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Abstract

For a reductive subgroup K of a reductive group G, the notion of relative complete

reducibility gives an algebraic description of the closed K-orbits in Gn, where K acts by

simultaneous conjugation. In this thesis we show that questions about reductive groups

acting on arbitrary affine varieties can be translated to the setting of relative GL(V )-

complete reducibility. Furthermore, we present characterizations of relative GL(V )-

complete reducibility in terms of certain subsets of flags of V . These characterizations

lead to combinatorial descriptions of closed orbits, which may assist in proving Tits’

Centre Conjecture for convex subsets of spherical buildings.
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Introduction

The Centre Conjecture asserts that a convex subcomplex of a spherical building that is

not completely reducible has a centre. The conjecture was motivated by the theory of

algebraic groups [37], and a special case considered in Geometric Invariant Theory [28]

was proven by Rousseau [32] and Kempf [22]. The conjecture regained interest following

work of Serre [34] concerning complete reducibility in spherical buildings. The Centre

Conjecture was proved for buildings of classical type and buildings of rank 2 by Mühlherr

and Tits [27], and for the remaining buildings of exceptional type by Leeb and Ramos-

Cuevas [23], [29]. The motivation for this thesis is to work towards a proof of a generalized

Centre Conjecture for convex subsets of spherical buildings by studying G-complete

reducibility.

The notion ofG-complete reducibility for a reductive groupG was developed by Serre [33]

to extend standard results from the representation theory of algebraic groups. The

notion has proven useful in the study of the structure of linear algebraic groups, and

has applications in representation theory, geometric invariant theory, the aforementioned

theory of buildings, and number theory [3–7, 9, 13, 18, 24, 25]. Serre’s original definition

was extended to non-connected groups by Bate, Martin and Röhrle [5] using a geometric

approach inspired by Richardson’s characterization of closed G-orbits in Gn, where G

acts by simultaneous conjugation [30]. The notion of relative G-complete reducibility,

introduced in [10], generalizes the study of closed G-orbits to the study of closed K-

orbits for reductive subgroups K of G. In this thesis we study relative GL(V )-complete

reducibility, with the aim of providing a combinatorial description of what it means for

a given K-orbit to be closed.

The first chapter of this thesis provides an overview of the theory of affine algebraic

groups, introduces the notion of a spherical building, and summarises previous work

related to the Centre Conjecture. In the second chapter we introduce G-complete re-

ducibility and the generalized notion of relative G-complete reducibility, and demon-

strate that questions about reductive groups acting on arbitrary affine varieties can be

answered by studying relative GL(V )-complete reducibility. The third chapter contains

results related to GL(V )-complete reducibility, including a new characterization in terms

of certain flags of V . In the fourth chapter we introduce new partial orders for flags and

obtain another characterization of relative GL(V )-complete reducibility. The final chap-

ter discusses potential further research, and explains how results in previous chapters

extend to fields which are not algebraically closed.
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Chapter 1

Preliminaries

In this chapter we provide an overview of the theory upon which this thesis is based. To

introduce algebraic groups, we follow classic textbooks of Humphreys [21], Springer [36],

and Borel [12]. We work in the context of affine algebraic groups rather than in the

generalized setting of group schemes. We demonstrate various results and concepts in a

general linear group, since this setting is the focus of future chapters. When discussing

buildings, we introduce the original work of Tits [38] and refer to an article of Everitt [14].

The subsection which focuses on the Centre Conjecture summarises statements and

arguments from a paper of Mühlherr and Tits [27].

1.1 Algebraic Groups

We begin by recalling some important definitions from algebraic geometry. For the first

four chapters of this thesis we will work over an algebraically closed field k. Given a set X

and a function f : X → k, we denote evaluation at a point x by εx, so that εx(f) := f(x).

An affine variety over k is a set X, together with a finitely-generated k-algebra k[X] of

k-valued functions f : X → k, such that the evaluation map x → εx gives a bijection

X → Homk−alg(k[X], k). There is a more general notion of an algebraic variety; since

we only encounter non-affine varieties very briefly in this thesis (see Theorem 1.1.11) we

suppress this and refer the reader to [17] for details.

Throughout this thesis affine varieties will be defined over k, and actions and repre-

sentations are assumed to be rational maps. For affine varieties X and Y , a map

φ : X → Y is a morphism if g ◦ φ ∈ k[X] for every g ∈ k[Y ], and we define the co-

morphism φ] : k[Y ] → k[X] to be the map such that φ](g) = g ◦ φ for g ∈ k[Y ]. Affine

varieties can be equipped with a natural topology. For S ⊆ k[X], define the subset

V(S) = {x ∈ X | f(x) = 0 for all f ∈ S} ⊆ X; these sets form the closed sets of the

Zariski topology on X. A topological space is said to be irreducible if it cannot be written

as a union of two proper nonempty closed subsets.

Definition 1.1.1. An affine algebraic group is an affine variety G which is also a group

such that the multiplication map µ : G × G → G, where µ(x, y) = xy, and the inverse

map ι : G→ G, where ι(x) = x−1, are morphisms of varieties.
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Examples 1.1.2.

1. The affine line k = A1 equipped with the group laws µ(x, y) = x + y, ι(x) = −x
and the coordinate ring k[T ] is known as the additive group Ga.

2. The affine open subset k∗ = A1 \ {0} equipped with the group laws µ(x, y) = xy,

ι(x) = x−1 and coordinate ring k[T, T−1] is known as the multiplicative group Gm.

3. GLn(k), the set of all n × n invertible matrices with entries in k, is an algebraic

group when equipped with the familiar laws of matrix multiplication and inversion.

The coordinate ring is generated by the coordinate functions Tij and det(Tij)
−1

for 1 ≤ i, j ≤ n.

There are familiar definitions which we need to extend to the setting of algebraic groups.

Definition 1.1.3. Let G and G′ be algebraic groups. A homomorphism of algebraic

groups is a group homomorphism φ : G → G′ that is also a morphism of varieties.

Notions of algebraic group isomorphisms and automorphisms follow naturally.

Definition 1.1.4. A closed subgroup of an algebraic group is a subgroup that is closed

in the Zariski topology.

Remark 1.1.5. Algebraic groups can be defined over varieties which are not affine, but

we restrict our attention to affine algebraic groups. These may be described as linear

algebraic groups; when the underlying variety of an algebraic group is affine, there exists

an isomorphism of G onto a closed subgroup of some GLn(k) [36, Theorem 2.3.7(i)].

Proposition 1.1.6. [21, §7.4] Let φ : G→ H be a homomorphism of algebraic groups.

Then Ker(φ) and Im(φ) are closed subgroups of G and H, respectively.

The determinant map det : GLn(k)→ GL1(k) = Gm is an example of a homomorphism

of algebraic groups. The kernel of this homomorphism is SLn(k) , which is an algebraic

group in its own right. We do not need to show that SLn(k) has the structure of an

affine variety; any closed subgroup of an algebraic group is an algebraic group, and

Proposition 1.1.6 tells us that it is a closed subgroup of GLn(k). We can use this fact

about closed subgroups, along with the fact that a direct product of algebraic groups

(the usual direct product endowed with the Zariski topology) is an algebraic group, to

obtain additional examples of algebraic groups.

Examples 1.1.7.

1. Affine m-space Am may be viewed as the direct product of m copies of Ga.

2. The group of diagonal n× n matrices Dn(k) can be viewed as the direct product

of n copies of Gm, or as a closed subgroup of GLn(k).

3. The groups of upper triangular matrices Bn(k) and upper unitriangular matrices

Un(k) are both closed subgroups of GLn(k). Observe that U2 is naturally isomor-

phic to the additive group Ga.
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We now introduce some important theory, demonstrating key ideas in the context of

general linear groups.

Definition 1.1.8. There is a unique irreducible component G0 of G containing the

identity element which we will refer to as the identity component. We will say that an

algebraic group is connected if G = G0.

For a justification of the uniqueness of such an irreducible component, see [36, Proposi-

tion 2.2.1]; this proposition also proves that G0 is the unique connected component of

G containing the identity element, and that any closed subgroup of finite index in G

contains G0. The groups Ga, Gm and GLn(k) are all examples of connected algebraic

groups.

Definition 1.1.9. The radical of G, denoted R(G), is the unique maximal closed con-

nected normal solvable subgroup of G. The unipotent radical of G, denoted Ru(G), is

the unique maximal closed connected normal unipotent subgroup of G. A connected

group G is called semisimple if R(G) is trivial. A group G is said to be reductive if

Ru(G) is trivial; note that we do not require that G is connected.

For a justification of the uniqueness of R(G) and Ru(G), see [36, 6.4.14]. Reductive

algebraic groups are objects of interest throughout this thesis. For any algebraic group

G, Ru(G) consists of the unipotent elements of R(G). When we study non-connected

reductive groups, we will extend ideas from the study of connected reductive groups.

Definition 1.1.10. A linear algebraic group which is isomorphic to a product of copies

of the multiplicative group Gm is known as a torus. A maximal torus of an algebraic

group G is a subgroup T that is a torus which is not properly contained in any other

subgroup of G that is also a torus.

The maximal tori of a given G are conjugate, see [36, Theorem 6.3.5]. A variety X is said

to be complete if for every variety Y , the projection q : X×Y → Y is a closed map. The

following is one of the key theorems in the study of algebraic groups; see [21, Theorem

21.2] for a proof.

Theorem 1.1.11 (Borel’s Fixed Point Theorem). Let G be a connected solvable linear

algebraic group acting on a complete variety X. There exists an element x ∈ X such

that gx = x for all g ∈ G.

An important class of connected solvable subgroups are named after Borel.

Definition 1.1.12. A Borel subgroup of G is a maximal closed connected solvable sub-

group of G.

Borel’s Fixed Point Theorem can be used to show that the Borel subgroups of a given G

are conjugate, see [36, Theorem 6.2.7]. This thesis repeatedly studies a class of subgroups

which includes the Borel subgroups.

Definition 1.1.13. A subgroup P of G is called a parabolic subgroup if it contains a

Borel subgroup.
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The Borel subgroups are the minimal parabolic subgroups. A subgroup of G is parabolic

if and only if the quotient variety G/P is complete; see [36, §6.2].

Example 1.1.14. Let G = GLn(k). The radical R(G) is the subgroup of diagonal

matrices with equal nonzero entries. In this case we have that R(G) = Z(G), where

Z(G) denotes the centre of G. The unipotent radical Ru(G) is trivial, since the only

unipotent scalar matrix is the identity. Hence G is reductive but not semisimple. For an

example of a nontrivial unipotent radical, consider the subgroup Bn of upper triangular

matrices; Ru(Bn) is Un, the subgroup of upper unitriangular matrices.

Any product of copies of Gm is isomorphic to some group of diagonal matrices; the

subgroup of n×n diagonal matrices Dn(k) is therefore a maximal torus in G = GLn(k).

In the case G = GL3(k), the subgroup

T =


 a11 0 0

0 a22 0

0 0 1

 ∈ G
 ,

is an example of a torus (isomorphic to two copies of Gm) which is not maximal.

The group of upper triangular matrices Bn is a Borel subgroup of GLn(k), sometimes

referred to as the standard Borel subgroup. In Chapters 3 and 4, one of our recurring

examples will involve the study of parabolic subgroups of GL4(k). We will see some

parabolic subgroups which contain B4, such as
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 ,


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 , and


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 .

We will also see parabolics of the form
∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

 ,


∗ ∗ 0 0

∗ ∗ 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , and


∗ 0 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

 ,

which contain the Borel subgroup of lower triangular matrices. These triangular sub-

groups are conjugate, as one might expect. For a more interesting example of the

conjugacy of Borel subgroups, we study the subgroup

H =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0

0 0 ∗ ∗

 .
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Consider the matrices

x =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , and y =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

One can check that x−1Hx consists of upper triangular matrices and y−1Hy consists of

lower triangular matrices. To derive these matrices, take V to be the natural module of

column vectors of length 4 and let e1, . . . , e4 be the natural basis of V . Choose another

basis v1, . . . , v4 for V compatible with the flag

〈e2〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e4〉 ⊂ V,

i.e. choose v1 ∈ 〈e2〉, then choose v2 ∈ 〈e1, e2〉 \ 〈e2〉. This flag was chosen as it contains

a subspace of each intermediate dimension which is stabilized by H. We might as well

choose v1 = e2, v2 = e1, v3 = e4, and v4 = e3. Then x is the change of basis matrix such

that xei = vi and y is the change of basis matrix such that yei = v5−i.

Remark 1.1.15. The fact that a Borel subgroup of GL(V ) stabilizes such a flag of sub-

spaces of V is a consequence of Theorem 1.1.11. The arguments above can be extended

to GLn(k) to prove a theorem of Kolchin, which can be used to prove that Bn is a Borel

subgroup:

Theorem 1.1.16 (Lie-Kolchin Theorem). [36, Theorem 6.3.1]. Let H be a closed

connected solvable subgroup of GLn(k). Then H is conjugate to a subgroup of the group

of upper triangular matrices Bn.

Levi subgroups are another class of subgroups which appear throughout this thesis, and

they are closely related to parabolic subgroups.

Definition 1.1.17. A Levi subgroup of G is a connected subgroup L of a parabolic

subgroup P of G such that P is the semi-direct product of L and Ru(P ).

Levi subgroups are reductive, and a Levi subgroup of a Levi subgroup is a Levi subgroup;

the class of subgroups is well-behaved with respect to this sort of descent, which will

prove useful in Chapter 4.

Theorem 1.1.18. [36, Theorem 30.2]. Any parabolic subgroup P of G has a Levi

decomposition P = LnRu(P ) and any two Levi subgroups are conjugate by an element

of Ru(P ).

We now introduce the notions of characters and cocharacters of algebraic groups. We

will make extensive use of cocharacters in later chapters of this thesis.

Definition 1.1.19. Let G be a linear algebraic group. A homomorphism χ : G → Gm
is called a character of G, and the set of characters of G is denoted by X(G). A

homomorphism λ : Gm → G is called a cocharacter of G and the set of cocharacters of

G is denoted by Y (G).
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Since the image of any nontrivial cocharacter of G is a one-dimensional torus, Y (G)

is the union of the sets Y (T ) as T runs over the maximal tori of G. Each of these

sets Y (T ) carries the structure of an abelian group; we have Y (T ) ∼= Zr, where r =

dimT . Therefore, we use additive notation for cocharacters which evaluate in a common

maximal torus T : if λ and µ are such cocharacters of G, we set (nλ + mµ)(a) :=

λ(a)nµ(a)m. Cocharacters are sometimes referred to as one-parameter (multiplicative)

subgroups. We will see in Lemma 2.1.4 that parabolic subgroups of connected groups G

can be characterized in terms of cocharacters of G.

Example 1.1.20. Let G = GLn(k), and let n = (n1, . . . , nr) be an m-tuple such that

n1 + · · · + nr = n. Let Pn denote the subgroup of block upper triangular matrices

with block sizes of n1, . . . , nr down the main diagonal. This is a parabolic subgroup

of G, and any parabolic of G will be (up to conjugation in G) of this form. Let Ln

denote the subgroup of block diagonal matrices with block sizes of n1, . . . , nr down the

main diagonal. Then Ln is a Levi subgroup of Pn. The following are examples of such

subgroups in GL4(k):

P(3,1) =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

 P(2,2) =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 P(1,2,1) =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗



L(3,1) =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

 L(2,2) =


∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗
0 0 ∗ ∗

 L(1,2,1) =


∗ 0 0 0

0 ∗ ∗ 0

0 ∗ ∗ 0

0 0 0 ∗


In the case n = (1, . . . , 1), Pn is the standard Borel subgroup of upper triangular matrices

Bn, and Ln is the maximal torus of diagonal matrices Dn. In the case n = (n), we have

Pn = Ln = GLn(k). Once we have established the necessary correspondence, we will

be able to read off the shape of parabolic subgroups by studying the diagonalisation of

their corresponding cocharacters.

Earlier we saw that det : GLn(k)→ GL1(k) = Gm is an example of a homomorphism of

algebraic groups; this is therefore an example of a character of GLn(k). Cocharacters of

G will be of the form

λ(a) =


az1

. . .

azn

 ,

where the powers zi are integers. By conjugating if necessary, we can ensure that the

powers of a decrease in size along the main diagonal.

Definition 1.1.21. Let T be a torus of G and let V be a G-module. For each χ ∈ X(T )

we define the χ weight space of V to be

Vχ = {v ∈ V | t · v = χ(t)v for all t in T}.
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We say that χ is a weight of V if Vχ is non-zero.

The following makes use of the fact that commuting diagonalisable matrices are simul-

taneously diagonalisable [19, Theorem 1.3.12], and that a torus has to act diagonally on

a vector space.

If V is a k-vector space and T is a torus over k acting linearly on V , then we can

diagonalise the action. Hence there is a finite list of characters χi : T → Gm (with

1 ≤ i ≤ r) such that V =
⊕r

i=1 Vi, where Vi = {v ∈ V | t · v = χi(t)v for all t ∈ T}.
We can further break up each Vi into one-dimensional subspaces because each t ∈ T acts

as a scalar on the whole of Vi.

The character group of a one-dimensional torus is isomorphic to the integers. So if we

can write T = Im(λ) for a cocharacter λ : Gm → G, we can write V =
⊕

n∈Z Vn where

Vn = {v |λ(a) · v = anv} and only finitely many Vn are non-zero. This relies on the fact

that endomorphisms of the multiplicative group are of the form a 7→ an for some n ∈ Z,

see [36, Example 3.2.2].

Definition 1.1.22. We call Vn = {v | λ(a) · v = anv} a λ-weight space and say that λ

acts with weight n on Vn.

Arguments on weight spaces will appear in later chapters of this thesis. We return to

the context of GL4(k) to provide some concrete examples.

Example 1.1.23. Let G = GL4(k), and let T = diag(a2, a2, a, a) be a torus of G.

Let V be the k-vector space spanned by the natural basis e1, . . . , e4 (where ei is the

4-dimensional column vector with 1 in the ith position and zeros elsewhere). Given the

characters

χ


t2

t2

t

t

 = t2, and χ′


t2

t2

t

t

 = t,

one can check that Vχ = 〈e1, e2〉 and Vχ′ = 〈e3, e4〉. Hence we may write V = Vχ ⊕ Vχ′ .

Let λ be the cocharacter defined by

λ(a) =


a2

a2

a

a

 ,

and observe that T = Im(λ). Since λ acts with weight 2 on V2 = 〈e1, e2〉 and acts with

weight 1 on V1 = 〈e3, e4〉, we obtain the λ-weight space decomposition V = V2 ⊕ V1.

We say that two cocharacters λ, µ ∈ Y (G) commute if there exists a common torus

T ⊆ G, with Im(λ), Im(µ) ⊆ T ; this is equivalent to insisting that λ(a)µ(b) = µ(b)λ(a)

for all a, b. We will require the following fact about commuting cocharacters.

Proposition 1.1.24. If λ, µ ∈ Y (G) commute, each λ-weight space is µ-stable and vice

7



versa.

Proof. If v is a vector with λ-weight n, that means that λ(a) · v = anv for a ∈ k∗ . Then

since λ and µ commute, for any b ∈ k∗ we have

λ(a) · (µ(b) · v) = µ(b) · (λ(a) · v) = µ(b) · (anv) = an(µ(b) · v),

so µ(b) · v is a λ-weight vector with weight n. Hence the n-weight space for λ is µ-

stable.

We will also make use of the following two lemmas concerning maximal tori.

Lemma 1.1.25. Suppose λ is a cocharacter of an algebraic group G and T is a maximal

torus of G. Then there exists g ∈ G such that g · λ, where (g · λ)(z) := gλ(z)g−1, is a

cocharacter of T .

Proof. We know that λ evaluates in some maximal torus, and that all maximal tori are

conjugate [36, Theorem 6.3.5]. Hence λ can be conjugated into every other maximal

torus.

Lemma 1.1.26. Let P and Q be parabolic subgroups of a reductive group G. Then P ∩Q
contains a maximal torus of G.

Proof. This is a consequence of the fact that the intersection of any two Borel subgroups

of G contains a maximal torus; see [12, Corollary 14.13]

The theory in this section can be developed to introduce the Lie algebras of algebraic

groups and obtain a classification of connected reductive groups using root data and

Dynkin diagrams, see for example [20, §11]. The statements and proofs in this thesis

will not require an understanding of this theory; we will be working in the convenient

setting of a general linear group.

1.2 Buildings

Before providing a definition, we list three informal ways of thinking about buildings.

One can work from the ground up and think of a building as a simplicial complex ∆

with a highly structured decomposition as a union of subcomplexes called apartments.

Each apartment is isomorphic to a complex attached to a fixed Coxeter group W . Al-

ternatively, one can take a top-down approach and view a building as a chamber system

∆ with a W -valued distance function δ : ∆×∆→W . These viewpoints are equivalent;

chamber systems are examples of simplicial complexes where the chambers are maximal

simplices. Alternatively, one can think of a geodesic metric space equipped with an atlas

of embeddings Σ→ ∆ for some model space Σ equipped with a W -action by isometries.

To present our definition of a building we require the following terminology, outlined

in [38, §1]. Let ∆ be a simplicial complex. Say that A ∈ ∆ is a face of B ∈ ∆ if A ⊆ B.

The rank of an element A ∈ ∆ is the number of minimal nonzero faces of A and elements
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of rank 1 are called vertices. The rank of a complex ∆ is defined to be the supremum of

the ranks of elements it contains. If A ∈ ∆, the set of all elements of ∆ which contain

A together with the order relation induced by that of ∆ is a complex called the star of

A. For B in the star of A, the rank of B in the star of A is called the codimension of

A in B, and is denoted by codimB A. A complex is called a chamber complex if every

element is contained in a maximal element and if, given two maximal elements c and c′,

there exists a finite sequence

c = c0, c1, . . . , cm = c′

such that

codimci−1(ci−1 ∩ ci) = codimci(ci−1 ∩ ci) ≤ 1

for all i = 1, . . . ,m. The maximal elements are then called chambers. A chamber

complex is said to be thin if every element of codimension 1 is contained in exactly two

chambers. A chamber complex is said to be thick if every element of codimension 1 is

contained in at least three chambers.

Definition 1.2.1. [38, §3.1]. Let ∆ be a complex, and let A be a set of subcomplexes of

∆. The pair (∆,A) is called a building of which the elements of A are called apartments

if the following conditions hold:

(B2) the elements of A are thin chamber complexes;

(B3) any two elements of ∆ belong to an apartment;

(B4) if two apartments Σ and Σ′ contain two elements A,A′ ∈ ∆, there exists an

isomorphism of Σ onto Σ′ which leaves invariant A, A′, and all their faces.

Remark 1.2.2. Following [27], we view buildings as simplicial complexes and do not

require buildings to be thick, which was an axiom (B1) in the original formulation. We

reserve the term building for the structures described as ‘weak buildings whose Weyl

complexes are Coxeter complexes’ in [38, §3.1].

Any representative of the isomorphism class of the elements of A will be called the Weyl

complex of ∆. We call a building spherical when its Weyl complex is finite. The Weyl

complex of a building is a Coxeter complex [38, Theorem 3.7]. An alternative top-down

chamber system definition for a building can be found in [31].

Examples of buildings come from BN -pairs, also known as Tits systems. BN -pairs can

be found in all reductive algebraic groups.

Definition 1.2.3. A BN -pair or Tits system for a group G consists of a pair of sub-

groups B and N of G which satisfy the following axioms:

(A1) G is generated by B and N .

(A2) H = B ∩N is a normal subgroup of G.

(A3) The quotient W = N/H is a Coxeter group with a generating set S.

9



(A4) For every w ∈W and s ∈ S, sBwB ⊂ BwB ∪BswB.

(A5) For every s ∈ S, we have sBs 6= B.

The group W is called the Weyl group of the BN -pair. The Weyl group of a Tits system

is a Coxeter group; see [21, §29.4].

Theorem 1.2.4. [14, Theorem 5.1]. Let G be a group with a BN -pair and let ∆

be a chamber system over I with chambers the cosets G/B and adjacency defined by

a1B ∼i a2B if and only if a−1
1 a2 ∈ B〈si〉B. Define a W -metric by δ(a1B, a2B) = g ∈W

if and only if a−1
1 a2 ∈ BgB. Then (∆, δ) is a thick building of type (W,S)

Note that we could also identify the chambers of ∆ with subgroups (conjugates of B)

rather than cosets. We can get a BN -pair for every connected reductive algebraic group

G over an algebraically closed field [21, §29.1], which results in a spherical building.

Example 1.2.5. [14, Example 5.1]. Recall that a monomial matrix is a matrix con-

taining exactly one non-zero element in each row and column. A permutation matrix is

a monomial matrix in which all non-zero elements are 1.

Let G = GLn(k). Take B ≤ G to be the subgroup of upper triangular matrices, and

take N ≤ G to be the subgroup of monomial matrices. Then B ∩ N = H E G is

the normal subgroup of diagonal matrices. Here, W = N/H is the set of permutation

matrices generated by s1, . . . , sn−1, where si is the permutation matrix which is zero off

the diagonal except for positions (i, i+ 1) and (i+ 1, i). In the case n = 3 these matrices

would be:

s1 =

 0 1 0

1 0 0

0 0 1

 s2 =

 1 0 0

0 0 1

0 1 0

 .

Define lines Li = {tei | t ∈ k} where ei is the column vector with 1 in the ith position

and zeros elsewhere. Then N permutes the set of lines {L1, . . . , Ln} and this action can

be used to show that W is isomorphic to the symmetric group Sn.

Note that the example for GLn(k) is misleading; we cannot, in general, realise W as a

subgroup of G. A discussion of the BN -pairs in simple algebraic groups over local fields

can be found in [21, §35.4].

1.2.1 The Centre Conjecture

In a chamber complex ∆, a set L of chambers is called convex if every minimal gallery

whose first and last chambers belong to L has all its terms in L. A chamber subcomplex

∆′ of ∆ is called convex if the set of all chambers in ∆′ is convex. An intersection of

convex chamber subcomplexes is convex; an arbitrary subcomplex of ∆ is called convex

if it is such an intersection. For spherical buildings, there is a notion of “opposition” for

simplices: two simplices are opposite in ∆ if they are opposite in some apartment (and

therefore all apartments) containing them both. Roughly, the Centre Conjecture asserts

that a convex subcomplex of a spherical building should be a “subbuilding”, or should

contain a natural “centre”.

10



Theorem 1.2.6 (The Centre Conjecture). Let ∆ be a spherical building, and let ∆̃ be

a convex subcomplex of ∆. Then at least one of the following holds:

(a) for each simplex A ∈ ∆̃ there is a simplex B ∈ ∆̃ which is opposite to A in ∆;

(b) there exists a nontrivial simplex of ∆̃ which is fixed by all automorphisms of ∆

which stabilize ∆̃.

Recall that the Weyl complexes of our buildings are Coxeter complexes. We say that

a building is of type An (respectively Bn, Dn, etc.) if its Weyl Complex is a Coxeter

complex of type An (respectively Bn, Dn, etc.). The Centre Conjecture for convex

subcomplexes has been proven using type-based proofs in [27], [23], and [29]. We are

interested in studying a strengthened version of the Centre Conjecture which considers

the more general class of convex subsets of a spherical building. For convex subsets of

dimension at most 2, the conjecture holds [2]. An approach towards proving a strength-

ened Centre Conjecture using Geometric Invariant Theory is discussed in [8]. We would

like to develop an approach based on the ideas developed by Mühlherr and Tits in [27].

By identifying buildings with flag complexes of certain classes of incidence structures,

the combinatorial properties of these incidence geometries can be used to prove the

centre conjecture for convex subcomplexes. The rest of this subsection is dedicated to

providing a detailed summary of their proof for buildings of type An.

The following definition and proposition are due to Serre [34]. The statements here are

reproduced from [27].

Definition 1.2.7. [27, Definition 2.2]. Let ∆ = (∆,⊂) be a spherical building and let

∆̃ ⊂ ∆ be a convex subcomplex of ∆. Then ∆̃ is called completely reducible if for each

simplex A ∈ ∆̃ there exists a simplex B ∈ ∆̃ which is opposite to A ∈∆.

Proposition 1.2.8. [27, Proposition 2.3]. Let ∆ = (∆,⊂) be a spherical building and

let ∆̃ ⊂ ∆ be a convex subcomplex of ∆. Then the following are equivalent:

(a) ∆̃ is completely reducible;

(b) for each vertex X ∈ ∆̃ there exists a vertex Y ∈ ∆̃ which is opposite to X in ∆.

This proposition is used in the proof for buildings of type An, but is also used in the

proofs for buildings of type I2(n), Cn, and Dn. Proving that an arbitrary vertex has an

opposite is simpler, in practice, than proving that an arbitrary simplex has an opposite.

We now describe the arguments used specifically for buildings of type An. The incidence

structure corresponding to buildings of type An comes from projective geometry.

Definition 1.2.9. A point-line space consists of a set P and a set L of subsets of P ;

elements of P are points and elements of L are lines. A projective space is a linear

point-line space S = (P,L) such that:

1. two distinct points are contained in exactly one line;

2. for any 5-tuple of pairwise distinct points a, b, c, p, q such that a, b, p and a, c, q

are collinear on distinct lines, the lines containing b, c and p, q have a common
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point.

An example of a projective space is given by the point-line space coming from a vec-

tor space, where points are one-dimensional subspaces and lines are two-dimensional

subspaces. A subspace of a projective space S = (P,L) is a subset P ′ of P such that

|`∩P ′| ≥ 2 implies ` ⊆ P ′ for each line ` ∈ L. Two subspaces U, V of a projective space

S = (P,L) are said to be complementary if U ∩ V = ∅ and 〈U, V 〉 = P , where 〈U, V 〉
denotes the smallest subspace containing U and V .

Let S = (P,L) be a projective space, and let V(S) denote the set of all nontrivial

subspaces of S.

Definition 1.2.10. [27, Definition 4.2]. We call a subset Ω of V(S) closed if the

following hold for all U, V ∈ Ω:

(i) 〈U, V 〉 6= P implies 〈U, V 〉 ∈ Ω.

(ii) U ∩ V 6= ∅ implies U ∩ V ∈ Ω.

From this point on, Ω ⊂ V(S) always denotes a closed set. Let PΩ denote the set of all

minimal elements in Ω. For an element Z ∈ Ω, define ΩZ := {X ∈ Ω |Z 6= X ⊂ Z}
and PΩ(Z) := PΩ ∩ ΩZ . In words, ΩZ is the set of subspaces in Ω which are properly

contained in Z, and PΩ(Z) is the set of minimal elements in ΩZ .

Proposition 1.2.11. [27, Proposition 4.4]. Suppose that S has finite rank k and that

for each X ∈ PΩ there exists a complement Y ∈ Ω of X in S. Then the following hold

for all Z ∈ Ω:

(a) either Z = 〈X |X ∈ PΩ(Z)〉 or Z ∈ PΩ;

(b) there is W ∈ Ω which is a complement of Z in S.

Moreover, if Ω 6= ∅, then P = 〈X | X ∈ PΩ〉.

There is a dual proposition for maximal elements of Ω. Let HΩ denote the set of all

maximal elements in Ω. Define ΩZ := {X ∈ Ω |Z 6= X ⊃ Z} and HΩ(Z) := HΩ ∩ ΩZ .

Then ΩZ is the set of subspaces in Ω which properly contain Z, and HΩ(Z) is the set of

maximal elements in ΩZ .

Proposition 1.2.12. [27, Proposition 4.5]. Suppose that S has finite rank k and that

for each X ∈ HΩ there exists a complement Y ∈ Ω of X in S. Then the following hold

for all Z ∈ Ω:

(a) either Z =
⋂
X∈HΩ(Z)X or Z ∈ HΩ;

(b) there is W ∈ Ω which is a complement of Z in S.

Moreover, if Ω 6= ∅, then
⋂
X∈HΩ

X = ∅.

Although we do not need to reproduce it here, it is worth noting that the proof of

Proposition 1.2.11 makes use of a fact about complementary subspaces of a projective

space. When elements of Ω have S-complements in Ω, one can check that assertion (a)
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of the centre conjecture holds; the following theorem is introduced to handle cases where

such complements do not exist.

Theorem 1.2.13. [27, Theorem 4.6]. Suppose that S has finite rank. Let Cp (respec-

tively Ch) denote the set of all X ∈ PΩ (respectively X ∈ HΩ) for which there is no

Y ∈ Ω which is a complement of X in S. Put Cp := 〈X |X ∈ Cp〉 and Ch :=
⋂
X∈Ch X.

Then one of the following holds.

(a) For each X ∈ Ω there is Y ∈ Ω which is a complement of X in S.

(b) Cp and Ch are incident elements which are both contained in Ω.

Remark 1.2.14. We are particularly interested in mirroring this result in our own setting.

We will summarise the ideas of this proof here, and will refer back to it in Chapter 4.

First note that if Cp (respectively Ch) is empty then we can apply Proposition 1.2.11

(respectively Proposition 1.2.12) to conclude that we are in case (a) where every subspace

in Ω has an S complement in Ω. We can therefore assume that both Cp and Ch are

nonempty; it follows that Cp 6= ∅ and Ch 6= P . Take X ∈ PΩ and Y ∈ Ch, and suppose

that X is not contained in Y . Since X is in PΩ, it follows that X ∩ Y = ∅. Since Y is in

HΩ, it follows that 〈X,Y 〉 = P . Then X is a complement of Y in S, contradicting our

assumption that Y ∈ Ch. Hence every subspace X ∈ PΩ is contained in every subspace

Y ∈ Ch. Set C := 〈X | X ∈ PΩ〉. It follows that Cp ⊂ C ⊂ Ch, and that Cp 6= P and

Ch 6= ∅. Therefore Cp and Ch are incident elements in Ω.

This construction of a pair of incident elements is key. Theorem 1.2.15 will use the flag

Cp ⊂ Ch (which is fixed by inclusion-preserving and inclusion-reversing automorphisms

of the flag complex alike) to prove that for buildings of type An, one of the conditions

of the centre conjecture has to hold.

We require some additional terminology to discuss the remaining results of Section 4

of [27]. An incidence structure is a pair G = (V, ?) where V is a set and ? is a reflexive

and symmetric binary relation on V known as an incidence relation. A flag of G = (V, ?)

is a subset of V whose elements are pairwise incident, and we denote the set of flags of

G by flag G. We let Flag G := (flag G,⊂) denote the flag complex of G. For any subset

Ω of V , let flag Ω denote the set of all flags contained in Ω and let Flag Ω denote the

corresponding subcomplex of Flag G. It follows that the automorphism groups Aut(G)

and Aut(Flag G) are the same and that the stabilizer of Ω ⊂ V in Aut(G) corresponds

to the stabilizer of flag Ω in Aut(Flag G).

Theorem 1.2.15. [27, Theorem 4.8]. Let Ω be a closed subset of V(S). Then one of

the following holds:

(a) for each X ∈ Ω there is Y ∈ Ω which is a complement of X in S;

(b) the group StabAut(Flag(G(S)))(flag(Ω)) fixes a non-trivial element in flag(Ω).

The final result required to prove the centre conjecture for buildings of type An is the

following identification theorem.

Theorem 1.2.16. [27, Theorem 4.9]. Let S = (P,L) be a projective space of finite rank
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n and let G := G(S) = (V(S), ?) be the associated incidence structure. Then we have the

following:

(a) Flag(G) is a building of type An.

(b) For X,Y ∈ V(S), the flags {X} and {Y } are opposite in Flag(G) if and only if Y

is a complement of X in S.

(c) Let Ω be a subset of V(S). Then flag(Ω) is a convex subcomplex of Flag(G) if and

only if Ω is closed.

Conversely, if ∆ = (∆,⊂) is a building of type An, then there exists a projective

space S ′ of rank n such that ∆ is isomorphic to Flag(G(S ′)).

To prove the centre conjecture for buildings of type An, the authors work with an

isomorphic flag complex of a projective space S. They describe a closed subset Ω of

subspaces of S such that if each element of Ω has an S complement in Ω, each vertex

in ∆̃ has an opposite in ∆̃; the complete reducibility of ∆̃ follows by Proposition 1.2.8,

and assertion (a) of the Centre Conjecture holds. If there is an element of Ω with no

such complement, Theorem 1.2.15 guarantees the existence of a non-trivial element of

flag Ω fixed by certain stabilizers. This fixed flag corresponds to a nontrivial simplex in

∆̃ satisfying assertion (b) of the Centre Conjecture.

1.2.2 The Strict Centre Conjecture

There is a version of the centre conjecture for convex subcomplexes that is stricter than

the statement given in [27]. In applications of the centre conjecture, it is useful to have

an extra condition on the nontrivial simplex described in the second assertion.

Theorem 1.2.17 (The Strict Centre Conjecture). Let ∆ be a spherical building, and

let ∆̃ be a convex subcomplex of ∆. Then at least one of the following holds:

(a) ∆̃ is completely reducible;

(b) there exists a nontrivial simplex σ of ∆̃ which is fixed by all automorphisms of ∆

which stabilize ∆̃. Additionally, σ has no opposite in ∆̃.

With a little extra work, the proofs in [27, §4] can be shown to prove this stronger

version. The following result and its proof uses terminology introduced in the previous

subsection. Let S = (P,L) be a projective space and let Ω be a closed subset of V(S).

Recall that Cp (respectively Ch) denotes the set of all X ∈ PΩ (respectively all X ∈ HΩ)

for which there is no Y ∈ Ω which is a complement of X in S. Set Cp := 〈X |X ∈ Cp〉
and Ch :=

⋂
X∈Ch X.

Lemma 1.2.18. Suppose that Ch is a proper subspace of S. There are no elements of

Ω that are complementary to Ch in S.

Proof. Since we are in a setting with finite rank, Ch is generated by a finite number of

elements of Ch. We proceed by induction on the minimal number of elements of Ch

required to generate Ch. If Ch = {X} is a singleton set, assuming that Ch = X has
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an S-complement contained in Ω immediately leads to a contradiction; elements of Ch

cannot have such complements.

Now let W ∈ Ch and let X ∈ Ω be a subspace with no S complement in Ω. Suppose (for

a contradiction) that there exists a subspace Y ∈ Ω that is complementary to W ∩ X
in S. Set Y ′ = Y ∩ X. Note that 〈X,Y 〉 = P ; since X has no S complement in Ω,

we must have that X ∩ Y 6= ∅. Then since Ω is a closed set containing X and Y , we

have that X ∩ Y = Y ′ ∈ Ω. We know that (W ∩ X) ∩ Y = ∅, so the intersection

W ∩ Y ′ must also be empty. Consider the subspace 〈W,Y ′〉. If 〈W,Y ′〉 = P , then we

would immediately have a contradiction, since Y ′ would be a complement to W in S,

and W has no such complement since it is an element of Ch. Assume that 〈W,Y ′〉 6= P ;

then 〈W,Y ′〉 ∈ Ω since Ω is closed. But W is maximal in Ω and must be contained

in 〈W,Y ′〉, so 〈W,Y ′〉 = W . Hence the subspace Y ′ is contained in W , so our earlier

result W ∩ Y ′ = ∅ implies that Y ′ = Y ∩ X = ∅. Since 〈X,Y 〉 = P , the subspace

Y ∈ Ω is a complement to X in S. This contradicts the assumption that X has no such

complement. Hence there is no subspace in Ω that is complementary to W ∩X in S.

We have shown that intersecting an element of Ch with a subspace with no S complement

in Ω results in another subspace with no S complement in Ω. Armed with this inductive

step and the singleton set base case, we have proved that Ch =
⋂
X∈Ch X has no S

complement contained in Ω.

A similar series of arguments could be used to prove that there are no elements of Ω that

are complementary to Cp in S. Hence the flag Cp ⊂ Ch and the corresponding nontrivial

simplex used in the proof of the centre conjecture have no opposite.
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Chapter 2

Complete reducibility

We begin this chapter by introducing the notion of G-complete reducibility, which gen-

eralizes the concept of complete reducibility from representation theory, and was first

introduced by Jean-Pierre Serre [33], [34]. It was developed to extend standard re-

sults from the representation theory of algebraic groups by replacing representations

H → GL(V ) with homomorphisms from H to an arbitrary reductive algebraic group G.

Serre’s definition was extended to non-connected groups by Bate, Martin and Röhrle [5]

using a geometric approach inspired by Richardson, who had characterized the closed

G-orbits in Gn in terms of the subgroup structure of G [30]. This approach proved useful

and resulted in further joint work: see [6], [7], [9], and [3].

We then discuss the notion of relative G-complete reducibility, which was first introduced

in [10]. This generalizes the study of closed G-orbits to the study of closed K-orbits for a

reductive subgroup K ≤ G. The final section of this chapter focuses on relative GL(V )-

complete reducibility and includes one of the main results of this thesis, Theorem 2.4.1.

With the exception of subsection 2.4, none of the material presented in this chapter is

original work.

2.1 Definitions and results

Definition 2.1.1. Let G be a connected reductive linear algebraic group over an alge-

braically closed field k. A closed subgroup H of G is said to be G-completely reducible

(G-cr) provided that whenever H is contained in a parabolic subgroup P of G, it is

contained in a Levi subgroup L of P .

We will require the following notion of the limit of a morphism, and a version of the

Hilbert-Mumford theorem.

Definition 2.1.2. Let φ : Gm → X be a morphism of algebraic varieties. We say that

lim
t→0

φ(t) exists if there exists a morphism φ̂ : A1 → X whose restriction to Gm is φ. If

this limit exists, we set lim
t→0

φ(t) = φ̂(0). If the morphism φ̂ exists it is unique, because

k∗ is dense in k.

We are primarily interested in when lim
t→0

λ(t) · x exists for cocharacters λ. In these cases
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we may use the shorthand limλ x := lim
t→0

λ(t) · x.

Theorem 2.1.3 (Hilbert-Mumford Theorem). Let G be a reductive group acting on an

affine variety X, and let x ∈ X. If G ·x is not closed in X, then there exists a λ ∈ Y (G)

such that limλ x exists and does not belong to G · x.

A stronger version of the above due to Kempf is used in [5]; the original statement

can be found in [22]. For fields which are not algebraically closed, a rational version of

Theorem 2.1.3 is detailed in [4], which we will review in Chapter 5.

Note that when G = GL(V ) for a finite dimensional k-vector space V , a subgroup H

is G-completely reducible if and only if V is a completely reducible H-module. Recall

that the Levi subgroups introduced in Example 1.1.20 took a block-diagonal form. For a

closed subgroup H ≤ G, we denote the centralizer and normalizer of H in G by CG(H)

and NG(H), respectively. We will make use of the following characterization of parabolic

subgroups and Levi subgroups of connected groups, see [30] and [36].

Lemma 2.1.4. [5, Lemma 2.4]. Given a parabolic subgroup P ≤ G and any Levi

subgroup L ≤ P , there exists λ ∈ Y (G) such that the following hold:

(i) P = Pλ := {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists }.

(ii) L = Lλ := CG(λ(k∗)).

(iii) the map cλ : Pλ → Lλ defined by

cλ(g) := lim
t→0

λ(t)gλ(t)−1

is a surjective homomorphism of algebraic groups. Moreover, Lλ is the set of fixed

points of cλ and the kernel of cλ is Ru(Pλ).

Conversely, given any λ ∈ Y (G), the subset Pλ defined as in part (i) is a parabolic

subgroup of G, Lλ is a Levi subgroup of Pλ, and the map cλ as defined in part (iii) has

the described properties. Moreover, Pλ is a proper subgroup if and only if λ(k∗) ( Z(G).

The following definition was introduced by Richardson; note that it does not depend on

the choice of maximal torus S.

Definition 2.1.5. [30, Definition 16.1]. Let H be a closed subgroup of G and let S be

a maximal torus of CG(H). Then H is said to be strongly reductive in G provided that

H is not contained in any proper parabolic of CG(S).

Another characterization of strong reductivity can be obtained using Theorem 2.1.3 and

the map cλ from Lemma 2.1.4.

Lemma 2.1.6. [5, Lemma 2.17]. Let H be a closed subgroup of G. Then H is strongly

reductive in G if and only if for every cocharacter λ ∈ Y (G) with H ⊆ Pλ, there exists

g ∈ G such that cλ(h) = ghg−1 for every h ∈ H.

Richardson proved a connection between strong reductivity and topologically finitely

generated subgroups.
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Definition 2.1.7. A subgroup H ≤ G is said to be topologically finitely generated by

elements h1, . . . , hn ∈ G if H is the Zariski closure of the subgroup of G generated by

those elements.

Remark 2.1.8. Not every G-completely reducible subgroup is topologically finitely gen-

erated, but Remark 2.9 and Lemma 2.10 of [5] justify restricting our attention to this

case.

Theorem 2.1.9. [30, Theorem 16.4]. If H ≤ G is topologically finitely generated by

h1, . . . , hn, then H is strongly reductive in G if and only if the G-orbit of (h1, . . . , hn)

under the diagonal action of G on Gn by simultaneous conjugation is closed.

When n = 1 this is the characterization of semisimple elements of G [35]. The fol-

lowing result shows that strong reductivity and complete reducibility are equivalent for

subgroups of GL(V ).

Lemma 2.1.10. [30, Lemma 16.2]. Let H be a closed subgroup of GL(V ). Then H is

strongly reductive in GL(V ) if and only if V is a semisimple H-module.

The main result of [5] states that we can replace GL(V ) in the above with an arbitrary

reductive group G.

Theorem 2.1.11. [5, Theorem 3.1]. Let H be a closed subgroup of a reductive group

G. Then H is strongly reductive in G if and only if H is G-completely reducible.

To understand an important corollary of the above, we require the following definition.

Definition 2.1.12. Let H be a subgroup which is not contained in any proper parabolic

subgroup of G. Then H is trivially G-completely reducible and we say that H is G-

irreducible (G-ir).

When G = GL(V ), a subgroup H is G-irreducible if and only if V is an irreducible

H-module. The following corollary reduces the study of G-cr subgroups of G to the

study of L-ir subgroups of Levi subgroups L of G.

Corollary 2.1.13. [5, Corollary 3.5]. Let H be a closed subgroup of G. Then the

following are equivalent:

(i) H is strongly reductive in G;

(ii) H is G-completely reducible;

(iii) H is CG(S)-irreducible, where S is a maximal torus of CG(H);

(iv) for every parabolic subgroup P of G which is minimal with respect to containing

H, the subgroup is L-irreducible for some Levi subgroup L of P ;

(v) there exists a parabolic subgroup P of G which is minimal with respect to containing

H, such that H is L-irreducible for some Levi subgroup L of P .

We are now able to apply results on strong reductivity and geometric invariant theory

to study G-complete reducibility. The following is a useful corollary of Theorem 2.1.9
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and Theorem 2.1.11.

Corollary 2.1.14. [5, Corollary 3.7]. Let x1, . . . , xn ∈ G (for some n ∈ N) and let

H be the subgroup of G topologically generated by x1, . . . , xn. Then H is G-completely

reducible if and only if the orbit of (x1, . . . , xn) under the diagonal action of G on Gn by

simultaneous conjugation is closed.

This corollary provides us with the following result.

Proposition 2.1.15. [5, Proposition 3.12]. Let H be a G-completely reducible subgroup

of G. Then CG(H)0 is reductive. Moreover, let K be a closed subgroup of G satisfying

H0CG(H)0 ⊆ K ⊆ NG(H). Then K0 is reductive. In particular, NG(H)0 is reductive.

The following collection of results provides two sets of criteria for a subgroup to be G-

completely reducible, and two immediate consequences for normalizers and stabilizers.

Theorem 2.1.16. [5, Theorems 3.10 and 3.14, Corollaries 3.16 and 3.17].

Let H be a closed subgroup of G.

(i) Let N be a closed normal subgroup of H. If H is G-completely reducible, then so

is N . In particular, H0 is G-completely reducible if H is.

(ii) Let H be G-completely reducible and suppose K is a closed subgroup of G satisfying

HCG(H)0 ⊆ K ⊆ NG(H). Then K is G-completely reducible.

(iii) The subgroup H is G-completely reducible if and only if NG(H) is.

(iv) If H is G-completely reducible, then so is CG(H).

Remarks 2.1.17.

(1) We can view (i) as a consequence of Tits’ Center Conjecture [34, Proposition 2.11],

and it answers a question of Serre posed in [33].

(2) Serre proves a partial converse to (i) with a characteristic restriction in [33]. Ex-

amples show that this restriction is necessary. Another partial converse is given

by (ii) and further partial converses are discussed in [6].

(3) For G = GL(V ), (i) is an instance of Clifford Theory and (iii) and (iv) are conse-

quences of Clifford Theory and Wedderburn’s Theorem.

(4) In general, the converse to (iv) is false; it does not hold for Borel subgroups. A

partial converse is given in Corollary 3.18 of [5].

Further results of [5] provide connections between G-complete reducibility and regular

subgroups, separability, and reductive pairs. We omit a discussion of these topics, and

delay our discussion of G-complete reducibility over arbitrary fields until Chapter 5. We

instead provide the extensions of definitions and results to non-connected G. We now

only suppose that G is a linear algebraic group with G0 reductive. We require analogues

to earlier results, and will use terminology introduced in Lemma 2.1.4:
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Definition 2.1.18. For a cocharacter λ ∈ Y (G), we define the following subgroups:

Pλ := {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists},

Lλ := CG(λ(k∗)).

We call Pλ a Richardson parabolic (or R-parabolic) subgroup of G, and we call Lλ a

Richardson Levi (or R-Levi) subgroup of Pλ. To justify calling such Lλ subgroups R-

Levi subgroups, observe that Pλ = CG(λ(k∗))nRu(Pλ). For the remainder of this thesis

we will use ‘an R-Levi subgroup of G’, to mean an R-Levi subgroup of some R-parabolic

subgroup of G.

We saw that when G is connected, the R-parabolic and R-Levi subgroups are the

parabolic and Levi subgroups. Any R-parabolic subgroup P of G is a parabolic sub-

group of G [36, Lemma 6.2.4], but the converse is false, see [26, Remark 5.3]. We say

that two R-parabolics of G are opposite if their intersection is an R-Levi subgroup of G.

For non-connected groups, G-complete reducibility is defined as in the connected case,

replacing parabolic and Levi subgroups with R-parabolic and R-Levi subgroups. The

notions of G-irreducibility and strong reductivity can be extended similarly.

Definition 2.1.19. Let G be a reductive linear algebraic group over an algebraically

closed field k. A subgroup H of G is said to be G-completely reducible (G-cr) provided

that whenever H is contained in an R-parabolic subgroup Pλ for some λ ∈ Y (G), there

exists µ ∈ Y (G) such that Pλ = Pµ and H is contained in the R-Levi subgroup Lµ.

Alternatively, H is G-completely reducible if whenever H is contained in an R-parabolic

subgroup Pλ for some λ ∈ Y (G), there exists u ∈ Ru(Pλ) such that H ⊆ uLλu
−1. This

follows since all R-Levi subgroups of an R-parabolic subgroup P are Ru(P )-conjugate [5,

Corollary 6.7]. The following results will be useful in later chapters.

Corollary 2.1.20. [5, Corollary 6.5]. Let P be an R-parabolic subgroup of G and let T

be a maximal torus of P . Then there exists λ ∈ Y (T ) such that P = Pλ. Moreover, Lλ

is the unique R-Levi subgroup of P that contains T .

Lemma 2.1.21. [5, Lemma 6.11]. Let P be an R-parabolic subgroup of G with an

R-Levi subgroup L. Then there exists a unique R-parabolic subgroup P− of G such that

P ∩ P− = L.

Remark 2.1.22. These can be combined to show that for a given maximal torus T of

an R-parabolic subgroup P , there exists a unique R-parabolic subgroup P− such that

P ∩ P− is the unique R-Levi subgroup of P containing T .

2.2 Relative complete reducibility

We now extend our study of G-orbits to the study of K-orbits, where K is a reductive

subgroup of G.

Definition 2.2.1. Let H and K be subgroups of a reductive algebraic group G, with

K reductive. We say that H is relatively G-completely reducible (relatively G-cr) with
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respect to K if for every λ ∈ Y (K) such that H is contained in Pλ, there exists µ ∈ Y (K)

such that Pλ = Pµ and H ⊆ Lµ.

Remarks 2.2.2.

(i) If K = G this is the definition of G-complete reducibility.

(ii) A subgroup H is relatively G-cr with respect to K if and only if it is relatively

G-cr with respect to K0; we may assume without loss that K is connected. Every

subgroup H is relatively G-cr with respect to K if K0 is central in G [10, Remarks

3.2(i)].

(iii) If H ⊆ K then H is relatively G-cr with respect to K if and only if H is K-

cr. [10, Lemma 3.3(ii)]

(iv) In characteristic zero, H ≤ G isG-completely reducible if and only ifH is reductive.

There is no known analogous characterization of relative G-complete reducibility

in this case [10, Remarks 3.2(iv)].

(v) The property that a G-cr subgroup is reductive [34, Prop 4.1] is not inherited by

relatively G-cr subgroups. If K ⊆ Z(G), all subgroups of G are relatively G-cr

with respect to K; there may be non-reductive subgroups which are relatively G-cr

with respect to K but not G-cr.

(vi) A G-cr subgroup is not necessarily relatively G-cr. Two examples are provided

in [10, Remarks 3.2(v)]

We will sometimes need to consider parabolic and Levi subgroups of the reductive sub-

group K. We denote these by Pλ(K) and Lλ(K), respectively. The main result of [10]

is the following theorem:

Theorem 2.2.3. [10, Theorem 1.1]. Let K be a reductive subgroup of G. Let H be the

algebraic subgroup of G generated by elements x1, . . . , xn ∈ G. Then K · (x1, . . . , xn) is

closed in Gn if and only if H is relatively G-completely reducible with respect to K.

Due to the equivalence of strong reductivity and G-complete reducibility detailed in

Theorem 2.1.11, the above can be viewed as a generalization of Theorem 2.1.9, which is

the special case where K = G. This algebraic interpretation of closed orbits is somewhat

surprising, but follows naturally after extending results from the study of G-complete

reducibility to a relative setting. The following provides relative analogues of [5, Corol-

lary 3.22] and Corollary 2.1.13.

Proposition 2.2.4. [10, Proposition 3.17] Let H and K be subgroups of G and suppose

K is reductive.

(i) Let S be a torus of CK(H) and let L = CG(S). Then H is relatively G-completely

reducible with respect to K if and only if H is relatively L-completely reducible with

respect to K ∩ L.

(ii) The R-Levi subgroups Lµ of G for µ ∈ Y (K) that are minimal with respect to

containing H are precisely the subgroups of the form CG(S) where S is a maximal
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torus of CK(H). If L is such an R-Levi subgroup of G, then H is relatively G-

completely reducible with respect to K if and only if H is relatively L-irreducible

with respect to K ∩ L.

There is a relative analogue of the first statement of Proposition 2.1.15.

Corollary 2.2.5. [10, Corollary 3.7]. Let K be a reductive subgroup of G, and let H

be a subgroup of G which is relatively G-completely reducible with respect to K. Then

CK(H) is reductive.

The following result generalizes the second statement of [10, Proposition 3.19] and can be

applied to generalize Theorem 2.1.16(iii); recall that NG(H) and HCG(H) are automat-

ically reductive if H is a G-completely reducible subgroup of G by Proposition 2.1.15.

Proposition 2.2.6. [10, Proposition 3.26]. Suppose K is a reductive subgroup of G.

Let H be a subgroup of G which is relatively G-completely reducible with respect to K,

and suppose M is a reductive subgroup of G which contains H and is normalized by a

maximal torus of CK(H). Then M is also relatively G-completely reducible with respect

to K.

Relative complete reducibility is an active area of research; we refer the reader to the

recent papers [15] and [16].

2.3 Reducing to G = GL(V )

Recall that in the case where G = GL(V ) for a finite dimensional k-vector space V ,

a subgroup H is G-completely reducible if and only if V is a completely reducible H-

module. This leads to a characterization of G-complete reducibility in terms of flags of

subspaces of V ; to provide the statement, we require some additional terminology. Recall

that in Example 1.1.14 we worked with a Borel subgroup and a flag with subspaces of V

of each intermediate dimension; flags of this type are called complete flags. If a flag is not

complete we say that it is a partial flag. There is an obvious action of GL(V ) on the set

of all flags, and every Borel subgroup of GL(V ) is the stabilizer of some complete flag.

The parabolic subgroups of GL(V ) are stabilizers of flags of subspaces in V . We say that

two flags A = A1 ⊂ · · · ⊂ An and B = B1 ⊂ · · · ⊂ Bn are opposite or complementary if

Ai ⊕Bn−i+1 = V for all i.

Proposition 2.3.1. Let H be a subgroup of G = GL(V ). Then H is G-completely

reducible if and only if every H-stable flag of subspaces of V admits an H-stable com-

plement.

A similar characterization exists for relative GL(V )-complete reducibility. For a reduc-

tive subgroup K of GL(V ), write PK for the set of parabolic subgroups Pλ ≤ GL(V )

with λ ∈ Y (K). Let FK denote the set of flags in V which correspond to the parabolic

subgroups in PK and let FHK denote the subset of flags in FK stabilized by H.

Proposition 2.3.2. Let H and K be subgroups of G = GL(V ), with K reductive. Then

H is relatively G-completely reducible with respect to K if and only if each flag in FHK
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has an opposite in FHK .

This is a convenient characterization to work with and we will use it repeatedly through-

out this thesis.

Example 2.3.3. Let K = diag(a, a, b) ≤ G = GL(V ) where V is a 3-dimensional vector

space with a natural basis e1, e2, e3. Then we have that FK = {〈e1, e2〉 ⊂ V, 〈e3〉 ⊂ V }.
See Example 3.2.3 for an extended example describing how the elements of FK are

determined. Consider the following subgroups of G:

H1 =

 ∗ 0 0

0 ∗ ∗
0 ∗ ∗

 , H2 =

 ∗ ∗ 0

∗ ∗ 0

0 0 ∗

 , H3 =

 ∗ ∗ ∗0 ∗ ∗
0 0 ∗

 .

Since FH1
K = {∅}, H1 is trivially relatively G-cr with respect to K. Since FH2

K = FK
consists of two complementary flags, H2 is relatively G-cr with respect to K. Finally, H3

is not relatively G-cr with respect to K as FH3
K consists of the single flag 〈e1, e2〉 ⊂ V .

Since every G embeds in some GL(V ), the following result can be used to show that ques-

tions about relative G-complete reducibility can be reduced to questions about relative

GL(V )-complete reducibility.

Corollary 2.3.4. [10, Corollary 3.6]. Let M be a reductive subgroup of G. Let H and

K be subgroups of M and assume that K is reductive. Then H is relatively G-completely

reducible with respect to K if and only if it is relatively M -completely reducible with

respect to K.

The extra combinatorial structure on flags makes it a lot easier to work in this setting,

which motivated this thesis.

2.3.1 Extended example: an analogue for closed subsets

In this subsection we give an example of this set-up, mirroring [10, §5.1]. This example

shows that in some special situations we can mimic constructions of [27] in this relative

setting. In particular, there is a natural analogue of the closed subsets described in

Definition 1.2.10.

Let V be a finite-dimensional k-vector space and set G = GL(V ). Let U be a subspace of

V , and pick a direct complement Ũ . Let K = GL(U) ⊆ G be embedded in the obvious

way, let H be a subgroup of G. For any pair A,B of H-submodules of V , let 〈A,B〉
denote the smallest H-submodule of V containing both A and B.

Definition 2.3.5. Call a subset Ω of the set of all H-submodules of V closed if the

following hold for all A,B ∈ Ω:

(i) 〈A,B〉 6= V implies 〈A,B〉 ∈ Ω.

(ii) A ∩B 6= ∅ implies A ∩B ∈ Ω.

For any subspace W ⊆ V , let σH(W ) be the H-submodule of V generated by the
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H−submodules contained in W , and let ιH(W ) denote the smallest H-submodule of V

containing W . Let VU be the set of all proper nontrivial H-submodules of V contained

in U , and let V Ũ be the set of all proper nontrivial H-submodules of V containing Ũ .

Lemma 2.3.6. VU is closed.

Proof. Suppose A,B ∈ VU . Since A and B are both contained in U , σH(U) is a H-

submodule containing A and B. Then 〈A,B〉 ⊆ σH(U) ⊆ U , so 〈A,B〉 is a H-submodule

contained in U . Both A and B are nontrivial, so 〈A,B〉 is a nontrivial H-submodule of

V . Suppose now that 〈A,B〉 6= V . Then 〈A,B〉 is also a proper H-submodule of V , and

so 〈A,B〉 ∈ VU .

Note that A ∩ B ⊆ A ⊆ U . This guarantees that A ∩ B is contained in U , and that

A∩B is a proper H-submodule, since A is. The only criterion for belonging to VU that

is not automatically satisfied is being nontrivial; if we assume that A ∩ B 6= ∅, then we

can conclude that A ∩B belongs to VU .

Lemma 2.3.7. V Ũ is closed.

Proof. Suppose A,B ∈ V Ũ . We have that Ũ ⊆ A ⊆ 〈A,B〉. As in the VU case above,

〈A,B〉 is nontrivial since A and B are. If we suppose that 〈A,B〉 6= V , the H-submodule

〈A,B〉 will satisfy all the conditions for belonging to V Ũ .

Since Ũ is contained in both A and B, we have that Ũ ⊆ A ∩B. Again, A ∩B must be

a proper H-submodule because A is. Supposing that A ∩ B 6= ∅ is all that remains to

guarantee that A ∩B belongs to V Ũ . Hence, V Ũ is closed.

With an extra assumption about relative G-complete reducibility, these closed sets lead

to a pair of flag complexes with interesting complementary structures. Suppose now

that H is relatively G-completely reducible with respect to K. By [10, Proposition 5.1],

the following two conditions hold:

(1) every H-submodule of V contained in U has an H-complement in V containing Ũ ;

(2) every H-submodule of V containing Ũ has an H-complement in V contained in U .

The conditions above can be refined; [10, Proposition 5.3] states that H is relatively

G-completely reducible with respect to K if and only if the following two conditions

hold:

(3) σH(U) is a completely reducible H-module;

(4) V = σH(U)⊕ ιH(Ũ).

Consider a maximal flag of VU given by

f = U0 ⊂ U1 ⊂ · · · ⊂ σH(U),
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where Ui ∈ VU , and U0 is minimal in U . Using the conditions above, we can find a

maximal flag in V Ũ that is complementary to f in V :

f̃ = ιH(Ũ) ⊂ · · · ⊂ Ũ1 ⊂ Ũ0,

where Ũi denotes the H-complement to Ui that contains Ũ . Observations like these form

the basis of our attempts to mirror the techniques and results of Mühlherr and Tits in

a relative general linear setting.

2.4 Main reduction theorem

We now introduce the main result of this chapter in order to explain our focus on the

setting of general linear groups. Given an arbitrary reductive group G acting on an

affine space X, the action can be linearised by embedding X into a suitable general

linear group. Consequently, questions about reductive groups acting on arbitrary affine

varieties can be translated to the setting of relative GL(V )-complete reducibility. We

aim to use the extra structure provided in this general linear setting to make some of

these questions easier to answer.

Theorem 2.4.1. Let G be a reductive group acting on an affine variety X. Then

there exists a vector space W , an embedding φ : X ↪→ GL(W ), and a homomorphism

ρ : G→ GL(W ) such that the following diagram commutes:

G×X X

GL(W )×GL(W ) GL(W )

g · x

(ρ(g), φ(x)) φ(g · x)

ρ(g)φ(x)ρ(g)−1

Moreover, given any x ∈ X, the G-orbit of x is closed in X if and only if the subgroup

generated by φ(x) is relatively GL(W )-cr with respect to G.

Proof. We begin by showing that we can embed X in a vector space. To find a morphism

from X into a vector space V , it will suffice to describe a surjective homomorphism from

the coordinate ring of an affine m-space onto k[X]; it is straightforward to check that a

surjective comorphism φ] : k[Y ]→ k[X] corresponds to an injective morphism φ : X →
Y whose image is the closed subset of Y corresponding to the ideal Ker(φ]) ⊂ k[Y ].

Let E be a finite-dimensional G-stable subspace containing the generators of k[X] - the

existence of such a subspace is guaranteed by [36, Proposition 2.3.6]. Let e1, . . . , em

be a basis for E. We can define a k-algebra homomorphism from the coordinate ring

of an affine m-space k[Y1, . . . , Ym] to k[X] by mapping Yi → ei for all i. Describing

a map of the generators Yi in this way uniquely defines a k-algebra homomorphism
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k[Y1, . . . , Ym] → k[X]. Each generator of k[X] lies in E, so each generator is a linear

combination of the ei and therefore lies in the image of this homomorphism. Hence the

homomorphism is surjective. Thus X embeds as a closed subvariety of the affine m-space

V with coordinate ring k[V ] = k[Y1, . . . , Ym].

We need to ensure that everything is compatible with the G-action. Since G acts linearly

on k[X] and E was chosen to be a G-stable subspace, G acts linearly on E. The action

on E gives an action on k[Y1, . . . , Ym]: for each i, and each g ∈ G, we know that

g · ej =

m∑
i=1

aij(g)ei,

for some scalars aij(g). We can define an action of G on k[Y1, . . . , Ym] by setting

g · Yj =
m∑
i=1

aij(g)Yi,

for each j. With this description of how G acts on each generator, the action can be

extended to the entire polynomial ring. From this action of G on the coordinate ring of

V , we obtain an action of G on V . Given f ∈ k[V ], set f(g · v) = (g−1 · f)v.

At this point, we can replace G with its image in GL(V ), and replace X with V . Now

we set W = km+1 and define a homomorphism ρ : G → GL(W ) and an embedding

ψ : V → GL(W ):

ρ(g) =

(
A 0

0 1

)
, ψ(v) =

(
Im v

0 1

)
,

where A is the image of g in GL(V ). We can check that acting by conjugation of ρ(g)

on the embedded image of v is equal to the embedded image of g · v:

ρ(g)ψ(v)ρ(g)−1 =

(
A 0

0 1

)(
Im v

0 1

)(
A−1 0

0 1

)
=

(
A Av

0 1

)(
A−1 0

0 1

)

=

(
Im Av

0 1

)
= ψ(g · v)

Overall we obtain a closed embedding of X in GL(W ) which preserves the necessary

geometric properties. To prove the second statement, note that the G-orbit of x in X

is closed if and only if the orbit of its image v ∈ V is closed, since the image of X is

closed in V . In turn, the orbit of v is closed in V if and only if the G-orbit of ψ(v) is

closed in GL(W ), since ψ(V ) a closed subgroup of GL(W ). Finally, the G-orbit of ψ(v)

is closed in GL(W ) if and only if 〈ψ(v)〉 is relatively GL(W )-cr with respect to G by

Theorem 2.2.3.

Remark 2.4.2. One way to see how we obtain an action of G on V is to recognise

that k[Y1, . . . , Ym] can be identified with the symmetric algebra on the dual space V ∗,

k[V ] = S(V ∗). This symmetric algebra is the direct sum of all the symmetric powers

of the dual space; once we have defined a linear action on V ∗, it automatically extends

to the whole of S(V ∗) = k[V ]. In coordinates, the argument says that the elements
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Y1, . . . , Ym are the coordinate functions on V for some choice of basis. Then they are a

basis for the dual space V ∗, and we know that any action of G on the dual space gives

rise to an action on V .

We conclude this chapter with a discussion of how the results in this thesis relate to the

aforementioned subset version of the Centre Conjecture. Recall that we defined convex

subcomplexes as intersections of convex chamber subcomplexes. The subset Centre

Conjecture does not just look at subsets of the simplicial complex; we consider subsets

which are not unions of simplices. This means that some parts of a simplex can lie in a

subset whilst others do not. Such subsets arise naturally in a geometric invariant theory

setting. The following paragraph describes a basic example which illustrates this idea.

Let G = GLn act on kn as usual, and let v = e1 be the first standard basis vector. The

diagonal cocharacters λ for which limλ v exists are precisely those for which the first

entry is an with n ≥ 0. All of the parabolics containing the diagonal torus T arise from

such cocharacters, but we do not obtain every possible cocharacter. Then the set of

cocharacters can tell things apart which the set of parabolics on its own cannot. The

cocharacters λ(a) = diag(a, 1, . . . , 1) and µ(a) = diag(a−1, a−2, . . . , a−2) give the same

parabolic in GLn, but limλ v exists and limµ v does not.

If one is interested in this invariant theory setting, these sets of cocharacters need to be

studied. They have a convex structure: if limλ v and limµ v exist, then so does limaλ+bµ v

for positive a, b. The link between cocharacters and parabolics allows us to see these

subsets as subsets of the associated building, but it is still not clear that they have a

nice combinatorial structure; in the previous paragraph we observed that the simplicial

structure on the set of parabolic subgroups is not necessarily compatible with the set

of cocharacters for which the limit exists. Our aim, then, is to find a combinatorial

structure that we can work with. Theorem 2.4.1 says that it will be enough to study

relative GL(V )-complete reducibility, and then we will be working with the possible

combinatorial structures which arise in this setting.

The remaining results in this thesis provide combinatorial ways of stating that a given

orbit is closed. The hope is that they will eventually assist in an argument which states

that if a given orbit is not closed, then the associated set of cocharacters has a “centre”.
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Chapter 3

Relative GL(V )-complete

reducibility

This chapter is primarily based on a paper which was written in collaboration with

Michael Bate, Maike Gruchot, Alastair Litterick, and Gerhard Röhrle [1]. Several re-

sults in the paper are formulated for arbitrary (possibly non-connected) reductive linear

algebraic groups. Motivated by the previous discussion of Corollary 2.3.4, we translate

these results and their proofs to the setting of G = GL(V ). In doing so, we promote a

corollary from the paper to Theorem 3.2.7, the main result of this chapter, which pro-

vides a characterization of relative GL(V )-complete reducibility in terms of certain flags

of V . A consequence of our Theorem 2.4.1 is that the following results can be interpreted

as results which apply in a more general “geometric invariant theory” setting.

3.1 A result for arbitrary reductive G

For a reductive subgroup K ≤ G, let PK denote the set of R-parabolic subgroups Pλ ≤ G
with λ ∈ Y (K) and recall that we say that two R-parabolics of G are opposite if their

intersection is an R-Levi subgroup of G. The following theorem is the main result of [1].

Theorem 3.1.1. [1, Theorem 1.2]. Let K ≤ G be reductive algebraic groups with G

connected, and let H be a subgroup of G. Then the following are equivalent:

(i) H is relatively G-completely reducible with respect to K.

(ii) Each maximal member of PK containing H has an opposite in PK which is maximal

and contains H.

(iii) There is an R-Levi subgroup Lµ with µ ∈ Y (K), such that H ≤ Lµ and H is

relatively Lµ-irreducible with respect to K ∩ Lµ.

Remarks 3.1.2.

(1) For K = G = GL(V ), the conditions (i)–(iii) specialize to familiar representation-

theoretic notions.
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(2) Proposition 1.2.8 was a restatement of [34, Théorème 2.2], which states that when

K = G is a connected reductive group, a subgroup is G-completely reducible if and

only if it lies in a Levi subgroup of each maximal parabolic subgroup containing

it. The equivalence of conditions (i) and (ii) can be viewed as a generalization of

this result to our relative setting.

The implications (i) ⇔ (iii) ⇒ (ii) all hold without the assumption that G is connected.

The proof of the missing implication makes use of the fact that every element of PK
can be expressed as an intersection of maximal elements of PK if G is connected. Some

non-connected groups share this property (and the conclusion of Theorem 3.1.1 holds in

these instances) but the following example demonstrates that it is not guaranteed.

Example 3.1.3. [1, Example 2.3]. Let T be a 1-dimensional torus, let 〈x〉 be cyclic

of order 8 and let G = K = T 8 o 〈x〉, with x permuting the factors of T 8 in the

obvious manner. Each R-parabolic subgroup of G contains T 8 = G0, and every subgroup

G0 ≤ P ≤ G arises as an R-parabolic subgroup Pλ, depending on whether the 1-

dimensional torus λ(k∗) is centralized by x, x2, x4 or none of these. The group G has a

unique maximal proper R-parabolic subgroup T 8o 〈x2〉. This has a subgroup T 8o 〈x4〉
which is not the intersection of the maximal R-parabolics of G containing it.

We can address the problem of G = T 8 o 〈x〉 not being connected by working in a

suitable GLn(k) instead.

Example 3.1.4. We consider a similar set-up to that of Example 3.1.3, with 8 copies

of a 1-dimensional torus and a cyclic group of order 8, but based inside GL8(k). Let

g be the matrix with ones above the main diagonal and in the bottom left, and zeroes

everywhere else:

g =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0


.

This is a permutation matrix and generates a subgroup of order 8. Elements cen-

tralised by g will be of the form diag(a, a, a, a, a, a, a, a), elements centralised by g2 will

be of the form diag(a, b, a, b, a, b, a, b), and elements centralised by g4 will be of the

form diag(a, b, c, d, a, b, c, d). Consider the parabolic subgroup P corresponding to the

29



cocharacter λ : t→ diag(t4, t3, t2, t, t4, t3, t2, t):

P =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 ∗ 0 0 0 ∗


.

The maximal parabolics containing P are as follows:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗





∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗





∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ 0 0 0 ∗



Observe that P can be expressed as the intersection of these maximal parabolics. By

replacing the G of Example 3.1.3 with GL8, we obtain a combinatorial structure which

is rich enough to see these details. By restricting our attention to relative GL(V )-

reducibility, we remove some technicalities whilst generalizing the set-up because of our

Theorem 2.4.1.

3.2 Translation to G = GL(V )

In this section we outline our alternative formulation of Theorem 3.1.1 where G =

GL(V ). We will require some additional terminology, and we take this opportunity to

introduce some conventions we use when working with flags.

Recall that a flag is a sequence of subspaces of a finite-dimensional vector space V

arranged by inclusion:

{0} ⊂ V1 ⊂ · · · ⊂ Vm ⊂ V. (3.2.1)

We usually omit the zero subspace when describing a flag, and may omit V when there is

no ambiguity about the ambient vector space. The length of a flag is the number of proper

nontrivial subspaces that it contains; this must be finite, since the inclusions between

subspaces are proper. Let f be the arbitrary flag introduced in 3.2.1 and set di = dimVi.

We define the signature of f , denoted sig(f), to be the vector (d1, . . . , dm, dim(V )). We

can describe complete and partial flags in terms of length or signature: a flag in an

n-dimensional space is complete if and only if it has length n − 1, and flags of length

n− 1 must have signature (1, 2, . . . , n). We say that a subspace U of V is a subspace of

a flag f if U = Vi for some i.

30



Remark 3.2.1. We will usually write flags “from left to right” and consider the smallest

nontrivial subspace to be the “start” of the flag. When indexing the largest subspace by

1 will aid the clarity of a proof, we may write flags “from right to left” by writing, say,

f ′ = U1 ⊃ · · · ⊃ Um.

Recall that FK denotes the set of flags in V which correspond to the parabolic subgroups

in PK , the set of parabolic subgroups Pλ with λ ∈ Y (K). Given that the parabolic

subgroups in GL(V ) form a poset under inclusion, we can apply a partial order to this

set of flags. For two flags f and f ′ in FK , we set f � f ′ when StabG(f) ⊇ StabG(f ′)

and say that f is a subflag of f ′.

Definition 3.2.2. Let f ∈ FK and suppose that f is minimal with respect to this

partial order, i.e. f ′ � f for f ′ ∈ FK implies that f ′ = f . We say that f is a basic flag

and let BK denote the subset of basic flags in FK .

We say that a flag is H-stable if H stabilizes each subspace in the flag; that is, a flag

f is H-stable if H ⊆ StabG(f). Let BHK denote the subset of H-stable flags in BK .

To illustrate these ideas we introduce the following example, which will be a running

example throughout the next two chapters.

Example 3.2.3. Let G = GL4(k) and let K = diag(s, t, t−1, s−1) with s, t ∈ k∗. Ele-

ments of Y (K) will all send elements a ∈ k∗ to matrices of the form
ax 0 0 0

0 ay 0 0

0 0 a−y 0

0 0 0 a−x

 ,

for some x, y ∈ Z. For a given λx,y, we wish to find the corresponding parabolic subgroup

Px,y := {g ∈ G | lima→0 λx,y(a)gλx,y(a)−1 exists }. Let g = (gij) be an arbitrary element

of GL4(k). To find these parabolic subgroups, we study the matrices of the form

λx,y(a)gλx,y(a)−1 =


a0g11 ax−yg12 ax+yg13 a2xg14

ay−xg21 a0g22 a2yg23 ax+yg24

a−x−yg31 a−2yg32 a0g33 ax−yg34

a−2xg41 a−x−yg42 ay−xg43 a0g44

 .

For the relevant limits to exist, we cannot have negative powers of a appearing in these

matrices. If a negative power of a appears in the (i, j)th position of this matrix, we will

require that gij = 0. With this in mind, it is easier to study the array

Ax,y =


0 x− y x+ y 2x

y − x 0 2y x+ y

−x− y −2y 0 x− y
−2x −x− y y − x 0

 ,

which has as its (i, j)th entry the power of a appearing in front of gij in the matrix

λx,y(a)gλx,y(a)−1. Observe that Ax,y is antisymmetric along the main diagonal (a prop-
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erty shared by other examples when K is a diagonal torus) and symmetric along the

antidiagonal (a consequence of the symmetry of our particular K). Wherever a negative

entry appears in Ax,y, we know a zero must appear for all elements of Px,y. We can look

at λ1,1 for a specific example:

A1,1 =


0 0 2 2

0 0 2 2

−2 −2 0 0

−2 −2 0 0

 −→ P1,1 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 .

In this way we associate the cocharacter λ1,1 ∈ Y (K) with the flag 〈e1, e2〉 ⊂ k4. The

set FK contains the following flags of length one:

〈e1, e2〉 ⊂ k4, 〈e1, e3〉 ⊂ k4, 〈e2, e4〉 ⊂ k4, 〈e3, e4〉 ⊂ k4.

For the remainder of this thesis it will be useful to have a shorthand notation for flags.

Our examples will involve a canonical basis e1, . . . , en of kn for some n ≤ 8, and the

spans of the ei will be introduced independently. To represent the flag

f = 〈ei1〉 ⊂ 〈ei1 , ei2 , ei3〉 ⊂ kn,

where we assume without loss that i2 < i3, we will use the shorthand (i1, i2i3). We

generalize this so that flags of length n are represented by vectors of length n; using

this notation, the aforementioned flags of length one in FK are denoted by (12), (13),

(24), and (34). This notation was chosen to highlight the order in which the basis spans

appear in proper nontrivial subspaces, and to indicate when spans of basis elements are

introduced simultaneously. The following table lists every flag of FK :

Length FK flags

1 (12), (13), (24), (34)

2 (1, 23), (2, 14), (3, 14), (4, 23)

3
(1, 2, 3), (1, 3, 2), (2, 1, 4), (2, 4, 1)

(3, 1, 4), (3, 4, 1), (4, 2, 3), (4, 3, 2)

One can check that this results in the following set of basic flags:

BK = {(12), (13), (24), (34), (1, 23), (2, 14), (3, 14), (4, 23)}.

Now let H be the following subgroup of G:

H =


∗ 0 0 0

0 ∗ ∗ 0

0 0 ∗ 0

0 0 0 ∗

 .

Then H stabilizes flags in which the span of e3 is not introduced before the span of e2.

32



This leads to the following sets of H-stable flags and H-stable basic flags:

FHK = {(12), (24), (1, 23), (2, 14), (4, 23), (1, 2, 3), (2, 1, 4), (2, 4, 1), (4, 2, 3)}.

BHK = {(12), (24), (1, 23), (2, 14), (4, 23)}.

Proposition 3.2.4. Let λ be a cocharacter and let a1 > · · · > ar be the distinct λ-weights

on V , with corresponding weight spaces X1, . . . , Xr. Then the parabolic corresponding to

λ is the stabilizer of the flag U1 ⊂ · · · ⊂ Ur, where Ui =
∑i

j=1Xi for each i.

Proof. We may conjugate λ so that it is diagonal and of the form t 7→ diag(ta1 , . . . , tar).

The result follows from the form of the matrices such that limλ exists.

In Example 3.2.3 we saw that the cocharacter λ1,1 ∈ Y (K) corresponded to the flag

〈e1, e2〉 ⊂ k4; in this case, λ1,1 acts with weight 1 on 〈e1, e2〉 and with weight −1 on

〈e3, e4〉. In the same example, the cocharacter λ2,1 ∈ Y (K) acts with weights 2, 1, −1,

and −2 on the subspaces 〈e1〉, 〈e2〉, 〈e3〉, and 〈e4〉, respectively. The cocharacter λ2,1

therefore corresponds to the flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ k4.

In future arguments we use this fact to provide a weight space decomposition of V ,

indexing the weight spaces based on the order they “drop in” to a given flag.

When working with reductive subgroups K described by two parameters as in Exam-

ple 3.2.3, we can graphically represent cocharacters and the flags stabilized by their

associated parabolic subgroups. Our figures will be motivated by the following result

which states that basic flags are represented by a single “ray” of cocharacters.

Lemma 3.2.5. Suppose that λ, µ ∈ Y (K) commute and give rise to the same basic flag.

Then λ and µ are positive multiples of each other.

Proof. Let f = U1 ⊂ . . . Ur ⊂ Ur+1 = V be the basic flag such that StabG(f) =

Pλ = Pµ. As discussed in Proposition 3.2.4, we can decompose V into λ-weight spaces

X1, X2, . . . , Xr+1 such that each Ui is the direct sum of the Xj with j ≤ i. For 1 ≤ i ≤
r+ 1 let ai and bi denote, respectively, the weights of λ and µ on each Xi. The following

chains of inequalities must hold:

a1 > a2 > · · · > ar+1,

b1 > b2 > · · · > br+1.

The cocharacters λ and µ both evaluate in a common maximal torus T ⊂ K and we

may denote their unique opposites (see Remark 2.1.22) in Y (T ) by −λ and −µ. Choose

i′ so that the quotient ε :=
ai − ai+1

bi − bi+1
is minimal, where we run over all 1 ≤ i ≤ r. Note

that this quotient is always positive, due to the chains of inequalities above. Consider

the cocharacter λ + ε(−µ) and note that this acts with equal weight on Xi′ and Xi′+1

since ai′ − εbi′ = ai′+1− εbi′+1. We also have that ai− εbi ≥ ai+1− εbi+1 for all i, due to
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our choice of ε. This cocharacter therefore corresponds to a proper subflag of f . Since

f is a basic flag it must be the case that λ + ε(−µ) corresponds to the empty flag and

hence we conclude that λ = εµ.

Example 3.2.6. We return to the setting of Example 3.2.3 where G = GL4(k) and

K = diag(s, t, t−1, s−1) with s, t ∈ k∗. One can check that the cocharacters λ3,3 and

λ1,1 commute and both correspond to the basic flag 〈e1, e2〉 ⊂ k4. Following the proof

of Lemma 3.2.5 above, we can decompose V = k4 into λ3,3-weight spaces X1 = 〈e1, e2〉
and X2 = 〈e3, e4〉. Letting ai and bi denote the respective weights of λ3,3 and λ1,1, we

get that a1 = 3 > a2 = −3 and b1 = 1 > b2 = −1. Then we choose i′ = 1 so that

ε =
3− (−3)

1− (−1)
= 3,

and conclude that λ3,3 = 3λ1,1. We can plot our cocharacters λx,y on a lattice as in

x

y

(1
2)

(13)

(24)

(3
4)

(2, 14)

(3, 14)

(1, 23)(4, 23)

Figure 3.1: Cocharacter and stabilized flag diagram for FK of Example 3.2.6

Figure 3.1. The rays of cocharacters which give rise to basic flags (such as y = x > 0)

have been plotted and labelled accordingly. These basic rays are extremal points of cones

of nonbasic flags. For example the cocharacter λ2,1 is located in the cone outlined by

y = x > 0 and x > y = 0, the cocharacter rays which correspond to basic flags (12) and

(1, 23) respectively. The parabolic associated to λ2,1 stabilizes the flag (1, 2, 3); observe

that λ2,1 can be expressed as a positive linear combination of cocharacters on these rays

corresponding to subflags of (1, 2, 3). Lemma 3.2.12 will prove that this is true for all

cocharacters of nonbasic flags.

Now set λ := λ(1,1) and µ := λ(−2,2). Then we have Pλ = StabG(〈e1, e2〉 ⊂ k4) and

Pµ = StabG(〈e2, e4〉 ⊂ k4). Observe the flags which are stabilized by the parabolic

34



associated to the cocharacter nλ+ µ as we vary the positive integer n:

Pλ+µ = StabG(〈e2〉 ⊂ 〈e2, e4〉 ⊂ 〈e1, e2, e4〉 ⊂ k4)

P2λ+µ = StabG(〈e2〉 ⊂ 〈e1, e2, e4〉 ⊂ k4)

P3λ+µ = StabG(〈e2〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e4〉 ⊂ k4)

In general, taking a sufficiently large positive multiple of λ will result in basis vectors

appearing in the flag in an order which first depends on the λ weighting. On basis vectors

with the same λ weighting, the order is then decided by the weighting of µ. We can see

here that for n ≥ 3, the basis elements are introduced in the order e2, e1, e4, e3. This

occurs since λ orders e1 and e2 before e3 and e4, then µ orders e2 before e1 and e4 before

e3. Figure 3.2 demonstrates this graphically. For sufficiently large n, the cocharacter

combination lies in a cone adjacent to the ray of cocharacters which are multiples of λ.

µ

λ

λ+ µ

2λ+ µ

3λ+ µ

x

y

(1
2)

(24)

(2, 14)

Figure 3.2: Cocharacter combination diagram for FK of Example 3.2.6

Using our flag terminology, we can formulate Theorem 3.1.1 in the case where G =

GL(V ) as follows:

Theorem 3.2.7. [1, Corollary 1.5]. Let H and K be closed subgroups of GL(V ) with

K reductive. Then the following are equivalent:

(i) H is relatively GL(V )-completely reducible with respect to K.

(ii) Every flag in BHK has an opposite in BHK

(iii) There is a maximal torus S of CK(H) such that H preserves the direct sum de-

composition of V into simultaneous S-eigenspaces, and this decomposition gives a

flag which is maximal among H-stable flags in FK .

In the case K = GL(V ), the maximal torus S in (iii) must be a product of the centres of

the GL(Vi) where V = V1⊕· · ·⊕Vr is a decomposition of V into irreducible H-modules;

this gives the usual representation-theoretic characterization.

We begin our work towards a proof of Theorem 3.2.7 by collecting some useful results.

The following lemma combines some of the results for parabolic subgroups provided in

our preliminaries.
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Lemma 3.2.8. Suppose f, g ∈ FK . Then there exists a maximal torus S of K and

λ, µ ∈ Y (S) such that Pλ = StabG(f), Pµ = StabG(g).

Proof. Choose any λ, µ ∈ Y (K) such that StabG(f) = Pλ and StabG(g) = Pµ. Then

Pλ(K) and Pµ(K) are parabolic subgroups of K, and hence contain a common maximal

torus S by applying Lemma 1.1.26 to K. By Lemma 1.1.25, we may replace λ and µ

with cocharacters of S.

A key ingredient in our proof is that a flag opposite a basic flag must be basic itself.

Lemma 3.2.9. Let K be a reductive subgroup of G = GL(V ). If f ∈ BK and g ∈ FK is

opposite to f , then g ∈ BK .

Proof. Let f ∈ BK with an opposite g ∈ FK and suppose that g′ � g for some g′ ∈ BK .

By Lemma 3.2.8, there is a maximal torus T of K contained in StabG(f) and StabG(g),

and there exists λ ∈ Y (T ) such that Pλ = StabG(f) and P−λ = StabG(g). Since

T ⊆ P−λ ⊆ StabG(g′), there exists µ ∈ Y (T ) such that Pµ = StabG(g′). Consider the

cocharacter −µ ∈ Y (T ); since P−λ ⊆ Pµ, we must have that Pλ ⊆ P−µ. Let f ′ be the

flag corresponding to −µ, and observe that f ′ � f . If g′ were a proper subflag of g, then

f ′ would be a proper subflag of f , since opposite flags have equal lengths. Since f is

minimal in FK , we conclude that g′ = g and hence g is a basic flag.

We do not need the following lemma to prove Theorem 3.2.7, but will make use of some

technology involved in its proof. In Chapter 4 we will utilise the full statement.

Lemma 3.2.10. Let f ∈ FK and let U be a subspace of f . Then there exists a basic

flag f ′ such that f ′ � f and U is a subspace of f ′.

Proof. Let f = (U1 ⊂ · · · ⊂ Ur ⊆ V ) ∈ FK and let U = Ui for some i. We argue by

induction on the length r of f . If r = 1 then f ∈ BK and there is nothing to prove.

Suppose that r > 1 and that the statement is true for flags of length at most r − 1. We

have seen that there is nothing to prove if f ∈ BK , so suppose that f 6∈ BK . There must

exist a basic flag f ′ � f . If U is a subspace of f ′ then we are done, so suppose that U

is not a subspace of f ′.

Let λ, µ ∈ Y (K) such that Pλ = StabG(f) ⊆ StabG(f ′) = Pµ. There is a maximal

torus T of G in Pλ such that T ∩ K is a maximal torus of K, and there is a Borel

subgroup B of G such that T ⊆ B ⊆ Pλ ⊆ Pµ. Hence we may assume λ, µ ∈ Y (T ). Note

that Y (T ) is isomorphic to a subgroup of Zn, where n = dimV . Due to the conjugacy

of parabolics, we may assume that for a n-tuple (z1, . . . , zn) in Zn corresponding to a

parabolic subgroup containing B, we have z1 ≥ · · · ≥ zn. There exists a basis v1, . . . , vn

of V such that StabG(〈v1〉 ⊂ 〈v1, v2〉 ⊂ · · · ⊂ V ) = B. Let (a1, . . . , an) and (b1, . . . , bn)

be the n-tuples corresponding to Pλ and Pµ, respectively. Then we have

Pλ = StabG(〈v1, . . . , vdim(U1)〉 ⊆ . . . ⊆ 〈v1, . . . , vdim(Ur)〉 ⊆ V ).
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Hence

a1 = · · · = adim(U1) > adim(U1)+1 = · · · = adim(U2) > · · · > adim(Ur)+1 = · · · = an.

Choose i0 so that the quotient
bi − bi+1

ai − ai+1
is maximal, where we run over all i with

ai 6= ai+1. Set n1 := bi0 − bi0+1 and n2 := ai0 − ai0+1. Let (c1, . . . , cn) be the n-tuple

corresponding to the cocharacter n1λ−n2µ ∈ Y (T ) and let f̃ be the corresponding flag.

By construction, ci = n1ai − n2bi for all i. If ai > ai+1 and bi = bi+1, then ci > ci+1.

If ai = ai+1 and bi = bi+1, then ci = ci+1. The case ai = ai+1 and bi > bi+1 does not

occur, since f ′ � f . If ai > ai+1 and bi > bi+1, then our choice of n1 and n2 ensures

that we have

n1(ai − ai+1) ≥ n2(bi − bi+1).

Hence ci ≥ ci+1 in this case. So, whenever ai = ai+1 we have ci = ci+1 and whenever

ai > ai+1 we have ci ≥ ci+1. Thus f̃ � f .

Since U is a subspace of f but not of f ′, we have adim(U) > adim(U)+1 and bdim(U) =

bdim(U)+1; this means that cdim(U) > cdim(U)+1 and so U is a subspace of f̃ . Finally,

observe that ai0 > ai0+1 but ci0 = ci0+1. This means that the length of f̃ is strictly

smaller than r. By our induction hypothesis, there exists a basic flag g � f̃ which

contains U as a subspace.

Remark 3.2.11. The basic flag f ′ is not necessarily uniquely determined by the choice of

U . For K = diag(s, t3, t2, t) ≤ GL4(k), we have (2, 1, 3) ∈ FK and (12, 3), (2, 13) ∈ BK .

All of these flags contain the subspace 〈e1, e2, e3〉, and we have that (12, 3) � (2, 1, 3)

and (2, 13) � (2, 1, 3).

A key element in our proof of Theorem 3.2.7 is the idea of expressing arbitrary cochar-

acters in terms of “basic” cocharacters.

Lemma 3.2.12. Let λ ∈ Y (K) correspond to the flag f ∈ FK . Some positive integer

multiple of λ can be expressed as a positive Z-linear combination of cocharacters in Y (K)

which correspond to basic flags fi � f .

It only makes sense to take linear combinations of cocharacters which commute; this is

guaranteed in our set-up since the cocharacters map into the same torus.

Proof. We will argue inductively based on the length of the flag f . We immediately have

a base case for our induction since a flag of minimal length must be basic. Suppose the

result holds for flags of length at most l, and let the length of the flag f be l+ 1. There

is nothing to show if f is a basic flag, so assume f 6∈ BK . Then there exists a basic flag

f0 � f ; let λ0 be its corresponding cocharacter.

Using the method outlined in the proof of Lemma 3.2.10, we can find positive integers a

and b such that λ1 := aλ− bλ0 is a cocharacter corresponding to a flag f1 � f , with the

length of f1 being strictly shorter than the length of f . Since we can write aλ = λ1 +bλ0,

and the cocharacters λ0 and λ1 correspond to flags with lengths at most l, the result

holds for our flag of length l + 1.
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Remark 3.2.13. As previously observed, the set of cocharacters Y (T ) for a fixed torus T

is isomorphic as an abelian group to Zr, where r = dimT . By tensoring with Q, we can

work with “rational cocharacters” and then this result can be reformulated to say that

any λ ∈ Y (K) can be expressed as a positive rational combination of basic cocharacters.

Example 3.2.14. Let G = GL4(k) and let K = diag(w, x, y, z). Let λ ∈ Y (K) be the

cocharacter such that

λ(a) =


a3

a2

a

1

 , Pλ =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 .

Then Pλ stabilizes the flag f = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ k4. We can find an

expression for λ in terms of basic cocharacters as follows:

Take λ1 ∈ Y (K) so that

λ1(a) =


a

1

1

1

 , Pλ1 =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

This gives rise to the basic flag f1 = 〈e1〉 ⊂ k4; note that f1 ≺ f in FK . Both Pλ and

Pλ1 contain the standard Borel subgroup of upper triangular matrices, which contains

the standard maximal torus of diagonal matrices. Two 4-tuples in Z4 corresponding to

Pλ and Pλ1 are a = (3, 2, 1, 0) and b = (1, 0, 0, 0), respectively. To produce a shorter flag,

we need to find the value of i0 that maximises (bi0 − bi0+1)(ai0 − ai0+1)−1; a quick check

reveals that this is i0 = 1. We therefore work with the integers m := (b1 − b2) = 1 and

n := (a1 − a2) = 1, setting λ2 := mλ− nλ1 = λ− λ1. We have that

λ2(a) =


a2

a2

a1

1

 , Pλ3 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 .

Then λ2 corresponds to the flag f2 = 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ k4, which is a proper

subflag of f . At this point we can express λ as a combination of λ1 and λ2, which are

both proper subflags of f . But λ2 is not a basic flag; to express λ in terms of basic

cocharacters, we need to repeat the process. Take λ3 ∈ Y (K) such that

λ3(a) =


a

a

1

1

 , Pλ3 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 .

We have that Pλ3 stabilizes the basic flag f3 = 〈e1, e2〉 ⊂ k4, and f3 ≺ f2 ≺ f . Two

38



ν
λ

µ

δ′

−λ
−µ

Figure 3.3: Cocharacters evaluating in a common maximal torus

4-tuples corresponding to Pλ2 and Pλ3 are, respectively, c = a − b = (2, 2, 1, 0) and

d = (1, 1, 0, 0). These lead to integers that define the new cocharacter λ4 := λ2 − λ3.

The flag associated to λ4 is the basic flag f4 = 〈e1, e2, e3〉 ⊂ k4; note that f4 ≺ f . Now

we have obtained an expression for λ in terms of basic cocharacters since we can write

λ = λ2 + λ1 = λ4 + λ3 + λ1.

We now have the results we need to present a proof of our main result. The implications

(iii) ⇔ (i) ⇒ (ii) follow quickly,

Proof of Theorem 3.2.7. The equivalence of conditions (i) and (iii) follows from Propo-

sition 2.2.4(ii): the centralizer of a maximal torus of CK(H) is a Levi subgroup Lµ, for

some µ ∈ Y (K), which is minimal with respect to containing H. Then H is relatively

GL(V )-completely reducible with respect toK if and only ifH is relatively Lµ-irreducible

with respect to K ∩ Lµ.

Recall that H is relatively GL(V )-completely reducible with respect to K if and only each

flag in FHK has a complement in FHK . Then the implication (i) =⇒ (ii) follows immedi-

ately from Lemma 3.2.9. We prove the reverse implication by showing that (ii) implies

that every flag in FHK has a complement in FHK . Let f ∈ FK be a flag with corresponding

cocharacter λ ∈ Y (K), and suppose that H ⊆ Pλ. We know from Lemma 3.2.12 that

we can express λ as a linear combination of cocharacters λi which correspond to basic

flags fi � f . We will argue inductively on the number of basic cocharacters required to

express λ, lining up cocharacters in a maximal torus (see Figure 3.3) to show that λ has

an opposite.

Assume that (ii) holds. The base case where f itself is a basic flag follows immedi-

ately. Suppose that λ = µ + ν, where µ corresponds to a basic flag and ν can be

expressed with fewer basic cocharacters than λ. Suppose that the desired result holds

for cocharacters expressed in fewer basic cocharacters than λ. We can arrange that

H ⊆ Lµ = CGL(V )(Im(µ)), so µ ∈ Y (CK(H)). Since µ and ν are in a common torus of K,
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we also have µ ∈ Y (Lν(K)). Hence we have µ ∈ Y (CK(H) ∩ Lν(K)) = Y (CLν(K)(H)).

Observe that if fi � f , then Pλ ⊆ Pλi . Since we assumed that f is stabilized by H, we

have H ⊆ Pλ ⊆ Pλi . Hence all the basic flags fi are H-stable and so ν corresponds to

a flag which is H-stable. Our induction hypothesis allows us to find an opposite δ to ν

such that H ⊆ Lδ, and so we will have δ ∈ Y (CPν(K)(H)). Since µ ∈ Y (CPν(K)(H)), we

can conjugate δ by an element of CPν(K)(H) to get δ′ such that δ′ and µ commute. Note

that δ′ will still be an opposite to ν, and that these both commute with µ. Hence δ′ and

ν both commute with −µ, and these all evaluate in a common maximal torus T , say, of

K. Since λ = µ+ ν, λ also evaluates in T . The unique opposite to λ in Y (T ), which we

may write as −λ, must be be −µ+ δ′. The opposite to µ+ ν in this local picture must

commute with H, so the flag corresponding to −λ = −µ + δ′ is stabilized by H. Thus

we have shown the final implication (ii) =⇒ (i).

The final parts of the above proof are essentially an argument of Serre’s written in

cocharacter terminology, see the proof of [34, Théorème 2.2]. This “Levi circle” argument

motivates Figure 3.3. Having put everything inside a common maximal torus, we are

able to work in a two-dimensional vector space.

3.3 Further results

When K = G = GL(V ) the set of basic flags BK is the set of flags of length 1 in

V . Henceforth, we will indicate when an arbitrary set F of flags in V contains only

length one flags by writing F ⊆ BGL(V ). Let SK denote the set of subspaces of V

which are subspaces of FK flags. The following result is an immediate consequence of

Lemma 3.2.10, and asserts that every element of SK forms a K-flag of length one if and

only if every basic K-flag has length one.

Corollary 3.3.1. [1, Corollary 4.2]. Let K be a reductive subgroup of GL(V ). Then

the following are equivalent:

(i) SK = {U ⊆ V | (U ⊆ V ) ∈ FK}

(ii) BK ⊆ BGL(V )

Example 3.3.2. Let G = GL3(k) and K = diag(a, b, c) ≤ G. The following table lists

the flags of FK :

Length FK flags

1 (1), (2), (3), (12), (13), (23)

2 (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

This results in a set of basic flags BK = {(1), (2), (3), (12), (13), (23)}. Hence we can

write BK ⊆ BGL(V ).

The following result follows from Theorem 3.2.7 and Corollary 3.3.1, and mirrors the

statement from representation theory that V is a completely reducible H-module if and

only if every H-submodule has a complement.
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Corollary 3.3.3. [1, Corollary 1.6]. Let H and K be subgroups of GL(V ) with K

reductive. Suppose that BK ⊆ BGL(V ); then the following are equivalent:

(i) H is relatively GL(V )-completely reducible with respect to K.

(ii) For each H-stable U ∈ SK there exists an H-stable W ∈ SK such that V = U ⊕W
as an H-module.

One can check that condition (i) of Corollary 3.3.1 is also satisfied when K is a maximal

torus of G. Corollary 3.3.3 therefore applies in both of these cases. Corollary 3.3.3 can be

viewed as a generalization of [10, Proposition 5.1]; recall that in Subsection 2.3.1 we saw

that this proposition gives a representation-theoretic characterization of relative GL(V )-

complete reducibility in the case K = GL(U) for a subspace U ⊆ V . This is related to

the condition of the corollary above in light of Corollary 3.3.1 and the following lemma.

Lemma 3.3.4. [1, Lemma 4.5]. Let G = GL(V ) and let U ⊆ V . Fix a complement Ũ

to U in V . Let K = GL(U) ≤ G, embedded via the decomposition V = U ⊕ Ũ . Then

SK = {W ⊆ V | (W ⊆ V ) ∈ FK}.

Proof. Let f = (W1 ⊆ . . . ⊆ Wm ⊆ V ) ∈ FK . For each 1 ≤ i ≤ m, we have Wi ⊆ U

or Ũ ⊆ Wi. Conversely, suppose that W is a subspace contained in U . We can find a

complement W ′ to W containing Ũ . The cocharacter which acts with weight 1 on W

and weight 0 on W ′ lies in Y (K) and the corresponding flag is (W ⊆ V ) ∈ FK . Similarly

all flags (W ⊆ V ) with Ũ ⊆W lie in FK . Hence we have that

FK = {f ∈ FGL(V ) |Wi ⊆ U or Ũ ⊆Wi for all subspaces Wi of f},

and so SK = {W ′ ⊆ V |W ′ ⊆ U or Ũ ⊆W ′} = {W ⊆ V | (W ⊆ V ) ∈ FK}.

The implication (i) ⇒ (ii) of Corollary 3.3.3 fails without the hypothesis on BK , as the

following example demonstrates.

Example 3.3.5. [1, Example 4.3]. Let G = GL4(k) and K = diag(s, t, t−1, s−1) with

s, t ∈ k∗. Let e1, . . . , e4 be the standard basis of k4 and let U = 〈e1, e2, e3〉. Suppose

that H is the parabolic subgroup of G corresponding to the flag (U ⊆ V ):

H =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

 .

We saw in Example 3.2.3 that BK contains flags of length two and that flags in FK have

signatures of (1, 3, 4), (2, 4), or (1, 2, 3, 4). The group H is therefore not contained in

Pλ for any nontrivial λ ∈ Y (K). Hence H is trivially relatively G-cr with respect to K.

Observe that U ∈ SK and H stabilizes U . The complement to U in SK is W = 〈e4〉
which is not stabilized by H.
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If BK 6⊆ BGL(V ) then it is always possible to find a subgroup which shows that Corol-

lary 3.3.3 fails.

Proposition 3.3.6. Let G = GL(V ). If BK 6⊆ BGL(V ) then there exists a subgroup

H ≤ G such that H is relatively G-cr with respect to K and H stabilizes a subspace

U ′ ∈ SK but does not stabilize any complement to U ′.

Proof. By Corollary 3.3.1, SK 6= {U ⊆ V | (U ⊆ V ) ∈ FK}. This means there exists a

U ′ ∈ SK such that (U ′ ⊆ V ) 6∈ FK . Set H := StabG(U ′ ⊆ V ). Then H is not contained

in Pλ for any nontrivial λ ∈ Y (K). Hence H is trivially relatively G-cr with respect to

K. We have that H stabilizes U ′ ∈ SK but does not stabilize any complement to U ′,

since H is a maximal parabolic subgroup of G.

The classical groups Sp(V ) and SO(V ) are natural candidates for the reductive subgroup

K of GL(V ). The following result characterizes relative GL(V )-complete reducibility

with respect to Sp(V ) or SO(V ) in terms of totally isotropic or totally singular subspaces.

Corollary 3.3.7. [1, Corollary 1.7]. Let H be a subgroup of GL(V ) and let K = Sp(V )

(resp. SO(V )). Then the following are equivalent:

(i) H is relatively GL(V )-completely reducible with respect to K.

(ii) Whenever H stabilizes a totally isotropic (resp. totally singular) subspace U and

its annihilator U⊥, there exists a totally isotropic (resp. totally singular) subspace

W ⊆ V such that H stabilizes W and W⊥, and V = W ⊕ U⊥ = U ⊕ W⊥ as

H-modules.

The second condition requires that H stabilizes U⊥ and W⊥ because H is not necessarily

a subgroup of K, and therefore may not leave the form on V invariant). In the setting

of Corollary 3.3.7, flags in FK have the form

U1 ⊂ . . . ⊂ Ur ⊂ U⊥r ⊂ . . . ⊂ U⊥1 ,

and flags in BK are of the form U ⊂ U⊥ for a totally isotropic or totally singular subspace

U . The result follows immediately from Theorem 3.2.7.

Corollary 3.3.7 studies cases where K acts irreducibly on V . The following result presents

a characterization of relative GL(V )-complete reducibility when V decomposes as a direct

sum of K-modules, and follows immediately from [1, Corollary 4.7] and [10, Corollary

3.6].

Corollary 3.3.8. [1, Corollary 4.8]. Let G = GL(V ) and suppose that both H and K

preserve a direct-sum decomposition V =
⊕n

i=1 Vi. Suppose also that K = K1×· · ·×Kn

where Ki ≤ GL(Vi) for each i. Then H is relatively G-completely reducible with respect

to K if and only if H is relatively G-completely reducible with respect to Ki for all i.

These implications fail in general, as the following example demonstrates.
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Example 3.3.9. [1, Example 4.9]. We return to our running example where G =

GL4(k) and K = diag(s, t, t−1, s−1) with s, t ∈ k∗. Let e1, . . . , e4 be the canonical basis

of k4 and set V1 = 〈e1, e2〉 and V2 = 〈e3, e4〉. Let Ki be the image of the projection from

K to GL(Vi) for i = 1, 2.

Let H be the stabilizer of U := 〈e2, e4〉 and recall that (U ⊂ k4) ∈ BK . Then H is a

maximal parabolic subgroup of G corresponding to a cocharacter of K, and is therefore

not relatively G-cr with respect to K. However, H does not correspond to a cocharacter

of K1 or K2, and is not contained in any parabolic subgroup of G corresponding to

a character of K1 or K2. Hence H is trivially relatively G-completely reducible with

respect to K1 and K2.

Now let H ′ be the stabilizer of U ′ := 〈e1〉 in G. Note that H ′ is a maximal parabolic

subgroup of G and corresponds to a cocharacter of K1. It is therefore not relatively G-

completely reducible with respect to K1. Since H ′ does not correspond to a cocharacter

of K, it is trivially relatively G-completely reducible with respect to K.

The flags in FK which are maximal with respect to the � partial order all have the same

length.

Lemma 3.3.10. Suppose that f, g ∈ FK are maximal with respect to the partial ordering

�. Then f and g have equal length.

Proof. By Lemma 3.2.8 there is a maximal torus S of K and commuting cocharacters

λ, µ ∈ Y (S) such that Pλ = StabG(f) and Pµ = StabG(g). By Proposition 1.1.24, the

λ-weight spaces are µ-stable, and vice versa. Suppose that µ has more than one weight

on a λ-weight space. Then for sufficiently large n, the cocharacter nλ+µ will correspond

to a flag containing f as a subflag. This contradicts the maximality of f , and so we can

conclude that µ has only one weight on every λ-weight space. A similar argument shows

that λ has only one weight on every µ-weight space.

Most of the work is contained in Lemma 3.2.8, which allows us to find a suitable torus S

to work with. Obtaining a torus that is compatible with two flags involves working with

bases of GLn(k), and using basis elements in a different orders corresponds to ordering

weight spaces differently. Example 2.3.3 and Example 3.3.11 show that maximal flags

need not be complete.

3.3.1 The structures of K and FK

We finish this chapter with an extended example which demonstrates how the structure

of a reductive subgroup K relates to the structure of FK . We highlight some interesting

features which will help the reader understand later arguments.

Example 3.3.11. Let K = diag(a, b, c, d) ≤ GL4 and K ′ = diag(a, b, c, d, a, b, c, d) ≤
GL8. Although K ′ sits inside a higher dimensional group, the structure of FK′ is no

more complex than that of FK . Both FK and FK′ contain 74 flags; Figures 3.4 and 3.5

break these sets down by flag length and signature. Every flag in FK has an analogue

in FK′ with twice the signature. For example, the flag (1, 23) ∈ FK corresponds to the
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flag (15, 2367) ∈ FK′ . Although subspaces in F ′K flags contain the spans of eight basis

vectors, the structure of K ′ restricts when these can appear; the spans of e1 and e5 must

appear in FK′ flags simultaneously, and the other basis vectors are paired off similarly.

This results in a combinatorial structure similar to that of FK . The convenient basis

pairing allows us to see similarities in the representative matrices; the 8-dimensional

parabolics of Example 3.1.4 appear as a square tiling of four of their corresponding

4-dimensional parabolics.

Signature Flags

(1,4) 4

(2,4) 6

(3,4) 4

Signature Flags

(1,2,4) 12

(1,3,4) 12

(2,3,4) 12

Signature Flags

(1,2,3,4) 24

Figure 3.4: A breakdown of flags in FK for K = diag(a, b, c, d) ≤ GL4

Signature Flags

(2,8) 4

(4,8) 6

(6,8) 4

Signature Flags

(2,4,8) 12

(2,6,8) 12

(4,6,8) 12

Signature Flags

(2,4,6,8) 24

Figure 3.5: A breakdown of flags in FK′ for K ′ = diag(a, b, c, d, a, b, c, d) ≤ GL8

Now consider the subgroup K ′′ = diag(a, b, c, d, a, a, a, a) ≤ GL8. This subgroup results

in a set FK′′ which also contains 74 flags. The signatures of FK′′ flags do not follow the

pattern shared by the signatures of flags in FK and FK′ , but a correspondence still exists

between the flags of these sets. Figure 3.6 provides a length and signature breakdown of

the flags in FK′′ . Like FK and FK′ , the set FK′′ contains 14 flags of length one, 36 flags

of length two, and 24 flags of length three. The spans of e1, e5, e6, e7, and e8 appear

simultaneously in FK′′ flags; this results in a wider variety of signatures when compared

with FK .

Flags in FK and FK′ are constructed using four weight spaces of equal dimension,

whereas flags in FK′′ are constructed using three one-dimensional weight spaces and a

five-dimensional weight space. The correspondence between these sets exists because we

are free to vary the weights on each space independently; in each set, a flag corresponds

to one potential arrangement of the four given weight spaces. For this reason, the flag

(1, 23) ∈ FK corresponds to the flag (15678, 23) ∈ FK′′ . Consider the 24 flags in FK
with signature (1, 2, 3, 4); the signature of their corresponding flags in FK′′ depends on

where the span of e1 appears in the FK flag. Six of these FK flags start with the span

of e1 and these correspond to the six flags in FK′′ with signature (5, 6, 7, 8). Another six

of these FK flags introduce the span of e1 in their third subspace; these correspond to

the flags in FK′′ with signature (1, 2, 7, 8). In summary, the structure of FK depends on

the relationships between the parameters of K; adding parameters or working in higher

dimensions does not necessarily lead to higher complexity.
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Signature Flags

(1,8) 3
(5,8) 1

(2,8) 3
(6,8) 3

(3,8) 1
(7,8) 3

Signature Flags

(1,2,8) 6
(1,6,8) 3
(5,6,8) 3

(1,3,8) 3
(1,7,8) 6
(5,7,8) 3

(2,3,8) 3
(2,7,8) 3
(6,7,8) 6

Signature Flags

(1,2,3,8) 6
(1,2,7,8) 6
(1,6,7,8) 6
(5,6,7,8) 6

Figure 3.6: A breakdown of flags in FK′′ for K ′′ = diag(a, b, c, d, a, a, a, a) ≤ GL8
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Chapter 4

New partial orders on FK

In this chapter we introduce new partial orders for the set of K-flags FK , with a view

to obtaining new subsets of minimal and maximal flags. We begin by introducing a

partial order for basic flags, before extending it to the set of all flags, and later introduce

a second “dual” partial order. We present various results which highlight connections

between our new partial orders and previous work in this thesis. The main result of this

chapter is Theorem 4.2.1, which provides a characterization of relative GL(V )-complete

reducibility in terms of a subset of K-flags which is minimal with respect to our new

partial order. We include several examples to demonstrate interesting features and

limitations of these new partial orders.

4.1 A partial order for BK

Recall that f is a subflag of g if every subspace in f appears in g. We introduce the

following terminology to deal with a special class of subflags.

Definition 4.1.1. We say that a flag a = A1 ⊂ · · · ⊂ Ar is a truncation of a flag

b = B1 ⊂ · · · ⊂ Bs if r < s and Ai = Bi for 1 ≤ i ≤ r.

Note that if a and b are both basic flags, one cannot be a truncation of the other. We

now introduce a binary relation on BK . Given two basic flags, we first check whether

all the subspaces of one flag appear in the other. If this is not the case, we look for

inclusion between the first pair of nonequal subspaces with equal index.

Definition 4.1.2. Take a pair of basic flags a = A1 ⊂ · · · ⊂ Ar and b = B1 ⊂ · · · ⊂ Bs,
with r ≤ s. If Ai = Bi for 1 ≤ i ≤ r we say that a ≤ b. Otherwise, let j be the smallest

integer such that Aj 6= Bj .

• If Aj ( Bj , we say that a ≤ b.

• If Bj ( Aj , we say that b ≤ a.

• If there is no inclusion between Aj and Bj , we say that a and b are incomparable.

Lemma 4.1.3. The binary relation described in Definition 4.1.2 is a partial order on

BK .
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(1, 23) (2, 14) (3, 14) (4, 23)

(12) (13) (24) (34)

Figure 4.1: Hasse diagram of BK for K = diag(s, t, t−1, s−1) ≤ GL4(k)

Proof. The relation is reflexive due to the conditions of the case where Ai = Bi for

1 ≤ i ≤ r. If we assume that a ≤ b and b ≤ a, we must be in the case where the flags

have equal length and Ai = Bi for 1 ≤ i ≤ r = s, hence the relation is antisymmetric.

Let c = C1 ⊂ · · · ⊂ Ct be a third basic flag and assume that a ≤ b and b ≤ c. If a = b

or b = c then a ≤ c follows immediately. If b � a and c � b then let j be the smallest

integer such that Aj ( Bj , and let k be the smallest integer such that Bk ( Ck. Let

n = min{j, k}. Then Ai = Bi = Ci for i < n, and An ( Cn. Hence a ≤ c and we

conclude that the relation is transitive.

Remark 4.1.4. Knowing that Ai = Bi for 1 ≤ i ≤ r is enough to conclude that a = b

since a cannot be a truncation of b. Later on we will be working with generic K-flags

and we will not be able to rely on this property of basic flags.

We will study the subset of minimal basic flags in BK , henceforth denoted by MK .

Example 4.1.5. Let G = GL4(k) and let K be the subgroup diag(s, t, t−1, s−1). In

Chapter 2.4 we saw that this results in the set of basic flags

BK = {(12), (13), (24), (34), (1, 23), (2, 14), (3, 14), (4, 23)}.

By applying our ≤ partial ordering to this set we obtain the Hasse diagram displayed in

Figure 4.1 and the set of minimal basic flags MK = {(1, 23), (2, 14), (3, 14), (4, 23)}.

Remark 4.1.6. Our partial ordering does not result in a poset with meets and joins.

For example, let G = GL4(k) and let K be the subgroup diag(s2, s, t, t−1). The Hasse

diagram of Figure 4.2 demonstrates that there are pairs of elements with no greatest

lower (or least upper) bound.

(13, 2) (14, 2) (34, 2)

(1, 23) (1, 24) (3, 12) (3, 24) (4, 12) (4, 23)

(1, 2) (3, 2) (4, 2)

Figure 4.2: Hasse diagram of BK for K = diag(s2, s, t, t−1) ≤ GL4(k)
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The following result will be useful in future arguments concerning arbitrary flags.

Theorem 4.1.7. Let f = U1 ⊂ · · · ⊂ Ur and g = W1 ⊂ · · · ⊂ Ws be flags in FK , and

let U0 = {0}. There exists a flag h ∈ FK containing the subspaces Ui + Wj such that

Ui ⊆ Ui + Wj ⊆ Ui+1 for all 0 ≤ i ≤ r and all 1 ≤ j ≤ s. In particular, h contains all

U1 ∩Wj such that U1 ∩Wj 6= {0}, and all Ur +Wj such that Ur +Wi 6= V .

The idea of the proof is that we can use the cocharacter of g to “break ties” between

subspaces where the cocharacter of f has equal weight, as we observed in Example 3.2.6.

Proof. Let f = U1 ⊂ · · · ⊂ Ur and let g = W1 ⊂ · · · ⊂ Ws. By Lemma 3.2.8 there is

a maximal torus S of K and cocharacters λ, µ ∈ Y (S) such that Pλ = StabG(f) and

Pµ = StabG(g). We can decompose V into µ-weight spaces X1, X2, . . . , Xs+1 so that

each Wi is the direct sum of the Xj with j ≤ i. Let the weight of µ on Xi be bi for all

i. We have, by choice, b1 > b2 > · · · > bs > bs+1. Since λ and µ commute, µ stabilizes

U1. Hence U1 decomposes into µ-weight spaces which must be of the form U1∩Xi when

this intersection is nonempty. The subspace U1 ∩Xi has µ-weight bi, and U1 ∩Wi is the

direct sum of the U1 ∩Xj with j ≤ i. Let ai denote the weight of λ on Ui and choose

a sufficiently large n so that na1 + b1 > na1 + b2 > · · · > na1 + bs+1 are the greatest

potential weights of nλ + µ on V and nar + b1 > nar + b2 > · · · > nar + bs+1 are the

least potential weights. The flag for nλ+ µ will begin

U1 ∩W1 = U1 ∩X1 ⊆ (U1 ∩X1)⊕ (U1 ∩X2) = U1 ∩W2 ⊆ . . . ,

where we may have equality in some positions if the relevant weight does not appear

inside U1. A similar µ-weight space argument shows that the flag for nλ+ µ will end

. . . ⊆ Ur ⊕ (Ũr ∩X1) = Ur +W1 ⊆ . . . ⊆ Ur +Ws ⊆ V,

where Ũr is a complement of Ur in V . Note that Ũr is the final λ-weight space in V

and we may again have equality in some positions. Similar arguments prove the general

result for subspaces between U1 and Ur.

We saw flags in Example 3.2.6 which demonstrate the assertions of this result; we showed

that the cocharacters corresponding to the flags (12) and (24) could be combined to give

cocharacters corresponding to the flags (2, 4, 1) and (2, 1, 4).

The following results focus on the case where the set of H-stable minimal basic flags

MH
K consists of length 1 flags with opposites in FHK . We know from Lemma 3.2.9 that

these opposites are necessarily contained in BHK .

Lemma 4.1.8. If all MH
K flags have length 1 and have opposites in BHK , then all length

1 flags in BHK have opposites in BHK .

Proof. Suppose that all elements of MH
K have length 1 and have opposites in BHK . Let

a = A1 ⊂ V ∈ BHK be a flag of length 1 and suppose that a 6∈ MH
K . Suppose further

that all H-stable flags f < a of length 1 have opposites. There exists a flag b = (B1 ⊂
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V ) ∈ MH
K such that b < a, which means that B1 ( A1. Since b is minimal, it has an

opposite c = (C1 ⊂ V ) ∈ MH
K . This gives us an H-stable direct sum decomposition:

V = B1 ⊕ C1. Let λa, λb, and λc be cocharacters corresponding to the flags a, b, and c

respectively. Consider the weights of these flags:

• Say λa acts with weight a1 on A1 ⊂ V , and with weight a2 on the rest of V .

• Say λb acts with weight b1 on B1 ⊂ V , and with weight b2 on the rest of V .

• As c is opposite b, we have that λc = −λb

Observe that a1 > a2 and b1 > b2. Now consider the linear combination xλa+yλc where

x, y > 0. This acts with weight xa1 − yb1 on B1, with weight xa1 − yb2 on A1 ∩ C1,

and with weight xa2 − yb2 on Ã1, where Ã1 is the complement of A1 in V . We would

like this combination to result in an equal weighting for B1 and Ã1, so we wish to solve

xa1 − yb1 = xa2 − yb2; this can be done by setting x = b1 − b2 and y = a1 − a2. Note

that the following inequalities must hold for x, y > 0:

xa1 − yb2 > xa2 − yb2,

xa1 − yb2 > xa1 − yb1.

Hence the flag corresponding to the combination xλa + yλc when x = b1 − b2 and

y = a1 − a2 will be f = A1 ∩ C1 ⊂ V , which is H-stable. Since f < a and f has length

1, f has an opposite g = G1 ⊂ V ∈ BHK by our earlier assumption. Consider the weights

of these new flags:

• Say λf acts with weight f1 on A1 ∩ C1 ⊂ V , and with weight f2 on the rest of V .

• As g is opposite f , we have that λg = −λf

The linear combination αλc + βλg acts with weight −αb2− βf1 on A1 ∩C1, with weight

−αb2−βf2 on C1∩G1, and with weight−αb1−βf2 on B1. We would like this combination

to result in an equal weighting for A1 ∩ C1 and B1, so we wish to solve −αb2 − βf1 =

−αb1 − βf2; this can be done by setting α = f1 − f2 and β = b1 − b2. Note that the

following inequalities must hold for α, β > 0:

−αb2 − βf2 > −αb1 − βf2,

−αb2 − βf2 > −αb2 − βf1.

Hence the flag corresponding to the combination αλc + βλg will be h = C1 ∩ G1 ⊂ V ,

which is also H stable. We have that A1 ⊕ (C1 ∩ G1) = V , so we have a flag h ∈ BHK
that is opposite a. Given our initial assumption that flags in MH

K have opposites and

have length 1, the result follows by induction.

Lemma 4.1.9. If all MH
K flags have length 1 and have opposites in BHK , then all flags

in BHK have length 1.

Proof. Suppose all MH
K flags have length 1 and have opposites in BHK . Suppose there
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exists a flag a = A1 ⊂ A2 ⊂ · · · ⊂ V ∈ BHK with length greater than one and assume that

all flags f < a have length 1. There exists a flag b = B1 ⊂ V ∈ MH
K such that b < a,

which means that B1 ( A1. Since b is minimal, it has an opposite c = (C1 ⊂ V ) ∈MH
K .

Arguing similarly to Lemma 4.1.8, we can break A2 down into three disjoint subspaces:

B1, A1 ∩ C1, and A′2, where A′2 is the complement of A1 in A2. There is a basic flag

f ∈ BHK containing A1 ∩ C1; in fact f = (A1 ∩ C1 ⊂ V ) since f < a, and flags preceding

a must have length 1. By Lemma 4.1.8, f has an opposite g ∈ BHK .

We will consider the linear combination lλa +mλc + nλg, which acts with the following

weights:

la1 −mb1 − nf2 on B1

la1 −mb2 − nf1 on A1 ∩ C1

la2 −mb2 − nf2 on A′2

We wish to construct a flag that has A2 as its initial subspace; to do this, we will need

to solve the following equations simultaneously:

la1 −mb1 − nf2 = la1 −mb2 − nf1

la1 −mb1 − nf2 = la2 −mb2 − nf2

Working with these equations yields the following:

m(b1 − b2) = n(f1 − f2)

l(a1 − a2) = m(b1 − b2)

We can therefore reach a solution by setting

m = (f1 − f2), n = (b1 − b2), and l =
(f1 − f2)(b1 − b2)

(a1 − a2)
.

The flag corresponding to lλa +mλc + nλg has initial subspace A2, and the rest of the

flag is decided by λa, contradicting the fact that a is a basic flag. Hence there is no flag

in BHK with length greater than one.

Combining Lemmas 4.1.8 and 4.1.9 and recalling thatMH
K ⊆ FHK gives us the following

result.

Lemma 4.1.10. Every element of MH
K has length 1 and an opposite in BHK if and only

if every element of BHK has length 1 and an opposite in BHK . Equivalently, every element

of MH
K has length 1 and an opposite in BHK if and only if H is relatively G-completely

reducible with respect to K.

The latter statement follows from Theorem 3.2.7. This condition of basic flags having

length 1 is motivated by the case where K = GL(V ). This result, then, can be viewed as

an analogue of Proposition 1.2.11, and of the fact that a module is completely reducible

if and only if every minimal (i.e., simple) submodule has a complement. We do not
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currently know if this result holds without the length 1 hypothesis on elements of MH
K ,

and so we try a different approach.

4.1.1 Extending the partial order

To extend our partial order on BK to the entire set of K-flags, we begin by defining a

similar binary relation.

Definition 4.1.11. Take a pair of flags a = A1 ⊂ · · · ⊂ Ar and b = B1 ⊂ · · · ⊂ Bs in

FK , with r ≤ s. If Ai = Bi for 1 ≤ i ≤ r we say that a ≤ b. Otherwise, let j be the

smallest integer such that Aj 6= Bj .

• If Aj ( Bj , we say that a ≤ b.

• If Bj ( Aj , we say that b ≤ a.

• If there is no inclusion between Aj and Bj , we say that a and b are incomparable.

Lemma 4.1.12. The binary relation described in Definition 4.1.11 is a partial order on

FK .

Proof. The relation is reflexive due to the conditions of the case where Ai = Bi for

1 ≤ i ≤ r. If we assume that a ≤ b and b ≤ a, we must be in the case where the flags

have equal length and Ai = Bi for 1 ≤ i ≤ r = s, hence the relation is antisymmetric.

Let c = C1 ⊂ · · · ⊂ Ct be a third flag and assume that a ≤ b and b ≤ c. If a = b or b = c

then a ≤ c follows immediately. If b � a and c � a then we are in one of the following

four cases:

(1) There exist least integers w and x such that Aw ( Bw and Bx ( Cx.

(2) There is a least integer y such that Ay ( By and b is a truncation of c.

(3) a is a truncation of b and there is a least integer z such that Bz ( Cz.

(4) a is a truncation of b, and b is a truncation of c.

The transitivity proof from Lemma 4.1.3 gives us transitivity in the first case. In case (2)

we have Ai = Bi = Ci until Ay ( By = Cy, so a ≤ c. In case (3) we have Ai = Bi = Ci

until i = r < t or until Az = Bz ( Cz; in either case we conclude that a ≤ c. In case (4)

we have Ai = Bi = Ci for 1 ≤ i ≤ r < t, and so a ≤ c.

This partial order is similar to the lexicographic order; both compare sequences of ele-

ments by studying the first place where the sequences differ. We therefore refer to flags

which are minimal with respect to this extended partial order as minilex flags.

Example 4.1.13. The Hasse diagram for FK flags from our running example of G =

GL4(k) andK = diag(s, t, t−1, s−1) is displayed in Figure 4.3, with the basic flags labelled

in bold. The nonbasic flags of FK are the minilex flags; they all precede their respective

basic subflags which have signature (1, 3, 4).
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(1, 2, 3) (1, 3, 2) (2, 1, 4) (2, 4, 1) (3, 1, 4) (3, 4, 1) (4, 2, 3) (4, 3, 2)

(1,23) (2,14) (3,14) (4,23)

(12) (13) (24) (34)

Figure 4.3: Hasse diagram of FK for K = diag(s, t, t−1, s−1) ≤ GL4(k)

It is not always the case that nonbasic flags precede their basic subflags in our extended

partial order, as the following example demonstrates.

Example 4.1.14. Let G = GL4(k) and let K be the subgroup diag(s, t, sr−1, sr−2).

Then three of the minilex FK flags are basic flags, as demonstrated in Figure 4.4 (where

basic flags have again been labelled in bold).

(1, 2, 3)

(1,3)

(2)

(4,3)

(4, 2, 3)(1, 3, 2) (1, 3, 4) (4, 3, 1) (4, 3, 2)

(1,23) (2, 1, 3) (2, 4, 3) (4,23)

(12,3) (134) (24,3)

Figure 4.4: Hasse diagram of FK for K = diag(s, t, sr−1, sr−2) ≤ GL4(k)

Remark 4.1.15. Extending the partial order to include all FK flags still does not pro-

vide us with meets and joins. Recall the group G = GL4(k) and the subgroup K =

diag(s2, s, t, t−1) from Remark 4.1.6. The partial order on BK resulted in a subset

of basic flags S = {(1, 23), (1, 24), (13, 2), (14, 2)} with no notion of meets or joins;

see the leftmost diagram of Figure 4.1.15. Extending to FK reveals that no nonbasic

flags are introduced which provide meets and joins. In fact, another problematic set

S′ = {(1, 2, 3), (1, 2, 4), (1, 23), (1, 24)} is introduced, as demonstrated in the rightmost

diagram of Figure 4.1.15.

The following result extends our study of opposed length 1 flags to minilex FK flags.

Lemma 4.1.16. Suppose all minilex FK flags have length 1 and opposites in FK . Then

all BK flags have length 1 and opposites in BK .
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(13, 2) (14, 2)

(1, 23) (1, 24)

(1, 2)

(13, 2) (14, 2)

(1, 23) (1, 24)

(1, 2, 3) (1, 2, 4)

(1, 2)

(1, 3, 2) (1, 4, 2)

Figure 4.5: Hasse subdiagrams of BK and FK for K = diag(a2, a, b, b−1) ≤ GL4(k)

Proof. We prove that every minimal basic flag has an opposite in BK . Let a ∈ MK .

There is a minilex flag b ≤ a with the same initial subspace as a; if its initial subspace

was properly contained in the initial subspace of a, we could find a basic flag containing

that subspace (by Lemma 3.2.10) which would contradict the minimality of a in BK . By

assumption, b is a length 1 flag and is therefore a subflag of a unless it equals a. Since

a is a basic flag, it must be the case that b = a is a minilex flag of length 1. Hence all

minimal basic flags are minilex flags of length 1 and have opposites in FK by assumption.

These opposites must be basic flags by Lemma 3.2.9. The conclusion for all basic flags

follows by Lemma 4.1.10.

The following result arose from attempts to mirror the arguments of Kempf in [22] in

our setting, with the goal of producing objects which are automorphism invariant. Fix a

maximal torus T of K such that there exists an unopposed minilex FHK flag coming from

some λ ∈ Y (T ). Let U1, . . . , Ur be the initial subspaces of all such flags (listed without

repeats) and let λ1, . . . , λr be cocharacters of T giving rise to unopposed minilex flags

f1, . . . , fr with initial subspaces U1, . . . , Ur. Then we have the following.

Lemma 4.1.17. With notation as above, for each 1 ≤ i ≤ r, let Wi =
∑i

j=1 Uj. Then:

(i) Wi is a proper subspace of V ;

(ii) the sum for Wi is direct.

In particular, UT :=
⊕r

j=1 Uj is a proper subspace of V .

Proof. We prove the statement by induction. Observe that W1 = U1 trivially satisfies

both properties. Suppose now that we have proved the statements for Wi−1.

Each intersection Uj ∩ Uk is trivial when j 6= k; this follows from Theorem 4.1.7 and

the minimality of the initial subspaces of minilex flags. Then we can choose a basis B
for V consisting of T -weight vectors such that each Uj has a basis Bj ⊆ B, and the

subsets Bj are disjoint. Then
⋃i−1
j=1 Bj is a basis for Wi−1 and Bi is a basis for Ui. Hence

Ui ∩Wi−1 = 0 and and we can write Wi = Wi−1 ⊕ Ui, proving (ii).
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To prove (i), suppose for contradiction that Wi = V = U1 ⊕ · · · ⊕ Ui. Let the λ1-weight

spaces of f1 be X1, . . . , Xk for some k, so that we can write

f1 = X1 ⊂ X1 ⊕X2 ⊂ · · · ⊂ X1 ⊕ · · · ⊕Xk−1.

By a previous argument to the above, the intersection of each Uj for 1 ≤ j ≤ i with the

spaces in this flag is either 0 or Uj . Then for each 1 ≤ j ≤ i we have Uj = Xj′ for some

1 ≤ j′ ≤ k. Since we can write V = U1 ⊕ · · · ⊕ Ui = X1 ⊕ · · · ⊕Xk, we must have that

the Xj′ are the Uj , possibly reordered. Each Uj is stabilized by H, which means that

each X ′j is stabilized by H. Then H stabilizes the flag

f ′1 = Xk ⊂ Xk ⊕Xk−1 ⊂ · · · ⊂ X2 ⊕ · · · ⊕Xk.

This is an H-stable opposite to f1, providing the required contradiction.

Remark 4.1.18. Showing that intersections are trivial in the proof of (ii) relies on the

fact that we are working in a fixed torus; this assumption allows us to fix a basis and

work with subsets of that basis.

4.2 A second characterization of relative GL(V )-complete

reducibility

Like the subset of basic flags, the subset of minilex flags is a set of minimal flags which

can be used to characterize relative G-complete reducibility. The following theorem is

the main result of this chapter.

Theorem 4.2.1. Let K and H be subgroups of GL(V ), with K reductive. If each minilex

H-stable K-flag has an H-stable opposite, then H is relatively G-completely reducible

with respect to K.

The proof depends on the hypothesis for minilex flags passing down to Levi subgroups.

For the remainder of this section we will be assuming that each minilex H-stable K-flag

has an H-stable opposite.

Lemma 4.2.2. Suppose that λ ∈ Y (K) is a cocharacter centralizing H and let LK =

Lλ(K). Then a minilex H-stable LK-flag is a minilex H-stable K-flag arising from a

cocharacter of LK . Moreover, every minilex H-stable K-flag is CK(H)-conjugate to a

minilex LK-flag.

Proof. Suppose a = A1 ⊂ · · · ⊂ Ar−1 is a minilex H-stable LK-flag, and let α ∈ Y (LK)

be a cocharacter corresponding to a. Since α ∈ Y (LK), we have that λ commutes with

α and hence λ stabilizes the α-weight spaces in V by Lemma 1.1.24. We show that a is

minilex amongst H-stable K-flags.

We begin by studying the λ-weights on the α-weight spaces. Denote the α-weight spaces

by X1, X2, . . . , Xr, labelled so that Aj =
∑j

i=1Xi for each 1 ≤ j ≤ r− 1. We claim that

λ has only one weight on each Xi, except possibly Xr. To see this, suppose that λ has
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more than one weight on some Xi with i < r, and choose i minimal such that λ has

multiple weights on Xi. Suppose the highest λ-weight space in Xi is W . For sufficiently

large n, the flag corresponding to nα+ λ ∈ Y (LK) starts

A1 ⊂ · · · ⊂ Ai−1 ⊂ Ai−1 +W ⊂ . . . ,

which precedes a in our partial order because Ai−1 +W is a proper subspace of Ai−1 +

Xi = Ai. This new flag is H-stable, since the new cocharacter is a combination of α

and λ. This contradicts the fact that a is minilex among H-stable LK-flags, proving our

claim; λ has only one weight on each Xi with i < r.

Now suppose that b = B1 ⊂ · · · ⊂ Bs−1 is a minilex H-stable K-flag such that b ≤ a, and

let β ∈ Y (K) be a cocharacter giving rise to b which centralizes H. Such a cocharacter

exists by our initial assumption on minilex flags in FHK . If b 6= a, then Bi = Ai until a

point where Bj ( Aj , or b is a truncation of a. In either case, we work with the subflag

b′ = B1 ⊂ · · · ⊂ Bj of b. Although b′ may not be a K-flag, Q = StabK(b′) is a parabolic

subgroup of K because it contains Pβ(K). Hence, in particular, β evaluates in Q.

We claim that λ also evaluates in Q. Since λ stabilizes each α-weight space, λ stabilizes

B1 = A1, . . . , Bj−1 = Aj−1. But Bj ⊆ Aj , and Aj = Aj−1 ⊕ Xj = Bj−1 ⊕ Xj , which

implies that

Bj = Bj−1 ⊕ (Bj ∩Xj). (4.2.1)

Since λ acts on Xj with a single weight, λ stabilizes every subspace of Xj , including

Bj ∩Xj . Now (4.2.1) shows that λ stabilizes Bj also. Thus λ also evaluates in Q.

The previous two paragraphs imply that λ, β ∈ Y (CQ(H)), so we may find some CQ(H)-

conjugate γ of β which commutes with λ. Conjugating in CQ(H) ensures that this γ still

centralizes H, and because the element we conjugate with lies in Q, γ still corresponds

to a flag which starts with the subflag b′. Then the γ-flag c is an H-stable LK-flag such

that c ≤ a, so it must equal a, since a is minilex among LK-flags. This implies that we

had a = b all along, proving that that minilex H-stable LK-flags are minilex H-stable

K-flags arising from cocharacters of LK .

For the final part, suppose d = D1 ⊂ · · · ⊂ Dr−1 is a minilex H-stable K-flag. Then d

comes from some cocharacter δ ∈ Y (K) which centralizes H. By conjugating in CK(H),

we may line δ up with λ, to give a cocharacter δ′ ∈ Y (LK) corresponding to a flag

d′ = D′1 ⊂ · · · ⊂ D′r−1. This must be a minilex LK flag; if it was not, we could conjugate

a flag preceding d′ to obtain a flag preceding d in FHK .

We can now show that our hypothesis for minilex flags in FHK passes down to Levi

subgroups of K.

Corollary 4.2.3. With notation as above, each minilex H-stable LK-flag has an H-

stable opposite.

Proof. Let a be a minilex H-stable LK-flag. By Lemma 4.2.2, a is a minilex H-stable

K-flag, and hence there is a cocharacter α ∈ Y (K) which gives rise to a and centralizes
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H. Since a is an LK-flag, λ evaluates in StabK(a). We may conjugate in CStabK(a)(H) to

line up α and λ without changing the flag a. Thus a has an H-stable LK-opposite.

We could proceed inductively, applying this corollary until the process terminates. Al-

ternatively, we can skip ahead as in the following lemma.

Lemma 4.2.4. Let S be a maximal torus of CK(H) and let LK = CK(S). Then each

minilex H-stable LK-flag has an H-stable opposite. Moreover, H is relatively G-cr with

respect to K if and only if H is relatively G-cr with respect to LK , and all minilex

LK-flags come from cocharacters which are central in LK .

Proof. We may find a λ ∈ Y (S) such that LK = Lλ(K). Since λ ∈ Y (S), we have that λ

centralizes H. Hence Corollary 4.2.3 applies to show that minilex H-stable LK-flags have

H-stable opposites. The relative G-cr statement follows from [10, Proposition 3.17(i)].

For the final statement, note that a minilex LK-flag has an H-stable opposite, and hence

comes from a cocharacter which commutes with H. Such a cocharacter will evaluate in

a maximal torus of CLK (H), and the central torus S of LK is the only such torus.

Armed with this result for Levi subgroups, we introduce a larger central torus and work

with a new set of well-behaved flags. We obtain a necessary and sufficient condition for

the relative G-complete reducibility of H with respect to K.

Lemma 4.2.5. Suppose S is a maximal torus of CK(H) and let LK = CK(S). Note that

CG(S) is a Levi subgroup of G = GL(V ) and let Z denote the centre of CG(S). Then

H is relatively G-cr with respect to K if and only if H is relatively G-cr with respect to

LKZ.

Proof. First off, note that S ⊆ Z since Z is the centre of CG(S) and S is central. Also

note that CG(S) = CG(Z) and LK = CK(S) = CK(Z). Hence Z centralizes LK , and

hence Z is central in LKZ. If T is any torus of LKZ that centralizes H, we may write

T = T0Z for some torus T0 in LK which centralizes H. But then T0 ⊆ S ⊆ Z, because

S is the unique maximal torus of CLK (H). Hence Z is the unique maximal torus in

CLKZ(H).

Suppose H is relatively G-cr with respect to K and suppose λ ∈ Y (LKZ) is a cocharacter

such that H ⊆ Pλ. Then we know that H is relatively G-cr with respect to LK . Writing

λ = λ0 + λ1 with λ0 ∈ Y (Z) and λ1 ∈ Y (LK), we see that H ⊆ Pλ1 ; because λ0

centralizes H, we can find an Ru(Pλ1(LK))-conjugate u · λ1 of λ1 which centralizes H.

Because u ∈ LK , u fixes λ0 ∈ Y (Z), and hence u · λ = u · λ0 + u · λ1 = λ0 + u · λ1

centralizes H. Furthermore, we see that u ∈ Pλ because u ∈ Pλ1 ∩ Lλ0 , and hence we

are done – it suffices to show that H is fixed by some Pλ-conjugate to λ.

For the converse, suppose H is not relatively G-cr with respect to K. Then H is not

relatively G-cr with respect to LK , by Lemma 4.2.4, so we can find λ ∈ Y (LK) such that

H is contained in Pλ and not contained in any Levi subgroup of Pλ coming from LK .

Note that S is contained in Lλ, and hence in Pλ. Suppose for a contradiction that H is

in some Levi subgroup of Pλ coming from K. Then this Levi subgroup has the form Lµ,
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where µ commutes with H. The image of µ and S are both tori contained in CPλ(K)(H),

and S is maximal, hence we can conjugate µ in S by an element of CPλ(K)(H). But this

puts H is in a Levi subgroup coming from LK , a contradiction.

Then there is a cocharacter λ ∈ Y (K) which commutes with S, and such that H is

contained in Pλ but in no Levi subgroup of Pλ coming from K. Since λ commutes with

S, λ is a cocharacter of LKZ. The Levi subgroups of Pλ coming from LKZ are the same

as the Levi subgroups coming from LK , because Z is central. Hence H is not contained

in any Levi subgroup of Pλ coming from LKZ, and so H is not relatively G-cr with

respect to LKZ.

The following lemma is the final result that we need. Recall that we are still assuming

that each minilex H-stable K-flag has an H-stable opposite.

Lemma 4.2.6. With notation as above, H is relatively G-cr with respect to LKZ.

Proof. Suppose a = A1 ⊂ · · · ⊂ Ar−1 is an LKZ-flag. We claim that a arises from a

cocharacter of Z. Once this claim is established, the result follows immediately, because

any cocharacter of Z centralizes H. Let a have representative cocharacter µ = σ + β,

with σ ∈ Y (Z) and β ∈ Y (LK). Let β correspond to the LK-flag b, and note that it

is H-stable, since a is H-stable and σ centralizes H. We proceed with a sequence of

refinements and reorderings of weight spaces making up b (and subsequent flags in the

sequence), in order to show that in fact b comes from a cocharacter of Z.

First, we detail our process of refinement. If b does not begin with an H-stable minilex

LK flag (which holds in particular if b is not minilex itself), then choose a minilex flag

c ≤ b. The assumption that b does not begin with a minilex flag means that c is not a

truncation of b. Since it is minilex, c comes from a cocharacter of S by Lemma 4.2.4.

Say that γ ∈ Y (S) gives rise to c. For a sufficiently large n ∈ N we have that nγ + β

gives rise to a refinement of c, a flag c1 containing c as a subflag. Since c1 arises from a

combination of β and γ, it is a H-stable flag. Since c is minilex, c1 must either equal c

or be constructed by adding extra subspaces onto the end of c. In either case, c1 begins

with the minilex flag c, and hence c1 ≤ b since c is not a truncation of b. Now we may

write µ = (σ − nγ) + (nγ + β) with the first component in Y (Z) and the second in

Y (LK). Replacing σ with σ − nγ and β with nγ + β, we can replace b with c1 and see

that we may assume that we have chosen σ and β so that the flag b corresponding to β

begins with a minilex H-stable LK-flag.

Next, we detail the process of rearrangement. Suppose b begins with a minilex H-stable

flag c, arising from a cocharacter γ ∈ Y (S), but b is not itself minilex. We may write b

in the form

b = B1 ⊂ . . . Bs−1 ⊂ Bs ⊂ · · · ⊂ Bt−1,

such that the minilex flag c ≤ b is the flag c = B1 ⊂ · · · ⊂ Bs−1. Let the β-weight

spaces for b be X1, . . . , Xt, listed in decreasing order of weight so that Bi =
∑i

j=1Xj

for each 1 ≤ i ≤ t − 1. Note that the γ-weight spaces are X1, . . . , Xs−1 and
∑i

j=sXj .

By construction, the γ-weights on these spaces are also in strictly decreasing order of
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size. Finally, note that since the X1, . . . , Xs are distinct γ-weight spaces, they are sums

of distinct Z-weight spaces: if γ-weights can tell these spaces apart then Z-weights can,

because γ evaluates in Z. If we subtract a large multiple of γ from β, we obtain a

cocharacter β1 = β −mγ with a corresponding flag b1 which has the form

Xs ⊂ Xs ⊕Xs+1 ⊂ · · · ⊂
t∑

j=s

Xj ⊂
t∑

j=s−1

Xj ⊂ · · · ⊂
t∑

j=2

Xj .

This process has transferred the first s weight spaces from the flag b to the end of the

flag b1, in reverse order, by adding on a sufficiently large multiple of −γ. Note that,

because γ ∈ Y (Z), we may write σ1 = σ +mγ ∈ Y (Z) and we have µ = σ1 + β1. That

is, we may replace β with β1 and σ with σ1 without changing the flag a.

Now we can proceed with a sequence of refinements and reorderings. Given the flag

a, refine it so that it begins with a minilex H-stable LK-flag, and then reorder so that

the corresponding Z-weight spaces at the start of this flag appear at the end. Then

repeat with the new flag. If at any point we end up being able to replace a with a

minilex H-stable LK-flag, we stop. Otherwise, the process of refinement cannot continue

forever, for dimension reasons. It will stop when all the subspaces of a are made up

of combinations of Z-weight spaces; any space which is not a combination of Z-weight

spaces would eventually reach the front of the flag after reordering. Thus we reach a point

where the flag a arises from a cocharacter whose weight spaces are combinations of Z-

weight spaces; but since Z is the centre of the Levi subgroup corresponding to the direct

sum decomposition of V into the Z-weight spaces, this means that the corresponding

cocharacter β lies in Y (Z). Since a does not change throughout this process, we see that

we had β ∈ Y (Z) all along, and so a arises from a cocharacter of Z as claimed.

Remark 4.2.7. Suppose we know that H is relatively G-cr with respect to K. If we pick

any cocharacter λ ∈ Y (K) such that H ⊆ Pλ, there is some K-conjugate of λ which

centralizes H. Thus, every H-stable K-flag comes from a torus of CK(H). When we

descend to LK , every H-stable LK-flag comes from a central cocharacter, which is what

we have shown happens under an apparently weaker hypothesis.

Theorem 4.2.1 follows as a consequence of Lemma 4.2.5 and Lemma 4.2.6. We have now

achieved one of our original goals: given a reductive group K acting on an affine variety

X, and a point x ∈ X, we have found a “combinatorial” description of what it means

for the K-orbit of x to be closed. Embed K and X inside a GL(V ) as in Theorem 2.4.1

and let H be the subgroup corresponding to x. Then the set of cocharacters of K such

that limλ x exists gives rise to the set FHK of H-stable K-flags; the K-orbit of x is closed

if and only if every minilex flag in FHK has an opposite.

4.3 Further results

We have now seen two subsets of minimal flags (basic flags and minilex flags) which can

be used to characterize relative GL(V )-complete reducibility; a natural question to ask

is whether the intersection of these subsets will provide us with a third characterization.
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Our running example of K = diag(s, t, t−1, s−1) ≤ GL4(k) presents an issue with this

approach; the intersection of these subsets can be empty.

Example 4.3.1. Let G = GL4(k) and let be the subgroup K = diag(s, t, t−1, s−1).

Recall that FK consists of the following flags:

Length FK flags

1 (12), (13), (24), (34)

2 (1, 23), (2, 14), (3, 14), (4, 23)

3
(1, 2, 3), (1, 3, 2), (2, 1, 4), (2, 4, 1)

(3, 1, 4), (3, 4, 1), (4, 2, 3), (4, 3, 2)

One can check (recalling the Hasse diagram of Figure 4.3) that a flag in FK is basic if

and only if it has length less than 3, and a flag in FK is minilex if and only if it has

length 3. Then there are no flags which are both minilex and basic.

This could be dealt with as a trivial or special case, but the following example (discovered

with the aid of computer software) shows that the subset of minilex basic K-flags may

only contain a single flag.

Example 4.3.2. Let G′ = GL5(k) and let K ′ = diag(s, t, t−1, s−1, u). Understanding

the structure of FK from Example 4.3.1 will help us to make sense of the structure of

FK′ , which contains 122 flags. Let V = 〈e1, e2, e3, e4〉 and let V ′ = 〈e1, e2, e3, e4, e5〉. For

a flag f = (0 = U0 ⊂ U1 ⊂ · · · ⊂ Ul+1 = V ) with length l ≥ 1 in FK , there are (2l + 3)

corresponding flags in FK′ . The additional subspace appearing in FK′ flags, the span of

the canonical basis vector e5, can appear at the following points in f :

• Between Ui−1 and Ui for each 1 ≤ i ≤ l + 1,

• at the same time as Ui for each 1 ≤ i ≤ l + 1,

• or between Ul+1 = V and V ′.

For example, (12) ∈ FK corresponds to the FK′ flags (5, 12), (12, 5), (125), (12), and

(12, 34). Note that our shorthand masks some complexity here; the flag (12) ∈ FK
represents 〈e1, e2〉 ∈ k4, whereas (12) ∈ FK′ represents 〈e1, e2〉 ∈ k5. The 8 flags of

length 3 in FK correspond to 72 flags in FK′ , the 4 flags of length 2 in FK correspond

to 28 flags in FK′ , and the 4 flags of length 1 in FK correspond to 20 flags in FK′ .
This accounts for 120 of the 122 flags in FK′ ; no FK flags correspond to the FK′ flags

(1234) and (5). Most of the flags in BK′ correspond to flags in BK , as the following table

illustrates.
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BK flag Corresponding BK′ flags

(12) (12), (125)

(13) (13), (135)

(24) (24), (245)

(34) (34), (345)

(1,23) (1,23), (1,235), (15,23)

(2,14) (2,14), (2,145), (25,14)

(3,14) (3,14), (3,145), (35,14)

(4,23) (4,23), (4,235), (45,23)

The only elements of BK′ not listed above are the flags (1234) and (5). Then the set

of minimal basic flags is MK′ = {(1, 23), (2, 14), (3, 14), (4, 23), (5)}. If a basic flag is

minimal in FK then it must be minimal in BK′ , so the set of minilex basics must be a

subset ofMK′ . For each flag f of signature (1, 3, 5) inMK′ there is a flag f ′ of signature

(1, 2, 3, 5) in FK′ such that f ′ ≤ f . Thus the only minilex basic flag in FK′ is (5).

The previous example demonstrates that even strong assumptions are unlikely to lead

to positive results for arbitrary sets of minilex basic flags. There are, however, some

interesting interactions between the partial orders we have introduced on FK . First we

observe that flags and their subflags are always comparable.

Lemma 4.3.3. Let f, f ′ ∈ FK and suppose f ′ is a proper subflag of f . Then f ′ and f

are comparable. Moreover, f ≤ f ′ unless f ′ is a truncation of f .

Proof. Let f = U1 ⊂ · · · ⊂ Ur and f ′ = W1 ⊂ · · · ⊂Ws, with s < r and suppose that f ′

is a proper subflag of f . Then either Wi = Ui for all 1 ≤ i ≤ s, or there exists a j such

that Wj ( Uj and Wi = Ui for all 1 ≤ i < j. In either case, f ′ and f are comparable.

In the first case, f ′ is a truncation of f and we have f ′ ≤ f . Otherwise, we are in the

second case where f ≤ f ′.

The following corollary for minilex basic flags follows immediately.

Corollary 4.3.4. Suppose f ′ is a proper subflag of f which is minilex and basic. Then

f ′ is a truncation of f .

Flags which are maximal with respect to our new partial order must be minimal with

respect to the � ordering on FK discussed in Chapter 2.4.

Lemma 4.3.5. If f ∈ FK is maximal with respect to the partial order of Defini-

tion 4.1.11, then f ∈ BK .

Proof. We show that every nonbasic flag is preceded by one of its basic subflags. Let

f = U1 ⊂ · · · ⊂ Ur be a nonbasic flag in FK . By Lemma 3.2.10, there exists a proper

subflag f ′ ∈ FK of f containing Ur. Then f ′ is a subflag of f which is not a truncation,

so f ≤ f ′ by Lemma 4.3.3.

The following proposition demonstrates a connection between flags in FK which are

minimal with respect to exactly one of the partial orders we have introduced.
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Proposition 4.3.6. Let f ∈ FK be a minilex nonbasic flag and suppose that all non-

minilex basic FK flags have opposites in FK . Then f has an opposite in FK .

Proof. If f ∈ FK is a minilex nonbasic flag, then f ≤ fi for all basic flags fi � f . Then

each fi is a nonminilex basic flag and has an opposite in BK by assumption. We showed

in the proof of Theorem 3.2.7 that an opposite exists for an arbitrary flag in FK if each

of its basic subflags has an opposite.

4.3.1 A dual partial order

The binary relation introduced in Definition 4.1.11 has a natural dual on FK which is

also a partial order. Instead of beginning our subspace comparison at the start of the

flags, we can begin by comparing subspaces at the end. From now on we shall denote the

extended partial order of Definition 4.1.11 by ≤s. We introduce a new binary relation

≤e as follows.

Definition 4.3.7. Take a pair of flags a = A1 ⊃ · · · ⊃ Ar and b = B1 ⊃ · · · ⊃ Bs, with

r ≤ s. If Ai = Bi for 1 ≤ i ≤ r we say that b ≤e a. Otherwise, let j be the smallest

integer such that Aj 6= Bj .

• If Aj ( Bj , we say that a ≤e b.

• If Bj ( Aj , we say that b ≤e a.

• If there is no inclusion between Aj and Bj , we say that a and b are incomparable.

Arguments dual to those of Lemma 4.1.12 show that this binary relation gives a partial

order on FK . Observe that for proper subflags fi which consist of the final n subspaces

of a flag f (the dual notion of a truncation) we have f ≤ fi. This ensures that maximal

subspaces (treated as flags of length 1) are maximal with respect to ≤e. Flags in FK
which are maximal with respect to the extended partial order ≤e will be referred to as

maxilex flags. Flags which are minilex are not necessarily maxilex, and vice versa.

Example 4.3.8. We return to the setting of Example 4.3.2, where we studied the

subgroup K ′ = diag(s, t, t−1, s−1, u) ≤ G′ = GL5(k). The following table lists some flags

in FK′ and indicates whether they are maximal or minimal with respect to either of our

partial orders.

≤s minimal ≤s maximal ≤e minimal ≤e maximal

(1, 23)

(1, 2, 3) X

(125) X

(12) X

(15, 2, 3) X

(5) X X

(1234) X X

(1, 2, 5, 3) X X
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Observe that a flag being ≤s minimal does not exclude it from being ≤e minimal or

≤e maximal, and being ≤e maximal does not exclude a flag from being ≤s maximal or

≤s minimal. Flags can satisfy one or two of these properties, or none at all. Roughly,

the subspaces at the start of ≤s minimal flags and at the end of ≤e minimal flags are

relatively low-dimensional. The subspaces at the start of ≤s maximal flags and at the

end of ≤e maximal flags are relatively high-dimensional.

The following theorem demonstrates an important connection between minilex and max-

ilex flags.

Theorem 4.3.9. Let K and H be subgroups of GL(V ), with K reductive. An H-stable

opposite of a minilex FHK flag is a maxilex FHK flag. Similarly, an H-stable opposite of

a maxilex FHK flag is a minilex FHK flag.

Proof. Let f ∈ FHK be a minilex flag. Suppose that g ∈ FHK is opposite f and that there

is a flag g′ ∈ FHK such that g ≤e g′. We prove that g′ = g. Let f = A1 ⊂ · · · ⊂ Ar,

and let g = Br ⊂ · · · ⊂ B1. Since g ≤e g′, there is 1 ≤ i ≤ r + 1 such that g′ ends with

subspaces

Bi−1 ⊂ · · · ⊂ B2 ⊂ B1, (4.3.1)

where if i = 1, the convention is that this is empty. Let λ, µ ∈ Y (K) be commuting

cocharacters giving rise to f and g′, respectively, and consider the cocharacter nλ + µ

for large n. This gives a flag f1 ∈ FHK which is a refinement of f . Since f is minilex,

f is a truncation of f1 by Lemma 4.3.3. By Proposition 1.1.24, the λ-weight spaces are

all µ-stable, and vice versa, which implies that the first r distinct λ-weight spaces each

have a single µ-weight.

Now consider the possible difference between g and g′. Suppose i < r + 1. Then either:

(1) g′ is obtained from g by omitting subspaces, in which case g′ is the flag displayed

in Equation (4.3.1); or

(2) there is a proper inclusion Bi ( B′i, where B′i is the subspace preceding Bi−1 in g′.

In case (1), since each Bk is a complement to Ak, and λ and µ commute, the flag for −µ
is A1 ⊂ · · · ⊂ Ai−1. This is a flag in FHK which is a truncation of f , contradicting the

fact that f is minilex.

Denote the λ-weight spaces by X1, . . . , Xr+1, in decreasing order of weight, so that each

Aj =
⊕j

k=1Xk. In case (2), µ has lowest weight spaces X1, X2, . . . , Xi−1 in increasing

order of weight; to see this, observe that Bj =
⊕r+1

k=j+1Xk. Let Yi denote the µ-weight

space such that Bi−1 = B′i ⊕ Yi. We claim that Yi ( Xi. To see this, note that since

Bi ( B′i and Bi−1 = B′i ⊕ Yi = Bi ⊕ Xi, we have Yi ∩ Bi = 0 and dimYi < dimXi.

Since λ and µ commute, Yi is λ-stable, and hence is a sum of λ-weight spaces. The only

λ-weight vectors in Bi−1 which are not contained in Bi are those in Xi, so the fact that

Bi ∩ Yi = 0 forces Yi ⊂ Xi, and we have proved the claim. But Yi ( Xi implies that µ

has at least two distinct weights on Xi, which is a contradiction to our earlier conclusion

that µ has a single weight on each Xk with 1 ≤ k ≤ r. Then both (1) and (2) lead to a

62



contradiction, so we conclude that i = r + 1, and thus g′ = g. A dual argument can be

used to prove the second statement.

The subset of maxilex flags leads to a characterization of relative GL(V )-complete re-

ducibility which is dual to that of Theorem 4.2.1.

Theorem 4.3.10. Let K and H be subgroups of GL(V ), with K reductive. If each

maxilex H-stable K-flag has an H-stable opposite, then H is relatively G-completely

reducible with respect to K.

Armed with Theorems 4.2.1 and 4.3.10, we can argue as follows. Given H and a K such

that H is not relatively G-cr with respect to K, there will be minilex and maxilex H-

stable K-flags which do not have H-stable opposites. Suppose a = A1 ⊂ · · · ⊂ Ar is such

a minilex flag and b = B1 ⊃ · · · ⊃ Bs is such a maxilex flag. By Theorem 4.1.7, A1 ∩B1

and A1 +B1 appear as subspaces in a flag of FK when the intersection is nontrivial and

the sum is a proper subspace of V . The intersection A1 ∩B1 is trivial or all of A1, since

A1 has no proper subspaces which occur in H-stable K-flags. Dually, A1 + B1 = V or

B1, since no subspace of an H-stable K-flag can properly contain B1. Together, these

facts imply that A1 and B1 are complementary subspaces unless A1 is contained in B1.

These statements mirror some of the arguments found in the proof of [27, Theorem 4.6],

which we discussed in Remark 1.2.14. Unfortunately, we cannot obtain a completely

analogous argument; complementary subspaces such as A1 and B1 can be found in flags

which do not complement each other in FK , as the following example demonstrates.

Example 4.3.11. Let G = GL4(k), K = diag(s, t, t−1, s−1), and let H be the subgroup

of G given by

H =


∗ 0 0 0

0 ∗ ∗ 0

0 0 ∗ 0

0 0 0 ∗

 .

In Example 3.2.3 we saw that the H stable flags in FK are the flags in which the span

of e3 is not introduced before the span of e2:

FHK = {(1, 23), (1, 2, 3), (12), (2, 1, 4), (2, 14), (2, 4, 1), (24), (4, 2, 3), (4, 23)}.

Figure 4.3.1 provides a graphical representation of the cocharacters of FHK flags, and

shows the Hasse diagrams for FHK under the ≤s and ≤e partial orderings. Observe that

H is not GL(V )-completely reducible with respect to K, as (2, 14) has no opposite in

FHK . We have that a = (1, 2, 3) is a minilex H-stable K-flag and b = (4, 2, 3) is a

maxilex H-stable K-flag, and both a and b have no opposite in FHK . Note, however, that

A1 = 〈e1〉 and B3 = 〈e2, e3, e4〉 are complementary subspaces.
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x

y

(1
2)

(24)

(2, 14)

(1, 23)(4, 23)

(1, 2, 3) (2, 1, 4) (2, 4, 1) (4, 2, 3)

(1, 23) (2, 14) (4, 23)

(12) (24)

≤s

(1, 2, 3) (2, 1, 4) (2, 4, 1) (4, 2, 3)

(1, 23) (2, 14) (4, 23)

(12) (24)

≤e

Figure 4.6: Cocharacter and Hasse diagrams for FHK of Example 4.3.11
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Chapter 5

Further work and arbitrary fields

We conclude with a discussion of further work and an explanation of how results from

previous chapters can be extended to arbitrary fields. Section 5.2 includes statements

from the jointly written paper [1], and summarises known results from the theory of

complete reducibility over arbitrary fields.

5.1 Strongly unopposed flags

Let H and K be subgroups of G = GLn(k) with K reductive. In cases such as Example

4.3.11, unopposed minilex flags in FHK may have their initial subspace complemented by

the final subspace of a maxilex flag. Some examples indicate that such flags may appear

“on the edge” of FHK , far from any potential centre. To work around these problematic

flags, we introduce a stronger notion of opposition.

Definition 5.1.1. We say that a minilex flag in FHK is strongly unopposed if there is no

flag in FHK containing a subspace complementary to its initial subspace. Dually, we say

that a maxilex flag in FHK is strongly unopposed if there is no flag in FHK containing a

subspace complementary to its final subspace.

Example 5.1.2. Recall the setting of Example 4.3.11: let G = GL4(k), let K =

diag(s, t, t−1, s−1), and let H be the subgroup of G given by

H =


∗ 0 0 0

0 ∗ ∗ 0

0 0 ∗ 0

0 0 0 ∗

 .

We saw that this results in a set FHK with a pair of flags (1, 2, 3) and (4, 2, 3) which

are unopposed but not strongly unopposed. Note, however, that there are minilex and

maxilex flags which are strongly unopposed. In fact, the subset S1 of strongly unopposed

minilex flags in FHK is equal to the subset S2 of strongly unopposed maxilex flags:

S1 = {(2, 1, 4), (2, 4, 1)} = S2
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(1,
3)(1

, 2
3)

(14, 3)(4, 13)

(1, 34)
b

(12, 3)

c

(4, 3)

Figure 5.1: Cocharacter and stabilized flag diagram for FHK of Example 5.1.3

Recalling the discussion of Remark 1.2.14, let C1 denote the initial subspaces of flags

in S1 and let C2 denote the final subspaces of flags in S2. Let C1 denote the sum of all

subspaces in C1, and let C2 denote the intersection of all subspaces in C2. Then we have

C1 = 〈e2〉, and C2 = 〈e1, e2, e4〉. In this example, (C1 ⊂ C2) = (2, 14) is an element of FHK
and is the “centre” we would expect: see the cocharacter diagram of Figure 4.3.1, and

observe that (2, 14) is fixed by the automorphism which swaps the spans of e1 and e4.

The following example introduces a set FHK where the subsets of minilex flags and maxilex

flags are distinct.

Example 5.1.3. Let K = diag(b, b−1, c−1, c−2) ≤ G = GL4(k) and let H be the sub-

group of G given by

H =


∗ ∗ 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗

 .

Then the flags in FHK are the flags in which the span of e2 is not introduced before the

span of e1; for a cocharacter (b,−b,−c,−2c) to correspond to a flag in FHK , we require

b ≥ 0. The following table lists the H-stable K-flags:

Length FHK flags

2 (1, 23), (1, 3), (1, 34), (14, 3), (4, 13), (12, 3), (4, 3)

3 (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (4, 1, 3), (4, 3, 1)

Using the notation conventions of Example 5.1.2, we have S1 = {(1, 2, 3), (1, 3), (1, 4, 3)},
and S2 = {(1, 3, 4), (14, 3), (4, 3, 1)}. Then C1 = 〈e1〉, and C2 = 〈e1, e3, e4〉. We have that

(C1 ⊂ C2) = (1, 34) is an element of FHK and this again is the centre we would expect,

given the cocharacter diagram of Figure 5.1.

As the following example demonstrates, there is no guarantee that C1 and C2 are both

nonempty.
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Example 5.1.4. Let K = diag(b, b−1, c−1, c−2) ≤ G = GL4(k) and let H be the sub-

group of G given by

H =


∗ 0 0 0

0 ∗ 0 0

0 0 ∗ ∗
0 0 0 ∗

 .

Then the flags in FHK are the flags in which the span of e4 is not introduced before the

span of e3; for a cocharacter (b,−b,−c,−2c) to correspond to a flag in FHK , we require

c ≥ 0. The following table lists the H-stable K-flags:

Length FHK flags

2 (1, 23), (1, 3), (1, 34), (2, 13), (2, 34), (12, 3), (2, 3)

3 (1, 2, 3), (1, 3, 2), (1, 3, 4), (2, 3, 4), (2, 1, 3), (2, 3, 1)

The set of minilex flags in FHK is {(1, 3), (2, 3), (1, 2, 3), (2, 1, 3)}; none of these flags are

strongly unopposed. Using the notation conventions of Example 5.1.2, we have S1 = ∅,
and S2 = {(1, 3, 2), (12, 3), (2, 3, 1)}. Then C1 is undefined, and C2 = 〈e1, e2, e3〉. We

want to work with the flag (C2 ⊂ V ) = (123), which is not a member of FHK . We

introduce an optimisation process to find the flag of FHK which is in some sense “closest”

to the flag (123). The stabilizer of 〈e1, e2, e3〉 in G is given by

H ′ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

 ,

and the associated cocharacter will be correspond to a 4-tuple (x, x, x, y) with x > y.

Elements of Y (K) correspond to 4-tuples (b,−b,−c,−2c), and these 4-tuples can be

treated as vectors. The cosine of the angle θ between these two is given by

cos θ =
−c(x+ 2y)√

(x2 + 4y2)(2b2 + 5c2)
=

−c√
(2b2 + 5c2)

(
x+ 2y√

(x2 + 4y2)

)

Recalling that c ≥ 0 for flags in FHK , choose x and y so that x + 2y < 0 and the cosine

is positive. To minimize the angle between these vectors, we maximise the cosine. For

a fixed nonzero value of c, setting b = 0 achieves this by minimizing the denominator

above. Then the ray of cocharacters chosen by this procedure is the set of cocharacters

of the form (0, 0,−c,−2c), which corresponds to the flag (12, 3) when c > 0. This flag

is an element of FHK and is the centre we would expect; see the cocharacter diagram of

Figure 5.2, and note that (12, 3) is fixed by the automorphism which swaps the spans of

e1 and e2.

Remark 5.1.5. As long as x+2y < 0, we should be able to find a unique ray of cocharac-

ters as above. Kempf proved that a nonzero linear functional is maximised on an open

ray in [22, Lemma 2.3].

A natural question to ask is how far apart two flags can be if the initial subspace of one
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(2, 3)

(2, 13)

(1,
3)

(1
, 2

3)

(1, 34)
b

(2, 34)

(12, 3)

c

Figure 5.2: Cocharacter and stabilized flag diagram for FHK of Example 5.1.4

complements the final subspace of the other. We can create examples of such flags which

are arbitrarily close. Let G = GLn(k) and let K be the subgroup of diagonal matrices.

Let a be the n-tuple where a1 = 2 and ai = 1 for all 2 ≤ i ≤ n and let b be the n-tuple

where b1 = 0 and bi = 1 for all 2 ≤ i ≤ n. The cosine of the angle θ between a and b is

given by

cos(θ) =
n− 1√

4 + n− 1
√
n− 1

=

√
n− 1

n+ 3
.

Observe that the flags corresponding to a and b oppose each other in FK , and that the

angle θ tends towards zero as n increases.

5.2 Arbitrary fields

We begin by recalling some definitions introduced in [21, §34]. Let k denote an arbitrary

field. A variety X over k̄ is said to be defined over k or k-defined if the ideal of all

polynomials vanishing on X is generated by k-polynomials. A morphism of varieties is

said to be defined over k if the coordinate functions are k-polynomials. We say that

an algebraic group G is defined over k if G and its multiplication and inversion maps

are defined over k. For a k-defined closed subgroup M of G, we write Yk(M) for the

k-defined cocharacters of M . Let G denote a reductive k-defined algebraic group. If G is

connected, a parabolic subgroup P of G is k-defined if and only if there exists λ ∈ Yk(G)

such that P = Pλ, by [36, Lemma 15.1.2(ii)]. Note that this property is not shared by

the parabolic subgroups of general non-connected groups; see [11, Remark 2.4] for an

example.

5.2.1 Cocharacter-closure

Let G be a reductive group acting on an affine variety V over k. When working over a

field that does not carry a natural topology, we can use the actions of cocharacters to

define a topology on V , and specifically the G-orbits in V .

Definition 5.2.1. [4, Definition 1.2]. We say that a subset S of V is cocharacter-closed

if for every x ∈ S and every λ ∈ Yk(G) such that x′ = lima→0 λ(a) ·x exists, then x′ ∈ S.

We define the cocharacter-closure of S, denoted S
c
, to be the smallest subset of V such
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that S ⊆ Sc and S
c

is cocharacter-closed.

Remarks 5.2.2.

1. The definition of the cocharacter-closure of a set makes sense because the intersec-

tion of cocharacter-closed subsets is cocharacter-closed.

2. We are most interested in the case S = G ·x for some fixed x in a k-defined variety

X. In this case, we only need to check limλ x for this fixed x. This is because

limλ x exists if and only if limg·λ(g · x) exists and is G conjugate to x. This is a

consequence of the fact that, for any a,

(g · λ)(a) · (g · x) = (gλ(a)g−1) · (g · x) = g · (λ(a) · x).

3. In the case k = k̄, the Hilbert-Mumford Theorem implies that G ·x is cocharacter-

closed if and only if it is Zariski closed.

With the definition of cocharacter-closure, we can present the following rational version

of the Hilbert-Mumford Theorem.

Theorem 5.2.3. [4, Theorem 1.3]. Let V be an affine variety over k on which G

acts, and let v ∈ V . Then there is a unique cocharacter-closed G-orbit O inside G · vc.
Moreover, there exists λ ∈ Yk(G) such that lima→0 λ(a) · v exists and lies in O.

Remark 5.2.4. A question concerning the behaviour ofG-complete reducibility under sep-

arable field extensions is answered in [11]. It is unknown whether cocharacter-closedness

of orbits behaves well with separable field extensions. The centre conjecture would solve

this question and Theorem 2.4.1 shows that it would be enough to answer this question

in the relative general linear setting described in this thesis.

Our reduction theorem, Theorem 2.4.1, goes through over a field using cocharacter-closed

orbits instead of closed orbits. If the group G, the affine space X, and the action of G

on X are all defined over k, then the polynomials used in the proof all have coefficients

in k. Thus the embeddings constructed will be k-equivariant k-embeddings, and the

homomorphism from G to GL(W ) will be k-defined as well. The content of Chapter 4

requires no modifications to account for an arbitrary field, as our manipulations of flags

and weight spaces never made use of the assumption that k was algebraically closed. An

extended discussion of “Levi descent” over arbitrary fields can be found in [4, §5]. We

conclude with a discussion of how the results of Chapter 3 can be extended to work over

arbitrary fields.

5.2.2 Rational relative complete reducibility

Let k denote an arbitrary field, let G be a reductive k-defined group, and let K be a

reductive k-defined subgroup of G. First, we recall the definition of relative G-complete

reducibility over k from [10, Definition 4.1].

Definition 5.2.5. Let H be a subgroup of G. We say that H is relatively G-completely

reducible over k with respect to K if for every λ ∈ Y (K) such that Pλ is k-defined and
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H is contained in Pλ, there exists µ ∈ Y (K) such that Pλ = Pµ, H is contained in Lµ

and Lµ is k-defined.

Remark 5.2.6. [1, Remark 5.2]. By [10, Lemma 4.8], a subgroup is relatively G-cr over

k with respect to K if and only if for every λ ∈ Yk(K) such that H ≤ Pλ, there exists

µ ∈ Yk(K) such that Pλ = Pµ and H ≤ Lµ. Hence it suffices to consider λ ∈ Yk(K)

rather than all k-defined R-parabolics.

To state the rational analogue of Theorem 3.1.1, we need to introduce a rational analogue

of PK , the set of R-parabolic subgroups Pλ with λ ∈ Y (K). Let PK,k denote the set of

k-defined R-parabolic subgroups arising from cocharacters of K:

PK,k := {Pµ | µ ∈ Yk(K)} .

Theorem 5.2.7. [1, Theorem 5.6] Let K ≤ G be reductive k-defined algebraic groups

with G connected, and let H be a subgroup of G. Then the following are equivalent:

(i) H is relatively G-completely reducible over k with respect to K.

(ii) Every maximal member of PK,k containing H has an opposite in PK,k which is

maximal and contains H.

(iii) There is an R-Levi subgroup Lµ with µ ∈ Yk(K), such that H ≤ Lµ and H is

relatively Lµ-irreducible over k with respect to K ∩ Lµ.

The proof uses rational analogues of the results used in the proof of the algebraically

closed case. There are a couple of subtleties concerning k-split tori and conjugation

which are solved using relative root systems [12, §21] [36, §15, 16] and earlier results

from the study of relative complete reducibility [10, Lemma 4.6] [4, Lemma 2.12].
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