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Abstract 

Our understanding of microbial communities associated with anaerobic 

digestion (AD) currently relies strongly on metagenomic sequencing, which can 

reveal phylogenetic diversity, but does not provide information concerning 

microbial activity or the close associations that may form between syntrophic 

organisms. Approaches that facilitate charting of process-targeted variation in 

microbial community activities are important for understanding how the 

microbiology of AD functions as a single biological machine. Here I identify 

subsets of metabolically specialised microbes as they respond to substrate 

availability in AD systems using bioorthogonal non-canonical amino acid tagging 

(BONCAT) and affinity-based cell separation (ABCS). The results demonstrate the 

specific labelling, visualisation and separation of microbes that actively participate 

in volatile fatty acid (VFA) degradation and suggest a differential response to 

octanoic acid by specialists within the microbial community. Analysis of 

metagenomic sequences from a time series of BONCAT-ABCS samples reveals 

that this method enriched a distinct microbial community with genetically-derived 

metabolisms consistent with and changing according to the observed metabolic 

outcomes. Proteomic data generated from BONCAT-ABCS help to resolve the 

functional landscape of enriched microbial community and give better resolution of 

identified translationally/metabolically active taxa. This enrichment approach 

allows us to determine the temporal response of those microbes most likely to 

engage in octanoic acid degradation in AD sludge. This method can be applied to 

the identification of specialist microbes with a role in degradation of a range of 

other compounds in AD, enhancing our understanding of microbial community 

interactions and facilitating the development of strategies for process optimisation. 
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1 Introduction 

1.1 Anaerobic digestion for renewable energy generation and waste 

management 

Fossil fuels (crude oil, coal and natural gas) supply approximately 80% of global 

primary energy demand. This grew at an average rate of 2.1% per year between 

2009 – 2019 (Figure 1.1; British Petroleum Company, 2020). Fossil fuels have 

helped to propel the growth and development of the world’s economy, technology 

and quality of life. However, fossil fuel combustion emits around 30 Gt of carbon 

dioxide (CO2) and other greenhouse gasses (GHG) per year (IEA, 2019; British 

Petroleum Company, 2020), making it the major contributor to global warming and 

climate change. Moreover, political turmoil and military conflict in several fossil 

fuel producing countries also pose a challenge to global energy security. Therefore, 

the development and application of alternative energy sources are needed to lessen 

global dependence on fossil fuels, ensure sustainable energy development and 

reduce adverse impacts on the environment.  

Biofuels are one of the most reliable and sustainable energy alternatives, which 

support the generation of renewable energy (electricity and gas) from organic 

materials (biomass) (Dahiya, 2014). Biofuels play an important role in the transition 

towards low carbon energy systems by reducing reliance on fossil fuels and can 

contribute to global climate change mitigation. Globally, biofuels made up 1% of 

world energy supply in 2019 and have increased 9.2% annually from 2009 to 2019 

(Figure 1.1). In the United Kingdom (UK), biofuels contribution has grown by 

24.2% per annum since 2009 and, when combined with other renewable energy 
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sources, helped reduce CO2 emissions by 2.5% annually in 2009 – 2019 (Figure 

1.1-4).    

 

Figure 1.1. Bioenergy growth and contribution to climate change mitigation. (1 – 3) Annual 

total energy consumption, renewable energy generation and bioenergy supply globally (4 

– 6) profile of UK bioenergy generation and carbon emissions from 1965 – 2019. Data are 

taken from BP Statistical Review of World Energy 2020. EJ = Exajoule, is unit of energy 

equal to 1018 joules; MtCO2 = Metric tons of carbon dioxide equivalent. 

 

One of the most prevalent bioenergy technologies worldwide is anaerobic 

digestion (AD), converting organic waste into biogas (Angenent et al., 2004; 

Werner et al., 2011; Vanwonterghem et al., 2014) and a nitrogen-rich digestate that 

can be used as bio-fertiliser (Lukehurst et al., 2010; Al Seadi et al., 2013). AD has 

the potential to offer significant environmental and economic benefits via waste 

treatment. AD is an ancient technology that has been used as early as 900 BC, where 

biogas was used to heat bathwater in Assyria, and has been widely applied in the 

UK to treat and recover energy from sewage sludge for over 125 years (Abbasi et 

al., 2012). AD technology is flexible (Angelonidi and Smith, 2015; Mauky et al., 
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2015) and plants can be built at many different scales and deployed across a range 

of applications. Current applications include on-farm energy recovery from animal 

manure and plant waste as well as treatment of municipal food waste and 

wastewater. Additional benefits from these applications include landfill reduction 

and fewer CO2 emissions (Nguyen et al., 2007; Liu et al., 2012). Currently, over 

100 million tonnes of UK generated biodegradable material from agricultural, 

industrial, municipal/commercial and sewage sludge are processed through 661 AD 

sites for biogas production, in order to generate heat, electricity and biomethane to 

the grid (BtG) (Figure 1.2). 

 

Figure 1.2. Anaerobic digestion plants in the UK. The AD map shows all operational 

anaerobic digestion plants in the UK based on the type of feedstock (A) and the end-use of 

the biogas (B). Data are taken from The Anaerobic Digestion and Bioresources Association 

(ADBA). 

 

1.2 Overview of general AD plant setup and operation 

The complete process from receiving the organic waste (feedstock) to biogas 

utilisation, is facilitated by multiple interconnected units in an AD facility (Figure 
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1.3). There are numerous details of facility design that must be carefully considered, 

as per the nature of the feedstock (Table 1.1). The key consideration for achieving 

optimal biogas yield and efficiency are the solids content, whether the system runs 

as a batch or continuously, operational temperature, and the number of 

single/multistage processes (Vasco-Correa et al., 2018).  

Table 1.1 Characteristics of common AD feedstock (Zhang et al., 2014; Vasco-Correa et 

al., 2018). 

Feedstock Characteristics 

Biogas 

yield 

(m3/kg 

VS) 

Total 

solids 

(%) 

C/N 

ratio 

Sewage sludge • a mud-like residue resulting from 

wastewater treatment 

• contains valuable organic matter and 

nutrients (such as nitrogen and 

phosphorus), heavy metals and 

pathogens (viruses and bacteria) 

• Low digestibility: could be improved 

by pre-treatment or co-digestion with 

other feedstocks. 

0.8 - 1.2 2 – 30 40 – 70 

Food waste • readily degradable, high moisture 

content, low pH and high in 

solubility. 

• Requires size reduction 

• High variability in composition. 

• May generate inhibition through 

acidification. 

0.3 - 0.8 5 – 30 15–30 

Agricultural 

residues and 

energy crops 

• Existing in plentiful supply. 

• High (ligno)cellulose content 

• Needs pre-treatment to enhance 

biodegradability 

0.2 - 0.5 20 – 80 40 – 150 

Animal 

manure 

• Usually co-digested with bedding 

material (straw) or another high-

carbon biomass 

0.1 – 0.6 2 – 20 3 – 15 

• High buffer capacity 

• Relatively high in ammonia 

• Rich in nutrients and trace elements 
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Figure 1.3. Simplified configuration of AD facilities receiving a variety of feedstocks (Pöschl et al., 2010). Created with BioRender.com. 
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For solids content, there are two broad categories of anaerobic digester 

operations: as a ‘dry’ process, in which the feed consistency is dry enough to handle 

and stack (15 – 30% solids), and as a ‘wet’ process, where the feed is moist enough 

to be moved via pipes by a pump (4 – 13% solids) (Rocamora et al., 2020). AD can 

be performed as a batch or a continuous process. In a batch system, organic material 

together with biomass from sludge, as inoculum, are placed into a reactor at the 

beginning and sealed for the duration of the process. Generally, biogas production 

will follow a normal distribution pattern over time which can be used by the 

operators to determine when the batch AD process has completed. In continuous 

systems, organic material is continuously added to the reactor (continuous complete 

mixed). The digestate (the processed matter after the AD of a biodegradable 

feedstock) is removed continuously or periodically, resulting in constant production 

of biogas. A single, or multiple vessels/reactors in sequence, may be used in 

continuous systems. In single-stage anaerobic systems, all interconnected 

biochemical processes in AD (see section 1.3) take place simultaneously in a single 

reactor, while multi-stage systems required generally two reactors to separate and 

optimise the hydrolysis along with acidogenesis and methanogenesis (Ganesh et al., 

2014). Continuous systems require more complex designs, but are probably more 

cost effective than batch systems. This is because batch digesters need regular and 

repeated emptying and set-up, have a higher initial construction cost and require 

larger volume digesters (spread across several batches), to handle the same amount 

of waste as continuous systems (Abowei et al., 2009; Nicholls, 2015). 

Generally, AD can be performed at different temperature ranges, such as 

psychrophilic (4 – 15 oC), mesophilic (20 – 40 oC) and thermophilic (45 – 70 oC) 
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(Kim et al. 2017; Náthia-Neves et al. 2018). The optimal operational temperature 

is usually determined by the feedstock used and its characteristics (Table 1.1; 

Nichols, 2015). In practice, most digesters are designed to operate in the mesophilic 

range of 30 – 38 oC, while some are designed for the thermophilic range of 50 – 57 

oC (Metcalf et al., 1991). This allows optimal growth of the anaerobic bacteria and 

archaea involved in the breakdown of the organic matter. Thermophilic digestion 

processes allow for higher loadings with shorter hydraulic retention times (HRTs), 

higher conversion efficiencies, and pathogen disinfection, whereas mesophilic 

digestion is more stable, less susceptible to ammonia nitrogen toxicity, and needs 

less energy input (Lloret et al., 2013; Yu et al., 2014; Moestedt et al., 2014). Some 

mesophilic AD plants are combined with a thermal hydrolysis process (THP), in 

which the feedstock is pressure-cooked at high temperature (120 oC) under pressure 

to increase feedstock digestibility prior to mesophilic digestion.  Whichever thermal 

regime is used, it has a strong effect on the microbial communities involved in AD, 

resulting in significant variations in the types and abundance of microbes adapt to, 

and thrive in, the digester (De Vrieze et al. 2015; Kirkegaard et al. 2017).  

AD relies on a diverse microbial community working through a syntrophic series 

of interrelated biochemical processes (hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis; see section 1.3). The synergistic interactions within these complex 

communities influences the speed and efficacy of resource recovery. Although AD 

has been subjected to substantial process engineering, the underpinning microbial 

communities have been viewed largely as a ‘black box’. Therefore, we need to have 

a better understanding of how the microbial communities associated with AD 

interact and function as a single biological machine.  
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1.3 Interconnected biochemical processes and core microorganisms in 

anaerobic digestion 

 

Figure 1.4. The interrelated biochemical functions in AD (Wirth et al., 2012; Heeg et al. 

2014; Díaz et al. 2018). Colours denote resource (grey), microbial groups (yellow) and 

biochemical processes (green). Created with BioRender.com. 

 

Anaerobic degradation of organic waste involves a diverse community of 

anaerobic bacteria and archaea that sequentially utilise each other’s metabolic by-

products through a series of interconnected biochemical functions to yield biogas, 

a gaseous product containing methane (CH4; 48 – 65%), carbon dioxide (CO2; 15 – 
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45%), nitrogen (N2; <1 – 17%) and other trace gases (Rasi et al., 2007; Bond and 

Templeton, 2011; Plugge, 2017). Conceptually, the four primary and sequential 

biochemical processes (Figure 1.4) are (i) hydrolysis of complex polymers into 

simple soluble products, (ii) acidogenesis (fermentation of simple soluble products 

into volatile fatty acids (VFAs)), (iii) acetogenesis (anaerobic oxidation of VFAs 

into acetates and hydrogen), and (iv) methanogenesis (CH4 production from acetate 

and hydrogen by methanogenic archaea). 

1.3.1 Hydrolysis 

Complex organic materials (polymers) that cannot be directly transported across 

a microorganism’s cell membrane, such as polysaccharides, lipids and proteins, are 

initially hydrolysed into soluble monomers by hydrolases (cellulase, xylanase, 

pectinase, amylase, lipase, and protease) excreted by hydrolytic bacteria 

(Angelidaki et al., 2011; De Francisci et al., 2015). Hydrolytic bacteria are very 

diverse phylogenetically, but many studies support findings that Firmicutes and 

Bacteroidetes are the two dominant phyla in AD responsible for the breakdown of 

polymers (Figure 1.5; De Vrieze et al., 2015; Hassa et al., 2018). Firmicutes and 

Bacteroidetes abundance vary depending on AD operational conditions and the 

type of feedstock present. Commonly found members within the Firmicutes and 

Bacteroidetes phyla are the genera, Clostridium (O’Sullivan et al., 2005; Zverlov 

et al., 2010) and Bacteroides (Kampmann et al., 2012; Hanreich et al., 2013), 

respectively.  
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Figure 1.5. Hydrolytic bacterial phyla abundance in anaerobic digesters operated at 

different temperatures and with different feedstocks. Bubbles are displayed only if the 

relative abundance is ≥1%. Bubbles are coloured by temperature applied on the AD system, 

including mesophilic reactors fed with thermal hydrolysis (THP) treated waste. Abundance 

value were generated based on 16S rRNA (Klocke et al., 2007; Goberna et al., 2009; Liu 

et al., 2009a; Tang et al., 2011; Kampmann et al., 2012; Wu and He, 2013; Kirkegaard et 

al., 2017) and metagenomic sequencing (Wirth et al., 2012; Hanreich et al., 2013; Li et al., 

2013). 
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Clostridium is a genus of obligate anaerobes, Gram-positive, rod-shaped and 

endospore-forming bacteria (Wells and Wilkins, 1996) belonging to Firmicutes. 

Members of this genus are able to secrete a variety of carbohydrate-degrading 

enzyme, allowing them to directly saccharify a range of polysaccharides (cellulose, 

starch, xylan, pectin, etc.) and oligosaccharides (cellobiose, lactose, maltose, etc.) 

in mesophilic and thermophilic AD (Lee et al., 1985). Clostridia also exhibit a wide 

versatility in terms of monosaccharide fermentations, by effectively taking up both 

hexoses and pentoses simultaneously (Freguia et al., 2013). Thus, in terms of their 

substrate hydrolysis and uptake capabilities, they are the ideal genus for biofuel 

production from lignocellulosics. Cellulolytic Clostridium (Table 1.2) hydrolyse 

polysaccharides by direct and specific adhesion to substrate via the cellulosome 

(Bayer et al., 1998; Desvaux, 2005), an extracellular multi-enzyme complex on the 

bacterial cell surface containing a scaffolding protein and catalytic subunits 

displaying a variety of cellulosomal enzymes (Shoham et al., 1999; Blum et al., 

2000; Kurokawa et al., 2001; Kataeva et al., 2002). Other Clostridia degrade 

cellulose simply via excretion of a large number of cellulases as single enzymes 

(Table 1.2; Schwarz, 2001). Furthermore, proteolytic activity is also possessed by 

a number of Clostridial species, i.e C. botulinum (Lee and Riemann, 1970; Sebaihia 

et al., 2007), C. proteolyticum (Jain and Zeikus, 1988), C. collagenovorans (Jain 

and Zeikus, 1988), C. difficile (Poilane et al., 1998), C. thiosulfatireducens 

(Hernández-Eugenio et al., 2002), C. tunisiense (Thabet et al., 2004) and C. 

beihaiense (Dong et al., 2018), which allows these organisms to hydrolyse proteins 

into smaller polypeptides or amino acids. Meanwhile, C. lundense is exclusively 
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known as lipolytic Clostridium (Cirne et al., 2006), decomposing lipids to directly 

source carbon by this route. 

Table 1.2 Cellulolytic and non-cellulolytic Clostridium in anaerobic systems. Optimum AD 

growth temperature (Temp.; m: mesophilic (20 – 40 oC); t: thermophilic (45 – 70 oC), 

source of isolation and production of cellulosome (Celsm.; + presence; - absence) are 

indicated. 

Species Temp. Source Celsm. Reference 

C. cellobioparus m  Soil  + Doi, 2008 

C. thermocellum t  Soil  + Schwarz, 2001 

C. cellulovorans m  Wood digester + Tamaru et al., 2000 

C. papyrosolvens t  Papermill + Doi, 2008 

C. cellulolyticum m Compost  + Desvaux, 2005 

C. josui t  Compost  + Sakka et al., 2010 

C. acetobutylicum m Soil  + Sabathé et al., 2002 

C. aldrichii m  Wood digester - Yang et al., 1990 

C. cellulofermentans m  Manure  - Yanling et al., 1991 

C. herbivorans m  Pig intestine - Varel et al., 1995 

C. stercorarium t  Compost  - Schwarz et al., 1995 

C. hungatei m  Soil  - Monserrate et al., 2001 

C. clariflavum t Anaerobic sludge - Shiratori et al., 2009 

C. caenicola t  Anaerobic sludge - Shiratori et al., 2009 

C. indicum m  Anaerobic sludge  - Gundawar et al., 2019 

Bacteroides is a genus of obligate anaerobes, Gram-negative and non-

endospore-forming bacilli belonging to Bacteroidetes (Madigan et al., 2018). 

Members of the Bacteroides also perform polymer hydrolysis in AD alongside 

Clostridium. One such strategy that is used by Bacteroides species is the starch 

utilization system, referred to as the (Sus)-like systems, in which a series of outer-

membrane and periplasmic proteins act together to bind, enzymatically degrade and 

import polyssaccharide products (Martens et al., 2009). To date, few species of 

polysaccharide hydrolysing Bacteroides have been isolated and characterised from 
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anaerobic digesters, including Bacteroides xylanolyticus (Scholten-Koerselman et 

al., 1986), B. propionicifaciens (Ueki et al., 2008), B. graminisolvens (Nishiyama 

et al., 2009), B. paurosaccharolyticus (Ueki et al., 2011) and B. luti (Hatamoto et 

al., 2014), whereas the thermophilic Bacteroides sp. strain P-1 is known to possess 

a cellulosome-type multienzyme complex (Ponpium et al., 2000). Bacteroides 

species also exhibit proteolytic activity during AD, i.e. B. amylophilus (Blackburn, 

1968), B. ruminicola (Hazlewood and Edwards, 1981) and B. fragilis (Gibson and 

MacFarlane, 1988). Some Bacteroides, e.g. B. coprosuis (Whitehead et al., 2005) 

show esterase/lipase activity for decomposing lipids.  

Previous studies have highlighted the importance of polymer structure and the 

metabolic capability of the microbial communities in the depolymerisation and the 

hydrolytic activity of polymer substrate fed AD systems (Adney et al., 1991; 

Parawira et al., 2005; Odnell et al., 2016). It suggests that there are fundamental 

connections between the microbial communities’ composition and their enzymatic 

functions. The structural specificities of hydrolytic bacteria’s extracellular (free and 

cell-bound) enzymes then determines the complexity and availability of low 

molecular weight substrates for uptake by the wider AD communities (Arnosti, 

2011). Thus, the ability of the hydrolytic microbes to utilise more energy-efficient 

substrate-uptake mechanisms (Figure 1.6) can influence which phyla or genera 

proliferate and persist in the digester (Koropatkin et al., 2012). 
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Figure 1.6. Schematic diagram of three main mechanisms of substrate uptake during hydrolysis in AD. Selfish: cells utilise surface-associated enzymes 

to bind and partially breakdown polymers, which are subsequently carried up into the periplasm for further degradation, with scarcely extracellular 

hydrolysis products. Sharing: cells use surface-associated or ‘free’ extracellular hydrolases to degrade polymers into sizes suitable for uptake and yield 

extracellular hydrolysis products (public goods). Scavengers: cells that unable to produce enzymes for the polymer’ hydrolysis and instead take-up the 

hydrolysis products produced by other organisms (Reintjes et al., 2017; Arnosti et al., 2018; Reintjes et al., 2019). Created with BioRender.com 
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Clostridium and Bacteroides are expected to be dominant among other 

hydrolytic bacteria in a digester with high hydrolytic activity. Both genera have 

evolved to compete efficiently for nutrients in highly competitive 

environments/ecosystems, like AD systems, by utilising ‘selfish’ uptake 

mechanisms using substrate processing via surface-associated enzymes (Martens et 

al., 2009; Reintjes et al., 2019). In Clostridium, this is done using the cellulosome 

and in Bacteroides through the use of (Sus)-like systems (Martens et al., 2009). 

Both systems have been shown to bind and partially degrade polymer substrate 

without diffusive loss of substrate to the environment, in both gut and marine 

environments (Cuskin et al., 2015; Reintjes et al., 2019). These ‘selfish’ 

mechanisms enable Clostridium and Bacteroides to be more resource efficient and 

outcompete other hydrolytic bacteria in the digester that use either ‘sharing’ 

(extracellular enzyme producer) or ‘scavenging’ (non-enzyme producer) 

approaches to up-take of hydrolysis products as growth substrates (Figure 1.6). The 

high abundance of these two genera in densely populated AD microbial 

communities treating polymer substrates (i.e. lignocellulosic material) has been 

illustrated multiple times (Sun et al., 2015; Soares et al., 2018; Tukanghan et al., 

2021).  

1.3.2 Acidogenesis and Acetogenesis 

Acidogenesis takes hydrolysis products and ferments them. This creates VFAs 

(e.g. acetate, propionate, butyrate, and valerate), as well as a range of volatile gases 

(e.g. carbon dioxide, hydrogen and ammonia), whilst generating ATP (Agler et al., 

2011; Mathai et al., 2015). Acidogenic bacteria (acidogens) include hydrolytic 

bacteria as well as fermentative bacteria, which do not produce extracellular 
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hydrolases and rely upon hydrolytic bacteria for accessible metabolites. 

Actinobacteria, Bacteroidetes, Cloacimonetes, Chloroflexi, Firmicutes, and 

Proteobacteria are common bacterial phyla within AD that incorporate species of 

acidogens (Figure 1.7; Sträuber et al., 2012; Rinke et al., 2013; De Vrieze et al., 

2015; Guo et al., 2015; Kirkeegard et al., 2017; Hassa et al., 2018).  

 

Figure 1.7. Abundances of most prevalent phyla in AD that incorporate species of 

acidogens. Tukey’s box plots show the relative abundance for each phylum, with each box 

extending from the 25th to the 75th percentile of the distribution. Median indicated by a 

central line. Data generated based on metagenomics (Guo et al., 2015) and 16s rRNA 

sequencing (Kirkegaard et al. 2017). 
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Acidogenesis progresses rapidly upon initiation of hydrolysis (Meegoda et al., 

2018). Some end products of acidogenesis, such as acetic acid and H2/formic acid, 

can be used directly by methanogens (acetoclastic and hydrogenotrophic) for biogas 

production, but other intermediates (such as ≥ 3-Carbon VFAs and simple alcohols) 

require further metabolic conversion to the necessary substrates for methanogenesis 

(Fu et al., 2018; Lemaire et al., 2020). The metabolism of VFAs and other simple 

alcohols into acetate, formate and CO2/H2 in AD relies on syntrophic interaction 

between acetogens and acetoclastic/hydrogenotrophic methanogens (Mathai et al., 

2015; Ziels et al., 2015) via interspecies electron exchanges by means of 

interspecies hydrogen transfer (IHT) and interspecies formate transfer (IFT) 

(Boone, 1985; Schink, 1997; Drake et al., 2008; Saha et al., 2020). Cohabitation 

with autotrophic methanogens allows acetogens to overcome the thermodynamic 

barrier created by high H2 partial pressure, since the methanogens metabolise 

available hydrogen sufficiently rapidly to maintain low hydrogen concentrations 

overall. Under sufficiently low H2 concentration conditions acetogenesis becomes 

thermodynamically favoured (de Bok et al., 2005; Kirchman, 2018). In the case of 

IFT, four molecules of formate are oxidized to CO2 by formate dehydrogenase 

(FDH). One molecule of CO2 is further reduced to methane (Liu and Whitman, 

2008).  

Direct interspecies electron transfer (DIET) has been intensively studied as an 

alternative syntrophic metabolism to IHT and IFT in AD (Dubé and Guiot, 2015). 

In DIET, electron-donor and electron-acceptor microbes exchange electrons via 

electrical conduits on the cell membrane, like extracellular c-type cytochromes (e.g. 

OmcS, MacA, OmcC, PgcA) and conductive proteinaceous filamentous 
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structures/nanowires (i.e. pili), which may allow engagement over long distances 

(up to 10 mm) (Nielsen et al., 2010; De Vrieze and Verstraete, 2016; Saha et al., 

2020; Zhao et al., 2020). Electron exchange via conductive nanowires has been 

observed as the main mechanism during methane production via co-cultures of 

Pelotomaculum thermopropionicum/Methanotermobacter thermautotrophicus 

(Kouzuma et al., 2015), Geobacter metallireducens/Methanosaeta harundinacea 

(Rotaru et al., 2014a) and Geobacter metallireducens/Methanosarcina barkeri 

(Rotaru et al., 2014b). Syntrophic acetogens found in anaerobic digesters (Table 

1.3) include species in the genus Smithella, Syntrophobacter, and Pelotomaculum 

for propionate oxidation (3-carbon VFA; Liu et al., 1999; de Bok et al., 2001; 

Imachi et al., 2007) and Syntrophus and Syntrophomonas for the oxidation of 

butyric and longer chain fatty acids (≥ 4-carbon VFAs; Jackson et al., 1999; Sousa 

et al., 2007a).  
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Table 1.3 VFA degrading syntrophic microbes in anaerobic system. Scope of trial substrates includes C3 Propionic, iC4 Isobutyric, C4 Butyric, iC5 

Isopentanoic, C5 Pentanoic, iC6 Isohexanoic, C6 Hexanoic, C7 Heptanoic, C8 Octanoic, C9 Nonanoic and C10 Decanoic acid. The substrates utilisation is 

indicated by + (utilised), - (not utilised) and ND (not detected or not determined).  

Syntrophic 

acetogens 

Substrate utilisation in co-culture with a syntrophic partner 

Syntrophic partner Ref. 
C3 iC4 C4 iC5 C5 iC6 C6 C7 C8 C9 C10 

Syntrophobacter 

wolinii 

+ - - - - - - - - - - Desulfovibrio sp. Boone and Bryant, 1980 

S. pfennigii + - - - - - - - - - - Methanospirillum hungatei Wallrabenstein et al., 1995 

S. fumaroxidans + - - - - - - - - - - M. hungatei Harmsen et al., 1998 

S. sulfatireducens + - - - - - - - - - - M. hungatei Chen et al., 2005 

Smithella propionica + - - - - - - - - - - M. hungatei Liu et al., 1999 

Pelotomaculum 

thermopropionicum 

+ - - - - - - - - - - Methanothermobacter 

thermautotrophicus 

Imachi et al., 2002 

P. schinkii + ND - ND - ND - - - - - M. hungatei de Bok et al., 2005 

Syntrophomonas 

wolfei 

- - + - + - + + + ND ND M. hungatei; Desulfovibrio 

sp. G11; Methanobacterium 

formicicum 

McInerney et al., 1981;  

Wu et al., 2007;  

Narihiro et al., 2016 

S. sapovorans - - + - + - + + + + + M. hungatei Roy et al., 1986 

S. bryantii - - + - + - + + + + + M. hungatei; Desulfovibrio 

sp. 

Stieb and Schink, 1985;  

Wu et al., 2006a 

S. cellicola - - + - + - + + + + ND M. formicicum; Desulfovibrio 

strain G11 

Wu et al., 2006a 

S. curvata -  +  +  + + + ND + M. formicicum Zhang et al., 2004 
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S. erecta  - - + - + - + + + ND + M. hungatei; M. formicicum Zhang et al., 2005;  

Wu et al., 2006b 

S. palmitatica - - + - + - + + + ND ND M. hungatei Hatamoto et al., 2007 

S. saponavida - - + - + - + + + + + Desulfovibrio sp. Lorowitz et al., 1989;  

Wu et al., 2007 

S. zehnderi - - + - + - + + + + + M. formicicum Sousa et al., 2007a; 

Cavaleiro et al., 2010 

Syntrophus 

aciditrophicus 

- - + - ND - + ND + ND ND M. hungatei; Desulfovibrio 

sp. G11 

Jackson et al., 1999 

Syntrophothermus 

lipocalidus 

- + + - + - + + + + + M. thermoautotrophicum Sekiguchi et al., 2000 

Thermosyntropha 

lipolytica 

- - + - + - + + + + + Methanobacterium strain 

JW/VS-M29 

Svetlitshnyi et al., 1996 

Algorimarina butyrica - + + ND - ND - - - - - Methanogenium AK-3 Kendall et al., 2006 

Strain GraIva1 ND ND ND + ND ND ND ND ND ND ND Desulfovibrio sp. Stieb and Schink, 1986 
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In principle, long-chain fatty acids (LCFAs; ≥13-Carbon), medium-chain fatty 

acids (MCFAs; 7 – 12-Carbon) and short-chain fatty acids (SCFAs; 3 – 6-Carbon; 

Schönfeld and Wojtczak, 2016) are oxidized via the β-oxidation pathway (Figure 

1.8). Even-chain fatty acids (ECFAs) are broken down via 2-Carbon VFA units (or 

acetic acid) resulting in the release of H2 whilst odd-chain fatty acids (OCFAs) 

eventually produce propionate along with acetate and H2 (Sousa et al., 2007b; 

Sousa et al., 2009). Oxidation metabolism is initiated by the activation of fatty acids 

to fatty acyl-CoA molecules by the enzyme, acyl-CoA synthetase. Fatty acyl-CoA 

molecules then degrade through β-oxidation (Figure 1.8). This consists of 

dehydrogenation (mediated by acyl-CoA dehydrogenase), hydration (catalysed by 

enoyl-CoA hydratase), oxidation (catalysed by 3-hydroxyacyl-CoA 

dehydrogenase) and thiolytic cleavage (mediated by beta-ketothiolase), which 

cleaves the terminal acetyl-CoA group and forms a new, shorter acyl-CoA (two 

carbons shorter than the original fatty acyl-CoA). The shortened acyl-CoA then re-

enters the β-oxidation pathway (DiRusso et al., 1999; Sousa et al., 2009). Some iso-

forms, e.g. iso-butyric (iC4) and iso-pentanoic (iC5), are produced as intermediates 

during the anaerobic degradation of fatty acids. Anaerobic degradation of fatty acid 

isomers (branched chain) might firstly be isomerised into their respective normal 

form (straight chain) before going through β-oxidation (Stieb and Schink, 1989; Wu 

et al., 1994; Sekiguchi et al., 2000). The isomerisation of butyric and iso-butyric 

acid was catalysed by a butyryl-CoA:isobutyryl-CoA mutase which depended 

strictly on the presence of coenzyme B12 (Matthies and Schink, 1992). 
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Figure 1.8 β-oxidation of fatty acids. Colours denote compounds (black) and enzymes 

(blue). Adapted from Schulz et al. (1991). Created with BioRender.com. 

SCFAs (< 6-Carbon VFAs; Table 1.4) are important intermediates and 

metabolites in AD that have been well established as an essential indicator for 

monitoring the AD process (Schönfeld and Wojtczak, 2016). In comparison to other 

typical indicators such as pH, alkalinity, gas production and gas composition, they 

provide rapid and reliable information on AD performance (Hill and Holmberg, 

1988; Ahring et al., 1995; Siedlecka et al., 2008). Many analytical methods have 

been developed to measure and monitor SCFAs present in AD samples, such as 

distillation, colorimetry, chromatography and various titration techniques (Lahav 

and Morgan, 2004; Siedlecka et al., 2008). In the distillation method, the organic 

acids are isolated from the matrix by direct distillation or steam-distillation (a 

multistage continuous distillation process where steam is used as a stripping gas to 
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extract the VFAs) which are then titrated with standard alkaline solution. Accurate 

measurement of VFAs in AD samples using the distillation technique is primarily 

dependent on matrix recovery (Siedlecka et al., 2008). Titration methods are widely 

acknowledged to be better for on-site regular monitoring and control in terms of 

simplicity, speed and cost-effectiveness to measure the total VFA concentrations 

(Feitkenhauer et al., 2002; Madsen et al., 2011). However, titration methods cannot 

distinguish the individual SCFAs in the sample because of their similarity in pKa 

values (Table 1.4). Colorimetric determination of VFAs, is based on the 

esterification of VFAs present in the sample, followed by the measurement of the 

esters by the ferric hydroxamate reaction which is known as the Montgomery 

method (Montgomery et al., 1962). This method is relatively simple, requires 

commonly available reagents and results in a short analysis time. It is also 

performed directly on the sample and needs only small sample volumes (0.5 mL). 

However, the colorimetric method cannot be used to determine individual VFA 

concentrations. Gas chromatography with flame-ionisation detection (GC-FID), 

which is mostly used in industrial and research facilities, allows the separation and 

quantification of individual VFAs based on boiling points difference (Table 1.4; 

Brondz, 2002; Siedlecka et al., 2008; Madsen et al., 2011). During GC separation, 

the sample is vaporised and carried across the column by the mobile gas phase (i.e., 

the carrier gas). VFAs are separated based on their relative vapour pressures and 

affinities for the stationary phase. The measurements are quantified using a linear 

fit to a standard curve that is generated from either a manually mixed or 

commercially available standard solution (Khotsena and Potivichayanon, 2020). 

This technique requires a great deal of expertise and extensive sample preparation 
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(centrifugation, filtration and acidification) before injection of the purified sample 

as AD sample are complex and often viscous or contain high-solids (Ghidotti et al., 

2018). 

Table 1.4 Short-chain fatty acids (SCFAs) properties and structures (Siedlecka et al., 2008).  

SCFAs Formula Molar mass 

(g.mol
-1

) 

Boiling 

point (
o
C) 

pKa Structure 

Formic acid CH2O2 46.025 100.5 3.745 

 
Acetic acid C2H4O2 60.052 118 – 119 4.756 

 
Propionic acid C3H6O2 74.079 141.15 4.88 

 
Isobutyric acid C4H8O2 88.11 155 4.86 

 
Butyric acid C4H8O2 88.106 163.75 4.82 

 
Isopentanoic acid C5H10O2 102.13 176.5 4.80 

 
Pentanoic acid C5H10O2 102.133 185 4.82 

 
Isohexanoic acid C6H12O2 116.16 200.5 4.84 

 
Hexanoic acid C6H12O2 116.160 205.8 4.88 

 

 

1.3.3 Methanogenesis 

Methanogenesis marks the final stage of AD by converting end products of 

acidogenesis and acetogenesis into methane (CH4; Ferry, 2010). This obligate 

anaerobic metabolic stage is carried out by methanogenic archaea, a group of 

organisms commonly known as methanogens (phylogenetically belonging to the 

phylum Euryarchaeota; Whitman et al., 2001). In AD communities, methanogens 

have a relatively low abundance (<5% of total reads by 16S rRNA gene approach; 
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Sundberg et al., 2013; Kirkeegard et al., 2017) but have display high activity, 

representing up to 30% of total transcript or proteins, based on metatranscriptomics 

or metaproteomics approaches (Zakrzewski et al., 2012; Hanreinch et al., 2012; 

Hanreich et al., 2013).  

Methanogens can be split into hydrogenotrophic, methylotrophic and 

acetoclastic groups, based on the main substrate used to generate methane (Table 

1.5; Garcia et al., 2000; Thauer et al., 2008). Hydrogenotrophic methanogens are 

represented by six orders (i.e. Methanomicrobiales, Methanopyrales, 

Methanocellales, Methanococcales, Methanosarcinales and Methanobacteriales) 

and almost all species depend on CO2 reduction to CH4, with H2 as the electron 

donor, but some species oxidise other electron sources (e.g., formate; HCOO−) to 

form methane (Garcia et al., 2000; Enzmann et al., 2018; Tao et al., 2019). 

Methylotrophic methanogens are capable of producing CH4 from various 

methylated compounds (e.g. methanol (CH3OH), methylamines ((CH3)NH2) or 

dimethylsulfide ((CH3)2S)). Examples of methylotrophic methanogens are found 

in the orders Methanomassiliicoccales, Methanobacteriales and 

Methanosarcinales (Iino et al., 2013; Enzmann et al., 2018). Acetoclastic 

methanogens, specialist methylotrophic methanogens, utilise the methyl group of 

acetate (CH3COO
−) to form CH4 and generate energy for growth. Acetoclastic 

methanogens all belong to the Methanosarcinales, specifically species of the genera 

Methanosarcina and Methanothrix (formerly known as Methanosaeta) (Oren, 

2014; Welte and Deppenmeier, 2014). 
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Table 1.5 Reactions for methanogenesis (Garcia et al., 2000; Thauer et al., 2008). 

Substrate Reaction 

Hydrogen 4H2 + CO2 → CH4 + 2H2O 

Formic acid 4HCOOH → CH4 + 3CO2 + 2H2O 

Acetic acid CH3COOH → CH4 + CO2 

Methanol 4CH3OH → 3CH4 + CO2 + 2H2O 

Monomethylamine 4(CH3)NH2 + 2H2O → 3CH4 + CO2 + 4NH3 

Dimethylamine 2(CH3)2NH + 2H2O → 3CH4 + CO2 + 2NH3 

Trimethylamine 4(CH3)3N+ 6H2O → 9CH4 + 3CO2 + 4NH3 

Dimethylsulfide 2(CH3)2S + 2H2O → 3CH4 + CO2 +H2S 

Methanogen diversity and activity varies across AD systems with substrate and 

temperature (Abendroth et al., 2015; Kirkeegard et al., 2017). Hydrogenotrophic 

methanogens, like Methanoculleus, appear to be dominant in the digesters treating 

mixed organic wastes or co-digesters (Abendroth et al., 2015; Kern et al., 2016) and 

CO2 biomethanisation digesters where hydrogen is injected into the digester to react 

with CO2 in the biogas to create more CH4 (Tao et al., 2019), whereas acetoclastic 

methanogen Methanothrix (Methanosaeta) is prevalent in digesters treating sewage 

sludge (Abendroth et al., 2015).  Methanosarcina, a genus which possesses all three 

known pathways for methanogenesis, is plentiful in AD systems treating leachate 

from leach-beds (Kern et al., 2016). The two acetoclastic methanogen genera, 

Methanosarcina and Methanothrix, utilise identical substrate but coexist and 

occupy different niches in AD due to differences in enzyme affinity and growth 

kinetics. Methanosarcina thrives under high levels of acetate (>1 mM) due to its 

high maximum rate of acetate utilisation (𝑘; 12.2 mg COD/mg VSS.d), specific 

growth rate (μmax; 0.3 d−1) and high half‐saturation coefficient (KS; 280 mg 

COD/L), while Methanothrix has greater substrate affinity and therefore is 
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prevalent in digesters with low acetate (<1 mM) availability because of its low 𝑘 

(10.1 mg COD/mg VSS.d), μmax  (0.1 d−1) and low KS (49 mg COD/L) (Gujer and 

Zehnder, 1983; Conklin et al., 2006; Karakashev et al., 2005; Razaviarani and 

Buchanan, 2014).  

Mesophilic (~37 oC) and thermophilic (~55 oC) anaerobic digesters develop 

distinct methanogen communities. Mesophilic digesters are dominated by 

Methanothrix but a variety of hydrogenotrophic methanogens (i.e Methanolinea, 

Methanospirillum, and Methanobrevibacter) are commonly found at lower 

population densities. Thermophilic digesters are dominated by the 

hydrogenotrophic methanogen Methanothermobacter, with less abundant 

populations of Methanosarcina, Methanobrevibacter, and Methanothrix 

(Kirkeegard et al., 2017). 

1.3.4 Rate-limiting steps in the AD process 

AD metabolism of complex substrates is a multi-step process (section 1.3.1 – 

1.3.3) that is kinetically controlled by the slowest step, termed the rate-limiting step 

(Hill and Root, 1977). In AD, rate-limiting steps are determined by substrate 

characteristics (particulate or soluble), temperature, loading rate and microbial 

community ratio (Speece, 1983; Pavlostathis and Giraldo-Gomez, 1991; Ma et al., 

2013).  

Hydrolysis is often found to be the rate-limiting step in the AD of particulate 

biopolymers (carbohydrates, proteins and lipids). Hydrolytic activity is commonly 

assumed to follow first-order kinetics with respect to the concentration of 

degradable particulate organic matter. The rate of hydrolysis determines the 
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potential maximum substrate concentration for methanogens for a given retention 

time, which in turn determines maximum possible methanogen specific growth rate 

(Pavlostathis and Giraldo-Gomez, 1991). For each complex substrate (Table 1.6), 

apparent hydrolysis rate constants (kh, d
−1) in mesophilic digesters (> 12 days 

retention time) varies as follows: lipids, 0.04 – 1.7 d−1 proteins, 0.01 – 0.03 d−1 

cellulose, 0.04 – 0.62 d−1 and hemicellulose, 0.54 d−1 (O’Rourke, 1968, as cited 

in Pavlostathis and Giraldo-Gomez, 1991; Gujer and Zehnder, 1983). In general, 

protein hydrolysis under anaerobic conditions is slowest compared to other 

biopolymers.  

Temperature has a strong effect on the hydrolytic rate of complex biopolymers 

(Table 1.6). In psychrophilic digesters (<20 oC, >12 days retention time), anaerobic 

degradation of lipids becomes nil, with no change in protein hydrolysis rate, while 

cellulose hydrolysis rate is 3 – 6 times slower than in mesophilic digesters 

(O’Rourke, 1968, as cited in Pavlostathis and Giraldo-Gomez, 1991). Moreover, 

some reports show that the inoculum-substrate ratio (ISR on a volatile solids (VS) 

basis) significantly affects biogas production rate in AD utilising complex 

substrates. ISR ≥2 increases hydrolysis and methanogenesis, but ISR of 1 is 

recommended to avoid inhibition of AD functional processes (Chen and 

Hashimoto, 1996; Lopes et al., 2004; Liu et al., 2009b; Raposo et al., 2009).  
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Table 1.6 Hydrolysis rate constant (Kh, d
−1) of polymers in steady state and continuous 

flow laboratory scale under different temperature (O’Rourke, 1968, as cited in Gujer and 

Zehnder, 1983). 

Polymers Temperature 

(oC) 

Retention time (days) 

5 10 15 30 60 

Lipids 
15 - 0 0 0 0 

20 0 0 0.02 0.05 0.03 

25 0 0.01 0.09 0.07 0.03 

35 0.01 0.17 0.11 0.06 0.04 

Cellulose 
15 - 0.05 0.03 0.10 0.08 

20 0.0.9 0.14 0.13 0.14 0.10 

25 0.29 0.27 0.27 0.34 0.16 

35 1.95 1.21 0.62 0.38 0.21 

Protein 
15 - 0.03 0.02 0.01 0.01 

20 0.08 0.04 0.03 0.02 0.01 

25 0.09 0.04 0.03 0.02 0.01 

35 0.10 0.05 0.03 0.02 0.01 

Methanogenesis is often considered the rate-limiting step in easily degradable 

(soluble) organic matter-based AD systems (Mosey and Fernandes, 1989; Tomei et 

al., 2009). In a steady state anaerobic mesophilic digester treating soluble organics, 

acidogenesis rate (maximum growth rate at 35 oC, µmax  2.0 d-1; yield, Ymax 0.15 Kg 

VSS/Kg COD; substrate affinity, Ks 0.2 Kg COD/m3) is faster than methanogenesis 

rate (µmax  0.4 d-1, Ymax  0.03 Kg VSS/Kg COD, Ks 0.05 Kg COD/m3) (Henze and 

Harremoës, 1983). This suggests that the rate of CH4 production in this digester is 

proportional to the kinetics of methanogenesis. Organic loading rate (OLR (Kg/L/d) 

on VS or COD basis) appears to determine the rate-limiting step in easily 

degradable AD systems. At low OLR, the rate-limiting step is expected to be 

acidogenesis, as evidenced by low VFA concentrations. However, as OLR 

increases, methanogenesis may gradually become the rate-limiting step, as 

evidenced by VFA accumulation (Henze and Harremoes, 1983). 
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1.4 Understanding microbial communities in AD 

Over centuries of AD application, there has been considerable process and 

engineering development, including reactor configuration, categorisation of 

feedstocks, quantification of methane production per unit of feedstock, mass and 

energy budget analyses of digestion systems, up-scaling of laboratory systems to 

commercial reality, and computational modelling (Murphy and Thamsiriroj, 2013; 

Zhao et al., 2017). However, the underpinning microbial communities (anaerobic 

bacteria and archaea) that mediate essential AD biochemical processes have 

traditionally been treated largely as a ‘black box’, meaning the microbial 

community structure was only retrospectively investigated in case of failure (Koch 

et al., 214; Carballa et al., 2015). Recent estimations suggest that a typical millilitre 

of municipal and industrial wastewater contains ~1020 bacterial and archaeal cells 

(Flemming and Wuertz, 2019), which suggests that AD reactors are commonly fed 

with substrates that include a greater range of taxonomic community members and 

metabolic functions than described in section 1.3. Therefore, it is important to 

understand the full complexity of the AD microbiome and its available competitive 

and syntrophic metabolisms, to optimise energy recovery from AD. 

The earliest study of the AD microbiome was attempted at the beginning of the 

20th century. This study relied on culture-dependent techniques and showed that 

there were multiple unculturable microbes in AD that could not be isolated and 

grown in pure cultures (Barker, 1936; McBee, 1954). Over the last three decades, 

several culture-independent approaches have been developed (see sections 1.4.2 – 

1.4.3), assisted by rapid developments in sequencing technology next-generation 

sequencing, NGS. NGS can provide more comprehensive information at a lower 
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cost, overcoming limitations of culture-dependent approaches for determining the 

phylogenetic and functional diversity of AD microbial communities. Currently, 

4194 bacterial and 51 archaeal species have been discovered from wastewater 

treatment and bioenergy systems using culture-dependent and independent 

approaches (Nierychlo et al., 2020). Nevertheless, the majority of AD microbial 

community species (~70%) have not yet been characterised (Narihiro et al., 2015) 

and their potential contribution to AD function requires further investigation.  

1.4.1 The importance of considering microorganism status in AD 

microbiome studies 

The AD microbiome encompasses a diversity of taxa and metabolic functions 

that underpin AD efficiency and stability. A critical, and commonly unanswered, 

question is whether all the microbes found in the system are active and/or alive. It 

is possible that observed anaerobic degradation of organic waste is mediated by a 

small number of living anaerobic bacteria and archaea, while the majority of 

bacterial/archaeal cells are dead or quiescent/dormant. Quantifying the actual 

number of live versus dead cells in complex AD communities is difficult. A 

particular challenge is that microbial cells can be in different metabolic states, 

ranging from inactive (which includes cells that are both truly dead and those that 

are merely inactive, awaiting better environmental conditions to re-activate) to 

active (growing and reproducing) cells. Thus, highly diverse anaerobic microbes in 

AD may not be equally active at certain times or under different environmental 

conditions. 



48 

 

Some microbes in AD persist in metabolically inactive states, allowing them to 

survive unfavourable conditions, such as nutrient starvation or limitation, in toxic 

chemical concentrations, and under temperature or pressure changes (Dworkin and 

Shah, 2010). Three strategies are used by microbes to resist growth-limiting stress 

(Rittershaus et al., 2013). “Bust and boom” refers to the strategy based on dynamic 

persistence of a small subpopulation (i.e. Escherichia coli) that subsists on limited 

nutrients derived from dead cells and that has the ability to replicate rapidly once 

growth conditions are conducive. “Cellular quiescence”, also known as “viable but 

non-culturable (VBNC),” refers to metabolically active nonreplicating cells (e.g. 

Mycobacterium tuberculosis, Vibrio cholerae, Salmonella enterica, and Legionella 

pneumophila) that stop replicating, retain their membrane potential, and do not 

undergo apparent morphological differentiation when exposed to growth-limiting 

stress. The ‘‘sporulation” strategy refers to the production of metabolically inactive 

spores (i.e. by Bacillus spp. and Clostridium spp.) upon exposure to adverse 

growing condition (Dworkin and Shah, 2010; Rittershaus et al., 2013). 

 Currently, most AD functional processes are ascribed to organisms where 

taxonomic community composition shows an increased/decreased abundance 

concurrent with increased/decreased functionality. While informative, abundance 

is complicated by the coexistence of many different taxa with similar functional 

characteristics (functional redundancy; Louca et al., 2018) or closely related taxa 

with very different physiologies and environmental tolerances (Fierer et al., 2012) 

in AD samples. Microbes in inactive/quiescent states and necromass from recently 

AD community members can make it difficult to deduce which microbes are 

actively contribute to AD functions. Some studies provide evidence that changes in 
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AD microbial abundance/composition does not influence biogas production rates 

(Fernández et al. 2005; Langer et al. 2015). This suggests that, in some cases, 

microbial composition is not actively controlling AD function, since microbial 

systems carry out the interconnected biochemical processes at similar rates 

regardless of composition differences.  

Direct correlation of function and abundance could be problematic in AD 

complex microbial community analyses. Quantifying abundance is challenging 

since genetic information is most commonly retrieved via DNA extraction, PCR 

amplification, sequencing and taxonomic classification (Brooks, 2016). Each step 

in this process has the potential to introduce bias and significantly alter our 

perception of the microbiome's true composition. Particularly, in the case of low 

abundance microbes which are often critical to AD function and stability, it is 

difficult to accurately determine abundance if sequencing depth is low (Mainali et 

al., 2017). AD microbiome studies tend to use relative abundance, rather than 

absolute, which cannot tell you whether a taxon is more or less abundant (the 

direction of the change) or by how much (the magnitude of the change) between 

two experimental conditions or samples (Barlow et al., 2020). Furthermore, to date, 

there is no standardised bioinformatics pipeline to process AD-derived NGS data, 

so implementation is left to individual researchers, raising concerns about 

reproducibility (Leach et al., 2012). Inaccuracies in observed microbial 

proportions/abundances can lead to incorrect conclusions about their effect on AD 

function. 

Our understanding of microbial communities associated with AD currently relies 

strongly on marker gene profiling and metagenomic sequencing (discussed in 
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sections 1.4.2 – 1.4.3), which reveals phylogenetic diversity but does not provide 

information concerning microbial activity or the close associations that form 

between syntrophic organisms. Moreover, these popular DNA-based sequencing 

analysis methods cannot exclude or identify extracellular DNA, which affects 

interpretation of the data. For example, members of the Chloroflexi phylum are 

often found in high abundance in AD systems based on genomic DNA analysis, due 

to the persistence of their extracellular DNA (Petriglieri et al., 2018). However, they 

are not metabolically active cells and probably play a minor role in AD (Petriglieri 

et al., 2018; Speirs et al., 2019). Rather, to advance our understanding of the 

microbes that power AD sequential biochemical processes, the study of the AD 

microbiomes requires characterisation and quantification of which microorganisms 

are active (growing and reproducing), inactive (truly dead), or dormant (resting) 

(Singer et al., 2017; Emerson et al., 2017). 

1.4.2 Marker gene-based (primer-based) approaches for profiling microbial 

community structure in AD 

One culture-independent method that provides insight into the taxonomic 

diversity of microbes present in AD involves using sequences of the methyl 

coenzyme-M reductase (mcrA; Luton et al., 2002; Wilkins et al., 2015) and the 16S 

rRNA gene (Woese and Fox, 1977). The 16S rRNA gene is a ribosomal RNA 

(rRNA) gene (~1500 bp) that encodes the small subunit of ribosomes (SSU rRNA). 

The 16S rRNA gene contains highly conserved regions (that remain relatively 

unchanged among different organisms) present in all prokaryotes as well as 

hypervariable regions (V1-V9) that differ greatly between related microbes 

allowing specific taxonomic identification (Janda and Abbott, 2007; Kirchman, 



51 

 

2018). The whole 16S rRNA gene, specific regions, and/or the mcrA gene can be 

used as taxonomic marker genes (Kim et al., 2020).  

The development of high-throughput sequencing has made it feasible to rapidly 

sequence thousands of amplicons (PCR-amplified marker gene sequences) in 

parallel, yielding large datasets at low cost and allowing the inclusion and analysis 

of low abundance populations (Hassa et al., 2018; Lim et al., 2020). Results are 

clustered based on similarity, generating operational taxonomic units (OTUs). 

Representative OTU sequences are compared with reference databases to infer 

likely taxonomy (Schloss and Handelsman, 2005; Johnson et al., 2019), with 

thresholds for genus and species level identification being >95% and >97%, 

respectively (Yarza et al., 2014). Recently, new methods, that assess amplicon 

sequence variants (ASVs), have been developed to replace OTUs in marker gene 

data analysis (Eren et al., 2013; Eren et al., 2015; Callahan et al., 2017). ASV 

methods infer biological sequences in the sample prior to the introduction of 

amplification and sequencing errors, and distinguish sequence variants differing by 

as little as one nucleotide (Callahan et al., 2017). ASV methods have demonstrated 

sensitivity and specificity comparable to or better than OTU methods and better 

discriminate ecological patterns (Eren et al., 2013; Eren et al., 2015). 

Currently, a common approach for studying microbial communities in anaerobic 

digesters uses a combination of molecular fingerprinting methods and high 

throughput sequencing of taxonomic marker gene PCR amplicons, for instance 

DGGE together with Illumina MiSeq sequencing (Walter et al., 2019) or T-RFLP 

with 454-pyrosequencing (Lv et al., 2019). This combination allows greater 

resolution of AD microbial communities, with the detection of thousands of OTUs 
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(Walter et al., 2019), compared to AD microbiome profiling via classical automated 

Sanger sequencing of 16S rRNA clone libraries, which discovered 69 OTUs 

(Riviere et al., 2009).  

Greater insight into AD microbiome diversity assists researchers in 

understanding community composition and provides the capability to understand 

the influence of operational conditions (i.e. feedstock and temperature) on 

microbial community structure, dynamics, performance, efficiency, and stability. 

However, PCR-based methods are prone to PCR-amplification bias and potentially 

leading to misrepresentation of data. To address this problem, PCR-free methods 

have been proposed (Dowle et al., 2016), but come with significant increase in 

workload and processing cost (for enrichment, library preparation, and required 

sequencing coverage; Krehenwinkel et al., 2017). Yet, marker gene-based 

approaches for AD microbiome profiling are unable to unequivocally differentiate 

metabolically active cells from those that are dead or quiescent (Lim et al., 2020). 

This substantive concern limits the utility of NGS method applications in AD 

microbiome studies. 

1.4.3 Metagenomics-based approaches to link function and structure of 

microbial communities in AD 

Although marker gene-based approaches help us to understand AD taxonomic 

diversity, we cannot fully rely on them to predict functional attributes or the 

functional diversity of AD communities and their effect on AD performance (Green 

et al., 2008). It has been proposed that there are a set of organisms in complex AD 

microbial communities that are capable of utilising a spectrum of resource 
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acquisition strategies based on their genetic content (Sriswasdi et al., 2017; Louca 

et al., 2018). For example, besides Methanosarcina and some syntrophic acetogens 

as shown in Table 1.3, Clostridium cellulovorans is capable of using carbon sources 

other than cellulose, including lactose, glucose, galactose, maltose, sucrose, 

cellobiose, pectin, and xylan (Xin et al., 2019). A technique that exceeds the 

limitations inherent in taxonomic profiling based on marker gene characterisation 

is required to obtain targeted information on functional capabilities of AD 

microbiome species.  

Shotgun metagenomic sequencing, which allows direct sequencing of all genetic 

materials recovered from AD samples, enables the researcher to gain insight not 

only into microbial diversity and abundance but also into the metabolic potential of 

microbial communities residing within anaerobic digesters (Cai et al., 2016). 

However, it has been challenging to retrieve large genome fragments or complete 

genomes from each AD complex microbial community members, due to 

insufficient sequencing depth and population heterogeneity (Morozova and Marra, 

2008). Gene-centric methods, a specific focus on gene coding regions as opposed 

to non-coding regions, has been used to analyse unassembled data in complex 

environments such as AD, as they provide an overview of gene frequencies by 

mapping reads against protein databases (Schlüter et al., 2008). 

Metagenomics was first applied to AD microbiomes in 2008.  Microbial 

communities within a full-scale biogas plant, treating agricultural waste, were 

analysed and it was found that Methanoculleus played a dominant role in 

methanogenesis while Clostridia were essential for the hydrolysis of the feedstock 

(Schlüter et al., 2008).  Since then, metagenomics has been used to study the 
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phylogenetic and functional diversity of multiple AD microbial communities from 

lab-scale reactors digesting co-substrates (Wirth et al., 2012; Zhu et al., 2019), 

animal manure (Li et al., 2013; Campanaro et al., 2016) and rice straw (Pore et al., 

2016) through to full-scale reactors treating industrial waste (Wang et al., 2013; Cai 

et al., 2016; Chun-Te Lin et al., 2020), municipal waste (Wong et al., 2013; Yang 

et al., 2014), and activated sludge (Guo et al., 2015; Campanaro et al., 2018). 

The combination of metagenomics and AD operational performance data 

enables us to investigate how functional capabilities of complex microbial 

communities carrying out the four focal processes (see section 1.3) within anaerobic 

digesters change over time. Nevertheless, metagenomics does not fully capture the 

plasticity of AD microbiomes and its effect on AD performance (Singer et al., 

2017), because this technique is unable to discern between living, functionally 

active and dead cells or even extracellular relic DNA (Cangelosi et al., 2014; Lim 

et al., 2020).  

1.5 Approaches for identifying in-situ active microbes in environmental 

samples 

The effort to decipher the diversity, role and function of microbial communities 

and link these to their in-situ activity has become a “holy grail” (Urbach et al., 1999; 

Radajewski et al., 2000; Neufeld et al., 2007; Hatzenpichler et al., 2014; 

Hatzenpichler et al., 2016; Leizeaga et al., 2017; Couradeau et al., 2019). 

Researchers have applied several approaches that target different cell processes and 

coupled with shotgun nucleic acid sequencing for studying single-cell or mixed 

microbial communities’ activity (Table 1.7; Figure 1.9). These approaches allow us 

to gain information on the active microbes present in environmental samples.  
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Table 1.7 Comparison of techniques for studying active microbial populations in environmental samples. 

Tech. Reporter Cell process 

targeted 

Advantage Disadvantage Assumptions Analysis Reference 

DNA-

/RNA-SIP 

Stable heavy-isotope 

carbon (13C)/ nitrogen 

(15N)/ oxygen (18O) / 

hydrogen (2H) labelled 

substrate 

DNA 

synthesis/ 

Transcription 

Link cellular identity and 

function; 

High phylogenetic resolution 

Long incubation 

period; cross-feeding 

issue; contamination 

risk; high GC DNA 

issue; reliance on 

commercially 

supplied labelled 

compounds 

Substrate addition 

may increase cell 

division but not 

reflect in situ 

growth rates. 

16s rRNA; 

Metagenomic 

Neufeld et al., 2007; Bernard 

et al., 2007; Kalyuzhnaya et 

al., 2008; Chen et al., 2008; 

Neufeld et al., 2008; Sul et 

al., 2009; Winderl et al., 

2010; Dumont et al., 2011; 

Pratscher et al., 2011; 

Gutierrez et al., 2013; 

Chemerys et al., 2014; 

Verastegui et al., 2014; 

Werner et al., 2014; Eyice et 

al., 2015; Fortunato and 

Huber, 2016; Singer et al., 

2017; Ziels et al., 2018; 

Bradford et al., 2018; Gülay 

et al., 2019 

BrdU 

 
5-bromo-2'-deoxyuridine 

DNA 

synthesis 

When coupled with fluorescent 

antibody staining, it may be 

used as a single-cell technique 

to distinguish individual cells 

from the microbiome. 

Low labelling 

efficiency 

Rate of uptake 

varies by cell; 

may be toxic to 

some cells. 

16s rRNA; 

Metagenomic 

Mou et al., 2008; Edlund et 

al., 2008; David et al., 2015; 

Hamasaki et al., 2016 

BONCAT 

 
Homopropargylglycine 

(HPG) 

 
Azidohomoalanine 

(AHA) 

Translation Link cellular identity and 

function; 

Fluorescence based in-situ 

activity study; 

Activity based cell sorting; 

Does not interfere with native 

protein synthesis or 

degradation; Short incubation 

period; Uses small amounts of 

materials/biomass 

Methionine rich 

samples are tough 

 

Cell growth may 

be stimulated 

by added amino 

acids; 

Dependence on 

uptake 

mechanism; 

Potential for cell 

inactivation or 

community shift 

16s rRNA Hatzenpichler et al., 2014; 

Samo et al., 2014; 

Hatzenpichler et al., 2016; 

Couradeau et al., 2019; 

Reichart et al., 2020; Steward 

et al., 2020 
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Figure 1.9 Approaches for labelling and targeting cell processes in an active microbial cell 

that can be coupled with (shotgun) nucleic acid sequencing. Adapted from Singer et al. 

(2017) and Hatzenpichler et al. (2020). Created with BioRender.com. 

1.5.1 Bromodeoxyuridine (BrdU) 

Bromodeoxyuridine (BrdU) labelling tags viable cells in-situ. This technique 

uses BrdU, a synthetic nucleoside analogue of thymidine, to label the nascent DNA 

of actively growing cells which can then be isolated using immunocapture 

techniques (Urbach et al., 1999). BrdU is added to a sample, incubated and then 

cells are collected by centrifugation. Cells that have taken up and incorporated 

BrdU into their newly synthesised DNA can then be isolated and BrdU-labeled 

DNA purified using an immunocapture technique (Borneman, 1999; Urbach et al., 

1999). Subsequent sequencing of the BrdU-labelled DNA is used to identify 
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microbes that were actively growing in the sample. BrdU labelling has been applied 

to study active microbes that respond to specific carbon substrates in soil 

(Borneman, 1999; Yin et al., 2000; Goldfarb et al., 2011; David et al., 2015), sea 

sediment (Edlund et al., 2008), ocean water (Mou et al., 2008; Hamasaki et al., 

2016) and lake water (Urbach et al., 1999). 

1.5.2 Stable-isotope probing (SIP) 

Stable-isotope probe (SIP) labelling is the most applied method to study in-situ 

microbial activity (Table 1.7; Singer et al., 2017). SIP is a technique that uses stable 

isotope (18O, 13C, or 15N) labelled substrates to facilitate the selective enrichment of 

the DNA or RNA from active cells within complex environmental samples 

(Radajewski et al., 2000; Radajewski et al., 2003). Isotope-labelled, or “heavy”, 

nucleic acids are isolated using density-gradient ultracentrifugation and subsequent 

gradient fractionation, and then purified using caesium chloride (CsCl) before 

sequencing analysis for active microorganisms’ identification (Neufeld et al., 2007; 

Whiteley et al., 2007). This technique was first applied by Radajewski et al. (2000) 

to investigate in situ methanol-utilising microorganisms in soil by using various 

13C-enriched carbon source and eventually found active methylotrophs related to 

Alphaproteobacteria and Acidobacterium. DNA-SIP and RNA-SIP techniques 

allow the researcher to identify key players involved in the metabolism of certain 

compounds under in-situ conditions of soil (Bernard et al., 2007), aquifer sediment 

(Winderl et al., 2010), lake sediment (Dumont et al., 2011) and anaerobic digester 

sludge (Ziels et al., 2018) samples. However, this technique needed costly labelled 

substrates and required long incubation periods and a large amount of biomass 

(Dumont and Murrell, 2005). 
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1.5.3 Bioorthogonal non-canonical amino acid tagging (BONCAT) 

In the past few years, researchers from several laboratories (Hatzenpichler et al., 

2014; Samo et al., 2014; Hatzenpichler et al., 2016; Leizeaga et al., 2017; 

Couradeau et al., 2019) have applied a method called bioorthogonal non-canonical 

amino acid tagging (BONCAT) to study metabolically active microbes in pure 

culture and environmental samples, such as marine sediments, pond sediments, and 

soil. This technique uses a synthetic amino acid, i.e. L-azidohomoalanine (AHA) 

or L-homoproparglycine (HPG) as surrogates for L-methionine (Met) (Table 1.7; 

Kiick et al., 2002; Dieterich et al., 2006; Hatzenpichler et al., 2014). Any organism 

that is actively making and synthesising new proteins incorporates the synthetic 

amino acid into nascent proteins. There is an indication that this works in a broad 

range of microorganisms and does not interfere with native protein synthesis or 

degradation (Hatzenpichler et al., 2014; Samo et al., 2014). Thus, we are not limited 

to identifying the activity of one particular microorganism. The active cells can be 

visualized using fluorescence microscopy by attaching fluorescent dye via Cu(I)-

click chemistry (Hatzenpichler et al., 2016) to the nascent protein that has 

incorporated the synthetic amino acid (Figure 1.10). Compared to other methods 

previously mentioned, BONCAT is rapid (the time required is less than 1 h) and 

highly sensitive, with BONCAT allowing detection of nascent proteins after only 

minutes of incubation using small amounts of materials/biomass (Couradeau et al., 

2019). This makes it appealing for tracking activity or monitoring microbial 

community changes in anaerobic digestion. 

                     

 



59 

 

 

Figure 1.10 Cu(I)-catalysed click chemistry linking an azide labelled protein (-N3) to a 

terminal alkyne residue of a fluorescent dye (star) to yield a triazole conjugate. Adapted 

from Hatzenpichler et al. (2014). Created with BioRender.com. 

1.6 Bioinformatic approaches 

Multiple bioinformatics methods and analytic approaches have been developed 

for the interpretation of large sequencing-based biological datasets. Traditionally 

metagenomic samples were analysed by using amplicon sequencing and using 16S 

rRNA gene sequences via short-read sequencing technology (e.g., Illumina) for 

species identification and abundance (Johnson et al., 2019). Short-read sequencing 

breaks DNA into small pieces that are amplified and subsequently sequenced to 

yield ‘reads’ (~150 – 300 bp). Genome reconstruction of short reads is 

computationally expensive and the generated assemblies are frequently very 

fragmented (Miller et al., 2010). Currently, genome reconstruction of AD 

communities has been greatly advanced by the development of long-read 

sequencing, e.g. Pacific Biosciences Single Molecule Real-Time (SMRT) and 

Oxford Nanopore Technologies MinION/GridION/PromethION. Long-read 

sequencing directly sequences single molecules of DNA in real time, typically 

without the need for amplification and produces longer reads (on average > 10 kbp). 
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Bioinformatic techniques are then used to piece together the long-reads like a 

jigsaw, into a continuous genomic sequence (Figure 1.11). Due to the longer read 

lengths fewer pieces need to be assembled and the resulting genomes are less 

fragmented (Schatz et al., 2010). 

 
Figure 1.11 Example of bioinformatics pipelines for analysing marker gene and 

metagenomic dataset in AD microbiome studies. Created with BioRender.com 

In marker gene-based approach, the whole 16S rRNA gene, specific regions, 

and/or the mcrA gene are amplified and barcoded by attaching a short unique 

sequence segment to label individual samples for multiplexing and simultaneous 

sequencing in a single sequencing run, particularly using the Illumina MiSeq 

platform. The sequencing reads are quality checked, processed, and 
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phylogenetically analysed for taxonomic classification by using reference gene 

databases (e.g. Greengenes, Silva, RDP and NCBI RefSeq). Several bioinformatic 

analysis pipelines have been developed and utilised for microbial marker gene 

analysis (Figure 1.11), such as QIIME2 (Bolyen et al., 2019), Bioconductor 

(Callahan et al., 2016), USEARCH (Edgar, 2010), Mothur (Schloss et al., 2009) 

and MG-RAST (Meyer et al., 2008). These pipelines enable us to calculate α 

diversity (Walters and Martiny, 2020), which defines the variety and structure of 

microbiomes in a sample, and β diversity (Walters and Martiny, 2020), which 

compares the similarity or dissimilarity of microbiomes from different samples. 

Afterwards, univariate and multivariate statistical analyses (e.g., principal 

component analysis, principal coordinates analysis, non-metric multidimensional 

scaling, partial least squares discriminant analysis, and Linear discriminant analysis 

Effect Size (LEfSe; Segata et al., 2011)) are utilised to compare AD microbiomes 

from different samples or to identify particular taxa that are influenced by the 

changes in AD operating conditions. As marker gene-based approaches can identify 

taxa but provide little information on their metabolic or functional capability, some 

bioinformatic tools have been developed (e.g. Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt; Langille et al., 

2013), Tax4Fun2 (Wemheuer et al., 2020), Piphillin (Iwai et al., 2016), and PanFP 

(Jun et al., 2015)), to predict the genomes and functions of the identified taxa from 

the closely related known species. However, it should be emphasised that this type 

of functional inference is simply a prediction and does not offer a reliable functional 

profile. 
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High-throughput (short- or long-reads) sequencing of metagenomic DNA, 

quality control of reads, sequence assembly, gene prediction and annotation, and 

binning of contigs into metagenome-assembled genomes (MAGs) or genome bins 

are all part of the standardised metagenomics analysis pipeline (Figure 1.11). De 

novo assembly of metagenomic sequence reads is typically the most difficult phase 

since it is computationally intensive and time-consuming. To increase the speed and 

precision of de novo assembly, many algorithms and bioinformatic tools have been 

created. Assemblers such as MEGAHIT (Li et al., 2015), MetaVelvet (Namiki et 

al., 2012), metaSPAdes (Nurk et al., 2017), IDBA-UD (Peng et al., 2012), Genovo 

(Laserson et al., 2011) and SOAPdenovo2 (Luo et al., 2012) are utilised for short-

read de novo assembly while Falcon (Chin et al., 2016), minimap2/miniasm (Li, 

2016), metaFlye (Kolmogorov et al., 2020), Canu (Koren et al., 2017) and Shasta 

(Shafin et al., 2020) are used for long-, error-prone reads. The quality of assembled 

contigs should be assessed and polished by mapping sequence reads to contigs or 

comparing metagenome assemblies to close references using MetaQUAST 

(Mikheenko et al., 2016), Nanopolish (Loman et al., 2015), Racon (Vaser et al., 

2017), Medaka (https://github.com/nanoporetech/medaka) and Pilon (Walker et al., 

2014). Binning contigs into individual MAGs can be performed using program such 

as CONCOCT (Alneberg et al., 2014), MetaBAT2 (Kang et al., 2019) or MaxBIN2 

(Wu et al., 2016).  

Metagenomic functional annotation is performed by comparison to databases 

(e.g. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), 

Clusters of Orthologous Groups of proteins (COGs), Integrated Microbial Genomes 

& Microbiomes (IMG/M), SEED and Pfam (Mistry et al., 2021)) using Prodigal 
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(Hyatt et al., 2010), Prokka (Seeman et al., 2014) or Kraken (Wood and Salzberg, 

2014). However, it is important to understand that these annotations and database 

are constantly being updated and do not provide complete picture. This means that 

unfortunately there are many novel or uncharacterised taxa that will not have a 

meaningful functional annotation. Metabolic pathways can be reconstructed and/or 

modelled from the genes annotated using metabolic pathway databases, such as 

KEGG Pathway, MetaCyc Metabolic Pathway and BRENDA (Braunschweig 

ENzyme DAtabase) database. Metagenomic sequences can also be annotated by 

comparing them to “specialty databases,” such as the CAZy database for 

carbohydrate-active enzymes and the MEROPS database for peptidases. Thus, 

metagenomics has the ability to recover genomes and predict the metabolism of 

novel and uncultured microbes. 

1.7 Aims 

Our understanding of microbial communities associated with anaerobic 

digestion (AD) currently relies strongly on marker gene profiling and metagenomic 

sequencing, which can reveal phylogenetic diversity but does not provide 

information concerning microbial activity or the close associations that may form 

between syntrophic organisms. To fill this gap, approaches that facilitate charting 

of process-targeted variation in microbial community activities are important for 

understanding how the microbiology of AD functions as a single biological 

machine. Therefore, the overarching goal of my PhD project is to adopt a top-down 

approach to narrow down the complex AD microbiome to subsets of metabolically 

active microbes as they respond to substrate availability in AD systems using 

bioorthogonal non-canonical amino acid tagging (BONCAT) and affinity-based 
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cell separation (ABCS) techniques. This combination of techniques could help to 

identify the key microbes involved in the degradation of compounds in AD systems, 

enhance our understanding of microbial community interactions, and facilitate the 

development of strategies for process optimisation. To do this, a number of 

approaches were taken: 

1. To better understand the fate and intermediates generated during the 

catabolism of medium-chain fatty acids, individual VFAs with odd and 

even numbers of constituent carbon atoms were added to starved AD 

cultures. To apply BONCAT to track the metabolically active microbes, 

cells were exposed to the synthetic amino acid azidohomoalanine (AHA) 

to obtain a temporal snapshot of the active cell fraction, as described in 

Chapter 3.  

2. To apply BONCAT to cell-selective analysis, AHA-labelled cells were 

enriched via reactions with affinity tags followed by downstream 

genomic analysis. Chapter 4 describes the application of temporally-

selective cell labelling and enrichment using BONCAT and affinity-

based cell separation (ABCS) in a simple system, using mixed pure 

cultures, for downstream genomic analyses to demonstrate the specificity 

and sensitivity of BONCAT-ABCS in a mixed system. 

3. Chapter 5 describes the investigation of the active cell labelling and 

enrichment using BONCAT-ABCS in AD-derived sludge to identify 

which microbes actively contribute to specific metabolite processing in 

AD systems. 
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2 Materials and Methods 

2.1 Inoculum 

2.1.1 Escherichia coli strains and culture conditions 

E. coli MV1300 (MG1655 ∆ lacZYA; kanamycin (Kan) resistance) and E. coli 

MV1717 (MG1655 lac+ and plasmid-encoded, inducible CDI-msfGfp, 

chloramphenicol (Cm) resistance), provided by Dr. Marjan van der Woude, were 

used for the mixed E. coli strains glucose-lactose diauxie experiment. Strains were 

grown at 37 oC overnight on Lysogenic Broth agar (LB-agar Miller; LMM0204, 

Formedium, Hunstanton, UK) containing 30 µg/mL kanamycin or 34 µg/mL 

chloramphenicol for MV1300 or MV1717, respectively. A single colony of each 

strain was grown overnight (18 hours) in 25 mL LB medium (LB broth, Miller; 

BP9723-500, Fisher BioReagents, Loughborough, UK) containing antibitotic (Kan 

30 µg/mL or Cm 34 µg/mL) in 50 mL Falcon tubes at 37 oC with 120 rpm orbital 

shaking. The optical density at 600 nm (OD600) of each culture was measured (see 

section 2.3.5), the biomass from each tube was harvested via centrifugation 

(Centrifuge 5810 R, eppendorf) at 1940 × g, 37 oC. The supernatants were removed, 

the pellet resuspended in 10 mL of warm (37 oC) filter sterile 1x phosphate buffered 

saline (PBS 20-7400-10, Severn Biotech Ltd.). The biomass was spun again with 

the same parameters. The PBS was removed and 10 mL of 1x 

Morpholinepropanesulfonic acid (MOPS) minimal medium (Teknova, Hollister, 

CA, USA) was added into each tube. The strains were mixed together in 1:1 ratio 

(v/v) and OD600 measured. This mixed culture was then used as the inoculum for 

E. coli glucose-lactose diauxie experiments.  



66 

 

2.1.2 AD derived starved microbial community 

‘Starved’ inocula were generated using material collected from a process-scale 

(1,858 m3) AD system at Yorkshire Water’s Naburn site, York, United Kingdom 

(53°54'50.5"N 1°05'04.6"W). Material was collected from an outlet pipe coming 

from digester tank 3 into a 30 L plastic barrel that was consequently sealed. The 

material was immediately transported to the lab where it was transferred to 5 L 

reactors for incubation.  

Samples were incubated in stirred 5 L reactors (Figure 2.1) at 35 oC until VFA 

content was undetectable by GC-FID (HP 5890 series II) measurements (< 0.05 

mM; see section 2.3.2). Starved communities were used as the starting point for 

experiments. 

2.2 Bioreactor set up and operation 

2.2.1 Applikon benchtop bioreactor operation 

A glass autoclavable bioreactor with a 3 L working volume (Applikon 

Biotechnology, Delft, The Netherlands) was used for mixed E. coli strains diauxic 

growth experiments. The temperature was kept at 37 oC (± 0.3) via a water bath 

(OLS200, Grant Instruments). pH was logged and monitored by Bio Controller ADI 

1010 (Applikon Biotechnology, Delft, The Netherlands) and maintained at 7.2 ± 

0.05 by addition of 2 M NaOH. Dissolved oxygen was maintained above 20% 

saturation by adjusting agitation speed in the range of 270 – 500 rpm (Motor 

Controller, ADI 110, Applikon Biotechnology, Delft, The Netherlands) with fixed 

1 L/min air flow. The mixed E. coli MV1300 and MV1717 strains (from section 

2.1.1) were used to inoculate the 3 L fermentor with 1 L 1x MOPS minimal medium 
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(Teknova, Hollister, CA, USA) containing 0.5 g/L glucose and 1.5 g/L lactose as 

the only carbon source. 

2.2.2 5 L anaerobic digesters operation 

Lab scale, single stage anaerobic digesters with 5 L working volume were 

constantly mixed at approximately 45 rpm. Temperature was maintained at 35 oC 

via a heating jacket and controlled via a custom feedback loop system. Spill overs 

and feeding tubes were closed in this experiment. Sample only from sampling tubes 

to help control gas volume measurements (Figure 2.1). 

 

Figure 2.1 The system of 5 L reactors each with independent temperature controls and gas 

volume measurements.  These are stirred at a fixed speed in banks of 3, they can also be 

fed at programmable intervals in banks of 3. The systems are controlled by two PLC 

systems. Credit: Prof. James Chong. 
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2.3 Process data 

2.3.1 Volatile fatty acids (VFA) 

5 mL samples were centrifuged (6,000 rpm, 15 min at 4 oC; Centrifuge 5810 R, 

eppendorf). Supernatants were 0.22 µm filtered (Millex) into 1.5 mL microfuge 

tubes (15562320, Fisherbrand, Germany). Filtrates were acidified (7.5 µL neat 

orthophosphoric acid (Scientific Laboratory Supplies CHE2710) / mL) before 1 µL 

was injected for VFA analysis. VFAs were detected on a GC-FID (HP 5890 series 

II) fitted with a Nukol capillary column (30 m × 0.25 mm, df 0.25 µm; 24107, 

Sigma). Helium carrier gas was flowed at a rate of 5 mL/min. Detectors and 

injectors were held at 200 oC and samples eluted via a temperature gradient of 100 

– 150 (10 oC/min), 150 – 200 (20 oC/min), 200 °C hold for 10 minutes. The GC-

FID was calibrated using Volatile Free Acid Mix (CRM46975, Sigma-Aldrich, 

Dorset, UK) providing C2-C7 reference values between 0 and 10 mM to generate 5 

points calibration curves. Additional solutions of 0.1 – 10 mM octanoic (C8; 99% 

Sigma-Aldrich C2875, Dorset, UK), nonanoic (C9; 73982, Sigma-Aldrich, Dorset, 

UK) and decanoic acids (C10; 8021690100, Sigma-Aldrich, Dorset, UK) were used 

to extend the calibrated detection range. The calibration results showed a 

satisfactory correlation (R2>99%) with limits of detection of 0.01 – 0.05 mM 

(Figure 2.2). DataApex ClarityTM software was used for data acquisition, processing 

and instrument control. 
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Figure 2.2 Calibration curves for each volatile fatty acid. Red-dot lines denote standard 

deviation (SD) of triplicates. The GC-FID was calibrated using Volatile Free Acid Mix 

providing C2-C7 reference values between 0 and 10 mM to generate 5 points calibration 

curves. Additional solutions of 0.1 – 10 mM C8, C9 C10 were used to extend the calibrated 

detection range. 



70 

 

2.3.2 Glucose  

Glucose concentration and standard curve (Figure 2.3) assays were performed 

using Glucose Assay Kit (MAK263, Sigma-Aldrich) following the manufacturer’s 

instructions. The concentration was measured by assessing the optical density 

(OD570) using a microplate reader (CLARIOstar, BMG Labtech). 

 

Figure 2.3 Glucose standard curve. Red-dot lines denote standard deviation (SD) of 

triplicates. 

2.3.3 Lactose 

Lactose concentration and standard curve (Figure 2.4) assays were performed 

using Lactose Colorimetric / Fluorometric Assay Kit (K624, BioVision) following 

the manufacturer’s instructions. The concentration was measured by assessing the 

optical density (OD570) using a Thermo Spectronic Biomate 3 UV-Visible 

spectrophotometer (ThermoFisher Scientific, UK). 100 µL of the reaction mix was 

pipeted into a UV micro Cuvette (70 - 850 µL capacity; Z637092; Brand, Sigma-

Aldrich) for reading. Reaction mix without lactose standard/sample was used as a 

blank. The amount of galactose measured is equal to lactose. 
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Figure 2.4 Lactose standard curve. Red-dot lines denote standard deviation (SD) of 

triplicates. 

2.3.4 Cell density (OD600) 

E. coli growth in LB or 1x MOPS minimal medium was measured by optical 

density (OD600) using a Thermo Spectronic Biomate 3 UV-Visible 

spectrophotometer (ThermoFisher Scientific, UK). 500 µL culture was measured in 

a semi-micro cuvette (1.5 mL capacity; KartellTM 0193800, Fisher Scientific, UK). 

Cultures were diluted in LB or 1x MOPS minimal medium and remeasured when 

OD600 > 0.4. Sterile LB or 1x MOPS minimal medium was used as a blank. 

2.4 BONCAT labelling and enrichment 

2.4.1 Click labelling of chemically fixed microbial cells 

Sample preparation for on-slide and in-solution click labelling were essentially 

as described (Hatzenpichler et al., 2014; Hatzenpichler and Orphan, 2015) using 

the Click-&-GoTM Cell Reaction Buffer Kit (Click Chemistry Tools, Scottsdale, 

AZ, USA). Freshly mixed cocktail was prepared following the manufacturer’s 

instructions (per 1 reaction): 440 µL of 1× reaction buffer, 10 µL Copper(II) 
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Sulfate, 50 µL reducing agent. Click cocktails were supplemented to a final 

concentration of 3 µM Alexa-488 alkyne or Biotin alkyne (Click Chemistry Tools, 

Scottsdale, AZ) for visualization or cell sorting samples, respectively. Cocktail 

solutions were used within 10 min of preparation. 

2.4.2 BONCAT visualisation 

Fixed AHA-labelled biomass was diluted 10x in ultrapure water and spread on 

Teflon-coated glass slides (ER-208B-CE24, Thermo Scientific). Slide preparations 

were dried (46 oC, 3 min). Cells were dehydrated and permeabilized by sequentially 

immersing slides in 50%, 80%, and 96% ethanol in ultrapure water for 3 min before 

being air-dried at room temperature. 20 µL click reaction cocktail containing Alexa-

488 alkyne was applied to a cleaned coverslip, inverted and placed over the fixed 

sample (Leizeaga et al., 2017). Prepared slides were incubated in a dark humid 

chamber (RT, ≥30 min) (Hatzenpichler and Orphan, 2015), then washed three times 

with PBS (3 min). Afterwards, slides were subjected again to the dehydration 

protocol described above before being air-dried at RT. Samples were mounted with 

VECTASHIELD® Mounting Medium with DAPI (H-1200, Vector Laboratories 

Ltd, Peterborough, UK) and examined by confocal microscopy (Zeiss LSM 710). 

Images were captured and analysed using ZEN imaging software (Zeiss). Samples 

were identified via DAPI before switching to other fluorescent channels to avoid 

bias for BONCAT positive microbial aggregates (Hatzenpichler et al., 2014). 

Representative images were taken for each sample. Ten images of each samples 

were captured randomly to calculate the percentage of metabolically active cells 

(BONCAT-stained cells) that related to the DAPI-stained cells according to Chen 

et al. (2021). 
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2.4.3 BONCAT-labelled biomass recovery via Affinity-based cell 

separation (ABCS) 

250 µL of fixed AHA-labelled samples were pelleted by centrifugation (16,100 

× g, 5 min, RT; Sigma Sciquip 1-14). Pellets were resuspended in 250 µL of 80% 

ethanol and incubated (3 min, RT). Resuspended cells were supplemented with 1.2 

mL of 96% ethanol, mixed and incubated (3 min, RT) before pelleting, then washed 

in 250 µL 1x phosphate buffered saline (PBS 20-7400-10, Severn Biotech Ltd.) and 

resuspended in 500 µL click reaction cocktail containing Biotin alkyne by vortexing 

(3 sec). The reaction was mixed by rotation (30 min, RT). Cells were washed with 

800 µL PBS then resuspended in 800 µL (20% glycerol in 1x PBS) by vortexing (5 

sec). 10 µL Neutravidin magnetic beads (78152104010150, GE Healthcare) were 

added to each sample, and mixed by rotation (30 min, 4 oC). Beads were 

concentrated on a magnetic stand (5 min) before discarding the supernatant. 

BONCAT-labelled / separated biomass was used for DNA extraction. 

2.4.4 BONCAT labelled-protein enrichment 

800 mg of cell pellets were resuspended in lysis buffer (8 M urea, 200 mM Tris 

pH 8, 4 % CHAPS, 1 M NaCl; Click Chemistry Tools), and treated with protease 

inhibitor (cOmplete, Mini, EDTA-free Protease Inhibitor Tablet; Roche). To fully 

lyse the cells, lysates were put on ice for 10 min, sonicated with a microtip probe 

by applied twelve 3 sec pulses with an amplitude of 32 – 33 % and pulse 3 sec on/5 

s off (Bandelin Sonopuls HD 2070). The lysis mixture was incubated on ice for 1 

minute after a cycle of three 3 sec pulses. Lysates were clarified by centrifuging at 

10000 × g for 5 min.  
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For enrichment, approximately 200 µL of washed Dibenzocyclooctyne-agarose 

resin (50 % slurry; Click chemistry Tools) and 1 mL of 2x Catalyst solution (Click 

chemistry Tools) were added to 800 µL of each lysate. A freshly made 2× catalyst 

solution per enrichment consisted of 860 µL 18 MΩ water, 100 µL reaction additive 

1 (Component D), 20 µL Copper (II) Sulfate solution (Component E) and 20 µL 

reaction additive 2 (Component F) (1033, Click-&-Go Protein Enrichment Kit, 

Click Chemistry Tools, Scottsdale, AZ, USA). Resin-treated lysates were rotated 

end-over-end at RT for 20 h.  

To reduce and alkylate the resin bound protein, resin samples were washed with 

18 MΩ water, treated with 1 mL of SDS wash buffer (100 mM Tris, 1 % SDS, 250 

mM NaCl, 5 mM EDTA, pH 8; Click Chemistry Tools) and 10 µL 1 mM 

dithioethritol (DTT) for 15 min at 70 oC then cooled at RT for 30 min. Resin 

samples were subsequently treated with 1 mL 40 mM iodoacetamide in the dark for 

30 min at RT. 

Resin samples were transferred to a Spin Column (Component H; Click 

Chemistry Tools) and underwent stringent washing with 5 × 2 mL of SDS Washing 

Buffer (Component G; Click Chemistry Tools). The resin was subsequently washed 

with 10 × 2 mL 8 M urea in 100 mM Tris pH 8 and 10 × 2 mL 20 % Acetonitrile in 

water (v/v) to achieve additional stringent removal of non-specifically bound 

protein and SDS prior to on-resin digestion and mass spectrometry analysis of the 

enriched proteins. Resin samples were resuspended in Digestion Buffer (100 mM 

Tris, 2 mM CaCl2, 10% acetonitrile) and pelleted by centrifugation for 5 min at 

1000 × g. Supernatants were removed to yield approximately 200 µL of digestion 

buffer in the tube with the resin. Samples were then sent to The York Centre of 
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Excellence in Mass Spectrometry, University of York CoEMS for mass 

spectrometry analysis (see sec. 2.5.4). 

2.5 Molecular methods for community analysis 

2.5.1 Genomic DNA extraction and quantification 

2.5.1.1 Qiagen DNeasy Blood and Tissue Kit 

Genomic DNA of E. coli strains was extracted using a Qiagen DNeasy Blood 

and Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer's protocol 

with the following exceptions: samples (maximum 5 × 106 cells) were centrifuged 

for 10 min at 300 × g; after addition of Buffer AE, incubated for 2 minutes at room 

temperature. The elution step was repeated 4 times to increase DNA yield. 

2.5.1.2 Qiagen Powersoil DNA extraction 

Genomic DNA was extracted from BONCAT-labelled AD biomass using a 

Qiagen PowerSoil DNA Extraction Kit (Qiagen, Hilden, Germany) following the 

manufacturer's protocol with the following exceptions: samples were bead beaten 

for 20 min; after addition of ethanol wash solution (C5) samples were centrifuged 

for 60 sec.  

2.5.1.3 DNA quantification 

DNA concentrations were quantified using a QubitTM 1x dsDNA HS Assay Kit 

(Q33230, Invitrogen, Thermo Fisher Scientific) and QubitTM 3.0 Fluorometer 

(Q33216, Invitrogen, Thermo Fisher Scientific). Samples were stored at -80 °C. 
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2.5.2 PCR and qPCR 

2.5.2.1 Primer design 

Primers were designed to detect 3 different genes (Table 2.1). All primers were 

synthesised by Sigma-Aldrich with normal desalting purification. Dried primers 

were resuspended in 1x TE (10 mM Tris, pH 7.5 – 8.0, 1 mM EDTA). Primers were 

stored at – 20 oC. End point PCR was carried out with each primer pair to ensure a 

single band was formed for each selected target (see Figure 4.4). 

Table 2.1 Primer sequences used to amplify the housekeeping gene (rpsQ; this study) and 

the target gene, kanamycin resistance (aph(3’)-II nptII; Ullmann et al., 2019) and 

chloramphenicol resistance (catA1; Pholwat et al., 2019) gene. 

 

Gene 

 

Primer 

 

Sequence (5 → 3) 

 

Annealing 

(Tm) 

 

GC 

% 

Expected 

amplicon 

(bp) 

 

rpsQ 

Forward GCACGTACATGACGAGAACA 62 50 

 

97 

Reverse AACCAGCGTCCAGGATTTAG 62 50 

 

nptII 

Forward GATCTCCTGTCATCTCACCTTGCT 61.96 50 

 

129 

Reverse TCGCTCGATGCGATGTTTC 58.71 52.6 

 

catA1 

Forward GCCAATCCCTGGGTGAGTTT 60.25 55 

 

110 

Reverse ACCTTGTCGCCTTGCGTATAA 60.07 47.6 

 

2.5.2.2 PCR and gel electrophoresis 

The total volume for each PCR reaction was 50 µL, which consisted of 1 ng – 1 

µg template DNA, 0.2 µM forward primer, 0.2 µM reverse primer, 25 µL OneTaq 

Quick-Load 2x Master Mix with Standard Buffer (M0486, New England Biolabs) 
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and made up to 50 µL using nuclease-free water. PCR amplification was carried 

out using a Prime Thermal Cyclers (5PRIMEG/02; Techne Prime), where initial 

denaturation was at 94 °C for 30 seconds, followed by 94 °C for 30 seconds, 52 °C 

for 30 seconds and 68 °C for 15 seconds for 30 cycles and a final extension at 68 

°C for 5 minutes. The PCR products were run on a 3 % agarose gel, using 3 g 

agarose (Agarose MB1200, Melford, Ipswich, UK), 100 mL 1x Tris-Borate EDTA 

(TBE) buffer and 3 µL SYBRSafe DNA gel stain (S33102, Invitrogen, UK). 20 µL 

sample was loaded into each well, and run in 1x TBE for 60 minutes at 100 Volts 

(5 V/cm). 

2.5.2.3 qPCR 

qPCR amplification and analysis were performed using the Applied 

Biosystems® QuantStudio® 3 Real-Time PCR System (A28567, Thermo Fisher 

Scientific). The qPCR mixture of 20 μl was prepared using 10 μl of FAST SYBR 

2x Master Mix (Thermo Fisher Scientific), 0.7 μl of each primer (final 

concentration 350 nM), 6.6 μl of nuclease free water, and 2 μl template DNA 

(0.09375 – 6.02 ng/µL).  

The thermal cycling protocol was as follows: initial denaturation for 20 s at 95 

°C followed by 40 cycles of 1 s at 95 °C and 20 s at 60 °C. The fluorescence signal 

was measured at the end of each extension step at 60 °C. After amplification, a 

melting curve analysis with a temperature gradient of 0.1 °C/s from 60 to 95 °C was 

performed to confirm that only specific products were amplified. PCR efficiencies 

were calculated from the given slopes in QuantStudio® 3 software. An absolute 
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quantification of the catA1 and nptII genes normalised to the housekeeping gene 

(rpsQ) was performed. 

2.5.3 Metagenomic sequencing 

2.5.3.1 Oxford Nanopore metagenomic sequencing 

DNA sequencing was performed by the Bioscience Technology Facility 

(University of York, UK) using Oxford Nanopore Technologies’ (ONT) MinION 

sequencing platform. Isolated DNA samples were purified and small fragments 

removed using AMPure XP beads (Beckman Coulter) at a 0.8:1 (bead:sample) 

ratio, with extended incubations for bead binding and elution. Library preparation 

was performed using ONT’s ligation sequencing kit (SQK-LSK109) with 

barcoding expansion pack (EXP-NBD104). Individual samples were pooled into a 

single library for sequencing, using ONT’s recommended protocol, modified as 

below. All additional enzymes required were supplied by New England Biolabs. 

900 ng DNA per sample was prepared for barcode ligation using a combined FFPE 

nick repair and end repair step (30 min incubations at 37°C then 60°C). Following 

a clean-up step using AMPure XP beads, unique ONT barcode sequences for each 

sample were ligated with NEB Blunt/TA ligase mastermix (45 min incubation). 

Free barcodes were removed by AMPure bead clean up, and samples were 

quantified using a Qubit 3.0 fluorimeter with High Sensitivity dsDNA reagent 

(Invitrogen). Approximately 100 ng of each barcoded sample were pooled and ONT 

adapter (AMII) was added in a ligation reaction using NEBNext Quick T4 DNA 

ligase (30 min, RT). A final clean-up was performed with 0.5:1 (AMPure XP 

beads:sample), including two washes with ONT long fragment wash buffer, before 
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eluting the final library into 15 µl elution buffer. The library was loaded onto a 

MinION flow cell (FLO-MIN106, R9.4.1), and sequenced (48 h), with regular top-

ups of flush buffer plus tether from the EXP-FLO002 flow cell priming kit. High 

accuracy base-calling and barcode demultiplexing was performed using ONT 

Guppy base-calling software version 3.2.4. 

2.5.3.2 Illumina HiSeq metagenomic sequencing 

DNA samples were sent to Novogene to be sequenced using three lanes on the 

Illumina HiSeq 2500 sequencing platform. The libraries were prepared using the 

NEBNext Ultra DNA Library Prep Kit for Illumina (E7370, NEB), according to the 

manufacturer’s instructions. DNA samples were sheared to an average size of 200 

bp using a Covaris S2 system before Library Prep Kit was used. After the PCR 

amplification step, fragment sizes were determined using the Agilent Bioanalyzer 

with Agilent High Sensitivity DNA Kit. The prepared libraries were run using a 

HiSeq2500 PE flow cell on the Illumina HiSeq 2500 platform. 

2.5.4 LC-MS/MS 

Liquid chromatography-tandem-mass spectrometry (LC-MS/MS) experiments 

were carried out by CoEMS. Protein samples were on-bead digested with 10 µL 0.1 

µg/µL Promega sequencing grade trypsin and incubated at 37 oC overnight. 

Resulting peptides were desalted with Millipore C18 ZipTip before being re-

suspended in aqueous 0.1% trifluoroacetic acid (v/v) then loaded onto an mClass 

nanoflow UPLC system (Waters) equipped with a nanoEaze M/Z Symmetry 100 Å 

C18, 5 µm trap column (180 µm x 20 mm, Waters) and a PepMap, 2 µm, 100 Å, C18 

EasyNano nanocapillary column (75 µm x 500 mm, Thermo). The trap wash 



80 

 

solvent was aqueous 0.05% (v:v) trifluoroacetic acid and the trapping flow rate was 

15 µL/min. The trap was washed for 5 min before switching flow to the capillary 

column.  Separation was achieved using an elution gradient of two solvents: solvent 

A, aqueous 0.1% (v:v) formic acid; solvent B, acetonitrile containing 0.1% (v:v) 

formic acid. The flow rate for the capillary column was 300 nL/min and the column 

temperature was 40°C. The linear multi-step gradient profile was: 3-10% B over 7 

mins, 10-35% B over 30 mins, 35-99% B over 5 mins and then proceeded to wash 

with 99% solvent B for 4 min. The column was returned to initial conditions and 

re-equilibrated for 15 min before subsequent injections. 

The nanoLC system was interfaced with an Orbitrap Fusion Tribrid mass 

spectrometer (Thermo) with an EasyNano ionisation source (Thermo). Positive 

ESI-MS and MS2 spectra were acquired using Xcalibur software (version 4.0, 

Thermo). Instrument source settings were: ion spray voltage, 1,900 V; sweep gas, 

0 Arb; ion transfer tube temperature; 275°C. MS1 spectra were acquired in the 

Orbitrap with: 120,000 resolution, scan range: m/z 375-1,500; AGC target, 4e5; max 

fill time, 100 ms. Data dependant acquisition was performed in top speed mode 

using a 1 s cycle, selecting the most intense precursors with charge states >1.  Easy-

IC was used for internal calibration. Dynamic exclusion was performed for 50 s 

post precursor selection and a minimum threshold for fragmentation was set at 5e3. 

MS2 spectra were acquired in the linear ion trap with: scan rate, turbo; quadrupole 

isolation, 1.6 m/z; activation type, HCD; activation energy: 32%; AGC target, 5e3; 

first mass, 110 m/z; max fill time, 100 ms.  Acquisitions were arranged by Xcalibur 

to inject ions for all available parallelizable time. 
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2.6 Bioinformatics 

2.6.1 Contig Assembly and Polishing 

Nanopore long-reads were assembled using Flye version 2.8 (Kolmogorov et al., 

2020) with the following parameters: metagenome mode for assembling uneven 

coverage data (--meta), using raw nanopore reads (--nano-raw), 3 iterations of 

polishing (--iterations 3) and an estimated genome size of 500m (--genome-size 

500m). The resulting contigs were polished using the long reads with one round of 

Medaka version 0.11.3 using consensus mode 

(https://github.com/nanoporetech/medaka). The base accuracy of this assembly was 

then improved by using three cycles of Pilon version 1.23-java1.8 (Walker et al., 

2014) to polish the assembly using Illumina reads. These Illumina reads were 

mapped to the assembly to generated a BAM file prior to Pilon using BWA version 

0.7.17 and the mem algorithm (Li, 2013), and using Samtools version 1.9 (Danecek 

et al., 2021) for indexing. An in-house custom pipeline 

(https://github.com/ac1513/CLUSTard) was used to map raw reads to individual 

contigs and visualise changes in abundance between samples. This was run using a 

Pearson’s correlation to discriminate between clusters designated as metagenome 

assembled genomes (MAGs). It also used software such as checkM to evaluate the 

validity of MAGs derived from this pipeline, generate a kraken2 and gtdb taxonomy 

annotation and visualise abundance changes between sample treatments. 

2.6.2 Prokka 

Open Reading Frames (ORFs) from the MAGs were assigned using Prokka 

(Seemann, 2014), using the default settings. These annotations were generated as 

https://github.com/nanoporetech/medaka
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part of the CLUSTard pipeline, and amino acid predictions were used to generate a 

database to query the proteomic matches against. 

2.7 Proteomic data analysis 

Tandem mass spectra were extracted and charge state deconvolution and 

deisotoping were not performed. All MS/MS samples were analysed using Mascot 

(Matrix Science, London, UK; version 2.7.0.1). Mascot was set up to search against 

BONCAT, non-BONCAT and contaminant database (the 

non_boncat_20210921.fasta; 20120229c.fasta; PROKKA_D474_03102021 

database (unknown version, 872063 entries)) assuming the digestion enzyme 

trypsin. Mascot was searched with a fragment ion mass tolerance of 0.50 Da and a 

parent ion tolerance of 3.0 PPM. O-124 of pyrrolysine, j-16 of leucine/isoleucine 

indecision and carbamidomethyl of cysteine were specified in Mascot as fixed 

modifications. Oxidation of methionine was specified in Mascot as a variable 

modification. 

Scaffold (version Scaffold_5.1.0, Proteome Software Inc., Portland, OR) was 

used to validate MS/MS based peptide and protein identifications. Peptide 

identifications were accepted if they could be established at greater than 22.0% 

probability to achieve an FDR less than 5.0% by the Percolator posterior error 

probability calculation (Käll et al., 2008). Protein identifications were accepted if 

they could be established at greater than 6.0% probability to achieve an FDR less 

than 5.0% and contained at least two identified peptides. Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii, 2003). Proteins that 

contained similar peptides and could not be differentiated based on MS/MS analysis 
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alone were grouped to satisfy the principles of parsimony. Proteins sharing 

significant peptide evidence were grouped into clusters. 

Only protein hits that passed the aforementioned filtering were used in the 

following analysis. Prokka accessions derived from the assembly annotation were 

used in peptide searches of proteomic hits against a database populated by prokka 

annotations derived from MAGs identified in the metagenomic data in mascot. 

Matches between metagenomic and proteomic data were made with a blastn 

database from BLAST 2.2.31+, which included these prokka accessions, and an 

evalue cutoff of 0.001. Other blast parameters remained default. Only MAG hits 

and proteomic hits matching back to the sample condition were selected from these 

matches, and the longest, highest scoring hit per MAG- proteomic match was used. 

This was done using sorting by query name, descending order of bit score, and 

ascending order of e value, and then taking the first result of these sorted queries 

per query name. Total spectrum counts were used for peptide abundance. Other 

level annotations and KEGG information are in Appendix H and I. 

2.8 Software and database use 

Additional software used included the following. Graph plots, bar plots and 

boxplots were generated using Prism 9 (v 9.0.2). Abundance graphs were generated 

by R (v 4.1.1). The chemical structures and reactions were drawn in Biorender.com. 

The Genome Taxonomy Database (GTDB; Release 06-RS202) was used for 

taxonomic classification of assigned metagenome-assembled genomes (MAGs).  
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3 Monitoring AD community fatty acid catabolism 

dynamics and tracking of metabolically active microbes 

in AD samples  

3.1  Introduction 

Anaerobic co-digestion of energy-dense waste such as fat, oil, and grease (FOG) 

has recently gained a great deal of attention for enhancing biomethane recovery in 

waste water treatment plants (Ziels et al., 2016). Methane yield has been reported 

to increase by 137 – 317% using this approach (Wan et al., 2011; Wang et al., 2013; 

Kurade et al., 2019). FOG induces higher biogas yield due to its higher potential 

degradable fraction (94.8%) than that of carbohydrates (50.4%) and proteins (71%; 

Jeganathan et al., 2006).  

In AD, FOG is rapidly hydrolysed to yield free fatty acids (FAs), which are 

organic molecules composed of a hydrophilic head, a carboxyl group, and a varying 

length of hydrophobic aliphatic tail (Heukelekian and Mueller, 1958). FAs are 

primarily degraded by fermentative bacteria via β-oxidation, which results in a FA 

molecule with two fewer carbons, a molecule of acetyl-CoA, and highly reduced 

chemical compounds, e.g., FADH2 and NADH2 (Jimenez-Diaz et al., 2017). To 

proceed β-oxidation to the next cycle, the supply of electron carriers (FAD+ and 

NAD+) are regenerated by a soluble hydrogenase that catalyses the oxidation of the 

highly reduced compounds and releases molecular hydrogen (H2) or by a 

cytoplasmic formate dehydrogenase (FDH) that act as a CO2 reductase to form 

formic acid (Agne et al., 2021). Hydrogen (H2) and formic acid produced during β-

oxidation are consumed by hydrogenotrophic methanogens to form methane. 
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Acetic acid may be metabolised to methane by acetoclastic methanogens in the 

absence of other electron acceptors, such as sulphate (Lalman and Bagley, 2000). 

Thus, anaerobic degradation of fatty acids is mostly the result of complex 

syntrophic partnerships between fermenting bacteria and methanogenic archaea 

(Worm et al., 2014).  

So far, most experiments on the degradation of fatty acids in AD are based on 

the effect of long-chain fatty acids (LCFAs; C14 – C20) on community composition 

and function (Angelidaki and Ahring, 1992; Neves et al., 2009; Sousa et al., 2009; 

Zhang et al., 2011; Ziels et al., 2016). In addition, these experiments merely 

compare the substrate and the β-oxidation final product (acetate) and report less 

information about potential intermediates formed during the course of β-oxidation. 

However, understanding the fate and function of intermediates generated from β-

oxidation of FAs is critical in explaining the co-existence of active microbial 

species involved in fatty acid catabolism in AD. This chapter describes catabolism 

of medium-chain fatty acids and intermediates generated during the sequential 

removal of 2-carbon acetate groups by the AD microbial community. Fatty acid 

catabolism dynamics are monitored using a targeted gas chromatography (GC) 

method that has been the method of choice in fatty acid analysis for more than half 

a century (Seppänen-Laakso et al., 2002).  

Furthermore, it will detail the use of bio-orthogonal amino acids coupled with 

click chemistry, called the bio-orthogonal non-canonical amino acid tagging 

(BONCAT) method, for obtaining a temporal snapshot of the active cell fraction 

during fatty acid catabolism. BONCAT relies on cellular uptake and incorporation 

of non-canonical amino acid, e.g., L-azidohomoalanine (AHA; the L-methionine 



86 

 

(Met) surrogate bearing a chemically-modifiable azide group) into nascent protein 

by exploiting methionyl-tRNA synthetase (MetRS) substrate promiscuity (Kiick et 

al., 2002). MET activation rate by MetRS is kcat/KM 5.47×10-1 s-1.µM-1, meanwhile, 

AHA has the highest activation rate (1.42×10-3 s-1.µM-1) amongst other methionine 

analogues, e.g., homopropargylglycine (HPG; 1.16×10-3 s-1.µM-1) and norleucine 

(5.22×10-4 s-1.µM-1). Accordingly, AHA has the highest incorporation efficiencies 

during de novo protein synthesis compared to HPG and norleucine (Kiick and 

Tirrell, 2000; Kiick et al., 2001; Kiick et al., 2002). AHA is water-soluble (max 

concentration 18.06 mg/mL), nontoxic, stable under most physiological and 

environmentally relevant conditions (except highly sulfidic and alkaline 

environments (Hatzenpichler et al., 2014)) and non-disruptive on protein synthesis 

and degradation in incubation with up to 1 mM AHA (Dieterich et al., 2006; Bagert 

et al., 2014; Hatzenpichler et al., 2014). Labelled proteins from active cells can be 

visualized using fluorescence microscopy after attaching fluorescent dyes with 

terminal alkyne via Cu(I)-catalyzed click chemistry (Huisgen, 1963; Rostovstev et 

al., 2002; Meldal et al., 2002) to the incorporated azide-bearing amino acids. 

BONCAT using AHA has high specificity as only one organism (Karenia brevis, a 

marine dinoflagellate formerly known as Gymnodinium breve or Ptychodiscus 

breve, which forms toxic red tide blooms along the Florida coast and the Gulf of 

Mexico) is currently known to produce this azide-containing metabolite (Griffin, 

1994).   

This method has been applied to study metabolically active microbes in pure 

culture and environmental samples, such as marine sediments, pond sediments, and 

soil (Hatzenpichler et al., 2014; Samo et al., 2014; Hatzenpichler et al., 2016; 
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Leizeaga et al., 2017; Couradeau et al., 2019), making it appealing for tracking the 

activity or monitoring microbial community changes in anaerobic digestion.  

3.2  Experimental Design 

The experimental approach used in this study was designed to track anaerobic 

digestion fatty acid catabolism products from even- and odd-numbered medium-

chain fatty acids (Fig. 3.1A). ‘Starved’ inocula were generated using material 

collected from a process-scale (1,858 m3) AD system at Yorkshire Water’s Naburn 

site, York, United Kingdom (53°54'50.5"N 1°05'04.6"W) as described in section 

2.1.2. Samples were incubated in gas-tight bottles at 35 oC until VFA content was 

undetectable by GC-FID measurements (< 0.05 mM). Throughout the starvation 

period, excess gas generated by community activity was vented periodically to 

relieve headspace pressure. Starved communities were used as the starting point for 

experiments. 

After flushing the headspace with N2 for 5 minutes, incubations of 50 mL starved 

samples were supplemented with single addition ‘spikes’ of 143 µL 6.981 M 

heptanoic (~20 mM C7 final concentration), 79 µL 6.310 M octanoic (~10 mM C8 

final concentration), 143 µL 5.668 M nonanoic (~20 mM C9 final concentration), 

or 98 µL 5.080 M decanoic acid (~10 mM C10 final concentration). Incubations of 

supplemented samples were performed in triplicate in 100 mL serum bottles 

stoppered with butyl rubber bungs at 35 oC. 2 mL samples were collected for VFA 

analysis (see sec. 2.3.1). 

To track the active microbes during fatty acid degradation (Fig. 3.1B), a single 

dose of 10 mM octanoic acid (C8) was added and incubated at 35 oC for 24 h. 
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Subsampling for VFA analysis and click chemistry-mediated fluorescence labelling 

(Hatzenpichler and Orphan, 2015) was conducted every 6 h. To visualize 

metabolically active microbes, 3 mL sample from each timepoint were transferred 

anaerobically into anaerobic glass tubes that had been flushed with pure nitrogen 

for 3 minutes. Each sample was supplemented with 1 mM final concentration of L-

azidohomoalanine (AHA; Click Chemistry Tools, Scottsdale, AZ, USA) in nano-

pure water (filter sterilize using 0.2 µm filter, pH 7) and incubated for 30 minutes 

at 35 oC. At the end of the incubation period, samples were centrifuged at 6,000 

rpm for 15 min (Eppendorf Centrifuge 5810R) and the supernatant was subjected 

to VFA analysis (see sec. 2.3.1). The pellet containing AHA-tagged cells was fixed 

with ethanol:PBS (1:1 v/v) and stored at -20 oC. Sample preparation for click 

labelling of chemically fixed microbial cells and BONCAT visualisation was 

essentially as described in section 2.4.2. Ten images of each sample were captured 

randomly to calculate the percentage of metabolically active cells (BONCAT-

stained cells) that related to the DAPI-stained cells according to Chen et al. (2021). 
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Figure 3.1 BONCAT workflow for monitoring and tracking active microbes in an AD 

community. Experimental design for (A) monitoring AD community medium-chain fatty 

acid catabolism dynamics via gas chromatography and (B) visualisation of metabolically 

active microbes in AD samples via BONCAT. Created using Biorender.com. 

3.3  Results and Discussion 

Starting material collected from AD systems contained an array of VFAs, such 

as acetic (C2), propionic (C3), isobutyric (iC4), butyric (C4), isopentanoic (iC5), 

pentanoic (C5) and hexanoic (C6) acids (Fig. 3.2-A). After incubation at 35 oC for 

14 days of starvation, VFA content was undetectable by the GC-FID as shown in 

Figure 3.2. The VFA-starved community was used as the starting point for this 

study and allowed investigation of the community’s response via VFA profile 

quantification and metabolically active cell labelling during medium-chain fatty 
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acid (MCFA) degradation. The dosage of MCFAs used in this study was proven to 

be tolerated by AD microbial communities (Koster and Cramer, 1987; Van Lier et 

al., 1993; Rinzema et al., 1994). Octanoic (C8) and decanoic (C10) acids were chosen 

as representative of MCFAs with an even number of carbons, while heptanoic (C7) 

and nonanoic (C9) acids were selected to represent an odd number of carbons 

MCFAs.  

 

Figure 3.2 Volatile fatty acid (VFA) profiles during starvation of AD derived sludge. (A) 

fresh sludge; (B) after 7 days at 35 oC; (C) after 14 days at 35 oC. C2-acetic; C3-propanoic; 

iC4-isobutyric; C4-butyric; iC5-isopentanoic; C6-hexanoic acid. 
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3.3.1 Catabolism of medium even-chain fatty acids by AD microbial 

community 

Aliquots taken from the same batch of VFA-starved community were fed a 

single dose of ~10 mM octanoic (C8) acid and incubated at 35 oC. VFA 

concentrations were quantified from samples taken every 6 h for 24 h post injection 

to establish the dynamics of octanoic acid degradation (Fig. 3.3 and 3.4). C8 is 

transported exclusively by free diffusion into the cell as it has a permeability 

coefficient (0.173 cm/s) at least 100 times higher than water (Kamp and Hamilton, 

2006). C8 was then broken down in the cytosol. Hexanoic (C6) and acetic (C2) acid 

were observed in supernatants 6 h after addition of C8 with a concomitant reduction 

in octanoic acid concentration. Neither octanoic nor hexanoic acids were detectable 

by 18 h, although acetic acid was still present.  By 24 hours the VFA profile of the 

community had reverted to pre-addition levels, suggesting that octanoic acid was 

readily metabolised by this community. The major, persistent intermediates appear 

to be shorter, even-chain fatty acids (C6, C2), consistent with degradation through 

the β-oxidation pathway (Sousa et al., 2007b; Sousa et al., 2009). SCFAs (C4 – C6) 

presumably transported via porin channels (e.g. the porin OmpF) to cross the outer 

membrane and then diffuse across the cytoplasmic membrane in the non-ionized 

form (Clark and Cronan, 2005; Rodríguez-Moyá and Gonzalez, 2015) before being 

oxidised in the cytosol to C2 acids.  
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Figure 3.3 Comparison of volatile fatty acid (VFA) profiles during 24 hours of octanoic 

(C8) acid catabolism by AD-derived sludge. (A) Starved sludge before C8 spike; (B) after 

C8 spike; (C-F) after 6 – 24 h at 35 oC. C2-acetic; C6-hexanoic; C8-octanoic acid. 
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Figure 3.4. Time course of octanoic (C8) acid degradation by AD-derived community. 

Under the same conditions, 6 h after adding ~ 12 mM decanoic (C10) acid, shorter 

even-chain fatty acids (C8, C6, C2) were detected as major intermediates with a 

corresponding reduction in C10 concentration (Fig. 3.5 and 3.6). By 24 hours, C2 

was augmented with simultaneous depletion in C10, C8 and C6 concentrations 

relative to the 6 h timepoint. The VFA profile of the community had returned to 

pre-addition levels after 48 h. C10 was oxidised by the ‘starved’ AD-community 

through the sequential cleavage of 2-carbon acetate groups, consistent with the 

catabolism of C8, via β-oxidation pathway that is catalysed by acyl-CoA 

dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and β-

ketothiolase (Fig. 1.8; Sousa et al., 2007b; Sousa et al., 2009). C10 (0.1394/h) was 

degraded much more slowly than C8 (0.4400/h), consistent with Loehr and Roth 

(1968) that the degradation rate of fatty acids decreased with increased chain length 

as it needs to repeatedly re-enter β-oxidation pathway. 
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Figure 3.5 Comparison of volatile fatty acids (VFAs) profiles during 48 hours of decanoic 

(C10) acid catabolism by AD-derived sludge. (A) Starved sludge before C10 spike; (B) after 

C10 spike; (C-I) after 6 – 48 h at 35 oC. C2-acetic; C6-hexanoic; C8-octanoic acid; C10-

decanoic acid. 
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Figure 3.6 Time course of decanoic (C10) acid degradation by AD-derived community. 

Traces of butyric (C4) acid were not observed during the catabolism of even-

numbered MCFAs (C8, C10), contrasting with the Sousa et al. (2007b), seemingly 

due to higher degradation rate of C4 compared to the major intermediates (C2, C6) 

detected in this study. Butyric acid degradation rate has been shown to be slowed 

down by the β-oxidation end-product, acetic acid when the concentration > 10 mM 

(Lin and Hu, 1993; Wang et al., 1999). Butyric acids were undetectable in the AD 

of C8 and C10 acid, indicating that accumulated C2 concentrations (max 0.98 mM 

and 1.76 mM in C8 and C10 degradation, respectively) had no effect on C4 oxidation 

rates by butyric acid degrading bacteria (e.g., Bacillus, Pseudomonas, 

Syntrophomonas and Syntrophus; Fig. 3.7) which were expected to be abundant. 

Acetoclastic methanogens might have utilised the C2 fraction produced during C8 

and C10 β-oxidation to generate methane (CH4) alongside hydrogenotrophic 

methanogens that yield methane via CO2 reduction using hydrogen atoms provided 
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from dehydrogenation in the course of β-oxidation. This syntrophic activity helps 

in keeping C2 concentrations and H2 partial pressure low enough for butyric acid 

degradation to take place (Wang et al., 1999).  

 

Figure 3.7 Various metabolic reactions and the predicted abundant genera in the AD of 

even- and odd-medium-chain fatty acids. Predicted abundant genera is based on the 

presence of genes encoding enzymes involved in fatty acid β-oxidation cycle inferred from 

their published genomes and KEGG pathway (Kanehisa et al., 2016). Created with 

Biorender.com. 

Decanoic (C10) acid is the first solid aliphatic carboxylic acid (melting point 31.5 

oC), unlike the first nine of the aliphatic carboxylic acids homologous series that 

are liquids at room temperature (Brondz, 2016). This feature makes it difficult to 

accurately add neat C10 into the sample. In this study, C10 was not dissolved in 

aqueous ethanol considering ethanol possible effects on the AD starved community 
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growth, viability, and metabolism. Therefore, to add neat C10 in liquid form, it was 

heated to 35 – 37 oC and the transfer process was carried out in an incubator at 35 

oC. However, every time samples were collected and prepared for VFA analysis, 

crystalline C10 was observed in the liquid fraction as the processes occurred at room 

temperature. This cause variability in the C10 concentrations between replicates in 

this study, although the major intermediates profile appears to be consistent. 

3.3.2 Catabolism of medium odd-chain fatty acids by AD microbial 

community 

Aliquots of the starved AD-community were fed a single dose of ~ 20 mM of 

heptanoic (C7) or nonanoic (C9) acid to establish the dynamics of medium odd-

chain fatty acids degradation. Accurately adding exact 50 mL volume of starved 

AD samples into 100 mL serum bottles was difficult as the samples contain solids 

and fine air bubbles. This makes it difficult to get exactly same final concentration 

of supplemented fatty acid, resulting in initial concentrations that are consistently 

higher than expected based on GC-FID measurement. 

Heptanoic (C7) acid was cleaved relatively slowly by the ‘starved’ AD-

community (Fig. 3.8 and 3.9). Elevated concentrations of pentanoic (C5), propionic 

(C3) and acetic (C2) acid were observed during the 96 h after addition with a 

concomitant reduction in C7 concentration. This suggests that anaerobic microbial 

oxidation of C7 mainly occurs by sequential cleavage of 2-carbon acetate groups 

via β-oxidation, resulting in C2 and C3 as final products. By 240 h, traces of C2, C3 

and iso-forms (isobutyric (iC4) and isopentanoic (iC5)) accumulated with 

simultaneous depletion of C5 and C7 concentrations. This indicates that C3 and C2 
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were formed faster by heptanoic- and/or pentanoic-oxidising bacteria (e.g., 

Syntrophomonas and Syntrophothermus; Fig. 3.7) and degraded slower by 

propionic-oxidising bacteria (e.g., Syntrophobacter, Smithella, Pelotomaculum and 

Desulfotomaculum; Fig. 3.7) and acetoclastic methanogens (e.g., Methanosarcina  

Methanothrix/Methanosaeta; Fig. 3.7). The fact that C2 was accumulated during 

this time shows that methanogens were much less active than the anaerobic 

bacterial populations. Consequently, it seemingly induces an increase in H2 partial 

pressure. This could explain the strong accumulation of C3, which its oxidation is 

highly sensitive to H2 partial pressure (Gourdon and Vermande, 1987). Between 

240 – 288 h, C2 was rapidly degraded (decay rate 0.05/h) suggesting increased 

methanogen activity, while C3 (9.05 mM), iC4 (0.28 mM) and iC5 (0.61 mM) were 

still present. This suggests that the increase in C3 concentrations up to 9.05 mM is 

not inhibiting methanogens activity (Fig. 3.9). Subsequently, increased 

methanogenic activity could contribute to the decline in H2 partial pressure, making 

C3 degradation thermodynamically feasible (Fig. 3.8 J-M). Neither C7 nor C5 were 

detectable 288 h after addition. However, C3 decomposition rate was slow as it 

needs 204 h to be fully metabolised by the AD community. Oxidation of C3 is 

known to require three further enzymes (propionyl-CoA carboxylase, 

methylmalonyl-CoA epimerase and methylmalonyl-CoA mutase) in addition to 

those required for even-chain fatty acid degradation. After 492 hours, the 

community VFA profile had reverted to pre-addition levels which indicates C7 was 

fully degraded by this community. 

Interestingly, traces of some iso-forms, e.g. iso-butyric (iC4) and iso-pentanoic 

(iC5), were observed after 240 h of the anaerobic degradation of C7 (Fig. 3.8 and 
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3.9). iC4 and iC5 were found in low concentrations, 0.31 and 0.89 mM, respectively 

(Fig. 3.9). The starved-AD community VFA profile indicates that iC4 and iC5 were 

products of microbial activity during C7 degradation, although other reports have 

suggested that these short-chain methyl-branched VFAs could be generated by 

microbial (e.g., Bacteroides, Corynebacterium, Megasphaera, Propionibacterium 

and Staphylococcus species) catabolism of branched-chain amino acid valine and 

leucine/isoleucine, respectively (Allison, 1978; Thierry et al., 2004; James et al., 

2013). However, given the evidence here (Fig. 3.9) showing increased branched-

chain VFAs formation by AD-starved communities during C7 degradation, it is 

worth noting that this phenomenon occurred when C2 (7.14 mM) and C3 (8.07 mM) 

concentrations were high. This could induce microorganisms, such as facultatively 

anaerobic Salmonella, to start de novo fatty acids synthesis by using either acetyl-

CoA (converted from acetic acid) or propionyl-CoA (converted from propionic 

acid) as a starter unit for condensing with malonyl-CoA, resulting in 4- or 5-carbon 

SCFAs (Park et al., 2020).  
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Figure 3.8 Comparison of volatile fatty acids (VFAs) profiles during heptanoic (C7) acid 

catabolism by AD-derived sludge. (A) Starved sludge before C7 spike; (B) after C7 spike; 

(C-I) after 12 – 492 h at 35 oC. C2-acetic; C3-propioic; iC4-isobutyric; iC5-isopentanoic; C5-

pentanoic; C7-heptanoic acid. 
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Figure 3.9 Time course of heptanoic (C7) acid degradation by AD-derived community. 

The catabolism of normal-form VFAs (C5; decay rate 0.03/h) was faster than 

their respective iso-forms (iC5; decay rate 0.02/h) consistent with Wang et al. 

(1999) as the trace of iC5 was still observed until 336 h after addition. The anaerobic 

degradation of C4 and iC4 presumably goes through reciprocal isomerisation 

(Matthies and Schink, 1992) before being catabolised via β-oxidation to yield C2 

acids. However, there is no reciprocal isomerisation between C5 and iC5 (Wang et 

al., 1999) prior to β-oxidation to produce C3 and C2 acids. In the case of iC5, it 

would also have generated C2 and acetone (CH3COCH3) or isopropyl alcohol 

(CH3CH(OH)CH3) if it is catabolised via β-oxidation. But only C2 was observed 

(Fig. 3.8 and 3.9). The GC-FID method used in this study was not capable of 

identifying acetone and isopropyl alcohol as both have lower boiling point (56 oC 

and 82.5 oC, respectively) than the temperature gradient applied for sample elution 

(see sec. 2.3.1). Thus, it is not possible to fully elucidate the degradation route of 
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iC5. Acetone and isopropyl alcohol still could be tested using GC-FID by applying 

different temperature gradient, for example the oven temperature is programmed to 

40°C (for 2 min), followed by an increase of 5ºC/min until 200ºC (Pontes et al., 

2009). 

Nonanoic (C9) acid was more slowly degraded (decay rate 0.0121/h) to C3 and 

C2 compared to C7 caused by its longer carbon chain. Neither C7 or C5 acids were 

detectable by 96 h after addition of C9, although C3 and C2 as final products and the 

major persistent intermediate metabolites iC5, C4 and iC4 acids were present (Fig. 

3.10). It was found that microbial β-oxidation activity was low when C9 > 10 mM 

(Fig. 3.11). The condition seemingly induced active microorganisms to use an 

alternative oxidation pathway, ω-oxidation, which normally occurs for medium 

chain fatty acids catabolism (Schönfeld and Wojtczak, 2016). Some Bacteria, e.g. 

Bacillus megaterium and Pseudomonas oleovolans, have been reported to be able 

to oxidise free fatty acids at the ω, ω-1, ω-2, and ω-3 positions in the presence of 

NADPH and O2 (Fig. 3.7; Miura and Fulco, 1975) which forms dicarboxylic acid 

and/or oxo-compounds. The formed dicarboxylic acids undergo β-oxidation usually 

from both ends of the fatty acid chain (bilateral β-oxidation) to shorter dicarboxylic 

acids, while the oxo-compounds are cleaved into two compounds via thiolysis 

(Miura, 2013). This explains the presence of low concentrations of 4- and 5-carbon 

SCFAs during this period, which is consistent with expected low levels of oxygen 

in the system likely introduced while transferring aliquots into the 100 mL serum 

bottles. The very active ω-oxidation consumes any remaining oxygen inside the 

system, resulting in an oxygen-free system, where anaerobes optimally thrive. The 

appearance of iC4 and C4 is consistent with Wu et al. (1994) and Wang et al. (1999) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sch%26%23x000f6%3Bnfeld%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27080715
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wojtczak%20L%5BAuthor%5D&cauthor=true&cauthor_uid=27080715
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as anaerobic degradation of C4 and iC4 presumably goes through reciprocal 

isomerisation (Matthies and Schink, 1992) before being catabolised via β-oxidation 

to yield C2 acids. Between 264 – 504 h after addition, traces of C7 and C5 were 

observed as a result of sequential cleavage of 2-carbon acetate groups from C9 and 

produced C3 and C2 as final products. C9 concentration was 3.22 mM and 0.55 mM 

at 264 and 504 h after addition, respectively (Fig. 3.11). This indicates that 

microbial β-oxidation of C9 is more favourable when C9 concentration is < 5 mM. 

No C9, C7 and C5 were detected at 1032 h after addition, although C2, C3, iC5 and 

iC4 were still present. The catabolism of normal-form VFAs (C4 and C5) were faster 

than their respective iso-forms consistent with Wang et al. (1999) and C7 

experiment as the traces of both iso-forms were still observed until 1080 h after 

addition (Fig. 3.10 L-M). C3, one of the β-oxidation OCFA products, was 

catabolised slowly by the community. Presumably, C3 needs to undergo a unique 

metabolism so that it is sequentially carboxylated, isomerised and rearranged for it 

to be converted to succinic acid ((CH2)2(CO2H)2) (Galivan and Allen, 1968), which 

is then further oxidised via oxaloacetate and pyruvate to yield acetic acid (Schink, 

1985). Acetic (C2) acid then cleaved by the acetotrophic methanogens to release 

methane and carbon dioxide. The VFA profile of the community had returned to 

pre-addition levels after 1280 h. The GC-FID method used in this study was less 

sensitive in detecting succinic acid (less volatile with boiling point 235 oC) than it 

is for VFAs because succinic acid contains fewer -CH2- and -CH3 groups than 

propionic and butyric acid (Playne, 1985). Alternatively, raising the maximum 

column temperature to 250 oC may improve the detection of this relatively high 

boiling point compound. 
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Figure 3.10 Comparison of volatile fatty acid (VFA) profiles during nonanoic (C9) acid 

catabolism by AD-derived sludge. C2-acetic; C3-propionic; iC4-isobutyric; C4-butyric; 

iC5-isopentanoic; C5-pentanoic; C7-heptanoic; C9-nonanoic acid. 
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Figure 3.11 Time course of nonanoic (C9) acid degradation by AD-derived community. 

Overall, this study shows that anaerobic degradation of odd-chain fatty acids (C7 

and C9) were so much slower than the oxidation of even-chain fatty acids (C8 and 

C10). The slow anaerobic degradation rate of OCFAs is strongly linked to the initial 

concentration of the supplemented MCFA, OCFA degraders abundance and the 

presence of propionic (C3) acid. The slow rate of C7 and C9 anaerobic oxidation 

during initial periods indicates that OCFA oxidisers are present in very low 

abundance after the microbial populations underwent starvation. Moreover, the 

initial concentrations of C7 and C9 were double the initial concentrations of ECFAs 

applied in this study. Both starvation and overloading may have a strong effect on 

AD microbial populations, especially the sensitive low abundance syntrophic 

bacteria and methanogens, which potentially leaves a relatively low abundance of 

robust bacteria/methanogens as starters. Microbes (bacteria/methanogens) with a 
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higher tolerance of stress may outcompete less tolerant microbes and display slow 

anaerobic oxidation of OCFAs initially. This may then lead to an enhanced 

environmental condition for syntrophic bacteria to became more abundant and be 

accompanied by a boost of acetoclastic and hydrogenotrophic methanogen activity. 

Furthermore, the biodegradation of C3 was found to be the slowest compared to 

other intermediate compounds and limit the anaerobic degradation rate of OCFAs 

by the VFA-starved AD community. Propionic acid degraders are syntrophs which 

cohabit with autotrophic methanogens to overcome the thermodynamic barrier 

created by high H2 partial pressure. Currently, only 10 species of propionic acid 

degraders have been identified, e.g. Syntrophobacter wolinii, S. pfennigii, S. 

fumaroxidans, S. sulfatireducens, Smithella propionica, Pelotomaculum schinkii, 

P. thermoproopionicum, P. propionicum, Desulfotomaculum thermocisternum and 

D. thermobenzoicum subsp. Thermosyntrophicum. Seemingly, these propionic 

degraders grow relatively slowly due to their fastidious metabolism via methyl-

malonyl-CoA (yields acetyl-CoA, NADH and FADH2) and being outcompeted by 

other bacteria in the presence of alternative fatty acids intermediates in this study. 

3.3.3 Obtaining a temporal snapshot of the active cell fraction in AD 

system using BONCAT 

The presence of intermediates indicates that either the fatty acid is able to enter 

β-oxidation faster than the intermediates can be utilised, saturating microorganism 

capability to metabolise it, or that different bacteria are required to oxidise various 

intermediates, causing cross-feeding in the AD system. This kind of microbe-

microbe interaction could influence the fatty acid metabolism carried out within the 

AD community. To decipher the diversity, role and function of AD microbial 
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communities and link these to their in-situ fatty acid degradation activity, 

techniques that distinguish active microbes from extracellular DNA and dormant 

cells is required. Here, BONCAT was used to obtain a temporal snapshot of the 

active cell fraction during fatty acid catabolism. 

3.3.3.1 Determine the minimum incubation time for fluorescence detection of 

BONCAT signals in AD sample 

Initially, AHA-labelling incubations with AD samples were performed to 

establish a protocol for the fluorescence labelling of AHA-containing proteins in 

chemically fixed cells. A labelling protocol (sec. 2.4.1 – 2.4.2) was adjusted in 

accordance with Hatzenpichler and Orphan (2015). AHA-containing Escherichia 

coli were used to test Cu(I)-catalyzed click reactions with Alexa-488 alkyne 

fluorescent dyes (Fig. 3.12) and showed successful fluorescent labelling with a 

slide-immobilised biomass approach.  

Time course experiments with AD samples were performed to determine the 

minimum time required for detection of AHA-labelled cells by BONCAT. VFA-

starved AD communities were incubated in the presence or absence of 1 mM AHA 

for 30, 60, 120 and 240 minutes (Fig. 3.13). These incubation times were tested 

based on the predicted growth rate of prokaryotes in an anaerobic system, e.g. the 

human gut, with minimum doubling times ranging from 0.5 – 5 h for fast-growing 

phyla (e.g. Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and > 5 h 

for slow-growing phyla (e.g. Chloroflexi, Cyanobacteria and Planctomycetes) 

(Gibson et al., 2018; Weissman et al., 2021). Thus, all incubations were performed 

≤ 1 predicted generation time of the fast- and slow-growing microbes in the system. 
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Intact cells were fixed in paraformaldehyde (PFA), fluorescently labelled with 

Alexa-488 alkyne fluorescent dyes via click chemistry and DAPI-stained after 

incubations. 

 

 

Figure 3.12 BONCAT of translationally active E. coli cells. All scale bars applied are equal 

to 2 μm. BONCAT signals (green) were recorded after E. coli incubation in the presence 

or absence of 1 mM AHA for 15 minutes at 35 oC. BONCAT signals were taken at identical 

exposures time using confocal microscope LSM 710 (Axio Imager 2, ZEISS) with 

objective Plan-Apochromat 63x/1.4 Oil DIC M27. 
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Figure 3.13 Fluorescence labelling of AD microbial community over time. All scale bars 

applied are equal to 5 μm. BONCAT signals (green) were recorded after AD microbial 

community incubation in the presence or absence of 1 mM AHA at 35 oC. BONCAT 

signals were taken at identical exposures time using confocal microscope LSM 710 (Axio 

Imager 2, ZEISS) with objective Plan-Apochromat 63x/1.4 Oil DIC M27. 



110 

 

 

Figure 3.14 The percentages of BONCAT positive cells out of DAPI positive cells in AD-

derived sludge over time in the presence of 1 mM AHA (n =10). The significance of 

differences was analysed by Tukey test (**** P <0.001; ns, not significant) and performed 

using GraphPad Prism software version 9.0.2. 

Qualitative and quantitative analysis based on the green fluorescence intensity 

revealed that the fluorescence signal as a result of AHA incorporation by AD 

communities increased over time relative to DAPI fluorescence signals in all 

samples (Fig. 3.13 – 3.14). Flocs of microbial cells were observed to be 

metabolically/translationally active during the incubation period, which was 

verified by the no AHA control (Fig. 3.13), suggesting BONCAT applicability on 

AD samples. 1 mM of AHA applied resulted in ~ 2.5 µM bioavailable amino acid 

in the sample due to its ~ 0.25% MetRS activation rate compared to Methionine 

(Kiick et al., 2002; Hatzenpichler et al., 2014), which appears to be sufficient to 
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induce uptake by active anaerobic microbes. After 30 minutes incubation, the AD 

community exhibited ± 13% BONCAT-fluorescence signal, which increased 

significantly to ± 42% after 240 minutes of incubation. The BONCAT labelled AD 

community increased after 60 and 120 minutes of incubation, however the 

difference was not significant (Fig. 3.14). 

In this study, 30 minutes of incubation with 1 mM AHA was chosen as the 

minimum incubation time because it is sufficient to label > 10% of AD 

microorganisms while minimising excessive substitution of L-Methionine with 

AHA, which could impede cellular machinery efficiency and reduce the risk of 

system disruption (Hatzenpichler et al., 2014). Furthermore, a short incubation time 

reduces the possibility of overlapping labelling, enhancing the precision of this 

technique in monitoring and identifying active microorganisms in samples at a 

certain interval. Unfortunately, estimation of labelling efficiency was not feasible 

due to the nature of AD samples, which were compact and contained densely 

packed cells which were not trivial to separate from the other materials in the 

samples. The inability to label the majority of the cells in AD samples was 

presumably due to the nature of slow-growing anaerobic microbes, which could not 

synthesise enough nascent AHA-containing proteins to be detected by the 

fluorescence microscope. Furthermore, because the most crucial limitation of 

BONCAT is its reliance on uptake mechanisms, it cannot be ruled out that some 

anaerobic microbes seemingly did not take up AHA into their cells or proteins due 

to the lack of appropriate transporters, the high selectivity of their MetRS, or a high 

Met/AHA ration in the cytoplasm (Hatzenpichler et al., 2014). 
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3.3.3.2 Tracking active microbial fraction in AD samples via BONCAT 

To track the active microbes during specific substrate degradation by the 

‘starved’ community, it was fed a single dose of ~10 mM octanoic acid and 

incubated at 35 oC for 24 h. Octanoic acid was chosen because it was degraded 

faster by the VFA-starved AD community and has reproducible results compared 

to other MCFAs substrate used in this study. Subsampling for VFA analysis and 

click chemistry-mediated fluorescence labelling was conducted every 6 h following 

the consistent VFA degradation profile as shown in Fig. 3.3 and 3.15.  

The VFA profile shows that octanoic acid (C8) was metabolised by the ‘starved’ 

community through the sequential cleavage of two-carbon fragments. 

Consequently, the major intermediate metabolites of octanoic degradation are other 

shorter chain fatty acids, like hexanoic (C6) and acetic acid (C2) (Fig. 3.15). This 

cascade degradation affirms that the breakdown of even-chain fatty acids by the 

‘starved’ inocula in mesophilic conditions generates acetate and indicates the 

occurrence of β-oxidation. 
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Figure 3.15 Comparison of volatile fatty acids (VFAs) profiles during octanoic (C8) acid 

catabolism by VFA-starved AD community. (A) Starved sludge before C8 spike; (B) after 

C8 spike; (C-F) after 6 – 24 h at 35 oC. C2-acetic; C6-hexanoic; C8-octanoic acid. 
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Visualisation of the active cells during octanoic degradation was done following 

an established BONCAT protocol with slide-immobilized biomass (Hatzenpichler 

and Orphan, 2015; sec. 2.4.1 – 2.4.2). Any microorganisms that are actively 

synthesising new proteins during C8 amendment and degradation will incorporate 

AHA into their nascent proteins. The active cells were visualised using fluorescence 

microscopy by attaching Alexa-488 alkyne via Cu(I)-catalysed click chemistry to 

the nascent proteins which have incorporated the synthetic amino acid. DAPI-

stained clusters that show high intensity 488 nm fluorescence are referred to as 

BONCAT-active microbes (Fig. 3.16). The VFA-starved AD community exhibited 

± 15% BONCAT-fluorescence signal before C8 addition (0 hour; Fig. 3.17), 

suggesting the presence of metabolically active anaerobic microbes 

(bacteria/archaea) that are able to survive after two weeks of starvation. Apparently, 

these surviving cells had to scavenge nutrients from what was in the environment, 

e.g. from cellular detritus. When nutrients were available again after C8 addition, 

survivor microbes were forced to adapt to utilise C8 as a source of energy, despite 

the fact that it is not normally present in the system (Fig 3.2-A). These persistent 

bacteria/archaea populations may play a role in promoting and facilitating C8 

anaerobic oxidation, resulting in an improved environment for syntrophic bacteria 

and methanogenic archaea to become more abundant. The proportion of cells 

stained by BONCAT increased significantly 12 – 18 h after addition and decreased 

when C8 was entirely metabolised by the AD community (Fig. 3.17), which confirm 

the existence of SCFA intermediates during octanoic acid oxidation (Fig. 3.15). 

This observation demonstrates the capability of BONCAT to visualise and monitor 

the fraction of in situ active microbes in an AD system. 
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Figure 3.16 Visualisation of BONCAT-isolated active microbes in AD-derived sludge 

during octanoic acid degradation. Scale bars indicate 10 µm in all images. BONCAT 

signals were taken at identical exposures time using confocal microscope LSM 710 (Axio 

Imager 2, ZEISS) with objective Plan-Apochromat 63x/1.4 Oil DIC M27. 
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Figure 3.17 The percentages of BONCAT positive cells out of DAPI positive cells in AD-

derived sludge during octanoic acid degradation at 35 oC (n =10). BONCAT was performed 

for 30 minutes in the presence of 1 mM AHA. The Tukey test was used to determine the 

significance of differences (** P = 0.002; ns, not significant) and performed using 

GraphPad Prism software version 9.0.2. 

3.4  Conclusion 

This study demonstrated the dynamics of ECFAs and OCFAs catabolism by 

VFA-starved AD communities via the β-oxidation pathway. ECFAs were degraded 

much more rapidly than the OCFAs. The slow anaerobic degradation rate of OCFAs 

is likely linked to the initial concentration of the supplemented FAs, OCFA 

degraders abundance and the presence of propionic (C3) acid as one of the 

intermediates. The results showed that anaerobic FAs oxidation by VFA-starved 

AD communities generates a variety of intermediate metabolites, which 

presumably affect the coexistence of active syntrophic bacteria and methanogenic 

archaea whose presence was detected by BONCAT. 
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4 Cell surface labelling and enrichment of active cells via 

biorthogonal non-canonical amino acid tagging and 

affinity-based cell separation 

4.1  Introduction 

The previous chapter described the degradation of medium-chain fatty acids to 

propionic and acetic acids, which can eventually be converted to methane. The 

observed catabolic profile might be mediated by a small number of active 

microorganisms that metabolise the compounds to support their survival and 

growth in AD systems. Unfortunately, marker gene profiling and metagenomic 

sequencing alone cannot provide information concerning which members of the 

community are active or the close associations that may form between syntrophic 

organisms in this anoxic habitat. Approaches that facilitate charting of process-

targeted variation in microbial community activities are important for 

understanding how the microbiology of AD functions as a single biological 

machine.  

The active microbes, as dynamic entities, react towards substrate availability or 

other changes in the environment by constantly adjusting their protein synthesis 

which will drive their cellular function. This postulation has been used by Dieterich 

et al. (2006) to introduce bio-orthogonal noncanonical amino acid tagging 

(BONCAT), a technique to label newly made proteins in system of interests via 

incorporation of noncanonical amino acid. These proteins can then be separated 

from their unlabelled counterparts via conjugation to an affinity tag and 

subsequently identified and quantified by liquid chromatography-tandem mass 
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spectrometry (LC-MS/MS). This technique has been applied successfully to study 

metabolically active microbes in various environmental samples (Hatzenpichler et 

al., 2014; Samo et al., 2014; Hatzenpichler et al., 2016; Leizeaga et al., 2017; 

Couradeau et al., 2019). This method has enabled the development of a new 

approach which is compatible with downstream genomic analyses to identify 

metabolically active microbes in AD via protein labelling. It enables cell-selective 

separation from the rest of the community via copper-catalysed click chemistry 

(Dieterich et al., 2007).  

In this chapter, a recently developed protein labelling technique that could be 

adapted for detecting intact and active microbial cells in mixed pure cultures and 

AD samples is introduced. The enrichment of the intact labelled cells via affinity-

based cell sorting (ABCS) can facilitate the identification of the active cells. It is 

applied first in a simpler system for downstream genomic analyses to demonstrate 

the specificity and sensitivity of BONCAT-ABCS in a mixed microbial system 

before being used to separate labelled cells from the complex mixture found in AD. 

4.2  Experimental Design 

The experimental approach (Figure 4.1) was designed to demonstrate cell 

surface labeling and enrichment of active Escherichia coli cells during mixed E. 

coli strains glucose-lactose diauxic growth. The E. coli glucose-lactose diauxic 

experiment of Mostovenko et. al (2011) was reproduced using E. coli MV1300 

(MG1655 ∆ lacZYA; kanamycin resistance) and E. coli MV1717 (MG1655 lac+ 

and plasmid-encoded, chloramphenicol resistance), provided by Dr. Marjan van der 

Woude (HYMS, University of York). The growth conditions and the bioreactor set-

up and operation can be seen in sections 2.1.1 and 2.2.1, respectively. 
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Figure 4.1 BONCAT-ABCS workflow for cell surface labelling and enrichment of active cells. Experimental design for cell surface labelling and 

enrichment of active E. coli cells during mixed E. coli strain glucose-lactose diauxic growth via BONCAT-ABCS. Created using Biorender.com. 
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2 mL samples were collected every 30 minutes before and after diauxie and 

every 10 minutes near and during the diauxic shift, as described in Mostovenko et 

al (2011), for monitoring the growth of the cells. E. coli cell growth was measured 

by assessing OD600 as described in section 2.3.5.  The concentrations of glucose 

and lactose were assayed using enzymatic kits (MAK263, Sigma-Aldrich and 

K624, BioVision, respectively) as described in sections 2.3.3 – 2.3.4. Aliquots of 

cells were also cultured on MacConkey agar and incubated at 37 oC overnight for 

differentiation and enumeration of lactose and non-lactose fermenting strains. 

For BONCAT, 5 mL samples were transferred aseptically into a 15 mL Falcon 

tube. Samples were supplemented with L-azidohomoalanine (AHA; Click 

Chemistry Tools, Scottsdale, AZ, USA) in ultrapure water (0.2 µm filter sterilised) 

to 1 mM final concentration. After incubation (37 oC, 15 min), samples were 

centrifuged (6,000 rpm, 15 min, 4 oC; Eppendorf 5810R). Supernatants were 

discarded, pellets containing AHA-tagged cells were fixed with 3 mL of 

ethanol:PBS (1:1 v/v) and stored at -20 oC before further processing. Click-labelling 

of chemically fixed microbial cells and BONCAT-labelled biomass recovery was 

essentially as described in sections 2.4.1 – 2.4.2. Genomic DNA was extracted from 

BONCAT-labelled biomass using a DNeasy Blood and Tissue Kit (Qiagen, Hilden, 

Germany) as described in section 2.5.1.1. PCR and qPCR set-up were performed as 

described in section 2.5.2. 

4.3  Results and Discussion 

4.3.1 Mixed E. coli strains glucose-lactose diauxic growth 

The glucose-lactose diauxie, a classic E. coli experiment, using mixed E. coli 

strains was recreated to show that BONCAT-ABCS works on a simple mixed 



121 

 

system. The strain MV1717 can grow on lactose (lac+), while MV1300 cannot 

utilise lactose (lac-) as it is missing the lacY gene that encodes lactose permease, a 

transporter that assists to pump lactose into the cells. This characteristic was 

confirmed by their growth on MacConkey agar (Figure 4.2A), where MV1717 

(lac+) colonies grow pink and MV1300 (lac-) colonies grow colourless (white). 

Moreover, each strain contains chromosome coding an antibiotic resistance gene 

for chloramphenicol (MV1717) or kanamycin (MV1300) (Figure 4.2B-C), which 

were used as strain markers later on in qPCR analysis to determine the active strain 

in this study. 

 

Figure 4.2 E. coli strains growth on a differential media and a rich media with antibiotic. 

A) E. coli strain MV1717 (left) and MV1300 (right) growth on MacConkey agar, B) strain 

MV1717 growth on LB agar with 34 µg/mL chloramphenicol and C) strain MV1300 

growth on LB agar with 30 µg/mL kanamycin. 

Both strains were grown separately for 18 h, until OD600 was ~1.4 (equivalent 

to ~1.1×109 cells/mL), and mixed in 1:1 ratio (v/v) prior to inoculation. Calculated 

OD600 of inoculum based on diluted samples was 6.82. The growth rate, lactose, 

and glucose concentrations in the experimental set-up allowed the accurate 

establishment of the onset of diauxic growth (Figure 4.3). Diauxie began when the 

cell suspension reached OD600 of ~ 0.5 or a density of approximately 4 × 108 

A B C 
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cells/mL (Brown, 2020) and was indicated by a 20 – 30 minute plateau in the growth 

curve (Fig. 4.3). This is reproducible in each experiment (OD600 of 0.52, 0.55, 

0.59) and Mostovenko et al. (2011). The onset of diauxie corresponds to the 

medium’s glucose exhaustion. Lactose is depleted after ~250 minutes of diauxic 

shift and the growth reached stationary phase when OD600 ~2. OD600 0.5 – 0.6 

was then used as a predictor during the experiment to optimise the sampling of the 

culture for active cell identification before, during and after the diauxic shift.  

 

Figure 4.3 Mixed E. coli strains diauxic growth profile on glucose and lactose. Dashed lines 

indicated the onset of diauxic shift. 
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4.3.2 Cell surface labelling and enrichment of active Escherichia coli cells via 

BONCAT-ABCS 

Based on the growth profile (Figure 4.3), aliquots in exponential growth before 

the diauxic shift (BD; 420 min), during the diauxic shift (DI; 470, DII; 480 and DII; 

490 min) and exponential growth after the diauxic shift (AD; 600 min) were taken 

for active cells labelling via BONCAT. To use BONCAT for cell-selective analysis, 

the samples were supplemented with the presence or absence of 1 mM final 

concentration of the synthetic amino acid azidohomoalanine (AHA) for temporal 

selectivity of active cells protein labelling. This concentration was selected based 

on the premise that E. coli protein synthesis and degradation rates are not perturbed 

when supplemented with 1 mM AHA (Bagert et al., 2014; Hatzenpichler et al., 

2014). A short (15 min) AHA incubation was performed, which is equivalent to 16 

– 19 % of the generation time respective to a doubling time of 77 minutes in the 

glucose growth (between 360 and 450 minutes) and 94 minutes (570 - 660 min) in 

lactose growth. This incubation period was used to reduce excessive substitution of 

L-Methionine with AHA which can impede the cellular machinery efficiency 

(Hatzenpichler et al., 2014). AHA-labelled cells were then tagged with 3 µM biotin-

alkyne via copper-catalysed click chemistry, as proven by Link and Tirrell (2003) 

to tag E. coli OmpC outer membrane protein, and concentrated on magnetic 

neutravidin beads as a means of affinity-based cell separation (ABCS). Neutravidin 

magnetic beads are microparticles (nominally 1 μm in diameter) with highly active 

neutravidin bound to the surface which can bind up to four biotinylated-alkyne 

groups with high affinity and selectivity. By estimating total surface area (3.14 μm2) 

of the 1 μm bead, and dividing it by the top/bottom (0.785 µm2) or lateral (3.14 
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µm2) surface area of E. coli, it was found that the possible number of bound E. coli 

is 1 – 4 cells/bead. So, the amount of beads added 1:25 ratio of biomass for 

capturing the AHA-labelled cells is quite reasonable. The cells recovered were 

subjected to genomic DNA extraction for qPCR analysis to determine the active E. 

coli strain. 

Prior to the qPCR assay, amplification specificity confirmation was performed 

and used to establish the amplification efficiencies of the primer sets used in this 

study (for the details of the primers see section 2.5.2.1).  Three primer sets specific 

to the 30S ribosomal protein S17 gene (rpsQ), the chloramphenicol 

acetyltransferase gene (catA1; Pholwat et al., 2019) and the aminoglycoside 3'-

phosphotransferase gene (nptII; Ullmann et al., 2019) were used to represent the 

housekeeping, chloramphenicol and kanamycin resistance genes, respectively. The 

amplification specificity was checked by both melting curve analysis and gel 

electrophoresis. All genes show a single melting peak and each PCR product also 

generated prominent bands with expected amplicon sizes (rpsQ 97bp, nptII 129 bp, 

and catA1 110 bp) in the gel electrophoresis analysis (Figure 4.4 – 4.5). These 

results confirmed that the primer sets used in this study did not generate non-

specific PCR products during amplification. The primers were also used to generate 

qPCR standard curves (Figure 4.6), ranging from 0.09 – 6.02 ng/µL. All curves 

showed high linearity with correlation coefficient (R2) > 0.999. Primer 

amplification efficiencies of 97.18 %, 86.65 % and 93.72 % were obtained from the 

slopes of their corresponding standard curves (-3.3913, -3.6897 and -3.4822) for 

rpsQ, nptII and catA1, respectively. The standard curves constructed (Fig. 4.6) were 

used to quantify the copy number of chloramphenicol and kanamycin resistance 
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gene that has been normalised to the housekeeping gene as a proxy of strain 

MV1717 and MV1300 abundance in each sample.  

 

Figure 4.4 The primer amplification specificity confirmation. Amplification specificity 

confirmation of each primer PCR product run on a 3% agarose gel in 1x TBE, 5 volt/cm, 

stained with SYBRSafe DNA gel stain. M = low molecular weight DNA ladder (NEB); 1 

= negative control rpsQ (water); 2 = rpsQ – MV1300; 3 = rpsQ – MV1717; 4 = negative 

control nptII (water); 5 = nptII – MV1300; 6 = nptII – MV1717; 7 = negative control catA1 

(water); 8 = catA1 – MV1300; 9 = catA1 – MV1717. The position of the wells and direction 

of DNA migration is noted. 

 

Figure 4.5 Derivative melting curve analysis of each primer PCR product shows primer 

specificity. A single peak indicates a single PCR-product. Colours denote rpsQ (red), nptII 

(purple), and catA1 (blue). The melting curve analysis with a temperature gradient of 0.1 

°C/s from 60 to 95 °C was performed using the Applied Biosystems® QuantStudio® 3 

Real-Time PCR System. 
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Figure 4.6 Evaluation of qPCR primer efficiencies. The amplification efficiency for each 

primer quantitation cycle (CQ) and the logarithm of the initial DNA concentrations were 

plotted to calculate the slope of each primer pair. Standard curves were generated from at 

least seven dilution points for each primer pair. qPCR reactions for each sample were run 

in triplicate. Amplification efficiencies were calculated according to the equation E = 10(-

1/slope) (Rasmussen, 2001). 
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During exponential growth before the diauxic shift, while using glucose, both 

MV1300 and MV1717 strains grew and increased in cell density in approximately 

equal numbers, as shown by kanamycin and chloramphenicol gene abundances for 

both BONCAT and control samples. Strain MV1717 was slightly more abundant 

than MV1300 as demonstrated by BONCAT-ABCS, although not significantly 

different (Fig. 4.7), confirmed by the number of pink (lac+) and white (lac-) 

colonies grown on MacConkey agar (Figure 4.8).  

In the course of the diauxic shift, MV1717 starts to express the genes required 

for lactose metabolism while MV1300 may express genes to support stationary 

phase and both strains stop increasing in cell density (Figure 4.3). Chloramphenicol 

gene abundance was higher than the abundance of the kanamycin gene in BONCAT 

samples, compared to control samples where both antibiotic genes were detected in 

apparently equal abundance at the beginning of diauxic shift. BONCAT-ABCS 

revealed that the MV1717 strain was becoming more active in the course of diauxic 

shift, while the MV1300 strain remained persitent during the diauxic shift, which 

was confirmed by the enumeration of lactose and non-lactose fermenting strains on 

MacConkey agar (Figure 4.8A and C-E). The results of three consecutive samples 

(DI, DII, DIII) analysed via BONCAT-ABCS demonstrate the specificity and the 

robustness of this method.  
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Figure 4.7 Quantification of MV1717 and MV1300 abundance between non-AHA-labelled (NON-BONCAT) versus AHA-labelled (BONCAT) samples 

during the diauxic growth. The nptII and catA1 gene were used as a marker of each strain normalised to rpsQ (the housekeeping gene). BD = samples in 

exponential growth before the diauxic shift (420 min); DI - DIII = samples during the diauxic shift (470, 480 and 490 min, respectively); AD = samples 

during exponential growth after the diauxic shift (600 min). Bars represent the standard deviation of six replicates (n=6). The significance of differences 

was analysed by two-way ANOVA test (**** P <0.0001; ns, not significant) and performed using GraphPad Prism software version 9.0.2. 
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In exponential growth after diauxic shift where lactose is the sole carbon source, 

only MV1717 can grow and the cell density increases, yet the MV1300 strain is 

still present (Figure 4.7 and 4.8A and F). Chloramphenicol gene abundance was 

significantly high for BONCAT samples with low kanamycin gene abundance 

observed. This is supported by notably more pink (lac+) than white (lac-) colonies 

grown on MacConkey agar (Figure 4.8). A substantial amount of active MV1300 

strain is still present in the sample because these survivors may use the nutrients 

released by the dead cells and brings the strain to a state of long-term stationary 

phase (Pletnev et al., 2015).  

 

Figure 4.8 Colony growth (A) and counts of lactose and non-lactose fermenting strain on 

MacConkey agar (B – F). BD = samples in exponential growth before the diauxic shift (420 

min); DI - DIII = samples during the diauxic shift (470, 480 and 490 min, respectively); 

AD = samples during exponential growth after the diauxic shift (600 min). 
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4.3.3 Affinity-based cell separation enriches active cell populations in AD 

sample 

To establish whether affinity tags could be used to separate labelled cells from 

the complex mixture found in AD, a biomass sample from 12 h post octanoic acid 

addition that had been incubated in the presence of 1 mM AHA was used and 

supplied the click cocktail with a 50:50 mix of biotin and Alexa-488 alkynes 

(Appendix A). The biotin-tagged cell population was isolated from the community 

using 10 µL (~ 100 µg) Neutravidin magnetic beads. 20% glycerol was used to 

increase sample density to improve magnetic separation as it is cheap and 

biologically non-invasive (Appendix B; Volk and Kähler, 2018). Fig. 4.9 shows 

that the BONCAT-labelled cells were enriched on the magnetic beads as a means 

of affinity-based cell separation (ABCS). The result suggests that both biotin and 

Alexa-488 moieties were incorporated into some cells and that these were 

selectively enriched onto Neutravidin beads, consistent with the labelling reaction 

resulting in a fraction of nascent proteins locating to the surface of metabolically 

active cells. The successful enrichment of AHA-based BONCAT followed by 

ABCS indicates that this is a viable approach for isolating populations of microbes 

actively responding to substrate availability in AD systems for further analysis. 
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Figure 4.9 Visualisation of translationally active cells immobilised on Neutravidin beads.  

The visualisation was done by combining BONCAT with affinity-based cell sorting 

(ABCS). Each row (A-E) shows a separate field of view. Labelled cells are shown in green 

and DAPI staining of DNA in blue. Scale bars indicate 2 µm in all images. 
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4.4  Conclusion  

These results suggest that biotin-alkyne moiety was incorporated into some cells 

and that these were selectively enriched onto neutravidin beads, consistent with the 

labelling reaction resulting in a fraction of nascent proteins locating to the surface 

of metabolically active E. coli cells. The BONCAT-ABCS technique was applied 

successfully and displayed the specificity and sensitivity to enrich the active cells 

during the diauxic growth of mixed E. coli strains used in this study. The successful 

enrichment of AHA-based BONCAT followed by ABCS indicates that this is a 

viable approach for isolating populations of microbes actively responding to 

substrate availability in mixed systems. 
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5 Bioorthogonal non-canonical amino acid tagging and 

affinity-based cell separation provide insight into 

octanoic acid degrading microbial communities 

5.1  Introduction 

Our understanding of AD microbial communities relies strongly on 16S rRNA 

gene profiling and metagenomic sequencing which can reveal phylogenetic 

diversity (Wirth et al., 2012; Kirkeegard et al., 2017; Hassa et al., 2018) but does 

not provide information concerning microbial activity or the state of cells in the 

system. Metagenomic data can provide information on organisms that are present, 

but not necessarily active, within AD systems. There are a range of approaches for 

targeting active microbes in AD samples including micro-autoradiography (MAR; 

Lee et al., 1999), secondary ion mass spectroscopy (SIMS and nano-SIMS; Musat 

et al., 2008; Orphan et al., 2009; Eichorst et al., 2015; Berry et al., 2015), and 

Raman micro-spectroscopy (Raman; Huang et al., 2007; Eichorst et al., 2015; Berry 

et al., 2015). While these methods are effective at identifying active microbes, they 

are often destructive and cannot be easily combined with downstream genomic 

analyses (Hatzenpichler et al., 2020).  

In the past few years a number of groups have used bioorthogonal non-canonical 

amino acid tagging (BONCAT) to identify metabolically active microbes in pure 

culture and environmental samples, such as marine sediments, pond sediments, and 

soil (Hatzenpichler et al., 2016; Leizeaga et al., 2017; Hatzenpichler et al., 2014; 

Samo et al., 2014; Couradeau et al., 2019). This technique has not been used to 

track the activity or monitor microbial community changes in anaerobic digestion. 
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BONCAT makes use of the synthetic amino acid analogues L-azidohomoalanine 

(AHA) or L-homoproparglycine (HPG) as surrogates of L-methionine (Kiick et al., 

2002; Hatzenpichler et al., 2014; Couradeau et al., 2019) to label L-methionine-

containing proteins in any organism where protein synthesis is occurring. BONCAT 

has been shown to be effective in a broad range of microorganisms and is seemingly 

independent of metabolism (Hatzenpichler et al., 2016; Samo et al., 2014). Labelled 

proteins from active cells can be visualized using fluorescence microscopy after 

attaching fluorescent dyes via Cu(I)-catalysed click chemistry (Hatzenpichler et al., 

2016; Dieterich et al., 2007) to the incorporated bioorthogonal amino acids. Click 

chemistry can be used to attach alternative reagents such as biotin alkyne (Dieterich 

et al., 2007) allowing tagged proteins to be isolated via avidin resins (Dieterich et 

al., 2007; Dieterich et al., 2006; Pezzi et al., 2018). Compared to the previously 

mentioned methods BONCAT is fast (Couradeau et al., 2019) and uses small 

amounts of material (Hatzenpichler et al., 2016; Couradeau et al., 2019), facilitating 

the collection of multiple samples over time and making it an appealing option for 

tracking microbial community changes or activity in anaerobic digestion.  

The previous chapter describes the application of temporally-selective cell 

labelling and enrichment using BONCAT and affinity-based cell separation 

(ABCS) in a simple system, using mixed pure cultures, for downstream genomic 

analyses. Here, the successful application of BONCAT combined with affinity-

based cell separation to facilitate the specific enrichment of metabolically active 

microbial populations in AD-derived sludge during octanoic acid degradation is 

reported. 
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5.2  Experimental Design 

The experimental approach (Figure 5.1) was designed to demonstrate the 

applicability of BONCAT-ABCS as a tool for identifying active microbes in 

complex AD microbial communities. It was used to investigate the activities of 

VFA-starved microbial communities in the presence of octanoic acid compared to 

nutrient rich synthetic feed (positive control) and water (negative control). The 

composition of the synthetic feed is described in Table 5.1. 

Table 5.1 Composition of the synthetic feed (Tao et al., 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Constituents 
Conc. 

(g/L) 
Trace Elements 

Conc. 

(mg/L) 

KH2PO4 0.31 Fe (FeCl2∙4H2O) 10.0 

Na2HPO4 2.47 Ni (NiCl2∙6H2O) 1.0 

MgCl2∙6H2O 0.15 Se (Na2SeO3) 0.2 

CaCl2∙2H2O 0.11 W (Na2WO4∙H2O) 0.2 

Urea 1.20 Mo ((NH4)6Mo7O24∙4H2O) 0.2 

Yeast extract 3.90 Co (CoCl2∙6H2O) 1.0 

Sucrose 23.30 Al (AlCl3∙6H2O) 0.1 

  Zn (ZnCl2) 0.1 

  Mn (MnCl2∙4H2O) 0.1 

  B (H3BO3) 0.1 
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Figure 5.1 Experimental design for active cell labelling and enrichment of active AD 

microbial communities via BONCAT-ABCS. (A) Incubations were done in triplicate and 

samples were subjected to VFA measurement and (B) BONCAT-ABCS of intact cells and 

proteins for each treatment. Created using Biorender.com.  

 

‘Starved’ inocula were generated using material collected from a process-scale 

(1,858 m3) AD system at Yorkshire Water’s Naburn site, York, United Kingdom 

(53°54'50.5"N 1°05'04.6"W) as described in section 2.1.2. Samples were incubated 
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in stirred 5 L reactors (section 2.2.2; Figure 2.1) at 35 oC until VFA content was 

undetectable by GC-FID (HP 5890 series II) measurements (< 0.05 mM; see section 

2.3.1). VFA-starved communities were then used as the starting point for this 

experiment. Communities were fed with a single addition of 8 mL of 6.310 M 

octanoic acid (~10 mM final concentration), synthetic feed or water.  Incubations 

were carried out in triplicate (Fig. 5.1A) and six time-points were subjected to VFA 

measurement (section 2.3.1) and BONCAT-ABCS (section 2.4.1 and 2.4.3) for 

each treatment. Genomic DNA was extracted from recovered biomass using a 

Qiagen PowerSoil DNA Extraction Kit (section 2.5.1.2) and subjected to 

metagenomic sequencing (section 2.5.3). To link the observed metabolic activity to 

specific microbial taxa, labelled proteins extracted from BONCAT-ABCS samples 

(section 2.4.4) were subjected to protein identification (section 2.5.4). 

Metagenomic and protein analysis were done as described in section 2.6 and 2.7, 

respectively. pH was measured using pH indicator test paper (Whatman 2600103A 

pH 6.4 – 8.0 range, GE Helathcare).  

5.3  Results and Discussion 

BONCAT-ABCS based protocols have been successfully employed for the 

study of enriched nascent proteins in mammalian and Leishmania cells (Dieterich 

et al., 2006; Bagert et al., 2014; Kalesh and Denny, 2019). However, it has not yet 

been tested for enriching whole cells within complex microbial communities, due 

to the challenges presented, such as AHA uptake and variation in growth stages of 

microbes in the community (Valentini et al., 2020). The activity-based labelling 

method developed in this study overcomes these challenges and allows enrichment 

of active microbial aggregates in situ that express the probe-containing proteins on 
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their cell membrane, as demonstrated in Chapter 4. For this activity-based labelling 

method, VFA-starved AD communities were exposed to a specific substrate to 

stimulate expression of AHA-contained proteins by metabolically active 

microorganisms. The BONCAT-ABCS was combined with subsequent 

metagenomic and proteomic analyses to directly link the function of a population 

to its identity in situ, which helped to identify microorganisms capable of degrading 

octanoic acid. 

VFA-starved anaerobic sludge was subjected to different substrate amendment 

with the initial pH of 7.1 ± 0.1 (Fig.5.2). The pH during AD of nutrient rich 

synthetic feed or water were consistent (pH 7.1 ± 0.1), while octanoic acid addition 

slightly lowered the pH to 6.9 ± 0.1. The pH observed in this study was still in the 

optimum pH range in AD, 6.8 – 7.2 (Cioabla et al., 2012), and has no negative effect 

on AHA stability (azide reduction to amine if pH > 7.5; Hatzenpichler and Orphan, 

2015). 

 

Figure 5.2 pH profile during AD of octanoic, nutrient rich synthetic feed (positive control) 

and water (negative control) by VFA-starved AD communities. Dashed grey box indicated 

the optimal pH range in AD (Cioabla et al., 2012). 
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5.3.1 Metagenomic data from BONCAT-ABCS reveal the extensive 

heterogeneity of translational activity in an AD microbial 

community 

The VFA-starved microbial community metabolic activity was extrapolated 

from VFA profiles, which allowed us to observe the degradation of octanoic acid 

compared to the control treatments (Fig. 5.3). Octanoic acid was cleaved into 

shorter chain (hexanoic (C6)) fatty acids (Fig. 5.3A-F). These shortened fatty acids 

then likely enter the β-oxidation pathway to produce acetic (C2) acids which can 

ultimately be converted to methane. In contrast, nutrient rich synthetic feed 

(positive control) was metabolised to an array of VFAs. In this case, the major 

intermediate metabolised detected by the VFA-targeted GC method were acetic 

(C2), propionic (C3), iso-butyric (iC4), butyric (C4) and iso-pentanoic (iC5) acids 

(Fig. 5.3G-L). The water fed VFA-starved community (negative control) showed 

no difference in VFA profile before or after addition. These results suggest that the 

type of substrate added affects the metabolic profile observed, which might indicate 

the activity of distinct active AD microbial taxa. 
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Figure 5.3 Comparison of volatile fatty acid (VFA) profiles during 24 hours of octanoic 

(C8) acid (A-F), synthetic feed (G-L) and water (M-R) catabolism by AD-derived sludge. 

(A,G,M) Starved sludge before spike; (B) after C8 spike; (C-F) C8 after 6 – 24 h; (H) after 

synthetic feed spike; (I-L) synthetic feed after 6 – 24 h; (N) after water spike; (O-R) water 

after 6 – 24 h at 35 oC. C2-acetic; C3-propionic; iC4-isobutyric; C4-butyric; iC5-

isopentanoic; C6-hexanoic; C8-octanoic acid. 

Metagenomic analysis was applied to sorted and unsorted samples from each 

treatment to determine the composition of the microbial communities captured 

through BONCAT-ABCS. A total of 54 DNA samples of BONCAT-ABCS and 

non-BONCAT samples were extracted and sequenced (Appendix C), from three 

treatments. BONCAT-ABCS samples yielded significantly less DNA compared to 

the non-BONCAT samples, reflecting labelling of only a subpopulation of cells and 

indicating that specific substrate addition might only support a small population of 
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cells after starvation. DNA samples retrieved from BONCAT-ABCS samples were 

sequenced using Illumina short-reads which allows for more in-depth sequence 

coverage to be obtained.  

Sequence data were analysed using the CLUSTard pipeline 

(https://github.com/ac1513/CLUSTard) to visualise abundance changes between 

samples and enable observation of fine-scale variation in bacterial populations 

(including genus-level resolution) based on GTDB taxonomy annotation (Parks et 

al., 2021). To characterise translationally/metabolically active subpopulations, 

sequence data from AHA-labelled samples were compared to their associated non-

labelled/unsorted sample. The relative abundance proportions of the top-30 ranking 

taxa were used to compare sample replicates for each treatment (Appendix E – G). 

Replicates showed reproducible taxonomic profiles, so relative abundances were 

averaged for further analysis (Fig. 5.4 – 5.6). 

In terms of genus-level resolution, each treatment had a high complexity AD 

microbiome (Fig. 5.4 – 5.6), which included syntrophic bacteria and methanogens 

(e.g., Smithella, Syntrophomonas, Syntrophorhabdus, Methanothrix and 

Methanolinea). In general, the microbial community structure retrieved from the 

BONCAT-ABCS in octanoic acid, synthetic feed, and water fed digesters displayed 

similarities among the most abundant community members relative to its original 

(unsorted) sample. The data suggest that a subset of the majority of genera identified 

by conventional metagenomic sequencing are translationally/metabolically active.  

https://github.com/ac1513/CLUSTard


142 

 

 

Figure 5.4 Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from octanoic 

acid fed digesters. 
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Figure 5.5 Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from nutrient 

rich synthetic feed digesters. 
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Figure 5.6 Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from water 

fed digesters. 
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It is plausible that some of the active AD microbes in the presence of VFAs were 

also active in the absence of VFAs. To better observe causative relationship 

between changes in the relative abundances of translationally/metabolically active 

microbial taxa and the VFA degradation (Fig. 5.3), fold-change difference of 

enriched subpopulation in octanoic and synthetic feed (positive control) treatments 

compared to the water fed treatment (negative control) for each time-point were 

calculated (Fig. 5.7 and 5.8). Some genera present in taxa plots do not appear in 

fold-change plots (Fig. 5.4) because they only appeared in negative control samples 

and/or their relative abundance was less than 1%, although it should be highlighted 

that activity in these less abundant populations may also be determinants of 

octanoic and synthetic feed anaerobic degradation. For example, Syntrophomonas 

had an average relative abundance of ~ 0.1% throughout the course of octanoic acid 

degradation but showed high translational activity with 2 – 4 fold more abundant in 

octanoic samples compared to the negative control. 

Generally, the relative abundance ranks of octanoic or synthetic feed compared 

to water fed fractions did not appreciably different (denoted by heatmaps in Fig. 5.7 

and 5.8, respectively). One of the most abundant genera in all octanoic fed samples, 

Microbacterium, was consistently in larger relative abundance in the community 

structure retrieved from the BONCAT-ABCS samples, reflecting its active growth 

and highlighting its important role in octanoic acid degradation. However, this trend 

in agreement between relative abundance and fold-change did not always hold. For 

example, unclassified member of Clostridiales (Firm-04) was highly abundant in 

all octanoic timepoints (see heatmaps), but its fold difference was always larger in 

negative control (water fed) samples, indicating lower relative translational activity 
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than its co-colonising AD microbial community. This was also observed for 

unclassified members of Bacteroidales and Verrucomicrobia subdivision 3 in 

octanoic and synthetic feed fractions, which were among the most abundant genera 

yet showed low translational activity.   

In the octanoic acid fed system, the number of translationally active genera 

increased over time, reflecting the metabolic activity of these genera in the presence 

of octanoic acid and the resulting VFA intermediates during octanoic degradation 

(Fig 5.7). Before octanoic acid addition, A total of 23 differentially abundant genera 

were identified, 10 of which were showed high translational activity in the VFA-

starved community. Microbacterium, Rectinema and an unclassified member of 

Anaerolinaceae (T78/UBA6107) showed the highest relative translational activity. 

Syntrophic bacteria, such as Syntrophomonas and unclassified members of 

Syntrophaceae (UBA2192/UBA8904) and Desulfomonilia (UBA1062), were also 

found to have high activity. Methanogens showed low translational activity as 

Methanolinea (hydrogenotrophic methanogen) and Methanothrix (acetoclastic 

methanogen) had 0.46% and 1.98% relative abundance at -2 h, respectively, but 

were 1.4-fold more prominent in the negative control. Six hours after octanoic acid 

addition, hexanoic and acetic acids were observed with a concomitant reduction in 

octanoic acid, more bacterial genera become translationally active, such as 

Mageeibacillus, Streptomyces, Syntrophorhabdus, and an unclassified member of 

Firmicutes (UBA3907/UBA5389). By 12 hours, methanogens (e.g., Methanolinea 

and Methanothrix) started to show high translational activity and kept increasing 

until 18 hours after addition of C8. By 24 hours, the relative abundance fold-change 

of the translationally active bacteria and methanogens were decreased slightly as 
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neither octanoic nor hexanoic acids were detectable, although acetic acid was still 

present. 

As a comparison, the enriched population retrieved from the synthetic feed 

digesters showed that the rich nutrient substrate induces more translationally active 

genera. 70% of identified highly abundant genera were translationally active which 

likely reflects the variability of metabolic activity driven by rich nutrient 

availability (Fig. 5.3). Bacteria belonging to Rectinema (UBA8932) and 

unclassified members of the Firmicutes (UBA3907/UBA4882/UBA5389) were 

highly active among the translationally active bacteria during 24 hours of synthetic 

feed degradation. Methanothrix and Methanolinea became highly translationally 

active in the 18 h and 24 h post-addition sample (Fig.5.8).  
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A. -2 h (before octanoic acid addition) B. 6 h after octanoic acid addition 

 

Figure 5.7 Fold-changes of active taxa in the octanoic acid compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the octanoic fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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C. 12 h after octanoic acid addition D. 18 h after octanoic acid addition 

 

Figure 5.7 Fold-changes of active taxa in the octanoic acid compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the octanoic fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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E. 24 h after octanoic acid addition 

 

Figure 5.7 Fold-changes of active taxa in the octanoic acid compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the octanoic fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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A. -2 h (before synthetic feed addition) 

addition 

B. 6 h after synthetic feed addition 

addition 

 

Figure 5.8 Fold-changes of active taxa in the synthetic feed compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the synthetic feed fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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C. 12 h after synthetic feed addition 

addition 

D. 18 h after synthetic feed addition 

addition 

 

Figure 5.8 Fold-changes of active taxa in the synthetic feed compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the synthetic feed fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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E. 24 h after synthetic feed addition 

addition 

 

Figure 5.8 Fold-changes of active taxa in the synthetic feed compared to the water fed (negative control) fraction (A – E). Point colour indicates taxa that 

were increased (green) and decreased (pink) in relative abundance in the synthetic feed fraction, representing translationally/metabolically active genus. 

Heatmap sidebars represent square root transformed relative abundances. 
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5.3.2 Metaproteomic-based translationally active taxonomic profiling of 

syntrophic octanoic acid degradation 

In this study, metagenomic analysis of BONCAT-ABCS samples reveals the 

translational activity heterogeneity in AD microbial communities, in which distinct 

cellular subpopulations can respond differently to the presence of VFAs. The 

translationally active microbes react towards VFA availability, or other changes in 

the environment, by constantly adjusting their protein synthesis which will in turn 

drive their cellular function. To gain insight into the proteins expressed by 

translationally active cells throughout the course of octanoic acid degradation, 

proteomic analysis was performed on enriched proteins from BONCAT 

labelled/unlabelled samples. 

BONCAT was used to label nascent proteins with the synthetic amino acid 

azidohomoalanine (AHA), these proteins were then separated from their unlabelled 

counterparts via ABCS and subsequently identified and quantified by LC-MS/MS. 

A total of 14 samples were analysed by LC-MS/MS (Appendix D). Based on 

metabolic activity shown in Fig. 5.3, BONCAT and non-BONCAT samples 12 h 

after nutrient rich synthetic feed (positive control) and water fed (negative control) 

were compared. Spectra were searched against a predicted protein (prokka 

annotations) database derived from MAGs acquired from the metagenomic data. 

Once identified, peptides were used to estimate the translationally active taxa at the 

protein level. Total spectrum count was used as a proxy for translationally active 

cell abundance.  
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In total 128 proteins were identified, 49 of which were only present in octanoic 

acid samples, 37 in synthetic feed samples and 4 in water fed samples (Fig. 5.9). 

For all proteins identified in the octanoic samples, the total spectrum count 

abundance was normalised by subtracting the total spectrum count abundance of 

the relevant non-labelled sample to identify proteins preferentially synthesized in 

the course of octanoic acid degradation. Complete proteomic results are listed in 

Appendix H. More than 45% of identified proteins were annotated as ‘hypothetical 

proteins’, suggesting that this list contains poorly characterised proteins that play 

important roles in regulating AD microbes’s physiology during octanoic acid 

degradation or they could be surface expressed proteins.  

 

Figure 5.9 Venn diagram showing the unique and common expressed proteins retrieved 

from BONCAT-ABCS. Low number of unique proteins acquired from water fed (negative 

control) compared to octanoic acid and synthetic feed (positive control) samples. The 

complete proteomic results in Appendix H dataset was used to make the Venn diagram.  
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The acquired prokka accessions were used to estimate the associated 

taxonomically classified MAGs in order to identify the organisms that synthesised 

the proteins and were therefore translationally active. The identified genera and 

abundance in the course of octanoic acid degradation are shown in Fig. 5.10. Before 

octanoic acid addition, Methanothrix (57.6%) and Methanolinea (8.3%) were the 

most abundant and translationally active taxa in VFA-starved communities, 

followed by Microbacterium (5.6%), unclassified Rickenellaceae (4.2%), 

Clostridium (3.5%), Polaromonas (3.5%) and Streptomyces (2.8%). By 6 hours 

after octanoic acid addition, the enriched labelled proteins were dominated by 

proteins expressed by 8 genera, such as Methanothrix (53.9%), Methanolinea 

(11.2%), Streptomyces (8.9%), Microbacterium (7.9%), unclassified 

Prolixibacteraceae (3.4%), unclassified Syntrophaceae (2.2%) and Acidovorax 

(1.1%). This result indicates the important role of those genera in the early stage of 

octanoic acid degradation, while Methanothrix and Methanolinea were the main 

acetate and hydrogen consumers, respectively. The diversity of translationally 

active microbes increased two-fold to 15 genera at 12 and 18 hours after octanoic 

acid addition following the availability of VFA intermediates, such as hexanoic and 

acetic acid. Proteins expressed by Polaromonas, Clostridium, Syntrophorhabdus 

and unclassified Methanomicrobia were detected during this period of octanoic acid 

degradation. By 24 hours, the total number of identified spectra decreased, but were 

still dominated by proteins expressed by methanogens, Methanothrix (30.7%) and 

Methanolinea (28.4%), bacterial proteins were dominated by Streptomyces (8%), 

unclassified Bacteroidales (6.8%), unclassified Syntrophaceae (4.5%), Tahibacter 

(4.5%), Clostridium (3.4%) and Polaromonas (3.4%). 
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Figure 5.10 Abundance of active genera from proteomic data. The taxa plot showing 

absolute (A) and relative abundance (B) of identified genera in the course of octanoic acid 

degradation. The acquired prokka accessions were used to estimate the associated 

taxonomically classified MAGs in order to identify the translationally active microbes. 

Total spectrum count used as a proxy of for translationally active cell abundance.  
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Metaproteomic analysis of labelled and enriched proteins showed differences in 

community structure based on the substrate added. Methanogens (Methanothrix and 

Methanolinea) and Microbacterium were the most abundant metabolically active 

microbes in the octanoic acid fed microbial community, while the nutrient rich fed 

(positive control) community was dominated by bacteria, such as Rectinema, 

Ruminococcus and unclassified members of Prolixibacteraceeae, Anaerolinaceeae 

and Synergistaceae (Fig. 5.11). Water fed (negative control) AD community was 

dominated by Methanothrix and Methanolinea, which was reinforced by their 

prominence in VFA-starved AD community before octanoic acid addition. This 

supports their continued metabolic activity in AD systems during starvation. 

Proteomic analysis of AHA-labelled and enriched proteins improved the 

translationally active estimates of our metagenomic analysis. More importantly, it 

showed that the top three MAGs identified by proteomic-based translationally 

active taxa profiling (Microbacterium, Methanolinea and Methanothrix) agreed 

with those revealed by the metagenomic-based profiling (Fig. 5.12). These results 

also demonstrated that BONCAT-ABCS provided a fair coverage of metabolically 

active microbes at the proteome level and reflected on the quantity of 

underrepresented genera that often appear in low abundances in AD microbial 

communities. 
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Figure 5.11 BONCAT-ABCS proteomic data revealed various translationally active 

microbes depending on the substrate added. The labelled and enriched proteins retrieved 

by BONCAT-ABCS were used to compare the identified genus and their abundance in 

octanoic, synthetic feed (positive control) and water fed (negative control) bioreactors 12 

hours after addition. The total spectrum count abundance was normalised by subtracting 

the total spectrum count abundance of the corresponding non-labelled sample to indicate 

taxa translational activity 12 h after substrate addition. Positive numbers indicate increase 

translational activity, whereas negative indicates low translational activity. 
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Figure 5.12 A cascade of various organisms become active as substrate become available in the course of octanoic acid degradation. The labelled and 

enriched proteins retrieved by BONCAT-ABCS were used to compare the identified genus and their abundance in octanoic acid bioreactors. The total 

spectrum count abundance was normalised by subtracting the total spectrum count abundance of the corresponding non-labelled sample to indicate taxa 

translational activity during octanoic acid degradation. Positive values imply increased translational activity, whereas negative values suggest decreased 

translational activity. The colours represent sample points throughout the octanoic acid degradation process.
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5.3.3 Metagenomic and proteomic data generated from BONCAT-ABCS 

reveals the functional landscape of abundant genera in the 

degradation of octanoic acids 

The proteomics analysis of BONCAT-ABCS data allowed the investigation of 

proteins expressed by each genus, one or a few at a time. Appendix I lists the 

fractions of proteins in the abundant genera that were detected using metaproteomic 

data generated in the course of octanoic acid degradation. The Kyoto Encyclopaedia 

of Genes and Genomes (KEGG; Kanehisa et al., 2016) pathway database was used 

to identify expressed genes related to fatty acids (pathway map00071) and 

methanogenesis (pathway map00680) metabolic pathways.  

Interestingly, most of the expressed proteins enriched via BONCAT-ABCS were 

membrane bound proteins, such as ABC transporter substrate-binding proteins 

(urtA) and nitrate reductase (narH).  Highly abundant translationally active bacteria 

detected in VFA-starved AD communities (before substrate addition), such as 

Microbacterium and Acidovorax, expressed proteins required for respiratory nitrate 

reduction (narH), which supported the use of nitrate as a final electron acceptor in 

anaerobic conditions for the maintenance of a proton motive gradient to continue 

growing (Sohaskey and Wayne, 2003). While others, such as Clostridium, 

Streptomyces, Polaromonas and unclassified Rickenellaceae, expressed elongation 

factor thermal unstable Tu (tuf) protein, which catalyses the binding of aminoacyl-

tRNA to the A-site of the ribosome inside living cells and has evolved the capacity 

to execute diverse functions on the extracellular surface of prokaryotic cells 

(Sprinzl, 1994; Harvey et al., 2019), and bacterial transport proteins, including 

ATP-binding cassette (ABC) transporters (urtA) to import and expel substrates. 
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Microbacterium was identified as the most abundant bacteria based on 

metagenomic and proteomic data from octanoic acid BONCAT-ABCS samples 

(Fig 5.7 and 5.12).  Genes encoding for the entire fatty acid β-oxidation cycle were 

identified within Microbacterium published genome (Fig. 5.13) suggesting its 

important role in octanoic acid degradation. Genes for acyl-CoA oxidase (ACO) 

(EC 1.3.3.6) which catalyses the Cα-Cβ oxidation of fatty acids and is active on 

CoA derivatives of fatty acids with aliphatic chains from 8 to 18 carbons (Martin et 

al., 2020). Enoyl-CoA hydratase (ECH) (EC:4.2.1.17) catalyses the second step in 

β-oxidation pathway, the hydration of the bond between C-2 and C-3, resulting in 

the formation of a β-hydroxyacyl-CoA thioester (Agnihotri and Liu, 2003). Acetyl-

CoA acyltransferase (EC:2.3.1.16) (EC:2.3.1.9) catalyses the final step of fatty acid 

oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two 

carbons shorter is formed. Microbacterium is able to grow anaerobically using 

nitrate as a terminal electron acceptor as it also expressed genes encoding nitrate 

reductase (EC:1.7.5.1 1.7.99.-) involved in the nitrogen metabolism (map00910) in 

the course of octanoic acid degradation. 
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Figure 5.13 Microbacterium fatty acid degradation pathway. The β-oxidation pathway in 

the KEGG pathway map (map00071), with the detected genes in the M. testaceum genome 

are marked in green (Kanehisa et al., 2016). 

Streptomyces showed an increase in abundance in the course of octanoic acid 

degradation (Fig. 5.12). Streptomyces is an obligate aerobic actinobacterium, but 

could remain metabolically active under anaerobic conditions by synthesising 

respiratory nitrate reductase (Nar) enzymes that contribute to the maintenance of 

membrane potential and energy conservation (Sawers et al., 2019). Streptomyces is 

able to oxidise long- and medium-chain fatty acids as it published genome contains 

genes encoding acyl-CoA oxidase (EC:1.3.3.6) and acyl-CoA dehydrogenase 

(EC:1.3.8.7), respectively (Fig. 5.14). Moreover, it also has the genes that encode 

enzymes that catalyse the hydration, NAD+ oxidation and thiolysis steps in fatty 

acid β-oxidation, such as enoyl-CoA hydratase (EC:4.2.1.17), 3-hydroxyacyl-CoA 
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dehydrogenase (EC:1.1.1.35) and acetyl-CoA acyltransferase (EC:2.3.1.16) 

(EC:2.3.1.9), respectively (Fig. 5.14). 

 

Figure 5.14 Streptomyces fatty acid degradation pathway. The β-oxidation pathway in the 

KEGG pathway map (map00071), with the detected genes in the S. coelicolor genome are 

marked in green (Kanehisa et al., 2016). 

Acidovorax, is a genus of Proteobacteria. All species are facultative anaerobes 

and grow anaerobically using nitrate as a terminal electron acceptor. This is 

confirmed by the presence of proteins required for respiratory nitrate reduction 

(narH) in the proteins fraction enriched by BONCAT-ABCS. Genes encoding the 

entire fatty acid β-oxidation cycle were identified within Acidovorax published 

genome (Fig. 5.15) suggesting its important role in octanoic acid degradation. 

Acidovorax shows increase labelled proteins in the course of octanoic acid 

degradation (Fig. 5.12). Acidovorax genomes contains genes encoding medium-

chain acyl-CoA dehydrogenase (EC:1.3.8.7) and short-chain acyl-CoA 
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dehydrogenase or butyryl-CoA dehydrogenase (EC:1.3.8.1) suggesting its ability 

to metabolise medium- and short-chain fatty acids by catalysing the formation of a 

double bond between the Cα and Cβ. Enoyl-CoA hydratase (EC:4.2.1.17) catalyses 

the second step in β-oxidation pathway and 3-hydroxyacyl-CoA dehydrogenase 

(EC:1.1.1.35) catalyses the third step of β-oxidation, converting the hydroxyl group 

into a keto group. Acetyl-CoA acyltransferase (EC:2.3.1.16) (EC:2.3.1.9) catalyses 

the final step of β-oxidation. 

 

Figure 5.15 Acidovorax fatty acid degradation pathway. The β-oxidation pathway in the 

KEGG pathway map (map00071), with the detected genes in the A. citrulli genome are 

marked in green (Kanehisa et al., 2016). 

Polaromonas is a chemoorganotrophic proteobacterium that could oxidise 

medium- and small chain fatty acids (Fig. 5.16). Polaromonas becomes more active 

during 18 - 24 h of octanoic acid degradation (Fig. 5.12). Its published genome 

contains genes encoding acyl-CoA dehydrogenase (EC:1.3.8.7), butyryl-CoA 
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dehydrogenase (EC:1.3.8.1), enoyl-CoA hydratase (EC:4.2.1.17), 3-hydroxyacyl-

CoA dehydrogenase (EC:1.1.1.35), acetyl-CoA acyltransferase (EC:2.3.1.16) and 

acetyl-CoA C-acetyltransferase (EC:2.3.1.9). 

 

Figure 5.16 Polaromonas fatty acid degradation pathway. The β-oxidation pathway in the 

KEGG pathway map (map00071), with the detected genes in the P. naphtalenivorans 

genome are marked in green (Kanehisa et al., 2016). 

Clostridium are anaerobic, fermentative, spore-forming Gram-positive bacteria 

belonging to the phylum Firmicutes. Clostridium becomes increasingly active as 

octanoic acid breakdown progresses (18 – 24 hours; Fig. 5.12). Clostridium are only 

able to metabolise short-chain fatty acids as they only possess the genes encoding 

short-chain acyl-CoA dehydrogenase or butyryl-CoA dehydrogenase (EC:1.3.8.1) 

and acetyl-CoA C-acetyltransferase (EC:2.3.1.9) in their genomes (Fig. 5.17). 

Butyric acid is a 'genus specific' product of fermentation. 



167 

 

 

Figure 5.17 Clostridium short-chain fatty acid degradation pathway. The KEGG pathway 

map (map00071) for the β-oxidation, with the identified genes in the C. acetobutylicum 

genome highlighted in green (Kanehisa et al., 2016). 

Syntrophic conversion of octanoic acid under anaerobic conditions involves 

interspecies electron transfer between bacteria and archaea, which commonly 

involves hydrogen and/or formate as electron shuttles (Ziels et al., 2015). The 

formate dehydrogenase major subunit (EC:1.17.1.9) was detected in the enriched 

proteins expressed by Methanolinea (Fig. 5.18). Methyl-coenzyme M reductase 

alpha/beta/gamma subunits (EC:2.8.4.1), which are responsible for catalysing the 

terminal step in methanogenesis, and tetrahydromethanopterin S-methyltransferase 

subunit A (EC:2.1.1.86), which has a key function in energy conservation by 

catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme 

M and its coupling with sodium-ion translocation, were also expressed by 

Methanolinea during octanoic acid degradation. This suggests the 
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hydrogenotrophic methanogen, Methanolinea, as one of the main hydrogen and/or 

formate consumers in the course of octanoic acid degradation (Fig. 5.12). 

 

Figure 5.18 Methanolinea methane metabolism pathway. The KEGG pathway map 

(map00680) shows the methane metabolism reference pathway, with Methanolinea 

expressed proteins highlighted in green (Kanehisa et al., 2016). 

Several Methanothrix expressed proteins involved in acetoclastic 

methanogenesis (Fig. 5.19) were detected, which shows its important role as an 

acetate consumer in the syntrophic oxidation of octanoic acid. Methyl-coenzyme M 

reductase alpha/beta/gamma subunits (EC:2.8.4.1), acetyl-CoA 

decarbonylase/synthase, CODH/ACS complex subunit beta (EC:2.3.1.169) and 

acetyl-CoA synthetase (EC:6.2.1.1) were detected in the BONCAT-ABCS enriched 

proteins and are central to the acetate switch and catalyse the overall process of 

acetate production or acetate utilization. BONCAT-ABCS also detected the 

anaerobic carbon-monoxide dehydrogenase, CODH/ACS complex subunit alpha 
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(EC:1.2.7.4), which alongside acetyl-CoA decarbonylase/synthase, CODH/ACS 

complex subunit beta (EC:2.3.1.169) catalyses the acetyl coenzyme A (CoA) 

pathway, commonly referred to as the Wood-Ljungdahl pathway. This specific 

pathway is characterised by the use of hydrogen as an electron donor and carbon 

dioxide as an electron acceptor to produce acetyl-CoA as the final product. The 

carbon monoxide dehydrogenase allows Methanothrix to use carbon dioxide as a 

source of carbon and carbon monoxide as a source of energy. It suggests that 

Methanothrix is able to utilize the acetyl-CoA pathway to fix carbon dioxide. 

Additionally, the V/A-type H+/Na+-transporting ATPase subunit A [EC:7.1.2.2 

7.2.2.1], which is a membrane-bound ATP synthase used to synthesise ATP via a 

proton or sodium ion gradient, was also detected. 

 

Figure 5.19 Methanothrix methane metabolism pathway. The KEGG pathway map 

(map00680) shows the methane metabolism reference pathway, with Methanothrix 

expressed proteins highlighted in green (Kanehisa et al., 2016). 
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5.4  Conclusion  

BONCAT can be used to track the active members of an AD community in 

response to changes in metabolic conditions. By using affinity-based click 

chemistry, active microbes were selectively recovered for DNA and protein 

extraction. The analysis of metagenomic and proteomic sequences from the AHA-

based BONCAT-ABCS samples confirmed that this method enriched distinct 

microbial populations from the total community, allowing us to begin to infer which 

microbes in the AD community samples were most likely involved in octanoic acid 

degradation. Targeted analysis of a portion of these data confirmed that the method 

did not just recover the most abundant species within the community but was 

selective for organisms with an important role in the metabolism of available 

substrates. Further utilisation of BONCAT-ABCS as a rapid tool for capturing 

changes within complex microbial systems should enable us to further our 

understanding of the metabolic community interactions occurring within anaerobic 

digestion. 
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6 Discussion and future work 

6.1 Discussion 

The anaerobic oxidation of even- and odd-chain medium length fatty acids by 

VFA-starved AD communities generates a variety of intermediate metabolites, 

which may influence the activity of syntrophic bacteria and methanogenic archaea 

whose presence was detected by BONCAT. Expanding on recent studies that have 

employed BONCAT to characterise the ecophysiology of microbial communities 

in their natural growth environment (Hatzenpichler et al., 2014; Samo et al., 2014; 

Hatzenpichler et al., 2016; Leizeaga et al., 2017; Couradeau et al., 2019; Valentini 

et al., 2020), this approach was used in combination with ABCS, metagenomic and 

proteomic-based approaches to unravel the in situ metabolic activities in an AD 

community during the degradation of medium-chain fatty acids and enhance our 

understanding of microbial community interactions in AD systems. 

During the diauxic growth of mixed E. coli strains, the BONCAT-ABCS 

approach was successfully applied and displayed the specificity and sensitivity to 

enrich active cells. The incorporation of biotin-alkyne moieties into some cells and 

the selective enrichment of these onto neutravidin beads is consistent with the 

labelling reaction resulting in a fraction of nascent proteins locating to the surface 

of metabolically active E. coli cells. The effective enrichment of AHA-based 

BONCAT followed by ABCS suggests that this is a feasible method for isolating 

populations of microorganisms in mixed systems that are metabolically responsive 

to substrate availability. 
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The BONCAT-ABCS metagenomic data reveal the extensive heterogeneity of 

translational/metabolic activity among members of AD microbial communities. 

Each treatment (octanoic acid, synthetic feed and water fed) harboured a unique 

microbial community consisting of bacteria and archaea. BONCAT-ABCS 

sequencing data show that the most abundant bacteria, such as Microbacterium and 

Streptomyces, are also active in situ, suggesting an important role for these species 

in octanoic acid degradation. However, this trend of high relative abundance with 

high activity did not always hold true. For example, unclassified Clostridiales 

(Firm-04), was highly abundant in all octanoic samples, but had lower relative 

translational activity than the AD microbial community it co-colonised. This was 

also found in the octanoic and synthetic feed fractions for unclassified 

Bacteroidales and Verrucomicrobia subdivision 3, which were among the most 

abundant taxa but had low translational activity. Moreover, BONCAT-ABCS also 

discovered that low abundance bacteria (<1%) were active, indicating that activity 

in these less abundant species may also be important in the course of octanoic acid 

degradation. Syntrophomonas, for example, exhibited an average relative 

abundance of 0.1% during the octanoic acid degradation, but showed high 

translational activity, being 2–4 times more prevalent in octanoic samples than the 

negative control. Thus, community presence and abundance are not always 

indicative of translational activity. The enriched fraction isolated on neutravidin 

beads might also be a better proxy for the intact cellular fraction of the AD 

microbiome as this method filters out extracellular DNA, necromass and other cells 

that are not expressing azide-containing proteins on their cell surfaces but might 

still be found in sequencing results of DNA extracted from AD sludge. 
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The proteomic workflow for identifying BONCAT-ABCS enriched protein 

fragments enables us to find the best match to predicted proteins acquired from 

metagenomic data. This help us to further link the genomic identities of 

translationally/metabolically active microbes to their functions in AD microbial 

communities during octanoic acid degradation. The KEGG pathway map (Kanehisa 

et al., 2016) serve as useful sources of prior knowledge about the fatty acid 

degradation or methane metabolism pathway of identified taxa inferred from 

published genomes. It is worth noting that the inferred example species probably 

not be completely representative of the organisms in an AD community.  

Based on the observed activity and the presence of genes involved in fatty acid 

breakdown or methane metabolism as extrapolated from their inferred published 

genomes, a cascade of various organisms may become active as substrate become 

available. Microbacterium and Acidovorax seemingly played important syntrophic 

role at the beginning of octanoic acid degradation (Fig 5.12). M. testaceum 

published genome encoding gene for acyl-CoA oxidase (ACO) (EC 1.3.3.6) which 

catalyses the Cα-Cβ oxidation of fatty acids and is active on CoA derivatives of 

fatty acids with aliphatic chains from 8 to 18 carbons (Martin et al., 2020). M. 

testaceum lack the gene encode 3-hydroxyacyl-CoA dehydrogenase (EC:1.1.1.35), 

which is involved in the oxidation of L-β-hydroxyacyl CoA by NAD+, while 

Acidovorax has it in their published genome (e.g., A. citrulli). Microbacterium and 

Acidovorax activity release VFA intermediates, such as hexanoic, butyric and acetic 

acid (Fig. 5.3). The presence of those VFA intermediates seemingly induces the 

activity of other microbes, such as Streptomyces, Polaromonas and Clostridium 

(Fig. 5.12). A complete pathway for medium- and short-chain fatty acid β-oxidation 
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was found in Streptomyces (e.g. S. coelicolor) and Polaromonas (e.g. P. 

naphthalenivorans), indicating their capability of metabolising the intermediates 

fatty acids produced in the course of octanoic acid degradation. Clostridium, which 

has the complete short-chain fatty acid oxidation pathway in its published genome 

(e.g. C. acetobutylicum), was also enriched via BONCAT-ABCS in the course of 

octanoic acid degradation. It is strongly suggesting that Clostridium population was 

enriched in AHA-based BONCAT labelled protein due to cross-feeding of shorter-

chain intermediates (e.g. butyric acid) produced during octanoic-acid β-oxidation. 

To complete syntrophic octanoic oxidation, NAD+ and FAD+ must be 

regenerated. The supply of electron carriers (FAD+ and NAD+) are regenerated by 

either a soluble hydrogenase that catalyses the oxidation of highly reduced 

compounds and releases molecular hydrogen (H2) or by a cytoplasmic formate 

dehydrogenase (FDH) that act as CO2 reductase to form formic acid (Agne et al., 

2021). Hydrogen and formic acid produced during β-oxidation are consumed by 

hydrogenotrophic methanogens to form methane. BONCAT-ABCS was able to 

enrich proteins closely matched to predicted Methanolinea proteins. A genomic 

analysis of the Methanolinea MAGs indicated that its harboured gene encoding 

enzymes for methane production from hydrogen and/or formic acid. This 

observation agrees with the physiology of Methanolinea, which are known as 

hydrogenotrophic methanogens (Imachi et al., 2008). Genes encoding formate 

dehydrogenase major subunit (EC:1.17.1.9), methyl-coenzyme M reductase 

alpha/beta/gamma subunit (EC:2.8.4.1) and tetrahydromethanopterin S-

methyltransferase subunit A (EC:2.1.1.86) were present in the MAGs most closely 

matched to Methanolinea. 
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The most closely matched BONCAT-ABCS enriched protein fragments to 

predicted Methanothrix proteins suggest that this species plays important role in the 

synthesis of methane from acetate (Huser et al., 1982) in syntrophic octanoic acid 

oxidation. Methanothrix MAGs contained acetyl-CoA synthetase (EC:6.2.1.1) for 

acetate activation, acetyl-CoA decarbonylase/synthase, CODH/ACS complex 

subunit beta (EC:2.3.1.169) to oxidatively split acetyl-CoA into CO2 and methyl-

coenzyme M reductase alpha/beta/gamma subunit (EC:2.8.4.1) for methyl-CoM 

reduction to methane. The BONCAT-ABCS also enriched the anaerobic carbon-

monoxide dehydrogenase, CODH/ACS complex subunit alpha (EC:1.2.7.4), which 

alongside acetyl-CoA decarbonylase/synthase, CODH/ACS complex subunit beta 

(EC:2.3.1.169) catalyse the acetyl coenzyme A (CoA) pathway, commonly referred 

to as the Wood-Ljungdahl pathway. This suggests that Methanothrix is able to 

utilize the acetyl-CoA pathway to fix carbon dioxide, which is at odds with the 

notion that this species is an obligate acetoclastic methanogens (Huser et al., 1982). 

The existence and expression of the CO2-reducing pathway in Methanothrix have 

been previously described (Zhu et al., 2012; Rotaru et al., 2014a; Holmes et al., 

2017), and it was hypothesised to be involved in DIET-mediated methane 

formation. However, the mechanism through which Methanothrix directly accepts 

electrons from its syntrophic partner has not been identified (Rotaru et al., 2014; 

Holmes et al., 2017; Ziels et al., 2019). 

The BONCAT-ABCS also revealed that the enriched proteins fragments closely 

matched to predicted Microbacterium, Acidovorax, Methanolinea and 

Methanothrix were abundant in VFA-starved AD community before octanoic acid 

addition. Microbacterium and Acidovorax seemingly adopting a persister-like 
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strategy in which reduced cellular activity confers an anoxic-resistant phenotype, 

allowing them to survive anaerobic conditions and persist during starvation 

(Sohaskey and Wayne, 2003). Methanolinea has been shown to thrive in conditions 

with low H2 evolution rates (Imachi et al., 2008). Methanothrix has greater substrate 

affinity and therefore is prevalent in digesters with low acetate (<1 mM) availability 

(Gujer and Zehnder, 1983; Conklin et al., 2006; Karakashev et al., 2005; 

Razaviarani and Buchanan, 2014). Moreover, while active cells are more likely to 

be involved in octanoic acid degradation, inactive cells are equally important 

because bacteria do not need to be translationally/metabolically active to have an 

impact on their surrounding community. It is known, for example, that mostly 

inactive populations can drive geochemical process in their environment 

(Hausmann et al., 2019; Valentini et al., 2020). Nutrient exchange and production 

of virulence agents and tiny metabolites are all ways whereby translationally 

inactive cells might shape their growing environment (Valentini et al., 2020). 

Microbial necromass (non-living microbial biomass) in an AD community could 

play an important role in providing a significant source of carbon and nitrogen 

(Dong et al., 2021). Further characterisation of activity heterogeneity and the 

contributions of both active and inactive populations in AD system is important to 

understand the full complexity of the AD microbiome and its available competitive 

and syntrophic metabolisms, to optimise energy recovery from AD. 

Though BONCAT is a great tool to study the AD microbial community, it does 

have several limitations, some of which have already been mentioned 

(Hatzenpichler et al., 2014; Hatzenpichler et al., 2016). First, the affinity-based cell 

sorting approach to enriching whole cells is imperfect, as cell sorting was done 
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directly on AD biomass and not on individualised cells. It is possible that inactive 

cells stick to active cells in the enriched fractions, consistent with the formation of 

biofilm-based cell aggregations. A biofilm-based cell aggregation in AD is formed 

by biotic and abiotic interactions between microorganisms and sludge particles, 

leading to the formation of very compact spherical-shaped aggregates with a 

diameter of 1 – 3 mm (Wilén et al., 2018) where the microbial cells are self-

immobilized in a matrix of extracellular polymeric substances.  However, it is non-

trivial to separate cells from other materials due to the nature of AD samples, which 

are compact and contained densely packed cells. Secondly, because the most crucial 

limitation of BONCAT is its reliance on uptake mechanisms, it cannot be ruled out 

that some AD microbes seemingly did not take up AHA into their cells or proteins 

due to the lack of appropriate transporters, the high selectivity of their MetRS, or a 

high Met/AHA ration in the cytoplasm (Hatzenpichler et al., 2014). 

 Despite these limitations, BONCAT can be used to extend our understanding of 

the role of specific microbiota in an AD microbial community. These findings 

demonstrated that BONCAT is a powerful tool for the visualization and 

identification of translationally/metabolically active microbes in anaerobic 

digestion system. Metagenomic and proteomic data generated from AHA-based 

BONCAT-ABCS could help to resolve the functional landscape by obtaining 

confirmatory assimilation of azidohomoalanine (AHA) into the nascent proteins of 

metabolically responsive microbes in an AD community. These findings provide a 

framework to further link the genomic identities of anaerobic bacteria and archaea 

with their function within AD microbial community that drive anaerobic 

degradation of organic waste to yield biogas. 



178 

 

6.2 Future work 

The application of BONCAT-ABCS to identify active microbes in the course of 

odd-chain medium length fatty acids (heptanoic or nonanoic acid) would be 

interesting, as initial data (Fig. 3.8 and 3.10) shows different VFA profiles and 

kinetics compared to even-chain fatty acid (octanoic acid). It may show variations 

in the active microbes involved and different genes are required in the OCFAs β-

oxidation. Different concentration (high ≥10 mM and low ≤5 mM) could be tested 

in this experiment including the use of synthetic feed and water as positive and 

negative control, respectively.   

Data in Chapter 3 shows that the propionic acid (C3) decomposition rate was 

slow and appeared to be the rate limiting step in OCFAs degradation rate. Further 

experiments to differentiate whether increased methanogen numbers or induction 

of other enzymes required for C3 oxidation is essential to increase C3 degradation 

rate. 

It is also important to explore whether cell detachment prior to the affinity-based 

cell separation (ABCS) step would show increased selectivity of BONCAT-ABCS 

of labelled intact cells for metagenomic analysis. BONCAT-labelled cells 

detachment could remove single or small clusters of labelled cells from the sludge 

particles. It allows click-labelling and ABCS to be performed on single or small 

clusters of cells and reduce the possibility of unlabelled cells to be found in 

sequencing results of DNA extracted from AD sludge. 

In summary, bioorthogonal non-canonical amino acid tagging (BONCAT) and 

affinity-based cell separation (ABCS) was used to identify subsets of metabolically 
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specialised microbes as they respond to substrate availability in AD systems. The 

results demonstrate the specific labelling, visualisation and separation of microbes 

that actively participate in volatile fatty acid (VFA) degradation and suggest a 

differential response to octanoic acid by specialists within the microbial 

community. Analysis of metagenomic sequences from a time series of BONCAT-

ABCS samples reveals that this method enriched a distinct microbial community 

with genetically-derived metabolisms consistent with and changing according to 

the observed metabolic outcomes. Proteomic data generated from AHA-based 

BONCAT-ABCS help to resolve the functional landscape of enriched microbial 

community and give better resolution of identified translationally/metabolically 

active taxa. This enrichment approach allows us to determine the temporal response 

of those microbes most likely to engage in octanoic acid degradation in AD sludge. 

This method can be applied to the identification of specialist microbes with a role 

in degradation of a range of other compounds in AD, enhancing our understanding 

of microbial community interactions and facilitating the development of strategies 

for process optimisation. 
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Appendix A. Cell surface labelling and enrichment of active cells in AD sample via BONCAT-ABCS. Created using Biorender.com. 
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Appendix B. Increase sample density using glycerol to improve magnetic separation. 200 µL of AD sample added with 800 µL PBS or 20% glycerol in 

PBS or 40% glycerol in PBS. Vortexed for 5 seconds and allowed to stand for 2 hours. Observation was carried out every 5 minute. 
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Appendix C 

Table 1. DNA concentration of samples sent for sequencing using Nanopore and Illumina 

platforms. 

 

Substrate 

 

Sample 

(h) 

 

Grouping 

dsDNA 

concentration 

(ng/µL) 

Total 

amount of 

DNA (ng) 

 

 

 

 

 

 

 

 

Octanoic acid (C8) 

-2 Non-BONCAT* 24.3.8 2380 

6 Non-BONCAT* 28.4 2840 

12 Non-BONCAT* 29.8 2980 

18 Non-BONCAT* 31.8 3180 

24 Non-BONCAT* 30 3000 

-2 BONCAT** 4.3 215 

6-R1 BONCAT** 1.37 137 

6-R2 BONCAT** 1.4 140 

6-R3 BONCAT** 1.76 176 

12-R1 BONCAT** 1.377 179.01 

12-R2 BONCAT** 3.98 199 

12-R3 BONCAT** 1.78 178 

18-R1 BONCAT** 1.16 116 

18-R2 BONCAT** 1.31 131 

18-R3 BONCAT** 1.05 105 

24-R1 BONCAT** 1.3 130 

24-R2 BONCAT** 1.53 153 

24-R3 BONCAT** 1.79 179 

Synthetic feed  

(positive control) 

 

 

 

 

 

 

 

 

 

-2 Non-BONCAT* 40 4000 

6 Non-BONCAT* 18.1 1810 

12 Non-BONCAT* 37.8 3780 

18 Non-BONCAT* 32 3200 

24 Non-BONCAT* 34.6 3460 

-2 BONCAT** 1.55 155 

6-R1 BONCAT** 2.86 286 

6-R2 BONCAT** 2.1 210 

6-R3 BONCAT** 1.54 154 

12-R1 BONCAT** 0.96 124.8 

12-R2 BONCAT** 1.5 150 

12-R3 BONCAT** 1.1 110 

18-R1 BONCAT** 2.26 226 
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Synthetic feed  

(positive control) - 

continued 

18-R2 BONCAT** 2.02 202 

18-R3 BONCAT** 2.58 258 

24-R1 BONCAT** 1.54 154 

24-R2 BONCAT** 1.5 150 

24-R3 BONCAT** 0.895 116.35 

 

 

 

 

 

 

 

 

Water  

(negative control) 

-2 Non-BONCAT* 44 4400 

6 Non-BONCAT* 60.6 6060 

12 Non-BONCAT* 43.8 4380 

18 Non-BONCAT* 56.6 5660 

24 Non-BONCAT* 66.2 6620 

-2 BONCAT** 1.7 170 

6-R1 BONCAT** 1.12 112 

6-R2 BONCAT** 1.44 144 

6-R3 BONCAT** 1.29 129 

12-R1 BONCAT** 1.11 144.3 

12-R2 BONCAT** 0.95 123.5 

12-R3 BONCAT** 2.08 208 

18-R1 BONCAT** 1.18 118 

18-R2 BONCAT** 1.89 189 

18-R3 BONCAT** 2.54 254 

24-R1 BONCAT** 0.835 108.55 

24-R2 BONCAT** 2.64 264 

24-R3 BONCAT** 6.02 301 

Legend: * = Non-BONCAT samples were sent for sequencing using Nanopore (long-

reads) and Illumina (short-reads); ** = BONCAT samples were sent for sequencing using 

Illumina (short-reads); DNA quantification were done using Qubit®. 
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Appendix D 

Table 2. Proteins identified in all treatments after Scaffold filtering (protein 5% FDR; min 

number of peptides 2; peptide 5% FDR). Proteins were searched against BONCAT, non-

BONCAT and contaminants databases. 

Substrate 
Sample 

(h) 

Grouping Identified 

proteins 

Identified 

spectra 

 

 

 

 

Octanoic acid (C8) 

-2 Non-BONCAT 44 57 

6 Non-BONCAT 42 62 

12 Non-BONCAT 52 55 

18 Non-BONCAT 58 73 

24 Non-BONCAT 26 14 

-2 BONCAT 52 115 

6 BONCAT 49 65 

12 BONCAT 37 43 

18 BONCAT 57 75 

24 BONCAT 49 60 

Synthetic feed  

(positive control) 

12 Non-BONCAT 75 184 

12 BONCAT 86 186 

Water  

(negative control) 

12 Non-BONCAT 37 36 

12 BONCAT 53 65 
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Appendix E.  Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from 

octanoic acid fed digesters. 
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Appendix F. Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from 

nutrient rich synthetic feed digesters. 
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Appendix G. Relative abundance of top-30 most abundant genera based on metagenomic sequencing of sorted and unsorted samples retrieved from 

water fed digesters. 
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Appendix H  

Table 3 - Complete list of identified proteins per sample prior to Scaffold validation. 

  
Biological 

sample 
Protein name 

Protein accession 

numbers 

Protein 

molecular 

weight 

(Da) 

Protein 

identification 

probability 

Exclusive 

unique 

peptide 

count 

Exclusive 

unique 

spectrum 

count 

Total 

spectrum 

count 

Percentage 

of total 

spectra 

Percentage 

sequence 

coverage 

1 C8_B_0H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 8 9 14 0.14% 40% 

2 C8_B_0H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 8 8 18 0.18% 25% 

3 C8_B_0H hypothetical protein 
ALNLLLBE_743383 28982.8 57% 0 0 4 0.04% 9% 

4 C8_B_0H hypothetical protein 
ALNLLLBE_197203 28469 78% 1 1 4 0.04% 9% 

5 C8_B_0H hypothetical protein 
ALNLLLBE_641606 45516.9 100% 4 4 4 0.04% 12% 

6 C8_B_0H hypothetical protein ALNLLLBE_641603 61392.1 100% 6 6 6 0.06% 10.00% 

7 C8_B_0H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 100% 4 4 9 0.09% 11.00% 

8 C8_B_0H hypothetical protein 
ALNLLLBE_743321 93204.8 95% 4 4 4 0.04% 5.80% 

9 C8_B_0H hypothetical protein 
ALNLLLBE_641420 24057.7 100% 2 2 4 0.04% 15% 

10 C8_B_0H hypothetical protein 
ALNLLLBE_334549 89357.7 96% 3 3 6 0.06% 6% 

11 C8_B_0H hypothetical protein 
ALNLLLBE_645567 243258.6 100% 2 2 2 0.02% 1.10% 

12 C8_B_0H Elongation factor Tu 
ALNLLLBE_246749 43095.6 99% 2 2 4 0.04% 7.60% 

13 C8_B_0H Elongation factor Tu 
ALNLLLBE_483213 42931.5 85% 0 0 1 0.01% 4.00% 

14 C8_B_0H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 96% 1 1 5 0.05% 4.50% 

15 C8_B_0H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 15% 0 0 2 0.02% 1.40% 

16 C8_B_0H hypothetical protein 
ALNLLLBE_641330 76715.7 99% 6 6 7 0.07% 12.00% 

17 C8_B_0H hypothetical protein 
ALNLLLBE_643285 53571.2 97% 1 1 4 0.04% 11.00% 

18 C8_B_0H hypothetical protein 
ALNLLLBE_438590 57521.6 34% 1 1 1 0.01% 1.10% 

19 C8_B_0H hypothetical protein 
ALNLLLBE_580468 78873 75% 2 2 3 0.03% 4.40% 

20 C8_B_0H hypothetical protein 
ALNLLLBE_259625 55559 77% 2 2 2 0.02% 6.00% 



189 

 

21 C8_B_0H hypothetical protein 
ALNLLLBE_90799 42809.2 28% 1 1 1 0.01% 0.00% 

22 C8_B_0H hypothetical protein 
ALNLLLBE_334511 97269.8 93% 3 3 3 0.03% 4.10% 

23 C8_B_0H hypothetical protein 
ALNLLLBE_342545 78943.6 34% 0 0 1 0.01% 2.30% 

24 C8_B_0H hypothetical protein 
ALNLLLBE_366056 5654.4 25% 1 1 1 0.01% 18.00% 

25 C8_B_0H hypothetical protein 
ALNLLLBE_624953 5654.4 25% 1 1 1 0.01% 18.00% 

26 C8_B_0H hypothetical protein 
ALNLLLBE_700955 95628.6 80% 1 1 1 0.01% 1.30% 

27 C8_B_0H hypothetical protein 
ALNLLLBE_474867 67684.4 22% 1 1 1 0.01% 1.60% 

28 C8_B_0H hypothetical protein 
ALNLLLBE_219451 23245 29% 1 1 1 0.01% 6.00% 

29 C8_B_0H hypothetical protein 
ALNLLLBE_642510 53561 10% 0 0 3 0.03% 6.00% 

30 C8_B_0H hypothetical protein 
ALNLLLBE_342544 70446 9% 0 0 1 0.01% 2.50% 

31 C8_B_0H hypothetical protein 
ALNLLLBE_90712 64996 54% 1 1 1 0.01% 3.00% 

32 C8_B_0H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 94% 3 3 3 0.03% 6.90% 

33 C8_B_0H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 27% 1 1 1 0.01% 3.00% 

34 C8_B_0H Nitrogen regulatory protein P-II 
ALNLLLBE_426853 14100 43% 1 1 1 0.01% 8.60% 

35 C8_B_0H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 7% 0 0 1 0.01% 1.90% 

36 C8_B_0H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 7% 0 0 1 0.01% 1.60% 

37 C8_B_0H ATP synthase subunit beta 
ALNLLLBE_343885 51090 41% 1 1 2 0.02% 3.00% 

38 C8_B_0H hypothetical protein 
ALNLLLBE_342549 41535.4 100% 3 3 3 0.03% 11.00% 

39 C8_B_0H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_277117 
89607 12% 0 0 1 0.01% 1.70% 

40 C8_B_0H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 71% 1 1 1 0.01% 3.00% 

41 C8_B_0H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 12% 0 0 1 0.01% 1.30% 

42 C8_B_0H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 100% 2 2 3 0.03% 6.20% 

43 C8_B_0H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 7% 0 0 1 0.01% 2.00% 

44 C8_B_0H 60 kDa chaperonin 
ALNLLLBE_333915 57697 8% 0 0 1 0.01% 1.30% 

45 C8_B_0H 60 kDa chaperonin 
ALNLLLBE_131203 49856 8% 0 0 2 0.02% 5.10% 
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46 C8_B_0H 60 kDa chaperonin 
ALNLLLBE_583384 57922.5 5% 0 0 1 0.01% 1.30% 

47 C8_B_0H Cyanate hydratase 
ALNLLLBE_88274 18009.5 69% 2 2 2 0.02% 11% 

48 C8_B_0H Cold shock protein CspA 
ALNLLLBE_20439 8611.9 76% 2 2 3 0.03% 20% 

49 C8_B_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 94% 3 3 5 0.05% 13% 

50 C8_B_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 94% 3 3 5 0.05% 13% 

51 C8_B_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 5% 0 0 1 0.01% 4% 

52 C8_B_0H ATP synthase subunit beta 1 
ALNLLLLBE_189018 50810.7 99% 2 2 3 0.03% 7% 

53 C8_B_0H ALNLLLBE_614387-DECOY 

ALNLLLBE_614387-

DECOY 
 20% 1 1 1 0.01%  

1 C8_B_6H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 7 8 12 0.10% 38% 

2 C8_B_6H hypothetical protein 
ALNLLLBE_642509 63736.2 99% 4 4 5 0.04% 9.50% 

3 C8_B_6H hypothetical protein 
ALNLLLBE_641606 45516.9 71% 1 1 1 0.08% 2.80% 

4 C8_B_6H hypothetical protein 
ALNLLLBE_641603 61392.1 100% 5 5 6 0.05% 9% 

5 C8_B_6H hypothetical protein 
ALNLLLBE_641420 24058 82% 1 1 2 0.02% 8% 

6 C8_B_6H hypothetical protein 
ALNLLLBE_743321 93204.8 90% 3 3 3 0.03% 4% 

7 C8_B_6H hypothetical protein 
ALNLLLBE_743382 62548 17% 0 0 1 0.01% 1% 

8 C8_B_6H hypothetical protein 
ALNLLLBE_743383 28982.8 43% 0 0 3 0.03% 9% 

9 C8_B_6H hypothetical protein 
ALNLLLBE_342549 41535.4 74% 2 2 3 0.03% 7% 

10 C8_B_6H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 100% 3 3 4 0.03% 9.80% 

11 C8_B_6H hypothetical protein 
ALNLLLBE_334549 89357.7 95% 2 2 4 0.03% 5.00% 

12 C8_B_6H hypothetical protein 
ALNLLLBE_645567 243258.6 94% 3 3 3 0.03% 1.70% 

13 C8_B_6H hypothetical protein 
ALNLLLBE_641330 76715.7 50% 1 1 1 0.01% 1.60% 

14 C8_B_6H hypothetical protein 
ALNLLLBE_641342 26714.3 82% 2 2 3 0.03% 7.90% 

15 C8_B_6H hypothetical protein 
ALNLLLBE_643285 53571.2 19% 0 0 2 0.02% 2.60% 

16 C8_B_6H hypothetical protein 
ALNLLLBE_580468 78873 74% 1 1 2 0.02% 2.80% 
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17 C8_B_6H hypothetical protein 
ALNLLLBE_474867 67684.4 67% 2 2 2 0.02% 2.60% 

18 C8_B_6H hypothetical protein 
ALNLLLBE_197203 28469 51% 1 1 3 0.03% 9.10% 

19 C8_B_6H hypothetical protein 
ALNLLLBE_45809 28995.9 39% 1 1 1 0.01% 6.60% 

20 C8_B_6H hypothetical protein 
ALNLLLBE_438590 57521.6 39% 1 1 1 0.01% 1.10% 

21 C8_B_6H hypothetical protein 
ALNLLLBE_90799 42809.2 57% 2 2 2 0.02% 0.00% 

22 C8_B_6H hypothetical protein 
ALNLLLBE_105999 76402.6 44% 1 1 1 0.01% 2.20% 

23 C8_B_6H hypothetical protein 
ALNLLLBE-75826 83710.8 44% 1 1 1 0.01% 2.00% 

24 C8_B_6H hypothetical protein 
ALNLLLBE_334511 97269.8 36% 1 1 1 0.01% 1.30% 

25 C8_B_6H hypothetical protein 
ALNLLLBE_54401 89183 10% 0 0 2 0.02% 1.70% 

26 C8_B_6H hypothetical protein 
ALNLLLBE_761442 23483 7% 0 0 1 0.01% 5.50% 

27 C8_B_6H hypothetical protein 
ALNLLLBE_642510 53561 8% 0 0 1 0.01% 1.20% 

28 C8_B_6H hypothetical protein 
ALNLLLBE_90712 64996 22% 1 1 1 0.01% 3.00% 

29 C8_B_6H Elongation factor Tu 
ALNLLLBE_246749 43095.6 71% 1 1 1 0.01% 3.50% 

30 C8_B_6H Elongation factor Tu 
ALNLLLBE_203705 43232.5 28% 1 1 1 0.01% 2.80% 

31 C8_B_6H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_454561 
154237.5 8% 0 0 1 0.01% 0.44% 

32 C8_B_6H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 86% 2 2 4 0.03% 6.30% 

33 C8_B_6H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 16% 0 0 1 0.01% 2.40% 

34 C8_B_6H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 74% 1 1 3 0.03% 7.30% 

35 C8_B_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 15% 0 0 1 0.01% 4.00% 

36 C8_B_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 15% 0 0 1 0.01% 4.00% 

37 C8_B_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 10% 0 0 1 0.01% 4.00% 

38 C8_B_6H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 80% 2 2 2 0.02% 5.10% 

39 C8_B_6H 60 kDa chepronin 5 
ALNLLLBE_67393 57748.3 93% 2 2 5 0.04% 8.60% 

40 C8_B_6H 60 kDa chepronin 5 
ALNLLLBE_06125 58496 74% 0 0 2 0.02% 3.50% 
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41 C8_B_6H 60 kDa chepronin 1 
ALNLLLBE_399492 37451.1 42% 0 0 2 0.02% 5.80% 

42 C8_B_6H 60 kDa chepronin  
ALNLLLBE_333915 57697 7% 0 0 1 0.01% 1.30% 

43 C8_B_6H Cyanate hydratase 
ALNLLLBE_88274 18009.5 36% 1 1 1 0.01% 5.00% 

44 C8_B_6H Cold shock protein CspA 
ALNLLLBE_20439 8612 34% 1 1 1 0.01% 11.00% 

1 C8_B_12H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 10 13 16 0.13% 42% 

2 C8_B_12H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 11 11 15 0.02% 23% 

3 C8_B_12H hypothetical protein 
ALNLLLBE_641603 61392.1 95% 4 5 6 0.05% 10% 

4 C8_B_12H hypothetical protein 
ALNLLLBE_743383 28983 97% 4 4 8 0.07% 27% 

5 C8_B_12H hypothetical protein 
ALNLLLBE_643285 53571.2 6% 0 0 1 0.01% 1% 

6 C8_B_12H hypothetical protein 
ALNLLLBE_641420 24057.7 100% 4 4 6 0.05% 23% 

7 C8_B_12H hypothetical protein 
ALNLLLBE_641330 76715.7 92% 5 5 5 0.04% 10.00% 

8 C8_B_12H hypothetical protein 
ALNLLLBE_743321 93205 84% 2 2 2 0.02% 2.60% 

9 C8_B_12H hypothetical protein 
ALNLLLBE_743386 46186 39% 1 1 1 0.01% 3.20% 

10 C8_B_12H hypothetical protein 
ALNLLLBE_675543 67904 69% 2 2 2 0.02% 4.90% 

11 C8_B_12H hypothetical protein 
ALNLLLBE_342544 70446 14% 0 0 2 0.02% 7.90% 

12 C8_B_12H hypothetical protein 
ALNLLLBE_90799 42809 30% 1 1 1 0.01% 0.00% 

13 C8_B_12H hypothetical protein 
ALNLLLBE_422424 40584 83% 2 2 2 0.02% 5.60% 

14 C8_B_12H hypothetical protein 
ALNLLLBE_422731 53184 83% 2 2 2 0.02% 4.30% 

15 C8_B_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 93% 2 3 3 0.03% 7% 

16 C8_B_12H Elongation factor Tu 
ALNLLLBE_483213 42932 46% 0 0 1 0.01% 4% 

17 C8_B_12H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 94% 1 1 5 0.04% 8.90% 

18 C8_B_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 51% 0 0 3 0.03% 4.00% 

19 C8_B_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 99% 2 2 4 0.03% 9.80% 

20 C8_B_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 75% 1 1 1 0.01% 2% 

21 C8_B_12H hypothetical protein 
ALNLLLBE_342549 41535.4 82% 1 1 1 0.01% 3.10% 
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22 C8_B_12H hypothetical protein 
ALNLLLBE_259625 55559 18% 1 1 1 0.01% 3.30% 

23 C8_B_12H hypothetical protein 
ALNLLLBE_474867 67684.4 36% 1 1 1 0.01% 1.60% 

24 C8_B_12H hypothetical protein 
ALNLLLBE_641342 26714 75% 1 1 1 0.01% 5.00% 

25 C8_B_12H hypothetical protein 
ALNLLLBE_761442 23483 10% 0 0 2 0.02% 6.00% 

26 C8_B_12H hypothetical protein 
ALNLLLBE_105999 76402.6 53% 1 2 2 0.02% 2.20% 

27 C8_B_12H hypothetical protein 
ALNLLLBE_75826 83710.8 53% 1 2 2 0.02% 2.00% 

28 C8_B_12H hypothetical protein 
ALNLLLBE_669128 31780 41% 1 1 2 0.02% 3.50% 

29 C8_B_12H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 52% 1 1 1 0.01% 3.00% 

30 C8_B_12H 60 kDa chaperonin 
ALNLLLBE_121083 58153 67% 1 1 1 0.08% 3.10% 

31 C8_B_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 26% 0 0 1 0.01% 3.80% 

32 C8_B_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 34% 0 0 1 0.01% 2.40% 

33 C8_B_12H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 28% 0 0 1 0.01% 2.20% 

34 C8_B_12H Cyanate hydratase 
ALNLLLBE_88274 18009.5 66% 2 2 2 0.02% 11.00% 

35 C8_B_12H ATP synthase subunit beta 
ALNLLLBE_376596 42928 61% 1 1 2 0.02% 6.00% 

36 C8_B_12H ATP synthase subunit beta 
ALNLLLBE_343885 51090 50% 1 1 1 0.01% 3.00% 

37 C8_B_12H ATP synthase subunit beta 
ALNLLLBE_756712 54705 70% 1 1 2 0.02% 5.00% 

38 C8_B_12H ATP synthase subunit beta 
ALNLLLBE_441698 34209 27% 0 0 1 0.01% 4.50% 

39 C8_B_12H hypothetical protein 
ALNLLLBE_641606 45517 100% 5 5 6 0.05% 15.00% 

40 C8_B_12H hypothetical protein 
ALNLLLBE_197203 28469 89% 2 2 6 0.05% 13.00% 

41 C8_B_12H hypothetical protein 
ALNLLLBE_334549 89358 65% 1 1 2 0.02% 2.10% 

42 C8_B_12H hypothetical protein 
ALNLLLBE_645567 24325 99% 5 5 5 0.04% 2.70% 

43 C8_B_12H hypothetical protein 
ALNLLLBE_54401 89183 9% 0 0 1 0.01% 0.87% 

44 C8_B_12H hypothetical protein 
ALNLLLBE_584064 57748 88% 2 2 3 0.03% 7.30% 

45 C8_B_12H hypothetical protein 
ALNLLLBE_743370 25148 20% 1 1 1 0.01% 5.00% 

46 C8_B_12H hypothetical protein 
ALNLLLBE_743368 25948 20% 1 1 1 0.01% 4.90% 

47 C8_B_12H hypothetical protein 
ALNLLLBE_466046 65802 68% 1 1 1 0.01% 1.70% 
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48 C8_B_12H hypothetical protein 
ALNLLLBE_466048 14584 44% 1 1 1 0.01% 9.90% 

49 C8_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_790261 
37481 97% 2 2 2 0.02% 8.10% 

50 C8_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_27688 
37511 97% 2 2 2 0.02% 8.10% 

51 C8_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_310190 
37510 97% 2 2 2 0.02% 8.10% 

52 C8_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45941 15% 0 0 1 0.01% 4.00% 

53 C8_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46095 15% 0 0 1 0.01% 4.00% 

54 C8_B_12H V-type ATP synthase beta chain 
ALNLLLBE_644750 50785 27% 0 0 1 0.01% 3.00% 

55 C8_B_12H V-type ATP synthase alpha chain 
ALNLLLBE_54428 63580 22% 1 1 1 0.01% 2.30% 

56 C8_B_12H V-type ATP synthase beta chain 
ALNLLLBE_54427 50993 6% 0 0 1 0.01% 3.00% 

57 C8_B_12H Formate dehydrogenase H 
ALNLLLBE_743668 76707 43% 1 1 1 0.01% 1.60% 

58 C8_B_12H hypothetical protein 
ALNLLLBE_342545 78944 69% 1 1 3 0.03% 12.00% 

59 C8_B_12H hypothetical protein 
ALNLLLBE_366056 5654 48% 1 1 1 0.01% 24.00% 

60 C8_B_12H hypothetical protein 
ALNLLLBE_624953 5654 48% 1 1 1 0.01% 24.00% 

61 C8_B_12H Glycerol kinase 
ALNLLLBE_232721 55015 14% 0 0 1 0.01% 2.00% 

62 C8_B_12H Glycerol kinase 
ALNLLLBE_395413 55022 60% 1 1 2 0.02% 4.00% 

63 C8_B_12H hypothetical protein 
ALNLLLBE_642510 53561 32% 1 1 1 0.01% 2.30% 

64 C8_B_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 23% 0 0 1 0.01% 1.90% 

65 C8_B_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 23% 0 0 1 0.01% 1.60% 

66 C8_B_12H Acetyl-coenzyme A synthetase 
ALNLLLBE_642943 75311 70% 1 1 1 0.01% 1.80% 

67 C8_B_12H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866 16% 1 1 1 0.01% 4.00% 

68 C8_B_12H hypothetical protein 
ALNLLLBE_90712 64996 30% 1 1 1 0.01% 3.00% 

69 C8_B_12H 

Methylcorrinoid:tetrahydrofolate 

methyltransferase 

ALNLLLBE_645360 
33749 82% 2 2 2 0.02% 8.00% 

70 C8_B_12H 

Methylcorrinoid:tetrahydrofolate 

methyltransferase 

ALNLLLBE_92794 
33812 82% 2 2 2 0.02% 8.00% 
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71 C8_B_12H 50S ribosomal protein L1 
ALNLLLBE_246746 23966 33% 1 1 1 0.01% 5.60% 

72 C8_B_12H hypothetical protein 
ALNLLLBE_756266 10428 50% 2 2 2 0.02% 1.20% 

1 C8_B_18H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 6 6 8 0.11% 31% 

2 C8_B_18H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 3 3 3 0.04% 6.10% 

3 C8_B_18H hypothetical protein 
ALNLLLBE_641606 45516.9 91% 2 2 2 0.03% 7% 

4 C8_B_18H hypothetical protein 
ALNLLLBE_641603 61392.1 98% 2 2 3 0.04% 5% 

5 C8_B_18H hypothetical protein 
ALNLLLBE_45809 28995.9 98% 2 2 3 0.04% 9% 

6 C8_B_18H hypothetical protein 
ALNLLLBE_342549 42535.4 71% 1 1 1 0.01% 3% 

7 C8_B_18H hypothetical protein 
ALNLLLBE_438590 57521.6 38% 1 1 1 0.01% 1% 

8 C8_B_18H hypothetical protein 
ALNLLLBE_474867 67684.4 58% 1 1 1 0.01% 2% 

9 C8_B_18H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 100% 4 4 7 0.10% 18% 

10 C8_B_18H hypothetical protein 
ALNLLLBE_743321 93204.8 3500% 1 1 1 0.01% 1.60% 

11 C8_B_18H hypothetical protein 
ALNLLLBE_641420 24057.7 75% 1 1 1 0.01% 4.90% 

12 C8_B_18H hypothetical protein 
ALNLLLBE_743382 62548 98% 1 1 2 0.03% 3.20% 

13 C8_B_18H hypothetical protein 
ALNLLLBE_334549 89357.7 99% 2 2 4 0.05% 5.00% 

14 C8_B_18H hypothetical protein 
ALNLLLBE_743383 28982.8 91% 1 1 9 0.12% 14.00% 

15 C8_B_18H hypothetical protein 
ALNLLLBE_197203 28469 99% 3 3 10 0.14% 16.00% 

16 C8_B_18H hypothetical protein 
ALNLLLBE_54401 89183 32% 0 0 2 0.03% 1.70% 

17 C8_B_18H hypothetical protein 
ALNLLLBE_259625 55559 82% 2 2 2 0.03% 6.00% 

18 C8_B_18H hypothetical protein 
ALNLLLBE_743368 25947.6 95% 2 2 3 0.04% 11.00% 

19 C8_B_18H hypothetical protein 
ALNLLLBE_743370 25148.5 95% 2 2 3 0.04% 11.00% 

20 C8_B_18H hypothetical protein 
ALNLLLBE_743386 46186.3 97% 2 2 2 0.03% 3.70% 

21 C8_B_18H hypothetical protein 
ALNLLLBE_761442 23483 9% 0 0 2 0.03% 5.50% 

22 C8_B_18H hypothetical protein 
ALNLLLBE_366056 5654.4 97% 2 2 2 0.03% 41.00% 

23 C8_B_18H hypothetical protein 
ALNLLLBE_624953 5654.4 97% 2 2 2 0.03% 41.00% 
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24 C8_B_18H hypothetical protein 
ALNLLLBE_669128 31779.5 37% 1 1 2 0.03% 3.50% 

25 C8_B_18H hypothetical protein 
ALNLLLBE_466048 14584 52% 1 1 1 0.01% 9.90% 

26 C8_B_18H hypothetical protein 
ALNLLLBE_753512 12463 16% 1 1 1 0.01% 6.70% 

27 C8_B_18H Elongation factor Tu 
ALNLLLBE_246749 43095.6 92% 2 2 3 0.04% 8.80% 

28 C8_B_18H Elongation factor Tu 
ALNLLLBE_483213 42931.5 71% 0 0 2 0.03% 4.00% 

29 C8_B_18H Elongation factor Tu 
ALNLLLBE_716068 42735 99% 2 2 2 0.03% 6.40% 

30 C8_B_18H Elongation factor Tu 
ALNLLLBE_203705 43232.5 99% 1 1 3 0.04% 7.30% 

31 C8_B_18H Elongation factor Tu 
ALNLLLBE_592500 42979 35% 0 0 2 0.03% 4.50% 

32 C8_B_18H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 97% 1 1 5 0.07% 8.70% 

33 C8_B_18H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 39% 0 0 3 0.04% 3.80% 

34 C8_B_18H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 76% 2 2 3 0.04% 7.30% 

35 C8_B_18H Leu/Ille/Val-binding protein 
ALNLLLBE_328832 41182.7 65% 2 2 2 0.03% 5.70% 

36 C8_B_18H Leu/Ille/Val-binding protein 
ALNLLLBE_343029 41248.7 65% 2 2 2 0.03% 5.70% 

37 C8_B_18H Glutamine synthetase 
ALNLLLBE_315415 30249 86% 2 2 2 0.03% 8.20% 

38 C8_B_18H hypothetical protein 
ALNLLLBE_641330 76715.7 31% 1 1 1 0.01% 1.60% 

39 C8_B_18H 

Phthiodiolone/phenolphthiodiolone 

dimycocerosates ketoreductase 

ALNLLLBE_743328 
34701 27% 1 1 1 0.01% 3.00% 

40 C8_B_18H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 44% 1 1 1 0.01% 3.00% 

41 C8_B_18H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866 82% 2 2 2 0.03% 6.50% 

42 C8_B_18H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 21% 0 0 1 0.01% 1.90% 

43 C8_B_18H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 21% 0 0 1 0.01% 1.60% 

44 C8_B_18H Formate dehydrogenase H 
ALNLLLBE_743668 76707 17% 1 1 1 0.01% 1.30% 

45 C8_B_18H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 83% 1 1 1 0.01% 3.00% 

46 C8_B_18H ATP synthase subunit beta  
ALNLLLBE_376596 42928 69% 1 1 2 0.03% 6.00% 

47 C8_B_18H ATP synthase subunit beta  
ALNLLLBE_343885 51090 24% 1 1 1 0.01% 3.00% 
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48 C8_B_18H ATP synthase subunit beta  
ALNLLLBE_756712 54705 9% 0 0 1 0.01% 2.80% 

49 C8_B_18H ATP synthase subunit beta  
ALNLLLBE_441698 34208.7 9% 0 0 1 0.01% 4.50% 

50 C8_B_18H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_454561 
154237.5 54% 1 1 2 0.03% 1.20% 

51 C8_B_18H Cold shock protein CspA 
ALNLLLBE_20439 8611.9 70% 1 1 1 0.01% 11.00% 

52 C8_B_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 89% 1 1 3 0.04% 7% 

53 C8_B_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 89% 1 1 3 0.04% 7% 

54 C8_B_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 65% 1 1 3 0.04% 6% 

55 C8_B_18H ALNLLLBE_323811-DECOY 

ALNLLLBE_323811-

DECOY 
 17% 1 1 1 0.01%  

56 C8_B_18H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 100% 2 2 5 0.07% 9.70% 

57 C8_B_18H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 95% 0 0 2 0.03% 3.50% 

58 C8_B_18H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 60% 0 0 3 0.04% 7.50% 

59 C8_B_18H 60 kDa chaperonin  
ALNLLLBE_333915 57697 9% 0 0 1 0.01% 1.30% 

60 C8_B_18H 60 kDa chaperonin  
ALNLLLBE_121083 58153 5% 0 0 1 0.01% 1.30% 

1 C8_B_24H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 4 4 5 0.06% 26% 

2 C8_B_24H hypothetical protein 
ALNLLLBE_642509 63736.2 91% 3 3 4 0.05% 7.60% 

3 C8_B_24H hypothetical protein 
ALNLLLBE_641606 45516.9 51% 1 1 1 0.01% 3% 

4 C8_B_24H hypothetical protein 
ALNLLLBE_641603 61392.1 98% 3 3 4 0.05% 6% 

5 C8_B_24H hypothetical protein 
ALNLLLBE_45809 28995.9 86% 2 2 2 0.03% 9% 

6 C8_B_24H hypothetical protein 
ALNLLLBE_438590 57521.6 34% 1 1 1 0.01% 1% 

7 C8_B_24H hypothetical protein 
ALNLLLBE_474867 67684.4 59% 1 1 1 0.01% 2% 

8 C8_B_24H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 100% 4 4 5 0.06% 12% 

9 C8_B_24H hypothetical protein 
ALNLLLBE_743321 93204.8 56% 1 1 1 0.01% 1.60% 

10 C8_B_24H hypothetical protein 
ALNLLLBE_641420 24057.7 34% 1 1 1 0.01% 4.90% 

11 C8_B_24H hypothetical protein 
ALNLLLBE_743382 62548 98% 1 1 3 0.04% 3.20% 
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12 C8_B_24H hypothetical protein 
ALNLLLBE_334549 89357.7 97% 1 1 4 0.05% 4.50% 

13 C8_B_24H hypothetical protein 
ALNLLLBE_743383 28982.8 83% 1 1 8 0.10% 14.00% 

14 C8_B_24H hypothetical protein 
ALNLLLBE_197203 28469 87% 2 2 8 0.10% 13.00% 

15 C8_B_24H hypothetical protein 
ALNLLLBE_259625 55559 93% 2 2 2 0.03% 6.00% 

16 C8_B_24H hypothetical protein 
ALNLLLBE_743368 25947.6 98% 2 2 2 0.03% 11.00% 

17 C8_B_24H hypothetical protein 
ALNLLLBE_743370 25148.5 98% 2 2 2 0.03% 11.00% 

18 C8_B_24H hypothetical protein 
ALNLLLBE_743386 46186.3 64% 1 1 1 0.01% 1.60% 

19 C8_B_24H hypothetical protein 
ALNLLLBE_669128 31779.5 62% 2 2 4 0.05% 3.90% 

20 C8_B_24H hypothetical protein 
ALNLLLBE_54401 89183 41% 0 0 3 0.04% 2.90% 

21 C8_B_24H hypothetical protein 
ALNLLLBE_219451 23245 23% 1 1 1 0.01% 6.00% 

22 C8_B_24H Elongation factor Tu 
ALNLLLBE_246749 43095.6 100% 3 3 3 0.04% 11.00% 

23 C8_B_24H Elongation factor Tu 
ALNLLLBE_716068 42735 60% 1 1 1 0.01% 2.30% 

24 C8_B_24H Elongation factor Tu 
ALNLLLBE_203705 43232.5 85% 1 1 1 0.01% 2.80% 

25 C8_B_24H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 93% 1 1 1 0.01% 3.20% 

26 C8_B_24H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 16% 1 1 1 0.01% 3.10% 

27 C8_B_24H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 29% 1 1 1 0.01% 3.00% 

28 C8_B_24H Nitrogen regulatory protein P-II 
ALNLLLBE_426853 14100 60% 2 2 2 0.03% 22.00% 

29 C8_B_24H Leu/Ille/Val-binding protein 
ALNLLLBE_328832 41182.7 39% 1 1 1 0.01% 1.80% 

30 C8_B_24H Leu/Ille/Val-binding protein 
ALNLLLBE_343029 41248.7 39% 1 1 1 0.01% 1.80% 

31 C8_B_24H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 7% 0 0 1 0.01% 1.60% 

32 C8_B_24H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 7% 0 0 1 0.01% 1.90% 

33 C8_B_24H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 96% 1 1 1 0.01% 3.00% 

34 C8_B_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_277117 
89607 33% 0 0 1 0.01% 1.10% 

35 C8_B_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_550114 
38019 16% 0 0 1 0.01% 2.60% 
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36 C8_B_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_51534 
143539 62% 1 1 2 0.03% 1.30% 

37 C8_B_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_563289 
143589 62% 1 1 2 0.03% 1.30% 

38 C8_B_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_454561 
154238 5% 0 0 1 0.01% 0.44% 

39 C8_B_24H Cold shock protein CspA 
ALNLLLBE_20439 8612 29% 1 1 1 0.01% 8.90% 

40 C8_B_24H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 94% 3 3 3 0.04% 9% 

41 C8_B_24H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 94% 3 3 3 0.04% 9% 

42 C8_B_24H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 99% 1 1 3 0.04% 5.50% 

43 C8_B_24H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 93% 0 0 2 0.03% 3.50% 

44 C8_B_24H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 90% 1 1 3 0.04% 9.20% 

45 C8_B_24H 60 kDa chaperonin  
ALNLLLBE_333915 57697 69% 1 1 2 0.03% 3.10% 

46 C8_B_24H 60 kDa chaperonin  
ALNLLLBE_583384 57865 14% 1 1 2 0.03% 3.10% 

47 C8_B_24H 60 kDa chaperonin  
ALNLLLBE_121083 58153 98% 1 1 2 0.03% 4.40% 

48 C8_B_24H ALNLLLBE_614387-DECOY 

ALNLLLBE_614387-

DECOY 
 15% 1 1 1   

1 CNEG_B_12H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 5 5 6 0.07% 30% 

2 CNEG_B_12H hypothetical protein 
ALNLLLBE_642509 63736.2 92% 3 3 4 0.05% 6.80% 

3 CNEG_B_12H hypothetical protein 
ALNLLLBE_641606 45516.9 79% 1 1 1 0.01% 3% 

4 CNEG_B_12H hypothetical protein 
ALNLLLBE_641603 61392.1 98% 2 2 2 0.02% 5% 

5 CNEG_B_12H hypothetical protein 
ALNLLLBE_45809 28995.9 95% 1 1 2 0.02% 7% 

6 CNEG_B_12H hypothetical protein 
ALNLLLBE_438590 57521.6 40% 1 1 1 0.01% 1% 

7 CNEG_B_12H hypothetical protein 
ALNLLLBE_474867 67684.4 91% 2 2 2 0.02% 3% 

8 CNEG_B_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 100% 3 3 5 0.06% 11% 

9 CNEG_B_12H hypothetical protein 
ALNLLLBE_641420 24057.7 84% 1 1 1 0.01% 4.90% 

10 CNEG_B_12H hypothetical protein 
ALNLLLBE_743382 62548 99% 1 1 1 0.01% 1.80% 

11 CNEG_B_12H hypothetical protein 
ALNLLLBE_334549 89357.7 99% 3 3 6 0.07% 6.50% 
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12 CNEG_B_12H hypothetical protein 
ALNLLLBE_743383 28982.8 95% 1 1 9 0.10% 14.00% 

13 CNEG_B_12H hypothetical protein 
ALNLLLBE_197203 28469 96% 2 2 9 0.10% 13.00% 

14 CNEG_B_12H hypothetical protein 
ALNLLLBE_643285 53571.2 6% 0 0 1 0.01% 1.40% 

15 CNEG_B_12H hypothetical protein 
ALNLLLBE_645567 243258.6 42% 1 1 1 0.01% 0.72% 

16 CNEG_B_12H hypothetical protein 
ALNLLLBE_743368 25947.6 100% 3 3 3 0.03% 14.00% 

17 CNEG_B_12H hypothetical protein 
ALNLLLBE_743370 25148 100% 3 3 3 0.03% 14.00% 

18 CNEG_B_12H hypothetical protein 
ALNLLLBE_743386 46186.3 78% 2 2 2 0.02% 3.70% 

19 CNEG_B_12H hypothetical protein 
ALNLLLBE_90799 42809.2 55% 2 2 2 0.02% 0.00% 

20 CNEG_B_12H hypothetical protein 
ALNLLLBE_521398 142013.7 42% 1 1 1 0.01% 0.95% 

21 CNEG_B_12H hypothetical protein 
ALNLLLBE_669128 31779.5 75% 2 2 3 0.03% 3.90% 

22 CNEG_B_12H hypothetical protein 
ALNLLLBE_753512 12463 23% 1 1 1 0.01% 6.70% 

23 CNEG_B_12H hypothetical protein 
ALNLLLBE_761442 23483 9% 0 0 1 0.01% 5.50% 

24 CNEG_B_12H hypothetical protein 
ALNLLLBE_54401 89183 31% 0 0 2 0.02% 2.00% 

25 CNEG_B_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 96% 1 1 1 0.01% 3.50% 

26 CNEG_B_12H Elongation factor Tu 
ALNLLLBE_483213 42931.5 85% 0 0 1 0.01% 4.00% 

27 CNEG_B_12H Elongation factor Tu 
ALNLLLBE_526058 43715.6 68% 2 2 2 0.02% 5.70% 

28 CNEG_B_12H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 97% 1 1 2 0.02% 5.50% 

29 CNEG_B_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 21% 0 0 1 0.01% 2.40% 

30 CNEG_B_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 20% 1 1 1 0.01% 3.10% 

31 CNEG_B_12H 

Phthiodiolone/phenolphthiodiolone 

dimycocerosates ketoreductase 

ALNLLLBE_743328 
34701 22% 1 1 1 0.01% 3.00% 

32 CNEG_B_12H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866.4 73% 2 2 2 0.02% 6.50% 

33 CNEG_B_12H Leu/Ille/Val-binding protein 
ALNLLLBE_328832 41182.7 30% 1 1 1 0.01% 1.80% 

34 CNEG_B_12H Leu/Ille/Val-binding protein 
ALNLLLBE_343029 41248.7 30% 1 1 1 0.01% 1.80% 

35 CNEG_B_12H Glutamine synthetase 
ALNLLLBE_315415 30249 22% 0 0 1 0.01% 5.90% 

36 CNEG_B_12H Formate dehydrogenase H 
ALNLLLBE_743668 76707 92% 2 2 2 0.02% 2.90% 
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37 CNEG_B_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 66% 1 1 1 0.01% 3.00% 

38 CNEG_B_12H ATP synthase subunit beta 1 
ALNLLLBE_189018 50810.7 25% 1 1 1 0.01% 4.10% 

39 CNEG_B_12H ATP synthase subunit beta  
ALNLLLBE_376596 42928 35% 1 1 1 0.01% 2.50% 

40 CNEG_B_12H ATP synthase subunit alpha 
ALNLLLBE_413871 53611 59% 1 1 1 0.01% 1.80% 

41 CNEG_B_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_277117 
89607 47% 0 0 1 0.01% 1.10% 

42 CNEG_B_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_372517 
119264 5% 0 0 1 0.01% 0.84% 

43 CNEG_B_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_550114 
38019 24% 0 0 1 0.01% 2.60% 

44 CNEG_B_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_454561 
154238 7% 0 0 1 0.01% 0.44% 

45 CNEG_B_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_310308 
71774 44% 1 1 2 0.02% 2.50% 

46 CNEG_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 82% 1 1 2 0.02% 7% 

47 CNEG_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 82% 1 1 2 0.02% 7% 

48 CNEG_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 6% 0 0 1 0.01% 4% 

49 CNEG_B_12H ALNLLLBE_614387-DECOY 

ALNLLLBE_614387-

DECOY 
 29% 1 1 1 0.01%  

50 CNEG_B_12H ALNLLLBE_323811-DECOY 

ALNLLLBE_323811-

DECOY 
 60% 2 2 2 0.02%  

51 CNEG_B_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 100% 2 2 3 0.03% 6.20% 

52 CNEG_B_12H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 96% 0 0 2 0.02% 3.50% 

53 CNEG_B_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 10% 0 0 1 0.01% 2.00% 

54 CNEG_B_12H 60 kDa chaperonin  
ALNLLLBE_333915 57697 11% 0 0 1 0.01% 1.30% 

55 CNEG_B_12H 60 kDa chaperonin  
ALNLLLBE_121083 58153 7% 0 0 1 0.01% 1.30% 

1 CPLUS_B_12H 

sn-glycerol-3-phosphate-binding 

periplasmic protein UgpB 

ALNLLLBE_380224 
48280 96% 4 5 5 0.04% 8% 

2 CPLUS_B_12H 

sn-glycerol-3-phosphate-binding 

periplasmic protein UgpB 

ALNLLLBE_380230 
28583 96% 4 5 5 0.04% 13% 

3 CPLUS_B_12H 

sn-glycerol-3-phosphate-binding 

periplasmic protein UgpB 

ALNLLLBE_380230 
28595 96% 4 5 5 0.04% 13% 

4 CPLUS_B_12H putative protein 
ALNLLLBE_110201 35565 99% 5 5 5 0.04% 15% 
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5 CPLUS_B_12H putative protein 
ALNLLLBE_162024 35551 99% 5 5 5 0.04% 15% 

6 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 11 13 16 0.13% 45% 

7 CPLUS_B_12H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 11 11 17 0.14% 28% 

8 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641606 45516.9 100% 5 5 5 0.04% 13% 

9 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641603 61392.1 100% 5 6 6 0.05% 10% 

10 CPLUS_B_12H hypothetical protein 
ALNLLLBE_643285 53571.2 62% 1 1 2 0.02% 4% 

11 CPLUS_B_12H hypothetical protein 
ALNLLLBE_743321 93204.8 100% 9 9 9 0.07% 12% 

12 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641420 24057.7 99% 3 4 4 0.03% 14% 

13 CPLUS_B_12H hypothetical protein 
ALNLLLBE_743382 62548 95% 2 2 2 0.02% 3.00% 

14 CPLUS_B_12H hypothetical protein 
ALNLLLBE_334549 89357.7 69% 1 1 2 0.02% 2.50% 

15 CPLUS_B_12H hypothetical protein 
ALNLLLBE_743383 28982.8 99% 5 5 6 0.05% 30.00% 

16 CPLUS_B_12H hypothetical protein 
ALNLLLBE_645567 243258.6 96% 4 4 4 0.03% 2.20% 

17 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641330 76715.7 64% 1 1 1 0.01% 1.60% 

18 CPLUS_B_12H hypothetical protein 
ALNLLLBE_197203 28469 41% 1 1 2 0.02% 9.10% 

19 CPLUS_B_12H hypothetical protein 
ALNLLLBE_54401 89183 9% 0 0 1 0.01% 0.87% 

20 CPLUS_B_12H hypothetical protein 
ALNLLLBE_474867 67684 39% 1 1 1 0.01% 1.60% 

21 CPLUS_B_12H hypothetical protein 
ALNLLLBE_743386 46186 67% 3 3 3 0.02% 6.40% 

22 CPLUS_B_12H hypothetical protein 
ALNLLLBE_466046 65802 65% 1 1 1 0.01% 1.70% 

23 CPLUS_B_12H hypothetical protein 
ALNLLLBE_641342 26714 79% 2 2 2 0.02% 7.90% 

24 CPLUS_B_12H hypothetical protein 
ALNLLLBE_761442 23483 13% 0 0 2 0.02% 6.00% 

25 CPLUS_B_12H hypothetical protein 
ALNLLLBE_669128 31780 30% 1 1 1 0.01% 3.50% 

26 CPLUS_B_12H hypothetical protein 
ALNLLLBE_624953 5654 84% 1 1 1 0.01% 24.00% 

27 CPLUS_B_12H hypothetical protein 
ALNLLLBE_366056 5654 84% 1 1 1 0.01% 24.00% 

28 CPLUS_B_12H hypothetical protein 
ALNLLLBE_642510 53561 58% 1 1 3 0.02% 7.00% 

29 CPLUS_B_12H hypothetical protein 
ALNLLLBE_653168 99054 17% 0 0 1 0.01% 1.40% 

30 CPLUS_B_12H hypothetical protein 
ALNLLLBE_90712 64996 34% 1 1 1 0.01% 3.00% 
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31 CPLUS_B_12H hypothetical protein 
ALNLLLBE_744241 69352 72% 2 2 2 0.02% 3.70% 

32 CPLUS_B_12H hypothetical protein 
ALNLLLBE_764319 96026 73% 0 0 3 0.02% 3.70% 

33 CPLUS_B_12H hypothetical protein 
ALNLLLBE_763559 101797 59% 0 0 3 0.02% 3.00% 

34 CPLUS_B_12H hypothetical protein 
ALNLLLBE_744739 29925 70% 2 2 2 0.02% 8.00% 

35 CPLUS_B_12H hypothetical protein 
ALNLLLBE_21874 92364 79% 3 3 3 0.02% 5.30% 

36 CPLUS_B_12H hypothetical protein 
ALNLLLBE_756266 104280 21% 1 1 1 0.01% 0.62% 

37 CPLUS_B_12H hypothetical protein 
ALNLLLBE_80641 47532 64% 2 2 2 0.02% 6.00% 

38 CPLUS_B_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 80% 1 2 2 0.02% 3% 

39 CPLUS_B_12H Elongation factor Tu 
ALNLLLBE_203705 43233 34% 0 0 1 0.01% 2% 

40 CPLUS_B_12H Elongation factor Tu 
ALNLLLBE_592500 42978.8 22% 0 0 1 0.01% 2% 

41 CPLUS_B_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 100% 3 3 5 0.04% 12.00% 

42 CPLUS_B_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 97% 3 3 4 0.03% 8.60% 

43 CPLUS_B_12H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135 98% 1 1 5 0.04% 8.90% 

44 CPLUS_B_12H hypothetical protein 
ALNLLLBE_521398 142013.7 79% 2 2 2 0.02% 2.10% 

45 CPLUS_B_12H hypothetical protein 
ALNLLLBE_342545 78943.6 89% 0 0 3 0.02% 8.90% 

46 CPLUS_B_12H hypothetical protein 
ALNLLLBE_342549 41535.4 99% 4 4 4 0.03% 16.00% 

47 CPLUS_B_12H hypothetical protein 
ALNLLLBE_733678 39382 97% 5 5 6 0.05% 17.00% 

48 CPLUS_B_12H Glycerol kinase 
ALNLLLBE_232721 55014.5 100% 4 4 7 0.06% 13.00% 

49 CPLUS_B_12H Glycerol kinase 
ALNLLLBE_395413 55022 98% 3 3 6 0.05% 11.00% 

50 CPLUS_B_12H Glycerol kinase 
ALNLLLBE_772310 29102 35% 1 1 2 0.02% 6.90% 

51 CPLUS_B_12H Formate dehydrogenase H 
ALNLLLBE_743668 76707 50% 1 1 1 0.01% 1.60% 

52 CPLUS_B_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752.5 76% 1 1 4 0.03% 5.80% 

53 CPLUS_B_12H hypothetical protein 
ALNLLLBE_342544 70445.7 67% 2 2 5 0.04% 20.00% 

54 CPLUS_B_12H hypothetical protein 
ALNLLLBE_331008 45626.9 77% 2 2 2 0.02% 7.70% 
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55 CPLUS_B_12H hypothetical protein 
ALNLLLBE_68156 93384.2 61% 1 1 2 0.02% 2.70% 

56 CPLUS_B_12H hypothetical protein 
ALNLLLBE_700955 95628.6 97% 4 4 4 0.03% 4.70% 

57 CPLUS_B_12H hypothetical protein 
ALNLLLBE_675543 67903.5 58% 1 1 1 0.01% 2.10% 

58 CPLUS_B_12H V-type ATP synthase beta chain 
ALNLLLBE_644750 50785 32% 0 0 1 0.01% 1.70% 

59 CPLUS_B_12H V-type ATP synthase beta chain 
ALNLLLBE_54427 50993 7% 0 0 1 0.01% 1.70% 

60 CPLUS_B_12H V-type ATP synthase alpha chain 
ALNLLLBE_644751 63686.6 30% 0 0 1 0.01% 3.00% 

61 CPLUS_B_12H V-type ATP synthase alpha chain 
ALNLLLBE_54428 63580 13% 0 0 1 0.01% 3.00% 

62 CPLUS_B_12H Outer membrane porin protein 32 
ALNLLLBE_296280 33703.4 88% 2 2 4 0.03% 7.50% 

63 CPLUS_B_12H Outer membrane porin protein 32 
ALNLLLBE_104960 38669.4 99% 2 2 2 0.02% 8.60% 

64 CPLUS_B_12H TonB-dependent receptor P3 
ALNLLLBE_506445 115398.9 93% 3 3 3 0.02% 3.20% 

65 CPLUS_B_12H TonB-dependent receptor P3 
ALNLLLBE_75766 118932.2 100% 7 7 8 0.06% 9.30% 

66 CPLUS_B_12H TonB-dependent receptor P26 
ALNLLLBE_76191 115651 68% 2 2 2 0.02% 3.00% 

67 CPLUS_B_12H SusD-like protein P2 
ALNLLLBE_75767 55877.7 93% 2 2 2 0.02% 3.10% 

68 CPLUS_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_790261 
37481 57% 1 1 1 0.01% 4.50% 

69 CPLUS_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_310190 
37510 57% 1 1 1 0.01% 4.50% 

70 CPLUS_B_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_27688 
37511 57% 1 1 1 0.01% 4.50% 

71 CPLUS_B_12H Protein oar 
ALNLLLBE_612028 105385 41% 1 1 1 0.01% 1.70% 

72 CPLUS_B_12H 

Periplasmic oligopeptide-binding 

protein 

ALNLLLBE_320014 
58261 64% 1 1 3 0.02% 5.20% 

73 CPLUS_B_12H 

Periplasmic oligopeptide-binding 

protein 

ALNLLLBE_326795 
58269 72% 2 2 4 0.03% 6.60% 

74 CPLUS_B_12H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866 35% 1 1 1 0.01% 4.00% 

75 CPLUS_B_12H Membrane lipoprotein TmpC 
ALNLLLBE_260417 39364 43% 1 1 1 0.01% 4.10% 

76 CPLUS_B_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748 24% 0 0 2 0.02% 4.00% 

77 CPLUS_B_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451 48% 1 1 2 0.02% 6.60% 

78 CPLUS_B_12H 60 kDa chaperonin  
ALNLLLBE_333915 57697 42% 1 1 2 0.02% 3.40% 
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79 CPLUS_B_12H 60 kDa chaperonin  
ALNLLLBE_121083 58153 68% 1 1 1 0.01% 3.10% 

80 CPLUS_B_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52268 88% 1 1 1 0.01% 3.00% 

81 CPLUS_B_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 93% 2 2 3 0.02% 5.20% 

82 CPLUS_B_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 93% 2 2 3 0.02% 6.30% 

83 CPLUS_B_12H Cyanate hydratase 
ALNLLLBE_88274 18009.5 88% 3 3 4 0.03% 17.00% 

84 CPLUS_B_12H 

Corrinoid/iron-sulfur protein large 

subunit 

ALNLLLBE_334543 
52053.7 58% 1 1 1 0.01% 1.90% 

85 CPLUS_B_12H 

Butyryl-CoA:acetate CoA-

transferase 

ALNLLLBE_470572 
57360.9 95% 2 2 2 0.02% 5.20% 

86 CPLUS_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 44% 0 0 2 0.02% 4.00% 

87 CPLUS_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 44% 0 0 2 0.02% 4.00% 

88 CPLUS_B_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315 10% 0 0 2 0.02% 4.00% 

89 CPLUS_B_12H Acetyl-coenzyme A synthetase 
ALNLLLBE_642943 75311 36% 1 1 1 0.01% 1.80% 

90 CPLUS_B_12H ATP synthase subunit beta 
ALNLLLBE_343885 51090 27% 1 1 1 0.01% 3.00% 

91 CPLUS_B_12H ATP synthase subunit alpha 
ALNLLLBE_413871 53611.1 85% 1 1 2 0.02% 3.00% 

92 CPLUS_B_12H ALNLLLBE_614387-DECOY 

ALNLLLBE_614387-

DECOY 
 28% 1 1 1 0.01%  

1 C8_NB_0H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 5 5 8 0.08% 28% 

2 C8_NB_0H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 8 8 11 0.11% 20% 

3 C8_NB_0H hypothetical protein 
ALNLLLBE_743383 28982.8 14% 0 0 1 0.01% 4% 

4 C8_NB_0H hypothetical protein 
ALNLLLBE_641606 45516.9 57% 1 1 1 0.01% 3% 

5 C8_NB_0H hypothetical protein ALNLLLBE_641603 61392.1 100% 2 2 3 0.03% 4.50% 

6 C8_NB_0H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 99% 3 3 4 0.04% 11.00% 

7 C8_NB_0H hypothetical protein 
ALNLLLBE_743321 93204.8 32% 2 2 2 0.02% 2.70% 

8 C8_NB_0H hypothetical protein 
ALNLLLBE_641420 24057.7 93% 2 2 3 0.03% 15% 

9 C8_NB_0H hypothetical protein 
ALNLLLBE_334549 89357.7 19% 1 1 1 0.01% 2% 
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10 C8_NB_0H Elongation factor Tu 
ALNLLLBE_246749 43095.6 81% 1 1 2 0.02% 3.50% 

11 C8_NB_0H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 18% 0 0 1 0.01% 2.40% 

12 C8_NB_0H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 18% 0 0 1 0.01% 2.40% 

13 C8_NB_0H hypothetical protein 
ALNLLLBE_641330 76715.7 83% 2 2 2 0.02% 3.00% 

14 C8_NB_0H hypothetical protein 
ALNLLLBE_743382 62548 18% 0 0 1 0.01% 1.40% 

15 C8_NB_0H hypothetical protein 
ALNLLLBE_643285 53571.2 54% 1 1 3 0.03% 9.50% 

16 C8_NB_0H hypothetical protein 
ALNLLLBE_342549 41535 95% 2 2 2 0.02% 6.70% 

17 C8_NB_0H hypothetical protein 
ALNLLLBE_438590 57521.6 62% 2 2 2 0.02% 4.60% 

18 C8_NB_0H hypothetical protein 
ALNLLLBE_580468 78873 28% 1 1 2 0.02% 2.50% 

19 C8_NB_0H hypothetical protein 
ALNLLLBE_259625 55559 83% 1 1 1 0.01% 3.30% 

20 C8_NB_0H hypothetical protein 
ALNLLLBE_90799 42809.2 27% 1 1 1 0.01% 0.00% 

21 C8_NB_0H hypothetical protein 
ALNLLLBE_342545 78943.6 74% 1 1 2 0.02% 7.20% 

22 C8_NB_0H hypothetical protein 
ALNLLLBE_700955 95628.6 58% 2 2 2 0.02% 2.20% 

23 C8_NB_0H hypothetical protein 
ALNLLLBE_474867 67684.4 39% 1 1 1 0.01% 0.96% 

24 C8_NB_0H hypothetical protein 
ALNLLLBE_45809 28996 53% 1 1 1 0.01% 6.60% 

25 C8_NB_0H hypothetical protein 
ALNLLLBE_761442 23483 8% 0 0 1 0.01% 5.50% 

26 C8_NB_0H hypothetical protein 
ALNLLLBE_342544 70446 6% 0 0 1 0.01% 2.50% 

27 C8_NB_0H hypothetical protein 
ALNLLLBE_105999 76403 66% 2 2 2 0.02% 3.60% 

28 C8_NB_0H hypothetical protein 
ALNLLLBE_75826 83711 66% 2 2 2 0.02% 3.30% 

29 C8_NB_0H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57747.9 41% 1 1 1 0.01% 2.40% 

30 C8_NB_0H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 36% 1 1 1 0.01% 3.00% 

31 C8_NB_0H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 9% 0 0 1 0.01% 1.90% 

32 C8_NB_0H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 9% 0 0 1 0.01% 1.60% 

33 C8_NB_0H ATP synthase subunit beta 
ALNLLLBE_376596 42928 59% 1 1 1 0.01% 2.50% 
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34 C8_NB_0H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_454561 
154238 19% 1 1 1 0.01% 0.58% 

35 C8_NB_0H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 71% 1 1 1 0.01% 3.00% 

36 C8_NB_0H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 71% 0 0 2 0.02% 3.50% 

37 C8_NB_0H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 94% 1 1 3 0.03% 5.50% 

38 C8_NB_0H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 37% 0 0 2 0.02% 5.80% 

39 C8_NB_0H 60 kDa chaperonin 
ALNLLLBE_333915 57697 5% 0 0 1 0.01% 1.30% 

40 C8_NB_0H 60 kDa chaperonin 
ALNLLLBE_121083 58153 16% 0 0 1 0.01% 1.30% 

41 C8_NB_0H Cyanate hydratase 
ALNLLLBE_88274 18009.5 69% 2 2 2 0.02% 11% 

42 C8_NB_0H 

Asparagine synthetase [glutamine-

hydrolyzing] 1 

ALNLLLBE_434877 
72205 45% 2 2 2 0.02% 3% 

43 C8_NB_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 26% 0 0 1 0.01% 4% 

44 C8_NB_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 26% 0 0 1 0.01% 4% 

45 C8_NB_0H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 6% 0 0 1 0.01% 4% 

1 C8_NB_6H hypothetical protein 
ALNLLLBE_641604 28724.7 87% 2 2 2 0.03% 9% 

2 C8_NB_6H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 7 7 10 0.12% 15.00% 

3 C8_NB_6H hypothetical protein 
ALNLLLBE_641603 61392.1 96% 3 3 3 0.04% 6% 

4 C8_NB_6H hypothetical protein 
ALNLLLBE_641420 24058 93% 2 2 4 0.05% 15% 

5 C8_NB_6H hypothetical protein 
ALNLLLBE_743321 93204.8 86% 2 2 2 0.03% 3% 

6 C8_NB_6H hypothetical protein 
ALNLLLBE_342549 41535.4 98% 2 2 2 0.03% 7% 

7 C8_NB_6H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 96% 1 1 1 0.01% 3.00% 

8 C8_NB_6H hypothetical protein 
ALNLLLBE_645567 243258.6 95% 2 2 2 0.03% 1.30% 

9 C8_NB_6H hypothetical protein 
ALNLLLBE_641330 76715.7 99% 4 4 4 0.05% 7.80% 

10 C8_NB_6H hypothetical protein 
ALNLLLBE_643285 53571.2 6% 0 0 1 0.01% 1.40% 

11 C8_NB_6H hypothetical protein 
ALNLLLBE_580468 78873 100% 5 6 8 0.10% 9.40% 

12 C8_NB_6H hypothetical protein 
ALNLLLBE_45809 28995.9 43% 1 1 1 0.01% 6.60% 
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13 C8_NB_6H hypothetical protein 
ALNLLLBE_438590 57521.6 36% 1 1 1 0.01% 1.10% 

14 C8_NB_6H hypothetical protein 
ALNLLLBE_105999 76402.6 85% 1 1 1 0.01% 2.20% 

15 C8_NB_6H hypothetical protein 
ALNLLLBE-75826 83710.8 85% 1 1 1 0.01% 2.00% 

16 C8_NB_6H hypothetical protein 
ALNLLLBE_334511 97269.8 62% 2 2 2 0.03% 2.90% 

17 C8_NB_6H hypothetical protein 
ALNLLLBE_259625 55559 89% 2 2 2 0.03% 6.00% 

18 C8_NB_6H hypothetical protein 
ALNLLLBE_521398 142014 69% 2 2 2 0.03% 2.10% 

19 C8_NB_6H hypothetical protein 
ALNLLLBE_669128 31780 38% 1 1 2 0.03% 3.50% 

20 C8_NB_6H hypothetical protein 
ALNLLLBE_733678 39382 49% 1 1 1 0.01% 4.40% 

21 C8_NB_6H hypothetical protein 
ALNLLLBE_487977 154657 6% 0 0 1 0.01% 0.57% 

22 C8_NB_6H Elongation factor Tu 
ALNLLLBE_246749 43095.6 92% 1 1 2 0.03% 3.50% 

23 C8_NB_6H Elongation factor Tu 
ALNLLLBE_203705 43232.5 26% 1 1 1 0.01% 2.80% 

24 C8_NB_6H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_454561 
154237.5 6% 0 0 1 0.01% 0.44% 

25 C8_NB_6H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_277117 
89607 6% 0 0 1 0.01% 1.40% 

26 C8_NB_6H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_687394 
158777 6% 0 0 1 0.01% 0.78% 

27 C8_NB_6H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 55% 1 1 1 0.01% 3.20% 

28 C8_NB_6H Outer membrane porin protein 32 
ALNLLLBE_296280 33703 29% 1 1 1 0.01% 3.00% 

29 C8_NB_6H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 10% 0 0 1 0.01% 1.60% 

30 C8_NB_6H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 10% 0 0 1 0.01% 1.90% 

31 C8_NB_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 84% 2 2 4 0.05% 10.00% 

32 C8_NB_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 84% 2 2 4 0.05% 10.00% 

33 C8_NB_6H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 5% 0 0 2 0.03% 4.00% 

34 C8_NB_6H ATP synthase subunit beta 
ALNLLLBE_376596 42928 48% 1 1 1 0.01% 2.50% 

35 C8_NB_6H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 78% 2 2 2 0.03% 5.10% 

36 C8_NB_6H 60 kDa chepronin 5 
ALNLLLBE_67393 57748.3 97% 1 1 3 0.04% 5.50% 
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37 C8_NB_6H 60 kDa chepronin 5 
ALNLLLBE_06125 58496 77% 0 0 2 0.03% 3.50% 

38 C8_NB_6H 60 kDa chepronin 1 
ALNLLLBE_399492 37451.1 60% 1 1 3 0.04% 8.70% 

39 C8_NB_6H 60 kDa chepronin  
ALNLLLBE_333915 57697 8% 0 0 1 0.01% 1.30% 

40 C8_NB_6H 60 kDa chepronin  
ALNLLLBE_131203 49856 15% 0 0 2 0.03% 5.10% 

41 C8_NB_6H Cyanate hydratase 
ALNLLLBE_88274 18009.5 81% 2 2 2 0.03% 11.00% 

42 C8_NB_6H ALNLLLBE_614387-DECOY 

ALNLLLBE_614387-

DECOY 
 28% 1 1 1 0.01%  

1 C8_NB_12H hypothetical protein 
ALNLLLBE_641604 28724.7 99% 4 4 5 0.04% 22% 

2 C8_NB_12H hypothetical protein 
ALNLLLBE_642509 63736.2 100% 8 8 11 0.09% 20% 

3 C8_NB_12H hypothetical protein 
ALNLLLBE_641603 61392.1 91% 2 2 2 0.02% 5% 

4 C8_NB_12H hypothetical protein 
ALNLLLBE_743383 28983 70% 0 0 3 0.03% 9% 

5 C8_NB_12H hypothetical protein 
ALNLLLBE_641606 45517 24% 1 1 1 0.01% 3% 

6 C8_NB_12H hypothetical protein 
ALNLLLBE_643285 53571.2 6% 0 0 1 0.01% 1% 

7 C8_NB_12H hypothetical protein 
ALNLLLBE_641420 24057.7 86% 1 1 2 0.02% 8% 

8 C8_NB_12H hypothetical protein 
ALNLLLBE_197203 28469 39% 0 0 2 0.02% 5% 

9 C8_NB_12H hypothetical protein 
ALNLLLBE_334549 89358 85% 3 3 4 0.03% 6% 

10 C8_NB_12H hypothetical protein 
ALNLLLBE_645567 243259 70% 1 1 1 0.01% 1% 

11 C8_NB_12H hypothetical protein 
ALNLLLBE_54401 89183 10% 0 0 1 0.01% 1% 

12 C8_NB_12H hypothetical protein 
ALNLLLBE_45809 28996 81% 1 1 1 0.01% 7% 

13 C8_NB_12H hypothetical protein 
ALNLLLBE_219451 23245 57% 2 2 3 0.03% 10% 

14 C8_NB_12H hypothetical protein 
ALNLLLBE_342545 78944 14% 0 0 1 0.01% 2% 

15 C8_NB_12H hypothetical protein 
ALNLLLBE_90799 42809 27% 1 1 1 0.01% 0% 

16 C8_NB_12H hypothetical protein 
ALNLLLBE_753512 12463 95% 3 3 3 0.03% 24% 

17 C8_NB_12H hypothetical protein 
ALNLLLBE_764319 96026 14% 0 0 1 0.01% 1% 

18 C8_NB_12H hypothetical protein 
ALNLLLBE_763559 101797 10% 0 0 1 0.01% 1% 

19 C8_NB_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 87% 2 2 3 0.03% 9% 

20 C8_NB_12H Elongation factor Tu 
ALNLLLBE_483213 42932 97% 1 1 2 0.02% 7% 
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21 C8_NB_12H Elongation factor Tu 
ALNLLLBE_716068 42735 94% 2 2 2 0.02% 6% 

22 C8_NB_12H Elongation factor Tu 
ALNLLLBE_203705 43233 6% 0 0 1 0.01% 2% 

23 C8_NB_12H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_277117 
89607 65% 0 0 2 0.02% 3% 

24 C8_NB_12H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_372517 
119264 6% 0 0 2 0.02% 2% 

25 C8_NB_12H 

DNA-directed RNA polymerase 

subunit beta 

ALNLLLBE_550114 
38019 18% 0 0 1 0.01% 3% 

26 C8_NB_12H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 94% 1 1 2 0.02% 4.90% 

27 C8_NB_12H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_584064 
57748 98% 1 1 2 0.02% 4.90% 

28 C8_NB_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 100% 2 2 3 0.03% 7.50% 

29 C8_NB_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 87% 1 1 1 0.01% 3% 

30 C8_NB_12H hypothetical protein 
ALNLLLBE_342549 41535.4 45% 1 1 1 0.01% 3.10% 

31 C8_NB_12H hypothetical protein 
ALNLLLBE_438590 57521.6 37% 1 1 1 0.01% 1.10% 

32 C8_NB_12H hypothetical protein 
ALNLLLBE_474867 67684.4 87% 2 2 2 0.02% 2.60% 

33 C8_NB_12H hypothetical protein 
ALNLLLBE_641342 26714 97% 2 2 2 0.02% 10.00% 

34 C8_NB_12H hypothetical protein 
ALNLLLBE_105999 76402.6 15% 1 1 1 0.01% 2.20% 

35 C8_NB_12H hypothetical protein 
ALNLLLBE_75826 83710.8 15% 1 1 1 0.01% 2.00% 

36 C8_NB_12H Nitrogen regulatory protein P-II 
ALNLLLBE_426853 14100 46% 1 1 1 0.01% 8.60% 

37 C8_NB_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_389495 
57984 16% 0 0 1 0.01% 1.90% 

38 C8_NB_12H 

K(+)-insensitive pyrophosphate-

energized proton pump 

ALNLLLBE_11910 
70658 16% 0 0 1 0.01% 1.60% 

39 C8_NB_12H Glutamine synthetase 
ALNLLLBE_315415 30249 21% 1 1 1 0.01% 5.20% 

40 C8_NB_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 57% 0 0 3 0.03% 7.50% 

41 C8_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 100% 2 2 5 0.04% 9.70% 

42 C8_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 94% 0 0 2 0.02% 3.50% 

43 C8_NB_12H 60 kDa chaperonin 2 
ALNLLLBE_254983 56897 9% 0 0 1 0.01% 1.30% 
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44 C8_NB_12H 60 kDa chaperonin  
ALNLLLBE_333915 57697 9% 0 0 1 0.01% 1.30% 

45 C8_NB_12H 60 kDa chaperonin 
ALNLLLBE_121083 58153 5% 0 0 1 0.01% 1.30% 

46 C8_NB_12H 60 kDa chaperonin 
ALNLLLBE_583384 57865 6% 0 0 1 0.01% 1.30% 

47 C8_NB_12H Cold shock protein CspA 
ALNLLLBE_20439 8612 90% 2 2 2 0.02% 20.00% 

48 C8_NB_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45941 67% 2 2 3 0.03% 9.70% 

49 C8_NB_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46095 67% 2 2 3 0.03% 9.60% 

50 C8_NB_12H ATP synthase subunit beta 
ALNLLLBE_376596 42928 60% 1 1 1 0.01% 2.50% 

51 C8_NB_12H ATP synthase subunit beta 
ALNLLLBE_343885 51090 15% 1 1 1 0.01% 3.00% 

1 C8_NB_18H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 5 5 6 0.06% 27% 

2 C8_NB_18H hypothetical protein 
ALNLLLBE_642509 63736.2 85% 1 1 2 0.02% 3.20% 

3 C8_NB_18H hypothetical protein 
ALNLLLBE_641606 45516.9 100% 6 6 6 0.06% 21% 

4 C8_NB_18H hypothetical protein 
ALNLLLBE_641603 61392.1 100% 7 8 9 0.09% 12% 

5 C8_NB_18H hypothetical protein 
ALNLLLBE_438590 57521.6 37% 1 1 1 0.01% 1% 

6 C8_NB_18H hypothetical protein 
ALNLLLBE_474867 67684.4 96% 3 3 3 0.03% 4% 

7 C8_NB_18H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 100% 4 4 5 0.05% 12% 

8 C8_NB_18H hypothetical protein 
ALNLLLBE_641420 24057.7 63% 1 1 1 0.01% 4.90% 

9 C8_NB_18H hypothetical protein 
ALNLLLBE_743382 62548 96% 2 2 2 0.02% 3.40% 

10 C8_NB_18H hypothetical protein 
ALNLLLBE_334549 89357.7 78% 1 1 3 0.03% 3.20% 

11 C8_NB_18H hypothetical protein 
ALNLLLBE_743383 28982.8 95% 1 1 5 0.05% 14.00% 

12 C8_NB_18H hypothetical protein 
ALNLLLBE_197203 28469 92% 2 2 5 0.05% 13.00% 

13 C8_NB_18H hypothetical protein 
ALNLLLBE_641330 76716 94% 2 2 2 0.02% 3.30% 

14 C8_NB_18H hypothetical protein 
ALNLLLBE_743321 93205 38% 1 1 1 0.01% 1.60% 

15 C8_NB_18H hypothetical protein 
ALNLLLBE_54401 89183 12% 0 0 2 0.02% 2.00% 

16 C8_NB_18H hypothetical protein 
ALNLLLBE_643285 53571 5% 0 0 1 0.01% 1.40% 

17 C8_NB_18H hypothetical protein 
ALNLLLBE_743368 25947.6 17% 1 1 1 0.01% 4.90% 
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18 C8_NB_18H hypothetical protein 
ALNLLLBE_743370 25148.5 17% 1 1 1 0.01% 5.00% 

19 C8_NB_18H hypothetical protein 
ALNLLLBE_743386 46186.3 77% 1 1 1 0.01% 1.60% 

20 C8_NB_18H hypothetical protein 
ALNLLLBE_45809 28996 81% 2 2 3 0.03% 9.30% 

21 C8_NB_18H hypothetical protein 
ALNLLLBE_669128 31779.5 25% 1 1 2 0.02% 3.50% 

22 C8_NB_18H hypothetical protein 
ALNLLLBE_466048 14584 68% 1 1 1 0.01% 9.90% 

23 C8_NB_18H hypothetical protein 
ALNLLLBE_90799 42809 21% 1 1 2 0.02% 0.00% 

24 C8_NB_18H hypothetical protein 
ALNLLLBE_68156 93384 22% 0 0 1 0.01% 1.50% 

25 C8_NB_18H hypothetical protein 
ALNLLLBE_653168 99054 31% 0 0 1 0.01% 1.40% 

26 C8_NB_18H hypothetical protein 
ALNLLLBE_781328 95890 26% 1 1 1 0.01% 1.80% 

27 C8_NB_18H hypothetical protein 
ALNLLLBE_781347 55467 26% 1 1 1 0.01% 3.10% 

28 C8_NB_18H V-type ATP synthase beta chain 
ALNLLLBE_644750 50785 21% 1 1 1 0.01% 2.60% 

29 C8_NB_18H V-type ATP synthase alpha chain 
ALNLLLBE_644751 63687 16% 1 1 1 0.01% 1.70% 

30 C8_NB_18H Elongation factor Tu 
ALNLLLBE_246749 43095.6 90% 2 2 2 0.02% 6.60% 

31 C8_NB_18H Elongation factor Tu 
ALNLLLBE_483213 42931.5 78% 0 0 2 0.02% 4.00% 

32 C8_NB_18H Elongation factor Tu 
ALNLLLBE_716068 42735 99% 2 2 2 0.03% 6.40% 

33 C8_NB_18H Elongation factor Tu 
ALNLLLBE_526058 43716 35% 1 1 1 0.01% 3.20% 

34 C8_NB_18H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 77% 1 1 1 0.01% 3.20% 

35 C8_NB_18H Leu/Ille/Val-binding protein 
ALNLLLBE_328832 41182.7 23% 1 1 1 0.01% 1.80% 

36 C8_NB_18H Leu/Ille/Val-binding protein 
ALNLLLBE_343029 41248.7 23% 1 1 1 0.01% 1.80% 

37 C8_NB_18H 

Phthiodiolone/phenolphthiodiolone 

dimycocerosates ketoreductase 

ALNLLLBE_743328 
34701 66% 1 1 1 0.01% 3.00% 

38 C8_NB_18H Nitrogen regulatory protein P-II 
ALNLLLBE_426853 14100 24% 1 1 1 0.01% 8.60% 

39 C8_NB_18H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866 47% 1 1 1 0.01% 4.00% 

40 C8_NB_18H Glutamine synthetase 
ALNLLLBE_315415 30249 34% 1 1 1 0.01% 5.20% 

41 C8_NB_18H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 87% 1 1 1 0.01% 3.00% 

42 C8_NB_18H ATP synthase subunit beta 1 
ALNLLLBE_189018 50811 19% 1 1 1 0.01% 4.10% 



213 

 

43 C8_NB_18H ATP synthase subunit beta  
ALNLLLBE_376596 42928 85% 1 1 2 0.02% 6.00% 

44 C8_NB_18H ATP synthase subunit beta  
ALNLLLBE_343885 51090 25% 1 1 1 0.01% 3.00% 

45 C8_NB_18H ATP synthase subunit beta  
ALNLLLBE_756712 54705 19% 0 0 1 0.01% 2.80% 

46 C8_NB_18H ATP synthase subunit beta  
ALNLLLBE_441698 34208.7 66% 1 1 2 0.02% 8.80% 

47 C8_NB_18H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_454561 
154237.5 6% 0 0 1 0.01% 0.44% 

48 C8_NB_18H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_277117 
89607 47% 0 0 2 0.02% 2.50% 

49 C8_NB_18H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_550114 
38019 15% 0 0 1 0.01% 2.60% 

50 C8_NB_18H 

Corrinoid/iron-sulfur protein large 

subunit 

ALNLLLBE_334543 
52054 56% 1 1 1 0.01% 1.70% 

51 C8_NB_18H Cold shock protein CspA 
ALNLLLBE_20439 8611.9 70% 1 1 1 0.01% 8.90% 

52 C8_NB_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 71% 1 1 1 0.01% 3% 

53 C8_NB_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 71% 1 1 1 0.01% 3% 

54 C8_NB_18H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_477611 
46315.1 15% 1 1 1 0.01% 2% 

55 C8_NB_18H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 98% 1 1 4 0.04% 6.50% 

56 C8_NB_18H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 78% 0 0 2 0.02% 3.50% 

57 C8_NB_18H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 60% 0 0 3 0.03% 7.50% 

58 C8_NB_18H 60 kDa chaperonin 1 
ALNLLLBE_66011 58576 11% 0 0 1 0.01% 1.30% 

59 C8_NB_18H 60 kDa chaperonin 1 
ALNLLLBE_66021 58521 11% 0 0 1 0.01% 1.30% 

60 C8_NB_18H 60 kDa chaperonin  
ALNLLLBE_333915 57697 9% 0 0 1 0.01% 1.30% 

61 C8_NB_18H 60 kDa chaperonin 
ALNLLLBE_131203 49856 13% 0 0 2 0.02% 5.10% 

62 C8_NB_18H 60 kDa chaperonin  
ALNLLLBE_121083 58153 5% 0 0 1 0.01% 1.30% 

1 C8_NB_24H hypothetical protein 
ALNLLLBE_641604 28724.7 63% 0 0 1 0.01% 4% 

2 C8_NB_24H hypothetical protein 
ALNLLLBE_642509 63736.2 60% 1 1 2 0.03% 3.20% 

3 C8_NB_24H hypothetical protein 
ALNLLLBE_438590 57521.6 41% 1 1 1 0.01% 1% 
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4 C8_NB_24H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 79% 1 1 1 0.01% 3% 

5 C8_NB_24H hypothetical protein 
ALNLLLBE_641420 24057.7 42% 1 1 1 0.01% 4.90% 

6 C8_NB_24H hypothetical protein 
ALNLLLBE_743382 62548 48% 0 0 2 0.03% 1.40% 

7 C8_NB_24H hypothetical protein 
ALNLLLBE_743383 28982.8 15% 0 0 1 0.01% 3.90% 

8 C8_NB_24H hypothetical protein 
ALNLLLBE_197203 28469 57% 2 2 2 0.03% 7.50% 

9 C8_NB_24H hypothetical protein 
ALNLLLBE_669128 31779.5 17% 1 1 1 0.01% 3.50% 

10 C8_NB_24H hypothetical protein 
ALNLLLBE_90799 42809 48% 1 1 1 0.01% 0.00% 

11 C8_NB_24H hypothetical protein 
ALNLLLBE_753512 12463 18% 1 1 1 0.01% 6.70% 

12 C8_NB_24H Elongation factor Tu 
ALNLLLBE_246749 43095.6 27% 1 1 1 0.01% 3.00% 

13 C8_NB_24H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135.2 58% 1 1 2 0.03% 5.50% 

14 C8_NB_24H 

Respiratory nitrate reductase 1 beta 

chain 

ALNLLLBE_218625 
56752 7% 0 0 1 0.01% 2.40% 

15 C8_NB_24H Glutamine synthetase 
ALNLLLBE_315415 30249 44% 1 1 1 0.01% 5.20% 

16 C8_NB_24H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 67% 1 1 1 0.01% 3.00% 

17 C8_NB_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_277117 
89607 30% 0 0 1 0.01% 1.10% 

18 C8_NB_24H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_550114 
38019 16% 0 0 1 0.01% 2.60% 

19 C8_NB_24H 

Asparagine synthetase [glutamine-

hydrolyzing] 1 

ALNLLLBE_434877 
72205 20% 1 1 1 0.01% 1.40% 

20 C8_NB_24H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 54% 0 0 2 0.03% 3.70% 

21 C8_NB_24H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 61% 0 0 2 0.03% 3.50% 

22 C8_NB_24H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 43% 0 0 2 0.03% 5.80% 

23 C8_NB_24H 60 kDa chaperonin  
ALNLLLBE_333915 57697 7% 0 0 1 0.01% 1.30% 

1 CNEG_NB_12H hypothetical protein 
ALNLLLBE_641604 28724.7 94% 1 1 2 0.02% 10% 

2 CNEG_NB_12H hypothetical protein 
ALNLLLBE_642509 63736.2 96% 3 3 4 0.05% 7.60% 

3 CNEG_NB_12H hypothetical protein 
ALNLLLBE_641603 61392.1 100% 2 2 3 0.04% 5% 

4 CNEG_NB_12H hypothetical protein 
ALNLLLBE_45809 28995.9 98% 2 2 2 0.02% 9% 
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5 CNEG_NB_12H hypothetical protein 
ALNLLLBE_438590 57521.6 36% 1 1 1 0.01% 1% 

6 CNEG_NB_12H hypothetical protein 
ALNLLLBE_474867 67684.4 43% 1 1 1 0.01% 2% 

7 CNEG_NB_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334557 

51772.6 20% 1 1 1 0.01% 3% 

8 CNEG_NB_12H hypothetical protein 
ALNLLLBE_743382 62548 15% 0 0 1 0.01% 1.40% 

9 CNEG_NB_12H hypothetical protein 
ALNLLLBE_743383 28982.8 22% 0 0 1 0.01% 3.90% 

10 CNEG_NB_12H hypothetical protein 
ALNLLLBE_197203 28469 90% 2 2 2 0.02% 7.50% 

11 CNEG_NB_12H hypothetical protein 
ALNLLLBE_743386 46186.3 18% 1 1 1 0.01% 1.60% 

12 CNEG_NB_12H hypothetical protein 
ALNLLLBE_90799 42809.2 64% 2 2 2 0.02% 0.00% 

13 CNEG_NB_12H hypothetical protein 
ALNLLLBE_669128 31779.5 14% 1 1 1 0.01% 3.50% 

14 CNEG_NB_12H hypothetical protein 
ALNLLLBE_259625 55559 97% 2 2 3 0.04% 6.00% 

15 CNEG_NB_12H hypothetical protein 
ALNLLLBE_641342 26714 20% 1 1 1 0.01% 2.90% 

16 CNEG_NB_12H hypothetical protein 
ALNLLLBE_219451 23245 41% 1 1 1 0.01% 6.00% 

17 CNEG_NB_12H hypothetical protein 
ALNLLLBE_781328 95890 69% 1 1 1 0.01% 1.80% 

18 CNEG_NB_12H hypothetical protein 
ALNLLLBE_781347 55467 69% 1 1 1 0.01% 3.10% 

19 CNEG_NB_12H Nitrogen regulatory protein P-II 
ALNLLLBE_426853 14100 37% 1 1 1 0.01% 8.60% 

20 CNEG_NB_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 99% 2 2 2 0.02% 6.60% 

21 CNEG_NB_12H Elongation factor Tu 
ALNLLLBE_483213 42931.5 42% 0 0 1 0.01% 4.00% 

22 CNEG_NB_12H Elongation factor Tu 
ALNLLLBE_203705 43233 29% 1 1 2 0.01% 2.80% 

23 CNEG_NB_12H Elongation factor Tu 
ALNLLLBE_716068 42735 38% 1 1 1 0.01% 2.30% 

24 CNEG_NB_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52267.8 84% 1 1 2 0.02% 3.00% 

25 CNEG_NB_12H ATP synthase subunit beta 1 
ALNLLLBE_189018 50810.7 39% 1 1 1 0.01% 4.10% 

26 CNEG_NB_12H ATP synthase subunit beta  
ALNLLLBE_376596 42928 70% 1 1 2 0.02% 5.20% 

27 CNEG_NB_12H ATP synthase subunit beta 
ALNLLLBE_756712 53611 20% 0 0 1 0.01% 2.20% 

28 CNEG_NB_12H 

DNA-directed RNA-polymerase 

subunit beta 

ALNLLLBE_454561 
154238 6% 0 0 1 0.01% 0.44% 

29 CNEG_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748.3 98% 1 1 2 0.02% 3.10% 
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30 CNEG_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 84% 0 0 2 0.02% 3.50% 

31 CNEG_NB_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451.1 9% 0 0 1 0.01% 2.00% 

32 CNEG_NB_12H 60 kDa chaperonin  
ALNLLLBE_333915 57697 8% 0 0 1 0.01% 1.30% 

33 CNEG_NB_12H 60 kDa chaperonin  
ALNLLLBE_747290 57589 64% 1 1 2 0.02% 3.70% 

34 CNEG_NB_12H 60 kDa chaperonin  
ALNLLLBE_121083 58153 78% 1 1 2 0.02% 4.40% 

1 CPLUS_NB_12H putative protein 
ALNLLLBE_110201 35565 87% 2 2 2 0.02% 6% 

2 CPLUS_NB_12H putative protein 
ALNLLLBE_162024 35551 87% 2 2 2 0.02% 6% 

3 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_641604 28724.7 100% 11 14 18 0.18% 51% 

4 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_642509 63736.2 87% 2 2 2 0.02% 5% 

5 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_641606 45516.9 100% 10 10 12 0.12% 29% 

6 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_641603 61392.1 100% 8 9 13 0.13% 16% 

7 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743321 93204.8 100% 8 8 8 0.08% 11% 

8 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_641420 24057.7 87% 1 1 1 0.01% 5% 

9 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743382 62548 100% 5 5 6 0.06% 9.70% 

10 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_334549 89357.7 100% 7 8 16 0.16% 20.00% 

11 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743383 28982.8 100% 4 4 5 0.05% 23.00% 

12 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_645567 243258.6 94% 3 3 3 0.03% 1.60% 

13 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_641330 76715.7 100% 7 7 8 0.08% 16.00% 

14 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_197203 28469 74% 1 1 2 0.02% 9.10% 

15 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_54401 89183 99% 2 2 10 0.10% 11.00% 

16 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_259625 55559 99% 1 1 1 0.01% 3.30% 

17 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_521398 142014 100% 5 5 5 0.05% 4.80% 

18 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_474867 67684 30% 1 1 1 0.01% 0.96% 

19 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743386 46186 100% 5 6 6 0.06% 12.00% 

20 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_580468 78873 98% 5 5 5 0.05% 8.70% 

21 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743370 25148 36% 1 1 1 0.01% 5.00% 
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22 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_743368 25948 36% 1 1 1 0.01% 4.90% 

23 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_466046 65802 78% 1 1 1 0.01% 1.70% 

24 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_669128 31780 33% 1 1 1 0.01% 3.50% 

25 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_219451 23245 66% 1 1 1 0.01% 4.70% 

26 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_466048 14584 97% 3 3 3 0.03% 41.00% 

27 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_733678 39382 88% 2 2 2 0.02% 8.80% 

28 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_700955 95629 99% 6 6 6 0.06% 7.60% 

29 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_624953 5654 26% 1 1 1 0.01% 24.00% 

30 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_366056 5654 26% 1 1 1 0.01% 24.00% 

31 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_90799 42809 36% 1 1 1 0.01% 0.00% 

32 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_105999 76403 28% 1 1 1 0.01% 2.20% 

33 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_75826 83711 28% 1 1 1 0.01% 2.00% 

34 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_68156 93384 8% 0 0 1 0.01% 1.50% 

35 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_653168 99054 24% 0 0 1 0.01% 1.40% 

36 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_90712 64996 59% 2 2 2 0.02% 4.70% 

37 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_744241 69352 49% 1 1 1 0.01% 2.20% 

38 CPLUS_NB_12H hypothetical protein 
ALNLLLBE_334544 48476 69% 2 2 2 0.02% 3.30% 

39 CPLUS_NB_12H Elongation factor Tu 
ALNLLLBE_246749 43095.6 82% 2 3 3 0.03% 7% 

40 CPLUS_NB_12H Elongation factor Tu 
ALNLLLBE_203705 43233 17% 0 0 1 0.01% 3% 

41 CPLUS_NB_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_334547 

51772.6 100% 6 6 10 0.10% 21.00% 

42 CPLUS_NB_12H 

Carbon monoxide 

dehydrogenase/acetyl-CoA 

synthase subunit alpha 

ALNLLLBE_54403 

51728 29% 0 0 3 0.03% 6.40% 

43 CPLUS_NB_12H 

Respiratory nitrate reductase 2 beta 

chain 

ALNLLLBE_173240 
57135 68% 1 1 1 0.01% 3.20% 

44 CPLUS_NB_12H Glycerol kinase 
ALNLLLBE_232721 55014.5 97% 3 3 3 0.03% 6.20% 

45 CPLUS_NB_12H Formate dehydrogenase H 
ALNLLLBE_743668 76707 51% 1 1 1 0.01% 1.60% 
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46 CPLUS_NB_12H V-type ATP synthase beta chain 
ALNLLLBE_644750 50785 82% 0 0 2 0.02% 6.10% 

47 CPLUS_NB_12H V-type ATP synthase beta chain 
ALNLLLBE_54427 50993 46% 1 1 3 0.03% 8.60% 

48 CPLUS_NB_12H V-type ATP synthase alpha chain 
ALNLLLBE_644751 63686.6 99% 2 2 6 0.06% 12.00% 

49 CPLUS_NB_12H V-type ATP synthase alpha chain 
ALNLLLBE_54428 63580 86% 1 1 5 0.05% 9.40% 

50 CPLUS_NB_12H 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 1 

ALNLLLBE_677586 
28755 69% 2 2 2 0.02% 7.10% 

51 CPLUS_NB_12H Outer membrane porin protein 32 
ALNLLLBE_296280 33703.4 60% 1 1 1 0.01% 3.00% 

52 CPLUS_NB_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_790261 
37481 95% 3 3 4 0.04% 12.00% 

53 CPLUS_NB_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_310190 
37510 95% 3 3 4 0.04% 12.00% 

54 CPLUS_NB_12H 

Sialic acid-binding periplasmic 

protein SiaP 

ALNLLLBE_27688 
37511 95% 3 3 4 0.04% 12.00% 

55 CPLUS_NB_12H 

Phthiodiolone/phenolphthiodiolone 

dimycocerosates ketoreductase 

ALNLLLBE_743328 
34701 79% 2 2 2 0.02% 6.70% 

56 CPLUS_NB_12H 

Periplasmic [NiFeSe] hydrogenase 

large subunit 

ALNLLLBE_743277 
50212 26% 0 0 1 0.01% 2.40% 

57 CPLUS_NB_12H 

Periplasmic [NiFeSe] hydrogenase 

large subunit 

ALNLLLBE_465720 
50822 62% 1 1 2 0.02% 4.40% 

58 CPLUS_NB_12H Outer membrane protein A 
ALNLLLBE_90397 49632 16% 1 1 1 0.01% 5.60% 

59 CPLUS_NB_12H 

NAD-specific glutamate 

dehydrogenase 

ALNLLLBE_791579 
48866 21% 1 1 1 0.01% 4.00% 

60 CPLUS_NB_12H Membrane lipoprotein TmpC 
ALNLLLBE_260417 39364 61% 2 2 2 0.02% 7.90% 

61 CPLUS_NB_12H 

DNA-directed RNA polymerase 

subunit beta' 

ALNLLLBE_277117 
89607 19% 1 1 1 0.01% 1.70% 

62 CPLUS_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_67393 57748 54% 1 1 2 0.02% 4.20% 

63 CPLUS_NB_12H 60 kDa chaperonin 5 
ALNLLLBE_06125 58496 61% 0 0 1 0.01% 2.20% 

64 CPLUS_NB_12H 60 kDa chaperonin 1 
ALNLLLBE_399492 37451 16% 0 0 1 0.01% 3.80% 

65 CPLUS_NB_12H 60 kDa chaperonin  
ALNLLLBE_131203 49856 11% 0 0 1 0.01% 3.60% 

66 CPLUS_NB_12H 3-hydroxylaminophenol mutase 
ALNLLLBE_142484 52268 89% 2 2 2 0.02% 5.10% 

67 CPLUS_NB_12H Cyanate hydratase 
ALNLLLBE_88274 18009.5 89% 2 2 2 0.02% 12.00% 

68 CPLUS_NB_12H 

Corrinoid/iron-sulfur protein large 

subunit 

ALNLLLBE_334543 
52053.7 98% 3 3 3 0.03% 6.40% 
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69 CPLUS_NB_12H 

Butyryl-CoA:acetate CoA-

transferase 

ALNLLLBE_470572 
57360.9 51% 2 2 2 0.02% 5.20% 

70 CPLUS_NB_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_330937 
46094.9 15% 0 0 1 0.01% 4.00% 

71 CPLUS_NB_12H 

Aliphatic amidase expression-

regulating protein 

ALNLLLBE_369805 
45940.6 15% 0 0 1 0.01% 4.00% 

72 CPLUS_NB_12H Acetyl-coenzyme A synthetase 
ALNLLLBE_642943 75311 98% 2 2 2 0.03% 5.80% 

73 CPLUS_NB_12H Acetyl-coenzyme A synthetase 
ALNLLLBE_642942 75029 99% 4 4 4 0.04% 6.40% 

74 CPLUS_NB_12H ATP synthase subunit beta 1 
ALNLLLBE_189018 50811 32% 1 1 1 0.01% 2.60% 

75 CPLUS_NB_12H ATP synthase subunit beta 
ALNLLLBE_376596 42928 62% 1 1 1 0.01% 2.50% 

76 CPLUS_NB_12H ATP synthase subunit beta 
ALNLLLBE_343885 51090 27% 1 1 1 0.01% 3.00% 

77 CPLUS_NB_12H 50S ribosomal protein L1 
ALNLLLBE_246746 23966 22% 1 1 1 0.01% 5.60% 

78 CPLUS_NB_12H ALNLLLBE_45281-DECOY 

ALNLLLBE_45281-

DECOY 
 17% 1 1 1 0.01% % 

79 CPLUS_NB_12H ALNLLLBE_04111-DECOY 

ALNLLLBE_04111-

DECOY 
 44% 1 1 2 0.02% 
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Appendix I 

Table 4. The fractions of proteins in the abundant genera that were detected using metaproteomic data generated in the course of octanoic 

acid degradation. 

genus kraken id gene 

KEGG_ko 

C8_B_

0H 

C8_N

B_0H 
C8_B_6

H 

C8_N

B_6H 

C8_B_

12H 

C8_N

B_12

H 

C8_B_

18H 

C8_N

B_18

H 

C8_B_

24H 

C8_N

B_24

H 

NA NA NA NA 1 2 2 2 1 2 2 2 2 2 

Ruminococcus Firm-04 NA NA  2 1 1 2 1     

NA NA NA NA 1 1 
 1 1 1 1  1  

Syntrophaceae bacterium UBA8904 groL ko:K04077 
 1 

  1 1 1 1 2  

Agathobacter NA groL ko:K04077 2  
 2    2   

Verrucomicrobia subdivision 3 UBA6082 glnA ko:K0915,k:K20712 1 1 2 2 1 1 1 1 1 1 

Microbacterium NA narH ko:K00371 5 1 3 1 5 2 5 1 1 2 

Methanolinea 
NA 

mcr

G ko:K00402 
4  

3  6 2 10 5 8 2 

Streptomyces NA tuf ko:K02358 
  

1 1  1 3  1  

Rikenellaceae bacterium DMER64 NA ko:K03704 3  
1   2 1 1 1  

Acidovorax NA narH ko:K00371 2 1 1  3  3   1 

Smithella NA NA ko:K12980 1  
   3   1  

Leptolinea UBA4782 glpK ko:K00864 
  

  1      

NA NA NA NA 
  

  1      

Thermoleophilia bacterium UBA2241 tuf ko:K02358 4 2 1 2 3 3 3 2 3 1 

NA NA NA NA 
  

   1     

Bacteroidales bacterium UBA5429 NA ko:K21571 2 1 
 2 1  2  2  

Rectinema UBA8932 siaP ko:K21395 
  

  2      

Syntrophaceae bacterium UBA2192 rpoC ko:K03046,ko:K13797 1  
 1  2  2 1 1 

NA NA NA NA 1 1 
 1 1  1  1  
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Rectinema UBA8932 siaP ko:K21395 
  

  2      

Verrucomicrobia subdivision 3 UBA6082 glnA ko:K01915,ko:K20712 
  

   1 2 1  1 

NA NA NA NA   
    2 1 1  

Clostridium NA urtA ko:K01999,ko:K11959 5 1 1 4 1 3 3 1 3  

NA NA NA NA 1 1 1 1  1 1 1 2 1 

Methanothrix NA NA NA 3  
1 2       

Methanothrix NA cdhC ko:K00192,ko:K00193 9 4 4 1 4 3     

Methanothrix NA cdhA ko:K00192 6 1 4  2 4 6 1 4  

Methanothrix NA NA NA 
  

    7 4 5 1 

Methanothrix NA NA NA 1 1 
  2  1    

Methanothrix NA NA ko:K01997 1 2 
  3 1 1    

Methanothrix NA NA NA 3 2 3 2 1 1 1    

NA NA NA NA   
    2 1 1  

NA NA NA NA 2  
  1 1 1 1   

NA NA NA NA 1  
  1  2    

Polaromonas NA urtA ko:K01999,ko:K11959 5 1 1 4 1 3 3 1 3  

NA NA NA NA   
   2     

NA NA NA NA  1 
 1 2 1 2 2   

NA NA NA NA 1 1 
 1 1 1 1  1  

Anaerolineaceae bacterium 49-20 glpK ko:K00864 
  

  2      

Streptomyces NA groL ko:K04077 1 2 2 3 1 3 3 3 3 2 

Syntrophaceae bacterium UBA8904 NA NA   
  2      

NA NA NA NA 
  

  2      

NA NA NA NA 1  
   1  1 2  

Syntrophaceae bacterium UBA2192 NA ko:K01953 
 2 

       1 

Planctomycetes bacterium UBA8898 

mce2

D ko:K02067 
1 2 

1 1  1 1 1 1 1 
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Syntrophorhabdus NA atpD ko:K02112 
  

  1  1 2   

Syntrophaceae bacterium UBA8904 rpoB ko:K03043,ko:K13797 
 1 1 1   2 1 1  

NA NA NA NA  1 1 1  1 3 3 2  

NA NA NA NA   
  1      

Methanospirillum 
UBA288 

mcr

G ko:K00402 
  

  1  1 1   

NA NA NA NA 1 1 2  1 2 1 3 1  

Syntrophaceae bacterium UBA2192 urtA ko:K01999,ko:K11959 1 1 1 2   3 1   

Thermoleophilia bacterium UBA2241 NA NA 1  
  1 2 2 2   

Methanothrix NA NA NA   
 1       

Bacteroidales bacterium UBA6192 rpoB ko:K03043,ko:K13797 
  

      2  

Verrucomicrobia subdivision 3 UBA6082 NA NA   
 2       

Streptomyces NA tuf ko:K02358 
  

     1   

Methanothrix NA cdhA ko:K00192 
  

2  1 1 2 2 3  

NA NA NA NA   
  1      

Methanothrix NA atpA ko:K02117 
  

  1  1    

NA NA NA NA   
   1  1 1 1 

Bacteroidales bacterium UBA5429 rpoB ko:K03043,ko:K13797 
  

      2  

Methanothrix NA NA NA 3 2 2 8       

NA NA NA NA 1  
   1   2  

Microbacterium NA narH ko:K00371 3 1 4  3 2 3  1  

Xanthomonadales bacterium RPQJ01 tuf ko:K02358 
  

    2    

NA NA NA NA 1  
 1     1  

NA NA NA NA 1  
  1  2    

Methanothrix NA NA NA 7 2 1 4 5  1 2   

Methanothrix NA NA NA   
3  1 2 1    

Methanothrix NA NA NA 4 3 2 4 6 2 1 1 1 1 
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Methanothrix NA 
mcr

A ko:K00399 
6 3 

6 3 6 2 3 8 4  

Methanothrix NA 
mcr

G ko:K00402 
14 8 

12 2 16 5 9 6 5 1 

Methanothrix NA 
mcr

B ko:K00401 
4 1 

1  6 1 2 6 1  

Methanothrix NA NA ko:K03006,ko:K13735 18 11 5 10 15 11 3 2 4 2 

NA NA NA NA 3  
1  1      

Methanothrix NA NA ko:K01895 
  

  1      

Methanothrix NA NA ko:K03006,ko:K13735 4 3 2 1 1 1  1   

Methanothrix NA atpB ko:K02118 
  

  1   1   

NA NA NA NA   
  2      

Prolixibacteraceae bacterium UBA1413 NA NA 2  
3 2 5 1     

Candidatus Hydrogenedentes UBA2224 fla ko:K02406 
  

     1   

NA NA NA NA   
     1   

NA NA NA NA   
     1   

Tahibacter NA NA NA   
 2 2  2 2 4 1 

Streptomyces NA groL ko:K04077 3 3 5 3 1 5 5 4 3 2 

Firmicutes bacterium UBA3907 NA NA   
  2      

Petrotoga UBA5851 fla ko:K02406 
  

     1   

NA NA NA NA   
 1       

Firmicutes bacterium UBA4882 NA ko:K02035 1 2 
        

NA NA NA NA   
   2 2 2 1  

Synergistaceae bacterium 58-81 NA ko:K01999 
  

 1       

Methanolinea NA NA NA 4 2 3 2 2  1 1 1  

NA NA NA NA   
    1 1   

Methanolinea NA mtrA ko:K00577 
  

  1  3 1 2  

Methanolinea NA mtrA ko:K00577 
  

  1  3 1 2  
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Methanolinea NA 
mcr

A ko:K00399 
 1 

1    2 2 3 2 

Methanolinea NA 
mcr

G ko:K00402 
4 1 

3  8 3 9 5 8 1 

Methanolinea NA 
mcr

B ko:K00401 
  

  1  2 1 1  

Methanolinea NA fdhA ko:K00123 
  

  1  1    

NA NA NA NA   
   3 1   1 

NA NA NA NA   
  2      

NA NA NA NA   
  2  1 1   

Ruminococcus Firm-04 NA NA  2 1 1 2 1     

NA NA NA NA  1 1  2  2    

NA NA NA NA   
   1     

NA NA NA NA   
   1     

Thermoleophilia bacterium UBA2241 mau

B 

ko:K01224,ko:K13372

,ko:K15229,ko:K1728

5 

  

     1   

NA NA NA NA   
     1   

Spirochaetaceae bacterium UBA8932 siaP ko:K21395 
  

  2      

Bacteroidales bacterium UBA5429 gdh ko:K00262 
  

  1  2 1   

Flexilinea NA cynS ko:K01725 2 2 1 2 2      

NA NA NA NA 1  
1  1      

NA NA NA NA 1 1 2  1 1  2  1 

NA NA NA NA   
  2      

Rikenellaceae bacterium DMER64 atpD ko:K02112 3  
     1   
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Abbreviations 

 
oC degrees celsius 

ABC ATP-Binding Cassette 

ABCS Affinity-Based Cell Sorting 

ACO Acyl-CoA Oxidase 

AD Anaerobic Digestion 

ADBA The Anaerobic Digestion and Bioresources Association 

AHA L-Azidohomoalanine 

ASV Amplicon Sequence Variant  

ATP Adenosine triphosphate 

BC Before Christ 

BD Exponential growth before the diauxic shift 

BLAST  Basic Local Alignment Search Tool 

BONCAT Bioorthogonal non-canonical amino acid tagging 

BRENDA Braunschweig ENzyme DAtabase 

bp  Base pair 

BtG Biomethane to the grid 

BrdU Bromodeoxyuridine 

Cels. Cellulosome 

CH4 Methane  

C2 Acetic acid 

C3 Propionic acid 

C4 Butyric acid 

iC4 Iso-butyric acid 

C5 Pentanoic acid 

iC5 Iso-pentanoic acid 

C6 Hexanoic acid 

iC6 Iso-hexanoic acid 

C7 Heptanoic acid 

C8 Octanoic acid 

C9 Nonanoic acid 
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C10 Decanoic acid 

Cm Chloramphenicol  

CO2 Carbon dioxide 

CoA Coenzyme A 

COD Chemical Oxygen Demand 

CoEMS The York Centre of Excellence in Mass Spectrometry 

COGs Clusters of Orthologous Groups of proteins 

C/N Carbon to Nitrogen ratio 

CQ Quantitation cycle 

CsCl Caesium chloride 

d Day 

DAPI 4′,6-diamidino-2-phenylindole 

DGGE Denaturing gradient gel electrophoresis 

DIET Direct interspecies electron transfer 

DI/DII/DIII During the diauxic shift 

DNA Deoxyribonucleic acid 

dsDNA Double-stranded Deoxyribonucleic acid 

DTT Dithiothreitol  

ECFA Even-chain fatty acid 

ECH Enoyl-CoA hydratase 

EDTA Ethylenediaminetetraacetic acid 

EJ Exajoule 

FA Fatty acid 

FAD+ Oxidised flavin adenine dinucleotide 

FADH2 Reduced flavin adenine dinucleotide 

FDH Formate dehydrogenase 

FDR False Discovery Rate 

FOG Fat, oil, and grease 

g Gram 

GC Gas chromatography 

GC-FID Gas chromatography with flame-ionisation detection 

GHG Greenhouse gasses 
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GO Gene Ontology 

GTDB The Genome Taxonomy Database 

h Hour  

H2 Hydrogen 

HPG L-homoproparglycine 

HRT Hydraulic retention time 

IFT Interspecies formate transfer 

IHT Interspecies hydrogen transfer 

IMG/M Integrated Microbial Genomes & Microbiomes 

ISR Inoculum-substrate ratio 

k Rate of substrate utilisation 

Kan Kanamycin  

kbp Kilobase pairs 

KEGG Kyoto Encyclopedia of Genes and Genomes 

Kg Kilogram 

Kh Hydrolysis rate constant 

Ks Half‐saturation coefficient or substrate affinity 

L Litre 

LB Luria-Bertani 

LCFA Long-chain fatty acid 

LC-MS/MS Liquid chromatography-tandem-mass spectrometry  

LEfSe Linear discriminant analysis Effect Size 

m3 Cubic metre 

μmax Specific growth rate 

μm Micrometre 

µm2 Square micrometre 

μg Microgram 

μL Microlitre 

μM Micromolar 

M Molar 

mL Millilitre 

MAGs Metagenome-assembled genomes 
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MCFA Medium-chain fatty acid 

Met L-Methionine 

MetRS Methionyl-tRNA synthetase 

mg Milligram 

MG-RAST Metagenomics Rapid Annotation using Subsystem Technology 

mol Mole  

mM Millimolar 

MOPS Morpholinepropanesulfonic acid 

MtCO2 Metric tons of carbon dioxide equivalent 

N2 Nitrogen  

NAD+ Oxidised Nicotinamide adenine dinucleotide 

NADH2 Reduced Nicotinamide adenine dinucleotide 

NaOH Sodium hydroxide 

NaCl Sodium Chloride 

NCBI National Center for Biotechnology Information 

ND Not detected or not determined 

NEB New England Biolabs 

NGS Next-generation sequencing 

nm Nanometre 

nL/min Nanolitre per minute 

ns Not significant 

OCFA Odd-chain fatty acid 

OD570 The optical density at 570 nm 

OD600 The optical density at 600 nm 

OLR Organic loading rate 

ONT Oxford Nanopore Technologies’ 

ORF Open Reading Frame  

OTU Operational taxonomic unit 

PBS Phosphate buffer saline 

PCR Polymerase chain reaction 

PFA Paraformaldehyde  
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PICRUSt Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 

pKa Acid dissociation constant 

QIIME2 Quantitative Insights Into Microbial Ecology version 2 

qPCR Quantitative polymerase chain reaction 

RDP Ribosomal database project 

RNA Ribonucleic acid 

rRNA Ribosomal ribonucleic acid 

16S rRNA 16S ribosomal RNA 

RT Room temperature 

SCFA Short-chain fatty acid 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SIP Stable-isotope probing 

SMRT Single Molecule Real-Time 

SSU The small subunit of ribosomes 

Sus Starch utilization system 

TBE Tris/Borate/EDTA buffer 

TE Tris and EDTA buffer 

Temp. Temperature 

THP Thermal hydrolysis process 

T-RFLP Terminal restriction fragment length polymorphism 

UK The United Kingdom 

UV Ultraviolet 

v/v Volume per volume 

VBNC Viable but non-culturable 

VFA Volatile fatty acid  

VS Volatile Solid 

VSS Volatile Suspended Solid 

Ymax Yield 
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