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Abstract

High resolution solar observations show the complexity of the tem-
poral and spatial structure of the magnetohydrodynamic (MHD)
wave motion, that makes the identification of the nature and prop-
erties of waves rather difficult. In general, observations of waves in
solar magnetic structures are limited to the determination of one
single wave that turns out to be the most energetic one, i.e. hav-
ing the largest amplitude. Based on mechanical analogy of waves
in elastic media, it would be natural to expect the appearance of
other modes, too. However, these eluded the observers for many
years. The present Thesis aims to address this shortcoming and
propose new methods for wave identification.

In particular, in this Thesis, we are applying both the Proper Or-
thogonal Decomposition (POD) and Dynamic Mode Decomposi-
tion (DMD) techniques on solar observational data. These tech-
niques are well documented and validated in the areas of fluid me-
chanics, hydraulics, and granular flows, yet are relatively new to
the field of solar physics. While POD identifies modes based on
orthogonality in space and it provides a clear ranking of modes
in terms of their contribution to the total variance of the signal,
DMD resolves modes that are orthogonal in time, i.e. different
modes cannot have identical frequencies.

The clear presence of the fundamental slow body sausage (n =

0) and kink (n = 1) modes, as well as the higher-order modes
(n ≥ 2) has been evidenced based on the POD and DMD analysis
of chromospheric Hα observation for sunspots with a circular and
elliptical cross-sectional shapes. Additionally to the various slow
body modes, evidence for the presence of the fast surface kink mode
was found in the circular sunspot.

Moreover, for a further analysis, the assumption of changing of the
boundary’s shape with time is considered on a long time period of
chromospheric HMI sunspot with a circular cross-sectional shape.



All the MHD modes patterns recovered from observations were
cross-correlated with their theoretically predicted counterparts and
we demonstrated that the higher-order MHD wave modes were
more sensitive to the changes in the umbral cross-sectional shape,
hence this must be taken into account for more accurate modelling
of the resonant modes of sunspots and pores.
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CHAPTER 1

Introduction

1.1 A brief overview of the history of solar sci-
ence

The Sun is a fascinating celestial object that has piqued people’s curiosity
for thousands of years and it has been a source of scientific attraction and
research. Despite centuries of discoveries related to the Sun, scientists are still
puzzled by a number of solar phenomena that still elude their full explanation.
The Sun is the primary source of energy in the solar system and, given its
proximity, it is the most studied star. The following historical overview has
been adopted from (Hufbauer, 1991; Hawking, 2002; Priest, 2014).

Solar observations have a long history, dating back to records of eclipses by
Chinese astronomers as early as 2000 BC. Possibly the first record of sunspots
was made by Chinese astronomers about 800 BC, and later in 300 BC by the
ancient Greeks. Their observation of the dark spots was with no explanation.
The earliest mention of corona, which has the highest temperature in the solar
atmosphere, was on 22 December 968 during a complete eclipse and is credited
to Leo Diaconus, a Byzantine scholar.

The 17th century can be considered as a starting point for the study of
many of astronomical phenomena that helped in their interpretation and un-
derstanding. Galileo Galilei and Thomas Harriot made the first observations
of sunspots with telescopes in 1610. Later, in 1612, Galilei began a more thor-
ough analysis of the solar spots, concluding that the Sun rotated about its own
axis based on the spot’s apparent motion over the solar disc (see the left panel
of Figure 1.1). However, in the 18th century, the physical nature of sunspots
caused a lot of debate as they were assumed to be cloud-like formations or
thick objects in the solar atmosphere.

During the 19th century, the newly developed spectroscopical techniques
led to a real revolution in the fields of solar and astronomical studies. The
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Figure 1.1: Left panel shows the sunspot drawn by Galileo Galilei in 1612.
The right panel shows the active region on the Sun with dark sunspots.
Credit: Solar Dynamics Observatory (SDO)

modern space study is considered to begin with these observations and that
marks the beginning of the fundamental era for Solar Physics. In the 1830s, the
French physicist Claude Pouillet was the first to defined the Sun’s energy out-
put as the ‘solar constant’. Besides monitoring sunspot activity, astronomers
went even further and investigated what is known as the sunspot cycle. The
sunspot cycle is defined as the change in the number of sunspots that begins
at its lowest point, increases to a maximum of about 250 sunspots, and then
decreases back to its lowest point. Schwabe was the first scientist to recognize
that the number of sunspots changes periodically in time (Arlt, 2014). In 1843
he established the 11-year sunspot period. In 1858, Richard Carrington and
Gustav Spörer discovered that the position of sunspots and their motion varies
with time and latitude. They showed that sunspots have a faster movement
over the solar surface when they are closer to the solar equator. Hence, Car-
rington concluded that our Sun has a differential rotation. In 1959, Carrington
and Hodgson observed the solar flare for the first time.

In the beginning of the 20th century, research in the properties of our Sun
received a new impetus with the advancement of observational accuracy and
new observational facilities. The optical resolution of the observations had
increased as a result of the invention of a new kind of tower telescope by Hale
(1908b). In the same year, using the Zeeman splitting of spectral lines in
umbral regions of sunspots, Hale (1908a) was able to determine the magnetic
nature of the sunspots and found that sunspots had significant magnetic fields.
By the middle of the 20th century, major advances have been achieved in the
quantitative behaviour of solar phenomena using the newly formulated theory
of magnetohydrodynamics (MHD) by Hannes Alfvén (see. Alfvén, 1942). This
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theory describes how magnetic fields impact the dynamic of solar atmospheric
plasma (a detailed description of the MHD framework will be presented in
Chapter 2). In addition, the study by Parker (1958) predicted the existence of
the solar wind, which nowadays is one of the most studied parts of the helio-
sphere, given its impact on Earth. In 1962 Leighton et al. (1962) determined
that the surface of the Sun undergoes a periodic up and down motion, with
an average period of 5 minutes. These oscillations were explained in terms of
pressure-driven standing sound waves (or p-modes) that are able to penetrate
deep layers of the solar interior, making them an ideal tool for the seismo-
logical studies (helioseismology). In 1969, Jacques Beckers and Paul Tallant
made the first detection of waves in the sunspot umbra (Beckers and Tallant,
1969). Since my Thesis deals with waves propagating in the umbral regions of
sunspots, a detailed review of the results related to these waves is presented
later in this Chapter.

1.2 Physical properties and the structure of the

Sun

Our Sun, located in the centre of the solar system, is an exceedingly inhomoge-
neous sphere of plasma. It mostly consists of H (92%) and He (8%), with the
other heavier components, such as C, N, and O, accounting for less than 0.1 %.
Due to the high temperatures, the atoms are mostly ionised, especially in the
solar interior and solar corona, where temperatures can reach million degrees.
The Sun is characterised by the presence of a strong magnetic field that drives
and controls the activity of the Sun’s atmosphere, generating features such as
sunspots (Section 1.3), prominences, coronal mass ejections (CMEs), spicules,
the solar wind, etc. The majority of the current section is based on work
by Aschwanden (2004); Priest (2014), and should be considered as references,
unless a different reference is stated.

The Sun has a mass of about 1.99× 1030 kg, which is about 330,000 times
the mass of the Earth. The Sun losses of its mass at a rate of about 1−1.5×109

kg s−1 (Parker, 1958). The radius of the Sun is about 695.5 Mm, which is 109
times larger than the radius of the Earth. The gravitational acceleration at
the surface is 274 m s−2, which is 27 times grater that of the Earth, while the
mean density of the Sun, which is 1.4 × 103 kg m−3, is roughly equal to that
of the Earth (5.5 × 103 kg m−3). The average distance between the Sun and
the Earth is 149.6 million kilometres (1 astronomical unit), and light takes
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Figure 1.2: The structure of the Sun. The opaque inner layers are the core,
radiative zone, and convective zone, while the visible outer layers are the pho-
tosphere, chromosphere, and corona. The figure also shows some observable
solar atmospheric phenomena, such as solar flares, prominences, sunspots and
coronal loops. Credit: The Space Place Webpage of NASA

approximately 8 minutes to cover that distance (Capitaine et al., 2012). The
Sun has a differential rotation, with an equatorial and polar cycle of 25-days
and 34-days respectively.

Traditionally the Sun is divided into its interior and atmosphere, where only
the atmosphere can be observed in different wavelengths. The solar interior
consists of three regions: the core, the radiative zone and the convective zone.
The solar atmosphere consists of several regions, each with its own properties.
First, at the solar surface we have the photosphere, which is the visible thin
and relatively cool layer of the atmosphere, followed the chromosphere that
shows a slight increase of the temperature comparing with the photosphere,
but is very dynamic. At the top of the chromosphere we have a thin transition
region, where the temperature has a two orders of magnitude increase. Finally,
the multi-million degree corona extends from the transition region out into the
solar wind (see Figure 1.2).
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1.2.1 The solar interior

The core of the Sun is the main source of solar energy, where 99% of the solar
energy is generated, due to nuclear fusion reactions. Here hydrogen atoms fuse
together to form helium and an enormous amount of energy. The core extends
from the center of the Sun to about 25% of its radius. The mass of the core
is approximately 34% of the Sun’s mass, whereas it is only 8% of the Sun’s
volume. The density of the solar core is approximately 150 times that of water,
tremendous pressures up to 265 billion bar, and temperatures up to 15 million
kelvin (K).

The radiative zone is the layer just above the core, and it extends up
to about 70% of the solar radius. The temperature and the density in the
radiative zone decrease dramatically as we go upward from the bottom to the
top, from about 7 million K to about 2 million K and 20 g/cm3 to 0.2 g/cm3.
Photons, that are generated in the core, take about 170,000 years to cross the
layer, where the layer is incredibly opaque. If this layer would be optically
thin, it would take only 2 seconds for photons to cross this layer (Mitalas and
Sills, 1992).

The convection zone is the top part of the solar interior, where the outward
energy transportation is dominated by convection. The convective motions can
be visibly recognised as granules and supergranules at the solar surface. The
convection zone extends from about 70% to 100% of the Sun’s radius. As we
go upward from the bottom of the convection zone to the solar surface, the
temperature drops from 2 million K to about 6000 K.

1.2.2 The solar atmosphere

It is widely believed that magnetic dynamo effects are responsible for creating
the solar magnetic inside the Sun due to electrical currents generated by the
flow of hot, ionized gases in the convection zone. Convective plasma motion
can lift up the magnetic field taking it to the surface of the Sun, where it
emerges in the form of flux tubes of different intensity. Due to the differen-
tial rotation of the Sun, the magnetic field lines are twisted up like a coil.
The strong magnetic fields are responsible for the activities that appear in
the solar atmosphere, generating features such as solar flares, sunspots, solar
prominences and coronal loops. The solar atmosphere is the observable part
of the Sun and it is divided into four layers: photosphere, chromosphere, tran-
sition region, and corona (see Figure 1.2). These layers are mostly dispersed
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according to density and temperature (See Figure 1.3). Moreover, the effect
of the magnetic field in the layers of the solar atmosphere varies from one to
another. The dynamical behaviour of the plasma can be understood in terms
of the so called plasma-β parameter, that can be defined as the ratio of the
plasma pressure to the magnetic pressure. The magnitude of this parameter
(relative to 1) also tells us whether pressure forces or magnetic forces are dom-
inant. In the solar photosphere plasma-β � 1, so the plasma motion is driven
mainly by pressure forces. In contrast, in the solar corona plasma-β � 1,
meaning that magnetic forces are responsible for the behaviour and evolution
of the plasma. Knowing the origin of the high temperature in the corona is
one of the most critical problems in solar physics (the coronal heating problem
is one of the most acute unexplained problems in solar and stellar physics).

Most of the Sun’s visible light is emitted from the photosphere, which is
the lowest layer of the Sun’s atmosphere. The photosphere is a relatively thin
layer, around 500 km thick, and is the densest region of the solar atmosphere.
As we go upward, from the bottom to the top of the layer, the temperature
drops by around 2000 Kelvin and reaching the minimum temperature (See
Figure 1.3). The photosphere has some features that are related to solar mag-
netic activity or convection such as granules and sunspots. The granules are
the small convection cells that cover the Sun’s surface, and the intergranular
lanes are the locations where the magnetic field emanates to the surface. The
granules have lifetime of 1 to 20 minutes, and the diameters ranging from 0.3
to 2 Mm.

Sunspots are identified as dark spots with predominantly vertical magnetic
field on the surface of the Sun that are cooler than the surrounding region (see
left panel of Figure 1.5). A more detailed description of sunspots will given in
Section 1.3.

In the following 1,500-2,000 km thick layer, the chromosphere, the tempera-
ture increases with height up to approximately 10,000 K at the top of the layer.
The magnetic field becomes more inclined forming the magnetic network and
it is responsible for the existence of several phenomena in the chromosphere
such as prominences and spicules. On the Sun’s surface, prominences are lu-
minous ionised gas eruptions that may stretch thousands of kilometres from
the chromosphere to corona (Buss, 1926). Spicules are defined as dynamic jets
that stretch from the photosphere to the chromosphere (Tavabi et al., 2012).

At the interface between the chromosphere and corona, we have the ap-
proximately 100 km thick layer called the transition region. In this layer, the
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Figure 1.3: The average variation of density and temperature with height in the
solar atmosphere based on the solar atmospheric model developed by Avrett
and Loeser (2008)

temperature increases dramatically from 10,000 K up to a million Kelvin.
The solar corona is the uppermost part of the Sun’s atmosphere and extends

millions of kilometres outwards. The density of corona is 10 million times
less than that of the sun’s surface, therefore corona appears significantly less
luminous than the Sun’s surface. During eclipses, the corona is seen as a pale
halo of low density and high temperature as shown in the left panel of Figure
1.4. The solar corona shows a very strong magnetic structuring into coronal
loops of different lengths and thicknesses. Coronal loops are described as
magnetic arcs that originate and terminate in the Sun surface (see Figure 1.4).
The length of the coronal loops is depending on the activity region, where the
small active-region loops have a length in the range of 1 Mm to 10 Mm. The
length of the standard active-region loops is 100 Mm, and it extends to 1,000
Mm for giant arches. The flaring loops have temperatures up to 10 MK, while
it is 2-3 MK in the active-region loops and 105 K for quiet, cool loops. The
corona is the birthplace of many very energetic phenomena, such as flares and
coronal mass ejections (CMEs) thanks to interconnecting magnetic fields of
different polarity. Each of such interaction (also called magnetic reconnection)
comes with a huge amount of energy and particle release that are expelled into
the interplanetary space.
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Figure 1.4: The left panel shows the glowing white corona that can be seen
surrounding the Sun during a total solar eclipse, when the moon blocks out the
bright light of the Sun. The right panel shows coronal loops as seen in Extreme
Ultra Violet (EUV) 171 Å˙ Credit: The Space Place Webpage of NASA

1.3 Sunspots

Sunspots observations have played a significant role in the history and devel-
opment of solar physics, as they were the first solar objects to be identified
using a telescope more than four centuries ago. The rotation of the Sun was
demonstrated with the help of the sunspots’ movement over the solar disc.
Furthermore, the rate of solar rotation was discovered to be differential, since
sunspots rotate at a faster pace when they are nearer to the solar equator
than at higher latitudes. The 11-year sunspot cycle was discovered due to the
temporal fluctuation of sunspot numbers. Sunspots appear preferentially at
heliographic latitudes of roughly ±35° at the start of a sunspot cycle, while
they appear at latitudes of around ±5° at the end of the solar cycle.

1.3.1 The Structure of Sunspots and their Properties

At first glance, sunspots seem to be distinct darker spots on the Sun’s surface,
however they are the most visible manifestation of the rather complex solar
magnetism. Their diameters vary from 3.5 Mm to more than 60 Mm, while
the largest spots are visible by the human eye (Solanki, 2003). Due to the
spread of the strong magnetic field lines from the solar interior through the
surface, complex sunspot regions arise and the convection of plasma is inhib-
ited. Therefore, sunspots look darker and colder by a few thousand degrees
than the surrounding areas, hence they emit less energy (see Figure 1.5). The
lifetimes of sunspots are proportionate to their diameter, thus a spot with a
diameter of 10 Mm lasts 2 to 3 days, while one with a diameter of 60 Mm lasts
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Figure 1.5: Left panel shows a high-resolution observation of a sunspot, where
the central dark area is the umbra, surrounded by penumbra. The region out-
side the sunspot shows the dense pattern of granular cells. Credit: The Swedish
Solar Telescope (SST) The right panel displays a sketch of the magnetic field
topology in sunspots. The brown lines show the distribution of magnetic field
lines in the umbra, penumbra and granular vicinity of the spot. The arrows
illustrate the convection motion. Credit: Thomas et al. (2002)

80 to 90 days.
In general, sunspots are divided into two regions: the umbra, which is

the central darkest region, and the surrounding penumbra, which is brighter
than the umbra, as shown in the left panel of Figure 1.5. The umbra has a
radius of about 40% of the radius of the sunspot. Moreover, the magnetic field
strength changes gradually with the radius of the sunspot. The magnetic field
lines are approximately vertical in the umbra, while they are more inclined in
the penumbra, as shown in the right panel of Figure 1.5. In the penumbra,
the inclination of the magnetic field lines is changing from 40° in the inner
penumbra to almost 80° in the outer penumbra (Langhans et al., 2005). The
umbra has a typical magnetic field strength of about 2.8 kG (0.28 T), while
the typical magnetic field in the penumbra is less than 900 G (0.09 T) (see.
Balthasar and Schmidt, 1993; Thomas et al., 2002). Livingston et al. (2006)
observed the strongest solar magnetic fields in the umbral region at 6.2 kG
(0.62 T). Kopp and Rabin (1992) have shown that the relation between the
temperature and magnetic field strength, across the diameters of six sunspots
is nonlinear and the magnetic field strength diminishes as the temperature
increases.

The umbra develop a fully surrounding penumbra when the magnetic field
strength is strong. In contrast, when the magnetic field strength of the umbra
is not strong enough, we may only have a half-sided penumbra or even no
penumbra at all (see. Schlichenmaier et al., 2010; Jurčák et al., 2015). In the
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absence of the penumbra, the small spots on the Sun surface are called pores
with typical diameters of the order of 1-7 Mm. The pores include much smaller
bright structures as the heat flow from below is not completely suppressed.
When the magnetic field strength is increased in the pores, the pores are
developed and constitute the initial step of sunspot evolution. The magnetic
field strength at the centre of the pores is in the range between 1.8 kG and
2.3 kG, while at the edge of the pores the strength is dropping to 1 kG. The
active regions on the Sun’s surface appear as bright plages of emission. Plages
contain intense flux tubes and they harbour the pores, they appear within ±
30° of the Sun’s equator, i.e around or surrounding sunspots.

High-resolution observations indicate that the umbral region of sunspots
and pores contain some bright features, such as light bridges and umbral dots,
which might be a sign of convective energy transmission. The light bridges
are described as the bright features (of penumbral brightness) that divide the
umbral areas into two or more irregular zones. The strength of magnetic field
is reduced and tend to be more horizontal in light bridges. Moreover, the
appearance of the brightening in the light bridge, or arising of a new one,
might signal the sunspot’s disintegration and fragmentation. The umbral dots
are the bright dots that appear in sunspot’s umbra and they also appear in
pores. In the study by Sobotka and Hanslmeier (2005) the authors analyzed
observations of two sunspots and two pores and found the umbral dots are
colder than the undisturbed photosphere by 500–1000 K, and hotter than the
coldest region in the umbra by 1000 K. The umbral dots are classified based
on their location, central and peripheral dots. The central dots appear in
the internal region of the umbra, whereas the peripheral dots appear at the
boundary of the umbra. The peripheral umbral dots are brighter and have
weaker (and inclined) magnetic fields than the central umbral dots. Watanabe
et al. (2009) observed that umbral dots form in areas where the magnetic field
is weaker and inclined, and they vanish in areas where the magnetic field is
stronger and vertical.

The appearance of a sunspot varies drastically in various atmospheric lay-
ers. In the solar chromosphere and the layers above, the structure and dy-
namics of sunspots are governed by the magnetic field, where plasma−β � 1.
The umbral and penumbral zones are less distinct in the chromosphere. In the
lower photosphere, the strength of the magnetic field in the umbra decreases
with height by 1 - 3 G km−1, and in the upper photosphere and chromosphere
it decreases by 0.3 - 0.6 G km−1 (Balthasar and Schmidt, 1993). Overall, the

10



strength of the magnetic field drops from 3 kG, in the lower photosphere, to
below 1.5 kG, in the chromosphere and a few G in the solar corona. (Rueedi
et al., 1995).

Superpenumbral fibrils are chromospheric loops (5 Mm high) that create
virtually radial patterns around a mature sunspot, and they may be stretching
out the boundary of the penumbra. It is reported that superpenumbral fibrils
that appear around a sunspot are powered by the oscillations of the sunspot.
Chae et al. (2014) have observed an outward propagation that arises from the
internal region and then developed into the fibrils. Moreover, Jing et al. (2019)
state that the observed flows along fibrils are unlikely to be an oscillation/wave
phenomena.

Sunspots are well-known for their darkness, compared to their surround-
ing. However, in the transition region, sunspots are typically brighter than
their surroundings, and this brightness is called the active regions (or sunspot
plume). The first detection of the sunspot plume was by Foukal et al. (1974).
Brynildsen et al. (2001) have observed the plume in 20 out of 21 sunspots
concluding that not all sunspots have a plume. Furthermore, the authors
found that most sunspot plumes display downflows of more than 25 km s−1 at
temperatures close to 250,000 K.

1.4 Waves and Oscillations in Sunspots

The study of solar oscillations started with the discovery of standing pressure
waves (acoustic p-modes) that are able to penetrate into the deep layers of the
solar interior and have an upper reflecting point in the photosphere (Leighton
et al., 1962). Naturally, the way the global p-modes penetrate the sunspots has
attracted much attention. Beckers and Tallant (1969) determined the observa-
tional parameters of umbral flashes, a phenomena in which a sunspot exhibits
oscillatory behaviour. Later, Bhatnagar (1971) discovered Doppler velocity
oscillations in sunspots of the order of 180 − 220s. One year later, Beckers
and Schultz (1972) observed the 3-min oscillation of the vertical velocity of
the umbral sunspot. The problem of Doppler velocity oscillations has been
further addressed by Moore (1981), who found Doppler velocity oscillations of
the order of 120 − 180s in the umbral region, and 240 − 300s in the penum-
bral region. Bhatnagar and Tanaka (1972) detected oscillations with a period
of 170 ± 40s by measuring the intensity directly from time lapse filtergram
movies.
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The frequency and power of the oscillations are dependent on which layer of
the atmosphere they are and the portion of the sunspot under study. Thomas
et al. (1984) have shown that the wave power rises by more than a factor of
ten when it approaches the chromosphere above the umbra, and the dominant
peaks in the power spectra of the umbra are shifted from 3.5 mHz (∼ 5-min) in
the photospheric layer, to 6 mHz (∼ 3-min), in the chromospheric layers. The
chromospheric oscillations in the sunspots umbrae are nonlinear and produce
shock waves (Lites, 1984). Later on, Lites (1986a), using He I line observation
found a clear evidence for periodic nonlinear umbral oscillations. Moreover,
Lites (1986b) found that there is no correlation between the areas with high
oscillatory power in the range of 3-min and those with high oscillatory power in
the range of 5-min. Because of this, Lites (1986b) claimed that the 5-min pho-
tospheric oscillations do not drive the 3-min chromospheric oscillations. Wave
phenomena in sunspots have been traditionally categorized, according to their
periods, into three categories as: 5-min oscillations in the sunspot at the phos-
phoric layer, 3-min oscillations and the umbral flashes in the chromospheric
umbra and, lastly, running penumbral waves in the penumbral chromosphere
(Lites, 1992).

Recently, several studies supported the claim that the dominant oscillations
in sunspots and pores have periods of 5-min at photospheric heights, and 3-min
at chromospheric heights, while global oscillations of sunspots, as a whole, have
periods that range from hours to days (to name but a few Nagashima et al.,
2007; Stangalini et al., 2011; Jess et al., 2012; Jess et al., 2015; Khomenko and
Collados, 2015). In contrast, Stangalini et al. (2021) have shown for the first
time that the dominant oscillations of a magnetic pore observed by means of
The Interferometric BIdimensional Spectropolarimeter (IBIS) have periods of
3-min in the photosphere, instead of the expected 5-min period.

Umbral flashes are described to be the periodic brightness increases in the
umbral core of chromospheric sunspots (Beckers and Tallant, 1969; Wittmann,
1969). The umbral flashes appear with periods of 2 to 3-min and they are
accompanied by up and down movements with the same period and amplitudes
of ±10 km s−1 (Beckers and Schultz, 1972; Phillis, 1975), with an upward
motion at the start of each flash. Rouppe van der Voort et al. (2003) have
shown that the appearance of the umbral flashes is the consequence of upward
shock propagation and a subsequent coherent wave spreading throughout the
whole sunspot. The umbral flashes are 3–5 arcsec wide, about the same size as
the umbral spots. Nevertheless, umbral flashes and umbral dots have no clear
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relation (Rouppe van der Voort et al., 2003).
In the transition region, sunspot waves were firstly observed by Gurman

et al. (1982) and Henze et al. (1984). They have shown considerable oscillations
with periods of 2 to 3-min in line-of-sight velocity by analysing time series
of spectra of eight sunspots. In sunspot umbrae, Fludra (1999, 2001) and
Maltby et al. (2001) have found 3-min oscillations in transition region lines.
Moreover, the presence of oscillations in the layers that above the umbra, from
the lowest temperature to the upper corona was shown by O’shea et al. (2002)
and Banerjee et al. (2002).

Using high-resolution observations Solar Optical Telescope (SOT) on board
Hinode, Nagashima et al. (2007) have studied the spatial distribution of the
power spectral density (PSD) of the oscillatory signal in and around the ac-
tive region (AR) NOAA 10935. Their study was carried out by observing the
photospheric oscillations in the G band, while the lower chromospheric oscil-
lations observed by using a Ca II H band. They have found that the intensity
oscillations in the umbra in the lower chromosphere, the umbral flashes, have
their power peak at around 5.5 mHz (3-min), whereas, in all frequency ranges,
the oscillatory power is suppressed in the photospheric line data. The relation
between the 3-min and 5-min oscillation in sunspots has been studied by Zhou
and Liang (2017), who showed that the running waves are propagating across
the umbra–penumbra as 3-min oscillations when they are located at the umbra
region, and 5-min oscillations in the penumbra region.

The running penumbral waves (RPWs) were observed moving out through
the chromospheric penumbral region of the sunspot, and these waves were
firstly observed by (Giovanelli, 1972; Zirin and Stein, 1972). These waves
(believed to be acoustic in nature), show intensity fluctuations ranging from
10% to 20%. RPWs are propagating with a phase velocity of 10 – 20 km
s−1 at the umbral/penumbra boundary, while at the outer boundary of the
penumbra they slow down, to be in the range of 5 to 7 km s−1. The fluctuation
of frequencies and phase speeds between the penumbra’s inner and outer edges
has been investigated by Brisken and Zirin (1997) and Kobanov and Makarchik
(2004). These studies have revealed the frequency of 3 mHz and the phase
speed of 40 km s−1 are shifted at the inner edge of the penumbra to 1 mHz,
and 10 km s−1, at the outer edge of the penumbra. Later on, Jess et al. (2013)
have explained the variance of RPWs periods by the effect of the low-frequency
acoustic cutoff period.

The wavelet time series analysis has also been widely used to study MHD
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wave modes and their properties in the sunspot umbra region. O’shea et al.
(2002) have applied a combined wavelet and Fourier analysis on an umbral re-
gions of an observed sunspot using different spectral lines that covers the range
of temperatures from the low chromosphere to corona in order to evidence the
appearance of oscillations at all investigated temperatures, with frequencies in
the range of 5.4 mHz to 8.9 mHz. Christopoulou et al. (2003) have used this
methodology for identification of the 3-min oscillations in the sunspot umbral
region.

Recently, Jess et al. (2017) have detected slow body kink modes propagat-
ing along the azimuthal direction of a sunspot using Hα images acquired by
the Hydrogen-Alpha Rapid Dynamics camera (HARDcam). The authors car-
ried out their analysis by applying a temporal, and simultaneously, a spatial
bandpass Fourier filter covering (5 < ω < 6.3 mHz) and (0.45− 0.90 arcsec−1)
to extract the dominant umbral oscillations and the larger spatial fluctuations.

Keys et al. (2018) revealed the separate existence of surface and body
surface sausage modes in their study on 7 pores that had mostly an ellipti-
cal cross-section. Their analysis was carried out by taking a one-dimensional
cross-cut along the pore and measuring the power at the boundary and at the
centre of the pore along the time series to identify the sausage mode. To inves-
tigate whether the sausage mode is surface or body, authors assumed that the
magnitude of surface waves has its maximum at the boundary and has its mini-
mum at the center of the pore, while for the body modes the amplitude has the
maximum at the center and minimum at the boundary of the pore. However,
their assumption may not be fully satisfied, especially for the surface sausage
mode for the pore with an approximately elliptical cross-sectional shape. As
it has been recently shown by Aldhafeeri et al. (2021), the magnitude of the
surface sausage mode has its maximum amplitude at the boundary along the
minor axis, while it attains its minimum amplitude at the boundary along the
major axis. Therefore, the assumption employed by Keys et al. (2018) may
be valid only for a pore that has a cross-sectional shape close to a circle. The
present Thesis, that involves the use of the POD/DMD techniques will address
this issue, and show how they are reliable in the identification of surface and
body modes, simultaneously.

Finally, in the study by Dorotovič et al. (2014) on two sunspots and one
pore, they have detected fast and slow surface sausage waves. Using the wavelet
analysis and the empirical mode decomposition (EMD), these authors also
showed that the pattern of these waves corresponds to the harmonics of stand-
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ing waves.

1.5 Aims and Thesis outline

The qualitative description of plasma dynamics in solar and space environ-
ment are one of the most challenging aspects of solar physics. The variety
of plasma motions subject to restoring forces (e.g. pressure gradient, gravi-
tational, Lorentz etc.) give rise to magnetohydrodynamic (MHD) waves and
oscillations. In the absence of these restoring forces perturbations might evolve
into laminar and turbulent flows, shocks, nonlinear patterns, etc. Waves have
the property to carry energy and information about the medium in which they
propagate, making them an ideal tool for plasma and field diagnostics. How-
ever, their true diagnostic potential can be put at use only if high resolution
observations are available that could determine the accurate determination the
nature of waves and their properties. Sunspots, which are the most studied
features in the solar atmosphere, are the most prominent manifestations of the
emergence of magnetic field in the lower regions of the solar atmosphere and
they are often the footpoints of ARs that are able to considerably influence
the space weather.

To a very large extent the traditional analysis of oscillations in sunspots
involves applying Fourier analysis to provide the power spectra, and that can
be carried out by integration over a region of interest (ROI) or even on pixel by
pixel basis. The assumption of a sinusoidal basis in the spatial domain can be
considered as a disadvantage of using Fourier analysis since we are applying
it in a flux tubes models, i.e. models with a circular cross-sectional shape,
see section 2.2.3, or even an elliptical shape, see section 2.2.4, where the basis
functions are Bessel or Mathieu functions, respectively.

To address this inconsistency, in the present Thesis, we will use the tech-
niques of Proper Orthogonal Decomposition (POD, (Pearson, 1901)), see sec-
tion 3.1, which allows the determination of spatially orthogonal patterns from
signals, and the Dynamic Mode Decomposition (DMD, (Schmid, 2010)), see
section 3.2, which allows the determination of temporally orthogonal patterns.
Then, we aim to apply these techniques in combination to detect the MHD
wave mode in sunspots data. POD and DMD have a further advantage over
Fourier analysis as they cross-correlate individual pixels over the region of in-
terest (ROI), in the spatial and temporal domain, respectively. Furthermore,
as the POD works by assuming orthogonality in space, it has the capability
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to deal with adequate base functions that are orthogonal to each other by
definition. The shape of the sunspot may be affected by the surrounding back-
ground and, therefore, the shape may lose the property of orthogonality in the
spatial domain, and hence the advantage of using POD will be lost. However,
DMD can detect modes which are still orthogonal in time. Therefore the best
approach for mode identification is to use the POD and DMD techniques in
combination.

This Thesis is organized as follows: in Chapter 2 we introduce the mathe-
matical formalism appropriate to study wave propagation in the solar environ-
ment and determine the dispersion relation of waves in various configurations.
To help in the identification of modes in realistic magnetic structures, we com-
pare the findings of theoretical modeling in the case of a flux tube with circular
and elliptical cross-sections.

Chapter 3 is devoted to the background of the methods used in our The-
sis, namely the Proper Orthogonal Decomposition (POD) and the Dynamic
Mode Decomposition (DMD) techniques. By merging numerous modes of the
cylindrical flux tube model, we create a numerical synthetic dataset, for which
we then use the POD and DMD to recover every single mode. This step is
necessary to validate the two methods, and verify their applicability for MHD
modes in realistic waveguides.

In Chapter 4 we apply the POD and DMD techniques on a dataset cor-
responding to a sunspot that has an approximately circular cross-sectional
shape, which is, up to our knowledge, the first time to be applied on a solar
physics dataset. Since the dataset has already been analysed earlier by Jess
et al. (2017), our investigation will recover not only the modes identified by
this study, but some higher order modes, too.

In Chapter 5 we expand our analysis of POD and DMD by applying these
techniques on two datasets that correspond to sunspots whose cross-sectional
shape is close to a circular and elliptical shapes. Here we show evidence of the
appearance of higher-order modes and overtone modes in both sunspots. For
the modes we identified in these structures, we calculate some of their physical
parameters, such as their longitudinal wavenumber kz, their phase speed Vph
and wavelength λ.

All previous results were obtained by assuming that the shape of the
sunspots does not change in time. Of course, this is an idealistic approach,
therefore in Chapter 6 we plan to address this shortcoming by applying the
POD and DMD techniques in connection to a sunspot for which observational
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data are available for a long time. This analysis aims to investigate how the
change in the shape of the sunspot will affect the nature and morphology of
the waves.

Finally, our conclusions and possible future research directions are pre-
sented in Chapter 7.
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CHAPTER 2

Theoretical Background: waves in magnetic guides

Plasma - the fourth state of matter - is defined as an ionized gas that has a
collective motion under the influence of electric and magnetic field. Plasma
occupies most of the known universe, and our Sun is one of the most studied
examples of astrophysical plasmas.

A fully ionised magnetic fluid where the temporal changes are much longer
than any characteristic times for collisions between particles can be considered
as a single fluid, whose dynamics can be well described within the framework
of Magnetohydrodynamics (MHD). Dynamics in these systems are driven by
macroscopic forces and the evolution of thermodynamic parameters are gov-
erned by the usual thermodynamic laws.

The MHD equations are governed by Maxwell’s equations, ideal gas law,
and the equations of mass, momentum and energy conservation. In addition,
the induction equation, which connects the electromagnetic fields and fluid
properties, describes the temporal evolution of the magnetic field in terms of
the plasma velocity, can be obtained by combining the Maxwell’s equations
and Ohm’s law (Priest, 2014).

High resolution observations of the last few decades showed that the solar
atmospheric plasma is very dynamic, waves are present in every part of the
solar plasma. Due to the interaction between the magnetic field and plasma,
MHD waves can propagate along and across the field and their properties can
be studied by means of dispersion relations. There are several types of wave
modes with different restoring forces. Alfvén waves owe their existence to
the magnetic tension, that works against any changes in the magnetic field.
When magnetic pressure and plasma pressure act together, they can produce
fast magneto-acoustic waves, while, if they act against each other, they can
produce slow magneto-acoustic waves.

The solar plasma is far from being uniform. The magnetic field tends to
accumulate into smaller or larger structures, such as sunspots, prominences,
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spicules, coronal loops, etc. Waves are observed to be connected to these struc-
tures and their investigation requires an approach that assumes that waves are
somehow guided along the field. That is why an accurate description of waves
in the solar atmosphere requires the analysis of waves propagating along vari-
ous waveguides. The most used models in solar physics study the wave propa-
gation along a magnetic interface (Roberts, 1981a), guided by magnetic slabs
(Edwin and Roberts, 1982) or magnetic cylinders (Edwin and Roberts, 1983).
Clearly the dispersion relation of these waves will depend on the particular
waveguide. The present chapter is dedicated to the presentation of the prop-
erties of waves propagating in such structures, as guided waves and their study
represent the core of the study of the present Thesis.

2.1 MHD waves

Presenting the linear wave solutions of the MHD equations will provide some
understanding of the various waves and oscillations that are constantly ob-
served in the solar atmosphere. The governing equations we are going to use
will neglect a series of important ingredients, yet, will provide the necessary
framework for a proper description of the properties of MHD waves. There-
fore, we assume waves have wavelengths that are much longer than gravita-
tional scale heights (we neglect gravitational effects), the plasma is perfectly
conducting (we neglect electrical resistivity) and the length scales we operate
are much longer than any characteristic lengths that are involved in transport
mechanisms (we neglect viscosity and thermal conductivity). The last two
simplifications also mean that the evolution of the physical system occurs such
that the energy is conserved. As a result, the MHD equation can be written
as

dρ

dt
+ ρ∇.v = 0, (2.1)

ρ
dv
dt

= −∇p+
1

µ
[(∇×B)×B], (2.2)

d

dt
(pρ−γ) = 0, (2.3)

∂B
∂t

= ∇× (v×B), (2.4)

∇ ·B = 0. (2.5)
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In the above equations ρ, p, v, B, µ, and γ are the density, pressure, velocity,
magnetic field, permitivity of free space and adiabatic index, respectively, and

d

dt
≡ ∂

∂t
+ v · ∇ (2.6)

is the convective time derivative (Priest, 2014).
The first equation is the mass conservation equation that stipulates that

the rate of mass flow out of a unit of volume is equal to the decreases of mass
in the volume. Equation (2.2) is the momentum equation which describes the
motion of a plasma element of unit volume and contains all forces that act on
a given plasma element (the gradient pressure and Lorentz force). The energy
equation (2.3) connects thermodynamics variables p and ρ, assuming there is
no energy loss (or gain) in the system and the thermodynamical evaluation
of the system can be described by an adiabatic process. Equation (2.4) is
the induction equation which describes the interaction of the magnetic field
with the flow velocity. Finally, equation (2.5) is the solenoidal condition and
specifies that there are no magnetic monopoles in the system and that the
magnetic fields lines are closed.

The above equations are highly nonlinear and their study is very difficult.
Analytical progress can be achieved by assuming a linear approach (also known
as linearisation) that considers that all physical variables have a small change
around their equilibrium value. As a result, all physical quantities (f) will be
written as f = f0 + f1, with |f1| � f0, where quantities with an index 0 are
the equilibrium values and the quantities with an index 1 are their Eulerian
perturbations. In addition, to simplify even more the problem, we assume
that the equilibrium is homogeneous and stationary (equilibrium values do
not depend on any coordinate and/or time) and the equilibrium is static, i.e.
v0 = 0. As a result, the system of linearised MHD equations will contains terms
that, at most, are products of an equilibrium quantity and a perturbation.
With these simplifications the linearised MHD equations become

∂ρ1
∂t

+ ρ0(∇ · v1) = 0, (2.7)

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇×B1)×B0, (2.8)

∂p1
∂t
− c20

∂ρ1
∂t

= 0, (2.9)
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∂B1

∂t
= ∇× (v1 ×B0), (2.10)

∇ ·B1 = 0, (2.11)

where c20 = γp0/ρ0 is the sound speed.
The above system of equation can be reduced to a single partial differential

equation by differentiating Equation (2.8) with respect to time, and using
Equations (2.7) to (2.11) as

∂2v1

∂t2
= c20∇(∇ · v1) + {∇ × [∇× (v1 ×B0)]} ×

B0

µρ0
. (2.12)

Next, since we are looking for solutions that oscillate in time and space, we
assume that the velocity can be written as

v1(r, t) = v1e
i(k·r−ωt). (2.13)

where k = (kx, ky, kz) is the wavevector, r are the three coordinates and ω

is the frequency (in the absence of dissipative effects, here assumed a real
quantity). In the light of the above ansatz, the derivative operators transform
into ∇ → ik and ∂/∂t→ −iω. As a result, Equation (2.12) becomes

ω2v1 = c20k(k · v1) + {k× [k× (v1 ×B0)]} ×
B0

µρ0
. (2.14)

The solutions of this equation can be discussed in a few limiting cases, that
can reveal the properties of MHD waves propagating in plasmas.

2.1.1 Alfvén waves

When the plasma is incompressible (∇ · v1 = 0) the dynamics is not affected
by pressure forces and the only restoring force is the magnetic tension. In this
case Equation (2.14) reduces to

ω2v1/v
2
A0

= {k× [k× (v1 × B̂0)]} × B̂0, (2.15)

where vA0 = B0/
√
µρ0 is the Alfvén speed and B̂0 is the unit vector in the

direction of B0, i.e. B̂0 = B0/B0. Using standard vector identities the above
equation can be written as

ω2v1/v
2
A0

= k2 cos2 θBv1 − (k · v1)k cos θBB̂0 + [(k · v1)− k cos θB(B̂0 · v1)]k.
(2.16)
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where k = |k| and θB is the angle between B̂0 and k.
In addition, by taking the scalar product of Equation (2.16) with B̂0, we

obtain that B̂0 · v1 = 0, which means that the perturbation of the velocity is
perpendicular to the ambient magnetic field, so these waves are transversal.

Thus, for an incompressible plasma, the propagation vector will be perpen-
dicular to the perturbed velocity (k ·v1 = 0) and hence the dispersion relation
of incompressible Alfvén wave is simply

ω = ±k vA0 cosθB. (2.17)

Clearly Alfvén waves will have their maximum phase speed (ω/k) when they
propagate along the magnetic field and they are not able to propagate in the
perpendicular direction to the field (θB = π/2) as shown in Friedrich polar
diagram in Figure 2.1.

2.2 Magneto-acoustic waves

When changes in the plasma are opposed by the Lorentz force and the pressure
gradient, then Equation (2.14) can be written as

ω2v1 = k2v2A0
cos2 θBv1 − (k · v1)v

2
A0
k cos θBB̂0 + [(v2A0

+ c20)(k · v1)−

− k cos θB(B̂0 · v1)]k. (2.18)

By taking the scalar product of Equation (2.18) with B̂0, we obtain

B̂0 · v1

k · v1

=
k cos θBc

2
0

ω2
, (2.19)

Next, after taking the scalar product of Equation (2.18) with k, we obtain

B̂0 · v1

k · v1

=
−ω2 + k2(v2A0

+ c20)

k3v2A0
cos θB

. (2.20)

After equalising the right-hand sides of the last two equations we obtain the
dispersion relation of the magneto-acoustic waves in the form

ω4 − k2ω2(c20 + v2A0
) + k4c20v

2
A0

cos2 θB = 0. (2.21)

This fourth-order polynomial is bi-quadratic in ω, it describes two families
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Figure 2.1: Polar (Friedrich) diagram showing the phase speed, vph, of Alfvén
waves (blue solid lines), slow magneto-acoustic waves (black solid lines) and
fast magneto-acoustic waves (red solid lines) under different regimes, c0 > vA0

(left), c0 = vA0 (middle) and c0 < vA0 (right). The black dotted lines refer to
the magnitude of c0 and the black dashed lines refer to the magnitude of vA0 .
The equilibrium magnetic field B0 is in the horizontal direction.

of waves propagating in opposite direction, so

ω2

k2
=
c20 + v2A0

2
± 1

2

√
c40 + v4A0

− 2c20v
2
A0

cos 2θB. (2.22)

The above dispersion relation describes fast and slow magneto-acoustic modes
corresponding to the plus and minus signs, respectively. The phase speed,
vph = ω/k, of the fast magneto-acoustic waves extends from max(c0, vA0) up
to (c20 + v2A0

)1/2, while the phase speed of slow magneto-acoustic waves is in
the range 0 ≤ vph ≤ min(c0, vA0). The phase speed of slow waves reaches its
maximum value when propagating along the magnetic field and is equal cT0
(called the tube speed) defined in Equation (2.25) (see, Roberts, 1981a).

A full picture of the properties of waves and their propagation speed can be
obtained by plotting the variation of the phase speed in a polar diagram (also
known as the Friedrich diagram). Here the ambient magnetic field, B0, points
in the horizontal direction and the direction of the wavevector (basically the
propagation direction of waves) covers a full 2π range. In Figure (2.1) we plot
the phase speed of waves for three cases covering the possible ordering of the
two characteristic speeds. It is clear from Figure(2.1) that the fast magneto-
acoustic waves can propagate in the perpendicular direction to the magnetic
field, whereas the slow magneto-acoustic and Alfvén waves cannot.

In reality the plasma is neither unbounded nor homogeneous. Waves often
propagate along well-defined magnetic structures that will confer the medium
some spatial rendering. That is why it is natural to extend our analysis and
consider the case where the plasma is inhomogeneous via the simplest config-
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uration represented by a sharp transition or discontinuity. The discontinuity
can be described by an interface separating region with different properties. In
particular, we will study the case of a single magnetic interface, the magnetic
slab (that can be considered as a system of two interfaces separated by a con-
stant width) and the magnetic flux tube that can be seen as a single curved
interface. For all cases we present here the method of finding the dispersion
relation consists of solving the MHD equations for the regions on both sides
of the interface and join the solutions at the boundary using kinematic and
dynamic boundary conditions.

2.2.1 Waves at a single magnetic interface

The simplest configuration that allows the study of guided waves is the problem
of waves propagating along a sharp discontinuity separating two semi-infinite
regions of different properties. High resolution observations show that there
are several places in the solar atmosphere where the plasma structuring can
be modelled as an interface, e.g. the boundary of the coronal holes and the
edge of sunspots. For simplicity we consider an interface where the magnetic
field changes discontinuously and the field is parallel to the interface separat-
ing the two regions (with such particular configuration we model a tangential
discontinuity), each with its own set of parameters.

The effect of compressibility on the propagation of surface waves at a single
interface was investigated by Wentzel (1979). He derived the dispersion rela-
tion for an isothermal disturbance. A proper investigation on the nature and
properties of waves such interface supports was carried out later by Roberts
(1981a), who showed that there are two surface waves that could propagate
on single magnetic interface.

The analytical method used to derive the dispersion relation for this tan-
gential discontinuity is similar to the method used to study surface waves in
hydrodynamics. The stability of the interface requires that the total pres-
sure (plasma pressure and magnetic pressure), and the perpendicular velocity
components are continuous at the interface. In addition we assume that the
perturbations will be localised to the interface, so waves will be evanescent far
away from the interface. Similar conditions will be used in the following two
sections to derive the dispersion relation in magnetic slab and magnetic flux
tube.

Using the linearised and ideal MHD equations for a homonenous plasma,
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the dispersion relation can be given as (Wentzel, 1979; Roberts, 1981a)

ρ0(k
2
zv

2
A0
− ω2)(m2

e + k2y)
1/2 + ρe(k

2
zv

2
Ae
− ω2)(m2

0 + k2y)
1/2 = 0 (2.23)

where subscripts 0 and e refer to the two different side of the discontinuity and
m2

0 and m2
e are the radial wavenumber defined as

m2
0 =

(k2zc
2
0 − ω2)(k2zv

2
A0
− ω2)

(c20 + v2A0
)(k2zc

2
T0
− ω2)

, and m2
e =

(k2zc
2
e − ω2)(k2zv

2
Ae
− ω2)

(c2e + v2Ae
)(k2zc

2
Te
− ω2)

.

(2.24)
In the above equations kz and ky are the wavenumber components along the
z and y axis, and

cT0 =
vA0c0√
v2A0

+ c20

, cTe =
vAece√
v2Ae

+ c2e

(2.25)

are the tube speeds on both sides of the interface.
Following the analysis by Roberts (1981a), it can be shown that the phase

speed of the surface waves (ω/kz) is between vA0 and vAe and the single mag-
netic interface supports the propagation of slow and fast magneto-acoustic
modes. However the slow surface wave will be able to propagate only if one of
the sides is field-free. The phase speed of the slow mode will be smaller than
the tube speed, cT0 . In contrast, the fast surface wave will propagate if the
field-free region is hotter than the other side of the interface, hence ce is greeter
than c0 and the phase speed will be in the range c0 ≤ vph ≤ min(ce, vA0).

As a natural extension of waves at a single interface is the problem is of two
interfaces that now form a waveguide that could model the wave propagation in
flux tube or loops. It is well known that waves propagating in a geometrically
well-defined structure, become dipsersive, i.e, their phase velocity depends on
the wavelength.

There are two distinctive approaches to the problem of guided waves that
are mathematically tractable. First we consider waves propagating in a mag-
netic slab described in Cartesian geometry. The second one is the waves prop-
agating in a magnetic flux tube that assumes a cylindrical geometry. Let us
discuss these two approaches and compare the predictions of these models,
what the dispersion relations are, how the dispersion curves vary in terms of
the wavelength (or wavenumber) and what oscillatory pattern we can recover
in these structures. Later, the cylindrical model will be expanded to consider
waves in a waveguide of elliptical cross-section.
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Figure 2.2: This figure shows the profile of the speed amplitude for a surface
wave on (left panel) an interface and (middle panel) a slab or a flux tube.
(right panel) A body wave on a slab or flux tube. Credit: Priest (2014)

2.2.2 Waves in a magnetic slab

One of the simplest ways to construct a waveguide and study the properties of
guided waves is to consider that waves are propagating in an infinite channel
of given width. For simplicity we assume that the plasma is structured by two
interfaces, infinitely extended in the y and z direction, while it has a width 2x0

in the x direction. The problem of MHD waves propagating in these structures
is well studied. Parker (1974) described the appearance of surface waves for
an incompressible medium in an isolated magnetic slab and he found that the
propagation speed of surface waves is less than the local Alfvén speed. A de-
tailed discussion of waves propagating in a magnetic and compressible plasma
in a magnetic slab was provided by Roberts (1981b). Later, this study was
extended by Edwin and Roberts (1982) to include the magnetic field surround-
ing the slab, a limit that is more appropriate to solar physics. They consider
a magnetic slab of width 2x0, permeated by a homogeneous internal (B0) and
external magnetic field (Be), both parallel to the symmetry axis of the slab
as shown in the left panel of Figure 2.3. Employing a set of boundary condi-
tions at the two interfaces similar to the one presented in the earlier section,
Edwin and Roberts (1982) derived the dispersion relation that governs the
wave propagation in a magnetic slab in a magnetic environment. Since the
problem deals with two interfaces, a clear distinction must be made between
symmetric or kink modes (when the two boundaries oscillate in phase) and
anti-symmetric or sausage modes (when the two boundaries oscillate in anti-
phase), as shown in the middle and the right panels of Figure 2.3. Following
straightforward and standard mathematical steps, the continuity of the total
pressure and transversal velocity components leads to the dispersion relations
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Figure 2.3: The left panel shows a sketch of a uniform magnetic slab sur-
rounded by a uniform medium. The middle panel shows the sausage mode
disturbance travelling along the slab (the vertical direction), where the right
panel shows the kink mode. Credit: Priest (2014)

given by

ρe(k
2v2Ae
− ω2)m0 tanh(m0x0) + ρ0(k

2v2A0
− ω2)me = 0 (2.26)

for sausage modes, and

ρe(k
2v2Ae
− ω2)m0 coth(m0x0) + ρ0(k

2v2A0
− ω2)me = 0 (2.27)

for kink modes. The subscripts 0 and e refer to quantities inside and outside
the slab. The magneto-acoustic parameters m0 and me were defined earlier
(see (2.24)), and m2

e is assumed to be positive in order to assure evanescence
far away from the boundary of the waveguide.

The plasma-β parameter tells us whether the plasma dynamics is controlled
by thermodynamics forces (∇p) or magnetic forces

(
(∇×B)×B/µ

)
. In the

solar atmosphere, plasma-β is changing from being much larger than 1 in the
photosphere, to much less than 1 in the corona. Waves can also be categorised
depending on the sign of m2

0. Waves that correspond to m2
0 > 0 are the so-

called surface waves whose maximum amplitude is attained at the boundaries
of the waveguide and are evanescent inside the slab. On the contrary, when
m2

0 < 0 body waves can propagate along the slab and these waves have an
oscillatory pattern inside the slab and their maximum occurs inside the slab.
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Figure 2.4: The left panel shows the solutions of the dispersion relations for a
magnetic slab under photospheric conditions (i.e. vA0 > ce > c0 > cAe), with
vAe = 0.5c0, ce = 1.5c0 and vA0 = 2c0. The right panel shows the same as
the left panel, however, the dispersion curves are plotted for a magnetic slab
under coronal condition (i.e. vAe, vA0 > c0, ce), with vAe = 5c0, vA0 = 2c0 and
ce = 0.5c0. The red and blue dotted lines denote the sausage and kink modes,
respectively.

Figure 2.4 shows the variation of the phase speed of waves under photo-
spheric (left panel) and coronal (right panel) conditions in terms of the di-
mensionless quantity kx0. Both panels show two families of modes (slow and
fast magneto-acoustic). While the slow waves, with phase speeds close to the
internal tube speed, cT0 , show rather little variation with kx0, fast modes have
a much pronounced variation with kx0.

First of all it is clear that since the phase speed of waves vary with k

(or its inverse, the wavelength), waves are dispersive. Under coronal condi-
tions (plasma-β � 1) the magnetic slab supports the propagation of only
fast and slow body waves, while surface waves cannot propagate. In contrast,
under the photospheric conditions (plasma-β � 1), there are slow and fast
waves which could be body or surface waves depending on the sign of m2

0.
Fast magneto-acoustic waves propagate at a speed greater than min(c0, ce)

and min(vA0 , vAe) and slow waves propagate with a phase speed lower than
min(c0, ce) or min(vA0 , vAe) (Aschwanden, 2006). The phase speed of the slow
body and kink waves is almost identical, regardless whether we are studying
waves in the photosphere of solar corona. In contrast, fast waves show a much
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stronger dispersion and have a much larger variation with the dimensionless
parameter kx0.

2.2.3 Waves in magnetic flux tubes

In reality, it is much more relevant to model the magnetic flux tube with a
cylinder. Let us consider a magnetic cylinder described by the cylindrical co-
ordinates (r, θ, z) permeated by a homogeneous and unidirectional magnetic
field along the symmetry axis of the structure as shown in Figure 2.5. Ed-
win and Roberts (1983) extended their study in magnetic slabs (Edwin and
Roberts, 1982) to consider the propagation of magneto-acoustic waves in a
magnetic cylinder of constant radius a. The plasma dynamics is described by

Figure 2.5: A sketch of a uniform magnetic cylinder surrounded by a uniform
medium

the linear system of equations (see Equations 2.1-2.5) that can be combined
into (Lighthill, 1960; Roberts, 1981a; Spruit, 1982)

∂4∆

∂t4
− (c20 + v2A0

)
∂2

∂t2
∇2∆ + c20v

2
A0

∂2

∂z2
∇2∆ = 0, (2.28)
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where ∆ = ∇ · v. The solution of Equation (2.28), is on the form

∆ = R(r)ei(ωt+nθ+kzz), (2.29)

where kz and n are the longitudinal and azimuthal wave numbers, respec-
tively. Hence, by substituting Equation (2.29) into (2.28), we obtain that the
r-dependent amplitude of ∆ is described by the Bessel differential equation

d2R

dr2
+

1

r

dR

dr
−
(
m2

0 +
n2

r

)
R = 0 (2.30)

where the magneto-acoustic parameter, m2
0, has been defined earlier. The

solution of the above differential equation is a Bessel (or modified Bessel)
function of order n, depending on the sign of m2

0.
By substituting Equation (2.29) into Equations (2.7) (2.11), the perturbed

variables can be expressed as (see. Spruit, 1982)

vr =
ω2 − k2zc20
ω2m2

0

d

dr
<n, vθ = i

ω2 − k2zc20
ω2m2

0

n

a
<n, vz = −i c

2
0

ω2
kz<n

br = −B0
kz
ω
vr, bθ = B0

kz
ω
vθ, bz = −iB0

ω2 − k2zc20
ω2

<n

p1 = iρ0
c20
ω
<n (2.31)

In the above relations, vr, vθ and vz are the three components of the velocity
perturbation, br, bθ and bz are the components of the magnetic field perturba-
tion, p1 is the pressure perturbation, m0 is defined in Equation (2.24) and <n
denotes the Bessel function of order n.

Therefore, the general solution in the internal region of the magnetic flux
tube (r < a) can be given as

<n = A0

In(m0r), m2
0 > 0

Jn(n0r), n2
0 = −m2

0 > 0.
(2.32)

Similarly, in the external region of the magnetic flux tube (r > a), the general
solution is taken as

<n = AeKn(mer), m2
e > 0. (2.33)

In the above equations A0 and Ae are constants that will be determined with
the help of boundary conditions, Kn, In and Jn are Bessel functions of order
n and me is defined in Equation (2.24).
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Since we are dealing with a tangential discontinuity, the continuity condi-
tions at the cylinder boundary (r = a) have to written for the perpendicular
velocity component and total pressure as

vr(a) = vre(a) and P1e +
1

4π
B0ebze = P1 +

1

4π
B0bz,

The dispersion relation of linear compressional magneto-acoustic waves prop-
agating along a magnetic cylinder has been derived by Edwin and Roberts
(1983) and it reads

ρ0(k
2
zv

2
A0
− ω2)me

K ′n(mea)

Kn(mea)
− ρe(k2zv2Ae

− ω2)m0
I ′n(m0a)

In(m0a)
= 0, (2.34)

for surface waves (m2
0 > 0), and

ρ0(k
2
zv

2
A0
− ω2)me

K ′n(mea)

Kn(mea)
− ρe(k2zv2Ae

− ω2)n0
J ′n(n0a)

Jn(n0a)
= 0, (2.35)

for body waves with n2
0 = −m2

0 < 0. As before the subscripts 0 and e refer to
quantities inside and outside the cylinder. The dash refers to the derivative of
the Bessel functions with respect to their argument.

The solutions of the dispersion relations for photospheric conditions are
shown in Figure 2.6. A magnetic flux tube can support fast and slow kink
surface waves (Edwin and Roberts, 1983). Furthermore, the slow kink surface
mode propagates at speed close to cT0 . In contrast, the fast kink surface mode
has phase-speed closed to cK , where

cK =

√
ρ0v2A0

+ ρev2Ae

ρ0 + ρe
, (2.36)

and it can be regarded as a density-weighted Alfvén speed. The analysis of the
dispersion curves also shows that sausage surface modes can propagate in a
magnetic cylinder when plasma-β � 1, where the fast mode propagates with
a phase speed between ce and c0 and the slow mode propagates with a phase
speed very close to the slow kink surface mode.

The solutions of the dispersion relations for coronal conditions (vA0 � c0)
are shown in Figure 2.7. In this case the magnetic flux tube supports the
propagation of fast and slow kink and sausage body modes. The fast modes
will propagate with a phase speed that is between the two Alfvén speeds,
whereas the slow mode has a phase-speed between c0 and cT0 . Moreover, the
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Figure 2.6: The dispersion relations for a magnetic cylinder under photospheric
condition (i.e. vAe = 0.5c0, ce = 1.5c0 and vA0 = 2c0). The lower panel is the
zoom-in of the slow waves, and the red and blue dotted lines refer to the
sausage mode and kink modes, respectively.

fast mode is dispersive, whereas the slow mode will disperse weakly as c0 is
almost equal to cT0 . Finally, magnetic waveguides under coronal conditions do
not support the propagation of surface waves.

MHD modes are classified according to their motion with respect to the
longitudinal symmetry axis of the waveguide. Sausage modes (n = 0) propa-
gate without perturbing the symmetry axis, i.e. they appear as stretching and
squeezing oscillations of the magnetic field. Kink modes (n = 1) are charac-
terized by a displacement of the symmetry axis of the magnetic flux tube, i.e.
they perturb the symmetry axis in a back and forth motion (see Figure 2.8).
Finally, fluting modes (n ≥ 2) have a complex way of perturbing the axis. Al-
though sausage and kink modes are often detected in solar magnetic structures
(and their literature is extensive), the higher-order modes (the fluting modes)
have eluded researchers.
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Figure 2.7: The dispersion curves for waves propagating in a magnetic cylinder
under coronal conditions (i.e. vAe = 5c0, vA0 = 2c0 and ce = 0.5c0). The lower
panel is the zoom-in of the slow wave branch, and the red and blue dotted
lines refer to the sausage and kink modes, respectively.

2.2.3.1 MHD wave modes in cylindrical magnetic flux tubes

The number of nodes in the radial direction (fundamental or overtone), the
radial structure (surface or body), and the relative propagation speed (slow
and fast magneto-acoustic modes, Alfvén or intermediate modes) are all used
to classify the propagation of MHD waves.

Body waves exhibit an oscillating pattern in the radial direction within the
waveguide and their lowest amplitude is near the waveguide’s border. Body
waves are likewise evanescent in the external environment (the wave power
is localised and it is concentrated within the waveguide). In contrast, surface
waves propagate such that they reach their maximum amplitude at the bound-
ary of the waveguide and are evanescent both within and outside the magnetic
flux tube.
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Figure 2.8: The oscillations of a cylindrical magnetic waveguide in the case a
longitudinally propagating sausage (left panel) and kink mode (right panel),
respectively. The sausage mode is stretching and squeezing the boundary of
cylinder. In contrast, the kink mode is displacing the symmetry axis, as shown
by the red solid line. The thin upward arrows indicate the direction of the
background magnetic field, and the thick side-way arrows indicate the velocity
amplitudes. Credit: Morton et al. (2012)

The slow mode propagate mostly along magnetic field lines, and they are
prohibited from travelling in the perpendicular direction that corresponds to
the radial direction. Fast modes are propagating in any direction and have their
maximum speed when they are propagating in the perpendicular direction of
the tube as they propagates with the phase speed vph =

√
c20 + v2A0

as shown
in Figure 2.1.

By using the continuity Equation (2.1) and the perturbed velocity com-
ponents (given by Equation 2.31), we have determined numerically the values
of the density and the velocity perturbation for the sausage (n = 0), kink
(n = 1) and fluting (n = 2) modes respectively. We have also matched the
solutions at the boundary of the tube to evidence the motion of the plasma
inside and outside the cylindrical flux tube. The variation of the radial velocity
and the density perturbation (in kg/m3) in the case of fast body and surface
waves are displayed in Figures 2.9 and 2.10, respectively. The same quantities
corresponding to slow body and surface waves are shown in Figures 2.11 and
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2.12.

Figure 2.9: This figure shows the fast body waves for the radial velocity per-
turbation which is shown in black arrows, and the density perturbation (in
kg/m3) which is represented by the colorbar. The columns, from left to right,
represent the quantities corresponding to sausage (n = 0), kink (n = 1) and
fluting (n = 2) modes. The dashed white circle denote the boundary of the
tube in the equilibrium state, and the black solid circle shows the new position
of the tube’s boundary during the perturbation. The images shown in the
two rows are chosen to be in anti-phase, hence, they represent different time
snapshots. The same configuration was used for Figures 2.10 to 2.13

Figures 2.9 to 2.12 clearly show that in the case of fast waves (for both body
or surface waves), the amplitude of the radial velocity is the highest, while for
the two slow waves the value of the radial velocity is lower. As a result, the tube
boundary is more significantly affected in the case of fast waves, while there is
no remarkable effect on the boundary in the case of slow waves. Furthermore,
the fast and slow surface waves have their minimum amplitude of the density
perturbation and the radial velocity at the center of the tube, while they have
their maximum amplitude at the boundary of the tube. In contrast, the slow
body wave have a their amplitude close to zero at the boundary of the tube.

The modes that we described and displayed in these figure are having one
node along the radial direction, i.e. they are the so-called fundamental modes.
If one considers more nodes in the radial direction, we recover the overtones
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Figure 2.10: The same as Figure 2.9, but here we show the fast surface sausage
(n = 0), kink (n = 1) and fluting (n = 2) modes.

Figure 2.11: The same as Figure 2.9, but here we show the slow body sausage
(n = 0), kink (n = 1) and fluting (n = 2) modes.
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Figure 2.12: The same as Figure 2.9, but here we show the slow surface sausage
(n = 0), kink (n = 1) and fluting (n = 2) modes.

of these modes. Our results confirm that body waves will have overtones (as
shown in Figure 2.13). In contrast, surface waves do not possess overtones.
That is obvious in the dispersion diagram (see Figures 2.6 and 2.7) that show
that for a particular value of ka there is only one curve corresponding to
surface waves, while in the case of body modes several curves are visible, each
curve corresponding to a distinct number of radial nodes. Mathematically our
findings are fully justified, as surface waves are described in terms of the Bessel
function In (see Equation 2.34), which does not have an oscillatory pattern,
instead these functions show a monotonic increase, similar to an exponential
function. Body waves, however, are described in terms of the Bessel function
Jn (see Equation 2.35), that has an oscillatory pattern.

2.2.4 Waves in magnetic flux tubes of elliptical cross sec-

tion

The model describing the wave propagation in a cylindrical magnetic flux tube
developed by Edwin and Roberts (1983) can be expanded to a more general
case for studying the propagation of MHD waves in a magnetic waveguide with
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Figure 2.13: The same as Figure 2.9, but here we show the body waves with
more than one radial node, i.e. the overtone modes, corresponding to the
sausage (n = 0), kink (n = 1) and fluting (n = 2) modes.

an elliptical cross-section (see Aldhafeeri et al., 2021, for more details). In this
configuration the dispersion equations for MHD surface and body waves can
be represented as

ρe(k
2
zv

2
Ae − ω2)

Ξ
′E,O
m (|m̃0| , s0)

ΞE,O
m (|m̃0| , s0)

= ρ0(k
2
zv

2
A0
− ω2)

Ψ
′E,O
m (|m̃e| , s0)

ΨE,O
m (|m̃e| , s0)

, (2.37)

ρe(k
2
zv

2
Ae − ω2)

Θ
′E,O
m (m̃0, s0)

ΘE,O
m (m̃0, s0)

= ρ0(k
2
zv

2
A0
− ω2)

Ψ
′E,O
m (|m̃e| , s0)

ΨE,O
m (|m̃e| , s0)

, (2.38)

where the new magneto-acoustic parameters are

m̃2
0 = −σ

2

4
m2

0, m̃2
e = −σ

2

4
m2
e, (2.39)

In the above equations the quantities m2
0 and m2

e are the magneto-acoustic
parameters defined earlier in Equation (2.24), σ is the distance from the center
of the ellipse to its focal points and s0 is the flux tube boundary, which is
defined by the confocal ellipse. Although the form of dispersion relations
(2.37) and (2.38) are rather similar to the case of a waveguide with circular
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cross-section, the functions involved in these equations are Mathieu functions,
rather than Bessel functions. In the above dispersion relations, ΞE,O

m , ΘE,O
m

and ΨE,O
m denote the internal solution for body wave, the internal solution for

surface wave and the external solution, respectively. The superscripts E and
O denote the even and odd solutions and the prime denotes the derivative of
the Mathieu function with respect to the confocal elliptic variable, s.

The study by Aldhafeeri et al. (2021) revealed that the higher order modes
are strongly influenced by the change in the eccentricity of the waveguide. It
was also found that the cross-sectional shape introduces significant changes in
the behaviour of waves, as this depends on the polarisation along the major
or the minor axis of the ellipse. Their study provided a comparison about the
effect on the dispersion curves as the eccentricity (ε), defined as ε = 1/ cosh(s0),
increases, i.e. the main axis expands and the minor axis contracts, as shown in
their dispersion curve in Figures 2.14 and 2.15. By comparing the dispersion
curves of the elliptical flux tube with the cylindrical flux tube, which we have
shown earlier in Figures 2.6 and 2.7, we can easily notice that the dispersion
curve for the kink mode in the elliptical flux tube is divided into two curves,
based on the polarisation direction of the wave. In the cylindrical model, given
the rotational symmetry of the shape, such difference is not present.

The results by Aldhafeeri et al. (2021) also show that under coronal con-
ditions (their Figure 2.15), with the increase of ε, the phase speed (vph) of the
fast body modes varies depending on the mode’s polarisation direction. They
have also shown the kink mode with a polarisation along the main axis has a
lower frequency compared to the mode propagating along the minor axis. For
the slow body modes the opposite effect takes place, i.e. the phase speed of
the modes that is polarised along the main axis is higher than the phase speed
of the wave polarised along the minor axis (Aldhafeeri et al., 2021).

Moreover, the dispersion curve under photospheric condition is also effected
as ε increases as shown in Figure 2.14. The study by Aldhafeeri et al. (2021)
has shown that the photospheric slow body wave has the same behaviour as
under the coronal condition. In contrast, fast surface waves have an opposite
behaviour than fast body wave under coronal condition. The fast surface kink
mode that is polarised along the main axis has higher frequency than that one
polarised along the minor axis.
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Figure 2.14: This figure shows the dispersion curves under the photospheric
condition in a waveguide with elliptical cross-section. Every column represents
the curves with a different value of eccentricity (ε) of the cross section of the
magnetic flux tube. The left column corresponds to ε = 0.65 (s0 = 0.99), i.e.
the cross section is a moderate ellipse. The right column shows the dispersion
curves for waves in an elliptical waveguide with ε = 0.84 (s0 = 0.60). The
bottom panels are showing a zoom-in of the region for slow waves. Here the
red curves represent the sausage modes, and the blue curves represent the kink
modes polarised along the major axis. The dispersion curve of kink modes
polarised along the minor axis is represented by the magenta curve. Here
vA0 is the Alfvén speed, cS is the sound speed and cT0 is the tube speed. The
quantities with index i and e refer to internal and external values, respectively.
Credit: Aldhafeeri et al. (2021)

2.2.5 Waves in magnetic irregular cross-sectional flux tube

Observations show that in the reality the cross-section of sunspots is far from
being regular. Comparing the solutions of the dispersion relations for regular
circular and elliptical cross-sections reveal that the properties of waves and
their dispersion curves are sensitive to the transversal geometry of the waveg-
uide (Aldhafeeri et al., 2021). In order to determine the property of waves
and their oscillatory patterns in waveguides with irregular cross-section a nu-
merical approach was used to determine the eigenfunctions and the associated
eigenvalues. For this problem, we do not assume any preferred geometrical
shape of the umbra. Therefore, we used a Cartesian coordinate system, as-
suming the photospheric level to be the xy-plane and the vertical direction
to be along the vertical z axis. The spatial structure of the eigenfunctions
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Figure 2.15: The same as Figure 2.14, but here the dispersion curves are
plotted under the coronal condition. Credit: Aldhafeeri et al. (2021)

is physically constrained by the cross-sectional shape of the waveguide. The
governing equation of the longitudinal velocity perturbation, vz, was derived
and solved by using the observed cross-sectional shape, where the shape is ob-
tained by taking the threshold level of the umbral intensity and set vz = 0 at
the umbra/penumbra boundary to be consistent with the observational data
(see, Stangalini et al., 2022).

By assuming linear MHD perturbations, the time-independent Helmholtz
equation has been derived for the vertical component of velocity perturbation,
vz, of the form

∂2vz
∂x2

+
∂2vz
∂y2
−m2

0vz = 0, (2.40)

where m2
0 is the eigenvalue defined by Equation (2.24). Equation (2.40) was

solved by assuming Dirichlet-type boundary condition, i.e. at the boundary of
the magnetic waveguide the z-component of the velocity perturbation vanishes.
With this type of boundary condition the numerical solution describes only
slow body modes, which constitutes a limitation of this model. In order to
apply the above approach to observations (line intensity), it is more convenient
to write Eq. 2.40 in terms of density perturbation, ρ. The relationship between
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the density and longitudinal velocity component is simply

vz =
kzc

2
i

ωρ0
ρ, (2.41)

where ρ0 is the unperturbed density that corresponds to the equilibrium state
(Aldhafeeri et al., 2021). It follows from Equation (2.41) that the evolution
of the density perturbation is governed by a similar Helmholtz equation. In
general, all the dominant compressive variables are proportional to each other,
therefore they can be assumed to be governed by a Helmholtz-type equation.

In Figure 2.16, we show the slow body modes of the three different models
of the flux tube that we have introduced in this chapter. It is remarkable, in
the case of the fundamental modes (both, sausage and kink slow body modes),
the change in the shape of the cross-section (from cylindrical, to elliptical and,
finally, to an irregular shape) does not introduce significant changes in the
spatial structure of the modes. However, the higher-order modes are affected
by the change in the shape of the cross-section. Therefore, in chapter 5, we
compare the observed modes from sunspots with these models to see which
model has a good agreement with the observed modes.
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Figure 2.16: This figure shows the slow body modes in three different models
of the cross-section shapes. The first row displays the modes in the cylindrical
model (see section 2.2.3), the second row displays the modes in the elliptical
model (see section 2.2.4) and the third row shows the modes in the model
that corresponds to the realistic shape of the umbral boundary (see section
2.2.5). Whereas, the columns from left to right are displaying the fundamental
sausage mode, the fundamental kink mode, the fluting mode (n = 2) and the
fluting mode (n = 3). The colorbars display the density perturbation.
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CHAPTER 3

Decomposition Techniques and an Application on
a Numerical Simulation Data

Dynamics of natural systems are often complicated and strongly nonlinear,
making comprehension challenging since the dynamics and complexity of sys-
tems are frequently entangled. There are situations when it is possible to
recognise the dynamics of the system by using some nonlinear equations, which
is a non-trivial process (e.g. the evolution of shocks and solitons, whose evo-
lution in space and time are given by nonlinear partial differential equations
that could be solved using various techniques). There has been a lot of ef-
fort invested over the last several decades to create data-driven algorithms for
extracting spatial and temporal coherent features.

Sunspots are complex structures not only because they have an inhomoge-
neous density and magnetic field distribution, but also because the dynamics
in these enormous magnetic features is driven by external mechanisms that
are not visible. Sunspots are also structures whose transvesal shape in vary-
ing in time, affecting the nature and properties of waves. In order to resolve
this complexity we applied the Proper Orthogonal Decomposition (POD) and
Dynamic Mode Decomposition (DMD) techniques, whose combined diagnostic
power will be used in the following chapters to detect the dominant MHD wave
modes from solar sunspot datasets.

The POD technique determines spatially orthogonal patterns from time-
series dataset. Similarly the DMD technique determines temporally orthogonal
patterns from time-series dataset. The POD and DMD are frequently used in
granular flows and fluid mechanics (Murray and Ukeiley, 2007; Berry et al.,
2017; Higham et al., 2017; Higham and Brevis, 2018; Higham et al., 2020, 2021).
In this chapter, we will present in details the POD and DMD techniques in
sections 3.1 and 3.2 based on the description by Higham et al. (2018). In
section 3.3, the synthetic data will be obtained by combining different MHD
modes, which we discussed earlier in chapter 2. Then the POD and DMD will
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be applied on the generated dataset to recover the modes individually. This
step is considered as a test case to check whether the techniques are able to
recover the MHD wave modes before applying them to real solar data.

3.1 Proper Orthogonal Decomposition (POD)

The POD technique has been known for more than a century since the pi-
oneering work by Pearson (1901), who aimed to develop a technique to be a
mechanical equivalent of the principal axis theorem. After that, Lumley (1967)
developed POD as a mathematical approach in fluid dynamics for identifying
coherent patterns in turbulent flow fields. POD is known by a number of
names in the literature, depending on the area of application, e.g. principal
component analysis (PCA) and Hotelling analysis. The POD approach enables
spatially orthogonal patterns to be determined from signals, with number of
modes equal the number of the snapshots of the time series. As a result,
one of the most difficult aspects of this technique is determining which of the
POD modes have a physical significance and their identification with the MHD
modes in the umbral region of a sunspot. On the other hand, the POD will
also provide straightforward ranking criteria based on the contribution of the
modes to the signal’s variation.

3.1.1 The mathematical algorithm of the POD

Consider a sequential dataset having a spatial dimension of X × Y in a time
domain of size T , identified as the snapshots of our time series. Each of these
snapshots is represented as a column in matrix W ∈ RN×T , where N = XY .
In the applications of higher-resolutions datasets on fluid dynamics and also on
the upcoming applications in solar physics N is commonly much larger than
T , i.e. N � T , which means that in the matrixW the number of rows is much
higher than the number of columns. Each column of W will be defined as wi
with i = 1...T such that

W = {w1, w2, ...wT}. (3.1)

There are three main approaches to perform POD on a dataset. The first
one is the Spatial (Classical) POD method. It is performed by computing
the eigenvalues and the eigenvectors of WW T , where T is the transpose ma-
trix. The eigenvectors will provide the POD mode, while the eigenvalues will
provides the modes contribution. The second approach is the Method of Snap-
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shots, which analyzing the smaller eigenvalue problem by by computing the
eigenvalues and the eigenvectors of W TW (Sirovich, 1987). The third ap-
proach, which one that used in this Thesis, is to obtain the POD ofW by using
the optimum low rank approximation. This is known as the Singular Value
Decomposition (SVD, Eckart and Young, 1936). The SVD can be applied to
a rectangular matrix to find the left and right singular vectors. Applying the
SVD on W , we obtain

W ≡ ΦSC∗. (3.2)

This output of decomposition in the above equation gives the spatial struc-
ture of each mode, where the POD modes are presented as columns of the
matrix Φ ∈ RN×T , i.e. φi with i = 1...T and these modes are orthogonal to
each other. The size of every φi matrix is N × 1, which means that they need
to be reorganised to have same size as the original spatial domain, (X × Y ) of
original the dataset in order to display the spatial structure of the mode. The
columns of the matrix C ∈ RT×T represent the temporal evolution of the POD
modes. Hence, the product of the X×Y two-dimensional spatially orthogonal
eigenfunctions and their corresponding one-dimensional time coefficients is the
spatial and temporal output of the POD shown here. These modes can be peri-
odic or non-periodic and their amplitude can also vary with time as the POD
has no restriction on the time coefficients. Moreover, the left and the right
singular vectors, Φ and C in Equation (3.2), are identical to the eigenvectors
of WW T and W TW , respectively (Taira et al., 2017).

The POD modes have a clear ranking in terms of their contribution to
the total variance of the snapshot series, and that ranking is given by the
diagonal matrix S ∈ RT×T , with the diagonal elements λ of the matrix S. The
contribution to the total variance of each POD modes comes from the vector

λ =
diag(S)2

N − 1
. (3.3)

3.2 Dynamic Mode Decomposition (DMD)

The DMD technique was initially used over a decade ago by Schmid (2010).
The DMD a data-driven algorithm for extracting the dynamic information of
a flow created by numerical simulations or a measurable physical experiment
(Hemati et al., 2014). DMD is a widely used technique in the field of fluid
mechanics, e.g. jet flows (Rowley et al., 2009; Jovanović et al., 2014), visco-
elastic fluid flows (Grilli et al., 2013) and bluff body flows (Bagheri, 2013).
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The DMD technique allows the determination of temporally orthogonal
patterns of the signal with a pure frequency. Hence, the technique can extract
information about the coherent spatial structure of observed MHD wave modes
if the modes have distinct frequencies. The recovered DMD mode provides the
spatial structure of the mode, while the corresponding eigenvalues provide
information about the mode’s oscillation frequency. However, the DMD does
not provide any ranking of the modes in any way.

3.2.1 The mathematical algorithm of DMD

To apply the DMD approach, the time snapshots must be structured in columns
in the same way as discussed earlier in the case of the POD (Section 3.1), but
here we use two different matrices defined as

WA = {w1, w2, ...wτ} and WB = {w2, w3, ...wT}. (3.4)

Here τ = (T − 1), and WA is starting from the first column of W up to the
last but one column of W and WB starts from the second column up to the
last column of W , i.e. WB is shifted by a snapshot compared to WA.

The matrices WA and WB are related by a linear operator A ∈ CN×N such
that

WB = AWA. (3.5)

The DMD is based on estimating the eigenvalues and eigenvectors of the linear
operator A rather than calculating them precisely since A is very large for
most practical applications. The estimating is based on reducing A ∈ CN×N

to be Ã ∈ CT×T and then calculating the eigenvalues and eigenvectors of Ã.
Therefore, the matrix WA is decomposed using SVD as

WA = Φ̃S̃C̃∗ (3.6)

and substituted in Equation (3.5) to give

WB = AΦ̃S̃C̃∗, (3.7)

and hence,
Φ̃∗WBC̃S̃−1 = Φ̃∗AΦ̃. (3.8)

From this we define
Ã = Φ̃∗AΦ̃, (3.9)
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where Ã ∈ Cτ×τ is the optimal low-dimensional representation of A, (note that
τ � N). Hence we can calculate the complex eigenvalues, µi, and associated
eigenvectors, zi, of Ã, where i = 1...τ .

Now, the eigenvectors, zi, of the reduced matrix Ã will not have a size
as the original spatial dimension. Therefore, according to Schmid (2010), a
Vandermonde expansion of the complex eigenvalues is created to obtain a
robust set of eigenvectors and that can be defined as

Qi,j = µj−1i , (3.10)

where i = 1...τ and j = 1...τ . When this procedure is accomplished, the spatial
structure of the DMD modes is acquired by forming

Ψ = WAQ∗, (3.11)

and the distinct frequencies (fi) associated with each these modes (i) are

fi = fsarg(zi)/2π, (3.12)

where fs is the sampling frequency, the number of samples per second.
The DMD technique only provides the spatial structure of the modes with

their associated frequency, and it does not provide a clear ranking of the modes.
This creates a difficulty in distinguishing and identifying the modes and the
power they have.

Therefore, by following the approach by Higham et al. (2018), modes are
identified based on their contribution to the variance via POD. This step is
followed by the calculation of a Fourier Power Spectra of the POD time coeffi-
cients associated with the dominant modes. The power spectrum is then used
to determine the dominant frequency or frequencies, in case of intertwined
modes, which is then used to identify the spatial structure associated to in-
dividual frequencies based on the DMD results. If there is no exact match
between frequencies, the DMD modes closer to the target frequency are then
selected.
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Mode number MHD wave type Amplitude Frequency [Hz]

1 Slow body sausage 1 0.05
2 Slow surface sausage 7 0.05
3 Fast surface kink 9 0.07
4 Slow body fluting (n = 2) 4 0.1
5 Slow surface fluting (n = 3) 3 0.15

Table 3.1: The modes that constitute the combined synthetic data for the
validation of the POD and DMD techniques. The above information was
collected from a simulation of waves in a theoretical cylindrical waveguide
where the dispersion relations are given by Equations (2.34) and (2.35).

3.3 POD and DMD applied to a synthetic nu-

merical dataset

Before we apply the POD and DMD techniques on an actual sunspot obser-
vation dataset, we will need to test the algorithms by applying them on a
synthetic data that contains a combination of known MHD wave modes. In
this section, we will generate an artificial dataset by combining several MHD
wave modes and then apply the techniques of POD and DMD to see whether
they are able to recover every single mode.

The synthetic dataset has been generated by combining five MHD wave
modes recovered from the density perturbation collected from a cross cut in
the cylindrical waveguide corresponding to a the theoretical model (see Section
2.2.3). The information about the selected modes are shown in Table 3.1, and
the spatial structure of the selected modes are shown in Figure 3.1. The
dataset has been taken over the course of 100 seconds with time cadence of
0.1 seconds, i.e. the data has 1000 snapshots. The radius of the magnetic flux
tube was taken to be r = 4 m, and the spatial cadence is taken to be 0.1 m
for every pixel. In the dataset, the selected modes are taken with different
amplitudes and frequencies, except two modes sharing the same frequency
(slow sausage body and surface modes) to validate the ability of POD and
DMD to distinguish them.

3.3.1 Results

The POD and DMD analysis have been applied on the generated synthetic
dataset presented above, by following the algorithms that were previously de-
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Figure 3.1: The spatial structure of the MHD waves that have been combined
in the generated synthetic dataset. These modes are ranked according to their
number in Table 3.1. The bottom right panel shows an arbitrary snapshot
resulted from the combination of the modes.

scribed in Sections 3.1.1 and 3.2.1.
As mentioned before, the POD decomposes modes in terms of their orthog-

onality in space and it provides a clear ranking of the POD modes in terms
of their contribution to the total variance of the signal. Hence, the number of
POD modes that we expect to obtain is identical with the number of snapshots
of the dataset, and their ranking is shown in Figure 3.2.

The spatial structure of the POD modes are shown in Figure 3.3, that
proves the power and capability of the POD to recover all the 5 modes, even
the modes that are sharing the same frequency. The reason for that, is the
governing function in the radial direction of the theoretical model in the cylin-
drical magnetic flux tube are Bessel functions, which are orthogonal to each
other, and hence as the POD identifies modes in terms of their orthogonal-
ity in space it has recovered all the 5 modes. Moreover, in Figure 3.2, it is
clear that there is a gap in the power corresponding the first 4 modes and
the fifth one that can be explained by taking into account that despite the
slow surface sausage mode and the slow body sausage mode have the same
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Figure 3.2: The power of the POD modes contributing to the signal, and that
obtained from Equation (3.3). The left panel shows all modes recovered using
the POD, while the right panel shows a zoom-in region for the first 10 modes
(in logarithmic scale).

frequency, their amplitude is different, making the slow body sausage mode
less important (after all, the energy of a mode is proportional to the square of
their amplitude).

From the possible 1000 POD modes we select our 5 modes, the rest of the
modes are having weightless contribution to the signal as shown in Figure 3.2.
In addition, the spatial structure of POD 6 (and subsequent modes) displays
an unrecognizable pattern with an insignificant contribution since we only have
5 modes in the synthetic dataset, as shown in Figure 3.3 for POD 6.

An additional output of the POD is the temporal evaluation of the POD
modes. Hence, the power spectrum is calculated to obtain the frequency of
the POD modes as shown in Figure 3.4. This power spectrum shows that the
POD 2 and POD 5 modes are sharing the same frequency. Furthermore, it is
clear that there is an agreement between the power of the POD modes and
their frequency with the input of MHD modes in Table 3.1.

Finally, in order to obtain the spatial and temporal output of the POD
modes, we can take the product of the spatial structure of the POD modes, as
shown in Figure 3.3, the diagonal elements, λ, which are shown in Figure 3.2
and the one-dimensional time coefficients of the mode.

Regarding the identification of modes using DMD, this technique assumes
a temporal orthogonality, i.e. different modes must not have identical frequen-
cies. As the DMD does not rank the mode in anyway, the challenge is to
identify the relevant modes as they are spread randomly among the 999 DMD
modes. Therefore, following the approach developed by Higham et al. (2018),
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Figure 3.3: This figure shows the spatial structure of the first 6 POD modes.

we have identified our target frequencies from the power spectra of the POD
time coefficients associated with the dominant modes, where the dominant fre-
quencies are shown in Figure 3.4. Hence, the spatial structure of the DMD
modes that are associated with the dominant frequencies are shown in Figure
3.5 and it is clear that the DMD has recovered the modes in terms of their
frequencies, i.e. it was not able to recover all the five modes as two of them
are sharing the same frequency (0.05 Hz). The DMD mode that correspond
to the frequency of 0.05 Hz is a superposition of the slow body sausage mode
and the slow surface mode, however, the DMD mode correspond to the slow
surface sausage mode, as this is the dominant mode in that frequency.
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Figure 3.4: This figure shows the power spectra of the temporal evolution of the
first 6 POD modes. These time evaluations are obtained from the expression
of S∗ in Equation (3.2).

Figure 3.5: This figure shows the spatial structure of the 4 DMD modes, While
the corresponding frequency for each DMD mode is shown in the title of each
panel.
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3.4 Summary

The present Chapter provides a detailed description of the POD and DMD
decomposition techniques that will be used later in this Thesis. To validate
the two techniques, these were applied to a set of synthetic data recovered
from a theoretical model of wave propagation in a magnetic flux tube. The
used dataset contained a superposition of possible five guided MHD modes of
different types. This test case also provides the reference level for our mode
identification carried out for realistic waveguides.

Our results show the remarkable capability of the POD and DMD tech-
niques to recover the mode. The POD has recovered all 5 modes that where
combined, even modes sharing same frequency, as it assumes the orthogonal-
ity in space. On the other hand, since the DMD assumes the orthogonality in
time, it has recovered only 4 modes as two modes share the same frequency.
Nevertheless, the technique showed the pattern of the dominant mode.

In the following Chapter, we will use the POD and DMD on an actual
data originated from the observation of a sunspot, that has previously been
analysed by Jess et al. (2017) using Fourier analysis filtering to detect the
rotating motion of the slow body kink mode. Using the POD and DMD, we
will aim to recover their identified mode, that can be considered as a further
test to our techniques. The challenge that will need to face is that, unlike the
ideal synthetic numerical dataset we used in this Chapter, in reality the realistic
observations contains noisy data, and the resulting signal is complicated.
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CHAPTER 4

Proper Orthogonal and Dynamic Mode Decom-
position of Sunspot Data 1

4.1 Introduction

To the present day the majority of research on sunspot oscillations has been
carried out by Fourier transforming the observational data to produce, for
example, power spectra, either on a pixel by pixel basis or by integrating
over a specific Region of Interest (ROI). Although such analysis can provide
valuable information for the identification of coherent structures, e.g. MHD
wave modes, in the temporal and spatial domain across a particular ROI, the
basic Fourier transform approach has its limitations. Despite this, one can fine
tune a Fourier filter in the spatial and temporal domains to try and identify
particular MHD wave modes, as was presented by Jess et al. (2017) in order
to detect a slow kink body mode in a sunspot umbra.

The aim of the research presented in this chapter is to apply the more
advanced techniques of POD and DMD to identify low order MHD wave modes
as coherent oscillations across the sunspot umbra, both in the spatial and
temporal domains, using the same sunspot data as Jess et al. (2013, 2016,
2017).

4.2 Observation

The sunspot observation employed in this Chapter was acquired using the
HARDcam, which is an upgrade to the Rapid Oscillations in the Solar Atmo-
sphere (ROSA; Jess et al., 2010) imaging system available as a common-user
instrument at the National Solar Observatory’s Dunn Solar Telescope (DST).
Each observational image sequence was acquired through a narrowband 0.25 Å

1This Chapter is based on the study of Albidah et al. (2021).
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Figure 4.1: A snapshot from the Hα time series (left panel) with the spatial
scale in pixels (one pixel has a width of 0.138′′ which is approximately 100 km
on the surface of the Sun). The right panel shows the mean intensity of the
time series, the colourbar displays the magnitude of the mean time series, the
solid black line shows umbra/penumbra boundary (intensity threshold level
0.85) and the blue box (101 × 101 pixels) shows the region where our POD
and DMD analysis is applied.

(full-width at half-maximum) filter centered on the chromospheric Hα absorp-
tion line at 6562.808 Å. The sunspot formed part of NOAA 11366 active region,
which was located at heliocentric coordinates (356′′, 305′′), or N18W22 in the
conventional heliographic coordinate system. A pixel size of 0 .′′138 per pixel
was chosen to provide a field-of-view size equal to 71′′ × 71′′. Images were ac-
quired over the course of 75 minutes (16:10 – 17:25 UT) at a cadence of 1.78 s,
i.e. the data has 2528 snapshots.

The dataset has previously been employed for studies of running penumbral
waves Jess et al. (2013), connections between photospheric and coronal mag-
netic fields Jess et al. (2016) and in the detection of an umbral kink mode Jess
et al. (2017) due to the excellent seeing conditions and the highly circularly
symmetric shape of the sunspot umbra. A sample Hα image of the sunspot is
displayed in the left panel of Figure 4.1.

4.3 MHD wave modes identification and discus-

sion

Our goal is to use POD and DMD in combination to identify coherent oscil-
lations across the sunspot’s umbra and compare these modes with the MHD
wave modes of a cylindrical magnetic flux tube predicted from theory.
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The blue box shown on the right panel of Figure 4.1 delimitates the par-
ticular region of interest (ROI) of the sunspot umbra we are going to study.
Firstly, this ROI will be analysed by using the POD technique. As mentioned
earlier in Chapter 3, the number of modes that will be recovered from apply-
ing POD is the same as the number of snapshots in the time series (i.e. 2528
mode). However, POD ranks the modes based on their contribution to the
overall variance, while their contribution is shown in the left panel of Figure
4.2.
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Figure 4.2: The left panel shows the power of all POD modes contributing
to the signal (in log scale in y-axis). The right panel displays the power
spectral density (PSD) of the time coefficients of the first 20 POD modes (in
log scale). The PSD shows peaks between frequencies 4.3 mHz and 6.5 mHz
(corresponding to periods of 153 - 232s).

This step is followed by the calculation of the power spectral density (PSD)
of the associated POD time coefficients. The PSD of the first 20 modes dis-
played in the right panel of Figure 4.2 show a series of frequency peaks between
4.3 mHz and 6.5 mHz. The PSD of the individual POD modes are then used to
determine the dominant frequency, or frequencies if there are a mix of frequen-
cies, associated with a particular POD mode, so that this information could
be applied to determine the coherent spatial structure of modes with distinct
frequencies using DMD. If there is no exact match between frequencies, the
DMD mode closest to the target frequency is selected.

For illustrative purposes we will concentrate on the first branches of the
sausage and kink slow body modes, i.e. modes with only one radial node
occurring at the umbra/penumbra boundary. The first POD mode shows the
clear azimuthal symmetry of a slow body sausage mode as displayed in the
first column in Figure 4.3, with a PSD peak at 4.9 mHz as shown in the left
panel of Figure 4.5. The DMD mode that corresponds to the frequency of 4.8
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Figure 4.3: The first column displays the spatial structure of the first POD
mode with peak power at f = 4.9 mHz. The second column displays the spatial
structure of the DMD mode that corresponds to the frequency of f = 4.8
mHz. The third column shows the density perturbation of a slow body sausage
mode in a cylindrical magnetic flux tube and the dashed circle shows the
boundary. In the first and the second columns the solid black line stands for
the umbra/penumbra boundary as shown in the right panel of Figure 4.1 and
the dashed circle is used to compare the observations with the flux tube in
the third column. The images in the two rows are chosen to be in anti-phase,
hence, they represent different time snapshots.

.

mHz is shown in the second column in Figure 4.3. The third column displays
the density perturbation of the slow body sausage mode from the theoretical
cylindrical magnetic flux tube model.

The use of predictions of the theoretical model is important for comparison
since the MHD wave modes in a cylindrical flux tube are spatially orthogonal.
As we specified earlier, POD defines modes by spatial orthogonality. Therefore,
in the approximately circular umbra we study, the POD is expected to perform
well. What is more remarkable is that the DMD technique, which does not
have any such criteria, still manages to identify the sausage mode. From
both, the POD and DMD analysis, it is clear that there is strong oscillatory
power in the penumbra at 4.8 mHz and the penumbral filaments can clearly
be identified. Obviously, the idealised cylindrical magnetic flux tube model
cannot recreate this oscillatory behaviour since it assumes a simple quiescent
environment without complex fibril structuring. In addition, it is important
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Figure 4.4: The first column displays the spatial structure of the 13th POD
mode with peak power at f = 6 mHz. The second column displays the spatial
structure of the DMD mode that corresponds to the same frequency of f = 6
mHz. The third column shows the density perturbation of a slow body kink
mode in a cylindrical magnetic flux tube, with the dashed circle indicating
the boundary of the tube. In the first and the second columns the solid black
line shows the umbra/penumbra boundary as presented in the right panel of
Figure 4.1 and the dashed circle is to compare the observations with the flux
tube in the third column. The images in the two rows of this figure are chosen
to be in anti-phase, hence, they represent different time snapshots.

.

to state that even within the umbra, disagreement between observations and
the eigenmodes of a magnetic cylinder could simply be due to the fact that
the observed oscillations are being continually forced oscillations that contain
the oscillatory footprint of the driver.

The next POD component that can be interpreted as a physical MHD
wave is the 13th mode which has the azimuthal asymmetry of a slow body
kink mode, as shown in the first column of Figure 4.4, with a peak at 6 mHz
(the right panel of Figure 4.5). The DMD mode with frequency of 6 mHz
is displayed in the second column in Figure 4.4. Again, for comparison the
slow kink body mode from cylindrical flux tube theory is shown in the third
column. Here we can compare these results with the previous work of (Jess
et al., 2017). These authors identified a kink mode rotating in the azimuthal
direction by implementing a k − ω Fourier filter (0.45 − 0.90 arcsec−1 and
5−6.3 mHz). Hence, the frequency of the kink mode from the POD and DMD
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analysis is certainly in the same frequency range as the filter applied by Jess
et al. (2017). Our analysis reveals that the time coefficients of the POD modes
are almost sinusoidal. This is remarkable since POD puts no such condition on
these coefficients. Hence, Fourier analysis, which has a sinusoidal basis in the
temporal domain, in retrospect was a valid approach. The use of the Fourier
analysis is often problematic since it assumes a sinusoidal basis in the spatial
domain. However, in the cylindrical model the basis functions in the radial
direction are Bessel functions that can be reduced to trigonometric functions
under strict conditions (see Edwin and Roberts (1983)). The strength of POD
is that it uses a spatially orthogonal basis, regardless of the geometry of the
observed waveguide. The other important advantage of both POD and DMD
over Fourier analysis is that these methods cross-correlate individual pixels
in the ROI, in the spatial and temporal domain, respectively. This ability
is a distinct advantage in identifying a coherent oscillations across the whole
umbra. In agreement with the sausage mode identification in Figure 4.3, the
spatial structure of the POD and DMD modes in the first and second columns
of Figure 4.4 is very similar even though the DMD places no restriction on the
mode being orthogonal. This further strengthens the argument that the kink
mode interpretation of the identified wave is indeed physical.
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Figure 4.5: The left panel displays the PSD of POD 1 mode and it has a peak
at 4.9 mHz, while the right panel displays the PSD of POD 13 mode with a a
peak at 6 mHz.

Here we would like to investigate the apparent rotational motion of the kink
mode detected by Jess et al. (2017), who constructed a time-azimuth diagram
around the circumference of the umbra and estimated an angular velocity of
approximately 2 deg s−1 and a periodicity of about 170 s. Physically, the ro-
tational motion could be explained by having either (i) a kink mode that is
standing in the radial direction but propagating in the azimuthal direction, or
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(ii) it could be result of the superpostion of two approximately perpendicular
kink modes (both standing in the radial and azimuthal directions). Before at-
tempting to recover this rotational motion with the POD and DMD techniques
we should emphasise that the filtering process performed by Jess et al. (2017)
crudely oversimplified the complexity of the swirling "washing machine" mo-
tion in the original signal. In particular, the 40 s wide temporal filter could
contain at least least 7 DMD modes. Spatially, the filter effectively divided the
umbra into quadrants. To recreate the apparent rotational motion (or approx-
imate circular polarisation) with POD we need to superimpose at least two
spatially perpendicular kink modes with similar, but not necessarily identical,
periods. From our analysis this requires the superposition of POD 10 (the left
panel of Figure 4.6 and POD 13 shown on the first column on Figure 4.4).
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Figure 4.6: Left panel displays POD 10, which is orthogonal in space to POD
13 that is shown on the first column of Figure 4.4. The right panel shows the
DMD mode with a frequency of 5.4 mHz and it is approximately orthogonal
in space to the DMD mode with a frequency of 6 mHz displayed in the second
column of Figure 4.4. The solid black circle displays the path of the time-
azimuth diagram in Figure 4.7.

From the left panel of Figure 4.7 it is clear that the PSD of POD 10 has
a peak at 5.4 mHz, while the PSD of POD 13 has a peak at 6 mHz (the right
panel of Figure 4.5), with both frequencies within the temporal filter chosen
by Jess et al. (2017). We can also recreate this rotational motion by superim-
posing at least two DMD modes. Although DMD modes are not defined to be
orthogonal in space, we still find two examples of kink modes using DMD that
are approximately perpendicular to each other. These modes correspond to a
frequency of 5.4 mHz (see the right panel of Figure 4.6) and 6 mHz (which
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we have mentioned earlier and shown on the second column of Figure 4.4).
A similar time-azimuth analysis to Jess et al. (2017) was performed on the
superposition of these two DMD modes along the solid black circle shown on
the right panel of Figure 4.6, where the signal was strongest. This resulted in
an angular velocity of about 2 deg s−1 and periodicity of approximately 170
s (see the right panel of Figure 4.7), consistent with the result of Jess et al.
(2017).
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Figure 4.7: The left panel displays the PSD of POD 10. It has a peak at 5.4
mHz. The right panel shows the time-azimuth diagram after the superposition
of two approximately spatially perpendicular kink modes identified with DMD.
The white dashed line on the right panel gives an apparent angular velocity of
about 2 deg s−1 consistent with the result of Jess et al. (2017).

To compare the results of the theoretical cylindrical model with the POD
modes from the observational data, we performed the cross-correlation analysis
(Di Stefano et al., 2005; Tahmasebi et al., 2012), calculated on a pixel-by-pixel
basis for the sausage (see Figure 4.3) and kink (see Figure 4.4) modes, as shown
on Figure 4.8. The general mathematical formula to indicate the elements of
the two dimensional cross-correlation of two matrices X (of size M ×N) and
H (of size P ×Q) is described as

C(k, l) =
M−1∑
m=0

N−1∑
n=0

X(m,n)H(m− k, n− l) where
−(P − 1) ≤ k ≤M − 1

−(Q− 1) ≤ l ≤ N − 1.

(4.1)
The above equation describes the elements of the correlation matrix C, where
the size of C is (M +P − 1) by (N +Q− 1). However, in our analysis we have
calculated the correlation on a (pixel-by-pixel) basis. Therefore, the output of
the correlation will be the product of the two values of the two pixels. The
result of the correlation is a number between 1 and -1, where 1 means that
the pixels have a linear correlation while -1 denotes a linear anti-correlation.
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Certainly, there is a better correlation for the sausage than the kink mode,
however, this result is not surprising given that the signal for the kink mode
is weaker than the signal corresponding to the sausage mode (see Figures 4.4
and 4.3). Nevertheless, the kink mode stills shows a good correlation in the
regions where its amplitude is maximum (see Figure 4.8).
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Figure 4.8: The left panel displays the cross-correlation between theoretically
constructed and observationally detected sausage mode shown in Figure 4.3
and the kink mode shown in Figure 4.4. The positive/negative numbers in the
colourbar denote correlation/anti-correlation.

4.4 Summary and Conclusions

Each method used to identify coherent oscillations across sunspots and pores
has its particular strengths and weaknesses. We have demonstrated here that a
more considered and multi-faceted approach can be more robust in pinpointing
modes that are actually physical. For example, the analysis by Jess et al. (2017)
required fine tuning of the Fourier filters in the temporal and spatial domain
to reveal the umbral kink mode confirmed by our POD and DMD analysis.
In contrast, POD requires no such filtering, and filtering would completely
skew the results. The inherent problem with POD is the identification of real
physical modes, as this method produces as many modes as there are time
snapshots. This is where further analysis is required, as demonstrated in this
study and previously by Higham et al. (2018). By calculating the PSD of
each POD mode the dominant frequency (or frequencies) of each mode can
be identified and these can be paired with the unique frequencies associated
each DMD mode allowing for comparison between the spatial structure of
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the modes produced by both methods. If there is agreement between the
spatial structure of both the POD and DMD modes (up to some specified
accuracy), then this provides compelling evidence that the mode is indeed
physical. The results of the combined approach of using POD and DMD have
been used to identify more than one MHD wave mode in a sunspot and the
results were published (see, Albidah et al., 2021). We, therefore, suggest that
in combination, POD and DMD could prove to be indispensable tools for
decomposing the many possible MHD wave modes that could be excited in
sunspots and pores, especially with the advent of high resolution observations
provided by present and near future ground- and space-based observatories
(e.g. Dunn Solar Telescope (DST), Swedish Solar Telescope (SST), The Daniel
K. Inouye Solar Telescope (DKIST), etc).
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CHAPTER 5

Magnetohydrodynamic wave mode identification
in circular and elliptical sunspot umbrae: evi-
dence for high order modes 1

5.1 Introduction

One of the most rapidly emerging disciplines in solar physics is the study of
MHD waves and oscillations in the solar atmosphere thanks to the high reso-
lution and high cadence observations of the last few decades. Observed prop-
erties of waves and oscillations help in determining the properties of plasma
and magnetic field that cannot be directly or indirectly measured. Lower order
modes (sausage and kink) are continuously observed in solar magnetic struc-
tures, and their literature is vast. However, higher order modes, i.e. fluting
modes were so far elusive and their existence was purely hypothetical.

The existence of higher order modes was so far mostly predicted theoret-
ically (see e.g. Edwin and Roberts, 1983) and the very few studies of these
modes used indirect methods to show their existence. Based on the observa-
tions obtained with the help of the Fast Imaging Solar Spectrograph installed
at the 1.6 m Goode Solar Telescope (GST), Kang et al. (2019) suggested that
the observed two-armed spiral wave patterns in pores could be explained in
terms of a superposition of slow sausage body mode (corresponding to an
azimuthal wavenumber n = 0) and a flutting mode (n = 2). However, corre-
lation analysis between numerically simulated and observed modes to validate
obtained results was not included in their study.

In this chapter we apply the techniques of POD and DMD on two data-
sets associated with the sunspots. The first one has a circular cross-sectional
shape (that we have used in the previous chapter to identify the fundamental
slow body sausage and kink modes), and we aim to expand our analysis to see

1This Chapter is based on the study of Albidah et al. (2022)
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whether there are different modes are present, while the second sunspot has
an elliptical cross-sectional shape. The present chapter also investigates how
reliable are the POD and DMD methods in the identification of the surface
and the body mode waveguides of different cross-sectional shape. The oscilla-
tory pattern of the observed modes are compared with the theoretical models
constructed for a waveguide with cylindrical (section 2.2.3), elliptical (section
2.2.4), and the irregular (section 2.2.5) cross-section.

5.2 Observation

In this section we describe the observation of the elliptical sunspot, while the
observation of the circular sunspot has been already described earlier in section
4.2.

The sunspot observation employed in this chapter was acquired using the
HARDcam. Each observational image sequence was acquired through a nar-
rowband 0.25 Å (full-width at half-maximum) filter centered on the chro-
mospheric Hα absorption line at 6562.808 Å. The sunspot formed part of
NOAA 12146, which was located at heliocentric coordinates (496′′, 66′′), or
N10W32 in the conventional heliographic coordinate system. A diffraction-
limited pixel size of 0 .′′108 per pixel was chosen to provide a field-of-view size
equal to 180′′ × 180′′, which is the maximum allowable by the DST optics.
Images were acquired over the course of 120 minutes (13:56 – 15:56 UT) at a
cadence of 1.00 s, i.e. the data has 7200 snapshots. The dataset has previously
been employed in a study that examined the presence of Alfvén wave driven
shocks in sunspot atmospheres (Grant et al., 2018). A sample Hα image of
the sunspot is displayed in the left panel of Figure 5.1.
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Figure 5.1: The left panel shows a snapshot from the Hα time series of the
elliptical sunspot with the spatial scale in pixels (one pixel has a width of
0.108′′ which is approximately 79 km on the surface of the Sun). The right
panel displays the mean intensity of the time series. The colourbar displays the
magnitude of the mean time series, the solid black line shows umbra/penumbra
boundary with intensity threshold level at 0.4. The blue box (220×166 pixels)
shows the region where we apply our POD and DMD analysis.

5.3 MHD wave modes identification and discus-

sion

The POD and DMD techniques were applied on the two data-sets associated
with a circular and an elliptical sunspots, shown in Figures 4.1 and 5.1, respec-
tively. The oscillatory pattern of modes recovered with the help of these tech-
niques is compared with the results drawn from theoretical models constructed
for a waveguide with cylindrical, elliptical, and the irregular cross-section. The
comparison is quantified by means of a cross-correlation analysis, calculated
on a pixel-by-pixel basis.

Furthermore, as POD provides information about the temporal evolution
of the coefficients of the POD modes, we can determine the PSD, which will
show the most dominant frequencies of modes. Since DMD identifies modes in
terms of their frequency, and by using the magneto-acoustic parametersmi and
m̃i for the cylindrical and the elliptical models, respectively, the longitudinal
wavenumber, kz, was obtained by using Equation 2.24 for the sunspot with a
circular cross-sectional shape (see Table 5.1), and Equation 2.39 for the sunspot
with an elliptical cross-sectional shape (see Table 5.2). Here ω = 2πf is the
angular frequency, f refers to frequency in Hz, c0 = 10 km s−1 is the assumed
sound speed, vA = 4ci is the Alfvén speed and σ2 = 0.4174. With the help
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Figure 5.2: The first row displays the spatial structure of the modes that were
detected from the observational data, the first POD mode (middle) and the
DMD mode that corresponds to the frequency of 4.8 mHz (right). In the
first column we display the theoretical spatial structure of the fundamental
slow body sausage mode in the cylindrical magnetic flux tube model (middle)
and the corresponding structure considering the realistic sunspot with irregu-
lar shape (bottom). The rest of the panels are showing the cross-correlation
between theoretically constructed and observationally detected modes and the
positive/negative numbers in the colourbar denote correlation/anti-correlation.
The dashed circles show the boundary of the tube and the solid black line shows
the umbra/penumbra boundary. The same configuration was used for Figures
5.3 to 5.6.

of these quantities the wavelength (λ = 2π/kz) of waves and the phase speed
(Vph = fλ) were calculated for the MHD modes identified by our analysis.

Let us start with the sunspot with a circular cross-section shape shown in
the left panel of Figure 4.1. The analysis was applied on the ROI represented by
the blue box on the right panel of the same figure, where the umbra/penumbra
boundary is shown by a solid black line with an intensity threshold level at 0.85.
In addition to the fundamental slow body sausage mode (shown in Figure 5.2),
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Figure 5.3: This figure displays the 13th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 6 mHz, which has an azimuthal
symmetry of the fundamental slow body kink mode.

and the fundamental slow body kink mode (Figure 5.3) identified previously
(in the previous chapter, Albidah et al., 2021), the POD and DMD analysis
reveals the existence of the higher-order MHD wave modes.

The POD mode that can be interpreted as a MHD wave mode is the 19th

mode which has the azimuthal symmetry of a slow body sausage overtone
mode, i.e. a mode with more than one radial node, and the DMD mode that
corresponds to the spatial structure has a frequency of 5.6 mHz, as shown in
Figure 5.4. The PSD of the time coefficient of POD 19 has a mix of peaks
around 4.3 mHz, 5.4 mHz and 6.5 mHz on its frequency domain, as shown in
the left panel of Figure 5.7.

The next POD mode that can be interpreted as a MHD wave mode is the
20th component of the POD ranking and it is visible in the DMD decompo-
sition, too. This mode has a frequency of 7.6 mHz, and has an azimuthal
symmetry corresponding to a slow body fluting mode (n = 2), as shown in
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Figure 5.4: This figure displays the 19th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 5.6 mHz which has an azimuthal
symmetry of the slow body sausage overtone mode.

Figure 5.5. The PSD of the 20th POD mode shows a mix of peaks around
3.7 mHz, 5.8 mHz and 7.4 mHz, as shown in the middle panel of Figure 5.7.
Finally, the last mode that was detected by the POD and DMD analysis that
shows an azimuthal symmetry of a slow body fluting mode (n = 3) is the 26th

POD component and the DMD mode that corresponds to 7.5 mHz, as shown
in Figure 5.6. The PSD of the 26th POD mode shows a mix of peaks at around
3.2 mHz and 7.2 mHz, as shown in the right panel of Figure 5.7.

It is expected that some of the PSD of POD modes may have a mix of peaks
in their frequency domain, and this is one disadvantage of the POD technique,
therefore, making it difficult to decide which frequency is relevant for the mode
identification. However, this ambiguity is resolved by the DMD technique by
taking the peaks and finding the DMD mode that correspond to the peaks,
allowing us to make a decision on which DMD mode has a spatial structure
similar to the mode recovered by means of POD, and hence we consider the
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Figure 5.5: This figure displays the 20th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 7.6 mHz, which has an az-
imuthal symmetry of the slow body fluting mode (n = 2).

distinct frequency of that DMD mode.
The sunspot with an elliptical cross-sectional shape is shown in the left

panel of Figure 5.1. The POD and DMD analysis was applied to the ROI
shown by the blue box in the right panel of the same figure, where the um-
bra/penumbra boundary is shown by a solid black line with an intensity thresh-
old level at 0.4. The first POD mode that can be interpreted as a MHD wave
is the 1st POD mode that shows the symmetry of the fundamental slow body
sausage mode and the associated DMD mode corresponds 3.4 mHz, as shown
in Figure 5.8. The PSD of the time coefficient of POD 1 shows peaks around
3.5 mHz and 6.8 mHz, as shown on the top left panel of Figure 5.13. The next
mode that can be identified in our data is the fundamental slow body kink
mode, and the POD mode that shows a high correlation with this mode of
oscillation is POD 14, as shown in Figure 5.9. The PSD of time coefficient of
POD 14 shows a clear peak at 5.88 mHz (the top middle panel of Figure 5.13).
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Figure 5.6: This figure displays the 26th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 7.4 mHz which has an azimuthal
symmetry of the slow body fluting mode (n = 3).

Figure 5.7: This figure shows the power spectrum density (PSD) of the time
coefficients of POD 19 (left panel), POD 20 (middle panel) and POD 26 (right
panel) modes. The vertical coloured-dash lines represent the values in the
frequency domain that correspond to the peaks of the PSD, and the values of
the peaks’ location are shown in the legend of each figure. The PSD of POD 1
and POD 13 (the fundamental sausage and kink modes) are shown in Figure
4.5
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MHD wave mode m0 f (mHz) kz (Mm−1) λ (Mm) Vph (Km/s)

Fundamental slow
body sausage

1.0353 4.8 3.0022 2.0928 10.04

Fundamental slow
body kink

1.6765 6 3.73754 1.6811 10.08

Slow body overtone
sausage

2.3754 5.6 3.395 1.8507 10.36

Slow body fluting
(n = 2)

2.214 7.6 4.7294 1.3285 10.09

Slow body fluting
(n = 3)

2.7471 7.4 4.55619 1.3790 10.20

Table 5.1: This table displays the summary of the properties of the MHD
modes detected by the POD and DMD techniques in the sunspot with circular
cross-section. The first column contains the name of the modes, while the
second column shows the value of the magneto-acoustic parameter, m0, (see
Equation 2.24). The third column contains the frequency determined from the
DMD analysis. The fourth column contains the wavenumber along the vertical
direction, and these are calculated by means of Equation 2.24, with ω = 2πf ,
c0 = 0.01 (Mm/s) and vA = 4c0. The fifth column shows the wavelength
(λ = 2π/kz), while the last column gives the phase speed (Vph = fλ) of the
identified modes.

The DMD mode that shows an azimuthal symmetry with the fundamental
kink is the DMD mode that corresponds to 5.8 mHz, as shown in Figure 5.9.

It is important to note that in the case of fundamental modes (both, sausage
and kink body modes), the change in the shape of the cross-section (from
cylindrical, to elliptical and, finally, to a irregular shape) does not introduce
significant changes in the morphology of waves, meaning that these modes can
be confidently studied in regular shapes. The above statement proves to be
incorrect for higher order modes. The 30th POD mode and the DMD mode
that corresponds to 5.3 mHz show a high correlation with the slow body kink
overtone mode, as shown in Figure 5.10. The PSD of the time coefficients of the
30th POD shows a peak around 5.6 mHz, as displayed in the left panel, second
row of Figure 5.13. The difference in the morphology of this wave between
the pattern prediction of an elliptical and realistic (irregular) waveguide is
remarkable, making the identification of the mode from observation misleading.
Next, the 13th POD mode and the DMD mode that corresponds to 5.6 mHz
are the modes that can be interpreted to have a higher correlation with the
slow body fluting mode (n = 2), as shown in Figure 5.11. The PSD of POD
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Figure 5.8: The first row displays the spatial structure of the first POD mode
(left panel) and the DMD mode that corresponds to 3.4 mHz (right panel).
The first column displays the theoretical modes of the fundamental slow body
sausage mode in an elliptical magnetic flux tube (middle) and the theoreti-
cal modes of the fundamental sausage body mode in the irregular shape that
corresponds to the actual sunspot shape (bottom). The rest of the panels are
showing the cross-correlation between theoretically constructed and observa-
tionally detected modes and the positive/negative numbers on the colourbar
denote correlation/anti-correlation. The dashed ellipse shows the boundary
of the flux tube and the solid black line shows the umbra/penumbra bound-
ary.The same configuration were used for figures 5.9 to 5.12.

13 shows a peak at 5.8 mHz, as visible in the right panel, first row of Figure
5.13. Finally, the last mode is the slow body fluting mode (n = 3) identified
as the 18th POD mode and the associated DMD mode with a frequency of 6.2
mHz, as shown in Figure 5.12. The PSD of POD 18 mode has a peak around
6.08 mHz, as shown in the bottom middle panel of Figure 5.13.

Apart from the sensitivity of the modes on the cross-sectional shape of the
magnetic waveguide, it is also important to note that there is a higher cor-
relation between the observed modes and the predictions of the model corre-
sponding to the irregular shape. We should also note that there is no complete
agreement between the observed modes in either in the circular or elliptical
cross-section sunspot and the theoretical models and this disagreement can be
attributed to the assumptions made in theoretical models regarding the con-
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Figure 5.9: This figure displays the 14th POD (top row, left panel) and DMD
modes (top row, right panel) with a frequency of 5.8 mHz which has the
azimuthal symmetry corresponding to the fundamental slow body kink mode.

stant values of the temperature, density, pressure, and magnetic field inside the
magnetic flux tube. In reality the magnetic flux tubes are inhomogeneous in
the transversal direction (see, e.g. observations of intensity provided by high-
resolution observations by, to name but a few, Gopalakrishnan et al. (2013)
and Fritts et al. (2017)). Furthermore, in the theory of guided MHD waves
(see, e.g. Edwin and Roberts (1983)) modes are monochromatic and the lower
order MHD wave modes have a lower frequency than higher-order modes, how-
ever, this holds true only when the wavenumber, kz, is constant. In the family
of identified modes in this chapter, there are some higher-order modes having
a lower frequency than the lower-order modes, however, they have different
wavenumber, as shown in Table 5.1 and 5.2.

One advantage of using the POD and DMD techniques for the identification
of MHD modes in sunspot is the opportunity to detect a high number of
MHD wave modes in one single sunspot, as these techniques provide a number
of modes equal the number of snapshots of the data set. The challenge is,
however, to select and identify those modes that are physical. Other techniques
have their own limitation in identifying MHD waves in a sunspot. For example,
the limitation of Fourier filtering is that it applies a wide range of bandpass
filter. In the case of the circular sunspot, our analysis by using POD and
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Figure 5.10: This figure displays the 30th POD (top row, left panel) and DMD
mode (top row, right panel) with a frequency of 5.3 mHz, which has an az-
imuthal symmetry of the slow body kink overtone mode.

DMD have identified the fundamental slow body kink mode with a frequency
of 5.88 mHz and the slow body sausage overtone with a frequency of 5.61
mHz. However, in the original analysis by (Jess et al., 2017), using the same
sunspot they applied a k − ω Fourier filter (0.45 − 0.90 arcsec−1 and 5 − 6.3

mHz) that resulted in the identification of only the slow body kink mode. In
general higher order modes cannot be detected, and this can be attributed to
the fact that these modes have less energy than the fundamental modes, so it
is expected that the spectrum is dominated by the fundamental modes. The
POD and DMD techniques are able to address this shortcoming.

Figures 5.14 (for the circular sunspot), and 5.15 (for the elliptical sunspot),
illustrate the ability of the POD technique to capture the portion of the umbral
oscillations that are due to MHD wave modes among the observed intensity
fluctuations. The top panel displays the POD time coefficient for the five
detected MHD wave modes within a given time interval: 1000 seconds for the
elliptical sunspot and 2016 seconds for the circular one. The lines and circles
are color coded by the MHD wave mode, and the position of the circles indicate
the value of time used for the plots in the bottom panels. The bottom left
panels show the 3D surface representation of the original sunspot oscillations,
while in the right panels we see the reconstructed oscillations using the POD
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Figure 5.11: This figure displays the 13th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 5.6 mHz, which has an az-
imuthal symmetry of the slow body fluting mode (n = 2).

modes identified as MHD wave modes. The POD technique separates the
effects of oscillations that are due to wave propagation, enhancing the expected
wave pattern in the umbra. An animated movies for Figures 5.14 and 5.15 can
be found in Albidah et al. (2022). The analysed sunspots present a considerable
discrepancy for the values of the time coefficients as the dynamics of the spatial
modes changes considerably for different umbra geometry and size. Although
there is a considerable difference between the POD reconstructed oscillations
intensity and the original perturbations, this discrepancy is expected as the
POD modes have less energy than the other "non-physical" modes detected by
POD. The low contribution of wave propagation to the observed oscillations
may be a consequence of different reasons (i.e. global modes, locally excited
fluctuations) to the global variance of the oscillatory field in a sunspot. This
reinforces the POD as a valuable tool to apply to wave detection in sunspot as
other methodologies require properly filtering the data in order to disentangle
and detect the resonant modes.
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Figure 5.12: This figure displays the 18th POD (top row, 1st panel) and DMD
mode (top row, 2nd panel) with a frequency of 6.2 mHz, which has an az-
imuthal symmetry of the slow body fluting mode (n = 3).

Figure 5.13: This figure shows the power spectrum density (PSD) of the time
coefficients of the POD 1 (upper left panel), POD 14 (upper middle panel),
POD 13 (upper right panel), POD 30 (bottom left panel) and POD 18 (bottom
middle panel) modes. The coloured-dash vertical lines represent the value in
the frequency domain that corresponds to the peaks of the PSD, where the
frequencies are shown in the legend.
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Figure 5.14: Intensity fluctuations in the circular sunspot. The top panel
shows the time coefficient, C, for the POD modes identified as MHD waves:
slow body (SB) sausage overtone, SB fundamental sausage, SB fundamental
kink, SB fluting (n = 2), SB fluting (n = 3). The colors of the lines and circles
depict the detected MHD wave modes and the position of the circle indicates
the time used for the plots in the bottom panels. The left bottom panel presents
a 3D surface plot of the umbra where the z-direction describes the oscillations
in the Hα observations and it is colored by the observed intensity fluctuations.
The right bottom panel is the 3D surface of the POD reconstruction of the
intensity fluctuations using only the POD modes identified as MHD waves.
The video of this 3D visualisation can be found in Albidah et al. (2022)

.

Figure 5.15: The same as Figure 5.14, but here the intensity fluctuations in the
elliptical sunspot for the POD modes identified as MHD waves: slow body (SB)
fluting (n = 2), SB fundamental sausage, SB fundamental kink, SB overtone
kink, SB fluting (n = 3).The video of this 3D visualisation can be found in
Albidah et al. (2022)

.
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MHD wave mode m̃0 f (mHz) kz (Mm−1) λ (Mm) Vph (km/s)
Fundamental slow
body sausage

1.1644 3.5 2.24887 2.7939 9.77

Fundamental slow
body kink

1.6368 5.88 3.7696 1.6667 9.80

Slow body over-
tone kink

3.1698 5.3 3.412798 1.8410 9.75

Slow body fluting
(n = 2)

2.6328 5.61 3.6166 1.7373 9.74

Slow body fluting
(n = 3)

2.7837 6.2 3.995553 1.5725 9.74

Table 5.2: This table shows the summary of MHD waves’ properties that were
detected by the POD and DMD techniques in the sunspot with elliptical cross-
section. The first column contains the type of the modes, and the value of the
magneto-acoustic parameter, m̃0, is shown in the second column (see Equation
2.39). The third column contains the frequency of waves, as determined from
the DMD analysis. The fourth column contains the wavenumber along the
vertical direction of the sunspot, and it is calculated using Equation 2.39, with
ω = 2πf , c0 = 10 km s−1, vA = 4c0 and σ2 = 0.4174. The fifth column shows
the wavelength (λ = 2π/kz) of waves, while the last column contains the phase
speed (Vph = fλ) of waves.
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5.4 Surface wave identification

The POD and DMD techniques can also be applied to identify surface modes.
In the POD analysis performed on the circular sunspot it was found that
there were two modes that have the characteristics of surface waves: the POD
10 mode (see the middle panel of Figure 5.18), which shows the azimuthal
symmetry corresponding to the fundamental (slow or fast) surface sausage
mode, and the POD 6 mode (see the middle panel of Figure 5.19), which has
a pattern close to the fundamental (slow or fast) surface kink mode. Our
theoretical model is restricted to the identification of slow body modes, i.e.
modes corresponding to vz = 0 at the umbra/penumbra boundary (see sec-
tion 2.2.5). Therefore, in the framework of this study, cross-correlation with
possible surface modes detected with POD/DMD and their direct theoretical
counterparts cannot be performed. Nevertheless, the cross-correlation between
the theoretical slow body and slow surface modes in a magnetic cylinder, pro-
duces a distinctive closed ring for the sausage mode and a broken ring for the
kink mode, see Figure 5.16, with a clear in phase relationship. Moreover, the
cross-correlation between the slow body mode and the fast surface mode also
provides an in phase, but the spatial structure is very close to the slow body
eigenmode shown in Figure 5.17. These distinctive signatures provide, at least,
an indirect way of detecting slow and fast surface modes in the observational
data.

The POD modes which appear most likely to be surface modes have been
correlated with the fundamental slow body sausage and kink modes as shown
in Figures 5.18 and 5.19, respectively. From Figure 5.18 (middle panel) the red
ring is present indicating a slow surface sausage mode but the blue regions of
anti-phase inside the red ring and on the outer left edge cannot be explained
by the theoretical model. The anti-phase regions are even more prominent
in Figure 5.18 (right panel) and are also not predicted for the theoretical
fast surface mode. The cross-correlation for the POD 6 mode shows stronger
agreement with a fast surface kink mode as shown in Figure 5.19, although
there are still some small anti-phase regions which are not consistent with the
theoretical model.
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Figure 5.16: This figure shows the sausage mode (first row) and the kink mode
(second row) of the cylindrical magnetic flux tube, where the first column shows
the slow body mode, the second column shows the slow surface mode and the
third column shows the cross-correlation between the first and second columns.

Figure 5.17: This figure shows the sausage mode (first row) and the kink mode
(second row) of the cylindrical magnetic flux tube, where the first column shows
the slow body mode, the second column shows the fast surface mode and the
third column shows the cross-correlation between the first and second columns.
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Figure 5.18: This figure shows the fundamental slow body sausage mode as
shown above in Figure 5.2 (left panel), the spatial structure of POD 10 (middle
panel) and the cross-correlation between the left panel and the middle panel
(right panel)

.

Figure 5.19: This figure shows the fundamental slow body kink mode as shown
above in Figure 5.3 (left panel), the spatial structure of POD 6 (middle panel)
and the cross-correlation between the left panel and the middle panel (right
panel)

.

Figure 5.20: The power spectrum density (PSD) of the time coefficients of
POD 6 mode.

83



5.5 Summary and Conclusions

The present chapter provided clear evidence of overtones to MHD sausage
(n = 0) kink modes (n = 1) and higher order (n ≥ 2) fluting modes in sunspots.
The results obtained are significant extension of the previous studies by Jess
et al. (2017) and Albidah et al. (2021) where MHD modes were recovered for
the case of an approximately circular sunspot. Firstly, the mode detection
was carried out by means of the POD and DMD techniques. Our results were
compared with their theoretical counterparts obtained assuming a cylindrical
magnetic flux tube model, as well as with the model of the magnetic flux tube
of irregular shape that corresponds to the actual shape of the umbra boundary.

Secondly, the same techniques were further applied to a sunspot whose
shape is close to an elliptical cross-section and compared the obtained results
with the theoretical predictions of waves elliptical waveguide, as well as a irreg-
ular shape magnetic flux tube (that correspond to the actual shape of the um-
bra boundary). The comparison between modes detected in observational data
and in theoretical models has been carried out by means of cross-correlation
analysis calculated on a pixel-by-pixel basis. Correlation results evidence that
the higher order MHD modes are more strongly affected by the sunspot shape.
The correlation also shows that the detected modes have a much better correla-
tion in the case of a sunspot with irregular shape than a sunspot with elliptical
cross-section. The vertical wavenumber, kz, and modes frequencies have been
calculated by using magneto-acoustic wave parameter (m0) and Equation 2.24
for sunspot with a circular cross-sectional shape (Equation 2.39 for the sunspot
with an elliptical cross-sectional shape), see Tables 5.1 and 5.2.

The existence of these MHD waves were theoretically predicted almost 40
years ago (see, e.g. Edwin and Roberts, 1983), so our study offers probably one
of the first observational evidence for the existence of higher order modes in the
chromosphere. Only few papers reported their observational presence (see, e.g.
Yuan, 2015; Kang et al., 2019; Stangalini et al., 2022). These waves offer an un-
precedented diagnostic tool for describing the dynamical state of the plasma
and the structure of the magnetic field since they are carrying information
about the medium in which they are propagating and seismological techniques
can be applied to compare observationally determined quantities with theoret-
ical predictions to infer values that cannot be (directly or indirectly) measured.
Seismology using a single wave is a sort of “under-determined” system, because
many variables are implicit and the variables that can be extracted are not in-
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dependent (similar to a system of equations having n ≥ 2 variables, but only
n− 1 equations are given). The observation of at least two or more modes in
the same structure helps resolve this degeneracy.

Concurrent observations of different kinds of waves (including higher order
modes presented in our study) could allow us to more fully understand the
true nature of the dynamics and comprehensively describe the plasma state
and structure of the magnetic field. Potentially, our results could help us better
understand the nature and properties of modes in more realistically structured
waveguides, where the sound and Alfvén speeds are spatially varying, which
would modify the eigenvalues and eigenfunctions, especially of the higher-order
modes.

Higher order modes also give a more complete description of sub-surface
driver. It is clear that in the present situation we are dealing with a broad
band driver. However slow body modes are weakly dispersive and their phase
speeds are confined to a narrow band between the tube speed and internal
sound speed. This means that a helioseismological approach of exploiting
detected p-modes, where modes in ω − k space correspond to distinct clear
ridges, would certainly be a challenge.

In addition, due to the presence of the higher order modes (as these are the
most sensitive to the shape of the waveguide), we demonstrated that the using
the exact cross-sectional shape of the waveguide is essential for the correct
interpretation of waves.
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CHAPTER 6

Temporal evaluation of MHD waves in a sunspot

6.1 Introduction

The studies presented in previous chapters assumed that the umbral boundary
is not changing. However, extended high resolution observations show that the
boundary between a sunspot umbra and its penumbra is not stationary, instead
its shape can change in time. The results presented in previous chapters also
show that higher order modes are sensitive to the shape of the flux tube,
therefore we expect that identified modes will show changing properties in
time. In this Chapter we consider the effect of umbral boundary change on
the oscillatory pattern of waves and their properties.

To evidence the effect of changing the shape of the flux tube in time on
the nature and properties of waves, we will divide a long time period Doppler
velocity measurements of a sunspot with a circular cross sectional shape into
subdata-sets, Ti, where i = 1, ..., 10 is the number of the time intervals. Next,
we will apply the POD and DMD on every single subdata-set to detect and
track the appearance of various MHD waves and the change in their morphol-
ogy with the change in the shape of the waveguide. The oscillatory patterns
of the observed modes are then compared with the predictions of the irregular
shape model that correspond to the shape of the sunspot (see section 2.2.5).

6.2 Observation

Continuum intensity and Doppler velocity measurements of the active region
NOAA 11366 were obtained from observations by the Helioseismic and Mag-
netic Imager (HMI; Schou et al., 2011) onboard the Solar Dynamics Observa-
tory (SDO; Pesnell et al., 2011). The active region contain a sunspot with a
circular cross sectional shape. The data were acquired from 15:00–18:00 UT
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on 2011 December 10. The time cadence of the measurements was 45 s, which
provided 241 images (with time period of ∼ 3 hours) for both the continuum
intensity and the Doppler velocity. The spatial sampling products was 0 .′′504

per pixel, which is approximately 356 km on the surface of the Sun.
To account for the rotation of the Sun relative to SDO spacecraft, the

observation was reprojected to the reference frame of Earth-based observer at
15:00 UT, on 2011 December 10 using version 3.0.0 (Mumford et al., 2021)
of the SunPy open source software package (The SunPy Community et al.,
2020). The pixel values of each image are mapped to the new projection and
interpolated using a nearest neighbor algorithm. The motion of the center of
the Sun is ignored such that coordinates are always relative to the center of
the Sun.

6.3 Analysis and Results

The main additive of the present chapter is that the umbral boundary is chang-
ing with time, and this can be captured in the long period (3 hours) observa-
tion. Therefore, the time series is divided into equal sub-datasets to which we
apply the techniques of POD and DMD.

Accordingly, the time series of the continuum intensity and the Doppler
velocity are divided into 10 time intervals (Ti), where i = 1 . . . 10, such that
every time interval contains 50 images (∼ 37.5 minutes) and overlapped with
the previous time interval by 20 images, i.e. the initial time of Ti+1 is after
the initial time of Ti by 20 images (∼ 15 minutes). Then, we have taken
the mean of the continuum intensity time series for every time intervals and
then we have applied the intensity threshold level at 0.45 to construct the
boundaries between the umbra and penumbra. For each time intervals, the
umbral boundary will have a different shape, as shown in Figure 6.1, as a
representative example of three different time intervals.

To obtain the theoretical modes that corresponds to the shape of the umbra,
for every time interval, we have used the model that corresponds to the realistic
shape of the umbra, which has been described earlier in section 2.2.5. As a
result of that, the MHD wave modes, for every time interval, are shown in
Figures 6.2, where each column represent a theoretical mode. It is clear that
while the lower order, fundamental modes show a fairly constant morphology,
the spatial structure of the higher-order modes are changing in time, with the
change in the shape of the sunspot.
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Figure 6.1: This figure shows the mean of the continuum intensity time series
for three different time intervals of the data time series of the observed sunspot.
The time intervals that are displayed, from left to right, are T1, T5 and T10.
The colourbar displays the magnitude of the mean time series for each time
interval, and the solid black line shows umbra/penumbra boundary by taking
threshold level at 0.45. The spatial scale is given in pixels (one pixel has a
width of 0.504′′, which is approximately 356 km on the surface of the Sun).

Next, the POD and DMD techniques were applied to every time intervals
of the original data-sets. The spatial structure of the first 10 POD modes, for
each time interval is shown in Figures 6.3. This step is followed by applying the
cross-correlation analysis, for every time interval, investigating the correlation
between the first 10 POD modes and the models, and then we take the integral
of the correlations, defined as the summation of the pixels in the correlation
matrix (see Appendix A.2 for more explanation). The integrated correlations
are shown in the Appendix in Figure A.1. We should mention that the POD
and DMD modes are interpolated to have the same size as the model since the
cross-correlation analysis is calculated on a pixel-by-pixel basis.

This step is taken as guideline to observe and avoid missing the higher
correlations as we have too many modes of the POD analysis and the model
at every time interval. However, these higher correlations need to be checked
and validated in order to be considered. Finally, the power spectrum of the
time coefficient that corresponds to the selected POD modes are calculated
to obtain the dominant frequencies. This is followed by obtaining the spatial
structure of the DMD modes that correspond to the dominant frequencies.

To discuss and analyse the observed MHD wave modes, we have selected
some of the modes that have a good agreement with the theoretical modes, i.e.
having highest correlation from Figure A.1. All possible observed modes that
show a good correlation with the theoretical models are presented in Table
6.1. It is remarkable the observed fundamental modes have a lower POD order
number as the first and the second POD mode, which means the observed
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Figure 6.2: The theoretical morphology of slow body modes that correspond
to the changing shapes of the observed sunspot. Every row shows the spatial
structure of the models at different times and changing shape. Columns rep-
resent different types of slow body modes, and they are labelled by Mi, where
i = 1, . . . , 10. In particular, M1 stands for the fundamental sausage, M2 and
M3 denote the fundamental kink, M4 and M5 are showing the fluting (n = 2),
M6 is showing the sausage overtone, M7 and M8 are showing the fluting (n = 3)
and the last two columns (M9 and M10) are showing the kink overtone.

MHD wave modes have the highest contribution to the total variance of the
signal.

The first MHD wave mode that was observed is the fundamental slow body
sausage mode, and it appears as the first POD mode in the time intervals from
T5 up to T7 as shown in Figure 6.3, while it has a lower contribution in T3

and T4, where it appears as the 4th POD mode. In Figure 6.4 we show the
fundamental slow body sausage mode in two time intervals (T6 and T7) and the
spatial structure of the DMD mode that correspond to the dominant frequency
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Figure 6.3: This figure represents the first 10 POD modes of the sunspot data
set, Every column shows a POD mode and the rows shows how the modes
are changing along the time intervals, Ti, of the data time series. Every time
interval contains 50 images, and has a duration of 37.5 minutes. Every time
interval is shifted by 20 images, i.e. the initial time of Ti+1 is after the initial
time of Ti by 20 images, corresponding to 15 minutes.

of the time coefficient of the POD modes. These DMD modes correspond to
3 mHz, in T6, and 4.3 mHz, in T7, respectively.

The second MHD wave mode that we have observed has an azimuthal
asymmetry of a fast surface kink mode and it is shown in Figure 6.5. These
modes have the pattern corresponding to surface waves, as the magnitude
increases along the radial direction and reaching its maximum at the boundary.
Due to the limitation of the model describing waves in a waveguide with, the
modes that can be theoretically determined are only the slow body modes, i.e.
modes corresponding to vz = 0 at the umbra/penumbra boundary (see section
2.2.5). Hence, the cross-correlation with possible surface modes detected with
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Figure 6.4: Here rows correspond to different time interval (Ti), where T6

(top panels) and T7 (bottom panels). The first column displays the theoretical
spatial structure of the fundamental slow body sausage mode determined by
means of the irregular shape model. The second column displays the spatial
structure of the 1st (top and bottom) PODmodes. In the third column we show
the cross-correlation between the model and the determined POD mode . The
fourth column displays the spatial structure of the DMD modes corresponding
to 3 mHz (top) and 4.3 mHz (bottom). Finally, the last column contains
the cross-correlation between the model (first column) and the DMD mode
(fourth column). The solid black line shows the umbra/penumbra boundary.
The same configuration was used for Figures 6.5 and 6.6.

POD/DMD and their direct theoretical counterparts cannot be performed.
However, it was shown earlier in section 5.4, in the cylindrical magnetic flux
tube model, the cross-correlation between the slow body mode with the fast
surface mode provides a spatial structure with a pattern closed to the slow
body mode. In contrast, the cross-correlation between the slow body mode
and the slow surface mode produces a spatial structure closed to a ring for the
sausage mode and a broken ring for the kink mode.

Therefore, the correlation in Figure 6.5 between the slow body modes and
the observed modes show a pattern closed to slow body modes, hence we can
identify this mode as being a fast surface kink. The modes that are presented
in the first and second row of the second and fourth columns of Figure 6.5 are
the 1st and the 2nd POD modes and the DMD modes corresponding to 3.4 and
3.1 mHz, respectively, at T1. The superposition of these two approximately
perpendicular kink modes with close frequencies can provide an apparent ro-
tational motion. The mode that is presented in the third row of Figure 6.5 is
the 2nd POD and DMD mode corresponding to 3.9 mHz at T7.

It is clear from Figure 6.3 the mode that has the highest contribution (i.e.
the mode with highest power) to the total variance of the signal is the fast
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Figure 6.5: The same as Figure 6.4, but here the first row shows the 1st POD
mode and the spatial structure of the DMD mode corresponding to 3.4 mHz
at T1. The second row shows the 2nd POD mode and the spatial structure of
the DMD mode corresponding to 3.1 mHz at T1. The third row shows the 2nd
POD mode and the spatial structure of the DMD mode corresponding to 3.9
mHz at T7. The first column shows the fundamental slow body kink mode
that corresponding to T1 (top and middle) and T7 (bottom).

Figure 6.6: The same as Figure 6.4, but here the first row shows the 8th POD
mode and the spatial structure of DMD mode corresponding to 4 mHz at T6.
The second row shows the 7th POD and DMD mode corresponding to 3 mHz
at T7. The first column shows the slow body fluting (n=2) corresponding to
T6 (top) and T7 (bottom).

surface kink mode from T1 to T3. Starting from the time set T5 the dominant
wave in the studied waveguide becomes the slow body sausage mode up to T7.
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Furthermore, Figure 6.7 shows that the contribution of the first POD mode
to the total variance of the signal is decreasing sharply up to the fourth time
interval, and that could be due to a very effective damping of the fast surface
kink mode (or mode conversion). At the same time, as shown in table 6.1,
the frequency of the fast surface kink mode (the first POD mode at the first 3
time interval) is increasing.

Figure 6.7: This figure shows the contribution of the first 5 POD modes to the
total variance of the signal along the considered time intervals (Ti).

The fast surface kink mode is still present in the remaining time intervals,
as shown in Figure 6.3, but with a lower contribution as this mode becomes
the 3rd POD mode at T5 and T6 and the 2nd POD at T7. The last MHD wave
mode that we have observed in the circular sunspot is the slow body fluting
mode (n = 2), which appears at T6 and T7 (see Figure 6.6). The first row
of Figure 6.6 shows the 8th POD and DMD modes corresponding to 4 mHz
at T6. The second row of this figure shows the 7th POD and DMD modes
corresponding to a frequency of 3 mHz at T7.

In addition, given the far from ideal spatial resolution of the HMI instru-
ment, it is likely that some significant information on the dynamics within
the sunspot cannot be acquired. As a result, there could be other higher or-
der modes or further overtones that cannot be identified via the POD/DMD
techniques. Nevertheless, POD/DMD have shown their ability to identify the
higher order modes and overtones for observations that have a much better
spatial resolution, e.g. the Hα time series presented in previous Chapter 5.

The above analysis constitute a first step in the complex identification of
waves in sunspots whose shape is changing in time. The information we got so
far gives a very cumbersome picture, where different kinds of waves, all with
different frequencies, are present in a sunspot at the same time. The diagnos-

93



Mi Ti POD peaks of PSD [mHz] DMD [mHz] MHD mode observed

M1 T3 4 3.5 and 4.4 3 FSB sausage
M1 T4 4 3.5 and 4.4 3.4 FSB sausage
M1 T5 1 3.5 and 4.8 3.6 FSB sausage
M1 T6 1 3.1 and 4.8 3.04 FSB sausage
M1 T7 1 3.5 and 4.4 4.3 FSB sausage
M2 T1 2 4 3.1 FFS kink
M3 T1 1 3.5 3.4 FFS kink
M3 T2 1 3.5 3.2 FFS kink
M3 T3 1 2.6 and 4 4.22 FFS kink
M3 T5 3 3.1 and 4.4 4.23 FFS kink
M3 T6 3 3.1 and 4.4 3.44 FFS kink
M3 T7 2 3.1 and 4.4 3.9 FFS kink
M4 T7 7 3.5 and 4.8 3 SB fluting (n = 2)
M4 T8 6 3.5 and 4.4 3.17 SB fluting (n = 2)
M5 T6 8 3.5 4 SB fluting (n = 2)

Table 6.1: A summary of all possible MHD modes that identified in the ob-
served sunspot along the time intervals. The first column represents the the-
oretical mode and they are labelled according to the Figure 6.2. The second
column shows the time interval of the sub-data in which the mode was ob-
served. The POD mode numbers are presented are displayed in the third
column, similar to Figure 6.3. The fourth column contains the frequencies (in
mHz) corresponding the peaks in the power spectrum density (PSD) of the
time coefficient of the POD mode. The fifth column shows the frequency (in
mHz) corresponding to the DMD mode. Finally, the last column displays the
MHD wave mode that the POD mode and DMD mode have a good agreement
with. Here the abbreviations FSB, FFS and SB stand for fundamental slow
body, fundamental fast surface and slow body modes, respectively.

tics of morphology and properties of waves becomes even more complicated
due to a continuous change in the modes’ contribution to the overall signal.

The results showing the contribution of modes to the overall signal (see
Figure 6.7) also can shed light on the driver of these modes and it clear that
these modes seem to be driven by various drivers, many of them driven con-
tinuously, with different timescale. Equally, the analysis presented here offers
the possibility to gain essential information about the attenuation of waves.

6.4 Summary and Conclusion

In the current chapter, we have assumed the shape of the umbral boundary on
a dataset of long period (3 hours) is change with time, while in the previous
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chapters the shape was assumed to be constant. The dataset was divided into
10 overlapped sub-dataset, Ti. The techniques of POD/DMD were applied for
every Ti as shape is changing with time. Our observed modes were compared
with the theoretical model of magnetic flux tube that corresponds to the re-
alistic shape of the umbra at every Ti. The comparison was calculated on a
pixel-by-pixel basis of the cross-correlation analysis.

We have shown the alternation of having the highest contribution to the
signal between the fast surface kink mode and the fundamental slow body
sausage mode. Moreover, we have shown the diminution of the fast surface
kink contribution to the signal. In addition to the slow body sausage and the
fast surface kink mode, the fluting (n = 2) mode was observed.

We have concluded that, the preeminent time intervals to assess the impact
of changing umbral shape on observed MHD, based on our analysis in the
sunspot, is 37 minutes. This estimate, however, will vary based on the sunspot
that considered in the analysis and the observation instrument’s temporal and
spatial resolution. Hence, our research demonstrates that statistical analysis
of more sunspot data sets, particularly those with more complicated forms and
evolutionary behaviour than the examples presented here, is required.
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CHAPTER 7

Conclusions

The research presented in the present Thesis discusses the possibility of using
the combined POD and DMD techniques for solar observations, to identify
MHD modes in sunspots. Up to our knowledge, this is the first time when these
techniques were applied in conjunction with solar datasets. The combination
of the these techniques have also shown for the first time the presence of five
different MHD wave modes in a sunspot, simultaneously, including overtone
modes and fluting modes.

A correct and accurate detection of waves in solar magnetic waveguides
allows a much better diagnostic capability of the plasma and magnetic field
using techniques similar to the seismology of the Earth. Here observational in-
formation (amplitude, frequency, wavelength, damping time and length, etc.)
can be combined with theoretical results (dispersion relations, evolutionary
equations, etc.) to obtain quantities that cannot be measured directly or in-
directly (magnitude and structure of the magnetic field, transport coefficients,
densities, ionisation degrees, etc.).

After a brief historical overview of solar studies, we described the structure
of the Sun and a few features that appear on the solar surface and they are
relevant to our purpose (i.e. sunspot, coronal loop etc.). Since the Thesis deals
with waves in sunspots, a review of the observational results discussing waves
and oscillations in sunspots was presented.

The physical framework of MHD and the governing equations was dis-
cussed in details, together with their wave solutions in an unbounded, un-
structured and homogeneous plasma environment. In reality, waves in the
solar atmosphere propagate guided, confined to magnetic structures, therefore
an overview of guided waves in various magnetic structures were presented,
together with the dispersion diagrams of waves propagating in structures as
magnetic slabs and cylinders. Waves were classified according to their speed
(slow and fast magneto-acoustic modes), their symmetry with respect to the
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symmetry axis of the magnetic structures (sausage, kink, fluting) or the os-
cillatory pattern of waves in the transversal direction (body, surface). The
dispersion curves obtain as solutions of the dispersion relations allowed us to
correctly identify the observed waves and study their properties.

Given that the present Thesis revolves around the application of the POD
and DMD techniques for mode identification, we described in details the math-
ematical background of these techniques and presented their applicability (for
the purpose of validation) on a set of synthetic numerical data, as a test case.
Our results showed that the POD and DMD techniques are indeed suitable
methods to decompose signals, with truly remarkable accuracy.

The original research carried out in the present Thesis involved the appli-
cation of these techniques on real observational datasets from sunspots with
the purpose to identify the nature and properties of waves propagating along
sunspots. In what follows we are going to summarise and discuss the results
of our analysis, presenting a few pathways along which our research can be
continued.

7.1 Summary of results

7.1.1 Chapter 3

In this Chapter, POD and DMD were applied on a synthetic numerical dataset
generated by combining five different modes propagating in cylindrical mag-
netic flux tube. To evidence the true power of the techniques and their capa-
bilities, two of the modes were chosen to have the same frequency. This step
was considered as a test case, before applying them on real sunspots data, to
prove whether these techniques can help recovering every single mode or not.
Consequently, POD managed to detected all the five MHD wave modes. This
result can be easily explained since the POD decompose modes in terms of
their orthogonality in space, and the governing functions on the radial direc-
tion of the theoretical modes are the Bessel functions, which are orthogonal
to each other. On the other hand, the DMD detected only four modes. Since
DMD identifies the temporal orthogonality, it cannot decompose the modes
having the same frequency, instead it identifies the mode that is formed as the
superposition of the two modes that share same frequency.
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7.1.2 Chapter 4

The POD and DMD were applied on a sunspot that has an approximately
circular cross-sectional shape. The sunspot has been recently analysed by Jess
et al. (2017), and they have detected the rotational motion of the fundamental
slow body kink mode by implementing a k − ω Fourier filter. The POD and
DMD have successfully recovered the slow body kink mode with the azimuthal
motion, and also have recovered the fundamental slow body sausage mode.

7.1.3 Chapter 5

In this Chapter we have expanded our analysis presented in Chapter 4 by
applying the POD and DMD on two different sunspots; one having a circular
cross-sectional shape (the same one in 4) and the other one has an elliptical
cross-sectional shape. The observed modes were compared with the theoretical
models (assuming a waveguide with cylindrical and elliptical cross-section) and
the model that corresponds to the actual shape of the sunspots.

For the circular sunspot, the sausage overtone (n = 0) and the higher order
modes (n = 2 and n = 3) were observed, in addition to the fundamental slow
body modes that were determined in Chapter 4. In the elliptical sunspot the
fundamental slow body modes, kink overtone (n = 1) and the higher order
modes (n = 2 and n = 3) were observed. We have also found that when
the observed modes are compared with the results that were predicted by the
model involving irregular shape, modes have a better agreement than when
comparing them with the results corresponding to a waveguide with elliptical
cross-section. Moreover, the vertical wavenumber (kz) of all observed modes
were calculated, and are shown in Tables 5.1 and 5.2 for the circular and
elliptical sunspots, respectively.

7.1.4 Chapter 6

Our analysis presented in the previous Chapters assumed that the boundary
of the sunspots’ umbra was assumed to be stationary. In reality, observations
show that this boundary is changing its shape in time and the temporal scale
of these changes are comparable with the periods of waves. Therefore, in this
Chapter, we have applied the POD and DMD techniques on a dataset which
clearly showed the change in the shape of the boundary. Our analysis has been
carried out on a long time series (3 hours long) of Doppler velocity dataset.
The dataset was divided into ten time intervals (Ti), and for every Ti the shape
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of the boundary is slightly changing. The theoretical modes of the model that
correspond to the real shape of sunspot were obtained at every Ti.

Then, the POD and DMD were applied at every time interval, and the
observed modes were compared with the theoretical predictions. As a result
of that, we have observed, at most time intervals, the damped fast surface
kink mode, and the fundamental slow body sausage mode. Fluting (n = 2)
modes were observed at partial time, and that may be explained due to the
wide range of the spatial observation.

The results presented in the Thesis and the techniques used for wave detec-
tion may have important implications for the interpretation of observational
data from next generation ground-based observing facilities (for example, the
new 4m DKIST solar telescope, Solar Orbiter (ESA) and European Solar Tele-
scope (EST)).

7.2 Future work

The theoretical models explaining the nature and properties of MHD waves
propagating in cylindrical (Edwin and Roberts, 1983) and the elliptical (Ald-
hafeeri et al., 2021) cross-sectional magnetic waveguides are well developed,
however these are mostly ideal models. High resolution observations showed
that in reality the shape and structure of the waveguides is far from being
ideal, the cross-sectional shape not symmetrical, the waveguide does not have
a homogeneous distribution of density and magnetic field, etc. Moreover, these
properties are changing in time that can modify the properties of waves during
their propagation. We have shown in Chapter 5, the higher-order modes are
sensitive and affected by the shape of the waveguide and have a clear agreement
with model that corresponds to the actual shape of the sunspot.

One important way of expanding the current research in this field is to
develop the theoretical model describing waves in a sunspot having irregular
shape such that it can predict the appearance of surface modes, too. This
would imply another type of approach than presented in this thesis (in terms
of governing equations, boundary conditions, etc.).

The POD and DMD analysis presented in Chapters 4 and 5 was applied
on sunspots with a circular and elliptical cross-sectional shapes, respectively.
The MHD wave modes in the circular and elliptical models are governed, in
the radial direction, by Bessel and Mathieu functions, respectively. These
functions are orthogonal to each other, which will give the POD the power
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to detect the modes. However, the magnetic waveguides may have a shape
neither circular nor elliptical, and as a result, of that, the shape may lose the
property of orthogonality in space, i.e. the POD will not work well to detect
modes. In contrast, the DMD will be able to decompose the signal, but the
challenge is to know what are the dominant frequencies as the POD is no
longer working. Therefore, as an important future extension of Chapter 5, we
could try to apply the POD and DMD techniques on a sunspot whose shape
is far from being a circle or ellipse.

The research presented in Chapter 6 can also be expanded by carrying out
the POD and DMD techniques to identify MHD wave modes on a long time
series applied to a waveguide of arbitrary shape that is changing in time.
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APPENDIX A

Appendix

A.1 Numerical algorithm used to solve the dis-

persion relations

In this section we present an algorithm designed to solve the dispersion relation
for a cylindrical magnetic flux tube (see, Figures 2.6 and 2.7) as Edwin and
Roberts (1983).

Equation (2.34) can be rewritten in terms of the phase speed (vph = ω/kz)

as

ρ0(v
2
A0
− v2ph)me1

K ′n(me1kza)

Kn(me1kza)
− ρe(v2Ae

− v2ph)m01

I ′n(m01kza)

In(m01kza)
= 0 (A.1)

for the surface waves (m2
0 > 0), and a similar equation for the body waves

(m2
0 = −n2

0 < 0) with replacing In(m01ka) and I ′n(m01ka) to be Jn(n01ka) and
J ′n(n01ka). In the above relations the modified magneto-acoustic paramaters
m01 and me1 are defined as

m2
01

=
(c20 − v2ph)(v2A0

− v2ph)
(c20 + v2A0

)(c2T0 − v
2
ph)

and m2
e1

=
(c2e − v2ph)(v2Ae

− v2ph)
(c2e + v2Ae

)(c2Te − v
2
ph)

. (A.2)

Equation (A.1) is function of two variables, the phase speed vph of waves and
the dimensionless quantity ka.

Numerically, we have taken ka along the x-axis as fixed points and we have
tested the vph vertically along the y-axis. The algorithm that we have used to
test vph is to discretise the y-axis into a small intervals such as

vph = {[v0, v1] ∪ [v1, v2]∪, · · · ,∪[vn−1, vn]}

where v0 and vn are the minimum and the maximum values of vph along y-axis
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respectively, whit vi − vi−1 = ε

1 and i = 1, 2, · · · , n. As a result, each interval has an upper and a lower
limit. Let f1(vph, ka) = 0 be the dispersion relations for the sausage modes.
For a fixed ka and for each intervals of vph, we have tested the product of
f1(vl, ka) × f1(vu, ka), where vl and vu are the lower and the upper limits of
each intervals. If the sign of the product is negative, hence there is a solution
in the interval, otherwise there is no solution. Finally, we have taken all
intervals that included solutions and we applied the bisection method to find
the solution. Similarly, for all values of ka along the x-axis, we obtain the
solution for the sausage mode.

A.2 The correlation between the observed modes

and the theoretical modes in Chapter 6

To obtain the correlation between the theoretical modes shown in Figure 6.2
and the POD modes in Figure 6.3, we have applied cross-correlation analysis,
calculated on a pixel-by-pixel basis, at all time intervals (Ti). For every cor-
relation matrix we have taken the summation of the pixels, and hence every
correlation of the observed mode and the theoretical mode is represented as
an integer. As a result of that, we have obtained the correlation panels shown
in Figure A.1, where every panel refers to different time interval (Ti). For
example, upper left panel of Figure A.1, labelled with T1, refers to the corre-
lation of the POD modes in the first row of Figure 6.3 and theoretical modes
in the first row of Figure 6.2. At the end, every column of the correlation
panels are normalised by the maximum value of that column along all time
intervals. This step is required to make the correlation of higher order modes
to be visible. Without this step, the correlation of the sausage and kink mode
will be the dominant and other modes will not be visible as high correlation.
However, the higher correlations need to be checked and validated in order to
be considered.
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Figure A.1: This figure shows the summation of pixels in the correlation matrix
between models in Figure 6.2 and POD modes in Figure 6.3, for every Ti. The
colorbar shows the amplitude of the summation of the correlation matrix, while
every column along the time intervals were normalised by the maximum.
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