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Abstract 

Manufacturing systems and other highly commercially valuable systems of a similar structure 

remain only partially optimised; there have been few successful attempts at real-time, global 

optimisation of complex systems as a result of the inherent combinatorial state explosion. The focus of 

this research is to investigate and develop a theoretical framework for reconfigurable scheduling and 

control of such systems through the use of Discrete-Event Systems (DES) within the broader context of 

“Industrie 4.0” with a focus on manufacturing applications. The work presents a wide ranging overview 

of the existing approaches towards scheduling and discrete control of distributed, resource-allocation 

systems, the implementation of such systems within the contemporary Information Technology (IT) 

landscape and some theoretical fields that neighbour the work. The structure of a DES for scheduling 

problems is defined as a special case of a generative Markovian transition system. A full-scale industrial 

case study from the aerospace industry is modelled. The system is formalised into a parallel computer 

program with a Monte-Carlo sampling approach to illustrate the speed and effectiveness of the 

technique in sampling-based makespan minimisation in complex scheduling problems. Although 

approach is anytime-optimal, ideal for implementation into distributed computation, it does not 

intensify the search into high performing regions. The principles and appropriateness of existing 

metaheuristics are discussed, a simple explore-exploit algorithm called Discrete-Event Trajectory 

Mutation specifically designed for search intensification for sampling-based Discrete-Event Processes 

(DEP) is shown. A new scheduling problem driven by industrial requirements called “satisfaction-over-

time” is defined using original theory, followed by an approach for formally representing these 

problems and a technique for solving them through computer optimisation and search. Finally, a 

technique for automatic construction of DES models for the search and optimisation of manufacturing 

system designs is presented. Extensive plans for further work are given along with profitable areas of 

further study.  
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1 Introduction & Literature Review 
 

 

  

“For now, what is important is not finding the answer, but looking for it.” 

- D. Hofstadter 
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1.1 Introduction 
The original objective of the thesis was to find an approach for deploying Industrie 4.0 and smart 

factory technology in a way that was the commercially impactful and technologically feasible. Much of 

the ideals around smart factories revolve around the collection of data for monitoring1, diagnosis2 and 

control3. The main weakness of attempting many of the data-driven aspects is that the architecture of 

the system will need to be dynamically reconfigurable so to conduct efficient data acquisition in a time-

discontinuous manner. The information architecture is made up of highly specific components that 

relate to only single processes. It follows that the models and programs for monitoring and control must 

be deployed dynamically for these specific processes. Diagnosis will require new approaches for 

structuring information automatically.  

This necessitates the use of a supervisory controller to orchestrate the components over time by 

maintaining a credible model of the manufacturing system that is updated with state4. Whilst the 

manufacturing system itself is continuously changing its configuration, so too must its information 

architecture5. Once a model is constructed, this can be used as a planning or forecasting model in manner 

described by the Markov Decision Process (MDP) formalism. This gives the opportunity for many 

different types of optimisation besides resource allocation for high utilisation and productivity, but also 

quality, meeting supply chain requirements and orchestrate the smart factory components in an 

anticipatory fashion. The thesis became focused on the development of such a model and how it can be 

used to optimise the routing of parts.  

1.1.1 Research Aims 
 Design of a simple computer program to formalise and execute reconfigurable autonomous 

scheduling using the model as a generative or constructive process of search. 

 Easily extendable modelling formalism.6 

 Possible to model using data.7 

 Possible to model with knowledge.8 

                                                      
1 Monitoring issues include; process monitoring for manufacturing or production processes/behaviour and other 
associated assets in the manufacturing domain or environment. Condition monitoring for observing the health 
and maintenance requirements of assets in the manufacturing domain or environment. Monitoring also extends 
into the operational aspects, including the staff, machinery operators and processes involving manual labour.  
2 Diagnosis involves data-driven root cause discovery of quality issues, knowledge-graphs for inferring causal 
links between different events and the organisation of time-series data into labelled datasets.  
3 This includes manufacturing or production process control, AGV/MHS control, staff control and task 
assignment, routing and scheduling. Supply chain and logistics control.  
4 This concept has been popularised by the term “Digital Twin”.  
5 This fits very closely into the ideals of Cyber-Physical Systems (CPS). 
6 This was because changes to the model were seen as inevitable as the ‘logical graph structure’ of the 
manufacturing system is likely to change over time based the removal or addition of assets and part types. 
7 An approach that would read in a dataset of an existing manufacturing system and extract the causal structure 
using a ‘Discrete-Event System Identification’ process.  
8 This involves knowing the Part Process Paths, i.e. the basic atomic ‘rules’ of the manufacturing system.  These 
are then collected together into the logical graph structure itself to form the generative planning model.  
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 Possible to model using an encoding scheme.9 

 Uses the simplest possible logical, algorithmic and arithmetical operations10.  

 The model will accept any possible state and can vary its time-period of optimisation. 

 Works with optimisation algorithms11. 

 Will integrate directly with Machine Learning (ML) approaches.  

 Computationally lightweight vis-à-vis fast in processing. 

 Capable of various forms of computer parallelisation.  

 Fits within the Cyber-Physical Systems and Cloud Computing paradigms.  

 Accepts uncertainty in various contexts, including variables. 

 Holds maximal commercial value to industry. 

1.1.2 Research Objectives  
 Writing of the framework in MATLAB programming language.  

 Model the Safran Landing Systems manufacturing system in the said framework.  

 Establish a makespan minimisation approach for full-size, real manufacturing systems. 

 Investigate the design of metaheuristics applicable to Discrete-Event Processes.  

 Investigate optimisation in manufacturing systems with a continuous production schedules12 

such as the Safran Landing Systems manufacturing system. 

 Investigate whether the design of manufacturing systems can be automated.  

1.1.3 Research Contributions 
 Understanding around supervisory control of manufacturing systems, the different approaches 

for doing so. 

 Establishment of how the system theory corresponds to concepts in neighbouring fields; 

Cognitive Science, Neuroscience, AI, Computer Science, Systems Engineering, Constructive 

Mathematics, Operations Research and Optimisation. 

 Extension and application of Petri Nets. Although Petri Nets have been around for some time, 

they offer a fast, simple and powerful modelling approach via strong software engineering and 

programming skills that covers many of the research aims. 

 Optimisation fell into two aspects; the ability to search space efficiently (based on the 

dynamically constrained search space) via sampling with well-designed programs and in the 

                                                      
9 This is addressed in Chapter 7, as it can be used to search spaces of Discrete-Event Systems. 
10 This leans the fact that Petri Nets are a model of computation themselves which ultimately leads to their high 
performance and lightweight nature.  
11 It works with specific optimisation algorithms in class of Metaheuristics; and will also be acceptable to 
Reinforcement Learning (RL) type optimisation which requires sampling and full construction of solutions 
before evaluation. The issue with pure-RL (model-free) is that it is sample-inefficient, whereas the approach 
here is a model-based approach which places it directly within planning settings.  
12 Schedules that match the demands of the supply chain whilst displaying optimal behaviour in other aspects.  
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second case; parallelisation and optimisation via metaheuristic approaches. There is also 

significant scope for placing the model within a hybrid architecture with a ML function and/or 

other inference system types. 

 Different scheduling problem identified and attempts towards developing theory for solving it 

using DES. In Chapter 6 is a different scheduling problem other than “makespan minimisation”. 

Here, the goal state is extended over an interval and dynamically relaxed to give a 2-

dimensional structure that manages the reward signal for the respective event.  

1.1.4 Publications  
1.1.4.1 Unpublished 

 T.J.Helliwell. Fundamentals of Cyber-Physical Manufacturing Systems (DEC-2016): 
A review paper covering many of the paradigms and concepts relating to Industrie 4.0 and 
Cyber-Physical Systems. 

 T.J.Helliwell. Cyber-Physical Manufacturing Systems in Practice (JUNE-2017): 
A further review paper with particular emphasis on application, implementation and 
Information Technology issues. 

 T.J.Helliwell. Towards Adaptive Control of Machining Shops (NOV-2017): 
An initial look at the theories behind supervisory control in manufacturing systems under 
changing settings. 

1.1.4.2 Published 
 T.J.Helliwell., B.Morgan., M.Mahfouf. Searching & Generating Discrete-Event Systems. 

(2021). 18th International Conference on Informatics in Control, Automation and Robotics 
(ICINCO), pp 203-210, DOI: 10.5220/0010584302030210. 

 T.J.Helliwell., B.Morgan., A.Vincent., G.Forgeoux., M.Mahfouf. Reconfigurable 
Scheduling as a Discrete-Event Process: Monte Carlo Tree Search in Industrial 
Manufacturing. (2021). 2nd International Conference on Innovative Intelligent Industrial 
Production and Logistics (IN4PL), pp 151-162, DOI: 10.5220/0010711600003062. 

1.1.4.3 Planned  
1. Hybrid Petri Nets for Synthetic Data Generation 

2. A new EDA algorithm for searching probabilistic Discrete-Event Processes 

3. Scheduling machines in satisfaction over-time problems  

4. Self-Supervised Learning in Manufacturing System Supervisory Controllers  

5. Discrete-Event Trajectory Mutation  
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1.2 Contextual Enquiry: Industrial Digitalisation 
 The Made Smarter UK (MSUK) Commission’s publication ‘Made Smarter Review’[1] 

discussed some of the expectations of industrial digitalisation;- raising UK productivity and 

international competitiveness; creation of new, higher-paid, higher-skilled jobs which add value to 

society and positively offset the displacement of poor productivity and poorly paid jobs; strengthening 

UK supply chains and creating new value streams; addressing regional economic disparities; the 

increase of exports through competitiveness; development of a technology market which serves the UK 

industry and attracting foreign direct investment; improvement in resource efficiency of the UK’s 

industrial base, greater resilience to global resource supply disruptions, reduction in environmental 

impact, greater manufacturing efficiency and optimisation. This pattern of optimism repeatedly emerges 

from almost all sources, including management consulting companies; private research directed the 

MSUK Commission undertaken by Accenture, Boston Consulting Group and internal working groups 

suggest; an increase in manufacturing sector growth between 1.5% and 3% per year, a net gain of UK 

jobs of 175,000 across the economy, a reduction in CO2 emissions by 4.5% and an increase in industrial 

productivity by 25% by 2025. 

Indeed the same positive effects are expected by many governments; Made in China 2025, 

America Makes, Productivity 4.0 are just a handful of examples outside of the primarily EU-based 

Industrie 4.0. From an intelligent systems point of view, there have been a number of periods during 

the past 50 years where high expectations were held. Unfortunately, each time this happened, the 

realities did not meet these expectations which were inflated by industry and to a lesser extent, 

academia. These disillusionment events are now called AI winters. It is argued that this time it is 

different from a technology point of view, with the extensive development of sensor technologies, 
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computation and communication (i.e. a combination of distributed systems, computing and CPS). These 

will provide the substrate upon which intelligent systems apply themselves to the physical world. 

However, regardless of potential, it must still be approached from an application-specific, systematic, 

progressive programme of work where the most commercially valuable and ‘low-hanging fruit’ are 

prioritised.  

 The Gartner Hype Cycle of Emerging Technologies, 201813 shows that the ‘Digital Twin’ 

paradigm [which is a lower-maturity level CPS is reaching peak hype, and ‘IOT Platforms’ is dropping 

off. CPS in the industrial or enterprise context, sometimes called the IIoT differ substantially from the 

consumer counterpart IoT, not least because in some applications in highly regulated industries, safety 

and compliance matters a great deal. Further, the risks and costs in making these changes, including 

implementing systems and the potential of these systems making errors or changes failing are high. 

Testing implementations is both expensive and disruptive, again reiterating the value of using 

simulations - and for industry, possibly justification for building new “I4” factories from the ground up. 

As shown on Fig.1:1, Gartner believes that both paradigms require about 5-10 years until 

maturity. Research supports this - there has not been enough time for manufacturers to get ‘connected’ 

and software offerings have not reached the ‘platform’ status that we see in other technologies, such as 

the mobile application development community. Their success is based on allowing smaller companies 

to produce excellent software by removing their marketing and distribution burden; and therefore only 

                                                      
13 See: https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-
technologies-2018/ 

Figure 1:1: Gartner Hype Cycle of Emerging Technology, 20182 
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the best and most popular applications succeed. They are also using mostly open-source software 

languages, frameworks and performant IDEs. There are a few companies who are attempting to 

establish “platforms”14, for many customers these may be seen as expensive and closed; locking 

customers into a particular company. User interface design today in many technologies is excellent; 

they are intuitive, clear and easy to understand, meaning that DSS. Areas of intelligent systems, such as 

machine learning are steadily integrating with IOT Platforms and CPS and have significant potential. 

By 2021, the Gartner Hype Cycle of Emerging Technology15 (in Fig.1:2) shows few references 

to the CPS paradigm itself, but a far more developed conception of the supporting infrastructure around 

it, particularly in regards to reconfigurability and flexibility of interacting systems. Data aspects include 

the Data Fabric16, Active Metadata Management, the networking and connectivity aspects of Industry 

Clouds17, Named Data Networking18, Composable Networks or Compostable Infrastructure19 and 

finally the applications, including Composable Applications and Self-Integrating Applications. 

                                                      
14Siemens Mindsphere, PTC ThingWorx & GE Predix are examples that have attempted to focus on industrials. 
15 See: https://www.gartner.com/smarterwithgartner/3-themes-surface-in-the-2021-hype-cycle-for-emerging-
technologies 
16 Data Fabic is the concept of a more flexible collection of data warehouses, rather than siloed or static. 
17 These are cloud platforms that are focused toward specific industries. 
18 “Named Data Networking (NDN) is the concept of giving topology to computing device networks by naming 
data rather than the existing approach of IP that names data containers. 
19 Composable Networks/Infrastructure is the concept of viewing compute, storage, and network devices as 
resources that are provisioned dynamically according to tasks to achieve optimum performance. This has clear 
correspondence to the scheduling problem considered in the remainder of this thesis. 

Figure 1:2: Gartner Hype Cycle of Emerging Technology, 20213 
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1.3 Contextual Enquiry: Aerospace Industry 
 The UK’s aerospace sector is the largest in Europe and second only to the USA.  The global 

market opportunity over the next 20 years is $5,700 trillion. In 2016, the UK’s Aerospace, Defence, 

Security and Space (ADSS) sectors contribution to the UK was £72 billion in turnover, £37 billion in 

exports and 373,000 direct employment[2]. This was followed in the next year [2017] by £74 billion in 

turnover, £42 billion in exports and 380,000 in employment.[3] By 2019, the turnover has reached £87.6 

billion, with £53.7 billion in exports and 402,000 in employment.[4] 

 The aerospace sector specifically provided £32 billion in turnover (44% of the ADSS group as 

a whole) and £28 billion (76% of the ADSS group as whole) in exports in 2016. This was followed in 

2017 by a turnover of £35 billlion, exports of £30 billion.20 The growth of the industry between 2012 

and 2017 is 39% and nearly two thirds of the UK Aerospace accompanies are expecting to grow by 

10% or more in the next year. Of Aerospace, Defence and Space (ADS)21 members, 55% plan to invest 

in research and development, and design / engineering, and 49% investing in production and assembly. 

Linking to the prior discussion regarding digital transformation, 20% of businesses surveyed22 were 

concerned over their ability to access skills in data analytics as increased automation and 

digitalisation.[5] These concerns are certainly justified. 

 The Made Smarter Review suggests that the UK aerospace sector have aspirations for cycle 

time reductions in the region of 25 to 35% and productivity gains across the product lifecycle of 30 to 

50%. Some of the products from the UK aerospace industry include 1000 commercial Airbus wings, 

200,000 single-crystal Rolls-Royce turbine blades per year and, topically, approximately 350 titanium 

landing gears for the next generation of twin-aisle commercial airliner; the Airbus A350XWB. As will 

be discussed in this document, control of the manufacturing system itself can contribute a portion of 

these improvements. 

 Clearly, application-focused research and development projects applying contemporary IT, 

from data acquisition systems through to AI, manufacturing in the aerospace industry is at a disruptive 

intersection of significant macro-trends and is likely to have significant commercial impact. 

  

                                                      
20 Data arising from ADS-commissioned study by Oxford Economics (https://www.oxfordeconomics.com/) to 
assess the turnover, employment and gross value added levels for ADS sectors using data from Office National 
Statistics (ONS), Department for Business, Energy and Industrial Strategy, Ministry of Defence (MOD) and 
others.  
21 The ADS Group is the UK trade organisation which represents the Aerospace, Defence, Security and Space 
sectors. ADS Group Limited, SE1 7SP. www.adsgroup.com. 
22 This was the ADS/ComRes Survey; ComRes interviewed 102 ADS members online between 21/02/2017 and 
17/04/2017. 
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1.4 Contextual Enquiry: Safran Landing Systems  
Safran Landing Systems (SLS) are a subsidiary of the French Safran Group23, a Tier-1 supplier 

of systems and equipment in the aerospace and defence markets.  Products range from aircraft engines, 

avionics, and electrical systems through to seats and cabin interiors.  Safran Landing Systems, formally 

known as Messier-Bugatti Dowty (MBD), it is a world leader in landing gear systems. The Gloucester 

site is home to the Large Landing Gear (LLG) shopfloor, responsible for production of large-scale 

structural titanium components for landing gear in the Boeing B787 and Airbus A350 civil aircraft 

product families amongst others. This facility is also called ‘2Shop’ or ‘Titanium Shop’. This is a multi-

stage manufacturing system comprised of discrete, high-skill machining operations. This factory is a 

core part of the Safran Landing Systems portfolio and is experiencing continual production ramp up.  

Safran Landing Systems, Gloucester, have initiated the strategic digital transformation of their 

manufacturing facilities in line with Industrie 4.0. Previous work undertaken internally, or that 

supported by HVM Catapult24 collaborations, including the Manufacturing Landing Gear 

(MAXMIAL) project, have provided Safran Landing Systems with a partial vision and roadmap 

towards the implementation of what are known colloquially as ‘smart factory technologies’; including 

to provision of manufacturing process control and techniques to support continuous improvement 

activities. In support of the implementation activities to move towards the Industrie 4.0 is low TRL, 

basic research. Basic research provides a longer term vision and fundamental concepts for step-changes 

in performance. This is an example of such work.  

 At the process level, a significant amount of research and development has been successful in 

improving the process quality, productivity and repeatability. Initiatives towards ‘closed-door 

machining’ have also been implemented. However, the discrete manufacturing environments as a whole 

remain a complete, albeit disjoined, system – any advances in reducing time at the process level can be 

absorbed by inefficient factory flow and high inventories. In dynamic manufacturing environments such 

as those at Safran Landing Systems, production managers are confronted with constantly changing 

scenarios25. These scenarios include different mixtures of part types, specific ‘make-to-order’ due 

dates26 and unpredicted events such as machine breakdown or failure and even make considerations for 

future work regarding staff shift patters and absences.  Lean manufacturing principles and scheduling 

have long since been identified across manufacturing industry but remains largely underutilised in 

aerospace manufacturing environments, where low-volume, high-compliance and high-skill 

                                                      
23 https://www.safran-group.com/ 
24 High Value Manufacturing (HVM) Catapult: https://hvm.catapult.org.uk/ 
25 A ‘scenario’ will be discussed as a combination of model, state and scheduling problem.  
26 In chapter 6, the difficulties and a new approach for meeting these ‘future goal states’ autonomously as this is 
a clear gap in the literature. 
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requirements appear to render lean and scheduling competencies at a lower priority. By studying the 

existing process it is anticipated that this inform approaches towards solving improving it.  

 First, some definitions.  Intelligence, of ‘AI’, has long since been difficult to define but can be 

considered the ability to solve complex problems of varying degrees. Mahfouf[6] defines intelligent 

systems as systems that “try to achieve, through the use of computers, what we associate with 

intelligence - flexible, learning and adaptive activity like we find in the human brain”. Marr[7] mirrors 

this definition; “Artificial intelligence is the study of complex information-processing problems that 

often have their roots in some aspect of biological information-processing. The goal of the subject is to 

identify interesting and solvable information-processing problems, and solve them.” Lenat & 

Feigenbaum[8] define it more abstractly; “Intelligence is the power to rapidly find an adequate solution 

in what appears a priori (to observers) to be an immense search space.”27 Wang[9] presents a balanced 

definition which includes the concept of constrained resources directly, which is an important 

consideration when it comes to building practical ‘intelligent systems’; “Intelligence is the ability for 

an information processing system to adapt to its 

environment with insufficient knowledge and resources.” 

In practice, intelligent systems are a symbiotic combination of soft and hard computing 

paradigms with supporting theory from a number of fields, including philosophy, mathematical 

modelling and control theory. Fundamentally, scheduling can be defined as a ‘decision making process 

for the allocation of resources to tasks over given time periods’ and has attracted researchers from a 

wide range of communities; management science, industrial engineering, OR and AI.  

 For industrial practice in manufacturing systems, scheduling is used to offer a granular set of 

daily manufacturing activities to fulfil value chain requirements by selecting and sequencing tasks to 

satisfy a set of logical constraints. In the case of Safran Landing Systems in Gloucester, a healthy order 

book, a fairly consistent product mixture and the comparatively stable product volume year-on-year 

provides an excellent case study to develop a vision for such systems. The Safran Landing Systems 

LLG has a number of resources which are managed, including the machines, staff, tools/fixturing, 

programs and of course, parts. Machine setup and part loading can be particularly time-consuming, and 

many processes require a specific machine, operators, fixtures and CNC operation program. In addition, 

some machines may require maintenance which must also be incorporated into the schedule. Finally, 

machines are operated by high skill CNC operators on their own fixed shift patterns which are also 

related to specific machines and require integration with any planning, scheduling or control tool. 

Ideally, systems would be adaptive to disruptions and use real-time data [afforded by the ‘CPS layer’] 

                                                      
27 This definition turns out to be exceptionally prescient in the work itself. 
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to continuously update the schedule – ideals closely associated with the Industrie 4.0 paradigm and are 

powerful enablers in the application of intelligent systems. 

 The first step in the program of research is the development of a simulation model for testing 

algorithmic approaches the on-line control of the Safran Landing Systems LLG, with validations from 

the real manufacturing system including back-office functions which manage the upstream and 

downstream supply chain demands. Although the first priority is in the modelling of the factory entities, 

there is also scope for modelling the industrial architecture itself.  In the first instance, the simulation 

must be made an accurate, high-fidelity model in order for results to be valid and therefore predict 

future outcomes based on a given set of decisions in order to evaluate a policy; this is followed by 

techniques to find an optimal or near-optimal policy for control. From an applied-and-industrial 

perspective, the vast corpus on scheduling has been conducted by computer scientists and 

mathematicians who focus on the algorithms and occasionally exploiting problem specific heuristics. 

However, on the applied side, often the focus is on idealised problems that can provide important 

academic contributions but do little to really impact industrial practice. In this thesis, by using 

inspiration from predictive coding in neuroscience, the planning field in AI and robotics, and even the 

basic areas of combinatorial search and optimisation, a predictive, general-purpose, ‘digital twin’ model 

of the Safran Landing Systems facility is developed for addressing scheduling problems.  

A lot of industrially-facing work research conducted today on manufacturing system design 

uses simulation programs. Much of this relies on the researcher changing features of the manufacturing 

system manually and observing its behaviour. The process is repeated until the researcher is satisfied 

with these features and the resulting performance. Whereas previous work on MS scheduling has 

indulged in idealistic scenarios or ‘toy problems’ and excessive impetus upon only optimisation, this 

model will extend focus into the realities of implementation and real industrial practice – providing 

granular decision support to employees in the factory whilst meeting supply-chain deliveries on the one 

hand, and uncertainty, disruptions and errors which arise from the real factory on the other. The first 

step of the strategy in Safran Landing Systems meeting Industrie 4.0 competency requires the 

integration of data-capturing systems supplemented by a programme of ongoing lean and six-sigma 

activities to identify projects of the greatest impact.  
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As shown in Fig.1:3, CPS can be classified by their technological maturity28. This ontology 

may be applied to manufacturing systems to enable a contextual survey of the research landscape. 

Safran Landing Systems are at CPS Level 1 and 2, incrementally developing an informatics layer29 by 

connecting assets through CPS. For example, research institutions are generally operating between CPS 

Level 2 and 3, aggregating and analysing data and delivering information through increasingly exotic 

HMI30. Finally, leading academic research can be divided into work on the one hand which is related to 

manufacturing research directly31, and on the other, relating to generalised - often theoretical - problems 

in the field of intelligent systems32. The former is operating at CPS Level 3 to 5, whilst the challenge of 

the latter – intelligent systems - is applying contemporary work in the application of knowledge to 

industry. It is well known that successful applications of systems engineering requires a synergy of 

general systems intuition and a strong understanding of the objectives and ontologies of discrete 

manufacturing. Although the nearer term outcomes of engaging with lower capability Industrie 4.0 

technology indicates significant industrial impact, the ultimate aim of Industrie 4.0, or ‘the fourth 

industrial revolution’, defines a paradigm of autonomous information systems perceiving, modelling 

                                                      
28 This taxonomy is also used in Autonomous Vehicles, a good example of a Cyber-Physical System. Although 
the best example of a CPS is advanced robotics. 
29 For distributed computing experts or IT professionals, this could be considered an Industrial or Enterprise 
Architecture. 
30 Augmented Reality (AR) is one such technology, but there are many aimed towards improving the 
‘bandwidth’ between humans and machines. 
31 Largely indicative of the researcher(s), conference or journal containing the work itself.  
32 The main areas of research relate to developing narrow-AI designs into model-free learning systems through 
to ambitious approaches to Artificial General Intelligence (AGI). 

Figure 1:3: CPS Levels for Manufacturing Systems 
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and acting upon the physical world [CPS Level 5]. This draws most heavily from the field of intelligent 

systems and relates the most to the higher levels of cyber-physical technological maturity, although the 

foundations remain the same.33 In this project the intention is to aim towards a contribution in a 

hypothetical application of CPS at level 5, on the basis that the data arriving from the informatics layer 

is theoretically available today34 and this work is not well served by academic research, but rather a 

case of deploying contemporary IT systems. Unfortunately this is not the case for many potential cyber-

physical applications in the manufacturing domain, such as advanced machine tools, which require 

complex data acquisition systems to even begin to move along this CPS taxonomy.  

 The immediate application of intelligent systems at lower levels of industrie-4.0-maturity  ̧they 

relate to areas of control engineering, and big data mining through to approaches towards greater 

perception35 aiming to improve the sensory capabilities of systems. This therefore neatly divides the 

two largest areas of research in the application of Industrie 4.0 to manufacturing systems with both a 

sense of scale and specific focus.  At this higher level of scale we are concerned with sets of entities, 

whether it is a set of parts, machines or operators and discrete mathematics are used to model them. 

Because of the complexity of these systems, simulations and computer models become essential. The 

applications of intelligent systems in CPS for the industrial sector concern areas of automation and 

optimisation, as illustrated by this project.  

The focus of this work is that of the high-level view; control of spatio-temporal entities within 

the manufacturing system; placing planning, scheduling and control as the central problem - allocating 

resources to tasks over given time periods whilst optimising operational performance of one or more 

objectives. This manifests as the employment of intelligent systems techniques in the construction of 

schedules or development of control policies for the real-time routing or allocation of parts to machines 

within the factory. Subject to constraint satisfaction, such as meeting supply chain demands, whilst 

optimising the overall manufacturing system performance in areas such as machine and staff utilisation, 

reduction of work-in-progress and the minimisation of disruptions in the manufacturing system. This 

has been identified as both a specific need of Safran Landing Systems, but an important area of research 

in the context of Industrie 4.0 and manufacturing systems as a whole but also aligns with application of 

contemporary academic work in intelligent systems. 

                                                      
33 Namely, pipelines for data or information, architectures that manipulate, transform and use information 
autonomously. 
34 For example, Real-Time Location Systems (RTLS) provide spatio-temporal data regarding staff, parts, etc. 
There are a number of possibilities to capture state from Machine Tools. Back office data regarding supply 
chain requirements can be extracted from Enterprise Resource Planning (ERP) systems. 
35 Most of the recent successes in the AI sub-field of Machine Learning (ML) are related to the development of 
machine or computer perception.  
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1.5 Current Safran Landing Systems Practice & Systems 

The current process for scheduling, routing and planning the sequence of parts processed by 

systems in the Safran Landing Systems manufacturing system is as follows; parts are dispersed 

physically within the factory, from a given set of different part types and various levels of completion. 

Some parts are within machines at a given time, whilst other are stored locally as inventory or WIP. A 

backend office process, provided by an ERP or MRP system36, indicates the due date of a given part 

type – this is the downstream supply chain customer, setting an expectation of when they receive the 

part for assembly which will ultimately arrive at Airbus or Boeing. Finally, a reactive mapping of the 

parts within the local manufacturing system to the supply chain demand is undertaken by a team of 

employees known as planners who use a printed Microsoft Excel spreadsheet with 3-4 week view to 

help monitor and manage this reactive process. In the decision process a great deal of communication37 

takes place between planners and machine operators. ‘Planners’ consider the staff availability, machine 

status and many other parameters into account on an ad-hoc basis and the near-term routing decisions 

(or schedule) is built in flexible, reactive manner.38 This includes tasks such as taking a frequent survey 

of the parts in the system, locating specific parts and regular discussions with machine operators. This 

process repeats daily in an iterative, albeit reactive manner. It is noteworthy and prescient that the 

existing scheduling and control process at Safran Landing Systems, although a reactive one, draws 

heavily from this ability of humans to reason (by considering conflicting or synergistic actions in 

differing contexts) and solve complex problems in uncertain situations, ideals closely associated with 

AI. 

The advantage of this reactive approach is that it is, from an intelligent systems point of view, 

an immediate, fully observable problem and avoids the need to model unexpected uncertainties and 

disturbances arising in future.39 However, expected disturbances, such as staff holidays, tool 

changeovers, and machine maintenance are partially included in the decision process. In contrast, by 

planning of the manufacturing system, uncertainties can build up over time (diverging from the 

deterministic planning horizon over time) causing a prediction to become less and less accurate; and 

discrete disturbances [such as the unpredictable failure of a machine tool, staff illness] can immediately 

render a schedule void. Indeed, as will be discussed shortly, many existing scheduling approaches are 

extremely brittle in the face of complex environments such as ones found in complex discrete 

manufacturing systems as exemplified by Safran Landing Systems. There are approaches to overcoming 

this problem. A small-as-possible delay in constructing a new schedule is a principle objective. This 

                                                      
36 SAP is the software company who provides the ERP system at Safran Landing Systems. 
https://www.sap.com/uk/index.html 
37 Meetings, discussions, negotiation and such, common in these types of organisations.  
38 As a point of interest, it is in this phase one might consider the advantage of the human brain expressing its 
ability to reason about the state of the system, the goal requirements and the combinatorial effects of different 
solutions. 
39 Rather than scalar variables in continuous-time dynamical systems which have an ‘uncertainty range’.  
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ties with computational complexity and search. Other aspects include integrating stochastic behaviour 

in the model (giving rise to possibilities of ‘query-based simulation’, continuously updating the optimal 

schedule in real-time with live data (i.e. using CPS) and using intelligent heuristics or reasoning. 

It is interesting that the Safran Landing Systems case is exceptionally common. De Man and 

Strandhagen[10] recently observed that spreadsheet applications still dominate this market, despite APS 

having been on the market since the 90’s. Fransoo and Wiers[11] found that planners largely neglect 

proposed production sequencing orders from the ERP. This is essentially the ‘pull’ concept – meeting 

demand rather than ‘push’ where parts are simply moved through the manufacturing system40. There is 

evidence to suggest that ERP demand, or suggestions from the ERP, are not adequately utilised. There 

is nuanced disconnection between the state and goals of the manufacturing system and the ERP system; 

so we can argue that in the general case, ERP does not provide enough control or granularity for day-

to-day operations. Industry is likely to point towards the MES as the intermediary between the MS and 

ERP. Unfortunately the reality is that MES is normally used to track, record and document processes 

historically and although it could be used to inform or infer integrated planning and scheduling tasks 

on some level, it is not designed for this problem. 

However, according to Wiers and de Kok[12], so-called APS are capable of modelling the 

problem and have an engine to calculate the consequences of planning actions or changes in the state 

of the modelled system to then demonstrate the plan in a GUI; this could be seen as a basic conception 

of a simulation-optimisation workflow. Broadly, it appears that most systems do not attempt to go 

beyond a static ‘gantt’ representation. Although this is an excellent way of showing concurrent use of 

resources over time, making it especially useful for management, it does not make explicit the 

information that is really useful for machine operators on the shop floor; granular, focused decision 

support on where and what to do based on the events and requirements of the factory in real-time. Case 

studies conducted by Cornelis de Man and Strandhagen (in [10]) were summarised as “While 

production records are transacted in ERP systems, the decision of what and when to produce are for 

each case taken by heuristic and human experience driven decisions that planners process in 

spreadsheets”. This mirrors exactly the same case as Safran Landing Systems and reinforces the 

argument that existing solutions are unlikely to address the problem next-generation software should 

tackle this deficiency.  

In summary, the issues that have been identified by this project thus far align with the general 

case of planning, scheduling and control of manufacturing systems. Pinedo[13], a leading academic in 

                                                      
40 The logic that drives this behaviour is; any processing is better than no processing, and further, if a machine 
or staff isn’t processing, it’s not being utilised. This logic can become detrimental to whole factory performance 
as the distribution of parts in the system starts to become ‘lumpy’ – non-uniform – both because the system is 
inherently unbalanced and exceptionally difficult to manage. 
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the area of classical scheduling specifically41, observes that whilst many companies have made large 

investments in scheduling systems, many are found unused or ignored. Pinedo summarises this 

statement with the following reasons;- 

 Complexity – The real-world environment is far messier than existing systems assume 

 Robustness – The uncertainty arising from the real environment places distrust between the 

users and the existing systems 

 Use/Application – Alignment of system decisions and decisions of those using the systems, i.e. 

supply chain management, factory manager and other systems within the manufacturing 

enterprise (interoperability) 

 Availability & Data Accuracy – Systems are isolated from the live, real-time data, introducing 

inaccuracies in the scheduling model 

 Human Machine Interaction – systems do little to account for interaction with existing 

scheduling, for example, using paper and basic software, e.g. Excel 

Many of these common issues and more are shown in the Safran Landing Systems factory. This 

shows that the simplified manufacturing system in academic work represented as a scheduling problem, 

discussed shortly, assumes too much in industrial implementation. The aim of this work is to investigate 

existing and new approaches to the Safran Landing Systems case and the field at large. The general 

hypothesis is that a well-designed piece of software using live data from the shopfloor, (via the use CPS 

and DS) will allow for fundamentally better decision processes that meet both supply chain 

requirements and increase manufacturing system performance.  

 This project is important because the coordination of manufacturing systems is consistently 

under-valued, despite the potentially a huge impact on almost all the KPI’s important to Safran Landing 

Systems and manufacturing organisations. Secondly, it is an excellent application of simpler data 

arising from the CPS and distributed systems layer42, and could represent one of the first Level 5 CPS 

implementations43.  Thirdly, by considering the manufacturing system top-down, it is far easier to model 

the occurrence of processes and events. This involves understanding the process flow as a series of 

discrete-time events and provides the ability to ingest and automatically label incoming data with pre-

designed data structures. These events are thereby easily related by time or state, allowing for labelled 

                                                      
41 Pinedo seems to have focused on the basic algorithms underlying scheduling, then considerations for 
applications, rather than to investigate autonomous approaches, artificial intelligence and metaheuristics. 
42 This is as opposed to process data, which is high-fidelity, high-volume and requires significant validation 
before it can be considered useful. Minute variations arising from the operator can quickly propagate into the 
processing data. These types of problems are far more manageable in repeatable manufacturing process, 
typically those which are more susceptible to basic automation; mass-manufacturing of cars deploying robotic 
arms. 
43 Projects relating to process data where humans are closely involved with processing are far more challenging. 
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datasets to be created automatically by the “informatics layer” and complex data models to be far more 

reliable and therefore useful.  

In this research, a cyber-physical implementation44  of an intelligent control system in Safran Landing 

Systems is proposed as well as greater emphasis on the practicalities of implementation may have the 

potential to overcome the existing challenges faced by previous work. 

 Global optimisation of factory or factory process utilisation. 

 Promote flexibility and resource sharing45. 

 Increase productivity46 or increase spare time for improvement activities. 

 Improved management of complex product mix. 

 Provide decision support for staff based on data-driven decision processes. 

 Potential for integration with site or broader supply chain, the control and management of 

inventory, storage and delivery. 

 Scheduling outputs prioritise robustness and accuracy over optimisation. E.g, the same schedule 

would be generated even when there are small changes to system inputs, making this an ideal 

problem for intelligent systems approaches. 

 Control outputs must appear to be generated in [near] real-time, for example, when a new part 

enters the factory (i.e. a significant state change). This is possible by particular algorithmic 

techniques and not just reliant on using high-performance distributed computation, cloud 

computing for instance. 

 

 

 

 

 

 

 

 

                                                      
44 A popular buzzword in industry is Digital Twin. This broadly defines CPS of levels 1 through 3 and captures 
the concept of data modelling for industry. 
45 Interestingly, FJS and FMS such as machining shops are one of the most flexible manufacturing systems 
possible – the problem arising from this is that there is a lack of standardisation and a leap in variation and 
uncertainty, partially a result of the combinatorial explosion of choices. Neither are sufficient to cover the 
complexities of the Safran Landing Systems facility, however.  
46 Productivity is best considered ‘parts per unit of time’. 
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1.6 Research Area Literature Review 

The field of scheduling and discrete, distributed control, has many areas of application within 

engineering contexts; control of container terminals, transport systems and of course in manufacturing 

systems. In parallel are problems of more operational context, such as supply chain and project 

management. Although these bodies of research are broadly distinct and separate, the emphasis of the 

latter on business outcomes with a financial dimension is particularly prescient for an industrially-

focused47 project especially when this is largely overlooked by engineering research. Further, as 

Industrie 4.0 is a modern paradigm promising much, it is in constant need for commercial validation 

and case studies which statistically show industrial impact. It is interesting to consider the possibilities 

of including cost modelling into control models. A system that serves as an infamous example of the 

financial impact that intelligent systems approaches can have on practical operations is that of the 

Dynamic Analysis and Replanning Tool (DART) project by DARPA, which was used in the US Desert 

Shield/Storm campaign in 1990. According to Victor Reis, Director of DARPA at the time, the DART 

scheduling application paid back all of DARPA’s 30 years of investment in AI within months.[14] What 

is also important to note is the sharp distinction between what is known as Autonomous Systems that 

are synonymous with robotics, which concerns individual systems and that of autonomous systems that 

are concerned with distributed, multi-agent types which address coordination, self-organisation which 

has close analogies with control of manufacturing systems and scheduling. The principle commonality 

is the need to plan or deliberate in manner that ‘covers’ all the possibilities that are anticipated by that 

system. The main aspects are; the ability to represent a plan in a structure that may be placed at the top 

of a control hierarchy so as to be interpreted by lower-level subsystems or sub-processes (with differing 

resolutions of time), the generation of said plans at a rate deemed acceptable by the application and the 

rest of the system. Once these are covered, the issue becomes about how this is can be used to generate 

in a ‘searching’ manner and evaluate plans.  

 There are a number of commentaries on the nature of the gap between scheduling theory and 

scheduling practice – broadly this relates to the failure of theory to meet the needs of practical 

environments[15][16].  Fortunately, at the cross section of Industrie 4.0 and some theoretical research 

offerings provide new tools for scheduling to be more applicable to industrial practice. Cowling and 

Johansson’s[17] observations, in 2002, that scheduling models and algorithms are unable to make use of 

real time information is interesting within the context of these challenges and the advent of the CPS 

paradigm. 

                                                      
47 This project is industrially-focused, partially industrially funded, and commercially valuble. However, this is 
still fundamentally academic work. 
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 The research to which this project relates is broadly split into 3 categories; modelling and 

simulation, algorithms and control mechanisms, operations research and optimisation. Clearly these 

relate to one another in specific cases, optimisation of control, for instance, but as areas of research 

towards manufacturing systems they are remarkably distinct. There is significant existing research 

which are focused in one area in particular, and others which straddle these different areas. In this 

section is a literature review of these different potentials, grouped by technique rather than 

chronologically. 

 Modelling and evaluating manufacturing systems dynamically is a challenging area because of 

the complex, concurrent, discrete and highly non-linear behaviour makes it difficult to predict. Lotfi 

Zadeh, the originator of Fuzzy Logic, would likely consider the management of a factory a humanistic 

system, or at least of sufficient complexity to be comparable to humanistic systems and thus is subject 

to what Zadeh would call the principle of incompatibility[18]; ‘as the complexity of the system increases, 

the ability to make precise and yet significant statements about its behaviour diminishes until a threshold 

is reached beyond which precision and significance (or relevance) become almost mutually exclusive 

characteristics’. This once again reiterates and reinforces the practice of having human planners to 

control the factory reactively. 

Chan et al[19] outlined a methodology for the study of shop-floor control with respect to routing 

flexibility, sequencing and dispatching rules, emphasising that as a systems flexibility increases, so does 

the importance of optimal decision making. Real-world manufacturing systems are exceptionally 

flexible, particularly the Safran Landing Systems system, where many of the parallel CNC machines 

have general machining capabilities. For Safran Landing Systems, they require the capability to 

manufacture many variations of structural landing gear components from the past and if possible - into 

the future. Many manufacturing systems are far more specialised and thus far less flexible and 

theoretically easier to manage.   

 There have been a number of approaches towards the modelling and quantitative analysis of 

manufacturing systems within the broader context of discrete event systems. One approach is Petri Nets, 

conceptualised by Carl Adam Petri in 1962 in his PhD thesis “Communication with Automata” in 1962. 

Petri Nets (PN) is particularly suitable for the modelling of systems characterised by concurrency, 

parallelism, conflicts, causal dependency and synchronisation. Formally, a PN is a directed bipartite 

graph with two types of node; places and transitions where the nodes are connected via directed edges.  

Stochastic Petri Nets (SPNs) and Generalised Stochastic Petri Nets (GSPNs) are extensions which aim 

to model random behaviour, whilst Timed Petri Nets (TPNs) extend PN to include time representations 

such as time delays or durations to be associated with transitions, places and arcs. This enables TPN to 

become applicable in scheduling problems. In environments where machines can undertake different 
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jobs, the existing elementary token of Petri Nets is extended in Coloured Petri Nets (CPNs) by adding 

attributes known as colours to tokens; thereby rendering an object token. CPN extend PN in a 

programming context by defining data types as colour sets and the manipulation of colours, i.e. data 

values. These are also called Object Petri Nets (OPN).48 These can be combined to form PN’s of types 

such as Timed Coloured Petri Nets (TCPNs).  This formalism provides sufficient modelling power to 

specify key characteristics and information flows required in the control of complex manufacturing 

systems such as in the Safran Landing Systems case study. It also has the capabilities to design 

distributed cyber-physical process monitoring systems. The model and simulation developed for this 

project is a generalised PN, featuring all of these variants.  

PN have seen a steady rise in the use of formal modelling techniques such as TCPNs and TA. 

Tuncel and Bayhan[20] conducted a study of the application of Petri Nets in production scheduling and 

make two observations regarding the advantages of a Petri Net model in production scheduling 

problems; accurate descriptions of the dynamic behaviour and an useful interface for control logic of 

the systems. Tuncel and Bayhan classify PN applications to production scheduling into four categories;  

a) PN based simulations with heuristics dispatching rules for scheduling and control. 

b) Generative scheduling approaches which employ PN via modelling the scheduling process 

itself as a firing sequence of the transitions through the reachability graph/state space; e.g using 

A* algorithm or beam search. 

c) Structuring the problem as a PN in such a way that conventional mathematical optimisations 

are valid. 

d) Using a PN model as the basis for a meta-heuristic search approach that simultaneously finds 

near-optimal resource allocation and an event-driven schedule in terms of transition firing 

sequences. 

In a), it is suggesting the use of a set of dispatching rules that can be simulated to find a 

production schedule. In b), it discusses the use of classical planning and combinatorial search 

algorithms. Although both A* and beam search maintain a game tree of paths from the root “node” or 

state, it would require a PN with a map of weights and/or local costs that relate to the admissible 

neighbouring transitions and states. In the case of makespan scheduling, the evaluation can be made 

only once a complete solution is constructed by reaching the goal state or the maximum episode length. 

It is unclear what is meant by the remark in c). In d), a more flexible approach is suggested that will 

allow for both the exploratory construction of possible transition sequences. This approach is the 

                                                      
48 The divisions and classes of Petri Net are confusing and limiting, it would seem that the main strength of Petri 
Nets are the way that they represent computations, data transformation and dynamic phenomena in an original 
and highly flexible way. The impetus is placed on the user to use their modelling skills.  
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primary theory behind the work, and with variations, it is possible to use similar strategies to those in 

b). 

 The principle advantage in PN is the concise definition of discrete state-space, the capturing of 

precedence relations and interactions. They can also model deadlocks, conflicts, buffer-or-queue sizes 

and multiple resource constraints. In addition to their capabilities in validating and verifying behaviour 

of DES, they are also more flexible in combinations with operations from OR and intelligent systems 

approaches. As shown later, this project has conceived similar ideas and approach. It is expected that 

the state space of the Safran Landing Systems facility (like most real problems) is sufficiently large and 

stochastic to justify an approximation function to define a generalised policy.49 

 Baruwa et al[21] combined TCPN and a reachability graph heuristic search. They found by 

leveraging the common data structure of many HS methods, many algorithms can be implemented. 

Baruwa suggests extensions of the work to include metaheuristic approaches [discussed later] and the 

merits of using simulation for accurate system representation, data collection and transition (action) 

selection; and optimisation and multi-objective optimisation workflows (including those from lean 

manufacturing, such as the minimisation of non-value adding activities), supporting the overarching 

intentions of this project.  

What is interesting is that over the years, whilst PNs have the potential to model complex 

manufacturing systems (and thus their scheduling process), for the most part they are used on far simpler 

sub-systems – for instance, a work-cell with robot arms. With applications such as these, it can be seen 

why the PN is a concurrent model of computation, extending that of FSM. However, viewing PN’s 

instead as a programming methodology or framework, far more complexity can be captured and it 

becomes analogous to simulation. Simulation, or more specifically, DESS, can then bridge the 

modelling conventions of PN into software50. In this way, while the same fundamental principles apply, 

far more complex systems can be modelled by virtue that data relating the transitions, processes and 

events are managed by the software platform itself.  This also opens possibilities into DP approaches – 

however if the intention is use as much information as possible about the environment with sufficient 

depth of search, the state space becomes inherently large, so existing DP techniques are insufficient in 

solving these problems. In this case approximate methods for DP such as MCTS allows sample 

trajectories from the state-space can be captured. This alludes to the initial steps of the research. 

                                                      
49 In this thesis there is particular interest in how Petri Nets can be used synergistically with traditional Markov 
Decision Processes (MDP) and contemporary Monte Carlo (MC) to form a type of planning process. Use of 
function approximators is covered in Chapter 7: Further Work. They are recommended only in certain 
applications. 
50 In Chapter 5, it goes on to describe how it can manage constraints dynamically in so called ‘constraint 
programming’. 
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 Scheduling is a widely studied problem in manufacturing or production control settings and is 

a classically NP-Hard problem51. Many different approaches have been proposed in obtaining efficient 

solutions which satisfy a set of constraints which vary problem to problem. There are two main 

approaches to the scheduling problem; the dynamic case and the static case. Existing work undertaken 

in studying the Safran Landing Systems system combined with the vision of using CPS in providing 

live data, emphasis is placed on the main structure of the system being a dynamic or online scheduling 

- what might be traditionally considered as simply control. Static analysis is envisaged to provide a 

supporting role in preliminary optimisation studies of the Safran Landing Systems system. Dynamic 

manufacturing systems, such as those exemplified by Safran Landing Systems, are characterised by 

flexibility, uncertainty and disturbances exhibited in unexpected events such as machine breakdown, 

staff illness, variations in part types, process variations etc. Further, even in episodes without 

disturbances, uncertainties cause plans to diverge as time extends; processing times, transportation 

times, and staff behaviours in the control of machinery are exceptionally difficult to predict. Thus, we 

can generally consider the dynamic scheduling problem as one which encapsulates the real-world Safran 

Landing Systems scenario. By compiling a number of resources, including work conducted with Safran 

Landing Systems as part of the research, events can be classified into two broad categories;- 

 Resource related issues – machine unavailability (deterministic; planned maintenance, 

stochastic; breakdowns), operator absence (deterministic; holidays or training – stochastic; 

illness, for example), tool changes (deterministic; time-based tool monitoring, stochastic; tool 

failure) and part related issues (deterministic; lack of inventory, stochastic; defective material, 

non-compliance to specification). 

 Process related – uncertainty in regards to processing, setup, transportation time, variations in 

due/delivery dates, variation in available jobs etc. 

 Ouelhadj and Petrovic[22] classified dynamic scheduling in the following categories; completely 

reactive, predictive –reactive and pro-active scheduling. Traditional dispatching rules are the first group 

– the scheduling decisions occur in real time, triggered akin to production rules in expert systems, where 

once an element in the set of states is satisfied, a rule is ‘fired’. This is a traditionally common approach, 

favoured in part because of its simplicity but also because of its online capabilities is the application of 

heuristic dispatching rules which provide live decisions.  In manufacturing system practice, these could 

be considered the routing decisions. The real-time, online capability makes them an appealing 

alternative in dynamic scenarios where uncertainties and disturbances are prolific. The main problem 

with dispatching rules is their inherent localised, myopic view – it is difficult to predict the effects in a 

global, complete system context. This is in contrast to a constructed schedule which takes place a priori 

                                                      
51 NP-Hard is short for the non-polynomial time class of computational complexity. JSS is one of a number of 
canonical combinatorial optimisation problems along with the seminal Travelling Salesman Problem (TSP). 
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(before) the system starts and can be visualised as a Gantt chart over an interval of time called an 

episode. Constructive approaches would need to constantly repair schedules otherwise the new state 

(i.e. a new environment conditions/state) could make the existing constructed schedule inaccurate at 

best and obsolete at worst. A fusion of predictive and reactive builds on this principle of repair or 

rescheduling, in which schedules are revised in response to real-time events. This is the second type, 

predictive-reactive scheduling. The main focus of these approaches is the development of what are 

considered robust schedules, which seek to minimise the effects of disruption on the performance 

measure. An example of a mechanism which achieves this is one in which system performance and 

deviation from the initial predictive schedule is considered simultaneously. The final type is that of 

robust pro-active scheduling, which attempt to integrate risk into predictive models, essentially pre-

empting the effects of uncertainty and disruptions. This approach lends itself to using a Monte Carlo 

(MC) simulation, where processing times can be drawn from a distribution. An interesting avenue of 

work is to consider approaches for management of major disruptions such as machine breakdown. 

Because significant disturbances such as machine breakdown are discrete, one’s initial thoughts around 

are around increasing the speed of a new search. 

To assist in understanding the terminology used in constructive scheduling, it is best to mentally 

visualise as Gantt chart that shows as ‘possible’ schedule. Most constructive scheduling solutions are 

based on optimisation models using mathematical programming. Safran Landing Systems facility 

cannot be modelled as a Flexible Job-Shop Problem (FJSP) or Flexible Job-Shop Scheduling Problem 

(FJSSP), as this does not adequately capture the full complexity of the real system. However, to indicate 

the difficulties of this system, FJSP problems are complex, NP-Hard combinatorial optimisation 

problems which are very difficult to solve using conventional methods and have been the subject of 

numerous research efforts in neighbourhood search, heuristic dispatching methods and a selection of 

AI methods. The main issue with mathematical programming approaches is the difficulty in 

mathematically modelling the practical constraints of real manufacturing systems such as those in the 

Safran Landing Systems case study. The bulk of work in this area often relies on significant assumptions 

and simplifications often rendering solutions to be far removed from potential industrial 

implementation.  

 The principle objective of the scheduling field is the minimisation of what is known as 

makespan, the maximum completion time of the set of all job completion times, although some extend 

this with other optimisation parameters.  This in many ways is equivalent to ‘productivity’ or 

‘efficiency’. Visually, it is the nesting of intervals, where in x are rows that are categories of resource 

and y is continuous time. Scheduling has nomenclature and notation closely related to discrete 

mathematics and tries to organise problems into specific categories. The main point regarding makespan 

in the context of some aerospace supply chains is that the volume and delivery distributions of aerospace 
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do not lend themselves to the minimisation of makespan in the conventional sense. Makespan 

minimisation relates most to batch production; in these problems, the ‘batch’ of work is represented as 

a set of jobs J (alternatively tasks) and thus the minimisation is production of the whole batch in the 

shortest amount of time. Machined aerospace parts could be in production for up to 40 years and 

deliveries at Safran Landing Systems LLG range at varying rates from 8 per week to 1 per year and 

there is almost always a mixture of different jobs with specific delivery dates. That said, makespan 

remains indicator of high productivity and high machine utilisation – unfortunately for this project it is 

not possible to reformulate the algorithms which optimise makespan to the Safran Landing Systems 

problem without the significant development that is covered in chapter 6.  

 A Job-Shop Problem (JSP)  or Job-Shop Scheduling Problem (JSSP) is a reduction of the FJSP 

(and conversely, FJSP a generalisation of JSP), and for most scenarios remains a well-known and 

traditional NP-Hard problem[23], as each ‘job’ (i.e. part operation) has a different path through the 

system, significantly increasing the computational complexity. Because of the potential value of the 

FJSP problem in industry to model manufacturing systems which have machine tools with overlapping 

capabilities, studies of the FJSP by some accounts outnumbers that of the JSP. It also attracts some of 

the most contemporary algorithmic approaches from soft and hard computing paradigms in a similar 

fashion to the classical travelling salesman problem. In some cases, it attracts work from theoretical 

computer science research looking to draw comparisons between the algorithm performances on 

specific problems. As we find in the Safran Landing Systems factory, FJSP extends JSP by addition of 

a routing sub-problem whereby each operation is assigned to a machine from a set of n machines, 

typically the same machine or similar in a ‘bank’, ‘stage’ or ‘in-parallel’. 

 The following section discusses previous work which do not formally use a PN model, but 

instead extend traditional constructive scheduling algorithm formalisms and notation with 

metaheuristics. Brucker and Schlie[24] were one of the first to address the FJSP problem, although only 

considering a scenario with two jobs. Kapalanoglu[25] specifies an Object-Oriented Programming 

(OOP) approach to solving a multi-objective  FJSP using simulated annealing. There are a significant 

number of papers which explore the application of various biologically-inspired metaheuristics, 

including more contemporary approaches such as Ant Colony Optimisation (ACO) through to more 

traditional, such as Genetic Algorithms (GA) and Evolutionary Computing (EC). Zhang and Wong[26]  

use ACO in a similar problem as the FJSP known as Integrated Process Planning and Scheduling 

(IPPS).  IPPS attempts to bring together process planning and scheduling tasks under one problem-

solution set, rather than seeing the two tasks as sequential processes in manufacturing functions. A 

purely metaheuristic optimisation approach (whether bio-inspired or otherwise) would need to build a 

solution at the length of the episode length, with each element either an action or NULL value. This 

would be an extremely large state space in the case of commercial problems; most solutions will not be 
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feasible, few will achieve the goal and fewer still will be near-optimal. It is unclear that the authors of 

these were aware of the possibility of using generative model to elicit feasible elements of the solution 

by using the mapping from state to transition; thereby reducing the search spaced dramatically by 

propagating logical constraints at the programmatic cost of running a child process. It is possible to 

make a direct comparison between the approaches by developing a set of experiments that would 

compare the best solution over time from each approach. More remarks on the difference between a 

hidden model and a fully observable model are made in Chapter 5. Chan et al use Artificial Immune 

System (AIS) and a Fuzzy Logic Controller (FLC) on the IPPS problem, in which case the FLC has a 

partial model of the relations between state and transition sets. Palacios et al[27] solve the FJSP using a 

hybrid of an evolutionary and local search method, with uncertain task durations modelled as fuzzy 

numbers. Wen et al[28] also use a fuzzy processing time with a Multi-Objective Genetic Algorithm 

(MOGA). Lei[29] again uses fuzzy processing time in conjunction with a Co-evolutionary GA (CGA). 

Sun et al[30] use the Bayesian Optimisation Algorithm (BOA) to increase the robustness of an 

evolutionary algorithm. Bekker et al[31] use a greedy heuristic approach to iteratively insert operations. 

Zhu et al[32] use PSO for minimising the makespan in the IPPS problem. Zhao et al[33] use PSO and a 

Fuzzy Inference System (FIS) to select machines based on their reliability rather than random selection.  

 There is also significant work in Flexible Manufacturing System Problem (FMSP) or Flexible 

Manufacturing System Scheduling Problem (FMSSP) is a specialisation of the JSSP problem. In 

industry and partly in academia, a Flexible Manufacturing System (FMS) is a physical embodiment of 

a manufacturing system; a set of machines and typically a material handling or ‘pallet rack’ system in 

a closed configuration. These types of systems have significantly less uncertainty than the Safran 

Landing Systems system or FJSP in general. However, the research conducted for such systems is 

partially transferable. Prakash et al[34] extend a Simple Genetic Algorithm (SGA) use a Knowledge Based 

Genetic Algorithm (KBGA), through leveraging tacit and implicit expert knowledge and well-

documented application of SGA to the FMS problem. Mousavi et al[35] used GA, PSO and a hybrid GA-

PSO to schedule Automated Guided Vehicles (AGV) in an FMS problem. Shin et al used a Multi-

Objective Symbiotic Evolutionary Algorithm (MOSEA) in a two-level architecture to solve a multi-

objective planning problem. What is consistent across this work is their focus on drawing comparisons 

between algorithmic performance, rather than formulating and solving case studies of MS problems. 

 In light of the live data available to an ‘Industrie 4.0’ system and the needs of the highly flexible 

LLG manufacturing system to meet low to medium demands for Safran Landing Systems, on-line 

approaches of scheduling are of prime interest. Inference engines, policies (an Artificial Neural Network 

is one such example of a so-called ‘black-box’ approximation function used to represent a value 

function), machine reasoning, production rules or expert rules in the form of Expert Systems or FIS are 

some of the implementations available. As opposed to scheduling, this approach breaks down the 
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problem into a sequence of state-action pairs, and as such, is better considered a discrete control 

problem. The general idea is to create agency via use of a knowledgebase – which is a functional 

mapping from a given state or scenario received as a percept to control actions. Over a given time 

period, an episode, this so-called policy results in what could be considered outwardly as a simulation-

based iterative, greedy approach to scheduling. Work of this type is less popular than the constructive 

approaches but is no means completely novel in the field of MS. Domingos and Politano[36] approached 

on-line scheduling of FMS using Fuzzy Logic via the use of the production rules of an expert to meet 

several measures of performance. Tsourveloudis[37] used Fuzzy Logic and an Evolutionary Algorithm 

(EA) to tune fuzzy controllers to improve WIP performance in manufacturing systems. Lu and Liu[38] 

use a fuzzy inference approach to identify a dispatching rule based on the current state of the system at 

a decision point. This is an impressively simple and applicable approach to the Safran Landing Systems 

case study.  

 A dispatching rule is a rule used to select a job from a set of jobs awaiting service. In the Safran 

Landing Systems case, and machining systems generally, the job is the operation a given part requires 

and the set of jobs are the set of operations that a given set of machines can complete. Dispatching rules 

can be very simple, for instance, ‘select a job at random’, or ‘select the job with the greatest waiting 

time’. Complex rules could be comprised of dynamic and static variables taken from the current state 

of the system, “if Airbus_OP4 is available, select Y, otherwise X”. As early as 1982, Blackstone et al[39] 

summarised existing research in dispatching rules in job shop problems. In all problem formulations, 

the difficulty of applying dispatching rules in complex manufacturing systems arises from the 

complexity and combinatorial explosion inherent to concurrent and sequential decisions in a dynamic 

system. A dispatching rule can be considered a localised heuristic [though it could be controlled 

centrally, in hierarchical-heterarchical distributed control architecture] based on either logical 

algorithmic process, perhaps in the form of a decision tree, through to linguistic approaches inspired by 

experts on the shopfloor. Dispatching rules are undoubtedly one of the standard approaches to 

controlling manufacturing systems, and can be considered as an implementation of an expert system 

(and its so-called production rules) in the manufacturing domain. In light of its importance, significant 

research has been undertaken in identifying good dispatching rules. The major finding is that there are 

no specific rules for generalised high performance. An immediate observation is that in practice, rules 

must be selected dynamically based on a subset of goals, arranged hierarchically; at the top, a strategy, 

whilst the lower level actions are granular dispatching rules. In some states, for example to meet a 

specific rapidly approaching deadline, emphasis should be placed satisfying that constraint. Further, in 

periods of low delivery requirement, rules which tend towards optimisation should be used, so the 

effectiveness of a given rule depends on the parameters under consideration. Indeed parameters, as 

outlined, can be dynamically selected based on the current state of the system and its requirements.  
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 The main problem with dispatching rules is that it is unclear how effective these rules are 

without some form of analysis – in contrast to scheduling approaches which elicit results over a time-

period. However, dynamic simulation of Petri Nets - Discrete Event System (DES) simulations provide 

a means to observe and capture results to evaluate rule sets. A significant amount of research has been 

undertaken in defining dispatching rules and exploring their performance in practice. Cost functions or 

optimisation functions remain the same as in other approaches to the job shop scheduling/control 

problem. Grabot and Geneste[40] used Fuzzy Logic and simulations to build aggregated dispatching rules 

to obtain a compromise between the satisfaction of several criteria. Jeong and Kim[41] also approached 

unification of dispatching rules and simulation problem in the context of a FMS material handling 

system in 1998. Another approach, less popular than dispatching rules, are sequencing rules. A 

sequencing rule is a sequencing procedure that applies to all jobs of a given set, rather than a dispatching 

procedure that selects a single job to be performed first. 

 This brings us to the concept of polices. Policies are adaptive in the sense that it takes the current 

state as a percept to then use the policy to reason into selection of the best action. The effectiveness of 

policy based approaches is based on three critical elements; the effective characterisation of 

manufacturing system state, the completeness of the set of rules (or actions) covered by the policy and 

the value estimation mapping of state-action pairs, and this inference is typically black-box for more 

advanced methods. It is clear why random actions in sample trajectories, used in Reinforcement 

Learning (RL) for exploration in simulated environments can be used to solve episodic problems with 

large state-spaces – the ‘curse of dimensionality’ dictates that the dynamic behaviour is simply too 

complex to achieve analytically. 

 What is interesting in the literature review is that the distribution of work over time in 

dispatching rules and policies approaches has largely been dismissed by recent research for 

manufacturing system control, and instead emphasis is placed on using constructive heuristics to build 

schedules as discussed previously. This is because it has been difficult to model complex manufacturing 

system prior to the ability to define simulated environments and assess the sequential application of 

dispatching rules through a trajectory in state-space. Sample trajectories through the simulated dynamic 

state-space allow for the evaluation of a given policy or dispatching rule. It is unlikely that the early 

work in policies and dispatching rules had this capability. By using a simulation, we can not only 

evaluate and rank policies, but also model the manufacturing system dynamically so the descriptors for 

manufacturing system state are given in parallel. Further, tied to a Monte Carlo (MC) experiment, 

simulation is theoretically possible to not only evaluate a policy but to optimise it. RL[42] or Neuro-

Dynamic Programming (NDP)[43] techniques are those which seek to define optimal or near-optimal 

policies for state-space problem-solving tasks in model-based or model–free environments. For a given 

state, the policy specifies which action should be performed using an abstraction of the action-state 



  T.J.Helliwell 

28 
 

values, known as ‘Q-values’. For simpler problems, a table can be used, but as the state-space becomes 

larger and more stochastic, approximate value functions are used. The ‘learning’ process uses a reward 

signal received after an action is taken. The overarching goal of that learning system is to find a policy 

that maximises the expected reward over future actions. Policies, i.e. the mapping of state-action pairs, 

are often represented in contemporary forms of Artificial Neural Network (ANN). RL is an 

exceptionally popular field as of 2018 via the use of simulations of games or environments to train 

agents – necessary for the amount of data used to train models within the policy. 

There are very few examples of RL in applications of manufacturing systems or scheduling, 

despite the fact it appears to lend itself very well to this problem. Zhang and Dietterich in 1995[44] 

applied RL to NASA space shuttle payload processing tasks and seems to be one of the first and very 

few works to have investigated RL approaches to scheduling problems. This work was related to the 

rescheduling or schedule-repair subset and used Temporal Difference (TD) algorithm. Sutton and Barto 

were interested in where these applications were going in the 1998 first edition publication of 

‘Reinforcement Learning: An Introduction’[45] but the second edition of 2018[42] makes no reference to 

problems of this type.  

 To be problem-specific, the on-line, dynamic, or real-time case of job shop scheduling is 

essentially control and draws heavily from concepts of building centralised control knowledgebases 

whether it is a black box approach (e.g. ANN) or white-box (dispatching rules, FIS, etc). In some areas 

of research this is defined as the Dynamic Job Shop Scheduling Problem (DJSSP) or Dynamic Flexible 

Job Shop Scheduling Problem (DFJSSP). Some researchers have moved from a centralised control 

structure such as ones discussed and instead attempt to decentralise the decision-making processes and 

information. Within the context of Industrie 4.0 these could be considered hierarchical, highly 

networked, Level 5 CPS systems, aiming to increase fault-tolerance, scalability, flexibility, adaptability 

and reactivity in the control of FMS. The main issue with what could be considered a multi-agent system 

of distributed control is that the high degree of autonomy, localised goals and local data give each agent 

a ‘myopic’ view of the entire system. Another way of viewing this is breaking the manufacturing system 

into subsets and optimising these sub systems in the expectation that the overall system is optimised. 

Zambrano et al[46] use simulation and optimisation to improve this myopic behaviour inherent to 

decentralised systems. 
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1.7 Chapter Summary 

 Scheduling problems are formally differentiated by their modelling and subsequent complexity. 

Combinatorial effects, such as precedence constraints and the sheer number of concurrent and 

sequential decisions in the assignment of tasks to resources leads the great majority of scheduling 

problems to be NP-Hard – the space of potential solutions is so great that finding a good solution is 

non-trivial and optimal solutions are intractable.  

 One of the main distinctions or shortfalls in the majority of existing work is their context that 

scheduling is, in some way, an episodic process – done periodically, at the start of a finite time period 

to optimise the performance over that specific time period. This leads to two issues; the planning time 

periods are long52 and therefore increase the problem space into high computational complexity or 

intractability and second, the static schedule does little to address any variations that may occur with 

that ‘frame’ or ‘episode’ of the schedule - solutions are brittle in the face of uncertainties or 

disturbances. Disturbances in this context could be machine breakdowns, operator illness/ holidays, etc. 

In which case, the concern should then be addressing ‘speed’, since these disturbances should be 

expected. Uncertainties, meanwhile, could be inaccurate processing times, insufficient modelling of 

attributes such as transportation tasks etc. This has some more obvious solutions through uncertainty 

quantification methods. 

An issue with a pure-inference system approach is that it cannot be guaranteed that an inference 

system can be easily extended when the system itself changes, even if it can cover the existing state 

space (i.e. generalise), which in itself, considering the number and types of possible disturbances and 

wide range of possible constraints on the generated schedule, is a significant challenge. This 

immediately brings forth ideas in planning and autonomous systems, where ‘configuration space’ 

becomes represented in internal models that are then manipulated.  

Further issues that are apparent in applying existing approaches to the Safran Landing Systems 

facility is in the fundamental assumptions in problem definitions. In literature reviews, there are few 

references to scheduling problems with parts distributed between their processes.  Most proceed to 

assume the system is empty of entities, and all entities concerned have had no processing at all. The 

reality is that some manufacturing systems, including Safran Landing Systems facility, is likely to 

always have partially processed parts at various stages of completion, some as WIP whilst others are 

actually within processing (i.e. inside machines) already. Secondly, only a handful of parts need to leave 

the system weekly in order to satisfy the downstream supply network, in this case, downstream supply 

chain assembly. This gives impetus towards seeing the Safran Landing Systems case a continuous, real-

                                                      
52 In the intelligent system field this is called the episode. 



  T.J.Helliwell 

30 
 

time control problem broken into episodes in the form of a ‘rolling window’. These are different 

modelling and optimisation challenges, and from a pragmatic point of view significantly reduce the 

problem’s working state-space and goal states. 

The problem is hence to minimise the makespan53  of all these entities so they have all passed 

through all their processes in the shortest possible time and, as a by-product, the utilisation of the 

manufacturing system is maximised. This assumption is valid for many manufacturing systems as they 

are based on completing batches of production - influencing scheduling as an academic discipline. This 

approach does not however lend itself to the continuous production over long time periods in the Safran 

Landing Systems system. The ‘makespan minimisation’ approach limits the applicability of scheduling 

to ‘batch production’ cases, whereas many systems, including Safran Landing Systems, have a 

‘satisfaction over time’ sort of objective, where the challenge is meet flexible goal states defined 

through time intervals. This has not been seen directly in the literature.  

 Finally, there is a gap in the research area for a simple theoretical framework that can be 

extended and manipulated for different problems and different scheduling settings; in a word, 

“reconfigurable”. This would encourage industrial or commercial adoption significantly and help 

understand how the scheduling problem stands in relation to nearby fields. In the following chapter, the 

paradigm of ‘Industrie 4.0’ and CPS are explored in the context of manufacturing systems. 

  

                                                      
53 For a given number of tasks or entities n, or jobs j the makespan is the time in which the set n entities or j jobs 
are complete.  
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2.1 Introduction 
2.1.1 Industrie 4.0 & the ‘Smart Factory’ Concept 

Industrie 4.0 forms part of what is considered ‘the second machine age’[1], which outlines the 

technological, societal, and economic transformation as result of increasingly prolific digital 

technologies. The term ‘Industrie 4.0’ was coined at the Hannover fair in 2011 as a collective term for 

technologies and concepts of value chain organization.  Smart production is a dominant component of 

Industrie 4.0 and broadly defines a manufacturing environment whereby factories or machines 

themselves cooperate in an efficiency maximising manner. Additive manufacturing, automation, 

flexible manufacturing systems and intelligent factories where machines and products cooperate are 

ideals of Industrie 4.0. The topic is wide as it is deep; the paradigm encapsulates everything from 

machine level processing to global supply networks. The fundamental principles are as follows:- 

1) Connectivity to acquire data 

2) Extraction of value from data 

3) Autonomy 

4) New business models 

 Industrie 4.0 is enabled via the utilisation of Cyber-Physical Systems (CPS). As the name 

suggests, at its most basic and abstract description, it is the blurring of the physical and digital 

boundaries. In addition, Industrie 4.0 aligns with the growth of so-called smart technology.  

2.1.2 Industrie 4.0 for Manufacturing 

‘Manufacturing cannot be considered in isolation any longer: enterprises have to operate in 

dense interaction networks both with their kin and their socio-ecological environment. At the same time, 

enterprises have to continuously consider the split between reality and their reflection on what is going 

on in the world. In other words, enterprises have to rely on a model of their reality, while simultaneously 

and unremittingly adjusting that model itself. As the paper discussed, the key challenges are heavy, 

because they are directly stemming from the generic conflicts between competition and cooperation, 

local autonomy and global behaviour, design and emergence, planning and reactivity, as well as 

uncertainty and abundance of information. Based on the survey of various solution proposals, one can 

conclude that balanced resolutions invariably point towards cooperation and/or responsiveness. It was 

emphasized – and also illustrated through a series of industrial case studies – that production 

engineering research has to integrate results of related disciplines as well as a broad range of 

contemporary information and communication technologies. Conjointly, this enables the adequate 

facilitation of cooperation and responsiveness that are vital in competitive and sustainable 

manufacturing.’[5] 

 In this so-called digital transformation of industry, Industrie 4.0 has many interchangeable 

names, most of which centre around manufacturing aspects. Outward-facing topics are concerned with 
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customer enrichment, whilst inward facing topics address smart factories and the function of the 

business itself. Radziwon et al[6] attempted to clarify the concept of a smart factory and to find a uniform 

definition by surveying literature. Whilst recognising that the term smart factory is popular across 

industrial practice and academia, there are other terms which can often be used interchangeably; 

ubiquitous factory [7], a factory-of-things[8], a real-time factory[9] , cyber-manufacturing[10], e-

manufacturing, smart manufacturing or an intelligent factory of the future. In addition to this, academia 

confusingly defines ‘smart factory’ as a technology, a methodical approach or a paradigm. Managing 

this confusing ecosystem of similar terms is detrimental to output and makes scholarship in this 

fragmented research topic challenging. Further, distinguishing between what is deemed intelligent, 

smart, or ‘industrie 4.0 ready’ continues to depend subjectively upon its application.  According to 

Ricquebourg et al[11], intelligence is beyond turning devices on an off; but to ‘operate semi-

autonomously according to the predefined patterns of user requirements’. In actuality, as discussed here, 

monitoring whether a device (e.g.  machine) is on or off, an object or resource is present or absent, and 

recording these changes in the time domain remotely would represent a huge advantage to 

manufactures. This shows how far the manufacturing industry is lagging behind other sectors and ergo, 

how much there is to gain by engaging with Industrie 4.0.  

 “A Smart Factory is a manufacturing solution that provides such flexible and adaptive 

production processes that will solve problems arising on a production facility with dynamic and rapidly 

changing boundary conditions in a world of increasing complexity. This special solution could on the 

one hand be related to automation, understood as a combination of software, hardware and/or 

mechanics, which should lead to optimization of manufacturing resulting in reduction of unnecessary 

labour and waste of resource. On the other hand, it could be seen in a perspective of collaboration 

between different industrial and nonindustrial partners, where the smartness comes from forming a 

dynamic organization.”[6] 

 

Industrie 4.0, the smart factory and the ‘digital transformation of manufacturing’ is a paradigm, 

a vision of a systematic, optimised and transparent battery of value-adding processes. It is a 

collaborative effort of multiple, competitive and ultimately, collaborative technologies. Finally, there a 

great deal of considerations to take into account for the professional practitioner of Industrie 4.0 and so 

there is need to provide a framework and guidelines on how to approach this cutting edge subject.  

Federal Ministry of Education and Research, Germany (BMBF) defines Industrie 4.0: ‘‘Industry 

is on the threshold of the fourth industrial revolution. Driven by the Internet, the real and virtual worlds 

are growing closer and closer together to form the Internet of Things. Industrial production of the future 

will be characterized by the strong individualization of products under the conditions of highly flexible 

(large series) production, the extensive integration of customers and business partners in business and 
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value-added processes, and the linking of production and high-quality services leading to so-called 

hybrid products”[13] 

 Cochran et al[14] recognised that high volume manufacturing system architecture may be 

different to that of low volume, and that in either case, system architecture must be tuned and used to 

improve performance. The paper goes further to say that “dynamics and uncertainties of the business 

environment, enterprise architecture is not static anymore; the manufacturing system must be evaluated 

and monitored closely to identify variation and disruptions in many areas of the manufacturing system 

to facilitate necessary improvement”, once again reiterating the ideals of Industrie 4.0.  

 The BMBF quote above and comments from Cochran et al highlights that the focus across 

much of the government-backed research is the concept of high volume or mass production, and this 

concept is reinforced by Monostori[15] who describes Industrie 4.0’s key objective as to ‘fulfil individual 

customer needs at the cost of mass production’. Production is normally associated with dedicated 

manufacturing which is mostly concerned with the generation of a series of inexpensive products where 

the demand exceeds supply and therefore may be produced continually or in large batches, typically 

using dedicated equipment in groups, gangs or lines.  The downside of this equipment is an 

uncompromising lack of flexibility and products are not easily modified or changed. This type of system 

cannot manage fluctuations in product demand because the aforementioned equipment has consistent 

cycle times and is therefore not scalable. Production fluctuations are thereby symptomatically managed 

successfully in the supply chain. There is a great deal of expectation in the advantages that Industrie 4.0 

will bring to this sector; a leap in flexibility, reduction of pressure upon supply chain management 

systems and the possibility of customer-customisation. It is hoped this will be achieved whilst still 

enjoying the advantages of dedicated equipment – extremely high efficiencies, high volumes and high 

quality. 

Discrete manufacturing, like dedicated, sees the product goes through a number of processes 

to achieve the ultimate finished product. The manufacturing process is characterised by a series of 

operations or cycles in isolated steps, as opposed to the dynamic flow in dedicated manufacturing. 

Further, in contrast to dedicated, the process machinery is often interchangeable and the product, 

particularly in machining, may frequently move up or down around in the process loop in order to reach 

specification, in so called ‘rework’. These may be understood to be flexible manufacturing systems 

where products are normally manufactured in far smaller volumes, greater variety and demand the use 

of unspecialised machinery such as Computer Numerically Controlled (CNC) machine tools and other 

programmable automation like robotic arms or Coordinate Measuring Machines (CMM).  In the case 

of the machine tool, the machinery is unspecialised as the manufacturer creates generic equipment 

featuring all possible functionality, immediately adding capital waste with the expectation that they will 

produce the majority of customer-desired parts which fit within the machining envelope. It is normally 
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assumed flexible manufacturing systems will produce in any mixture or sequence. This is the potential, 

the ideal situation, yet the reality is that this so-called flexibility in such manufacturing systems 

introduces a vast amount of waste; non-activity or non-value-adding activity. In other words, 

inefficiencies arise from using this unspecialised machinery to produce specialised products.  The 

reasons are as follows; besides the fact that throughput is sacrificed as a result of this single-tool 

operation, it requires the management of process sequences and interdependent resources in time and 

space such as machinists, fixturing and parts themselves in the form of parallel or network production 

loops, and finally, the two in conjunction introduce a deluge of new variables leading to a plethora of 

new sources of waste, variation, non-conformity and the like. The cost is therefore symptomatically 

high, productivity rate low and is often accompanied by variation in quality. Further, continuous 

improvement activities in such systems are thwarted by an overwhelming lack of data and 

understanding. 

This is reiterated by Cochran et al[14], in a paper produced in conjunction with Lockheed Martin, 

which correctly commented that continuous improvement activities, [or kaizen] are consistently 

thwarted by scarce, inaccurate or non-existent data about manufacturing processes.  Discrete machining, 

where series production is in small and even single batches, therefore faces distinct challenges to that 

of dedicated manufacturing for increasing production rate, improving quality and reducing costs in 

order to ultimately capitalise upon its built-in flexibility. Example processes and products in this 

category include; machining superalloy compressor parts for the next generation of high-bypass 

turbofan jet engines, the machining of titanium landing gear; products where a level of conformity, 

consistency, safety and performance are paramount.  

 Monostori et al[15] argues that the productivity of a machine depends strongly on the part itself, 

and this is reflective of academia which has consistently focused upon processes in isolation. On the 

one hand, this work continues to be both informative to industry and valuable contribution to academic 

knowledge, yet on the other, it should be acknowledged, as already outlined, processes in themselves 

itself only forms a part of the overall factory performance and the factory should be seen as a complete 

ecosystem. The advantages of such a broader view are as follows; the research is placed within context 

and industrial applications more readily, therefore industry is more likely to engage and implement such 

work; and secondly, as argued here, what might be considered ‘low hanging fruit’ in terms of 

technology represents the first step in the direction of the industrial manifestation of a truly smart 

factory. Industrie 4.0 is a welcome reintroduction to the basics of the scientific method, where the value 

of measurement and numbers are recognised as the first step in any improvement activity. What is most 

promising is potential performance yield even at early stages of implementing smart factory 

technologies, which should only empower and encourage manufacturers, industrialists and 

governments to relentlessly drive further towards Industrie 4.0.   
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2.2 Cyber-Physical Systems 
2.2.1 Introduction 
 The notation of ‘CPS’ originated in 2006[16], as announced on a conference web page: “The 

research initiative on cyber-physical systems seeks new scientific foundations and technologies to 

enable the rapid and reliable development and integration of computer- and information-centric physical 

and engineered systems. The goal of the initiative is to usher in a new generation of engineered systems 

that are highly dependable, efficiently produced, and capable of advanced performance in information, 

computation, communication, and control. Sensing and manipulation of the physical world occurs 

locally, while control and observability are enabled safely, securely, reliably and in real-time across a 

virtual network. This capability is referred to as “Globally Virtual, Locally Physical’’. There are a 

number of other definitions, and there is a clear theme:-  

 “Cyber-Physical Systems are systems of collaborating computational entities which are in intensive 

connection with the surrounding physical world and its on-going processes, providing and using, at the 

same time, data-accessing and data-processing services available on the Internet” [15] 

‘‘Physical and engineered systems whose operations are monitored, controlled, coordinated, and 

integrated by a computing and communicating core’’ [19] 

“Transformative technologies for managing interconnected systems between it’s physical assets and 

computational capabilities” [22] 

Hehenberger et al[21]  argue ‘promise of the Cyber Physical revolution is that it enables the 

physical world to be monitored, controlled and influenced both adaptively and intelligently.’ For this 

paper, a CPS will be defined as a system which inputs physical information (to convert from physical 

Figure 2:1: For Monostori[15] et al, Cyber-Physical Systems means the 
convergence of physical and virtual worlds. 
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to cyber) into cyber infrastructure [e.g. sensing, computing and communication hardware] to monitor, 

control and manage the physical world.  

One particular challenge which restricts the growth of research in CPS is unifying the silos of 

mechanics, electronics, mechanical engineering, manufacturing technology, control and computer 

science. There is therefore a clear need for transdisciplinary scholarship which seeks to address the 

development of cyber-physical systems with an Industrie 4.0, industrially-led, commercially-aware 

tone. The convergence of the physical world and cyber world is not limited to the academic community, 

but actually one of the most important modern themes for governments and commercial organisations 

to wield, particularly with a view for implementation in manufacturing.  

The essence of CPS is the result of a continual and relentless pursuit of ‘flexibility, 

customisation, interaction and provision of new functionalities in industrial settings.’[8] In the same 

manner that information technology outputs such as the internet and smartphones have connected 

humans in a network, CPS promises to provide some similar functionality to the physical world around 

us, and in this thesis, the smart factory. In light of this, there are all the right signals that cyber-physical 

systems will play an integral role in various aspects of manufacturing.  In many ways, transformative 

goals in manufacturing have remained the same before CPS. With CPS, however, it seems feasible that 

it may provide the step-change in performance which has led to such a loaded term; the fourth industrial 

revolution. The challenge is enabling and utilising thousands of sensory outputs, data streams and 

technologies which cannot be managed or understood by humans in their raw form, but once wielded 

pragmatically may provide the means to reach the aforementioned goals. Part of the CPS solution is to 

create a synergy between the systems and their users, where the symbiotic relationship will improve 

production system far beyond that of one stakeholder (either a computer or human) working 

independently. The effect of the networking CPS and their potential for data analytics should be readily 

apparent to systems-thinkers who understand the value of the data-information-knowledge model.  It 

will begin in earnest with a step-change in understanding processes, to ultimately augment process via 

the use of independent agents, the operation of which remains open to many potentials.  
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2.2.2 Definition 
CPS may be split into two distinct but inseparable aspects. Somewhat unexpectedly, one side 

provides physical-mechatronic which will directly interface with reality, whilst cyber-automation 

interfaces digitally. The features of a CPS may be broken down as follows:  

 Autonomy – the ability of a system to make decisions, act or behave independently.  

 Computation – arithmetical and non-arithmetical procedures that follow an algorithm or 

model of computation. 

 Communication – information exchange between otherwise independent systems  

 Cooperation - otherwise independent systems deliberating or acting collectively for mutual 

benefit or goal satisfaction. 

 Modularity – system components may be isolated and reconfigured by using common 

interfaces in order to achieve greater overall system flexibility in applications. 

 Interaction – extension of communication whereby the systems enter into an interdependent or 

reciprocal arrangement with subsequent emergent phenomena.  

 Optimisation – a process by which system properties can be maximised or minimised 

according to some predefined conjecture or definition of optimality.  

CPS seek to unify research themes in this area which range from mechatronic systems to the 

‘Internet of Things’, topics encompassed are, but not limited to; cooperating objects, the industrial 

internet of things, industrial agents, ubiquitous computing, autonomic systems, robotics and use of 

machine learning and big data analytics. This paper aims to briefly explore some of these within the 

context of discrete manufacturing.  The internet emerged only as integration of major enablers; 

advancements in network technology, application (browser) and required infrastructure (telephone 

network). Similarly, CPS are an integration of embedded systems, sensors, low cost processors, low 

power compute and control systems. The following are some of the drivers and enablers for the CPS 

age; 

 Sensors & Data Acquisition: becoming cheaper, higher performing, smaller and less power-

hungry making their ubiquity possible.  

 Communication networks: speed, reliability, bandwidth and access via wired or wireless.  

 Distributed, concurrent and parallel compute.  

 Consequentially, there is a continuous generation of high volume data which is known by the 

buzzword “Big Data”. 
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2.3 Cyber-Physical Manufacturing Systems  
2.3.1 Introduction 

 CPS in manufacturing are at an embryonic stage where the boundaries and parameters of this 

subject are fluid and are not clearly defined.  Development of a framework in order to structure CPS in 

the context of discrete manufacturing must be undertaken in order to understand this emerging field. 

There are a number of research areas which focus upon CPS at a particular scalar level, CPS maturity, 

and application. Most research appreciates that ultimately, there will be a complete network that will 

both vertically and horizontally integrate all CPS within a given domain [e.g. a smart factory] at some 

point and at this point may claim to have truly reached the forth industrial revolution. 

J. Lee[22] et al successfully presented a 5-level CPS architecture which provided a framework and 

guidelines for the development and deployment of CPS in the manufacturing domain. This was 

presented in a sequential workflow manner, defining ‘how to construct a CPS from the initial data 

acquisition, to analytics, to the final value creation’, shown in Fig.2:2. A blended model (Fig.2:3) was 

produced which features a ‘CPS maturity’, drawn by Monostori et al[15] arising from the Laboratory for 

Machine Tools and Production Engineering of RWTH Aachen University whilst featuring the elements 

of the existing 5C model by J.Lee et al. The fundamental implementation of the enabling technologies 

result in the provision of ‘general conditions’, moving forward to more transparent processes, creating 

new levels of understanding and knowledge, decision support, decision making and finally self-

optimising.  

Figure 2:2: J. Lee et al[22] - 5 Level CPS Architecture 
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In Fig.2:2 & Fig.2:3, it can be seen that the initial step is connectivity, the middle of the roadmap 

implies the use of monitoring or data analysis, mining, pattern recognition, decision support, and 

ultimately Lee et al expects the CPS to provide an intelligent system service to manage resilience, 

variation and disturbance at level C5 automatically. It is no coincidence that C1 represents the base of 

the diagrammatic pyramid; data acquisition and connectivity is an enabler for higher levels of CPS, 

without this, there is no basis for a CPS. 

Ultimately, what is required is a framework which considers CPS in discrete manufacturing at 

different levels of scale, ranging from the tool and surface quality, through to machine tools, to factory 

floor management and onwards towards cloud computing and production and supply chain networks. 

By doing this, the framework maps the relevant commercial and academic work at each level and 

respective impact in the realisation and participation of Industrie 4.0. Additionally, there are clear, 

obvious corresponding techniques and technologies for each given layer of scale or level of CPS 

maturity. Secondly, there are protocols, methods and software which align layers vertically. Finally, 

each layer has a general effect on the overall performance of a manufacturing facility. It is expected 

that a selection or focus on a particular improvement will lead to the implementation of CPS level C1, 

for over time for the maturity to reach C3, C4 or C5 dependant on the application. Additionally, 

industrialists should focus on areas of greatest benefit, rather than their personal vision of the Industrie 

4.0-ready factory, as there are a vast number of CPS possibilities. 

 

Figure 2:3: RWTH Aachen University & Monostori et al[15] - CPS Maturity 
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Babiceanu et al.[23]  commented that “penetration of CPS technologies into the manufacturing 

domain is slower compared to other domains. This is due to the nature of manufacturing operations, 

which need to deal with large pieces of hardware equipment, many of them being legacy systems, the 

high cost of manufacturing equipment which makes it unlikely to be replaced before the end of its useful 

life, and the resistance of senior management to the introduction of new technologies in already well-

adjusted processes and systems.” The progression of manufacturing technology over the years has been 

directly influenced by the parallel development of ICT and computer science. This began with humble 

beginnings, such as the development of Computer Numerical Control (CNC) in 1940’s and 1950’s. In 

addition, Programmable Logic Controllers (PLCs) have supported basic form of automation or 

feedback in manufacturing facilities, particularly those in dedicated manufacturing, for the past fifty 

years. PLC themselves are being re-marketed as programmable automation controller (PCA), where 

PCA anecdotally represent advanced PLC’s. The primary concepts of PLCs and PCA’s feature in CPS, 

though ultimately CPS systems have far more abilities than the traditional concept of a PLC.  

Mechatronics is word originating from Yaskawa Electric Co, a Japanese company in the 1960’s, 

where a fusion of mechanical and electrical engineering, computer science and information technology 

were used in the development of early robotic arms.  The topic shares much with robotics and is 

subjected to entrenched semantics. However, in the broader CPS paradigm, they are categorised by their 

narrow application and as such, have found popularity in, for example, extending machine tool 

functionality. There are a number of potential improvements that may be borne form the use of 

mechatronic modules. In general, there are two types of mechatronic module. Passive modules could 

indirectly guide processing of parts. For example, a machine vision or 3D scanner may alert contact 

between part and tool to the machine controls. In this sense, they fit within the concept of embedded 

systems, which lack the ‘act’ component. In contrast, active modules will control the process of 

machining directly via the use of actuation. For example, a tool could continuously monitor it’s sensors 

to detect chatter and consequentially modify the workpiece-tool-condition eco-system, negating chatter 

– improving the surface quality and prolonging the life cycle of the tool. This could be achieved by 

adjusting the natural frequency via the actuation of masses or modifying of relevant process parameters 

like the tool feed rate. The net result is that the ‘mechatronic’ combination increases productivity. Using 

the terminology of passive or active mechatronics and using it in the broader area of CPS aids in the 

development of a comprehensive framework. 

 Robotics are the most iconic and prolific form of CPS. There are numerous reasons why aspects 

robotics should be embodied in any work in Industrie 4.0; the robotic arm has been popularised in 

discrete and dedicated manufacturing since its inception, secondly, it is without doubt the most obvious 

and archetypical form of automation. Additionally, as already mentioned, it is the oldest and most 

recognisable CPS. Reading-across the terminology, concepts and ideas from robotics should lead to a 
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much quicker and firmer grasp of a useful ontology and what are reasonable expectations in the smart 

factory and Industrie 4.0 paradigm. 

2.3.2 Ontology & Framework 
 In order to discuss the fragmented research areas of the Industrie 4.0 and the smart factory 

paradigm, the following definitions will be used. Inspired by the work of Lee et al, minor changes been 

implemented to assist capturing topics in a structured format. 

 C1 – DATA: Data Acquisition & Edge Connectivity (enabler): 

PLC’s, Protocols (MTConnect), Sensors, IoT Systems, Embedded Computing 

 C2 - INFORMATION: Monitoring & Intermediate Analytics 

Applications, Control Centre GUI, Human-Machine Interfaces (HMI) 

Basic Graphically-Presented Data 

 C3 - UNDERSTANDING: Digital/Cyber Twin & Advanced Analytics 

Machine Learning Algorithms, Database Systems, “Big Data”, Cloud-based analytics 

 C4 - INSIGHT: Collaborative Diagnostics & Decision Support Systems 

Expert Systems, Decision Support Systems 

 C5 - AUTONOMY: Autonomic & Optimised Decision Making 

 

A visionary outline of the next generation or manufacturing systems which leveraged the results 

of artificial intelligence research was undertaken in 1978 by Hatvany and Nemes[24] followed again by 

Hatvany in 1983[25]. What is now understood as Machine Learning, a branch of Artificial Intelligence, 

has played a large part in this sector, namely, pattern recognition techniques, artificial neural networks 

and fuzzy systems. This second wave, termed Intelligent Manufacturing Systems (IMS), describe 

manufacturing systems which may be directly influenced by the growth of these disciplines.  However, 

this was embraced more successfully by ‘operations management’ research, featuring supply chain 

management and production networks topics which feature some minor manufacturing aspects. IMS 

was therefore theoretical concept which would use CPS levels C3 through C5. It is clear that the lack 

of C1-C2 activities, i.e. data acquisition, which are now possible because of embedded system 

technologies, completely stunted IMS beyond mere concept. In addition, Machine Learning (ML) C3-

C4, itself has experienced a renaissance due in part to the interest of the internet giants such as Google 

and Facebook in using and monetising their vast databases, in the so called ‘big data’ paradigm. The 

attention and development of many new and existing ML techniques has attracted activity from both 

research and commercial stakeholders. 

The concept of Computer Integrated Manufacturing (CIM) originated around 1973, from John 

Harrington in his book of the same name and serves to feature the same themes as Industrie 4.0. A 
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definition provided by the Digital Equipment Corporation (DEC): “CIM is the application of computer 

science technology to the enterprise of manufacturing in order to provide the right information to the 

right place at the right time, which enables the achievement of its product, process and business 

goals”.[26] Monostori et al appears to unfairly trivialise the aims of the CIM movement; ‘the data of 

CIM systems were stored in databases’. Further, the great majority of manufactures appear to have done 

little to move towards the use of the original CIM ideals in their facilities; again, perhaps owing to a 

lack of edge connectivity (C1), the movement was premature. Interestingly, it would appear that the 

definition of CIM has shifted in the last 40 years to broadly define any computer-aided technologies in 

manufacturing, including Computer Aided Manufacturing (CAM), Computer-Aided Design (CAD), 

Computer-Aided Engineering (CAE) and even Product Lifecycle Management (PLM) and therefore 

forgetting the original concept. Koren et al[27] envisioned yet another Industrie 4.0 future of 

“unpredictable, high frequency market changes driven by global competition” in 1999 with their 

seminal paper on ‘Reconfigurable Manufacturing Systems’. This paradigm suggests that RMS systems 

would comprise of reconfigurable machines and controls and provide methodologies for systematic 

design and rapid ramp-up, and this again, serves as a precursor to CPS levels C4-C5. 

Monostori et al[15] conducted a survey of contemporary literature using a text mining method this 

comprehensive search included the term ‘cyber-physical system’ and ‘cyber-physical system’ AND 

‘manufacturing’, contained in author keywords. This is shown in Fig.2:4. They noted a huge growth in 

articles during the period 2000-2010. What is particularly telling is the fragmented keywords which 

Figure 2:4: Semantic network tree by Monostori et al (2016)[2] 
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often represent similar research topics, and this is not only attributable to semantics, but reflects that 

research into CPS is coming from different origins. This reinforces the work completed by Radziwon 

et al[6], who struggled to find a consistent definition. Manufacturers and engineers are developing an 

understanding of the how, whilst systems and computer science are searching for a why, an application. 

This search suggested multi-agent systems represented one of the most commonly applied techniques 

related to cyber-physical systems, whilst ‘IoT’ was closely related to radio-frequency identification 

(RFID). Multi-agent systems most certainly represent a level C5 of CPS maturity and will not be 

explored in any great detail here. Nor will RFID, however, RFID on the other hand is a C1 level 

technology, enabling accessible, edge-connectivity, already playing an important part in supply chain 

systems today. 

2.3.3 Data Acquisition & Connectivity 
 Mori Seki, a leading Japanese machine tool provider, has a strong presence of service/repair in 

their home country, Japan, whilst today, Mori Seki’s most important markets in the west have reduced 

service bases.[28] In light of this Mori et al was inspired by the proliferation and success of current 

communication technology, (e.g. smartphones, IoT) attacked this problem by imagining a solution 

which acquires the customers machine tools operating status, perform diagnostics and analysis remotely 

at manufacturers service base and conduct necessary preventative maintenance instantly online. This 

serves as a precursor to idealised Industrie 4.0, and may be considered to be a commercial application 

of condition monitoring. The remote monitoring and maintenance solution manifested as ‘MAPPS’, 

using basic PC technologies and Ethernet connectivity. The obvious shortfall of the Mori Net system, 

supported by Edrington et al[13], was that most factory floors incorporate a variety of different machining 

equipment and manufacturers which frequently implement their proprietary data communication 

protocols. This presented an opportunity for industry and research to present a solution which will 

collect information from a multitude of machines.  Recognising this need for an open communication 

standard in manufacturing, the “Association for Manufacturing Technology” developed MTConnect, 

which is aimed at becoming the new standard for data exchange on the manufacturing floor. Other 

protocols include, OPC and OPC-UA which have also emerged to address the same issues. MTConnect 

is described by Albert on the website ‘Modern Machine Shop’ as; “creates an effective bridge by which 

data from manufacturing equipment can easily cross over to the applications that make factory-wide or 

shop-wide integration possible”[29] More specifically, MTConnect is a standard which enables 

manufacturing equipment to provide data in a consistent, structured XML as opposed to using 

proprietary formats. The MTConnect website[12] defines the specifications of the protocol:- 

 Uses XML (eXtensible Markup Language) & HTTP (Hypertext Transport Protocol) 

 Provides capability to reduce cost 

 Increases interoperability 

 Maximises enterprise level integration 
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 Supports free software development kits 

 Aimed at minimising technical and economic barriers to its adoption 

 A popular use is to digitally display the behaviour of CNC machine tools, and as such, may be 

considered to be at a TRL level of 6 and beyond. The standard provides spindle position, feed rate, 

speeds, program, control logic and others, providing a plethora of data types to enable C1. By using this 

basic device knowledge, can continuously monitor more complex device knowledge via derived outputs 

in C2 and C3; e.g. cycle time, setup time, downtime, process anomalies and energy consumption. 

Anecdotal suggestions to extend such C1 capabilities include adding add ‘servo and spindle loads’ to 

assist in energy management and fusion of ‘part count’ capabilities and CNC cycle time, imperative to 

understanding accurate and efficient monitoring of process times.  

 GE Aviation conducted a project using MTConnect[29] which provides an example of C1 and 

C2 level CPMS in practice. The project involved the collection of the alarms and messages generated 

by the CNC units on a group of machine tools and then correlate this information to the machining 

processes being executed at the time. This involved the development of a communications tool that 

would provide manufacturing cell leaders, machine operators and maintenance personally with greater 

insight to real machine tool performance. The hope of this pilot project was that it would lead into 

numerous improvement opportunities across two of GE Aviation manufacturing plants which it was 

conducted. 

“We suspected there was a gap between our machining process plans and our machining results. 

Closing those gaps in our shops and cells would significantly improve machine utilization and reduce 

both maintenance downtime and manufacturing cost” 

… 

“We wanted to develop a tool that enables a manufacturing cell to easily measure the actual part 

production time, including all unplanned events, against the planned time and to do so on a routine 

basis” 

– Jim Dolle, GE Aviation 

 By using the MTConnect connect standard, it was possible to collect data about CNC-generated 

alarms and messages in a format that could be saved, organised and analysed. Even getting this data 

into a simple spreadsheet, GE began to quantify why certain machine tools were underperforming. 

Anecdotal evidence suggests that factories may use this kind of quantitative information to prioritise 

maintenance activities and to justify capital equipment improvements. Further, once cell leaders could 

put a price tag on lost cycle time, enabled by this system, it provides the required impact upon 

management to implement changes. Finally, encouraging results provide further means for more 
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investment, and for technologists, means to step further towards CPS C5 capabilities. There were 

comments made regarding the greatest challenges; “will be handling all the usable data and supporting 

the users of the data”. GE Aviation has a broad, ongoing effort to deploy what is known as ‘Smart 

Machining Technology” and therefore serves as an excellent example of successful smart factory 

implementation.. This features optimised cutting tools, improved toolpath programming, best practice 

machining parameters, streamlined setup procedures and comprehensive monitoring systems. "We want 

an objective, unbiased method that the cells can use to evaluate their machines’ capabilities, to identify 

opportunities and to measure improvements for machining processes," "We believe that performance 

data from the machine tools could give them this information—if the data could be accessed." This 

concept aligns very closely to what Industrie 4.0 means in discrete manufacturing.  

 Lee et al[30] produced a paper that very closely aligns with the work undertaken at GE Aviation. 

Recognising that much of the human activity undertaken with in a manufacturing environment is, or 

should be, spent on continuous improvement (or kaizen) activities, the work looked at how these 

activities could be improved by using real-time MTConnect data. Reinforcing GE’s experience, 

machine data was transformed into production knowledge to more richly understand energy 

consumption, asset operation and process performance.  Lee et al concluded that MTConnect made 

such improvement activities more feasible by virtue of lowering the cost and barriers to manufacturing 

data acquisition. Second, by presenting such information in C2 format (Fig.2:5), it increased usability 

and the transparency of the factory, reinforcing Kaizen activities. 

  

Figure 2:5: A simple desktop-application giving data visualisations in regards to energy consumption per machine, daily 
energy consumption per machine and shift consumption [15] 



Chapter 2 

51 
 

2.3.4 Industrial Internet of Things 

The IIoT is a sector of the broader ‘Internet of Things’ paradigm. IIoT generally avoids 

consumer related technologies, and as the term implies, focuses upon industrial areas. The primary are 

of concern is the factory environment, but almost all of IIoT concerns the monitoring and control of 

“industrial assets” - where it is hoped these technologies will support the Industrie 4.0 with 

communications and significant volumes of data. As shown above, IoT and IIoT are closely linked to 

cloud computing, and broader topics such as ‘Smart City’. Because IIoT and IoT are largely equivalent 

in terms of technology, knowledge in one applies to the other.  

Contemporary concept of Internet of Things (IoT) is based upon the passive collection of data, 

and focuses primarily on optimising integration via using arrays of sensors to provide far richer source 

of data, and is thereby strongly associated with C1. This is illustrated by ‘sensor network’ shown in red 

on Fig.2:4. C1 IoT represents a supplementary technology, unlike MTConnect, the greater majority of 

projects, a C1 IoT system would be standalone sensor arrays. In other words, IoT is enabling C1 CPS 

capabilities. For example, a previously ‘dumb’ fixture could be made ‘intelligent’ by fitting with 

vibration sensors and associated connectivity. IoT is currently on a huge upward trajectory of interest, 

the availability of smart devices, such as the defacto smart device, the smartphone, which will connect 

to the internet and independently exchange information between themselves and appears originate from 

embedded systems disciplines in computer science. IoT promises a deluge of data, ideal for data-hungry 

machine learning methods, particularly those utilising artificial neural networks taking CPS maturity 

through levels C2-C4. The primary difference between IoT and a typical CPS, such as a robot, is that 

whilst both will sense and monitor the real world, only a cyber-physical system would or act upon it 

physically and borrowing from mechatronics terminology, it is a passive system. To reiterate, this is a 

lack of effectors and therefore may be safely assumed to be outside of C5 in most cases.  

 The majority of IoT technologies largely bypass direct cooperation between agents, whereas 

other CPS topics [such as those shown in orange and green in Fig.2:4] are concerned with using the 

aforementioned features as enabling capabilities to achieve cooperation. Machine learning paradigms 

and big-data provides means to mine, understand and act upon this data, providing a cyber service [C3-

C4]. CPS may have ‘autonomic’ which is self-decision making, or ‘collaborative’ which uses 

negotiation-decision processes. The other end of the scale are mechatronic systems, which may act 

independently as an reactive system, and have found many applications in machine tools, for example 

detecting and avoiding chatter.  
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2.3.5 Condition Monitoring & Intelligent/Predictive Maintenance 
In many ways enabling the servitisation of products in industry and using some technology from 

mechatronic systems, condition monitoring and predictive maintenance are the second port of call for 

Industie 4.0. These topics lead on from C1 activities, and are mostly within levels C2-C3, using 

algorithms to model behaviours (C3) accurately which leads into potential C4 activities. The main 

difference between levels C2 and C3 is that C3 is using multi-dimensional data, or data in such a form 

which is difficult or impossible to interpret by a human. 

Essentially reiterating the same topic, Lee[37] et al considers a concept of ‘cyber manufacturing’, 

which involves ‘the translation of data from interconnected systems into predictive and prescriptive 

operations to achieve resilient performance.’ There are again, a number of terms which either describe 

the same concept or vary similar, such as ubiquitous manufacturing, cloud manufacturing, digital 

manufacturing. By leveraging a network data-rich environment [presumably the shop floor], a 

systematic methodology will enable a step change in understanding. The upshot is promise of new 

benchmarks across performance metrics, including productivity, quality and cost.  
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2.3.6 Decision Support Systems (DSS) & Expert Systems 

 Industrie 4.0 involves the use of integrated ‘intelligent’ decision support systems (DSS) which 

are in themselves are C4 exclusively and will use various models at levels of C2 and C3, arising from 

the growth of data in the manufacturing environment at C1. Digital Twin systems confusingly sit 

between C2-C4, where the idea is to map technical and business processes into the digital world and 

provides the means for decision support. 

Delen et al[32] provided a diagrammatic representation of their vision of the decision-making 

life cycle for manufacturing systems, shown in Fig.2:6. Manufacturing organisations are consistently 

and constantly stimulated by problems and opportunities. In which case, decisions must be made in 

order to first identify which issues and solutions to address, then choose the course of action. Ideally, 

there should be correct (effective) and undertaken quickly (efficient). DSS is an anecdotal driving 

component of big data, a move of industry towards data-driven decisions. Delen et al provided a 

workflow for DSS systems in the manufacturing environment; 

1. Structuring a problem for a given set of symptoms 

2. Once problems are structured, determining the best analysis tool (i.e. model type) to address 

the problem 

3. Automatically generating the executable model specific to the structured problem 

4. Conducting the analysis 

5. Providing the results back to the decision maker in an easily understood format 

  

Figure 2:6: Decision Support Systems[32] 
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2.3.7 Big Data, Cloud Computing & Manufacturing Informatics 

  Big Data is a topic with a huge amount of interest today. It encompasses CPS maturity levels 

C1-C4, but the bulk of the topic represents C3 activity only. Drawing from huge datasets from IoT 

systems, machinery, computers, it is a subject which sits as a new-fangled version of data mining, which 

itself was part of machine learning. Machine learning is a multi- disciplinary field using a combination 

of artificial intelligence, probability and statistics, computational complexity theory, control theory, 

information theory, philosophy, psychology and neurobiology. Many computer programs and 

algorithms have been successfully deployed to exhibit useful types of learning to commercial 

application in a practical and useful manner. Data mining uses machine learning algorithms to discover 

valuable knowledge [or ‘insights’] typically from large commercial databases, which have focused on 

social or commercial mining such as sales prediction, user relationship mining and clustering. This is 

classified as ‘human-generated’ or ‘human-related data’, as opposed to ‘machine generated data or 

industrial data’, where data emerges from machine controllers, sensors and other manufacturing 

systems. This is a distinguishing feature, as in the case of Google or Facebook, their data sources are 

provided natively inside the cyber-space, whereas in many other enterprise types such as 

manufacturing, this requires transformation via sensors, for example. In light of this, it could be argued 

that whilst Big Data provides an informative experience for the smart factory paradigm, it is not in the 

strictest sense a CPS. 

 Literature characterises ‘Big Data’ as large data sets having at least three distinct agreed 

dimensions, regardless of the source of information or reference used. The widely disseminated ‘Big 

Data’ 3 V’s may be supplemented by the following, which characterises data collected from 

manufacturing applications and their related processes. 

 Volume: data generated in large amounts 

 Variety: data generated in different formats 

 Velocity: data generated almost continuously 

 Value: data generated should exhibit useful purposes; ensures data collected brings added-

value to the intended process, and also addresses aspects such as broader use of information.   

 Veracity: data generated exhibits consistency and trustworthiness; ensures statistical 

reliability of data and trusted and authentic origin, protected from unauthorized access and 

modification.  

 Vision: data generated should come from a purposeful process; addresses the likelihood of 

data generation process. 

 Volatility: data generated may have a limited useful life; addresses the lifecycle concept of 

data and ensures new data replenishes the outdated data. 
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 Verification: data generated should conform to a set of specifications; ensures engineering 

measurements are correct. 

 Validation: data generated should conform to its vision; ensures transparency of assumptions 

and connections behind the process.  _  

 Variability: data generated has a level of uncertainty or impreciseness; addresses aspects 

such as data inconsistency, incompleteness, ambiguities, latency, deception and 

approximations. 

 This extended list provides a better characterisation of “big data” for smart factory purposes, 

data collected from manufacturing applications and their related processes. The manufacturing cyber –

physical system paradigm suggests the ability to handle physical operations whilst monitoring them 

virtually. This vision of big data could provide a huge improvement in process comprehension, enabling 

a much closer integration of data processing and simulation models in areas of machining processes 

and factory operations. Koren et al[33] describes an era of Industrie 4.0 where ‘intelligent analytics and 

cyber-physical systems are teaming together to realise a new thinking of production management and 

factory transformation’. Koren et al defines the transformative agent a collection of 3 co-dependant 

systems; a platform, use of predictive analytics and visualisation tools.  

 As our interest in continual improvement practice increases and globally move towards more 

data-driven decisions it is inevitable that machine learning will play a critical role as a hidden master of 

Industrie 4.0 themes. The use of cloud computing is what distinguishes ‘big data’ from what would be 

traditionally considered data mining. The use of cloud computing serves two purposes; to centralise the 

data and relevant systems and to leverage the computing power of distributed computing servers.  

 Cochran et al[14] produced a paper with an example of ‘how big data analytics was applied to 

identify bottlenecks in operations from the perspective of quantitative performance evaluation’. This 

was achieved by providing a theory and methodology of the Manufacturing System Design 

Decomposition (MSDD) which expressed sequence and path dependencies. The paper aimed to 

‘provide people in complex systems with a framework to communicate design intention and proposed 

solutions’ and ‘focus analytics on system objectives and solutions of merit’. The latter is particularly 

pertinent, as Industrie 4.0 is certainly more a path than a goal, must be approached as such.  

The second side of Big Data, which ties into condition monitoring, is the manner in which 

organisations leverage smart devices which communicate with agents based in the ‘cloud’, a server 

which provides services via the internet. These internet based resources included Software As a Service 

(SaaS), Platform as a Service (PaaS) & Infrastructure as a Service (IaaS). It is therefore a virtuous circle, 

the data provided leads into stronger customer integration adding value to products and commodities 

that add value to the service and the served enjoy access to such resources. This Industrie 4.0 concept 
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is likely to appear in dedicated manufacturing in the near future, where customer-customisation and use 

patterns will be re-integrated into the product development cycle. 

2.3.8 Adaptive, Agile & Reconfigurable Manufacturing 

 There has been a great deal of work over the past 20-30 years concerning the application of 

agent technology in manufacturing enterprise integration and supply chain management, manufacturing 

planning, scheduling and execution control, materials handling and inventory management. These 

topics are defined as agent or holonic manufacturing systems (HMS). In many ways these represent the 

terminal goal for CPS, potentially featuring autonomic capabilities or at the very least, decision support. 

Further exploration undertaken by Monostori et al[15] in their text analysis, found that by looking at 

neighbours of ‘multi-agent system’, it was closely related to ‘next generation of industrial system’. It 

was argued that this indicates that as CPS gains traction, the use of multi-agent systems will lead into 

the higher maturity levels of CPS and potentially bring forth Industrie 4.0. The limiting factor for such 

systems is lack of connectivity (C1) and number of actions required to implement such a system.  

 Continuing the focusing at factory floor level, Biological Manufacturing Systems (BMS) 

models indicate adaptive behaviour for reconfiguring scheduling during changes internally, e.g. 

manufacturing cells offline, or externally, through fluctuation in supply and demand. The ideology uses 

biologically-inspired ideas such as self-growth, self-organisation, adaptation and evolution. This clearly 

places it within the highest levels of CPS maturity. 

2.3.9 Servitisatisation & New Business Models 

Servitisation means transitioning from selling products to selling outcomes. The core 

technology which enables this is cloud and IoT. Additional advantages are that the customers do not 

need significant capital investment and the provider can shift to a recurring revenue model, leading into 

a far smoother more predictable flow of revenue. Other services can be wrapped up as part of the 

contract, including maintenance. Whilst this is not strictly a manufacturing technique innovation, 

manufacturers are beginning to focus on the introduction and impetus of services. Blurring of the 

boundary of manufacturing and service industries is ‘manufacturing servitisation’, and was proposed 

by Vandermerve and Rada in 1988[31] by emphasising the concept of customer focus, the combination 

of product/service and the provision of longer-term knowledge and support. 

Moving to an integrated product and service offering which delivers value in use (a ‘product-

service-system’) leads to two primary advantages. First, customers’ needs are more closely addressed, 

cost is typically spread more favourably. Second, in the case of CPS product-service-system, the data 

arising from the product can be used to provide data for better customer support, e.g. intelligence 

maintenance and provide new business models. Rolls-Royce “Power-by-the-hour” as discussed by 

Smith[34], who claims that research has highlighted economic, market demand and competitiveness 
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factors as responsible for the re-shaping of business strategies and that embedded digital electronics 

have been an enabling factor. 

A beneficial aspect of this move towards servitisation provides more opportunities for field data 

collection, which leads into condition monitoring and product lifecycle management topics to 

conceptual models of so-called ‘gentellient components’ conceptualised by Denkena et al[35][36], which 

collect information during their lifecycle and to communicate and/or store. The term is a hybrid of 

‘genetic’ and ‘intelligent’, and is used to identify the potential for manufactured parts or systems to 

embody ‘genetic information’, as in biology.  In practice, this could be basic information required to 

identify or reproduce a part. This has many parallels in aerospace, where traceability and tracking are 

both commercially enforced and legally binding. The intelligent aspect is where CPS comes in, 

providing the technical ability via the use of materials and sensors to collect data independently during 

use, process, communication and storage.  

2.3.10 Supply Chain Integrations 

 In combination of global or local supply chains, is 'glocalised'. This is proposed by Hadar and 

Hilberg,[37] which defines a decentralised supply chain setup. Tantamount of the level at which they 

were looking, factories at this level are considered black boxes and only the input-output functions are 

considered, as opposed to the actual internal factory capabilities. Hadar and Hilberg present a concept 

of using intelligent, reconfigurable smart factories [leading to wider specialisations] which would 

supply a predefined, local area of market, as opposed to specialised, centralised factories which make 

up a globalised supply chain. In this sense, it is using the principles of Industrie 4.0 discussed earlier in 

production manufacturing, namely; adaptive, flexible, responsive, customised, but applying the concept 

to discrete manufacturing albeit at a higher level of scale. It is hoped by leveraging the proximity to 

suppliers and customers would decrease manufacturing lead times, minimise inventory whilst 

simultaneously achieving the ideals of Industrie 4.0. The authors explore companies which are 

experiencing fragmentation of production, arising from globalisation of their complex supply chain 

networks. 
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2.4 Cyber-Physical Manufacturing Systems in Practice 

2.4.1 Introductions 
CPS are the ultimate application for the 'big data' paradigm, by using objective, real-time machine 

or sensor data, it is hoped manufacturing enterprises will enjoy a step change in performance. Such a 

concept requires the exploration of the underlying technology stack which supports CPS in the 

manufacturing environment. In this section, these aspects will be explored from an implementation 

perspective.  

The step change expected from Industrie 4.0 is fixed on the aggregation and use of data, whereas 

previously the data did not exist or has not been used. CPS data is often ‘in motion’, as opposed to 

‘data-in-rest’, which is largely object-oriented or abstractions of CPS data. This makes the information 

architectures required particularly suitable to make use of modern big data technologies, where stream 

processing is becoming central to the data model and fundamental to the cloud computing paradigm. A 

CPS is comprised of a real-time network of embedded computing instances and centralised hub systems 

to support them. CPS modules will have inputs and outputs, a mixture of data processing capabilities 

which interface with software as desired. 

CPS is often split into edge or cloud computing. Another is fog computing. Edge computing refers 

to that computing which often nearby or inside the physical domain of application. Cloud, in contrast, 

refers to a processing or storage service in some arbitrary location accessed via the internet, many of 

these instances also offer program ‘services’, for example, Platform-as-a-Service (PaaS) or 

Infrastructure-as-a-Service (IaaS) and aptly named, Analytics-as-a-Service (AaaS). However, in some 

cases, sensor networks and edge computing does not allow the performance of advanced analytics and 

machine learning tasks. Cloud computing is the inverse, computational ability is certainly available, but 

they are normally too far away to process the data and respond fast enough. Raw data streamed across 

the internet to a cloud service has privacy, security and legal implications, which are particularly 

pronounced in aerospace manufacturing scenarios. 

Fog computing is seen as an extension to the cloud, complementing one another to create a more 

complete solution, potentially widening the scope and impact of CPS. Short term computation can be 

addressed at the edge whilst cloud platforms perform resource-intensive, longer-term computation and 

the provision of as-a-Service (*aaS) models for highly abstract information. This reduces the amount 

of raw data sent to the cloud, conserving bandwidth and improving the latency or responsiveness of 

systems. It also circumvents the concerns with regards to security by keeping data close to the user and 

helps support the scaling of CPS and their mobility within their domain. The difficulties of fog 

computing are similar to that of existing server/LAN based systems which previously focused on back-

office functions, the cost of investment and then the management of the hardware/software ecosystem. 
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The best way to define CPS within the context of discrete manufacturing organisations is to 

consider the resolution of information required at different levels of consumption. Senior management 

of international companies require historical data in the form of months or weeks, or in the case of real-

time information, they want to know the performance of supply chains or e.g. Overall Equipment 

Efficiency/Effectiveness (OEE) of complete factories or sites. In contrast, the other extreme could be the 

diagnosis of a ball-bearing damage signature on a critical asset, such Computer Numerically Controlled 

(CNC) machine tool spindle, which requires data acquisition above 1000Hz to effectively diagnose 

wear or damage, whilst a manufacturing engineer may discover a particular pattern of tool behaviour 

which induces surface stress, again, requiring high resolution data. Traditionally, cloud computing 

technologies have struggled with these properties, but today becoming more and more adept at handling 

more demanding data rates enabled by the use of big data technologies and distributed computing. In 

the case of complete factories, this is technically impossible - high resolution, granular data is required 

from robust on-line data acquisition systems for manufacturing organisations monitoring objectives 

such as machine health, process and part/resource spatio-temporal behaviour will far exceed bandwidth 

limits. In any case, as already outlined, when data is going off site, security becomes an issue.  

2.4.2 Technological Origins  
Previously, a centralised, monolithic architecture model of the internet has dominated and 

served bits initially in the form of simple webpages. Today an augmented version of the original 

principle provides high-speed, high bandwidth services such as on-demand media, rich virtual 

environments and 'cloud' based enterprise platforms (e.g. *aaS). 

The term 'cloud' is normally exclusively reserved for application platforms and increasingly 

complex, web-based services. This is achieved by interconnected layers of servers, secondary servers, 

caches, routers and switches which manage the 'flow' of data. Demand upon the consumption of this 

data has been increasing significantly, and although each require only small amounts of bandwidth to 

access requested data, the aggregate bandwidth and aggregate computing cost is comparatively high, 

owing to the sheer volume at the consumer edge. Meanwhile, because the 'sources' consistently remain 

far smaller in number, they are subsequently large, monolithic and require the use of expensive, 

advanced technologies to provide the required performance.  

The CPS paradigm requires this prior model to be inverted, rather than the data diverging from 

a central point (i.e. a standard server), the data is converging. Whereas previously, the edge requested 

[or using popular CPS terminology; 'subscribed'] data, or servers broadcasted bits to consumers, 'things' 

at the edge are now publishing data itself. Dr Ted Dunning, Chief Application Architect at MAPR[38] 

describes this as the 'upside down internet', and that concept is fundamentally defining the cyber-

physical system paradigm in the broadest sense. But in addition to that, it implies a centralisation, which 

is not necessarily the case; data arriving from the edge is centrally processed and analysed by 
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converging these bit streams, but this does not have to be one module of this system. This general 

concept of data plurality is discussed later; a la collection and distribution focus. 

Challenges of this shift towards cloud computing have been addressed by the extensive use of 

content delivery/distribution networks (CDN) for consumers and however most of these have been 

focused upon so-called data-at-rest. Technologies have been grouped together under the hood of 'big 

data'. The 'big data' term has been hijacked by a number of disciplines, traditional machine learning 

practitioners consider it datasets of multi-dimensional data points, whilst the IT industry uses it to define 

the broader themes surrounding the modern design of Structured Query Language (SQL) and NoSQL 

architectures which are key components in the data management of this 'upside down' internet. In which 

case, the main concern for manufacturing CPS is the use of file storage, time-series or historian format 

databases within their information architecture for processing data in particular. Whilst it could be 

argued that the majority of CPS applications feature a time variable as fundamental to its functioning, 

from a manufacturing or production point of view, consider the use of specialist databases because it is 

a function of;- 

a) Sampling rate 

b) Number of data sources 

Modern sensors are generally robust, data rates are high and the instrumentation in general is 

highly developed. In addition, the proliferation of smartphones and other associated cyber-physical 

systems in the consumer sphere have driven research in this area towards improving performance and 

reducing cost. Additionally, the aggregate cost is once again at the edge, making the sensors an area of 

particular investment for industry, reducing the cost of sensors and their associated attributes (size, 

power draw, interoperability).  Secondly, sensors today can act as CPS modules themselves. For 

example, a computer vision system with an image classifier algorithm can produce an abstracted output 

of the presence of a part or tool.  

The main difference in the CPS paradigm is that rather than having the traditional sensor-based 

monitoring systems; where the sensors are highly application specific and isolated, the focus is on 

building a foundation upon for networked, complex applications using this data. A popular supplier of 

high-bandwidth sensors are National Instruments (NI)1, which are a particular favourite for the 

engineering industry in research and development inside and outside academia. The primary criticism 

of such systems is the prohibitive cost, the training and skills required to implement them and the closed 

nature of the ecosystem overall. 

Basic components of an CPS design is therefore the following; a system of computation, a means 

for that system to communicate over a network, and finally, a capability to measure, act upon, or 

                                                           
1 National Instruments: https://www.ni.com/ 
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otherwise influence human agents with useful information via a User Interface (UI). Such networks 

must be expandable and scalable, allowing the ingestion of many data sources and dissemination to 

many consumers. An example of such a system could be as is shown on Fig.2:7. 

In this example, a central “node” allows a data emitter to connect to interfaces enabling the 

extraction of data and/or the capability of control. Edge device therefore should be considered a source 

of data and/or a form of actor. Similarly, the User interface is merely the interface of this module with 

an independent agent. In this case then, discussing interfacing with a user, that is, a human agent. This 

alludes to the possibility of such system to be arranged in a heterogeneous hierarchy, where layers of 

such modules can be designed to act as a multi-agent network of systems. 

The aim for CPS is to create high-volume data pipelines by leveraging prolific use of sensors in 

the physical domain, and subsequently using that information to develop control and actuator systems 

in improving that specific domain. Data is transported using wired and wireless connectivity 

technologies through various protocols, although the CPS paradigm stipulates they must be closely 

related Internet Protocol (IP) technologies. The physical device thereby becomes an active part of 

business, serving data, processing events and applying intelligent rules. In industrial software 

technology, industrial CPS is often considered only an extension of Supervisory Control and Data 

Acquisition (SCADA) systems. This is substantiated by the realisation that, in general, industry has 

excellent domain understanding of useful attributes or parameters with regards to data sources, and clear 

Figure 2:7: A Unified Modelling Language (UML)[46]  sequence diagram of a simple, discrete CPS event, where time is 

in y-axis and the delays are shown as red intervals. Three systems are shown, the User Interface on the right shows the time 

period where the user interacts with the system. Message-passing means that information is transferred to the Hub (center) 

and on to the respective device, to then return with the same route. Each stage has an associated time-delay.  
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performance indicators, yet most are neither connected nor integrated. Further, many of these 

companies are unique in the sense many have access foundational problem-solving skills to move 

towards the industrial internet organically. Some in industry already have connected and integrated CPS 

but are done so in a sparse, isolated and vertical manner, in ‘islands of capability’, so there is little 

opportunity to extend existing systems or share information across functions and services. 

Nevertheless, there is a great deal of expectation with regards to potential productivity gains in 

the manufacturing system environment and supporting supply chain. [39] The expectation is that as the 

manufacturing environment becomes extensively interconnected, a clear, so-called transparent 

understanding of the factory shall emerge. At the machinery, processing and part levels, highly 

granulated time-series data is required to adequately define behaviour such as damage vibration 

signatures as per established condition monitoring or process monitoring paradigms. Prior to Industrie 

4.0, this highly granulated data was siloed, manual, intermittent and generally underutilised. However, 

the new cyber-physical system paradigm demands that data across the value chain is processed and 

analysed either manually or autonomously, in real time or historically, locally or otherwise, horizontally 

and vertically, to provide high-level abstract contextualised information used to bring forth Industrie 

4.0. Bringing these together will ultimately provide the foundations towards 'data-driven decisions' and 

improving the management of manufacturing enterprises. Above the levels of machinery, processing 

and part is real-time, data-driven scheduling, cost engineering and asset utilisation. The fundamental 

question for the contemporary multinational manufacturing organisation is therefore; what data is 

required where, to whom, at what rate and how can this be achieved? How these be arranged as 

informative outputs to optimise the impact on our performance? 

Unfortunately, CPS implementations have significant architecture complications and related 

challenges. Skills are one such challenge. Skills required to bring about a successful Industrie 4.0 will 

arise from algorithm specialists and software architects, tasked with ensuring such systems are stable, 

reliable and synchronised effectively along the value chain. Anecdotal evidence suggests existing 

implementation cyber-physical technologies are under-utilised in their application. This is because 

existing CPS engineers may know how to undertake the engineering implementation but their domain-

of-application knowledge is lacking, along with largely avoiding or ignoring the challenges of 

integrating with the existing processes in the factory, reiterating the earlier point of ‘islands of 

capability’. In other words, existing work in this area is thwarted by extensive knowledge in how but 

lacking in why. In addition, the insights generated by such systems must be designed and modelled in 

such a way that factories may use delivered information pragmatically whilst avoiding excessive 

interactions with the challenging management of systems themselves. This phenomena has alienated 

many industries already as information systems have grown in power and influence. Successful 

implementation therefore relies on a multi-disciplinary approach which uses theory, information 

technology, domain-specific knowledge and application context. 
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CPS solutions lead directly towards the facets of computing, information technology, systems 

engineering and robotics - and why companies with these technology capabilities are presenting 

solutions aimed directly towards manufacturing enterprises in the hope of a subscription-based financial 

windfall, and if possible, a consistent deluge of useful user data to help improve their products further 

(and in future, automate). This is framed by the global economy continues to shift towards various 

modes of servitisation. Indeed, recently companies within the digital industry starting to pull away from 

the traditional incumbent corporation; their competitors are beginning to realise how effective the 

enabling of digital tools really is. This frames a polarising global economy where economic forces and 

continued questions about the effect of increasingly prolific automation are at large. Computing and 

software companies have so far succeed in the digital transformation of manufacturing's back-office 

functions, automating some aspects of purchasing, supply chain management, design [e.g. Computer 

Aided Design (CAD), Project Lifecycle Management (PLM)], project management, and 

communication. Now, as part of the modern CPS vision, products themselves and systems to 

manufacture products will provide useful data to feed-back into the product development loop. For the 

practitioner, consider the smart factory as a merging of the Operational Technology (OT) and 

Information Technology (IT) paradigms. 

The objectives of computer software intrinsically not only reduce the volume of low-skill work, 

but less obviously, made the management of such work far easier, reducing the need for costly middle 

management. Meanwhile, the manufacturing function itself has actually remained largely untouched 

even while the concept of robots feverously working in a factory is firmly rooted in modern culture. 

This is quite clearly going to change in the successful implementation of CPS if Industrie 4.0 is to be 

realised. From the manufacturer’s point of view, if demand may be sustained, productivity is of primary 

importance. Increasing productivity is apparently simple; the more your machine(s) are running, how 

many machine(s) you have and how much 'value' is added during them running, the greater the 

productivity. In other words, manufacturers believe the factory performance is dictated primarily by the 

selecting the processing steps in isolation, rather than the complete process. They are wrong; what really 

counts is what goes into a factory and what comes out, the processing, e.g. machining itself is only a 

component of this. This realisation was supposed to have been addressed by the lean movement, now 

half a century old[40], yet it continues to plague even the most advanced manufacturer. The truth is that 

the discipline required to really become lean was far too much of a stretch for most companies, and it 

is far easier to expensively improve the systematic processes in isolation, rather than enter the messy 

world of human error, scheduling and management. This drove improvements directly towards the 

processes themselves. This has subsequently become expensive, as much of the low hanging fruit in 

this area has been reaped. In addition, there are no companies which stand to gain from selling 'lean' as 

a product until now. The contemporary machining shopfloor bares closer resemblance to that of a craft 

manufacturing, a lack of standardisation and order. It follows that 'the smart factory' is the repackaging 
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of old ideas [namely, continuous improvement] augmented by CPS - the unification of connectivity, 

data and ultimately, agent-based automation to bring about transparency and improvement.  

However, attempting the transformation second time, enterprises can avoid the complications 

of pushing through the sloth of human nature and company rigidity. Instead, by allowing technology to 

drive manufacturing management and the undeniable logic of lean concepts, it can provide 

automatically generated, quantitative, data-driven managerial information through an increasing 

number of modalities. The net effect in industrial practice is that employees can't argue with objective 

data as easily, or even ignore it, particularly in reference to the expanding range of human-machine 

interface (HMI) / human-computer interface (HCI) technologies. 

Professor Michael Porter[41] discusses the need for companies to develop entirely new 

technology infrastructures to shift towards Industrie 4.0; “modified hardware, software applications, 

and an operating system embedded in the product itself; network communications to support 

connectivity; and a product cloud (software running on the manufacturer’s or a third-party server) 

containing the product-data database, a platform for building software applications, a rules engine and 

analytics platform, and smart product applications that are not embedded in the product. Cutting across 

all the layers is an identity and security structure, a gateway for accessing external data, and tools that 

connect the data from smart, connected products to other business systems (for example, ERP and CRM 

systems)”. Porter summarises advantages of intelligent and connected products and systems into four 

main areas; monitoring, control, optimisation and autonomy, which aligns closely to the 5-Level CPS 

model by Lee et al[42]. Monitoring enables a richer understanding of condition, environmental variation, 

operation; usage and can enable the alerts of these. Control, in the case of the smart factory, could allow 

a digital hierarchical control system by applying algorithms and analytics to on-line or historical data 

to dramatically improve output, utilisation and efficiency. The use of pre-programmed robotics is 

already prevalent in manufacturing systems and the introduction of such intelligent ‘smart factory’ 

systems are expect to increase the fields of application into many areas, such as material handling 

systems (MHS) using path planning algorithms and automated guided vehicles (AGV). 

Hepplemann[43], CEO of software company PTC, believes the engineering and manufacturing 

industry are intimidated by Industrie 4.0. For example, whilst the physics and fundamental mechanics 

in design and development of the jet engine (circa 1940's)[44]  have changed little over the 70+ years, 

the subsequent introduction of computing and electronics added various functionalities and tools which 

lead to 'emergent' functionalities arising from subsequent designs, as seen today in contemporary 

systems. Hepplemann cites the potential explosion of new technological opportunities and challenges, 

the majority of which require the use of specialist skills which understand this new 'technology stack', 

knowledge which will almost always arise from outside the company. Indeed, many software and 

traditional automation companies are expanding their technical offerings into the CPS field in the hope 
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to enforce existing use of their products in manufacturing system by developing ‘eco-systems’ of 

products which work harmoniously.  

Majumdar[45] discusses the potential of remote monitoring and intelligent management of 

facilities to reduce the maintenance cost in addition to preventing failures resulting from the inability 

to detect faults in a timely manner. Majumdar is primarily concerned with the use of cloud-based 

solutions for unifying geographically dispersed resources and making the information available to 

facility stakeholders whilst breaking down the management of a smart facility. 

Despite significant hype and industrial movement in this area, today there remains a lack of an 

organised structure for the CPS, making classification of systems, evaluation of architectures and 

selection of core technologies inefficient. In which case, the development of a ‘taxonomy’ of industrial 

CPS and smart factories, which is based on application requirements is suggested. The objective is to 

develop a taxonomic model into a multi-dimensional requirement space. By dividing the applications 

of CPS into industries or environments (e.g. manufacturing, aerospace, smart cities) do little to indicate 

the needs of the system. Further; each of the aforementioned industries have applications which must 

process huge data sets, some require real-time responses and others, unwavering reliability. 

Fundamental system requirements vary by application, as opposed to the manufacturing systems 

themselves, and different types of systems need different approaches. Ergo, envision the abandoning 

old industry-specific thinking and instead focus on the development of generic technologies over special 

purpose approaches. This paper seeks to touch upon some of the considerations which must be made in 

the development of such taxonomy. 
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2.4.3 SCADA Systems 

Supervisory Control and Data Acquisition (SCADA) is a term originated in the late 1960's as 

a control system paradigm. Used to remotely (remotely; but within the same facility) monitor and 

control physical devices and processes. It has found particular use in utilities, such as power stations, 

oil and gas, and in highly automated process manufacturing. It is a type of Industrial Control System 

(ICS), which are computer based systems that monitor and control industrial processes that exist in 

industrial sites. Some attribute the SCADA concept and development of the Programmable Logic 

Controller to the third industrial revolution, or Industrie 3.0. SCADA presents highly contextualised 

information of a complete facility behaviour, performance and condition. Existing SCADA systems are 

monolithic, and comparatively recently has the potential for distributed or network become available. 

By leveraging the lessons learned from a comparatively long time in industry, SCADA technology 

provides solutions to some of the pressing issues in the industrial internet of things space. These are;- 

 Techniques for the management of high-volume, high-velocity industrial applications 

 Standards and protocols for communications and security 

 Development of interoperability and hardware-agnostic integration of data intermodalities 

By using this existing work, the implementation and development of CPS or Industrie 4.0 

technologies in a discrete manufacturing facility would be found much quicker. The main advantages 

of the new SCADA/Industrie 4.0 paradigm is the ability to a) scale the system far wider, b) monitor 

more complex behaviours and implement more sophisticated control algorithms at the edge with fog 

computing c) leverage cloud computing and finally d) use next generation database and analytics a la 

'big data'. 

2.4.4 Information Architecture in CPS 

2.4.4.1 The Internet Protocol 

The Internet Protocol (IP) is the fundamental protocol in the ‘internet’, which generally means 

the global network of computers which are connected using IP. However, IP protocol is also used in 

smaller, isolated networks, which are often connected to the wider internet through firewalls. IP works 

as the network layer in the OSI model, a packet-based communication which allows data to flow 

seamlessly between IP and networks such as Transmission Control Protocol (TCP). 

2.4.4.2 Introduction to OSI Model for Industrial CPS 

CPS implementations are closely related to the growth and development of internet technologies. 

Such technologies have enabled the development of networks in many areas. As this has progressed, 

the International Standards Organisation (ISO) developed the seven-layer Open System 

Interconnection (OSI) model to help understand and design complex networks. The OSI model in many 



Chapter 2 

67 
 

ways represents a hierarchical control system in its shape and design which is familiar to systems 

engineering, although emphasis is clearly placed upon the connection or network. 

1. Physical: Basic properties regarding the interface between systems, including; physical 

connections, electronic properties and procedures in exchanging bits.  

2. Data Link: This provides a reliable data transport by using error detection and controlling data 

integrity.  

3. Network: The service for end-to-end data transmission.  

4. Transport: Transport layer defines a number of connection-focused services which ensure data 

is delivered in the correct sequence, alleviate errors across multiple links and in some cases 

attempt to optimize network resource utilisation. 

5. Session: This layer manages the interactions of end-user services across a network, such as data 

grouping and checkpointing. 

6. Presentation: Data exchange formatting and transformation for application programs.  

7. Application: The application interface between network and end-user programs.  

2.4.4.3 A Taxonomical Model of Industrial CPS 

There are three main types of CPS systems in use today and these align closely to the 5-Level 

CPS architecture.[5] The first type is that of an embedded system device, network connectivity and a 

form of User Interface (UI). The components work together by using the connectivity as a medium for 

data transmission from the device to the user and vice-versa. A second type adds a database system 

between the UI and connection, giving potential for multiples of embedded systems or UI’s. As the 

functionality increases, the typical outcome is that information extracted from the system can cover 

historical events and make abstractions from the data which are considered useful. The final type is the 

addition of control systems and actuators. In the case of actuators, these could be UI to interact with 

workers, providing the optimal action at the correct time.  

Enterprise Architecture (EA) is expected to influence the development of industrially-focused 

CPS. There are a number of developments in this field which seek to address the needs of CPS system 

architectures. The Zachman Framework[47] is an enterprise ontology, allowing a structured way of 

viewing and defining an enterprise. The Open Group Architecture Framework (TOGAF) and Federal 

Enterprise Architecture (FEAF) are also popular standards. CPS standardization attempts include the 

OneM2M[48] and closer to the manufacturing implementations is the Industrial Internet of Things 

Reference Architecture[49]  from the Industrial Internet Consortium. A simplified version of these 

architectures is as follows; 

Data Access, Domain & Hardware Layer - Conceptually this is the ‘bottom’ of the 

technology stack, where sensors, actuators, gateways and communications are used in an application-

specific manner. The application specificity also leads into clarifying what data output is required at 



  T.J.Helliwell 
 

68 
 

this level to address the broader goals of the CPS implementation. Depending on the sensor or actuator, 

activity in the time domain must meet the accuracy and sampling frequency required for effective 

analysis.  

Processing Layer – Processing takes place across the CPS, but this processing layer ‘in the 

middle’ should be considered a conceptual layer in which raw data is transformed into useful 

information. In some cases, data is simply placed in a particular context, calculated through simple 

functions or running a complex algorithm. Often this features some form of data analytics or control 

systems, these layers use the data arising from the previous layers to be placed together and analysed to 

extract actionable or useful information.  

Back-End Services and Delivery - Once data is manipulated, it must be made available to 

employees which will use it. The back-end services use database systems to store CPS device data in 

the raw format or otherwise uses contextualised information arising from the processing layer. but 

support additional functionality as discussed in part IV. It is advised that data analysis is considered to 

be part of the back-end, as data is useful only when presented in the correct manner, regardless of 

whether it is a simple bar chart of a complex analysis. The greatest business value for the majority of 

organisations arises from the service layer where the majority of actionable insights arise. 

2.4.4.4 Challenges of applied Cyber-Physical Systems 

McKinsey believe that ‘Factories’ have the greatest potential economic impact from full 

engagement with CPS interoperability (interactions between intermodalities).[50]  Security remains a 

concern for CPS implementations across applications, for consumers and industry alike. Although some 

frameworks have started to emerge for CPS in industrial environments, there is a lack of a standardized 

framework in the secure transmission of data across networks. Further work into CPS security is 

urgently needed. 
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2.4.5 System Requirements 
In this section is a discussion in regards to what system requirements there are for CPMS. 

Table 2.1 shows these aspects, followed by description in paragraphs.  

Table 2:1: System Requirements for Cyber-Physical Manufacturing Systems 

 Metric Architectural Impact 

Reliability / 
Robustness 

Continuous 
Availability 

Redundancy 

Backups 

Real-Time / On-
Line 

Response Time Peer-to-Peer data path (e.g. 
bandwidth, latency, protocol) 

Data Item Scale Number of addressable data items Selective delivery filtering 

Module Scale Number of interacting applications Interfacing control, API’s  

 

Runtime 
Integration 

Number of devices (each with many parameters and 
data sources or sinks that cannot be configured at 
development time)] 

 

Implementing a discoverable 
integration model 

Distribution 
Focus 

Fan-Out Must use one-to-many 
connection technology 

Collection 
Focus 

One directional data flow from more than 100 
sources (e.g. sensors) 

Requirement for a local 
concentrator or gateway 
design 

 

Reliability/Robustness; 'Continuous availability' is borrowed from the Information 

Technology (IT) sphere, and defines a reliability of 5 minutes of unavailability per year for enterprise-

class servers. In the case of time-domain specific servers, such as those in industrial applications (i.e. 

power stations, factories or aerospace systems), which cannot tolerate even a few milliseconds of 

unexpected downtime. A traffic control system is one such system which is an excellent example of a 

system which requires unparalleled world-class reliability. Reliability means considerations must be 

made for redundancy and immediately rules out some architectures. 

Real-Time, On-Line; Real Time is a subjective and application-specific definition. It is 

obvious that all systems should be fast, but in the case of cyber-physical systems, data is primarily 
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arising from the time domain. This often means that sampling requirements, and thus, data volume, is 

high. A real-time system will always [note; always - tantamount to reliability and robustness] respond 

'on time' - a term for maximum latency, typically expressed as the average delay plus variation or jitter. 

Design constraints arise when the speed of response is measured in a few tens of milliseconds or 

microseconds, as systems which respond faster than 100ms are usually peer to peer and this has a huge 

architectural impact. Intuitive Surgical, with the Da Vinci surgical robotic system, uses distributed 

control loops which run at rates up to 3kHz and control jitter to the tens of microseconds. Fortunately, 

control at the top of a hierarchical system does not require such a fast response. As a general rule, the 

granularity required reduces as the information becomes more generalized at higher levels of 

information. For example, information about the factory performance might utilize data originating 

from a high-DAQ system, but layers of abstraction in the form of algorithms reduce the data 

requirements significantly. In other situations, where granularity and fidelity must be maintained will 

use data queuing, compression and buffering considerations. 

Data Item Scale; Scale is the classic challenge for the CPS. Scale has a number of different 

dimensions; number of nodes, number of applications, number of data items, data item size, total data 

volume, amongst others. Available dimensionality between attributes must be maximized and retained 

– these have useful correlations with one another, for example, many data items have many nodes. Data 

Item Scales defines the number of different data instances that could be of interest to different parts of 

the system. For example, one single, fast, sensor produces a stream of data which is a single large data-

set, but remains one single data item. It follows that different applications or consumers are concerned 

with different data items, including those which are derivatives or highly contextualised. For example, 

a factory manager would be interested in a highly contextualised overview, e.g. Overall Equipment 

Effectiveness (OEE), or Asset Utilisation of given machine tools or entire factories. In contrast, a 

manufacturing engineer investigating part defects arising from machining processes would want to look 

at the historic vibration data for root-cause analysis. Both could arise from a sensitive accelerometer, 

but the needs of the consumers or properties of application are fundamentally different. Choice in 

addressable data items implies difficulty in sending the right data to the right place and has a obvious 

and clear effect on the system architecture. In the case of very high data item systems, architecture 

requires a design which allows selective filtering and delivery. There are two different approaches to 

this, run-time inspection which allows data consumers to choose data items themselves and 'data centric' 

designs which allow the infrastructure to understand and filter the data system-wide.  

Module Scale; A module is in this case is a reasonably independent piece of software. In 

industrial practice, a module is likely to be an independently developed application built by an 

independent team of developers. It follows that large projects built by many independent groups of 

developers require around half of the development time to be committed to system integration. In large 

systems, 'interface control' dominates the interoperability challenge. It is unreasonable and not practical 
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to enforce static interfaces. Intermodalities or ‘interoperability’ are a well understood problem in 

software development, and in the CPS paradigm this is likely to increase significantly. The database 

sector eases system integration by explicitly modelling and controlling 'data tables', allowing for 

multiple applications to access information in a controlled manner. In the case of standard information 

communication technology (ICT) systems, communication technologies such as Enterprise Service 

Buses (ESBs), Web Services, enterprise “queuing” middleware and textual schema like eXtensible 

Markup Language (XML) and JavaScript Object Notation (JSON) all provide evolvable interface 

flexibility. The latter are often not appropriate for industrial systems for performance and resource 

reasons. Databases provide storage for data at rest, although a real-time table can be used as the backend 

for live functions. A smart factory is a complex “system of systems” and must integrate many complex 

interfaces, so the system architecture itself must help to manage system integration and evolution. 

Borrowing from the database data table, data-centric middleware is a new concept which allows 

applications to interact through explicit data models.  

Runtime Integration; In the design and development of CPS systems there is a conflict of 

interest; namely, to allow for extensibility, scalability, portability whilst having a relatively static 

configuration to ensure system robustness. In the typical development of an enterprise application, 

systems are designed in their entirety and only minor considerations for modifications of architecture 

are considered. However, in the CPS paradigm, the fluidity and flexibility are a fundamental 

characteristic feature. One potential approach could be to use ’discovery models’, so data sources and 

users are automatically added and indexed. In this way, runtime maps of devices and data-relationships 

are created automatically. In a more practical description, suppose a new user wanted to ‘browse’ the 

system; the system must have all available data items indexed, whilst having permissions of read-only 

or control configured.  

Distribution Focus; ‘Fan out’ originates from logic gate design, inspiring this definition of a 

messaging pattern of information exchange which implies the delivery or spreading of one message to 

many recipients, and often in parallel. In the case of CPS, this will be a data item update; or, for those 

in systems engineering, ‘a world model’ update. ‘Fan out’ is atypical in information architecture 

systems, as many existing protocols work through the use of 1:1 connections. Indeed, even today, 

browser and web server relationships and some CPS systems use 1:1 protocol. However, it is clear that 

CPS systems will require efficient data distribution approaches Both this ‘distribution focus’ and 

‘collection focus’ leads to the same issues; management of more connection, sending the same data 

over each connection and associated bandwidth/latencies. Concurrently, it is expected that CPS systems 

need to distribute information to many more destinations than enterprise systems whilst having higher 

performance requirements.  
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Collection Focus; Inversely to the distribution focus, CPS must manage to collect data from 

many sources make use of it as appropriate. For example, data fusion is what is expected to be found at 

the lowest level of Data AcQuisition (DAQ) activities in the smart factory, and loosely defines an 

example of a ‘collection focus’. Such systems are growing in use for process monitoring or condition 

monitoring services. Data fusion is typically concerned with the development of algorithms to provide 

a layer of abstraction from the raw data. Alternatively, consider the use of cloud computing services for 

collection of many data sources at the highest level of manufacturing enterprise, where sub-systems are 

geographically distributed, for example, managing the supply chain or servitised business models. The 

fundamental concept of collection focus modules is moving information to common destinations rather 

that between. The classical ‘hub and spoke’ architecture is therefore lends itself very well to this 

objective.  

2.4.6 Databases for Cyber-Physical Systems 
Data is becoming a new standard to define corporate competitiveness; companies which fail to 

develop a data strategy will fall behind competitors who leverage the information effectively. The fields 

of business intelligence, predictive analytics and more specific term 'Knowledge Discovery in 

Databases (KDD)' all describe the precursor to the contemporary 'big data' paradigm. The premier KDD 

workshop was held Detroit, MI, USA, during the International Joint Conferences on Artificial 

Intelligence.[51]  During this time, a great deal of emphasis was placed on the development of expert 

systems, comprised of a set of rules, often arriving from human experience. However, the inflexibility 

of such systems, where decisions where based on specific, pre-existing sets of defined rules, lead to a 

search for systems which would identify similarities between problems in addition to updating their 

existing rule bases. It follows that these systems needed to 'learn' from their experiences, giving rise to 

the techniques and term 'machine learning', a multi-interdisciplinary subject with statistics, knowledge 

acquisition, artificial intelligence, databases, data mining, computer science and neuroscience. 

Databases are the mechanisms by which data is managed and organized in the broader CPS factory 

architecture. Databases have long since seen use in many areas, but in particular, enterprise architecture, 

web-services and today, CPS. 

2.4.6.1 The Relational Database Management System  

The traditional database model is the Relational Database Management System (RDBMS). 

Although this was not the first design of a database, it remains the most popular today, making use of 

the Structured Query Language (SQL). A database query is simply a request to the database for 

information, rather than interacting with the tables within the database itself. Another type of database 

is the NoSQL, schema-less databases; this is basically referring to lack of structure in the form of tables 

in these systems. NoSQL has come to mean ‘Not Only SQL’ and is closely related to the big data 

paradigm and technologies such as Cassandra or MongoDB. Such databases use key-value pair records 
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in a hierarchical tree structure as the framework to hold data. An example of such a record in JavaScript 

Object Notation (JSON) is given in Fig.2:8. 

 

2.4.6.2 Time Series Databases 
Previously, time-series databases or historians had a deeply specific remit of application, often 

in the use of SCADA systems. In this sense, time-series databases are not new; data generated by sensors 

benefits by being collected as time series. What is new, however, is that whilst existing industrial 

applications of such systems are normally narrowly defined, process-orientated and focused on 

maintaining or monitoring a defined current state or condition, they will normally use a consistent 

source or platform of data acquisition, and struggle to support other sources and are rarely scalable. 

Many applications are highly safety critical and therefore these systems required higher 

reliability and redundancy measures - indeed, this terminology goes some way to explaining the use of 

the health as per Engine Health Management (EHM). In the case of condition monitoring, data is 

sampled and run through pattern recognition algorithms of classification, regression or novelty flavours 

to detect specific damage indicators. The concept is that such systems can run on-line, autonomously, 

indefinitely to not only provide a historical record of behaviours, besides providing alerts or alarms 

once thresholds are breached. A smart factory extends this concept into far more data sources, producing 

a rich tapestry of potential relationships of between variables and knowledge to improve numerous 

performance measures within the manufacturing environment. A renewed interest in the digitalisation 

of industry, powered by cyber-physical systems, now leverages far greater scales and speed of data 

accumulation. Examples of time series databases (TSDB) are kx[52], InfluxDB[53] and  OpenTSDB[54]. 

Figure 2:8: A JavaScript Object Notation (JSON) Example 
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2.4.6.3 NoSQL & Big Data Technologies 

Big Data is a paradigm which spans business and technology. It refers to systems which manage 

datasets which are variable in type, frequently changing and large for conventional methods to address.  

Hadoop Distributed File System (HDFS)[55]  is a popular functional database module and is 

recognised as a de-facto system for big data. It is based on the concept that if a file is too big for a single 

computer, then it would be advantageous to divide the 'big' file into smaller files and distribute them in 

multiple servers (i.e. commodity hardware nodes). This affords the following advantages;- improved 

ability to store and process huge amounts of data quickly, greater fault tolerance (if a node goes 'down', 

then jobs are automatically redirected to other nodes), flexible with varying unstructured data types, it 

is a free and open-source framework and can be easily scaled.  
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2.5 Chapter Summary 

 Cyber-Physical Manufacturing Systems present the means to reach Industrie 4.0. By 

categorising the spectra of technologies, techniques and concepts, research across academia, 

government and industry may progressively move towards potentially revolutionary factories.  

 In order to support this movement, the next stage for manufacturing industry is to understand 

the strengths and weaknesses of specific factories to target a customised CPS implementation in those 

areas. In this case, the focus of the CPS system for Safran Landing Systems is into scheduling of their 

factory. However, in the general case, by doing a general audit, manufacturing companies can ensure 

that activities are rewarded with tangible effects upon the enterprise. This has a knock-on effect to 

encourage further deployment in terms of CPS maturities and increase the application into new avenues.  

 In the next chapter, the attention turns toward the theory and background underpinning the 

scheduling problem specifically, and the work in this chapter becomes simply what is regarded as the 

Cyber-Physical Systems Layer or “CPS layer” - the substrate for the system for monitoring, control and 

operations management though autonomous scheduling.  

 

 

  



  T.J.Helliwell 
 

76 
 

2.6 References 

[1]  E. Bryonjolfsson., A.Mcafee. (2014). “The Second Machine Age: Work, Progress, and 
Prosperity in a Time of Brilliant Technologies”. ISBN-13; 978-0393239355 

[2]  Statistica, “The number of smartphone users worldwide”. 
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ 

[3]  CNET. “Quirky egg reminder review”. 
https://www.cnet.com/uk/products/quirky-egg-minder/review/ 

[4] BBC. “CES 2017: LG fridge is powered by Amazon’s Alexa”.  
http://www.bbc.co.uk/news/technology-38509167 

[5]  Va´ncza J, Monostori L, Lutters E, Kumara SR, Tseng M, Valckenaers P, Van Brussel H. 
(2011). “Cooperative, Responsive Manufacturing Enterprises”. CIRP Annals – Manufacturing 
Technology 60(2):797–820. 

[6]  Agnieszka Radziwon, Arne Bilberg, Marcel Bogers, Erik Skov Madsen. (2013). “The Smart 
Factory: Exploring Adaptive and Flexible Manufacturing Solutions”. 24th DAAAM 
International Symposium on Intelligent Manufacturing and Automation, 2013. Procedia 
Engineering 69 (2014) 1184 – 1190.  

[7]  J.-S. Yoon, S.-J. Shin, and S.-H. Suh.  (2012) “A conceptual framework for the ubiquitous 
factory”.  International Journal of Production Research, vol.50, no. 8, Taylor & Francis, 2174–
2189  

[8]  D. Zuehlke. (2010). “Smart Factory—towards a factory-of-things”. Annual Reviews in 
Control, vol.34, no. 1, 129–138 

[9]  B. Hameed, F. Durr, and K. Rothermel. (2011). “RFID based Complex Event Processing in a 
Smart Real-Time Factory”.  Expert discussion: Distributed Systems in Smart Spaces. 

[10]  J. Lee., B. Bagheri., C. Jin., (2016). “Introduction to Cyber Manufacturing”. Manufacturing 
Letters vol.8, 11–15. 

[11]  Ricquebourg. V., Menga. D., Durand. D., Marhic. B., Delahoche. L., Loge. C. (2006). “The 
Smart Home Concept: our immediate future”. IEEE International Conference on E-Learning in 
Industrial Electronics, 23-28. 

 
[12]   MTConnect. https://www.mtconnect.com/ 
 
[13]  Kagermann H, Wahlster W, Helbig J. (2013). “Securing the Future of German Manufacturing 

Industry: Recommendations for Implementing the Strategic Ini-tiative INDUSTRIE 4.0.” 
acatech, Final Report of the Industrie 4.0 Working Group. 

[14]  D. S. Cochran., D. Kinard., Zhuming Bi. (2016). “Manufacturing System Design meets Big 
Data Analytics for Continuous Improvement”. 26th CIRP Design Conference. Procedia CIRP 
50 (2016) 647 – 652. 

 
[15]  L. MONOSTORI., B. KADAR., T. BAUERNHANSL., S. KONDOH., S. KUMARA., G. 

REINHART., O. SAUER., G. SCHUH., W. SIHN, K. UEDA. (2016). “Cyber-physical systems 
in manufacturing”. CIRP Annals - Manufacturing Technology 65 (2016) 621–641. 

[16]  National Science Foundation (2006) Workshop on ‘‘Cyber-Physical Systems’’, National 
Science Foundation, Austin, Texas, US. 

[17]  F. HU., Y.LU., A. VASILAKOS., Q. HAO., R. MA., Y. PATIL., T. ZHANG., J. LU., X. LI., 
N. XIONG. (2015). “Robust Cyber-Physical Systems: Concept, models and implementation”. 
Future Generation Computer Systems 56 (2016) 449–475 



Chapter 2 

77 
 

[19]  Rajkumar R, Lee I, Sha L, Stankovic J. (2011) “Cyber-physical Systems: The Next Computing 
Revolution”. Proceedings of the Design Automation Conference 2010, Anheim, CA, US, 731–
736. 

[21]  Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., Achiche, S. (2016). 
“Design, modelling, simulation and integration of cyber physical systems: Methods and 
applications”. Computers in Industry 82, 273-289. 
 

[22]  Lee J, Bagheri B, Kao H-A (2015). “A Cyber-Physical Systems Architecture for Industry 4.0-
based Manufacturing Systems”. Manufacturing Letters, vol.3,18–23. 

[23]  Babiceanu. R. F., Seker. R. (2016). “Big Data and virtualization for manufacturing cyber-
physical systems: A survey of the current status and future outlook”. Computers in Industry. 
Vol.81. 128-137. 

[24]  Hatvany J, Nemes L. (1978). “Intelligent Manufacturing Systems – A Tentative Forecast.” 
Niemi A, Wahlstro¨m B, Virkkunen J, (Eds.) A Link Between Science and Applications of 
Automatic Control, 2. International Federation of Automatic Control, Helsinki, Finland 895–
899. 

[25]  Hatvany J. (1985). “Intelligence and Cooperation in Heterarchic Manufacturing Systems.” 
Robotics and Computer-Integrated Manufacturing 2(2):101–104. 

[26]  Ayres RU. “Computer integrated manufacturing. Volume 1: revolution in progress”. London: 
Chapman & Hall; 1991. 

 
[27]  Koren Y, Heisel Z, Jovane F, Moriwaki M, Pritschow G, Ulsoy G, Van Brussel H (1999) 

“Reconfigurable Manufacturing Systems”. CIRP Annals – Manufacturing Technology 
48(2):527–540. 

 
[28]  Mori M., Fujishima M. “Remote monitoring and maintenance system for CNC machine tools.” 

(2012) 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering.  

[29]  Albert, M. (2009). “MT Connect Is For Real”. Modern Machine Shop Online. 
http://www.mmsonline.com/articles/mtconnect-is-for-real 

[30]  Lee. B.E., Michaloski. J.L., Proctor. F.M., Venkatesh. S., Bengtsson. (2010). “MTConnect-
based Kaizen for Machine Tool Processes”. Proceedings of the ASME 2010 International 
Design Engineering Technical Conferences & Computers and Information in Engineering 
Conference. 

 
[31]  Vandermerwe, S., & Rada, J. (1989). “Servitization of business: adding value by adding 

services.” European Management Journal, 6(4), 314-324. 
 
[32]  Delen, D., Pratt, D. (2006). “An integrated and intelligent DSS for manufacturing systems”. 

Expert Systems with Applications 30, 325-336.  
 
[33]  Koren. Y., Ni. J., Jin. X., Gu. X. (2015). “Manufacturing System Design for Resilience”. CIRP 

25th Design Conference Innovative Product Creation 36 135-140. 
 
[34]  Smith, D. (2013). “Power-by-the-hour: The role of technology in reshaping business strategy 

at Rolls-Royce”. Technology Analysis and Strategic Management 25, 987-1007. 
DOI: 10.1080/09537325.2013.823147 

 
[35]  Denkena B, Henning H, Lorenzen L-E. (2010). “Genetics and Intelligence: New Approaches in 

Production Engineering.” Production Engineering – Research and Development 1(4):65–73. 



  T.J.Helliwell 
 

78 
 

[36]  Denkena B, Mo¨ rke T, Kru¨ ger M, Schmidt J, Boujnah H, Meyer J, Gottwald P, Spitschan B, 
Winkens M (2014). “Development and First Applications of Gentelligent Components Over 
Their Lifecycle”. CIRP Journal of Manufacturing Science and Technology 7:139–150 

[37]  R. Hadar., A. Bilberg. (2012). “Glocalized Manufacturing - Local Supply Chains on a Global 
Scale and Changeable Technologies.” Flexible Automation and Intelligent Manufacturing, 
FAIM2012. 

[38] T. Dunning, “Time Series Databases in the Upside-down Internet – Whiteboard Walkthrough.” 
[Online]. Available: https://mapr.com/blog/time-series-databases-upside-down-internet-
whiteboard-walkthrough/. 

[39] M. Löffler and A. Tschiesner, “The Internet of Things and the future or manufacturing,” 
McKinsey & Company, 2013. [Online]. Available: http://www.mckinsey.com/business-
functions/digital-mckinsey/our-insights/the-internet-of-things-and-the-future-of-manufacturing. 
[Accessed: 15-Mar-2017]. 

[40] J. Womack, D. Jones, and D. Roos, The Machine That Changed The World. Simon & Schuster 
UK. 

[41] M. Porter and J. Heppelmann, “How Smart, Connected Products Are Transforming 
Competition,” Harvard Business Review, Nov-2014. 

[42] J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical Systems architecture for Industry 4.0-
based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23, 2015. 

[43] J. Heppelmann, “How the Internet of Things could transform the value chain,” McKinsey & 
Company, 2014. [Online]. Available: http://www.mckinsey.com/industries/high-tech/our-
insights/how-the-internet-of-things-could-transform-the-value-chain. [Accessed: 15-Mar-2017]. 

[44] B. Gunston, World Encyclopedia of Aero Engines, 5th Editio. Sutton Publishing, 2006. 

[45] S. Majumdar, “Cloud-Based Smart-Facilities Management,” in Internet of Things Prinicples & 
Paradigms, R. Buyya and A. V. Dastjerdi, Eds. Morgan Kaufmann, 2016, pp. 319–339. 

[46] International Organisation for Standardisation and Object Management Group, “ISO/IEC 
19505-2:2012,” 2012. [Online]. Available: https://www.iso.org/standard/52854.html. 

[47] J. A. Zachman, “Zachman Framework.” [Online]. Available: https://www.zachman.com/about-
the-zachman-framework. 

[48] “OneM2M: Standards for M2M and the Internet of Things.” [Online]. Available: 
http://www.onem2m.org/. 

[49] S. W. Lin et al., “The Industrial Internet of Things: Volume G1: Reference Architecture,” vol. 
1.80, p. 58, 2017. 

[50] J. Bughin, M. Chui, and J. Manyika, “An Executive’s Guide to the Internet of Things,” 
McKinsey Global Institute, 2015. [Online]. Available: 
http://www.mckinsey.com/insights/business_technology/an_executives_guide_to_the_internet_
of_things. [Accessed: 15-Mar-2017]. 

[51] W. Frawley, J. Carbonell, and M. Siegel, “IJCAI-89 Workshop on Knowledge Discovery in 
Databases,” 1989. [Online]. Available: http://www.kdnuggets.com/meetings/kdd89/. 

[52] “kx.” [Online]. Available: https://kx.com/. 

[53] “InfluxDB.” [Online]. Available: https://www.influxdata.com/. 

[54] “OpenTSDB.” [Online]. Available: http://opentsdb.net/. 

[55] Apache Software Foundation, “ApacheTM Hadoop®.” 2011. 



Chapter 2 

79 
 

 [A] The World Wide Web Consortium, 2006. Extensible Markup Language (XML) 1.0 (Fourth 
Edition). www.w3.org/XML. 

[B] The Internet Society, 1999. Hypertext transfer protocol – HTTP/1.1 

[†] Lecture on "Electrical Units of Measurement". (1883). Popular Lectures Vol. I, p. 73. 

  



  T.J.Helliwell 
 

80 
 

2.7 Bibliography 

K. Krumeich, D. Werth, P. Loos, J. Schimmelpfennig, S. Jacobi, Advanced planning and control of 

manufacturing processes in steel industry through Big Data analytics: case study and 

architecture proposal, IEEE Int. Conf. Big Data (2014) 16–24. 

Paulo Leitao, Armando Walter Colombo, Stamatis Karnouskos. 2016. “Industrial automation based 

on cyber-physical systems technologies: Prototype implementations and challenges” 

S. Russel, P. Norvig, “Artificial intelligence – A modern approach”, Prentice Hall, 1995 

P. Maess, “Artificial life meets entertainment: Life like autonomous agents”, Communications of the 

ACM, vol. 38, no. 11, pp. 108-114, 1995 

L. WANG., M.TORNGREN,. M.ONORI. (2015.) “Current status and advancement of cyber-physical 

systems in manufacturing”. Journal of Manufacturing Systems 37 (2015) 517–527 

B. BAGHERI., S. YANG., H. KAO., J.LEE. (2015). “Cyber-physical Systems Architecture for Self-

Aware Machines in Industry 4.0 Environment”.  IFAC-PapersOnLine 48-3 (2015) 1622–1627 

Edrington B.,  Zhao B., Hansel A., Mori M,. Fujishima M. (2014). “Machine monitoring system based 

on MTConnect technology”. 3rd International Conference on Through-life Engineering 

Services.  Procedia CIRP 22 ( 2014 ) 92 – 97. 

Wiendahl HP, ElMaraghy HA, Nyhuis P, Zaeh MF, Wiendahl HH, Duffie N, Brieke M (2007) 

“Changeable Manufacturing – Classification, Design and Operation”. CIRP Annals – 

Manufacturing Technology 56(2):783–809. 

 

Loshin. D. (2013). “From Strategic Planning to Enterprise Integration with Tools, Techniques, 

NoSQL, and Graph”. Morgan Kaufman. ISBN: 978-0-12-417319-4. 

 

Shin. S., Woo. J., Rachuri. S. (2014). “Predictive analytics model for power consumption in 

manufacturing”. 21st CIRP Conference on Life Cycle Engineering. Procedia CIRP 15 153-

158. 

 

 

 

 

 

 



3 Reconfigurable Scheduling through Discrete-Event Systems  

Planning, Prediction & Neighbouring Theory 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“To deal rapidly and fluently with an uncertain and noisy world, 

brains like ours have become masters of prediction.” 

- A. Clarke 
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3.1 Introduction 
Hierarchical Predictive Coding (HPC) or Hierarchical Predictive Processing (HPP) is an 

emerging theory in neuroscience, cognitive science and philosophy of mind. HPC argues that perception 

(in a human context) is not a passive, static, observation, but is instead an active process of construction 

that uses sensory evidence (data input, if preferred) that is heavily informed by existing knowledge. 

This is what is referred to in the preceding quotation. Over a receding event horizon, minds continuously 

construct imperfect predictions that are compared to incoming sensory data. Disjunction between the 

prediction and what is observed provide an opportunity to not only reconstruct the prediction based on 

new evidence, but most critically, provide data for models that underlie prediction to be improved. This 

is known as corrective feedback or error correction. These can be used to select ‘better’ top-down 

predictive models. Error correction is a core concept in Control Theory, where the model variables are 

inputs and outputs, but in this context, it is extended into an active framework rather than an a priori 

engineering exercise. Clarke[1] suggests that predicted future states must be generated in a pair with 

their respective degree of uncertainty.  

A very simple example of a top-down rule is the so-called Domino Illusion shown in Fig. 3:11, 

where the rule, in the human mind, that “light comes from above” drives perception in such a way that 

2D images are seen as 3D and in particular, express a completely different configuration.  

                                                      
1 Originally found by a presentation by Chris Firth, with the related book Making Up The Mind.  

Figure 3:1: Domino Illusion 
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A more striking contemporary example of HPC for human vision is this image of strawberries 

by Professor of Psychology Akiyoshi Kitaoka at Ritsumeikan University in Japan2. There are no red 

pixels in this image, Fig. 3:2, yet the surface of the strawberries take on a red colouring. This is an 

example of colour constancy whereby the brain ‘corrects’ based on prior knowledge; prior training data 

– that strawberries are red. An involuntary inference; the space in which a ‘strawberry’ is defined is 

mapped to the colour ‘model’ red. What is assumed to be purely perception (or input) is in fact the 

output of this top-down mapping.  

What this means for cyber-physical systems is that knowledge-based models and prediction 

should be used wherever possible as a means to infer the future physical or informational states to 

maximise performance and also to organise, structure and gather valuable incoming data.3 In addition, 

for some problems, prediction needs to precede control. Analytical philosophy suggests that the 

language used to describe mental processes –e.g.; planning, discovery, revelations, deduction, induction 

can all provide insights for AI research. Broadly speaking, any mental process could be considered a 

                                                      
2 The image itself in Fig. 3:2 is from https://twitter.com/AkiyoshiKitaoka/status/836382313160171521. 
3 Machine Learning (ML) suffers from low performance in lack of out-of-distribution generalisation from 

training data. An approach for solving this may well be a hierarchical, self-modifying structure whereby 

multiple models are held, selected and deployed dynamically based on the anticipated input, which is what is 

referred to here, and had alluded to in the prior chapter. As for a self-contained ML approach for enabling this 

type of generalisation ability, The Helmholtz Machine[33] was a model that loosely worked along these lines by 

actively changing the weights in a Neural Network. Federated ML is another approach that tries to address this. 

Figure 3:2: Optical Illusion - Strawberries 
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sequence of high dimensional inferences that are constructed along some existing knowledge-based 

scaffolding. Whereas control has connotations of input-output, with an interface between informational 

and physical (and any time discrepancies between these systems are managed in an ad-hoc manner), a 

computational, internal process have no such constraint.  

HPC argues that most perception is undertaken by predictive models and these models assume 

primacy over input signals. These predictive models are known as generative. A Bayesian or 

probabilistic view is that these generated predictions are priors; a Probabilistic Generative Model 

(PGM) that constructs predictions – plausible replication of the sensory data internally based on what 

has been learned, discovered or otherwise inferred or encoded previously. PGM systems must reach a 

critical point at which it ‘knows enough’ in order to capture the compositionality of the perception to 

some level of accuracy. If an acceptable level of accuracy is not achieved or level of error exceeds some 

tolerable threshold, this triggers a learning process to improve the respective PGM. Clarke[1] recounts 

an experience with Daniel Dennett in the 1980’s which serves to explain what a PGM is’; 

“Back in the mid-1980’s, Dennett encountered a colleague, a famous palaeontologist who was 

worried that students were cheating at their homework by simply copying (sometimes even tracing) the 

stratigraphy drawings he really wanted them to understand. A stratigraphy drawing – literally, the 

drawing of the layers – is one of those geological cross-sections showing (you guessed it) rock layers 

and layerings, whose job is to reveal the way complex structure has accrued over time. Successful 

tracing of such a drawing is, however, hardly a good indicator of your geological grasp!... 

To combat the problem, Dennett imagined a device that was later prototyped and dubbed 

SLICE. SLICE, named and built by the software engineer Steve Barney, ran on an original IBM PC and 

was essentially a drawing program whose action was not unlike that of the Etch-a-Sketch device many 

of us played as children.  Except that this device controlled the drawing in a much more complex and 

interesting fashion. SLICE was equipped with a number of ‘virtual’ knobs, and each knob controlled 

the basic unfolding of a basic geological cause or process, for example, one knob would deposit layers 

of sediment, another would erode, another would intrude lava, another would control fracture, another 

fold, and so on. 

The basic form of the homework is then as follows: the student is given a stratigraphy drawing 

and has to recreate the picture not by tracing or simple copying but by twiddling the right knobs, in the 

right order. In fact, the student has no choice here, since the device (unlike an Etch-a-Sketch or a 

contemporary drawing application) does not support pixel-by-pixel or line-by-line, control4. The only 

way to make geological depictions appear on screen is to find the right ‘geological cause’ knobs (for 

                                                      
4 It is interesting that Clarke’s the use of the word control forces us to acknowledge that he is referring to direct 

control as opposed to indirect control through the use of intermediary models, which was what control theory is 

about in practice.  
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example, depositing sediment, then intruding lava) and deploy them with the right intensities. This 

means twiddling the right knobs in the right sequence, with the right intensities (‘volumes’) so as to 

recreate the original drawing. Dennett’s thinking was that IF a student could do that, then she really 

did understand quite a lot about how hidden geological causes (like sedimentation, erosion, lava flow, 

and fracture) conspire to generate the physical outcomes captured by different stratigraphic 

drawings… the successful student would have to command a ‘generative model’, enabling her to 

construct various geological outcomes for herself, based upon an understanding of what causes might 

be at work and how they would need to interact to yield the target drawing. The target drawing thus 

plays the role of the sensory evidence that the student needs to re-construct using her best model of the 

geological domain. 

We can take this further by requiring the student to command a probabilistic generative model. 

For a single presented picture, there will be a number of different ways of combining the various knob 

twiddlings to recreate it. But some of these combinations may represent far more likely sequences and 

events than others. To get full marks, then, the student should deploy the set of twiddlings that 

correspond to the set of events (‘the set of hidden geological causes’) that are the most likely to have 

brought about the observed outcome. More advanced tests might then show a picture whilst explicitly 

ruling out the most common set of causes, thus forcing the student to find an alternative way of bringing 

that state about (forcing her to find the next most likely set of causes, and so on).  

To what extent is what Clarke describes the same as control or planning? It is difficult to say 

precisely. Planning captures the concept of alternatives more readily than control, but control anticipates 

the use of intermediate models in order to transform a set of state inputs to a certain state space outcome. 

Although it is difficult to conceive of a controller that can produce alternatives, planning relies on this 

principle directly. Both rely highly accurate models of the environment or problem. To possess a so-

called ‘generative model’ requires a kind of compositional, invariant representation that captures how 

underlying components will interact over multiple spatial and temporal scales in such a way that inputs 

 

Figure 3:3: Generative Models, where omega (Ω) is the origin; a) is a standard generative model, perhaps limited 

to constructing one path to an outcome. In b) it is probabilistic, and in c) colours are added it to suggest that the 

likelihood can be modelled as a pairing with a constructed path. 
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and outputs are understood as a sequence or an episode of interaction, again, close to the concept of 

planning. Overall, it seems that a GM is manifest via a chain of inferences, and since a single inference 

– a ‘link’ in the chain - is a single instance input-output mapping, this must be extended to work over 

differing scales. If one focuses on what is happening when a student used the “SLICE” program, it is 

clear that it is a hybrid of continuous-time, discrete-time and discrete event control models. I.e. the 

decision to turn a knob at a given speed, acceleration over an interval, the conjecture as to how long 

that interval is and finally, what knob(s) to use and in what order. The closest topics which meets these 

‘exploratory’ or ‘discovery-oriented’ demands completely are model-free Reinforcement Learning (RL) 

that use maintain multiple polices or model-based, population-oriented metaheuristics, in the context 

of declarative-constraint programming based simulations. These ideas guide the initial, broad strokes, 

of study and research. 

3.1.1 Remarks on the Future of Artificial Intelligence 

The principle strength of Machine Learning (ML) lies in the ability to learn from data. Current 

techniques rely on complex statistical modelling that largely avoids extracting and representing the 

high-level, general causal relationships/structure from training data. Deep Learning (DL) has been a 

significant step in the field of ML, on account of the ability to include a process of automatic feature 

extraction within the model itself via layers. The result is a network of hierarchically interacting rules 

that may be used as a function approximation. Other supporting developments have been the 

introduction of attention mechanisms, memory, handling of different data structures and inverting these 

models to generate high-dimensional data (e.g. images) from new inputs.  

There has been some industrial and commercial success that are based on supervised learning, 

where sufficient data is labelled. Classification errors that are made5 are superficial, however in some 

                                                      
5 A canonical example from computer vision is the manner in which models can fit to images that are purely 

noise and in other cases where images of noise are classified with high certainty. 

 

Figure 3:4: Intelligent systems of the future will be synthesis of two completely 

different forms of information representation and processing 
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critical applications they might render such approaches unfeasible, unreliable or unsafe. The main 

criticism is that models fail when they leave their training distribution. Models catastrophically forget 

previous learning when exposed to a new training process in a different. This is because they rely on 

low-level properties in the data that are progressively structured by the layers in the network that are 

combined in a non-interpretable manner. Machine translation problems (closer to the work here, in the 

sense that sentences have a sequential structure) shows that the sub-symbolic approach does not capture 

high-level understanding of semantic rules or meaning (presumably since they lack a model of the 

world), so translations are often incorrect. This is in contrast to previous attempts, which use a rule-

based, symbolic system that cannot be so easily learned by extracting structure from example data.  

Machine Learning is likely to focus towards learning architectures which extract causal 

relationships or structure and discover or create general abstractions where relationships between 

variables are symbolic. This relates to a hybridisation of symbolic/rule-based systems and sub-

symbolic/statistical approaches. It is clear that they are two quite different concepts, but have clear 

synergies where weaknesses in one are addressed by strengths in the other. Fig. 3:4 provides some 

terms to help conceptualise the two classes. 

A simple example of a low-level pattern generation is that of muscle motor commands. There is 

no way of explaining this parallel process of generating nerve impulses linguistically. Inversely, light 

entering the eye is first classified from the input pattern then reduced to a category or class; strawberry. 

Clearly there is significant interplay between low level systems that are grounded, contextualised and 

organised hierarchically by a higher-level abstract structure that captures a compositionality of the 

agent’s environment. This also seems to have a compression and decompression quality, vital for 

knowledge to be stored or communicated efficiently.  

Research in intelligent systems and Artificial Intelligence is likely to move from a control-or-

data theoretic philosophy of passive-and-reactive observation and input to a more active, experiential 

perspective. Systems that do not learn or discover must rely on prior knowledge that in some domains 

(those that are reconfigurable) will increase brittleness and severely limit performance.6 Reinforcement 

Learning (RL) is well placed as a theoretical starting point since it includes planning and reasoning 

within a data-driven perception and reward learning framework. Perception becomes an exercise in 

modelling and framing whilst planning, reasoning, experimentation is a process of extending 

knowledge by hypothesis testing using model execution or simulation. 

                                                      
6 This is known colloquially as the Knowledge Acquisition Bottleneck. This has since been reused in response to 

the explosion of interest in machine learning to the Data Acquision Bottleneck, but more specifically, labelled 

data. 
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3.1.2 Control, Systems Engineering & Computer Science   

Working on different problems, control almost always originates or arrives at a set of natural 

variables relating to a physical system or process whereas computer science will work abstract 

variables relating to a digital-or-cyber system or process. Systems that use both synergistically are 

typically precursors to, or belong to, the class Cyber-Physical Systems (CPS), e.g. robotics being a 

canonical example. Traditional control theory is a proveable, formal approach where in complex 

systems where extensive assumptions may be made regarding the system behaviour. It could be 

considered as a branch of applied mathematics, which has enabled controllers to be implemented using 

systems of relatively simple equations. More contemporary control or inference systems such Fuzzy 

Logic have since dealt with more informal systems, where systems have behaviour that are less easily 

described by equations, but retain the property of low computational demands by using more complete 

knowledge or models. Generally speaking, Control Engineering does not study computational 

complexity directly, since this aspect is captured during the engineering or constructive phase, where 

the computation is conducted as a knowledge-building or optimisation task to synthesise a controller 

for all anticipated state space in a given application. In light of the continuous progress of computation, 

these advantages are becoming steadily more obsolete -approaches that were traditionally an offline 

exercise in the engineering-of controllers can now, in some cases, be deployed in place of the controller 

itself. An example field is Reinforcement Learning (RL) which can be acknowledged a System 

Identification and Adaptive Control wrapped into a singular workflow. These ideas have influenced this 

work also, although in this case, the preference is placed on metaheuristic approaches, since these are 

more flexible, arguably more elegant and easily implemented in Discrete-Event Processes.  

It is worthwhile to explore further how systems engineering and computer science relate to one 

another to convey clearly that this work is itself a synthesis of both fields. A paper[2] by Lamnabhi-

Lagarrigue et al discusses how systems and control are “at the heart of information and communication 

technologies to most application domains”. The most interesting aspect of this paper is the summary of 

how the field is well positioned for “analysis and synthesis of complex systems”. They can be broken 

down into 4 main categories; 

a) Modelling and Analysis of the underlying physical phenomena along with the selection of 

sensors and actuators. 

b) Development of control strategies that enable intended behaviour in an optimal fashion 

while satisfying constraints and minimising resources consumed. 

c) Validation and verification of the control performance using simulation studies of a suite of 

models with increasing fidelity. 

d) Implementation issues. 
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It is clear immediately that these aspects are highly complementary with the competencies in 

computer science. The two fields will continue to merge together approach the same problems with 

often slightly differing approaches based on the central thesis of each field. Of the ideas presented, what 

stands out in particular is the concept of a “Convergence Paradigm” which is a reinstatement of the 

value of interdisciplinary research; “deep integration of knowledgebases, tools and techniques for 

discovery and most importantly modes of thinking among experts” … “to create new pathways for the 

creation of knowledge”. Lamnabhi-Lagarrigue et al see the main challenges across these 4 points as; 

size and scaling, modelling complex dynamics, uncertainties, distributed process phenomena, safety 

and reliability requirements, establishing the trade-off between fidelity and tractability (of models) and 

architectures/algorithms that ensure robustness, optimality, adaptability and stability. In 2003, Murray 

et al wrote “Report of the Panel on Future Directions in Control, Dynamics, and Systems”[3], and in this 

document discussed the need to develop tools and for modelling and control of “high-level, networked, 

distributed systems and rigourous techniques for reliable, embedded, real-time software” – clearly 

anticipating the emergence of Cyber-Physical Systems (CPS). In addition, it was acknowledged that the 

field of Information Technology (IT) was likely to merge also, which encapsulates Industrie 4.0 in 

practice; “substantially increase research in control at higher levels of decision making, moving towards 

enterprise scale systems”. Most relevant to this work however, was Murray et al; “dynamic resource 

allocation in the presence of uncertainty, learning and adaptation and use of Artificial Intelligence (AI) 

in dynamic systems”. On reflection (and/or hindsight), it is clear that computer science as addressed 

these issues more readily, particularly “higher-level” modelling. 

It is possible to speculate that prioritising mathematics and not adequately engaging with 

abstractions and layers has meant that the systems engineering field is not as well established in large 

and complex systems. Multi-layer architectures are seen across contemporary technology; low-level 

feedback controllers, high-level trajectory generation (including optimisation over a receding horizon) 

and supervisory control that accounts for complex temporal specification (both of which have been 

adopted independently here). Lamnabhi-Lagarrigue et al make some useful comments about CPS that 

help frame this work; “Cyber-Physical Systems focuses on designing systems that information and 

physics. It represents a better coupling of research in computer science, controls, communications and 

networking.” A better definition is to say that it relies on accurate models that are driven by information 

or data, and in the problem presented here, the information gathered (or input) is the state information, 

and the model is of course the model of the manufacturing system, and the output would be the control 

decisions from the synthesized schedule. Lamnabhi-Lagarrigue et al goes on; “Work in this area builds 

not only on work from the 1980’s in Discrete-Event Systems, but makes use of advances in computer 

science in the intervening decades (real-time systems, embedded systems and formal methods, leading 

to new approaches for analysis, design and synthesis…” It is notable that DES are mentioned here, most 

likely as a catch all for computer simulation, since DES are often the basis for simulation models, or if 
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it is referring to DES directly, this work is fully aligned in terms of long term research goals. A final 

remark is that it would broadly appear that innovation in the area of Cyber-Physical Systems is being 

driven by industry, possibly due to it is complexity, its multifaceted nature and the staggering 

commercial value, as mentioned in Chapter 1 and 2. Distributed high-performance computing, “big 

data” and Machine Learning (ML) are all the fundamental building blocks for Cyber-Physical Systems-

of-Systems (CPSoS), and the holistic issues (as opposed to fields in isolation) in regards to research and 

development will emerge from industrial experience. Ultimately, a modelling or design paradigm will 

emerge that will fuse all the issues inherent to CPSoS architectures.  

3.2 Background Remarks on Theory 

This section discussion covers some of the theory that inspired or directly utilised through the 

thesis. The original conception of the reconfigurable scheduling problem was that of a decision process; 

data that represented a state, a set of objects that are actions that affect the state, and the development 

of some mapping between the two that results in the most profitable or high performing behaviour.  

3.2.1 Markov Decision Processes 

Markov Decision Process (MDP) are a formalisation of sequential decision processes, where 

rewards (which allow for the indication of mapping of state and action associations) may be immediate 

or delayed. An MDP is an extension of a Markov Chain or Markov Process. The term Markov Process 

is preferred of the two. The name Markov originates from the Russian mathematician Andrey Markov. 

The Markov property or Markovian on a stochastic process can be defined in the phrase “the future is 

independent of the past given the present”, meaning that if the state 𝑆𝑡 (at this instant) history (prior 

states) may be discarded.  

𝛲[𝑆𝑡+1|𝑆𝑡] =  𝛲[𝑆𝑡+1|𝑆1, … , 𝑆𝑡]  (Eq. 3.1) 

To define a Markov Process, 𝑺 which is a finite set of states and 𝓟 which is the state transition 

probability matrix. For a Markov state 𝑆 and a successor state 𝑆′, the state transition probability is 

defined by: 

𝒫𝑠→𝑠′ =  𝛲[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠]  (Eq. 3.2) 

The 𝓟 is defined by the transition probability distribution from all states 𝑠 to their following or 

successor states 𝑠′, where the m rows are horizontal (which is the origin state) and the n columns are 

vertical (which is the successor state) denote these relationships. Each row of the matrix sums to 1. 

𝒫 = [
𝒫11 ⋯ 𝒫1𝒏

⋮ ⋱ ⋮
𝒫𝒏1 ⋯ 𝒫𝒎𝒏

] (Eq.3.3) 

 

 



Chapter 3   

91 

 

To move from a Markov Process to a Markov Decision Process, a Markov Reward Process can 

be seen as an intermediator model, as this superimposes a discounted reward function, which can be 

used to calculate state-value functions but does not include modelling capabilities to decisions. The 

most important aspect of the MDP for this work is the concept of a time-independent (stationary) policy, 

often denoted by a π symbol, which is a distribution over actions given states and fully defines the 

behaviour of an agent.  

𝜋(𝑎|𝑠) = 𝛲[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]   (Eq. 3.4) 

The MDP can be extended in terms of infinite or continuous state and/or action spaces. For 

continuous time problems, partial differential equations and the Hamilton-Jacobi-Bellman (HJB) 

equation. Table 3:1 shows the formal definition of a MDP. Further detail on the MDP formalism or 

Reinforcement Learning is out of scope for this thesis, although the concepts are referred to frequently. 

Table 3:1 Formal Definition of a Markov Decision Process7  

A Markov Decision Process is a 5-tuple, 𝑴𝑫𝑷 = (𝑺, 𝑨, 𝓟, ℝ, 𝜸)  where: 

𝑺 =  { 𝒔𝟏, 𝒔𝟐, … , 𝒔𝒎 } is a finite set of states, 

𝑨 =  { 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 } is a finite set of actions, 

𝓟𝒔→𝒔′
𝒂 = 𝚸[𝑺𝒕+𝟏 = 𝒔′|𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂]  is a state transition probability matrix, 

ℝ =  𝔼[ℝ𝒕+𝟏|𝑺𝒕 = 𝒔,𝑨𝒕 = 𝒂] is a reward function, where 𝔼 is expectation, 

𝜸 ∈ [𝟎, 𝟏] is the discount factor. 

 

Now, whilst the transition probability distribution remains recently defined and the MDP is 

being discussed, it is worthwhile to cover a basic and powerful principle that is exploited and expressed 

                                                      
7 Taken from David Silver’s lecture notes on Reinforcement Learning (RL). 

https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf 

Figure 3:5: Markov Decision Process is a tuple of S-state, A-action and R-reward. 
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in various forms and topical areas throughout the thesis within the context of MDP theory. Because for 

many useful problems it is difficult to represent the transition probability distribution explicitly, 

simulator models are used to represent the MDP by providing equivalent samples. The most common 

simulator form is that of an episodic environment simulator, in which episodes are produced (which are 

essentially manifest policies) with associated rewards from an initial state and action input-over-time. 

A far more powerful form of simulation is the generative model, which can step through the episodes 

and generate samples or instances of the next-possible-states (neighbourhood-by-neighbourhood), 

whilst a reward function remains available to states and/or actions. In practice, MDP are used as a 

framework for which learning can be achieved through interaction or experience. The decision maker 

is the agent and the system the agent controls (i.e. the controlled system) is the ‘environment’. The two 

entities coexist and interact over some arbitrary time period called the episode with a guaranteed 

termination at episode length e. In this work, the controlled system is the environment but retain the use 

of the agent as our controller. The environment is known as ‘fully observable’, i.e. it is Markovian. 

In Fig. 3:5, it is shown that an MDP is an interaction of the agent and controlled system over 

time, where at each time instance there is a state, an action (which can be NULL) and a reward; they 

coexist within the broader system and real-time. The system boundary is between these two entities. 

The MDP formalism uses reward(s) to indicate the quality of a sequence of states and actions or 

trajectory. These numerical values are optimised. The highest reward over an episode indicates the best 

sequence of actions, these actions can in turn be mapped to the state at which they should occur. This 

mapping in the case of Reinforcement Learning (RL) has been through use of function approximators 

such as Deep Neural Network (DNN). The training process of these statistical black boxes is an active 

field of techniques with highly involved credit assignment and learning issues. The great majority of 

applications do not have models generalise prior learning to new problems; they are not reconfigurable. 

This is the other extreme to traditional Control Theory, where models are developed or engineered to 

work within their operating ranges with any possible combination of continuously variable inputs.  

3.2.2 Scheduling 

Scheduling problems are often a high-level abstraction of a discrete control or optimization 

problem, relating to Systems-of-Systems (SoS)[4], Multi-Agent Systems (MAS)[5][6] and Distributed 

Systems (DS). Automatic generation of schedules without knowledge is compute-intensive; classically 

NP-Hard problem (non-polynomial time class of computational complexity). Beyond toy problems, the 

finite set of possible states is exceptionally large and it is understood that, for complex systems, solving 

them online without knowledge is unfeasible. What constitutes a complex system and online? Clearly 

these definitions need a quantitative definition, there is obviously a degree of model complexity and 

‘speed’. The question also leads into further work, how can the model complexity be reduced, how can 

the computational requirements be constrained? Is there a way of memorising previous successful and 

high-performing solutions to be flexibly reused?  
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A schedule is an event-driven control policy over some time interval that is optimized towards 

a mixture of emergent or cumulative properties and the occurrence of specific events. In planning 

parlance, the synthesised plan is called a policy. Unlike planning8, systems that are scheduled orient 

around sequencing tasks in concurrent systems and use categorical, symbolic relations between tasks 

and resources that are executed dynamically in serial or in parallel. The building of a schedule is the 

synthesis of a controller for a given episode of time. This is a clear widening of the definition. The 

‘schedule’ itself is a really a visualisation of the generated behaviour, often as a Gantt chart, which is a 

good way of showing the behaviour to human users. In contrast, machines or computers will want the 

policy in a string [or language], comprising of a standard alphabet [or words] of symbols, where each 

symbol represents a unique action at a given time.9  

Two terms, selected on account of their semantic generality define the fundamental components 

of scheduling problems; tasks and resources. A ‘task’ represents some contextual abstraction from some 

lower-level system. Once a task is instantiated or in-process on a given resource, the coupling may be 

called a fluent or semaphore. In either case, it gives the overall model significant representational power, 

particularly when Systems-of-Systems (SoS) need to be modelled. In computer programs; instantiation 

and deployment of specific controller or an on-line discriminatory statistical model, in hierarchical 

multi-agent robotic swarms; task decomposition for an individual robot, a manufacturing system; a 

machine, in a computer system; a processing unit. In a nutshell, ‘resource’ represents some finite 

affordance; utilization of a sub-system, whereas a task is a process model. Sub-goals can be elicited by 

breaking a goal into intermediate steps.  

3.2.3 Reconfigurablity  

Reconfigurablity or reconfigurable systems are systems which have the ability to repeatedly 

modify systems and processes or elements of systems and processes through some communication or 

control channel. Examples of reconfigurablity are extensive in computing, robotics, multi-agent 

systems, artificial intelligence and automated systems. For a given system, the term configuration space 

is used to define the finite states of the whole system (comprised of many state dimensions). It follows 

that a configuration is a single, multidimensional point in this high-dimensional space. In the case of 

special transition systems (such as the Timed Petri Net used to create ‘Scheduling Machines’, which 

are closely related to Finite State Machines (FSM) or Finite State Automata (FSA), discussed in the 

                                                      
8 Planning typically is concerned with single agents or entities, meaning that most actions are singular and have 

singular effects, i.e. there is not any particular interactions between them. This changes dramatically in planning 

for multi-agent systems, where the consequences of concurrent decisions must be managed, taking into areas 

reminiscent of game theory. Although manufacturing system scheduling is not ‘multi-agent’ per se, the fact 

remains that tasks (i.e. parts) within the system are competing for the same resources and in order to model and 

optimise, all tasks must be considered holistically.  
9 In this work it is called the Controlled Event Permutation (CEP) which will be defined shortly. 
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next section) the points in state space of the local neighbourhood of this single point are reachable states 

for the entire system.  

It has been observed that many scheduling problems that relate to real systems (e.g. 

manufacturing systems) retain a similar structure in that the task types and duration observed are 

reasonably consistent and deterministic, only the state data (e.g. number of tasks, resource 

configurations, etc) and the definition of the reward function or utility function10 [utility is considered 

a general term for objectives, goal states and optimization] change over episode instances. In order to 

exploit this, reconfigurablity has been a principle research objective. This means that the scheduling 

problem itself can change; a reconfigurable scheduling scheme is therefore a general process which has 

the capability to solve regions of similar scheduling problems by serving all possible ‘regions’ in state 

space in addition being flexible in regards to utility definition; the utility function may be changed but 

the general programmatic architecture of the framework remains the same. The concept of 

generalisation in ML seems to be closely related.  

3.2.4 Automata Theory & Models of Computation 

The Timed Petri Net - defined shortly - behaves like a large high-dimensional FSM which is a 

mathematical model of computation. The difficulty is in establishing the system boundary, since this 

field refers to inputs and outputs continuously. To give a brief introduction to this field, states change 

on inputs11 which can be partitioned into classes or semantically labelled.12 These are called state 

transitions which provide the ability to model dynamic processes. In regards to modelling, there is a 

type of equivalence between a deterministic and a non-deterministic FSM. In both cases, it is a variation 

of the input only, for a non-deterministic input can represent the unpredictability of that input. The 

similarity between a non-deterministic FSM and a Markov Decision Process (MDP) is notable; inputs, 

if they have an associated probability distribution appear to be distantly related. This area of research 

is heavily fragmented, but appears to have some very interesting avenues for further work in regards to 

Discrete-Event Process optimisation. For example, in the case of model reduction13, the Deterministic 

Finite State Automaton Minimisation (DFAM) is an area of research that aims to replace a given FSA 

with an equivalent, model-reduced FSA; both define the same state space. The DFAM process involves 

removing the unreachable and non-distinguishable states. The main extension in Timed Petri Nets is 

                                                      
10 There are a number of terms and notations used. For many cases, it depends whether the system is attempting 

to maximise or minimise functions, so the term reward or utility makes more sense in the case of maximise and 

for cost it is a minimisation process.   
11 Inputs are standardised from a language, i.e. a set of symbols and a syntax. 
12 For example, the actions in the TPN are called controlled events (because automated scheduling is being 

executed by an agent who can ‘take’ actions). It is convenient that the ‘effects’ of the ‘actions’ are labelled 

uncontrolled events which the agent cannot control. Unfortunately this can make it confusing, especially 

because the system boundary seems to change (for example, are the uncontrolled events really input, or are they 

arising from within the system?) the main point is that state transitions are the basic dynamic process, and the 

different partitions are a way of grouping these transitions depending on what is driving them. 
13 This may be an approach for reducing the model complexity and associated combinatorial state explosion. 
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most evidently the inclusion of time and the implications of combinatorial choices that reduce the input 

set to those that are identified as ‘feasible’, ‘admissible’ or ‘acceptable’ in the lookahead process or 

neighbourhood generation. Applications of these types of models include Specification & Description 

Language (SDL) developed by the International Telecommunication Union (ITU). Another closely 

related theory is that of the Mealy Machine, which is a Deterministic Finite State Transducer (DFST) 

where for a given state and input, there is only one transition. Finally, and potentially most related is 

the Semiautomaton which is a Deterministic Finite Automaton (DFSA) having inputs but no output. If 

the semantics are replaced with operational or system-theoretic concepts, this field covers what are 

known generally as ‘transition systems’. With further work, a solid background in automata theory and 

how it relates with Temporal Logic would be useful. Another area still is that of Kripke Structures, 

which is a form of model checking that relates closely with many of these fields. Kripke Structures and 

are similar to simulated Timed Petri Nets in that they attempt to represent that behaviour of dynamic 

systems with the inclusion of ‘labelling’ or ‘relabelling’ process which was independently developed 

during this research. Reconfigurability arises continuously in automated systems, and the field of 

automata theory is closely related and plays a significant and varied role in Artificial Intelligence (AI) 

and formal verification. The concept of input strings or languages seems to be very similar to the 

concept of traversing configuration space. The visualisation of these traversals can be shown as a De 

Brujin graph, again, an important commonality that should be explored. 

3.2.5 Online, Offline & Real-Time 

There is a classification exercise whereby a given computation task or optimisation 

framework14 is said to be either online or offline. The definition preferred is utilitarian; “fast enough to 

be useful”. The literature seems to have no agreed upon definition of these terms. This distinction is a 

matter of degree since the online optimisation process takes some time to complete before the results 

are presented, whilst offline optimisations are often completed prior to use or whilst they are still useful. 

In which case, as to whether an approach is offline or online is dependent on the application. Even 

control systems with a standard input-output, there is some time delay that must be managed 

(presumably by the covered by the engineering exercise that has been undertaken in their development), 

but broadly speaking, these systems are used in the most time critical applications and are subsequently 

computationally lightweight. To summarise is to say it is highly application specific; manufacturing 

systems are cripplingly slow at the supervisory level compared to relative to microcontrollers and 

computer systems schedulers. However, this opens the opportunity to take on far more complex 

                                                      
14 These appear in different fields. For example, in simulation and computer game development, lighting effects 

are typically done offline, and the data, once computed, is just placed into the ‘map’ as if it is static. Recently, 

there has been developments to do this online, allowing the lighting in the map to be dynamically updated. In 

regards to optimisation, only a handful of optimisation applications are focused on online implementations, the 

best example being path or trajectory planning and optimisation in robotics. Both of these examples ties back to 

the concept of reconfigurabiltiy.  
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scheduling optimisation problems as informed searches, rather than in computers, where processor 

scheduling are using basic heuristics15 to guide the assignment and execution of processes to resources. 

For these complex operational applications, where the system presides over some level of 

reconfigurablity and complexity, in the context of planning and scheduling, the delivery speed is the 

amount of time it takes for a search process to find at a minimum a single instance feasible or valid 

solution where it satisfies the request or query, or can be evaluated comparatively in a population where 

there are multiple instances of solutions. Solutions in this context are a plan or schedule. The concept 

of delivery speed is an important one if agent controllers that search or discover are to be deployed in 

real-time systems where uncertainty and disruptions severely change the state or configuration of the 

problem, and what is required is a suitably fast response time.   

Assuming a system model is fixed, besides algorithm design, parallelisation and other 

performance issues that relate to computational complexity [such as software and hardware selection], 

is in the selection of the episode length. The episode length is tantamount to a horizon of planning that 

is evaluated. In the case of aggregates or summaries of behaviour (actions, events, states) that quantify 

the evaluation, what is optimal in a shorter episode length could be a completely different set of 

decisions to what is optimal in a longer episode length. An animal said to be in a high surprise state 

would use purely inferential control processes based on instinctive behaviour like a reflex, and slightly 

higher up the continuum, an animal approached by a predator uses a short episode length in order to 

plot or plan an escape route, and the other extreme could be a plan over multiple human lives. It follows 

that the computational resources will dictate how the balance is maintained for a given application. 

3.2.6 Computational Concurrency & Parallelisation 

The parallelisation of processing unit has enabled a recent [arguably slower and more difficult 

to capitalise upon] continuation of Moore’s Law. Parallelisation is seen as the only real credible near-

term approach to speeding up computation in the current processor architecture. Nonetheless, many 

programs or frameworks either do not use parallel processing, or do not do so to its full extent. The 

difficulty is in the design of programs to make use of distributed processing that avoid the 

communication overhead – an extended ‘Von Neumann bottleneck’.  To write a parallel systematic 

search program would be far from trivial, since the amount of information passing between processing 

cores would be significant. On the other hand, multiple stochastic search programs occurring separately 

are data independent, they are operating within different “universes”; in which case they can easily be 

made to run in parallel. Each universe presides over different simulation bifurcations, the resultant trace 

                                                      
15 These are heuristic along the lines of; Round Robin Scheduling which gives processes a fixed amount of time 

on a resource, Priority-Based which assign a value representing priority, and even simpler ones such as First-

Come-First-Serve and Shortest or Longest Job First. It is essentially a simple rule that is used, perhaps the rule 

changes depending on the state of the task queue or other aspects. The main point is that it’s not enumerating, 

searching and optimising the possibilities in the same way suggested in this thesis. 



Chapter 3   

97 

 

or history is normally unique16. In the case of simulations, if each processing core is to conduct a 

simulation, then after each parallel simulation ‘wave’ or ‘superstep’, a synchronisation step or ‘barrier’ 

must take place in order to share useful information from one core to another17. This would be necessary 

if the program is to make use of population-based metaheuristics, even if it as simple as ‘sorting’ the 

individual solutions and passing exploitable information (from the prior population) to the cores for a 

new population. If each processing core is responsible for providing a single individual solution, the 

number of universes is directly related to size of the initial population on the first iteration. In this thesis, 

only parallelisation on CPU cores was established, no attempt to synchronise them took place. In further 

work, in addition to synchronisation, an extensive investigation into the use of General-Purpose 

Graphical Processing Units (GPGPU) for parallel simulation and using CPU as the supervisor for 

synchronisation and information collation and distribution may be an interesting avenue. In a later 

chapter metaheuristics, combinatorial search and declarative programs for constrained optimisation are 

discussed with particular consideration on how parallel computing can be used. 

3.2.7 Temporal Logic 

Temporal Logic appears in philosophical logic and in computational mathematics. In both cases 

Temporal Logic to provide the ability to reason about time and temporal information using formal 

representations. It has been studied and developed by logicians, computer scientists and Artificial 

Intelligence (AI) practitioners, where the latter is of principle relevance. Outside of philosophical 

applications, it has been used (directly or indirectly) for definition of semantics in temporal expressions 

seen in natural language, in computer science, as a technique that supports formal specification, 

verification of computer program and system executions, and finally, in AI, it has been used to encode 

and reason with temporal knowledge.  

The core idea, which ties into the treatment of Discrete-Event Systems (DES) in this thesis, is 

the “problem” that future state transitions or statements about future events that are neither necessary 

nor impossible can have definite truth values. The concept of using ‘possibilities’ remains to be seen 

adequately in AI, despite the fact this is a source of great modelling power18. An example of a machinery 

or resource failure is an exogenous event; it will either happen or it won’t, and the overall advantage of 

this knowledge is that this issue raises a bifurcation – both (or more) possibilities can be 

enumerated/evaluated/computed whether they occur or not. This results in framework that conjectures 

hypothetical events within a framework of evaluation and memory so as to elicit new, useful 

                                                      
16 To explain what is meant by normally unique - It is not fully unique since it cannot be guaranteed that a 

stochastic simulation won’t repeat the exact same sequence of controlled events of another simulation. 

However, it is exceptionally unlikely, based on the combinatorial state explosion and the uniform probability 

distribution selection. 
17 A useful model for considering parallel algorithm or program design is the Bulk Synchronous Parallel (BSP) 

which directly considers the issues regarding synchronisation and communication.  
18 The modelling of possibility – where the future is not determined - seems to be only possible using logic, 

which is not in favour at the current time in AI.  



  T.J.Helliwell 

98 

 

information. In this manner, the respective agent or control system can be “pre-prepared” for either case 

to be realised. In practice, it is possible to conceive of an agent that, with unused computational 

resources, could conduct search and optimisation processes until some threshold is reached, which is 

then followed by using the synthetic data (from the search and optimisation process) to build a flexible 

knowledgebase that will ultimately be useful in cases of disturbance where control is required, but 

sufficient time for a full search is unavailable. This is discussed in chapter 8, further work. 

The historical basis of Temporal Logic originates from the late 1950’s by Arthur N. Prior[7], 

who preferred to call it Tense Logic. There have been a number of comparatively recent studies of 

Temporal Logic (see [8], [9], [10], [11]). Some of the discussion in Temporal Logic covers whether 

time should be considered as [time]-instant based or [time]-interval based, and decisions regarding 

whether time should be thought of as discrete, continuous or dense19. Clearly in engineering the 

approach is predetermined by the modelling convention used, many systems require the use of 

continuous time-domain mathematics. In this treatment DES, the issue of whether time is instant based 

or interval based is folded by using real-valued integers and a standardised ordering of events on a given 

time instant. This is mirrored in later, applied treatments of Temporal Logic. Amir Pnueli, who went on 

to receive the 1996 ACM Turing award, proposed the Linear Temporal Logic (LTL) in 1977 [12]. Only 

later did the concept of branching time appear, where each branch depicts an alternative future 

possibility which are used extensively in computer science for model checking.20 The branching time 

variant is Computation Tree Logic (CTL) that results in a ‘tree-like’ structure, where each branch is a 

different future. The Stanford Encyclopaedia of Philosophy[13] defines the CTL clearly; “trees are 

naturally obtained as tree unfoldings of discrete transition systems and represent the possible infinite 

computations arising in such systems”. The branches are referred to as both histories and as paths, 

where the instances defined by the path are states. Hansson & Jonsson extended CTL with probabilistic 

quantification with Probabilistic CTL (PCTL)[14] and later in the thesis some observations are made 

about how probabilistic weighting can be used to direct or control search. It is notable that in AI 

applications, Alur et al[15] attempted to further generalise and extend CTL into Alternating-Time 

Temporal Logic (ATL), and this is cast as a methodology for strategic temporal reasoning in multi-

agent systems. The “behaviour” of ATL processes are equivalent to the paths in the Timed Petri Net 

program (or generative-model), where each path is a sequence of states. 

The background to Pnueli contributions in the application of Temporal Logic was for 

specification and verification of reactive and concurrent programs and systems. In the case of the 

former, reactive systems, where the computations are non-terminating, possible executions must be 

formally specified and verified. In the case of program concurrency where (𝑛 ≥ 2) processes execute 

                                                      
19 Dense appears to mean that the time variable is perfectly spectral, i.e. there are infinite partitions between any 

two instances of time.  
20 It would seem that this is no coincidence that the field of model checking has appeared again. 
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in parallel, interaction and synchronisation, again, must be formally specified and verified. The 

execution of the Timed Petri Net elicits formally specified and verified ‘control permutations’ that must 

model interactions, dependencies, choice. What has been very interesting is that the work by Manna & 

Pnueli ([16], [17], [18]21) has been in some cases replicated independently in this thesis; concepts such 

as eventualities or causality, or invariance and fairness. Rather than a systems engineering discipline, 

the AI field developed similar approaches for agents to model, represent and reason about the world- 

such as Lamport’s The Temporal Logic of Actions (TLA)[19] and in Event Calculus (discussed next), 

which introduce the useful idea of a fluent, which is a proposition that are used to describe aspects of 

state that change over time. AI has been the main use case of Temporal Logic, leading to a huge amount 

of academic work that has been condensed by Fisher in a number of books ([20], [21], [22]). 

3.2.8 Event Calculus 

Event Calculus is a closely related field that uses a logical language to represent and reason 

about dynamic processes through events and state effects. Although it is very close in principle to 

Temporal Logic, rather than using predicates, it uses linguistic ‘functions’, leading into readily usable 

applications since this syntactical style is easily translated into programming languages22. Most of the 

work which has made Event Calculus well known has been by M. Shanahan, who was motivated by 

techniques that have the ability to represent actions and their effects. Prior to Event Calculus, and 

putting Temporal Logic to the side, a formalism called Situation Calculus by McCarthy & Hayes[23] 

that used first-order logic formulae. Both use a concept of a fluent, which is a condition-over-time that 

is subject to change – the idea being that a process model can be defined with natural language rather 

than mathematical equations exclusively23. One of the aims of Event Calculus is to address the ‘frame 

problem’ which is “problem of representing what remains unchanged as a result of an action or event”24.  

                                                      
21 It is notable that this an unfinished trilogy; the final book has only three chapters that were completed by the 

pair. 
22 Logic programming, in particular, with Prolog being the canonical example. The best example of these types 

of functions being used in applications is in Ghallab, Nao & Traverso’s APAA [34]. 
23 Process models are typically a system of scalars, or propositions that have truth value variation.  
24 This is from the book by Shanahan [27]. This issue arises because rather than a closed domain of discourse, 

AI aims to operate within an open domain of discourse.  
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The ramification problem is about capturing indirect consequences, the general assumption that 

only events that are causally connected change, whereas the rest of the system remains unchanged. The 

difficulty in representing causality is the foremost weakness in the existing trend of Deep Learning 

(DL), which is why there is likely to be a resurgence in interest for hybrid architectures.  In the case of 

scheduling using Timed Petri Nets, the frame problem is addressed by the ‘logical graph structure’ itself 

providing a closed domain, allowing for both non-changes and consequences to be captured. Kowalski 

and Sergot introduced Event Calculus[24] as a logic programming formalism. Shanahan’s first 

conference paper[25] was followed by a refinement and simplification six years later by Kowalski[26], 

prior to Shanahan’s further work[27][28][29]. Event Calculus has the basic function of attempting to infer 

“what is true” given the state model, events (at given time instants)25 and actions, and the effects of 

actions.26 It is notable that the terms “state model” or “state representation” is not used by Shanahan in 

“The Event Calculus Explained” [30], which is an attempt to be more general or abstract. The diagrams 

in Fig. 3:6 are a re-created from Shanahan, but with a variation in terminology; “what happens when” 

is the event register, “what is true when” is the state model and finally “what actions do” is the causal 

structure.  These diagrams are used to illustrate what the Event Calculus attempts to do; the idea of 

‘logical machinery’ is shown as the nexus of creating prosteri information from a priori information. 

This concept covers a great deal of ground in regards to classifying intelligent systems in an abstract 

manner, so it is worthwhile to cover what these different types of logical reasoning are. In Fig. 3:6 (left) 

is deductive reasoning which takes the causal structure and the event register as a collection of 

statements that hold completely over a closed domain of discourse to reach necessarily true conclusions 

regarding the state model. This type of logical reasoning is evidently useful in prediction or projection 

tasks, where hypothetical events - “what if” - need to be contextualised in terms of state27. This type of 

                                                      
25 This is later called the Event Register - a dynamically updated data structure that can be added to, queried etc. 
26 Actions and their effects is analogous to causal structure.  
27 In very simple terms, we can enter into new possible states; given an initial state, the causal structure and a 

sweep of events. Some events will not be able to occur, but in those that are ‘feasible’, it will return a new state. 

If the feasible events are memorised, this is the neighbourhood discovery process, in “lookahead”.   

Figure 3:6: Three Forms of Logical Reasoning in Event Calculus 
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reasoning, conducted recursively, will generate a sequence of states and outcomes. In the case of 

abductive reasoning, central in Fig. 3:6, the state model and causal structure are inputs to output a 

possible event register. This can be seen as a “discovery” or “search” of possible sequences of action 

for a given outcome; this is equivalent to a planning process where the “event register” is a policy28. 

Finally, in Fig. 3:6 (right) is inductive reasoning, where the causal structure or rules account for the 

observed information from state and the event register.  This allows for modelling, system 

identification, theory construction or a process of learning. 

3.3 Discrete Event Systems 

3.3.1 Introduction 

In this section the foundations for the concept of simulation29 as a search in the space of ‘rules 

over time or sequence’, similar to language in that are exceptionally simple computer programs is laid. 

Discrete Event Systems (DES) are particularly interesting since they may represent a simulated discrete-

event process or a program as previously mentioned. They are in many respects a model of computation 

since a Turing Machine is a Discrete Event system itself; the DES may be considered a ‘virtual 

machine’, and what is lead into here is a ‘scheduling machine’ that is general purpose for its application 

and reconfigurable. The first remark is that the DES model of a controlled system (in RL this is called 

the ‘environment’) is held as a component in an autonomous agent’s control system; by retaining this 

model, the controller function may discover a good policy regardless of the configuration of the system 

by using the model as a quick, internal search process. This is exactly the same approach that is used in 

path or trajectory planning in robotics. In this section (3.3) this concept is discussed, introduce DES, 

introduce a class of DEDS called Petri Nets and explore how simple manufacturing systems may be 

represented by a Petri Net.  

To reiterate the project goals, the purpose of the agent is to provide decision support to the 

informatics layer (with or without human input), based on the data it receives from the informatics layer 

and concurrently, the cyber-physical manufacturing system. Another way to consider it is as a 

computer-based (or “AI”) factory manager which assigns tasks to subsystem; as to whether the control 

or action is physically undertaken by a human operators or automated system is not important, since 

these are lower level actuators, but rather to operationally control and globally optimise the overall 

performance of the controlled system by orchestrating the events of the manufacturing system at a 

higher level. To achieve this, it must have a model of the manufacturing system, which is represented 

using DES formalism. The level of abstraction that is used here (in a manufacturing system context) 

                                                      
28 A policy in a particular representation or visualisation is equivalent to a schedule. 
29 The concept of simulation and a program is used interchangeably; since computer simulations are a subset of 

all programs. Further, it is a useful way of thinking about simulations as a ‘program-based model’ since they are 

highly flexible whilst including a great deal of detail. This becomes particularly pronounced when it comes to 

defining a search space. Declarative programming touches on these ideas, as discussed in the metaheuristics 

chapter. 
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means that events that define state transitions, where the system enters into new configurations are 

routing decisions – this is a singular mapping from the set of all parts and the set of all operations on 

those parts in time. In cases where a model must be learned from data, rather than knowledge,  uses the 

Markov Decision Process (MDP) and a collection of supplementary algorithms used in Reinforcement 

Learning (RL) used for finding the ‘model’ itself, and representing it using some statistical black-box, 

which then can be inverted and used as a controller. Although in some cases, the learned statistical 

model will be capable of managing different areas of state space. Note however that the generalisation 

ability is limited - the model found by a RL workflow guarantees high performance only within the 

remit of the episode that was explored and learned. Whereas in this work, the DES model serves as a 

transferable knowledge-based model that is fully general, invariant - it captures all the necessary 

information to allow the computer to search possible control sequences and evaluate them regardless of 

its initial configuration30. The weakness of this approach is the definition of the model and the 

subsequent complexity of searching the space that the model defines. If you prefer to think of this as a 

trivial simulation, then do so – to think of any compressed knowledge representation (such as a 

simulation) that can be computationally efficient when brought to bear on a new problems as an 

experimental or experiential process is a useful base for thinking about intelligent systems. 

 The main area of study for traditional or classical control theory is in continuous-time-driven 

systems; systems that are modelled by differential or difference equations. Although the field has 

expanded into a more general field of applied mathematics, such on developing algorithmic processes 

of finding structure in data (e.g. system identification) and representing it in an inferential way. 

Nonetheless, some systems are best modelled using discrete events, in doing so, the scope extends to 

the domains of categorically discrete, configurable systems such as supply chains, manufacturing, 

supervisory control of robotics, computer/communication networks are covered. Such systems require 

a different modelling convention that is capable of describing systems that evolve dynamically in 

accordance with events which occur at unknown, irregular time-intervals, and for use in Cyber-Physical 

Systems, the “killer application” in the near term will be the automatic aggregation and organisation of 

time-discontinuous sources of data31. Systems of this type have been covered mostly by the field of 

Computer Science although the blurring of concepts between fields is one of the features of Industrie 

4.0. DES and vis-à-vis discrete-event models, as with any model or abstraction, certain features are 

omitted - almost all DES are actually a hybrid system that abstract from or encapsulate other dynamics 

that are best modelled using completely different set of techniques. It would be fair to say the DES are 

used at a higher level of abstraction, are complex, meaning that they are comprised of multiple 

                                                      
30 It will represent all possible state space at an acceptable level of accuracy for scheduling applications in the 

Safran Landing Systems case study.  
31 This data may well arise from system dynamics that are best modelled using other approaches. The suggestion 

here is that tabular datasets must be automatically generated and labelled using the acquired data. This is in 

order to manage the many models that relate to different processes and their distributions. 
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interacting elements and have a coarse, exceptionally large, categorical topology. They have a state 

space defined or described in logical or symbolic (non-numerical terms) values that cannot be readily 

placed on a continuum and be related to one another on a continuous spectrum. They are resistant to 

analytical or mathematical reductionism that exploit regularities. As mentioned, because they are a 

model of computation, they are programs themselves, aspects of the system may be modelled by real 

numbers - these values change in response to events, but their mappings vary between the sparsely 

connected and the fully connected. Mentioning programs and numerical variables takes us back to the 

idea of a simulation. The principle advantage of using a Discrete-Event level of abstraction is that 

dynamics are exclusively causal- other dynamics are processes occurring at higher or lower levels are 

hidden. DES are causal (i.e. represent a cause-effect relationship) because of their reversibility, show 

covariation (i.e. n > 1 variables change at the same time instant or changes in the independent variable 

are associated by changes in the dependent variable, aka connected variables), show temporal 

precedence (the cause must come before the effect) and finally, by ruling out alternative causation of 

the observed effect. The applications of reversibility will be covered only in the Further Work chapter.  

There is a small collection of mathematical representations for analysis and control that are 

capable of capturing the essential features of discrete, asynchronous and stochastic events. Whereas 

classical control theory has well accepted input-output or state variable models for analysis and control, 

in DES there are a collection which are often used in conjunction by breaking down the problem into 

subproblems and applying formalisms as discussed in 3.23, such as Finite State Automata (FSA) / Finite 

State Machine (FSM) and in addition, event languages, action description languages, action model 

learning, max-plus algebra, predicate algebra, semi-Markovian processes and queuing networks.  In 

this work the main formalism used is Petri nets which is extended and combines some of the 

aforementioned theories. The concept of a language to control the generation and traversal of a system’s 

Figure 3:7: State trajectory of a Discrete Event System (DES) (taken from [43]) 
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state space is prescient – it is an excellent analogy since a sequence of terms are applied sequentially to 

communicate a proposition or concept via construction of sentences in human language.  

It is critical to emphasize to the reader is that in DES state space is subject to what is known as 

the state space explosion originating from the combinatorial interaction between the logical and 

symbolic values. Σ denotes the finite set of event labels and Σ∗ denote the set of all finite strings of 

elements in the set Σ. For example, (𝛼, 𝛽, 𝛾, 𝛿, … ) are elements of this set shown in Fig. 3:7[31]. Such 

events indicate a physical occurrence in the controlled system. A string, shown below in Eq. 1, 

represents a partial event sample trajectory [the ‘…’ represents the partiality as there could be more 

events after 𝜎𝑘].  

𝒖 = 𝝈𝟏𝝈𝟐𝝈𝟑 …𝝈𝒌 ∈ 𝜮∗  (Eq. 3.5) 

The set of all admissible, i.e. physically possible sample trajectories is called the language 𝕃 

which is a subset of Σ∗ over the alphabet Σ. Each  𝑢 in 𝕃 is a possible event trajectory of a given DES. 

Considering a trivial DES, one in which there are only two events {𝛼, 𝛽} to model a single queue or 

buffer, where 𝛼 is adding a part and 𝛽 is removing a part, then the string from an initial inventory of 5 

to 0 could be any of the following trajectories in Eq. 2;- 

𝒖 = {𝜷, 𝜷, 𝜷, 𝜷, 𝜷}  ∨ {𝜷, 𝜶, 𝜷, 𝜶, 𝜷, 𝜷, 𝜷, 𝜷, 𝜷} ∨ …  (Eq. 3.6) 

In some DES, it is possible to largely ignore continuous, real, global time 𝑡 by simply ‘jumping’ 

to the next event32, as the discrete state space is stable in these regions known as Invariant Behaviour 

(IB) States or , as shown by the intervals in Fig.3:7. In models that represent real systems, timed models 

are used to explicitly model time33. This is because the time delays or processing delays will have 

significant impact or the sequence of events. This also allows the generated data can be collected 

continuously as variable-time statistics about the evolution of the model to inform credit assignment, 

which is discussed later. To formulate and analyse highly coupled DES models, researchers specify the 

set of admissible or feasible event trajectories using state descriptions and transition structures such as 

Petri nets. The set of admissible event trajectories is a strict subset of the set of all logically possible 

decision processes. The task then becomes the manipulation of the optimal or near optimal event 

sequences so it is possible to explore exclusively desirable trajectories in state space. 

  

                                                      
32 This speeds up generation significantly, since in timed models, we are missing out states which are the same 

whilst the time instance in incremented, the neighbourhood remains the same. There is research appearing 

around “Markov Jump Systems” which need further study to see how they relate. 
33 Timed Petri Nets (TPN) are one such example. 
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3.3.2 Linear-Temporal Discrete Event Control  

 The observed behaviour of DES over time is often called the evolution. To cast this state space 

trajectory as a control task is to find a policy34 – to influence the events in the controlled system so the 

behaviour over time satisfies some goal or is in some sense optimal. If an agent purely observed a 

discrete-event process it would be a linear-temporal Markov process, because the agent applies no input, 

action or controlled events. From the agent’s perspective, all the state transitions are driven by 

uncontrolled events – or ‘autonomous’. On the other hand, in some problems35, for example in a single-

player jigsaw puzzle, the set of events are purely controlled. For scheduling problems, both subsets exist 

as the search revolves around the ideal coordination of tasks and resources, given their complex 

interactions and time delays between controlled events and uncontrolled events. In which case the 

models both types of event are used. To model control a hard partition is made between the set of events 

𝚺 into uncontrollable (𝚺𝑼) and controllable (𝚺𝑪) events:  

𝜮 = 𝜮𝑼 ∪ 𝜮𝑪 (Eq. 3:7) 

                                                      
34 Policy is a better term since it relates more closely to the planning field.  
35 These type of problems are often dealt with in combinatorial search, and include many different puzzles, such 

as Sudoku, Sliding Tile problems, Rubik’s Cube. 

Figure 3:8: Trajectories are comprised of states and an Event Permutation (EP) (top) that can be decomposed into Controlled 

Event Permutation (CEP) (red) and Uncontrolled Event Permutation (UEP) (blue). A ‘node’ or token indicates an event 

occurred. 

Figure 3:9: Behaviour Trajectories are comprised of a CEP and UEP 
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The input for the controlled system consists of a subset 𝚺𝑼 ⊆ 𝚺. Control of the manufacturing 

system takes place through the selection of events or switching of the control input through a sequence. 

It is standard practice in control theory to sharply distinguish between the ‘controlled’ and the 

‘controller’ or ‘agent’. In respect to Cyber-Physical Systems this distinction is difficult to maintain as 

the control flow may be dynamically bi-directional36, but is useful in the definition of what is considered 

desirable behaviour. Let us provide some examples of these events in a manufacturing system. Events 

with descriptions such as ‘a part finishes processing’ or when a ‘machine breaks down’ are elements of 

the set of uncontrollable events 𝚺𝑼. When a machine is free, however, and there are, for instance, 𝒏 ≥

𝟏 candidate parts, this is an event the agent should seek to influence or manipulate, but this does not 

preclude that in some edge cases, rather than to encourage an event to occur, in some cases it might be 

better to discourage so as to disable some events occurring. For example, if some task or part Z is 

required in the shortest possible time, ideally, all future processing needs to happen sequentially with 

no time delays. In which case it is logical to preclude events that enable processing on any other parts 

which could hinder the Z part’s delay-free trajectory through the manufacturing system37.  

An example of a disturbance in a manufacturing system context that is an uncontrolled event is 

a machine breakdown, in this model this considered to be a completely unpredictable event. Another, 

more predictable event would be finishing a task or part operation – where a pseudo-deterministic 

prediction can be made as to when it will finish (which is an uncontrolled event), but it is not something 

that the agent can control directly.  

An event, 𝚺𝒊, may be an exclusively controlled (𝚺𝑪) or a uncontrolled event (𝚺𝑼) or a union of 

the elements. An Event Permutation (EP), shown in Fig. 3:8 in BLACK is an ordered sequence of these 

events 𝚺𝒊−𝟏, 𝚺𝒊, … , 𝚺𝒏 from left to right. Each circle is an event. The state is left unrepresented, each 

event changes the state. Step instances or time instances are the indexes for events. It may well be the 

case that an uncontrolled event then a controlled event occurs at the same time instant, so a rule is used 

that when it comes to computing and simulation of discrete event processes; uncontrolled events occur 

                                                      
36 Meaning that in different cases it may be driven by bottom-up demands to top-down demands.  
37 The so-called “critical path”.  
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first.38  Another decision that is closely related to other aspects of discrete event modelling are whether 

single or multiple controlled events can occur at a single time instance. As will be shown shortly, the 

ability to fire events concurrently (multiple controlled events can occur at a single time instance) 

requires a more involved logical inference process39 because some combinations are feasible whilst 

others conflict. Below, in Fig. 3:9 shows how the permutations can be shown in a Boolean array, where 

the events are encoded as numbers and this also shows that multiple events can occur simultaneously.  

Since 𝚺 = (𝚺𝑪  ∪  𝚺𝑼), three permutations are maintained, where 𝚺𝒊−𝟏, 𝚺𝒊, … , 𝚺𝒏= 

(𝚺𝒊−𝟏
𝑪 , 𝚺𝒊

𝑪, … 𝚺𝒏
𝑪  ∪  𝚺𝒊−𝟏

𝑼 , 𝚺𝒊
𝑼, … 𝚺𝒏

𝑼). The ordered sequence 𝚺𝒊−𝟏,…,𝒏
𝑪  is called the Controlled Event 

Permutation (CEP) and is under the designed system’s agency, this is shown by the RED sequence in 

Fig. 3:8. Through these events, it is possible to manipulate the overall behaviour and Uncontrolled 

Event Permutation (UEP) 𝚺𝒊−𝟏,…,𝒏
𝑼  shown by the BLUE sequence. The CEP is the policy the system is 

constructing. 

Time or temporal precedence can be included or ignored when considering DES systems. Time 

is essential when there is variation in the time delay between event, since it provides a verifiable 

ordering - it gives the sequential structure. The sequence of events is vital since the effect of a decision 

                                                      
38 This is shown in Fig. 4 by the blue dot being prior to red. 
39 This is once again because the decision made effects subsequent decisions. There are many other 

implementations of this concept, e.g. the implication table. 

Figure 3:11: Left; Bifurcation of possible trajectories into an exploratory computed tree involve the execution of different 

event permutations. Right; the branching factor for different models and states dictates the exploration via sampling difficulty. 

Figure 3:10: Evolution Traces of the Discrete-Event System with time; note that we are only 

using the CEP to show the different decision sequences, otherwise known as the policy. 
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will have repercussions on what decisions can be made next via the dynamic generation of constraints 

such as blocking. The vast majority of work in DES has been on systems where time is left unmodelled, 

this work relates to reaching certain states in so called reachability, so events simply occur sequentially. 

3.3.3 Tree-Temporal Discrete Event Control  

  If the vertical are the possible discrete states, and discrete time is the horizontal, Fig. 3:10 shows 

how the system may remain in the same state over periods of time. These periods are called Invariant 

Behavior (IB) states. The connections or edges between nodes are a result of time and the occurrence 

of events. When time is included, the sequence of events is essentially discovered as part of the 

computation, which is why the time dimension cannot be removed during the search process itself. This 

distinction is shown by looking at Fig.3:10 followed by Fig.3:11 where the time or time delays are 

removed (after the search when the sequence of events is established), the tree becomes compacted and 

dense. The horizontal is thus discrete decision steps with a time step, rather than explicit discrete time 

instances. This is interesting because although time defines the ordering, the decision process itself can 

be compacted.40 

As shown in Fig.3:10 and 3:11, when multiple trajectories in state space are represented 

graphically, the structure of each unique permutation, EP, CEP and UEP is that of a ‘branch’ in tree. 

This could also be called unrolling a stochastic policy, an evolution trace or a simply a path through 

configuration-time space. Trajectories will have completely unique features, different events occurring 

at different times that will affect any statistics or functions that are gathered that are used to evaluate 

the behaviour. If the policy or evolution was completely deterministic, the same branch would be 

covered over and over. The generation of the tree thereby must be seen as an exploratory process that 

results in a population of possible futures.  

The distinction between a policy that is stochastic or deterministic is of critical importance; it 

is not a case of purely stochastic behaviour or deterministic, but rather, a probabilistic intermediary. A 

deterministic search is not a search at all; a purely deterministic process implies the problem either 

requires a solution immediately (thus neglecting the possibility of iterative, exploratory search) and/or 

is exploiting existing knowledge of what rules to apply in what order that is believed to result in an 

optimal decision process. There are many approaches to which a search may be made informed or 

exploitative, candidates include the discovery and exploitation of statistical regularities, metaheuristics 

which attempt to maintain ‘good’ solutions from a prior population to a new population [which is 

discussed in the next chapter] and programmatically constraining the model-based-search via the causal 

or discrete-event structure which is discussed later.  

                                                      
40 The compacted, dense representation of the Controlled Event Permutation (CEP) could be seen as queue, 

where each controlled event is selected one by one. It is possible that this time-free representation could be 

useful in the design of new metaheuristics specific to scheduling problems.  
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As shown in Fig. 3:10, where time is included, depending on temporal granularity, the tree can 

be very sparse. In the case of the compacted (time-free representation) in Fig. 3:11 the concept of the 

branching factor becomes more readily apparent.  The branching factor is the ratio of the temporal 

granularity or steps to the number of reachable or feasible states. The branching factor is a qualitative 

statement about the degree of combinatorial state explosion for a given system model and state instance. 

A high branching factor would indicate a highly connected system with low constraints that will involve 

a computationally demanding search and vice-versa.   

If the problem of optimisation in Fig.3:11 is considered, where time is ignored, a state-space 

tree that must be generated as it is traversed41. The optimisation task is to execute the correct sequence 

of controlled events 𝚺𝑪 resulting in state changes that generates the verifiably most desirable behaviour. 

If the set of events is known, it is a case of selecting from this set the correct events in the correct order. 

Encode events, e.g. 𝑎 =  1, 𝑏 = 2, etc as mixed integers and can also include ‘𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 = 0’.  

This leads to various approaches that allows for; 1. the confirmation that a solution (i.e. CEP) is 

valid, 2. a fully formed and verified CEP and 3. evaluative performance of that [CEP] solution. 

 A ‘state unobservant’ model optimisation process where complete solution is presented for 

evaluation - a sequence of CEP elements (data) with the cardinality equal to the length of an 

episode to the DES. The solution is indirectly generated by another system or model that can 

define the CEP elements through some other method, e.g. using a combinatorial discrete 

optimisation process and the majority of solutions are not valid or feasible since this approach 

has no state observability or ability to use the state observability to reason. These approaches will 

need IF-THEN rules as to what should be done when a controlled event element in at a given 

time (from the CEP) is not feasible for a model; should it revert to a ‘0’? Should it discard the 

solution completely? Should it change the element until it works? 

 A ‘state observant pre-designed knowledgebase’ or ‘control theoretic’ process where the 

current state is a input, and the system uses some pre-designed model, rules or knowledgebase to 

select amongst (output) CEP elements, e.g. using an inference engine and applying a max 

function. The solution is directly generated, and each solution is assumed to be valid or feasible. 

The knowledgebase would have to be significant in size and powerful in regards to generalisation 

in order to cover all possible states and goal types as inputs and map to the control output. 

 A ‘state observant, white box, memory-free’ or ‘simulation-based naïve optimisation’ 

process where the current state is input directly into the model, and use the logical structure to 

query or reduce the model to request what CEP elements are feasible at that state and time 

                                                      
41 There a subtle but fundamental difference between a state space that is already defined, e.g. a map of a maze, 

and the case of an agent being in a maze without a map. In the latter case, the space needs to be physically 

explored – mapped – whilst the agents behaviour is recorded and evaluated. In the former, the task is one in 

which the agent needs to deliberate over the map and need only project its respective behaviour.  
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instance, select a CEP element according to some policy42 and repeat this process iteratively until 

the solution cardinality is equal to the length of an episode to the DES. The solution is directly 

generated, and each solution constructed is valid or feasible. Optimisation occurs by virtue of 

searching the policy space, using for instance a random policy that leads to different behaviour. 

The highest performing behaviour labels the optimal solution.  

The approach adopted here is the latter, although the other two are being supporting aspects that 

could be used to augment the naïve optimisation with a more informed exploration – where in the tree 

should be generated? The initial approach, which suggests a with brute-force combinatorial search to 

explore the space of solutions will require a huge number of combinations of integers proportional to 

the number of controlled events, duration of processes and the episode length. In the case of the 

industrial example, this would involve a search space the size of 25550000 ; this approach is intractable, 

essentially forcing the use of a simulation model. Some experiments where conducted on this approach 

in a search space of 5100 using a Stochastic Search (SS)43 and Genetic Algorithm (GA). Only later was 

the observation and realisation of the ‘tree-like’ Discrete-Event structure and since each evolution trace 

or branch is episodic or an episodic memory, meaning the GA could not exploit the features of the high 

performing solution by simply using conventional reproductive approach. The tree-like structure drove 

most of the work since, as shown the subsequent chapters. It is noted that a ‘control theorectic’ approach 

(developing a input-output mapping) may be useful as a secondary process within the white box, so as 

to define the policy and assist in selecting amongst feasible CEP elements using prior results data for 

learning or constructing knowledgebases. In Chapter 5, metaheuristics are discussed directly and a 

metaheurstic algorithms is proposed, programmed and tested.  

Establishing a problem representation and a problem-solving process or methodology is 

encountered frequently in a literal sense by engineers and scientists, but the broader class of intelligent 

systems or organisms also take on this role since they directly or indirectly encapsulate these processes. 

Problems are search spaces and problem solutions are processes in which to move through these search 

spaces efficiently. Optimisation problems are those where both a model and the desired output (or 

description of the output, e.g. a collection of features) is known or partially known. The task or problem 

is in discovering or defining the input(s) that lead to this output. Optimisation is not necessarily an 

implicit spectra, but in fact may be Boolean, an overall, acceptable, explicit output configuration; “OK” 

or “NOT OK”, a constraint satisfaction. The details of optimisation are covered in more detail in the 

next chapter.  

                                                      
42 Initially the policy is a uniform probability distribution over the space of actions or controlled events. Here it 

is alluding to the possibility that a control-theorectic approach could be a secondary process to help select 

amongst feasible events. 
43 A Stochastic Search (SS) generates CEP sequences (solutions) using pseudorandom number generators. A 

Genetic Algorithm (GA) extends this by using SS to generate an initial population then attempts to exploit high 

performing solutions by retaining features of them in the next population iteratively.  
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Modelling or ‘system identification’ problem is one in which inputs and outputs are known and 

the solution is to discover or invent a model that generally provides the correct output for a given input. 

The examples of inputs and outputs used to develop a model can be considered prior experience, while 

a new or novel experience (i.e. input of unseen data) is use or deployment of that model. Simulation is 

known system model with inputs that produces outputs. Both modelling and simulation require the 

definition of a conceptual ‘object’ that maps input-output and vice versa. A model that generalises this 

mapping is a search within an enormous space. Simulation, it may be argued, is the design of a scaffold 

to search within a space.  

In the thesis overall it is explored how the white box approach can be exploited to generate 

populations of solutions to be used for optimisation known as ‘makespan minimisation’ in the ‘Job-

Shop Scheduling’ literature. The approach here allows for a reconfigurable definition of the problem 

and frames this as general ‘nesting’ problem that exploits the heuristic of ‘any controlled events is better 

than no controlled events’. Only these problems can be achieved using basic state-action tree expansion 

and this heuristic. In another chapter, more detail on combinatorial search and metaheuristics theory is 

given for application in DES for scheduling problems. Later in the thesis is an investigation into an 

approach for basic reasoning to address a different problem- ‘satisfy demand over time’ by generating 

a plan that assigning tasks to resources. 

By exploiting the model of the discrete-event system, it is possible to discover which events are 

feasible from a given state (irrespective if the state has been seen before). The difficultly, depending on 

the problem, is the selection amongst these feasible events – particularly in relation to one another in 

sequence. In this chapter, a uniform probability distribution over the feasible controlled events is used 

to do makespan minisation.  
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3.3.4 Petri Nets 

Petri Nets combine the axiomatic systems of logic, set theory and arithmetic. Whenever a 

model, system or language is defined, it is always reductionist in that all systems or models are 

abstractions where only important information is represented and a system boundary or lexion is 

explicitly defined or implicitly assumed. Making the correct contextual assumptions as to what is 

included is vital. A Timed Discrete Event model will handle any possible state and establish the 

accessibility between states, it would be difficult to gain this capability using any other representation.  

In this thesis, the argument is that digitalisation of manufacturing systems should be approached initially 

at the level where the system is distributed, its dynamics are logistical and its evolution in time is 

characterised by discrete events which are essentially state transitions. Processes that occur at a lower 

level are typically control-theoretic; iterative or repeatable, and require a different set of techniques 

whilst those at a higher level are emergent from the behaviour at this level, there is significant interplay 

between top-down and bottom-up dynamics.44  

The ‘Petri Net’ is a form of DES model and was conceptualised by Carl Adam Petri in 1962 in 

his PhD thesis “Communication with Automata” and are particularly suitable for the modelling of 

systems characterised by concurrency, parallelism, conflicts, causal dependency, synchronisation and 

crucially, choice. Petri Nets are unique in that they are simultaneously graphical, mathematical and 

computational models, besides being an attractive abstraction from Discrete-Event Simulation software 

suites. Petri Nets are a directed bipartite graph, where mathematical topological structures model the 

pairwise relations between objects; these relations make up the bulk of the ‘domain knowledge’ which 

forms the model that is used to generate a schedule from tracing its behaviour as future scenarios are 

‘computed’. One interesting aspect of Petri Nets, among many, is the fact they maintain object 

permanence, and compactly represent causal structure – making a useful representational system to be 

used in artificial intelligence45. Further, the concept of ‘places’ are powerful when couplings and 

decouplings of entities need to be represented. Networks, as an applied form of graph theory, 

collectively are used as models that incorporate arbitrary numbers of dimensions, a prerequisite when 

working with high dimensional or Distributed Systems (DS). It is interesting to note that networks are 

popular structures for working with generalised knowledge or information in artificial intelligence46 or 

computer systems; since relations between objects can be represented with directions, weights etc. 

Stochastic Petri Nets (SPNs) and Generalised Stochastic Petri Nets (GSPNs) are extensions which 

                                                      
44 It is easy to conceive of a bottom-up preference for a routing decision, for example, the result from a 

metrology process may define or set a preference the subsequent routing decision. 
45 This is somewhat of an understatement; as mentioned, the frame problem has been a longstanding problem in 

AI; the ability of discrete event models to show how events change some aspects of the frame whilst leave 

others untouched highlights once again the concept of a simulation-based environment for which an agent may 

test hypothesis with experimentation is shown to be an interesting line of enquiry. 
46 Bayesian Networks (BN) and Artificial Neural Networks (ANN) are somewhat obvious examples of 

numerical graphs.  
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model unpredictable behaviour, whilst Timed Petri Nets (TPNs) extend PN to include time 

representations such as time delays or durations to be associated with transitions, places and arcs. This 

enables TPN to become applicable in scheduling problems; temporally dynamic behaviour [a DES 

trajectory] is driven entirely by sequentially indexed asynchronous events. The Timed Petri Net (TPN) 

defines a state space of a given Discrete Event System. A space is a set with structure. Since the DES 

in this work represents a dynamic system the objects are organised temporally47. At each time instance 

is a mathematical object that is treated as a point. The state transitions define the relationships between 

these points. Each unique point is a configuration of the whole system in a higher dimensional space; 

the topology. This ties back to the remarks on reconfigurablity. 

Table 3:2 Formal Definition of a Petri Net  

A Petri net is a 5-tuple, 𝑷𝑵 = (𝑷, 𝑻, 𝑭,𝑾,𝑴𝟎)  where: 

𝑷 =  { 𝒑𝟏, 𝒑𝟐, … , 𝒑𝒎 } is a finite set of places, 

𝑻 =  { 𝒕𝟏, 𝒕𝟐, … , 𝒕𝒏 } is a finite set of transitions, 

𝑭 ⊆  (𝑷 × 𝑻) ∪ (𝑻 × 𝑷)  is a set of edges (defining flow relation), 

𝑾:𝑭 → { 𝟏, 𝟐, 𝟑, … } is a weight function48, 

𝑴𝟎: 𝑷 → { 𝟎, 𝟏, 𝟐, 𝟑, … } is the initial marking, 

𝑷 ∩ 𝑻 = ⊘ and  𝑷 ∪ 𝑻 ≠ ⊘ 

A Petri net structure 𝑵 = (𝑷, 𝑻, 𝑭,𝑾) without any specific initial marking is denoted by N. 

A Petri net structure with given initial marking is denoted by (𝑵,𝑴𝟎). 

 

3.3.4.1 Modelling scheduling problems in Petri Nets 

Manufacturing systems can be represented or modelled by a DES. Manufacturing systems 

require ordered sequence of controlled events (a schedule) to coordinate the factory optimally. The 

supervisory controller retains a model that is updated from the informatics system. In this section the 

general modelling process is discussed. Parts represent tasks. When a raw part is seen, one is 

immediately reminded of its upcoming processing.  

When a part is finished, it represents a completion of a task (and perhaps the creation of a new 

task, i.e. delivery to the customer)49. The point here is that the distinction as to whether using the term 

parts in an application sense or with tasks in a scheduling sense is artificial. Objects are inextricably 

linked to their function within their broader systems context. In order to be more general than 

                                                      
47 The point here is referring to mathematical constructivism – as the behaviour is generated, and the objects are 

computed, they are ‘proved’ because they are ‘given a method’ for their construction.  
48 Weighing is not used in this chapter, but it is a highly important concept in a later chapter, and makes up the 

bulk of suggested further work. 
49 Alluding to an important contribution that seems to have great value- the ability to re-label a task as 

something new and having different properties.  
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manufacturing systems, everything will be referred to in the general until the industrial case study 

examples are reached in the next chapter.  

Task type queues and resources, as shown in Fig. 3:12 are the nodes or vertices and the links 

or edges 𝑭 are the relations that define the flow relation. There are two types of nodes; places 𝑷 and 

transitions 𝑻. Transitions are durationless events representing decisions to dynamically map tasks to 

resources. Tasks are represented by tokens (see coloured circles in Fig. 3:12). Petri Net places are task 

type queues (square nodes in Fig. 3:12) or resources (circular nodes in Fig. 3:12) whereas events are 

encoded as single asynchronous or multiple synchronous state transitions (black bars in Fig. 3:12). 

In Fig. 3:12 a), a Petri Net structure is shown which represents a scheduling problem where 

there is a 1-1 relation between the number of task types and number of resources in which the task can 

be completed. A task type may be a generalization of a group of similar tasks, case a decomposition is 

an unfolding of that grouping into subsets [resources Fig. 3:12 a)→b) or tasks (Fig. 3:12 a)→c)].50 In 

                                                      
50 This works both ways, it may be the case that you wish to group or fold all resources together into one place 

or group or fold all task tokens into one place. This allows for statements to be made very easily, as it is 

essentially a way of slicing the data. E.g. “the total number of tokens in places f-g is N”. This is important in the 

Figure 3:12: Petri Net Structures 

a) 

b) 

c) 

d) 

e) 
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c), is the same problem, but one in which there are two task types that share one resource; reducing to 

a sequencing problem; the decision to execute a task and the order in which tasks are executed remains 

– considerations surrounding concurrency, dependency of tasks on one another and delays are omitted. 

Fig. 3:12 e) shows a task transformer, exploiting the procedural processes inherent to 

hierarchical task decomposition; once a token enters the dotted right hand place [thereby labelled a 

processed task], it transforms into a new [unprocessed] task and is placed in the respective dotted left 

hand side task type place. 

Fig. 3:12 d) is used exclusively to explain the basic concepts; a scheduling problem in which 

there are is set of 3 resources that may be used for completing 3 tasks of 2 task types. Static properties 

include the representation of 3 resources and 4 task queues as vertices, and 10 edges, that represent 

unique state transitions, which link vertices together. The two task types, A and B, relate to queue p1 

and p3 or p2 and p4 respectively. The firing of a single event represents (𝒏 ≥ 𝟏) sequential or parallel 

decisions. Resources are aligned in the center vertical on diagrams on Fig. 3:12 d) and are referred to 

as the set of resources 𝑹: 

𝑹 =  (𝒓𝟏, 𝒓𝟐, 𝒓𝟑)  (Eq. 3.8) 

Where; 

𝒓𝟏 = 𝒑𝟓 , 𝒓𝟐 = 𝒑𝟔, 𝒓𝟑 = 𝒑𝟕  (Eq. 3.9) 

𝑻 is the set of all tasks. By unfolding the tasks into the two task types, and two states [where 

processed (𝑻𝑷𝑹𝑶𝑪) and unprocessed is (𝑻𝑼𝑵𝑷𝑹) respectively], there are 4 unfolded task queues, where 

𝒑𝟏 contains unprocessed type A tasks, 𝒑𝟐 contains processed type A tasks, 𝒑𝟑 contains unprocessed 

type B tasks and 𝒑𝟒 are processed type B tasks. 

𝑻 =  (𝒑𝟏, … , 𝒑𝟒)  (Eq. 3.10) 

Where; 

𝑻𝑼𝑵𝑷𝑹 = (𝒑𝟏, 𝒑𝟐), 𝑻𝑷𝑹𝑶𝑪 = (𝒑𝟑, 𝒑𝟒)  (Eq. 3.11) 

The complete set of Petri Net places is the union of the task queue places 𝑻 and the resource 

places 𝑹; 

𝑷 = 𝑻 ∪ 𝑹 = (𝒑𝟏, 𝒑𝟐, … , 𝒑𝟕)  (Eq. 3.12) 

Assignment of 𝒑𝟏 and 𝒑𝟑 as queues that relate to task type A, whilst 𝒑𝟐  and 𝒑𝟒 is task type B. 

In this scheduling problem, there are 2 possible resource types, one that processes tasks that are 

                                                      
industrial application as we have a hard limit on the number of parts with intermediate processing, the so-called 

Work-In-Progress (WIP). 
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members of the 𝒑𝟏object and 𝒑𝟑 respectively or a resource that can do both. The complex relation 

between resources and these tasks are indicated by the edges which connect 𝑻 and 𝑹 together.  

Linguistic descriptions of state can be elicited easily from their token marking. For instance, if 

𝒑𝟏 has a integer value of 5, linguistically;  

“There are 5 tasks of type A” 

Secondly, the graphical representation shows that the Task A (in Fig. 3.12. d) is most flexible 

(as it can be undertaken on an instance of any resource, i.e. 𝒓𝒊 ∈  𝑹). 

𝑻𝒓 =  (𝒕𝒓𝟏, 𝒕𝒓𝟐, … , 𝒕𝒓𝟏𝟎)  (Eq. 3.13) 

Transitions in the Petri Net structure are equivalent to discrete events 𝚺 in the scheduling 

problem. Elements of the set; 𝚺 = (𝝈𝟏, 𝝈𝟐, … , 𝝈𝒏)  are combinations of elements in  𝑻𝒓. Therefore, like 

events, transitions are divided into controlled 𝚺𝑪|𝐓𝑪 and uncontrolled 𝚺𝑼|𝐓𝑼 subsets.  

𝜮 = (𝜮𝑪  ∪  𝜮𝑼)    (Eq. 3.14) 

𝑻𝒓 = (𝑻𝒓𝑪  ∪  𝑻𝒓𝑼)    (Eq. 3.15) 

For simplicity, in this model, and the industrial case study, the sets 𝑻𝒓𝑪 are indexed using odd 

integers and 𝑻𝒓𝑼 are using even.  The transitions are therefore included in each set are; 

𝑻𝒓𝑪 = (𝒕𝟏, 𝒕𝟑, 𝒕𝟓, 𝒕𝟕, 𝒕𝟗)  (Eq. 3.16) 

𝑻𝒓𝑼 = (𝒕𝟐, 𝒕𝟒, 𝒕𝟔, 𝒕𝟖, 𝒕𝟏𝟎)  (Eq. 3.17) 
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The cardinality of controlled and uncontrolled events is equal. In practice, uncontrolled events 

𝚺𝑼 are autonomous state transitions managed by the uncontrolled transitions event list in Fig. 3:14. An 

instance of a problem has a respective initial configuration. All configurations are represented by a 

marking which is a member of the set;  

𝑴 = (𝒎𝟏, . . ,𝒎𝒏)  (Eq. 3.18) 

Where an instance, 𝒎𝒊, collectively defines a possible state of the controlled system. The 

marking is comprised of an array data structure or a mathematical vector which defines a legal 

distribution of Petri Net tokens. This object represents a state instance 𝒔𝒊 in a sequence. 

𝒎𝒊 = 〈𝒑𝟏, 𝒑𝟐, … , 𝒑𝟕 〉  (Eq. 3.19) 

The computational complexity is related closely to the marking. In marking the Petri Net, places 

and transitions are enabled or disabled. This means that a remodelling process takes place; the system 

configuration changes and a new, lower complexity model that ignores or explains away other 

possibilities as shown in Fig. 3:6. The idea of model reduction has associations the frame problem and 

in attention mechanisms. If each node in the Petri Net graph is considered a variable, then the 

Figure 3:13: Marking typically ‘reduces’ the model size; all events that are impossible are omitted because the tokens 

indiciate that they are such. Events that are feasible are said to be ‘enabled’.  
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connectivity (independence or dependence) between variables changes from fully connected to sparsely 

connected.51  

The legality refers to the number of tasks (or tokens) that are allowed in a queue or resource 

(places). For instance, those places which represent resources will typically have a legal maximum of 

1 task. Thus, an element in 𝒎𝒊 that represents a resource may never exceed (𝒏 > 𝟏). Likewise, the 

collective total of tasks in places may have a maximum dictated by the maximum number of tasks for 

a system. For instance, if the initial marking 𝒎𝟎 had 1 task in the queue p1 and 2 task in the queue p2, 

then the tokens would represent the tasks in each place, which includes both the queues and the 

resources; 

𝒎𝒊 = [𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 𝒑𝟔 𝒑𝟕 ]  (Eq. 3.20) 

Hence, the basic state representation, 

𝒎𝟎 = [𝟏 𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 ]  (Eq. 3.21) 

Let us consider a single transition that occurs at step 0. This involves applying an event 

instance𝝈𝒊 which elicits a transformation of the 𝒎𝟎 into 𝒎𝟏 which is a function of the current marking, 

the transition vector and the incidence change matrix that defines the mathematical model of this Petri 

Net structure. This is similar to a deterministic Markov Decision Process (MDP), since the marking 

defines the state and the events are ‘actions’. A reward function can be superimposed on the Petri Net. 

[𝒎𝒊+𝟏] ←  [𝒎𝒊] + [𝝈𝒊] × [𝑰]  (Eq. 3.22) 

An evolution is sequence of such state transitions. Conceptually, a unique ‘branch’ in the tree, 

a state marking over time or state trajectory equivalent to a feasible solution in optimisation and search.  

𝒎𝒊 = 〈𝒑𝟏(𝒎𝒊), 𝒑𝟐(𝒎𝒊), … , 𝒑𝟕(𝒎𝒊) 〉  (Eq. 3.23) 

𝒎𝒊+𝟏 = 〈𝒑𝟏(𝒎𝒊+𝟏), 𝒑𝟐(𝒎𝒊+𝟏), … , 𝒑𝟕(𝒎𝒊+𝟏) 〉 (Eq. 3.24) 

 

                                                      
51 The high connectivity between variables is a longstanding problem in large optimisation problems since it is 

related to the computational complexity.  
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Generating trajectories involves a computational process that is shown by Fig. 3:14. An initial 

state provides the information to elicit what CEP elements are feasible at this time or step instance. The 

‘Event List’ or ‘Event Register’ is used to record when future uncontrolled events will occur. 

3.3.4.2 Defining State Transition Function 

The incidence matrix 𝑰 represents the Petri Net structure; the core, basic model of the scheduling 

problem that relates tasks to resources. 𝑰 is a parametrized psudeo-Boolean topological structure that 

maps transitions to places and vice-versa.  

𝑰 =

𝒋𝟏
𝒋𝟐
𝒋𝟑
𝒋𝟒
𝒋𝟓
𝒋𝟔
𝒋𝟕 [

 
 
 
 
 
 
 
𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊𝟒 𝒊𝟓 𝒊𝟔 𝒊𝟕 𝒊𝟖 𝒊𝟗 𝒊𝟏𝟎

−𝟏 𝟎 −𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 −𝟏 𝟎 −𝟏 𝟎
𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏
𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 −𝟏 𝟎 𝟎 𝟏 −𝟏]

 
 
 
 
 
 
 

   (Eq. 3.25) 

Using 𝑰 state transitions are conducted by converting transitions into events of single or 

combinations of events. The set of all possible events is the set 𝚺 = (𝝈𝟎, . . , 𝝈𝒏). Elements in 𝚺 are 

combinations of transitions. An instance of an event is 𝝈𝒊 is a set of Boolean “True” (1) or “False” (0) 

firings of Petri Net transitions represented by a Transition Matrix. 

𝝈𝒊 = [ 𝒕𝒓𝟏 𝒕𝒓𝟐 𝒕𝒓𝟑 𝒕𝒓𝟒 𝒕𝒓𝟔 𝒕𝒓𝟕 𝒕𝒓𝟖 𝒕𝒓𝟗 𝒕𝒓𝟏𝟎 ]  (Eq. 3.26) 

The system evolves via the following process ;- 

[ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 ] × [𝑰] + [ 𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑉𝑒𝑐𝑡𝑜𝑟] = [𝑁𝑒𝑤 𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑉𝑒𝑐𝑡𝑜𝑟] 

[𝝈𝒊] × [𝑰] + [𝒎𝒊] = [𝒎𝒊+𝟏]  (Eq. 3.27) 

Figure 3:14: Generating trajectories 
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For instance, to fire 𝒕𝒓𝟏 exclusively, construct the following transition vector. 

𝝈𝟎 = [ 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 ]  (Eq. 3.28) 

The initial marking (𝒎𝟎) and next marking (𝒎𝟏) is hence; 

𝒎𝟎 = [𝟏 𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 ]  (Eq. 3.29) 

𝒎𝟏 = [𝟎 𝟐 𝟎 𝟎 𝟏 𝟎 𝟎 ]  (Eq. 3.30) 

Alternatively, to fire 𝒕𝟏 and 𝒕𝟗 concurrently, the following transition vector is required.  

𝝈𝟎 = [ 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 ]  (Eq. 3.31) 

The initial marking (𝒎𝟎) and next marking (𝒎𝟏) is hence; 

𝒎𝟎 = [𝟏 𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 ]  (Eq. 3.32) 

𝒎𝟏 = [𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 ]  (Eq. 3.33) 

At a given discrete timestep in the episode after observing this current state, by applying the three 

state transitions at on the diagram denoted 𝒕𝟏, 𝒕𝟑 and 𝒕𝟓 concurrently, i.e. (𝒕𝟏 ⋀ 𝒕𝟑 ⋀ 𝒕𝟓), this has 

computed a controlled event  (𝝈𝒊 ⊂ 𝚺𝑪) instance a whereby one task is assigned to each resource. 

Linguistically, this event is “Task X to Resource 1, Task Y to Resource 2 and Task Z to Resource 3”. 

The system enters an Invariant Behaviour (IB) state [where exclusively lower level processes are 

observed] and tasks are processed concurrently over some time interval. From our initial state instance 

𝒎𝟎,  it is clear that there from this root node are more  than one  possible transition, 𝒕𝒊, or combination, 

𝝈𝒊. This can build a temporal state space tree from this root node automatically via rule discovery. 
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3.3.4.3 Lookahead Search Tree Representation 

Constructing only feasible trajectories from the initial state exploits the explicit mapping 

between state and action that is afforded by the Petri Net structure. Events or state transitions that are 

fireable from given state are said to be feasible. This is called feasibility lookahead, and by doing so 

repeatedly, this generate an evolution trace or trajectory which shows us the possible future behaviour. 

Many models will have more than one state transition. The branching factor of sequential decisions is 

far smaller as there can only be one transition (𝒕𝒓𝒊) per step, meaning that the set of all transitions [in 

this example] (𝑻𝒓) is only 10, whereas the number of event instances (𝚺) (combinations of transitions) 

is 210 = 1024.  

The set of enabled transitions, 𝑻𝒓𝒆𝒏𝒂𝒃𝒍𝒆𝒅, is a subset of 𝑻𝒓 where 𝑻𝒓𝒆𝒏𝒂𝒃𝒍𝒆𝒅 ⊆ 𝑻𝒓. Only a 

subset of these can be fired from a given state, exploiting the persistence of data so the compositionality 

of the dynamic process is retained. There is a complex a priori relation between combinations of 𝚺𝑪 

(events) and marking 𝒎𝒊 (or state instance 𝒔𝒊). Considering the state-space explosion arising from 

different 𝒎𝒊, this requires a process to elicit the set 𝑻𝒓𝒆𝒏𝒂𝒃𝒍𝒆𝒅 to execute stepwise trajectories.  

As shown in Fig. 3:15, a binary sweep can efficiently exhaustively produce each combination 

of transitions in small or ‘toy’ problems (only the set of 𝑻𝒓𝒆𝒏𝒂𝒃𝒍𝒆𝒅 are shown). The controlled events 

in gray are both feasible and combinatorial. Approaches to reduce the computational load of attempting 

combinations includes a process of deduction. For instance, if 𝒑𝟏 = 𝟎 at 𝒙𝒊,  (𝒕𝟏, 𝒕𝟑, 𝒕𝟓)𝒙𝒊
∉ 𝑻𝒆𝒏𝒂𝒃𝒍𝒆𝒅 

and if resource number three, 𝒑𝟏 = 𝟎 at 𝒙𝒊,  (𝒕𝟔, 𝒕𝟏𝟎)𝒙𝒊
∉ 𝑻𝒆𝒏𝒂𝒃𝒍𝒆𝒅. Thus, any evolution of the system 

and any optimisation or search process is legal. Through trial and error, a posteri relation can be defined 

with the following propositions; 

Proposition 1: No element in instances of the marking vector 𝒎𝒊, (i.e. the Petri Net token values) 

can be less than 0 < N.  

Proposition 2: The value of an integer in a resource place cannot exceed the maximum task-capacity 

of the respective resource.  

Figure 3:15: Feasiblity Lookahead; using the Petri Net Structure to find feasible controlled events via inference 
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By placing these rules as part of the program it is possible to automatically elicit the subset 

𝑻𝒆𝒏𝒂𝒃𝒍𝒆𝒅 at any state instance. This is executed is by trial and error; trying each combination of 

transitions from the initial state and labelling legal transitions as such. This could be executed online, 

to be added to a symbolically ‘learned’ knowledgebase from procedural generation or make use of a 

pre-trained knowledgebase. This knowledge-base thus maps a state instance to a set of allowable state 

transitions, but omits any weights or policies. In this manner, the procedurally generated dynamics of 

the modelled system are always legal, feasible state-space trajectories.  

In the current example, from the initial state, the cardinality of 𝑻𝒆𝒏𝒂𝒃𝒍𝒆𝒅 is 12 (i.e. there are 12 

elements from 𝚺 that can be fired). When performing sequential lookahead, only 1 state transition may 

occur in each stepwise component of the state space, and these stepwise decisions constrain one another 

via the data that is retained in the model. To unionise the each set 𝒕𝒊, it is purely an ‘∧’ (AND) operation 

that results in, for example;  

𝝈𝒊 = (𝒕𝟑 ∧ 𝒕𝟕 ∧ 𝒕𝟗) 

𝝈𝒊 = [ 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 ] 

By firing concurrently, IB states are entered via in a minimum of 1 step or a maximum of 2. 

Let us consider some sample trajectories and their encoded state representation components if the 

processing duration is infinite or unknown. A binary sweep [of transition firings] can be can executed 

that will attempt each combination of transitions exhaustively. Those that are valid (i.e. the propositions 

1 & 2 hold) are retained in memory. The process is repeated recursively whilst the search algorithm or 

co-trained policy is used to select amongst feasible state transitions. 
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3.4 Program Design & Structure 

In this section, the intent is to discuss in detail the basic form of the program which is 

subsequently modified based on the application or updated in subsequent chapters. A DES model, 

represented in a computer must be able to represent the DES model in all possible states and have 

reasonable validity52 when simulated.  

The main objectives are as follows; 

1. Model source; the model source may be rules about different aspects of the system or 

environment of the manufacturing system that are then brought together compositionally. 

It may also be an unstructured dataset that must be parsed and constructed into a model 

(a la “Discrete-Event System Identification”) that could be from a Manufacturing 

Execution System (MES). Finally, it may be part of a larger system, where a space of 

possible environments is searched to find the optimal.53 

2. There is a broader claim that Discrete-Event Systems are far more general purpose than 

the academic literature suggests. Because computation, mathematical procedures and 

highly simplified models of reality are all Discrete-Even Processes that are executed or 

unfold over time in parallel or in sequence.54 Analytical mathematics is different, and is 

reserved for different modelling problems. The suggestion here is that a simple, 

theoretical grounding for Discrete-Event Processes (as already outlined in this chapter) 

should not be lost when converted or implemented into a computer program, but rather 

to retain the generality by using basic concepts and rules.  

3. To suggest and show validation is a process in itself. Whilst a valid, accurate and credible 

model must be defined at the outset, it should be appreciated that for many applications, 

changes and improvements to the model are inevitable and such be anticipated. Many 

existing approaches to control and scheduling would require more intensive re-design or 

re-training. Here, this issue is circumvented only the structure of the Petri Net and/or the 

time variables must be updated. ‘New’ knowledge, in the form of schedules is thereby 

‘produced’ in a similar manner to an inference engine. 

                                                      
52 Validation in control theory is the matter of degree between which a simulation model and generated data is 

an accurate representation of system under consideration, particular in respect to the intended application. 
53 In a later chapter a conference paper is covered that defined a problem in which an encoding is used to 

generate 221 different manufacturing system configurations. Each configuration is automatically constructed, 

simulated with various uncertainties to find the ‘best’. 
54 In computer simulation, and in control theory as a general field, the systems of interest are typically defined 

by continuous-time process dynamics where variables are defined by mathematical relationships. DES, as a 

general rule, abstracts from these underlying dynamics by modelling on the discrete-time and event-based state 

transitions. The underlying dynamics, at this level, are hidden, and these portions of time that are characterised 

by purely continuous dynamics are known as Invariant Behaviour (IB) states. The human mind at a conscious 

level is likely to be operating around Discrete-Events, and this orchestrates through something akin to language 

the deployment and changeovers of lower level models for perception, control etc.  
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3.4.1 Program Architecture 

In this section the basic program structure for computing schedules using a discrete-event 

program is discussed. This will relate to the numbered sections in the Fig. 3:16 above and use footnotes 

extensively. This program architecture covers most discrete-event processes and is general purpose; 

there is no mention of objective or reward functions (techniques for evaluating the behaviour), nor of 

possibilities for driving the ‘selection’ stage which is the decision to choose amongst different 

computations.  

a) The initial state is given, in addition to any records that must be added to the event register55. 

This pre-supposes the existence of the ‘model’ itself, i.e. the structure of the underlying graph. 

                                                      
55 For example; new tasks may appear at known certain instances in the future. Resources may be unavailable at 

known certain instances in future. These must be recorded as to make up the episodic memory that will 

fundamentally change the schedule. As mentioned, this episodic memory can be exploited to consider differing 

events and how this impacts the schedule and the controlled system performance.  

Figure 3:16: The basic Discrete-Event System program architecture 
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For scheduling problems, this has the simulation variables of task-processing durations, labels 

and state of task queues, labels and state of resources56. 

b) The initial state is used to elicit the set of feasible controlled events via a ‘neighbourhood 

function’; using either an existing memory (a map or dictionary that has a key-value 

representation of states and feasible controlled events) or in a memoryless format, where the 

lookahead process is executed57. The neighbourhood is the set of neighbouring states with 

their respective feasible controlled event that acts as the ‘path’ from one state to another. 

c) Neighbourhoods may be empty; there may be no accessible neighbouring state via controlled 

events - no feasible controlled events. This forces a “no action” condition at the given time 

instance and the program will go directly to time incrementation. In other cases, there may be 

one or more elements in the neighbourhood available to an agent at a given time instance.  

d) In cases with a populated neighbourhood, the agent is faced with a decision, choice or 

selection amongst the feasible controlled events either singularly or concurrently and their 

respective neighbouring state to enter, if any. In some cases “no action” may be optimal. It is 

at this stage at a program level whereby other system and techniques can support the 

construction, computation and generation of the ‘tree’ into promising regions.  

e) Once a selection has been made, in the case of affirmative, it is fired, otherwise, it goes directly 

to the time incrementation. In the cases where no firing is undertaken, the state remains the 

same, so the previously returned neighbourhood remains valid. 

f) The firing process is antecedent to the corresponding uncontrolled event(s) consequent, which 

are scheduled, using the deterministic or probabilistic duration or delay.  

g) The time is incremented, so any data structure pointers are updated and directed at the next 

time instance. 

h) If the new time instance is the same as the episode length or maximum simulation clock time, 

the program will stop or exit, otherwise it will move to the event register. 

i) In the event register, the time is used as a key to find what scheduled uncontrolled events are 

to be fired.  

j) If any events have occurred since the last execution of the neighbourhood function, then the 

state is “new”, meaning the neighbourhood must be re-discovered or otherwise elicited for 

this new state. If no events have occurred then the state is the same and the previous 

neighbourhood is still valid.  

k) The process repeats until the episode length or a particular state is reached. 

                                                      
56 It is a simple matter to use task-processing durations drawn from distributions, so called “Stochastic Timed 

Petri Nets”, an example is given in section 3.5. 
57 A pure compute approach, with no memory whatsoever is used here. What is most performant will depend on 

the application and the associated number of operations required. An obvious intermediary for real applications 

would be to start with a purely compute approach, and build up a memory over time. 
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Overall, the main communication is that Discrete-Event System Simulation is fast enough for 

real-time or online control synthesis, and for many applications, is ready for commercial 

implementation into planning and scheduling of full-scale industrial systems. Of course, these are far 

larger models than a many combinatorial search problems have dealt with, but in order to have 

commercial application, it must be able to reach the critical model size to be useful and have approaches 

to manage the varying degrees of combinatorial state explosion. This means, like Ghallab, Nau and 

Traverso, in Automated Planning & Acting who discuss the notion of deliberation, simulation becomes 

a framework in which search and optimisation, or deliberation, takes place.  

 The Discrete-Event System model defines the close relation between model and state, and this 

allows the establishment of what events are possible, otherwise known as the neighbourhood. In which 

case, in addition to the model, the initial state must also be initialised. This is done, as already discussed, 

by marking the Timed Petri Net with tokens, or using uncontrolled events in the event list to schedule 

future events. The need to deal with ‘disturbances’ in a control-theory is completely disregarded, a 

disturbance simply means a new state input and requires a new search.  Tokens provide two forms of 

information, on the one hand, it provides a Boolean truth value if there is one or more tokens, and where 

there are more than one, and it provides a real-valued integer so to represent a queue of tokens that are 

waiting to be executed. There is nothing to preclude developing small programs to manage queues, as 

there may be particular rules that may need to be enforced. Perhaps a particular task or part is being 

“rushed” and needs to be placed at the beginning of each of its queues. For this work, it is First-In-

First-Out (FIFO) exclusively, since in principle, each task or part within a queue is equivalent58. A 

queue therefore represents a set of controlled events that must be executed, where the number of tokens 

is the total number of these events. If there is only one resource capable of processing a task, then all 

the controlled events are the same. The FIFO dictates the ordering of these events, but as mentioned, it 

is possible for other queuing systems to be used without much difficulty. 

3.4.2 Types of Execution 

In this section is a discussion regarding the different ways in which this programmatic structure 

shown and described above can be used in three main ways. The first is Deterministic Execution (DE) 

where simply running the program each time will have the same result, where task-resource assignments 

are the same each time. Psuedo-Determinstic Execution (PDE) adds exploratory or uncertain behaviour, 

for example, random task-resource assignments or process durations drawn from distributions. The 

most exploratory is Stochastic Execution (SE). The type of operation depends on the objective, DE and 

SE provide the absolute limits of the spectrum, all operations in practice is for search and optimisation, 

meaning that neither a completely predictable or a completely unpredictable outcome is useful. In 

regards to where to place the execution in the PDE region, consider the approach based on hyper-

                                                      
58 In some cases it may be required to use a different queuing heuristic that is static, dynamic or is otherwise 

controlled algorithmically/programmatically. 
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parameters that govern how much computational resource available or what the immediate goals of the 

system are. These may be ranked in terms of immediate usefulness. For example, in a highly time-

constrained problem, where a schedule must be synthesised immediately, and reasonable confidence 

can be assumed in process duration, the search process becomes about finding the best set of task-

resource assignments over an episode. This is precisely our first objective and work package here.  

3.4.2.1 Deterministic Execution 

In all cases, the isomorphic structure (the logical structure, an irreducible system of rules that 

interact) remains the same. A Deterministic Execution (DE) will generate useful information about the 

future of a system, provided all actions or controlled-events are pre-defined or otherwise determined a 

priori, and the uncertainties in the discrete-time domain (e.g. process durations) are omitted. This 

implies absolute confidence in the model validity and accuracy relative to the application. DE would 

not be used for prediction and schedule synthesis in practice unless it is assumed to be a perfect 

representation. Instead, it is primarily useful in the sense it shows or may interpret a historic trajectory 

or experience; the past is perfectly deterministic, and historic data is useful for refining, improving and 

developing the overall model. It can be used as a framework for other calculations, e.g. what was the 

transportation time? Can add new variables be added and look at past data in greater detail? It can also 

be used to formulate variations of a previous trajectory, find where risks may be minimised and such 

like. A DE then, is the basic, fundamental framework for observing Discrete-Event Processes, whilst 

also expressing a ‘perfect model’ definition.  

3.4.2.2 Stochastic Execution 

A Stochastic Execution is not used in practice but is an important concept. An SE implies the 

model is poor or is otherwise in an early state of construction, not dissimilar to System Identification 

(SI) process. By simulating in the most unpredictable fashion, this is essentially actively attempting to 

discover a system model or a ‘better’ system model as the time-series data arrives, and as the data 

arrives, some system models (or aspects of system models) are acknowledged as valid or more accurate, 

whilst others are discarded. Because it is a ‘modelling’, ‘identification’ or ‘learning’ process, it provides 

no predictive or forecasting power, but is instead providing hypothetical rules or conjectures a priori, 

which are then validated by the data of experience as to what the logical structure of the environment 

is.  This is analogous to “Active Inference” in neuroscience. 

3.4.2.3 Pseudo-Deterministic Execution 

In Pseudo-Deterministic Execution (PDE), it is defining a state space that is neither 

completely deterministic nor completely stochastic, and is intended to explore this space using search 

and optimisation algorithms. The main articles of deterministic are the logical rules that underpin the 

environment or system under control. In the case of scheduling for the Safran Landing Systems 

manufacturing systems, these are the propositions that define possibility – i.e. task-resource relations. 

The main articles of uncertainty are the discrete-time dynamics, such as process duration. These may 
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be generated from known probability distributions that are based on previous data or “experience”. This 

enables different event orderings to occur, and this too impacts the task-resource relations. In schedule 

synthesis, the task is to find the controlled event set, meaning that one approach is to randomly select 

from the set of feasible controlled events to neighbouring states; again using randomisation to create a 

search schema for exploratory purposes. Another consideration is whether the exploratory process 

needs to be extended beyond the set of controlled events 𝚺𝑪 into the set of uncontrolled events 𝚺𝑼. 

Under these settings, many interesting synthetic predictions can be found and rare experiential data can 

be generated. For example, in scheduling problems where resources can be rendered unavailable, 

simulating different scenarios will generate the necessary experience for when it happens in practice. 

The difficulty is finding an appropriate way of representing this knowledge.  

3.4.3 Tree Construction Strategies 

As discussed, the core challenge is about constructing and exploring the tree efficiently. The 

perfect system would create the correct branch in the tree with the highest performance with no 

computations wasted. Because it is possible to discover all possible controlled events 𝚺𝑪 

(neighbourhood) or actions from a state, it means that what is required a higher level policy or ‘strategy’ 

to generate the tree. In some problems, it is possible to evaluate each possible controlled event in turn, 

thereby building the tree very efficiently. However, in this case, it is necessary to build an entire branch 

Figure 3:17: For a given problem, the tree can be constructed using depth-first or breadth-first approaches. 
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prior to evaluating that branch. Further, n branches are needed that represent possible solutions so as to 

select amongst them. 

There are two primary approaches to constructing the tree, one which focuses on going from 

root to leaf, in so called ‘depth-first’ search, meaning an entire complete solution or trajectory is created 

within each simulation loop or ‘breadth-first’ search, where all branch components are added at a given 

depth. These are shown in Fig. 3:17. 

In order to enable depth-first search with no further information than the neighbourhood, a 

roulette wheel or Monte Carlo selection (using a uniform distribution over the neighbourhood) is used 

to choose amongst competing controlled events.59 This process is repeated until the episode of the 

trajectory is finished. This is done to avoid constructing the entire tree, but rather sampling future state 

spaces by  generating branches from root (initial state) to leaf (goal state or maximum length). This 

makes it a sampling based depth-first approach – it can make no guarantees regarding the optimal 

behaviour, but is an excellent way of approximating systems that are subject to combinatorial state 

explosion. This is somewhat like the Monte Carlo Tree Search (MCTS) planning algorithm.  

An alternative is breadth-first search, which builds all solutions in parallel, which is analogues 

to a ‘growing’ the entire tree from the root node. This means it must deal with combinatorial state 

explosion directly, with all the memory issues that come with it. It is exhaustive and systematic, and if 

it possible to build the tree (it is unlikely to be possible) it can guarantee the optimal solution.  

It is possible to combine these approaches into hybrids, for example, breadth-first search could 

build a ‘small’ tree (where the depth is constrained by a maximum number of branches and then use 

MCTS on each of the small branches to sample each branch. If a branch or selection of branches are 

statistically higher performing, then these could be constructed – breadth-first, further, and again, using 

MCTS on these larger branches. In chapter 5 these topics are discussed further.  

 

  

                                                      
59 The selection process can be made probabilistic by augmenting the neighbourhood with weights in order to 

change likelihood of selection. 
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3.5 Simple Example 
In this section an example is shown [which is revisited from Chapter 7] that brings together 

some of the topics discussed in this chapter. Discrete-Event Processes may be used to do a canonical 

optimisation task in scheduling that will be encountered in the next chapter at full industrial scale. 

Makespan scheduling defines a future goal state whereby the tasks or jobs are in a certain future state 

via the shortest possible amount of time. Thus, a normalised reward function can be defined based on 

‘𝒕’ that captures makespan minimisation. This would mean that all solutions are negative.  

ℝ = −(𝒕) 

Another is the Context Switching Time (CST), which in the case of manufacturing systems is 

the ‘setup time’. This provides a time-delay from going from one state of ‘setup’ to another. These can 

have a massive impact of on the makespan and they are also non-value adding processes, so represent 

a secondary objective function in addition to makespan. 

As the program runs, the CST time in total is summated (there is nothing to preclude resource-

specific CST time, but concern is directed primarily with the total of all resources). This is an example 

that is simple to understand but shows how complex the problem is. Fig. 3:18  shows the different task 

types in their respective queue places. There are 100 in total (A1, B1, C1). The resources are completely 

empty. This represents the initial state. The goal state is 100 in (A3, B3, C3). From there, they are 

assigned to logically feasible resources at random. The states of the resources are maintained to 

calculate CST as the process continues. Each sampling of the state space through time is a trajectory or 

“branch” in the computed tree.  

First, consider how the Timed Petri Net structure is defined, where the task-duration variables 

are considered. In Fig. 3:19 it is shown that depending on the ‘state’ of the task it will be feasibly 

completed on different resources. In addition to that, tasks take different mean and variance times on 

different resources. It becomes apparent that the interactions between these different variables becomes 

extremely complex, in which case sampling scheme that will compute a ‘tree’ of discrete-event 

Figure 3:18: From a given state, e.g. “A1”, if an A1-type task is passed into the resource, then the CST = 0. Alternatively, 

for a type 1 resource, a A2-type task would mean a CST of 8. The idea here is to create a secondary objective function. 
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processes is a excellent approach to get data that shows the possible futures and which schedules are 

the most performant.  

 

Figure 3:19: The initial state is simply 100 unprocessed or uncompleted task tokens of types A, B and C. The goal state is about 

moving all the tasks into the ‘finished’ goal state A3, B3 and C3 by sending it to the right resource at the right time. In order 

for a task to transition to a new state via a resource, the CST needs to be added (if any) and the processing time must be drawn 

from a distribution. 
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When a task is assigned or routed to a resource, after the CST has been established, the finishing 

time is drawn from a Gaussian distribution using the data shown in Table 3:3. The result is that each 

branch in the tree is not only comprised on different events at different times, but the actual processing 

time itself is uncertain. This allows us to include risk into the model and quantify which schedules will 

be most performant in cases where the total processing time is statistically larger. In practice, this would 

mean that the schedules is more likely to be robust to longer-than-anticipated processing time. 

Table 3:3  Process Durations  

Resource Type Task Type Mean Variance 

R1 A1 100 100 

 A2 400 150 

 B2 600 200 

R4 A1 70 30 

 B1 300 50 

 C1 550 200 

 C2 350 20 

R5 B1 400 50 

 B2 550 100 

 C1 125 50 

Figure 3:20: For this particular Discrete-Event system and reward function, we can see how all 400 different branches in 

the tree relate to one another in regards to makespan time, total processing time and total CST. Those schedules or policies 

of particular interest are those shown by the pink region – these have the lowest makespan time, regardless of the total 

processing time or CST. These are the ones that would be selected for use in controlling this system. 
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3.6 Chapter Summary 

In this chapter, background theory regarding predictive, forecasting and planning system are 

related to developing theories in neuroscience and to the scheduling of manufacturing systems. In a 

nutshell, the theory suggests that input data is heavily informed and modified by existing knowledge, 

and that in the case of scheduling of manufacturing systems, the predictions must precede control. The 

advantage of faster than real-time simulation-based search is that the bifurcating possibilities elicit 

multiple results, and with an evaluation process, can be used to select amongst these solutions.  

The background to using Discrete-Event Systems as the basic model is given. How they relate to 

other important and influential theories including Markov Decision Processes (MDP), model checking, 

Temporal Logic, Event Calculus and finally Petri Nets as a model of computation. In the next chapter 

this work is scaled up to a full industrial case study from Safran Landing Systems. 
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4 Reconfigurable Scheduling through Discrete-Event Systems  
Modelling & Industrial Application 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

“The limits of my language mean the limits of my world”  

- L. Wittgenstein 
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4.1 Industrial Case Study Example 

This section discusses how the approach in the previous chapter is scaled up and applied to an 

existing manufacturing system from the aerospace industry. This system belongs to Safran Landing 

Systems (SLS), Gloucester, and produces large titanium and steel structural components for landing 

gear for the next generation of civil aircraft.  

4.1.1 Introduction 

As illustrated by Fig.4:1, all manufacturing or production systems are part of supply chain 

networks. In the centre is the Safran Landing Systems sub-system structure which is the domain of 

concern; the factory. Squares marked downstream are customers, and upstream squares are the 

producers. Forgings are produced for Safran Landing Systems as the customer. Significant work goes 

into the control and optimisation of these supply networks. 

 

Figure 4:1: Aerospace Supply Networks 

By decomposing the ‘.SLS’ (the Safran Landing Systems Gloucester site, and the Large 

Landing Gear (LLG) shopfloor) shown in Fig.4:1, the problem is decomposed into further sub-systems. 

One is the raw part inventory, the finished part inventory and the manufacturing system itself. This is 

analogous to a Petri Net structure with 3 folded places; categorically unprocessed tasks, partially 

processed tasks and processed tasks. This is the simplest partitioning of the problem, and it will be seen 

that the system itself can be partitioned into categorical variables or sets that lead to uniquely labelled 

controlled events.  

4.1.2 Manufacturing System Visualisation 
It is interesting to visualise what the manufacturing system looks like, since the objective of the 

system is for a supervisory controller to route parts to their respective workcenter, in which case it 

seems logical to see how they relate to one another in this view. In Fig.4:2. the Safran Landing Systems 

site is shown, with some random changes. The diagram has as scale of 180m width, 110m height. 

The development of the Petri Net model of the Safran system involves first to establish the task 

objects and the resource objects. Using manufacturing system terminology, these are the parts and the 

workcenters respectively. Each workcenter or resource is shown by black boxes e.g. LM19J, LM33N, 

etc with their respective name. Blue letters are inventory, queue or storage locations e.g. D, F, etc. Each 
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part should be viewed as an object token (the coloured circles) which have attributes that include 

location in x/y1, categorical location, what process it is in or waiting for, its due date and all the process 

data and many others depending on the application goals. Likewise, workcenters must organise their 

data based on what input or output and informational or physical dynamical behaviour is occurring over 

time. Fig.4:2 is actually a poor representation of the decision process that optimises the manufacturing 

system schedule; a part’s location is basically irrelevant in the grand scheme of things, since the 

transportation time makes up such a small portion of the overall processing time. Nonetheless, the 

location, in further work could be used to increase the accuracy of schedules by calculating or using 

prior data to estimate how long transportation will take. 

The target workcenter and the routing decision is best represented using a Part Process Path 

(PPP)2 as shown in Fig.4:3. This is information that defines what processes the part must complete, 

                                                      
1 Relating to their coordinate positions in the manufacturing system environment.  
2 PPP is simply the sequence of multiple processing steps the part requires to reach the ‘manufactured’ or 
‘finished’ state. This includes choices between alterative machines (resources).  

Figure 4:2: Safran LS Manufacturing System (partially randomised for security and missing information); the legend in the 
top right shows the different types of parts, of which there are 7. Each part has a unique code and colour encoding. These 
parts are shown as tokens distributed through the system in 2-dimensional space. 
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what order and what workcenters. This can be shown as a graph, where each node is a different process 

in sequence.  

 

 

It is completely flexible as to how many task or part types there are, provided their possible 

paths through the system are fully or partially known3, as illustrated by the ‘…’ on the right of the 

diagram. Further, the number of subtasks in the completion of a task (i.e. the number of processing 

steps) is also completely flexible, provided they are known or partially known. Fig.4:3 shows the 7 part 

types that are completed in the Safran Landing Systems facility shown as a sequence of processing steps 

only, e.g. part ‘B2’ has 26 in total, with only 13 shown. Parallel nodes signify choice or indeterminacy 

on a decision process level, on a manufacturing system level this is equivalent to flexibility – there are 

possible resources that may be able to complete this specific processing step. By enumerating each 

possible path, it can be seen in flexible systems, the number of unique paths through the system is 

exceptionally high, in the case of part ‘B2’, there are 1440 possibilities. This is illustrated in Fig.4:4. 

                                                      
3 If they are partially known then hidden knowledge is unused. 

Figure 4:3: Part Processing Paths (PPP) where each part has a unique sequence of operations 
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The ramifications of this, especially since many of these processing paths are occurring concurrently4, 

sharing resources and experience many un-modelled interactions and variation, the underlying process 

or processing data are subjected to high levels of uncertainty that is unlikely to be reconciled by looking 

at the data in idealistic, isolated instances5. This illustrates the extensive challenges in against real 

industrial systems attempts to statistically monitor or control process behaviour and outcomes. The 

suggestion here is that is required prior to attempting to model these processes is both standardisation 

in process configuration to ensure absolute repeatability followed by a high-level categorisation of the 

process in a broader, compositional system context. In this way, the data can be organised via systematic 

architecture for automatic capture, collection and modelling of time-discontinuous processes.  

This leads well into some remarks in regards to flexibility; a highly flexible manufacturing 

system that may manage many different tasks is likely from a part quality perspective to be more 

difficult to maintain high process control and standardisation. However, these systems will provide the 

most flexibility in regards to responding to disturbances, changes or variation in the task mixtures and 

variation in demand. From a scheduling perspective, they are also more challenging to manage 

                                                      
4 There may be up to 60 parts of the 7 different part types, at different stages in processing within the system at 
any given time instant; the state or configuration space of the system is exceptionally large. 
5 This ties very closely to the ‘IID’ distribution issues in machine learning, how much generalisation ability is 
available, is it not the case that there will be a requirement for multiple models dynamically deployed? 

Figure 4:4: B2 Process Path Bifurcation; the B2 part has 1440 unique routes through the manufacturing system owing to the 
choices between different machines that combine together for each possible path. Only the first 7 resources are shown. 
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optimally through what may be colloquially knowns understand as planning or scheduling, since the 

space of possible decisions is combinatorial.  

 

 

 

In Fig.4:5 it is shown how the Process Path of ‘B2’ can be ‘converted’ into a Petri Net structure 

from left to right. The black circular process nodes that define a functionally dynamic state on the far 

left are retained as Petri Net Places, which then includes the coloured square nodes which behave as 

Task Queue objects which are also instances of Petri Net Places. Once a process is completed, the part 

enters a new functionally static state; it ‘waits’ or ‘queues’ prior to processing. These static states are 

just retained to maintain the task, part or object permanence within the model through time. In contrast, 

the processing states provide a means to define a higher level, contextual, Cyber-Physical categorical 

spaces for input or output data discussed in chapter 2.   

Figure 4:5: Developing the Process Path into a Petri Net Structure 
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If the Petri Net structure is re-arranged on the far right of Fig.4:5 so that the complexity is 

handled by the vertexes and repeated processing places are removed, this creates a structure shown in 

Fig.4:6 that is reminiscent of those discussed in simple examples in chapter 3. The part queues are 

mirrored on both sides. Controlled events (that which assign tasks or parts to resources or workcenters) 

are on the center-left, whilst uncontrolled are center-right. Using this representation, there are a number 

of interesting observations. As with the previous representation, there are multiple choices as to where 

to assign a part to a resource. It is clear that in some cases, the same resource is used more than once to 

conduct a fundamentally different process. If the same process is followed as that shown by part ‘B2’ 

on Fig.4:3 and Fig.4:5, using all the part types and all their respective workcenters, it leads to the 

generation of the Petri Net structure shown on Fig.4:7.  
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Figure 4:6: B2 as a Petri Net Structure 
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Figure 4:7: Petri Net Structure of Safran LS Manufacturing System 
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If Fig.4:7 is collapsed into only the queue places, it is possible to use an Euler diagram shown 

in Fig.4:8 to illustrate how the queue places sets (the primitive features that define state) relate to one 

another and The WIP measurement is particularly important because this is used as a dynamic constraint 

in experiments. To calculate the relevant measure, the elements are simply summed together.  

 

 

 

 

 

 

 

Figure 4:8: Euler diagram of the queue place elements and what their summations quantify 
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4.2 Experiments & Results 
There are 5 experiments sets, each with a different ‘problem’ in that they have a different 

optimisation to conduct, one with only 42 parts up to 672. With a planning horizon of approximately a 

month to well over a year respectively. All use a temporal granularity of minutes, and use a sequential 

execution (i.e. only one assignment made at each time instant).  

 

For the different experiments, different Work-In-Progress (WIP) constraints were used, with 42 

parts having 20, 30 and 40 WIP classes, whereas the other experiment sets used 30, 40, …, 80. Fig.4:9 

shows the best makespan (minutes) for different problem sets against the WIP constraint. Fig.4:9 shows 

that the WIP level constraint has a significant impact on the makespan and thus the performance of the 

manufacturing system. Only one experiment set will be replicated here for purposes of discussion, and 

it is experiment 1.5, where there are 42 parts to be schedules and a WIP limit of 40. 

Figure 4:9: A sparse log-plot of all the experiments conducted 
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 First of all, the highest performing schedule found of 1000 searches using the Monte Carlo Tree 

Search (MCTS) for scheduling machines.  

In Fig.4:10, the results in order of discovery are shown. There are two obvious clusters 

appearing, one around the makespan of ~4.25 × 10ସ and one around ~5 × 10ସ minutes. This is made 

clearer by a histogram with a two-term Gaussian fitting in Fig.4:11.   

 

 

Figure 4:10: Experiments in order of discovery or construction; 10 different colours show the different execution of the 
program. The line shows the best-so-far result.  

Figure 4:11: All 1000 simulations and their respective schedule makespan; an obvious pair of clusters is appearing in 
the results, indicating that there may well be exploitable information to direct further search.  
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In Fig.4:12, the best performing schedule after 1000 samples of the state space defined by the 

TPN is shown. This is also known as a ‘time-table’ or ‘timetable’, where each unique task or job is 

shown in relation to one another. This is the synthesised supervisory control policy that would direct 

the operations of the manufacturing system, as it can easily be converted to whatever format is required, 

including linguistics. The solid blocks of colour indicate continuous processing (i.e. without delay) as 

well as a single task or process. This representation shows the utilisation of various resources over time, 

and gives an indication how the utilisation is distributed over the episode and the total processing time. 

In Fig.4:13, a closely related data visualisation is the ‘Factory Utilisation’, where the utilisation is a 

percentage (1 = 100%) of complete manufacturing systems resources6.  

                                                      
6 100% utilisation at a given time instant means all resources in the system are processing.  

Figure 4:12: A generated schedule or ‘timetable’, where utilisation of each resource can be seen.  

Figure 4:13: The total factory utilisation as a percentage over the episode length, reaching a peak at ~80%. 
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In Fig.4:14, it is shown to be possible to visualise the manufacturing system as it is populated 

with parts and a steady production rate over time that aligns with Fig.4:12 and 4:13. We can see a rapid 

increase in ‘Factory WIP’, as the factory starts off empty then is populated with parts. This is shown by 

the sharp increase at the start of the graph. There is a relatively smooth output of finished parts shown 

in blue. The production of specific parts, when they leave the system can be seen on Fig.4:15. This is a 

‘decomposition’ of Fig.4:14, as it gives more granular information regarding the production rate on a 

part-specific basis. 

 Of the 7 part types, each has an associated colour that makes up a ‘step-function’. In this case, 

all A4 parts finish first, with the A2 finishing last. A1 is the first part to be completed after minutes. 

This way of visualising when the compositional goal of finishing a set of parts into subsets and using 

ordering or time instances means that there is significant scope for more complex reward functions or 

goals can be defined.  

 

Figure 4:14: The production rate; with raw parts rapidly decreasing as the manufacturing system is populated (leading 
to a rapid increase in the WIP volume), followed by a steady output. 

Figure 4:15: The production rate with specific parts or tasks being identified using colours.  
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Table 4:1. Results from experiments 

 CODE WIP Makespan Results (minutes) Improvement (%) 
 Max. Mean Min. Min/Max Mean/Max 

E
xp

. S
et

 1
 (

42
 

(6
 x

 7
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12

00
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1.1 20 73570 60886 49547 32.653% 18.623% 
1.2 25 64606 54448 40544 37.244% 25.536% 
1.3 30 63028 50854 40511 35.725% 20.339% 
1.4 35 54550 48666 40549 25.666% 16.679% 
1.5 40 55416 47317 41123 25.792% 13.090% 

E
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12

 x
 7
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24
00

 J
O

B
S 

2.1 30 108701 90049 72410 33.386% 19.588% 
2.2 40 98061 82044 65704 32.997% 19.916% 
2.3 50 95120 77513 64763 31.914% 16.449% 
2.4 60 92932 74370 63225 31.966% 14.986% 
2.5 70 84231 71467 62146 26.220% 13.042% 
2.6 80 82869 69821 62021 25.158% 11.171% 

E
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3.1 30 190149 166320 145844 23.300% 12.311% 
3.2 40 178764 149360 127151 28.872% 14.869% 
3.3 50 168022 141310 116387 30.731% 17.637% 
3.4 60 168492 137230 115048 31.719% 16.164% 
3.5 70 156918 134320 110069 29.856% 18.055% 
3.6 80 156502 132330 111967 28.457% 15.388% 

E
xp

. S
et

 4
 

 (
33

6 
(4

8 
x 

7)
) 

96
00

 J
O

B
S 

4.1 30 357892 319730 287594 19.642% 10.051% 
4.2 40 331881 286840 246589 25.700% 14.033% 
4.3 50 325250 270970 225485 30.673% 16.786% 
4.4 60 302627 262360 222481 26.483% 15.200% 
4.5 70 310451 257500 223252 28.088% 13.300% 
4.6 80 297115 253220 215624 27.427% 14.847% 

E
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5.1 30 675925 626120 569584 15.733% 9.030% 
5.2 40 642319 564010 507681 20.961% 9.987% 
5.3 50 602570 535360 459502 23.743% 14.170% 
5.4 60 594866 518760 450421 24.282% 13.174% 
5.5 70 604877 511700 435004 28.084% 14.988% 

 

As shown in Table 4:1, the search process using MCTS can achieve some optimisation capability 

by virtue of the random search producing different schedules. This results in improvements of ~10-20% 

over the mean and ~15-40% over the largest makespans. All experiments use only 1000 samples, which 

may be why the larger problem sizes achieve a smaller difference between Min/Max and Mean/Max.  
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4.3 Chapter Summary 
In this chapter, the industrial case study was shown as a Timed Petri Net with the special 

representation discussed in chapter 3. This system is highly flexible and complex in the interactions 

between choice, dependency and conflict. The underlying state space defined by the Timed Petri Net is 

large and intractable using exhaustive methods. The basic neighbourhood generation process (via. 

lookup) discussed in the previous chapter is used to construct sample trajectories into ‘possible futures’ 

using MCTS. It can be seen that there are significant gains are possible in productivity for Safran 

Landing Systems by sampling the different possible routings of parts to machines.  

The next chapter extends the framework covered by chapter 3 and 4 by considering methods to 

algorithmically exploit previously constructed solutions to direct or inform the search into more 

promising regions rather than purely random exploration. This is particularly important on the larger 

problems, where the search space is far larger. Broadly, metaheuristics are seen as the best approach to 

achieve this, and they are discussed in the next chapter where the Safran Landing System is used again 

as a case study.  

 



5 Reconfigurable Scheduling through Discrete-Event Systems  
Principles of Metaheuristics 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

“It is true, that, in this respect, the mind may repair their omissions; for 
the knowledge of certain principles easily compensates the lack of 
knowledge of certain facts.” 

- C. A. Helvétius 
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5.1 Introduction 
Although MCTS has been used to ‘optimise’ in an approximate manner by simply choosing the 

solutions based on its performance relative to the others by sampling the space defined by the Discrete-

Event system, the process does not ‘focus’ or intensify its efforts in any way; there is not a mechanism 

that provides a strategy to guide the construction of the tree into particular or localised regions. In this 

chapter, the concept of optimisation in MCTS for scheduling is discussed in further detail1, some of the 

core concepts in heuristics and metaheuristics are defined, and it is shown how these principles may 

direct the construction of trees. In the final portion, a simple metaheuristic called Elitist Trajectory 

Mutation (ETM) for deterministic Discrete-event processes is shown and finally provide some remarks 

for developing new metaheuristics for stochastic (i.e. uncertain) discrete-event processes are made in 

chapter 8. 

The argument for moving towards metaheuristics (and heuristic-stochastic search) is two-fold; 

on the one hand, most problems of applicable value are increasingly complex which means that 

approaches must be both general purpose and have no requirement to search the space exhaustively. 

Conventional methods and systematic search/optimisation will not typically satisfy these two points. In 

the trade-off is between solution quality and computational time, and solution quality is typically 

compromised in order to get a quick solution. Moreover, problems of ‘real interest’; those that have 

practical or commercial value, exact-optimal solutions are unfeasible. Systematic search can be seen as 

deterministic and often employ a ‘heuristic’ (a rule, or rule-of-thumb). 

 

Table 5.12 Systematic Search  Stochastic Search 

 Linear Programming (LP) 

Non-Linear Programming (NLP) 

Branch & Bound  

Breadth-First Search  

Monte Carlo Tree Search (MCTS) 

Ant Colony Optimisation (ACO) 

Genetic Algorithms (GA) 

Evolutionary Computing (EC) 

 

Many metaheuristics mimic natural processes in name in and mechanisms; evolution, annealing 

and many that feature ensemble dynamics, such as immune systems, ant colonies, particle swarms, etc. 

It is notable that after a deep study of metaheuristics that the same concepts appear repeatedly – relative 

performance3, exploit-explore4 dynamics, memory and distribution. In the case of designing new 

                                                           
1 When simulating Discrete-Event Systems, and evaluating them, there is a temptation to see it as a Travelling 
Salesman Problem (TSP) or a board game. Although it shares aspects of both of these, it is unique, and as 
discussed shortly, is most closely related to a declarative constraint programming approach.  
2 Systematic search is deterministic, procedural, algorithmic and often exhaustive. Stochastic uses a random 
component for exploratory mechanics that need only sample the search space.  
3 In population-based, the system produces a space of solutions and their relative performances and distributions 
are established. In the case of hill-climbing, greedy or single-solution (no population) it is the selection of the 
existing or new solution. 
4 Exploitation can be cast as ‘experience’ that is used to guide further search, whereas explore typically involves 
using randomness or stochastic mechanisms within predefined ranges. 
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metaheuristics that are problem specific, having a strong understanding of the underlying mathematical 

structure is required. Although optimisation appears almost ubiquitous across engineering, only a 

handful fields have acknowledged the power of process optimisation, particularly where the ‘problem’ 

changes, and a new optimisation or search must be carried out. Processes have the potential to be 

optimised and so many applications are process-oriented the field of optimisation has exceptional value 

and capability. It approach the ideals of AI; machines that are capable of intelligent problem solving. It 

is particularly interesting when high level, abstract and categorical variables may be placed within an 

optimisation framework – time, value, risk, cost, resource and energy. The field itself draws heavily 

from many fields; mathematics, Artificial Intelligence (AI), computational science, intelligent systems 

and operations research. Strictly speaking the field belongs to ‘optimisation’ and is found in applied 

mathematics and computer science.  

When a problem is modelled and represented, it becomes clear that most of the time, the space 

defined is so large that standard computational strategies to find the optimal – i.e. the best – solution 

becomes unfeasible. It is the case that once a problem is represented, the variables and relations between 

variables are so complex that exact methods may be unable to attempt it. Approximate or 

approximation-based algorithms are an alternative and can be divided into specific heuristics and 

metaheuristics.  

Specific heuristics are special in that they are particularly ‘heuristic’ in nature – they deploy quite 

literally a rule or strategy in discovering solutions. In order to do this, things are designed to be 

applicable to a particular problem. Metaheuristics, on the other hand, are highly flexible, general 

purpose, and as the name indicates, operate at a ‘meta’ or strategic level and can be applied via 

adjustments to attempt representations of the optimisation problem. The algorithmic strategy is to 

attempt to reduce the size of the search space and secondly exploring the search space efficiently.  

Metaheuristics are capable of delivering solutions that range from feasible to valued or evaluated, from 

acceptable to ‘near-optimal’. As a rule, they do not attempt or guarantee optimality – exact – perfect – 

best solution. Computational complexity shows that even a minor relaxation of the requirement to find 

the optimal leads to a drastic reduction in the computational requirements.  

Heuristic is defined by the Oxford dictionary as “a method of solving problems by finding 

practical ways of dealing with them, learning from past experience”. It is used colloquially to mean 

“rule-of-thumb” which fits well in the case of heuristic search techniques. The Oxford Reference is 

more specific and relatable to optimisation – “denoting a method of solving a problem for which no 

algorithm exists, it involves trial and error, as an iteration”. This loosely ties back to the concept of 

reconfigurablity; is it the case that certain heuristics will deal with multiple instances of a problem? The 

answer for a significant number of cases is yes. The word heuristic itself has a Greek origin of 

“heuriskein” meaning something along the lines of “the art of discovering rules or strategies for solving 

problems”.  
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Metaheuristics is a portmanteau with the prefix meta – another Greek contribution that means 

something like “high or upper-level” or “abstract” methodology or structure. The term was initially 

coined by Fred W. Glover in [1]. The most recent developments, in addition to a dizzying array of new 

metaheuristics, each seemingly claiming to be the most performant, is that of hyperheuristics[2]. This is 

an interesting result, as it shows that in spite of their general applicability, metaheuristics remain 

heuristic at their core. Hyperheuristics were a response to this, and adds a further level of abstraction 

from the search and optimisation process to attempt a greater degree of flexibility whilst retaining the 

autonomy. They may be thought of as ‘heuristics to select heuristics’. As early as 1963, Fischer & 

Thompson had made comments regarding the efficiency of combined approaches that deploy mixed 

lower-level heuristics, illustrating that specific heuristic mechanism efficiency varies at different stages 

in the search process, leading to the implication that a variable technique – at the so called ‘hyper’ level 

may be capable of producing better solutions in less time. It may be argued that the principle of a second 

layer also appears in defining parameters or hyperparameters for standard metaheuristics, for example, 

having a mechanism for greater exploration earlier in the search that steadily becomes more 

exploitative.  

5.1.1 No Free Lunch Theorem 
The No Free Lunch Theorem (NFLT) has parallels with the concepts of generalisation and 

overfitting in Machine Learning (ML) and the goal of ‘general’ AI broadly. NFLT states that ‘general 

purpose’ or ‘universal’ optimisation algorithms are not possible in practice. Instead, in order to 

outperform an alternative optimisation algorithm, a specialisation to the problem or a so called 

‘designed metaheuristic’ that exploits problem specific knowledge is required. This leads to class-

leading, efficient solutions in reasonable time at a cost of generality. This is particularly clear in the 

case of optimisation of Discrete-event systems, where the underlying structure must be maintained. Ho 

and Pepyne[3] go into a the theory behind NFLT and its ramifications. First, Ho and Pepyne define a 

finite world in which the “input and output sets are discrete and finite in size”, and lead into a 

fundamental matrix, in which rows are [optimisation] strategies, the columns are the universe of all 

possible problems, and elements are the performances of the respective strategy and problem. NFTL 

states that row averages of the matrix are always equal – averaged over the space of all problems, all 

strategies give the same performance.  

5.2 Optimisation, Metaheuristics & Decision Problems 
Decision making is an abstract concept, and ‘decisions’ themselves are again a very abstract term 

with closely related terms that can replace them whilst meaning remains intact – choice, control, 

productions. Many problems may be cast as decision problems, but not all are concerned with the order 

unto which decisions are made, but rather what those decisions are. Further, only some consider 

dimensions such as time, which must be modelled explicitly. The Markov Decision Process (MDP) has 

already been discussed in a previous section, but the theory written here is directly applicable; discrete-
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event systems are particularly good at fitting within this formalism. The identification or formulation, 

modelling and ultimately search-optimisation process involves a series of steps that appear repeatedly. 

In the first instance, the problem of Discrete-event process control must be cast as a decision problem, 

a general understanding of what the constraints are, the search space and how the solutions relate to the 

objectives. In the second step, this early conception is fleshed out further and models (e.g. discrete 

mathematical or computational in nature – since these are similar in practice – e.g. simulations, 

programs). The moving from a conjectural or conceptual description of the problem to a generative, 

searchable model. This again ties back to the concept of representing an MDP. 

Establishing a model or framework has involved extensive and wide-ranging search of the 

existing literature. In this case, the Multi-way Number Partitioning Problem (MNPP), the Job-Shop 

Scheduling Problem (JSSP) and the Flexible Job Shop Scheduling Problem (FJSSP); and finally board 

games such as Chess. Others, such as the Multi-Arm Bandit Problem (MABP) cast an insight into the 

concept of hidden information or knowledge that is ‘generated’ via experience. Many of these are highly 

simplified versions of real industrial and commercially important problems. This laid the groundwork 

for a more general concept of a ‘model’ in the context of a ‘action’ or ‘planning’ model, that is neither 

restricted to mathematics but rather focuses on the computational aspects, allowing both to be brought 

together into a hybrid – the simulation. Although the solution interacts closely with the simulation, it 

retains the simplicity and efficiency of a mathematical problem, e.g. a set of a real-valued integers that 

encode the controlled events. The principle of the model is to represent the problem as validly as 

possible whilst retaining an interface for solutions to be generated and/or evaluated. In the first instance, 

a solution must be legal, valid, feasible- in the second, whether it is acceptable (perhaps using pre-

defined bounds) and some estimations as to where or what the optimal or best solution is. This is shown 

in Fig.5:1. For some problems, a solution alone would suffice (i.e. problem-solving!), at the other 

extreme is attempting to achieve perfect optimality. 

Figure 5:1: An Euler diagram classifier or filter for solutions; for some problems, to achieve a legal, valid or feasible solution 
is the primary task of the search process. Following that, an acceptable performance, given some pre-defined criteria. Beyond 
this are relative measures, using the performance distributions. In some cases optimal performance requires a systematic, 
exhaustive search that ‘proves’ the optimality. During a canonical search-optimisation process, the solutions would populate 
the outer sets first then steadily move toward populating the inner sets. The white space surrounding the outer set may be 
considered the ‘set of all solutions’! 



  T.J.Helliwell 

159 
 

In the case of Monte Carlo Tree Search (MCTS) approach discussed in the previous chapters, 

this will only produce solutions within the set of ‘legal, valid, feasible’, the challenge forthwith is to 

move towards constructing solutions that are near optimal performance rapidly. It is notable that, on the 

one hand, in the case of finding a valid solution at all is a ‘binary’ condition, i.e. it is valid or not. On 

the other hand is optimisation – which often will rely on relative scalar performance in regards to the 

objective function in the case of approximate (e.g. metaheuristic) approaches. 

Nothing related to optimisation in the continuous domain (i.e. “continuous optimisation”) will be 

covered. As a general observation, it would appear that these techniques are better established. Further, 

these problems are working on smooth manifolds which can help the optimisation process as it traverses 

them, the classical discussion in Machine Learning (ML) is in regards to manifesting gradient descent. 

The difficulty in these problems is in becoming trapped within local minima or maxima. In this work, 

instead, because the solution is sequence of real-valued integers that encode the controlled events, it 

shares commonality with combinatorial search, combinatorial optimisation or discrete optimisation, 

and via the simulation (with the Timed Petri Net (TPN) acting as the simulation’s core Discrete Event 

System (DES)) is related to constrained optimisation. Although the local minima appear here too, it is 

of a different nature. 

Figure 5:2: Consider the TSP problem as a Directed Acyclic Graph (DAG) or a ‘tree’, whereby each branch is a unique 
solution, it becomes clear that this is a sequential decision problem itself, where future decisions are inextricably connected to 
decisions made in the past. Each ‘location’ in the TSP is a component in the solution, the difficulty is knowing what order to 
go from one location to another. The evaluation of course involves only the summation of the total distance.  
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The DES defined in the previous chapters will generate or ‘produce’ (vis-à-vis a production 

system) the integers for a given solution constructively in a similar manner to choosing a sequence of 

moves in a Chess engine. The problem is that integers are an encoding of objects, i.e. a controlled event 

is a unique routing or assignment of a task to a resource – they ‘represent’ these objects symbolically, 

rather than acting as an actual variable. The search space is finite (in our case, this is the state space) 

the objective function and constraints are problem specific. Combinatorial optimisation is an area of 

Discrete Optimisation and covers a great deal of applications, including many real-world problems. 

The stand-out, canonical case is the Travelling Salesman Problem (TSP) and is easily described; 

given 𝒏 locations (comprised of some number of dimensions, typically, 2), e.g. the cities and a map or 

function 𝒅𝒎,𝒏 where the elements (𝒅𝒊𝒋) give the difference between locations 𝒊 and 𝒋, find the shortest 

path through all locations exactly once. This is shown in Fig.5:2 (left). It is interesting that a ‘path’ is 

Markovian, since it is a matter of referring to the list of locations yet to visit and those already visited, 

regardless of where it starts within a path. If you were to enumerate all the paths, again, you are 

generating a Directed Acyclic Graph (DAG) ‘tree’ of possible paths, where each branch is a unique 

path [that is a permutation of the cities] and the root node is the starting city and the final city is the leaf 

node. In the classical description, the search space is easily defined as 𝒏! where the initial location is 

not fixed. A 𝒏! type space shows the property of combinatorial state space explosion for brute-force or 

exhaustive search.  

5.2.1   Constraint Programming for Optimisation   
Another similar field of research classified as systematic is Constrained Optimisation (CO) or 

Constraint Programming (CP). CP introduces computational or simulation based concepts where the 

properties of the desired solution become reflected in the defined search space. CP and CO model’s use 

a set of symbolic, logical and mathematical variables within finite predefined, dynamically constrained 

spaces (limited, using limits or ranges) of values. By using the relationships between constraints and/or 

variables, only feasible solutions are generated. Of the many areas in optimisation, this is the most 

related to the TPN as it is used in this thesis. This is the effect achieved when marking (i.e. tokenising) 

the Petri Net with the current state, and why using events to define the relationships is so effective. In 

addition to this, in some cases, a positive or negative reward function [a penalising strategy] may be 

used to show undesirable properties in the solution where hard constraints cannot be represented. When 

the negative reward function reaches a certain level, thresholds can trigger so called “death penalty”, in 

the form a rejection strategy, where that solution is rejected or ignored. 

It was a significant realisation that in the in the case of simulation, and specific to tokenisation 

in the Timed Petri Net (TPN) means that constraints may be propagated easily (e.g. into the future by 

some defined interval) which reduces the space by updating the variable domains programmatically. 

Talbi [4] shares my observation; “constrained optimisation techniques are less suitable for problems 

with a large number of feasible solutions” … “they are usually used for tight constrained problems 

such as timetabling and scheduling problems”. And makes further comments on the value of 
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approaching model-theoretic development; “The efficiency obtained in solving a given model may 

depend on the formulation used. This is why a lot of research is directed on the reformulation of 

optimisation problems”. Finally, the approach discussed in the next chapter is anticipated by Talbi; “in 

some applications, one has to resort to simulation or physical models to evaluate the objective function” 

in addition to a critical argument – that in some cases “mathematical programming and constraint 

programming approaches require an explicit mathematical formulation that is impossible to derive in 

problems where simulation is relevant”. The interesting thing about this comment is that it makes no 

reference to planning algorithms directly, since these are using models that are somewhat reminiscent 

of simulation but do not have the same connotations of computational overhead. Planning is an area 

that may be exploited more fully in future, particularly in the way that it acknowledges the stepwise 

nature of episodic problems, greater flexibility in their design and sits closer to applications.  

In regards to their design and development, CP are similar to the “Branch & Bound” algorithms. 

It is an exact or complete search paradigm that comes from the AI field. Provided the appropriate 

modelling method is used, constraint programming is exceptionally flexible in its ability to represent 

problems. Although this will likely be varied greatly based on the practitioner or researcher – it requires 

a strong capability to conjecture new variables and complex relationships between them in a declarative 

style.  

Talbi covers the principles behind constraint programming by covering the basic goal is that a 

constraint programming problem is to generate feasible solutions. It is no coincidence that in this work 

the initial goal is to construct feasible solutions. The way it is approached here is that a lookahead 

process (covered in chapter 3) is used. This is used to describe the processes of finding logically possible 

state transitions from a given state. Lookahead in Chess uses the rules of the game to establish which 

moves are legal which is equivalent to feasible in CP and the TPN. In CP, rather than lookahead it is 

called propagation5 and “consists in filtering (or reducing) form variable domains the values that cannot 

lead to feasible solutions”. Both lookahead and propagators are processes that aim to reduce the search 

space, and will reach a natural end point and will be terminated once the possibilities have been 

explored.  

Search follows. This once again covers the concept of generating “branches” of possibilities in 

space-time. The significant contribution here is that either singular or combinations of constraints may 

be applied as elements or components of the solution. In the case of Chess, these are the moves, and in 

TPN, the events that define state transitions that belong to the feasible subset. An obvious case of a 

constraint that has been used is the Work-In-Progress (WIP) volume which is a summation of all tasks 

that are either in-process or between processes. By setting a limit on this value (i.e. a constraint), all the 

controlled events that further increase it are non-feasible. It is possible that by using constraints in a 

                                                           
5 It is also known as ‘the pilot method’, which is an interesting analogy. 
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particular way (e.g. heuristically) one can reach better solutions more efficiently, so it is part of the 

search and optimisation process itself.  The simulation of the TPN in the context of metaheuristics is a 

“constructive algorithm” or a “successive augmentation algorithm”, where the total number of elements 

or variables (where those that are non-zero encoding controlled events, and zero encode no controlled 

events – ‘no decision’ or ‘wait’) [the permutation cardinality] in a given position is the solution.  Talbi 

defines a constructive algorithm as follows; “start from scratch (empty solution) and construct a solution 

by assigning values to one decision variable at a time, until a complete solution is generated”. The 

existing process of simulating the DES in a TPN generates a solution for us, and returns this solution 

as the Controlled Event Permutation (CEP). 

Optimisation and simulation is a huge area of interest [5] that has many areas of interest. Overall, 

it seems that simulation or programs can be used profitably for problems that are reconfigurable (in 

terms of the defined state space, and variation in the objective function) and difficult to represent in any 

other manner. Talbi touches on this also; “demand is growing to solve real-world optimisation problems 

where the data are noisy or the objective function is changing dynamically”. The main difficulty in 

regards to using programs or simulation is that they are typically slow as a result of their computational 

demands, and given that optimisation itself is time-consuming, the addition of models that quantify or 

evaluate a solution being time consuming moves us further from online, dynamic or real-time 

optimisation. This is in addition the staggering development cost- deep skills in regards to converting 

the dynamic behaviour of the problem to a simulation involves logical maps of constraints over 

processes and the ability to represent this in a program, which themselves now benefit greatly from the 

right choice in language, hardware and parallelisation. 

5.2.2   Dynamic & Online Optimisation  
A simulation is a dynamic model, in that the behaviour is propagated through the simulation 

duration via many different paths, this is particularly clear in Discrete Event System Simulation (DESS), 

where concurrency, parallelism and composition is the principle process behaviour. This means it shares 

properties with dynamic optimisation; the input elements of the problem change over the course of 

applying a solution. For example, in the case of the TSP and Vehicle Routing Problem (VRP), 

respectively, the locations may be added or deleted based on what locations have been visited already 

(or some other mechanism) and in the case of VRP, real-time or online optimisation appears where it 

is possible to conceive of situations where a solution is already found, but the circumstances change 

e.g. a new customer is added. In the case of scheduling in manufacturing, for the former case of dynamic 

properties, the TPN will provide different available events based on what has happened previously, and 

in the latter, it is possible to envisage changes to resource availability, variation in supply chain demands 

and other such disturbances or updates to either state or objective function. Dynamic problems in many 

ways embody constraint-type mechanisms that are related to sequence and/or time (time being the 

function that generates the sequential ordering in our case). 



  T.J.Helliwell 

163 
 

A closely related classification for dynamic optimisation is robust optimisation, where variables 

of interest (these may be called state variables, belonging to the agent, the environment or the decision 

modelling) change (a la dynamic optimisation) or are otherwise perturbed or subject to disturbances. 

With robust optimisation, dynamic optimisation seems to be better suited to classify problems that need 

to be continuously optimised (over some time horizon, for example). The term robust refers more 

specifically to the possibility of generating solutions that are still acceptable in the event of disturbances. 

It is an interesting exercise to consider how this is achieved and its implications for control theory and 

artificial intelligence. At the very least, it sets an ideal in regards to model, search and model 

representation issues. In practice, the concept is deployed more realistically using probability 

distributions.  

In the case of dealing with new disturbances or updates to the model or ‘environment’, - the ‘real-

time or online’ issue, in this work it is viewed as a ‘new problem’ and will have some variation on the 

existing or previous problem-solution. In the case of many disturbances, it will typically mean that the 

initial state is different, in other cases it may be that a ‘new’ anticipated event in future must be taken 

into account. In the case of the TSP, where new locations are added or subtracted as a function of what 

has been visited before is closely related to a time-composition based approach in many sequential 

problems. For example, in the shortest path problem, a priori decisions have significant impact on what 

decisions are available a prosteri (later). Again, Fig.5:2. helps illustrate this.  

To make the different types of problem variations more clear, let’s consider an element in a subset 

disturbance events 𝚺 𝑫𝑰𝑺𝑻 ⊆ 𝚺 given that 𝚺 is the set of all events. If this event occurred at 𝒕 = 𝟎, it is 

a new initial state or ‘root’. On the other hand, if the disturbance is anticipated to occur in future6, (the 

event occurs somewhere between now and the episode length 𝒆𝒕), i.e.  (𝒕𝟎 <  𝒕𝚺 𝑫𝑰𝑺𝑻 ≤ 𝒕𝒆) , then the 

branch itself must deal with or take into account the disturbance as a future occurrence rather than the 

root. Talbi identifies this as simply “detect the change in the environment when it occurs” and proceeds 

to claim that “for most real life problems, the change is smooth rather than radical”.  This portion is 

not fully understood- at face value, it would depend on the problem. Perhaps what is meant is that, for 

the TSP, for example, the variation on the location is step-wise, for example only one or two locations 

could change at once, leaving the rest the same, rather than a completely new set of locations. For 

Discrete-Event Systems (DES), where the solution is using event objects, it is slightly different, clearly 

the variation in state is racial. If the ordering of events changes, based on variation of the speed or 

duration of processing tasks, then this could also be seen as radical. Talbi follows up with “… the search 

process must adapt quickly to the change of the objective function”, acknowledging that a new problem 

may be a change in the objective function, a change in the model or environment or both. 

                                                           
6 It is easy to conceive of how this could be a useful technique. For example, when should maintenance be 
carried out on a resource? In fact it is possible to search for a schedule that includes a maintenance period whilst 
minimising the disruption.  
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A final insightful comment “the main challenge is to reuse information on previous searches to 

adapt to the problem change instead of re-solving the problem from scratch”. This raises many 

important ideas across Artificial Intelligence (AI), though it should be acknowledged in terms of 

practical applications, this is most closely related to planning and solving MDP, since these are the two 

areas that encapsulate forecasting or predicting future scenarios. The main approach to address this is 

to hold a more flexible solution representation which can handle uncertainties.  

In this project the problem is dynamic. The sampling (MCTS) approach is tabular and thus retains 

a memory of possible schedules in which case there is some situations where a system enters a different 

state, either the selected schedule (or synthesised controller) will still be valid (or believed/assumed to 

be valid) or a new search is forced. The new search could refine a different schedule that has been found 

before, perhaps by querying or filtering the set of permutation or transforming one7. In other cases, it 

may use a white-box knowledge-based Fuzzy Logic inference engine8 to give some generalisation 

power at the same time as having a fast control-like, immediate reflex decision. There is significant 

scope for hybridisation or coupling between inference engines and simulation-based optimisation that 

use internal models. The main challenge is ensuring and validating the internal model is sufficiently 

accurate to forecast or plan, and deciding how to apportion the time for search and training. In this work, 

the focus has been placed on the search and deliberation processes for optimisation rather than 

developing inference systems from the synthetic data or complex transformations of existing 

solutions/schedules. This is because in order to use planning models in real time, or to build any model 

of understanding of a system, the search process must be as fast as possible. The main issue is dealing 

with combinatorial state explosion. With complex models that capture significant detail, it is impossible 

to use only the logical possibilities, but instead, what is also needed is a more constrained way of 

sampling the space, since constraints can be used to limit or reduce the searchable space. This is 

particularly evident here, when the TPN with tokens are used to compute the neighbourhood. It seems 

general, but it may be particularly useful for task-resource scheduling in DES.  

When it comes to the speed of the search process, there are 3 main aspects to consider – what is 

modelled (selection of features, selection of variables or conjecture of new variables), how it is modelled 

(representation), what the algorithms and data structures are that represent the model, what the 

algorithms and data structures are that drive the optimisation, the overall effectiveness of the strategy 

deployed for exploit/explore and finally, the programming language used and the computational 

hardware used. It is worth noting how they relate to one another; they are tightly coupled and subject 

constraints on one another. For example, if it were decided to use a parallel computing approach on a 

Graphical Processing Unit (GPU), you are forced into using a C/C++ library such as Nvidia CUDA for 

implementation. 

                                                           
7 It is easy to conceive of taking the set of permutations and finding the one which matches to the current state.  
8 The alternative would be a black-box approach, some trained Machine Learning (ML) model.  
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Because speed is the immediate concern, the modelling decisions have a huge impact on the 

speed and the most open to creative approaches and heuristics. In this work, for makespan minimisation 

in task-resource scheduling, the TPN serves as an excellent model for the compositional dynamics. If 

excessive detail is included in the model then the degree of combinatorial state explosion increases. The 

ideal approach is to have a model with other knowledge or models to constrain it to a smaller branching 

factor. In the TPM, the state is easily represented by the number-of and position-of tokens which 

performs automatic reification (i.e. the rules or predicates defined by the structure of the TPN are 

converted to an object or set of assertions – the possible events) and secondly, the “blocking” effect of 

tokens means the branching factor reduced. Finally, specific to the makespan minimisation problem is 

that it is possible to exploit a “problem-specific” heuristic that reduces the search space significantly – 

many ‘high-performance’ schedules will have a structure that can be replicated by using the heuristic 

“assignment at the earliest opportunity”. Only in certain problems and models would this lead to poor 

solutions, and in some cases it may be fixed with some systematic lookahead and backtracking.  

5.3 Systematic Search  
The definition of a complete search algorithm is that they may guarantee their optimality (i.e. it 

is globally optimal by virtue of exhaustively searching the complete space). In this area is dynamic 

programming, branch-orientated which are typical in Operations Research (OR), whilst legacy 

Artificial Intelligence (AI) gave rise to the A* algorithm [6] and the many derivatives, including 

Iterative Deepening. All of these at the core are ‘tree search’ algorithms, like that of a rolled-out or 

simulated TPN. 

5.3.1 Specific Heuristics & Metaheuristics 
Talbi differentiates approximate methods into metaheuristic search and specific heuristic search 

algorithms. The former are popular and general purpose, whilst the latter are designed to solve a specific 

problem and/or instance.  

Figure 5:3: On the left there is an example of the Multiway Number Partitioning Problem (MNPP). The real-valued integer 
elements in the set may be divided in to this case 5 subsets. On the right, it is shown how this relates to a makespan minimisation 
problem in scheduling that reaches a so-called perfect partition, the scheduling equivalent of saying “they all finish at the 
same time.” 
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To discuss specific heuristics, a simple example of a problem not different to scheduling (albeit 

highly simplified) is the number partitioning problem (NPP) and particularly the Multiway Number 

Partitioning Problem (NMNPP) that can be seen on the left of Fig.5:3. The MNPP is defined as follows; 

divide a given set of 𝒏 positive integers into 𝒌 mutually exclusive subsets (i.e. if 𝒌 = 2, it is a two-way 

or bidirectional, if its 𝒌 >  2 it is denoted as multiway). The best, optimal or “goal state” is defined by 

the sum of numbers in each subset are nearly as equal as possible. The so called perfect partition is 

where sums of partitions are equal. This is shown on the right of Fig. 5:3. If the sum of the numbers is 

not divisible by the number of subsets, the subset sums in a perfect partition will differ by one. This 

problem is an important epistemic intermediary to task-resource scheduling described in this thesis.  

Korf [7] said the NPP “is perhaps the simplest NP-Complete problem to describe” and that is 

has an application in multi-processor scheduling defined by Korf as “given a set of jobs, each with an 

associated completion time9, and two or more identical processors10, assign each job to a processor to 

complete all the jobs as soon as possible”. Although it differs in many respects, in addition to being far 

simpler to the scheduling problem defined by a real manufacturing system shown in the previous chapter 

and the overall generalisation, it is worth explicitly showing the relation with a simple example that 

shows the problem and the perfect partition. If this problem was approached naively, as an uninformed 

decision problem (i.e. using no logic or heuristics) in a stepwise manner11, the generation of the solution 

can be seen in different ways. And see how it compares to a TPN modelling approach. 

                                                           
9 This is equivalent to duration, speed or processing time used in this thesis. 
10 Equivalent to a resource in my terminology. 
11 I.e. conducting random assignments, to explore the possible decision problem permutations, reminiscent of 
the Multi Arm Bandit Problem (MSBP) 

Figure 5:4: The Multiway Number Partitioning Problem (MNPP) is a decision problem can be approached using a specific 
heuristic (left) or by using exploratory, random assignments (right). In the former, take the largest element of the set, and put 
in the smallest sum subset. Where the subsets are equal, then the assignment can be to any of the equal subsets, here it has 
proceeded from top to bottom, where the process order is red, yellow and green. On the right, it shows that without a heuristic 
or observability of the total sum of the subsets, or the value of the elements in the set, the agent is faced with an initial branching 
factor of 50 followed by 45, 40, etc, as each assignment takes place and the solution is constructed in a stepwise manner. This 
is equivalent to a knowledge-free or hidden information decision problem. The latter is to illustrate that a Petri Net simulation 
is a hidden information problem and is not a simple multiprocessor scheduling problem; evaluating the performance of the 
solution or decision sequence is possible after it is completed. 
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For example, in the case of a multiset problem where each subset is unique the branching factor 

(vis-à-vis neighbourhood) is 50 because you are considering the selection of the integer (task) and the 

subset (resource) in combination12. If you consider each subset (resource) as equivalent, then it reduces 

to 10 only13. When a greedy heuristic is deployed, the branching factor will arrive at 1, meaning there 

is no exploration whatsoever, and the heuristic has complete control over the generation of the solution. 

 The main difference with the MNPP is that the problem does not concern itself with the order 

or sequence in which the integers (tasks) are assigned to subsets (resource). This is an effect of encoding 

and redundancy; how the problem is encoded can increases the level of redundancy dramatically. For 

example, given 4 elements and 2 partitions or groups, an encoding of “BAAB” assigns element 1 and 

4 to “B” and 2 and 3 to “A”. In the case of NPP, this solution’s encoding is equivalent in practice to 

“ABBA”. This makes it a combination rather than a permutation which what is used in TPN. For a 

combination, i.e. the solution encoding is unordered, the number of integers in the selection set is 

considered only, rather than their uniqueness, the space of possible decision problems is 𝒌𝒏, so the 

branching factor is 5 at each step of generating the element of the solution. There is no reason to treat 

it in any other way, but as an academic exercise, if a permutation is enforced and the solution encoding 

is ordered, the sequence of decisions of decisions matter and all are available to be selected it forms a 

series.  
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= (𝟓 × 𝟏)𝟏 × (𝟓 × 𝟐)𝟐 × (𝟓 × 𝟑)𝟑 × … (𝟓 × 𝟏𝟎)𝟏𝟎 

 

This is interesting only in that the branching factor is reducing as decisions are made, as the 

selection set reduces until it is empty. This conception is important when considering a formulation of 

the problem where the values of the integers are hidden, and instead use an alphabet of symbols. To 

return to the concept of specific heuristics, there are well known approaches for solving the MNPP that 

actually exploit the sequence of decisions by using the information the problem gives (observing the 

integer values in the selection set and the subsets) as it is being solved. Korf defined some of these 

heuristics that can be deployed to guide or control the decisions/assignments.  

1. Minimising the largest sum of a subset 

2. Maximising the smallest subset sum 

3. Minimising the difference between the largest and smallest subset sums 

                                                           
12 Driven by the selection set of size 10 (𝒏 positive integers) and the number of subsets as 5 (𝒌 subsets), there 
are 50 (10 × 5) assignments possible at the outset.  
13 Driven by the selection set being size 10 and the number of subsets being equivalent, so all assignments are 
based on the size of the selection set only, i.e. (10 × 1).  
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For 𝒌 >  2 (i.e. multiway), none of these heuristics are equivalent. To go into more detail 

regarding specific heuristics, in Korf [8], the basic form of a Greedy Heuristic was defined. It operates 

as follows; first, sort the numbers in the set into decreasing order (equivalently, select the highest valued 

integer first) and then assign it to whichever subset has the smallest sum so far [in the decision process]. 

Here it is shown that, although the result is a combination only, the approach in which it takes is more 

of a permutation, since the heuristic is actually giving an ordering process that is a useful mechanism 

to guide the generation of the solution.  

The Greedy Heuristic was extended further and improved into the Complete Greedy 

Algorithm (CGA) which starts to introduce the concept of a tree. This operates a follows; first, sort the 

numbers into decreasing order, and generate a tree where each level corresponds to a different number, 

and each branch assigns that number to a different subset. This can lead into multiple permutations that 

are actually equivalent when cast as combinations. In order to avoid these duplicate solutions, a number 

is never assigned to more than one empty subset (again, because this the MWNPP, each subset is seen 

as equivalent). As the process builds branches, the largest subset sum in the current best solution is 

tracked and if the assignment of a number to a subset causes its sum to be equal or exceed the current 

bound, that assignment is pruned. If a perfect partition is found, one in which the largest subset sum 

equals the largest number, the search returns it immediately. Partitioning problems appear in other 

contexts, including grouping and clustering.  

Specific heuristics can be powerful strategies, but their specificity to limits them to often 

simple, well understood problems. Typically real-life problems of value are more complex and more 

difficult to identify general purpose rules and require flexibility between different problem instances. 

As a closing remark; heuristics are basically ways of informing the construction of decision trees. In 

Fig.5:4 (left) it is shown how applying the operations or functions, e.g. “sort by decreasing order” 

(therefore selecting the element for us), and “assign to the subset with the smallest sum so far” (therefore 

reducing the branching factor to 1) are actually ways of constructing an exploratory tree correctly – 

without exploration - from the outset. In the first case, Fig.5:4 (left) the initial decision is reduced to 1, 

rather than 50 [as on Fig.5:4 (right)], the second is again 1, rather than 45 (this is the mathematical 

series). The concept of using knowledge or heuristics to select amongst possibilities occurs continuously 

in AI, whereas the complementary aspect is having a generalisation capability that will elicit the correct 

heuristic or knowledge for new problems, allowing again for the efficient generation of solutions.  

  



  T.J.Helliwell 

169 
 

5.4 Metaheuristics 
Historically, the concept of metaheuristics appear around 1948 in Pólya’s  “How to Solve It”, 

and in 1947, Dantzig showed something reminiscent of a precursor to local search in a linear 

programming formulation with the Simplex method [9]. There are so many metaheuristics, it is difficult 

to fully capture the taxonomy and their relationships. However the most important in regards to 

Discrete-Event Processes are those that have a graph or traversal properties since these are more readily 

applied to the optimisation and search in generative Discrete-event systems. In the first case, there are 

those that utilise a local search mechanism, these seem particularly useful for models that generate 

neighbourhoods. The extension of the local search with further metaheuristic mechanisms is most 

readily seen in Guided Local Search (GLS) [10]–[12], Iterated Local Search (ILS) [13], [14], Greedy 

Adaptive Search Procedure (GRASP) [15]–[18], Variable Neighbourhood Search (VNS) [19]–[22], 

Ant Colony Optimisation (ACO) [23], [24] and the contemporary field Estimation of Distribution 

Algorithms (EDA) [25], [26] that allows for parallelisation [27]. 

 

All metaheuristics have an interplay between the exploration and diversification in the search 

space and the exploitation or intensification of the solutions already discovered. The simplest 

representation of this in decision problems is in the Multi-Arm Bandit Problem. Regions of interest 

within the search space are inferred by the discovery of good solutions. Typically the metaheuristic will 

deploy mechanisms to express these two strategies – all metaheuristics, including the algorithm 

discussed shortly, the search is purely exploratory at the start and will over time intensify the search 

into particular regions. One issue that occurs frequently as an area of discussion is premature 

convergence into a local optima or minima, which is analogous to intensification or exploitation in a 

sub-optimal region. Metaheuristics can be easily partitioned into two classes, the Population (P)-

Metaheuristics, which use populations of solutions, and Solution (S)-Metaheuristics that use single 

solutions. As a general rule of thumb, the algorithmic processes mean that latter are more exploitation 

focused whilst the former are exploratory. The vast majority will transition from exploratory behaviour 

to exploitative behaviour. Some may loop back into exploratory behaviour under certain conditions. 

There is significant scope for developing new and improving existing metaheuristics with these basic 

concepts at hand. It is possible to conduct many classifications of metaheuristics including classes for 

nature or scientifically-inspired algorithms or those that are more abstract or artificial. However, the 

most critical applications are the use of memory, the deployment of deterministic or stochastic decisions 

and whether a population or single-solution is used. There are some weaknesses in these classifications, 

for example, could it not be argued that a retaining a solution or a population of solutions a model or 

representation of experience?  

Talbi goes on to describe further features of greedy algorithms (analogous, in Talbi’s view, to 

constructive algorithms) which not directly apply to the processes in Monte Carlo Tree Search (MCTS) 
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in TPN. Claim; “once an element 𝑒 [the solution is defined as: Ε = {𝑒ଵ, 𝑒ଶ, … , 𝑒}] is selected to be 

part of the solution, it is never replaced by another element. There is no backtracking of the already 

taken decisions.” It depends what is meant by never, in the case of constructing a solution, it is necessary 

to select and commit to memory the selected elements until the solution is fully completed. In some 

metaheuristics, such as the Genetic Algorithm (GA) and in the metaheuristic discussed shortly, retaining 

elements of high performing solutions is one way in which they can be exploited. Greedy approaches 

make the selection of elements in this constructive manner much easier; Talbi explains; “at each time 

step a heuristics is used to select the next element to be part of the solution. In general, this heuristic 

chooses the best element from the current list in terms of its contribution in minimising locally the 

objective function. So, the heuristic will calculate the profit for each element. Local optimality does not 

implicate a global optimality.” This approach has been explored in detail already with the MWNPP – 

by using information regarding the performance after a decision is made, you can simply enumerate 

each one until you find the best. This can only work for special problems which have this structure. The 

TSP shows how this is flawed; by using a nearest neighbour heuristics - simply going to the nearest 

location (minimising the total distance in a stepwise manner) you may create sub-optimal solutions later 

[by having to connect remaining locations that may be distant]. It is simply not possible to approach it 

in a greedy manner. In this work, it is  possible to achieve the same effect, the solution must be 

constructed in a purely exploratory manner, by sampling the space using MCTS. It is not possible to 

deploy a system that would provide this information a priori; because the problem-solution may only 

be evaluated when it is fully constructed (either the solution is fully completed or the goal has been 

achieved, whatever comes first).  

An interesting intermediary is a greedy pilot method [28] that would select a component of the 

solution, then sample the rest of the solution to try an estimate that decision. Talbi describes this as 

follows; “some greedy methods (e.g. pilot method) include look-ahead features where the future 

consequences of the selected element are estimated.” This approach would imply a trade-off; increase 

the time in which a solution is generated far longer, but would imply a higher performing solution. 

In some cases, the objective function is hidden from the optimisation algorithm to the extent that 

it is best described as a black-box. This is where an unambiguous analytical mathematical formulation 

is not possible. Some problems have an objective function that may be considered a black-box; e.g. 

topology (shape) optimisation in Electronic Design Automation (EDA). This requires the use of 

simulations. A black-box formulation is as follows; 

𝑓: 𝑋 → ℝ 

A function is “black box” iff: 
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 A given domain 𝑋 is known a priori. 

 Posteriori 𝑓(𝑋) is computed for each point of 𝑋 by a function. 

 No further information or knowledge is available.  

The black box definition is a very useful concept and shows the generality of search as an overall 

discipline. The function 𝑓 can be seen as a distinct system; e.g. a simulation. Often simulation is costly 

in many different dimensions; development, testing and computationally. Another possibility is 

representing the black box via human, allowing them to make an subjective evaluation in an interactive 

optimisation process. The most interesting avenue are metamodels which attempt to represent 

simulations in trained models such as the Artificial Neural Network (ANN). Metamodels are often used 

to replace highly computationally demanding evaluations, for example in Computational Fluid 

Dynamics (CFD) simulation. These are also called surrogate models and provide an approximation of 

a more demanding, complex model such as computer program. It is conceivable that in the design of 

experiments, a more accurate evaluation on a more complex model is done later to confirm the quicker 

and computationally cheaper previous results.  

The TPN is a ‘grey-box’ since it holds the properties of a black-box with the addition of being 

able to handle any state and return neighbouring states. As mentioned in chapter 3, this makes it a 

generative model. This makes the application of different forms of optimisation far easier and makes 

many concepts in planning available to use.  

5.4.1.1 Main Concepts for Metaheuristics in DES 
 

For the design and utilisation of metaheuristics for search and optimisation, two design 

considerations predominate – how a solution is represented and how the evaluation process ultimately 

guides (loosely) the search.In the case of representation, where the evolutionary computing community 

call it a genotype, the solution must correspond to the problem. As mentioned previously, in the present 

work, the encoding used here is a set of integers, where each integer corresponds to a unique event, and 

the solution is the permutation of controlled events the Controlled Event Permutation (CEP).  

Figure 5:5: Permutation Encodings for Controlled Event Permutations; representations are using a time-explicit approach 
(left), where each element is indexed at the respective point in time, where ‘delays’ are represented by empty or ‘0’ values.
Another approach is to encode them as a decision queue (right), where the only the ordering of the elements in the permutation 
provide the information for control.  
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In special cases of the problem formulation, for example where decisions are forced to be 

sequential, (only one controlled event may happen at each time instant) and the objective function is 

makespan minimisation, a queue representation is possible, where each decision 𝑑 is independent of 

time but must be executed in a specific order. This is shown in on the right on Fig.5:5. It is interesting 

to consider that this approach, provided the ordering of uncontrolled event remains the same, will work 

when the jobs or task time intervals change. There is a loss of information from switching from the 

permutation encoding on the left to the right, but this actually leads into greater flexibility and can be 

applicable in special cases of stochastic scheduling problems. This is equivalent to having a set of 

instructions, the order or sequence matters, but the time delays between them do not. 

 

 It is not necessary to discuss the construction of either representation, or how this interfaces 

with the TPN as this has been covered in a previous chapter. The main point is that the CEP is a 

solution in the context of a metaheuristc, but is also a synthesised controller for Discrete-Event 

Systems (DES) that uses a diploid representation for concurrent execution – multiple values exist for 

each position of the encoding (Fig.5:6). 

 

𝑪𝑬𝑷 =  
𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହ 𝑡 … 𝑡

(𝑎 ∧ 𝑗) (𝑧 ∧ 𝑘) 0 0 0 (𝑠 ∧ ℎ ∧ 𝑖) … 0
൨ 

 

 

 

The representation is more akin to a TILEWORLD[29]–[31] control synthesis, in that the 

controlled events or actions are fixed and can be repeated. It is clear that the proposed representation is 

complete – meaning that all possible solutions related to a reconfigured instance of the problem are 

covered by this representation. If the episode length was 100, and the controlled event set was the 

alphabet (i.e. 26 unique symbols), for sequential execution there are possible solutions (26 + 1)ଵ(the 

Figure 5:6: Different ways of seeing the Controlled Event Permutation encoding; at the top is the compact representation, 
showing ‘AND’ logic to say ‘both’ of these events at this time. This can be shown as a matrix, with TRUE-1 or FALSE-0, where 
each row is a unique controlled event. Finally, it can also be seen as a unitary ‘weighting’ over time instances (bottom left). 
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‘+1’ is used to encode the option of a controlled event not occurring). For concurrent execution 

(2ଶା )ଵ. Obviously using the TPN model as a grey-box, constraint programming schema, attempts 

to search or sample these intractable state spaces are avoided.  

In chapter 3, the reward function was defined which is what it is called in Reinforcement Learning 

(arising from the Markov Decision Process formalism). Objective function is what it is called in 

metaheuristics, but cost function or utility function is also used. For many problems, including this 

work, a relative performance at evaluation is used rather than an absolute value. The simplest approach 

in relative performance is to rank solutions, another is to look at their distribution and other mechanisms 

can be introduced, such as ‘tournaments’ to develop a competitive system. Clearly, in cases of relative 

performance, a single solution approach is in danger of premature exploitation, whereas with a 

population-based approach, the exploitative generation of the initial population samples the search 

space and an acceptable estimation can be elicited.  

The difficulty with using a simulation in a constraint programming manner is that the solutions 

have a special structure, they are fragile to any adjustments that may be driven by a metaheuristic to 

take the ‘learning’ from a previous high performing solutions and move it to a new, original solution 

e.g. recombination. The term used in metaheuristics that defines this quality is connexity. One of the 

main challenges in AI is to establish structure within ensembles- e.g. “what is it about these high 

performing solutions”, “what is the common component amongst these low performing solutions (so 

they can be avoided in future)”. Connexity then has a strong relation with exploitation. An example of 

connexity, exploitation and recombination fragility is readily available in the canonical metaheuristic, 

the naïve application of Genetic Algorithm (GA) to Discrete-Event Process control. As shown in 

Figure 5:7: Connexity; the core question of how to drive the construction of new solutions based on previous high performers. 
Once a solution is encoded, how can the information in this encoding be passed to a new encoding, one that will exploit the 
previous? In some cases, this can be a destructive process- in studying many of the classical metaheuristics, it is clear that 
they cannot maintain the ‘branch-like’ structure of a Discrete Event Process Controlled Event Permutation. 
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Fig.5:8, in the basic conception14, an evaluated population is sorted by relative performance and 

according some heuristics, the high performing solutions are crossed-over with each other, in addition 

to some mutation operator. New solutions as are once again sorted and the process repeats are required. 

The overall effect is that the search is localised or intensified into promising regions by exploiting the 

information contained within the pre-discovered high performing solutions.  

If the 𝑪𝑬𝑷 is mapped directly to a solution in the GA, the issue is that the crossover will break 

the branch-like structure of the 𝑪𝑬𝑷, since each branch defines a different trajectory through state space, 

including different controlled events occurring at different times. This means new solutions are not 

acceptable to the TPN model in their raw form, but would require further mechanisms to improve the 

encoding flexibility (vis-à-vis less brittle in regards to the elements being unfeasible) in order to 

contribute information that can be exploited. For example, each solution could try the elements (the 

controlled events) and if they are unfeasible, a different solution could be selected and the respective 

element in the permutation is replaced. There are more sophisticated approaches that are discussed in 

the Further Work chapter that utilise ideas from Estimation of Distribution Algorithms (EDA). 

 

                                                           
14 GA in modern implementations uses of Non-Sorting Genetic Algorithms (NSGA) (e.g. the NSGA-II) which 
reduce the computational burden of ranking solutions that arises from the sorting of large populations using 
basic algorithm design theory along with many improvements. 

Figure 5:8: The classical GA generates an initial population of solutions, these are evaluated on construction or application 
to the problem, they are ranked in relation to one another (in the case of multiobjective, this is obviously across multiple 
dimensions) and the high performers (in this case the top 4) are recombined with one another via crossover. Novelty and 
diversification is controlled using mutations in the solution, shown by the purple bands. The process repeats iteratively and
can be controlled by manipulation of the parameters and hyperparameters to aid in efficient and effective search. 
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5.5 Discrete-Event Trajectory Mutation 

The design of a new, simple metaheuristic has been motivated to extend the search process that 

is a sampling scheme (chapter 3, 4) to a simple optimisation framework. Shown in Fig.5:9, it is called 

Discrete-Event Trajectory Mutation (DETM), since DEP are trajectories and can be randomly mutated 

to exploit the existing information contained within their solutions whilst exploring further. A literature 

search mentioned only a handful of other works where “trajectory mutation” was mentioned. In [32] it 

was mentioned within a sentence in the abstract in the context of human arm trajectories and the use of 

mutation in GA. In [33], Szlapczynski and Szlapczynka who present an approach in which sets of ships 

can be collectively optimised for an set of safe, optimal trajectories. Here, trajectory mutation is 

introduced on similar grounds by using it for populations of standard ship control trajectories, allowing 

for exploration from existing high performing solutions which is the same concept here. In [34], 

trajectory mutation is mentioned again in the context of standard continuous-time trajectories for local 

searches of high performing solutions. DETM on the other hand uses a purely-discrete neighbourhood 

map to drive the selection of fully discrete, pre-discovered controlled events and has a discrete-event 

structure. 

Because each solution is a trajectory (it has structure), it is challenging at best and nonsensical at 

worst to use many well established metaheuristics. In the case of many algorithms (including the 

Figure 5:9: The basic conception of a ‘Trajectory Mutation’ Metaheuristic for constrained optimisation problems. Given a 
single or population of solutions, mutate the trajectory at feasible points only in the branch. In this diagram, given a 
population of n trajectories (top left), the highest performing (the elite individual, shown in red) has a ‘map’ of all the 
unexplored, valid controlled events that are alternative junctions (shown in the center by the matrix). There are many possible 
‘mutations’ shown by the diagram in the center-top. By selecting a feasible mutation at random (blue nodes on top right), a 
new solution is constructed by finishing the trajectory using the MCTS process.   
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canonical GA) where the encoding is n-dimensional, but does not represent a direct event-driven 

sequence as a process trajectory. The mechanisms used in these approaches elicit new solutions that are 

unfeasible – they will be unacceptable to the TPN simulation model. Although it is possible to design 

repairing strategy, it was believed that a better approach would be to take the existing approach of 

sampling state space and developing a new metaheuristic from the fundamental principles and retaining 

a focus on reducing the computational demands along with keeping the possibilities of parallel 

computing open. It is called DETM, since, like in evolutionary computing and genetic programming, 

mutations are used to explore and diversify, whilst retaining the branch-like structure of state space in 

DES. This algorithm can be used in a single-solution based version. In the initial conception, an elitist 

approach was used, called Elitist Discrete-Event Trajectory Mutation (EDTEM).  

DETM relies on further information besides the 𝑪𝑬𝑷 that must be committed to memory from 

each trajectory15. This information is the unexplored nodes, or the elements in the controlled events 

neighbourhood that were not selected in the construction of a solution. This permutation object is called 

an unexplored Controlled Events Permutation (𝒖𝑪𝑬𝑷), and is essentially another permutation, as 

shown by the matrix ‘MAP’ in the center of Fig. 9. As with the 𝑩𝑷 (Behaviour Permutation; the 

sequence of states), the 𝑪𝑬𝑷 and the 𝑼𝑬𝑷 are all empty but allocated memory on initialisation, and as 

the trajectory is executed the data structures are populated with data.  The 𝒖𝑪𝑬𝑷 has further metadata 

that must be calculated alongside the simulation execution or executed afterwards in addition to marking 

those controlled events that are unexplored at a given time instance. For the basic 𝒖𝑪𝑬𝑷, at each 

neighbourhood expansion point that is larger than 1, each member of the neighbourhood at that time 

instant is recorded as True i.e., “this decision is possible at this time”. Metadata for the 𝒖𝑪𝑬𝑷 involves 

the summation of the number of elements in the neighbourhood minus 1, since one of the 

neighbourhood is selected. This is thus another permutation (the ‘SUM’ permutation at the central-

bottom section of Fig. 5:9) that ‘runs alongside’ the others, and provides an indication of the branching 

factor at a given time. It also means that each unexplored node has an index, address or pointer. Finally, 

at the end of the episode, the total number of unexplored nodes is recorded. Each unexplored node may 

now be seen as feasible or admissible mutations for a given trajectory. This can be seen on the top of 

Fig.5:9 center; they are ‘branches off’ from the highest performing individual.  

There are a number of different ways in which this can be used that which allows for a steady 

increase in the degree of exploitation and diversity preservation. In the first instance, one can use a pure 

hillclimbing approach, were only one prototype trajectory is created and mutated, if the mutated version 

is higher performing, it becomes the new ‘elite’ individual. Alternatively, an exploratory search can 

take place to find the first elite individual with a round of purely exploratory behaviour (in the case of 

                                                           
15 This clearly increases the memory demands significantly; fortunately because the simulation is fairly costly in 
terms of time, the population sizes are usually small.  



  T.J.Helliwell 

177 
 

the TPM, this used Monte Carlo Tree Search (MCTS))16 where the highest performing solution is 

retained as the elite individual relative to all generated solutions. The algorithm then reverts to a 

hillclimbing search; highest performing individual is used as the base encoding for the next generation 

(top, Fig.5:10). Others still can mutate the original a number of times to create a completely new 

population that is driven by the elite individual (center, Fig.5:10). The version used in the experiments. 

Further still, mutations can take place on a number of higher performing individuals rather than the elite 

only (bottom, Fig.5:10). The possibility of using single and population based approaches is rarer 

amongst metaheuristics.  

This ‘selective mutation’ process expresses exploitation by taking the encoding of the original 

and generates a pseudorandom integer in the range of 1 to the total number [sum] of unexplored nodes. 

This value points directly at a feasible mutation in the elite individual. The new individual copies the 

original up to the mutation, executes the selected mutation and then continues building the trajectory 

using MCTS. If a mutation is selected that is within the range of the total number of controlled events 

in the first neighbourhood, then the new individual is essentially new, and does not exploit the highest 

performing individual. If the final mutation is generated, the new individual is almost precisely the same 

as the original and is highly exploitative. Of many possible variants, including those to avoid being 

trapped within local minima, it is clearly possible to adjust the range dynamically; and restrict the 

mutations to those “early” in the trajectory, and as the optimisation takes place, move the range along 

the elite individual’s 𝒖𝑪𝑬𝑷. In this way, the search smoothly transitions from exploratory or 

exploitative behaviour. Other options are to mutate some n individuals of the higher performing 

solutions in the population rather than that of the elite individual only.  

                                                           
16 Note that the first set of unexplored nodes is equivalent to a purely exploratory search, so the existing 
solutions may be used from this point. 
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Figure 5:10: Trajectory Mutation; three types of many different possible variations. 
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5.6 Experiments & Results 

After using and studying different types of metaheuristics (e.g. Non-Sorting Genetic Algorithm 

NSG-II) on the solutions generated by the MCTS on the TPN, only the new metaheuristic Elitist 

Trajectory Mutation (ETM) was used. The Experiment Set 5 from the previous chapter was used which 

set the Safran Landing Systems case study, where 672 (97 × 7) parts must be manufactured.  

 

Figure 5:11: Mean values of the ETM-MCTS algorithm are shown in colour and can be seen to be improving in overall 
solution performances by exploiting high performing previous solutions, whilst the MCTS (in black) shows a mostly flat 
performance as expected from a random sampling of state space with no exploitation mechanism whatsoever. 
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Trajectory Mutation (MCTS-ETM) outperformed pure (MCTS) over a maximum of 250 × 4 

simulation (sampling runs in parallel for each CPU) for each Work-In-Progress (WIP) class. All 

measures of central tendency and distribution indicate a strong improvement over the simulation 

instances, indicating that the ETM algorithm was performing as anticipated. In addition, of the 

1000 simulation limit, the MCTS-ETM found a higher performing schedule in every class. 

 
 

 
 

  

Figure 5:12: Best performances of the ETM-MCTS algorithm and the MCTS control. In this case, 
because the best performances are shown, MCTS can be seen to find very high performing 
solutions by chance and virtue of multiple rollouts, whereas the ETM-MCTS finds them earlier 
and more consistently. 
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5.8 Chapter Summary 
 

In this chapter metaheuristics and optimisation was covered in a wide-ranging sweep of aspects 

that are directly relevant to discrete-event processes. This is primarily the concept of ‘directing the 

construction of trees into promising regions’. Side issues which have not been directly addressed by 

chapter 3, such as combinatorial search and constraint programming are covered and how they stand in 

relation to scheduling using discrete-event systems is discussed.  

The field of optimisation is discussed from its basic principles, particularly for systems that are 

sampled; which leads us into the area of metaheuristics. Metaheuristics themselves are a semantic 

extension of ‘heuristics’ which are rules that can be used to solve problems. Metaheuristics remain an 

exciting area of research that spans many disciplines. The generally applicable metaheuristic principle 

of passing information from ‘good’ previous solutions to inform new solutions is made clear. The main 

weakness of optimisation remains the construction of a credible model; something that defines the 

search space completely that is tractable via sampling or in special cases, exhaustively. The ability to 

actually construct programmatic models of problems that can interface with an optimisation scheme 

requires a skill to conjecture around the variables, constraints and dynamic interactions. 

The ‘Trajectory Mutation’ metaheuristic in its initial embryonic form is given. The algorithm is 

intended to be simple in order to maximise use of computational resources, whilst operating well with 

the tree-like structure of generated discrete-event process trajectories. It may also be used in certain 

configurations to operate in parallel. It is heavily inspired by the canonical Genetic Algorithm (GA) in 

that the basic principle of the explore-exploit trade-off is made clear.  

In the next chapter a different type of problem than that dealt with in chapter 3 and 4 is discussed. 

The Trajectory Mutation metaheuristic would also work in this system. The further work chapter gives 

some directions for extending and improving the Trajectory Mutation algorithm and areas of study that 

could be of interest to the optimisation of discrete-event processes. 
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6.1 Introduction 

In the previous chapters, a programmatic framework for minimisation of the total task processing 

time and an application in an industrial setting was shown. The program used a logical inference to 

elicit the neighbouring states and a subset of feasible controlled events (𝚺𝑪:𝑭𝑬𝑨𝑺𝑰𝑩𝑳𝑬) to access them 

from the knowledge-based Timed Petri Net (TPN) structure using the input or observed current-initial 

state [which marked the TPN structure]. Once the respective feasible controlled events were labelled – 

marked as possible, a uniform probability distribution over the space of these events1 to yield a Monte-

Carlo style2 of Depth-First Search (DFS) applied to a TPN model as a simple, computationally efficient 

method to construct and evaluate search or ‘deliberations’ by sampling future state space. 

This chapter imposes a further dimension on this mapping. The scheduling problem is framed 

instead as a satisfaction-over-time process, where a set of flexible conditionals are maintained that 

define tasks to be completed during predefined intervals. This aspect is called a “reward structure”, 

which in this model are tied to uncontrolled events.3 Another aspect in this chapter is the concept of an 

“anticipation structure”, which rather than being a reward over time it is a weighting over time that is 

interpreted by the process as a probability of selection over time. It may also be considered an error 

signal that must be addressed that represents a discrepancy between the correct [future] state and the 

incorrect [current] state. 

The core idea is connect the reward structure to the anticipation structure by exploiting the 

discrete event-based causal structure afforded by the TPN and pseudo-deterministic processing time. 

By giving the anticipation structure some flexibility, this decomposed knowledge may be used to 

estimate the distribution of optimal firings in a basic metareasoning process. Because the anticipation 

structure run alongside one other for their respective controlled events, at a given time, a distribution 

                                                      
1 A roulette wheel selection. 
2 Corresponding to the Monte-Carlo Tree Search (MCTS) planning algorithm.  
3 The implication is that for special cases it is possible to attach rewards directly to controlled events. 

Figure 6:1: Constructing solutions intelligently; all show the Discrete-Event processes as events over time. The x-axis is a 
controlled event alphabet, z-axis is time and y-axis is the weighting. On the left, without a model and state of the system, all 
controlled events are permissible, meaning any combination may be a component in the solution. In the center, by using the 
model and state, the feasible controlled events and the respective neighbourhood can be established which can then be used 
for search and exploration by using a uniform probability distribution over the unitary weighting. Finally, on the right, it is 
possible to can apply a weighting to the feasible controlled events to control or direct the tree construction into areas which 
are estimated to have features that are high performing. These weightings are calculated from anticipations, which are in 
turn constructed from rewards.  
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over the controlled events gives a distribution. This, along with the neighbourhood provides an adaptive 

control that estimates what branches in the state space should be constructed and evaluated to maximise 

the reward. This is shown in Fig.6:1. In the Further Work chapter, it is shown how reward structures 

discussed in this chapter can be combined with the work in chapter 3 by running the system in reverse. 

This approach, however, does not generate desirable time delays without applying dynamic constraints.  

6.1.1 Industrial Case 
The previous chapters deal with makespan minimisation. This corresponds to ‘batch 

production’ as a scheduling problem in manufacturing. This is roughly as follows; get a particular 

mixture of parts out in the fastest possible time. The “time” is the principle objective function but other 

aspects are also considered (multi-objective), the processing time (which in many practical cases will 

impact other variables of interest such as energy use, etc) and resource utilisation.  

Time delay is a vital aspect of control theory, and significant efforts are made to avoid delays 

for control systems used in the world. Often it is addressed as part of the modelling process, potentially 

as a compensating effect, in other cases it is a matter of speed for the controller hardware and software 

configuration and the control algorithms themselves. In a completely different area of study are decision 

problems that belong in computation theory, whereby decision procedures are sought to lead into yes 

or no as possible outputs. A problem that can be solved in this manner is said to be decidable. It follows 

that there is only one answer (output) for a given input. For optimisation problems (like this one), the 

correspondence with decision problems is there are multiple answers (outputs) and the concern is 

finding the ‘best’4 of the possible answers. 

In this case, the decision problem is whether or not to make an assignment of a task to a resource 

(i.e. execute a controlled event) at a given time instant. Because each time instant is a different decision 

problem, at each time instant this problem must be addressed independently. In previous chapters, for 

the makespan minimisation problem, ‘assignment at the earliest opportunity’ was used as heuristic.5 In 

the case of meeting specific time intervals for task completion, this approach is nonsensical and will 

not explore or enumerate the state space using MCTS that pertains to high performance (i.e. getting or 

maximising the respective rewards). Because the introduction of time delays into the schedule or 

timetable is a vital requirement, this heuristic needs to be controlled.  

In the case of scheduling as a satisfaction-over-time process, however, it is about conservation 

of resources, evenness of utilisation, meeting rewards and including the task duration uncertainty. The 

way it has been approached is by keeping the planning window fixed – the episode length - and 

                                                      
4 Corresponding to the optimal or near optimal under single or multi-objective settings.  
5 In some special cases, this can hide polices that would achieve high performance, which is discussed in the 
further work chapter.  
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introduce delays as a top down control from the processing. The delays appear as a result of a small 

value on the “decision pressure” and having few, lower valued anticipation structures. The decision 

pressure is a constant that provides a crude method of adjusting all the anticipations at once and thus 

the decision to make a decision (or not!).6 The process therefore is; an observation of state, 

establishment of the neighbouring states (and the feasible controlled events that enter them), and the 

respective weighting of those feasible events and finally the construction of a roulette wheel to select 

them probabilistically. This means the search is informed, exploratory and still sampling-based. 

Many researchers have been interested in the development of ideas in attention, meta-reasoning 

and Adaptive Inference Control (AIC). A more general conception of this is shown in Fig.6:2. All relate 

in some sense to the management of the bifurcation of possibilities or combinatorial explosion in formal 

systems by intelligent or an informed expansion of nodes, again reiterating previous chapters. In 

neurophysiology it is known as directed attention, where fewer elements are subject to greater cognitive 

effort using inhibitory mechanisms. As outlined by the previous chapter, many metaheuristics (a class 

of approximate optimisation algorithms) implicitly deploy a form of attention mechanism; Genetic 

Algorithms (GA) localises towards high performing regions or genotypes by exploiting information 

gained from previous searches. Ant Colony Optimisation (ACO) uses higher selection probabilities on 

components that belong to previously-discovered higher performing solutions. In this case the emphasis 

                                                      
6 In further work, this is shown to be a useful variable for reducing the number of redundant attempts at firing 
controlled events which has a minor knock-on effect to computational requirements.  

Figure 6:2: The long standing and perennial problem of Artificial Intelligence; given limited resources and prior data, beliefs 
or knowledge from design, experience and-or learning, how can a new, original problem be tackled accurately and efficiently? 
In this context, the machine learning systems issue of dealing with non-independent and identically distributed data sits 
alongside the need for reconfigurability in autonomous systems. The rectangle pairs represent problems and solutions over 
episodes of time. 
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is on discrete combinatorial optimisation which have topologies that are especially difficult to 

algorithmically exploit, owing to the tree-like structure. 

Classical theories of perfect rationality discuss a concept whereby an agent has the ability to 

prescribe correct decisions. Depending on the model of the problem or environment, given an agent 

with finite computational capabilities and real-time context, this concept is replaced by limited 

rationality. Because all agents have finite computational capabilities they must use their limited 

rationality in such a way that the capabilities available are used to their best advantage. In 1991, Russell 

& Wefald in the book Do the Right Thing; Studies in Limited Rationality defined rationality as “… a 

property of programs with a finite architecture and behaviour over time in the task environment rather 

than a property of individual decisions.” The computations are the attentional processes in intelligent 

systems and have strictly limited resources in terms of computational complexity for model 

construction, manipulation and time constraints. Metaheuristics are approximate optimisation 

algorithms, therefore in a sense analogous to limited rationality. This ties back to leading definitions of 

intelligence.  

The challenge is to apply this principle in application to satisfaction of routing decisions over 

time, where conflicting or interacting processes are included. This is so the program that will explore 

the subspace of both logically feasible actions and actions that are estimated as reasonable (i.e. remain 

viable after a reasoning process). In this way the spaces are made smaller so computational resources – 

vis-à-vis attention - are applied more efficiently in regions most likely to be profitable. At the end of 

this chapter the principle remark to be communicated is that along with a set of feasible actions, there 

is a set of reasonable actions that may be elicited; a union of these sets identifies the critical portions of 

the decision process. 

Communication of a task description from one agent to another depends on an implicitly or 

explicitly agreed level of temporal abstraction, knowledge representation and information structure that 

is appropriate and similar for both parties. This could be thought of as a protocol; food recipes online 

or in a cooking book are at an implicit, collectively agreed intermediate level – low, primitive motor 

control tasks are ignored, whilst sufficient detail is required beyond simply giving the meal title (which 

would surely miss the point indeed!). Usefully, once the recipe is learned, the name of the meal can 

provide the means to reconstruct the recipe from memory. This could be seen as a process of information 

compression and decompression; or the unpacking of latent knowledge using the meal name as a query 

into the knowledgebase. In a restaurant, the label of the dish need only be delivered to the kitchen – the 

label triggers the construction of the recipe in the chef’s mind.  

Hierarchy in control relates to using layers and sparsity between each of which is responsible 

for a subset of control problems at a different level of temporal abstraction. Control inputs, in discrete-

event systems are known as controlled events, can be grouped into categorical sets rather than just 



  T.J.Helliwell 

189 
 

individual elements. For instance, the set of all controlled events which relate to the task A1 are 𝚺:ଵ =

(𝚺ଵ, 𝚺ଷ, … , 𝚺ସହ). In which case it is possible to could define a new macro action which weights all the 

controlled events necessary [at the appropriate time instance] for an A1 task to be completed. In the 

same way that a chef may have 2 different dishes to prepare, each dish has a different set of tasks 

associated with it (with their own specific constraints, precedents etc) which will conflict with one 

another, since the “chef” may only complete one task at a time.  

Reinforcement Learning (RL) was mentioned in chapter 3. In RL, the system and agent 

(controlled system and controlling agent) are coexisting pair. By interacting using a model, the agent 

will perform to some expectation. By experiencing without prior models, the objective is to learn 

information that can be used by the agent to construct a model of the controlled system. In summary; 

model-free RL is a process of learning an abstraction, whereas model-based RL exploits existing 

knowledge or understanding.  

Once a reasonable model is obtained or constructed, the agent can begin to understand a greater 

abstraction; how this system can be exploited in a way that maximally rewards the agent. In this case, 

the TPN is the model already, and unlike RL, this does capture a causal structure which means it is 

possible to avoid the complex processes of creating7 a value function8, but rather remain in planning 

settings. Hierarchical Reinforcement Learning (HRL) attempts to include hierarchical decomposition 

and temporal abstraction into RL. The main limitation of RL arise from the learning complexity; large 

state spaces or action spaces are intractable on account of the curse of dimensionality; models overfit 

to the i.i.d.9 data from the training problem; and this trial and error simulation can be computationally 

costly. Broadly speaking, it does not generalise learning.  

The field of planning has approached the use of hierarchal methods under many different 

techniques; Hierarchical Task Networks (HTN), Macro Actions, State abstraction methods, Action 

Model Learning, Sub-goal Discovery, Intrinsic Motivation and Artificial Curiosity. Many of these are 

of interest in future work. In an ideal RL framework, the problem or episode is broken into discrete 

states where the discovery of general regularities that are not-i.i.d, but are transferable to new episodes 

or problems (see Fig.6:2). Algorithms used in RL are known colloquially and conceptually as flat 

methods, since the state space is huge flat search space and the trajectories (or episode length) from the 

initial state to a goal state are very long and are difficult to disseminate backwards; in the case of 

behaviour-based reward, many unpromising regions will be searched unnecessarily. Again, this means 

that under are planning settings, where special models can both represent the state space as well as be 

sampled and evaluated in order to search and optimise the policy. The TPN allows for the partial 

                                                      
7 Creating, or more accurately- learning. 
8 Including intricate difficulties in credit assignment. 
9 Independent and identically distributed; mentioned a few times previously. 
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automation of defining a new MDP problem as well as the reward function itself is made indirectly 

observable to the agent. 

At each time instance there may or may not be some numerical reward that relates to an event. 

The objective of this work is to develop an automated scheduling program that may discover, explore 

and exploit dynamically multiple static policies where each are interacting over an extended period of 

time with a separate instance of the environment. In this chapter, the existing framework further exploits 

the knowledge contained in the TPN structure as a model of agent-environment interactions.  

6.2 Reward Structures 

It is assumed that the data required to construct a Reward Function is provided by a separate 

system from the factory controller, as discussed in chapter 2, this could come from a computer system 

e.g. ERP10, MES11 or a user interface. The concept of building a reward function automatically is an 

important process in a full factory control automation, since the data that drives the reward function 

(e.g. delivery requirements) could change frequently. Conceptually, readers are invited to consider the 

reward function arriving as a pair with the current state or current configuration of the factory – what 

is desired is coupled with the current state of affairs. 

In chapter 3, the reward function is a linear equation ℝ = (−)(𝒕)12 and the event whereby the 

controlled system enters into an element in the set of goal states 𝑠ீ ∈ 𝑆ீ. The rolled out policy 

discovered by the search process which minimises𝑡, maximises ℝ is the optimal or best.  

In this chapter is an approach in which the framework can generate systems of piecewise linear 

reward functions that are defined over the episode length. “Wants’ are a temporally defined structure 

(the Reward Structure)13. What is “done” – the behaviour - is a temporally defined structure (the State 

Trajectory, comprised of events over time).  The reward functions relate directly to controlled events; 

when the event occurs the time stamp is retrieved and used as an input or query to the reward function, 

yielding an output reward signal. Over episodic interaction, many of such signals are received and 

totalled up. The main purpose of this contribution is to assign credit to those schedules that have features 

considered desirable, where optimisation is in the broader context of satisficing. In the case of 

manufacturing systems, especially open-ended continuous production environment (as opposed to 

                                                      
10 Enterprise Resource Management (ERP). 
11 Manufacturing Execution System (MES). 
12 I.e. “makespan minimisation”, corresponding to batch production in manufacturing. 
13 By first experiencing, then understanding, the interactions between these two structures it is possible to begin 
to find regularities, patterns or causal relationships that can be learned (i.e. committed some sort of memory 
representation) and if possible, generalised.  
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batch production) require certain parts to be finished at certain times and their respective priority is 

reflected in the reward. 

There are three types of reward; event-based reward, set-point function reward and statistical 

reward (statistics about the interaction that have been mentioned previously). This is closely related to 

multi-objective optimisation since there may be many variables which need to be optimised; the issue 

is defining and exploring the multi-dimensional space. Other parameters such as those seen in control-

theoretic work relate to meeting set point targets. In order to evaluate discrete-event behaviour, it is 

proposed that procedurally generated structures which relate to uncontrolled events over time are used. 

 They are inspired by Fuzzy Logic. Events are implicitly labelled. In labelling events, it is 

possible to associate positive (reward) or negative (punishment) to their occurrence. The value of a 

reward structure is sampled at the respective time instance. By using a Probabilistic Policy, the 

normalised weight of all feasible controlled events is used as a probability distribution on a roulette 

wheel. This enables a search process, where process is stochastic (therefore exploratory) and constructs 

feasible schedules or discrete-event programs. Alternatively, a Max Policy could be deployed, whereby 

the framework reduces to a greedy (max operation over the space of feasible controlled events), where 

the system would switch to deterministic (non-searching) where iterative or parallel execution would 

generated the same schedule or policy.  

A decomposed representation of what is wanted (reward) evaluates the behaviour (or agent-

environment interaction). Each instance of an interaction has an associated total reward ℝ. For a given 

system of initial state and reward is a maximum reward ℝெ. The reward representation might well 

Figure 6:3: A Reward Function decomposed into constituent Reward Structures; two tasks of one type have matching 
reward structures, both peaking at 𝑡 = 2 whilst the other task type has four matching reward structures. There are no 
limits to the number and shape of reward structures, the purpose is to express the requirements of the generated control 
policy. This means it is also possible to define negative reward in special cases. 
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be unrealistic and unachievable, but provided the search process elicits non-zero reward (0 ≠ ℝ), a 

meta-process that ranks or otherwise organises the set of interactions make take place. If the process 

elicits exclusively zero rewards, the reward structure should be relaxed. Likewise, if the search process 

elicit results in the near ℝெ, the problem is clearly achievable in which a case could be made for 

greater reward specificity. Both approaches are a way of estimating the distribution of 𝚺𝑪:𝑭𝑬𝑨𝑺𝑰𝑩𝑳𝑬 over 

time. 

By providing a pseudo-random reward function and initial state, a model of the relationship 

between a given reward function and the given initial state and the optimal behaviour can be established. 

This can be used to find how likely the pair of initial state and reward are likely to be feasible. Does R 

need to be relaxed? Or is R trivial and be achieved with a especially specific reward structure? These 

are the questions that the system needs to discover from the TPN model, the state and the defined reward 

structure(s).  

A reward structure is a set of pre-defined14 functions over time that are related with an 

uncontrolled event. Fig.6:3 (previous) shows a decomposed reward structure. The computer can hold 

this data as an array (or something similar), where each uncontrolled event that is attached to a reward 

has a matrix object. The (𝒎 × 𝒏)  of the matrix is the time and the maximum number of components 

which is the volume of events. A matrix representation of the decomposed reward structure is as 

follows; 

ℝ =

⎣
⎢
⎢
⎢
⎢
⎡
0 0.5 1 0.5 0 0 0 0 …
0 0.5 1 0.5 0 0 0 0 …
0 0 0 0 0 1 1 0 …
0 0 0 0 0 1 1 0 …
0 0 0 0 0 1 1 0 …
0 0 0 0 0 1 1 0 …⎦

⎥
⎥
⎥
⎥
⎤

 

 

A max operation over decomposed structure yields a max, composed structure, shown in Fig.6:4. 

                                                      
14 They are predefined by another system which provides the general architecture of the solution, e.g. the task 
completion over time. This information is then converted programmatically into structure variations. 

Figure 6:4: Max/Composed Reward Function 
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As a vector;  

ℝெ = [0 0.5 1 0.5 0 1 1 0 …] 

A final representation is a Summation Reward Structure, which simply summates the total across 

each structure into one of each type, shown in Fig.6:5. 

The vector representation; 

ℝௌெ = [0 1 2 1 0 4 4 0 …] 

The reward structure as a set continues (…) into infinity as it is representing real time. What is 

defined reaches 𝑡 = 7 (comprising of 7 elements), so it can only be used profitably with a pre-defined 

episode length 𝒆𝒕 of 7; defining again the search depth. The time instant at which the related event 𝚺𝑼:𝒊 

occurs is used as the index to sample the reward structure. The reward structures are dynamically 

updated as the episode proceeds, allowing for partial completion of the task(s) to be recorded. Each 

decomposed reward structure is atomic; it exists only for the single occurrence of an event.  The greatest 

non-zero value at the given time instance is found, sampled and replaced with zero, representing 

satisfaction. As many as n reward structures can relate to a given event, as shown in Fig.6:3, 𝚺𝑼:𝑨 (in 

red) has 2 structures and 𝚺𝑼:𝑩 (in blue) has 4.  

Table 6:1: Basic reward structures and rewarded events 
 Time Instant     

1 2 3 4 5 6 7 Total Events Calculation Total / Event Type Total / Trajectory 
E.G.1        2 (1)+ (0) 1 2 

       3 (0)+(0)+(1) 1 
E.G.2        2 (0.5)+(0.5) 1 2 

       3 (0)+(0)+(1) 1 
E.G.3        4 (1)+(0.5)+(0)+(0) 1.5 2.5 

       4 (0)+(0)+(0)+(1) 1 
E.G.4        3 (0.5)+(1)+(0.5) 2 4 

       3 (0)+(1)+(1) 2 

 

Figure 6:5: Summation Reward Function 
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Table 6.1 shows some examples of sequences where [rewarded] events arise from a random 

policy trajectory of the controlled system. E.G.4 has the greatest reward total, despite having fewer 

events that are rewarded occurring less than in E.G.3. The aim of the reward structure is to evaluate 

and summarise the performance of the controlled system as the searches the policy space and generates 

schedules. The most powerful aspect of this technique is that it allows for partial optimisation or 

satisfaction. This allows all the trajectories to be placed on continuum where the relative or comparative 

performance between solutions is used. This highly open-ended approach allows for the pairs of reward 

structures and initial states observed by the program to retain high reconfigurability.  

6.2.1 Adaption of Reward Structures 
This section discusses the need for an algorithmic approach to adaptive re-shaping of reward 

structures where goal states/good behaviour are systematically modified to become more easily satisfied 

or maximised; reward relaxation, and the opposite in the case of reward specificity. Conceptually, the 

task is not exclusively searching for a solution, but to consider the problem simultaneously – rather than 

move the solution towards a fixed problem only, both can move together an exploit the model as much 

as possible. This is especially true when used in real-life situations; trade-offs appear continuously; if a 

particular schedule is too demanding, then it is inevitable that a relaxation must take place. During an 

optimisation process, once a population of evaluated trajectories is generated, a decision is made as to 

whether the reward structures are too specific or too general. Indications that it is too specific is if the 

reward is consistently low or zero on all the solutions, in a word; unachievable. Indications that it is 

trivial are where the reward is high across solutions or consistently near the maximum possible reward. 

Because the original reward structure is a user or separate system input it represents some indication of 

Figure 6:6: The Spectrum of Specificity & Generality in Reward Structures; consider the results again in Table 6.1, if the 
reward structures were relaxed in some manner; defining a closely related, but different problem, which trajectory would 
yield the greatest result? It is quite possible that another may be the optimal under these new circumstances. This is 
covered in section 6.2.1.  



  T.J.Helliwell 

195 
 

was is considered the ideal system behaviour. In the case of industrial examples, this would be the Just-

In-Time (JIT) finishing of a part for example. Fig.6:6 shows the spectrum of possibilities in defining 

reward structures, using the previous structure as an example.  Generally speaking the ideal system 

behaviour is also the most specific or constrained instance of the set of all possible derivative reward   

structures (Fig.6:6). At the other extreme, the most general reward function is unitary across time, it 

collapses into a simple arithmetic or logical event-checking reward structure, where the interval 

becomes (−∞ < ℝ௧ < ∞) and the events may satisfy their desired volumes at any time. A subset is the 

interval between the initial state (𝒔𝟎, 𝒕 = 𝟎) and the end of the episode 𝒆𝒕, as  𝟎 < ℝ𝒕 < 𝒆𝒕. This is a 

useful concept since this can establish in the most general way; is this goal feasible; is it possible to be 

satisfied within this episode. It can start with confirming that the demand is satisfied and then optimise. 

If the demands are unfeasible, then it is possible to request a more reasonable demand from the user or 

system which means a more relaxed set of constraints. It is clear in practice that using a reward structure 

which has a value above 0 in the vicinity of the most specific interval is beneficial since the inclusion 

of the small reward provides an indication that is at least partial satisfaction is achievable. Fig.6:7 shows 

a relationship between a set of different reward functions and a sequence of the same event. Only the 

most general reward structure will capture the occurrence of each event (at 𝒕𝟐, 𝒕𝟒, and 𝒕𝟓) reflect it in 

the total reward. 

An example serves to explain the ability to adjust how specific or general high performing 

behaviour is. An initial population of possible solutions (rewarded event permutations, arising from a 

Behaviour Permutation (BP)) is shown on the right hand side of Fig.6:8, where one event of 3 different 

event types (A, B, C) occur at different time instances. On the left are a spectrum of different reward 

structures, where the top is the most specific and the bottom is the most general. The colour-coding 

Figure 6:7: Events, arising from the Behaviour Permutation & their relationship with Reward 
Structures 



Chapter 6  

196 
 

establishes the mapping between event and each atomic reward structure. The episode length 𝒆𝒕 is 

10400; a week in minutes. The shapes of the reward structure are made of piecewise linear functions, 

where the angled components use an geometric x-dimension of; 

ቀ
𝟖

𝟏𝟎
ቁ 𝒆𝒕, ቀ

𝟒

𝟏𝟎
ቁ 𝒆𝒕, ቀ

𝟏

𝟓
ቁ 𝒆𝒕, … ,ቀ

𝟏

𝟏𝟔𝟎
ቁ 𝒆𝒕 

From most general to most specific and the final (number 1) does not use any reward shaping. 

Each structure (9 × 3) is defined by a system of linear equations to form the trapezoid geometry. The 

red, B structure number 5 is15; 

ℝହ: =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 𝑡 ≤ 4403

൬
𝑡 − 4923

520
൰ + 1 4403 < 𝑡 ≤ 4923

1 4923 < 𝑡 ≤ 5616

1 − ൬
𝑡 − 5616

520
൰ 5616 < 𝑡 ≤ 6136

0 𝑡 > 6136

 

                                                      
15 The values of 4923, 5616 are randomly determined as instances of time. Other points are calculated by using 
fractional factors of the episode length 𝒆𝒕 as per the trapezoid shape shown in Fig.6:8. 

Figure 6:8: On the left there are a set of different reward structures, from top to bottom they are ordered by relaxation. 
Rewarded events, arising from a behaviour permutation at certain points in time on the right. 
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Plotting the results of maximum ℝ, reward structure employed and the event permutation, the 

highest performing solution depends on how relaxed the user is as to what is considered ideal – better 

to perfectly meet one interval or nearly meet two, etc. These trade-offs become mathematically rigorous.  

 

 

 

Table 6:2: Event Permutations, Reward Structures & Reward Signal 

 Event Permutations 

1 2 3 4 5 6 7 8 9 

R
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ℝ
 

10 3 3 3 3 3 3 3 3 3 

9 1.792 2.683 1.716 2.05 2.633 1.582 1.517 2.808 1.767 

8 0.950 2.370 0.716 1.10 2.266 0.984 1.2 2.617 0.650 

7 0 1.733 0 1 1.840 0.234 0 2.232 0.234 

6 0 1.466 0 1 1.664 0 0 1.467 0 

5 0 1 0 1 1.329 0 0 0.335 0 

4 0 1 0 1 1 0 0 0 0 

3 0 1 0 1 1 0 0 0 0 

2 0 1 0 1 1 0 0 0 0 

1 0 1 0 1 1 0 0 0 0 

0
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3.5
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d 
ℝ

Structure Used (Generality - to - Specificity)

E. Perm. 5

E. Perm. 8

E. Perm. 9

Figure 6:9: When a certain level of relaxation is reached, permutation 5 becomes the ‘optimal’ solution (see red ellipsis), 
whereas up to that point, permutation 8 is the best solution. This means the optimisation problem is being adjusted itself, and 
allows the user to address trade-offs themselves or in other cases, where the objective is unachievable, the problem can be 
relaxed until a reward signal is gained. In effect, this allows a Pareto front of different schedules to be presented to the user. 
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6.3 Anticipation Structures 
The question at this point is whether these observable, adaptive reward structures can be 

exploited in a way that directly influence the agents’ search process; i.e. the policy in a form of reasoning 

with time modelled explicitly - prior to a decision between decisions, the decision to make a decision 

is made. This is a separate but related concept to the Reward Structure. 

The anticipation structure is used as variable interpreted as a probability over time [or steps] 

of the respective event being executed. Consider the TPN shown in Fig.6:10; if 𝚲(𝐭, 𝚺𝑪) = 0.5, then 

there is a half-chance the respective event will be executed by a two-state roulette wheel selection at 

time 𝒕 and so on.16 In this manner, it is possible to adjust the system policy to be either myopic or lazy, 

by defining a anticipation structure where the former is a curve which has a more generalised (an earlier 

anticipation, causing the system to be myopic) and the latter has a relaxed, later anticipation, making 

the system more lazy. 

Fig.6:11 shows a slightly more complex example of a system that has a resource capacity of 3, 

6 tasks of the same type and a simple interval-based reward structure where it is easily mapped to 

anticipation structure; “six tasks completed within this window”. Note that a resource capacity of (𝑐 >

 1) means that task processing can take place concurrently and asynchronously17. What is shown is that 

an excessively myopic policy (blue version on the left) will likely execute processes too early, and miss 

achieving the greatest possible original reward ℝ, however the distribution of tasks is higher18 and in 

cases of higher conflict (i.e. where this resource is shared with other tasks), the system is likely to 

achieve higher overall performance. In the lazy policy (red version on the right), it is shown that the 

                                                      
16 How multiple events and their respective anticipation probabilities are managed will be discussed shortly. 
17 This can be seen by the way the intervals are ‘stacked’ and not aligned with one another. 
18 Depending on the application is as to whether higher distribution indicates high performance behaviour. 

Figure 6:10: Anticipation Structures aim to estimate the optimal firing of a controlled event to achieve the greatest reward 
using the known distribution of time delay. This is used as a probability-over time weighting which allows for different firings 
to be estimated, and the estimation itself be refined as the process explores different regions of the constructed search tree. 
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system is executing events in a near-optimal fashion; uncontrolled events are occurring within both the 

modified and original reward ℝ. The reward function can only do so much – in some applications it is 

anticipated that completing tasks early is a good thing. This shows that by using these anticipation 

structures, it is possible to estimate and explore possible firings to maximise the reward. 

The main weakness of using a trapezoid shape or colloquial ramps (the grey triangle shape in 

Fig.6:11) is that it restricts the probability over time to only one dimension (i.e. list all the possible 

‘ramps’ in an ordered list, where the smallest ‘ramp’ is the most specific modification and the largest 

‘ramp’ is full generalisation, see Fig.6:6 on these shapes). Taking this idea further, a function can be 

used to generate a slightly more complex shape that has two terms rather than one, driven by two 

variables, where one is degree of relaxation and one is the length. This enables greater control over the 

structures themselves, which can be widened or narrowed in length or varied in terms of relaxation - 

adjusting the estimations. This is shown in Fig.6:11 and is designed to loosely approximate the 

generalised logistic or Fabius function.  

Figure 6:11: Effects of Anticipation Relaxation; in this system, it is equivalent to the Timed Petri Net in Figure 8 - there is only 
one event under the agent’s control. Given the reward structure (ℝ) at the top (in solid black) and its possible relaxation 
(grey), what is the optimal anticipation structure (𝜦) that will complete six tasks that will achieve the greatest reward? The 
difficulty arises from the fact there are 6 tasks to complete, and they conflict with one another – if tasks are completed too early 
or too late, it will miss the reward structure. For this example, the reward structure is mapped directly to the anticipation 
structure, and only the time delay offset is shown.  
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There is a simple geometric technique (Fig.6:12) that creating linear equations for generating 

these curves that have been developed. Once they are generated they are stored memory and called on 

using a map (Fig.6:13). The critical aspect of this is that these many be generated as the program runs, 

based on what the values and distributions of evaluated trajectories are. This also means that they can 

be adjusted as the program runs to maximise the reward, a systematic reward relaxation. When a reward 

needs reshaping, the original, prototype reward (which is typically the most specific or constrained) is 

modified by this data and receive a modified reward (which is more general or less constrained).  

Shown in Fig.6:12, a geometric procedure of using a linear equation to define a line, where points 

are (𝑥ଵ, 𝑦ଵ = 0,0) and (𝑥ଶ, 𝑦ଶ = 𝒆𝒕, 1). The 𝒆𝒕 is the episode length. The line is divided into equal 

portions, in this case 5. The vertexes of these portions are points. This point is then used to create two 

further linear equations with different gradients. Conditionals are then used to sample these lines over 

time (0 → 𝒆) in manner that creates a set of standardised curves that can be sampled from a 2-

dimensional map, shown in Fig. 6:13. The ramifications are that each ‘tile’ on the grid provides a 

Figure 6:12: Geometric Process of Generating Reward Shapes; both are the same width, meaning they 
belong to the same ‘row’ in the map on Fig. 6:13. 
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different probabilistic policy for searching or evolving the DES. By sampling each policy in 

independent, the system generates a population of schedules to ultimately find a schedule which 

maximises the modified and/or the original reward. 

Fig.6:13 shows how each policy can be represented in relation to one another; the highest 

generality (which is tantamount to a reward or satisfaction checking process) is the bottom right shape, 

where ℝ(1, … , 𝒆𝒕) = 1. All structures on the far left column and top row are ℝ(1, … , 𝒆𝒕) = 0. This is a 

result of the shape essentially collapsing and the temporal width reaching 0 respectively. Note that the 

‘ramp’ shape in Fig.6:11 will be included in this space. There are likely to be many ways of achieving 

this objective of programmatically updating the reward structures, discussed in further work.  

 

 

 

 

 

 

 

 

 

Figure 6:13: Generating reward structure shapes procedurally and creating a map, 
where row is width and column in ‘degree of relaxation’. 
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6.4 Reward & Anticipation Structures for Logical Reasoning 
The rewards in this problem are defined by a pair of variables, a goal state 𝑠ீ ∈ 𝑆 and an interval 

of time (𝒕𝒊 ≤ 𝒕 ≤ 𝒕𝒋). A single reward signal ℝ is provided for each uncontrolled event 𝚺𝑼 that has a 

non zero reward associated with it. In conventional RL, the reward is hidden and these relations are not 

explicit19. By defining a set of reward signals with an interval of time it is possible to symbolically or 

programmatically enable, encourage or disable, discourage their selection in search processes. Use of 

these words will be made clear.  

Intelligent systems straddle the apex where what is known and what is not known intersect. By 

taking the observed reward function structure and subtracting a non-zero deterministic duration, it is 

possible to establish an anticipation 𝚲 of receiving the reward signal that may be propagated backwards 

in time. The set of anticipation 𝚲 are associated with the set of controlled actions 𝚺𝑪. It follows that 

each instance of a trajectory will have a total yield of expectation ℇ and a total yield of reward ℝ. A 

hidden stochastic variable is the delay, or queuing time for a subtask. This is hidden in the sense that it 

can only be observed experientially (i.e. the manner in which the system evolves, and elements or tokens 

interact with one another chaotically and are therefore uncertain). Shown in Fig.6:15, modelling can 

                                                      
19 Reinforcement Learning is about finding these relations, assuming no knowledge of the causal structure 
between state, action and reward.  

Figure 6:14: Temporal Backpropagation. 
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include further places as containers for hidden or uncertain delays. In cases with no such delays, 

 (𝒕 = 𝟎), intermediate controlled and uncontrolled events are assumed occur synchronously (Fig.6:15 

top). With delays included (𝒕 > 𝟎), controlled and uncontrolled events are assumed to occur 

asynchronously.  

Let us consider a pattern of anticipations over time in the case of no delay. As shown in Fig.6:15, 

the top plot is the reward structure ℝ that relates to the final uncontrolled event 𝚺𝑼 where the token 

enters 𝒒𝟒. Each separate expectation 𝚲 is related to the three 𝚺𝐂 the precede the final uncontrolled event 

𝚺𝑼. Each processing delay is assumed to be unitary and uniform. 

The principle remark is that an idealised system with deterministic processing delays, without 

task conflicts or a non-zero hidden delay, the control problem is trivial20. However where systems have 

task conflict and interaction, along with associated hidden delay, will render any basic control reasoning 

by projecting backwards the reward anticipation (the expectation 𝚲) late and thereby searching in the 

wrong areas of state space (poor estimations of what controlled events 𝚺𝐂 and when should be fired) 

and thus yielding low reward ℝ.  In which case a method for controlled event firing21 and experiential 

discovery that extends temporal projection is required. 

                                                      
20 What is expressed here is tantamount to saying this is a fully observable, perfect discrete-event control model, 
the processing delays are compensated perfectly. 
21 Similar to when one begins a journey; uncertainty regarding the traffic conditions, weather effect the process 
of reasoning as to when one such start the journey given a fixed arrival time. The low-risk, sub-optimal solution 
is almost always to set off earlier than the idealised scenario.  

Figure 6:15: Idealised Petri Net models and Hidden Petri Net models. 
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Temporal projection aims to exploit the knowledge of system structure and process durations to 

generate concurrent sub-goals that provide explicit credit assignment. An example of a concurrent 

process is shown below. 

6.4.1.1 Systems with Concurrent Conflicting Choice between Resources 

Fig.6:16 and Fig.6:17 attempts to show how temporal projection works in practice; (𝒕𝟐, … , 𝒕𝟒) 

are [unrewarded] uncontrolled events, 𝒕𝟔, … , 𝒕𝟏𝟐 are the rewarded uncontrolled events, i.e. they have a 

relation with the reward function and optimisation means execution takes place at the time instant with 

the highest ℝ.  

There is one task type, where the volume of uncompleted tasks is shown by the grey tokens, and 

8 different paths through the system (2 × 4 = 8).  Each 𝒅𝒕𝒊 is assumed to be a real valued integer from 

a known distribution.  

In Fig.6:17, the problem of combinatorial explosion in temporal projection is shown. Each path 

needs to be enumerated because the processing times are unique.  The path 𝒕𝟐, 𝒕𝟏𝟏 (𝒅𝒕𝟏, 𝒅𝒕𝟔) is marked 

in faint red as an example path-projection.   If the reward structures are projected through the system, 

the initial set of anticipations for each controlled event is acquired. 

 

  

Figure 6:16: Concurrent Conflicting Choice between Resources; the Petri Net shows the current, initial state. On the left 
is the source place with three tokens. On the right is the rewarded place, defining the ‘goal state’. 



  T.J.Helliwell 

205 
 

  

Figure 6:17: Projection of Reward as Anticipations through each path, if each path is enumerated. 
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6.4.1.2 Systems with Concurrent Conflicting Choice between Entities and Resources 

In other problems, the problem of unique paths through the system is exaggerated further when 

there are often regions of conflict, blocking, where the choices between controlled events and choices 

of task are in conflict and only in searching their possible interactions can trade-offs be established. In 

Fig.6:18, the same system as Fig.6:16 is shown, (where arrowheads and line width has been reduced 

for clarity) but with the addition of a different task type that runs alongside the original. This task has 

access to all the same resources, again having a set of unique processing times. Given a reward structure 

that is associated with these tasks, how can their firings be estimated without enumerating all possible 

paths and interactions?  

The method suggested here is to simply average the paths for a given task to give an initial 

estimate for temporal propagation of the anticipation structure. This means each resource just has an 

average time through the system rather than a completely enumerated set. By taking the average of 

processing times at each stage, the number of possibilities is constrained to the number of different task 

types only. Since there is no way of deterministically knowing how the different reward structures, 

backward projections as anticipations and task tokens will interact (blocking, conflicts etc), this is kept 

Figure 6:18: Systems with Concurrent Conflicting Choice between Entities and Resources; 
the same system as Fig. 15, but with a second task type to cause conflicts. 
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as an experiential aspect that arises during the search process. In which case an experimental approach 

is to roll out a pseudo-random policy to enumerate possible system trajectories.  

 At any given time instant and state, the set of anticipations 𝚲 provide a Boolean 1 (true) or 0 

(false); if the controlled event is marked as true then it is reasonable to fire that transition. This concept 

is extended shortly to allow for degrees of truth in a subjective probability by using the relaxations 

discussed previously. 

Table 6:3: Average path duration by stage and task type 

 Process B A B (AVE) A (AVE) 

Calculation Value Calculation Value 

Stage 1 Dt1 5 2 (𝟓 + 𝟑)

𝟐
 

𝟒 (𝟐 + 𝟑)

𝟐
 

𝟐. 𝟓 

Dt2 3 3 

Stage 2 Dt3 4 6 (𝟒 + 𝟐 + 𝟔 + 𝟒)

𝟒
 

𝟖 

 

(𝟔 + 𝟓 + 𝟒 + 𝟓)

𝟒
 

𝟏𝟎 

 Dt4 2 5 

Dt5 6 4 

Dt6 4 5 

 

If the average over the paths are taken it result in a single anticipation for each task type. The 

result is that if the slower path is selected, it will reach the final uncontrolled event early, and if it takes 

the longer path, it will reach the final uncontrolled event late.  

Figure 6:19: Average Processing Duration over paths 
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Consider the effect of using anticipations as a weight in the decision process. What this is doing 

is reducing the set of controlled events first by establishing what is feasible (what is possible to be fired, 

discussed in chapter 3), then outcome is reducing this subset further by establishing what is reasonable 

in light of the given reward structure. The first pair of anticipations in Fig.6:19 show that at 𝑡 = 0, no 

controlled event or action is reasonable. The blue task is the first to become reasonable with the red 

shortly after. This is reducing the action space and therefore the search process is more informed.  

Table 6:4: Time & Weight on Controlled Events 
Time 𝐭 Weight Blue Weight Red “Reasonable” Controlled Events 
0 0 0 NONE 
1 1 0 T1 & T3 
2 1 1 T1, T3, T5, T7 
… … … … 

 

 The weakness of a Boolean weight is that the system will always take an action if there is one 

that is both feasible and reasonable. In cases where there are greater than one element (i.e. more than 

one feasible, reasonable action) in this set, the system is forced to choose between them by using a 

uniform probability selection distribution, a ‘roulette wheel’. In this manner, the system avoids a greedy 

or fully determinate search to generate a population of solutions.   
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6.5 Probabilistic Search  

In the previous section (4.2) the temporal projection approach outlined as a way of inferring from 

the Petri Net model and the expected task processing durations when controlled events should occur to 

yield the greatest reward and thus the optimal schedule. The reward structures that are projected through 

time are Boolean; either 0 or 1, implying that the event has a hard interval. 

What about when multiple controlled events are true at a given time? In this case; 

𝚲(𝐭, 𝚺𝑪:𝟏) = 1 , 𝚲(𝐭, 𝚺𝑪:𝟑) = 1 

It is the same as the previous chapters, once the decision to make a firing has been made, a 

uniform probability distribution is used over the feasible and reasonable controlled events – in a two-

state roulette wheel, where both halves of the roulette wheel are the same proportion; i.e. 180°. In cases 

where the interval is another shape, e.g. trapezoid or expressed using a logistic function, the weight 

becomes an approximation of a continuous variable22 in a discrete representation. For example; 

𝚲(𝐭, 𝚺𝑪:𝟏) = 0.266 , 𝚲(𝐭, 𝚺𝑪:𝟑) = 0.551 

In this case, the second controlled event has almost a third higher likelihood of selection because 

the resulting two-state roulette wheel is now unequal. As likelihoods; 

𝐏𝐫(𝐭, 𝚺𝑪:𝟏) = 0.326 , 𝐏𝐫(𝐭, 𝚺𝑪:𝟑) = 0.674 

The roulette wheel is ~117° for 𝚺𝑪:𝟏 and ~242° for 𝚺𝑪:𝟑. In this way, the controlled event that 

is estimated as more urgent (earlier in 𝒕 and given greater priority at a given 𝒕) is fired more often as 

different trajectories are generated. But the less weighted possibility is also considered, meaning that 

this knowledge is not-over exploited and remains exploratory by using randomness over uneven 

distributions.  

 

 

  

                                                      
22 The one suggested in this work is a two-term set of linear equations.  
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6.6  Program Design 
In this section, how this program works will be shown using the same diagram as the one shown 

in chapter 3; this one has additional functions- the decision pressure and the weighting from the 

anticipation structures. A simple diagram is shown in Fig.6:20 which is used for reference.  

 

 

Figure 6:20: The extended Discrete-Event System program architecture 
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a) The initial state is given, in addition to any records that must be added to the event register23. 

This pre-supposes the existence of the ‘model’ itself, i.e. the structure of the underlying graph. 

For scheduling problems, this has the simulation variables of task-processing durations, labels 

and state of task queues, labels and state of resources24. 

b) Here, using the decision pressure hyperparameter and the weights at the given time instance 

(via the anticipation structures) a two possibility roulette wheel is generated which makes a 

decision on whether or not to attempt a controlled event in the system. If ‘true’ then the 

neighbourhood is pulled from memory or re-discovered [i.e. the process goes to step 3]. If 

false, it goes directly to step 9, thus no controlled events are fired at this time instant. 

c) The initial state is used to elicit the set of feasible controlled events via a ‘neighbourhood 

function’; using either an existing memory (a map or dictionary that has a key-value 

representation of states and feasible controlled events) or in a memoryless format, where the 

lookahead process is executed25. The neighbourhood is the set of neighbouring states with 

their respective feasible controlled event that acts as a ‘path’ from one state to another. 

d) Neighbourhoods may be empty; there may be no accessible neighbouring state via controlled 

events - no feasible controlled events. This forces a “no action” condition at the given time 

instance and the program will go directly to time incrementation in step 9. In other cases, there 

may be one or more elements in the neighbourhood available to an agent at a given time 

instance.26  

e) Based on what controlled events are in the neighbourhood, a distribution that is not purely 

logical, but is probabilistic is generated using the controlled event weights (from the 

anticipation structures). Here either SUM-NORM (which sums together all weights of feasible 

controlled events for tasks of the same type, this is then normalised)27 or MAX which acquires 

the largest weights across controlled events for tasks of the same type. Either approach results 

in a roulette wheel of n intervals where n is the number of feasible, non-zero weighting 

controlled events.  

f) With a roulette wheel which is now populated, the agent is faced with a decision, choice or 

selection amongst the feasible controlled events either singularly or concurrently and their 

respective neighbouring state to enter, if any. As with the previous program, it is worth 

remembering that a controlled event many be a sub-optimal component in the solution. Again, 

                                                      
23 For example; new tasks may appear at known certain instances in the future. Resources may be unavailable at 
known certain instances in future. These must be recorded as to make up the episodic memory that will 
fundamentally change the schedule. As mentioned, this episodic memory can be exploited to consider differing 
events and how this impacts the schedule and the controlled system performance.  
24 It is clearly important that task-processing durations may be drawn from distributions.  
25 Again, in applications it is suggested that one would start with a purely compute approach, and build up a 
memory over time. 
26 It is notable this is a frequent occurrence and is discussed in further work. 
27 SUM-NORM was intended to better estimate the priority when there are multiple tasks that must be 
completed – MAX does not represent this. 
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as with the previous program, it is at this stage at a program level whereby other system and 

techniques can support the construction, computation and generation of the ‘tree’ into 

promising regions.  

g) Once a selection has been made, in the case of affirmative, it is fired, otherwise, it goes directly 

to the time incrementation. In the cases where no firing is undertaken, the state remains the 

same, so the previously returned neighbourhood remains valid. 

h) The firing process is antecedent to the corresponding uncontrolled event(s) consequent, which 

are scheduled, using the deterministic or probabilistic duration or delay.  

i) The time is incremented, so any data structure pointers are updated and directed at the next 

time instance. 

j) If the new time instance is the same as the episode length or maximum simulation clock time, 

the program will stop or exit, otherwise it will move to the event register. 

k) In the event register, the time is used as a key to find what scheduled uncontrolled events are 

to be fired.  

l) If any events have occurred since the last execution of the neighbourhood function, then the 

state is “new”, meaning the neighbourhood must be re-discovered or otherwise elicited for 

this new state. If no events have occurred then the state is the same and the previous 

neighbourhood is still valid.  

m) The process repeats until the episode length or a particular state is reached depending on the 

application. 
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6.7 Experiments & Results 
This was the most ambitious and exploratory work that was completed during the research 

project, so there has been only two main experiment sets explored for this new system; one which 

attempts to complete all tasks at the same time, and another that attempts to meet a set of rewards over 

time. In the former case, the system is meeting a ‘deadline’ for the production of parts in the Safran 

Landing Systems facility. In the latter, it is conducting the ‘satisfaction over time’ process, where 

different parts need to be completed within pre-defined, albeit flexible, time frames.  

For both experiments, the smallest problem is explored, where 42 parts are produced. The last 

part is unrewarded to illustrate that the reward function is a separate module in the program, in which 

case the maximum integer reward is 36 which is normalised to make the maximum reward 1. Both have 

a fixed episode length of 100,000 minutes, approximately ~70 days. 

Two modes were used, MAX and SUM-NORM. In the former, the highest weight from the task 

type and related controlled event is used as the weight in the roulette wheel. The intention is to retain 

high levels of exploratory behaviour.  In the latter, each task has a weight calculated from the total of 

the anticipation structures, this is then normalised by dividing through by the highest total. This 

approach is intended to be more intense in exploiting existing knowledge and better represent cases 

where multiple tasks must be completed that are of the same type. Both establish weights on the tasks 

that are then used in the neighbourhood and roulette wheel. 

Of the two approaches, neither is a stand-out performer. The MAX operation yielded the greatest 

reward at higher decision pressure (𝒅𝒑) constants presumably because it takes the sensitive time-based 

priority into account more readily – across the results, the SUM-NORM needs a lower 𝒅𝒑 constant to 

perform better, likely because it is too keen to make assignments and thus finish tasks too early, missing 

the highest reward. MAX is a faster operation, which is important to consider when using this system 

on large models with large state spaces and neighbourhoods where the computation needs to be 

restricted as much as possible.  

  



Chapter 6  

214 
 

6.7.1 Synchronised Completion 
Synchronised completion is whereby all the tasks try to be completed at the same time. This is 

of course not feasible in this particular model, since each task type (i.e. part) has a final process (i.e. 

inspection) that uses the same resource, so they must all be ready to visit this resource one after the 

other. However, with a minor relaxation of the reward and anticipation structures, synchronised 

completion can be adjusted so the system receives a useful reward signal from the generated trajectory. 

This was a useful test environment for the next set of tests in 6.7.2., where the satisfaction over time 

process is conducted.  

In Fig.6:21, the finishing times of respective parts (equivalent to task types denoted by their 

colour, where the highest in the stack is the first task to be completed and the last task is the final task). 

In the column labelled 1, the smallest relaxation (of 9 in total) was applied, and so on until the highest 

relaxation was given on the column labelled 9.  In Fig.6:22, the two approaches of SUM-NORM and 

MAX are shown when using the smallest relaxation (column 1 in Fig.6:21) and varying the ‘width’. 

Decision pressure (𝒅𝒑 =  𝟎. 𝟏) and a 𝟐𝟎, 𝟎𝟎𝟎 distribution shows high variance from the schedules but 

also achieved the highest reward. Overall, neither the SUM-NORM nor MAX algorithms are stand-out 

Figure 6:21: The rewarded events (black bars) for 9 different schedules under 9 different relaxations. Colours indicate task 
(part) types. The far left is the most specifically defined reward structure, whilst the far right is the most relaxed. The lines 
show the time instances at which the event occurred. The most specific reward structure (column 1), when projected into 
anticipation structures, gives a schedule that closely meets the requirement of meeting synchronised completion. The most 
relaxed generally finished the tasks too early.  
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performers. In Fig.6:23 the highest performing schedule is shown. The significant delay up until the 

final portion of schedule indicates that the delay process is operating as intended, and the system does 

not pre-emptively process tasks too early when it is not necessary to do so. Further, the significant 

growth in factory utilisation in Fig.6:24 shows that the scheduling process is operating as anticipated, 

searching to find the near-optimal routings or task-resource assignments.  

Clearly the same effect can be partially achieved by using the makespan minimisation scheme 

discussed in chapter 4, and matching the makespan to the synchronised finishing deadline.  

Figure 6:22: Comparative metagraph of SUM-NORM and MAX approaches; each experiment (i.e. simulation) was run 10 
times, this is shown the micro-x axis. In the micro-y-axis is the total reward achieved. The decision pressure is shown as a 
categorical logarithmic plot on the macro-x axis. The ‘degree of relaxation’ – the relaxation distribution is the width of the 
relaxation, 1000 to 20000 minutes. All belong to the shape corresponding to column ‘1’ in Figure 6:19, with variation in width 
only.  
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Figure 6:23: Schedule that achieved the greatest reward 

Figure 6:24: Utilisation of Fig. 6:20 schedule. 
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6.7.2 Satisfaction-Over-Time 
Satisfaction over time is the main purpose of this new proposed system. As already covered, 

supply chains need to synchronise the dynamics of their constituent entities both by looking internally 

at their own system, but also to participate with observability in the broader network in order to operate 

optimally. It is worthwhile to contextualise the demands over an episode using standardised model of 

time. Initial state starts at time instant 0, and time instant zero is 1/1/2022 at 00:00 (i.e. the start of 

2022), the requested schedule is as follows. 

 3 parts of type A1 between 14/01/2022 at 21:20 and 21 January 2022 20:00. 

 3 more parts of type A1 between 4/02/2022 at 17:20 and 11/02/2022 at 16:00. 

 6 parts of type A2 between 25/02/2022 at 13:20 and 4/03/2022 at 12:00. 

 2 parts of type A3 between 21/01/2022 at 20:00 and 28/01/2022 at 18:40. 

 2 more parts of type A3 between 28/01/2022 at 18:40 and 4/02/2022 at 17:20. 

 2 more parts of type A3 between 4/02/2022 at 17:20 and 11/02/2022 at 16:00. 

 6 parts of type A4 between 21/01/2022 at 20:00 and 28/01/2022 at 18:40. 

 3 parts of type B1 between 7/01/2022 at 22:40 and 14/01/2022 at 21:20.  

 1 part of type B1 between 14/01/2022 at 21:20 and 21/01/2022 at 20:00. 

 2 more parts of type B1 between 4/02/2022 at 17:30 and 11/02/2022 at 16:00.  

 2 parts of type B2 between 28/01/2022 at 18:40 and 4/02/2022 at 17:20. 

 4 more parts of type B2 between 4/02/2022 at 17:20 and 11/02/2022 at 16:00.  

 1 part of type B3 between 14/01/2022 at 21:20 and 21/02/2022 at 20:00. 

 1 part of type B3 between 21/02/2022 at 20:00 and 28/01/2022 at 18:40. 

 1 part of type B3 between 28/01/2022 at 18:40 and 4/02/2022 at 17:20. 

 1 part of type B3 between 4/02/2022 at 17:20 and 11/02/2022 at 16:00.  

 2 parts of type B3 between 11/02/2022 at 16:00 and 18/02/2022 at 14:40.  

The intention is to create a random demand using standardised intervals (they are all 10,000 

minutes, but they can be any interval length from 1 to the maximum episode length, in this case, 100,000 

minutes) to show that the system works as intended. In real use, the system would get the DATETIME 

variable from the user or super-agent that would be converted into the minute representation that is used 

in the simulation model. Further, in a real system, there is no preclusion that other demands could not 

be recorded for future episodes.  

In Fig.6:25 and Fig.6:26 the demands of the user defined above are shown as individual reward 

structures as rows, where the x-axis is time in the episode length 𝒆𝒕. This is held as a hierarchical object 

in the system program.  
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Figure 6:25: Reward Structures when converted from linguistic with a small 
reward structure relaxation 

Figure 6:26: Reward Structures when converted from linguistic with an 
extensive reward structure relaxation 
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A small relaxation has been applied to each reward structure in Fig.6:25, and a more significant 

relaxation has been applied to the reward structures in Fig.6.26. Both configurations were searched 10 

times, and these are the two highest performing (gained the highest reward). As shown from the black 

lines showing the time instances when the parts were completed, the more relaxed approach achieves a 

good fit to the requested schedule, and will normally complete tasks earlier than requested which in 

many cases is a good thing, since it anticipates any unforeseen delays that could occur during the 

episode of time itself. Both of these schedules belong to the experiment set where the decision pressure; 

(𝒅𝒑 =  𝟎. 𝟎𝟎𝟏) and the distribution is 𝟐𝟎, 𝟎𝟎𝟎 where it showed a low variance between the least 

relaxed (Fig.6:25) and the most relaxed (Fig.6:26). This is shown in Fig.6:27, where the blue (least 

relaxed) and the red (most relaxed) are close together. This indicates that the constructed schedule 

achieves high performance even on the unrelaxed schedule. This suggests this decision pressure and 

distribution are good starting hyperparameters to use going forward.  

Figure 6:27: Results using the MAX mode of operation; blue indicates no relaxation, and red is maximum relaxation. 
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Figure 6:28: The highest performing schedule from the test cases. 

Figure 6:29: High performing schedule shows an even distribution of utilisation over the episode length. 
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Figure 6:30: With a post-relaxation, rewarded events are rewarded if they fall just later 
than the intended interval. 

Figure 6:31: With a pre-relaxation, rewarded events are rewarded if they fall prior 
than the intended interval. 
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Thus far, the satisfaction over time problem has been tackled using a symmetric relaxation of 

the reward structures, meaning they can arrive early or late because the structure is ‘widened’. Using 

the same demands, but not allowing for early completion (in the sense it is unrewarded), means that the 

reward and derived anticipation structures are widened after the initial definition in a so-called post-

relaxation. Fig. 6:30 shows the highest performing schedule with a minor post-relaxation. In Fig. 6:31, 

the opposite effect is obtained, by only rewarding early completion and no reward for late completion. 

The schedules are very similar, with minor variations. It can be seen that the system is delaying the 

completion of tasks in the former, whilst in the latter, it just manages to receive the full reward for a 

given task completion. 
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6.8 Chapter Summary 
In this chapter, the work that was discussed in chapter 3 and 4 was modified to work with a 

different kind of problem. By keeping the basic structure of a discrete-event process, the underlying 

mechanics of controlled events as ‘decisions’ is retained, but the search itself needed to be overhauled. 

The principle or heuristic of ‘assignment at the earliest opportunity’ that worked in chapter 3 and 4 

would have not worked properly here; generating poor schedules that would not have worked very well 

with the rewards as defined.  

What was presented was first the concept of a compositional reward that was highly flexible and 

appropriate for scheduling, particularly in the case of manufacturing systems that are highly 

interconnected with their supply chains. Users can describe quite clearly what would be an acceptable 

‘window’ of time in which the task can be finished, and include a preference in the form of the second 

dimension; the reward weighting. Often for these problems, the optimisation task is far more nuanced 

than the one covered in chapter 4; rather than maximising the productivity, it is about meeting demands 

or ‘satisfying’ demand within specific intervals. Only when this is addressed first can other aspects be 

looked at through the lens of optimisation.  

Once the reward structure was introduced, the attention was turned to using this knowledge in 

way that could give a loose estimate as to when firings need to take place in time if the reward is to be 

achieved. These were known as ‘anticipation structures’ that would give a weighting to the controlled 

events to estimate their priority at a given time instance.  

Overall, the approach works as intended. The main challenges and opportunities in future are 

achieving greater flexibility in the anticipation structures and finding good hyperparameter values for 

decision pressure. Detail on these aspects are discussed in Further Work chapter. Further case studies 

and applications are needed. Finally, as with other work in the thesis, the computational complexity 

needs to be reviewed, there may be many areas in which the space and number of operations required 

can be optimised.  

 



7 Reconfigurable Scheduling through Discrete-Event Systems  
Searching & Generating Discrete-Event Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There can be no doubt that the knowledge of logic is of 
considerable practical importance for anyone who desires to think 
and infer correctly.” 

- A. Tarski 
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7.1 Introduction  
The fields of engineering and computing have synergistically supported one another in providing 

tools to enhance humanities ability to shape the world. Various forms of ‘Electronic Design 

Automation’ (EDA), including optimisation of hypotheticals in the broadest sense under the context of 

Model Driven Engineering (MDE), have allowed engineering tasks to be presented in appropriate 

mathematical structures to be utilised by computer programs. As a result of the ability of computers to 

inform design decisions, the computer becomes a part of the engineer’s cognitive process allowing 

engineers to sit at a higher level of abstraction – typically defining the system constraints and goals. It 

is inevitable this trend will accelerate, EDA being one of the most established software disciplines to 

utilise design automation. In a broader-still context, Generative Modelling has emerged as software 

process in which a program assists in the design modelling of a wide range of media including sound, 

images, animations and products. 

In this chapter it is shown how Discrete-Event Systems (DES) may be generalised as a ‘logical 

graph structure’ which defines a constrained space of sub-DES. These instances can be generated 

autonomously using a functional-style programming approach and then simulated using non-

deterministic processing time intervals to quantify their performance. The program itself is inspired by 

the metaprogramming capabilities of the LISt Processing (LISP) programming language but written in 

MATLAB®.  

DES express phenomena that can only be described through two distal model-theoretic 

viewpoints; on the one hand, by considering their logical graph structure (a computer-science 

theoretical approach, in which analogies to Cellular Automata (CA), Markov Logic Networks (MLN), 

message passing networks, or even representation of a Chess board, in which places - squares - are 

resources) or on the other hand, through statistical modelling of the dynamic (i.e. time-focused) 

evolution of the system, which draws somewhat predictably from the fields of a simulation, computer 

programming and statistics. The former is related to the state space definition as a disjoint sum, as 

opposed to the Cartesian product, which removes the necessity to declare variables not required as 

simply undefined. There have been little to no attempts to unify or understand these two aspects of the 

DES field explicitly in a coherent framework, despite the fact that they are inextricably linked – the 

structure, and discrete-time process viewpoint allows us to both consider a ‘space’ of possible structural 

DES configurations and subsequently establish how they stand in relation to one another when 

actualised through simulation and statistical uncertainty propagation. As shown in this chapter, 

statistical information indicates that logical graph structure has an unequivocally fundamental and 

exploitable impact on system dynamics and consequentially has many applications in many real-world 

systems. An accessible approach to enable computers to explore this configuration space is a powerful 

and useful tool in the discrete or combinatorial optimisation of many highly commercially valuable 
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systems, allowing supply chains, logistical systems and manufacturing systems to be brought into the 

fold of EDA in a design perspective, and move towards ideals of Industrie 4.0 in regards to control.  

7.2 State of the Art 
There is very little previous work to be found through searching literature for automatic 

generation of DES specifically. However, on a more general level, early work oriented around 

modelling theory and how DES stands in relation to automation and Artificial Intelligence (AI). As 

early as 1984, Klir, as part of a holistic approach to systems modelling architectures, focused on 

techniques for inductive System Identification (SI) of systems with variable structures. 

Whereas Zeigler, also in 1984, who coined the term ‘variable structure model’, was primarily 

concerned with capturing this phenomena through simulation – computer programs. In [1], Uhrmacher 

& Arnold explored a constructive view of autonomous agents in which hierarchical, compositionally 

organised, internal models that describe an agent-environment coupling are fundamentally discrete-

event structures, and are thereby central to progress in AI. The term processors is seen here also, and 

uses an analogy of ‘hiring’ and ‘firing’ to indicate processor instantiation under response to different 

workloads and development of strategies to undertake them. . In 1995, Barros in [2], and previously in 

[3], introduce the concept of ‘dynamic structure’ computer modelling [presumably inspired by Zeigler 

et al’s Variable Structure Modelling in [4] and [5] neither of which are accessible] which extended the 

original Discrete-Event System Specification (DEVS) formalism that assumes a static structure of the 

system with a formalism known as Dynamic Structure Discrete Event System Specification (DSDEVS), 

extending DEVS via a special model called a network executive. 

Uhrmacher [6] states the motivation and necessity for capturing structural changes via variable 

structure models originated in sociological and ecological applications. Recent formalisation work by 

Ay [7] defines characteristics of robustness is in ‘invariance of their function against the removal of 

some of their structural components’. We argue that the advent of Industrie 4.0 – the information age – 

decentralised multi-agent technological systems will begin to reflect these same properties. It is broadly 

agreed that autonomous systems or agents must model concurrent dynamics in actions, interactions, 

composition and robust behaviour that features the appearance, disappearance and movement of 

entities. Most closely to this work, Aspenti & Busi in 1996 [8] [appeared as a technical report in 1996, 

but later published in 2009] presented Mobile Petri Nets (MPN) that use join-calculus to support a 

change of coupling between nodes; and Dynamic Petri Nets (DPN) that support additions of new Petri 

Net components, both via firing of transitions on a higher level to create new complete net structures – 

new models – in which is thus a DSDEVS. 

In 2010, Perrica et al [9] discussed in detail requirements surrounding DES experiments and design 

of such experiments in regards to interactions between samples drawn from probability distributions. 

Perrica made some important points about ‘proper configuration’ of simulation experiments, namely; a 
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great deal of attention is paid to model development, verification and validation steps [see Tendeloo & 

Vangheluwe [10] for a brilliantly clear tutorial exposition of these steps], whereas comparatively little 

attention is paid to what might be summarised as Design of Experiments (DoE). Although the generality 

of DES will affect the necessity to focus on one aspect or another, for example; some work primarily 

use DES formalisms to address logical graph structures only by omitting consideration of time as a 

variable completely, and instead, only consider ordering or sequencing of events. In description of a 

DES, a ‘global’ understanding of state space, state transitions and output function is required, so we 

broadly support this argument, and it is reflective in this work that model development, verification and 

validation is not only time consuming - making a strong argument for its automation - but also may 

help to address the need for more attention (vis-a-vis researcher time) to statistical analysis by defining 

the logical graph structure only. 

Cai & Wonham in [11] consider a top-down approach by a decomposition of a monolithic 

(centralised) for supervisory control in pre-defined DES systems. Wonham, developer of foundational 

work in DES [12], has focused primarily on synthesis of supervisory control as opposed to establishing 

theory surrounding scalar comparisons between different DES. That said, the ability to control DES 

systems is severely complex and any statements regarding their overall performance must be restricted 

to global feature summaries using typical initial states and goal states [as it is here], in the form of a 

‘job-shop scheduling’ problem formulation. In [13], [with prior work in [14] and [15]] Jiao et al discuss 

an approach for reduction in the computational complexity by grouping together identical processes 

and ‘achieve controller reduction by suitable relabelling of events’ to exploit symmetry inherent to 

many DES. In addition to describing a computational model of DES, in the final part of Tendeloo & 

Vangheluwe’s work  [10], a queueing system is considered, and they undertake performance analysis 

regarding how the number of resources stands in relation to the average and maximum queuing times. 

In defining a ‘maximum queuing time’, a constraint is defined, and they discover that 2 resources is the 

minimum to satisfy this constraint, whilst it is speculated that 3 would be quantifiably optimal based on 

the future definition of a cost function that trade-off the waiting of jobs to the cost of adding additional 

resources. 
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7.3 Method  

 DES are defined by a discrete state space representation and asynchronous discrete events. It is 

evident that a variable structure model could be represented in such a way that a static structure is used 

to fully enfold all possible variable or dynamic structural change and associated possible state space by 

exploiting either model-based conditionals [See Fig.7:1. a)] or hardcoding intricate conditional 

structures as mentioned by Uhrmacher [6]. 

 It is unfeasible for large models, and applications such as the one outlined in this work, in which 

the purpose is to automate the process of model construction and simulation, to approach the problem 

in this inefficient and less elegant manner. We consider instead a stochastically searched  configuration 

space of sub-DES, represented as a sequence of real-valued integers, called a permutation, that is 

constrained by the maximum total number of resources (in this example, 6) in which each unique 

structure is generated [Fig.7:1. b) shows instead how the present treatment illustrates an instance of a 

structure]. This is checked first for logical feasibility in regards to completing the workload (an 

exemplar set of processes) and then simulated (i.e. a trajectory through time or simulation) with 

uniformly probable random routing, inclusion of processing time interval uncertainty, and asymmetric 

context (process) switching time intervals for resources. By defining a DES instance in a procedural 

Figure 7:1: In a), we have all the possible sub-Discrete-Event Systems in one Timed Petri Net, in which case many redundant 
relations in the form of events (these are the ‘lines’ or ‘edges’) must be switched ‘off’ in order to test a given configuration, 
where a configuration is a subset of the set of all resources on the right hand side. In b), rather than marking events as being 
‘off’ they simply do not exist, each Timed Petri Net is generated automatically with the relevant events. In fact, the one shown 
in b) is the highest performing configuration that was found in the study; it used 2 R1, 3 R4 and 1 R5 resource(s).  
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sequence, the workflow is undertaking an epistemic action, taking the role of the higher-level ‘network 

executive’. As with Uhrmacher [6], we have been inspired by Ferber’s concept of “reflectivity” (Ferber 

& Carle [16], Ferber [17]), defined as “the ability of a computational system to represent, control and 

modify its own behaviour”. Strictly speaking, this encapsulates many of the automated tools seen in 

EDA for MDE (as discussed in the introduction), but in the context of DES structures specifically leads 

to a recursive definition of models. Metaprogramming for simulation allows for the labelling of 

variables and functions in a manner that partially avoids the requirement of hardcoding intricate case 

structures. Inspired by the LISP language, the program generates its structure by selecting the number 

of instances of each processor (0 ≤ 6), then recording the ‘events’ (i.e. state transitions) as a 

dynamically generated list of variable length and content. That list is then used as a typical mapping 

that relates events and entities in simulation. The term Uncertainty Quantification (UQ) is used in many 

different contexts to classify those methodologies that integrate and propagate uncertainties into 

mathematical and computer models where they are used to generate data that is typically used in 

forecasting or prediction. Models are fundamentally limited on account of epistemic uncertainty 

regarding a limit on understanding of a modelled system [and its consequential complexity] and 

secondly, on the intractability of complex models. 
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7.3.1 System Architecture 

Resources are used by processes over time intervals. The main thesis is that connections [in this 

case, events] between processes and resources are the fundamental source of structure in defining 

possibility. In this context, connections are couplings of atomic propositions that represent concurrent 

state transitions, but could equally be seen as a simple function - namely - unitary decrement of a process 

token from the origin node and increment at the target node. Jobs, tasks and processes are similar, 

interchangeable concepts and are held in process queue nodes, which are rectangular on the left hand 

side of Fig.7:2. Identical instances of processes are held together within one node, categorically labelled 

as ‘Process Type’ with a unique encoding and the number of processes within a node is shown. 

Actualisation involves the instantiation of a uniquely labelled process-resource coupling upon 

assignment; an event. External events (perhaps via a supersystem) can be used to instantiate or inject 

new process tokens to their respective process queue, or remove finished/completed processes. 

Resources are nodes on the right hand side which are instantiated as part of the model construction 

process. Each has a label or name indicating its type and index. Nodes of process and resource types 

are connected by events of two types; uncontrolled and controlled, which are dotted and solid 

respectively. The possibility of assignment between processes and resources (and vice-versa) is dictated 

by these connections. A lower-level policy must be used when selecting between (𝑛 > 1) possible 

assignments. Once an assignment is made, the nondeterministic time interval from a Gaussian 

distribution with a specific mean and variance of the resultant process-resource coupling is generated 

from the input data in Table 7:1. Depending on the current state or mode of the resource, the Context 

Figure 7:2: A basic diagram or layout and description of how the Timed Petri Net Discrete-Event System can be structured to 
get a ‘Scheduling Machine’. The design is the same as the one used in previous chapters, only the events now do not have a 
rectangle and the uncontrolled events are on the left hand side using a dotted edge, whilst the controlled events are using a 
solid line. 
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Switching Time (CST) which is asymmetrical and deterministic, [for instance, if a type R4 resource was 

in mode C2, and switched to A1, it takes 10 units of time, whereas in reverse it will take 11]. Process-

resource couplings persist, addressing the ‘frame’ problem through circumscription. Requalifying the 

proposition is achieved through scheduled firing of uncontrolled events in future. Because process-

resource couplings (also known as fluents) have the quality of qualitative reasoning, process models 

can be described using natural language, and like language systems, have a syntax - rules of structure 

dictated by their configuration. 

Table 7:1: Model Input Data1
 

Resource 
Type 

PROCESS TIME INTERVALS 

 Context Switching Time – FROMa 

MEAN VAR A1 A2 B2  

R1 

A1 100 100 0 4 5  

A2 400 150 8 0 9  

B2 600 200 10 19 0  

RESOURCE TYPE 2 
A2 B1 C2  

R2 

A2 500 100 0 7 4  

B1 200 50 4 0 5  

C2 300 75 8 12 0  

RESOURCE TYPE 3 
A1 B1 B1  

R3 

A1 100 50 0 8 6  

B1 250 100 18 0 14  

C1 150 25 7 5 0  

RESOURCE TYPE 4 
A1 B1 B2 C2 

R4 

A1 70 30 0 12 15 10 

B1 300 50 5 0 7 5 

B2 550 200 8 5 0 12 

C2 350 20 11 14 12 0 

RESOURCE TYPE 5 
B1 B2 C1  

R5 

B1 400 50 0 15 10  

B2 550 100 4 0 5  

C1 125 50 17 8 0  

 

 

 

                                                           
1 This data is representative of a discrete-event system model of a manufacturing system but is not based on data 
from a real actual manufacturing system. 
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7.3.2 Program Structure & Parameters 
Table 7:1 shows the logical relations between processes (A1, A2, …, C3) and respective 

resources (R1, R2, …, R5). A workload is a set of processes. In this experiment only one workload is 

considered; comprised of 100 A, B and C process tokens each. A1, A2, A3 are sub-states of the processes 

– A1 state would indicate unprocessed, A2, partially processed and A3 is completed – processed. The 

performance is judged on two primary features; the processing time and makespan. Processing time 

indicates the literal amount (scalar sum total) of processing required, since this relates to important 

second-order resources, e.g. energy. The makespan gives a scalar value that is indicative of system 

global performance; the total processing time of all processes from first process start to last process 

finish. Because a given control policy (e.g. intelligent task sequencing/routing or load balancing) can 

vary the local features; process queue volume and/or associated waiting times, this consequentially hides 

global system performance from evaluation. This phenomena is pervasive in real-life systems, and it is 

exceptionally difficult to perceive, since local control policies are deployed to avoid bottlenecks at a 

cost of overall performance (it can be conceptualised as performance lowering to the point at which 

evidence of bottlenecks is removed).  

 

 

 

 

 

Figure 7:3: The basic system workflow; in the first stage, the encoding must relate the processes and resources in such a way 
that a ‘possible’ assignment is validity of a process taking place on a resource. This is essentially labelling a process with ‘this 
process can be conducted on these resources, and if it is conducted on these resources, it will take this amount of time (sampled 
from a distribution)’. The Max Resource Constraint is simply that a given configuration can have only a limit of 6 resources 
in total. This number is arbitrary, but will change the search space dramatically. For a given configuration, does it logically 
complete all the processes required? If so, the configuration encoding is converted into a Timed Petri Net and simulated 400 
times using probabilistic durations that are drawn from a Gaussian distribution. The result is that each configuration has a 
set of schedules associated with it, by taking simple measures of central tendency on their makespan and total processing time, 
we can establish their performance in relation to one another. 
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7.3.3 Results 
The system discovered 221 unique configurations that feasibly process this workload with a 

maximum of 6 resources. The logically minimum resource number is 3, as the workload required 3 

different resource types for completion. Fig.7:3. shows the majority of permutations (outliers were 

omitted for clarity) and their respective total number of resources (as different coloured classes), the 

respective mean makespan time and mean processing time [in X-Y respectively] calculated from a 

population of 400 simulations. It can be seen that the number of resources has a significant impact on 

performance; and within each class there is also an optimal resource configuration. It is suggestive in 

the data that clusters appear in certain regions, opening the possibility to discover some heuristic to help 

inform the selection of new configurations in larger problems. In Fig.7:4. (upper) the highest 

performing configurations of each class are shown with their simulation results. It is notable that fewer 

resources show a greater relation between total processing time and makespan, as indicated by linear 

regression fit (this can be seen in Fig.7:5). In Fig.7:4. (lower), the highest performing configuration is 

shown once again, with inclusion of the total Context Switching Time (CST). Note the highest 

performing configuration is visually represented in Fig.7.1 b).  

 

Figure 7:4: Data points showing the mean processing time (the total duration of all the processing in the schedule) in the Y 
axis, whilst the mean makespan time (the total time to complete all processing on a given configuration) in the X axis. The 
colours denote which class they belong to- the blue configurations have a maximum number of resources of 3, purple have 4, 
magenta have 5 and red is the maximum of 6. We can see that there are clusters appearing in certain regions, with high density 
in the region of 60000-70000 makespan time and 207500 processing time. The highest performing configurations are those 
on the far left, which is clearly dominated by configurations with 6 resources. It is interesting that some of the 5 resource 
configurations nearly match the performance of the 6 resource configurations.  
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7.4 Future Work 
The routing policy used is likely to be creating second-order un-modelled effects on simulation, 

impacting generated behaviour data and performance, alleviated by; 1) detection using a hybridization 

of global and local performance features for evaluation and/or 2) a more systematic simulation. Using 

purely exploratory stochastic search, the discovery of configurations in larger spaces that are both 

feasible and high-performing is unacceptably inefficient without exploitation. 

Further development will feedback high performing features [performance result(s) of the 

forward model] from an initial population to a selection mechanism for configurations of new 

Figure 7:5: Data points that show each unique individual schedule; in the top plot, the points are coloured according to the 
permutation that they belong to- red is the highest performing 6-resource configuration, magenta is 5-resource, purple 4 and 
blue 3. In the lower plot, the best performing configuration is shown, where the colour is the total context switching time for 
that schedule. In both plots we can see a positive correlation between the total processing time and the total makespan time.  
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populations. An obvious candidate could be a derivative of the canonical Genetic Algorithm (GA), via 

a mixed-integer encoding, since the permutation itself has no particular structure. In addition to 

establishing useful heuristics to the user about this particular problem, an interesting avenue of research 

would be a metaheuristic algorithm where the generation of new permutations are limited to features 

inherent to clusters of high performing configurations in the existing population. 

Software experience limits this work in regards understanding how variable structure modelling 

is manifest in other application contexts. However, the ability to construct structurally variable models 

is growing in applicability to both well established and contemporary use cases – in systems that adapt 

online to variation in requirements. Many computational workloads involve the fault-tolerant 

decomposition, processing and recomposition of processes or tasks and the allocation of these 

subproblems to computer systems that are increasingly interconnected, hierarchical and heterogeneous. 

The internet has enabled macro-scale workload distribution through cloud computing, whilst at 

processing scale, we see a continuous growth in multi-processor Central Processing Units (CPU), a 

growth in the use of Graphical Processing Units (GPU), and new specialised systems, such as the 

Intelligence Processing Unit (IPU)[18][19] and Tensor Processing Unit (TPU)[20]. 

The advent of Industrie 4.0 demands that these systems can adaptively self-organise so that large 

workloads are distributed between specialised resources in real time. The design or operational control 

manufacturing systems is an obvious candidate, and was anticipated by [6]; “in factories where 

machines are capable of being dynamically reconfigured for different products”. Typically in the design 

and control of manufacturing systems, the time interval distribution of jobs, the types of resources unto 

which the jobs can be executed, how they are sequenced and context switching in the form of tool 

changeovers are all known or estimated. In which case a project is to establish a globally optimal 

manufacturing system design based on exemplar workloads which satisfies the demands of the supply 

chain. 

It appears that DES models or structures undertake a form of automatic reification in order to 

provide a closed domain of discourse a la constructivism. Machine Learning (ML) and metamodeling 

has approaches for modelling that encapsulates different structures numerically, removing the 

requirement to create or omit entities. Most evident is the property of linear separability in classical 

Perceptrons and ‘dropout’ in contemporary Neural Networks (NN) in which variables between layers 

are contextually disconnected by reaching zero weight. This suggests generality is a property of models 

that in some way manifest reconfigurablity. 
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8 Reconfigurable Scheduling through Discrete-Event Systems  
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“If I have seen further than others, it is by standing upon the 
shoulders of giants.” 
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8.1 Summary 

Throughout the research there has been reference to further work. In this chapter, these aspects 

are covered directly. It also tries to tie together the research story in terms of direction. 

The research concerns algorithmic approaches (a ‘coding’) to generate data that corresponds to 

the behaviour of a system under agent (i.e. autonomous) control that in the case of manufacturing 

systems such as the Safran Landing Systems case study is a scheduling problem. The architecture is a 

predictive coding, similar to that of sampling-based planning processes, with special representational 

considerations for generalised (vis-à-vis reconfigurable) application in Cyber-Physical manufacturing 

systems.  

The theory presented feels distinctly simple in its principles; the concepts of permutations, 

mechanisms that discover neighbourhoods, use of memory and discrete events. It also cuts across many 

ideas old and new in many areas including intelligent systems or AI. The simplicity means it is easier 

to understand, more readily influences a wider range of readers and even makes it closer and open to 

interpretation in regards to computer implementation and commercial application.  

Only chapters 3-7 are covered as portions in further work since these form the core contributions 

and research output. Each chapter has a different section regarding further work, in all cases the 

objective was to convey further work in simple language, brevity and clarity rather than detail.  

 

8.2 Recommendations for Further Work 

8.2.1 Chapter 3: Planning, Prediction & Neighbouring Theory 
Chapter 3 covers the basic underlying theory that is then converted or represented in program 

code. The coding and theory need to be optimised further and considerations should be made in regards 

to how the system can be run in more contemporary parallel configurations1 and what frameworks are 

available to support this.2 Further, knowledge of computational complexity analysis is required to 

critique the overall algorithmic design of the program.  

In chapter 3, it is covered that the search process can be executed in a sequential or concurrent 

fashion. The principle is that in the former, only one controlled event is allowed at a given time instance, 

and in the latter, as many as is required are allowed to fire at a given time instance (the set of feasible 

controlled events, in the case of makespan minimisation becomes ‘empty’). The former is used to 

simplify the underlying data structure. In the case of the industrial case study, would have a minimal 

impact on the resulting schedule because of the resolution. The issue with this approach however, is 

that when 𝑛 = 2 different controlled events (say a and b) are feasible and non-interacting, the system 

will create two different trajectories that are essentially the same that in the case of the concurrent 

execution would only be one trajectory only. As a Controlled Event Permutation (CEP) this would 

                                                           
1 The work was conducted in CPU-parallelism, where a separate instance of the simulation used a core.  
2 CUDA, Vulkan and OpenCL are examples of such frameworks. 
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appear as (𝒂 𝒃) and (𝒃 𝒂) in the sequential case and (𝒂 ∧  𝒃) in the concurrent. In principle this would 

mean that some branches can represent essentially the same trajectory.  

Uncertainty attracts significant attention in control theory and artificial intelligence in differing 

forms. Increasingly in computational and mathematical studies it comes under the umbrella of 

‘uncertainty quantification’. The position in this work is that uncertainty can be dealt with using systems 

that are designed from the outset to cover a distribution, or, as in this case, can be configured to deal 

with them as they arise3 by propagating through the program the corresponding output distribution of a 

given input distribution. A simple example is given at the end of chapter 3 which is the same example 

as that covered in chapter 7. This uses a known, Gaussian distribution for task-processing times. In 

order to change the industrial case study to include these uncertainties in this manner (i.e. task-

processing times from a known distribution) is a small matter from a programming standpoint. The 

output of these exercises leads to schedules that have pre-emptively included longer task-processing 

times. This means that in practice the schedules generated should be robust to this occurring in the real 

system. There are many possibilities in making this more systematic; for example, using a task-

processing time that is purposefully too long for all intervals as a ‘hot’ state when the highest performing 

schedule is constructed, followed by a ‘cooled’ state where the interval is contracted symmetrically, 

giving rise to small delays that allow for the variation of task-processing time.4  

There are many classifications of Petri Net. The modelling approach used here clearly across 

many of these superficial divisions between different ‘types’ of Petri Net5. No real attempt has been 

made to identify the specifics of these delineations. This is because many of these extensions are fairly 

obvious developments, and considering the modelling of a given system or program, many will emerge 

naturally as the detail of the problem is fleshed out and as the research proceeds. 

The main delineation, and one with significant research potential, is regarding the inclusion of 

continuous time dynamics; an area of great interest and significant value called ‘Hybrid Petri Nets’6. 

Rather than using state transitions exclusively, this would enable the intermediate states between events 

(defined as Invariant Behaviour States) to have useful data that can be used profitably for generating 

data for other inference systems, e.g. Fuzzy Logic or an approximation function defined by a machine 

learning model7. This practice is known as synthetic data generation, but in the case of scheduling 

machines, it is more similar to the ideas of self-supervised learning or self-play scheme, where the 

model is trained automatically with self-labelled data that is directly relevant for the state and 

optimisation problem. Further, the second-order dynamics (i.e. the rate of change) of objects within the 

Hybrid Timed Petri Net may be a used as a feature which offers a predictive capability. 

                                                           
3 It is impossible to map the concept of continuous time dynamic uncertainty to discrete-event processes, since 
the state (i.e. time-free) of the discrete-event system is informational; e.g. a configuration of a chess board.  
4 Cooling; referring to the thermal expansion and contraction of physical matter.  
5 Coloured (Alt. Colored) Petri Nets are an important type, as they convert tokens from elements to objects. 
6 I.e. a hybrid of continuous and discrete-time dynamics. 
7 Metamodels are another term that covers the concept of an approximation function.  
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This leads into the possibility of a hybrid system architecture whereby the simulation model and 

search process gives a “white-box”, general-purpose, reconfigurable scheme for any possible state and 

desired schedule of a given application8. For large problems, or those that require particular speed 

(perhaps as a feature of the application or as a specific case, e.g. an emergency or disturbance), they can 

use the inference system only, and avoid the white-box search approach – ‘deliberation’ discussed here, 

or use the inference system to guide the construction of the ‘future possibilities’ tree in an informed 

manner.9 The generated data from previous high performing solutions that are ‘nearby’ to the present 

problem can inform the solution according to the degree of similarity10. Capturing the similarity 

measure becomes another research direction, as this can guide the selection or degree to which the 

search relies on prior experience (in the inference system) or deliberation and search (using the internal 

model to establish possibilities). This presents an opportunity for a deployed system to self-train by 

creating ‘belief states’ and new, unseen scheduling problems. In a manner reminiscent of dreaming, this 

would guide the model through hypothetical states that have not being observed in actuality (i.e. 

encountered by the application) but those that are possible. The selection could be to consider how 

different these states are to the current state, small variations to the current state or anticipated future 

states seem like a logical choice as the optimisation process creates immediately useful data.  

Finally, as a side consideration, it seems that Petri Nets may be a powerful approach for modelling 

and representing information processing more generally. The area of Spiking Neural Networks (SNN), 

regarded as a promising area of research, uses the concurrent interactions of spike trains to represent 

information. The number of possible states (and thus the representational power) far exceeds that of the 

existing artificial neural network paradigm. What has been lacking is a credible training process.  

 

8.2.2 Chapter 4: Modelling & Industrial Application  
Chapter 4 is the introduction of the industrial case study model. Of the previous work surveyed; 

few were of high complexity - many of the examples of earlier work in Petri Net models concerned 

small case studies. In the case of manufacturing systems, particularly when they represent a real 

commercial system, it is difficult to reduce the model size, scale or complexity or reduce the number of 

components since this would completely change the state space that it covers and cause difficulties in 

industrial practice. The intention was to capture all necessary detail to be able to accurately generate 

schedules that are useful and nothing further.  

Second-order unmodelled effects are those that are created by the naïve trajectory generation 

process that will hide “possible futures” by a special case of blocking. This is caused by the hidden 

heuristic “assign at the earliest opportunity” and the lack of any mechanism to delay. In which case, the 

                                                           
8 This is referring to the ability to cover what would be out-of-distribution data.  
9 In chapter 5, metaheuristics are discussed as a different approach for achieving this same result. Some 
metaheuristics are highly reminiscent of this ‘informed search’ concept, the Ant Colony Optimisation (ACO) is 
an excellent example.  
10 In principle this reduces the generalisation requirements of an inference system since it becomes an 
composition or ensemble.  
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challenge is being able to detect this occurring, or to use a more systematic simulation (trajectory 

generation) so that this blocking phenomena is alleviated. In the latter, this could be alleviated using a 

‘pilot method’ whereby a child process (i.e. the so-called Pilot) is created that splits off from a given 

decision point where the child process goes to discover what neighbourhoods exist in the future if no 

decision is made from the neighbourhood of the parent state. It could proceed a fixed time interval into 

the future or limited by only number of different neighbourhoods. It was originally planned to do a short 

paper on this work, since in some cases this could cause the scheduling system to not search within high 

performing regions.  

The basic model is that of the acyclic bipartite graph that underlies the Petri Net structure. This 

means that the basic model can easily be changed to reflect a change in the real system under control. 

It is inevitable in many industrial applications the structure of the controlled system is subject to 

variation (for example in manufacturing systems, a part type is removed or replaced, a new resource is 

added – e.g. a machine or a machine operator) over time as it is deployed.  

The overall scheduling system could be reduced in computational complexity by reducing the 

resolution of the underlying variables (e.g. task-processing times, episode length) by reducing the 

number of significant figures then rounding and use this as a guidance encoding for a higher resolution 

search. Thereby exploiting the imprecision as a useful pre-processing step. 

There appears to be a lack of a standard problem in scheduling of systems of this type – interval 

scheduling where choice, hidden information (forcing sampling of trajectories) and a high number of 

dependencies. This could facilitate the benchmarking of different approaches in the methodology 

software architecture (including memory, data structures and processes), programming language 

choice, algorithm design and the implementation into hardware, particularly considering the trends in 

heterogeneous and parallel computing.  

In some cases, there is an opportunity to use existing data regarding a discrete-event system that 

can either be parsed by a discrete-even system identification process or used as a validation dataset of 

a handcrafted discrete-event system. The former is an interesting an exciting prospect, as it would 

involve the automatically constructed event models. 

The Work-In-Progress (WIP) is a measure of the total number of partially-processed tasks. In the 

case of the Safran factory, this has set limits based on the physical constrains in the factory and the 

performance indicator that excessive WIP is undesirable. Different WIP limits were varied in the 

experiments. This has the effect of a constraint programming scheme in that the neighbourhood for 

controlled events is empty once the factory reaches the WIP limit. This then impacts the utilisation of 

the manufacturing system (it plateaus) and delays start to appear in the generated schedule. As discussed 

in this further work chapter, there are certain cases where delays in the constructed schedule are difficult 

to create as a result of the basic trajectory generation process. Another constraint programming scheme 

that could be used to force delays is of the utilisation variable itself, by setting a limit on this value, or 
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by fitting a curve to the ideal utilisation over-time, this too can control the assignment of tasks to 

resources in such a way that delays appear in the generated schedule.  

Considering the work that was ultimately carried out in Chapter 6 in regards to meeting task 

completion intervals, there are three main other inclusions to the modelling effort that have been 

identified that would improve its accuracy and usefulness dramatically; discussion about modifying the 

Petri Net graph structure, the addition of transportation systems and staff systems.  

In the case of transportation systems (entities with spatio-temporal dynamics), Safran Landing 

Systems use a combination of forklift trucks and cranes to move the parts around the factory. Because 

this is not an ‘automated’ system, in that the dynamics of machinery or transportation systems are not 

fully computer-controlled, the focus was on the development of a program for use in a software 

application that could assist shopfloor operators and managers (in so-called Decision Support System). 

I.e. when the system suggested a certain action – the part assigned and routed to a specific machine, for 

example, the people would know they needed a certain crane or forklift depending on the parts location, 

the machine location and the availability of the said forklift or crane. The overall effect on the 

scheduling problem is minimal, and was more about increasing the accuracy of generated schedules 

and predictive power of the program overall – it would be possible to estimate the utilisation of cranes 

and of forklift vehicles.  

A far larger and more interesting problem is that of staff, and their shift patterns specifically (see 

Fig.8:1). This work was started but was then shelved once it was realised to be possible and of less 

importance than the optimisation processes (covered in chapter 5) and the different type of scheduling 

Figure 8:1: Staff shift patterns represented in a logical-time series manner ready for integration into the system. 
In y are categories for unique staff members whilst x is time, forming a ‘boolean interval’. 
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problem (covered in chapter 6). It is notable also that getting this information from an organisation is 

difficult and time-consuming. Staff in the manufacturing system undertake two main roles in the 

manufacturing system; the operation of machines (including set up, maintenance etc.) and the 

transportation tasks discussed previously (control of forklift vehicles and cranes). This means that they 

represent a secondary resource that must be synchronised with the machine utilisation. The problem is 

made more complicated by the fact that different people can operate different machines, whilst in some 

machines, multiple machines can be operated by one person because of the high levels of autonomy. In 

the face of these complexities, the actual intervals defined by the “staff shift pattern” are certainly 

feasible to include into the Petri Net model (vis-à-vis discrete-event simulation) and many different 

forms of optimisation in this area are fully realisable. Other industrial nuances include the phenomena 

whereby near the end of the a staff shift, no parts are moved out of machines if they are finished. Another 

of the anecdotes from Safran Landing Systems was in regards to how disruptive sickness was on the 

operations of the factory; reinforcing the need for an autonomous scheduling system.  

Another modelling aspect that would have been a great addition is the use of task assemblies, 

whereby (𝑛 >  1) tasks combine in task transformation. This has a clear application for manufacturing 

systems for literal assembly processes. The scope of this project was on a particular factory in Safran 

Landing Systems that did not use any assemblies but this a significant component of industry and other 

areas of commercial interest.  

 

8.2.3 Chapter 5: Principles of Metaheuristics 

In this chapter, a wide ranging discussion of optimisation and metaheuristics was given in an 

attempt to extract the core principles. In addition, a credible and performant new metaheuristic was 

given called Trajectory Mutation. This would work with the approach given in chapter 6 and would 

also work in chapter 7; both for improving the search efficiency of the trajectory generation process 

because it retains the branch-like structure of discrete-event process trees. The work in chapter 3 can be 

summarised as a sampling-based tree-traversal (or graph traversal) algorithm which does not have any 

informed search beyond the neighbourhood discovery process. The Trajectory Mutation algorithm 

forms a optimisation scheme by efficiently passing or maintaining information about high performing 

solutions to new solutions in a highly computationally cheap manner. The weakness is that the 

exploitation may be viewed as simplistic; only the parent individual (un-mutated individual) may 

influence children individuals through a direct copy of the previous (directly from memory), no other 

useful information is transferred. There are many possible variations on Trajectory Mutation that can 

be used and developed. The first classification is in regards to whether it is used as a population based 

or single-solution based metaheuristic. In the former, decisions regarding which of the previous 

population should be used as phenotypes of the next generation are required. I.e. in “elite” settings, only 

the highest performer from the original population is used, making it highly exploitative. It is possible 
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instead to have an “elite group”, where the top n individual solutions in population is used, making it 

more exploratory. Other approaches including using a dynamically decrementing n according to some 

function as the search progresses, to optimally transition from exploratory to exploitative behaviour 

where it reaches a single, elite individual solution. This would be very useful when tackling multi-

objective problems, where a credible n-dimensional Pareto frontier must be revealed comprised of many 

high-performing, diverse individuals and to avoid premature convergence. There are many different 

hyperparameters and modifications that need to be researched in future.  

Of the existing family of metaheuristics, the one of particular interest is the Ant Colony 

Optimisation (ACO) algorithm and its superclass, Estimation of Distribution Algorithms (EoDA). ACO 

is particularly relevant for graph structured problems. Meanwhile, EoDA often use a voting or 

consensus based shared memory that is used to drive new solution component selection 

probabilistically. The encodings are structured in a way that is appropriate for discrete-event processes, 

and they could also be made flexible so that they can even be used in searches that quantify uncertainty.  

 

8.2.4 Chapter 6: Compositionality & Metareasoning 
In chapter 6, a different type of scheduling problem was presented, and an extension of the 

existing program was shown. This work attempts to estimate ‘what’ and ‘when’ controlled events 

should fire. This is about reducing the search space by sampling only promising regions based on the 

knowledge of the scheduling problem itself. 

Early in the introduction of that chapter, it was mentioned that interesting theoretical areas that 

could be studied for new techniques that are applicable. These included Hierarchical Task Networks 

(HTN), Macro Actions, State Abstraction Methods, Action Model Learning, sub-goal discovery, 

intrinsic motivation and artificial curiosity. It is possible that some of the ideas have been independently 

replicated in this project as they use similar language and objectives. 

The ‘anticipation structures’ are exact replications of the reward structures that are then 

propagated though time to drive the selection of controlled events.  Both structures are data-based 

models. This could be improved by separating the two aspects and conduct more flexible 

transformations. Namely, the reward structures should be flexible in so far that they can represent the 

satisfaction over time process in the most accurate and expressive way for the user. One way of 

achieving this is to use a number of data points connected by a set of linear equations or appropriately 

fitted with a curve11. This means that the reward structure is flexible to show what the user requires in 

terms of the interval (the time, in y) and the respective priority (the reward, in x). The data points can 

be transformed as required into the anticipation structures, and for the modification of the anticipation 

structures to adapt the estimations. Another possibility of the reward structure is to have further logic 

                                                           
11 I.e. first degree is a linear equation and a curve would most likely be a second degree polynomial. Either 
approach gives opportunity for identifying the max or gradient of the data. 



Chapter 8 

247 
 

built-in whereby different sets of rewarded events trigger different reward signals depending on 

ordering, distributions, etc.  

The ‘relaxation’ scheme described for reward and anticipation structures is simple. It uses a two-

term first degree polynomial with two dimensions that can be varied. In regards to the anticipation 

structures specifically, whilst they may take their original shape from the reward structure, these should 

be independent and be allowed to modify dynamically12 so as to adapt the estimations of when 

corresponding controlled events should occur whilst searching for the schedule that yields the highest 

reward. The dynamic variation in the structure could be done by an informed transformation that uses 

each independent reward signal (arising from the event interacting with the reward structure) as a point 

                                                           
12 In the current work, they are completely static, and the same shape is applied to all of the anticipation 
structures. 

Figure 8:1: Boolean tuples of successful events (blue, top plot) and the tuple of attempted events (pink, second to top). The 
bottom 3 plots shows the use of different buckets to compare the two tuples. In an optimal case would overlap or have minimum 
sum-difference. 
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of reference. If the maximum achievable reward for a given reward structure is after the rewarded event, 

that particular task requires its corresponding anticipation structures to be made more ‘lazy’ and the 

opposite is true if the maximum reward is before the rewarded event. This can be made more 

sophisticated by finding how early or late it was in particular, or even use the gradient of the reward 

structure at the time of the rewarded event. Trapezoid shaped reward functions would make the latter 

impossible, meaning more complicated shapes may be recommended. Anticipation structures are 

designed to estimate the search spaces so the problem is reduced whilst the reward signal is maximised. 

The principle of the anticipation structure is to generate ‘event patterns’, so as to sample specified 

time intervals and the corresponding controlled events. Another aspect that can help inform the 

transformations of the anticipation structure (besides the reward signal) and improve the overall speed 

of the system is the use of “attempted controlled event firings” tuple and the “successful controlled 

event firings” tuple shown in Fig.8:2.  

If we consider the program shown in the diagram shown in Fig:6:20, section 6.6, at step 2 is 

where the decision pressure 𝒅𝒑 and the anticipation structure at a given time instance ‘decides’ whether 

to attempt a firing using a two-state roulette wheel. If an attempt is made, the neighborhood is 

discovered logically, if there are controlled events available, then it will select amongst them using the 

dynamically constructed roulette wheel which are ‘weights’ on the controlled events. The issue is that 

in the data, if we trace or record the occurrence of attempted event firings (pink in Fig.8:2) and the trace 

occurrence of successful event firings (blue in Fig.8:2), their sum-difference is significant, implying 

that they are severely out of sync. In fact, for large portions of the search in the episode [in the second 

plot from the top, the y value is 1 (i.e. true between ൫𝟑 × 𝟏𝟎𝟒൯ ≤ 𝒕 ≤ ൫𝟒 × 𝟏𝟎𝟒൯] this means the space 

is not sampled efficiently with small delays between each attempt, but at each time instant, the decision 

to attempt a firing is made.13 Using ‘buckets’ for both attempted and successful attempts, shown in the 

bottom three plots of Fig.8:2 we can see how both are distributed in relation to one another. The 100-

bucket shows most clearly that for every 100 minutes (time units used in this project) there are 100 

attempted decisions (pink) – 100% of the time instances. The successful trace in blue, however, appears 

as a noisy signal. 

In further work, it is suggested that the ‘difference’ between these signals would help guide the 

selection of the 𝒅𝒑 [a scalar constant] and the degree of relaxation [or transformations] required for the 

anticipation structures (it may be the case that their volume (y – values) need to be controlled, which is 

essentially what the 𝒅𝒑 scalar is intended for). This would help distribute the resource utilisations 

through the episode length, rather than seeing a spike in utilisation when the anticipation structure is 

detected which is what has been seen in the experiments. This would make the resulting schedules more 

                                                           
13 In some scheduling models and problems this may be the correct approach, since it will not allow for delays to 
appear. In this case, the suggestion is that a better schedule for some since is one with small delays throughout the 
episode length, showing an even system utilisation over time, rather than a spike in utilisation prior to the delivery 
requirements.   
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realistic, more robust in the face of uncertainties such as delays, and possible extensions of time to task-

processing durations. Further, the compute time could be reduced because the successful event firing 

trace can be re-used a set number of times as a prototype for new schedules, as it will continue to 

efficiently search by selecting different controlled events using the constructed distribution at those time 

instances. Another option could be to define the 𝒅𝒑 as a function over time rather than a constant 

throughout the episode length. 

An aspect of the system that has hitherto not been mentioned is the ability to run the system in 

the same manner described throughout but in reverse (i.e. from a future time instance to the current time 

instance). This enables some interesting properties. In the case of compositional makespan 

minimization, the initial state can be the goal state and work backwards to create an optimal schedule 

in reverse. For compositional problems, a top priority task could be scheduled in this manner, then the 

other tasks could be assigned in the forward direction, in a ‘scanning’ process, where the existing 

intervals are used as constraining blockers.14 Where reversibility really stands out as a research area is 

in the ability to tackle the satisfaction-over-time type scheduling that is addressed in chapter 6. The 

approach is to sample different starting points based on the reward structures, based on the total reward 

achieved, and build schedules in reverse. If the episode length is insufficient, the episode length could 

be extended or a sampled starting set (with a corresponding total reward that is lower than the previous) 

is selected. Evidently, the issue of no-delays remains, but nonetheless, this seems like a promising area 

of study.  

  

8.2.5 Chapter 7: Searching & Generating Discrete-Event Systems 
In chapter 7, a method was presented to automatically design and optimise the design of 

manufacturing systems. There was mention of the fact that purely exploratory search was used (i.e., no 

optimisation mechanism) only Monte Carlo sampling results in relative performance differences 

between different schedules. This lack of a specific optimisation mechanism was addressed in chapter 

5 with the introduction of metaheuristic concepts and the Trajectory Mutation algorithm. The statement 

in chapter 7 referred to the potential saving of computer by using an optimisation mechanism such as 

this, so fewer samples of higher performing solutions can be discovered, improving the overall 

processing time of the search as a whole.  

A more specific further work piece that is specific to chapter 7 as a suggestion for further work 

was to drive the generation of new discrete-event systems based on the previous discrete-event systems 

features and corresponding performance. In simple terms, the work in chapter 7 is an exhaustive search 

– there are 221 unique discrete-event system configurations, each is constructed and the used as 

described. In cases of larger sets, where the exhaustive constructing and testing is intractable, the space 

                                                           
14 This clearly opens a wide range of possible enquiries in constraint programming about which intervals are 
fixed, whether ranges of acceptability are given, and many possible modifications or adjustments for these 
compositional scheduling problems, including the adaptation of the episode length.  
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of discrete-event system configurations must be searched by sampling itself, the suggestion here is that 

it can be informed by using the features of previously discovered high performing solutions. There are 

many ways in which this could be approached- a simple mixed integer GA phenotype encoding could 

easily be used in this existing work. A more sophisticated approach could use the previous solutions as 

a population in the clusters of performance and attempt to extract common features from these high 

performing clusters (these can be seen in Fig.7:4) to drive selection of new configurations.  

In chapter 7 there is a suggestion that a good direction for further work would be apply the 

methodology to an industrial case, the obvious candidate would be a manufacturing system design. This 

is because the knowledge to build the discrete-event model components is normally available; the time 

interval distributions, the logical relations between task and resource, dependencies, precedents, 

sequences, capacities and context switching dynamics. The problem is highly commercially valuable – 

a well-designed manufacturing system means years of higher productivity, utilisation, robustness in the 

face of disturbances and flexibility in regards to changes in production requirements.  

The principles of “variable structure” models apply in many different areas, but of particular 

relevance are those that have problems that can be decomposed as sub-problems and recomposed as a 

complete solution. Scheduling itself appears in many contexts where use cases including distributed 

workloads such as managing disparate computer systems and orchestrates them optimally. 

 

8.3 Conclusions 
 What appears to be equivalent theory in other fields means it is difficult to establish a singular 

knowledgebase to develop from and generating sufficient depth in regards to extending theory 

or establishing what aspects of modelling are original. There are a number of possible avenues 

for further work, in addition to exploring equivalences in other fields.  

 Theory and development of a programmatic framework in MATLAB was completed. The 

industrial case study from Safran Landing Systems was the manufacturing system that was 

modelled throughout the thesis. The scheduling ‘problem’ itself was partitioned into two types. 

The more standard optimisation of ‘makespan minimisation’ and the alterative that was driven 

by actual industrial requirements known as ‘satisfaction over time’. 

 Optimisation appears in multiple contexts. Sampling-based optimisation of relative 

performance of solution populations occurs as a result of the stochastic selection of actions or 

controlled events, resulting in a diverse set of feasible solutions. The principles of 

metaheuristics bring a further aspect of optimisation with higher-level dynamics of exploration 

and intensification. Later the concept of relaxing the problem whilst searching for a solution is 

presented specific for optimisation of Discrete-Event Systems. Finally, in the testing of 

different Discrete-Event Systems though encoding, optimisation is seen by searching possible 

systems themselves based on their behaviour.  

 


