupervised machine learning, whereas semi-supervised machine 

learning can be used to refine unsupervised machine learning models. By using off-the-

shelf, often open-source platforms, algorithms for common problems can be quickly 

applied through the work of mathematicians and computer scientists.   
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