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SUMURY 

The behaviour of limited subassemblages with flexible beans 

and semi-rigid beam to column connections was studied using a computer 

program in which the finite element method was employed in a non-linear 

analysis which accounts for the presence of semi-rigid connections and 

the inelastic behaviour of frames. The program accounts for many other 

factors such as initial imperfections and residual stresses. The 

theoretical background to the present computer program has been 

presented along with the program layout. 

The program was used to simulate some of the experimental 

results obtained from tests on rigidly and flexibly connected frames 

with different combinations of beam and column loads. The analytical 

results were found to compare reasonably well with the experimental 

results. 

The proýram was also used to simulate a series of I-shaped 

subassemblages that were tested at the University of Sheffield. 

Comparisons were made between the analytical and experimental results 

characterized by the maximum loads, load-deflection curves and load- 

moment curves. Good agreement was obtained between the analytical and 

the experimental load-deflection curves for all of the cases 

considered. The general trends of the measured and calculated load- 

moment curves for most cases were found to be comparable. The 

recommendations given in B35950 for the design of columns in simple 

construction were applied to all cases in the last series and were 

found unconservative in the cases of balanced loading and conservative 

in the cases of unbalanced loads. 

A limited parametric study was conducted to study the effects 

of semi-rigid joints, bean flexibility and type of loading. In this 



study, *an I-shaped subassemblage was analysed for different load types 

and different types of beam to column connections. A substantial effect 

was recognized due to the presence of semi-rigid connections whether or 

not a beam load was applied. Beam flexibility was also seen to affect 

the carrying capacity of the subassemblage under the action of column 

load only although this effect was less noticeable than that of the 

connection flexibility. The presence of beam load was found to result 

in an unexpected interaction curve which relates the total force in the 

column to the moment that is transmitted to the column's end. An almost 

linear relationship with negative gradient seems to exist between the 

column and beam loads. 

It is pointed out that all the findings of the present study 

are based on the range of cases considered in the parametric study but 

it is suggested that they serve as indicators to the behaviour of any 

the subassemblage under axial load oniy or axial load combined with 

beam loads. A few recommendations for future work are presented. 
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CHAPTER-1 

INTRODUCTION 



1.1- Considerations in Design of Franes with Sessi-Rigid Joints: - 

When designing steel frames, BS5950 (1) recognizes three 

methods of design depending on the type of connections used. These 

design methods are: 

(1) Simple design: in which the connections used are assumed to 

transmit no moment between the connected elements; the 

connections may be expected to undergo large rotations. In 

an2lysing frames with such connections, the beams are assumed to 

be simply supported. The connections are assumed to transmit 

shear forces only and hence they are sometimes termed as shear 

connections. The connections of this type are very light. 

(2) Rigid design: in which the connections are assumed to develop 

full continuity between the connected elements. It follows that 

these connections are assumed, in theory, to permit no relative 

rotation of the elements 'connected. Elastic, inelastic or 

plastic analyses may be used to determine the internal forces in 

the structure. Such connections are relatively heavy since they 

are designed for both moment and shear. 

(3) Semi-rigid design: in which the connections are assumed to 

transmit some of the moments between the connected elements and 

permit some relative rotation depending on their stiffness. 

These connections are intermediate between the other two types 

mentioned above. 

Similar design ' methods are recognized by the AISC 

specifications (2). Simple and rigid design methods are also recognized 

in other specifications (3,4). Shear connections have always been 

commonly used in steel construction and this is especially true 

nowadays, due to the rising cost of labour, since they require the 



least amount of site work. It has been shown experimentally (5) that 

even the most flexible shear connections do possess sane degree of 

stiffness. Hence, they may rightly be classified as "semi-rigid 

connections". More interest has been directed recently towards the 

behaviour of steel frames with semi-rigid joints. 

The most important aspect of connection behaviour is the 

manent-rotation (M-ID) relationship. Fig-1.1 shows typical M_(D 

characteristics for a range of hypothetical connections. The stiffer 

the connection the higher is the M-ýD curve representing the behaviour 

of the connection. Perfectly rigid connections are represented by the 

vertical axis while pin connections are represented by the horizontal 

axis. 

Semi-rigid joints, as compared with pin connections, have the 

effect of reducing the maximum manent that occurs within the beam 

length or at its ends. For example, if semi-rigid supports are used 

instead of simple ones at the ends of the beam of Fig-1.2, the maximum 

manent at the centre of the beam beccmes less although manents are 

induced at the beam ends. If, on the other hand, the serni-rigid 

supports are used in place of fixed ends, the maximum manents at the 

beam ends are reduced. The mid-span manent, however increases due to 

the presence of semi-rigid joints. In both cases the use of semi-rigid 

end supports may result in lighter beam sections. Furthermore, the 

connections do transmit some of the restraint offered by the beams 

against column buckling. This results in shorter effective lengths of 

the columns and consequently leads to lighter column sections. 

1.2- Objectives of the Present Investigation: - 

Following the recanmendations made by Jones (5), who studied 
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the behaviour of isolated columns with semi-rigid joints attached. to 

rigid supports,, the present investigation is aimed at removing this 

limitation by considering subassemblages. The family of substructures 

considered in this study are, in general, I-shaped subassemblages each 

consisting of a column and two beams connected at each column end by 

means of beam to column connections. Rigid, semi-rigid or pin 

connections may be assumed. The computer program developed by Jones for 

the study of isolated columns was rewritten and extended to analyse 

I-shaped subassemblages. 

The beneficial effects of the semi-rigid connections which 

were mentioned in the previous section may be overestimated if 

infinitely rigid beams are used. For this reason, it was essential in 

extending Jone's work, to include flexible beams rather than rigid 

ones. Moreover, the presence of realistic beams with finite spans 

allows for the inclusion of more realistic loading conditions. In the 

present work, beam loads as well as axial and lateral column loads are 

considered, together with the loading sequence in which these loads are 

applied. 

The complexity of the loading conditions considered in the- 

present study results in some of the semi-rigid joints behaving in a 

loading, unloading and possibly reloading manner. Although provisions 

are made for constructing hysteresis M-4ý characteristics from any 

loading-unloading curves, only the loading-unloading-reloading path is 

considered in detail. This necessitates the consideration of only 

limited loading conditions which would restrict connection behaviour, to 

loading unloading or reloading. Complete cyclic loading is not 

considered in this study. 

The theoretical background of the modified program is 



presented in chapter 3 while the program layout may be found in chapter 

4. In its modified version, the program is capable of perform ing non- 

linear inelastic analysis of I-shaped subassemblages with semi-rigid 

connections. Unloading and reloading of connections is accounted for in 

the program. Beam loads as well as column loads are accepted by the 

progran, in addition to residual stresses, initial column deflections 

and small axial load eccentricities. 

The program is used to simulate some experimental results 

obtained from tests made on both rigidly and flexibly connected frames. 

These comparisons are presented and discussed in chapters 5 and 6. In 

chapter 7, the results of a limited parametric study are presented. The 

main parameters varied are the type of connection, the beam flexibility 

and the loading condition. Finally, some conclusions and 

recommendations are made in chapter 8. 

1.3- Limitations of the Present Investigation: - 

The present work is bounded by the following limitations: 

1- The frames considered here are limited to I-shaped 

subassemblages. Although, in theory, larger frames may be 

handled by the finite element procedure upon which the program 

is based, extra checks would be needed to ensure that assembly 

of the stiffness matrix and load vector are performed properly. 

In addition, the convergence criterion is based on fulfilling 

equilibrium of various segments of the frame, hence extra 

modifications may be needed if larger frames are to be 

considered. 

2- Only the pre-buckling load-deflection behaviour is traced. 

3- Although the applied loads may be 'either increasing or 



decreasing in Magnitude, full cyclic loading is not considered. 

This is due to the fact that such analyses would require 

complete hysteresis records of the connection M_ý) 

characteristics. As mentioned earlier, the program does not yet 

fully consider such hysteresis. 

4- The material considered is typical of mild steels which behave 

in an elastic-perfectly plastic fashion with or without strain 

hardening. Materials with non-linear stress-strain 

relationships have not yet been considered. Similar behaviour 

is assumed for compression and tension. 

5- The present study is limited to in-plane behaviour only. Hence, 

no torsional effects are considered. 

6- The present study covers no-sway frames only although, 

basically, sway frames may be handled by the program at least 

after very minor modifications. 

7- Joint offset has been considered by modelling the panel zone by 

a rigid segment with length equal to half the depth of the 

column cross section. It has been shown that panel zone 

deformation is significant in the case of stiff connections 

(6,7) an effect not included in the present program. 



CHAPTER-2 

REVIEVI OF LITERATURE OF STRUCTURES WITH SEMI-RIGID CONNECTIONS 



2.1- The Column Problem: - 

2.1.1- Pin-Ended Columns: 

Probably the most important factor governing column design is 

the maximum load which may be resisted by the column before failure 

occurs. Assuming in-plane behaviour only, column failure may be 

categorized as follows: 

(i) Elastic buckling 

(ii) Squashing; ctr 

(iii) Inelastic buckling 

The earliest attempt to mathematically calculate the critical 

load for a column was made by Euler (8). He suggested the well known 

Euler formula in which the critical load, P 
cr 

for a pin-ended column 

such as that shown in Fig-2.1a, may be expressed as 

112 EI 
er L 7- (2.1) 

in which EI is the flexural rigidity of the column and Lc is its 

length. Eqn-2.1 is based on a true bifurcation type of buckling (Fig- 

2.1b) for an initially straight elastic pin-ended column with the load 

perfectly concentric with respect to the member axis. 

Provided that the column remains elastic and subject to the 

limitations of small deflection theory, eqn-2.1 still correctly 

predicts the critical load for an imperfect column with initial 

crookedness or load eccentricity (8,9). The load-deflection behaviour, 

however, is quite different. In the case of an imperfect column, the 

application of the axial load gives rise to lateral deflection even at 

low load levels. Eqn-2.1 predicts the load corresponding to the 

asymptote of the load-deflection curve. 
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Tests on isolated columns (9,10) showed that eqn-2.1 gives 

reasonable predictions for the critical loads for the case of very 

slender columns. It starts to give erroneous predictions as it is 

applied to increasingly shorter columns. In no case can the column 

sustain a load greater than the "squash load" (10) given by 

Py = ay A (2.2) 

in which 

py= squash load 

ay = yield stress; and 

A= cross sectional area 

If a column is of a medium slenderness, the failure is 

governed by inelastic buckling in which yielding takes place in the 

column as it buckles. The failure load in this case is less than that 

predicted by either of the above two equations. 

In general, the failure load of a pin-ended column, is 

dependent on the slenderness ratio defined as the column length divided 

by the least radius of gyration of the column cross section. Slender 

columns sustain smaller loads than shorter ones. Fig-2.2 shows the 

relationship between the failure load and the slenderness ratio of a 

hypothetical column with a certain set of parameters. This curve would 

be constructed from data -obtained either theoretically or 

experimentally- consisting of the failure loads corresponding to a 

series of pin-ended columns with different slenderness ratios but with, 

other factors constant. Also shown in Fig-2.2 are the Euler curve 

expressed by eqn-2.1 and the upper limit defined by the squash load 

given by eqn-2.2. From this figure, it may be seen that eqns-2.1 and 

2.2 reasonably predict the failure loads for very slender and very 



stocky columns respectively. Neither equation is correct when 

considering columns with medium slenderness ratios. 

If any of the conditions, such as the column cross section or 

axis of buckling, is changed, the failure load of the column will be 

modified accordingly. Consequently, a different column strength curve 

is obtained. The column strength curves, therefore, serve as a useful 

tool in studying the effect of the various parameters governing column 

strength. 

2.1.2- End-Restrained Columns: - 

Pin-ended columns rarely exist in real structures. Most real 

columns have some form of end restraint provided by the other 

structural elements that are connected to the column ends. 7be most 

important type of end-restraint is that which is associated with the 

column end rotations. This restraint has the effect of changing the 

deflected shape of a column which would buckle in single curvature if 

pin-ended to one with internal points of inflection (Fig-2-3). The 

distance between these points, in the buckled position, is sometimes 

termed the effective length of the column(11) since the concept of 

effective length implies the use of an equivalent pin-ended column to 

represent the restrained one. As the effective length for no-sway 

columns is always less than or equal to the actual length, the failure 

load may be expected to be higher. Consequently the presence of 

rotational end-restraints has a beneficial effect. 

The behaviour of isolated columns subject to real end- 

restraints has been extensively studied in the last few years. In what 

follows, some of the reported work onýend-restrained isolated columns 

will be reviewed. 
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Jones (5) provided a comprehensive review of the research on 

the behaviour of columns with serni-rigid connections up to 1980. For 

this reason, apart from the work done by Jones, only work done after 

1980 will be reported here. Jones developed a computer program to trace 

the load-deflection behaviour of an isolated column with semi-rigid 

joints up to its failure load. The program was based on a finite 

element analysis and accounted for the presence of geometrical and 

material non-linearities within the column and for the presence of 

semi-rigid connections. These connections were assumed to be attached 

to infinitely rigid beams. He used a non-linear connection 

characteristic to represent the M-0 relationship. which was based on 

data from tests on semi-rigid joints (12) or was generated using 

formulae suggested by Fryeand Morris (13). The program accounted for 

the effect of parameters such as residual stresses, axis of bending and 

cross section shape and size. lie conducted a parametric study to 

investigate the influence of parameters such as the type of semi-rigid 

connection and the axis of bending on the behaviour of isolated 

columns. 

Jones concluded that the presence of semi-rigid connections 

increased the maximum load above that of a pin-ended column especially 

for columns with slenderness ratios above 80. The change in the 

effective length factor of columns with semi-rigid end-restraints was 

reduced as stiffer connections were used. For a particular type of end 

restraint, the effective length factor does not change much over the 

range of slenderness ratios considered. Amongst the recommendations for 

future work he stated that realistic beams should be included in the 

analysis to eliminate the optimistic assumption of infinitely rigid 

beams. He further suggested that the work be extended to cover three 



dimensional response. Although the post-buckling behaviour has little 

importance in the case of isolated columns, he recommended that such 

behaviour be traced especially when the behaviour of more realistic 

frames is sought. 

Razzaq and Chang (14) addressed theoretically the problem of 

isolated columns with partial end restraint and initial imperfections. 

Their procedure was based on a finite difference approach in which the 

effect of semi-rigid end-restraint was idealized as a linear or bi- 

linear M-0 relationship. A linear pattern of residual stresses was 

assumed. Material behaviour was assumed to be elastic- 

perfectly-plastic. Upon conducting a limited parametric study, the 

following conclusions were drawn. The effect of end-restraint has a 

dominant role on the behaviour of crooked columns without residual 

stresses but is even more pronounced when both initial crookedness and 

residual stresses are present. It was found that the connection moment 

at the attainment of the maximum load is an important factor in column 

response. 

Sugimoto and Chen (15) developed a computer program based on 

the approximate deflection method (16). Bi-linear representation of the 

moment-rotation characteristics was used. The program was developed for 

three dimensional behaviour although only in-plane action was 

considered in a parametric study in which the effects of semi-rigid 

joints, axis of bending, size of column cross section and initial 

imperfections were considered. A set of column strength curves "was 

constructed and used to investigate the separate effect of the 

parameters mentioned above. Also, by using the column strength curves 

for the restrained columns in conjunction with that of a pin-ended 

column, it was possible to determine the effective length factor (the 



rar. io - of the effective length to the actual column length) 

corresponding to any particular column. The definition of the effective 

length adopted in their study was slightly different from that used in 

normal instability approaches. They defined the effective length of a 

restrained column as the length of an equivalent pin ended column which 

would sustain the same maximum load as the actual column over its 

actual length. 

It was suggested that the effective length factor, k, for a 

restrained column may be calculated from the equation 

1.0 - 0.017 
1 14 PC (2-3) - C. 

3 

in which M 
PC and Ci are the plastic moment of the column cross section 

and the initial stiffness of the connection respectively. 

Sugimoto and Chen concluded that the deflections in the 

column decreased by 45%-89% in the range of L/r values of 40-160 due to 

the presence of modest end-restraints. Also, the maximum load of the 

restrained column increased in all cases. The effect of end restraint 

was found to decrease with increasing initial imperfections. 

Vinnakota (17) studied the problem of isolated columns with 

end-restraints using a theoretical approach in which the finite 

difference method was employed. He considered a general mono- 

symmetrical section in the development. The material was assumed to be 

elastic-perfectly plastic. Initial crookedness was assumed to be 

present in the column. Linear, bi-linear or tri-linear representations 

were used for the M-4) characteristics of the semi-rigid connections. 

Vinnakota conducted a parametric study in which column strength curves 

were constructed. He suggested that the effective length factor be 



calculated from the formula 

k ff2 + 2u 
Tr2 + 4a 

(2-5) 

C. 
in which a is defined as J 

EI/L 

2.2- Columns as Part of Frames: - 

As mentioned in the previous section, real columns exist as 

parts of actual frames in which flexible beams are attached to one or 

both ends of the column by means of beam to column connections. In the 

theoretical approaches described above, the semi-rigid connections were 

assumed to be connected to infinitely rigid beams. Such an assumption 

overestimates the beneficial effect of the restraint. It follows that 

beam flexibility should be taken into account in any realistic 

assessment of the behaviour of restrained columns. A number of 

theoretical and experimental studies have been conducted to investigate 

the behaviour of frames with rigid 'or semi-rigid beam to column 

connections and some of these are reviewed in the following sections. 

2.2.1- Types of Analyses of Rigidly Connected Frames: - 

Many methods are available at present for the analysis of 

frames with rigid joints. The most basic methods are the slope 

deflection and moment distribution methods. Stability functions may be 

used to take into account the presence of axial forces in the members. 

A matrix analysis may be used to analyse large frames and this approach 

is well suited for use with digital computers. 

2.2.1.1- Slope Deflection Methods: - 

The slope deflection method (18), is based on expressing the 



end moments of a beam in terms of the deformations at its ends. For a 

beam AB, which is deformed into the position A. B (Fig-2.4), the end 

moments M AB and M BA are expressed as 

m AB = -ýI (4 19A +2 t) B++mF LL AB 

= 
E-I (2 0+48+ -ýA) -M BA LABLF BA 

(2.6a) 

(2.6b) 

in which 8A and 6B are the rotations at ends A and B respectively, a is 

the difference between the lateral end deflections and MF 
AB 

and MF 
BA 

are the fixed end moments respectively. Considering the equilibrium at 

every joint in the structure results in a set of simultaneous equations 

which, upon solution, yield the unknown deformations. Using eqns-2.6, 

the end moments may be calculated. Once these moments are calculated, 

the moment at any point may easily be determined from equilibrium of 

the relevant part of the structure. - 

When an axial force is present in a member, to account for 

the reduced stiffness of the element equations 2.6 may be applied if 

the factors' 4,2 and 6 are replaced by the stability functions s, sc 

and s(I+c) respectively, the values of which depend solely on the ratio 

of the axial force present in the member to the Euler load of this 

member. The expressions for s, c and m may be found in many text books 

(18,19). The procedure is continued in the same way as the slope 

deflection method. 

Vinnakota (20) studied the stability of rigidly connected 

braced L and Z shaped frames using the slope deflection method in which 

stability functions were used. to account for the presence of axial 

forces in the members. Different types of applied loads and different 

beam span to column height ratios were considered. He concluded that 



the beams framing into the column offer some restraint to the column 

against buckling provided that the beams are stronger than the column. 

If the beams were weaker than the column, no restraint was provided. 

Here, the strength of a member is characterized by the deformation at 

which the maximun strength of this member is attained (20). The same 

point was raised by Vinnakota in an earlier contribution (21). 

2.2.1.2- Moment Distribution Method: - 

The moment distribution (18) method was developed from the 

slope deflection equations. However it does not involve the solution of 

simultaneous equations and hence it gained wide acceptance shortly 

after it was first proposed by- Hardy Cross (22). The procedure is 

started by calculating the fixed end moments. Secondly, the joints in 

the structure are released in succession. When any joint is released, 

the moments at the member ends Tneeting at the joint are not, in 

general, in equilibrium. Hence a balancing moment is distributed 

between the members according to their distribution factors which 

depend on the relative member stiffnesses. Also due to the release of 

the joint under consideration, a moment is induced at the far end of 

every member meeting at the'joint depending on a carry over factor 

which for linear elastic analysis is equal to one half. The process is 

repeated until the moment at every joint converges to a value. Hence, 

the end moments are directly determined using the moment distribution 

method without the need to solve simultaneous equations. 

2.2.1.3- Matrix Methods: - 

When large structures are analysed, especially if digital 

computers are available, matrix analysis methods may be used. One of 



these methods is the stiffness method which is based on slope 

deflection equation (2.18). The method involves systematically 

calculating the stiffness matrix and the load vector. The unknown 

deformations may then be found by solving the set of equations 

KU=P (2-7) 

in which K is the stiffness matrix and U and P are the displacement and 

load vectors. 

2.2.1.4- Finite Element Method: - 

A more advanced method, which has become widely used in 

recent years, is the finite element method. Many specialized text books 

that explain the method in detail are now available (23,24,25). Th e 

mechanics of the method are very similar to those of the matrix 

stiffness method. According to this mathod, the structure is divided 

into a reasonable number of elements. The deformations at any point 

along any element are uniquely determined from the deformations at the 

element nodes using a set of shape functions. Using the approaches 

based on the principles of virtual work or energy conservation in 

conjunction with assumed strain-displacement relationships, the element 

stiffness matrices may be calculated. These matrices are then assembled 

to form the structural stiffness matrix. Likewise, the overall load 

vector is assembled from the vectors of fixed end forces of the 

elements. The equilibrium equations 2.7 are then solved for the 

displacement vector U. Next the strains, stresses and resultant forces 

at any point along any element may be calculated-using the determined 

displacements. At present, there are a large number of computer 

programs which utilize the finite element method and which are 



specifically prepared for research (26) 

Corradi and Poggi (27) have developed a computer program for 

frame analysis which utilizes the finite element method of analysis. 

Non-linear behaviour was considered. Local plasticity was taken into 

account in the analysis by dividing the cross section into a number of 

layers. The program was used to analyse a number of multi-storey frames 

and was found to be satisfactory. 

El-Zanaty et al (28) developed a computer program based on 

the finite element method. The program is capable of performing elastic 

and inelastic analyses. In addition to elastic-plastic analysis, 

elastic Eigen-value problems may be handled by the program. Only rigid 

joints were considered in all of these analyses. The effects of the 

presence of axial forces, residual stresses and strain hardening were 

all taken into account in the inelastic non-linear analysis. The 

program was used to solve a variety of problems. It was concluded that 

the non-linear terms in the strain-displacement relationships should be 

included if large change of geometry effects were to be considered. The 

elastic-plastic method of analysis' was found to over-estimate the 

ultimate strength of frames under the action of lateral loads together 

with large axial loads and column slenderness ratios. For such frames 

the effect of gradual penetration of yielding influences the load- 

deflection behaviour. Residual stresses were found to have negligible 

effect on the ultimate strength. Me effect of strain-hardening is more 

pronounced in large frames. 

2.2.2- Inclusion of Semi-Rigid Joints in the Analysis of Frames. - 

All of the methods of analysis described above were modified 

by different researchers to account for the presence of semi-rigid 



connections at the ends of elements. Generally in these modifications., 

the moment-rotation characteristics of the joints were assumed to be 

linear with a slope equal to the initial stiffness of the connection 

although certain investigators used multi-linear relationships. 

The slope deflection equations when semi-rigid connections 

are present take the general form (29) 

m gE IA'(BAllßý 
+B1+B B 6J3 AB LA AC7L 

c AA mF 
AB 

+C AB 14 F BA 
(2.8a) 

gEI A'(B' +B1e+B' 
A) 

BA L BA6A AB B BCL 

II 
-C BA 

MF 
AB 

-C BB 
MF 

BA 
(2-8b) 

I111f111tI 
where AB 

AA' 
B 

AB ,B AC' 
BBA ,B BB ,B BCI 

CAP CAB' CBA, and CBB depend 

on the stiffness and size of the connection and are given in Table-2.1 

(29). A. is the lateral displacement of end B relative to end A taken as 

positive if downwards. The rotations and moments are assumed to be 

positive when they are counter-clockwise. The procedure then continues 

in exactly the same way as in the conventional slope deflection method. 

The modified moment distribution process again follows the 

same procedure as the conventional method; the only difference is that 

the distribution and carry over factors change to those appearing in 

Table-2.2 (29). 

In addition to the above methods, there are a number of basic 

analysis methods such as three moments and deformeter methods. These 

methods have also been modified for the presence of semi-rigid joints. 

A brief description of these methods was given by Jones (5). The 

methods are fully described elsewhere (30). 



Table-2-1: Coefficients for Slope Deflection Method: Effect of 

Se=i-Rigid Connections Included 

Constant 
I 

Semi-rigid Joints with Finite Width 
Rigid Joints 

(Zero Width) 

A 
(1+2a+3a5) 

B A 

b b? 
AB A 2+ 3a+6(1+0) +3 (2+cc+ a) 

AB 
L L2 

2 

II 
b 

AB b 
BA 

b 
AB 

b 
BA 

BB AB BA 1+3 (1 +a)- +3 (1 +a)- +3 (2+c, +O', LL LZ 

b 
AB 

BA c 30+0 + 3(2+a+o) 
L 

3 

A 
CAA 1+ 20+0-a+2a) 

L 

f-. 
b 

AB 
. C AB 0+ (0-2a-l)- 

L 
0 

b AB b2 
B 

B BB 
) 2+ 3a + 6(1+a + 3(2+a+$)- 

L L2 2 

bA 
BBC 3(. l+a) + 3(2+a+o) L 3 

b BA c BA (a-2a-l) 
L 0 

b 
CBB I+ 2a + (1--a+2a) 

L 1 

P PT 
N. B. a= --- ý ýý where C. and C. are the stiffness of the left 'E-L" -C. L J, J- 

2EI 

il irLV 

and right connections respectively and L is the clear distance 

between connections 



Table-2.2-. Seni-Fixed M=ents, Carry Over Factors and Rotational 

Stiffness: Effect of Seni-Rigid Joints Included 

Semi-rigid Jo ints with Rigid Joints 
Constant 

Finite Width (Zero Width) 

Simi-Fixed 
V b +C AB M C AA MF M 

moment, M SAB 
AB AB F BA AB F 

IAR 

Carry Over BBA 

Factor, r AB 
0.5 

B AA 

End Rotation 2EI B AA 4EI 

Stiffness, S MAB 
L'I A L 



Simitses and Vlahinos (31) employed the kinematics of the 

beam to column joint to analyse the flexibly connected two bar L shaped 

frame shown in Fig-2.5 which is subjected to a load with eccentricity e 

assumed positive if the load was within the length of the beam. Both 

linear and non-linear representation for the M-Q data of the connection 

were considered. In the non-linear representation, a cubic polynomial 

was assumed . Only elastic behaviour was considered. Due to the non- 

linearity arising from the presence of non-linear M-Q representation, 

an incremental type of analysis was employed. They concluded that the 

critical load increases as connection stiffness increases. As the load 

eccentricity e increases in a negative sense (i. e. to the left of the 

column), the critical load decreases. In this case, the load-deflection 

curves possess points of maximum load. Positive values of e resulted in 

load-deflection curves which do not have such peak points. It was also 

concluded that neither the column slenderness nor the non-linearity of 

the M-9 relationship of the connection had any significant effect on 

the critical load. 

Anderson and Lok (32) developed a procedure based on the 

matrix displacement method of analysis in which second order effects 

were taken into account. Elastic behaviour was assumed. The effect of 

the presence of the semi-rigid joints was accounted for by modifying 

the overall load vector using the overall stiffness matrix. It was 

claimed that this technique leads to savings in computer time and 

memory since the stiffness matrix is not changed whether or not semi- 

rigid joints are included. The effect of the presence of axial forces 

in the members was taken into account by employing the stability 

functions proposed by Livesley (33). Based on a limited study of the 

effect of semi-rigid joints on the effective length of the columns in 
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braced frames, it was concluded that the traditional specifications of 

determining the effective length of columns were reasonable. It was 

also pointed out that the effective length factor decreases as the 

column length increases, since the connection becomes relatively more 

effective in restraining the columns. The method is now thought to be 

of limited use due to poor convergence when used with M-D curves for 

flexible low moment connections. 

Chen and Lui (34) employed the stiffness method in which the 

overall tangent stiffness matrix was assembled from the element 

matrices. The element matrices were calculated on the basis that an 

element with two semi-rigid joints at its ends is treated as a 

substructure consisting of three sub-elements: two joint elements and 

one beam-column element (Fig-2.6). The total degrees of freedom for 

this substructure is ten: six corresponding to the beam-c6lumn element 

and two corresponding to each joint element. The element stiffness 

matrix was then reduced to a 6x6 matrix by condensing the extra two 

degrees of freedom relating to the two semi-rigid joints. The procedure 

was then carried out in the usual manner of matrix methods. Stability 

functions derived by Chen (35) were used to account for the presence of 

axial forces in the beam-column elements and an incremental-iterative 

type of analysis was used. The M-ý) data for the connections were 

represented by an-exponential function. It was pointed out that the 

presence of semi-rigid joints must be taken into account when studying 

the behaviour of flexibly connected frames. In particular, the 

unloading of some of the connections must be considered. Load sequence 

is an important factor due to the non-linear nature of the problem. It 

was also concluded that the connection flexibility affects the moment 

distribution and drift of the frame. 
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Cosenza, de Luca and Faella (36) also developed a computer 

program which utilized the stiffness matrix method of analysis. Large 

displacement effects were taken into account by the use of a second 

order analysis. Semi-rigid joints were modelled as extra sub-elements 

consisting of a short rigid segment and springs with axial, shear and 

rotational stiffnesses. The stiffness matrix of a sub-structure 

consisting of a beam-column element and one sub-element at each end 

(Fig-2-7) was developed. Then the matrix was reduced to a 6x6 matrix 

using static condensation of the internal degrees of freedom. Many 

alternatives for representing the M-9 data of the connections were 

considered. A parametric study on the behaviour of multi-storey 

flexibly connected frames was conducted. It was concluded that the 

critical loads of frames increased when stiffer connections were used. 

Poggi and Zandonini (37) extended the program developed by 

Corradi and Poggi (27) to inciude the effect of semi-rigid joints. The 

M-0 data were represented by a series of straight lines which closely 

follow the actual relationship. Unloading of some of the connections 

was also included. 

2.3- Review of Tests on Frames with Rigid and Semi-Rigid Connections: - 

Unlike the large variety of available analytical procedures, 

tests on actual steel frames are limited in number and scope. This is 

probably due to the fact that the testing of full scale steel frames is 

expensive since it requires large well equippý%( testing facilities. 

Moreover, only a very small fraction of such tests have been carried 

out on flexibly connected frames or subassemblages. 

English and Adams (38) tested frames comprising of a column 

and one beam at each end connected by rigid beam to column connections. 



They considered a variety of column height to beam span ratios. Both 

axial and lateral column loads were considered. The load-deflection 

behaviour and the sequence of formation of plastic hinges were studied 

in this series of tests. Aoki and Fukumoto (39) experimentally studied 

the behaviour of frames similar to those tested by English and Adams. 

Again, rigid joints were used. Eccentric axial column load was 

considered in this study. Bergquist (40) tested a single I-shaped 

subassemblage with flexible beam to column connections. Beam loads and 

an axial column load were considered. It was concluded in this test 

that the beams on the loading side did not offer any assistance to the 

column against buckling. All of these three studies are discussed in 

more detail in Secs. 5.3,5.2 and 5.4 respectively. 

Lay and Galambos (41) conducted a series of tests on 

subassemblages similar to those tested by Aoki and Fukumoto. Rigid beam 

to column connections were used. An, axial column load was applied to 

the column in the first load stage and, in the second stage, the column 

load was held constant while applying moments at the column ends by 

means of forces eccentric to the column. This stage was terminated at 

failure. The axial load and the moments and rotations at the joints and 

the strains in the members were recorded. From these measurements, it 

was possible to study the joint moment-rotation, deflections at various 

points on the frame and the strain distribution at certain cross 

sections corresponding to any desired load level. Theoretical 

procedures were also developed to predict the behaviour of the 

subassemblage. 

From the above study, Lay and Galambos concluded that 

theoretical methods using equilibrium and compatibility and based on 

inelastic response of the beams and the beam-column reasonably 



predicted the behaviour of the subassemblage. Conventional quasi- 

elastic analysis was less accurate. No instability of the subassemblage 

nor of the individual components was observed. Using non-linear member 

theory, the response of the individual members was predicted correctly. 

Plastic hinges formed at the advent of local buckling. After the 

formation of plastic hinges, simple mechanism theory correctly 

predicted the behaviour of the subassemblage. 

Gent and Milner (42) conducted a series of tests on limited 

subassemblages each consisting of a column and two beams at each column 

end forming a three dimensional frame. Rigid beam to column connections 

were used. The loading sequence adopted was such that beam loads at the 

far ends of the beams were applied using turnbuckle arrangements. When 

the prespecified levels of beam loads were reached, an axially applied 

column load was increased from the zero condition until failure of the 

subassemblage occured. In this latter stage, the turnbuckles were 

clamped in position hence preventing the beam ends from undergoing any 

displace ments relative to each other. Curves describing the load- 

deflection behaviour and showing the variation of the column end moment 

with the axial force in the column were constructed from test results. 

It was concluded that, if the column became plastic, moment shedding 

may occur although it did not have any significant effect on the 

ultimate load of the column. Bending action, however, indirectly 

influenced the ultimate capacity of the column by reducing the 

stability and inducing deformations analogous to initial deflections. 

A3 storey 2 bay x1 bay full size, rigidly connected steel 

frame was tested by Wood et al (43) to investigate its behaviour under 

the action of service and ultimate loading conditions. Grade 43 steel 

was used for all frame members. Beam and axial column loads were 



applied- to the structure in four loading stages. The last stage wa, s 

intended to bring the individual members and, if possible, the major 

axis beams to collapse. The test was conducted to verify a design 

method proposed in the Joint Committee Report published in December 

1964 (44). According to this design method, major axis beams (which 

restrain the column about the major axis) are designed on the basis 

that their ends are fixed and that three plastic hinges form at 

collapse: two hinges at the ends and one within the beam length. Minor 

axis beams are desirned elastically using a limited sub-frame 

consisting of the beam and the adjoining members in the plane of 

bending of the beam. The column is designed for limiting stresses 

calculated on the basis of a limited frame which includes the column 

under consideration and the members framing at either end. Using this 

sub-frame, the stresses due to the axially applied load and those 

resulting from beam bending, together with additional stresses 

resulting from the axial load acting through initial and additional 

lateral deflections, are calculated. 

It was concluded, from the study conducted by Wood et al 

described above, that the method of column design proposed in the Joint 

Committee Report was accurate in designing the beams. Column design, 

however, was conservative. It was suggested that more research be done 

to accurately define criteria for collapse with increased plasticity. 

Smith and Roberts (45) tested a3 storey 2 bay x2 bay 

rigidly connected steel frame for service and ultimate loading 

conditions. The study is similar in scope to that described above. Its 

main objective was to verify the Joint Committee design method which 

had been extended to high strength steels in a report published in May 

1971 (46). Also this frame permitted the investigation of a wholly 



internal column. The loading sequence was the same as in the study 

described above. It was concluded that the Joint. Committee method was 

-applicable to hi. ch grade steels as well as to mild steel. The method 

was found to result in safe design of internal columns. 

Davison et al (47,48) conducted a series of tests on I-shaped 

subassemblages with semi-rigid beam to column connections. Two types of 

loads were applied in a two stage sequence. In the first stage one or 

two beam loads were applied to prescribed load levels. In the second 

stage, an axial column load was applied up to failure of the 

subassemblage. The proposed AISC LRFD beam-column design procedure (49) 

was used to predict the ultimate loads found in this series of tests. 

The predicted loads were found to be considerably lower than the 

experimental ones. The ability of the connections to transmit 

substantial amounts of beam restraint was advanced as the reason for 

the discrepancies between the design and test procedures. This series 

of tests is discussed in more detail in chapter 6. 

Two multi-story flexibly connected frames were also tested by 

Davison et al (48,50) to investigate the behaviour of more realistic 

flexibly connected frames for realistic loading conditions. 

2.4- Review of "Ami-Rigid Beam to Colt= Connections: - 

2.4.1- Experimental Studies: - 

Numerous experimental investigations have been conducted on 

the behaviour of semi-rigid beam to column connections. It was 

concluded that the most important aspect in connection behaviour is the 

moment-rotation relationship. In-depth reviews of tests performed on 

semi-rigid connections were provided by Jones (5), Nethercot (51) and 

Goverdhan (52). In these reports, information is available on 



individual details of the connections as well as the M-, ý data obtained 

from tests made on the connection. 

Davison et al (48,53) conducted a set of tests on a series of 

beam to column connections which ranged from flexible web cleat 

connections to an almost rigid extended end plate connection with all 

other variables e. g. column and beam sizes and material kept constant. 

The M-0 data from these tests were recorded. More details of the test 

procedure and the M-ý, data are presented in chapter 6. 

2.4.2- Modelling of the Moment-Rotation Data: - 

In order to include the effect of a semi-rigid connection in 

an analysis, it is important to model the M-0 data by a reasonable and 

mathematically defined curve. First attempts considered linear and bi- 

linear representations while later attempts considered tri-linear, 

multi-linear and non-linear representations. Non-linear representation 

included polynomials of any desired degree and exponential functions 

with arbitrary constants to suit the data under consideration. The 

latest attempt to non-linearly represent the M-0 data was based on 

using cubic B-splines which closely follow the actual data points. All 

of these representations have already been described in Sec-2.2 in the 

appropriate places. In chapter 3, a comparison between the polynomial 

and cubic B-spline representations for one set of data points is 

presented. Jones (5) pointed out that although polynomial 

representation results in good fitting of the moments and rotations, 

the slope of the M-) curve may be erroneously represented, in 

particular at higher values of rotation. 



CHAPTER-3 

ANALYSIS OF FRAMES WITH SEMI-RIGID JOINTS: FORMULATION 



3.1- Introduction 

The behaviour of real semi-rigid frames is highly non-linear. 

Any attempt to analytically closely simulate their behaviour must take 

into account the following sources of non-linearities: 

(1) the presence of semi-rigid joints with non-linear M-0 

characteristics 

(2) inelastic behaviour of some or all parts of the frame 

(3) residual stresses which affect the point at which inelastic 

behaviour starts and also has a definitive role on the spread 

of yield over the cross sections and along the lengths of the 

frame members 

(4) the presence of axial forces in the columns acting in 

conjunction with lateral displacements to increase the bending 

moments in these columns 

(5) non-linear strain-displacement relations which arise from the 

consideration of large deflections 

It is well known (23,53) that such analyses usually take the 

form of incremental-iterative procedures in which the structure is 

assumed to behave linearly within each load increment or iteration. One 

of the most common methods of analysis is the finite element method. 

The analysis proceeds with the assembly of a 'tangential' stiffness 

matrix KT and an incremental load vector AP. The incremental 

equilibrium equation 

KT AU =& 

is then solved for the incremental displacement vector, AU .A Newton- 

Raphson iteration procedure may then be employed within each load 

increment until the required convergence is attained. Details of the 



procedure will be given in chapter-4. 

In this chapter, a formulation of the. tangential stiffness 

matrix of a beam-column element is presented. In this formulation the 

element is assumed to be prismatic with two semi-rigid joints at its 

ends. Elastic behaviour is assumed. A method of dealing with the loss 

of stiffness due to spre2d of yield in all members, including the 

influence of residual stress, is used and will be explained later in 

this chapter. Also presented is a full account for the unloading- 

reloading behaviour of the connections which might occur at any load 

level depending on the loading sequence. The formulation is limited to 

two-dimensional, in-plane behaviour and the program will be applied 

herein only to non-sway subassemblages although the formulation can 

cover sway. 

3.2- Shape Functions 

Consider a beam-column which is in equilibriLLm under the 

e action 6f a set of loads p. The deformed shape of the column which 

corresponds to these loads is shown in Fig-3-1. Also shown in this 

figure is the column's undeflected position which is taken to be the 

reference for the deflections. If an incremental load vector,, &p e is 

applied, the deformations will be modified by an incremental 

e displacement vector, A6 . The new deflected shape of the column is 

also shown in Fig-3.1. In both deformed positions, it is clear that, 

because of the presence of the semi-rigid joints at nodes 1 and 2, each 

of these nodes will have two rotations : one just to the left and the 

other just to the right. The difference between these rotations is the 

rotation of the joint itself. In the final deformed shape the 

deformation at any point A along the element length is given by 



FIG. 3-1 A BEAM-COLUMN WITH SEMI RIGID JOINTS 
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in which N, to N6 are the shape functions that define the deflected 

shape of the element. The deflection modes defined by these functions 

are shown in Fig-3.2. Eqn-3.2 also applies to the deformed shape at the 

start of the load increment if the correct nodal deflections are used. 

N, and N2 are assumed to be linear in x, while N3 to N6 are 

assumed to be cubic polynomials of x. It is easy to confirm that 

N, and N2 are given by .I 

(3-3-a) 

and 

NZ r, (3-3-b) 

in which r= and L= element length. 
L 

To determine the expressions of N3,. N4, N5 and N6 consider the 

shape functions of an element with rigid joints . Here the shape 

functions RI to "14 represent the deflection modes of Fig-3-3 and are 

given by 

Ni =1- 3r2 + 2r3 

N2 = L( r- 2r2 + r3) 

-ý3 = 3r2 - 2r3 

(3.4-a) 

(3.4-b) 

(3.4-c) 

and 



(a) 

Aý- J4 

N 

9 Oi3l 

N 

N 
LiJ 

oi2l 

ý321`1-%l 022ý%2 

( d) N4 

FIG. 3-2 MODE SHAPES FOR AN ELEMENT WITH S-EMI - RI G. 11) 
-JOINTS 

-(UNIT DISPLACEMENTS), 

Nj 

1 

N3 

I 

FIG. 3-3 MODE SHAPES FOR AN ELEMENT WITH RIGID JOINTS 

(UNIT DISPLACEMENTS) 



N4 = L( -r2 + r3 (3.4-d) 

Careful consideration of the deflection modes of Fig-3.2c and 

Fig-3-3, reveals that the mode of Fig-3.2c may be represented by the 

function 

N3 = N, - 
R-92 

- 
-61 

JI J2 

Substitutin. g for N, , N2 and N4 from eqns-3.4 into eqn-3-5 

N3 =1- 8k Lr - (3- 2-P L-T! L) r2 J1J1J2 

(3-5) 

(2- L- L) r3 (3.6-a) 
JI J2 

Similarly it can be shown that 

N4 Rr- (2- 2ýR "R ) r2 jJ J2 

r3] (3.6-b) 
J2 

NS =PLr+ (3- 2-P L- _P L) r2 
J2 

f 

- 
IR IR L) r3 (3-6-0 

J2 

and 

N6 = L[-84 r- (1- 284 r2 J1 11 J2 

16ý ) r3] (3.6-d) 
J2 

3.3- Strains and Stresses 

It is well known that subject to the limitations of beam 

theory (but including large deflection effects) , the average strains 

at a cross section are related to the displacements at that section by 

the relation 



r- 

E= l_ (ýU ,i 
dv)2) 

,_ 
d2výiT 

dx 2 dx dX21 (3-7) 

This equation includes a non-linear term in the axial strain component. 

Differentiating eqn-3.7 with respect to Se, results in a relation 

between the incremental strain de and incremental nodal displacements 

d6e . 

Since only the shape functions vary along the element length and 

referring to eqns. (3.2) and (3-7), de is given by 

de =-[ 

r- 
dN, dN2 0000 
dx dx 

d2 N3 d2 N4 d2 Ns d2N6'1 

dX2 o dx2 dx 0 X2 

N 

0 dN3 dN4 0 dN5 dN6 
-ý-X- -d-x- -dx -I" Ide (3-8) dx 11 1 

oooooo 

or in short 

dE: =B d6e (3-9) 

where B is a strain-displacement matrix linear in a. This matrix 

consists of a constant part and a linear one ( with respect to 

Hence we may write 

Bo +BL (3-10) 

where B. is the constant strain-displacement matrix while BL is the 

linear one. 

Knowing the strains , the resultant stresses may be computed as 



cr = 

where 

cF = [F MI 

(3.11) 

in which F and M are the axial force and the bending moment at the 

section. In eqn-3-11, D is the elasticity matrix given by 

D 
EA 0 

11 
10 EII 
L- :. i 

which, although at present assumed constant, would depend non-linearly 

on the current configuration of the structure as will be seen later in 

this chapter. 

3.4- Stiffness Matrix 

Following the procedure given by Zienkiewicz (23), the 

derivation of the tangential stiffness matrix follows from the 

application of the virtual work principles. Consider an element with 

two semi-rigid joints in equilibrium. Let pe be the vector of applied 

loads at the element nodes and 6e be the nodal displacement vector. If 

virtual displacements d6 e are applied then W 
ext' 

the work done by the 

external forces pe is 

T 
'wr 

ext - d6 e. pe (3-12) 

where 

[Fl V, M, F2 V2 M23 

The internal work, W int on the other hand, is composed of two parts. 

U" ry 
L �' 



The first part is We the work done by the internal stresses throug. h int 

the virtual strains which result from the virtual displacements. This 

work may be expressed as 

LL 

eTTT w int = 
Sde 

cr dx = 
SdS 

.B. cr dx (3-13) 

00 

The other part WJ the work done by the moments M. and M. in the int J1 J-2 

semi-rigid joints through the rotations de ji and dU j2 * This is given 

by 

wj d8M. + dO. M. (3-14) int ý ii J1 J2 J2 

Now if it is assumed that the moment in a joint is linearly related to 

its rotation, then 

Mi=C101 
N 

Referring to Fig-3-1, it can be observed that 

e. -- i) 

Noting that positive rotations are anticlockwise as indicated in Fig- 

3.2, it can be seen that the minus sign indicates that the joint 

rotation is clockwise (i. e. - -ve). From eqns-3.2 (recognizing that 

for x=o) dx 

dN dN dN3 45 dN6 
6= -lo 0100 016 +10--0-- la dx dx dx dx 

evaluated at x=O. Hence 

0. = (3-16) 

in which 



N- 0 -1 +-0-i J1 dx dx dx dx L 

similarly, 

6. = u- 6 
J2 -12 

in which 

dN3 dN4 
N- 0 
J2 dx dx 

L- 

0 

(3.17) 

dN5 dN6 

dx dx 

dN3 dN4 dN5 dH6 
The derivatives and - in the expressions for N- and dx dx ' dx dx J1 

H j2 
in eqns-3-16 and 3.17 are evaluated at x=O and x=L respectively. 

Substituting for 0 ii and 6 
J2 

from eqns-3-16 and 3.17 and using eqn-3-15, 

eqn-3-14 may be written as 

eTTT Wý d6 ( z- C. N- + 0- C. N- )e (3-18) 
int ý 

-11 J1 -)1 J2 J2 32 

The total internal work done is. the sum of the contributions from eqns- 

3.13 and 3.18 . This work must equal the external work done which is 

given by eqn-3-12. Hence, 

L 

eTeeTT d6 p= dS [Ba dx 

0 

T TC. 
N ., e in. C. N- + 5- (3-19) 

31 JI -11 J2 J2 J21 

Eqn-3.19 holds for any virtual displacement. Consequently, the term 
T 

d6 e may be cancelled out. Furthermore, eqn-3-19 may be rewritten as 

L 

TM =C 
ýBT 

a dx +(a_ 
TC. H_ 

Ji Ji Ji 
0 

3- 
T 

c. N- 16e1-pe 
32 J2 J2 

dN3 dN4 dN5 dN6 

(3.20) 

I 
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in which Y(6) represents the sum of external and internal forces. Ihi. s 

quantity as seen from eqn-3.20 is a function of the nodal 

displacements. The first variation of Y with respect to ae then 

represents the tangential stiffness matrix (23). Hence 

LL 
dT 

= XT =B- 
ý-da dx + 

rdB Ta 
dx 

d6 ef d6 ej d6 e 
00 

I,, _ 
TC 

N- + 19- 
T 

C. N- (3.21) 
Jl -12 J2 J211 

From eqns-3.9 and 3.11, we have 

da 
=D 

dE 
= ID B 

dö e dö e 

Hence, eqn-3.21, may be written as 

LL 

or, 

T F- -1 
KT 

SBT 
DB dx + 

rdB 
cp dx + 1111 _ 

TC 
+ N- TcM. 11 

%) 
dS e ji jlýj-l J2 J2 J211 

00 -j 

kT=kE+kG+kL 

where (using eqn-3-10 for the expression of B 0 

L 

BTDB dx + [N- T c. N. Ef00 Jj Jj Jj 

0 

(3.22) 

M- TC N- (3-23a) 
-12 

j2 
-12 

L 

L=f[B0T DB L+BLT DB 
o+ 

"L T DB LI dx (3.23b) 

I 

0 
and 
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kG 
dB La dx 
d 6e 

(3.23c) 

0 
Returning to eqn-3.8, it is possible to separate axial 

strains from curvature and rewrite eqn-3-10 as 

IBa0b 
100 llý 

L 11 11 + 11 (3.24) 
bi C B! !O0 
oj 

where the superscripts a and b refer to axial and bending action 

respectively. 

Using eqns-3.23 and 3.24, the various stiffness matrices of 

eqn-3.23 may be rewritten as 

LT0 
aa IB EAB 
a0 k= 11 FI, dx 

0 

[u- Tc H- + N- T C. N- 1. (3-25a) 
ii il 

-11 -12 J2 -12 

r- T -1 
L0ab B EA B 

0L 
k dx L (3.25b) 
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0 Iýjl 

I 0 �b �. a .. b b LA ts 13 LA its 0L 
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and 
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T, 

L d Bý dx (3.25c) 

o lp I 
dS 

Now, the non-linear component of the axial strain (eqn-3.7) is given by 

1( dv 
2 dx 

Then, taking derivatives with respect to 6b 

dE: = -(dv)d(dv) L dx dx 

-(ý-V)G d 6b 
dx 

where G is given by 

dN3 dN4 

dx dx 

dN5 dN6 
- -1 dx dx 

Hence since eqn-3.26 is similar in form to eqn-3-8 

b dv 
x Lx 

(3.26) 

(3.27) 

which may be used in the calculations of KL in eqn-3.25b. Next, the 

variation of"B 
b 

with respect to 6e is required as it appears in the L 

expression for kG (eqn-3.25c). Taking variation of eqn-3.27 with 

respect to 6e 

e 
-G d6 G 

where G is a lx6 row vector given by 

0G 

Hence, 
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dB b d6 e 
L 

T= GG dS 

Equation 3-25c then gives 

r- I 

Lr 0 00 

k dx (3.28) G 
0T 

ItG P GI j10 

IGTPG 
dx, 

10 
L 

where P is the axial force in the element assumed positive if 

compressive. The row vector in the first bracket in eqn-3.28 is 

replaced by the row vector G since the latter is only Ix4. 

The stiffness matrices as defined by eqns-3.25a, 3.25b and 

3.28 may be canputed using numerical integration The only remaining 

-ýn obstacle is the determination of rotations and Um for m=1,2,3,4 
. 

J1 J2 

since they appear in the expressions for the shape functions of eqn- 

3.6. Employing the well known slope deflection equations in conjunction 

with the deflection mode of Fig-3.2c , for instance, the moments at 

nodes 1 and 2 may be expressed as 

MI (-; ýel 
- 

-81 + C. 81 
L 31 J2 L J1 Ji 

and 

2EI( M2 =2+C. -ek 
L J2 L J2 J2 

Rearranging these two equations and solving for 6ý and 01 the 
J1 J2 

following may be obtained 

-I - 
AjBj 

31 H f -P = J2 

A, B2 

H 
(3.29) 
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Similarly 

fj2 
A2B3 

2EIC. 
L Ji 

(3-30) 
J2 H 31 H 

Ji J1 

U4 

2EI ==-=c . L J2 

31 H 

in which 

Al = 
6EI 
L2 

J2 J2 (3-31) 

A2B4 
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J2 H 

I A2 = 
4EI 
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BI = 
2EI 
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B3 = 
3EI 

+C L j2 

I 

I 

B2 = 
2EI 

+ C. 
L J1 

B4 ý 
3EI 

+ C. 
L Ji 

H= 
IAIA2 

+ A2(C +C )+ C- C- 
2 Jl j2 Jl J2 

If any of the joints at the element ends is rigid, the 

corresponding stiffness, Ci. is equal to - reducing the rotation to 

zero as may be seen from eqns. 3.29-3-32. 

3.5- Connection Modelling 

3.5.1- Numerical Representation of Moment-Rotation Curves: - 

Various approximations for the M-ýý curves for joints have 

been proposed. A linear representation (Fig-3.4a) corresponding to the 

initial slope is the simplest although it ignores the loss of stiffness 

observed at higher rotation levels. A better approximation is a bi- 

linear relationsh ip, (Fig-3.4b) in which the initial slope is replaced 

with a shallower line at a certain level of rotation. Tri-linear (Fig- 

3.4c) and multi-linear (Fig-3.4d) representation may also be used. 

-48- 
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Razzaq (14), Sugimoto and- Chen (15) and Vinnakota (17) have employed 

some of these approaches to analyse single restrained columns, whils .t 

Zandonini and Poggi (37) have used multi-linear curves for the analysis 

of complete frames. 

In order to closely represent the M-iD curves, good quality 

approximations are needed. Possible curve fitting techniques include 

the use of either polynomial or B-spline curves. In the former the M-ýý 

data is represented by the single polynomial 0 

,ý 7- ao + al, M + a2 M2 + ... +an Mll 

The coefficients an are found by minimizing the error in M using least 

square methods. Jones et al (5) pointed out that although polynomials 

may give a close approximation to the moments (or rotations), they may 

be very poor in approximating the slope of the curve especially at 

hir, her values of rotation. 

A cubic B-spline (54) is uniquely represented in the form 

3h- 
2: 

aj Mj + 
70 

j 
(<M-k>) 

j=O j=l 

in which 

h number of knots that divide the entire range of the function 

domain. Knots k are sui tably chosen by the user. 

<M-k> = M-k fo r( M-k) >0 

=0 fo r( M-k) <0 

and Ili and 5i are coefficients determined by least square methods. 

Fig-3-5 shows a comparison between B-sPline and polynomial 

fitting techniques. Clearly, the B-spline approximation is superior. It 

has therefore been adopted in the present study. 
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3.5.2- Joint behaviour in unloading and reloading conditions: - 

It is well known that connections exhibit different behaviour 

when loading and unloading (52). Fig-3-6 shows typical loading and 

unloading M-ýD curves based on results taken from reference 52 and 

elsewhere (50,51). The connection is loaded up to a moment Ma along the 

path OPA. The connection is then unloaded and follows path AQB. When 

operating in a structure, the connection may or may not reach point A. 

In fact, generally, it may be assumed that the connection follows the 

path OPCRD. The path CRD may be constructed from the path AQB by simply 

moving curve AQB so that points A and Q coincide with points C and R. 

In other words, there is a one to one relation between the general 

points R and Q. It is easy to demonstrate from Fig-3.6 that the 

difference between moments at points Q and R is equal to Ma -M c 
while 

the difference in rotation is e 
a- 

60. Point C at which unloading starts 

may be detected by a decrease in the moment (or the rotation 

In the absence of sufficient M-0 data for the unloading and 

reloading conditions on which the above behaviour may be based, the 

portion AQB and consequently CRD has been assumed to be a straight 

line. The joint has therefore been assumed to behave linearly when 

unloading. If the joint is reloaded, it is assumed that it would follow 

the linear path DRC after which it follows the loading path CA until 

any further unloading condition occurs. 

3-5-3- Offset of connection 

In frame analysis, the various members of the frame are 

normally represented by their centre lines. This means that the member 

properties are assumed to be concentrated along these lines. 

Consequently, any joint that connects two or more members is assumed to 
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occupy no volume as indicated in Fig-3.7b, which may therefore be 

regarded as the analytical model for the beam and column of Fig-3.7a*. 

Such a representation is acceptable only if the column is bent about 

its minor axis i. e. the connection is made to the column web, since 

connection to the column flanges will involve a significant offset of 

the connection from the column centre line. A suitable model for this 

case is shown in Fig-3-7c. This comprises a normal beam column element 

with a semi-rigid joint, together with a stiff portion with a length of 

D/2 where D is the depth of the column section. The panel between the 

column's centre line and the column flange is assumed to have infinite 

flexural and axial rigidities since the depth is very large. Node B is 

internal to this model and hence it could be condensed out (25). 

Consequently the analysis will not yield the deformations at node B 

which are important in calculating the internal forces in beam AB. 

Since the portion BC is of a large stiffness, it will only undergo 

rigid body motion and hence the deformations at node B can be easily 

obtained by simple transformation. Having condensed out node B, the 

analysis procedure continues in the usual manner since the model is 

reduced to a beam-column with six degrees of freedom. 

I The effect of the actual position of the connection was 

investigated by analysing the subassemblage-of Fig-3.8 in which the 

column was bent about its major axis. A beam load of 100 KN was applied 

initially and then held constant while applying an axial load P up to 

failure. Both fully rigid and very flexible web cleat connections were 

used for the comparison. 

Fig. 3-9 shows the total force in the column plotted against 

the central deflection. It is clear that for the rigid connection the 

inclusion of the effect of the actual position of the connection is of 
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little significance. In the case of web cleat connections, however, the 

force-deflection paths are quite different, although the failure load's 

are practically the same. Fig-3-10 shows the variation of the moments 

in the left beam, right beam and the column at the top joint of Fig-3.8 

for the case of web cleat connections. It can be seen that the rigid 

segments have a considerable effect on the distribution of moments at 

the top joint. 

3.6- Section Properties: - 

3.6.1- Evaluation of Section Properties for a General Elastic Section: - 

One of the most important steps in a nonlinear analysis is 

the determination of section properties characterized in a two 

dimensional frame analysis by the axial and flexural rigidities EA and 

EI. As mentioned in sec-3-3, the elements in the structure are assumed 

to be prismatic. If any element however, behaves inelastically, this 

assumption is not correct since E iý not constant which causes EA and 

EI to vary along the element. Average axial and bending rigidities may 

be used hence restoring the validity of this assumption. In the 

present procedure, the quantities EA and EI are calculated at each node 

of every element and average values are then used in the analysis. 

The axial and flexural rigidities with respect to an axis x-x 

in the general section shown in Fig-3-11 are given by the following 

relations 

EA sE 
eff 

dA (3-36a) 

A 
and 

EI = f%ff y2 dA (3-36b) 

A 
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where E 
eff 

is the effective modulus of elasticity which depends on the 

stress-strain curve for the material and y is the distance from the 

infinitesimal area dA to the x-x axis. 

In analysis, the quantity EI should refer to an axis passing 

through the centroid of the section. If the x-x axis is at a distance 

from the centroid, the flexural rigidity about an axis passing 

through the centroid is Cý 

EI = EI - y2. A (3-37) 

where EI is given by eqn-3-36b and A is the area of the section 

calculated from 

A= 
SdA 

A 

and y is given by the expression 

Sy E 
eff 

dA 

A 

J%ff dA 

A 

(3-38) 

(3-39ý 

3.6.2- Spread of Yield: - 

In an actual analysis, the section is usually elastic at the 

lower levels of loading. Although not obligatory, the section 

properties are calculated with respect to a centroidal axis. Therefore, 

the distance y is equal to zero. Hence, equation 3-37 reduces to eqn- 

3-36b and either one of these equations may be used in calculating EI. 

However, as yielding progresses, y becomes nonzero and the flexural 

rigidity must be calculated using eqn-3-37. 
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An approximate. method of determining the section properties 

to monitor the spread of yield in thin sections was suggested b y 

Nethereot(55). This method involves the division of the section into a 

large number of sub-elements as shown in Fig-3.12. The axial and 

bending rigidities with respect to the centroid of the original 

(unyielded) section can be calculated from the following relations 

EA E AA. 
eff' 1 

and 

N 

EI = 
2: 

E! f f *Yi 
2. AA i 

i=l 

where N is the number of sub-divisions in the section. These equations 

are the same as eqns-3-36 but replacing integrals by summations. Again rý 

the flexural rigidity as obtained from eqn-3.40b should be corrected by 

40a) 

(3.40b) 

the quantity (- YZ A 
eff 

) where 

y A 
Teff 

(3.41) 
Zýff 

AA 

which is, once more the same as eqn-3-39 but with summations instead of 

integration. The area A 
eff which appear in the correction of EI is the 

area of the part of the section that remains elastic. 

In two dimensional analysis, if a doubly symmetric section 

has partly yielded, and provided that the residual stress pattern is 

doubly symmetric, the section retains symmetry about at least one of 

its axes of symmetry. It is possible , therefore, to carry out the 

above calculations on only half the section. The resulting properties 
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may then be multiplied by -2 to give the correct values. This is very 

useful in maintaining a low computer cost while ensuring that the 

section properties are calculated to a high degree of accuracy. 

3.6-3- Stress-strain Relationship: - 

Since in eqns-3.40 and 3.41, Eeff is dependent on the stress- 

strain curve, it is essential to adopt a stress-strain curve which 

simulates the behaviour of the material. In the present study, a 

general elastic-perfectly plastic with strain hardening characteristics 

is adopted. Fig-3-13 shows a typical curve which is reasonable for most 

steels. Any reasonable values may be assumed for the yield stress, Cly I 

modulus of elasticity, E, strain hardening modulus, E and the strain CD st 
at which strain-hardening commences, c st , The yield strain, cy may 

readily be calculated from the assumed values of cr y and E. 

Once the normal strain at a point is calculated, it is a 

simple matter to enter Fig-3.13 ýith this value of strain and to 

determine the effective modulus of elasticity E 
eff which is to be used 

in eqns-3.40 and 3.41. If the normal strain is e, the effective modulus 

of elasticity may be determined from the following relations 

E 
eff cy <c< cy (3.42a) 

0 Cy <C< F- 
st 

or -E 
st 

<c<-cy (3.42b) 

Est F- >c 
st 

or 
. -F- st 

>c (3.42e) 

The total normal strain at any point consists of a direct 

axial strain and a bending strain. Both of these strains result from 

the applied loads. In addition, a residual strain may be present in the 

section. The distribution of this strain is frequently highly 

g Such assumed irregular. Approximate patterns are usually assumed (5). 
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patterns would be given as input data to the analysis program. A more 

detailed explanation of the various patterns accepted by the program 

will be given in Sec-3.8. If the average axial strain and the curvature 

at the section are known, the normal strain at any point in the section 

may be calculated from 

E=b+r (3.43) 

-where ca , ýb and E: r are the average axial strain and the curvature at 

the section and the residual strain at the point under consideration. 

In the present study, the distance y refers to an axis passing. through 

the centroid of the ori-inal (unyielded) section. The strains due to 0 

the applied loads may be calculated from eqn-3.8 at the points x=O and 

x=L. Hence, for 1-igid joints 

E: 1 1 1,1: 1 

I:! - el - -1 0 L 

0 
+ c2 11 F-2 

I 
I 

IL ý2 'I ý21 
L- -i L- -i n-1 lo 

L 

6 

L2 

0 

0. -6 
L2 

0 
L 

-6 ý -2 

2 
L 

62 

6 -4i 
L2 L 

A6 (3.44) 

in which L is the length of the element and the rotations el and 62 are 

shown in Fig-3-1 and the subscripts 1 and 2 refer to nodes 1 and 2 of 

the element respectively. 

3-7- Internal Stresses and Forces 

The stress at any point in a section may easily be found if 

the strain at that point is known. The strain at this point may be 

calculated from eqn-3.43. With the help of Fig-3.13, the stress may be 

found using the following equation: 



cy =Ec 

= CF 

fo r iE i 
l 

for IE I< lei < le 1 (3.45) 
111 stl I Y, II 

=ay+E st 
(C-C 

st 
) for c>c st 

=-ay+E st 
(C-C 

st 
) for c< -C st 

Next, the internal axial force F and the moment M about an 

axis passing through the midpoint of the section may be found from the 

relations 

N 

F= To 
dA 

i=l 

N 

My dA 

(3.46) 

(3.47) 

where y is measured from an axis passing through the midpoint of the 

unstressed section. 

3.8- Inclusion of Initial Imperfections: - 

3.8.1- ResidualL St; resses: - 

As mentioned in See-3.6.3, the total strain at any point in 

the cross section is the sum of-the applied strains which result from 

the applied loading and the residual strain. Residual strains in rolled 

shapes arise from differential cooling after rolling. In the case of 

welded sections, residual strains are due to welding. The distributions 

of the residual strains over the" cross section is usually highly 

s 
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complicated. Simple patterns were adopted to approximately represent 

the distribution of residual strains. Such patterns were based on 

experimental measurements. In what follows, reference will be made to 

residual stresses rather than residual strains since it is the stresses 

that are usually reported in the literature. Obviously, the stresses 

are related to the strains by the modulus of elasticity (since it is 

assumed that the entire section remains elastic in the absence of the 

applied strains). Only I-shaped sections will be considered herein 

since the whole study is limited to such sections. 

A pattern with parabolic distributions of residual stresses 

across the flanges and the web is usually assumed for the rolled 

sections produced in the U. K. (5). This pattern was suggested by Young 

(56) based on a series of experimental observations. Fig-3.14 shows 

this type of distribution. Young suggested that values for the residual 

stresses at the flange tips of , the flange-to-column Junction, ofw and 

the centre of the web, aw be given by 

A 
af= 165( 1-1.2 wAf N/MM2 (3.48a) 

100( 0.7 + 
Lw) 

N/MM2 (3.48b) 
fw -A 

A 
aw = 1000-5 +w N/MM2 (3.48c) 

1.2A f 

I 

in which Aw is the area of the web and Af is the area of both flanges. 

The residual stresses at any point in the flanges may be calculated by a 

assuming a parabolic equation which must, if applied at the flange tips 

and the flange-to-web junction, give the values given by eqns-3.48a and 

3.48b. Similarly, the stresses in the web are found from parabolic 
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equations which must satisfy the conditions at the flange-to-web 

junction and the centre of the web as given by eqns-3.48b and 3.48c. 

The residual stresses found in rolled shapes produced in the 

U. S. A. are usually represented by the pattern shown in Fig-3-15 (5,57). 

In this pattern, the stresses are assumed to vary linearly along the 

flanges. The maximum values occur at the flange tips and the flange- 

to-web junction. These values are given by 

of = 0.3 Ily 

ufw = -0.3 CY AW + Af 

(3.49a) 

(3.49b) 

in which ay is the yield stress of the material and Af and A are the 

areas of one flange and the web respectively. The residual stresses are 

assumed to be constant throughout the web with a value equal to a fw* 

For welded sections a simple rectangular pattern is assumed 

Ihis pattern is shown in Fig-3-16. The areas around the weld are 

assumed to have high residual tension given by 

CrT = -0 -9 Ily 

while a low residual compression given by 

(3-50a) 

ac = 0.1 CIY (3-50b) 

is assumed elsewhere in the section. 

The present program accepts all of the above patterns. A 

multiplying factor which may be different from unity is used in order 

to use the patterns in cases where the severity of the residual 

stresses varies from the values given above. In addition to the above 

A 

i 
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patterns, two more patterns are accepted by the program. One of these 

patterns is a parabolic distribution similar to that of Fig-3-14 (the 

one mentioned above) but with values for cif, afw and aw treated as 

input data that has to be chosen by the user. In the second of these 

additional patterns, the residual stresses at a number of specified 

points along the flanges and the web are given to the program as input 

data. Straight lines are then assumed by the program in order to 

calculate the stresses at any other point in the section. 

It must be noted that in any of the above patterns, static 

equilibrium must be satisfied. Such equilibrium requires that the 

residual force Fr and the residual moment Mr about any axis must equal 

to zero. The equilibrium check is automatically made by the program in 

the first two patterns. Here, only the residual force need be checked 

since the symmetrical patterns must yield zero moment. In the welding 

stress pattern, the area around the weld may be pre-chosen in such a 

way that the residual force is zero. In the last two patterns, since 

values at the key points in the pattern are chosen by the user, a 

complete check of the static equilibrium must be ensured by the user. 

The program can only calculate the residual force and the residual 

moment about the horizontal and vertical axes and print appropriate 

warning messages if necessary. 

3.8.2- Initial Out-of-straightness: - 

In practice, it is seldom possible to find a perfectly 

straight column. All columns do possess some degree of out- 

of-straightness due to cooling after rolling. Specifications allow for 

a small amount of crookedness to be present in the column. A connon 

value for the maximum initial lateral deflection that is allowed to be 
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present in a column is one thousandth of the column's length (1,2). 

The variation of the initial deflection along the length o. f 

the column is not always simple. The initial ou't-of-straightness has 

been experimentally measured in a range of column sizes in Sweden (58) 

and Japan (59). A half sine wave is usually assumed for the initial 

deflections. Hence, the initial deflection 60 at any point along the 

column is given by (Fig-3-17) 

60 =a sin 0 
(3-51) 

in which a0 is the initial central deflection and L is the length of 

the column. 

The presence of the initial out-of-straightness in a column 

in conjunction with the applied axial load has the effect of inducing 

additional bending moments in the column. Consequently, additional 

lateral deflections will result. 

In a finite element model, a set of imaginary lateral forces 

and moments, P0, which would have the same effect as that of the 

initial deflections may be used (5,60) This set of loads is obtained 

by multiplying the geometrical stiffness matrix, KG, and the vector of 

the initial deflections 60 which contain lateral deflections and 

rotations calculated using eqn-3-51 and its derivative. Hence 

60 (3-52) 

In eqn-3-50, the geometric stiffness matrix depends on the 

axial load, P, in the column. In an incremental analysis, a load 

increment AP is used in the calculation of KG instead of the total load 

P. At the start of the load application, the only lateral deflections 

present in the column are the initial deflections. Hence, eqn-3.51 may 
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be used to calculate the set of lateral loads keeping in mind that K G 

corresp onds to a load increment AP (see Fig-3-18a). At the end of thi's 

load increment, an additional set of lateral deflections is induced. 

Hence, at the start of the next load increment, the lateral deflections 

that have to be used in eqn-3-51 consists of the initial deflection 60 

and the additional deflections AS (Fig-3-18b). In other words, the 

updated deflected shape of the column must be used in the determining 

P. 0 

3.8-3- Axial Load Eccentricity: - 

A small amount of eccentricity is usually inevitable in the 

application of axial loads in real structures. Therefore, it is 

necessary that the analysis program allows for such an eccentricity. In 

the present program, only equal eccentricities at the top and the 

bottom of the column, as shown in Fig-3.19, are considered. The effect 

of a load eccentricity, e, is to add a moment Me given by 

= 

to the top of the column and another moment with the same, magnitude 

but with opposite sign to the lower end of the column. Once more, in 

incremental analysis, AP should be used instead of P 



e 

L 

(I) 

M=Pe M=Pe 

( �i ) 
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4.1- Program Layout: - 

The theoretical background described in. the previous chapter 

has been implemented in a computer program using FORTRAN 77 language. 

The program was developed on a PRIME computer available at the 

University of Sheffield and later was slightly modified to run on an 

IBM computer which is also available at the university. An incremental- 

iterative type of analysis which utilizes the finite element method was 

adopted. In the finite element model beam-coltLnn elements with six 

degrees of freedom were used. The program was intended to analyse 

subassemblages of the general type shown in Fig-4.1 which comprises 

four beams connected to a column by means of four semi-rigid 

connections. The program also deals with frames with less than four 

bearns and is restricted to two-dimensional response. 

The program consists of a large number of routines each 

performing a specific task. The main steps of the procedure followed in 

the program for analysing a structure are shown in the flow chart of 

Fig-4.2. These steps include: 

(i) read and interpret input data 

(ii) calculate the element stiffness matrices and the the element 

fixed end forces. 

assembly of the overall -stiffness matrix, KT and the 

incremental load vector, AP 

(iv) solution of the global equilibrium equation 

KT AU = AP ('4.1) 

for the incremental displacement vector AU 

(v) update the generalized strains at every node 

(vi) calculate section properties and the internal forces at both 
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nodes of each element 

(vii) perform Newton-Raphson iterative procedure 

(viii) print results; and 

(ix) increment the applied loads to start another load increment. 

In the following sections, each of these steps will be 

described in more detail. In addition, some other special facilities 

which are available in the program will be presented. 

4.2- Reading Input data: - 

As in any other analysis, the first step in the procedure is 

to read input data which define the problem in hand. The input data was 

divided into three separate main categories: 

(1) General data: which define general aspects of the problem such 

as: 

( a) structural geometry 

(b) discretization of the structure, i. e. defining mesh size, nodal 

coordinates and element connectivity. 

(C) type of analysis, i. e. whether elastic or inelastic type of 

analysis is re quired. 

(d) accuracy level which controls the convergence criterion of the 

solution. 

(e) type, location and history of the applied loads. 

(f) type of residual stress pattern 

(2) Section data: which consists of the cross-sectional dimensions 

for the sections used for the column and those for the beams. The 

section is assumed to be composed of three plates: a web and two 

flanges. Rectangular sections may also be considered. Sectional 

dimensions are given, for each plate, in the form of the maximum and 

I 
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minimum-values along the x and y axes with respect to an arbitrary 

point of origin which is usually taken as the centroid of the section. 

Internally, the program calculates the required properties. 

The section data also include the axes of bending for the 

column and the beams. Material properties characterized by defining the 

key points in the stress-strain curve of Fig-3-13 are included in this 

type of data. The section data also include the residual stresses in 

the section in the cases where these stresses are to be given by the 

user. The program internally calculates the residual stresses at every 

sub-element of the cross section (as'described in Sec-3.8-1). 

(3) Joint data: the main part of this data is a previously prepared 

numerical representation of the M-0 relationship of every connection 

used. Different relationships may be used for the connections in the 

structure. A separate computer program was developed for the purpose of 

determining the numerical representation for any M-(D relationship; this 

latter program uses a B-Spline curve fitting technique. The joint 

stiffness and the rotation corresponding to a given moment may be 

calculated from the numerical representation using routines in the NAG 0 

computer library which-is implemented on the main computers used at the 

University of Sheffield. 

In addition, the joint data include an integer variable which 

specifies one of the following options pertaining to the loading- 

unloading behaviour of each of the connection: 

(i) one M-1, curve used for both loading and unloading 

(ii) one M-(D used for loading and an other for unloading and 

(iii) one M-4, curves used for loading and a straight line used for 

unloading and reloading. 

Both PRIME and IBM computers permit the use of more than one 



data file. Hence, each of the above sets of data is included in a 

separate file. This allows independently change any of these sets of 

data; for example, when analysing the same structure using different 

connections, only the joint data need be changed. 

4.3- Calculation of the Element Stiffness Matrix and the Vector of 

Element End Forces: 

4.3-1- The Element Stiffness Matrix: - 

The total stiffness matrix is computed for every element in 

the structure with reference to the local axes shown in Fig-4-3. As was 

seen in chapter 3, this matrix is given by 

kT=kE+kG+kL 

where 

(4.2) 

kE= elastic stiffness matrix basqd on small deflection theory. 

kG= geometric stiffness matrix which depends on the axial force 

in the element 

kL= displacement matrix which depends on the deflected shape at 

the start of the load increment. 

An explicit expression for each of these matrices is given in 

chapter 3. A numerical integration scheme was used to calculate these 

matrices. Four Gauss points along the element length were assumed in 

the scheme. The use of cubic shape functions enables that the 

integrations involved in the calculations of all of the above matrices 

be evaluated exactly using four Gauss points (23). 

All of the above matrices are evaluated by one routine 

although only one matrix can be evaluated at any one time. Hence, any Q 



vl)vl 

ul, Fl 

o') 91, Ml 

V, IV 2 

92; M2 

FIG. 4-3 A BEAM-COLUMN ELEMENT : LOCAL CO-ORDINATE 

AXES . DEGREES OF FREEDOM AND END FORCES 



combination of the matrices that appear in eqn. 4.1 may be used. Among 

the arguments passed to the routine are the joint stiffnesses of t he 

two semi-rigid connections which are assumed at the nodes. Obviously, 

if any of these connections are rigid, a very large value should be 

used for the joint stiffness. 

A special routine calculates the stiffnesses for the semi- 

rigid joints from the information given in the joint data. A routine in 

the NAG computer library is used for this purpose. It is to be noted 

that the independent variable in the M-(D relationship is taken to be 

the moment not the rotation. The joint moment is taken to be equal in 

magnitude but opposite in sign to the moment at the end of the beam 

attached to this joint. The routine also calculates the rotation of the 

joint corresponding to any given moment. This hel s in keeping irack of 0p 

the M-ý curves of the connections. 

4-3.2- Element Fixed End Forces: - 

Four different types of applied loads are acceptable by the 

program as indicated in Fig-4.4. These types are: 

(1) an axial load: assumed to act along the x-axis of the element 

at which the load is applied (Fig-4.4a). However, at present, 

this load is treated by the program as being applied to the top 

of the column not to a general point. 

(2) a concentrated lateral load: this load may be applied to any 

element at a general point as shown Fig-4.4b. A downward load 

is assumed to be positive. 

(3) a uniformly distributed load: which may also be applied to any 

element and have the same positive direction as the 

concentrated load. Fig-4.4c shows this type of loading. 
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Generally, the load covers only a part of the element. 

(4) a concentrated moment (Fig-4.4d) which may be applied to any 

element. 

A reference value for each of these types of load is given in 

the general input data. The program then calculates the vector of fixed 

end forces corresponding to this reference load and directly assembles 

it into an overall reference load matrix in which every column 

corresponds to one type of loading. This assembly procedure is carried 

out after axes transformation whenever necessary. It must be noted that 

the fixed end forces at present, do not include the effect of the 

presence of the semi-rigid joints. It is not usually a difficult task 

to include such an effect. However, since the present study is only 

concerned with concentrated loads, this shortcoming is not of 

importance. Semi-rigid joints have no effect of the fixed end forces 

corresponding to a nodal load. Hence., by introducing an extra node at 

the applied load, the correct load vector is obtained. This extra node 

will probably be needed if the load was not nodal to increase the 

accuracy of the analysis. 

4-3-3- Transformation: 

Fig-4.5 shows the local coordinates for column and beam 

elements as well as the global axes which are common to all elements. 

It follows that stiffness matrices and vectors of fixed end forces for 

all beam elements must be modified since axes transformation is 

required. 

Shown in Fig-4.6 are two sets of axes both having the same 

II 
ori, gin. The coordinates of any point A in the x -y system is related 

to the coordinates of the same point in the x-y system by the relations 
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I 
x cos a+y sin a (4.3a) 

1 
y=-, x. - sina +y cosa (4-3b) 

Eqns-4.2 is applicable to the transformation of translational 

deformation components at any point. It is also applicable to the 

transformation of forces from one coordinate system to an other. Let 

the displaced position of point A of Fig-3-1 with respect to the global 

coordinate system, x-y, be defined by the deformation components u, v, 

and 6. Also, let this point be defined in the local coordinate system, 

IIIII 
x -y by the deformation components u, v and 6. The relation between 

the two sets of deformations is given by 

I cos(I sin cc 01 I Ul 
II= i-sina cosa 01 
IIII, ivI vL 6-11 
L- -j 

(4.4) 

which is obtained by applying eqn--4.2. The rectangular matrix is the 

transformation matrix that defines the relation between the two sets of 

deformations. For the two node element shown in Fig-3-1, 

transformation matrix, T is 

cosa sina 00 
I-sina cosa 00 
10010 

o00 cosa 
o00 -sina 
o000 

0 01, 
0 oil 
0 01, 

(4-5) 
sina Oil 
COSa Ol 

0 11 

For this element and in line with eqn-4.4, we have 

T 6g (4.6) 

the 

where 6e and 6g are the local and global sets of nodal deflections 



respectively. It follows that the set of end forces in the global 

system are related to that in the local system by the relation 

pg= TT pe (4-7) 

in which is the transpose of T. 

Now, assume that the equilibrium equation for the element 

under consideration is 

ee kT6= (4-8) 

where ke is the total stiffness matrix of the element. Then by T 

substituting for 6e from eqn-4.6, we have after premultiplying both 

sides of eqn-4.8 by and applying eqn. 4-7 

.Te .rkTT Sg = pg 

or 

6g =p9 

in which p9 is given by eqn-4-7 and kg is given by T 

kg = TT keT TT 

The inclination angle, a, is calculated from the nodal 

coordinates as 

-1 
Y2 - yl 

cx = tan ( -) X2 - XI 

4.4- Assembly of Global Stiffness Matrix and Load Vector: - 

The structural stiffness matrix is assembled from the element 

stiffness matrices in the usual manner as described in text books 
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(23,24,25). It is based on the relation between the local degrees of 

freedom in an element and their corresponding global degrees of 

freedom. In the present program, the property that the structural 

stiffness matrix is a banded one has been employed. This is useful in 

saving computer time and space. The stiffness matrix is stored in a 

compacted form to save computer memory. The procedure for assembling a 

compacted banded matrix is well documented in the literature. 

The total load vector, P tot is computed from the reference 

load matrix in which, as mentioned earlier, every column corresponds to 

a different load. Based on the load pattern for any specific applied 

load, Pip a load increment &Pip is calculated and the contribution of 

this load to the total load vector is calculated as the result of 

multiplying this load increment and the column in the reference load 

matrix corresponding to this load. Hence, if we denote by P i, ref 
the 

i th 
column in the reference load matnix, the total load vector P in tot 

the j th load stage is 

p, 

N 
AP i, j P. tot p i, ref 

i, ref 
i=l 

(4.9) 

where N is the number of applied loads. Load incrementation is 

explained in more detail in Sea-4.10. 

4-5- Solution of Simultaneous Equations: - 

The next step in the analysis is to solve the incremental 

equation 4.1 for the incremental displacement vector. 

4.5-1- Boundary Conditions: - 

The assembled tangential stiffness is singular before 
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applying the boundary conditions(23,24). This means that it cannot be 

decomposed. However, it becotnes non-singular when the boundary 

conditions are applied. These boundary conditions define the 

deformation components in a certain number of degrees of freedom. The 0 

most common boundary conditions are those in which deformation 

components are restrained J. e 

U. =0 
1 

(4.10) 

where u is any deformation component and i is its identification 

number. The condition of eqn-4.10 may be achieved by assuming zero 

values for all but the diagonal elements in the row and column 

. th 
corresponding to the i degree of freedom. Hence 

K i, j ý-Kj, i = 0.0 for j=1, N 

and 

1.0 

Where N is number of degrees in the structure. 

It must be noted that, because of the way the semi-rigid 

joints are being included in the analysis, the rotation at an end which 

is connected to an infinitely rigid base with a semi-rigid joint must 

be assumed to be restrained. Of. course, since the stiffness of the 

semi-rigid joint is less than that of a fixed end, the rotation at the 

end of the element is actually equal to the rotation of the semi-rigid 

joint itself. 

4.5.2- Cholesky's Metlx)d of Solving Sinultaneous Equations: - 

This method is adopted since it is convenient in decomposing 

symmetric banded matrices. The method is well explained in many text 

books (25,61). It starts with decomposing the structure stiffness 

matrix into an upper triangular form. The load vector is also modified 



in the same way as if it were an extra column in the stiffness matrix. 

Finally, the unknown displacements are found by back substitution. 

The method fails if any of the diagon'al elements of the 

matrix became negative during the process of decomposition. However, it 

was pointed out in reference 61 that this condition occurs only if the 

matrix was not positive-definite. It is well known that the stiffness 

matrix is positive-definite as long as the structure remains 

stable(23,24,25). Hence, the condition stated for failure of the method 

is taken to be an indication of structural instability. 

4.6- Updating the Strains: - 

Incremental average strains, Ae, at element nodes due to the 

incremental displacements are calculated frpm eqn-3.44. The total 

strains are then updated. If the total strain vector e e- for an 11 

element at the end of the previous load increment, is known, the strain 

vector corresponding to the end of thý current load increment is given 

by 

Ac e 

where Ac e is the element strain vector resulting from the current load 

increment. 

These updated strains , along with any residual strains are 

used in calculating the section properties and the internal forces at 

both nodes of every element. 

4.7- Galculating Section Properties and Internal Forces: - 

As explained in Sees-3.6 and 3.7, section properties and 

internal end forces are calculated using an approximate method in which 
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the section is divided into a large number of sub-elements and summing 

up the contributions of these sub-elements. The importance of this step 

is that it enables monitoring the spread of yield along the element 

length and across the cross section. The analysis process includes an 

iterative procedure which is performed in every load increment. This 

procedure involves the calculation of a set of out-of-balance forces 

corresponding to the set of applied loads. These out of balance forces 

can be calculated only if the internal forces are known. 

4.8- Load Iteration Procedure: - 

In non-linear analysis, the external load is usually applied 

in a number of increments. The structure is assumed to behave linearly 

in each load increment. The deformations are updated after each load 

increment. The predicted response of the structure using this approach 

departs away from the true one. Fig-4-7 qualitatively shows the actual 

and predicted load-de formation curves of a structure. The gap between 

the two curves increases as the load increases. This means that, in 

every load increment, there is an amount of error in the prediction of 

the response. This error accumulates as more load increments are 

-applied. 

4.8.1- Newton-Raphson Iterative Procedure: - 

To overcome this problem, an i. terative procedure is required 

within every load increment. One of the most common iterative methods 

used in the structural analysis is the Newton-Raphson method. It serves 

as a corrector to the predicted response of the structure. The 

procedure which involves incremental and iterative processes is usually 

termed an incremental-iterative analysis. Assume that the structurets 

response corresponding to a load P is known. The first step in the next 
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load increment is to calculate the tangential stiffness matrix which 

depend on the current status of the structure. A load increment is then 

applied and the deformations are updated. Hence point A in Fig-4.8 is 

determined. The Newton-Raphson procedure is then carried out. An out- 

of-balance force which depends on the updated, deformations is 

calculated. If point A is not on the actual curve, the out-of-balance 

force will be different from the applied load. A corrective load equal 

to the difference between the applied load and the out-of-balance force 

is then applied to the structure. This step is done after recalculating 

the tangential stiffness matrix using the updated deformations. This 

process determines point B on Fig-4.8. This procedure is repeated until 

the corrective load becomes sufficiently small to assume that point C 

on the actual curve of Fig-4.8 is reached. The next load increment is 

then applied and the whole process is repeated. In this way, a close 

approximation to the actual response is obtained. 

4.8.2- Modified Newton-Raphson Procedure: - 

A modified version of the Newton-Raphson method may also be 

used. The method is the same as the one described above except in that, 

to reduce computer time, the tangential stiffness matrix is not 

computed at every iteration. This method, however, results in that more 

iterations are required to achieve the same accuracy. Bearing in mind 

that the adopted procedure for calculating section properties and 

internal forces requires a large number of arithmetic operations 

(multiplications, divisions, ... etc) and logical tests, it is 

desirable to keep the number of iterations per load increment to a 

minimum. In other words, the savings obtained by not recomputing and 

decomposing the stiffness matrix in the modified Newton-Raphson method, Q 
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is, at least to some extent, offset by the need to perform a large 

number of computations to calculate section properties and internal 

forces. For this reason, the original Newton-Raphson method was adopted 

in this study. 

4.8.3- Ca]Lcu]Lation of Out-of-Balance Forces: 

The calculation of the out-of-balance forces depends on the 

type of the applied load. In the present program, a separate routine 

calculates the out-of-balance force for each type of loading. Since 

distributed loads were not considered in the present study, there is no 

routine available for calculating the out-of-balance force for this 

type of load; it may be easily added if required. In what follows, the 

calculations of the oui-of-balance forces corresponding to an axial 

load, a concentrated lateral load and a concentrated moment are 

described. 

(1) Axial load: - 

As mentioned earlier, although the input data permits the 

consideration of axial loads which are applied at any general point in 

the structure, the program considers only one axial load which is 

assumed to be applied at the top of the column. The out-of-balance 

force corresponding to this type of loading may be determined by 

considering the equilibrixza of half the subassemblage shown in Fig-4.9. a 

The force, F bal is simply taken to be the force at the centre of the 

column. This force must counteract any beam reactions and directly 

applied column load. Hence, 

F bal =P+RB1+RB (14" 11) 
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where R and R are the left and right beam reactions respectively. B1Br 

- If the boundary conditions at the far ends of the beams are 

such that the vertical deflections are not restrained, the force, F bal 

is equal to the sum of the applied colunn and beam loads. 

(2) Concentrated Lateral Loads: - 

The out-of-balance force due to a concentrated lateral load 

is taken to be the algebraic sum of the shear forces just to the left 

and just to the right of the applied load in consideration. These shear 

forces are calculated by considering, the equilibrium of the segment to 

which the load is applied (i. e the column or any one of the beams). 

Consider a subassemblage of the general type shown in Fig-4.1 

and assume that the column is acted upon by a set of lateral loads. Let 

the out-of-balance force corresponding to a load Q be required. The 

column may then be divided into two segments separated at the load in 

consideration as shown in Fig-4.10 iri which the free body diagrams for 

these two segments are shown. In Fig-4.10, the column is rotated by an 

angle 90 0 for convenience only. Summing up moments about point A for 

the left part gives 

Nj 

M, +M2,1 -F2,1(Al-A2)-2: Qi ai 
i=l 

where 

NI 

M, 

the number of concentrated lateral loads, Q i applied to the 

left of the considered load. 

the internal moment at point A 

M 
2,1 = the internal moment just to the left of point B 

F 2,1 = the internal force in the column just to the left of point B 
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Al = total deflection (including initial) at point A 

and 

A2 = total deflection (including initial) at point B 

Ihe shear force, V1 just to the left of the load is 

vi = 
11 

Similarly, taking moments about point C of Fig-4.10, we get 

N2 

Mr=Mr+ M3 -F2, r(A2 - A3) + 
7' 

Qi ai 

i=l 

(4.12) 

where 

N2 the number of concentrated lateral loads, Q i applied to the 

right of the considered load. 

M3 
:= 

the internal moment at point A 

M= the internal moment just to the right of point B 
2, r *0 

F 
2, r = the internal force in the column just to the right of point 

B; and 

A3 = total deflection (including initial) at point C 

The shear force just to the right of the load Q is then given by 

m 

r 
(4.13) 

The out of balance force may then be computed from the shear forces 

computed by eqns-4.11 and 4.12. Hence, 

Qb 
al = Vr - Vl 



(3) Concentrated Moment: - 

In this case, the out-of-balance moment is calculated as 

the algebraic sum of the moments just to the right and just to the 

left of the applied moment. These moments are taken directly from 

the calculated internal moments at the node at which the moment is 

applied. 

4.8.4- Convergence Criterion: - 

The Newton-Raphson iterative procedure as described in 

Sec-4.8.1 is carried out within each load increment until the 

analysis converges to the true equilibrium path. In other words, the 

corrective load AF bal given by the relation 

'ýF bal =PF bal 

must satisfy the inequality 

6F bal 
F bal 

(4.13) 

where a is a pre-specified tolerance factor usually ranging between 

0.001 and 0.01. Eqn. 4.13 is applied to every applied load regardless 

of the status of the load (i. e. whether it is changing or constant Q 

at the present load increment). In this way, simultaneous 

convergence is obtained for all applied loads. 

4.9- Printing Out Results: - 

For every load increment, some important results are 

written in separate computer files. These results include: 

(1) The total force in the column, the central deflection and the 
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moments and rotations at top and bottom ends of the column. 

This information is mainly used in plotting the P-A and 

interaction curves. 

(2) M-1, results for all the semi-rigid connections. These results 

are used in plotting the M-(D curves as inferred from the 

analysis. They help in understanding the behaviour of the 

different connections. 

(3) The moments and rotations at the left beam, the right beam and 

the column at the top and bottom ends of the column. Such 

information is useful in determining the variation of these 

moments and rotations during the loading process with the 

total force in the column. 

(4) The flexural rigidity, EI, for all the elements along with the 

joint stiffnesses for all the semi-rigid joints. This 0 

information is useful in two ways: 

(i) it helps in observing the spread of yield along the 

lengths of the columns and the beams. 

(ii) the information may be used in calculating the G-values 

at the top and bottom of the column. These G-values are 

required for determining the effective length factor of 

the column following the AISC recommendations(2). 

4.10- Incrementation of the Applied Loads: - 

Once the actual response of the structure corresponding to a 

certain load level is accurately traced, the load is then incremented 

to continue the analytic procedure. A method of independently 

incrementing the applied loads was used. In this method, a load pattern 
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is given as input data for every applied load. Each of these patterns 

define the history of the corresponding load i. e. whether the load is 

increasing, decreasing or constant. It also defines the rate at which 

the load is to be incremented or decremented. A reference load value 

for each load is also included in input data. 

The whole loading process is broken down into a number of 

load stages. In any one stage, any load may only increase, decrease or 

maintain its current value. In this way, very complicated load patterns 

may be considered. 

Fig-4.11 shows an example of a loading process in which two 

loads P, and P2 are applied. In this example, (a 
1,1 P 1, ref 

) and 

(a P) were applied in the first load stage in which N, load 
2,1 2, ref 

increments were used. In the second load stage, (a P and 1,2 1, ref 

(a 2,2 P 2, ref 
) were applied in N2 load increments. The load increments, 

AP 1,1 and AP 2,1 
in the first load stage may be calculated from 

AP - 
(1 1,1 p l'ref 

1,1 Nl 

and 

AP - 
cc 20 p 2, ref 

211 Nj 

while the load increments AP 1,2' '6p2,2' in the second load stage are 
given by 

AP 
a 1,2 p 1, ref 

1,2 N2 

and 

AP -atp2, 
re 

2,2 N2 

These load increments are then used to determine the contributions of 
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the loads P, and P2 to the total load vector as described in Sec-4.4. 

. In addition to the automatic load incrementation, the program 

includes an option in which the load may be manually changed. In this 

case, the program reads the new load level from the input data. It then 

works out the load increment as being the difference between the new 

load and the previous one. 

4.11- Special Facilities: - 

In addition to the steps described above, the program 

includes some special facilities which provide more flexibility to the 

application of the program. These facilities may be termed: restart and 

step back facilities. 

4.11.1- Restart Facility: - 

This facility is very useful when it is desirable to stop the 

analysis at some specified load to check on the predicted behaviour of 

the structure, such as, the spread df yield or the internal moments at 

a specified point. Once such checks were made, the analysis may then be 

restarted from the last load level. 

The facility involves writing all the important variables to 

., 
an unformatted file before coming to a stop. When the program is rerun, 

all these variables are read from this file. This procedure is achieved 

by declaring all the important variables in. a number of common blocks 

and then using a special facility in the FORTRAN computer language to 

load all these variables into a number of one-dimensional arrays. These 

arrays may then be written to or read from the unformatted file 

whenever needed. 

4.11.2- Step-back Facility: - 

This facility is useful in automatically reducing the load 



step when a failure condition is detected. Hence the maximum load may 

be determined with a reasonable accuracy. Once a failure condition has 

been detected while using a coarse load increment depending on the load 

pattern given in the input data, the programs then takes two actions: 

(1) it steps back two load steps, 

(2) it then continues the, analysis using a fine load step. This load 

step is equal to a tenth of that calculated from the load pattern. 

The facility is performed in a similar way as the restart 

facility. At the end of the i th load increment, all the variables which 

may change value during the analysis and correspond to the (i-1) th load 

increment are read from an unformatted file and written to an other 

unformatted file. The current values for the variables are then written 

to the first file. Hence at the start of any load increment ' the values 

for the variables corresponding to the last two load increments (i and 

i+1 ) are stored in two separate files. The method of storing this 

information is the same as described for the restart facility. Once the 

step-back facility is required, the information corresponding to the 

(i-1) increment may be readily read from the appropriate file. 



5.1-Introduction: - 

Any computer program that is intended to be used in analysing 

practical structures needs to be checked against experimental and 

possibly other theoretical results. This is to ensure that the program 

correctly represents the behaviour of the structure. Extensive checks 

have been made on the computer program described in chapter 4. These 

checks are presented in this chapter and in chapter 6. Both rigidly and 

flexibly connected structures have been considered. The structures that 

are presented in this chapter may be classified into three categories 

as follows: 

(1) Rigidly connected frames with eccentrically applied axial column 

loads: in these frames, rigid beam to column connections are 

used. Only column loads were applied with or without small 

eccentricity. 

(2) Rigidly connected frames with combined axial and lateral column 

loads: in which, as in the above category, rigid beam to column 

connections were used. A lateral column load was applied after 

the application of a pre-specified axial load. 

(3) Flexibly connected frames with axial column load: in this 

category, flexible beam to column connections were used. A set 

of beam loads was applied in such a way that the full capacities 

of the connections were reached. Then an axial load was applied 

to the column head until failure occurred. 

In the next sections, a detailed description and discussion 

of the comparisons corresponding to each of the above categories are 

presented. In addition, some design approaches will be utilized in 

these comparisons. 



5.2- Rigidly Connected Franes with EccentricaIly Applied Axial Column 

Loads: - 

5.2.1- Description of Experimental Tests: - 

The first stage of program verification is a comparison of 

the analyses produced by the computer program with the experimental 

results reported by Aoki and Fukumoto (39). These experimental results 

are obtained from tests made on the frame of Fig-5-1. The frame 

comprises a column and a beam at either end. Beam to column connections 

were found to behave as rigid joints. The column section was welded up 

from plates as shown in Fig-5.1 while the beams were made of rolled 

194xl5Ox9x6 shapes. Both the column and the beams were allowed to bend 

about their minor axes. Residual stresses in the column section were 

measured in a total of 30 specimens. The average shape of these 

residual stresses is represented by a solid line in Fig-5.2 which is 

based on data obtained from Fukumoto t65). A mean compressive stress of 

0.310 in the flanges was reported. Initial out of straightness was ya 

measured in 60 specimens (65) . It was found that the initial 

deflection at the column centre varied between 0.16 and 2.8 times 
L 

C 
where L is the coliznn lenath (19). Although the renorted 10,000 c 

nominal yield stress is 320N/MM2, the average yield stress as computed 

from stub column tests was about 390N/mM2 (39). 

In the experimental protyram, Aoki and Fukumoto tested a 

series of frames of different column and beam lengths. A restraint 

parameter R defined by 

Ib L 

Lb Ic 
(5.1) 

was varied between 0 an 
Id1.0. 

In eqn-5.1, Ib and Ic represent the 
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second" moment of area of the beam and column cross sectiofis 

respectively and Lb is the beam span. The axial load was applied with a 

small load eccentricity which was was given the values of 0.0, r/20 and 

r/10 where r is the radius-of gyration of the column cross section. The 

column slenderness ratio had values of 40,70 and 100. 

5.2.2- Comparisons Between Analytical and Experimental Results: - 

The program was used to analyse the subassemblage of Fig-5-1 

with the parameters mentioned above. One value of R corresponding to 

unity was used. A linear pattern for the residual stresses, shown in 

Fig-5.2 as the dotted line, was assumed. The initial out of 

straightness is assumed to be of a sinusoidal shape with a maximum 

value as indicated in Table-5.1 along with the assumed geometrical 

dimensions (column and beam lengths) . 

Table-5.2 shows a comparison between the maximum loads 

obtained by the program and those obtained from the experiments. In 

general, the two sets of loads were in close agreement with differences 

always within t 5%. 

Fig-5-3 shows a comparison between the analytical and 

experimental load deflection curves corresponding to a slenderness 

ratio of 40 and ZERO load eccentricity. The two curves are very close 

together indicating good agreement. Similarly, Figs-5.4 and 5.5 show 

the analytical and experimental load deflection curves corresponding to 

slenderness ratios of 70 and 100 with a load eccentricity of r/10 (i. e. 

5mm). Again, the agreement between the two sets of curves is clear. 

Shown in Fig-5.6 are the variations of the moment at the 

column end with the increasing column load for the cases considered in 

Figs-5-3 to 5.5. In each case, the moment in the column increases with 



Table-5.1: Geometrical Dimensions and Maximum Initial Out of 

Straightness Assumed in the Analytical Simulations 

of the Subassemblage of Fig-5.1 

Xl& 
L/r L Lb L 

c 

(mm) (mm) e=0.0 mm e=2.5 mm 
1e=5.0 

mm 

40.0 1980.0 1210.0 -1.5 -0.5 -2.0 

70.0 3465.0 2120.0 -2.8 -1.3 -2.8 

. 
100.0 4950.0 

1 
3025.0 -1 3.0 -0.5 

N. B. initial colunn deflections to the left are assmed positive 

- (Fig-5.1) 

Table-5.2: Analytical Maximum Loads for the Subassemblage of Fig-5-1 

Slenderness Ratio 

Lo ad 40.0 70.0 100.0 

Eccentricity 

(mm) 

p 
max 

(kN) 

%age 

diff 

P 
max 

W) 

%age 

diff 

p 
max 

(kN) 

! 
%age 

diff 

0.0 2078.0 1.3 1881.0 4.2 1383.5 -2.0 

2.5 2074.0 -0.1 1775.5 2.8 1337.0 -2.9 

5.0 2049.0 4.5 1645.0 4.4 1156.0 o. 6 

N. B. %age diff = (P 
max -P exp 

) X1 OO/P 
exp where Pýax and P 

exp are 

the analytical and experimental maximtzn loads respectively. 
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increasing column load until it reaches a maximum value. After 

attaining the maximum value, the moment decreases until it becomes zero 

and then changes sign. This reduction commences as the column starts to 

yield at its end (thus it becomes more flexible), hence redistributing 

stresses to the (now relatively stiffer) elastic members. This 

observation was also pointed out by Gent and Milner(42) in their tests 

on subassemblages similar to that shown in Fig-5.1. It may be seen that 

the relation between the column load and the moment in the case of 

L/r=40 and e=O. Omm is almost linear up to a point just before the 

maximum moment. In the cases of eccentric load (L/r=70 and 100). 

nonlinearity is more pronounced at lower load levels. 

In Fig-5-7, the maximum loads for all the cases considered 

(Table-5.2) are plotted against the applied moments (load times 

eccentricity). Both experimental'and analytical results are shown. It 

is clear that for all cases moments ýre small since the eccentricities 

used had small values. As mentioned above, the agreement between the 

experimental and the analytical results is close. 

5.2.3- Calculation of Maximum Loads for the Cases of Concentric Axial 

Load Using Effective Lengths: - 

The maximum loads for the subassemblage of Fig-5-1 under the 

action of concentric loads were computed for slenderness ratios of 40, 

70 and 100 using the concept of effective length in conjunction with 

column strength curves. Three different methods were considered. These 

methods are: 

(a) A method involving frame instability using stability functions, 

(b) The method recommended by the BS5950 Part 1 The Use of 

Structural Steel in Buildings (1); and 
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(c) -The method recommended by the AISC specification (2). 

Two column strength curves were used. These curves are shown 

in Fig-5.8. The first curve was constructed using the author's program 

for a pin ended column. The other is the ECCS curve b which is 

appropriate for the group of sections including welded sections bent 

about their minor axes (63). Descriptions of each method as well as 

detailed calculations using these methods for L/r = 70 are presented CD 

below. 

1- Stability Functions: - 

This method may be found in many 'standard books that deal 

with frame instability (e. g. 18,19). Consider the non-sway beam-column 

of Fig-5.9a. The moments at the ends of the me-, iber may be expressed by 

the slope deflection equation which includes the effect of the presence 

of the axial force. Hence, 

M12 ýk(S el + 'se 02 ) (5.2) 

in which s and c are stability functions depending on the level of the 

axial force, and k is the stiffness of the member defined as k= EI/L. 

In the case of no axial force, s and c take the values of 4 and 0.5 

respectively hence reducing eqn-5.2 to the well known slope deflection 

equation for a beam element, 

m AB =2k(20A+0B) (5-3) 

Applying eqn-5-3 for the moments at joint A and end B of the 

subassemblage of Fig-5-9b and eliminating 5 BA yields 

m AB 7 -3 kb6 AB (5.4) 
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in which kb is the stiffness of the beam defined as EIb/L b* Now 

applying. eq-5.2 for the moment M AC at joint A of the subassemblage of 

Fig-5.9b bearing in mind that the end rotations, e 
AC and 6 

CA are equal 

in magnitude and opposite in direction, then 

m AC =kcs (i_C) 6 AB (5-5) 

in which kc is the stiffness of the column. Equilibirium of joint A 

requires that 

m AB +M AC 70 (5.6) 

Hence, substituting for M AB and M 
AC from eqs-5.4 and 5.5 in eqn-5.6, 

the following relation is obtained 

SO-C) (5-7) 

In eqn-5-7, the right hand side is known and both s and c are 

dependent on the ratio of the axial force that is present in the column 

to the Euler load for this column. Tables for determining the stability 

_functions 
s and c may be found in text books. Hence, eqn-5-7 may be 

solved for the ratio of the critical axial force to the Euler load. The 

effective length factor may then be calculated as the square root of 

the inverse of this ratio. 

For the subassemblage under consideration (with L/r = 70), k Cý b 

and kC are equal to 491216N. m and 792856N. m respectively. Hence eqn-5-7 

gives 

-1.85865 

hence, 



p 
= 1.635 cr 

The effective length factor may then be determined as 0.783. The 

effective slenderness ratio is then 0-783X70 = 54.8. Fntering Curve-1 

of Fig-5-8 with this slenderness ratio gives the ratio of the maximum 

load to the squash load for the column as 0.875. i. e. the maximum load 

is 1856kN. As the value of R was held constant for all the considered 

cases, eqn-5-7 is valid for all cases. Hence the same effective length 

factor is used to determine the effective slenderness ratios 

corresponding to L/r values of 40 and 100. Again using curve-1 of Fig- 

5.8, the maximum loads corresponding to L/r values of 40 and 100 may be 

found to be 2057kH and 1421kN respectively. 

2- BS5950 approach: - 

In the approach of Appendix7 E, the effective length factor is 

determined on the basis of using stiffness distribution factors for the 

top and the bottom of the column under consideration in conjunction 

with specially prepared charts for the effective length factor(5.4). 

The distribution factors for the subframe, are given by 

2: 
k0 

Tkn 
+ 

7k' 
b 

in which 

=1 relates to top end of the column 

-2 relates to bottom end of the column 

k= I/L for the column 
c 

k1 = I/L for top beam; and b 

k2 = I/L for bottom beam 
b 

(5.8) 



For the case considered above (L/r=70), the column and beam 

I/L values are 3849MM3 and 2385MM3 respectively. Hence the stiffness 

distribution factors for the top and the bottom of the column are 

3849 kl = k2 = 3849 + 0.5 2385 = 0.763 

in which the factor 0.5 in the denominator is used to account for the 

fact that the far beam ends are hinged whereas the charts in BS5950 are 

based on fixed beam ends. 

From the effective length factor charts the effective length 

factor may be found to 0.83. Upon entering curve-1 of Fig-5.8 with an 

effective slenderness ratio of 0-83X70=58-1, a maximum load of 1803kN 

is obtained. Once more, the stiffness distribution factors are the same 

for all the considered slenderness ratios. Hence the effective 

slenderness ratios corresponding to 40 and 100 are 33.2 and 83 

respectively. The maximun loads corresponding to these cases are 204OkN 

and 1319kN respectively. 

3- AISC Approach: - 

The method recommended by the AISC specifications involves 

the use of beam to column stiffness ratios, G top and G 
bottom 

for the 

top and bottom ends of the column (2). The stiffness ratio for any 

joint is given by 

Ic /L 
0 

Ib /L 
b 

(5-9) 

in which the s=mation, as in eqn-5-8, indicates stzming the 

contributions of similar members. The beam stiffness, Ib/L bI 
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corresponding to any beam with its far end hinged is multiplied by 1.5. 

Alignment charts (2) may then be used to evaluate the effective length 

factor. The maximum load may then be found in the same way as mentioned 

in the above two methods. 

For the subassemblage of Fig-5.1, the value of G at the top 

and that at the bottom of the column is equal to 1.076 (which is the 

inverse of R calculated using eqn-5.1). From the alignment charts, the 

effective length factor may be found to be 0.78. Now following the same 

procedure of using the column curve of Fig-5.8, the maxim= loads 

corresponding to slenderness ratios of 40,70 and 100 may be found to 

be 2057kN, 1856kN and 1421kN respectively. 

Table-5-3 shows a comparison between the maximum loads 

obtained by the above three methods as well as those obtained from the 

tests and the present analyses. It can be seen that all three methods 

described above gave close predictioýs of the maximum loads even though 

these methods are based on elastic effective length factors. However, 

it should be pointed out thaý the the use of the effective length 

factors was in conjunction with a column strength curve in which the 

, parameters pertaining to the subassemblage under consideration were 

closely simulated. In addition, this column curve was constructed by a 

program in which full account was taken of yielding. In other words, 

the inelastic behaviour of the column was accounted for, at least 

partially, by the use the column strength curve of Fig-5.8. 

The computations which led to Table-5-3 were repeated for all 

the cases but with the use of the column strength curve known as ECCS 

curve b (63) and reproduced in Fig-5-8 as curve-2. This curve is 

applicable to a family of shapes which include welded shapes bent about 

their minor axes. It can be seen by comparing Tables-5.3 and 5.4 that, 
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Table-5.3: Maximum Loads in kN: Comparison of Different 

Approaches for Predicting the L6ad Carrying 

Capacity of the Column of Fig-5-1: Concentric 

Loads 

A h 
Slenderness ratio 

pproac 
40.0 70.0 100.0 

Stability functions 2057.0 1856.0 1421.0 
BS5950 2040.0 1803.0 1319.0 
AISC 2057.0 1856.0 1421.0 
Experiments 2052.0 1834.0 1411.0 
Present program 2078.0 1881.0 1383.5 

Based on the use of elastic effective length factors in 

conjunction with a column strength curve constructed using 

the present program 

Table-5.4: Maximum Loads * in kN: Comparison of Different 

Approaches for Predicting the Load Carrying 

Capacity of the Column of Fig-5.1: Concentric 

Loads 

A h 
Slenderness ratio 

pproac 
Approach 40.0 70.0 100.0 

Stability functions 1980.0 1620.0 IA? Q. 0 
BS5950 1941.0 1510.0 1039.0 
AISC 1973.0 1620.0 112-0.0 
Experiments 2052.0 1834.0 1411.0 
Present program 2078.0 1881.0 1383.5 

* Based on the use of elastic effective length factors in 

conjunction with ECCS column strength curve b 



in all cases, the use of the EGCS curve resulted in lower estimates of 

the maximum loads. The reason for this is that the column curve 

constructed by the program is always above the ECCS curve except at 

very low slenderness ratios where both curves coincide as the ECCS 

curve is an approximate lower bound to the strength for the family of 

shapes. By comparing the maximum loads estimated by the ECCS curve with 

the experimental ones, it may be concluded that the use of the ECCS 

curve appears to be rather conservative for the cases under 

consideration. 

5.2.4- Calculation of the Maximum Loads for the Subassemblage Under the 

Action of Eccentrically Applied Axial Load: - 

When the axial load is applied with an eccentricity, a moment 

as well as the axial load act simultaneously on the column. The effect 

of the moment is to introduce additional deflections in the column 

throuch which the axial load produces additional moments in the column. 

This is known as the interaction between the applied moments (in this 

case the axial load times load eccentridity) and the applied axial 

load. Design specifications usually recommend the use of interaction 

formulae which account for the presence of both types of loads. In this 

section, the recommendations given by two design specifications are 

presented. 

(1) AISC Specification: - 

The AISC specification (2) recommends that the following two 

interaction formulae be satisfied 



pmc 

or m0 

and 

p+m 
-41.0 py1.18 Mp 

in which 

P= the applied axial load 

M= the applied moment 

P 
cr = critical load given by 1.7 Agaa 

pE= Euler load 

(5.10) 

(5.11) 

Py= squash load 

C= coefficient whose value can be taken as 
M MI 

0.6 -0.4 ->0.4 M2 

MM maximum moment that can be resisted by the member in the 

absence of axial load. For columns bent about their weak 

axes, Mm should be taken as Mp since no lateral torsional 

buckling takes place. 

Mp= plastic moment 

aa= allowable compressive stress corresponding to the effective 

slenderness ratio of the column. 

For the subassemblage of Fig-5-1, the coefficient Cm is equal 

to 1.0. The Euler and the critical loads are given in Table-5.5 for all 

the slenderness ratios considered. In all these cases, Mm is equal to 

79.1kN. m. The critical load is based on an effective length factor of 

0.78 which corresponds to a value of G of 1.076. In eqn-5.10, the 

applied moment, M, is considered to be equal to P times the 

eccentricity, e. Solving eqn-5.10 for P, results -in the required 

maximum loads that can be resisted by the subassemblage. These maximum 



Table-5-5: Euler and Critical Imads Used in the AISC Interaction 

Formulae Relating to the Column of Fig-5-1 

Slenderness Ratio 40.0 70.0 100.0 

(M) p 6913.0 2257.0 1106.0 
e 

(kN) P 1933.0 1673.0 1345.0 
or 1 

N. B. The values in this table are based on an effective 

length factor of 0.78 which corresponds to G=1.076 

Table-5.6: Maximum Loads in kN Calculated by AISC and BS5950 

. qpecifications for theýColunn of Fig-5.1: Eccentric 

Loads 

Load eccen- 
L/r tricity, e AISC-Spec BS5950 

(mm) 

2.5 1786.0 1733.0 
40 

5.0 1665.0 1558.0 

2.5 1456.0 1460.0 
70 

5.0 1330.0 1332.0 

2.5 980.0 1041.0 
100 

5.0 910.0 973.0 



loads are shown in Table-5.6 for the considered slenderness ratios aný 

eccentricities. Upon solving eqn-5.11 for P, the maximum load was found 

to be 2007kN and 1905kN for 2.5mm and 5mm eccentricities respectively. 

These loads are well above those obtained from the solution of eqn- 

5.10. 

(2)- BS5950 recommendations: - 

BS5950 recommends that two checks be made: - 

i- Local capacity check : which is governed by the equation 

p IL 
41.0 

pm 
yp 

(5.12) 

This equation is applicable for semi-compact sections. The 

cross section of the column of the subassemlage of Fig-5.1 is 

categorized as semi-compact. according to BS5950. 

ii- Overall buckling check: which may be done in two ways 

a- simplified approach which is governed by the formula 

p+mM<1.0 

er yy 
(5-13) 

in which m is a factor depending of the relative values and 

signs of the end moments, ay is the yield stress and Zy 

is the elastic section modulus about the y-axis of the 

section. 

b- more exact approach in which the following equation should be 

satisfied 

H 
1- P/P 

r, " 
< 1.0 (5-14) 

m( 
0.5 P/p 

er 
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in which Mc, for semi-compact sections, is defined as az yy 
In eqns-5.13 and 5.14, P 

cr 
is taken as the compressive 

design strength times the gross area of the section. 

For the subassemblage of Fig-5.1, the effective length factor 

is 0.83. Hence the compressive strengths given in BS5950 for the kL/r 

values of 33.2,58.1 and 83 are 362N/M29 299N/MM2 and 21ON/MM2 

respectively. Consequently the values of P 
cr are 1969kN, 1626kN and 

1142kN respectively. 

The solution of eqn-5.12 leads to maximum loads of 1988kN and 

1870kN for the 2.5mm and 5-Omm eccentricities respectively. Upon 

solving eqns-5-13 and 5.14, it was found that eqn-5-14 always governed 

the load carrying capacity of the column. The maximum loads 

corresponding to the considered slenderness ratios and load 

eccentricities are shown in Table-5.6.. 

5.3- Rigidly Connected Frames Under the Action of Combined Axial and 

Lateral Column Loads: - 

5.3-1- Description of Test Program: - 

In the second stage of program verification, the present 

computer program was used to simulate some of the tests conducted by 

English and Adams (38). In this series of tests, frames of the general 

type shown in Fig-5-10 were tested to examine their behaviour under the 

action of the applied loads shown in the figure. The frame comprises a 

colLrnn and one beam at either end which is connected to the column by 

means of a rigid beam to column connection. A variety of column and 

beam length combinations was used, although in this section, only two 

combinations are considered. Table-5-7 contains the geometrical 
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Table-5-7: Geometrical Dimensions and Location of Lateral 

Loads for the Subasemblage of Fiz-5-10 

L (mm) Ll (mm) 
b 

L2 (mm) 
b 

Location of Case a Lateral Load 

BC-5 4320.0 3050.0 4265.0 
II 

Midheight 

BC-6 6096.0 I 

---- 

1 
3050.0 

1 
4265.0 

1 
Upper Third Point 

- 

Table-5.8: Comparison of Maximum Loads in kN 

for the Subassemblage of Fig-5.10 

Maximum Load (kN) %age 
Case 

Experiment Analysis diff 

BC-5 34-71 34.7 -0-03 

BC-6 57.41 57.4 . 
12? 

N. B. "Mage diff = (Q 
anal -Q exp 

)x1OO/Q 
exp where Qanal and Q 

exp 

are the analytical and experimental maximum lateral loads 

respectively. 



dimensions of the frame corresponding to the two cases considered. Also 

shown in Table-5-7 is the location of the point of-application of the 

lateral column load. 

All sections were made of W5X16 shapes of CSA G40.12 steel of 

a specified minimum yield stress of 303N/mm2 (38). The average value 

for the yield stress was found to be 361N/MM2. A mean value for the 

strain hardening modulus was found to be 4.96kN/MM2 which commences at 

a mean strain of 0.017. All lengths were cold straightened by 

rotarizing. Rather low residual stresses resulted from such treatment. 

Fig-5.11 shows the average measured residual stresses as reported in 

ref 64. 

The set of applied loads consisted of an axially applied 

column load and a lateral column load. The axial load was applied first 

up to a pre-specified maximum value. Then the lateral load was applied 

up to failure. The loads, deflections'and rotations at specified points 

were recorded. 

5.3.2- Analytical Resu]Lts: - 

The frame of Fig-5-10 was analysed using, the present computer 

program. The geometrical dimensions for the two considered cases are 

shown in Table-5-7. A yield stress of 353N/MM2 was assumed. The modulus 

of elasticity, E, was taken to be 204kN/Mm2 while that of strain 

hardening was assumed to be 5kN/MM2. A linear pattern of residual 

stresses with a maximum compressive stress of 0.1 ay was assumed. This 

pattern is shown as dotted lines in Fig-5-11. k1though the column was 

cold straightened, a small amount of crookedness was assumed to be 
Lc 

present. The maximum initial deflection was assumed to be 
10,000 . As in 

the experimental procedure, the loads were applied in two load stages. 
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The full pre-specified axial load was applied in the first load stage 

in ten. equal load increments. In the second load stage, the lateral 

column load was applied until failure occured. Throughout this 

operation, the axial column load was maintained at a constant value. 

5.3.3- Discussion of Results: - 

Table-5.8 shows a comparison between the predicted and the 

experimental maximum lateral loads for the two cases considered in this 

study. It is evident from this table that there is good agreement 

between the two sets of maximum loads. Shown in Figs-5.12 and 5.13 are 

the analytical and experimental load deflection curves for the two 

considered cases. Generally, the analytical load deflection curve 

followed the same trend as the experimental curve. However, the 

difference in the deflections at any particular load is not small 

especially at higher load levels. 

In Fig-5-12, two extra curves are shown. The first one was 

obtained by English and Adams (38) using an elastic-plastic analysis 

which take account of the formation of plastic hinges at various 

sections along the column and the beams. The other curve is obtained 

from a "plastic zone" computer program developed at the University of 

Alberta (28). In this latter program, both axial and lateral loads were 

applied simultaneously. It is clear that both the Alberta and the 

present programs produced very close load-deflection curves. 

5.4- Flexibly Connected Franes Under the action of Axia]L Colunn Loads: - 

5.4.1- Description of Experinental Program: - 

The third type of frame that was analysed by the program in 

order to compare its results with experimental tests is the 

subassemblage of Fig-5.14. This subasseinblage was tested by Bergquist 
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(40). It comprised a column and two beams connected at each end by 

flexible beam to column connections. The column was a WlOx29 shape and 

was allowed to bend about its minor axis. All beams were W1Ox21 shapes 

and were allowed to bend about their major axes. Flexible double web 

cleat beam to column connections were used. 

The M-, D characteristic for a typical connection i* shown in 

Fig-5-15a. This moment-rotation curve was obtained by conducting a 

separate test on a connection Similar to that used in the subassemblage 

but connected to the flanges of. the column rather than the column web. 

It was found that this difference in connection detail appeared to have 

a significant effect of the stiffness of the connection(40). Shown in. 

Fig-5.15b is the M-, ý relationship for the top connections as inferred 

from limited measurements taken during the subassemblage test. 

Bergquist reported that the initial stiffness of the connection was 

reduced from 1.028x106 in the connection test to 0.4x1O6 N. m/rad in the 

siabassemblage test. 

In the subassemblage tests, a concentrated load was applied 

at the far end of each beam parallel to the column by a self contained 

system consisting of a hydraulic tension ram, 25mm, threaded rod and a 

44.5kN tension load all connected in serief, so that all loads were 

equal. This resulted in all connections following their loading M-0 

curves which were found to be very close to each other indicating 

similar connection behaviour (40). This stage of loading resulted in 

the whole connection capacity (Fig-5-15b) being consumed. Shut-off 

valves were attached to the rams to-permit independent operation of the 

left and right rams (40). By shutting the valves, it was also possible 

to hold the rams in any desired position. In the second stage of 

loading, the valves were closed whilst a concentric axial load was 



10-r 

r- 
1 

8+ 

-, . 4- 
C 
Eli 91X Connection type Al 
C) /. 
li: -I Loading 

Unloading 
2 

10 15 20 25 
Rotation 

) rod/1000 

FIG. 5 -15 ci MOMENT-ROTATION CURVES FROM JOINT 
TESTS (BERGOUIST) 

10-r 

8 

E 

Connection type Al 
;Z4 -t- C :, Top -Left connection 

. 4r, 

II -- X IUP-l lylit LUIlliketAlUll 

5 10 15 20 25 
Rotation , rad/1000 

F(G. 5-15b MOMENT- ROTATION CURVES AS INFERRED FROM 

BERGOUIST SUBASSEMBLAGE TESTS 

-137- 



increased until a sufficient number of data points (load and 

deflection) had been obtained while ensuring that the column did not 

yield. These data points were used in a Southwell plot in order to 

estimate the maximum load of the subassemblage. As the axial load was 

applied the left connections unloaded, while those on the right 

continued to load following a flat platau. The loading and unloading 

paths for the top connections are shown in Fig-5-15b. The load- 

deflection curve obtained from this test is shown in Fig-5.16. The test 

was terminated at a load level corresponding to about 87% of the 

maximum load which was found (using the Southwell plot) to be 547kN. 

5.4.2- Comparisons of Analytical and Experimental Results: - 

The subassemblage of Figj. 14 was analysed using the present 

program. The M--ý curve sýown in Fig-5.17 was used to represent the 

behaviour of all the connections. The loading part of this curve up to 

a rotation of about 0.014 radians is the same as the loading curve of 

Fig-5-15b. For rotations greater than 0.014 radians, an almost 

horizontal flat portion was assumed to represent the flat portion of 

Fig-15b. The unloading curve in both figures is the same. A half sine 

wave was assumed for the initial deflections with a maximum central 

deflection of 0.000425L (where L is the length of column from centre to 

centre of beams). This maximum value is the same as that obtained from 

the Southwell plot of the load-deflection results. As in the 

subassemblage test, the beams were assumed to be connected to the 

column web at about 280mm from each column end. A linear residual 

stress pattern in which the stresses vary between ± 0.3a 
y was assumed 

to be present in the column and beam sections. A yield stress of 

365N/mm2 was assumed while the modulus of elasticity was taken to be 
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215kN/mm2. The yield stress was Calculated from the reported plastic 

moment for the column section which is 52.67kN-m. The value of E was 

Calculated using the reported EI value (determined from a test on a 

pin-ended colu: nn) in conjunction with the cross sectional dimensions of 

the column cross section. Since, as pointed out earlier, upon closing 

the shut-off valves, the beam ends could not undergo translational 

displacement in the direction of the beam loads, these ends were 

assumed to be hinged in the second loading stage in which the column 

load was applied. The beam ends were assumed to undergo no horizontal 

deflection at any stage. i. e zero side sway was assumed. 

The analytical maximum load that could be resisted by the 

subassemblage was found to be 476kN which is 13.0% below the Southwell 

load. The load-deflection curve obtained from the analysis is shown in 

Fig-5.16. From this figure, it is clear that the analytical curve 

closely agrees with the experimental one. It should be pointed out 

that, as has already been mentioned, the experimental curve was 

terminated at a load level which is about 87% of the load predicted by 

the Southwell plot. The test was terminated at this stage because 

yielding was imminent. This was also confirmed by the analytical 

results in which it was found that the column started to yield at a 

load just below the maximum load. Consequently, it may be concluded 

that the load predicted by the Southwell plot is rather high since the 

Southwell plot can only predict the elastic maximum load of the 

. structure. 11his point is further supported by the shape of the 

experimental P-A curve for which the tangent is almost horizontal 

indicating that the subassemblage was on the verge of failure when the 

test was terminated. It follows that the maximum load predicted by the 

Author's program as well as the analytical P-A curve may be accepted as 
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a very reasonable match to the experimental behaviour. 

5.4-3- Discussion of Results: - 

Careful consideration of the program output revealed that all 

sections remained elastic for almost all the loading stage. Not until 

the attainment of a load of 475kN did the column started to yield. 

However, there was an appreciable amount of yielding was present at the 

failure load (the reduced value of the flexural rigidity, EI, was about 

75'a of the elastic value). The fact that the column yielded prior to 

the attainment of the maximum load, makes it inappropriate to consider 

the problem as an elastic one. 

It is interesting to investigate the effect of boundary 

conditions at the beam and column ends on the behaviour of the 

subassemblage. This is especially true since the boundary conditions at 

these ends were not well defined in the test. For instance, it was not 

reported in reference 40 whether the beam ends were prevented from 

horizontal movement or not. Moreover, closing the shut-off valves may 

only result in preventing the top beam ends from movements relative to 

the bottom beam ends. Both beam ends on one side of the subassemblage 

may still move parallel to the column length. It is not known whether 

the horizontal movements at the top and bottom column ends were 

restrained or not. 

A possible variation of the boundary condition assumed in the 

original analysis (described above) of the subassemblage of Fig-5-14 is 

one in which the beam ends are free to move horizontally (but not 

vertically) while both column ends are prevented from horizontal 

movement. As before, the lower column end may not move vertically. The 

maximum load in this case was only slightly reduced (less than 1% 



lower) . If, on the other hand, the beain ends as well as the lower 

column end were assumed to be hinged while the top column end was 

assumed to be a free end, the maximum load increases above that of the 

original analysis by more than 55%. 

It', follows that, while the boundary conditions assumed in the 

original comparison resulted in a reasonable prediction of the 

behaviour of the subassemblage, it is very important, in a test, to 

adopt a well defined set of boundary conditions. This should enable any 

analytical procedure to closely simulate such boundary conditions. In 

the test of the su'bassemblage, of Fig-5-14, it seems that the set of 

boundary conditions is somewhatof a mixture of the three sets mentioned 

above. 

The subassemblage of Fig-5.14 was also analysed assuming the 

original boundary conditions (i. e. hin. jed beaim ends and a roller 

support at the lower column end) but using the assumptions of small 

deflection theory. In other words, the displacement stiffness matrix 

that appears in eqn-3.22 is assumed to be identical to zero. Also, in 

calculating the strains at the element nodes, the non-linear term that 

appears in the expression for the axial strain (eqn-3-8) was neglected. 

The maximLm load in this case was found to be 522k11 which is about 4.5% 

below the Southwell load. The P-A curve for this case is shown in Fig- 

5.17 for ccmparison. Although the maximum load is closer to the 

Southwell load, the P-A curve deviates slightly from the experimental 

one. 

It is of interest to inspect the variation of the beam and 

column moments at the column's top end as the force in the column 

increases. Fig-5.18 shows such relationships. It may be observed from 

this figure that the beam moments start from very large values. This is 
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due to the application of rather small beam loads through large lever 

arms in the first load 
. 

stage. The maximum values of the beam loads 

were, in fact, slightly above 1ý of the failure load that was applied 

to the column. Due to symmetry of the applied beam loads, the column 

moment in the first staae was practically zero. As the column load was 

increased in the second load Staae, the column moment increased 

monotonically until failure of the column. The moment in the left beam 

decreased resulting in unloading of the left connection. The moment in 

the right beam stayed almost at a constant value keeping the right 

connection in a loading condition. 

5.4.4- Effect of Beam Flexibility: - 

The subassemblage of Fig-5-14, but with very large beam 

sections representing infinitely rigid beams, was analysed by the 

program to study the effect of beam flexibility on the maximum load and 

the load-deflection behaviour. The maximum load in this case was found 

to be 487kN. Comparing the maximum load obtained from the (original) 

analysis with this load suggests that the effect of beam flexibility is 

to reduce the maximum load by about 2.3. Z. It seems, therfore, that the 

beams are quite stiff as compared to the connection stiffness. 

Lui and Chen (66) made an attempt to include the effect of 

beam flexibility on the behaviour of rectangular frames with semi-rigid 

joints. He proposed a combined beam and connection stiffness, C 

expressed as 

2EI 

Lb 

-j 

2EI b! 
C. L I' j Di 

1 

(5-11) 



in which 

EI b= flexural rigidity of the beam 

Lb= beam span; and 

C. = initial connection stiffness J 

Eqn-5-11 applies only to rectangular frames in which the 

beams are bent in single curvature. The frame must be symmetrical and 

all the joints must be of similar characteristic3. The use of eqn-5-11 

permits the reduction of the frame problem to an equivalent column 

problem with end-restraints which may be dealt wi. th rather more easily. 

If the conditions at the far ends of the beams are different 

from those corresponding to the frame for which eqn-5-11 is applicable, 

a similar expression may still be derived. For the subassemblage of 

'he combined beam and Fig-5.14 with the far beam ends hinged, 

connection stiffness is Ziven by 

3EI b c 
3EI Lb 

b 
c j Lb 

(5.12) 

which is similar to eqn-5-11 except in the replacement of 2 bY 3 in the 

expression for the beam stiffness. 

For the subassemblagge of Fig-5.14, El b is 9400 kN. m2 and Ci 

is equal to 450 kN. m/rad. Hence using eqn-5.12 the combined beam and 

connection stiffness is found to be 429 kN. m/rad which is 95% of C. - i 

Here, only one beam at each column end was taken into account since the 

connection which connects the beam on the other side of the column has 

almost zero stiffness in the column load staga. Comparing the initial 

connection stiffness with the combined beam and connection stiffness, 

it may be seen that the effect of beam flexibility is very minor. This 



has already been pointed out from the comparisons of the maximum loads 

for the subasserablages with flexible and infinitely rigid bea; ms. 'Fnis 

low effect is due to the fact that the connection is very flexible when 

compared with the beam stiffness defined in this case as 

3EIb 

Lb 

5.5- Conclusions: - 

The computer program presented in chapter 4 was used to 

simulate some of the experimental results in which rigidly and flexibly 

connected frames were tested. Both axial and lateral column loads were 

considered in the simulations of the rigidly connected frames. Be am 

loads and an axially applied column load were applied to the flexibly 

connected frame. The analytical results were found to compare 

reasonably well with the experimental results. The program may 

therefore be regarded as acceptable for performing any additional 00 

analyses of rigidly or flexibly connected frames of the general type 

shown in Fig-5.1 or 5.14. 

It was pointed out in Sec-5.4.2 that the boundary conditions 

adopted in any test must be well defined in order that analytical 

procedures is able to closely simulate test results. In the next 

chapter a series of subassemblages with semi-rigid connections will be 

considered for further verification of the computer program. 
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PROGRAM VERIFICATION: PART II 

COMPARISONS WITH TESTS ON SUBASSEMBLAGES WITH SEMI-RIGID JOINTS 



6.1- Introduction: - 

In chapter-5, the computer program described in chapter-4 was 

verified for the analysis of a variety of cases including rigid frames 

and a semi-rigid frame. The agreement between the analytical and 

experimental results was seen to be acceptable. Although the rigid 

frames behaved inelastically, the se., ni-rigid one was elastic for almost 

the whole loading process. Furthermore, in this latter frame, the 

applied loads were limited to an axially applied loadin.. It is 

desirable to check the program performance in the cases where: 

(1) the loading pattern is more complicated as this is the case 

that would be encountered in real frames. 

(2) the frame (especially the colunn), behaves inelastically for an 

appreciable part of the loading process. This is also what 

might be expected in real frames. 

In this chapter, the program was used to analyse a series of 

subassemblages consisting of a column and four beams. The data for 

these subas sembl ages is taken from the results of an experimental 

program that was carried out in the University of Sheffield. Different 

types of semi-rigid joints were used. The M-ý curves for these 

connections was based on an experimental joint test series that was 

also conducted as part of the same investigation. A brief description 

of the joint tests and the smoothing of the M-ýD characteristics is 

given in Sec-6.2.1 and 6.1.2. In See-6.2-3, a description of the 

subassemblage test series is given. The results of the program analyses 

of the subassemblage series are presented and a discussion of the 

comparisons between the analytical and experimental results is given in 

See-6.3. 



6.2- Experimental Data: 

Two series of experimental tests were conducted by Davison 

(47,48,53) at the University of Sheffield. The first series consisted 

of tests on semi-rigid connections ranging from flexible web cleat 

connections to almost rigid extended end plate connections. The aim of 

this series was to experimentally determine the M-, ý characteristics of 

this range of connections. The second series included tests on full 

scale subassemblages to trace their behaviour up to failure. Each 

subassemblage consisted of four beams attached to a column by means of 

four se. -ni-rigid connections. The connections used in this series were 

of the same types as those tested in the first series. 

6.2.1- joint Tests: 

The joint test series included tests on connections of the 

following types (48,53): 

(1) web cleats 

(2) flange cleats 

(3) seat and web cleats 

(4) flush end plate 

(5) extended end plate 

Most of these connections were tested when attached to both 

column flanges and column webs i. e. for major and minor axis column 

bendina as shown in Table-6.1, which has been extracted from the more 

comprehensive table of ref 53. A cruciform test arrangement of the type 

shown in Fig-6.1 was used in which two beams were connected to two 

identical connections which were, in turn, connected to both sides of a 

short column. 254xlO2x22UB sections were used for the beams while 

152xl52x23UC sections were used for the column. Load cells were mounted 



Table-6.1 : Joint Tests 

Test Type of Connection Column Axis 
of Bending 

Connection 
Components 

JT/01B Web Cleats Minor 8Ox6Ox8 RSA 
JT/06 Web Cleats Major 80x6Ox8 RSA 
JT/07 Flange Cleats Minor top : 80x6Ox8 RSA 

bottom : 125x75x8 RSA 
JT/08 Flange Cleats Major t 0,0 : 80x6Ox8 RSA 
JT/08 bottom : 125x75x8 RSA 
JT/09 Web and Seat cleats Minor bottom : 80x6Ox8 RSA 

web : 125x75x8 RSA 
JT/10 Web and seat cleats Major same as JT/09 
JT/11 Flush End Plate Minor 265xl25xl2 MS plate 
JT/12 Flush End Plate Major 265xl25xl2 MS plate 
JT/13 Extended End Plate Major 350xl35xl5 MS plate 

Table-6.2 : Initial Joint Stiffnesses for the 

Considered P=-nge of Connections 

Connection 

Initial Stiffness 
(From smooth curves) 

x 105 N. m/rad 

Major Minor 

Web Cleats 84.4 101.6 
Flange Cleats 207.0 326.7 
Web and Seat Cleats 214.6 332.6 
Flush End Plate 319.1 424.2 
Extended End Plate 491.0 - 
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at the far ends of the beams to monitor the reactions at those points. 

Rotations at the faces of the column were measured using taught wires 

and linear variable displacement tranceducers (LVDT). A single load was 

applied to the column which was resisted by the reactions at. the two 

bea. m ends. The bendina moment at the connections was taken to be the 

result of multiplying the beam reactions by their lever arms (see Fig- 

6.1). A micro computer based data logging system was used to monitor 

the connection behaviour. 

The M-0 relationships for the connections mentioned above are 

shown in Figs-6.2 to Fig-6.10, from which it is clear that the left 

connection behaves differently from the right one in almost all tests. 

It is also noticed that, although the M-(D curves have general trends in 

which the joint stiffnesses are reducing over most of the range of 

rotations, they exhibit a high degree of 1OC21 irregularities. Such 

irregularities may include portions in which the slope is negative 

which is obviously, not acceptable in physical ter. r. i s. These 

irregularities are, in fact due to the experimental procedure and are 

explained in ref 53. 

6.2.2 Snoothing of the Mcment-Rotation data: 

As was pointed out in the previous section, the M-(D 

characteristics contained a high degree of local irregaularities. In 

order to use these data in theoretical studies, it is necessary to 

obtain the smooth M-ýP curves which exhibit the general trend of the 

experimental behaviour of the connections. The procedure adopted for 

smoothing the 14-0 data was to obtain a plot of the original 

(experimental) data points for both left and right connections on a 

single graph. A smooth curve can then be drawn such that it passes in 
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o--o Smoothed average 

10 20 30 40 50 60 
Rotation, rod x 10 

FIG. 6-7 MOMENT- ROTATION CURVES FOR WEB AND SEAT 
CLEAT CONNECTION TO COLUMN FLANGES 



M Pbeam::: 112-B kN. m 

Lef t connection 
Right connection 

0. ----o Smoothed average 

16 24 
-3 

32 
Rotation, rad. xl 

FIG. 6-8 MOMENT-ROTATION CURVES FOR FLUSH END 
PLATE CONNECTION TO COLUMN WEB 

Mp 
beam= 107-6 kN. m 

Left connection 
Right connection 

o-o Smoothed average 
10 15 20 25 

: 73 Rotation rad. xl 

FIG. 6-9 MOMENT- ROTATION CURVES FOR -FLUSH 
END 

PLATE CONNECTION TO COLUMN FLAýGES 



0 Left connection 

3 

(2) Right connection 
0----0 Smoothed average. 
III 

12ý2 9 15 
Rotation, r cid x 10-. 

FIG. 6-10 MOMENT- ROTATION CURVES FOR EXTENDED END 
PLATE CONNECTION TO COLUMN FLANGES 



between the two sets of points. In the cases where the connection was 

tested for loading and unloading behaviour e. g. the case of flange 

cleat connections to the column web, only the loading behaviour was 

considered. In some tests, slippage occurred in one of the connections. 

This resulted in large discontinuities in the M-0 characteristics. This 

sort of behaviour was disregarded by only considering the first and 

last points in the --ý)ecific discrepancy in question. The moments and 

rotations at any number of points may then be extracted from the smooth 

curve. To ensure that the slope is continuously reducing, these points 

may then be numerically represented by a B-spline curve fit from which 

the slopes at these points may easily be found. Small adjustments to 

the smooth curve are carried out if necessary. Particular care is 

needed in smoothing the early part of the M-(D data as this is the 

region of most significance for the analysis of actual frames. The 

smooth curve obtained from the final trial may then be numerically 

represented by a B-spline function and used in further frame analysis 

as required. 

The M-(D data for the series of connections mentioned in the 

previous section has been smoothed in the manner described above. The 

smoothed curves for all the connections of Table-6.1 are also shown in 

Figs-6.2 to 6.10. The curves for all connections attached to the column 

flanges are shown in Fig-6.11 while those for the connections attached 

to the column web are shown in Fig-6.12. These two sets of curves show 

the difference in the behaviour for these conditions. As the early part 

of any M-0 curve is the most important, the curves shown in Figs-6.11 

and 6.12 are reproduced in Fig-6.13 and Fig-6.14 to a larger scale for 

the range of rotations from 0 to 0.010 radians. It is noticed from 

these last two figures that, as expected, the connection performance 
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ranged from that of a very stiff one in the case of an extended end 

plate connection to that of a flexible web cleat one. Table 6.2 shows 

the initial stiffness for all the connections as obtained from the 

smooth M-(D curves. It is of interest to note that the connections are 

stiffer when connected to the column's web than when they are connected 

to the column flanges. This was also pointed out in ref 53. The reason 

behind this is the additional flexibility due to flange deformations 

present in the latter case. 

6.2-3- Subassemblage Tests: 

A series of nine tests on full scale subassemblaves of the 

type shown in Fig-6.15 were conducted (47,48). The subasse., -iblage 

consisted of four 1.5m long beams connected to a 6.5m long col=n by 

means of four nominally identical semi-rigid connections. The 

connections used in these tests were essentially the same as those 

tested in the first series. The beams were allowed to bend about their 

major axes while both major and minor axis bending was considered for 

the column, although for the former case bracing was employed to 

prevent out-of-plane deformation. The far ends of the beams were 

allowed to move vertically but were restrained against rotation; they 

therefore acted as one half of a beam of twice the span (47) 

Cross-sectional dimensions of each member were taken from 

measurements on specimens cut for each test. Table-6.3 presents the 

average cross-sectional dimensions as well as the static yield stress 

for the sections used in each test. All sections were thought to be 

cold-straightened since very low amounts of residual stress (less than 

30jJ/mm2 at the flange tips) were measured (47). This is also supported 

by the evidence of marks made by cold straightening -rollers. Initial 0 
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FIG. 6-15 THE TEST SUBASSEMBLAGE 



Table-6.3 Cross-sectional Dimensions and Tensile 

Strength of Test Specimens 

T t 
Sectional Dimensions Static Yield 

(N/ 2) St es 
D B t tf 

MM ress 

w 

ST2 151.51 152-34 6.08 6.27 290.0 
ST3 152.94 152-86 6.29 6.45 265.0 
ST4 153-16 152.62 6.46 6.61 273.0 
ST6 152-78 152-59 6.08 6.43 288.0 
ST7 152.28 152.24 6.07 6.29 278.0 
ST8 152.18 152.19 6.21 6.27 279.0 
ST9 152-37 152.03 6.27 6.21 271.0 
ST10 152.41 152.22 6.28 6.26 272.0 

* from ref 2 

** from column specimens only 

Table-6.4 : Subassemblage Test Series 

Connection 
Connection 

Column's axis 
Column's axis 

Applied Loads 

Test Type of bending - 
P Q, Q2 Q3 

ST2 Web Cleats Major X X 
ST3 Web Cleats Minor X X X 
ST4 Flange Cleats Major X X X X 
ST6 Flange Cleats Minor X X X 
ST7 Flange Cleats Minor X X 
ST8 Web and Seat Cleats Minor X X X X 
ST9 Flush End Plate Minor X X X X 
ST10 

ý 
Extended End Plate Major X X X X 



out-of-straightness was very small (2nim or less). 

Table-6.4 lists the series of tests th at were conducted. Also 

shown in this table are the type of connections used, the axis of 

bending of the column and the set of applied loads that were considered 

in each test. The general test procedure was to introduce a small 

colLLnn load of about 25 kN before the beam loads were applied in 

increments up to prescribed maximum values after which they were held 

constant while the column load was increased up to failure. Due to the 

very high degree of straightness of some columns coupled with symmetric 

beam loads, a small lateral load was applied at the centre of the 

column using a screw jack to produce initial deflections in the column. 

This load was maintained until the deflections in the column were large 

enough to permit to increase when the jack to be removed without 

retraction. 

Tests ST2 and ST3 were conducted on subassemblages with web 

cleat connections. The column was bent about its major axis in test 

ST2. Load was applied to the right hand beam gradually up to a maximum 

of 45kN. The column load was then applied while keeping the beam load 

a? proximately constant. A maximum column load of 631kN was reached when 

it was decided that the beam load should be increased again to bring 

the column to failure(47). As the coltznn load was applied via a screw 

jack this resulted in a modest reduction in the axially applied column 

load. The total load for this case was 632kN. In test ST3 minor axis 

bending was considered for the column. Equal beam loads were applied in 

the same manner as in test ST2. After the attainment of 43kN on each 

beam, the column load was increased up to failure. The total failure 

load (including beam loads) was 520kN. 

Tests ST4 and ST5 were conducted allowing the column to bend 



about its major axis using flange cleat beam to column connections. 

After the application of 25kN axial load, initial deflections were 

applied to the column of test ST4 using a screw jack. The maximum 

initial deflection at the centre of the column was 6.25mm. Two beam 

loads were then applied to a maximum of 110kN per beam. The last stage 

was to increase the column load to bring the column to failure at a 

total load of 762kN. In the pilot test ST5, lateral- torsional buckling 

was observed (47). For this reason, it will not be used herein. 

Two further tests were conducted using flange cleat 

connections. These are tests ST6 and ST7. In both these tests, the 

column was caused to bend about its minor axis. In test ST6, two beam 

loads of 41 and 44kN were applied to the top-left and top-right beams 

respectively after the application of the 25kN axial load. On the other 

hand, only one 40kN load. was applied to the top-right beam of test ST7. 

The column load was then increased to bring the column to failure in 

both tests. Total failure load for test ST6 was 518kN while that for 

test ST7 was 526kN. 

In tests ST8, ST9 and ST10 web and seat cleats, flush end 

plate and extended end plate connections were used respectively. Minor 

axis bending was considered for the column of tests ST8 and ST9. On the 

other hand, the column of test ST10 was bent about its major axis. In 

all these tests initial deflections were artificially induced in the 

same manner as in test ST4. In test ST8, the maximum initial deflection 

was 12.5mm. Two beam loads of maximum values of 67kN and 70kN were 

applied to the beams. The total failure load was 518kN. In test ST9, 

the initial central deflection was 5mm. Nearly symmetric beam loads 

with upper limits of 83kN and-85kN were applied. The maxim= failure 

load in this case was 485kN. The central initial deflection in test 



ST10 was 7.5mm. Two almost symmetrical beam loads of 120kN each were 

used. The column load was then increased while keeping the beam loads 

at the same levels for sometime. The beam loads were then reduced -to 

almost zero values- (at slightly different rates) while still 

increasing the column load. The maximum total load attained was 743kN. 

6.3- Comparisons of analysis with experimental results: - 

6.3.1- Load-Deflection Curves: - 

The subassemblage of FiO--6.15 was analysed by the computer 

program described in chapter 4 at least once for each. of the tests ST2 

to ST10. The M-, D curves used in these analyses were the smooth curves 

based on data obtained from the experimental joint tests as described 

in Sec-6.1.2. The same M-0 curves were used for all the connections in 

any one subassemblagge . even though the behaviour of the individual 

connections may differ slightly. The column and bea-m cross-sectional 

dimensions used in the analyses are shown in Table-6.3 and were 

obtained from measurements on a number of offcuts from the test 

specimens. Also shown in Table-6-3, is the static yield stress for each 

test. Although the beam sections may have different yield stresses 

(47), only that of the column section was used for the whole 

subassemblage. In all the experimental tests, the bean loads were 

applied in such a way that all beams remained well in the elastic 

region. Consequently, it was not important to use the measured yield 0 

stress for each beam. All sections were assumed to be initially stress- 

free. The distances from the column ends to the points where the 

connections were made are shown in Table-6-5. These distances vary 

slightly from test to test. In addition, the lever arms of the applied 0 

beam loads are shown in this table. 



Table-6.5: Beam loads lever ar-as and locations 

of beam-to-column connections 

Test Dimensions (mm) 

A B c D 

ST2 - 346 251 249 
ST3 333 343 250 250 
ST4 338 353 204 296 
ST6 335 335 210 290 
ST7 - 328 217 283 
ST8 342 348 217 283 
ST9 343 428 247 253 
ST10 336 431 220 280 

* See Fig-6.15 

Table-6.6 : Results of Subassemblage Analyses 

Applied Loads at Failure (kN) 

Total Column Load 
Case P Q Q Q 1 2 3 Analysis Experiment 

ST2 597.5 - 73.3 670.8 682.0 
ST3 452.5 41.0 44.0 537.5 520.0 
ST4 463.3 110.0 110.0 3.35 683.3 762.0 
ST6 510.0 41.4 43.0 - 594.4 518.0 
ST7 484.0 - 40.0 - 524.0 526.0 
ST8 362.0 67.0 70.0 1.50 499.0 518.0 
ST9 343.0 83.0 85.0 1.54 511.0 485.0 
ST10 403.0 93.0 1dO. 6 7.74 596.6 743.0 



Due to the adopted arrangement for the application of the 

axial column load in the experimental tests, a small amount of axial 

load eccentricity may be expected. For this reason, the column load was 

assumed to act at a small eccentricity of 2mm. The accuracy to which 

the initial out-of-straightness were measured in the columns also 

allowed for a reasonable estimate of the initial deflections to be 

accepted. Consequently, initial deflections with a sinusoidal shape and 

a maximum central deflection of 2mm were assumed. 

The load patterns assumed for the analysis of the above 

mentioned cases are shown in Fig-6.16. They closely simulate the actual 

loading patterns adopted in the tests. However, there was no 

information on the actual magnitude of the lateral load which was 

applied to the column in cases ST4, ST6, ST8, ST9 and ST10. Therefore a 

small variable lateral load was assumed for this form of loading which 

in each individual case gave a lateral displacement of the column at 

midheight correspond ing, to that measured in the test during the 

application of the jack force. The magnitude of this load was allowed 

to fall as axial loading proceeded. It could be seen from these 

patterns that, a small portion of this load was still present at the 

end of the analysis of each of these tests. This is in contrast to the 

experiments, in which the lateral load was removed before the 

attainment of the column maximum load. 

The analytical and experimental P-A curves for all of the 

cases are shown in Figs-6.17 to 6.24. Table 6.6 compares the maximum 

loads obtained from the analysis with those of the experiments for all 

these cases. It can be seen from these figures that the analytical P-A 

curves compare very well with the experimental curves in cases 

ST2, ST3, ST8 and ST9. The maximum loads were also satisfactorily 
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predicted by the program. The agreement was acceptable for cases ST4 

and ST1 0, although the maximum loads were not correctly predicted for 

these cases. The calculated failure loads for these two cases were 

found to be a result of numerical divergencies rather than true 

instability conditions. Although the maximum load was predicted with a 

good degree of accuracy in case ST7, the analytical P-A curve was not 

so good when compared with the experimental one. Perhaps, the worst 

comparison is that of case ST6. In this case, neither t he maximum load 

nor the P-A curve was correctly predicted. 

The beam loads used in the analysis of case ST6 were almost 

symmetrical. The lever arms were nominally the same and the maximum 

levels for these loads differed by only 3kN( less than 8%). It was 

expected, therefore, that there would be very small lateral deflections 

in the column. The relatively small lateral deflections observed in 

Fig-6.20 are , in fact, due to the assumed initial imperfections and 

the column load eccentricity. Some of the reasons for the discrepancy 

between the analytical and the experimental results in this case and in 

case'ST7 might be: 

1- The depth of the connection is comparable to the beam load lever 

arm. This may result in part of the beam load by-passing the 

connection and acting as a direct axial load on the column. This 

behaviour is illustr. ated in Fig-6.25. It is most pronounced in 

the cases in which flange cleats are used. 

2- The use of th(ý same M-0 curves for both left and right 

connections. This would lead to reducing the bending moment 

transmitted to the column as compared with any assumption of 

unbalanced connection behaviour. 
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FIG. 6-25 BRIDGI'NG EFFECT ON THE TRANSFER 

OF THE BEAM LOAD TO THE COLUMN 



3- 
. -The residual stress state in the colLrnn may not be the same as 

assumed (stress-free). Ref 47 reported. that some cross-sections 

did have some degree of residual stress, but that the overall 

tendency seemed to be that negligible residual stresses were 

present. Cold straightening may not have removed all the hot 

rolling-type residual stresses. 

4- The actual connections used may be more flexible than those used 

in the joint tests- some (small) degree of variability is 

inevitable. 

The subassemblage of case ST6 was re-analysed several times. 

In the first of these analyses, a small lateral load was applied at the 

centre of the column. The load was applied in a gradual manner in 

phases after the application of the 25kN column load. All other 

parameters were kept the same as described above. The effect of this 

load is to introduce more bending tc the column to compensate for some 

of the above mentioned reasons. The P-A curve for this case is shown in 

Fig-6.26 along with the experimental curve and the curve obtained from 

the original analysis of ST6. The maximum load has now dropped to about 

566kN, which is 9.3% in excess of the experimental load. The load- 

deflection curve is closer to the experimental one. 

In order to explore the effect of different M-, D curves on the 

behaviour of the subassemblage of test ST6, the subassemblage was 

analysed with two M-, D curves. The M-, ý relationship that was measured in 

the experimental test of ST6 for the top left and top-right connections 

were used to obtain two smooth curves for the two connections. The 

experimental points were plotted and a smooth curve was drawn so that 

it passes through one set of data. Particular consideration was given 

to make the slopes of the curves always descending. Again any 
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irregularities or unloading behaviour was not taken into consideration. 

Fig-6.27 show the experimental M-4) relationships as well as the smooth 

curves for the two connections. In addition, the smooth curve used for 

the original analysis of case ST6 is shown on the same figure. Clearly, 

the two curves inferred from the subassemblage test departed from each 

other at a rather low rotation levels. This would have the effect that, 

in an actual analysis, an amount of bending moment would transfer to 

the column forcing it to deflect more. It can also be seen from Fig- 

6.27 that both curves lie below the curve used for the original 

analysis of case ST6. This means that the two connections are weaker 

than those tested in the joint tests. This difference in strength, 

however, may be partly due to the fact that the connections are part of 

a flexible subassemblage as opposed to the joint test arrangement. All 

other parameters were assumed to be the same as those assumed for the 

original analysis of case ST6. The mAximum load for this case was about 

570k11. Another analysis was performed on the same subassemblage but 

with residual stresses assumed present in the column. A parabolic 

variation was assumed for these stresses with a maximum compressive 

stress at the flange tips of 0-3a 
y. 

This pattern of residual stresses 

is similar to that suggested by Young (57), but is slightly less 

severe. The maximum load dropped to about 530kN, which is in excess of 

the experimental load by less than 2.5', v'. The P-A curves for th, ts.. I&St 

analysis as well as the experimental one are shown in Fig-6.28. 

It is evi4ent fromthe above analyses on case ST6 that the 

level of uncertainty in the input data to the subassemblage analysis is 

sufficient for it to have a significant result on the behaviour of the 

subassemblage. These results also show that it is not always possible 

to exactly simulate. experimental tests. 
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A further analysis was carried out on the subassemblage of 

test ST7. In the same way as was done for case ST6, a small lateral 

load was applied to the column. All other parameters were the same as 

for the original analysis. The P-A curve for this case is shown in Fig- 

6.29. The comparison with the experimental curve was qu ite 

satisfactory. The maximum load was about 3.5; below that obtained 

experimentally. 

6.3.2- Colu: mn axial load - column noment (P-M) Cur-ves 

It is of interest to study the distribution of moments at the 

top end of the column at various stages during the loading sequence. 

Such a study should assist in understanding how much moment is 

transfered to the column during the loading process. The most important 

load level at which this distribution is needed, is clearly immediately 

prior to failure of the column. For ' simple construction, BS5950 (1) 

requires that the column be designed for the maximum axial load 

together with a moment given by the product of the beam reaction and an 

eccentricity of 100mm measured from the face of the column flange or 

the column web depending on whether major or minor column bending is 

being considered. Another reason for the importance of studying the 

beam P-M curves is that with these curves it is possible to know when 

the connections unload or reload. This is because the variation of a 

bean moment dictates the behaviour of the connection which is connected 

to the beam since the moment in the connection must be equal in 

magnitude and opposite in sign to the bearn moment. A connection would 

either load, unload or reload depending on the variation of the joint 

moment. 

Figs-6-30,6.31, and 6.32 show the P-M curves for the top 

-188- 
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left beam, top right beam and the top column moments of the 

subassemblages of tests ST4, ST8 and ST9. Both' the analytical and 

experimental curves are shown in these figures. Very good agreement 

between the two sets may be observed in each case. The general trend of 

the curves was correctly predicted by the analysis. It should be noted 

that the, experimental column moments correspond to points situated 

about 250mm below the connection level. The P-, M curves for most of the 

other cases also have acceptable comparisons for the moment variation 

in at least one of the three components. For example, the P-M curves 

for the left and right beams compared well with those obtained from the 

experimental results of test ST6 (Fig-6-33). The column moment, 

however, seems to reverse in direction as failure is approached. 

Similar observations are noticed for case ST7 (Fig-6.34) in which the 

column moment changed sign as the column load increased. The magnitudes 0 

of the predicted and measured moments are not satisfactorily close. 

Returning to Fig-6-33, it may be noticed that the 

experimental column moment fluctuated about zero up to a column force, 

of 400kN. The maximum moment in the column in this region was not more 

, than 0.5kN-m. This is due to the approximately symmetrical beam load 

which should not produce any moment in the column. The small moments in 

this region are probably the result of the slightly different behaviour 

of the left and right connections and initial imperfections e. g. lack 

of straightness of column. This observation raises a question as to 

whether the sudden increases in the"lateral deflections in the column 

(Fig-6.19) are genuine or not. If it is accepted that these increases 

are not true, then they should be omitted. Probably, these sudden 

increases are caused by a slight tendency to move laterally, restrained 

by small frictional forces in the bracing system etc. resulting in C) 
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jerky movements as frictional resistance builds up and is then 

overcome. Consequently, the analytical P-, & curve of case ST6 (Fig-6.28) 

in which residual stresses were assumed to be present, may readily be 

accepted. 

Fig-6.35 shows-the P-M curves for case ST7 in which a lateral 

load was applied to the column. It is readily seen that the column 

moment has a completely different pattern from that of the experimental 

one. This suggests that in this instance the application of a lateral 

load to the column is not the solution for the discrepancy encountered 

in Fig-6.20. Once more, the same explanation that was suggested for the 

sudden movements in test ST6 may be offered here, since both the P-A 

curves for the two cases contain sudden movements. As the maximum load 

for this case was predicted with a good accuracy, it seems that the 

assumption of no residual stresses was correct. 

Table-6.7 shows for each 8f the cases ST2 to ST10, the 

maximum load (including beam loads) and the corresponding column moment 

obtained from the analysis and the experimental test. In addition, the 
;n 

column moments recommended by BS5950 are shown this table. According to 

.. 
this latter source, the column moment is taken as the result of 

multiplying the beam reaction and an eccentricity e given in mm. by 

e=R+ 100 for major axis column bending (6.1a) 
2 

t 
100 + --ýi for minor axis column bending (6. lb) 

2 

for the cases in which other than"C2P plates are used. In the case of 

plate connections such as flush or extended end plates, the 

eccentricity e is given by 

e=2+t for major coltrnn bending (6.2a) 
2p 
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Table-6.7: Total Column Loads and Column Moments at the 

Maximum Load 

Analysis Experiment B35950 
Case 

P NN) M (N-m) P W) M (N-M) P (kN) M (N-m) 

ST2 670.5 736.0 675.6 - 670.5 14069.0 
ST3 537.5 4980.0 519.9 4363.0 537.5 1205.0 
ST4 683.3 3041.0 762.0 802.0 683.3 927.0 
ST6 594.4 4992.0 520.3 3233.0 594.4 1180.0 
ST7 524.0 5275.0 526.4 2298.0 524.0 4968.0 
ST8 498.7 6353.0 518.3 5415.0 498.7 1024.0 
ST9 511.0 5586.0 486.5 11286.0 511.0 686.0 
ST10 596.5 8185.0 742.8 26955.0 596.5 1385.0 

* moments are based on beam loads used in the analysis 

** including an axial load eccentricity of 2mm 



t 
t+w for minor column bending (6.2b) 
P2 

In the above equations, D is the depth of the cross-section of the 

column, tw is the thickness of the web of the section and t is the 

thickness of the packing material if used. In the calculations leading 

to the values reported in Table-6-7, tp and tw were neglected. A column 

load eccentricity of 2mm was used. It has to be noted that experimental 

column moments correspond to points which are slightly offset from the 

beam and column intersection. 

It is seen from Table-6.7 that the recommended values of the 

column moments in the case of nearly balanced beam loads were grossly Q 

under-estimated. The analytical moments are, in general, higher than 

the experimental ones. All of the results shown in Table-6.7 correspond 

to the maximum loads for which there may be some difference between the 

analysis and the tests. Fig-6.36 shows the interaction between the 

nondimensionalized total column load and the nondimensionalized column 

moment for the cases considered. The nondimensionalized column load was 

obtained by dividing the total load by the critical load defined as the 

less of the squash load and the Euler load for the column in 

consideration. The plastic moment of the column's section was used to 

nondimensionalize the column moments. It is clear that the experimental 

results are more scattered than the analytical ones. 

Although it is difficult to draw reasonable conclusions from 

this figure, since the number of cases is small, a few points may be 

made: 

1- The BS5950 recommendations seem to be too conservative for cases 

where there is load on one beam only but may be unconservative 

in cases where balanced beam loads are used, regardless of the 

-199- 
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actual moment arms. For the cases considered above, BS5950 

ignores the actual lever arms of the beam"load. In cases of one 

bean load only, BS5950 seems to ignore the fact that some of the 

moment produced by the beam load is shared between the two 

connections meeting at the column. Only the difference between 

these moments transfers to the column end. 

2- The theoretical and test column moments are more consistent for 

most of the cases. It can be seen from the P-M curves that the 

test moments change very rapidly near the maximum load. This 

explains the difference in moment in some cases. 

3- The allowance for the bean, reaction suggested in B35950 is 

oversimplified. As mentioned above, load lever arms and 

connection stiffness were not taken into account. 

4- A more comperhensive study covering the main parameters is 

needed as a basis for a more realistic design allowance for the 

moments transferred from bearns into column by semi-rigid 

connections. 

. 6.4- Conclusions: - 

The computer program described in chapter 4 was used to 

simulate a series of I-shaped subassemblages that were tested at the 

University of Sheffield. Most of the parameters describing the 

experiments were accurately known. If insufficient information was 

available on a parameter, a judgement was made for the most appropriate 

value. Comparisons were made between the analytical and experimental 

results characterized by the maximum loads, load-deflection curves and 

load-moment curves. Good agreement was obtained between the analytical 

and the experimental load-deflection curves for all of the cases 



considered. The general trends of the measured and calculated load- 

moment curves for most cases were found to be comparable. 

It was pointed out that it is difficult to exactly simulate 

an experimental result. This leads to some disagreement in certain the 

cases. However, by changing selected input parameters (whose values 

were known precisely) such as residual stresses, it was possible to 

arrive at better agreements. 

The recommendations given in BS5950 for the design of columns 

in simple construction were applied to all the cases under 

consideration. It was found that these were unconservative in the cases 

of balanced loading and conservative in the cases of unbalanced loads. 

However, more cases should be considered to verify this finding. A 

parametric study is to be presented in chapter 7 and further 

comparisons with the BS5950 recommendations will be made therein. 



CHALPTER-7 

PARAMETRIC STUDY 



7.1- Jbitroduction: - 

In chapters 5 and 6, the computer program described in 

chapter 4 was used to simulate sane tests in which the behaviour of a 

variety of frames was determined experimentally. Frames with both 

flexible and rigid bearn to column connections were considered in the 

simulations. The results obtained by the program were found to be 

reasonably close to the experimental results. It was also noticed that 

the presence of semi-rigid joints has an important influence on the 

behaviour of the flexible frames. Some of the design recommendations 

for including the effect of semi-rigid joints were checked against the 

analytical and experimental results. It was concluded in chapter 6 that 

the behaviour of flexible frames should be investigated more thoroughly 

in order to be able to assess the recommendations given in the B35950 

for the design of columns which are part of flexible frames. 

In this chapter, a limitea parametric study of the behaviour 

of subassemblages with semi-rigid joints is presented together with a 

discussion of the results obtained frcm this study. The computer 

program mentioned above was used to produce these results. The three 

most important parameters considered in this study are: 

(1) presence of semi-rigid beam-to-coLumn connections; 

(2) presence of flexible beams; and 

(3) type of applied loads. 

A description of the parametric study is presented in the 

next section. The results obtained from the study are then discussed in 

See-7.3. Finally, an attempt to incorporate the findings from the study 

in design recommendations is given i; i See-7.4. 



. 
7.2- Dýscription of Paranetric Study: - 

The parametric study involves the analysis of the 

subassemblage shown in Fig-7.1 It consists of a column and four beams 

connected to the column by means of four identical connections. Major 

axis bendin- was considered for all members of the subassembla-e. The 

column was a 152xl52x23UC section while the beams were 254x151x22UB 

sections. The material of all members'of the subassemblage was assumed 

to possess an elastic-plastic stress-strain relationship with strain 

hardening as shown in Fig-7.2a. This type of behaviour is generally 

acceptable for most steels. The yield stress, Ily was taken to be 

285N/UM2. A value of 21OkN/mm2 was assumed for the modulus of 

elasticity, E and the yield strain, CY was therefore ay /E = 0.00136. 

Strain hardening was assumed to start at a strain, c sh= 
1 OE: 

y with a 

strain-hardening modulus, E 
sh of lOkN/mm2. A residual stress pattern of 

the type suggested by Young (57) and shown in Fig-7.2b was assurned. for 

all sections. A half sine wave with an amplitude of L/1000 was assumed 

for the initial deflections in the cuiumn. 

Three types of semi-rigid connection were considered and 

. 
these are 

(a) extended end plate connections; 

ge cleat connections; and (b) fl ang 

(c) web cleat connections. 

The M-q) characteristics for these types of connections were based on 

tests made on similar connections at the University of Sheffield shown 

in Fig-6.11 and described fully in Sec-6.2. In addition to the above 

types of connections, rigid and pin joints were considered as they 

represent the extreme boundaries for connection stiffness. To study the 

effect of beam flexibility, beams with spans of 1.5m, 3-Om and 4-5m 
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were considered. All beams in any one subassemblage have the same span. 

In addition, an isolated column (with connections made to infinitely 

rigid beams) was considered for comparison. 

The present study consists of two series of analyses. Table- 

7.1 summarizes the variations of the main parameters in these series. 

The first series was intended to study the behaviour of columns as part 

of a frame under the action of column loads only. Column strength 

curves were constructed and used to study the effect of the main 

parameters such as the type of connections used. Only column load was 

applied up to failure of the structure. Column height was varied 

between 2m and 14m giving slenderness ratios. between 30 and 220. A 

total of 102 analyses were performed. Thirty analyses (five for every 

column slenderness ratio) correspond to an isolated column. All five 

types of end restraints mentioned above (i. e. rigid, extended end 

plate, flange cleat, web cleat and pin joints) were considered in this 

series. In these analyses, two beams with very large sections and 

relatively small span were assumed to be attached to each column by the 

connections under consideration (see Fig-7-3). Corresponding to 

subassemblages with each of the beam spans mentioned above, 24 analyses 

(four for each column slenderness) were performed. In this way, it is 

possible to differentiate between the effects of the connection type 

and the beam flexibility on the behaviour of the column. 

The second series of analyses studied the behaviour of 

subassemblages under the action of column and beam loads. The presence 

of beam loads introduces primary bending action into the column. One of 

the most important problems raised by this type of loading is the 

transfer of manents from the beams to the column. This is particularly 

true if flexible connections are used since the M-(ý characteristics of 



Table-7.1: Main Parameters in the Parametric Study 

Series of Analysis 
Parameter 

"Column Load Only" "Column and Beam Loads" 

Rigid Rigid 

Extended End Plate Extended End Plate 

Connection Type Flange Cleats Flange Cleats 

Web Cleats Web Cleats 

Pins - 

Beam 33an (m) 0.0,1.5,3.0,4 .5 1.5,3.0,4.5 

(1)Beam load Q: 

Applied Loads Column Load Only Q= 0,30,60,90 

and 120 kN 

(2)Column Load P 

Column Slenderness 31,62,103,140, 78 and 140 

ratio 180 and 218 
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these connections dictate this sort of moment transfer. The importance 

of moment transfer lies in the fact that it is essential to know the 

moment for which the column should be proportioned; this is probably 

the moment coexistant with the axial load at collapse. As may be seen 

from Table-7-1, four types of beam-to-column connections were used. 

Column heights were restricted to 5m and 9m. All beams were asstzned to 

have a span of 4.5m. The loading pattern (Fig-7.4) is divided into two 

stages: 

(i) in the first stage, the beam load was increased from 0 to a 

maximum value of either 0,30kN, 60kN, 90kN or 120kN. 

(ii) in the second stage, the column load was increased up to failure 

of the subassemblage. 

7.3- Discussion of Results: - 

7.3.1- Column Strength Due to Axial Load Only: - 

7.3-1.1- Column Strength Curves: - 

Column strength curves were constructed from the results of 

the an alyses of the first series and provide a means for understanding 

-the effects of different parameters on the ultimate strength of axially 

loaded. columns. Fig-7.5 shows the column strength curves for the 

isolated column. The effect of end restraint may readily be seen. A 

rather wide band of curves is noticed in this figure suggesting that 

there is a pronounced difference between the strengths of a pin-ended 

column and a restrained one. Even for the most flexible web cleat 

connection, the column curve is much higher than that corresponding to 

a pin-ended column. It can be seen from Fig-7-5 that the column 

strength curves for extended end plate connections and rigid joints are 

very close. Thus it would appear that extended end plate connections 
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may be considered to be fully rigid. Figs-7.6 to 7.8 show the column 

strength curves for the subassemblage with beams of different beam 

spans together with the column strength curve for a pin-ended column 

for comparison. Similar observations may be made from these figures. In 

general, the rate of increase in column strength tends to decrease with 

increasing connection stiffness. Flat portions extending up to a 

slenderness ratio of about 40 are recognized in all curves which 

correspond to cases in which the column was not pin-ended. A shorter 

plateau is recognized for the pin-ended column. These portions indicate 

that the full squash load was obtainable before a condition of 

instability occurred. The effect of end restraints is to make these 

plateaus longer i. e. it extends the range of slenderness ratios for 

which the column may sustain the full squash load. 

Shown in each oC Figs-7.9 to 7.12 are the column strength 

curves for subassemblages with different beam spans. These figures 

correspond to rigid, extended end plate, flange cleat and web cleat 

connections res? ectively. For comparison, the column strength curve for 

the column connected to infinitely rigid beams is also shown in each of 

_these 
figures. A few observations may be made from these figures: 

M in the cases where rigid or extended end plate connections were 

used, there seems to exist a linear relationship (i. e. constant 

rate) between the beam span and the ultimate strength of the 

structure. 

(ii) in the cases where more flexible connections were used, the 

effect of beam flexibility seems to decrease as beam span 

increases. 

(iii) the band width of the set of curves corresponding to the 

various be am spans decreases when using more flexible 
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connections. 

These observations may be explained on the basis of Table- 

7.2. In this table, the combined beam and connection restraint ,C 

for all types of connection and beam span used are given, where 

EI- r- hII 
C =--i 

I 

1+ 
11E Ib 

b j, 
L- -i 

(7.1) 

in which 1b is the clear span of the beam (hence in the case of the 

column bending about major axis, 1b is equal to the beam span less-balf 

the depth of the column section). The derivation of this expression may 

be found in Appendix A. The initial stiffness, Ci, of the connections. 

was used in eqn-7-1. 

To explain the first and second observations, attention may 

I be directed to the valaes of the ratio, R, given by 

CL 

EI 
(7.2) 

, This ratio, which is a measure of the effectiveness of the continuity 

of the connection, variBs between 0.92 to 0.97 for the extended end 

plate connections and between 0.67 to 0.86 for web cleat connections. 

In the case of the form.! r, almost the full beam stiffness is used in 

all cases. Gonsequently, for the sa-me column height, the ultimate 

strength is controlled by the beam span since the the beam rigidity, 

EI, is constant (assuming that the bearns do not yield which is a valid 

assumption for the cases of axial load only). In other words, the 

column strength is mAnly controlled by the beam span. In the second 

type of connections, th. 3 ratio R is much lower than unity and the range 
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Table-7.2. - Initial Stiffness for the Connections 

Used in the Parametric Study 

EIb 
Connection C Lb C R 

Lb 
Type X105 N. m/rad (M) X105 N. M X105 N. m 

0.0 cc CO 1.0 

1.5 40.9 40.9 0.0 

Rigid CO 3.0 20.45 20.45 0.0 

4.5 13.63 13.63 0.0 

0.0 00 491.0 0.0 

Extended 491.0 1.5 4a. 9 37-75 0.923 

End Plate 3.0 20.45 19.63 0.960 

4.5 13.63 13.26 0.973 

0.0 Do 207.0 0.0 

Flange 207.0 1.5 40.9. 34.15 0.835 

Cleats 3.0 20.45 18.61 0.910 

4.5 13.63 12-79 0.938 

0.0 co 84.4 0.0 

Web 84.4 1.5 4o. 9 27.55 0.674 

Cleats 3.0 20.45 16.45 0.804 

4.5 13.63 11-73 0.861 

Pins 0.0 0.0 CO 0.0 0.0 



I 

is much greater. The effect of connection flexibility is pronounced in 

this case. Comparing the ratios for this case, it is seen that the 

difference between successive values tends to be smaller. Hence the 

effect of the beam stiffness decreases with increasing beam span when 

using flexible connections. 

It is seen from Table-7.2 that the C values range from 13.63 

to infinity for the rigid connections while those for web cleat 

connections fall between 11-73 and 84.4. This means that the range of 

effective end restraint is much narrower in the case of web cleat 

connections. Consequently, a narrower band width is obtained. 

7.3.1.2- Effective Length Factor: - 

When designing a column which is either restrained or is a 

part of a frame, it is common to modify this column to an equivalent 

pin-ended one with an "effective* length" (1,2). The ratio of the 

effective length to the original length is the effective length factor. 

Following is a description of four methods for evaluating the effective 

length factors for restrained co. Lumns. These methods will be referred 

, 
to as: 

. 
Modified AISC approach: wnich is based on the use of alignment 

charts in conjunction with special 

distribution factors. 

Modified BS5950 approach: wnich is similar to "the modified AISC 

Approach" in that special charts are used 

in conjunction with special stiffness 

distribution factors. 

Chen and Lui approach: in which the effective length factor is 

calculated using an empirical formula 
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I 

suggested by Chen and Lui; and 

Proposed approach: which is based on the present series of 

analyses and is outlined below' and 

explained in more detail in Appendix B. 

The Modified AISC Approach: - 

The AISC specifications (2) recommends that the effective 

length factor for a column in a rigid frame be determined from 

alignment charts if the stiffness distribution factors, G top and 

G bottom' for the specific column under consideration are known. The G 

factors are calculated as 

EI 2: 
LC 
c 

ct 
EIb 

Lb 

(7-3) 

where 

E= modulus of elasticity of the material 

I= second moment of area of' cross section 

=a factor depending on the restraint at the far ends of the 

beams; and 

b and c are suffices which refer to beam and column respectively. 

Eqn-7-3 is valid for elastic rigid frames. Yura (67) proposed a method 

for including column inelasticity in eq-7-3. An effective column 

stiffness, which corresponds to the failure load is used instead of the 

elastic value. Consequently, eq-7.3 may be rewritten as 



(E Ic) 
eff 

L 

inel EIb 2: 
u Lb 

(7.4) 

where (EI 
C) eff 

is the effective flexural rigidity of the column. 

Yura suggested that the effective column stiffness be 

calculated as 

(EI deff ': Ic . Et (7-5) 

in which Ic and Et are the moment of inertia of the column's cross 

section and the tangent modulus respectively. He pointed out that the 

tangent modulus may approximately be given by 

F 
Et = E. a 

I F 
e 

(7.6) 

I 
where Fa is the allowable compressive stress for the column and Fe is 

the Fuler critical stress calculated as the Euler load Pe divided by 

the cross sectional area for the column A. It follows from eqns-7.5 and 

-7.6 
that 

(EI 
c)eff ý EI - C 

(7-7) 

The procedure just outlined is related ta the working stress design. As 

the current generation of steelwork codes are in limit state and the 

ultimate load conditions are more relevqnt, the term F IF' in eqn-7.7 ae 

may be replaced by Pu /P 
e 

where PU is the ultimate load for the column 

under consideration. Hence eqn-7.4 may be rewritten as 



EI % 2: 
Le *Pe 

G 
inel EIb 

u Lb 

(7.8) 

P u 

P 

e 

Both eqs-7.3 and 7.8 are applicable to rigid frames only. 

Chen and Lui (66) proposed a procedure for incorporating the effect of 

flexible connections. He derived an expression for a combined beam and 

connection stiffness, C for a rectangular closed frame. The 

expression for C is 

Ib 
L, =- 

j Lb 
L- -j 

:I 
L*b 11. 

-- 
EI b 

(7-9) 

in which Ci is the stiffness of the connection. This expression may 

vary slightly for other types of frames. For the subassemblage of Fig- 

J-1, the expression for C* is given by eqn-7-1. This equation is the 

same as eqn-7-9 except for the absence of the factor 2. The C values 

may be used instead of the beam stiffness in eqns-7.3 or 7.8. Hence, 

eqn-7.8 may be written as 

EI % 

L *P 
ce 

inel 2: c 

The Modified BS5950 Approach: - 

BS5950 (1) recommends some values for the effective length 
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factors for columns in some single storey non sway structures which are 

considered to be of "simple cons truct ion". It recommends the use of an 

effective length factor of unity for the simple structures not covered 

in these cases. The standard also recommends an approach in which the 

effective length factors may be determined for coltrnns in rigid frames. 

The approach involves the calculation of stiffness distribution 

factors, k top and kbottom given by 

r, 
It- - 
. 1i - 

where 

Tkc+ 7- 
kb 

(7-11) 

i= end number 0 for top and 2 for bottom) 

kc = column stiffnessýf 
c c 

kb = beam stiffness, L 
1) 

and the summation means that contribution of similar elements meetinc., 

at the joint in consideration are added. With the values for k top and 

k bottom in hand, the effective length factor may be determined from 

specially prepared charts (1). 

In line with the modifications made on eq-7-3 for the 

inclusion of connection flexibility and inelastic behaviour of the 

column, eq-7-11 may be modified to the following form 

EI 

k. = 1 EI P 2: 2: 
Lc% 

2: 

(7-12) 

where C is given by eq-7.1. 



The Chen and Lui Approach: - 

Based on analytical results, Chen and Lui (66) proposed a 

formula for calculating the effective length factors for inelastic 

isolated columns with semi-rigid joints. The proposed formula is 

k=1.0 - 0.017 ý for a4 23 (7-13) 

= 0.6 for a> 23 

where a is given by 

C. 
J (7-14) m 

PC 

in. which M is the plastic moment for the column cross section. PC 

Once again, beam flexibility may be accounted for by the use of C* 

instead of Ci in eqn-7.1-4(66,68), otherwise applying eqn-7. ). 3 in the 

same manner as before. 

In arriving at eqn-7-14, Chen and Lui defined the effective 

length as that length (slenderness) which gives, on the basic column 

curve for pinned ends, the same strength as the failure load for the 

actual column with its actual end restraints (66,68). Hence, referring 

to Fig-7-12, the effective length factor is expressed as 

ýp 

Xr 
(7*. 15) 

where 1ý and ; Ir are the slenderness ratios corresponding to pinned ends 

and restrained columns respectively. 

The Proposed Ppproach: - 

The effective length factors for the cases considered in the 

present study were calculated in a manner similar to that used by Chen 
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and Lui in their studies which led to eqn-7-13 but using the column 

strength curves shown in Figs-7.5 to 7.8. A typical example of the 

procedure may be found in Appendix B. 

Comparison of the Effective Length Factors Computed by the Above 

Approaches: - 

Table-7.3 shows the effective length factors calculated by 

the four methods described above. The ultimate strengths for the 

sixteen columns considered in the present study were calculated using 

each of the four approaches mentioned above.. Figs-7-13 to 7.16 show the 

correlation between the actual and the estimated column strengths for 

the columns considered in the present study for the four methods 

described above. It is clear from these figures that the ultimate 

strength estimations using the "proposed approach" seem to be the most 

reliable. All other approaches seem to be less satisfactory. 

Returning to Table-7-3, and assuming that the values given by 

the proposed approach are correct, it may be observed that both the 

"modified AISC approach" and the I'modified BS5950 approach" seem to 

give rather unconservative values for the effective length factor 

'although 
the former one seems to give acceptable estimates for the 

subassemblages and the isolated columns with rigid joints. The "Chen 

and Lui approach" produced conservative values for k for the stiffer 

connections (too conservative in many cases). On the other hand, it 

produced unconservative estimates for k for the cases where web cleat 

connections were used. It must be noted that both the "modified AISC 

approach" and "modified BS5950 approach" are based on the initial joint 

stiffness and hence ignore the reduction in joint stiffness at hi. -her 

load values. Although the "Chen and Lui approach" is based on column 

strength curves based on analytical results in which bi-linear 



Table-7.3: Comparison of Effective Length Factors 

Calculated by Different Methods 

Procedure 

C Proposed Modified Modified Chen and Lui 

X105 Approach AISC BS5950 Approach 

N. m/rad Approach Approach 

CO 0.5 0.5 0.5 

491.0 0.5 0.5 0.5 o. 6 

207.0 0.519 0.503 0.5 o. 6 

84.4 0.627 0.507 0.502 0.6 

4o. 9 0.517 0.514 0.506 - 

37-75 0.52 0.514 0.507 o. 6 

34.15 0.542 0.516 0.508 o. 6 

27-55 0.645 0.52 0.51 o. 6 

20.45 0.542 0.526 0.513 

19.63 0.546 0.527 0.514 o. 6 

18.61 0.568 0.529 0.515 o. 6 

16.45 0.664 0.533 0.517 o. 6 

13.63 0.57 0.539 0.52 

13.26 0.574 0.54 0.521 o. 6 

12-79 0.593 0.542 0.522 o. 6 

11-73 0.681 0.545 0.523 0.613 
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representation for the connection behaviour was used, column failure 

usually corresponded to the first part of the M-4) curve for the 

considered connection. The "proposed approach", on the other hand is 

based on actual column curves which were based on analyses in which the 

reduction in joint stiffness was taken into account. 

The variation of the estimated k-values using the "proposed 

approach" with the combined beam and connection stiffness, C is shown 

in Fig-7-17. The effect of the beam to column connections may readily 

be seen from this figure. Careful consideration of the figure may also 

reveal the effect of beans on the effective length factor. All points 

which were made in the previous section may be observed from this 

figure. 

Fig-7-18 shows a plot between the the estimated effective 

length factor and the non-dimensional quantity, C /C 
i 

for the same 

cases of Fig-7-17. The isolated coludn cases were not shown in Fig-7-18 

as the quantity C IC, 
j 

would always be equal to one no matter what type 

of connection is'used. The relation between k and C /C 
i 

seems to be of 

a smooth nature. It was found that these relations may be closely 

approximated by quadratic equations in C /C. of the form 
Ii 

* 
ab (7-16) 

where a, b and c are constant which seem to depend on the beam span. 

The constant a was found to be the effective length factor for the 

columns in rigid subassemblages. Constant b was found to vary from a 

negative value of -0.09 for a beam span of 1.5m to a positive value of 

0.02 for a beam span of 4.5m. The second term was found to be 

reasonably small in all cases and could be neglected. The third 

constant c was found to vary non-linearly with the beam span. The 

-228- 



c 
E 
:3 

%. d -. -. - 

. 5' 
tn tn th 

U) 

V 
6 

--T 

t-- t-- ý- 
0 CJ C) c 
(1) (1) (1) a) 

-0-0-0 

ýEEE 0 Lr) C: ) LI) 
C; ) 

0 

El < 

--r- ce; 

L) 

I 

(0 
cD 



0-8 

0-6 
m 
c 

ai 0-4 

Lu 0-2 

* 1.5m Beams 
* 3-Om Beams 
* 4-5m Beams 

ol II 

0 0-2 0-4 
ci /cj 

FIG. 7.18 EFFECTIVE LENGTH FACTORS Vs C-? ' 
J, 

/C 
i 

Effective length factor : Present approach 

FIG. 7-19 CORRELATION BETWEEN EFFECTIVE LENGTH FACTORS 



relation, however, was found to be close to a straight line. A linear 

relationship of the form 

a=1.1333 Lb (7-17) 

was found to approximate the c vs. Lb relationship in which Lb is the 

beam span in metres. Fran eqns-7-16 and 7.17, the effective length 

factor for the column in the subassemblage of Fig-7-1 may be 

approximated by 

* 
k=k 

rigid + 1.1333 Lb (CC. ) 

i 
(7.18) 

Fig-7-19 shows the correlation between the estimated effective length 

factors shown in Table-7-3 (proposed approach) and those calculated 

from eqn-7-18. There seems to be a good correlation between the two 

sets of values. Eqn-7-18 may thus be accepted for calculating the 

effective length factors for columns in "flexibly connected 

subassemblages. The effective length factors for columns in rigid 

subassemblages may be calculated by the "modified AISC Approach". It 

must be noted, however, that the present study is rather limited both 

in the variety of parameters that may affect the behaviour of 

subassemblages and in the variations in the parameters considered. For 

instance, minor axis bending for the column may be an extra parameter 

that may be included in a more comprehensive study. More connection 

types, especially flexible ones should be included to confirm the 

validity of eqn-7.18. 



7.3.2- Subassenblage Strength Due to Combined Column and Bean Loads: - 

7.3.2.1- Interaction Curves: - 

It is common to illustrate the failure conditions of a 

subassemblage due to combined beam and column loads in the form of 

interaction curves. The interaction curves for the subassemblage of 

Fig-7-1 are shown in Fig-7.20 for the different connection types and 

column lengths considered in the present study. These curves describe 

the relation between the total force in the column and the column end 

moment at the failure condition. The points on each curve (which 

correspond to a specific connection type) relate to a certain maximum 

value for the beam load and. each is representeed by a different symbol 

as indicated in the legend of Fig-7.20. For instance, the case 

corresponding to a beam load of 30kN and rigid beam to column 

connections represented by *. Solid lines correspond to 5m columns 

while broken lines correspond to gm columns. 

The following observations may be made from this figure: 

M The moment at the column's end at the failure condition due to 

column load only is substantial. This is in contrast with the 

isolated pin-ended column cases in which the interaction curve 

starts from the vertical axis (i. e zero moment condition). The 

presence of end restraint offered by the beams and the 

connections is responsible for this behaviour. 

(ii) The interaction curves corresponding to the 5m long column are 

less scattered than those corresponding to the gm long column. C> 

Excessive yielding in the 5m column may be regarded as being 

the reason behind this behaviour. As there is a large axial 

force in the column, the plastic moment is reduced. Hence there 
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- is a narrower range for the moment that develops in the column. 

(iii) As expected, the total axial force in the column at failure 

decreases as the beam load increases due to the larger applied 

primary moment. 

(iv) The moment at the column's end, on the other hand, increases up 

to a certain maximum value after which it starts to reduce. 

This point of maximum moment corresponds to a beam load in the 

range of 30 to 40kN. 

To understand this last observation, consider the deflection 

modes of the subassemblage of Fig-7-1 under the action of bean load 

only, column load only and combined beam and column loads. If there is 

only a beam load acting on the top-right beam of the subassemblage. 

shown in Fig-7.21a, the left beam and the column share the resistance 

of the moment transmitted through the right connection and that 

produced by the beam reaction through the joint offset distance, D/2. 

The directions of the moments developed at the beam-column-beam 

junction are shown in the inset of Fig-7.21a. A clockwise moment is 

developed at the colmnn's end. The connections, if flexible, are 

assuned to follow the loading path on their corresponding M-0 curves 

which are schematically shown in Fig-7.21b. If the beam-to-column 

connections were rigid, these paths, of course, would correspond to the 

vertical axes on these curves. On the basis of Fig-7.21a, the column 

moment, Mc, may be expressed as 

+ (7-19) 

'Where M1 and Mr are the moments transmitted from the left and right 

beam ends through the beam-to-column connections. In flexible Q 

connections, both 111 and Mr are controlled by the M-, ý curves for the 
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FIG. 7.21 BEHAVIOUR OF SUBASSEMBLAGE UNDER BEAM LOAD ONLY 



connections used. 

Fig-7.22a shows the deflected shape of the subassemblage 

under the action of column load only. Once again, the moments induced 

in the beam-column-be2M junction are shown in the inset of Fig-7.22a. 

directions of the column moment and the right beam are opposite to 

those shown in Fig-7.21a. Hance, the cases just described may be 

considered as the extremes. The M-0 curves for the beam-to-column 

connections are s hown in Fig-7.22b. Both connections are assumed to be 

in the loading condition. Unlike the beam load case, both connections 

here possess nearly equal rotations in the same sense due to symmetry 

provided that both connections are of similar M-ýD characteristics. 

The third case is a combination of those. described above. 

Assuming that a beam load is applied to the subassemblage in the first 

load stage, then, while the beam load is held constant, a column load 

is applied. At the end of the first load stage, the deflected shape of 

the subassemblage is shown in Fig-7.23a (dotted lines) . As the column 

load is applied, the deflected shape of the subassemblage will change 

to that shown by the continuous lines in Fig-7.23a. Although the 

-column's lateral deflections and the beam lateral deflections are still 

increasing, this increase is not as it was when the beam load was 

increasing. The right beam joins the left one in assistling the column 

to resist the a)plied load. The relation between the moments in the 

beam-column-beam junction are as expressed by eqn-7-19. However, the 

increments of moments would correspond to a case in which only the 

column load is applied. In other words, by inspecting Figs-7.21a and 

7.22a, the moment in the column reduces from that reached at the end of 

the beam load stage. In Fig-7.23b, the M--ý curves for the beam- 

to-column connections are shown. The right connections now unload, 
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FIG. 7-23 BEHAVIOUR OF SUBASSEMBLAGE UNDER COMBINED 

BEAM AND COLUMN LOADS 



while the left one still continues to load. In all of the above cases, 

the lower connections continue to load throughout the loading process. 

As they undergo relatively smaller rotations, their stiffnesses would 

generally be greater than those for the upper connections when in 

loading condition. 

Figs-7.24 and 7.25 show the variation of column end mament 

with the total force in the column for the columns in the 

subassemblages with rigid 'and web cleat connections respectively. The 

curves in týese figures correspond to the beam loads considered in this 

study (i. e. in 30k11 increments froin 0 to 120kN. ) All curves of Figs- 

7.24 and 7.25 have the feature that the moment'. increases in one 

direction, then starts to reverse back as the column load increases. In 

almost all of the curves the moment actually reversed its sign. The end 

points of these figures correspond to failure on the envelopes that 

appear in the interaction. curves of Fig-7.20 for the ri-id and web 

cleat connection cases. 

It is of interest to point out that the slope of these curves 

at the start of the column load stage reduces when greater beam load is 

applied. This may be attributed to the fact that the application of 

beam loads results in rather large lateral deflections in the column 

hence increasing the effect of the end restraint in reducing the end 

moment in the column. In other words, the effect of a beam load is 

analogous to the presence of initial imperfections. This was also 

pointed out by Gent and Miller (42ý. 

Figs-7.26 and 7.27 show the variation of the flexural 

rigidity, EI, for the column at the failure load for the cases with 

rigid and web cleat connections respectively. It can be noticed fr om 

these figures that the amount of yield in the column is much larger (as 
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shown -by a decrease in EI value) in the case of a rigid subassemblage 

than it is in the subassemblage with web cleat connections. This is 

because the former can sustain more column load and hence a larger 

force in the column. It can be seen that the critical section in all of 

the cases considered is somewhere along the length of the column (i. e. 

not at the column's end). The section at the centre of the column is 

critical for the cases of column load only. In the cases where a beam 

load was applied, the critical section moves towards the top end of the 

column as a larger beam load was used hence approaching a case of an 

eccentrically loaded column. 

The maximum column load at which the subassemblage fails 

depends on three factors: 

(i) as was pointed out earlier, the presence of beam load reduces 

the axial stiffness of the column due to the presence of large 

lateral deflections. In other words it is easier to fail a 

laterally deflected column than a straight one. 

(ii) in flexible subassemblages, the beam load results in 

substantially reduced stiffness of the connections (Fig-7.21b) 

hence reducing the end restraint offered by these connections. 

(iii) if the beams become inelastic, their stiffness, which assists 

the column in the column load stage, becomes less resulting in 

a lower assistance offered to the column. 

From the above discussion, two points emerge:. 

(a) On one hand, the column fails in a combined mode due to bending 

and column actions which separately result in column moments of 

opposite signs. This means that as more bending is introduced 

into the column, the ultimate moment at the column's end must 

gradually change from a moment in one sense say anti-clockwise 
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(Fig-7.22a) corresponding to a 'column load only' case to a 

clockwise one (Fig-7.21a) which corresponds to a 'bean load only' 

case. 

(b) On the other hand, the rate of change of column moment during the 

column load stage increases as a larger beam load is used. Hence 

the total change in the coltznn load within each case increases 

with the increase of the beam load. 

These two points have opposite effects. As long as the beam 

load is small, the second criterion prevails, hence the moment tends to 

increase in the same direction as in the case of no beam load. However, 

as more beam load is applied, the first criterion becomes more 

prominent and hence the ultimate moment in the column reverses . 
its 

direction to ultimately that of a tbeam load only' case. Hence, there 

must be a beam load for which the moment in the column at failure is 

maximum. This in fact explains the f; urth observation on Fie-7.210. 

7-3.2.2- Effect of Beam to Column Connections on the Failure Load: - 

The effect of beam-to-column connections may be easily 

-demonstrated 
if the relation between the failure load (total force in 

the column at failure) and the initial stiffness of the connection is 

examined. Figs-7.28 shows such relations for the beam loads considered. 

The first observation which may be made is that, in the case of the 

shorter column, there seems to be little difference in the axial 

capacity of the column when using medium and stiff connections. This is 

irrespective of the level of beam load used. On the other hand, in the 

case of the more slender column, the effect of different connections is 

more appreciable, although this effect tends to diminish as stiffer 

connections are used. Again, this observation holds for all values of 
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the beam load. The axial capacity for the column in subassemblages with 

pin connections is generally less than that for a pin ended column with 

the same height as the beam load is applied eccentrically. The failure 

load reduces when using higher beam loads. This could be explained on 

the basis of eqn-7-19. In the beam load stage, both M, and Mr are 

identical to zero. Hence, the problem becomes one of an eccentrically 

loaded column in which the eccentricity is D/2. This in fact results in 

a reduced axial capacity for the column. A final observation is that 

the difference in column capacity, for any particular connection- 

especially meditri and stiff ones- is slightly increasing in the case of 

the 5m column and decreasing in the gm one. 

T-3.2-3- Effect of Beam Load on Column Load: - 

As may be seen from Figs-7.20 and 7.28, the effect of the 

presence of beam load is to reduce týe columin load that is required to 

fail the subassemblage. The reasons for this have already been 

discussed in See-7-3.2.1. Fig-7.29 shows the variation of the column 

load required to fail the subassemblage with the applied beam load for 

, all connection types used. Two groups of curves corresponding to column 0 
lengths of 5m and gm are presented in this figure. The effect of semi- r. ý 

rigid joints is clearly demonstrated in this figure. In all the curves, 

an almost linear relationship seems to exist between the two types of 

loads. The slopes of these figures do not vary greatly with connection 

type or column length. Hence a linear relationship of the type 

p= Po - 1.88 Q (7.20) 

may be adopted. In eqn-7.20, P0 is the ultimate strength of the 

subassernblage when no beam load is applied and may be determined from 
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eqn-7.18 of the previous section. This is of course specifically 

related to the particular case considered but indicates the form of 

relationship which may be more generally applicable. 

7.3.2.4- Maximum Moment at the Column End: - 

It has already been pointed out that while the interaction 

curves of Fig-7.20 are of peculiar shapes, a point of maximum moment 

seems to exist for all connections other than pins. It would be 

interesting to examine such maximum moments in detail. Fig-7-30 shows 

the relation between the maximum moment that may develop at the column 

end and the initial connection stiffness. In the case of pin joints, 

there is no limit to the moment. This may be concluded from eqn-7-19 

since both 11l and Mr are identical to zero. The column moment is 

therpfore equal to QD/2 and is increasing with increasing Q. In the case 

of the 5m long column the maximum moment for all connections but pin 

joints seems to be constant. It may be argued, however, that if very 

flexible connections were used, the maximum moment must approach that 

of a pin joint (i. e. undefined). 

Shown in Fig-7-31 is the relation between the maximu: m moment 

and the ratio R given by eqn-7.2 for all connections other than pins. 

An almost linear relationship is recognized for both the 5m and the 9m 

columns. The linear relationships may hence be assumed for both column 

lengths. The slope for the 5m column may be assumed to be zero while 

that corresponding to the gm column may be assumed to be 42650.0 N. m. 

The linear relationship for the 9m column may be expressed as 

.M max =M rigid -S (1.0-R) (7.21) 

in which M 
rigid 

is the maximum moment that occurs at the coltznn end 

when rigid connections are used and a beam load of 30kN is applied, and 
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S and R are the slopes of the lines and the ratio given by eqn-7.2 

respectively. 

Eqn-7.21 is represented in Fig-7.31 by broken lines. It can 

be seen that this line meets the horizontal axis at a value of R equal 

to 0.6. This value corresponds to an initial connection stiffness of 

8.18X105 N. m. which corresponds to a connection far more flexible than 

the web cleat connection used in the present study. Any connection with 

more flexibility than this one would result in a negative moment in the 

column and hense may conservatively be assumed to be a pin joint. 

Eqn-7.21 may also be applied to the 5m column but with zero 

slope as mentioned above. Consequently the maximum moment may simply be 

taken to be that corresponding to rigid connections and a beam load of 

30kN. It is very difficult to generalize eqn-7.21 to other column 

lengths. It is important that another curve similar to those of Fig- 

7.30 and 7.31 be constructed in order to speculate on the effect of 

column height. 

In the case of pin joints, the moment at the column end may 

be taken as QD/2 in which Q is the beam load and D is the depth of the 

cross section of the colunn. 

7.3.2.5- A Remark on the Recommendation of BS5950 for Designing 

Columns. With Flexible Connections: - 

BS5950 recommends that- a column in a frame with flexible 

connections be designed on the basis of the overall reaction from the 

beams and the upper stories and a moment equal to the beam reaction 

times an eccentricity of (D/2+100) mm. Shown in Fig-7.32 is the 

interaction curve corresponding to web cleat connections for both the 
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5m and. 9m columins. In addition, the relationship between the failure 

load and the moment, recormnended by BS5950 is plotted for the two 

columns. It is clear that the two curves in each set intersect at a 

point corresponding to a certain value for the beam load. In the cases 

of bealn loads less than this value, BS5950 seems to be on the 

unconservative side while it is conservative for higher beam loads. The 

simple criteria giveki by the specification, thus, seems to need more 

investigation. 

7.64- Conclusions 

The subassemblage of Fig-7.1 was analysed for different load 

types and different types of beam to column connections. A substantial 

effect was recognized for the presence of semi-rigid connections, 

whether or not a beam load was applied. Beam flexibility was also seen 

to affect the carrying capacity of t4e subassembl2ge under the action 

of column load only, although this effect is less noticable than that 

of the sem-i-rigid connections. A formula for the effective length 

factor is proposed. 

The presence of beam load was found to result in an 

unexpected interaction curve which relates the total force in the 

column to the moment that is transmitted to the column's end. The 

column load was found to decrease with the increase of beam load. The 

relation seems to be an almost linear one. A linear relationship 

between the beam and column load was proposed. Another linear 

relationship between the ratio R and the maximum moment that might 

occur at the column end for any specific type of connection was also 

proposed. 

It should be pointed out that all the findings of the present 
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study are limited to the cases considered but can serve as indicators 

of the behaviour of the subassemblage under axial load only and 

combined axial and beam loads. A much more comperhensive study is 

needed to verify, or otherwise, the findings of the present study. More 

parameters such as minor axis column bending should be included in both 

series of analyses. More types of connections, especially flexible 

ones, should be included. In the cases of combined column and beam 

loads, more column heights are also needed to be able to generalize the 

use of eqn-7.21. 



CHIPTER-8 

CONCLUSIONS 



%8.1- Summary: - 

The work conducted by Jones on isolated columns with semi- 

rigid joints has been extended to cover the behaviour of limited 

subassemblages with flexible beams and semi-rigid beam to column 

connections. The theoretical background to the present computer program 

has been presented along with the program layout. 

The program was used to simulate some of the experimental 

results obtained from tests on rigidly and flexibly connected frames. 

Both axial and lateral column loads were considered in the simulations 

of the rigidly connected frames. Beam loads and an axial column load 

were applied to the flexibly connected frames. The analytical results 

-were found to compare reasonably well with the experimental results. 

The program may therefore be regarded as acceptable for analysing 

rigidly or flexibly connected frames 

It was pointed out in Sec. -5.4.2 that the boundary conditions 

adopted in any test must be well defined in order that analytical 

procedures be able to closely simulate test results. 

The program was also used to simula te a series of I-shaped 

subassemblages that were tested at the University of Sheffield. Most of 

the parameters describing the experiments were accurately known. If 

insufficient information was available on a particular parameter, a 

judgement was made for the most appropriate value. Comparisons were 

made between the analytical and experimental results characterized by 

the maximum loads, load-deflection curves and load-moment curves. Good 

agreement was obtained between the analytical and the experimental 

load-deflection curves for all of the cases considered. The general 

trends of the measured and calculated load-moment curves for most cases 

were found to be comparable. 
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It was pointed out that it is difficult to exactly simulate 

an experimental result. This leads to some discrepancies in certain 

cases. However, by changing selected input parameters (whose values 

were not known precisely) such as residual stresses, it was possible to 

arrive at closer correspondance. 

J The recommendations given in BS5950 for the design of columns 

in simple construction were applied to all the cases under 

consideration. It was found that these were unconservative in the cases 

of balanced loading and conservative in the cases of unbalanced loads. 

A limited parametric study was conducted to study the effects 

of semi-rigid joints, beam flexibility and type of loading. In this 

study, an I-shaped subassemblage was analysed for different load types 

and different types of beam to column connections. A substantial effect 

was recognized due to the presence of semi-rigid connections whether or 

not a beam load was*applied. Beam . flexibility was also seen to affect 

the carrying capacity of the subassemblage under the action of column 

load only although this effect was less noticeable than that of the 

connection flexibility. A formula for the effective length factor is 

, proposed. 

The presi4nce of beam load was found to result in an 

unexpected interaction curve which relates the total force in the 

column to the moment that is transmitted to the column's end. The 

column load was found to decrease with an increase of beam load. The 

relation seems to be an almost linear one and an empirical relationship 

between the beam and column load is proposed. A linear relationship 

between R, the ratio of the initial connection stiffness to the beam 

stiffness (EI/L), and the maximum moment that occurs at the column end 

for any specific type of connection is also proposed. 



It is Pointed out that all the findings of the present study 

are based on the range of cases considered in the prarametric study but 

it is suggested that they serve as indicators to the behaviour of any 

subassemblage under axial load only or axial load combined with bean 

loads. A much more comprehensive numerical study is needed to confirm 

the findings of the present study for all possible cases. More 

parameters such as minor axis column bending should be included in both 

series of analyses. More types of connection, especially the more 

flexible ones, should be investigated. In the cases of combined column 

and beam loads, more column heights are also needed to be able to 

generalize the use of eqn-7.20. 

8.2- Recommendations for Future Work: - 

The present work is restricted to the behaviour of limited 

subassemblages under the action oi limited loading and boundary 

conditions. The following recommendations are thought to be important 

in developing more understanding of the behaviour of more realistic 

flexibly connected frames: 

(1) As pointed out earlier, the parameters in any experimental 

study should be well defined in order to permit close 

simulation of the test results using theoretical procedures. 

(2) Although provisions were made in the computer program for 

constructing the complete M-ýP envelope in which the connection 

may repeatedly load and unload, only the loading- 

unloading-reloading behaviour was considered in the present 

study. Full cyclic behaviour of connections should be 

considered since it is likely to occur in many realistic 

structures. In doing this, the program should be verified by 



simulating results from tests in which a limited subassemblage 

is tested for cyclic loads. 

(3) Joint offset was taken into account in the present program by 

modelling the panel zone by a rigid segment with a length equal 

to half the depth of the column cross section. A more realistic 

model should be included in such a way that panel zone 

deformation be taken into account. Such deformations may be 

non-ne-ligible when very stiff connections are used. 

(4) The present program is capable of tracing the load-deflection 

behaviour up to the maximun load only. Post-buckling behaviour 

is of great importance in structures in which more than one 

column is present. This is because if one column fails, sane of 

its load would be redistributed to other coltrnns. This 

redistribution is governed by the post-buckling behaviour of 

the column under consideration. 

(5) In calculating the end forces due to loads applied within the 

length of the element, the effect of semi-rigid joints was not 

considered. The present work was, however, limited to 

concentrated nodal loads which are not affected by the presence 

of semi-rigid joints. It is desirable, however, to include the 

effect of semi-rigid joints on the element end forces. There 

should be no difficulty in fulfilling this recommendation. 

Once the last three recommendations have been fulfilled, the 

present work should be extended to include: 

(a) cyclic loads which may occur in realistic structures 

(b) larger frames which contain more than one column. 

(c) Element loads, particularly distributed loads. 

The findings of the limited parametric study serve as an 



indicator to the effects of the parameters considered on the 

behaviour of limited subassembla. ges. A more comprehensive study 

is needed to confirm such findings. Both the range and the 

number of parameters should be increased; for instance, more 

types of semi-rigid connections should be included. The more 

flexible connections are particularly important. Other 

parameters such as column bending axis and type of cross 

se3tion (i. e. whether rolled or welded) should be examined. 

(8) The present work may be extended to cover sway frames. No 

difficulty should arise in such an extension as the present 

program is capable of accepting, in general, any type of 

boundary conditions. 

Finally, the present work may be extended to cover three 

dimensional behaviour. More information is needed, however, on 

the M-ýp characteristics of semi-rigid joints in space. 



APPENDICES 



Appendix-A: Derivation of the Combined Beam and Beam-to-Column 

Connection Stiffness: - 

Assume that the subassemblage of Fig-7.1 deforms in a 

symmetrical fashion as shown in Fig-A. 1 as a result of the application 

of a column load P. The moments at the ends of the top-left beam may be 

found using the well known slope deflection equations (assuming that 

there is no axial force in the beam) as 

2EI b 
e BA +3L 

and 

2EI b Al 
m BA 20 BA 

(A-1a) 

(A-lb) 

Since the end A is free to move vertically, the shear force VA at this 

end must equal zero. Hence 

v 
(M AB +0 

(A. 2) 

Substituting for the moments M 
AB and M BA from eqns-A. 1 into eqn-A. 2 and 

simplifying, 0 

Al 
-2- BA L (A. 3) 

Now, the mcinent M BA must be equal in magnitude and opposite in 

direction to the moment in the joint MJ which is related to the joint 

rotation by 



FIG. A-l DEFLECTED SHAPE OF A SUBASSEMBLAGE 

UNDER THE ACTION OF COLUMN LOAD 



3 3, ) (A. 4) 

in which Ci is the joint stiffness. The beam rotation may now be 

expressed as (eqns-A. lb and A. 4) 

fdBA -ci8i EI 

Lb 

flow referring to Fig-A. 1b the joint rotation may written as 

6i= -(6c - UBA) 

(A. 5) 

(A. 6) 

in which oc is the rotation -of the column' s end. Substituting for a 

from eqn-A. 6 and for e BA from eqn-A. 5 into eqn-A. 4 and simplifying the 

expression, we get 

C. 

E I, 
) I Lb 

c*. e 

in which C is given by 

* 

Lh EIh 
+C i EIb ci Lb 

E lb 

Lb 

Lb 

(A-7) 



Appendix-B: Calculation of the Effective Length Factor for a 

Restrained Column Using Column Strength Curves: - 

Assume that it is required to calculate the effective length 

factor for a restrained column which has the column strength curve 

labelled 'restrained' in Fig-B. 1. Also assume that a similar coluzMn but 

with pin ends has the column strength curve labelled 'pinned' in the 

same figure. Then for both columns to have the same ultimate strength, 

the length for the pin-ended column must be equal to 

Xr 
1) 

in which 1, X, ), 
L and Iýr are the lengths and slenderness ratios of the 

pin-ended and the restrained column respectively. Hence, the effective 

length factor is 

'R 

Ar 
(B. 2) 

Eqn-B. 1 was used to determine the effective length factor for 

, an isolated column with web cleat connections at its ends. The column 

strength curves for this column and for the pin ended one are shown in 

Fig-B. 1. The slenderness ratios corresponding to PU /P 
y values ranging 

from 0.3 to 0.95 (with 0.05 increments) were found from the restrained 

and pinned curves. The k-values corresponding to these PU /P 
y values 

were calculated using eqn-B. 2. Table-B. 1 lists ýp' ý'r and k 

corresponding to the range of values for PU /P 
y mentioned above. An 

average value for all the k values was calculated and taken as the 

approperiate effective length factor for this column. 
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Table-B. 1: Calculation of Effective Length Factor Using 

Column Strength Curves 

p 
--.! 

i 
p 
y 

x 
p 

x 
r 

k 

0.30 139.0 219.4 0.633 

0.35 127.7 202.1 0.632 

0.40 117.7 183.5 0.641 

0.45 109.0 168.9 0.646 

0.50 101.1 156.3 0.647 

0.55 95.7 146.3 0.655 

0.60 90.4 137.6 0.657 

0.65 85.1 131.6 0.646 

0.70 80.5 125.0 0.644 

0.75 75.8 119.7 0.633 

0.80 71.1 113.7 0.626 

0.85 62.5 107.7 0.580 

0.90 55.9 76.7 0.579 

0.95 46.5 82.4_ 0.565 
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