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Abstract 

 Floods are the most frequent and damaging natural hazard globally. To 

adequately prepare for floods it is essential to know where they will occur and what 

their impacts will be. This can be done by developing a flood model. Traditionally, 

these models have been local in scale, limited to areas with the necessary expertise 

and data to develop a flood model. However, the last decade has seen the 

proliferation of several global flood models, which use global datasets and 

automated approaches to map flood hazard globally. When combined with global 

datasets of exposure and vulnerability, they can be used to assess global flood risk. 

The development of these global flood risk datasets marks a potential paradigm shift 

in flood risk analysis from the traditional “ad hoc” approach to global datasets 

which can be used to assess flood risk anywhere in the world. Despite this, these 

global flood risk datasets still need significant evaluation to understand the limits of 

their effective application.  

 This thesis furthers the evaluation and explores the potential applications of 

global flood risk datasets. The current state of global flood risk modelling is 

reviewed, highlighting the different models, their history, structure, and application. 

The models are then collectively validated for the first time against observed flood 

events, demonstrating the skill of some models and identifying model characteristics 

which influence performance. The impact of river size thresholds, a key difference 

identified between the models, are quantified by calculating flood exposure to 

different sized rivers globally. Both the chosen river size thresholds and the global 

population maps used to calculate exposure are found to have a significant impact 

on flood exposure estimates. The use of global flood risk data is then explored 

nationally as global datasets of hazard, exposure, and vulnerability are evaluated for 

flood risk management in five countries. While some global datasets are found to be 

of potential use, there is still significant uncertainty in their national flood risk 

estimates and potential issues are identified related to the capacity there is to use 

them nationally.   
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Introduction 

 In the first two decades of the 21st century, over 1.6 billion people were 

affected by floods (CRED and UNDRR, 2020). A global problem has elicited 

solutions at a similar scale, and several global datasets of  flood hazard, exposure, 

and vulnerability have been developed. This thesis evaluates and explores the 

applicability of these global flood risk datasets. In this introductory chapter, the 

novel work of this thesis is placed into context with respect to the existing literature. 

The chapter begins with an introduction to flooding in a more general sense, 

covering both historical and future flooding. It then reviews how floods are 

modelled at increasing spatial scales. Focus is then turned to global flood models, 

reviewing existing efforts at global flood model evaluation and intercomparison. 

The approaches to calculate global flood risk are then reviewed, covering both 

exposure and vulnerability. The chapter concludes with a discussion of global data 

applied nationally and the challenges this presents. 

1.1 Flooding 

 There are three key natural mechanisms of flooding: fluvial, pluvial and 

coastal. Fluvial flooding occurs when a river overflows its banks, normally as a 

result of rainfall or snowmelt in the river catchment. Frequently flooded areas along 

the river are known as floodplains. These areas are ecologically important, but 

development within them risks both floodplain degradation and human exposure to 

potentially catastrophic flooding (Tockner and Stanford, 2002, Opperman et al., 

2009). Pluvial flooding is rainfall induced flooding not associated with any river. 

This disconnect between ‘flood’ and ‘source’ makes pluvial flooding difficult to 

predict and prepare for (Houston et al., 2011). The effects of pluvial flooding are 

disproportionally felt in urban areas, where impervious surfaces and inadequate 

drainage systems often exacerbate flooding (Rosenzweig et al., 2018). Coastal 

flooding is caused by storms with intense wind speeds, where a combination of high 

tides and extreme wind drives sea-water onto the shore (Woodruff et al., 2013). The 

severity of coastal flooding is directly correlated to sea-level rise (Nicholls et al., 
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1999, Church et al., 2006). There is a growing body of literature which recognizes 

the importance of the interaction of these different mechanisms during flood events 

(Wahl et al., 2015, Ward et al., 2018, Eilander et al., 2020, Bates et al., 2021). These 

‘compound’ events can often increase the magnitude of experienced impacts 

(Zscheischler et al., 2018). The work in this thesis is primarily concerned with 

fluvial flooding. 

1.1.1 Historical Flooding 

 Throughout history, there has been a tendency for settlements to form in 

flood-prone areas (Di Baldassarre et al., 2013). Floodplains provide fertile soil for 

agriculture (Crawford et al., 1998), while rivers are important sources of fresh water 

(Kummu et al., 2011) and act as navigation routes that facilitate economic 

development through trade (Rasul, 2015, Fang and Jawitz, 2019). Rivers have 

influenced historic human migration patterns (Campos et al., 2006, Bertuzzo et al., 

2007) and settlements have been shown to follow fractal river patterns globally 

(Fang et al., 2018). Current global estimates suggest that over one billion people 

reside within floodplains (Di Baldassarre et al., 2013, Rentschler and Salhab, 2020).  

 Continental and global studies examining historical trends in flood impacts 

have shown increases in both economic and human exposure to flooding over the 

past 50 to 150 years (Mills, 2005, Barredo, 2007, Paprotny et al., 2018, Jonkman, 

2005). At the same time, there is evidence of increased adaptation to floods reflected 

in declining global vulnerability (Jongman et al., 2015, Tanoue et al., 2016, 

Formetta and Feyen, 2019). Flood adaptation measures can be ‘hard’ (dikes and 

levees) or ‘soft’ (early warning systems, land-use planning, and insurance). Hard 

flood adaptation measures are often the most cost-effective solutions for high-risk 

areas (Jongman, 2018). However, the implementation of such measures can 

counterintuitively increase flood risk, a phenomenon known as the ‘levee effect’ 

(White, 1942). The levee effect is experienced when a physical measure is 

constructed that reduces the frequency of flooding. Over time this reduces the public 

perception of risk and encourages increased economic development and settlement 

within the protected area increasing the number of assets and people exposed to 

potentially devastating low-probability flood events (Ludy and Kondolf, 2012). 

Hurricane Katrina in 2005 is an example of such a rare and devastating event, where 

constructed levees were overtopped resulting in the deaths of over 1,000 people and 
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economic damages in the hundreds of billions for the state of Louisiana, USA 

(Hoople, 2013). 

 There is a plethora of evidence and research that points to demographic 

changes as one of the key drivers of historical increases in flood exposure 

(Changnon et al., 2000, Pielke et al., 2005, Di Baldassarre et al., 2010, Bouwer, 

2011, Tellman et al., 2021). Less clear is the historical impact of climate change on 

flood exposure, largely due to the different processes driving river flooding (Blöschl 

et al., 2017). Extreme rainfall has increased with warming global temperatures 

(Westra et al., 2013, Asadieh and Krakauer, 2015), but this has not resulted in 

increased extreme floods (Sharma et al., 2018). Ivancic and Shaw (2015) show that 

extreme precipitation is not a good proxy for extreme river discharge if watershed 

soil moisture is not also accounted for. As such, historical trends in extreme floods 

are less obvious than trends in precipitation. For example, Hodgkins et al. (2017) 

found that any significant trends in North American and European extreme floods 

were a result of chance, while Slater et al. (2021) found both increases and decreases 

in extreme flood probability globally. Najibi and Devineni (2018) found global 

increases in both extreme flood frequency and duration, but these were attributed to 

climate variability rather than climate warming. Linking historical flooding to a 

warming climate is difficult due to poor quality historical record data (Wilby et al., 

2017) and by short windows of observation which are often smaller than the 

timescale of climatic variability (Hall et al., 2014). Beyond observing the historical 

trends of extremes, there are a growing number of studies dedicated to extreme 

event attribution, where researchers try to determine the causal relationship between 

a warming climate and a single extreme event (Marjanac et al., 2017). This is 

typically done by running two climate model simulations. One which simulates the 

historical climate in the Anthropocene and another which simulates a historical 

climate without human influence. By comparing the extreme event in question under 

the two scenarios, the likelihood that it was made more extreme due to climate 

change can be calculated (Swain et al., 2020). An attribution study by Wehner and 

Sampson (2021) found that thirteen billion dollars of damage caused by Hurricane 

Harvey to the city of Houston, Texas could be attributed to global warming. 

Similarly, the devastating floods that affected western Europe in the summer of 
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2021 were found by to be between 1.2 and 9 times more likely to occur due to 

climate change (Kreienkamp et al., 2021). 

1.1.2 Future Flooding 

 There is an urgent need to understand how flooding, and its impacts, will 

change in the future. Future changes in flood risk will be driven by both changes in 

the global climate and changes in global demographics. The Intergovernmental 

Panel on Climate Change (IPCC) was established in 1988 and has released six 

assessment reports every five to six years collating the latest science on climate 

change (IPCC, 2021). With each iteration of the IPCC report, the global outlook on 

climate change becomes bleaker. In the most recent report, new climate models 

predict greater increases in global surface temperature (compared to previous 

models) and increased frequency and severity of extreme events (precipitation, heat, 

and drought) (Masson-Delmotte et al., 2021). The report presents results from 

simulations of various emission scenarios (ranging from very low to very high 

greenhouse gas (GHG) emissions) run through the latest climate models from the 

Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). In a 

moderate emissions scenario, the climate models predict that the 1.5°C warming 

limit set in the Paris agreement (UNFCCC, 2015) will be passed before 2040 and by 

2100 global temperatures will rise to between 2.3°C and 4.1°C above pre-industrial 

levels (Tollefson, 2021). 

 The new CMIP6 climate models were used to project future global changes 

in fluvial flooding by Hirabayashi et al. (2021). The study extended similar work 

done using the previous generation (CMIP5) of climate models (Hirabayashi et al., 

2013) and aimed to compare the future flood projections under a high emission 

scenario from both studies. The future flood projections between the two generations 

of climate models were found to be largely similar, both in terms of magnitude and 

regionality. Flood frequency increased in large parts of Asia, Africa, and South 

America; and decreased in large parts of Europe, North America, central Asia and 

southern South America (Hirabayashi et al., 2021). Regional variations in future 

flood risk are a common theme in a number of global studies. Using climate 

predictions from the CMIP3 model catalogue, Arnell and Gosling (2016) found 

similar regional directional trends in flood frequency as Hirabayashi et al. (2021). 

Seven different climate models were used by Alfieri et al. (2017) to estimate future 
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flood exposure and damages under different warming scenarios. The study estimates 

the largest increases in flood exposure and damages will occur in Asia, the US, and 

Europe; some countries in Africa and Eastern Europe will experience decreases, 

while statistically insignificant changes will occur in a number of countries globally. 

The future flood risk projections outlined in Alfieri et al. (2017) considered 

exposure to be static in time, but there is a large body of work showing the 

implications of demographic and socio-economic change on future flood risk.  

 By combining models of socio-economic growth and climate change, 

Winsemius et al. (2016) were able to differentiate the impacts of demographic 

change and climate change on future flood risk. They found that without 

interventions, global damages as a result of both socio-economic and climate change 

may increase by up to a factor of 50 by 2100. In south-east Asia, where future 

flooding studies are unanimous on climate change’s impact on increased flood 

frequency (Hirabayashi et al., 2008, Hirabayashi et al., 2013, Dankers et al., 2014, 

Arnell and Gosling, 2016, Alfieri et al., 2017, Hirabayashi et al., 2021), they found 

that socio-economic change will have a larger impact (by several orders of 

magnitude) on future flood risk (Winsemius et al., 2016). Similarly, Kam et al. 

(2021) found that the risk of future global flood displacement was further increased 

when socio-economic change was considered alongside climate change. A number 

of studies have shown that population growth is expected to occur in areas of flood 

risk. When exploring historical and future trends in exposure to floods, Jongman et 

al. (2012b) found that the global gross domestic product (GDP) exposed to flooding 

in 2050 would be roughly triple that of 2010. They also found that population 

growth in flood zones was larger than total population growth. Similarly, in nearly 

half (57) of the 119 countries examined by Tellman et al. (2021) flood exposure by 

2030 was projected to increase at a greater rate than population growth. This is a 

trend seen at the national level too. Wing et al. (2018) found that population growth 

in the US would result in large increases of exposure by 2100 and, interestingly, 

exposure increases were greater in low return period (higher frequency) flood zones 

than high return period (low frequency) flood zones. 

 It’s important to address the uncertainty associated with estimating future 

flooding and its impacts. These estimates are based on models and projections, rife 

with epistemic uncertainties. Although each iteration of the IPCC report brings with 
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it a narrowing of the uncertainty bounds (likely temperature range was reduced from 

1.5-4.5°C in IPCC5 to 2.5-4°C in IPCC6) (Arias et al., 2021), rainfall is still 

coarsely represented in the models. Additionally, the fluvial response to rainfall, as 

covered in the previous section, is not straightforward (Sharma et al., 2018) and this 

is reflected in the differences between the results of studies of future river flooding 

(Hirabayashi et al., 2021, Arnell and Gosling, 2016, Alfieri et al., 2017). Similarly, 

future population estimates are inherently uncertain as they are reliant on accurate 

data and projections of fertility, mortality, and international migration (DESA, 

2019). As the models and science continue to improve, one would expect to observe 

a convergence in estimates of future flooding and its impacts. Regardless, it is well 

established that flood risk will increase in the future for more of the world than it 

won’t. 

1.2 Modelling Floods 

 Our knowledge of flooding has developed significantly over the last half-

century, due in no small part to the continued development of simulation techniques 

and datasets that allow us to model flooding in greater detail, at higher speed, and 

over a larger spatial domain.   

1.2.1 Model Structure 

 Flooding can be modelled to varying degrees of complexity. Models can 

represent inundation in either one, two, or three dimensions. Three dimensional 

flood models are typically limited to smaller scales and represent phenomena 

unimportant to floodplain flow dynamics (Teng et al., 2017) and are therefore 

beyond the scope of this thesis. Both one and two dimensional models solve some 

formulation of the shallow water equations (also known as the Saint-Venant 

equations). In one-dimensional models, flow is assumed unidirectional along the 

river channel and the one-dimensional shallow-water equations are solved at cross-

sections perpendicular to the river channel  (Brunner, 1995, Md Ali et al., 2015). 

These models are typically computationally efficient and can be run over large 

spatial scales. Two-dimensional flood models solve the two-dimensional shallow-

water equations across two-dimensional space represented either by a grid or a mesh 

(Neelz and Pender, 2009). These models are more computationally complex than 

one-dimensional models and have runtimes several orders of magnitude longer (Lin 
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et al., 2006). Both one-dimensional and two-dimensional model types can be 

coupled into 1D/2D models to capitalize on their respective advantages. In these 

coupled models, which are more computationally efficient than two-dimensional 

models, channel flow is represented in one-dimension and floodplain flow is 

represented in two-dimensions (Bates et al., 2005, Vozinaki et al., 2017). Using a 

coupled approach also allows for explicit representation of channels below the 

resolution of the two-dimensional grid (Neal et al., 2012a). 

 In order to improve runtimes or increase the spatial domain of the analysis, 

simplifications are often made to the shallow water equations (Hunter et al., 2007). 

Ordered in increasing levels of complexity, the kinematic simplification considers 

only the friction and gravity terms of the shallow water equations; the diffusive 

simplification considers the pressure, friction, and gravity terms (Ponce et al., 1978); 

and the inertial simplification considers the local acceleration, pressure, friction, and 

gravity terms (Bates et al., 2010). The choice of shallow water simplification is often 

made considering the context of the modelling study and whether the chosen 

simplification scheme would lead to an erroneous output. The kinematic 

simplification is useful for modelling slow rising flood waves, where wave velocity 

is determined by friction and gravity (Ponce et al., 1978, Neal et al., 2012a). The 

diffusive simplification is necessary to simulate backwater effects, and produces 

better results in areas of low relief compared with the kinematic approach (Trigg et 

al., 2009, Neal et al., 2012a, Bates et al., 2013). To represent momentum 

conservation, the inertial simplification is needed, and it has been shown to be more 

computationally efficient than the diffusive simplification (Bates et al., 2010, Neal et 

al., 2012b). The implementation of the full shallow water equations is necessary to 

model super-critical flows such as in mountainous rivers or during dam-breaks (Neal 

et al., 2012b, Neelz and Pender, 2013, de Almeida and Bates, 2013). 

 Modelling approaches that don’t consider the physics of fluid flow, 

colloquially referred to as zero-dimensional models (Pender, 2006), are often 

applied in data-sparse regions and as initial scoping studies due to their low 

computational demand (Di Baldassarre et al., 2020). They can be either volume 

spreading models (Lhomme et al., 2008) or geomorphic (terrain based) models 

(Nobre et al., 2016, Samela et al., 2017b, Nardi et al., 2019). These zero-

dimensional models produce credible results in well-defined floodplains, however 



  Chapter 1 

8  Introduction 

care should be taken when interpreting results across complex topographies and 

where the representation of momentum conservation is important (Teng et al., 2017) 

1.2.2 Modelling across spatial scales 

 Flood models are developed for, and applied to, different scales. The scale of 

application normally determines the inputs, approach, and intended use of a model. 

Below, model application has been split into five different scales, ranging from local 

to global. These are not definitive classifications and there will be considerable 

overlap of model inputs, approaches, and uses across scales.  

1.2.2.1 Local scale 

 Local scale models are typically confined to a small river reach. They are 

custom built by technical experts, normally to aid the design of flood defences or to 

carry out detailed flood risk assessments for local development and infrastructure 

(SEPA, 2017). These models require detailed data as input, as outlined in Mason et 

al. (2010). The elevation data used is typically the best available (normally Light 

Detecting And Ranging (LiDAR) data). The bathymetry of the channel (collected 

through surveyed channel cross sections) and hydraulicly relevant structures (flood 

defences, bridges, culverts, etc.) are explicitly represented. Local scale models are 

run using the full formulation of the shallow-water equations with boundary 

condition information (discharge and stage data) from local gauging stations. Gauge 

data is also used for model calibration (of the friction parameters) and validation. 

Where observational data is available, it too is used for model validation (Schumann 

et al., 2009).  

1.2.2.2 Catchment scale 

 Catchment scale models share a number of similarities with local scale 

models, over a slightly larger spatial domain: the river catchment. They are typically 

used for options appraisal and planning, rather than to inform design (SEPA, 2017).  

The models are often fully hydrodynamic (solving the full shallow-water equations) 

and incorporate surveyed river cross sections. The representation of hydraulicly 

relevant structures is less explicit than local scale models and often some 

hydrological assumptions are made (Hankin et al., 2016). Catchment scale models 

are run for a number of different plausible scenarios using regionally available 
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rainfall data and hydrological models to simulate the catchment response (Hankin et 

al., 2017).  

1.2.2.3 National scale 

 National scale flood maps are used to raise awareness of flooding, support 

flood risk management, and to inform insurance (de Moel et al., 2009). There are 

two distinctive approaches to national scale flood modelling. The first, involves 

combining individual catchment scale flood maps into an ‘agglomerated’ national 

flood map. This approach has been used in the UK, by the Environment Agency 

(EA), for their ‘flood map for planning’ (Environment Agency, 2018) and in the US, 

by the Federal Emergency Management Agency (FEMA), for the maps that 

underpin their National Flood Insurance Program (NFIP) (Federal Emergency 

Planning Agency, 2019). The other national approach involves modelling flooding 

for the country in its entirety. This approach benefits from a consistent methodology 

and overcomes the pitfalls of data gaps and outdated maps that plague the 

agglomerated approach (Horn and Brown, 2017, Wing et al., 2017). To model 

flooding for an entire country, however, certain sacrifices have to be made with 

regards to detail and hydrodynamic representation (de Moel et al., 2015). The river 

channel is assumed to be rectangular, flood defences are only sometimes represented 

(either explicitly or implicitly), and a simplified version of the shallow water 

equations is used to simulate flooding in order to make the model computationally 

viable. National level flood models have been developed in the UK (Hall et al., 

2003, Hall et al., 2005, Bradbrook et al., 2005) and in the US (Wing et al., 2017, 

Bates et al., 2021)  

1.2.2.4 Transboundary and continental scale 

 Often large river basins that span multiple countries are modelled in their 

entirety. Examples of this include the Rhine (ICPR, 2019), the Elbe (IKSE, 2016), 

and the Danube (ICPDR, 2015). Efforts have also been made to model flooding at 

the continental scale; predominantly in regions where the necessary data is available 

such as Europe (Dankers and Feyen, 2009, Alfieri et al., 2014), the US (Wing et al., 

2017, Bates et al., 2021), and Australia (Schumann et al., 2016). Models at this scale 

have to make further simplifications to their frameworks to allow for data and 

computational limitations. The models are often coarser in resolution and make 
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simplifications to the hydrodynamic simulations, even so-far as being zero-

dimensional (see Lugeri et al. (2010) for Europe and Jafarzadegan et al. (2018) and 

Samela et al. (2017a) for the US). These continental scale models are typically used 

to assess both present day and future risks (Feyen et al., 2012, Rojas et al., 2013, 

Alfieri et al., 2015, Alfieri et al., 2018b, Wing et al., 2018) and to evaluate potential 

adaptation measures (Jongman et al., 2014, Johnson et al., 2020). Continental scale 

models are also used extensively by the insurance industry, however their modelling 

approaches and outputs are proprietary (JBA, 2019, JBA, 2021).  

1.2.2.5 Global scale 

 The proliferation of the necessary datasets for flood modelling at the global 

scale (Farr et al., 2007, Lehner et al., 2008, Scussolini et al., 2016, Yamazaki et al., 

2017, Yamazaki et al., 2019) and the formulation of efficient hydrodynamic codes 

(Bates and De Roo, 2000, Bates et al., 2010, Dottori and Todini, 2011, Yamazaki et 

al., 2013) has led to the development of a number of different global flood models 

(GFMs) over the last decade (Yamazaki et al., 2011, Pappenberger et al., 2012, 

Winsemius et al., 2013, Ward et al., 2013, Rudari et al., 2015, Sampson et al., 2015, 

Dottori et al., 2016). In their seminal paper, Sampson et al. (2015) identified six key 

challenges that must be addressed to model flooding globally: accurate global terrain 

data, extreme flow generation, accurate global hydrography data, representation of 

flood defences, computationally efficient hydrodynamics, and an automated 

framework. These were challenges faced by all groups developing global flood 

models, and the different solutions to the challenges proposed by each model group 

led to the development of a number of very different GFMs (Bates et al., 2018).  

 The global scale of the models, their wide-ranging applicability, and their 

potential to fill data-gaps in previously unmodelled regions has seen the GFMs 

implemented across a number of different sectors and use cases. The models have 

been used to simulate the impacts of climate change on flooding (Alfieri et al., 2017, 

Dottori et al., 2018, Winsemius et al., 2016, Hirabayashi et al., 2021), to evaluate the 

effectiveness of flood protection investments (Ward et al., 2017), to assess business 

risks (Ward et al., 2020b), to inform (re)insurance (Wing et al., 2020b), and to aid in 

disaster response (Emerton et al., 2020). Despite their far-ranging use, the models 

still have their limits, which often aren’t realized by the end-user (Ward et al., 2015). 

To appropriately use these models, prospective users need some understanding of 
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their formulation and limitations. At present, this would require users to disseminate 

and compare a number of different model description papers. There is a need for a 

comprehensive, combined, literature review of all GFMs; covering their 

development, structure, use cases, and limitations. Such a literature review could be 

the reference point for prospective users of the different GFMs and help to inform 

them of the most appropriate model to use and the extent to which the outputs of the 

model can be relied upon. 

1.3 Global Flood Model Intercomparison 

 To better understand the strengths, weaknesses, similarities, and 

dissimilarities of the GFMs, intercomparison is needed. Model intercomparison 

projects have been central to the climate modelling community for years, with the 

semi-decadal CMIP organized by the IPCC and various other IPCC endorsed model 

intercomparison projects (Meehl et al., 2005). The Global Flood Partnership (GFP), 

a voluntary organization that brings together academics, research institutes, 

companies, and practitioners in the field of global flood risk recognized the need for 

a similar, GFM intercomparison project (De Groeve et al., 2015, Alfieri et al., 

2018a).  

1.3.1 Comparing model outputs 

 In the first global flood model intercomparison project (GFMIP), Trigg et al. 

(2016) compared the output of six different GFMs across the African continent. The 

study found significant differences between the models; continental agreement 

between the modelled flood extents ranged between 30-40%. In a subsequent study, 

Aerts et al. (2020), compared the output of the same six GFMs, along with two 

additional proprietary insurance models in China, and found similar levels of 

disagreement as Trigg et al. (2016) found in Africa. Both studies posit GFM 

characteristics and elements in the modelling chain that contribute towards 

disagreement. These include extreme flow generation, hydrodynamic representation, 

output resolution, and river network representation. The studies were limited in the 

definitive conclusions they could make as the models were being evaluated on the 

intercomparison of their outputs alone. Both Trigg et al. (2016) and Aerts et al. 

(2020) called for future work to include the comparison of elements of the internal 
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model chain—to evaluate the quality of individual model components; and for the 

incorporation of validation into intercomparison studies so that the comparative 

performance of GFMs could be assessed.  

1.3.2 Comparative model validation 

 Model validation is an important part of model development. A key issue 

facing GFM developers is a lack of global validation data. This means that GFMs 

have had limited validation; and where the models have been validated has been 

largely regulated by data availability. To compound this, each GFM developer has 

validated their model in different ways, in different locations, and using different 

data: making it impossible to compare model performance. Hoch and Trigg (2019) 

provided a detailed summary of the different approaches, datasets, and locations 

used by the GFMs for validation. GFM validation can be split into three distinct 

approaches. The first approach is the validation of flood extents: GFM outputs are 

compared either to satellite derived footprints of historic flood events (Yamazaki et 

al., 2011, Winsemius et al., 2013, Rudari et al., 2015, Dottori et al., 2016, Wing et 

al., 2021, Yamazaki et al., 2012) or to existing modelled flood maps (Pappenberger 

et al., 2012, Sampson et al., 2015, Wing et al., 2017). The second validation 

approach is the comparison of modelled extreme flows with observed discharge 

(Yamazaki et al., 2011, Dottori et al., 2016, Rudari et al., 2015). The third approach 

is the comparison of modelled and observed water surface elevation (Yamazaki et 

al., 2012, Yamazaki et al., 2014, Wing et al., 2021).  

 There is little geographical overlap between the GFM validation locations. 

Only Sampson et al. (2015) and Dottori et al. (2016) explicitly compare the 

performance of their GFMs with one-another in the Severn and Thames basins in 

England. In the remaining regions of overlap, differences in either the validation 

data or metrics render the results incomparable. For example, both Winsemius et al. 

(2013) and Dottori et al. (2016) use observational data from the Dartmouth Flood 

Observatory (DFO) (Brakenridge and Anderson, 2006) to validate their models over 

much of south-east Asia. However, while Dottori et al. (2016) use fit metrics to 

evaluate the performance of their model relative to the observed extents, Winsemius 

et al. (2013) only perform a visual validation. The lack of consistent, comparable 

validation results with which to compare all the GFMs presents a significant gap in 

our understanding of the models. In order for the GFMs to be used most effectively, 
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a model needs to be chosen by prospective users with an understanding of their 

comparative performance relative to the other available models. This can only be 

achieved through comparative validation. The results of a comparative validation 

would also benefit model developers by identifying where their chosen modelling 

approaches do (and do not) work well. 

1.3.3 Comparing model structure 

 There are limits to the conclusions that can be drawn from studies which 

only compare GFM outputs (Trigg et al., 2016, Aerts et al., 2020). GFMs are 

modelling chains; each link in the modelling chain introduces uncertainty, which can 

only be quantified by examining the internal elements of the models. Hoch and 

Trigg (2019) proposed a framework for GFM validation and intercomparison that 

employs standardized model inputs and test conditions, which would allow for a 

more direct comparison of model design. The framework is promising, but requires 

buy-in and cooperation across the different modelling groups, which has so far been 

lacking. 

 A number of studies have begun to independently look at the different stages 

of the global modelling chain to try and quantify the influence of different modelling 

inputs and approaches on uncertainty. The focus of several recent studies has been 

on the uncertainty of extreme flow generation in GFMs (Zhou et al., 2020, Mester et 

al., 2021, Devitt et al., 2021).  In Zhou et al. (2020), the authors explore the effect of 

different variables, fitting distributions, and hydrological models on extreme flow 

uncertainty and find that the choice of hydrological model is the biggest contributor 

to uncertainty. In a subsequent related study, Mester et al. (2021) also explored the 

use of different hydrological models, but include multiple climate forcings, and 

found that both inputs were equally important to model performance. Devitt et al. 

(2021) took this one step further by comparing the extreme flows generated by 

hydrological models and those generated using a regionalized flood frequency 

approach—a key difference between the GFMs identified in Trigg et al. (2016). No 

single approach was found to be the best globally (Devitt et al., 2021). Extreme flow 

generation harbours significant uncertainty in the GFM modelling chain, but 

accurate terrain data is the greatest limit on continued GFM development 

(Schumann, 2014). Currently all GFMs use terrain data derived from the 20-year old 

Shuttle Radar and Topography Mission (SRTM) (Farr et al., 2007). The impact of 
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using different terrain datasets on model accuracy was explored by Archer et al. 

(2018) who compared hydrodynamic simulations using two digital elevation models 

(DEMs) used extensively by the GFMs (Farr et al., 2007, Yamazaki et al., 2017) and 

a new generation of DEM (Rizzoli et al., 2017). Differences in model performance 

were substantial for the two commonly used DEMs, while the new DEM needed 

significant pre-processing to produce accurate results; limiting its potential uptake at 

the global scale (Archer et al., 2018). The impact of spatial resolution on global 

flood model performance has also been assessed. Fleischmann et al. (2019) found 

the resolution of the input DEM to be important to model performance, while Mateo 

et al. (2017) found model performance improved with finer spatial resolution, but 

only if the model was sufficient in its physical representation of flow connectivity.  

 A key GFM assumption, which has so-far gone unassessed, is model 

boundary delimitation. Each GFM has a different pre-defined river size threshold 

(normally expressed as upstream drainage area or Strahler stream order) below 

which they won’t model flooding. These thresholds are often determined by the 

spatial resolution and accuracy of the model inputs (Dottori et al., 2016) but they 

vary significantly (by several orders of magnitude) across the GFMs. Both Trigg et 

al. (2016) and Aerts et al. (2020) note the impact that these different river size 

thresholds may have had on the GFM flood extents, but are unable to quantify their 

influence on model disagreement. Further work should explore the impact of 

boundary delimitation on GFM outputs, following a ceteris paribus approach 

employed by a number of the studies referenced in this section. The results of such a 

study would have implications beyond furthering model intercomparison work and 

help inform GFM end-users on the appropriate selection of their model.  

1.4 Global Flood Risk 

 Risk is defined in the Sendai Framework for Disaster Risk Reduction as the 

product of hazard, exposure, and vulnerability (UNISDR, 2015). In a flooding 

context, hazard refers to the modelled (or observed) flooding, exposure is the 

quantification of who (or what) is exposed to the hazard, and vulnerability is the 

susceptibility of the exposure to experience loss. Flood risk assessments are vital for 

understanding the impacts of flooding and for implementing disaster risk reduction 

measures (Ward et al., 2020a). The preceding sections have detailed the global 
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datasets available for flood hazard (GFMs); a number of global datasets and 

approaches have also been developed and applied to assess exposure and 

vulnerability. 

1.4.1 Exposure 

 Flood exposure can refer to any number of things affected by a hazard.  

Infrastructure, assets, buildings, and people can all be exposed to floods. The most 

common quantification of exposure is the number of people exposed. Data on 

human populations is plentiful and has been collected for millennia. Records of 

censuses in China date back to 2,000 BC during the Xia dynasty (Durand, 1960). In 

the last three decades, the value of gridded population data has been realized and 

efforts have been made to transform population data collected at the census tract to a 

regularly spaced grid (Clarke and Rhind, 1992, Tobler et al., 1997, Liverman et al., 

1998). Gridded population datasets represent a significant development in the study 

of flood exposure, harmonizing data types (flood model outputs are gridded) and 

allowing for easy integration and analysis in geographical information systems 

(GIS).  

 Several different global population datasets have been developed over the 

last three decades varying in complexity, approach, and intended use (Leyk et al., 

2019). In their simplest form, gridded population datasets simply distribute census 

population totals evenly across a gridded area equivalent to the size and dimensions 

of the census tract (Doxsey-Whitfield et al., 2015). A number of population datasets 

use ancillary datasets as proxies of human presence to weight the distribution of 

census population totals across gridded space. Common ancillary datasets include 

satellite imagery of human settlements, land cover data, roads, topography, climate, 

protected areas, and water bodies (Leyk et al., 2019). The degree of complexity to 

which these ancillary datasets are used to weight population distribution varies 

significantly. Satellite imagery of human settlements are frequently used in isolation 

to binarily classify gridded cells as ‘populated’ or ‘unpopulated’, with census data 

then distributed evenly across populated cells (Balk et al., 2006, Freire et al., 2016, 

Tiecke, 2017). More complex approaches use multiple ancillary datasets and 

statistical techniques to dynamically weight the distribution of population across the 

grid (Klein Goldewijk et al., 2010, Stevens et al., 2015). The different approaches 

and ancillary datasets employed by the different global population datasets result in 
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global population maps with substantial differences. These datasets are 

approximations of the global human population distribution. There is no single 

‘best’ approach and each makes assumptions that both benefit and hinder the 

accuracy of the final population product in different ways. A useful example of this 

is the difference between constrained and unconstrained population datasets (Reed et 

al., 2018, Stevens et al., 2020). These two approaches address a major quandary in 

global population mapping — the accurate representation of rural populations — in 

very different ways. Constrained population datasets distribute census data only 

across satellite identified settlements (hence population distribution is ‘constrained’ 

by the settlements), while unconstrained population datasets will distribute some 

census data across ‘uninhabited’ areas. The unconstrained approach operates under 

the assumption that not all settlements can be identified in the satellite imagery and 

cedes that in accounting for these ‘missed settlements’ some unpopulated cells will 

be misallocated as populated (WorldPop, n.d.). Conversely, the constrained 

approach assumes the accuracy of satellite identified rural settlements, at risk of 

underrepresenting rural populations. In the end, it is up to the users of these datasets 

to decide which approaches and assumptions best align with their intended use 

(Leyk et al., 2019). 

 The use of these global population datasets is widespread in studies of global 

flood exposure. However, in many studies only one global population dataset is 

used, with little to no consideration of how the chosen population dataset contributes 

towards the uncertainty of the estimated flood exposure (Jongman et al., 2012b, 

Ward et al., 2013, Arnell and Gosling, 2016, Trigg et al., 2016, Willner et al., 2018, 

Eilander et al., 2020, Gu et al., 2020). Recently, some studies have begun to address 

population data as a source of uncertainty in global flood exposure estimates. 

Dottori et al. (2018) dedicate a section of their Supplementary Material to the 

discussion of various sources of uncertainty in their modelling framework, 

population data being one of them. This uncertainty was specifically quantified by 

Smith et al. (2019), who compared national flood exposure estimates calculated 

using three global population datasets in 18 developing countries and found 

significant differences between the exposure estimates. The Smith et al. (2019) 

study has prompted subsequent global flood exposure studies to rationalize their 

choice of population data (Rentschler and Salhab, 2020, Dryden et al., 2021) and 

even to use multiple population datasets in their analysis (Tellman et al., 2021, 
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Lindersson et al., 2021). What is currently still lacking from the literature is a study 

which compares exposure estimates at the global scale. The existing studies 

comparing global population datasets for flood exposure are geographically limited, 

constrained by either the availability of data (Smith et al., 2019, Tellman et al., 

2021) or the motive of the study (Lindersson et al., 2021). Furthermore, these 

studies have only looked at a small number of populations datasets; either two 

(Tellman et al., 2021) or three (Smith et al., 2019, Lindersson et al., 2021). To fully 

understand the implications of using different global population datasets to calculate 

flood exposure, the entire catalogue of population data that has been used in 

previous studies of global flood exposure needs to be compared. 

1.4.2 Vulnerability  

 Vulnerability is a complex and multifaceted concept, both in how it is 

defined and how it is measured. Birkmann et al. (2006) identified 25 different 

definitions of vulnerability. For the sake of brevity, the United Nations Office for 

Disaster Risk Reduction (UNDRR) definition of vulnerability is used, as it aligns 

most closely with the subject of this thesis: “the conditions determined by physical, 

social, economic, and environmental factors or processes which increase the 

susceptibility of an individual, a community, assets, or system to the impacts of 

hazards” (UNDRR, 2017).  

 Vulnerability changes with the scale of the analysis. A vulnerability 

assessment at the local or regional scale will have different aims and require 

different data than a vulnerability assessment at the national or global scale (de Moel 

et al., 2015). In their review of global flood risk assessments, Ward et al. (2020a) 

found that while all studies of global flood risk considered flood hazard and 

exposure, only some considered vulnerability. Vulnerability at the global scale has 

been assessed through a human-social, physical, and economic lens. Human 

vulnerability to flooding has been assessed by both Jongman et al. (2015) and 

Tanoue et al. (2016). Both studies used historical data on annual flood fatalities and 

compared these to modelled annual flood exposure. The mortality ratio (fatalities 

divided by modelled exposure) was used as an indicator of human vulnerability to 

flooding. Jongman et al. (2015) found declining global river flood vulnerability from 

1980-2010, while Tanoue et al. (2016) found less linear global trends over a longer 

time period (1960-2013). Human-social vulnerability is frequently assessed at 
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smaller scales through a vulnerability index, which is constructed by considering a 

number of different indicators—each contributing to a final measure of flood 

vulnerability (Moreira et al., 2021). Vulnerability indices at the global scale have 

been fairly limited. In developing a more general global disaster risk index, Peduzzi 

et al. (2009) develop a flood vulnerability index based on three indicators: recorded 

fatalities, GDP, and people living in floodplains. A more detailed global flood 

vulnerability index, based on 48 indicators, was developed by Okazawa et al. 

(2011). The most common approach to measuring vulnerability at the global scale is 

through direct physical damages, using what are known as intensity-damage 

functions. These intensity-damage functions relate some aspect of flood intensity 

(depth, velocity, duration) to a degree of damage caused to the object at risk. 

Intensity-damage functions can be derived empirically (using historical flood 

damage data or expert judgement) or analytically (based on engineering design 

criteria) (van Westen, 2014). These functions are typically developed at the national 

level (e.g. the Multi-Coloured Manual in the UK (Penning-Rowsell et al., 2013) and 

HAZUS-MH in the US (Scawthorn et al., 2006)) making it difficult to assess 

damages at larger scales. This issue was addressed by Huizinga et al. (2017) who 

collected and normalized intensity-damage functions from countries across six 

different continents to produce a comprehensive and consistent global database of 

depth-damage functions. Current global studies which assess vulnerability through 

direct physical damages do so using either the Huizinga et al. (2017) global database 

of depth-damage functions (Alfieri et al., 2017, Dottori et al., 2018, Ward et al., 

2020b) or by applying nationally derived intensity-damage functions globally (Ward 

et al., 2013, Winsemius et al., 2016, Ward et al., 2017). A few global studies have 

also begun to address vulnerability from an economic perspective, using economic 

models to assess both the direct and indirect economic losses of river flooding 

(Dottori et al., 2018, Willner et al., 2018). 

 While studies have begun to compare global approaches to model flood 

hazard and exposure (as outlined in the previous sections), none so-far have 

compared global approaches to measuring vulnerability. Studies comparing and 

evaluating national scale approaches for calculating direct physical damages have 

been fairly extensive. Significant differences have been noted both in the different 

methodologies applied (Meyer and Messner, 2005, Merz et al., 2010b, Jongman et 

al., 2012a) and in the damage model outputs; owing to uncertainties including the 
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spatial allocation of assets, the pricing of assets, and the construction of intensity-

damage functions (de Moel and Aerts, 2011, Jongman et al., 2012a, Wing et al., 

2020a). Global approaches to calculate vulnerability deserve the same level of 

scrutiny, as the same uncertainties identified in national scale damage models are 

often inflated at the global scale; due to coarser data, wider-ranging assumptions, 

and less-detailed validation.  

1.6 Global Data Used Nationally 

 Global flood risk data has the potential to be useful at national scales to 

inform flood risk management decisions. These decisions, which have historically 

been reliant on the availability of national data (de Moel et al., 2009), are now being 

made in ‘data-poor’ countries; informed by global datasets of flood risk (Ward et al., 

2015). It has also been shown that the global flood modelling frameworks can ingest 

detailed local data (where available) to produce flood maps which are comparable to 

existing national level maps (Wing et al., 2017, Bates et al., 2021). A question often 

posed when working across different scales is: what level of detail is necessary? 

Apel et al. (2009) tried to answer this for a flood event on the river Mulde in the 

town of Eilenberg, Germany; a scale which would be commensurate (or just below) 

the level required to assess national flood risk. In comparing three hydraulic models 

and three vulnerability methods of increasing complexity to reference flood maps 

and damage data, Apel et al. (2009) found that both the ‘moderate’ complexity 

hydraulic model and vulnerability approach produced the best results. This moderate 

complexity hydraulic model follows a similar approach and makes the same 

assumptions as many of the global flood models (Bates and De Roo, 2000) — 

demonstrating their potential applicability at these scales. A global hydrological 

model, similar to those which force many of the GFMs, was shown by Gusyev et al. 

(2016) to produce comparable results to a local-scale hydrological model in the 

Rhine river basin. In a similar cross-scale comparison, Fleischmann et al. (2019) 

compared local, regional, and global approaches to modelling flood hazard in the 

Itajaí-Açu basin in Brazil and found that many global model components (reach 

length, cross sections, DEM resolution) limit their local relevance. These studies 

have demonstrated both the potential and possible limits of global data used 

nationally. However, the studies have all typically looked at one modelling approach 
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(at differing degrees of complexity). Previous intercomparison work has shown that 

the GFMs use very different approaches — each potentially relevant in different 

contexts (Trigg et al., 2016, Aerts et al., 2020). To properly assess the national 

credibility of global flood models, all existing modelling approaches should be 

compared. Furthermore, this comparison should involve global datasets 

encompassing all components of flood risk (hazard, exposure, and vulnerability) — 

something that has so-far been lacking in these cross-scale comparisons. 

 Further to evaluating how these global datasets actually perform at the 

national level is understanding how they can, and should, be used in a national flood 

risk management context. Depending on the country in question, national flood risk 

management differs in its approach, implementation, and objectives (Morrison et al., 

2018). Where, how, and if data is used to inform decision making will depend on the 

national flood risk management structure and determine the degree to which global 

data could be used to complement the process. There has been a shift in approach to 

flood risk management from an assumption of stationarity to a realization that future 

changes in climate and demographics need to be accounted for (Milly et al., 2008, 

Merz et al., 2010a, Biesbroek et al., 2010, Jonkman and Dawson, 2012, Browder et 

al., 2021). It would pre-suppose that these global datasets, which have been used 

extensively in academic studies of future flood risk, could benefit non-stationary 

national flood risk management. However, questions still remain about the accuracy 

of global data at these scales—and whether this data has the potential to be misused 

(Venot et al., 2021). To properly evaluate global flood risk data for use nationally a 

cross-disciplinary approach needs to be taken; their applicability at these scales is 

equally dependent on the accuracy of the global data as it is on the national context 

in which they would be used.  

1.7 Thesis Aims and Objectives 

 The aim of this thesis is to further the evaluation of global flood risk 

datasets. Despite their widespread use, there has been limited intercomparison and 

evaluation of these datasets, hampering their effective and informed implementation 

by end-users. In developing and building upon an intercomparison framework of 

global flood risk data, this thesis will address gaps in our current understanding of 

global flood risk; informing users about the applicability of global data and 
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identifying future directions for global dataset development. To achieve this aim, 

four main objectives have been identified: 

• Review and summarize the existing global flood model literature including 

their history, development, methodologies, use, and future directions. 

• Develop and test a framework for global flood model validation 

intercomparison. 

• Develop a methodology for exploring the differences in global flood model 

river network size and apply this methodology to quantify the impacts that 

both river network size and choice of global population data have on global 

and national flood exposure estimates.  

• Develop and apply an intercomparison framework for assessing the 

suitability of global flood risk data (hazard, exposure, and vulnerability) for 

use at the national scale while also considering the national flood risk 

management context in each country. 

1.8 Thesis Structure 

 The remainder of this thesis will be structured as follows. In Chapter 2, a 

literature review of global flood models will be presented. This literature review will 

cover the history and development of the models, different model structures and 

approaches, their wide-ranging application, existing model intercomparison work, 

and future research directions. This review will be the first to consolidate the 

literature on all existing global flood models. In Chapter 3, six different global 

flood models will be validated against satellite observed flood events in three 

hydraulically diverse regions in Nigeria and Mozambique. This work will introduce 

a framework for global flood model validation intercomparison, producing and 

publishing open validation data for future use. In Chapter 4, the issue of river 

network size in global flood models will be addressed. A model-independent 

geomorphological flood map will be developed and used to calculate global and 

national flood exposure using three different global population datasets. This work 

will quantify the impact of both the choice of global flood model (in terms of river 

network size) and the choice of global population dataset on flood exposure 

estimates. In Chapter 5, the use of global data for national flood risk management 
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in Colombia, England, Ethiopia, India, and Malaysia will be assessed. In total, 16 

different global datasets encompassing hazard, exposure, and vulnerability will be 

compared for use at the national scale. This work will also review the national flood 

risk management approaches in each country and assess the suitability of the global 

datasets used nationally within this context. In Chapter 6, the work in the preceding 

four chapters will be discussed within the context of the wider global flood risk 

literature, the key findings will be identified, and opportunities for further research 

will be discussed.  
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Global Flood Models 

2.1 Abstract 

 Flooding is the most damaging natural hazard, both economically and by 

population affected. Flood models are important tools for evaluating the risks 

associated with flooding. Historically, the modelling domain has been limited in 

scale; however, advancements in computing power and global datasets have led to 

the development of global flood models (GFMs). This global modelling capability 

has benefited scientific studies of exposure and climate change impact, the insurance 

industry, and intergovernmental disaster risk reduction efforts. Global flood 

modelling has now progressed beyond its infancy to a point where coordinated and 

targeted model development can take place based on collective studies. This chapter 

provides a detailed summary of the current global flood modelling state-of-affairs. It 

begins with a summary of the history and challenges of GFM development. This is 

followed by a review of current GFMs and their structures, applications, and 

credibility. A section is also dedicated to describing global flood modelling in the 

context of the insurance catastrophe model, an important GFM category that is less 

visible due to their proprietary nature. The chapter concludes by looking to the 

future and highlighting how GFMs need to improve and the new datasets and 

methods that could contribute to their continued development. 

2.2 Introduction 

 Global flood model (GFM) initiatives have developed rapidly over the past 

decade and have matured from research experiments into usable tools that are 

reshaping our understanding of global flood risk (Ward et al., 2015). This chapter 

explores how GFMs have become a recent reality and why they are important. It 

will also look at the different types of GFM, the differences between a GFM and 

more traditional flood modelling and look at some examples of how GFMs are being 

used, including the cross-overs with insurance catastrophe models. It will finish with 
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a look at current GFM credibility and where GFMs might develop in the future. The 

focus in this chapter will be mainly on models used to derive flood hazard globally, 

rather than those used for flood forecasting; which is a related use and many of the 

models discussed are used for both purposes. 

 While flooding is often experienced first-hand as a local impact and has 

traditionally been tackled at the relevant local catchment or reach scale, there is a 

growing understanding that many flood events are connected to, or driven by, short 

and long term global weather systems (Fan et al., 2015, Hagos et al., 2016). In 

addition, due to our increasingly interconnected global community, flood events in 

all parts of the globe are now having significant economic and social impacts in all 

parts of the world (Trigg et al., 2013). Together with the extra challenge of 

addressing the effects of climate change, which are felt globally, these drivers have 

led to a need for assessments of flood risk at a global scale. This global need has 

become evident on several fronts; scientific studies to simulate the impact effects of 

general circulation modelling, insurance catastrophe modelling to understand risk 

and exposure (Bates et al., 2018), and intergovernmental efforts in disaster risk 

reduction (UNISDR, 2005, UNISDR, 2009, UNISDR, 2011, UNISDR, 2013, 

UNISDR, 2015b). This collective challenge has resulted in the formation of the 

Global Flood Partnership (GFP), which brings together organizations involved in all 

these fronts. The overall objective of the GFP is the development of flood 

observational and modelling infrastructure, leveraging on existing initiatives for 

better predicting and managing flood disaster impacts and flood risk globally (De 

Groeve et al., 2015). 

2.2.1  The Challenges and History of GFM Development 

 Despite the growing need for a better understanding of global flood risk, it 

was not immediately evident how this could be achieved and what a resulting GFM 

would look like. Any GFM needs to be able to provide realistic and reliable 

estimates of flood hazard for a range of probabilities (return periods). For estimates 

of risk exposure, at a bare minimum, flood extent is required, and ideally flood 

depth is also needed to estimate risk from vulnerability. These outputs need to be at 

a sufficient resolution to be commensurate with global exposure datasets, which are 

also an active research field.  
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 Traditional flood risk modelling has filled these needs at a local scale. 

However, these require significant amounts of high resolution data and computation 

resources, as well as technical expertise to build and run the models (Table 2.1). 

Scaling this approach up to a global level seemed almost an impossible challenge 

and therefore a different approach was required. Thus, multiple parallel initiatives 

emerged from different sectors, leading to a rich diversity of GFMs approaches, 

which we detail in the next section. However, despite the initial variety, there were 

several common primary challenges to surmount for all developers (Sampson et al., 

2015) and there is therefore a common development timeline as data and methods 

became available (Figure 2.1).  

 The challenges facing developers fall into the following five categories: 

terrain data, channel location and size, river discharge, computational efficiency, and 

automation. The first challenge facing developers was the availability of global data 

with which to build the models. Flood models require information about the 

topography of the terrain that controls flooding. It was not until the advent and 

adoption of Shuttle Radar Topography Mission (SRTM) digital elevation data 

(hereafter DEM), that data of sufficient resolution and quality was available with a 

near global coverage. The second challenge, correctly identifying channel location 

and size, is inherently linked to the first; as the channel is derived from the DEM. 

The HydroSHEDS hydrography dataset, developed using the SRTM DEM, is 

essential to modelling flooding globally. The third challenge was to derive extreme 

flood flows at multiple locations for every river on earth, with limited gauged data. 

There are two distinct approaches to solving river discharge in GFMs,  

regionalization growth curve methods using data from the Global Runoff Data 

Center (GRDC) database (Smith et al., 2015) and land surface modelling of flows 

from global circulation models (GCMs). The latter approach, which enables the 

models to produce nowcasts, forecasts, and future predictions also introduces 

additional uncertainties into the modelling framework. Precipitation, a major source 

of uncertainty in GCMs, often dominates the uncertainty of flood simulations in 

GCM-driven models (Chen et al., 2014). The fourth challenge was to be able to 

computationally model the hydraulics of the flood flows in the rivers and on the 

floodplains with sufficient speed to undertake this for all rivers, for multiple 

probability scenarios. This was achieved through simplification of the hydraulics  
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Table 2.1  Characteristics of Global Flood Models Relative to Traditional Local 

Flood Models 

Characteristic Global flood model Local flood model 

Digital 

elevation model 

(DEM) 

Coverage is key, needs to be global. 

Potentially can be composite from 

different sources but difficulties in 

merging different data sources 

seamlessly 

Best available, typically 

three-dimensional laser 

scanning (LiDAR) 

Geographical 

coverage 

Global Typically tens of 

kilometres 

Floodplain 

hydraulics 

Limited equation base, sacrificing 

accuracy for speed, knowing that 

errors due to neglecting, e.g., 

advection terms are small compared 

to errors from lower quality DEM. 

Also related to resolution, as larger 

model cells make some terms less 

significant (see Hunter et al. (2007)) 

Typically full shallow 

water 

Channel 

hydraulics 

Sometimes ignored completely; 

allowance for channel capacity made 

by, e.g., removing bankfull 

discharge from flow estimate; or 

simple representation in DEM or 

submodel grid 

Full representation in two-

dimensional or as on-

dimensional submodel 

from bespoke 

topographical survey 

Outputs Typically extent only, vertical errors 

in DEM can prevent useful depth 

prediction 

Extent-depth-velocity-

duration 

Hydrology Regional growth-curve methods or 

large-scale land surface runoff 

modelling 

Led by hydrologist, 

making best use of local 

data 

Build and run 

process 

Fully automated Manual. Requiring 

experienced modellers 

Hardware Supercomputer, cluster, and cloud Desktop computer 

Flood sources Mostly only fluvial, some now 

include coastal and surface water 

Fluvial, coastal, surface 

water; sometimes dam 

break, groundwater, 

natural flood 

management, urban 

drainage systems 

Resolution 1 km to ~ 90 m for two-dimensional 

models. 5-50 km and postprocess 

downscaling for one-dimensional 

models 

~5 m or less 

Catchment size All large rivers. Smallest scale 

dependent on model, i.e., 50-5000 

km2 catchment size 

Down to ~1 km2 for 

fluvial, smaller 

catchments in surface 

water models 

Dynamics Steady state or partially dynamic, 

but increasingly fully dynamic 

Fully dynamic 
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and the development of rapid parallel computational algorithms (Bates et al., 2010) 

and sub-grid modelling approaches to solve multi-scale hydrodynamic process in 

rivers and floodplains (Yamazaki et al., 2011, Neal et al., 2012, Wu et al., 2014), as 

well as with the help of continuous computation speed improvements. The final, not 

insignificant, challenge for developers was to put these data and methods into an 

automatic functional framework that allowed specific hazard and forecasting outputs 

to be generated as required and in a format and resolution that was useable. 

 It should also be noted here that there have been parallel efforts to develop 

regional flood model approaches that share similar scale challenges with GFMs but 

may have access to better regional data. For example, the United Kingdom has 

undertaken national risk assessments using simple none hydraulic methods, due to 

computational cost (Hall et al., 2003), but later used two-dimensional diffusive wave 

hydraulic models (Bradbrook et al., 2004, Bradbrook et al., 2005). In the United 

States, the recent focus has been on the dynamic, unsteady river routing methods for 

quasi-real-time, event-based flood extent mapping (Adams, 2016).  

 Once a GFM is functioning, there may be a number of other secondary 

follow on challenges that require development, depending upon the use intended. 

Many of these are active research areas in themselves and specific approaches are 

outlined in the model detail section. For example, most current GFMs do not include 

infrastructure that may locally affect flood hazard, e.g. bridges, dams, flood defences 

and urban drainage networks. They often do not yet include other, maybe only 

locally important, sources of flood hazard other than fluvial (river source), such as 

pluvial, coastal or groundwater.  

 The GFM community has succeeded in overcoming these primary challenges 

and in developing a range of usable flood models. The rest of the chapter focuses on 

describing the models and their uses in more detail, while also looking at their 

testing and how developers are addressing the secondary challenges that will 

ultimately improve their credibility and usability. 
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Figure 2.1  Timeline of global flood model (GFM) development highlighting key 

data set releases, scientific meetings and publications, model releases and 

testing, and flood events. 

1, Bates and De Roo (2000); 2, Hall (2014); 3, Rodriguez et al. (2006); 4, 

Thielen et al. (2008); 5, Lehner et al. (2008); 6, Bates et al. (2010); 7, 

Yamazaki et al. (2011); 8, Neal et al. (2012); 9, Pappenberger et al. (2012); 10, 

Winsemius et al. (2013); 11, Ward et al. (2013); 12, Hirabayashi et al. (2013); 

13, Schumann et al. (2014); 14, Wu et al. (2014); 15, Smith et al. (2015); 16, 

Rudari et al. (2015); 17, Ward et al. (2015); 18, Sampson et al. (2015); 19, 

Dottori et al. (2016); 20, Scussolini et al. (2016); 21, Trigg et al. (2016); 22, 

Yamazaki et al. (2017); 23, Wing et al. (2017); 24, Bernhofen et al. (2018) 

2.3 Types of GFM and Specific Examples 

 The palpable benefit of being able to model flood hazard anywhere in the 

world meant that as soon as the necessary inputs for a GFM became available, a 

number of different groups began developing models simultaneously. Flood 

modelling on such a large scale had never been undertaken before and brought with 

it challenges that had not previously been encountered. Each model developer 

approached these new challenges differently, resulting in a broad selection of GFMs 

with varying model structures.  

 This section will begin by highlighting the key differences in model 

configuration of six well known GFMs, for which there is extensive documentation. 

These models include U-Tokyo (previously called CaMa-UT), a research model 

from the University of Tokyo (Yamazaki et al., 2011); Centro Internazionale in 

Monitoraggio Ambientale and United Nations Environment Program (CIMA-
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UNEP), a model developed for the 2015 United Nations International Strategy for 

Disaster Reduction (UNISDR) Global Assessment Report (GAR; Rudari et al. 

(2015)); ECMWF, a model developed by the European Centre for Medium-Range 

Weather Forecasts (Pappenberger et al., 2012); GLOFRIS, a model developed by 

Deltares (Winsemius et al., 2013); JRC, a model developed by the Joint Research 

Centre in Italy (Dottori et al., 2016); and Fathom (previously called SSBN), a 

commercial model that arose out of research from the University of Bristol 

(Sampson et al., 2015).  

 Categorizing GFMs based on their characteristics is not a straightforward 

task. A previous study grouped the models into two types by extreme flow method: 

cascade model types and gauged flow data types (Trigg et al., 2016). A schematic of 

these two model groups is shown in Figure 2.2. This section will elaborate on 

additional model differences by looking at five different aspects: scale 

characteristics, model forcing, probability estimation methods, calibration, and 

hydraulic methods. Before highlighting the differences between the models, it 

should be noted that there are also many common underlying datasets, in particular, 

the HydroSHEDS global hydrography dataset (Lehner et al., 2008) and the SRTM 

DEM from which it is derived (Rodriguez et al., 2006). This section concludes by 

describing other global hydrology models that may also develop into GFMs in the 

future or add to process improvements in GFMs. The GFMs used for insurance 

purposes are described separately, partly due to the lack of published information, 

but also due to the very specific risk framework within which they are used. 

2.3.1  Scale Characteristic 

 The scale of GFMs can refer to a number of things: the minimum threshold 

size of rivers that are represented, the resolution at which the calculations are carried 

out, or the resolution of the actual flood hazard output. The question of scale is 

something that needs to consider both the accuracy and comprehensiveness of the 

flood hazard output alongside the computational efficiency of the model. 

 Communicating the scale of river representation in GFMs is typically done 

in terms of upstream catchment area. The threshold river size considered by the 

models varies significantly, from ~50 km2 (Fathom Global) to ~5000 km2 (JRC). 

The GFM output is contingent on the input datasets, and often, global datasets are 
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not resolved to a level where the smallest rivers can be easily represented. The 

coarse (~5000 km2) upstream area threshold of the JRC’s model comes as a result of 

using ERA-Interim climatology, where the coarse global resolution cannot 

accurately represent very local precipitation (Dottori et al., 2016). 

 Operating at a coarse resolution is not a detriment to these global models but 

rather a necessity. Many of the models run their computations at a coarser scale and 

then downscale these results to the output resolution. The process of downscaling 

makes modelling at such large scales more computationally viable (Bates et al., 

2018). The Fathom model, however, no longer downscales and runs all calculations 

explicitly at either 30 m or 90 m resolution (depending on the DEM available). This 

shows how far GFMs have come in only a matter of years (Sampson et al., 2015). 

The principle, however, remains the same; global models cannot be run at 

‘engineering’ level resolutions (< 5 m), even if the data were available.  

 The scale of GFMs is likely the characteristic that will see the most 

improvement over the coming years. As computational capacity improves through 

faster processors and parallelization, so too global datasets will see advancements in 

terms of accuracy and resolution; making it possible to accurately model the flood 

hazard of even the smallest streams at some point. 

2.3.2  Model Forcing 

 Global flood models can be most easily categorized by their method for 

generating extreme flood flows. Models are either forced by climate reanalysis data 

or by global gauge data. The two methods for forecasting extreme flows differ 

significantly. See Figure 2.2 for a useful visualization of this model categorization 

and the different stages in analysis that occur as a result of beginning with an 

extreme flow methodology.  

 Those models forced by climate data combine a climate reanalysis data set 

with a land surface model to predict extreme flows. Climate reanalysis datasets 

contain measurements of global climate data that are collected and stored at a 

constant time step (often 6-12 h) over an extended period (30-40 years for the GFMs 

in question) (Dee et al., 2016). These rainfall data, along with other relevant climate 

data, are input into a land surface model that simulates the land surface response to 

the climate forcing (Pappenberger et al., 2012) and outputs the resultant rainfall 

discharge and volume. 
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 The GFMs not forced by climate data are forced instead by regionalized 

analysis of global gauge data. The premise for these models is that the discharges 

measured in well-monitored catchments can be transferred to unmonitored 

catchments that share similar characteristics. The GFMs use data from sources like 

the Global Runoff Data Centre (GRDC), which collects discharge data from 9500 

stations globally. Catchments are then categorized based on their Koppen-Geiger 

climate classification (Kottek et al., 2006) and their rainfall characteristics. The 

behaviour of similarly characterized gauged catchments is used to derive ungauged 

catchment flows so that extreme flows can then be calculated for all global 

catchments (Smith et al., 2015, Rudari et al., 2015). 

 

Figure 2.2  A simplified schematic of the two main model structures used by the six 

different global flood models. 

Source: Trigg et al. (2016) 
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2.3.3  Probability Estimate Methods 

 In order for GFMs to model flooding of a specific return period, some form 

of flood probability estimation needs to take place. All the models apply a Gumbel 

distribution (Generalized Extreme Value distribution Type I) to their forcing data to 

estimate the return period magnitude. The models differ, however, in the flood 

component that is output as a result of this probability estimation.  

 The JRC, Fathom, and CIMA-UNEP models return probability discharges. 

These discharges are then used as input for a hydraulic model, which simulates the 

flood extent and depth in the catchment for the given return period flow (Sampson et 

al., 2015, Rudari et al., 2015, Dottori et al., 2016). The ECMWF and U-Tokyo 

models return probability flood depths, derived from the Gumbel frequency analysis 

of river water storage, which is calculated by passing the climate forcing data 

through a river routing scheme. These probability flood depths are calculated for 

each river cell and are used to determine whether the surrounding cells are flooded 

or not (Yamazaki et al., 2011, Pappenberger et al., 2012). The GLOFRIS model 

operates under a similar ‘flooded cell’ probability scheme, but uses flood volume 

instead of flood depth to determine the probability of cell inundation (Ward et al., 

2013, Winsemius et al., 2013). 

2.3.4  Calibration 

 A major difference between GFMs and reach-scale flood models is the level 

to which they are calibrated. Reach-scale flood models are often calibrated against a 

multitude of different measurements and observations from historical flood events, 

these include: gauge flow records, gauge water level measurements, flood depth, 

flood extent, and flood frequency (Huxley and Ryan, 2016). Data availability, in 

addition to the scale and global applicability of GFMs, limits the feasibility of 

conventional flood model calibration. Variables traditionally derived at a regional 

scale through calibration, such as flow roughness parameter Manning’s n, are either 

calculated based on a relationship with streamflow (Wu et al., 2017) to account for 

the relationship between roughness and flooded vegetation (Soong et al., 2012), or 

determined based on basin characteristics (Rudari et al., 2015), previous studies 

(Dottori et al., 2016), or even kept constant in the global domain (Yamazaki et al., 

2011, Winsemius et al., 2013).  
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 Many of the GFM input data sets have undertaken some form of correction. 

The forcing datasets for almost all of the models have received bias correction and 

the underlying SRTM-based (Rodriguez et al., 2006) based HydroSHEDS DEM 

(Lehner et al., 2008) has in some cases received vegetation canopy and urban bias 

correction (Yamazaki et al., 2012, Sampson et al., 2015, Dottori et al., 2016). Bias 

correcting the underlying DEM is of vital importance, as these areas of vegetation 

and high urban concentration see consistent elevation overestimation. This incorrect 

terrain representation, in turn, naturally affects the accuracy of the modelled flood 

extent. 

2.3.5  Hydraulic Method 

 Central to each GFM is a hydraulic model that simulates, to varying degrees 

of complexity, the physics of fluid flow. To operate globally, these models often 

need to make assumptions about flow physics that simplify the governing equations, 

thereby considerably reducing computation time. Information about the set-up of 

each model, including the most up to date hydraulic method is provided in Table 

2.2.  

 The CIMA-UNEP model is the only GFM that operates in one-dimension, 

solving Manning’s equation (2.1) at regular points along the centreline of the river 

channel (Rudari et al., 2015):  

 
𝑄 =

𝐴

𝑛
𝑅

2
3√𝑆 (2.1) 

where Q is the channel flow [L3 T-1], R is the hydraulic radius [L], S is the channel 

slope [L/L], A is channel cross-sectional flow area [L2], and n is Manning’s 

roughness coefficient [T L1/3]. One-dimensional flow representation is the simplest 

form of flood modelling, but while it is computationally efficient, it can falsely 

represent connectivity in floodplains and cannot model the floodplain flow well, 

unless it is parallel to the main river channel (Neelz and Pender, 2009). However, on 

the large scales of global flood models it appears to perform reasonably well 

considering its limitations (Bernhofen et al., 2018). 

 

 

 



  Chapter 2 

48  Global Flood Models  

 

T
a
b

le
 2

.2
  
G

lo
b
al

 F
lo

o
d
 M

o
d
el

 D
et

ai
ls

 

M
o
d

el
 

C
li

m
a

te
 

F
o

rc
in

g
 

L
a

n
d

 s
u

rf
a
ce

 

m
o

d
el

 

R
iv

er
 r

o
u

ti
n

g
 

F
lo

o
d

p
la

in
 

F
lo

o
d

 f
re

q
u

en
cy

 
D

o
w

n
sc

a
li

n
g
 

O
u

tp
u

t 
d

a
ta

 

re
so

lu
ti

o
n

 

G
L

O
F

R
IS

 

(D
el

ta
re

s,
 

V
U

 

A
m

st
er

d
am

, 

U
n
iv

er
si

ty
 

o
f 

U
tr

ec
h
t,

 

P
B

L
) 

E
U

-W
A

T
C

H
 

re
an

al
y
si

s 

1
9
6
0
-1

9
9
9
 

H
y

d
ro

lo
g
ic

al
 

m
o

d
el

 P
C

R
-

G
L

O
B

W
B

, 

0
.5

° 

K
in

em
at

ic
 

0
.5

° 

3
0
 a

rc
 s

 S
R

T
M

 

m
o
d
el

 

F
lo

o
d
 v

o
lu

m
e 

G
u
m

b
el

 

d
is

tr
ib

u
ti

o
n
 f

o
r 

1
9
6
0

-1
9

9
9
 

V
o

lu
m

e 
re

d
is

tr
ib

u
ti

o
n

 3
0

 

ar
c 

s 
S

R
T

M
 m

o
d

el
 

3
0

 a
rc

 s
 ~

9
0

0
 

m
 

U
-T

o
k
y
o
 

(U
-T

o
k
y
o
, 

JA
M

S
T

E
C

) 

JR
A

-2
5

 

re
an

al
y
si

s 

1
9

7
9
-2

0
1

0
 +

 

G
P

C
P

 r
ai

n
 

g
au

g
e 

co
rr

ec
ti

o
n
 

M
A

T
S

IR
O

-

G
W

 e
n

er
g
y
 

an
d

 w
at

er
 

b
al

an
ce

 (
1
°)

 

In
er

ti
a 

0
.2

5
° 

S
u
b
g
ri

d
 t

o
p
o
g
ra

p
h
y
 

u
p
sc

al
ed

 f
ro

m
 3

 a
rc

 s
 

H
y
d
ro

S
H

E
D

S
 a

n
d
 

S
R

T
M

 

W
at

er
 l

ev
el

 

G
u
m

b
el

 

d
is

tr
ib

u
ti

o
n

 f
o

r 

1
9
7
9

-2
0

1
0
 

F
lo

o
d

 d
ep

th
 d

o
w

n
sc

al
ed

 

o
n

to
 1

8
 a

rc
 s

 D
E

M
 

1
8

 a
rc

 s
 ~

5
4

0
 

m
 

H
T

E
S

S
E

L
 +

 

C
aM

a-
F

lo
o
d
 

(E
C

M
W

F
) 

E
R

A
-I

n
te

ri
m

 

re
an

al
y
si

s 

1
9

7
9
-2

0
1

4
 

H
T

E
S

S
E

L
, 

T
2

5
5

 (
~

8
0
 

k
m

) 

T
h
re

e 

m
et

h
o
d
s:

 

k
in

em
at

ic
, 

in
er

ti
a(

x
2
) 

0
.2

5
° 

S
u
b
g
ri

d
 t

o
p
o
g
ra

p
h
y
 

u
p
sc

al
ed

 f
ro

m
 3

 a
rc

 s
 

H
y
d
ro

S
H

E
D

S
 a

n
d
 

S
R

T
M

 

F
lo

o
d
 d

ep
th

 G
E

V
 

d
is

tr
ib

u
ti

o
n

 f
o

r 

1
9
7
9

-2
0

1
4
 

D
ep

th
 d

o
w

n
sc

al
ed

 o
n

to
 

1
8

 a
rc

 s
 D

E
M

 

1
8

 a
rc

 s
 ~

5
4

0
 

m
 

JR
C

 
G

lo
F

A
S

, 
E

R
A

-

In
te

ri
m

 

re
an

al
y
si

s 

1
9

8
0
-2

0
1

3
 

H
T

E
S

S
E

L
 

L
IS

F
L

O
O

D
-

G
lo

b
al

 (
0
.1

°)
 

+
 i

n
er

ti
a 

(3
0
 

ar
c 

s)
 

S
u
b
g
ri

d
 t

o
p
o
g
ra

p
h
y
 

u
p
sc

al
ed

 f
ro

m
 3

 a
rc

 s
 

H
y
d
ro

S
H

E
D

S
 a

n
d
 

S
R

T
M

 

G
u
m

b
el

 

d
is

tr
ib

u
ti

o
n

 f
o

r 

1
9
8
0

-2
0

1
3
 

N
/A

 
3

0
 a

rc
 s

 ~
9

0
0

 

m
 

F
at

h
o
m

 
R

eg
io

n
al

 F
F

A
 

fr
o
m

 g
lo

b
al

 

g
au

g
e 

d
at

a 

N
/A

 
In

er
ti

a 
1

 o
r 

3
 

ar
c 

s 

M
E

R
IT

 o
r 

1
 a

rc
 s

 

m
ix

ed
 (

e.
g
.,

 N
E

D
) 

F
ro

m
 F

F
A

 
N

/A
 

3
 a

rc
 s

 ~
9
0
 m

 

o
r 

1
 a

rc
 s

 

~
3

0
 m

 

C
IM

A
-

U
N

E
P

, 

G
A

R
2
0
1
5

 

R
eg

io
n

al
 F

F
A

 

fr
o
m

 g
lo

b
al

 

g
au

g
e 

d
at

a 
+

 

E
C

E
ar

th
 b

ia
s 

co
rr

ec
te

d
 

C
o

n
ti

n
u

u
m

 

m
o

d
el

 t
o
 

im
p
ro

v
e 

F
F

A
 

M
an

n
in

g
’s

 a
t 

m
u
lt

ip
le

 p
o
in

ts
 

R
ec

o
n
d
it

io
n
ed

 

H
y
d
ro

S
H

E
D

S
 a

n
d
 

S
R

T
M

 

F
ro

m
 F

F
A

, 
G

E
V

 

fi
tt

in
g
 

N
at

iv
e 

at
 3

 a
rc

 s
  

3
 a

rc
 s

 ~
9
0

 m
 

A
d
a
p
te

d
 f

ro
m

 T
ri

g
g

 e
t 

a
l.

 (
2

0
1

6
) 



Chapter 2 

Global Flood Models 49 

 

  

 The remaining flood models all operate in two dimensions, solving some 

simplified form of the shallow-water equations, as the computational cost of running 

the full solvers would make modelling unfeasible with such large domains. The full 

one-dimensional shallow water equations for momentum and continuity are given in 

equations (2.2) and (2.3), respectively, below: 

 𝜕𝑄𝑥
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 𝜕𝐴

𝜕𝑥
+ 

𝜕𝑄𝑥

𝜕𝑥
= 0 (2.3) 

where Q is the flow in the x direction [L3 T-1], A is the cross-sectional flow area [L2], 

h is the water depth [L], z is the bed elevation [L], g is the acceleration due to 

gravity [L T-2], n is Manning’s roughness coefficient [T L1/3], R is the hydraulic 

radius [L], t is time [T], and x is the distance in the x Cartesian direction [L].  

 Channel flow is calculated in the two-dimensional models using kinematic 

wave, diffusive wave, or inertial simplifications of the shallow-water equations. The 

kinematic wave simplification, used in the GLOFRIS model, assumes that local and 

convective acceleration (the first and second terms of equation 2.2) are negligible 

and simplifies the water slope term (term three in equation 2) to consider only bed 

gradient (z) and not water depth (h). It retains the friction-slope term (term four in 

equation 2.2). The diffusive wave simplification differs from the kinematic wave 

simplification in that it includes water depth (h) in the water-slope term. This allows 

backwater effects to be simulated in models that apply the diffusive wave 

simplification. The inertial simplification to the shallow-water equations is an 

adapted form of the diffusive wave simplification that incorporates local 

acceleration (term one in equation 2.2) into the formulation (Bates et al., 2010). The 

remaining models have either updated their models to (U-Tokyo and ECMWF), or 

have always employed (Fathom and JRC), a form of the inertial simplifications for 

their hydraulic simulations.  

 Out of channel, or floodplain flow, in the GFMs is modelled in two 

dimensions; and while most solve some simplified form of the two-dimensional 

shallow-water equations, the GLOFRIS model represents out of bank floodplain 

flow using a simple water-level/volume relationship. Although floodplain flow in 
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the GLOFRIS model is technically modelled in two dimensions, the volume 

distribution approach does not represent conservation of momentum. This approach 

is often referred to as “pseudo-two-dimensional” because it omits any flow physics 

in two dimensions (Evans et al., 2007, Neelz and Pender, 2009). The remaining 

models solve floodplain flow using the two-dimensional shallow-water equations, 

which take the same general form as the one-dimensional equations but in two 

directions, and apply the same simplifications as outlined above for one dimension. 

 Some of the models are also able to incorporate features below the model 

grid resolution into the simulation. This subgrid representation can either explicitly 

include channels as in the Fathom and JRC GFMs, or incorporate subgrid scale 

topography through parameterization (Yamazaki et al., 2011), as in the ECMWF and 

U-Tokyo GFMs. The ability to model subgrid processes is important in a global 

flood modelling context, as it allows simulations to run at a coarse, computationally 

efficient, resolution while still capturing the relevant floodplain connectivity and 

inundation dynamics. 

2.3.6  Other Relevant Models 

 Another field that is starting to impact the GFM scene is that of global 

hydrology models (Schellekens et al., 2017), which have the potential, if tuned to 

high flow regimes, to represent flood regimes.  

 One example of a global modelling framework that is similar to the models 

described so far is the Dominant River Tracing-Routing Integrated with VIC 

Environment (DRIVE) model (Wu et al., 2014). The DRIVE model applies the 

kinematic wave or diffusion wave equations both to dominant rivers at grid level 

and tributaries at subgrid level. The DRIVE model is the core component of the 

Global Flood Monitoring System (GFMS). The GFMS is a National Aeronautics 

and Space Administration (NASA) funded experimental system using real-time 

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 

(TMPA) and Global Precipitation Measurement (GPM) Integrated Multi-satellitE 

Retrievals for GPM (IMERG) precipitation maps as input to the DRIVE model. The 

DRIVE model runs on a quasiglobal (50 °N–50 °S) grid for hydrological runoff and 

routing simulations. Flood detection and intensity estimates are based on 15 years of 

retrospective model runs with TMPA input, with flood thresholds derived for each 

grid location using surface water storage statistics. The GFMS flood forecast range 
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is 5 days, and the DRIVE model also includes a routine for determining forecast-

based inundation extent at 1km. 

The Model for Scale Adaptive River Transport (MOSART) is also an example of a 

global hydrology model that has the potential to model floods and has been used to 

study surface water dynamics of the Amazon basin (Luo et al., 2017). The 

MOSART was developed as a scalable framework for representing and studying 

riverine dynamics of water, energy, and biogeochemistry cycles across local, 

regional, and global scales from an integrated human-Earth system perspective (Li et 

al., 2013, Li et al., 2015). The MOSART receives runoff inputs from the land 

component of an Earth system model or a land surface model, routes the runoff 

across hillslope into tributary channels (within each spatial unit such as a 

latitude/longitude grid or subwatershed) then through river networks which connect 

all spatial units within a study domain. The kinematic wave method is used for the 

routing of runoff over hillslopes and in the channels with relatively steep 

topography, and a diffusion wave method is used for the channels with flat 

topography or those prone to inundation (Luo et al., 2017).  

 Finally, it is worth mentioning the risk modelling framework developed by 

Arnell and Gosling (2016). These authors assessed global river flood risk under 

climate change (flood-prone population and flood damage) using a global 

hydrological model with climate scenarios derived from 21 climate models, together 

with projections of future population. Flood hazard was calculated considering 

change in the flood frequency and magnitude. 

2.4 Application of GFMs 

 Global flood models are multifaceted: they have applications in many 

different fields related to research, planning, insurance, commercial use and 

emergency support. Here we present a description of some of their main 

applications, which are also summarized in Table 2.3. 

2.4.1  Flood Hazard Mapping 

 Many areas of the globe still lack reliable spatial information about the 

location and extent of flood prone areas; this absence has been one of the main 

drivers behind the development of GFMs. The main advantage of using GFMs to 
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characterize flood hazard is that resulting estimates are derived in a consistent way, 

using input datasets of the same accuracy and with the same modelling framework. 

This consistent approach provides a more realistic picture of exposure (Wing et al., 

2018). Flood hazard evaluation is typically undertaken by deriving inundation maps 

for a range of return periods, although some GFMs calculate hazard from continuous 

climatological or meteorological information. These maps can be produced either 

for research (Pappenberger et al., 2012, Ward et al., 2013, Sampson et al., 2015, 

Dottori et al., 2016) or commercial purposes, and some models are used for both 

(Sampson et al., 2015).  

Table 2.3  Different Possible Applications of Global Flood Models with Referenced 

Examples 

Category Model References 

Flood Hazard 

Mapping 

ECMWF 

JRC 

GLOFRIS 

Fathom (SSBN) 

Pappenberger et al. (2012) 

Dottori et al. (2016) 

Ward et al. (2013) 

Sampson et al. (2015) 

Flood risk 

analysis 

(climate 

change) 

CIMA-UNEP 

GLOFRIS 

JRC 

U-Tokyo 

 

 

Fathom 

CAT models 

UNISDR (2015a) 

Ward et al. (2013); Winsemius et al. (2016) 

Alfieri et al. (2017) 

Yamazaki et al. (2011); Hirabayashi et al. 

(2013); Tanoue et al. (2016); Dottori et al. 

(2018) 

Sampson et al. (2015) 

Flood 

forecasting 

GFMS 

GloFAS 

Wu et al. (2014) 

Alfieri et al. (2013) 

Adapted from Alfieri et al. (2018) 

 Global flood models are now also being used at a national scale, 

incorporating more accurate local data into their framework. Fathom have recently 

released a United States model that uses national U.S. Geological Survey (USGS) 

elevation data along with other national datasets to produce flood hazard output at 

30 m resolution (Wing et al., 2017). They used the same approach in Belize, 

incorporating local data into their model to produce national flood hazard maps 

(http://www.charim.net/) (Ward et al., 2015, Trigg et al., 2017). 

2.4.2  Flood Risk Analysis 

 A further step in the use of GFMs is using the flood hazard maps as an 

intermediate step to produce flood risk estimates at a global scale. Typically, risk is 

expressed considering expected annual economic losses and expected annual 
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number of people potentially affected (UNISDR, 2015a). These analyses can focus 

on current risk, how risk has changed historically, and how risk may change as a 

result of future climate and socioeconomic change. Risk estimates characterizing 

present risk conditions often do so at country level. The CIMA-UNEP model was 

used to predict average annual losses at national level for the GAR 2015 report 

(Rudari et al., 2015). Similarly, GLOFRIS is integrated into an online tool, 

AQUEDUCT (http://floods.wri.org/), which allows end-users to easily interact with 

flood hazard maps and assess impacts such as urban damage, affected GDP, and 

affected population at country scale. 

 Historical datasets can be incorporated into flood risk analysis to evaluate 

changes in vulnerability and risk over time. Databases such as the History Database 

of the Global Environment (HYDE) provide gridded time series of population and 

land use changes. Combining these time series with flood hazard maps reveal 

historical trends in flood risk exposure (Jongman et al., 2012, Tanoue et al., 2016). 

 Those models forced by climate data (as outlined in the section 2.3.2) benefit 

from the fact that future climate scenarios can be easily simulated within the model 

framework. Studies investigating future flood risk also incorporate socioeconomic 

and demographic changes into their analyses as these are seen as equally 

contributory to future risk. The JRC, GLOFRIS, and U-Tokyo models have all been 

integral to high impact research studies predicting future flood risk under various 

climatic, demographic, and socioeconomic projections (Hirabayashi et al., 2013, 

Winsemius et al., 2016, Alfieri et al., 2017, Dottori et al., 2018). 

 The flexible, semiautomatic framework of GFMs also lends them useful to 

flood management scenario modelling. The models can be run under different 

defence scenarios and coupled with exposure datasets to provide a cost-benefit 

analysis of various management schemes (Ward et al., 2017). 

2.4.3  Flood Forecasting 

 Given the computational burden of deriving inundation maps, GFMs are 

currently not applied for real-time flood forecasting. The GFMS is a flood 

forecasting model that shares a similar framework to GFMs. However, instead of 

being forced by historical climate or gauge data, it is forced instead by real-time 

satellite-based precipitation data (Wu et al., 2014). The previously described global 
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flood hazard models can quasi-forecast flooding by producing and using static 

inundation maps as reference scenarios to evaluate potential flood-prone areas and 

flood impacts according to forecasts. The GFM modelling frameworks are already 

automated and built for speed, in the future we will likely see these frameworks used 

in forecasting over large scales. This potential use presents one the most promising 

GFM development areas in the near future. 

2.4.4  Insurance Exposure 

 A key application for GFMs is in modelling insurance exposure. Some of the 

GFMs we have covered already, such those developed by Fathom, are being used to 

inform insurance companies about the exposure of their portfolio. The bulk of this 

insurance exposure analysis is undertaken within specialized insurance catastrophe 

model frameworks. The commercial nature of these models means that there is little 

published literature about their development and structure. The next section provides 

a summary of the current “public” state of knowledge for these commercial 

examples of GFMs. 

2.5 Insurance Catastrophe Models  

 The insurance and reinsurance industry started considering natural 

catastrophe (CAT) models in the late 1980s at a time when modelling companies 

first appeared. The use of CAT models by property (re)insurers has grown since 

then. They are now commonly used for portfolio management (e.g., accumulation 

control, analysis of the key risk drivers) and risk transfer (e.g., structuring and 

pricing of risk transfer through reinsurance or alternative solutions). Property 

(re)insurers are also expected by regulators to use cat models in their risk 

management processes. 

 The CAT models are designed to quantify the financial impact of 

catastrophic scenarios for the risk carrier. Both the frequency and the severity of the 

scenario (also called “event”) are estimated. One of the specificities of CAT models 

is that they adopt different financial perspectives for the loss computation: economic 

losses but also insured losses or reinsured losses, depending on the interest of the 

risk carrier. The structure of CAT models can be described in four main modules: 
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1. The hazard module: this is the core of cat models and it contains information 

specific to the peril.  

2. The exposure module: all relevant information from the (re)insurance 

portfolio is captured. This includes the location of the properties; but also the 

occupancy, building type, and sums insured. 

3. The vulnerability module: hazard intensities are translated into potential 

damages based on the local hazard, the physical characteristics of the 

properties at risk and the values insured by coverage (e.g., building, content 

or business-interruption). Vulnerability functions are one of the main sources 

of uncertainty in flood risk models (Metin et al., 2018) because of the large 

variabilities in damages. Vulnerability functions are therefore typically 

described with an uncertainty distribution around the mean damages. 

4. The financial module: insured and reinsured losses are computed based on 

the (re)insurance terms and conditions. All the CAT model vendors have 

developed their proprietary CAT modelling platforms that include a financial 

module. Model users run the set of stochastic events on their portfolio of 

policies and obtain from the platform the list of losses for different financial 

perspectives and by stochastic event. In the past few years, a new initiative 

largely driven by the (re)insurance industry has developed an open source 

loss modelling platform: OASIS (https://oasislmf.org/) Loss Modelling 

Framework (LMF). The main objectives of the OASIS initiative are to 

improve risk assessment through more models by providing the modelling 

platform, more transparency, and innovation. 

 There are three main categories of companies developing CAT models: the 

modelling companies that license their products to insurers, reinsurers and 

reinsurance brokers; the reinsurance brokers that provide their CAT models as part 

of their service to their clients (insurance companies) or license them; and some 

large insurance and reinsurance companies that use their cat models internally. 

 Flood events in a CAT model stochastic event set are defined as flood 

footprints. The local hazard intensity of those footprints is generally the flood depth. 

Other indicators are usually not modelled. Three main components are necessary to 

build those stochastic footprints: flood hazard maps, stochastic precipitation and 

discharge scenarios, and flood defence information. The final footprints run in the 
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CAT models are a combination of these three components. The flood hazard maps 

are used to translate the precipitation and discharge scenarios into flood footprints 

by taking into account the local flood defence systems. 

2.5.1  Flood Hazard Mapping 

 The objective with flood hazard mapping in the context of financial loss 

assessment is to have comprehensive and detailed flood hazard maps for different 

return periods, typically six return periods between 20 years and 1000 years. 

However, the challenges when mapping flood hazard are the resolution required and 

the spatial coverage. In fact, local topography conditions can significantly influence 

the damages sustained in the properties. Furthermore, it is estimated that around 

30% of the National Flood Insurance Program (NFIP) claims in the United States 

are located outside of the 100-year flood zones (Wojtkiewicz et al., 2013). A 

standard flood mapping strategy has been adopted to overcome these two 

difficulties.  

 Detailed topography datasets are one of the main drivers for accurate flood 

mapping (Bhuyian and Kalyanapu, 2018). The nationally complete digital elevation 

data range in resolution from 5 m (e.g., in the United Kingdom) or 10 m (e.g., in the 

United States) to 90 m in other countries (e.g., in Asia). The resolution of the digital 

elevation data is, however, limited by the availability and cost of high-resolution 

topography data at very large scales, and by the run time cost of the hydraulic 

model. Developers of GFMs will often vary the digital elevation data used from 

country to country depending on the quality of data available at a national level. 

 The flows are propagated along the river network in order to obtain the 

extent and depth of the flooding by using hydraulic models solving the shallow-

water equations. Different modelling solutions have been chosen: one-dimensional 

hydraulic models, two-dimensional hydraulic models, or a combination of both 

types of hydraulic model. 

 The flood frequency analysis approach is often applied to derive design 

discharges at all river locations for a set of return periods. Alternative techniques can 

also be used because of the global scale of some of the modelling. The rationale 

behind those alternative approaches is to make use of precipitation data as they are 

common and more comprehensive than discharge data in some parts of the world. 
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 The analysis of historical insurance claims data from floods shows that a 

significant proportion of those claims come from outside of the large river 

floodplains. Consequently, both fluvial flooding and surface water flooding are 

modelled, and the fluvial flood maps cover the large and the small rivers draining a 

few square kilometres. 

 Some companies have developed global flood hazard map products based on 

the specifications and approaches described above. Those companies use approaches 

that they can apply anywhere, paralleling the GFMs described in the rest of the 

chapter.  

2.5.2  Stochastic Precipitation and Discharge Scenarios 

 Realistic scenarios reproducing dependences across catchments are 

important to properly assess potential financial impacts for a (re)insurance company. 

These scenarios can be developed at the country or at the regional level and cover 

several countries. 

 The stochastic scenarios need to include both precipitation and river 

discharges in order for the CAT model to estimate claim amounts from both flood 

types. Precipitation modelling is the first component of the modelling chain for the 

stochastic scenarios in most of the models. In countries where tropical cyclones are 

present, precipitation is modelled as tropical cyclone induced and non-tropical 

cyclone induced. This requires a realistic catalogue of tropical cyclones tracks. 

 Temperature modelling is usually carried out along with precipitation to 

account for snow accumulation and snow melt in the runoff generation process for 

relevant regions. The precipitation and temperature simulations then drive rainfall-

runoff models to compute river discharges at all river locations. The precipitation, 

temperature and hydrological modelling can be done on a continuous basis or as 

event based.  

 A key parameter for the evaluation of financial losses under reinsurance 

contracts is the definition of an event. It is often found in reinsurance contracts that a 

natural event has a physical definition, for instance that a flood event must come 

from a single weather system, but also has a maximum duration. This maximum 

duration is called the hours clause, and current practice in the United States is for 

this to be 168 h; clauses of 504 h are also common in Europe. However, those 
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clauses are not necessarily standard and can differ from one contract to another even 

for the same territory. This means that if the travel time of the flood wave along a 

river system is long enough, flooding can happen more than 168 h apart at two 

different locations. In that case, the flood claims would be considered as belonging 

to two different events. The hours clause can have an impact on the payment by the 

reinsurer to the insurer after an event depending on the details of the reinsurance 

contract. The hours clause is often taken into account in the definition of the events 

of the stochastic event set. Some models provide the flexibility to the cat model 

users to define their own relevant hours clause. 

2.5.3  Flood Defences 

 Flood defence systems can have a significant impact on flooding. Developers 

of CAT models collect flood defence information from authorities and incorporate 

them into their models. However, this information is often incomplete and 

assumptions need to be made for places where no information exists or is not 

available. Flood defence data is another significant source of uncertainty in flood 

risk models (Metin et al., 2018). 

2.6 GFM Credibility 

2.6.1  The Importance of Model Credibility 

 Since the beginnings of the development and use of numerical models, there 

has always been an acknowledgment that models need to be applied carefully, lest 

their limitations lead users astray. As the famous quote from George Box states, “All 

models are wrong, but some are useful”. This is no different for GFMs and it could 

be argued that it is even more pertinent, as in reality GFMs consist of a chain of 

models. Addressing aspects of model error and uncertainty has become a specific, 

and important, research field in the past few decades (Beven and Freer, 2001, 

Beven, 2006, Chatfield, 2006). Despite model uncertainty being a complex area of 

study in its own right, at its core has been the traditional process of model 

calibration and validation. Calibration is the tuning of model parameters to ensure 

model outputs match real-world observations as closely as is reasonably practicable. 

Validation is the testing of a calibrated model’s outputs against observations to see 

how well they match non-calibration events. In essence, calibration and validation 
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allow us to test the models to see how useful they are, and they form an integral part 

of the scientific process (KlemeŠ, 1986). 

 Given that the ambitious aim of GFMs is to provide a quantification of flood 

hazard for all rivers through the application of a single consistent methodology, and 

that their outputs are being used by an increasing range of practitioners (Ward et al., 

2015), ensuring they are fit for purpose is crucial. The very different scale and 

ambition of GFMs, as well as the difference of approach to traditional flood 

modelling, makes testing them a particularly challenging process, and therefore this 

is still a developing, but very important, research field.  

 As the improvements in data resolution and increasing computation abilities 

enable GFMs to move towards ever higher resolutions, there is a tendency for users’ 

expectations to increase in line with this. This expectation is particularly prevalent 

where there is an existing lack of national-scale or reach-scale flood hazard 

information with which to compare. The expectation can lead to an unrealistic view 

that a GFM can replace engineering-grade hydraulic modelling methods and data 

and be applied to purposes for which they were never intended, for example to 

identify risks to individual properties.  

 After the initial excitement of being able to generate and use flood risk 

analysis at a global scale for the first time fades, users are beginning to demand 

more information about how good the models are in particular geographical 

locations or for particular purposes. Model developers are very aware of the 

importance of communicating the limitations of their models and are therefore also 

keen to gain constructive feedback from users in order to focus future efforts to 

improve the models. This user-developer dialogue has long been a regular topic at 

GFP annual meetings and led directly to the first multi-model intercomparison 

(Trigg et al., 2016) and collective validation exercise (Bernhofen et al., 2018) for 

GFMs. 

2.6.2  Existing Model Testing 

 It is ultimately the model developer’s responsibility to test their models to 

ensure they are fit for purpose, particularly where their results have been made 

openly accessible. There are plenty of studies showing that developers do take this 

responsibility seriously (Yamazaki et al., 2011, Yamazaki et al., 2012, Pappenberger 
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et al., 2012, Winsemius et al., 2013, Yamazaki et al., 2013, Yamazaki et al., 2014b, 

Wu et al., 2014, Rudari et al., 2015, Sampson et al., 2015, Dottori et al., 2016, Wing 

et al., 2017), although not all to the same extent, possibly due to resource 

limitations, data availability, and/or project funding cycle challenges. 

 Model outputs typically consist of flood extents and depths for multiple 

probabilities (or return periods). While methods of remote sensing of flooding have 

advanced significantly (Schumann and Neal, 2021), it is not possible to observe the 

full range of event probabilities for all rivers and therefore definitively validate all 

models for all locations, as these events will not necessarily have occurred in the 

limited time we have been observing the whole globe. Add to this the fact that the 

larger the river system scale, the less likely the same probability event will occur 

everywhere, ensuring a definitive calibration and validation for GFMs will remain 

elusive. 

 Due to the scale and complexity of GFMs and commensurate observational 

data challenges, GFMs do not necessarily have a full calibration of all components. 

Their hyper-distributed form, with multiple parameters and components ensure that 

model equifinality (Beven and Freer, 2001, Beven, 2006) is a serious challenge for 

any attempt at overall model calibration. However, developers often undertake a 

form of calibration and validation for subcomponents of the model, where 

observations are available. An example of this would be the testing of extreme flows 

for regionalized flow methods (Smith et al., 2015) or bias corrections for models 

that rely on precipitation inputs (Huffman et al., 2009). Where the GFM framework 

is sufficiently flexible to allow adjustment to locally available datasets, some GFMs 

have been applied at a national scale, such the Fathom model in Belize, where 

locally gauged rainfall and river flows were used to further regionalize the global 

method (Ward et al., 2015). 

 Hoch and Trigg (2019) provide a meta-study summary of GFM validations 

performed to date. They show that there have been a wide range in validation (also 

referred to as benchmarking) data sets used, maybe partly as a result of what data 

were available at the time of model development. Most GFMs are validated against 

some inundation extent in some basins, and only a few compare simulated discharge 

and water surface elevation with observations. The specific river systems used for 
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model validation differ between models as well as the number of studies 

documenting the model development over time (Figure 2.3) (Hoch and Trigg, 2019).  

 So we can see that GFMs have been validated for a range of case studies and 

model parameters. The fact that all models are validated “successfully” for non-

identical settings may, from a model developers perspective, lead to the conclusion 

that the model performs well. However, it may also lead to the erroneous 

assumption that all models perform equally well (Hoch and Trigg, 2019). That this 

is not the case has been shown by grouped model intercomparison and validation 

studies (Trigg et al., 2016, Bernhofen et al., 2018).  

2.6.3  Collective Testing 

 Trigg et al. (2016) performed the first intercomparison of GFMs and 

demonstrated that when six GFMs were compared with each other over the 

Continent of Africa, they only showed a 30-40% agreement in flood extent (Figure 

2.4). So even at continental scales, there are significant differences in hazard 

magnitude and spatial pattern between models, notably in deltas, arid/semi-arid 

zones and wetlands (Trigg et al., 2016). Bernhofen et al. (2018) carried out the first 

group model validation against the same observed data for two major flood events in 

Africa. The flood events used were the floods of 2007 in Mozambique and of 2012 

in Nigeria. These events were chosen as they were recent large-scale disasters with 

good observational validation data and of a scale where GFMs should perform 

reasonably well (Bernhofen et al., 2018). The critical success index of individual 

models ranged from 0.45 to 0.7 and the percentage of flood captured ranged from 

52% to 97%. While this demonstrated a similar spread of model performance to that 

seen in Trigg et al. (2016), encouragingly it showed that the best individual models 

have an acceptable level of performance for these large rivers and demonstrated the 

importance of group validation. 
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Figure 2.3  Map depicting the regions where each global flood model (GFM) 

validation model output against extents. Table summarizing the validation 

methods of each GFM 

Regions depicted in purple are locations where multiple GFMs validated, all 

other colours refer to specific GFMs. (Note U-Tokyo has no unique validation 

locations). Table adapted from Hoch and Trigg (2019) 

1, Dottori et al. (2016); 2, Sampson et al. (2015); 3, Wing et al. (2017); 4, 

Winsemius et al. (2013); 5, Yamazaki et al. (2012); 6, Yamazaki et al. (2013); 

7, Yamazaki et al. (2011); 8, Yamazaki et al. (2014a); 9, Pappenberger et al. 

(2012); 10, Rudari et al. (2015)  

 It is encouraging to see this growing body of reports and publications 

recording the development and testing of GFMs, both individually and collectively, 

showing a growing maturity of the subject. However, there is a notable lack of 

record regarding one particularly important subgroup of GFMs: that of the global 

CAT model for insurance purposes. Proprietary modelling methods with associated 

intellectual property rights, as well as a unique application framework, make it 

difficult for these model groups to engage in this process in a fully open way. 

Nonetheless, given their important application worldwide they must not be excluded 

from the process and no doubt benefit from the open studies reported here.  
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Figure 2.4  Global flood model agreement scores across Africa. 

(a) Aggregated flood results for six models for a 1-in-100 year return period 

fluvial flood hazard for the African continent. Colour scale indicates how 

many models predict flooding. (b) Detail for the lower Nile. (c) Detail for the 

lower Niger, showing areas of strong agreement (narrow confined floodplains 

at the confluence of the Benue and Niger rivers) and areas of disagreement in 

the Niger coastal delta. 

Source: Trigg et al. (2016) 

 Individual model validation procedures do not contribute to a better 

understanding why GFMs differ locally in their simulated inundation extent. The 

work of Trigg et al. (2016) and Bernhofen et al. (2018) demonstrates the value of a 

collective approach, but needs to be extended and undertaken routinely rather than 

on an ad hoc basis. What is really needed is more insight in the relative performance 
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of GFMs; that is, with identical boundary conditions and for the same set of 

validation data sets. It is only then that clearer conclusions can be drawn as to why 

results may differ between GFMs and where the greatest potential for improvement 

lies.  

 Up to now, GFMs have seen a rapid increase in number, their application, 

and acceptance (Ward et al., 2015). However, to further extend the dissemination of 

GFMs and their products, the testing of GFMs should become more standardized, as 

is already the case in other Earth science fields such as climate research. Model 

inter-comparison projects (MIPs) are a community-based way to compare models 

and their products with standardized objective functions and data sets, for instance, 

the Coupled Model Inter-comparison Project (CMIP) or the Inter-Sectoral Impact 

Model Inter-comparison Project (ISI-MIP) (Warszawski et al., 2014). Similar to 

these MIPs for general circulation models, establishing a MIP for GFMs should be a 

next development step. With such a Global Flood Model Inter-comparison Project 

(GFMIP) the uncertainties associated with model inputs, modelling cascade, 

parameterization, and so forth could be reduced and, consequently, the overall 

acceptance of models and their results would likely increase. That this is timely is 

shown by recent efforts benchmarking GFMs globally (Trigg et al., 2016, Bernhofen 

et al., 2018) or individual components such as DEMs (Hawker et al., 2018), 

numerical routing scheme (Hoch et al., 2017a, Hoch et al., 2017b, Zhao et al., 2017), 

or grid design and properties (Savage et al., 2016, Hoch et al., 2018). Besides, strong 

learning moments would be created which could additionally contribute to 

improvements of GFMs. Hoch and Trigg (2019) call for just such a project and 

outline how this may be achieved through a shared intercomparison framework, 

common forcing data, and validation data. 

2.7 The Future of GFMs 

 Now that GFMs have most definitely “arrived” and are demonstrating their 

value, what is the next stage in their development? While many GFMs derive from 

scientific research projects to push the bounds of what is possible, these have 

ultimately translated into operational tools and this drives the interest in improving 

the models. Users also naturally begin to expect more of GFMs as their utility is 

demonstrated. Future steps will depend on where priorities lie for model 
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development groups and users and how these priorities align, with the GFP taking a 

central role in this dialogue. Flood is also not a standalone hazard and GFMs thus 

have a role as a subcomponent in integrated risk frameworks such as the upcoming 

UNISDR Global Risk Assessment Framework (GRAF) (Elsworth, 2018). Global 

flood models will certainly be around for the coming decades and development is 

likely to focus on three specific areas of improvement: (i) datasets, (ii) processes 

representation, and (iii) testing. 

2.7.1  Improvements in Data Sets for Model Build and Testing 

 Advances in GFMs will be possible through future releases of higher 

resolution and more accurate data sets: whether through entirely new data sets or 

improvements to existing ones. Elevation data, in particular, strongly influences the 

performance of GFMs, as it is a representation of the terrain that controls flooding 

(Schumann, 2014). For example, the most anticipated near-future DEM release is 

the NASADEM Global Elevation Model (Crippen et al., 2016). Here, NASA will 

reprocess the entire SRTM dataset, which is used in all GFMs, and use new 

algorithms and ancillary data to produce a freely available global DEM at ~30 m 

resolution. Other DEMs, such as those produced by the Public-Private TanDEM-X 

mission, are able to resolve at up to ~12 m globally (Krieger et al., 2007). However, 

the commercial nature of the mission restricts the availability of the higher 

resolution data sets to paying customers and curtails their use in open GFMs. The 

trend is towards higher resolution DEM data sets and this will translate into better 

GFMs. 

 Derived from DEMs, hydrography datasets are a key component within 

GFMs, as they represent the river network. Global flood model hydrography is in 

urgent need of updating as all models still use the decade old HydroSHEDS dataset 

(Lehner et al., 2008). While HydroSHEDS has been particularly important in GFMs 

due to its structured data properties, it suffers from significant irregularities in flat 

terrains and urban areas, which affect the accurate location of river channels. Future 

hydrography datasets should incorporate accurate vector river data from 

observational sources, for example Sentinel 2 or OpenStreetMap, to compliment the 

traditional DEM-derived river delineation.   
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 A future mission likely to have a major impact on GFMs is the NASA 

Surface Water and Ocean Topography (SWOT) mission (Durand et al., 2010). 

Scheduled for launch in 2021 and lasting three years, the SWOT mission will 

globally monitor Earth’s surface water. Data related to the height, slope, and 

discharge of rivers will be invaluable from a hydraulic modelling testing 

perspective, while topographical ocean details should also improve the climate 

models that force many of the GFMs. 

 The measurement of river discharge using satellites is an emerging field of 

research that will benefit from the SWOT mission and could be incorporated into 

GFMs in the future. The Dartmouth Flood Observatory (DFO) already runs an 

experimental product called the River and Reservoir Watch that estimates river 

discharge using satellite microwave sensors (Brakenridge et al., 2016). Although 

still an experimental product, its relevance to GFMs is evident: remotely sensed 

river flows could become another method of model forcing as well as for validation.   

 Data sets used to measure flood exposure are equally as important as those 

ingested within the actual models. Traditionally, flood exposure has been measured 

using gridded datasets such as WorldPop, which represents population density 

within a 100 m x 100 m cell. Recently, a High Resolution Settlement Layer (HRSL) 

was released by Facebook in collaboration with the Center for International Earth 

Science Information Network (CIESIN) at Columbia University. The HRSL uses 

high-resolution (~0.5 m) commercial satellite data to identify individual settled cells 

at ~30 m resolution. Available in 22 countries, the HRSL can provide a more 

accurate picture of exposed population and should, in theory, result in better flood 

exposure estimates when used in tandem with GFMs. The limited global coverage of 

the HRSL warrants mentioning the Global Human Settlement Layer (GHSL), which 

relies on technology similar to that of the HRSL and has global coverage; though it 

is only available at 250 m resolution (Pesaresi et al., 2013). 

 Future GFM development will not only rely on new data, but also on existing 

data that has been adapted in a way that makes it more accessible and fit for 

purpose. An example of one of these “products” is the Global Flood Database being 

developed by Cloud to Street (https://www.cloudtostreet.ai/). Satellite images of 

historical flood events are vital for validating GFM output. The DFO has been the 

main source for this historical data. However, although the DFO maintains a 
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catalogue of around 5000 flood events dating back to 1985, only around 5% of the 

events have been mapped and the mapping methodology for these events has not 

always been consistent. The Global Flood Database uses the DFO’s catalogue of 

events to map over 3,000 events since 2001 using a consistent algorithm and 

integrating it all within the Google Earth Engine (GEE) framework (Tellman et al., 

2021). This consistent methodology as well as the accessibility provided by GEE 

opens the door to far more extensive future GFM validation studies. 

2.7.2  Improvements in Processes Representation 

 In tandem with improved datasets for model build and testing, there is also a 

push to improve physical process representation within GFMs. Often this is through 

adding processes through subgrid representation, for example with improved river 

channel geometry (Neal et al., 2015). Further development in this area will rely on a 

combination of improved methods and bathymetry data, which are notoriously 

difficult to find. Another area which has seen improvement is in representation of 

river hydrography, such as the addition of bifurcating river channels (Yamazaki et 

al., 2014b), shown to be particularly important for flood mapping in delta regions 

(Trigg et al., 2016). Further developments in improving river hydrography are 

expected in the near future as this is an active research area for a number of GFP 

groups. 

 One particular current weakness of GFMs is in urban areas, where 

understanding flood exposure is particularly important. For example, the STRM 

DEM has not yet been corrected for urban areas to the same level as for vegetation 

(Baugh et al., 2013), although some model groups do a simple correction based on 

GDP (Sampson et al., 2015). Large urban areas also benefit from surface water 

drainage systems, which are not represented at all in GFMs. Urban areas can also 

benefit from flood defences and some models represent these through simple 

assumptions relating standards of defence linked with GDP (Sampson et al., 2015). 

However, there are notable efforts to build an open database of global defences that 

will be important in future GFMs (Scussolini et al., 2016). 

 As other global modelling efforts begin to overlap with GFMs, there are 

possibilities to explore compound flood events, which often occur together, such as 

coastal (Vousdoukas et al., 2016) and fluvial flood hazard. These additional hazard 
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components may either be included as an explicit model component such as with 

pluvial risk in Fathom’s GFM (Sampson et al., 2015), or may be combined later in a 

general flood risk assessment framework. 

2.7.3  Improved Model Testing 

 Thorough model testing and validation is key to guarantee model accuracy 

and as a basis for wider acceptance with end users. Currently, GFMs are validated 

and tested individually for different basins, with different data, and different 

objective functions. While this yields an estimate of how accurate a model performs 

in representing one or more specific flood events, it does not provide insight in its 

relative performance compared to other GFMs (Hoch and Trigg, 2019).  

 Hence, there is much potential in advancing GFMs by more thorough and 

streamlined validation procedures. Also needed for better testing is the integration of 

up-to-date observations of flood events. With remote sensing technology becoming 

more advanced and improved methods to account for uncertainties with such 

remotely sensed imagery, the overall accuracy of model testing will improve. This 

would not only require efforts from the GFM community, but also wider 

collaboration with adjacent fields such as data processing, cloud computing, and 

remote sensing, to provide the required cyberinfrastructure. 

 One possible approach might be a web-based platform created to facilitate a 

standardized validation of GFMs. By means of the platform, the external model 

properties (i.e., boundary conditions and forcing data) could be provided from a 

central location ensuring all models are applied under comparable settings. Model 

results could also be uploaded to the platform where validation with observed data 

(which could be updated regularly) and benchmarking with other model output 

would be performed in an automated manner. 

 Regardless of the way model testing will evolve, improvement is necessary. 

By subjecting GFMs to stricter guidelines, all involved can benefit: the wider 

community, through mutual learning moments, communication, and transparent 

scientific discourse; the developers, as they would learn where their model excels 

and where adjustments are required; and the end-users, as uncertainties surrounding 

flood maps would be reduced and quantified, leading to more actionable 

applications of GFMs. 
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Chapter 3 

A first collective validation of global fluvial flood models for major 

floods in Nigeria and Mozambique 

3.1 Abstract 

 Global flood models (GFMs) are becoming increasingly important for 

disaster risk management internationally. However, these models have had little 

validation against observed flood events, making it difficult to compare model 

performance. In this paper, we introduce the first collective validation of multiple 

GFMs against the same events and we analyse how different model structures 

influence performance. We identify three hydraulically diverse regions in Africa 

with recent large scale flood events: Lokoja, Nigeria; Idah, Nigeria; and Chemba, 

Mozambique. We then evaluate the flood extent output provided by six GFMs 

against satellite observations of historical flood extents in these regions. The critical 

success index of individual models across the three regions ranges from 0.45 to 0.7 

and the percentage of flood captured ranges from 52% to 97%. Site specific 

conditions influence performance as the models score better in the confined 

floodplain of Lokoja but score poorly in Idah’s flat extensive floodplain. 2D 

hydrodynamic models are shown to perform favourably. The models forced by 

gauged flow data show a greater level of return period accuracy compared to those 

forced by climate reanalysis data. Using the results of our analysis, we create and 

validate a three-model ensemble to investigate the usefulness of ensemble modelling 

in a flood hazard context. We find the ensemble model performs similarly to the best 

individual and aggregated models. In the three study regions, we found no 

correlation between performance and the spatial resolution of the models. The best 

individual models show an acceptable level of performance for these large rivers. 

3.1 Introduction 

 Flooding is the most frequent and the most damaging of natural disasters 

globally (Berz et al., 2001). From 1995-2015, floods affected 2.3 billion people, 

killing 157,000 (Wallemacq et al., 2015). Fluvial (river) flooding is the most 
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common type of flood event and with over half of the world’s population living 

within 3 km of a freshwater body, it has truly global implications (Kummu et al., 

2011). Flood impacts will continue to increase in severity, as the population exposed 

to fluvial flooding is expected to rise by 31% over the next 30 years. Certain 

vulnerable regions, such as Sub-Saharan Africa, are predicted to see an increase in 

exposed population by as much as 104% (Jongman et al., 2012). Given current CO2 

emission trends, global temperatures could rise by up to 4º C by 2100 (Sherwood et 

al., 2014). To put this into a fluvial flooding context, a temperature rise of 4º C 

could result in 70% of the global population experiencing a 500% increase in flood 

risk (Alfieri et al., 2017). Increased population exposure, coupled with the increased 

frequency and severity of flooding, means that reducing the risks associated with 

flooding is of vital importance to the United Nations Office for Disaster Risk 

Reduction (UNDRR) as outlined in their global assessment reports (UNISDR, 

2015a). Reducing disaster vulnerability is a key target in goal 11 of the United 

Nation’s Sustainable Development Goals (United Nations, 2015) and specific risk 

reduction targets, to be met by 2030, were introduced in the Sendai Framework for 

Disaster Risk Reduction (UNISDR, 2015b).  

 Flood models are an integral tool for managing and reducing the risks 

associated with flooding. In the past decade, increased computing power and 

precision of remote sensing data sets has led to the development of global flood 

models (GFMs) (Wood et al., 2011). These models are being developed by a number 

of different groups that include consultancies (Michel, 2018), research groups 

(Dottori et al., 2016), intergovernmental organizations (Rudari et al., 2015, 

Pappenberger et al., 2012), academia (Yamazaki et al., 2011), and academic 

affiliated companies (Sampson et al., 2015, Ward et al., 2013). GFMs are being 

actively used for disaster risk management: providing flood hazard maps in data-

scarce countries where there is little local or national information about flood risk 

(Ward et al., 2015). They are also being used extensively in research: for evaluating 

the benefits of flood protection investments globally (Ward et al., 2017) and to 

determine changes in future flood risk due to climate change (Hirabayashi et al., 

2013, Winsemius et al., 2016, Alfieri et al., 2017). 
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 Despite their extensive applicability, each flood model has only had limited, 

internal, validation against either observed events, existing regional models, or 

reported fatalities and financial losses (Yamazaki et al., 2011, Pappenberger et al., 

2012, Ward et al., 2013, Winsemius et al., 2013, Sampson et al., 2015, Rudari et al., 

2015, Dottori et al., 2016, Ward et al., 2017). The Global Flood Partnership (GFP) 

(https://gfp.jrc.ec.europa.eu/), a cooperation framework between developers and 

users of global flood tools, made the comparison of GFMs a research priority at their 

annual meeting in 2014 (De Groeve et al., 2015). The resulting GFM 

Intercomparison Project (GFMIP) was the first study to compare the flood hazard 

output of six GFMs on the continent of Africa. Research from the GFMIP showed 

there was wide variation in the flood hazard output of the six GFMs (Trigg et al., 

2016b). The GFMIP identified the need for collective validation of the GFMs 

against observed flood extents.  

 This study is a continuation to the GFMIP, using its outputs and original 

GFM model output data to validate against observed flood events and expand on the 

testing of collective model output. It is the first study to validate multiple GFMs 

under the same framework and against the same observed events, allowing model 

performance to be easily compared.  This study should help identify which GFMs 

perform best and how different model structures influence performance. The results 

should also provide further insight into the reasons for model disagreement 

originally identified in the GFMIP (Hoch et al., 2017). 

 The collective validation presented in this paper expands the rigorous GFM 

comparison begun in the GFMIP. As the models are improved and are used more 

extensively for disaster risk reduction, the need to compare model performance 

becomes increasingly apparent. The results of a rigorous comparison provide both 

users and model developers with information pertinent to the potential applicability 

of GFMs.   

 In this study, we identify regions with recent, large scale flood events with 

good observational validation data. We then develop a validation framework under 

which we test the output of six GFMs and the aggregated output of the GFMIP. We 

aim to answer which models perform best and identify the most important model 

characteristics affecting GFM performance. We also investigate whether an 

ensemble of the best individual GFMs improves the predicted flood extent. 

https://gfp.jrc.ec.europa.eu/
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3.3 Data and Methodology 

3.3.1  Models 

 The six GFMs compared in the GFMIP and in this study are the Catchment-

Based Macro-scale Floodplain (CaMa-Flood) model (Yamazaki et al., 2011), the 

Centro Internazionale in Monitoraggio Ambientale and United Nations Environment 

Program (CIMA-UNEP) model (Rudari et al., 2015), the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Pappenberger et al., 2012) model, 

the Global Flood Risk with Image Scenarios (GLOFRIS) model (Winsemius et al., 

2013, Ward et al., 2013), the Joint Research Centre (JRC) model (Dottori et al., 

2016), and the SSBN model (now known as Fathom Global Ltd.) (Sampson et al., 

2015). GFM output was provided for this study by each of the six developers in the 

form of flood extent maps. The models use different techniques to predict flood 

extent and depth for a given return period flow. These range in complexity from 1D 

hydraulic modelling (CIMA-UNEP) and simple 2D flood re-distribution methods 

(GLOFRIS) to more complex 2D (ECMWF and CaMa-Flood) and 2D 

hydrodynamic models (JRC and SSBN). GFM forcing can be split into cascade 

model type (CaMa-Flood, GLOFRIS, ECMWF, JRC) and gauged flow model type 

(SSBN, CIMA-UNEP) (Trigg et al., 2016b). Cascade models use climate reanalysis 

data over 40 years to determine the probability that a cell is flooded. Gauged flow 

models use a growth curve to determine extreme flow. This flow is then input into a 

hydraulic model that predicts the flood extent for a given return period flow.  Model 

output resolutions at the equator vary between ~90 m (SSBN, CIMA-UNEP), ~540 

m (CaMa-Flood, ECMWF), and ~900 m (GLOFRIS, JRC). All the GFMs use the 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) as their 

input DEM. Further information regarding model setup and the differences in model 

forcing and computational engine can be found in Appendix A.2. The aggregated 

fluvial flood extent (Figure 3.1 (d)), an output of the GFMIP that shows the level of 

agreement in flood extent between all six models, was also validated in this study to 

assess the potential for using multiple model combinations for flood extent 

prediction (Trigg et al., 2016a, Trigg et al., 2016b). 
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3.3.2  Case Study 

 Three hydraulically varied regions in Africa were chosen for validation: two 

in Nigeria and one in Mozambique (Figure 3.1). Nigeria and Mozambique were 

identified in the GFMIP as countries with high exposure to flooding (Trigg et al., 

2016b). An important factor in the choice of study regions was the size of the river. 

All the reaches contained rivers sufficiently large that they should be accurately 

represented in the GFMs regardless of the model spatial resolution.  Validating 

model performance on rivers narrower than the resolution of the coarsest GFM 

would produce unfair results. In addition to this, delta regions were avoided for 

analysis to prevent issues associated with the demarcation of fluvial and coastal 

flooding, the latter of which is not currently represented in the GFMs, although 

recently CaMa-Flood was coupled with the results of a Global Tide and Surge 

Model (Muis et al., 2016) to simulate the influence of tide and surge on river levels 

(Ikeuchi et al., 2017).  

 The first region in Nigeria, referred to in this study as Lokoja, is at the 

confluence of the Niger and Benue rivers. It is a region with narrow, confined 

floodplains. The second region in Nigeria, located south of Lokoja between the 

cities of Idah and Onitsha, is referred to as Idah in this study. The Idah region is 

relatively flat and contains an extensive floodplain that has a number of smaller 

channels and streams. Downstream of the Idah floodplain is a tectonic constricted 

outlet. Located in central Mozambique, the final analysis region is referred to as 

Chemba and is situated in the lower Zambezi basin, upstream of the delta. The 

Zambezi River in the Chemba region can be classified as anabranching (more than 

one channel) with a very wide valley floor trough (Davies et al., 2000).  

 The flood events used as the benchmark validation datasets were the floods 

of 2007 in Mozambique and of 2012 in Nigeria. These events were chosen as they 

were recent large-scale disasters with good observational validation data. Torrential 

rain between December 2006 and February 2007, coupled with the landfall of 

Cyclone Favio in February 2007, caused flooding in Mozambique that affected more 

than 130,000 people (Rana, 2007). The 2012 flooding in Nigeria was even more 

devastating; affecting almost four million people  (The Federal Government of 

Nigeria, 2013). The floods in Nigeria were caused by heavy rainfall between July 

and October 2012. 
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Figure 3.1  Global flood model validation study regions and data. 

(a) Location of study regions in Africa. (b) Lokoja and Idah study regions with 

MODIS imagery of 2012 flooding (Brakenridge, N.D.). (c) Chemba study 

region with MODIS imagery of 2007 flooding (Brakenridge, N.D.). (d) Global 

flood model aggregated fluvial flood extent output (25 year return period) for 

each region where the cell colour represents the number of models that predict 

it will flood in the corresponding cell (Trigg et al., 2016a). 

 

 

3.3.3  Data 

 Flood imagery of both events was taken from the Dartmouth Flood 

Observatory (DFO) archive (Brakenridge, N.D.). The DFO uses Moderate 
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Resolution Image Spectroradiometer (MODIS) imagery to capture flood events 

globally, and stores them online in an open-access archive. Vegetation bias was 

determined to have a negligible effect on the MODIS flood imagery in the three 

study regions (Nigro et al., 2014). The Chemba region is dominated by shrubbery 

and grasslands, and any woodland is sparse (CES, 2014) and although there are 

forests in both regions in Nigeria, these have not detrimentally affected the observed 

MODIS flood imagery. For the 2012 event in Nigeria, 45 days of imagery 

(September 15 – October 29) were downloaded from the DFO archive and merged 

into one flood extent. Using over six weeks of data ensured that the entire event 

(maximum extent) was captured. The flood extent for the 2007 event in 

Mozambique was taken from a flood map image on the DFO website. The process 

of georeferencing the image for analysis is outlined in Appendix A.1. 

 Both flood events had, very approximately, estimated return periods of 

around 50 years (BBC News, 2007, Reuters, 2012). The GFMIP compared the flood 

extent outputs of six return periods: 25, 100, 250, 500, and 1000 years. Not all of the 

individual GFMs had a 50 year return period output. Therefore, to ensure that the 

validation results best represent the skill of the models, two return periods were 

tested in the individual analysis: 25 and 100 years. For the aggregated analysis, only 

a 25 year return period was used. The return periods mentioned in this study, both 

reported and modelled, should be interpreted with an understanding of their 

associated uncertainties. Both events’ 50 year flood return period was reported in 

news reports with no indication of how the value was calculated (BBC News, 2007, 

Reuters, 2012). Individual GFM return periods will not be consistent with one 

another due to the different approaches each takes to determine a given return period 

flood extent. Depending on the GFM model type, the climate model used, or the 

gauge data used, each GFM will have different estimated return period extents.  

 All the datasets used for validation in this study are open access, with the 

thought that the regions and events studied can be used for future GFM validation. 

The datasets are available from Research Data Leeds for academic research and 

education purposes (https://doi.org/10.5518/340).  

3.3.4  Analysis 

 The analysis in this study was done in QGIS (v2.18). Individual GFM 

outputs were converted from extents with pixels indicating depth of flooding to 

https://doi.org/10.5518/340
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binary (wet/dry) water masks representing only flood extent. No specific flood depth 

threshold was used, only the wet/dry threshold of each individual GFM output. The 

modelled and observed extents were then overlapped in each of the study regions. 

The MODIS flood imagery used in this study was obtained in ~250 m resolution. In 

order to preserve the detail of the highest resolution models, and because 

comparison needs to be carried out at the same spatial resolution, the MODIS 

imagery and all GFM outputs that were not previously of ~90 m resolution were 

resampled using the nearest neighbour method to ~90 m resolution. Because the 

datasets are binary, false accuracy errors associated with resampling to a higher 

resolution are not introduced. This is because interpolation between binary pixels 

during resampling does not result in new values (as is the case when resampling a 

continuous value dataset). Resampling may have introduced geospatial overlap 

errors, however, these errors occur regardless of the resolution resampled to and 

they are unlikely to have affected the validation results. The degree of overlap 

between the modelled flood extents and the observed DFO extents was calculated in 

terms of the number of pixels that showed model agreement, overprediction, and 

underprediction. Maps visualizing this overlap were produced (Figure 3.3). The 

numerical data from these calculations was then used to calculate performance 

scores. The aggregated GFM output (Figure 3.1(d)) was extracted in six different 

model agreement levels. The extents ranged from largest to smallest: from any 

model agreement (≥1 models agree) to all model agreement (6 models agree). Each 

of the six model agreement levels was converted to a binary water mask and 

underwent the same analysis as the individual GFMs.  

The performance metrics used in the analysis of the flood models are commonly 

used in flood model assessments and for forecast verification in the atmospheric 

sciences (Wilks, 2006). The scores were also used by a number of GFM providers 

for their own in-house validation (Wilks, 2006, Alfieri et al., 2014, Sampson et al., 

2015, Dottori et al., 2016, Wing et al., 2017). The three performance scores were 

chosen as their results represent the most important aspects of model performance: 

model fit, model bias, and the proportion of total flood captured. The first, and most 

comprehensive, score is the F<2> score or  the Critical Success Index (CSI) (Wilks, 

2006): 
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𝐶𝑆𝐼 =

𝐹𝑚 ∩ 𝐹𝑜

𝐹𝑚 ∪ 𝐹𝑜
 (3.1) 

where 𝐹𝑚 ∩ 𝐹𝑜 is the intersection of the modelled and observed flood extent, or 

number of correct forecasts, and 𝐹𝑚 ∪ 𝐹𝑜 is the union of modelled and observed 

extent. The CSI ranges from 1 (best) to 0 (worst). The CSI has been shown to 

favourably bias larger floods (Stephens et al., 2014). However, because the floods 

compared in this study have a similar return period and because model performance 

is being compared within the same flood, CSI was deemed appropriate. The second 

score, the hit rate (HR) (Wilks, 2006), measures the proportion of the observed flood 

that was captured by the model: 

 
𝐻𝑅 =

𝐹𝑚 ∩ 𝐹𝑜

𝐹𝑜
 (3.2) 

where 𝐹𝑜 is the total observed flood extent. The HR ranges from 1 (entire flood 

captured) to 0. The third score is the Bias score (Wilks, 2006), which measures 

whether a forecast is biased towards under-prediction or over-prediction: 

 
𝐵𝑖𝑎𝑠 =

(𝐹𝑚 ∩ 𝐹𝑜) + 𝐹𝑚

(𝐹𝑚 ∩ 𝐹𝑜) + 𝐹𝑜
− 1 (3.3) 

where 𝐹𝑚 is the total modelled flood extent. A Bias score of 0 indicates an unbiased 

model. Positive and negative bias scores indicate bias towards overprediction and 

underprediction respectively.  

 Although there are a number of other forecast verification scores that could 

have been used, the three performance scores chosen for this study were deemed 

appropriate because they do not consider the dry area in the validation regions. 

Performance scores such as the Pierce skill score, false alarm rate, and F<1> that 

account for dry area in their formulae are not desirable in situations where correct 

‘no’ forecasts dominate the analysis, as would be the case for the large validation 

regions in this study (Stephens et al., 2014). 

 The variation in flood hazard output between the GFMs identified in the 

GFMIP (Trigg et al., 2016b) raises the question of whether an ensemble model 

performs better than any individual flood model. Multiple model combinations have 

been used extensively in the atmospheric sciences in the form of model ensembles 

(Leith, 1974, Ehrendorfer, 1997, Gneiting and Raftery, 2005, Demeritt et al., 2007, 
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Siqueira et al., 2016, Schellekens et al., 2017). The ensemble model proposed in this 

study is a simple composite of the best performing individual models. In theory, this 

ensemble should reduce the uncertainty associated with using any individual model. 

Using a combination of the best performing individual models should reduce 

uncertainty as using multiple models with different modelling methods would negate 

any errors associated with a single modelling method.  The best performing 

individual models to include in the ensemble are determined by the following 

Ensemble Score (ES): 

 𝐸𝑆 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑆𝐼 −  |0.2 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑎𝑠| (3.4) 

 In order to have one common ensemble model output, the average of the 25 

year return period performance scores across the regions was used to determine the 

ES. A Bias adjustment factor of 0.2 was added to the ES to penalise for any 

significant bias towards overprediction or underprediction. The value of 0.2 was 

chosen as it was large enough to penalize for bias, but small enough that the CSI 

remained the most important score in the ES. The bias adjustment factor reduces the 

likelihood that any GFM that is heavily biased towards over or under prediction is 

included in the ensemble model. Excessive overprediction is especially detrimental 

to the ensemble model as the resulting flood footprint would be dominated by the 

model that tends towards overprediction. The number of individual models to 

include in the ensemble model was decided based on the performance scores of the 

different model agreement levels in the aggregated model validation. 

 Once the best individual models to include in the ensemble model had been 

determined, the ensemble model was created in QGIS by combining the flood 

extents of the individual models into one, binary, ensemble flood extent. The 

ensemble extent was then validated using the same methodology as for the 

individual and aggregated models.  

3.4 Results and Discussion 

3.4.1  Individual Models 

 The performance scores are represented graphically in Figure 3.2 and the 

GFMs are arranged from left to right in order of resolution from coarsest to finest. 
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The results indicate that there is a significant variation between the GFMs ability in 

modelling the flood events in each region.  The average CSI of the GFMs range 

from 0.45 (GLOFRIS) to 0.70 (JRC) for a 25 year flow. To put these scores into 

context, CSI scores from other flood validation literature, in different validation 

regions, range from 0.3-0.9 (Sampson et al., 2015, Dottori et al., 2016, Wing et al., 

2017), with >0.7 considered good and < 0.5 poor. 

 Lokoja stands out as the region in which almost all of the models perform 

best. The higher CSI scores in Lokoja are likely a reflection of the region’s narrow 

confined floodplain, and the relative simplicity of modelling the flood where extent 

is not sensitive to flood discharge magnitude. The increased complexity in flood 

modelling in flat extensive floodplains such as the one in Idah is reflected in the 

lower CSI scores for the region. The overlap of the observed and modelled extents 

(Figure 3.3) illustrates the varied success of the GFMs at modelling floodplain 

inundation in Idah. 

  GLOFRIS, which uses a simple flood volume distribution method for 

modelling inundation, had the lowest average CSI score across the three regions and 

showed very large regions of underprediction in Idah. The other 2D models, which 

have a more hydrodynamic flood modelling scheme scored better across the three 

regions. This could be due to a more accurate representation of the physics of 

floodplain flow or a better characterization of the river floodplain. This is evident in 

Idah, where CaMa-Flood, SSBN, and JRC performed better, possibly due to the 

greater connectivity modelled within the floodplain by their native sub-grid models. 

Although implementing similar schemes, the subtleties of their 2D model structures 

differ. This could explain why the JRC model had higher performance scores across 

the three regions. The benefits of CIMA-UNEP’s simpler 1D cross-section approach 

to modelling floodplains proved successful at modelling much of the central 

floodplain missed by GFMs as the 1D section implicitly connects low areas along 

the cross-section. However, this can also lead to overprediction if the 1D approach 

models inundation in low lying floodplain areas with no connectivity to the channel.  
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Figure 3.2  Individual global flood model (GFM) critical success index (CSI), Bias, 

and hit rate (HR) performance scores when compared against observed events 

in Lokoja, Idah, and Chemba. 

Results shown for 25 and 100 year return period GFM output. 

 The GFM with one of the highest CSI scores in Chemba is ECMWF, 

whereas the GFM with the lowest CSI score in Chemba is CaMa-Flood. This 

highlights the importance of input flow in GFM performance: CaMa-Flood and 

ECMWF share the same core hydrodynamic model, but differ in their flow 

generation model. The performance of CaMa-Flood also significantly improves as 

the modelled return period is increased from 25 years to 100 years. This suggests 

that the input flow was the limiting factor affecting the performance scores of the 25 

year output. Apart from ECMWF, increasing the return period from 25 years to 100 

years generally increased the CSI scores of the GFMs. Increasing the GFM return 

period resulted in averaged CSI percentage increases of 14% (GLOFRIS), 0.1% 
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(JRC), 5% (CIMA-UNEP), 19% (CaMa-Flood), and 15% (SSBN). These findings 

show that in these three study areas, GLOFRIS, CaMa-Flood and SSBN are 

sensitive to input flow. However, the level of return period sensitivity could be 

exaggerated by the fact that these three models all showed higher bias towards 

underprediction at the 25 year return period than the rest of the models. Increasing 

the return period of an underpredicting and an unbiased flood model would likely 

result in a comparatively greater proportion of additional flooding being captured by 

the underpredicting model at the higher return period, thus leading to a larger 

increase in CSI. JRC continues to perform the best of all the models at either return 

period when averaged across the three regions. The variation in input flow is 

reflected in the HR and BIAS scores of the GFMs. Averaged across all three 

regions, ECMWF captures almost all the flooding, with an HR of 0.96 for a 25 year 

flood. However, it is the GFM that showed the largest bias in either direction: 0.44 

for the 25 year return period and 0.49 for the 100 year return period. These results 

suggest that ECMWF is significantly overestimating input flow at both return 

periods. 

 The differences in model forcing (climate reanalysis data vs. gauged 

discharge data) is apparent in the bias scores of the GFMs. CIMA-UNEP and SSBN, 

both based on gauged discharge data, show an average bias towards underprediction 

at the 25 year return period and an average bias towards overprediction at the 100 

year return period. This suggests that both gauge forced models are doing a good job 

at estimating the reported 50 year return period of the observed flooding. Three of 

the four models forced by climate reanalysis data show bias in only one direction at 

both return periods, suggesting that the climate forced models have greater difficulty 

predicting a representative return period. This could be due to the fact that the 

validation regions are in the tropics and reanalysis datasets have been found to 

poorly represent precipitation in the tropics (Beck et al., 2017). However, caution 

should be taken before drawing general conclusions because input flow is not the 

only parameter influencing floodplain extent (for instance, poorly represented 

floodplain connectivity might cause a systematic estimation bias on flood extent). 
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Figure 3.3  Overlap of individual global flood model extent for return period flows 

of 25 and 100 years and MODIS observed flood extent for Lokoja, Idah, and 

Chemba 

 The improved connectivity offered by higher spatial resolution GFMs is 

evident in the Idah floodplain (Figure 3.3). CIMA-UNEP and SSBN, both with 

outputs of 90 m resolution at the equator, are able to model some of the smaller 

channels within the floodplain (either implicitly or explicitly). Despite the improved 

connectivity representation, there is no discernible correlation between the 

performance scores and GFM spatial resolution, indicating that the models still need 

further improvements in capturing river/floodplain connectivity. At present, there is 

currently no well-developed method to represent channel bifurcation in 1D fluvial 

models. A better representation of bifurcation would improve the performance of 

both 1D and 2D sub-grid models in areas of high bifurcation, such as floodplains 

(Mateo et al., 2017).  
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 The comparative usefulness of GFMs and regional flood models is a point of 

contention in flood modelling literature (WorldBank, 2014, Ward et al., 2015). 

Thomas (2017) developed a regional flood model for southern Nigeria and validated 

it against the 2012 floods. The model incorporated local bathymetric and 

hydrographic data. When compared with MODIS data of the flood event, the 

regional model’s CSI scores were 0.73 and 0.53 for Lokoja and Idah, respectively. 

Comparison with the best GFM performance scores show that JRC and CaMa-Flood 

outperform the regional model in Lokoja with CSIs of 0.78 and 0.75, respectively. 

The case for the GFMs is even stronger in Idah as five GFMs outperform the 

regional model: JRC, SSBN, CaMa-Flood, ECMWF and CIMA-UNEP with CSI 

scores of 0.70, 0.65, 0.58, 0.62 and 0.58 respectively. Comparison of performance 

scores between the studies should be approached with some caution as the analysis 

areas in the Thomas (2017) study varied slightly compared with the ones used in this 

study. However, in the cases shown here, the performance of GFMs is comparable 

to, or in some cases better than, the performance of a locally calibrated regional 

model. 

3.4.2  Aggregated Model 

 The performance scores of the different levels of model agreement for the 25 

year return period aggregated model (Figure 3.4(a)) shows that the CSI peaks at ≥2 

and ≥3 model agreement. These results correspond with the results of the individual 

model validation: two or three models consistently outperform the rest. A hit rate of 

0.36 at 6 model agreement shows that all six models are correctly capturing at least 

36% of the observed flood events. The bias trends steadily from overprediction to 

underprediction as the model agreement level increases. The least bias in either 

direction occurs at ≥3 and ≥4 model agreement, this is likely due to the fact that the 

opposite bias of the individual models shown in Figure 3.2 balanced one another 

out.  
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Figure 3.4  Aggregated and ensemble model performance scores. 

(a) Critical success index (CSI), hit rate (HR), and Bias scores averaged across 

all three study regions for the six different levels of aggregated model 

agreement for a 25 year return period flood. (b) The three best performing 

individual global flood models (GFM) that are included in the ensemble model 

as determined by the ensemble score. (c) CSI scores for the ensemble model, 

the best performing individual GFM (JRC), and the best performing 

aggregated model agreement level (≥ 2 Model Agreement) for a 25 year return 

period flood. 

3.4.3  Ensemble Model  

 The aggregated model validation found that the ≥ 2 and ≥ 3 model agreement 

groups had the highest CSI scores. As a result, the number of models chosen to 

include in the ensemble model was three. The individual models included in the 

ensemble model, chosen using the ES, were JRC, CIMA-UNEP, and SSBN (Figure 

3.4(b)). The validation performance scores of the ensemble model are compared 

(Figure 3.4(c)) with the best performing models from the individual and aggregate 

group: JRC and ≥ 2 model agreement. The results show that there is little difference 

between the CSI scores of the ensemble model, JRC, and ≥ 2 model agreement. 

Furthermore, the JRC GFM scores higher than the ensemble model in Lokoja and 

Idah. The aim of an ensemble model is to reduce the uncertainty associated with 

using a single model. For an ensemble model to perform better than individual 

models, the individual models that make up the ensemble model need to compensate 

for the uncertainty in the other models either through different input data or different 

modelling methods. Judging from the results of the analysis, it seems that the 
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combination of individual models did not improve the results as a whole. If 

anything, they added to the uncertainty in the form of increased overprediction, 

which resulted in the reduced CSI scores. Although the ensemble model did not 

outperform the best individual model, it did score comparably well. There are 

situations where this ensemble approach could be of use. For example, in regions 

where it is not possible to validate flood models to determine the best individual 

model, the use of a multiple model ensemble could reduce the uncertainty associated 

with using only one model, whilst not significantly reducing the flood extent 

prediction accuracy.   

3.4.4  Observational Data 

 It is imprudent to discuss our validation findings without making some 

reference to the observational data used and the inherent uncertainty that is 

associated with flood observation mapping. This study used extents from the DFO 

archive, which is currently the most extensive global flood database. However, work 

is being done to develop a global database of historic flood events in Google Earth 

Engine (GEE) (Tellman et al., 2017, Tellman et al., 2018). The DFO flood extents 

used in this study and the equivalent extents from the new GEE global database 

(Tellman et al., 2018) were analysed to examine the agreement between the two data 

sources. The results of the analysis show that there is 12% disagreement in Lokoja 

(CSI 0.88), 11% disagreement in Idah (CSI 0.89), and 63% disagreement in Chemba 

(CSI 0.37) between the observed flood extents from the two data sources. The bias 

scores are also always in the direction of the DFO extents (Lokoja 0.02, Idah 0.01, 

and Chemba 1.32) indicating that the DFO extents are larger. Figures showing the 

observational agreement and disagreement are included in Appendix A.3. This 

observational disagreement between data sources highlights an underlying problem 

with flood mapping. Satellite imagery, both optical and radar, faces issues with 

observational bias. Optical imagery is affected by cloud cover and radar imagery is 

affected by vegetation. Data sources differ in the methods they use to reduce the 

effects of such observational bias. As a result, flood maps for the same event can 

differ if they are obtained from different sources. Neither source captures all of the 

flooding; each misses different parts. The task faced by the end user when 

confronted with the uncertainty associated with two disagreeing datasets is to decide 

which most closely represents the actual event. Even then, the chosen extent is used 
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under the assumption that it is entirely correct. If these observational uncertainties 

could be incorporated into flood maps, it would allow for a measure of confidence to 

be calculated relating to the accuracy of the observations and as a result, the 

accuracy of the validation findings.  

3.5 Conclusions 

 This paper has outlined the first validation intercomparison between GFMs. 

Validation of the individual models against observed events in Nigeria and 

Mozambique showed that there is a significant variation in GFM performance, with 

average CSI scores ranging from 0.45 to 0.7. Site specific conditions played an 

important role in model performance. The GFMs scored well in Lokoja, where flood 

extents were restricted by a confined floodplain. Conversely, the models showed 

less skill in Idah, a flat extensive floodplain with complex morphology. The 

underlying hydraulic models showed varied success in modelling floodplain 

inundation. CIMA-UNEP’s 1D approach was able to implicitly model greater 

connectivity within the Idah floodplain. Generally however, the connectivity 

provided by 2D models was evident in both the performance scores and the 

inundation maps. 2D hydrodynamic models showed significantly more skill at 

predicting inundation than 2D volume redistribution methods. Input flow was 

identified as a crucial factor in modeling a representative flood inundation extent 

and increasing the return period of the GFMs resulted in significant improvements 

for half of the GFMs. The GFMs forced by gauged data showed better return period 

accuracy than those forced by climate reanalysis data. This was attributed to the 

poor reanalysis representation of precipitation in the tropics. Spatial resolution, 

although showing some improvement in floodplain connectivity, did not obviously 

improve model performance.  

 Comparison of the GFMs with a regional flood model developed for Nigeria 

showed that some of the GFMs outperformed the regional model. Through 

validation, the three best models were identified and combined into a composite 

model. The validation of the composite model, showed that it performed similarly, 

but not better than the best individual GFM.  
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3.6 Outlook 

 This study has demonstrated the usefulness of a collective GFM validation 

procedure. The comparisons and conclusions that can be drawn from the common 

validation data cannot be made using the individual internal GFM validation data 

that has been available thus far. The focus area of this study has been limited to 

three regions in Africa and has looked only at flood extents. The GFMs tested in this 

study have a multitude of uses beyond only flood extent mapping. These include, 

but are not limited to: flood forecasting, estimating future impacts, and real time 

disaster response. Going further, a more extensive validation procedure that 

incorporates a comparison of flow velocity (Kreibich et al., 2009), inundated depth , 

and flood duration (Dang et al., 2011) would allow more conclusions to be drawn 

about both the performance and different uses of the models. The validation also 

needs to be extended across different climates and continents. To do this, a 

catalogue of appropriate validation regions needs to be developed and the 

observational data used for validation needs to be shared openly. Future studies 

should also incorporate more  GFMs such as insurance catastrophe models to 

encourage the knowledge transfer between research and industry. Incorporating 

advanced methods of model output validation and applying them across more 

regions would allow for a truly global validation comparison study of GFMs.  
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4.1 Abstract 

 There is now a wealth of data to calculate global flood exposure. Available 

datasets differ in detail and representation of both global population distribution and 

global flood hazard. Previous studies of global flood risk have used datasets 

interchangeably without addressing the impacts using different datasets could have 

on exposure estimates. By calculating flood exposure to different sized rivers using 

a model-independent geomorphological river flood susceptibility map (RFSM), we 

show that limits placed on the size of river represented in global flood models result 

in global flood exposure estimates that differ by greater than a factor of 2. The 

choice of population dataset is found to be equally important and can have enormous 

impacts on national flood exposure estimates. Up-to-date, high-resolution population 

data are vital for accurately representing exposure to smaller rivers and will be key 

in improving the global flood risk picture. Our results inform the appropriate 

application of these datasets and where further development and research is needed. 

4.2 Introduction 

 River floods are amongst the most frequent and damaging natural disasters 

globally (CRED and UNDRR, 2020). Considerable effort has gone into 

understanding global river flooding over the last decade, and a number of global 

flood models (GFMs) have been developed concurrently (Yamazaki et al., 2011, 

Pappenberger et al., 2012, Winsemius et al., 2013, Rudari et al., 2015, Sampson et 

al., 2015, Dottori et al., 2016c). The usefulness of these GFMs was initially limited 

to coarse scale flood risk assessments (Ward et al., 2015), largely due to global-scale 

data limitations. However, the incorporation of higher accuracy terrain data, 

available at the national level, has shown that their modelling frameworks are also 

suited to identifying more localized risk when utilising local data (Wing et al., 
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2017). Previous studies comparing GFMs have shown there is disagreement 

between the global flood extents (Trigg et al., 2016b, Bernhofen et al., 2018b, Aerts 

et al., 2020). This disagreement between GFMs stems from different model 

structures and methods. One key difference between the models, which has not yet 

been explored, is the size of their river networks. The models have different river 

size thresholds at which they simulate fluvial events. These thresholds determine the 

size, and number, of rivers represented in GFMs, which can differ by several orders 

of magnitude. The size of a model’s river network is contingent on both the quality 

and resolution of the model input datasets such as the underlying digital elevation 

model (DEM) and climatology (Dottori et al., 2016c) as well as the computational 

efficiency of the model, as the introduction of smaller rivers exponentially increases 

the modelled domain. Chosen thresholds also influence estimates of global flood 

exposure, as larger river networks result in higher simulated flood volumes and 

potential exposure. The effect that GFM river network size has on flood exposure 

estimates has not yet been quantified at the global scale. As remote sensing (RS) 

technologies continue to advance, so will the granularity at which rivers can be 

represented globally. Smaller rivers, previously unrepresented in coarse global 

datasets, will be able to be studied and modelled at large scales; potentially 

reframing current global flood exposure estimates. Limited work has been dedicated 

to the investigation of the human interaction with rivers of different size (Kummu et 

al., 2011). Understanding this interaction globally, particularly with respect to river 

flooding, will inform us about the completeness of current global flood exposure 

studies and identify where further study and development are needed. 

 A comprehensive understanding of flood risk requires information about the 

hazard, what or who is exposed, and their vulnerability. Exposure could include 

damages (both direct and indirect), exposed gross domestic product (GDP), exposed 

assets, and most commonly: exposed people (Ward et al., 2020). Identifying flood-

exposed populations usually involves intersecting a flood hazard map with a 

population map. The methods and inputs used to produce population datasets differ, 

and so does their intended use (Leyk et al., 2019). Recently released population 

maps, which utilize commercial RS data and are an order of magnitude more 

resolved than existing population datasets (Tiecke, 2017) are already being used for 

disaster preparedness and response (Facebook, 2019). However, our current 

understanding of global flood exposure is based on existing global population 
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datasets, and these datasets have been used interchangeably in global studies 

(Tanoue et al., 2016, Jongman et al., 2012, Dottori et al., 2018) with little comment 

about their relative merit. The credibility of existing global flood exposure estimates 

in light of new, more detailed, population data and the implications of their 

interchangeable use in studies of global flood exposure needs to be explored. A 

recent study by Smith et al. (2019)  reported large disagreement between flood 

exposure estimates calculated in 18 developing countries using three different 

population datasets. The identification of population data as one of the chief sources 

of uncertainty in global flood exposure studies warrants further investigation at the 

global scale. Understanding how both new and existing population datasets differ in 

their resulting exposure estimates, both regionally and within the hierarchy of the 

river network, can inform users about the most appropriate population dataset to use. 

 To explicitly explore the impact of river network size on global flood 

exposure estimates, we use a geomorphological measure of a river’s flood 

susceptibility, which is independent from current GFMs and the additional 

uncertainties their different model structures bring. Fluvial processes contribute to 

the evolution of a landscape over time. The erosional action of flowing water has 

shaped the terrain of drainage basins to reflect the historical flow of water through 

them. Geomorphological approaches to mapping river flood susceptibility rely on 

the concept that the cumulative hydrogeomorphic effect of past flood events, evident 

in topography data, is indicative of a river’s propensity to flood. Such approaches to 

flood mapping have been applied over a number of scales: from  local (Nardi et al., 

2006, Nobre et al., 2016, Dodov and Foufoula-Georgiou, 2006), to national 

(Jafarzadegan et al., 2018, Samela et al., 2017), to regional (Lugeri et al., 2010) and 

global (Nardi et al., 2019). The computational efficiency of geomorphic flood 

mapping, coupled with its reliance on only terrain data as input, make it useful for a 

‘first look’ global scale analysis; intended to inform future development of higher 

accuracy hydrological flood mapping (Di Baldassarre et al., 2020).  

 Our geomorphological approach to mapping a river’s flood susceptibility, 

herein referred to as the River Flood Susceptibility Map (RFSM) is based on new 

topography data (Yamazaki et al., 2017), which incorporate crowdsourced 

information to better represent the locations of rivers and streams (Yamazaki et al., 

2019). Validation of our calibrated methodology (outlined in detail in Appendix B) 
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shows that the RFSM better replicates GFM hazard maps in Africa than an existing 

global geomorphological approach (Nardi et al., 2019). We also show that the 

RFSM performs similarly to the best GFMs (Dottori et al., 2016c, Sampson et al., 

2015, Yamazaki et al., 2011) when validated against historical flood events 

(Bernhofen et al., 2018b).  The RFSM allows us to easily discretize the flood map 

into different river sizes (independently of GFMs). We investigate the human 

interface with these different size rivers using three population datasets. Facebook’s 

High Resolution Settlement Layer (HRSL), (1 arc-second, ~30 m resolution at the 

equator) (Tiecke, 2017) which is currently only available in 168 countries globally, 

and two population datasets used extensively in previous studies of global flood risk: 

the Global Human Settlement Population (GHS-POP) (9 arc-second, ~250 m 

resolution at the equator) (Freire et al., 2015, Schiavina, 2019) and WorldPop (3 arc-

second, ~90 m resolution at the equator) (Stevens et al., 2015, Lloyd et al., 2019). 

We present a global picture of flood exposure to different size rivers, both in the 

present day, and how it has changed over the past 40 years. We then compare the 

flood exposure calculated using different population layers, exploring the 

implications this has on national level flood exposure estimates and examine the 

impact that river size has on any disagreement. Finally, we address the size of rivers 

represented in GFMs specifically and investigate how their chosen river network 

size impacts both global and national flood exposure estimates and what 

implications this has for previously published global flood risk assessments.  

4.3 Methods 

4.3.1  Mapping River Flood Susceptibility 

 We use a geomorphological approach to mapping river flood susceptibility, 

which is independent from the global flood models (GFMs). Previous GFM 

comparison studies found that multiple aspects of model structure contributed 

towards disagreement (Trigg et al., 2016b, Bernhofen et al., 2018b, Aerts et al., 

2020). Using a geomorphological approach, we are able to explore just one aspect of 

disagreement: river network size. This approach allows us to explore all stream 

scales as drainage paths can be identified from the terrain alone. It is not influenced 

by the structure of the different GFMs and does not have the same computational 

restraints as a global hydrodynamic model. This approach is different from the 
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GFMs in that it does not measure the flood extent for a given return period flood, 

but rather a river and surrounding location’s static susceptibility to flooding.   

 There are different approaches to geomorphic floodplain mapping. Three 

approaches were compared on the Tiber River in Central Italy by Manfreda et al. 

(2014). That study found that approaches utilizing morphological descriptors to 

delineate floodplains better replicate reference flood extents. The best morphological 

descriptor was found to be the relative elevation difference to the nearest channel 

(H). In a follow up study, Samela et al. (2017) investigated 11 different 

morphological descriptors in the Ohio River basin and then tested the best 

performing descriptors across the conterminous United States. While H was 

amongst the best four descriptors, it was shown to be highly variable across basins. 

The study found that the best morphological descriptor was a geomorphic index 

which relates H to a function of the nearest channel’s contributing area. The method 

we use for delineating a river’s flood susceptibility is based on the height above 

nearest drainage (HAND) methodology developed by Nobre et al. (2011). We use a 

variable H value (Hn), which changes depending on the Strahler stream order 

(Strahler, 1957) of the flooded channel (where n is the Strahler stream order). This 

geomorphic approach, requiring only terrain data as input, is computationally 

efficient, and can be easily modified to produce auxiliary data layers. 

 Our method, referred to as the river flood susceptibility map (RFSM) 

(Bernhofen et al., 2021), is illustrated in Figure 4.1 and takes three gridded datasets 

as input: a digital elevation model (DEM), its derived drainage directions, and its 

upstream drainage area (UDA).  We use Multi Error-Removed Improved-Terrain 

(MERIT) hydro data (Yamazaki et al., 2019), a hydrography dataset based on the 

error improved SRTM (Shuttle Radar and Topography Mission) DEM: MERIT 

DEM (Yamazaki et al., 2017). MERIT Hydro is an improvement on previously 

available global hydrography datasets such as HydroSHEDs (Lehner et al., 2008) in 

terms of both spatial coverage and its representation of small streams. Its improved 

representation of small streams is enabled by its incorporation of global water body 

data and crowdsourced OpenStreetMap river data. This makes it particularly suited 

to this study; where we are interested in examining the flood susceptibility of rivers 

down to the smallest streams. 
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Figure 4.1  Illustrative example of the method for deriving the river flood 

susceptibility map (RFSM). 

(a) User-defined input parameters include the minimum river size and the 

maximum relative elevation difference to the nearest draining channel, Hn, for 

each Strahler stream order. Dataset inputs include a digital elevation model 

(DEM), flow direction grid, and an upstream drainage area grid (represented 

on a 12 x 12 km2 grid for illustrative purposes). Rivers (as defined by the 

minimum river size threshold) are classified into Strahler stream orders. (b) 

Each Strahler stream order is processed separately using the height above 

nearest drainage methods, and then the layers are combined. In areas of 

overlap the highest-order streams are retained. (c) Two outputs are produced: a 

map of the drainage are of the nearest flooded river and a map of the Strahler 

order of the nearest flooded river. See Figure 4.7 for an example of RFSM 

output in Bosnia and Herzegovina and Guinea-Bissau. 
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 The river network is extracted from the upstream drainage area dataset by 

specifying a minimum threshold river size (in units of UDA). Identifying the 

headwater of a river is no trivial task, with regional and climatic factors playing a 

part (Montgomery and Dietrich, 1988, Tarboton et al., 1991). Previous work 

exploring optimal initiation thresholds for geomorphological floodplain mapping 

found that DEMs with a resolution of 1 arc second (~30 m) could use initiation 

thresholds less than 10 km2 UDA. In the same study, a 3 arc second (~90 m) 

resolution DEM was used with a 100 km2 UDA threshold (Annis et al., 2019).  The 

MERIT Hydro data we use in this study has a resolution of 3 arc seconds (~90 m). 

But its incorporation of crowdsourced river data has optimized its representation of 

small streams and rivers. As such, we use a globally consistent river initiation 

threshold of 10 km2 UDA for the RFSM. This is a large assumption, as in some 

locations globally there will be no visible channel at this location. However, we 

argue that removing areas of potential exposure to avoid overprediction in some 

areas goes against the premise of this study, which is to explore and identify 

‘missed’ areas of exposure. The exposure calculations for small streams should 

therefore be interpreted with these limitations in mind.  

 Once the river network has been extracted, the rivers in the network are 

classified based on their Strahler stream orders (Strahler, 1957). The Strahler stream 

order is a dimensionless indicator of the magnitude of the river based on its 

hierarchy within the drainage basin.  

4.3.1.1 Calibrating the River Flood Susceptibility Map 

 The maximum relative elevation difference to the nearest draining channel, 

Hn (see Figure 4.1(a)), for each Strahler stream order (n) is the only RFSM 

parameter requiring calibration. We use a variable H, which scales with Strahler 

stream order, to account for changes in flood depth as a river’s size changes. In 

Samela et al. (2017), the best performing  geomorphic index also accounts for 

variations in river size by scaling relative to the river’s upstream contributing area.  

 To account for climatic variability in a river’s flood susceptibility (Smith et 

al., 2015), we split the globe into five simplified Köppen-Geiger climate zones 

(Figure 4.2): Tropical, Arid, Temperate, Continental and Polar. Polar regions are 

excluded from our analysis as these regions are dominated by glacial but not fluvial 
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processes (Chen et al., 2019). The RFSM has uniquely calibrated Hn values in each 

of the four climate zones. We calibrate the Hn values in 19 different basins (see 

Figure 4.2), spanning 5 different continents across all four climate zones considered. 

Reference flood maps used for calibration are a mixture of national, continental, and 

global flood hazard maps. To maintain consistency across the calibration data, we 

use 100-year return period flood hazard maps. We use a combination of national, 

continental, and global flood hazard maps for calibration in each climate zone. This 

is to ensure that there is sufficient calibration data for each Strahler order river, as 

only the national flood hazard data captures flooding for low-order rivers. Two 

different national flood maps are used for calibration. The first is the National Flood 

Hazard Layer (NFHL) produced by the Federal Emergency Management Agency 

(FEMA). NFHL data are used for calibration in North American basins including 

Puerto Rico, Lower Gila, Upper Pecos, Lower Mississippi, Alabama, Muskingum, 

Rock, and Susquehanna. The second national flood map is the Environment 

Agency’s 100-year flood map for planning, which is used for calibrating the RFSM 

in the Thames basin in England. The continental flood map for Europe (Dottori et 

al., 2016b), developed by the Joint Research Centre (JRC) is used to calibrate the 

RFSM in the Jucar river basin in Spain, the Loire river basin in France, the Po river 

basin in Italy and Switzerland, and the Oder river basin in Poland, Germany, and 

Czech Republic. A global flood hazard map (Dottori et al., 2016a), also developed 

by the JRC, is used to calibrate the RFSM in the Central Amazon basin in Brazil; the 

Lower Congo basin in the Democratic Republic of Congo and the Republic of 

Congo; the Lower Mekong basin in Thailand, Cambodia, Vietnam, and Laos; the 

Upper Nile basin in Egypt and Sudan, the Lower Lena basin in Russia and 

Kazakhstan; and the Central Lena basin in Russia. Maps of the reference flood maps 

used for calibration are shown in Figure B1 in Appendix B and further details about 

each calibration basin can be found in Table B1 in Appendix B.    
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Figure 4.2  The calibration basins shown on a map of simplified Köppen-Geiger 

climate zones and the calibrated maximum relative elevation difference to the 

nearest draining channel (Hn) for each Strahler stream order in the four climate 

zones considered (polar regions are excluded from the analysis). 

 The values are calibrated in each climate zone by running thousands of 

different combinations of Hn in each calibration basin. Optimal Hn values are 

determined by using three commonly used measure of fit scores: critical success 

index (CSI), hit rate (HR), and bias (Wilks, 2006). The Hn values retained are the 

ones that result in the best fit scores with respect to the reference flood maps within 

each climate zone. Final calibrated Hn values for each climate zone are shown in 

Figure 4.2. More detailed information on the calibration of the RFSM can be found 

in Appendix B.1.  

 Once Hn values for each order have been assigned, each stream order is 

processed separately (Figure 4.1(b)), and then merged together. In areas of overlap, 

the highest order stream retains the values. Two datasets are produced as output: a 

map of the flooded river’s upstream drainage area, and a map of the flooded river’s 

Strahler stream order. Illustrations of these two outputs are shown in Figure 4.1(c).   

4.3.1.1 Validating the River Flood Susceptibility Map 

 The RFSM is validated against both existing GFMs and observed flood 

events. Validation against GFMs is carried out for the whole African continent using 

the 100-year return period aggregated output of six GFMs from a previous model 

intercomparison study (Trigg et al., 2016a). The six GFMs that make up the 

aggregated output include CIMA-UNEP (Rudari et al., 2015), ECMWF 
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(Pappenberger et al., 2012), Fathom (Sampson et al., 2015), GLOFRIS (Winsemius 

et al., 2013, Ward et al., 2013), JRC (Dottori et al., 2016c), and U-Tokyo (Yamazaki 

et al., 2011). To assess the credibility of the RFSM, it is also validated alongside an 

existing global geomorphological floodplain map (Nardi et al., 2019). For validation 

we split the African continent into eight major drainage basins (see Figure B.3 in 

Appendix B) according to the HydroBASIN Level 2 classification (Lehner and Grill, 

2013). The results of the GFM validation show that the RFSM produces credible 

flood extents when compared with existing GFM outputs in Africa. The RFSM 

correctly captures over 90% of high agreement flood zones (where at least five out 

of six GFMs agree) in seven of the eight major drainage basins in Africa. In the East 

African basin, the RFSM captures 87% of this high-agreement flood zone. 

Comparing CSI, HR and bias scores for the RFSM and the existing global 

geomorphological floodplain map, the RFSM scores better in all the major drainage 

basins in Africa except for North Africa (where both maps score poorly due to the 

Sahara Desert). The RFSM is also validated against observed flood events in Nigeria 

and Mozambique. The 2012 flooding in Nigeria and the 2007 floods in Mozambique 

affected four million people and over one hundred thousand people respectively 

(Bernhofen et al., 2018b). Validation data for both these flood events used in a 

previous GFM validation comparison study (Bernhofen et al., 2018a) are also used 

to validate the RFSM. The RFSM is validated against observed data in three 

validation regions: Lokoja, which is a narrow, confined floodplain at the confluence 

of Niger and Benue rivers in Nigeria; Idah, which is a flat and extensive floodplain 

south of Lokoja; and Chemba, which is an anabranching stretch of the Zambezi river 

just upstream of the delta in Mozambique. Validation of the RFSM against observed 

data from these historical flood events show that it performs similarly to the best 

performing GFMs in each of the three validation regions. Further detail about the 

validation of the RFSM can be found in Appendix B.2. 

 It is important to note the limitations of our methodology and 

geomorphological approaches in general.  The RFSM does not account for flood 

protection measures and cannot communicate the probability of flooding in any 

location. It consistently represents a river’s flood susceptibility based on the 

surrounding terrain alone. In regions where the floodplain boundaries are less 

distinguishable from the terrain, such as flat and low-lying areas, geomorphological 

approaches are prone to overprediction as they do not represent mass and 
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momentum conservation. Our method’s intended use is as a model-independent 

global ‘first look’ analysis to inform future hydrodynamic model development and 

use.  
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4.3.2  Measuring Exposure 

 We investigate the human exposure to river flood susceptibility. Human 

exposure is herein defined as the intersection of our river flood susceptibility map 

and a spatially distributed population layer. Three population datasets are used to 

measure exposure: Facebook’s High Resolution Settlement Layer (HRSL)  

(Facebook and CIESIN, 2016), The European Commission Joint Research Centre’s 

Global Human Settlement Population (GHS-POP) (Schiavina, 2019), and WorldPop 

(Stevens et al., 2015).  These population datasets all use the same initial input census 

data, from Gridded Population of the World (GPW) v4 (Center for International 

Earth Science Information Network - CIESIN - Columbia University, 2016), but 

their methods for allocating the population across gridded cells differ. Facebook’s 

HRSL is the only dataset of the three lacking full global coverage (at the time of 

writing 168 countries have been mapped). It is also the most recent, with work 

ongoing to map the remaining countries. HRSL uses ultra-high-resolution 

commercial satellite imagery (~ 50 cm resolution) and convolutional neural 

networks to detect individual buildings at the country level (Tiecke, 2017). 

Subnational census data for the year 2018 is then proportionally allocated to the 

identified buildings at 1 arc second resolution (~ 30 m at the equator). 

 Similarly to the HRSL in methodology, JRC’s GHS-POP dataset identifies 

built-up areas from Landsat imagery and proportionally allocates census data to the 

built-up areas (Freire et al., 2015). In regions where no settlements can be identified, 

but where census data indicates there is a population, the population is evenly 

distributed across the census area using areal weighting (Freire et al., 2016). This 

can occur in some rural areas, where small settlements are not captured by the 

Landsat imagery.  Despite being coarser in spatial resolution at 9 arc seconds (~250 

m at the equator), GHS-POP provides consistent multi-temporal population 

estimates (for the years 1975, 1990, 2000, and 2015) allowing for accurate analyses 

over time (Freire et al., 2020).  

 Unlike the other two population datasets, which evenly spread census data 

over identified settlements, WorldPop uses a complex model to disaggregate 

population over an area (Leyk et al., 2019). It uses a random forest model and a 

number of ancillary datasets to dynamically weight the distribution of census data 
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over a 3 arc second (~90 m at the equator) gridded area (Stevens et al., 2015) to 

produce annual population estimates from 2000-2020.  

 Exposure calculations necessitate uniformity between the intersecting 

datasets in terms of spatial resolution. As such, the GHS-POP layer was resampled 

from 9 arc second resolution and the population evenly distributed to a 3 arc second 

resolution grid to allow for analysis with a flood map of the same resolution. 

Conversely, for the HRSL exposure calculations the RFSM was resampled from 3 

arc second to 1 arc second resolution. When comparing the exposure results between 

population datasets the epoch used for comparison was 2015. National population 

totals for the HRSL and WorldPop datasets for the years 2018 and 2015, 

respectively, were scaled relative to GHS-POP 2015 national population totals. 

4.4 Results and Discussion 

4.4.1  Global Exposure to Different Sized Rivers from GHS-POP 

 Rivers were classified into six different sizes, expressed in upstream 

drainage area (UDA) (km2), with the ranges increasing in powers of 10. River 

classifications based on UDA, depicted in Figure 4.3(b) for Nigeria, were as 

follows: stream (10-100 km2), small river (100-1,000 km2), medium river (1000-

10,000 km2), medium-large river (10,000-100,000 km2), large river (100,000-

1,000,000 km2), and huge river (>1,000,000 km2).  

 Flood exposure is first calculated using the GHS-POP layer. Globally, we 

find 1.94 billion people susceptible to flooding from rivers with a UDA greater than 

10 km2. Breaking this down by continent, Asia’s flood exposure is 1.49 billion, 

Africa’s is 203 million, Europe’s is 104 million, North America’s is 81 million, 

South America’s is 59 million, and Oceania’s is 3.5 million. Splitting global flood 

exposure by river size, of the total exposed: 18.2% are from streams, 26.4% from 

small rivers, 23.7% from medium rivers, 17.2% from medium-large rivers, 8.4% 

from large rivers, and 6.1% from huge rivers. Asia makes up over 75% of the total 

global flood exposure, the majority of this amount coming from India and China, 

which are by far the two most exposed countries (see Figure 4.3(a)). Roughly half of 

India’s flood exposure is from streams and small rivers. Comparably, in China, this 

figure is closer to a third. This is likely due to the degree of urbanisation in both 
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countries; the percentage of China’s urban population is double that of India’s 

(WorldBank, 2018). Urban areas are disproportionately located on large rivers due 

to the historical tendency for settlements to form in areas fertile for farming and 

convenient for transport (McCool et al., 2009). As such, a greater proportion of 

flood exposure in China comes from larger rivers, whereas in India, a greater 

proportion comes from rural exposure to smaller rivers. Rivers classified as “huge” 

are only found in some countries, but often they make up a large proportion of the 

national flood risk. For example, the Brahmaputra in Bangladesh and the Nile in 

Egypt and Sudan are responsible for just under half of the national flood exposure in 

their respective countries.  

 To identify countries with the most acute flood risk, exposure was 

normalized against total national population (Figure 4.3(c)). Suriname has the 

highest normalized exposure, with 894 people exposed per 1000. The country’s low 

elevation relief, and its capital city situated on the banks of the Suriname river near 

its outlet into the Atlantic Ocean, makes Suriname particularly vulnerable to 

flooding (WorldBank, 2019). A total of 4 of the top 10 most “normally” exposed 

countries are in south or southeast Asia. These include Bangladesh, Cambodia, 

Thailand, and Vietnam. Flooding in these countries is severe and annual, normally 

occurring each year during the monsoon season. In Europe, the Netherlands has a 

high normalized exposure, 738 exposed per 1000. The Netherlands has a long 

history of flooding due to its low elevation, flat terrain, and high population density. 

It also has the most advanced flood defence systems in the world, designed to 

contain river water levels with a probability of occurrence once every 1250 years 

(Stokkom et al., 2005). Geomorphological approaches to flood mapping, such as the 

RFSM, cannot model probabilities of occurrence; and are therefore unable to 

represent flood prevention measures (Scussolini et al., 2016) and distinguish 

defended and undefended floodplain zones. Much of the exposed population in the 

Netherlands, as well as other countries with flood protection, reside in the defended 

area of a floodplain. This does not eliminate their risk of flooding; just reduces the 

probability of it. The severity of a flood event when defences fail can be 

catastrophic, resulting in high velocity flows and rapid inundation with little to no 

warning.  
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Figure 4.3  Flood exposure calculated with the Global Human Settlement 

Population (GHS-POP) layer. 

(a) Top 50 most exposed countries in terms of total flood exposure. (b) The 

river size classification visualized in Nigeria. (c) Top 50 most exposed 

countries in terms of normalized flood exposure (normalized to country’s total 

population).  
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 The top 50 exposed countries calculated using the WorldPop and HRSL 

datasets are detailed in Figures B.13 and B.14 of Appendix B, respectively. We also 

compare continental and global flood exposure estimates from different sized rivers 

calculated using GHS-POP and WorldPop in Table 4.1. It’s not possible to compare 

these global results with HRSL calculated exposure, as it does not yet have global 

coverage. Global flood exposure calculated using the WorldPop layer is 2.026 

Billion, roughly 83 Million larger than the global figure calculated using GHS-POP. 

Differences in exposure between the two datasets are largest in Africa and Asia and 

Oceania. We explore the implications of using different population datasets for flood 

exposure calculations in greater detail in Section 4.4.3 of this chapter. 

Table 4.1  Comparison of continental and global flood exposure estimates from 

different sized rivers calculated with the Global Human Settlement Population 

(GP) layer and WorldPop (WP). 

Exposure is in millions of people. 

 
Africa Americas 

Asia and 

Oceania 
Europe Global 

River 

Class 
GP WP GP WP GP WP GP WP GP WP 

Stream 33.2 42.1 38.88 38.45 260.53 274.69 20.65 20.07 353.26 275.31 

Small 41.03 48.43 36.72 36.13 409.21 415.31 26.63 26.01 513.59 525.88 

Medium 39.41 43.45 29.84 30.28 363.67 384.77 26.84 26.72 459.76 485.22 

Medium-

Large 

34.23 35.91 20.94 20.65 260.44 268.13 18.64 18.6 334.25 343.29 

Large 25.36 21.8 11.9 11.9 114.14 126.46 11.4 11.5 162.8 171.66 

Huge 30.45 30.24 2.65 2.74 86.41 92.09 0 0 119.5 125.07 

Total 203.68 221.93 140.93 140.15 1494.4 1561.45 104.16 102.9 1943.17 2026.43 

 

4.4.2  Exposure Change from 1975-2015 

 An advantage of both the GHS-POP and WorldPop datasets is their 

population estimates across different time scales, allowing for exposure analysis 

over time. WorldPop has annual population maps from 2000-2020 and GHS-POP 

has population estimates across four epochs: 1975, 1990, 2000, and 2015. Here, 

using GHS-POP’s multitemporal population layers, we calculate exposure change 

over a period of 40 years. Normalized flood exposure estimates were calculated for 

the years 1975, 1990, 2000, and 2015. These results are tabulated in Table B.10 in 

Appendix B. Population change is calculated by taking the difference between the 

normalized exposure estimates for the years considered. Globally, total flood 

exposure grew between 1975 and 2015 from 257 people per 1000 to 265 people per 

1000. Interestingly, in both Tropical and Arid climates total flood exposure over this 
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40-year period grew by 11 people per 1000, but in Temperate and Continental 

climates total flood exposure decreased by 4 and 10 people per 1000, respectively. 

Developing countries are largely located in tropical and arid climates, conversely, 

developed economies are prevalent in temperate and continental climates. These 

findings correspond with previous work done by Jongman et al. (2012), which found 

developing countries had the largest increases in exposure relative to population 

growth in the period 1970-2010. At the continental level, normalized flood exposure 

saw the largest increase in Asia, growing by 15 people per 1000 from 1975-2015. It 

also grew in South America by 5 people per 1000. In Europe, changes in normalized 

exposure over this period were negligible; while in North America, Africa, and 

Oceania normalized exposure decreased by 3, 5, and 2 people per 1000, 

respectively. Comparing these results with a related study by Ceola et al. (2014), 

which used satellite night-time light intensity to explore changes in river flood 

exposure from 1992-2012, we find similar trends in North America, South America, 

Europe, and Asia. Exposure over the period 1975-2015 increased for streams, 

medium-large, large and huge rivers. There were slight reductions in exposure for 

small and medium sized rivers.  

 Exposure changes at the national level are depicted in Figure 4.4. The 

highest increase in overall flood exposure was seen in Nepal and French Guinea. In 

both countries, the proportion of exposed population grew by 200 people per 1000 in 

the period 1975-2015. In French Guinea, this sudden increase is largely due to the 

population growth of Saint-Laurent-du-Maroni, a town situated on the banks of the 

Maroni river. From 1975-2015 the town’s population grew 1800% compared with 

the national population growth of 360%. In Nepal, one of the top 10 fastest 

urbanizing countries in the world (Bakrania, 2015), the flood exposure growth is a 

result of this fast urbanisation in cities such as Kathmandu, which is dissected by 

eight different rivers. An exposure decrease of 172 people per 1000 was seen in 

South Sudan. This is due to the growth of urban areas outside the Sudd swamp in 

cities such as Juba, Yei, Yambio, Nzara, and Wao. South Sudan has been hit by 

devastating floods in the past year, which displaced over 800,000 people (OCHA, 

2020). Had relative population exposure in South Sudan grown, rather than shrunk, 

the recent flooding could have been even worse.  
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Figure 4.4  Country-level river flood exposure (population normalized) change from 

1975-2015 calculated using the Global Human Settlement Population layer. 

River size expressed in upstream drainage area (UDA)  

4.4.3  Exposure Estimates from Different Population Datasets 

 Exposure differences arising from the use of different population layers were 

calculated for the 168 countries where all three population datasets are available 

(Figure 4.5) (see Table B.11 in Appendix B for a list of the missing countries). In 

the countries examined, normalized exposure (with respect to the country’s total 
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population) calculated with WorldPop data was the highest (270 exposed per 1000), 

followed by GHS-POP (256 exposed per 1000), and HRSL exposure was the lowest  

 

 

Figure 4.5  Flood exposure comparison in 168 countries using the High Resolution 

Settlement Layer (HRSL), WorldPop layer, and Global Human Settlement 

Population (GHS-POP) layer.  

(a) Comparison of the total normalized flood exposure between the three 

population datasets in all available countries. (b) How the calculated exposure 

figures differ per river size classification. (c) Country-level statistics for 

average normalized exposure (calculated as the mean of the three national 

exposure estimates) and the sensitivity of the exposure calculation to the 

choice of population datasets (measured as the absolute range of the three 

national exposure estimates). The higher up the y axis and x axis a country is, 

the greater the average exposure and sensitivity will be to the choice of 

population dataset, respectively.  
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(235 exposed per 1000). These findings correlate with a previous study by Smith et 

al. (2019) which found WorldPop data overestimated flood exposure compared to 

HRSL data in each of the 18 developing countries examined.  

 Differences in calculated exposure across the river sizes are shown in Figure 

4.5(b). Exposure differences were most pronounced for smaller rivers (streams, 

small, and medium rivers), while there was almost no exposure difference for the 

largest river class (huge).  The overall trend across all river sizes consistently shows 

that WorldPop estimated the highest exposure, followed by GHS-POP, and HRSL 

estimated the lowest exposure.  

 The population mapping approaches of the three population layers can go 

some way towards explaining the differences in calculated exposure; these 

corresponding outputs are visualized in Figure 4.6, in which we qualitatively 

compare the population distribution of the three outputs with respect to the 

settlement distribution, manually identified from high-resolution satellite imagery, 

along the Likuala-aux-Herbes river in the Republic of Congo. WorldPop’s 

population distribution algorithm dasymetrically redistributes the whole population 

across the grid, also in areas where no settlements have been identified. This is done 

under the assumption that not all “built up” areas will be picked up in the satellite 

imagery (TReNDS, 2020). When intersected with a flood extent, such a modelling 

approach can lead to mis-estimation of flood exposure in rural areas with respect to 

the other two population datasets. In the area examined in Figure 4.6, WorldPop 

estimates 1,167 people exposed, compared with 17,581 and 13,789 people exposed 

estimated by HRSL and GHS-POP, respectively. This is despite WorldPop exposure 

covering over 93% of the area examined, which far exceeds GHS-POP’s 5% 

exposed area and HRSL’s 1% exposed area. WorldPop’s approach to rural 

population distribution can lead to underestimation of exposure in small rural 

settlements (such as in Figure 4.6) or overestimation of exposure across large 

expansive areas of flooding, as will be explored later in this section. Conversely, the 

approach implemented by both GHS-POP and HRSL (which spread census data 

only over identified “built up” areas) is more sensitive to omission and commission 

errors arising from the classification of settlements (Palacios-Lopez et al., 2019). For 

example, undetected settlements outside the flood extent would result in artificially 

higher flood exposure estimates as the underlying census data is only spread across 

the identified settlements (a greater proportion of which are now identified as being 
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within the flood extent). Similarly, commission errors (false positives) are common 

in sandy or rocky landscapes and often occur in coastal areas or along riverbanks. 

Commission and omission errors can lead to either artificial increases or decreases 

in flood exposure estimates, depending on the location of these errors with respect to 

the flood extent. 

 The resolution of the population layers should also be considered. GHS-

POP’s fairly coarse (9 arc second) resolution means that in some areas where the 

potential for flooding (or not) falls within the resolution of a 9 arc second grid cell, 

the settlement’s avoidance (or not) of the flood risk cannot be accurately 

represented. This effect can be reduced by upsampling and proportionally 

reallocating the population to a grid that matches the resolution of the flooded data, 

as we have done in this study. Similarly, the spatial resolution of the underlying 

satellite imagery should be considered. Both GHS-POP and WorldPop identify 

settlements using Landsat imagery at 30 m resolution, while HRSL identifies 

settlements using DigitalGlobe imagery at 0.5 m resolution. Previous work by 

Tiecke (2017) showed  that HRSL was able to identify buildings missed by GHS-

POP, highlighting the importance of high-resolution imagery for comprehensive 

building classification. 

 The use of different population datasets had a negligible effect on exposure 

estimates for the huge river class. Large settlements tend to form around rivers of 

this size, and on coastlines where rivers of this size drain. Large urban areas are 

easily identifiable from remote sensing data, which means the population 

distribution (and resulting exposure estimates) for these urban centres show less 

variation between the datasets. Conversely, non-urban flood exposure estimates to 

smaller rivers show greater sensitvity to the choice of population layer. This is 

because the approach to non-urban population mapping between the three datasets 

differs. WorldPop, as mentioned previously, distributes administrative-level census 

data across all 3 arc second pixels in order to mitigate the impacts of potential 

omission and commission errors in the settlement data. This approach leads to some 

overestimation in rural populations (Smith et al., 2019, Wardrop et al., 2018). GHS-

POP, which distributes census data over Landsat identified settlements (and in non 

built-up areas distributes population at the census unit by areal weighting), tends to 

underestimate rural populations. (Leyk et al., 2019, Liu et al., 2020). HRSL’s use of 
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ultra-high-resolution sattelite imagery has been shown in previous studies to 

accurately identify rural settlements (Tiecke, 2017, Smith et al., 2019). However, the 

method of proportional allocation used to distribute the census data is relatively 

crude. Uncertainties in the underlying census data should also be considered, as the 

quality and detail of the data, as well as the frequency at which it is collected, varies 

significantly at the national level (Leyk et al., 2019). The three population datasets 

compared in this study share the same input census data (GPWv4) and therefore any 

associated census uncertainties are a common feature shared across the three 

datasets.  

 

Figure 4.6  Qualitative comparison of settlement distributions on the Likoula aux 

Herbes river in the republic of Congo.  

The white square in each panel is the pre-defined bounding box for which 

population totals are calculated. Population pixels in panels (b-d) range from 

low populated pixels (red) to high populated pixels (yellow). (a) River flood 

susceptibility map (RFSM) flood extent (blue pixels) along with manually 

identified settlements (pink circles) from high resolution Google Earth satellite 

imagery. (b) High Resolution Settlement Layer (HRSL) population 

distribution. A total of 17,581 people exposure. (c) WorldPop population 

distribution (resampled to 1 arc second for comparison). A total of 1,167 

people exposed. (d) Global Human Settlement Population (GHS-POP) 

population distribution (resampled to 1 arc second for comparison). A total of 

13,789 people exposed. 

Map data: © Google, Maxar Technologies 2021. 

 Calculating the general trends of exposure between the population layers is 

useful for making broad conclusions about the suitability of a population layer. 

Understanding the variations of the data at the country level leads to more actionable 

information about the appropriate use of different population layers. We calculate 

both the severity of flooding in each country (as the mean of the normalized national 

flood exposure estimates calculated with the three population datasets) and the 

disagreement between the population exposure estimates in each country (as the 

absolute range of the three normalized national flood exposure estimates). The 
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disagreement between the population-layer exposure estimates for each country 

varies significantly (Figure 4.5(c)). In the three countries with the highest exposure 

disagreement (Belize, The Republic of Congo, and Guinea-Bissau) WorldPop 

estimates of exposure are far greater than either HRSL or GHS-POP estimates. In 

Belize, a country with large areas of inundated wetlands, WorldPop estimates 

135,000 people exposed, while GHS-POP and HRSL estimate 70,000 and 80,000 

exposed, respectively. In the Republic of Congo, a country with large areas of 

floodplain, WorldPop estimates 1.3 Million people exposed and GHS-POP and 

HRSL estimate 810,000 and 780,000 exposed respectively. WorldPop’s method of 

distributing the population over a large area results in significant overestimation 

compared with HRSL or GHS-POP in these rural inundated areas. This can be seen 

in greater detail in Figure 4.7 for Guinea-Bissau. In Guinea-Bissau, GHS-POP and 

HRSL (which estimate exposures of 180,000 and 160,000 respectively) identify 

settlements largely situated outside the floodplains (“dry” cells in blue). 

Comparatively, WorldPop’s modelling approach and assumptions leads to far more 

“wet” population cells and an estimate of exposure (480,000) more than double that 

of the other two population layers. The exposure disagreement in these three 

countries is compounded by the relatively large areas of inundation in each country. 

The percentage inundated area is 25%, 30%, and 26% for Guinea-Bissau, Belize, 

and The Republic of Congo, respectively. In comparison, the percentage of 

populated area defined by the population layers is less than 5% for GHS-POP and 

HRSL, but more than 95% for WorldPop in each of the three countries. As exposure 

in this study is defined as the intersection of the flooded area and the populated area, 

it is understandable that WorldPop’s exposure estimates are more sensitive to the 

area of inundation. This is evident when examining a country with high exposure 

disagreement but with a comparatively smaller area of inundation. In Bosnia and 

Herzegovina (Figure 4.7), the percentage of flooded area is just 9% and the GHS-

POP layer estimates far greater exposure (1 Million) than either WorldPop (680,000) 

or HRSL (610,000). Here, where much of the exposure occurs near the banks of the 

rivers, the coarse spatial resolution of GHS-POP is less able to precisely locate 

settlements situated just outside the floodplain. As a result, more populated cells are 

flagged ‘at risk’ compared to the higher-resolution HRSL layer.  
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Figure 4.7  Comparison of population datasets and their intersection with the flood 

extent in Bosnia and Herzegovina and Guinea-Bissau.  

The top two insets show the river flood susceptibility map (RFSM) split into 

the different river size categorise for the whole country (top panel) and for a 

smaller, more detailed area of both countries (second panel from top). The 

remaining insets show the three different population maps and their 

intersection with the flood map in the detailed areas of both countries. Blue 

cells indicate the population cells are dry (not exposed to flooding), and red 

cells indicate the population cells are wet (exposed to flooding). 
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 These results have shown that the use of different population layers can lead 

to vastly different flood exposure estimates because of inherent differences in their 

spatial resolutions, methods used, and assumptions made to produce them. Our 

comparative analysis has identified in which countries exposure calculations are 

sensitive to the choice of population layer and shed light on some of the reasons for 

exposure disagreement. However, there is a limit to the conclusions that can be 

drawn from comparative analyses alone, and there is an urgent gap for more studies 

which validate the accuracy of these population layers using ground-truthed data. 

 It would be imprudent to definitively recommend one population dataset for 

use in flood exposure studies without extensive comparative global validation. 

However, previous studies have shown that HRSL performs better than existing 

population datasets at mapping reference building footprints, especially in rural 

areas (Tiecke, 2017, Smith et al., 2019). Our results also point to some of the 

benefits of using HRSL. Its settlement identification method for population 

distribution avoids exposure overprediction common in other population data and its 

high resolution can better capture the accurate location of settlements. Despite this, 

HRSL should not be considered a catchall dataset for flood exposure. Its high 

resolution may limit its use in certain situations due to computational restraints. 

Similarly, in studies of flood risk over time population data with multiple temporal 

epochs, such as GHS-POP or WorldPop, are better suited. The results we present in 

this section, and Figure 4.5, are intended to inform users of these population datasets 

about their appropriate use. In countries with high exposure disagreement, the 

choice of population dataset for flood exposure should be carefully considered, and 

further accuracy assessments of the population layers are recommended. 

4.4.4  Relevance to Global Flood Models 

 The minimum size of river represented in GFMs varies (see Table 4.2), with 

minimum river size thresholds ranging between 50-5000 km2 UDA, three orders of 

magnitude. River network size can be limited by the granularity of input data such 

as rainfall (Dottori et al., 2016c), or by the computational demand of modelling 

floods at the global scale.  
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Table 4.2  Global flood model river representation 

Minimum river size 

(upstream drainage 

area) 

Global flood model River sizes modelled (P = partial) 

50 km2 Fathom (Sampson et al., 

2015) 

Stream (P), small, medium, 

medium-large, large, huge 

500 km2 ECMWF (Pappenberger et 

al., 2012) and U-Tokyo 

(Yamazaki et al., 2011) 

Small (P), medium, medium-large, 

large, huge 

1000 km2 CIMA-UNEP (Rudari et al., 

2015) 

Medium, medium-large, large, 

huge 

5000 km2 JRC (Dottori et al., 2016c) Medium (P), medium-large, large, 

huge 

  

 Differences in river network size between GFMs undoubtedly lead to 

differences in global flood exposure estimates. These differences can be even more 

pronounced at the national level, where GFMs have been used to inform disaster risk 

management (Ward et al., 2015). Flood exposure was calculated for the different 

GFM river thresholds using the GHS-POP layer. Globally, we found that exposure 

estimates between the river threshold which results in the largest river network (>50 

km2 UDA), and the river threshold which results in the smallest river network 

(>5000 km2 UDA), differ by over a factor of 2. If the size of the river network was 

further increased by reducing the river threshold to 10 km2 UDA (below current 

GFM representation), the exposed population captured increases by 13%.  

 At the national level, in countries such as Suriname, The Republic of Congo, 

and Egypt, the greatest proportion of flood risk is posed by rivers with a UDA of 

5000 km2 or greater. In these countries, GFMs could be used interchangeably. 

Understanding what size rivers pose a significant flood risk is key to accurately 

representing national flood risk. In Benin, for example, the estimated flood exposure 

when a 5000 km2 UDA threshold is applied is 0.49 million people. When the 

threshold is reduced to 1000 km2 UDA, the estimated exposure increases to 1.8 

million people. Some countries do not have large rivers flowing through them, and 

the flood risk will result entirely from smaller rivers. Often these are island nations, 

such as in Jamaica or Trinidad and Tobago, where all flood risk is from rivers 

smaller than UDA 1000 km2. However, in Andorra for example, a landlocked 

country, to capture any flood exposure, a 50 km2 UDA threshold is needed. 

 To aid national level flood risk practitioners in their choice of GFM, we 

calculated the minimum river threshold required to capture a given percentage of the 
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largest river network’s (>50 km2 UDA) national exposure. Exposure percentages 

ranging from 10%-90% were calculated for each of the three population datasets 

used in this study and mapped for each nation, globally. All 27 maps are included in 

Figures B.15-B.17 in Appendix B. Figure 4.8, which shows the minimum river 

threshold required to capture at least 50% of possible GHS-POP exposure, illustrates 

these results. The map shows that while in some countries GFMs could be used 

interchangeably, in others, the size of the river network could significantly impact 

national flood exposure estimates.  

 

Figure 4.8  In which countries is the choice of river threshold important? 

This map shows the global flood model (GFM) river upstream drainage area 

(UDA) threshold required to capture over half a country’s total flood exposure. 

In dark green countries the choice of threshold is less important than in orange 

countries. Grey areas are no-data regions. The map was calculated using the 

Global Human Settlement Population (GHS-POP) layer. See Figures B15-B17 

in Appendix B for maps calculated with the other two global population layers 

and for different percentages of total national exposure population. 

 

 It is difficult to exhaustively compare global flood exposure estimates from 

previous GFM studies as often exposure is expressed differently (e.g. expected 

annual exposure (EAE) vs. exposure to a return period flood) and sometimes global 

exposure is not reported at all. In the comparable studies, there is significant 

variation in global flood exposure estimates. In Ward et al. (2013) global EAE was 

calculated at 169 Million. This figure is almost triple the 58 Million calculated by 
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Dottori et al. (2018) and the 54 Million calculated by Alfieri et al. (2017). In studies 

reporting exposure to a 100-year flood, Hirabayashi et al. (2013) estimate 847 

Million people exposed and Jongman et al. (2012) estimate 805 Million exposed. 

 The need for independent model comparison studies was met by Trigg et al. 

(2016b) and Aerts et al. (2020) who compared GFM output in Africa and China 

respectively. These studies compared the output of multiple GFMs, finding large 

disagreement between the modelled flood extents. Both studies also found large 

variations in calculated exposure. However, differences in exposure calculated by 

the GFMs were found to be influenced just as much by different model forcings and 

resolutions as by differences in river network size. Uncertainty in GFMs needs to be 

explored across the model cascade to identify where the models need to improve. 

Studies such as that of Zhou et al. (2020), which explores uncertainty in model 

forcing, and this study, which explores uncertainties in river network size, are 

important steps in directing future model development.  

 Granularity of input data is the main obstacle to increasing river network size 

in GFMs. The terrain data in all these models, which strongly influences their 

performance, is derived from the Shuttle Radar and Topography Mission (SRTM), a 

mission over two decades old (Farr et al., 2007).  New, 1 arc second resolution (~ 30 

m at the equator) global DEMs have recently been released by both the National and 

Aeronautics and Space Administration (NASA) and the European Space Agency 

(ESA). The ESA DEM is particularly important as its elevation is based on newer 

satellite data from TanDEM-X.  A new method for deriving an elevation map from 

satellite images has also been developed by Google, capable of generating DEMs at 

1 m resolution (Nevo, 2019). Whether it is terrain or climatology data, new and 

improved methods are constantly being developed and better datasets are being 

released. There is scope in the near future for increasing river network size in GFMs. 

This comes at a computational cost, however; whether it is the use of a higher-

resolution DEM or the exponential increase in number of rivers to model when the 

threshold river size is reduced. Understanding where the representation of smaller 

rivers is needed most, namely in areas of high exposure, would streamline the future 

development of GFMs, targeting improvements in areas where flood risk is highest.  
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4.5 Conclusions 

 This study has presented the first global picture of flood exposure 

categorized by different sized rivers. We introduced a simple geomorphological 

approach to delineating a river’s flood susceptibility, which is suitable for global-

scale “first look” studies such as this and importantly, allows an assessment of river 

network size independent of global flood model structural and computational 

limitations. We find that over 75% of the global flood exposure is in Asia, with 

China and India making up a significant proportion of this total. Streams (UDA 10-

100 km2) and small rivers (UDA 100-1000 km2) are responsible for over half of 

India’s flood risk. At the global scale, these rivers contribute to 45% of total flood 

exposure, emphasizing the importance of the incorporation of these smaller rivers 

into global flood risk studies. We find that large increases and decreases in flood 

exposure over the last 40 years are a result of urbanisation, either inside the flood 

risk zone or outside of it. The effect that the choice of population dataset had on 

exposure calculations differed between countries. Globally, this effect was most 

pronounced on smaller rivers, suggesting future studies that incorporate these 

smaller rivers should be careful in their choice of population data. Global flood 

models, the current tools for examining global flood risk, differ significantly in the 

size of their river networks. We found that the global flood exposure estimates 

differed by more than a factor of 2 when calculated using the GFM river threshold 

that results in the largest river network (UDA >50 km2) compared to the river 

threshold that results in the smallest river network (UDA >5000 km2). These 

differences were often more pronounced at the national level.   

 The results of this study are intended to inform both the developers and users 

of global river flood models. Consideration of river network size and how this 

relates to exposure is imperative to having a comprehensive picture of flood risk. 

Increasing the size of the river network comes with both data and computational 

restraints. Doubling the resolution of the models (from 1 km to 90 m to 30 m) 

requires an order of magnitude increase in computing power. Finer-resolution grids 

are imperative for representing small streams accurately. This has big implications 

for models currently operating at coarse resolution. Modelling smaller rivers 

requires not only detailed high-resolution data, but also efficient modelling 
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structures capable of running at higher resolutions.  Understanding where the 

representation of small rivers is needed most (areas of high exposure) can focus 

future model development. Similarly, accurate flood exposure estimates necessitate 

accurate population data. We have shown that the choice of population data used in 

exposure calculations can have an enormous impact on flood exposure estimates, 

and we have identified in which countries this disagreement is most extreme and 

have identified some of the reasons for this. Flood risk practitioners should use these 

results as guidance about which population layer is best suited for their locality and 

use. There is need for further research in this area, incorporating more population 

data as these layers play such an integral role in flood exposure calculations. In 

addition to more comparative analyses, there is also an urgent need for these 

population data to be validated at the global scale with actual data collected on the 

ground. Only then can definitive conclusions be drawn about the appropriate use of 

different population datasets. The selection of GFMs available to the end user is 

large and increasing. However, differences in the size of river networks between the 

models can have a significant impact on flood exposure estimates. While available 

GFMs could be used interchangeably in some countries, in others, discrepancies in 

river network size would lead to vastly different national flood exposure estimates. 

The results of this study should help to inform GFM users about the appropriate 

choice of GFM for their country of interest.  
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The role of global datasets for flood risk management at national 

scales 

5.1 Abstract 

 Over the last two decades, several datasets have been developed to assess 

flood risk at the global scale. In recent years, some of these datasets have become 

detailed enough to be informative at national scales. The use of these datasets 

nationally could have enormous benefits in areas lacking existing flood risk 

information and allow better flood management decisions and disaster response.  In 

this study, we evaluate the usefulness of global data for assessing flood risk in five 

countries: Colombia, England, Ethiopia, India, and Malaysia. National flood risk 

assessments are carried out for each of the five countries using global datasets and 

methodologies. We also conduct interviews with key water experts in each country 

to explore what capacity there is to use these global datasets nationally. To assess 

national flood risk, we use 6 datasets of global flood hazard, 7 datasets of global 

population, and 3 different methods for calculating vulnerability that have been used 

in previous global studies of flood risk. We find that the datasets differ substantially 

at the national level, and this is reflected in the national flood risk estimates. While 

some global datasets could be of significant value for national flood risk 

management, others are either not detailed enough, or too outdated to be relevant at 

this scale. For the relevant global datasets to be used most effectively for national 

flood risk management, a country needs a functioning, institutional framework with 

capability to support their use and implementation.  

5.2 Introduction 

 Flooding is a global problem that affects most regions in the world. In the 

last twenty years, over 1.65 Billion people were affected by flooding (UNDRR, 

2020), while estimated losses as a result of flood events exceeded 1 Trillion US 

Dollars over the last forty years (MunichRE). The impacts of flooding can be 

reduced through good flood risk management (FRM). For FRM measures to be most 



Chapter 5 

The role of global datasets for flood risk management at national scales 135 

 

  

effective, they need to be implemented in areas of high flood risk, which are 

identified through flood risk assessments. These assessments follow the conceptual 

framework that flood risk is a product of hazard (the flooding), exposure (who or 

what is exposed to the flooding), and vulnerability (the susceptibility of the exposure 

to damages) (UNISDR, 2015).  

 The objectives and data required for flood risk assessments change with the 

spatial scale of the analysis (de Moel et al., 2015). At the city or basin scale, flood 

risk assessments are carried out using locally calibrated models and data. The results 

of assessments at this scale are used to inform local flood management strategies 

and the design of flood mitigation infrastructure. National scale flood risk 

assessments either combine regionally derived flood information into a national 

picture of flood risk, such as with the National Flood Insurance Program (NFIP) in 

the US (Burby, 2001) and the National Flood Risk Assessment (NaFRA) in the UK 

(Environment Agency, 2009), or risk is mapped nationally in its entirety (Hall et al., 

2003, Hall et al., 2005). The objectives of national flood risk assessments are to 

inform joined up strategic FRM, allowing for prioritized evidence-based 

interventions. They also provide nationally consistent data for planning. For flood 

risk assessments at these scales, there is a bias in the evidence base towards contexts 

with greater research and monitoring capability. Since the mid-2000s, efforts have 

been made to assess flood risk at the global scale using globally available data (Hall, 

2014, Ward et al., 2020a). Global flood risk assessments are a multi-national 

equivalent of the national approach. International agencies and stakeholders want 

consistent data and approaches to make strategic investments at the global scale. 

Early global assessments used simple coarse resolution flood risk data, necessary at 

the time to assess flood risk at such large spatial scales (Dilley et al., 2005, 

Hirabayashi et al., 2008). Recent advances in global flood risk data, both in 

resolution and accuracy, have expanded their potential usefulness beyond global 

studies of flood risk to include more local applications, filling data gaps that had 

previously precluded flood risk assessments in data and institutional capability 

constrained regions. Some global data are now detailed enough to be relevant at 

national and catchment scales. This could, in theory, have potential benefits in areas 

lacking existing flood risk information and allow better flood management decisions 

and disaster response. Whilst the list of global datasets is large and growing 
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(Lindersson et al., 2020), not all global datasets are created equally. There is an 

urgent need to evaluate available global flood risk datasets for use at the national 

scale.  

 There are two approaches to representing flood hazard globally: either 

through remote sensing (RS) of historical flood events or through global flood 

models (GFMs). The two are often considered complimentary (Hawker et al., 2020), 

as RS data is used to validate the global models (Bernhofen et al., 2018, Mester et 

al., 2021). GFMs use global datasets, automated methods, and simplified hydraulic 

equations to simulate flood hazard globally (Trigg et al., 2020). These models, 

which began as research experiments, are now being used for disaster response 

(Emerton et al., 2020), to inform policy decisions (Ward et al., 2015), to assess 

business risks (Ward et al., 2020b), and recently their modelling frameworks have 

incorporated detailed national level data to assess national flood risk (Wing et al., 

2017, Wing et al., 2018, Bates et al., 2021). Several GFMs have been developed in 

academia (Yamazaki et al., 2011, Ward et al., 2013), by research institutions 

(Dottori et al., 2016, Rudari et al., 2015), and by commercial companies (Sampson 

et al., 2015). Their differing approaches to global flood hazard mapping result in 

flood extent disagreement (Trigg et al., 2016, Aerts et al., 2020) and varied 

performance (Bernhofen et al., 2018), suggesting no single model is uniformly fit 

for purpose.   

 Similarly, global population maps, necessary for calculating exposure, adopt 

equally divergent approaches to mapping human population. These range in 

complexity from simply distributing census data across administrative boundaries to 

statistically estimating population distribution and density from auxiliary datasets 

that relate to human presence (Leyk et al., 2019). Recent studies by Smith et al. 

(2019) and Bernhofen et al. (2021) found that flood exposure estimates are 

significantly impacted by the population dataset used. As these datasets become 

increasingly locally relevant, there is an urgent need to investigate their fitness-for-

use in flood risk assessments at these scales. 

 A key component of flood risk assessments, frequently absent from global 

studies, is vulnerability (Ward et al., 2020a). Vulnerability is multifaceted; it can be 

assessed through societal, economic, environmental, or physical means (Birkmann et 

al., 2006). The most visible, and most commonly assessed, aspect of vulnerability is 
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direct damages (Meyer et al., 2013). Direct damages are typically calculated using 

some form of vulnerability curve, which translates a component of the modelled 

flood hazard (often depth) into a degree of damage. Depth-damage curves are 

derived from data collected from historical flood events or expert judgement; or a 

combination of the two (van Westen, 2014). As a result, vulnerability functions are 

globally disparate. In countries with a wealth of historical data, such as the UK 

(Penning-Rowsell et al., 2013), the Netherlands (Kok, 2004), and the US (Davis and 

Skaggs, 1992) there are detailed vulnerability functions, whereas in other countries 

there are none at all. These data gaps were addressed by Huizinga et al. (2017) who 

developed a global database of depth-damage functions for multiple land-use 

classes. Significant uncertainties remain, however, both in the datasets used to 

identify assets at risk in the vulnerability calculations and in the assumptions made 

about the land-use classes.  

 A cross-disciplinary approach needs to be taken when evaluating global 

datasets for FRM at national  scales (Morrison et al., 2018). The physical science 

(global data) needs to be understood in the context of the social science. There needs 

to be a focus on the capabilities of regional and local governance in interpreting and 

using this data to inform and address flood risk. Governing bodies require datasets to 

be accessible, unambiguous, and easy to use; however, variability between datasets 

poses risks for effective policy and decision-making, for example the different 

conceptualizations of vulnerability may not translate to actual administrative and 

political structures. Also integral is the capacity of organizations and other 

governance structures to use the data. Human, technical, and financial resources of 

services are often lacking. Failures in coordination and communication between 

related departments and other relevant stakeholders over other scales may result in 

the incorrect use of data. For example, the dissemination of data to the local scale 

can be complicated and challenged by local priorities, alternative perceptions, elite 

capture, and language. Data also has the potential to be manipulated and/or abused 

in power struggles or for political motives (Wissman-Weber and Levy, 2018, Venot 

et al., 2021).   

 The UK Research and Innovation (UKRI) Global Challenges Research Fund  

(GCRF) Water Security and Sustainable Development Hub project 

(https://www.watersecurityhub.org/) connects water experts in five different 

https://www.watersecurityhub.org/
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countries, spanning four continents. This project provides a unique opportunity to 

test the global datasets for use at these scales in countries with vastly different 

histories of flooding and flood management structures and allows us to explore the 

commonality and variability of global data used locally. In this paper, we use global 

datasets and methods from previously published studies of global flood risk to carry 

out flood risk assessments in five countries: Colombia, England, Ethiopia, India, and 

Malaysia. We calculate national flood risk using a 20-year catalogue of historical 

flooding, five GFMs, seven global population datasets, and three approaches to 

calculating vulnerability. We then assess the credibility of this data for use at the 

national scale considering the variability of the flood risk estimates and exploring 

the implications this has on their usefulness. We also examine the capacity to use 

this data for FRM in each country.  

5.3 National Flood Risk Management Approaches, Study 

Countries, and the Role of Global Data 

5.3.1  National Flood Risk Management Approaches 

 There are two distinctive approaches to FRM, as laid out by Morrison et al. 

(2018): the resistance approach and the adaptive approach. The resistance, or 

standard, approach to FRM consists of mitigating flood risks through infrastructure 

or laws and regulations. The adaptive approach focusses less on preventing flooding 

and places greater emphasis on increasing resilience in high risk areas (Schelfaut et 

al., 2011). The approaches are complimentary, and successful examples of FRM 

often consist of a marriage of the two (van Wesenbeeck et al., 2014).  

 The implementation of FRM strategies typically falls on the government. 

The level of government responsible for executing FRM strategies is dependent on 

the country and the strategy being implemented (Merz et al., 2010). Governance 

strategies to FRM vary, as countries prioritize certain approaches over others 

(Driessen et al., 2018). Governance strategies can be hierarchical, consisting of a 

traditional ‘top down’ decision making structure (Alexander et al., 2016a); they can 

be decentralized, where policy decisions are made at the local level with a greater 

emphasis placed on stakeholder engagement (Driessen et al., 2012); they can be 

polycentric, where policy power is shared between different levels of government 

and non-government stakeholders (Loeschner et al., 2019, Garvey and Paavola, 
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2021); or they can be panarchy, which is an adaptive approach to governance that 

consists of a nested set of adaptive cycles (Gunderson and S, 2002, Alexander et al., 

2016a), where certain conditions can trigger ‘bottom up’ changes in the system 

(Garmestani and Benson, 2013).  

 To evaluate global flood risk data for use at the national scale it is important 

to understand a country’s approach to national FRM. Where, and how, the data will 

be used will depend on the national FRM strategy and who is responsible for 

implementing it. Taking a multi-country approach, as we are doing, enables us to 

pick apart the differences and commonalities in national strategies and how these 

influence the applicability of global flood risk data in a national flood risk context.  

5.3.2  Study Countries 

 We evaluate the global data for use at the national level in five countries: 

Colombia, England, Ethiopia, India, and Malaysia. These five countries bring 

together local communities and 46 different stakeholder partners that work together 

to address water security issues in the Global Challenges Research Fund (GCRF) 

funded Water Security and Sustainable Development Hub 

(https://www.watersecurityhub.org/). Below, we briefly summarize flood risk in 

each country and how it is managed. 

5.3.2.1 Colombia 

 Colombia is particularly susceptible to extreme weather events such as 

hurricanes, storms, and flooding due to its hydro-climatology that emerges from 

Colombia being located in the Intertropical Convergence Zone (ITCZ). The ITCZ is 

a place where both warm and humid winds from Northern and Southern latitudes 

converge, creating a belt of clouds. This situation generates constant provision of 

wind and humidity that, when interacting with topography, defines the rainy and dry 

seasons. The hydro-climatology is further influenced by El Niño–Southern 

Oscillation (ENSO). The cold phase of ENSO, otherwise known as La Niña, 

increases rainfall which leads to increased river flow and flooding. For example, in 

2011 four million people were affected by a strong La Niña event, causing losses of 

$7.8 billion through damage to economic infrastructure, flooding of agricultural 

land, and the issuing of government subsidies (Hoyos et al., 2013). Climate change 

is also projected to increase rainfall by 2.5% by 2050 which will further increase 

https://www.watersecurityhub.org/
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incidences of flooding (Ramirez-Villegas et al., 2012). Colombia manages flood risk 

alongside other risks posed by volcanos, landslides, and earthquakes under their 

National Disaster Risk Management System (UNGRD in Spanish). Policy, 

legislation, and regulations under this system are decentralized over the global, 

national, regional, and local levels to directly include public entities, non-profit 

entities and communities within the policy’s remit and subsequent activities. 

Colombia takes an ex-post approach to FRM through a reaction to flood events 

which occur. 

5.3.2.2 England 

 Flooding has been recognized by the UK government as one of the most 

serious threats facing the country. The National Flood Risk Assessment (NaFRA) 

estimate that one in six commercial and residential properties are at risk from 

surface water, fluvial, and coastal flooding. These risks are exacerbated by factors 

such as population growth, deteriorating drainage infrastructure, land use change 

and natural erosive processes, and will worsen with climate change (Alexander et 

al., 2016b). Extreme flood events have become more frequent in recent years, for 

example, Kendon et al. (2019) report that in 2019 England and Wales had its fifth 

wettest autumn since 1766 resulting in severe flooding in Yorkshire, 

Nottinghamshire, Derbyshire, and Lincolnshire; the most severe flood event to occur 

in the UK since 2015. Governed by the Department for Environment, Food and 

Rural Affairs (DEFRA), current flood risk policy centres on resilience to manage 

flood and climate change risk and to protect economic growth and infrastructure. It 

recognizes the importance of public participation over a decentralized structure to 

nurture long term and flexible approaches; to enable life to continue alongside water 

rather than keeping water out (Forrest et al., 2017). This entails community groups 

working alongside other flood related agencies to come up with long term solutions. 

5.3.2.3 Ethiopia 

 Ethiopia is exposed to a wide range of disasters associated with the country’s 

diverse geo-climatic and socio-economic conditions, but floods and droughts 

represent major challenges to communities and livelihoods. Flooding has become 

one of the most common, frequent, and severe natural disasters in Ethiopia affecting 

lowlands, highland, and urban areas; displacing thousands and causing loss of 

property and livelihoods. Increased rainfall variability and extreme events have 
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increased the likelihood of flooding, while risk is exacerbated by rapid population 

growth and urbanization, particularly in Addis Ababa the capital (Haile et al., 2013a, 

Beshir and Song, 2021). Environmental degradation, poverty and conflict further 

aggravate the risks and reduce the coping capacity and resilience of communities. 

For example, Haile et al. (2013b), illustrate how resettlement programs by the 

Ethiopian Government between 1983 and 1996 in the lowland region Gambela and 

consequent land use change resulted in increased flood events that affected up to a 

third of the population in some woredas. FRM in Ethiopia is governed by the 

National Disaster Risk Management Commission (NDRMC), established in 2015, to 

coordinate an integrated approach with all hazards to streamline their disaster risk 

management approach over multiple administrative scales to including an early 

warning and response system across all government sectors.  The Government of 

Ethiopia (GOE) has a long institutional history of addressing disaster risk 

management (DRM), starting with the establishment of the Relief and Rehabilitation 

Commission (RRC) following the 1974 famines. Since then, the country has taken 

several steps to shift to a more proactive approach to DRM. This includes updating 

the National Policy and Strategy on DRM (2013) and developing a DRM Strategic 

Program and Investment Framework (SPIF) for government and donor interventions 

in 2014 (DRMFSS, 2014). 

5.3.2.4 India 

 Flood risk in India differs across the country due to the various 

geomorphological locations and different atmospheric circulations. The Indian 

Summer Monsoon through several transient atmospheric conditions brings rain to 

different parts of the country via different monsoonal phases as onset and advance 

(mid-May to mid-July), peak rainfall (July to August) and withdrawal (mid-

September to mid-October). Rainfall intensity and extreme flood events have 

increased in intensity between 1951 and 2015 (Vinnarasi and Dhanya, 2016, Ray et 

al., 2019). Flood risk is particularly severe for urban settlements in India due to the 

huge populations who reside in mega-cities (population of over 1 million). The 

number of mega-cities has risen exponentially to 52 cities over the last two decades 

due to migration from rural areas (De et al., 2013). Flooding and water-logging have 

become common occurrences due to the reduction of green spaces and aging storm 

drains which struggle to cope, especially during the monsoon seasons, leading to 
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loss of income and increased disease risk (Ali et al., 2021). In the capital, Delhi, 

24,840 hectares of the city is built on floodplains, 68% of which are the low-lying 

Yamuna floodplains. The apex organization for flood management schemes of India 

is the Central Water Commission (CWC). However, FRM in India is always state-

led, with the federal government only assisting when relief measures (e.g., through 

National Disaster Response Force (NDRF), State Disaster Response Fund (SDRF) 

etc.) are required. Many States, especially the ones which are flood-prone, have 

established Flood Control Boards, organized by the respective Irrigation 

Departments (majorly), to assess the flood problems and evaluate the flood schemes. 

For example, the Irrigation and Flood Control Department leads FRM in Delhi. The 

city is demarcated into six drainage zones, and twelve municipal zones manage the 

storm run-off between them for the whole city. This approach reflects the structural 

approach of policy to flood risk which focuses on mainly infrastructural measures to 

control flooding. Different structural/administrative measures have been adopted by 

these organizations to reduce the flood losses and protect the flood plains across 

India. In addition to the several laws enacted by the Central Government (e.g., Inter-

state River Disputes Act 1956, The River Boards Act of 1956, Damodar Valley 

Corporation Act, 1948, Betwa River Board Act, 1976, Brahmaputra Board Act, 

1980, The Land Acquisition Act, 1894 etc.), a few States have also enacted laws to 

deal with disputes related to flood control works (CWC, 2018). 

5.3.2.5 Malaysia 

 Malaysia is severely affected by flooding. Eighty-five of Malaysia’s 189 

river basins are prone to recurrent flooding, all of which flow into the South China 

Sea (Saifulsyahira et al., 2016). Rainfall intensity in Malaysia is high all year round, 

with most of the flooding occurring between November and February during the 

Northeast Monsoon. For example, in January 2021, six people died and 50,000 were 

displaced during the monsoon on the east coast (Al Jazeera, 2021). Flash floods 

have also become more common with increased urbanization, infrastructure 

development alongside rivers, and the poor maintenance of drains and waterways 

(Yusoff et al., 2018, Mabahwi et al., 2020). FRM in Malaysia is driven by the 

federal government and characterized by a mostly technocratic approach. The 

Department of Irrigation and Drainage Malaysia (DID) is the main entity involved 

with flood management which includes the management of hydrological data, 

planning and development of flood defences, planning and development of flood 
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mitigation, management of national river resources, and coordination of other 

relevant agencies over federal, state and district administrative levels (Mabahwi et 

al., 2020).   

5.3.3  The Role of Global Data 

 The use of global datasets to assess national flood risk is dependent on the 

extent to which countries have the capacity, institutions, and governance structures 

to use and interpret the information. Many countries, especially those in the Global 

South, frequently lack the resources, expertise and strong institutional frameworks 

needed to access, collect, interpret, and analyse available datasets to implement 

effective FRM. For example, in Colombia, the gap between policy, the political will, 

and capacity to act on flooding influences FRM; also the country’s ex-post approach 

to FRM may limit the usefulness of these datasets (Key Informant Interview, 

Universidad del Valle, 2021). In Malaysia, efforts to manage flood disasters are 

hampered by a lack of legislative guidance on the management of flooding within 

the National Disaster Management Agency (NADMA), the federal agency in charge 

of disaster risk management, despite the NADMA’s close association with flooding 

management agencies. Obstructive bureaucracy over administrative scales and 

between agencies and limited authority in decision making also restrains the ability 

to manage flood risk in Malaysia (Mabahwi et al., 2020). Effective use of global 

flood risk data by these countries also entails corroboration with local data collected 

concerning flood risk, however local data may be limited, unavailable, or 

incompatible with global datasets due to poor data management, lack of resources 

systems, and unreserved, restricted access to data.        

5.4 Global Data 

 The number of global datasets for calculating climate risks is large and 

growing (Lindersson et al., 2020). In this study, we use global datasets that have 

been used in previously published studies of global flood risk. The datasets we use 

are free and can be easily obtained by the end-user, either by directly downloading 

them online or by contacting the developer of the datasets. In total, we use 6 global 

datasets of flood hazard, 7 global datasets of human population, and 3 global 
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approaches to calculating vulnerability. These datasets are detailed in the sections 

below and in Tables 5.1 and 5.2. 

5.4.1  Global Flood Hazard Data 

 We use both models and satellite observed flood events to represent hazard. 

We use five GFMs that have been used in previous studies of global flood risk. The 

models are CaMa-UT (Zhou et al., 2020, Yamazaki et al., 2011), CIMA-UNEP 

(Rudari et al., 2015), Fathom (Sampson et al., 2015), GLOFRIS (Ward et al., 2020b, 

Ward et al., 2013, Winsemius et al., 2013), and JRC (Dottori et al., 2016) These 

models represent the state-of-the-art in publicly available global flood hazard maps. 

They produce spatially continuous flood maps, meaning that the return period 

simulated is assumed constant across the modelled domain. The five models can be 

categorized into two distinct structures: cascade model structure and gauged flow 

data model structure (Trigg et al., 2016). Cascade models use global climate 

precipitation data to force land surface models which predict extreme flows across 

the river network. Gauged flow data models use global gauge data and regional 

flood frequency analysis to estimate extreme flows in ungauged basins globally. 

Previous intercomparison studies found large differences between these models in 

Africa (Trigg et al., 2016) and China (Aerts et al., 2020). Validation of the same 

models against observed flooding in Nigeria and Mozambique found that the best 

models performed favourably compared with historical flood events (Bernhofen et 

al., 2018). Some, but not all, of the GFMs have incorporated flood defences into 

their modelling frameworks. Similarly, some models have introduced different types 

of flooding, such as pluvial and coastal. To maintain consistency between the GFMs 

we use only the fluvial undefended flood hazard maps. The 100-year return period, 

or 1% annual probability flood, is used for our calculations. In England, we use 

Fathom-UK flood extents, which utilizes the same modelling framework as their 

global model but makes use of more detailed national data. In addition to globally 

modelled flood extents, we use satellite derived flood extents from the Global Flood 

Database (GFD), a 20-year catalogue of observed flood events (Tellman et al., 

2021). The global flood hazard datasets are outlined in Table 5.1. Detailed 

descriptions of the datasets and how to access them, as well as previous flood risk 

studies they have been used in are included in Appendix C. 
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Table 5.1  Global Flood Hazard Data Summary Table 

Flood Models 

Name 

Model 

Structure 

Rivers 

Modelled 

Inundation 

Solver 

Elevation 

Data 

Downscaling 

Procedure 

Output 

Resolution 

CaMa-UT Cascade 

Catchments 

>0.25° grid 

cell (~600 

km2) some 

inundation 

captured on 

rivers as 

small as 50 

km2 during 

downscaling 

2D inertial 

wave 

SRTM 

(MERIT) 

Flood depth 

down-scaled 

from 0.25° 

3 arcsecond 

CIMA-

UNEP 

Gauged 

flow 

Rivers 

>1000 km2 

drainage 

area 

1D 

Manning’s 

SRTM 

(Hydro-

SHEDS) 

None 3 arcsecond 

Fathom 

Global 2.0 Gauged 

flow 

Rivers >50 

km2 

drainage 

area 

2D inertial 

wave 

SRTM 

(MERIT) 
None 

3 arcsecond 

Fathom-

UK 
All rivers LiDAR 1 arcsecond 

GLOFRIS Cascade Rivers ≥ 

Strahler 

order 6 

2D 

kinematic 

wave 

SRTM 

(Hydro-

SHEDS) 

Volume 

redistributed 

from 0.5° 

30 

arcsecond 

JRC Cascade Rivers > 

5000 km2 

drainage 

area 

2D inertial 

wave 

SRTM 

(Hydro-

SHEDS) 

None 30 

arcsecond 

Observed Data 

Name Image 

Source 

Type of 

Flooding 

Image Type Observed 

Period 

Total Events Resolution 

Global 

Flood 

Database 

(GFD) 

MODIS Heavy rain, 

storm surge, 

snowmelt, 

dam break 

Optical 2000-2018 913 250 m 

 

5.4.2  Global Population Data 

 To identify who is exposed to flooding it is essential to understand where 

people live. Gridded population datasets, which distribute census information over 

spatial data, are the tools commonly used to calculate flood exposure at the global 

scale. The methods applied to distribute census data differ in complexity. These 

methods,  their development, and their wide-ranging applications are reviewed in 

detail by Leyk et al. (2019). To summarize the different methods briefly, census data 

can be distributed across a grid by areal weighting or by dasymetric weighting. The 

areal weighting approach distributes census data evenly across an area. The 

dasymetric weighting approach uses ancillary datasets to weight the distribution of 
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census data. This can vary in complexity from binary weighting (settlement or no 

settlement) to statistical weighting approaches based on multiple ancillary datasets. 

Another way to distinguish the population datasets is whether they are constrained 

or unconstrained. The constrained approach masks out all non-settled areas as 

uninhabited, while the unconstrained approach assumes that not all settlements can 

be accurately mapped globally and residual census data is distributed across non-

settled area to account for any unmapped settlements (Thomson et al., 2021) 

 The use, and limitations, of gridded population data in flood exposure studies 

specifically, are addressed in the studies of Smith et al. (2019) and Bernhofen et al. 

(2021). The two studies collectively consider four different global population 

datasets, however, many more have been used in previous studies of global flood 

risk. In Table 5.2, we identify and summarize seven different global population 

datasets which we use to calculate flood exposure: GPW4 (Doxsey-Whitfield et al., 

2015), GHS-POP (Freire et al., 2016), GRUMP (Balk et al., 2005), HRSL (Tiecke, 

2017), HYDE (Klein Goldewijk et al., 2010, Klein Goldewijk et al., 2017), 

Landscan, and Worldpop (Stevens et al., 2015). These datasets have all been used in 

previous studies of global flood risk. In our analysis, we use the most up-to-date 

epoch for each population dataset, which are then scaled to 2020 national population 

totals for exposure comparison. Detailed descriptions of each population datasets 

and how to access them, as well as previous global flood risk studies they have been 

used in are included in Appendix C. 

Table 5.2  Global Population Data Summary Table 

Name Census Data 

Daytime / 

Nighttime Years 

Census 

Distribution 

Method 

Constrained 

or 

Unconstrained Resolution 

GPW4 

subnational 

census data 

(and UNDP 

adjustments) 

Nighttime 

2000, 

2005, 

2015, 

2020 

Areal 

weighting 

across 

administrative 

units 

Unconstrained 
30 

arcsecond 

GHS-POP GPW4 Nighttime 

1975, 

1990, 

2000, 

2015 

Dasymetric 

weighting 

based on 

Landsat data 

Constrained 
9 

arcsecond 

GRUMP GPW3 Nighttime 

1990, 

1995, 

2000 

Dasymetric 

weighting 

based on 

night-time 

lights 

Unconstrained 
30 

arcsecond 

HRSL GPW4 Nighttime 2018 

Binary 

dasymetric 

weighting 

Constrained 
1 

arcsecond 
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based on 

settlements 

from 

DigitalGlobe 

(~0.5 m 

resolution) 

imagery 

HYDE 

UN world 

prospects 

and 

literature 

(pre-1950) 

Nighttime 

10,000 

BC - 

2015 

Multi-

variable 

dasymetric 

weighting 

based on a 

number of 

input datasets 

Constrained 
30 

arcsecond 

Landscan 

subnational 

census data 

(and U.S. 

Census 

Bureau 

adjustments) 

Daytime 

Annually 

2000-

2019 

Statistical 

dasymetric 

weighting 

based on a 

number of 

input datasets 

Constrained 
30 

arcsecond 

WorldPop GPW4 Nighttime 

Annually 

2000-

2020 

Statistical 

dasymetric 

weighting 

based on a 

number of 

input datasets 

Unconstrained 
3 

arcsecond 

 

5.4.3  Global Vulnerability Approaches 

 Vulnerability is the susceptibility of a community or system to experience 

losses from a hazardous event (UNISDR, 2004). It is a complex, multifaceted 

concept that can be experienced directly or indirectly across human, physical, 

economic, and environmental spheres (van Westen, 2014). Vulnerability has 

received less attention at the global scale than hazard and exposure (Ward et al., 

2020a). Below, we identify and summarize three intercomparable methods for 

calculating vulnerability that have been used in previous studies of global flood risk. 

The three methods calculate direct economic damages using land cover maps to 

identify assets at risk and depth-damage curves to determine the degree of damage 

experienced by the asset. We name the three vulnerability approaches based on the 

global land cover map used to represent assets at risk. 

5.4.3.1 GHSL 

 The approach to calculating vulnerability in the Aqueduct Floods project 

(Ward et al., 2020b) is based on the global depth-damage function database 

developed by Huizinga et al. (2017). Only urban damages are considered. The urban 

area is split into three classes: residential, commercial, and industrial. Because 
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current global land cover datasets do not differentiate between urban classes, 

assumptions are made about the fractional split of urban classes globally. Based on 

the spatial distribution of urban classes in Europe derived from the Corine Land 

Cover dataset and the findings of a report by the Buildings Performance Institute 

Europe (Economidou et al., 2011) the global fractional split of urban areas used in 

Ward et al. (2020b) is 75 percent residential, 15 percent commercial, and 10 percent 

industrial. Urban areas are defined as cells in the 1 km resolution Global Human 

Settlement Layer (GHSL) dataset (Corbane et al., 2019) that correspond to a 

percentage of built-up area of 50 percent or greater (Ward et al., 2020b). 

5.4.3.2 GlobCover 

 The same global depth-damage function database (Huizinga et al., 2017) was 

used alongside the 10 arcsecond resolution (~300 m at the equator) GlobCover 

(v2.3) land cover map (Bontemps et al., 2011) to calculate vulnerability in a number 

of other studies of global flood risk (Alfieri et al., 2017, Alfieri et al., 2018, Dottori 

et al., 2018). In these studies, five land use classes were considered in the 

vulnerability assessment: four urban classes (residential, commercial, industrial, and 

infrastructure) and agriculture. This is the only approach of the three that considers 

any non-urban (agricultural) damages. While the GlobCover dataset explicitly 

represents agriculture area, it makes no distinction between urban land-use classes, 

which are represented as ‘artificial areas’. These ‘artificial areas’ are split into the 

four urban land-use classes using globally consistent ratios, derived from studies of 

land-use occupation in cities across different continents (Dottori et al., 2018). The 

urban land-use ratios used are 56 percent residential, 20 percent commercial, 16 

percent industrial, and 8 percent infrastructure (L. Alfieri, personal communication, 

December 1, 2020). 

5.4.3.3 HYDE 

 In Ward et al. (2013) a single depth damage function, derived by averaging 

the high and low urban density land class functions in the Damagescanner tool 

(Klijn et al., 2007), is used to calculate vulnerability globally. Maximum damage 

values are calculated for each country following the approach of Jongman et al. 

(2012) which uses a country’s GDP to normalize maximum damages obtained from 

the Damagescanner tool. Damages are calculated exclusively for urban areas which 

are derived from the HYDE (Klein Goldewijk et al., 2010) fractional urban 
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landcover dataset at 5 arcminute resolution (~10 km at the equator). It should be 

noted that the limitations of using a single depth-damage function globally are 

outlined in Ward et al. (2013) and subsequent studies have incorporated spatially 

variable functions (Ward et al., 2020b). 

5.5 Methods 

5.5.1  GFM and Population Agreement Calculations 

 The datasets are aggregated following the approach of Trigg et al. (2016) and 

Aerts et al. (2020). GFM output is aggregated by first resampling the five GFMs to 

the finest GFM resolution (1 arcsecond in England and 3 arcsecond in the remaining 

countries) using the nearest-neighbor approach, which ensures depths of the 

resampled flood map are the same as the native resolution flood map. The GFM 

flood depth maps are converted to binary wet/dry rasters for any non-zero flood 

depth and then summed to produce the aggregated GFM map. Permanent water 

bodies are masked out using the G3WBM permanent water body mask (Yamazaki et 

al., 2015). Values in the aggregated GFM map range from 5 (highest agreement) to 

1 (lowest agreement). Similarly, to produce the aggregated population map the 

seven global population datasets are resampled to the finest population resolution (1 

arcsecond). The population maps are then converted to binary populated area maps 

where any cell with a non-zero population is defined as a populated cell. It should be 

noted that this approach just represents the agreement between the population data in 

terms of populated area and does not account for variations in population density. 

Values in the aggregated population map range from 7 (highest agreement) to 1 

(lowest agreement).   

 Agreement between the datasets is calculated using the Model Agreement 

Index (MAI) first introduced by Trigg et al. (2016) and three variations of this index. 

The MAI is calculated using the aggregated GFM map. For each model agreement 

level, the total flooded area is multiplied by the fractional level of agreement. These 

values are summed for all agreement levels and then divided by the total flooded 

area to give a fraction of model agreement, which ranges from 0 (no agreement) to 1 

(total agreement). 



  Chapter 5 

150  The role of global datasets for flood risk management at national scales 
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𝐴𝑓
 

(5.1) 

where 𝐴𝑓 is the total flooded area in the aggregated GFM map, 𝑖 is the agreement 

level, 𝑛 is the total number of models, and 𝑎𝑓𝑖 is the flooded area at the agreement 

level 𝑖. The Population Agreement Index (PAI) is calculated in the same way that 

the MAI is calculated. The only difference is that the aggregated population map 

rather than the aggregated GFM map is used in the calculations.  
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𝑛
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𝐴𝑝
 

(5.2) 

where 𝐴𝑝 is the total populated area in the aggregated population map and 𝑎𝑝𝑖 is the 

total populated area at agreement level 𝑖. Values for the PAI range from 0 (no 

populated area agreement) to 1 (total populated area agreement). The Exposure 

Agreement Index (EAI) is another variation of the MAI. Similar to the exposure 

weighted metrics used in Pappenberger et al. (2007) and Wing et al. (2019), the EAI 

uses exposed population, rather than flooded area, to calculate agreement. EAI is 

calculated for each of the seven population datasets. 

 

𝐸𝐴𝐼 =
∑

𝑖
𝑛 ∙ 𝑒𝑖

𝑛
𝑖=2

𝐸
 (5.3) 

where E is the total population exposed to the entire aggregated GFM map and 𝑒𝑖 is 

the population exposed at agreement level 𝑖. The EAI ranges from 0 (no model 

exposure agreement) to 1 (total model exposure agreement) and is an indicator of 

the level of agreement between the models when used for exposure calculations. The 

final agreement index is the Volume Agreement Index (VAI). While the MAI 

calculates agreement between the models in two dimensions, the VAI calculates 

model agreement in three dimensions by incorporating flood depth. The VAI needs 

to be calculated using the aggregated GFM map alongside all the GFM flood depth 

maps. 
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𝑖
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 (5.4) 
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where 𝑉𝑚𝑎𝑥 is the maximum volume possible for the aggregated flood extent and 𝑣𝑖 

is the volume of models in agreement at agreement level 𝑖 (in three dimensions). 

The VAI ranges from 0 (no agreement) to 1 (total agreement). 

5.5.2  Flood Exposure Calculations 

 Flood exposure is calculated for each country using observational flood data, 

five GFMs, and seven population datasets outlined in Section 5.4. Observational 

flood data for the last 20 years is collated from the GFD and merged into one 20-

year flood map. We remove any observed flood events caused by storm surges or by 

dams. In total, 237 events are merged across the five countries. There are two 

resolutions at which exposure calculations are carried out: 1 arcsecond and 3 

arcsecond. Exposure calculations for the HRSL population map are carried out at 1 

arcsecond resolution (the native resolution of HRSL). Similarly, in England 

exposure calculations are all carried out at 1 arcsecond resolution (the native 

resolution of the Fathom-UK flood map). The remaining exposure calculations are 

carried out at 3 arcsecond resolution. The six flood hazard datasets are resampled to 

3 arcseconds resolution (if not already native at 3 arcseconds) and 1 arcsecond 

resolution using the nearest neighbor approach. Global population datasets coarser 

in resolution than 3 arcseconds (GHS-POP, GPW4, GRUMP, HYDE and LandScan) 

are resampled and the population is evenly distributed to a 3 arcsecond resolution 

grid (or 1 arcsecond in England). Flood exposure is calculated by intersecting a 

flood map with a global population dataset. Permanent water bodies are masked out 

using the G3WBM water body map (Yamazaki et al., 2015). To account for any 

differences in total national populations between the seven global population 

datasets (and because not all population data is in the same epoch), each dataset’s 

total national population is scaled to match the WorldPop 2020 national population 

totals.  

5.5.3  Flood Damage Calculations 

 Flood damages are calculated in each country using the five GFMs and three 

vulnerability methods outlined in Section 5.4. Observational data is not used for the 

vulnerability calculations as the maps contain no information about flood depth. 

Because the depth-damage curves are in units of metres, depths for the CIMA-

UNEP GFM are first converted from centimetres to metres. Each vulnerability 
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method uses a different landcover map (GlobCover, GHSL, and HYDE). These 

maps are resampled to the analysis resolution (1 arcsecond in England, 3 arcseconds 

in the rest) using the nearest neighbor approach. Permanent water bodies are masked 

out in the GFMs with the G3WBM water body map (Yamazaki et al., 2015)  

 For the GlobCover vulnerability method, the approach follows that of Alfieri 

et al. (2017) and Dottori et al. (2018). Damages are calculated across five different 

sectors: agriculture, commercial, industrial, infrastructure, and residential, the latter 

four making up the urban class. Those areas defined as “Artificial” in the GlobCover 

landcover map are classified as urban areas. Because the GlobCover map does not 

distinguish between urban sectors, we use constant urban ratios of 56% residential, 

20% commercial, 16% industrial, and 8% infrastructure that have been used in the 

aforementioned studies. When defining agricultural areas, we use the GlobCover 

“Cropland” class. Where a range of potential cropland area is given in the 

GlobCover documentation we use the average value (e.g. for 20-50% coverage we 

use 35%). Damage curves and maximum damages for each sector in each country 

are taken from the Huizinga et al. (2017) global database of depth damage functions.  

 For the GHSL vulnerability method, we follow the Aqueuduct approach 

(Ward et al., 2020b). Damages are calculated for three urban sectors: residential, 

commercial, and industrial. Urban areas are defined as those cells in the GHSL 

dataset with a built-up area greater than 50%. Constant ratios of 75% residential, 

15% commercial, and 10% industrial are used for the urban sector split. The same 

Huizinga et al. (2017) database is used to determine maximum damage values and 

damage curves per sector in each country.  

 For the HYDE vulnerability method, we follow the approach outlined in 

Ward et al. (2013). Maximum damages for each country are calculated using a GDP 

normalization equation from Jongman et al. (2012) applied to a maximum damage 

value from the Damagescanner model (Klijn et al., 2007). To convert the maximum 

damage values from 2005 USD into 2010 EUR (to ensure consistency with the 

Huizinga et al. (2017) database), we use the average annual inflation from 2005 to 

2010 and the average USD to EUR exchange rate for 2010. Urban areas are 

calculated using the HYDE urban land cover dataset for the year 2015, which shows 

the percentage urban coverage per grid cell. This percentage urban coverage is 

converted to an urban area, to which we assign the calculated country-specific 
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maximum damage value. A single depth-damage function is used, which is the 

average of the functions for the high and low urban density classes in the 

Damagescanner model.  

 Damages are calculated for each of the three approaches by intersecting a 

GFM flood hazard map with depths with the relevant land use dataset. Where the 

flooding and the land use data intersect, percentage damage is calculated for the 

specific land use type using the flood depth at that location and the specific depth-

damage curve for that sector. Damages are calculated by multiplying the percentage 

damage by the maximum damage value for that land-use type. Damages are reported 

in 2010 Euros.  

5.5.4  Institutional Capacity of Flood Risk Management 

Qualitative interviews are conducted among key water experts of the five 

countries to explore the extent and capacity to which they access and use these 

global datasets. Data from these interviews were used to illustrate the national 

context of FRM, as outlined in Section 5.3.2, and feed into the discussion in Section 

5.7. 

5.6 Results 

5.6.1  Global Flood Hazard and Population Data Agreement 

 Aggregated maps of GFM hazard extent (Figure 5.1) were used to evaluate 

model agreement (see agreement scores in Table 5.3). In Colombia, the country with 

the best MAI score (0.363), the models showed the highest levels of agreement to 

the north of the country on the Magdalena river. In India, the country with the 

second highest MAI score (0.322), the areas of highest GFM agreement were in the 

north-east of the country, along the Ganges and the Brahmaputra rivers. This was a 

trend seen across the five countries: the models tended to agree more on larger rivers 

and disagree more on smaller rivers. This is evident in the Orinoquia region in 

central Colombia where only one of the five models predicts significant inundation. 

Most of the rivers here have an upstream drainage area less than 500 km2. Of the 

five GFMs, Fathom is the only one that models rivers this small (rivers with an 

upstream drainage area greater than 50 km2). The impact of river thresholds was 

most marked in England, here Fathom-UK has ingested higher accuracy national 
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elevation and gauge data to model flooding on all rivers. By comparison, JRC only 

models flooding on six rivers in England. The models also disagree in low-lying 

coastal areas and deltas, such as the western Ganges delta and the Godavari delta in 

India, the Sarawak’s Rajang River Delta in Malaysia, and the Fens in eastern 

England near The Wash. In these low-lying areas, the flood extent is more sensitive 

to differences in modelled flood depth leading to lower model agreement. To further 

disseminate model agreement, we split the countries into drainage basins from level 

4 - level 6 according to the HydroAtlas (Linke et al., 2019) classification. Maps of 

basin level agreement scores can be found in Appendix C. When examining the 

relationship in level 6 basins between the catchment area upstream of the basin and 

the MAI score within the basin, we found a positive normative association between 

the two (Spearman’s rank coefficient, ρ = 0.429), evidence that GFM agreement 

improves as the size of river modelled increases. Comparing MAI scores between 

coastal level 6 basins and inland level 6 basins we found that the mean inland MAI 

score (0.293) was 38% larger than the mean MAI score for coastal basins (0.212). 

The same trends were found when examining the relationships at basin levels 4 and 

5 (results included in Appendix C). 
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Figure 5.1  Maps of Global Flood Model (GFM) agreement, GFM and Global Flood 

Database (GFD) observed flooding overlap, and global population data 

settlement agreement.  

Grey areas indicate no-data regions. 
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 The preceding section considered agreement between the modelled flood 

extents in two dimensions. Agreement was also measured in three dimensions using 

the VAI score, which incorporates modelled flood depth in the calculation. In 

general, VAI scores showed similar trends to MAI scores: scores were higher in 

basins with larger rivers and lower in coastal basins compared to inland basins. At 

the national level, Colombia and India remained the two highest scoring countries 

with VAI scores of 0.217 and 0.183, respectively. Interestingly, Ethiopia had the 

third highest VAI score (0.169) despite having the lowest MAI score, suggesting 

there was greater agreement between the modelled flood depths in Ethiopia than in 

Malaysia or England. 

 To evaluate GFM agreement in a risk context, exposure agreement when 

intersected with a population map was calculated using the EAI score. EAI scores 

were calculated for each of the seven population maps (see Table 5.3). The lower a 

population map’s EAI score the greater the proportion of exposure that falls within 

the low agreement zones of the aggregated flood map. As the EAI score decreases 

the effect the choice of GFM has on calculated flood exposure increases. For 

example, in Colombia the choice of GFM has a greater impact on exposure 

estimates calculated with Landscan (EAI of 0.232) than with HYDE (0.358). The 

implications of using different datasets for exposure calculations are explored in 

greater detail in section 5.6.2.  

 Comparing the maximum aggregated GFM extent with 20 years of 

observational flooding from GFD (see Figure 5.1) we find that in Colombia the 

GFMs capture over 92% of the historical flooding. Almost 40% of the captured 

flooding is in the high agreement zone of the aggregated map (5 models agree), 

likely because a large proportion of the observed flooding occurred in the north of 

the country where the models showed higher levels of agreement. In India, much of 

the observed flooding on the Ganges and Brahmaputra rivers is captured by the 

models. However, there are large areas of observed flooding missed by the models 

in central India in the state of Madhya Pradesh. In England the 20-year observed 

flood extent (10,938 km2) is almost as large as the maximum aggregated 100-year 

return period GFM flood extent (13,608 km2), but with little overlap. Much of this 

observed flooding can be attributed to commission errors from cloud cover.  
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Table 5.3  Country level Model Agreement Index (MAI), Volume Agreement Index 

(VAI), Exposure Agreement Index (EAI), and Population Agreement Index 

(PAI) scores. 

   EAI  

Country MAI VAI GPW4 

GHS-

POP GRUMP HRSL HYDE Landscan WorldPop PAI 

Colombia 0.363 0.217 0.346 0.235 0.321 0.247 0.358 0.232 0.298 0.624 

England 0.258 0.132 0.244 0.223 0.264 0.214 0.275 0.241 0.224 0.782 

Ethiopia 0.240 0.169 0.196 0.240 0.185 0.191 0.194 0.160 0.213 0.644 

India 0.322 0.183 0.365 0.292 0.358 0.280 0.354 0.305 0.341 0.719 

Malaysia 0.299 0.160 0.253 0.229 0.272 0.223 0.283 0.237 0.236 0.679 

  

 When assessing population map agreement, we consider only binary 

populated or unpopulated areas; we do not consider variations in population density. 

England’s PAI score (0.782) (see Table 5.3) is much higher than the other four 

countries. This can also be seen visually in Figure 5.1, where the aggregated 

population map for England has more dark green areas relative to the other 

countries. Population disagreement stems largely from the differing approaches to 

modelling rural / low populated areas. Unconstrained population datasets (which 

spread residual census data across uninhabited areas) are responsible for the large 

areas of low population agreement in Colombia and Ethiopia in Figure 5.1 and 

contributes to their comparatively low PAI scores. Another contributing factor to 

population disagreement is the difference in dataset resolution. The finest (HRSL, 1 

arcsecond) resolution dataset is detailed enough to identify individual buildings 

while the coarsest (HYDE, 5 arcminute) resolution dataset is detailed enough to 

identify only cities.  

5.6.2  Flood Exposure 

 National flood exposure estimates calculated for each country using 35 

different combinations of GFM and global population dataset are shown in Figure 

5.2. No single GFM consistently predicted the most or least exposure across the five 

countries. The same is true for the global population datasets. In Colombia, Fathom 

predicted more than double the average exposure than any of the other GFMs. Here, 

Fathom’s flood extent (152,304 km2) was significantly larger relative to the other 

GFMs (the next largest extent is JRC at 87,961 km2).  In Malaysia, the model with 

the highest exposure was GLOFRIS. This was because it predicted far more 

exposure on the Malaysian coast than the other GFMs. This was a trend seen across 

the five countries,  GLOFRIS predicted far more coastal inundation than any other 

GFM. Flooding in level 6 coastal basins accounted for 21.5% of the total GLOFRIS 
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flood extent, compared with 10.2% (CaMa-UT), 7.7% (Fathom), 7.2% (CIMA), and 

6.8% (JRC). In each of the five countries, the average exposure calculated using 

Fathom was consistently above the 35-dataset exposure average, while exposure 

calculated using CaMa-UT and CIMA was consistently below the 35-dataset 

average.  

 The choice of global population dataset used also had a significant effect on 

exposure estimates. In Ethiopia, when LandScan and HRSL population maps were 

used, national flood exposure estimates were far lower across all the GFMs. In 

Colombia, flood exposure estimate disagreement in the Rio Negro basin to the 

south-east of the country was a result of the use of different population datasets 

rather than the use different GFMs. In this basin, average HRSL (47 thousand) and 

GHS-POP (39 thousand) exposures were far greater than Landscan (17 thousand), 

HYDE (9 thousand), WorldPop (8 thousand), GPW4 (4 thousand), and GRUMP (2 

thousand) exposures. Much of this exposure disagreement in this basin came from 

the town of Mitú (see Figure C.14 in Appendix C). Here, the GPW4 and GRUMP 

datasets did not even represent a town (populations below 100), WorldPop and 

HYDE picked up some population (below 4,000), only Landscan, GHS-POP, and 

HRSL represented population totals over 10,000 (2018 Mitú population estimate 

was 29,850 (DANE, 2019)). The difficulty in accurately representing rural towns 

and populations is one of the major contributing factors to exposure disagreement, 

especially if the population is exposed to a river as in Mitú. The population datasets 

agreed better in large urban areas. This is especially evident in Figure 5.2 when 

examining the spread of the population exposure estimates for the JRC GFM in 

England. The majority (65%) of JRC’s national exposure came from the Thames 

river in Greater London. Because the population datasets show greater agreement in 

dense urban areas, the differences in exposure estimates here are lower.  
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Figure 5.2  National flood exposure dot plots. 

35 national flood exposure estimates calculated using five global flood models 

and seven global population datasets. Column on the right shows the average 

national flood exposure estimate calculated with each population dataset 
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 Across the five countries, the only population dataset whose average 

exposure showed a consistent trend above or below the 35-dataset average was 

HYDE, suggesting there are less cross-national trends in exposure estimates for 

global population data than there are for GFMs. The HYDE dataset maps population 

distribution at a resolution of nearly 9 km at the equator, which is between ten and 

three hundred times coarser than the other population datasets and between ten and 

one hundred times coarser than the GFMs. At such a coarse resolution, HYDE 

represents the interaction between the inundation and the exposure with significantly 

less precision, therefore, the resulting HYDE exposure estimates are influenced 

more by the modelled inundated area than the location of the population exposed. 

Conversely, HRSL exposure estimates were typically lower than the average (except 

for Malaysia). This is because the detailed representation of individual buildings in 

the HRSL dataset better captures the population’s avoidance of obvious floodplains. 

 

Figure 5.3  Box and whisker plots of normalized national flood exposure estimates 

for all five countries 

 The spread of average GFM exposure is larger than the spread of average 

global population exposure in each of the five countries, suggesting that the choice 
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of GFM used has a greater impact on exposure estimates than the choice of global 

population dataset used. To explore this further at the basin level, we compare the 

average coefficient of variation of flood exposure estimates when the choice of 

GFM is held constant to the average coefficient of variation when the choice of 

global population dataset is held constant. Across the five countries, we find that the 

choice of GFM had a greater influence on exposure estimates than the choice of 

population dataset in 90% of level 4 basins, 80% of level 5 basins, and 78% of level 

6 basins. Figure C.15 in Appendix C illustrates these basins.  

 In Figure 5.3, exposure results are normalized and combined to produce box 

and whisker plots for cross-country comparison. The distribution of national flood 

exposure estimates is comparatively smaller in England and Ethiopia than it is in 

Colombia, India, or Malaysia. The range of potential normalized national flood 

exposures calculated using global data in these three countries is substantial. In 

Colombia, normalized national exposure ranges between 34 and 175 people exposed 

per 1000; in India, it ranges between 72 and 244 people exposed per 1000; and in 

Malaysia, it ranges between 50 and 219 people exposed per 1000.  

Table 5.4  Maximum combined Global Flood Model (Max GFM) and observed 

Global Flood Database (GFD) flood exposure comparison (exposed people per 

1000) 

Country Flood Data GPW4 

GHS-

POP GRUMP HRSL HYDE LandScan WorldPop 

Colombia 

Max GFM 154.4 229 150.6 202 199.8 216.7 206.6 

GFD 11.4 12.1 11.3 9.9 13.5 16.7 13.6 

Overlap 9.5 6.2 9.5 5.3 10.7 7.8 9.9 

England 

Max GFM 92.1 84.7 104.7 77.1 108.3 99 83.3 

GFD 200.7 211.8 145.1 218.2 150.9 196.9 218.1 

Overlap 21 20.2 19.8 19.5 20.8 21.9 20.7 

Ethiopia 

Max GFM 63.5 71.3 65.2 44.9 65.4 42.7 64.7 

GFD 1.1 1.4 1.7 0.4 1.3 0.4 1.3 

Overlap 0.6 1.1 0.7 0.2 0.7 0.2 0.8 

India 

Max GFM 351.1 330.2 346.7 304.1 348.8 332.8 354.3 

GFD 88.1 54.4 82.3 50 81.5 65 80.7 

Overlap 76.4 42.7 71.1 39.5 69.3 51.8 68 

Malaysia 

Max GFM  252.6 347.5 278.6 337.9 327.5 369.6 311.9 

GFD 10.8 7 11.9 6.8 12.1 9.2 9 

Overlap 8.1 3.5 9.8 3.3 9.7 6.3 5.6 

  

 

 

 We also calculate population exposure to 20 years of historical flood events 

from the GFD. These exposure results are listed in Table 5.4 along with exposure to 
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the maximum combined GFM extent and exposure where the two datasets 

overlapped. The population dataset used to calculate exposure has an equally 

significant impact on observed flood exposure estimates as it does on modelled 

flood exposure estimates. For example in India, observed flood exposure calculated 

using HRSL (50 people per 1000) is 43% smaller than observed flood exposure 

calculated GPW4 (81.1 people per 1000). This is significant as often these datasets 

are used in immediate disaster response to estimate those exposed to flood events. 

5.6.3  Flood Damages 

 Direct economic damages for the five countries were calculated using five 

GFMs and three different vulnerability approaches. The total economic damages and 

the GDP normalized economic damages for each country are shown in Figure 5.4. 

Total flood damages were largest in India: ranging from 29.7 billion EUR (39.4 

billion USD) to 109 billion EUR (145 billion USD) depending on the GFM and 

vulnerability approach used. Damages were most acute in Malaysia, where 

normalized damages made up between 2.2% and 29% of national GDP. Flood 

damages were comparatively small in Ethiopia, never exceeding 0.5% of national 

GDP. Here, when the GlobCover vulnerability approach was used, agricultural 

damages accounted for the majority of total damages (between 83% - 100%). Only 

two of the five GFMs (Fathom and CaMa-UT) calculated any urban GlobCover 

damages in Ethiopia. This is because the rivers running through the two cities where 

urban damages were calculated (Addis Ababa and Dawa) are too small to be 

modelled by three of the five GFMs.  

 In each of the five countries, the choice of vulnerability approach used had a 

greater impact on direct damage estimates than the choice of GFM. In Colombia, the 

average total damages calculated using the GlobCover approach was 650 million 

EUR (862 million USD) compared to 3.5 billion EUR (4.6 billion USD) and 9.9 

billion EUR (13.1 billion USD) when GHSL and HYDE approaches were used, 

respectively. No vulnerability approach consistently predicted the most or least 

damages. In Colombia, England, and Malaysia the HYDE method predicted the 

most damages, while in Ethiopia and India the GlobCover approach predicted the 

most damages. Differences in direct damages between the three approaches are a 

function of the land cover dataset used, and the assumptions made during the 

calculations. Apart from GlobCover, which also considers agriculture, damages are 
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only calculated for urban areas. The three landcover datasets differ in their 

classification of urban areas. In Colombia, the total urban area defined by 

GlobCover was just 99 km2, for GHSL it was 946 km2, and for HYDE it was 2436 

km2. The differences in damages calculated in Colombia reflect these differences in 

urban area. This trend was similar in Malaysia, where urban areas were 1178 km2, 

1929 km2, and 4929 km2 for GlobCover, GHSL, and HYDE respectively. The three 

approaches make different assumptions about the categorization of damages. 

Inclusion of agricultural damages is significant in Ethiopia, but not in the other four 

countries. Infrastructure damages, which are only considered in the GlobCover 

approach, make up less than 2% of total damages in each of the five countries. 

 

Figure 5.4  National flood damages calculated using five global flood models and 

three vulnerability approaches. 

(Top row) Normalized national flood damages (relative to national GDP). 

(Bottom row) Total national flood damages. Damages in 2010 Euros. 
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5.7 Discussion 

5.7.1  Global Data Used Nationally 

 We identify 16 different global flood risk datasets and methods that have 

been used in previous studies of global flood risk and use them to calculate national 

flood risk in five countries: Colombia, England, Ethiopia, India, and Malaysia. 

These datasets, which have been instrumental in improving our understanding of 

global flood risk over the past two decades, are becoming increasingly relevant at 

the national scale. However, as Ward et al. (2015) postulated about GFMs, “there is 

often a mismatch between their actual ability and the envisaged use by 

practitioners”. We have shown that there is also mismatch between the different 

global datasets, which is reflected in what they tell us about national flood risk.  

 Disagreement between the GFMs is substantial, and this is reflected in their 

MAI scores. The scores, which range from 0.24-0.363, are in line with the scores of 

the intercomparison of the first generation of GFMs in Africa (Trigg et al., 2016). 

As the models develop, you would expect convergence in their modelled output. 

However, these models are not being developed at the same rate. Only three of the 

five GFMs tested in this study (Fathom, CaMa-UT, GLOFRIS) have updated their 

model outputs since the first Trigg et al. (2016) intercomparison. Fundamental 

differences between the models remain; most notably the thresholds set on the size 

of river modelled (Bernhofen et al., 2021). These thresholds impact estimates of 

flood risk at the national scale, as seen with the large Fathom risk estimates relative 

to the other models (especially in Colombia and Ethiopia); and risk estimates at the 

basin and city scale, such as in the capital of Ethiopia, Addis Ababa, where only two 

of the five GFMs estimated any flood risk. Beyond differences in modelled domain, 

the models differ in their very structure. Although there are limits to the conclusions 

that can be drawn by a comparison of raw modelled output alone, results suggests 

differing levels of hydrodynamic representation and coastal boundary conditions 

contribute to disagreement in low-lying and coastal areas. This is evident across the 

five countries, but especially in England and Malaysia., the two countries with 

higher coast to area ratios. In these countries, GLOFRIS (a volume spreading model) 

predicts far higher coastal exposure, and subsequent national exposure, relative to 

the other (more hydrodynamic) models. The final resolution of the modelled flood 

extent should also be considered. The detail lost when using a 30 m or 90 m 
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resolution flood map compared with a 1 km resolution flood map is not 

insignificant.  

 Equally important to globally modelled flood data is global observational 

flood data. Although the limits to this data have been shown in England, Ethiopia, 

and Malaysia. The incorrect classification of flooding from satellite imagery due to 

cloud or terrain shadows, as is apparent in England, can lead to significant over 

prediction of flooding and lead to potentially misclassified exposure (Revilla-

Romero et al., 2015). In Ethiopia and Malaysia, the limited 20-year timeframe of the 

satellite observed data is evident, as the area of the country which is flooded is a 

small fraction of the 100-year return period GFM flooded area. Rather than used in 

isolation, global flood observations and GFM data should be used to complement 

each other (Hawker et al., 2020). 

 Population disagreement was almost as significant as GFM disagreement. 

This was most notable in rural areas, such as in south-east Colombia, where the 

town of Mitú was captured by only some of the population datasets. Global 

population data were classified in Leyk et al. (2019) by the complexity of modelled 

population distribution. Unmodelled population datasets, such as GPW4, evenly 

distribute population data over census enumerated areas. This means the detail at 

which population is represented is entirely dependent on the size of the enumerated 

areas; something which is highly variable across countries. In Colombia, where the 

size of the average census enumerated area is 1021 km2, GPW4 calculated exposure 

is a lot less accurate than in England, where the size of the average census 

enumerated area is 0.76 km2 (CIESIN, 2018). Indeed, it’s surprising that GPW4 is 

still so widely used in studies of flood exposure, as it does not capture the population 

distribution at any detail finer than the census unit. The discrepancy in detail 

between national census data is something that needs to be considered for all 

population datasets that use GPW data as input (GHS-POP, GRUMP, HRSL, 

WorldPop), although the impact this has on final population estimates is smaller due 

to the additional population distribution modelling carried out by these datasets. The 

resolution of the population data is equally important to consider. The most resolved 

of the population datasets, HRSL, identifies individual dwellings at 30 m resolution. 

Highly resolved population data was shown in the studies of Smith et al. (2019) and 

Bernhofen et al. (2021) to be of significant importance in accurately representing the 
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avoidance of flood prone areas. Indeed, the low HRSL flood exposure estimates in 

four of the five countries examined in this study would support this finding. There 

are obvious limits to the conclusions that can be drawn with coarse resolution 

population data. Those datasets with a resolution of 1 km (GPW4, GRUMP, 

LandScan) will struggle to accurately model exposure on anything but the largest 

rivers. Even GHS-POP, which has a resolution of 250 m, was shown in Bernhofen et 

al. (2021) to be too coarse to accurately represent exposure on some smaller rivers. 

Certain population data, such as GRUMP and HYDE, are not relevant at the national 

scale. GRUMP, which has not been updated since 2000, is obsolete for flood risk 

analysis under current conditions. The HYDE data, at a resolution of roughly 9 km, 

is far too coarse to draw any meaningful conclusions at the national level. It was the 

only population dataset that consistently overpredicted exposure across the five 

countries examined. Population data should be chosen with the intended use in 

mind. Previous studies have highlighted the benefits of HRSL (Smith et al., 2019, 

Bernhofen et al., 2021), however, HRSL population estimates are limited to 2018. If 

consistent population estimates across time are required, datasets such as GHS-POP 

or WorldPop would be better suited. Similarly, if you want to calculate exposed day-

time population rather than night-time population, Landscan is the only dataset you 

can use.  

 The range of low national VAI scores (0.132-0.217), which consider both 

extent and depth disagreement between the models, would suggest that the choice of 

GFM has a large effect on calculated national damages. What we found, was that the 

choice of vulnerability approach has a far greater effect on national damages than 

the choice of GFM. This was largely due to how the three different land cover maps 

used in the vulnerability calculations identified urban areas. Across the five 

countries, the size of urban area defined by each dataset was reflected in the national 

damage estimates. Equally important, but less reflected in the national flood damage 

estimates, was how the GlobCover and GHSL approaches split urban sector 

damages. Each approach applied constant global ratios of urban sector split, which 

were based on studies of either global or European cities (Dottori et al., 2018, Ward 

et al., 2020b). Sector level damages were directly impacted by these constant global 

ratios, meaning GHSL residential damages always made up a larger proportion of 

urban damages than GlobCover residential damages. The lack of a ceteris paribus 

comparison between vulnerability approaches limits the definite conclusions that 
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can be drawn about the impact different aspects of the vulnerability calculation had 

on disagreement. Previous work by de Moel and Aerts (2011) found that the 

valuation of assets and the choice of damage curve had the greatest impact on 

damage uncertainty in the Dutch basin they were investigating. Similarly, when 

examining loss data in the US from the National Flood Insurance Program Wing et 

al. (2020) found that claims data does not fit the monotonic shape of traditional 

damage curves. It’s well established that the vulnerability component of any flood 

risk assessment carries the most uncertainty at any scale. The assumptions and 

uncertainties associated with the three global vulnerability approaches tested in this 

study do not translate well into the national context.  

5.7.2  Uncertainty and Decision Making 

 Exploring the hazard, vulnerability and exposure components of flood risk 

using different models and datasets provides a useful basis for discussing 

uncertainty across all three components. Often quantifiable uncertainties are 

understood as risks, while unquantifiable uncertainties are understood as 

uncertainties. Some of these uncertainties are amenable to quantitative or qualitative 

evaluation, while some cannot be evaluated (Riesch, 2013). Key sources of 

modelling related uncertainty include; context and framing, input, model structure, 

parameter, and model technical uncertainty (Refsgaard et al., 2007). GFMs are not 

always developed for answering questions associated with context and framing, such 

as social, environmental, economic, technological, and infrastructural characteristics 

at the local scale. The extent to which these characteristics (often not accounted for) 

affect uncertainties differs from location to location and involves complex 

interactions. These characteristics may not always be captured in the calibration and 

validation process and does not always include all streamflow observation stations 

(Hirpa et al., 2021, Wing et al., 2021). This means that model parameterization is 

not always sensitive to local characteristics. Input data across GFMs suggests that 

there are commonalities (e.g. the DEM), interdependences, and differences making 

it difficult to isolate the impact of different factors on uncertainty. Substantial model 

structure, parameterization, and technical differences also mean that without a 

significantly complex sensitivity analysis it would be difficult to ascertain how and 

to what extent they individually or collectively affect uncertainty (Hoch and Trigg, 

2019). As a consequence, while we use multiple models and datasets to illustrate 
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uncertainties, the contribution of different sources of uncertainty is difficult to 

ascertain quantitatively or qualitatively.  

 With cascading uncertainty as GFM information is combined with exposure 

and vulnerability information from different datasets, there is an expansion of the 

uncertainty space. Flood risk assessments, based on the three components, would 

involve a further increase in uncertainty. Furthermore, the flood risk information 

may not always account for smaller scale flood prevention interventions or be 

relevant at hyperlocal scales where other socio-economic factors may affect flood 

risk. Further scrutiny may also reveal that there are important differences between 

extreme flood magnitudes (not explored in this study), as demonstrated in Africa 

(Trigg et al., 2016) and the conterminous United States (Devitt et al., 2021). There 

may also be other models, datasets, and even factors affecting risk that need to be 

accounted for to better understand risks. This suggests that although this study 

brings together multiple variants of the contributors to flood risk assessment, the 

uncertainty space is unclear and the contribution of different factors to exposure, 

damage and risk is not well characterized. This makes it challenging to interpret 

results in a way that can aid decision making at local scales. For instance, we discuss 

disagreement in typically flood prone areas like low-lying deltas and low relief 

coastal areas, and higher agreement in larger river basins. This could affect the 

salience and credibility of the information for local to national level decision 

makers, some of whom may have primary knowledge and experience of dealing 

with flooding in such areas. Such information may be relevant to decision makers 

who are interested in hotspots and may focus on areas with greater agreement, or on 

areas where populations also face other hazards. An alternative way could be for 

decision makers to think of these different combinations (exposure, damage and 

risk) as scenarios that are plausible, but do not necessarily capture the full range of 

possibilities. Decision makers, who are often used to dealing with uncertainty, may 

find that a structured decision making under uncertainty approach (Bhave et al., 

2016) may help assess the value of the information and make more informed flood 

management decisions.   

5.7.3  National Capacity to Use Global Data 

The inconsistencies and variation between these global datasets may call into 

question their ‘usefulness’ for evaluating flood risk, especially for some countries 
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who experience limited institutional capacity and policy in FRM. The corroboration 

of global data with data collected locally may potentially ensure accuracy and 

consistency. However, the quality and availability of data in countries in the Global 

South is frequently very poor. For example, spatio-temporal time series are often not 

complete and bureaucratic, administrative barriers or political motivation can 

prevent access to data. These global datasets can hold exceptional value in areas that 

are data poor; for example, planetary level datasets have been used to detect long-

term meteorological changes in Pakistan, India and Inner Mongolia (Lindersson et 

al., 2020).    

Evaluations at the national scale may have limited impact on the most 

vulnerable of which usually inhabit agriculturally dependent rural areas, especially if 

population datasets are not resolved enough for these areas, or due to narrow or 

misaligned interpretations of vulnerability. For example, calculation of economic 

damage reflects inequality; hence it becomes important in relation to how something 

like agricultural damages are accounted for, given the centrality of agriculture in the 

livelihoods of many. whilst not economically catastrophic in GDP terms, this is 

potentially devastating on a local, livelihoods scale. 

 Effective FRM and the ability to use these global flood risk datasets requires 

policy and institutions that recognize the interconnected and interdependent systems 

that are inevitable, not only with technical interventions and infrastructure but also 

the socio-political networks that provide expertise and coordination (Jonkman and 

Dawson, 2012). However, the resources and agency to achieve this is frequently 

lacking, for example, some countries do not have specific FRM policies and with 

other disaster management areas taking priority, such as drought in Ethiopia and 

earthquakes in Colombia resulting in lack of agency regarding FRM.  

5.8 Conclusions 

 As global flood risk data develops and becomes increasingly relevant at 

national scales there is an urgent need to evaluate its credibility in a national flood 

risk context. By carrying out national flood risk assessments using global data in 

five different countries we explore the commonality and variability of global data 

used nationally. Global datasets vary significantly at the national level, and this is 
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reflected in the national flood risk estimates. We find that the choice of GFM has a 

larger effect on exposure estimates than the choice of population dataset, while the 

choice of vulnerability approach has the greatest influence on national flood damage 

estimates. The detail of the datasets becomes increasingly important at the national 

scale. GFMs that do not model the flooding of small rivers are leaving a substantial 

amount of national flood risk unaccounted for. Similarly, coarse resolution global 

data limits the detail at which risk can be evaluated and diminishes the usefulness of 

certain datasets at this scale. Global approaches to calculating vulnerability are 

limited both by the uncertainty of global land cover datasets and the assumptions 

made to calculate damages at the global scale.  

Further to these challenges and inconsistencies but just as significant is 

whether countries have the capacity to access and use these datasets. These datasets 

can only be effective if a country has a functioning, institutional framework with 

capability to support their use and implementation. This can include informed and 

proactive policies which both monitor and plan for future flood risk. Additionally, 

strong institutions that effectively implement these policies, which encourage 

expertise and assist the consultation and coordination between a diverse range of key 

stakeholders (Jonkman and Dawson, 2012). Technical and financial capital is 

significant in introducing and maintaining the infrastructure needed to monitor and 

assess flood-risk; as is the availability of good quality, compatible data to 

complement and use alongside these global datasets. Variation in the methods of 

conceptualizing population and vulnerability could be particularly problematic for 

compatibility. 

5.9 Recommendations and Future Work 

Global flood risk datasets were evaluated in this study by quantifying the 

uncertainty when used interchangeably for flood risk assessments at the national 

scale. Further work should incorporate locally sourced data and locally calibrated 

models to test the global datasets. Only then could one definitively conclude which 

data is ‘best’ for a given locality or use.  These datasets could have considerable 

potential for assisting and furthering FRM in countries who have limited capacity to 

access local data, however further investigation is needed to reveal the extent to 

which countries find these datasets useful and have the capacity to use these 
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datasets. Further work should examine in greater detail the institutional capability of 

national and local FRM to access and apply such datasets. The variation between 

these datasets also requires technical understanding of the nature of limitations of 

the data. Further, the application of such datasets as evidence for decision making 

entails choices over the allocation of resources. Future work should seek to examine 

the types of policy and resource allocations that result from the application of such 

datasets to FRM.  
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Chapter 6 

Discussion and Conclusions 

 The aim of this thesis was to further the evaluation of global flood risk 

datasets to inform their appropriate application and continued development. Global 

flood models were reviewed in Chapter 2, providing users of these datasets with a 

source that details the different global flood model structures and applications. In 

Chapter 3, the global flood models were collectively validated for the first time 

against flood events in Nigeria and Mozambique. This collective evaluation 

identified model components that affected performance and showed that while there 

was significant variation between the global flood models, the best performing 

models showed an acceptable level of performance on the large rivers examined. 

However, global flood models don’t all model flooding on the same rivers. In 

Chapter 4, flood exposure to different sized rivers was examined globally and 

nationally using a geomorphological flood susceptibility map. Flood exposure 

estimates were significantly impacted by both the size of the flood map’s river 

network and the choice of global population dataset used in the exposure 

calculation. In Chapter 5, global datasets comprising all components of flood risk 

(hazard, exposure, and vulnerability) were evaluated for flood risk management at 

the national scale in Colombia, England, Ethiopia, India, and Malaysia. There was 

significant variation in the national flood risk estimates calculated using global data 

and constraints related to the institutional capacity required to use this data 

nationally were identified. While some global flood risk data could be useful at 

national scales, further corroboration with local data is necessary.  

 In this chapter, the key outcomes and findings from this thesis will be 

summarized and discussed with reference to the wider literature. Future research 

directions building on the work of this thesis will then be identified. This chapter 

(and thesis) will finish with some concluding remarks.  



Chapter 6 

Discussion and Conclusions 181 

 

  

6.1 Key Outcomes and Findings 

6.1.1  A comprehensive review of global flood risk models 

 One of the common objectives throughout this thesis was to produce useful 

information for end-users of global flood risk datasets. Articles (Teng et al., 2017) 

and desktop studies (Neelz and Pender, 2009) reviewing hydraulic modelling 

methods and packages are useful starting (and reference) points for prospective 

modellers. Existing studies reviewing global flood risk models had either been short 

commentaries (Ward et al., 2015) or focussed on individual models (Bates et al., 

2018). Chapter 2 presented the first detailed review of all existing global flood 

models. This chapter introduced a development timeline of global flood models, 

highlighting the release of key datasets and scientific meetings which furthered the 

science of global flood risk. The structural similarities and differences between the 

global flood models were also discussed, providing potential users of the model with 

information pertinent to the selection of the appropriate model. The important work 

of Hoch and Trigg (2019) was built upon in Chapter 2 and a map was produced 

illustrating where these models had been validated globally, and thus where they 

could be used with more confidence. Global flood models are rarely used in 

isolation and are often used to represent a single component of risk (hazard) in 

global flood risk studies. In Chapter 5, global datasets and approaches comprising 

the three components of risk (hazard, exposure, and vulnerability) were reviewed 

and applied nationally in five countries. Global population data — the most common 

datasets for calculating global flood exposure — had recently been reviewed in 

detail by Leyk et al. (2019). Chapter 5 was the first time the entire catalogue of 

previously used global population datasets had been reviewed and assessed in the 

context of flood exposure; similarly, this was the first time different global 

vulnerability approaches had been reviewed and compared. In addition to informing 

end-users where to access global flood risk data, Chapter 5 detailed how national 

flood risk assessments could be carried out with global data and highlighted 

potential limits to their use. 
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6.1.2  Collective validation of global flood models is essential 

 The global flood models had all been subject to internal validation studies. 

However, due to different validation approaches, data, and locations (illustrated in 

Figure 2.3) these results were incomparable between studies. Global flood model 

intercomparison studies in Africa (Trigg et al., 2016b) and China (Aerts et al., 2020) 

had shown large discrepancies in modelled output, but relative performance could 

not be assessed due to the lack of validation data. In Chapter 3 the first collective 

validation of global flood models was carried out and the benefits of such a study 

were realized. Collective evaluation meant the model components contributing to 

performance could be identified with greater confidence. In Trigg et al. (2016b) it 

was hypothesized that poor representation of precipitation in reanalysis data led to 

comparatively large flood extents for the ECMWF model in Africa relative to the 

rest. In Chapter 3, there was further evidence to support this hypothesis as all the 

models forced by reanalysis data showed less return period accuracy than the models 

forced by gauged data. The collective validation also showed that hydrodynamic 

global flood models were better able to replicate the validation data compared with 

global flood models with cruder representations of fluid flow. The spatial resolution 

of the models was found to have no impact on performance, contrary to the findings 

of previous research (Horritt and Bates, 2001, Savage et al., 2016). This was likely 

due to the large size of the rivers examined and the comparatively greater impact of 

other model characteristics on performance. 

 Whilst the primary purpose of Chapter 3 was to demonstrate the value of 

collective validation, a secondary goal of the study was to encourage future model 

evaluation studies to use the data (and share theirs) so model results could be easily 

compared across studies. In Chapter 4, the benefits of shared validation data were 

shown as the developed geomorphological flood susceptibility map was validated 

against this data, allowing its performance to be evaluated relative to existing global 

flood models. Further evidence highlighting the value of sharing validation data can 

be found in the study of Mester et al. (2021) who, in their evaluation of multiple 

global hydrological models, used the validation data published in Chapter 3. 

 No approach to validation is without its limitations. In Chapter 3, optical 

satellite images were used to delineate reference flood extents in Nigeria and 

Mozambique and then used as validation data. There are two key limitations to such 
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a validation approach. Firstly, global flood models simulate floods with spatially 

uniform return periods, such behaviour is uncharacteristic of an actual flood event. 

To accurately validate a flood model against historical flood events Wing et al. 

(2021) proposed a methodology which consists of first simulating the historical 

events with a model and then validating the model with observed data. While such 

an approach would certainly result in more accurate validation, the application of 

such a methodology is limited to regions with the necessary data (river or rain 

gauge) to simulate the historical events. Additionally, applied in the context of 

global flood model validation intercomparison it would require the models being 

compared to be re-run for each event, which could pose a problem for the global 

flood models due to the discrepancy of inputs required to run each model. The 

validation regions in Chapter 3 were purposely restricted to areas containing major 

flood extents (rather than examining the entire basin) to reduce spatial variations in 

the extremity of the validation data and allow for a more representative validation of 

the homogenous return period global flood maps. The second key limitation relates 

to the accuracy of the optical imagery used as validation data. This is an established 

issue in model evaluation and several workarounds have been proposed including 

treating the observed data probabilistically (Stephens et al., 2012) and explicitly 

accounting for known sources of observational uncertainty (Hawker et al., 2020). 

Observational uncertainty was accounted for in a more qualitative manner in 

Chapter 3, as the optical images were manually checked for errors.  

6.1.3  The varied representativeness of global flood models  

 One of the considerations when choosing the validation locations and events 

in Chapter 3 was that flooding needed to have occurred on rivers large enough to be 

represented by all the global flood models because they don’t all model flooding on 

the same rivers. Indeed, the best performing global flood model in Chapter 3 (JRC) 

was also one of the most restrictive in terms of rivers modelled — only modelling 

rivers with an upstream drainage area of 5,000 km2 or greater. Flooding from 

different sized rivers is something that has received little attention in the literature. 

In Wing et al. (2017), a continental model of the US was validated against existing 

national flood maps and performance metrics were reported for different river size 

categories, with notable performance increases on larger rivers. At the global scale, 

Kummu et al. (2011) explored population distance to different sized rivers, however, 
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this study was concerned with fresh water access rather than the flood risk posed by 

different sized rivers. In Chapter 4, global flood exposure to different sized rivers 

was explored for the first time. Using a geomorphological flood susceptibility map,   

rivers classified as streams (upstream drainage area 10-100 km2) and small rivers 

(upstream drainage area 100 km2 - 1,000 km2) were found to be responsible for 

nearly 40% of global flood exposure. When specific global flood model river size 

thresholds were applied, global flood exposure estimates differed by over a factor of 

2 between the most representative river size threshold (upstream drainage area > 50 

km2) and the least representative river size threshold (upstream drainage area > 5000 

km2). The impact of river size thresholds on exposure estimates was often more 

extreme at the national level. This was especially evident in Chapter 5, where 

national flood exposure estimates in Colombia and Ethiopia calculated using the 

most representative model (Fathom) were roughly double the national flood 

exposure estimates calculated using the remaining four models. The findings of 

Chapter 4 and Chapter 5 highlighted the impact different global flood model river 

threshold sizes can have on model outputs. This impact is certainly not trivial and 

can be of several orders of magnitude — especially at the national scale — and 

should therefore be an important consideration in the both the choice of global flood 

model and in the interpretation of global flood model outputs. The river flood 

susceptibility map developed in Chapter 4 was published openly with the intention 

of allowing users to carry out a first order analysis with the dataset to determine 

their required global flood model representativeness. 

6.1.4  The impact of population data on exposure estimates 

 Global population maps are vital datasets for translating flood hazard into 

flood exposure. Approaches to mapping global population differ significantly (Leyk 

et al., 2019), which results in global population maps with different spatial 

distributions of population (Thomson et al., 2021). Although they have been used 

extensively in studies of global flood exposure, the implication of using different 

global population maps in estimates of flood exposure has only recently been 

addressed. A study by Smith et al. (2019) found flood exposure estimates in 18 

developing countries were reduced when using new high-resolution population maps 

(HRSL) compared with two existing, widely used, population maps (WorldPop and 

Landscan). To build on this work, Chapter 4, explored the impact of using three 

different global population datasets (HRSL, GHS-POP, and WorldPop) on flood 
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exposure estimates globally. The comparison with HRSL was also extended from 18 

countries (Smith et al., 2019) to include 168 different countries globally. The 

findings of Chapter 4 correspond with those of Smith et al. (2019) in that flood 

exposure estimates calculated using HRSL were typically lower than exposure 

estimates calculated with existing global population maps. The results of Chapter 4 

do not, however, correspond with the results of Lindersson et al. (2021) who 

compared the same population datasets and found different relative impacts on 

national flood exposure estimates in the 26 countries examined. The result differed 

because the Lindersson et al. (2021) study did not scale national population totals 

equally between datasets, thus making national population estimates the driving 

factor in exposure disagreement. The population datasets compared in Chapter 4 

and in the studies of Smith et al. (2019) and Lindersson et al. (2021) still did not 

encompass all the global population maps used in previous studies of global flood 

exposure. In Chapter 5, all such datasets were identified and compared. In total, 7 

different global population maps were used to calculate flood exposure in Colombia, 

England, Ethiopia, India, and Malaysia. This work demonstrated that national flood 

exposure estimates could be significantly altered by the choice of global population 

map and showed that some previously used population datasets result in 

questionable exposure estimates, suggesting they may not be appropriate for use in 

flood exposure studies.  

6.1.5  Limitations to global vulnerability approaches 

 Vulnerability is the component of flood risk most frequently absent from 

global studies (Ward et al., 2020); however, it is arguably the risk component most 

important to communicating flood impacts. Global studies reporting vulnerability 

rely on global approaches and datasets with significant limitations; consequently 

they must make quite strong assumptions. Three global approaches for calculating 

the direct economic damages of flooding were compared for the first time in 

Chapter 5. The choice of vulnerability approach was found to have a huge impact 

on national flood damage estimates. The most notable difference between the three 

approaches was how they identified assets at risk. Urban areas were defined three 

ways: artificial areas in a global land cover map, cells in a settlement map above a 

certain built-up area threshold, or through a map of fractional urban land cover. 

These three urban definitions led to urban areas which differed by up to a factor 25 



  Chapter 6 

186  Discussion and Conlusions 

and was the reason for the stark differences in national damages between the three 

vulnerability approaches.  The influence of other vulnerability inputs such as asset 

valuation and damage curves, which had been the primary sources of uncertainty in 

the evaluation of different regional damage models (de Moel and Aerts, 2011), were 

negligible in the face of such variations in the quantification of assets at risk. 

Similarly, the impact different assumptions of urban sector land-use had on national 

flood damage estimates paled in comparison to the impact of different urban areas. 

 The comparison of vulnerability approaches in Chapter 5 merely scratched 

the surface of the different uncertainties associated with these global vulnerability 

methods. A more detailed sensitivity analysis of the different vulnerability inputs 

and assumptions could have been carried out to better quantify uncertainties. 

However, this was deemed outside the scope of the work, as the goal of the study 

was to compare “off-the-shelf” global approaches for each component of flood risk. 

Vulnerability was certainly the most uncertain component of global flood risk and 

the one which translated least well nationally.  

6.1.6  Advocating a multi-dataset approach 

 In Chapter 3,  the performance of an aggregated global flood model (Trigg 

et al., 2016a) was found to be similar to the best performing model and an ensemble 

of the three best performing models. The use of multiple models was proposed in 

regions where it is not possible to determine the best performing model through 

validation. Advocating a multi-dataset approach has been a common theme 

throughout this thesis. In Chapter 4, three global population datasets commonly 

used to calculate flood exposure were compared and found to vary significantly, 

especially at the national level. Similarly, in Chapter 5, when 16 global datasets of 

flood hazard, population, and vulnerability were used to calculate national flood risk 

in five countries there was significant variation in the resultant risk estimates. The 

discrepancies between the global datasets and approaches used to calculate flood 

risk raised some questions about the validity of the flood risk estimates in previous 

studies where only a single model or dataset had been used. Flood modelling is rife 

with uncertainties (Dottori et al., 2013), and these are exacerbated at the global 

scale. Where model uncertainty cannot be represented probabilistically (Neal et al., 

2013, Savage et al., 2016) and evaluation is not possible due to the lack of validation 
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data, the use of multiple datasets can be a useful starting point for determining the 

confidence in flood risk estimates.  

6.1.7  Local capacity considerations when using global data nationally  

 One of the most promising applications of global flood risk data is to fill data 

gaps in regions lacking any existing flood risk information. However, simply 

producing and sharing these datasets does not mean they will have any useful 

practical application. The usefulness of global flood risk data depends on its 

intended use, the context and locality in which it is used, and the expectations of 

end-users (Ward et al., 2015). These considerations have often been absent from 

studies exploring the practical application of global flood risk data. In Emerton et al. 

(2020) these considerations were addressed in the context of flood forecasting and 

disaster impact assessments for cyclones Idai and Kenneth in Mozambique. 

Timelines of when, how, and by whom global data were used were presented for 

both disasters as well as how these datasets were used in the context of 

Mozambique’s existing disaster risk management structure. In Chapter 5, the use of 

global datasets for flood risk management was explored in five countries: Colombia, 

England, Ethiopia, India, and Malaysia. The flood risk management structure of 

each country was outlined and issues related to the capacity of each country to use 

this data for national flood risk management were identified through literature 

review and interviews with local water experts. Chapter 5 emphasized that 

considering local context and capacity is equally as important as evaluating the 

quality of global data when considering its use nationally. For example, global flood 

models may be of little use in Colombia, irrespective of data quality, due to the 

country’s ex-post approach to flood risk management. The work in Chapter 5  

started a dialogue on using global data for flood risk management, highlighting the 

challenges and potential pitfalls to its effective application nationally.  

6.2 Contributions to Science 

 This thesis has contributed to the science of global flood risk in a number of 

ways. In Chapter 2, all global flood risk models were reviewed for the first time, 

providing users of the data with a single reference that details different model 

structures and applications. In Chapter 3, six global flood models were collectively 
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validated, shedding light on the comparative performance of global flood models, 

which had not been possible in previous intercomparison work. The validation data 

used in Chapter 3 was published openly and further model evaluation studies have 

incorporated this data into their testing frameworks. In Chapter 4, flood exposure to 

different sized rivers was quantified globally, demonstrating that global flood model 

river size thresholds have enormous impacts on exposure estimates. The 

geomorphological river flood susceptibility map developed in Chapter 4 was 

published openly to allow prospective global flood model users to carry out a first 

order analysis to determine the appropriate level of river representation required for 

their needs. Chapter 4 was also the first study to compare population datasets 

globally in the context of flood exposure, showing that the choice of global 

population data can have significant impacts on flood exposure estimates. In 

Chapter 5, the entire catalogue of previously used, openly available, global datasets 

of flood hazard, exposure, and vulnerability were assessed for national flood risk 

management in five countries, identifying global data characteristics that would 

limit their use nationally. In addition to being the first intercomparison of global 

datasets comprising the three components of flood risk, Chapter 5 also explored the 

national applicability of global data from a local capacity perspective, which had not 

been done before in the context of flood risk management. 

6.3 Future Work 

 There are numerous avenues to continue and build upon the research in this 

thesis. Arguably the most pressing future research direction, which could build on 

the work of Chapter 3, is the global evaluation of global flood models. Recently 

published large datasets of observed flood events (Tellman et al., 2021) could be the 

starting point for developing a global catalogue of validation data through which 

new and updated models could be tested and performance results compared. 

Incorporating new approaches to account for observational uncertainty (Hawker et 

al., 2020) and methods to estimate the return periods of observed flood events 

(Kettner et al., 2021) would certainly make any global validation more robust. Local 

and national flood maps could also be incorporated as additional validation data sets 

where available. In regions lacking any validation data the intercomparison of global 

flood maps could be a useful indicator about where the models are confident in their 

flood predictions (where they agree) and where they are not. Indeed, an 
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intercomparison of global flood models globally would be a useful starting point for 

any global evaluation of these models. Further expanding this intercomparison to  

look at future estimates of flooding would be a timely addition, as industry users of 

these models are increasingly needing to assess future climate risks (Fiedler et al., 

2021).  

 Several resources have been published over the last few years which have 

been invaluable to users of global population maps (Leyk et al., 2019, TReNDS, 

2020). These studies detail the different available datasets, their approaches, 

limitations, and intended use. However, there has been no quantification of how 

these global population datasets differ globally, meaning users have to rely on 

qualitative judgments in choosing which global population map to use. Approaches 

for comparing population maps were explored in Chapter 5, where agreement 

between populated cells was measured between datasets. There were limits to the 

conclusions that could be drawn from such an approach, because differences in 

population density were not compared. Quantitative global comparison of 

population maps will require novel techniques and approaches, which may have to 

be tailored to the context in which the data will be used. Further to the 

intercomparison of global population maps is the need to validate these maps; 

something that became evident in Chapter 4, where no single population dataset 

could be definitively recommended without reference data to gauge relative 

performance. The validation of population maps is more data and time intensive 

than the validation of flood models, often requiring locally collected and geo-

referenced data (Tiecke, 2017, Thomson et al., 2021). Despite these challenges, 

there are a number of potential opportunities for research in this space, especially as 

these population datasets continue to improve through the development of new 

remote sensing products and the growth of community mapping projects such as 

Open Street Map. 

 Two interesting further research directions related to the practical application 

of global flood risk data have been identified. The first relates to how and what these 

global datasets can be used for, what the limits are to their application, and how 

locally available data can complement global data to expand their usefulness. 

Chapter 5 showed how global vulnerability approaches were limited by global land 

cover maps. However, these vulnerability approaches could easily incorporate local 
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land use and land value data to significantly improve the accuracy and local 

relevance of damage estimates. The incorporation of local data could improve all 

components of global flood risk. Potentially useful from a user perspective would be 

a framework that demonstrates flood risk assessment best practice and how to 

effectively incorporate locally available data with global data. The second future 

research direction builds on the work started in Chapter 5, and relates to the 

institutional capacity to use global flood risk data nationally. Some institutional 

capacity constraints were realized and identified in Chapter 5. Further work should 

examine these capacity considerations in greater detail and dig deeper into the 

structure of national flood risk management to identify where, and if, these global 

datasets could be useful.  

6.4 Concluding Remarks 

 Global flood risk models have progressed enormously over the last decade 

and will continue to do so over the coming years as new approaches and datasets are 

developed. The continued refinement of these models will see them applied across a 

wide variety of use cases. As their applicability increases, it is important that the 

evaluation of these models progresses in a similar fashion. This thesis introduced the 

first collective validation of global flood models and highlighted the benefits of such 

an approach. Future model evaluation studies should build on this framework, which 

allows end-users to easily compare model performance and allows model developers 

to discern where certain modelling approaches work best and where they don’t. Also 

addressed in this thesis were issues of global flood model representativeness: 

thresholds applied to the size of rivers modelled were shown to have enormous 

implications on estimates of flooding. Translating global flood hazard into risk 

requires additional global datasets of exposure and vulnerability, which this thesis 

showed leads to cascading uncertainty in flood risk estimates, especially at the 

national level. If these datasets are to be used effectively for national flood risk 

management, this uncertainty needs to be considered alongside the local capacity to 

use these datasets.  

 The work in this thesis has highlighted and addressed numerous challenges 

related to the evaluation and effective application of global flood risk data. These 
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findings should inform both users and developers of these global flood risk datasets 

while also providing a starting point for further avenues of research. 
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Supplementary Material to Chapter 3 

Appendix A consists of the supplementary material that accompanied the manuscript 

on which Chapter 3 is based. 

A.1  Description of DFO JPEG to GeoTiff conversion 

 The 2007 flood event vector data was not available from the Dartmouth 

Flood Observatory (DFO) website and instead the JPEG of the observed event 

(Figure A.1) had to be georeferenced in QGIS (v2.18) for analysis. The QGIS 

‘Raster Georeferencer’ tool was used to add latitudinal and longitudinal information 

to a raster image. As the DFO image in Figure A.1 displays latitude and longitude 

on a simple grid, it was possible to input the exact coordinates of the four grid 

intersections in the Georeferencer tool. Coordinates were input as WGS84 as stated 

on the DFO event header (Figure A.1).  

 The DFO inundation map in Figure 1 maps observed flooding in different 

shades of red depending on the recorded date of inundation. To allow for analysis, 

the range of colours representing flooded areas needed to be condensed into one 

common ‘wet’ type. To do this the ‘RGB to PCT’ tool in QGIS was used which 

creates a classified raster by grouping colours by similarity. Through trial and error, 

the optimal number of colour classes to use was found to be 150. This is compared 

with the original 25,000 colour classes present before. The various colour values of 

red were merged into one ‘flooded’ value using the GRASS GIS ‘r.reclass’ tool in 

QGIS. All remaining colours were redefined as zero.  

An issue that was encountered when georeferencing the DFO image was the town 

names and markers which overlap onto the river and the observed flood extents. A 

zoomed in image of this issue can be seen in Figure A.2. Determining whether the 

pixels behind the text in the map were flooded or not was found to be a highly 

subjective exercise. To prevent any user bias these regions were reclassified as ‘no 

data’ regions, thereby excluding these areas from further analysis.  
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Figure A.1  Dartmouth Flood Observatory JPEG image of observed flooding in 

2007 in Mozambique. 

Source: Anderson and Brakenridge (2007) 
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Figure A.2  Zoomed in example of the issue caused with town names and markers. 

The green circle indicates a particularly difficult pixel to identify as either 

‘flooded’ or ‘not flooded’. 

A.2 Individual Global Flood Model Details 

 Table A.1 was taken from the supplementary material of the Trigg et al. 

(2016) global flood model intercomparison paper as it provides key model structure 

information that is useful to the reader of the validation study 
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Table A.1 Model Details. 

Reproduced from Trigg et al. (2016). © IOP Publishing. CC BY 3.0 

MODEL Climate 

Forcing 

Land Surface 

Model 

River 

Routing 
Floodplain Flood 

Frequency 

Down-

scaling 

Output Data 

Resolution 

Smallest River 

size or upstream 

catchment area 

considered 

GLOFRIS EU-Watch 

reanalysis 

 

1960-1999 

Hydrological 

model PCR-
GLOBWB 0.5 

degree 

Kinematic 

0.5 deg 

30 arc sec 

SRTM 

model 

Flood 

volume 

 

Gumbel 

distribution 
for 1960 to 

1999 

Volum

e 
redistri

bution 

on 30 
arcsec 

SRTM 

model 

30 arc sec 

~900m 

Strahler order >=6 

only 

CaMa-

Flood 

JRA-25 

Reanalysis 

 

1979-2010 

 

+GPCP rain 

gauge 

correction 

MARSIRO=GW 

 

Energy and 

Water Balance 

 

(1 degree) 

Inertia 0.25 

deg 

Sub-grid 

topo. 

Upscaled 

from 3 arc 
sec 

HydroSHED

S & SRTM 

Water Level 

 

Gumbel 

distribution 
for 1979 to 

2010 

Flood 

depth 

downsc

aled 
onto 18 

arc sec 

DEM 

18 arc sec 

~540m 

Drainage area > 

0.25 degree grid 

box 

(Approximately 

~500km2) 

ECMWF ERAInterim 

reanalysis 

 

1979-2014 

HTESSEL, T255 

(~80km) 

3 methods 

Kinematic, 

Inertia (x2) 

 

0.25 deg 

Sub-grid 

topo. 

Upscaled 
from 3 arc 

sec 

HydroSHED

S & SRTM 

Flood depth 

 

GEV 
distribution 

for 1979 to 

2014 

Depth 

downsc

aled 
onto 19 

arc sec 

DEM 

18 arc sec 

~540m 
~500 km2 

JRC GloFAS, 

ERA-Interim 

reanalysis 

 

1980-2013 

HTESSEL LISFLOOD-

Global (0.1 

deg) + 
Inertia (30 

arc sec) 

Sub-grid 

topo. 

Upscaled 
from 3 arc 

sec 

HydroSHED

S & SRTM 

Gumbel 

distribution 

for 1980 to 

2013 

N/A 30 arc sec 

~900m 

5000 km2 

SSBN Regional 

Flood 
Frequency 

Analysis 

(FFA) from 
global gauge 

data 

N/A Inertia 

 

30 arc sec 

HydroSHED

S & SRTM  

 

30 arc sec 

From FFA Depth 

downsc
aled 

onto 3 

arc sec 

DEM 

3 arc sec    

~90m 

~50 km2 

CIMA-

UNEP 

Regional FFA 

from global 
gauge data + 

ECEarth bias 

corrected 

Continuum 

Model to 

improve FFA 

Manning’s 

at multiple 

points 

Recondition

ed 
HydroSHED

S & SRTM 

From FFA, 

GEV fitting  

Native 

at 3 arc 

sec 

3 arc sec 

~90m  

~1000 km2 
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A.3 Comparison of DFO extents and new database’s extents 

A.3.1 Lokoja 

 

Figure A.3  Overlap of DFO observed extent and new database observed extent for 

Lokoja 
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A.3.2 Idah 

 

Figure A.4  Overlap of DFO observed extent and new database observed extent for 

Idah 
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A.3.3 Chemba 

 

Figure A.5  Overlap of DFO observed extent and new database observed extent for 

Chemba 
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Appendix B consists of the supplementary material that accompanied the manuscript 

on which Chapter 4 is based. 

B.1 Model Calibration 

 The globe was split into five simplified climate zones. The 30 Köppen-

Geiger climate classifications (Beck et al., 2018) were categorized into five climate 

zones as follows: Tropical (Af – Tropical, rainforest; Am – Tropical, monsoon; Aw 

– Tropical, savannah), Arid (BWh – Arid, desert, hot; BWk – Arid, desert, cold; 

BSh – Arid, steppe, hot; BSk – Arid, steppe, cold), Temperate (Csa – Temperate, 

dry summer, hot summer; Csb – Temperate, dry summer, warm summer; Csc – 

Temperate, dry summer, cold summer; Cwa – Temperate, dry winter, hot summer; 

Cwb – Temperate, dry winter, warm summer; Cwc – Temperate, dry winter, cold 

summer; Cfa – Temperate, no dry season, hot summer; Cfb – Temperate, no dry 

season, warm summer; Cfc – Temperate, no dry season, cold summer), Continental 

(Dsa – Cold, dry summer, hot summer; Dsb – Cold, dry summer, warm summer; 

Dsc – Cold, dry summer, cold summer; Dsd – Cold, dry summer, very cold winter; 

Dwa – Cold, dry winter, hot summer; Dwb – Cold, dry winter, warm summer; Dwc 

– Cold, dry winter, cold summer; Dwd – Cold, dry winter, very cold winter; Dfa – 

Cold, no dry season, hot summer; Dfb – Cold, no dry season, warm summer; Dfc – 

Cold, no dry season, cold summer; Dfd – Cold, no dry season, very cold winter), 

Polar (ET – Polar, tundra; EF – Polar, frost). 

 Our River Flood Susceptibility Model (RFSM) was calibrated against 

reference flood maps in 19 different calibration basins globally. These calibration 

basins span all climate zones (except Polar regions). The aim in choosing the 

calibration basins was to ensure that for each climate zone we had reference flood 

maps for rivers of all Strahler stream orders. We use 4 different reference flood 

maps: FEMA’s 100 year national flood hazard layer (https://www.fema.gov/flood-

maps/tools-resources/flood-map-products/national-flood-hazard-layer), The 

Environment Agency’s 100 year flood map for planning (http://apps.environment-

https://www.fema.gov/flood-maps/tools-resources/flood-map-products/national-flood-hazard-layer
https://www.fema.gov/flood-maps/tools-resources/flood-map-products/national-flood-hazard-layer
http://apps.environment-agency.gov.uk/wiyby/cy/151263.aspx
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agency.gov.uk/wiyby/cy/151263.aspx), JRC’s 100 year flood map for Europe 

(Dottori et al., 2016b), and JRC’s Global 100 year flood map (Dottori et al., 2016a). 

The 100-year return period was chosen as it was the only return period consistent 

across all the datasets. Table B.1 summarizes information about each of the 

calibration basins and the reference flood map used. Figure B.1 shows maps of each 

of the calibration basins and visualizes the reference flood maps within the basins.  

Table B.1 Calibration Basin Information 

# Basin Name Climate 

Zone 

Reference Flood Map Basin 

Area 

(km2) 

Elevation 

Range (m) 

Mean 

Slope 

(%) 

Strahler 

Orders 

1 Puerto Rico Tropical FEMA 100 YR 8,970 0 - 1,310 13.4 1-5 

2 Central Amazon Tropical JRC GLOBAL 100 YR 388,824 0 - 1,121 6.7 6-8, 11 

3 Lower Congo Tropical JRC GLOBAL 100 YR 720,639 275 - 872 3.7 5-10 

4 Lower Mekong Tropical JRC GLOBAL 100 YR 709,538 0 - 2,810 10.8 6-10 

5 Lower Gila Arid FEMA 100 YR 19,444 41 - 2,360 7.5 1-6, 9-10 

6 Upper Pecos Arid FEMA 100 YR 60,948 0 - 3,943 7.8 1-7 

7 Jucar Arid JRC EU 100 YR 21,920 0 - 1,853 10.6 4-7 

8 Upper Nile Arid JRC GLOBAL 100 YR 794,843 -59 - 1,862 2.7 6-10 

9 Lower Lena Arid JRC GLOBAL 100 YR 315,790 -27 - 640 1.2 6-9, 11 

10 Lower Mississippi Temperate  FEMA 100 YR 88,261 0 - 265 1.6 1-10 

11 Alabama Temperate FEMA 100 YR 58,896 0 - 1,274 5.7 1-7 

12 Thames Temperate EA 100 YR 16,201 0 - 327 4.1 1-6 

13 Loire Temperate JRC EU 100 YR 117,034 0 - 1,846 5.7 4-9 

14 Po Temperate JRC EU 100 YR 100,182 0 - 4,786 27.2 4-8 

15 Muskingum Continental FEMA 100 YR 20,849 0 - 463 7.4 1-7 

16 Rock Continental FEMA 100 YR 28,276 0 - 522 3.1 1-7 

17 Susquehanna Continental FEMA 100 YR 42,036 0 - 956 13 1-8 

18 Oder Continental JRC EU 100 YR 119,243 0 - 1,559 3.3 4-9 

19 Central Lena Continental JRC GLOBAL 100 YR 213,826 0 - 382 2.8 6-7, 10-11 

 

http://apps.environment-agency.gov.uk/wiyby/cy/151263.aspx
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Figure B.1  Visualization of the reference flood maps used for calibration in each of 

the calibration basins. 

Calibration basins are as follows: 1. Puerto Rico, 2. Central Amazon, 3. Lower 

Congo, 4. Lower Mekong, 5. Lower Gila, 6. Upper Pecos, 7. Jucar, 8. Upper 

Nile, 9. Lower Lena, 10. Lower Mississippi, 11. Alabama, 12. Thames, 13. 

Loire, 14. Po, 15. Muskingum, 16. Rock, 17. Susquehanna, 18. Oder, 19. 

Central Lena 
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Table B.2 Performance Score Contingency Table 

  Model 

  Wet Dry 

Reference 
Wet A – wet agreement C – model underpredict 

Dry B – model overpredict D – dry agreement 

 

 Our method of model calibration aims to find the optimum maximum 

relative elevation difference to the nearest draining channel, Hn, for each Strahler 

stream order river that results in the best fit with the reference flood map. We use 

three different ‘fit’ statistics, derived from a contingency table (Table S2). The first 

score is the critical success index (CSI): 

 𝐶𝑆𝐼 =
𝐴

𝐴 + 𝐵 + 𝐶
 (B5) 

CSI scores range from 1 (best) to 0 (worst). The second score is the hit rate (HR): 

 𝐻𝑅 =
𝐴

𝐴 + 𝐶
 (B2) 

HR ranges from 1 (entire reference flood map captured) to 0 (none of the reference 

flood map captured). The third score is Bias: 

 𝐵𝑖𝑎𝑠 =  
𝐴 + 𝐵

𝐴 + 𝐶
 (B3) 

Bias scores <1 and >1 indicate a bias towards underprediction and overprediction, 

respectively.  

 Calibration was split into two stages. In the first stage, each river in the 

calibration basin was split by Strahler stream order and each order was processed 

individually. A range of permissible Hn values (typically the 5 Hn values resulting in 

bias scores close to 1) was found for each stream order. In the second calibration 

stage, the Hn ranges for each stream order were combined to produce maps with 

several different Hn combinations. Each of these combinations was then tested 

against the reference flood maps to find the optimal Hn combination for each climate 

zone.  

 In the first calibration stage, the river network was split into separate Strahler 

stream orders. Potential Hn values ranging from 0-20 m were tested for each Strahler 
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stream order in each basin. Hn values that produced Bias scores closest to 1 

(unbiased), hereafter referred to as u-Hn, were identified for each Strahler stream 

order. The u-Hn values were then used as the basis for producing the permissible Hn 

ranges for each order. Ranges were initially chosen as u-Hn ± 2. Some of the ranges 

were widened to match the ranges of the other calibration basins in the same climate 

zone. The final Hn ranges taken into part 2 of the calibration are listed in Table B.3.  

 In the second calibration stage, flood maps were produced in each basin for 

all possible combinations of Hn within the pre-specified ranges. The only rule for Hn 

combinations was that a higher order stream’s Hn couldn’t be smaller than a lower 

order stream’s Hn (Hn-1 ≤ Hn). The number of different Hn combinations (or flood 

maps) tested varied between each basin and was dependent on how many Strahler 

stream orders were present in the basin. The total combinations tested for each basin 

are listed in Table S3. The Jucar river basin (ID 7) had the fewest combinations 

(758) while the Mississippi basin (ID 10) had the most (868,915). Scores were 

calculated to capture the level of fit between each flood map iteration and the 

reference flood map. CSI was the main score used for determining the best level of 

fit between the model and the reference map. Because only one Hn combination can 

be used to define the flood map in each climate zone, the optimal Hn combination 

across all calibration basins within the same climate zones were determined by 

iteratively applying CSI thresholds to each basin. From the small selection of Hn 

combinations remaining after this iterative process, the final combination chosen 

was the one that resulted in the highest average CSI across the basins. Final Hn 

values for each climate zone are presented in Table B.4.  
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Table B.3 Hn ranges for Calibration Stage 2 for each basin in each climate zone. 

Basin IDs correspond with Table B.1 

 Basin ID 

Order 1 2 3 4 5 6 7 8 9 10 

1 0-4 m    0-4 m 0-4 m    0-2 m 

2 0-5 m    0-4 m 0-4 m    0-3 m 

3 0-5 m    0-4 m 0-4 m    0-6 m 

4 3-8 m    0-5 m 0-5 m 0-5 m   0-9 m 

5 2-13 m  2-13 m  0-7 m 0-7 m 0-7 m   2-11 m 

6  3-13 

m 

3-13 m 3-13 

m 

1-8 m 1-8 m 1-8 m 1-8 m 1-8 m 3-12 m 

7  3-13 

m 

3-13 m 3-13 

m 

 2-10 m 2-10 m 2-10 m 2-10 

m 

5-13 m 

8  3-13 

m 

3-13 m 3-13 

m 

   2-10 m 2-10 

m 

7-13 m 

9   7-17 m 7-17 

m 

2-14 m   2-14 m 2-14 

m 

7-13 m 

10   7-17 m 7-17 

m 

5-15 m   5-15 m  9-14 m 

11  7-17 

m 

      9-15 

m 

 

Combinations 2220 1890 38756 9426 84504 7726 758 7899 7088 868915 

 Basin ID 

Order 11 12 13 14 15 16 17 18 19  

1 0-2 m 0-2 m   0-2 m 0-2 m 0-2 m     

2 0-3 m 0-3 m   0-2 m 0-2 m 0-2 m   Climate 

Key 

3 0-6 m 0-6 m   0-5 m 0-5 m 0-5 m   Tropical 

4 0-9 m 0-9 m 0-9 m 0-9 m 2-7 m 2-7 m 2-7 m 2-7 m  Arid 

5 2-11 m 2-11 

m 

2-11 m 2-11 

m 

2-10 m 2-10 m 2-10 m 2-10 m  Temperate 

6 3-12 m 3-12 

m 

3-12 m 3-12 

m 

4-13 m 4-13 m 4-13 m 4-13 m 4-13 

m 

Continental 

7 5-13 m  5-13 m 5-13 

m 

5-14 m 5-14 m 5-14 m 5-14 m 5-14 

m 

 

8   7-13 m 7-13 

m 

  6-16 m 6-16 m   

9   7-13 m     7-16 m   

10         8-16 

m 

 

11         8-16 

m 

 

Combinations 33576 7733 17172 6283 26728 26728 148340 29443 1280  



  Appendix B 

208  Supplementary Material to Chapter 4 

Table B.4 Final Hn Values for RFSM 

 Maximum Height Above Nearest Drainage (Hn) 

Order Tropical Arid Temperate Continental 

1 1 m 0 m 0 m 0 m 

2 2 m 0 m 1 m 0 m 

3 4 m 0 m 2 m 2 m 

4 6 m 1 m 4 m 4 m 

5 8 m 3 m 5 m 5 m 

6 8 m 3 m 7 m 6 m 

7 9 m 5 m 9 m 8 m  

8 10 m 5 m 10 m 9 m 

9 10 m 12 m 10 m 10 m 

10 10 m 13 m 13 m 11 m 

11 13 m 14 m  - 12 m 

 

B.2 Model Validation  

 Validation of the RFSM was split into two stages. The first stage compared 

the RFSM to existing global flood model (GFM) outputs in Africa. The performance 

of the RFSM with respect to these existing GFMs was compared with the 

performance of another global geomorphological floodplain map: GFPLAIN250 

(Nardi et al., 2019). The second stage involved validating the RFSM output against 

historical observed flood events. The performance of the RFSM at capturing these 

historical events was compared with the performance of existing GFMs. 

B.2.1 Validation Against Existing Models 

 The output of 6 GFMs was compared in Africa by Trigg et al. (2016b) in the 

first GFM intercomparison study. One of the outputs of the study was an aggregated 

map (Trigg et al., 2016a) of flood hazard for Africa that showed the number of 

models (1-6) that agreed it would flood in a given location (see Figure B.2). We use 

this aggregated map to validate our RFSM. We also validate another 

geomorphological flood map, GFPLAIN250 (Nardi et al., 2019), against the 

aggregated GFM map. We then compare the results to see how our approach 
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compares to geomorphological approaches. We use the 100-year return period 

aggregated GFM map for our validation. 

 

Figure B.2  Datasets used in the validation. 

(From left to right) 100-year return period aggregated global flood model 

output for Africa (Trigg et al., 2016a). GFPLAIN250 geomorphological 

floodplain map for Africa (Nardi et al., 2019). RFSM map with rivers split by 

their Strahler stream orders. 

 Comparison of the RFSM map with the aggregated GFM map is split into 

three parts. In the first part, we split the RFSM map into Strahler stream orders. We 

then overlay the entire aggregated GFM map (any level of agreement) with the 

RFSM map and calculated the percentage of each Strahler stream order’s extent that 

is overpredicting flooding with respect to the aggregated GFM map: 

% 𝑂𝑃𝑜𝑟𝑑𝑒𝑟 =  
𝑅𝐹𝑆𝑀𝑜𝑟𝑑𝑒𝑟 − (𝑅𝐹𝑆𝑀𝑜𝑟𝑑𝑒𝑟 ∩ 𝐴𝐺𝐺)

𝑅𝐹𝑆𝑀𝑜𝑟𝑑𝑒𝑟
𝑥100 (B4) 

where 𝑅𝐹𝑆𝑀𝑜𝑟𝑑𝑒𝑟 ∩ 𝐴𝐺𝐺 is the intersection of the RFSM map (of a given order) 

and the aggregated GFM map, and 𝑅𝐹𝑆𝑀𝑜𝑟𝑑𝑒𝑟 is the total extent of the RFSM map 

at that order.  

 In the second part of the analysis, we split the aggregated GFM map into its 

different levels of agreement, ranging from 1-6. We then calculate, for each level of 

agreement, the percentage of the aggregated GFM map that is captured by both the 

RFSM map and the GFPLAIN250 map: 
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% 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑎𝑔𝑔 𝑙𝑒𝑣𝑒𝑙 =  
𝐺𝐹𝑀𝑎𝑔𝑔 𝑙𝑒𝑣𝑒𝑙 ∩ 𝐹𝑀

𝐺𝐹𝑀𝑎𝑔𝑔 𝑙𝑒𝑣𝑒𝑙
𝑥100 (B5) 

where 𝐺𝐹𝑀𝑎𝑔𝑔 𝑙𝑒𝑣𝑒𝑙 ∩ 𝐹𝑀 is the intersection of the aggregated GFM map (at the 

specified agreement level) and the flood map (either RFSM or GFPLAIN250) and 

𝐺𝐹𝑀𝑎𝑔𝑔 𝑙𝑒𝑣𝑒𝑙 is the total aggregated GFM extent for the specified agreement level.  

 In the third part of the analysis, the RFSM map and GFPLAIN250 maps 

were scored using the performance scores outlined in the calibration section 

(equations S1-S3). To make the comparison between the RFSM map and the 

GFPLAIN250 as fair as possible an upstream drainage area (UDA) threshold of 

1000 km2 was applied to the RFSM map. This is because GFPLAIN250 does not 

map rivers below this threshold (Nardi et al., 2019). Performance scores were 

calculated by intersecting the GFPLAIN250 and RFSM maps with the aggregated 

GFM map, with 6 different thresholds of agreement applied to the aggregated GFM 

map. These thresholds of agreement ranged from ≥1 model (where any model 

predicts flooding) to 6 models (where all 6 models agree it will flood). 

 The African continent was split into major drainage basins for this first stage 

of validation. We use the HydroBasins dataset (Lehner and Grill, 2013) at the level 2 

categorization as our validation basins. The basin split for the continent of Africa 

can be seen in Figure B.3, alongside basin names and HydroBasin specific numeric 

codes. For the continent of Africa there are a total of 8 level 2 basins. The three parts 

of the validation analysis outlined above were carried out in each of the 8 basins. 

Results for validation parts 1-3 are recorded in Tables B.5 - B.9. Figures B.4-B.11 

visualize the overlap between both the RFSM and GFPLAIN250 maps and the 

aggregated GFM map for each of the 8 level 2 basins. 
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Figure B.3  The level 2 HydroBasins used for validation 

Basin names listed alongside HydroBasin specific numeric codes 

 

Table B.5 Validation Part 1 Results - RFSM Percentage Overprediction per Stream 

Order 

 Strahler Stream Order 

Basin 1 2 3 4 5 6 7 8 9 10 11 

East Africa - 1020000010 83 80 69 49 31 14 11 5 4 14 X 

South Africa - 1020011530 86 83 74 55 37 19 13 6 2 16 X 

Congo - 1020018810 91 91 74 49 32 16 11 9 4 4 7 

Niger - 1020021940 81 91 77 64 32 14 23 16 10 2 X 

North Africa - 1020027430 94 96 93 88 77 65 62 61 68 X X 

Nile - 1020034170 84 80 71 55 40 29 20 13 2 5 X 

Madagascar - 1020035180 83 85 68 45 22 6 3 1 X X X 

Chad - 1020040190 86 82 77 61 48 34 31 19 33 1 X 
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 Throughout Africa, the RFSM follows the general trend that as the Strahler 

stream order of the river increases, the degree of overprediction decreases (Table 

B.5). Low orders (1, 2 and 3) have high degrees of overprediction. This is because 

the RFSM has a smaller minimum UDA threshold (10 km2) than any of the other 

GFMs (between 50-5000 km2) and a lot of the rivers in these categories fall below 

the minimum upstream drainage area threshold of any GFM. Intermediate orders (4-

6) still show some levels of overprediction as a lot of these rivers will be modelled 

by some, but not all, of the GFMs. The levels of overprediction decrease for higher 

order rivers (>7) for which there is complete coverage across the GFMs. 

Table B.6 Validation Part 2 Results - Percentage Flooding Captured per GFM 

Agreement Level 

  GFM Agreement Level 

Basin Flood Map 1 2 3 4 5 6 

East Africa - 1020000010 
RFSM 34 52 67 78 87 94 

GFPLAIN250 25 51 66 76 79 73 

South Africa - 1020011530 
RFSM 43 59 73 83 93 98 

GFPLAIN250 20 43 58 71 74 63 

Congo - 1020018110 
RFSM 50 58 73 84 93 98 

GFPLAIN250 33 58 72 79 77 68 

Niger - 1020021940 
RFSM 52 69 83 91 96 98 

GFPLAIN250 44 69 85 93 97 97 

North Africa - 1020027430 
RFSM 46 62 74 82 90 93 

GFPLAIN250 16 27 46 62 80 92 

Nile - 1020034170 
RFSM 61 78 88 94 98 99 

GFPLAIN250 49 73 84 83 65 55 

Madagascar - 1020035180 
RFSM 38 42 63 80 91 96 

GFPLAIN250 12 31 48 60 74 80 

Chad - 1020040190 
RFSM 56 73 84 89 92 95 

GFPLAIN250 60 76 86 93 97 99 

 

 In Part 2 of the validation, we look at the different levels of GFM agreement 

in the aggregated GFM map and examine the percentage of each agreement level 

that is captured by the RFSM and GFPLAIN250 maps (Table B.6). The higher the 

GFM agreement level, the greater the confidence that it will flood in a given 

location. As such, it is especially important that the models being tested correctly 

capture these areas of high agreement. For the two highest GFM agreement levels (5 
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models agree, and 6 models agree) the RFSM has a % captured value of above 90% 

in each basin in Africa. This shows that the RFSM map is correctly capturing these 

areas of high confidence of flooding. Comparing the % captured results of the 

RFSM with the GFPLAIN250 map, the RFSM has higher % captured results in each 

basin except the Chad basin (where both maps still score highly). This shows that 

the RFSM captures more of aggregated GFM extent than the GFPLAIN250 map.  

Table B.7 Validation Part 3 Results - Critical Success Index Scores for each GFM 

Agreement Threshold 

 

 

 

 

 

 

 

 

  GFM Agreement Threshold 

Basin Flood Map ≥1 ≥2 ≥3 ≥4 ≥5 6 

East Africa - 1020000010 
RFSM 0.31 0.46 0.47 0.41 0.31 0.14 

GFPLAIN250 0.35 0.36 0.29 0.21 0.14 0.07 

South Africa - 1020011530 
RFSM 0.35 0.5 0.49 0.43 0.34 0.22 

GFPLAIN250 0.33 0.36 0.31 0.24 0.17 0.1 

Congo - 1020018110 
RFSM 0.44 0.56 0.56 0.49 0.38 0.22 

GFPLAIN250 0.45 0.44 0.36 0.28 0.19 0.1 

Niger - 1020021940 
RFSM 0.47 0.54 0.5 0.39 0.27 0.14 

GFPLAIN250 0.48 0.43 0.33 0.24 0.15 0.08 

North Africa - 1020027430 
RFSM 0.21 0.13 0.06 0.03 0.01 0.003 

GFPLAIN250 0.15 0.12 0.07 0.04 0.02 0.01 

Nile - 1020034170 
RFSM 0.59 0.61 0.54 0.44 0.31 0.13 

GFPLAIN250 0.52 0.45 0.35 0.24 0.15 0.06 

Madagascar - 1020035180 
RFSM 0.27 0.42 0.51 0.5 0.37 0.19 

GFPLAIN250 0.32 0.42 0.41 0.34 0.24 0.12 

Chad - 1020040190 
RFSM 0.4 0.39 0.31 0.21 0.13 0.06 

GFPLAIN250 0.41 0.29 0.19 0.12 0.07 0.03 
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Table B.8 Validation Part 3 Results - Hit Rate Scores for each GFM Agreement 

Threshold 

  GFM Agreement Threshold 

Basin Flood Map ≥1 ≥2 ≥3 ≥4 ≥5 6 

East Africa - 1020000010 
RFSM 0.32 0.54 0.68 0.78 0.85 0.9 

GFPLAIN250 0.45 0.65 0.73 0.76 0.76 0.73 

South Africa - 1020011530 
RFSM 0.37 0.62 0.76 0.87 0.93 0.97 

GFPLAIN250 0.39 0.58 0.65 0.69 0.67 0.63 

Congo - 1020018110 
RFSM 0.47 0.67 0.79 0.88 0.94 0.97 

GFPLAIN250 0.55 0.69 0.73 0.74 0.72 0.68 

Niger - 1020021940 
RFSM 0.51 0.71 0.83 0.9 0.95 0.97 

GFPLAIN250 0.68 0.84 0.92 0.96 0.97 0.97 

North Africa - 1020027430 
RFSM 0.36 0.53 0.67 0.76 0.82 0.85 

GFPLAIN250 0.22 0.37 0.56 0.7 0.83 0.92 

Nile - 1020034170 
RFSM 0.65 0.8 0.89 0.94 0.97 0.98 

GFPLAIN250 0.65 0.73 0.72 0.68 061 0.55 

Madagascar - 1020035180 
RFSM 0.28 0.45 0.61 0.74 0.85 0.91 

GFPLAIN250 0.34 0.51 0.62 0.7 0.77 0.8 

Chad - 1020040190 
RFSM 0.49 0.64 0.73 0.79 0.83 0.86 

GFPLAIN250 0.74 0.85 0.92 0.95 0.98 0.99 
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Table B.9 Validation Part 3 Results - Bias Scores for each GFM Agreement 

Threshold 

 

 In the Part 3 of the validation the same UDA threshold as the GFPLAIN250 

map (1000 km2) was applied to the RFSM map. Three different performance scores 

were then calculated for both of these maps in each basin in Africa. In terms of CSI 

(Table B.7), the RFSM map outperformed the GFPLAIN250 map in almost all the 

basins in Africa. The bias scores (Table B.9) for the GFPLAIN250 map were also 

higher than the RFSM map’s bias scores, suggesting that GFPLAIN250 overpredicts 

the 100-year flood to a greater degree than the RFSM map.  

It should be noted that the GFPLAIN250 map was not intended to map the ‘100-

year’ flood, but rather to identify floodplain boundaries (Nardi et al., 2019). 

Additionally, in the North Africa basin, which contains the majority of the Sahara 

Desert, GFPLAIN250 and a few of the global flood models apply masks that 

exclude these areas from the analysis. This explains the low validation scores in this 

basin with respect to the other basins in Africa. We chose not to apply any mask in 

these areas for two reasons. Firstly, there is little to no population in these areas, so 

  GFM Agreement Threshold 

Basin Flood Map ≥1 ≥2 ≥3 ≥4 ≥5 6 

East Africa - 1020000010 
RFSM 0.36 0.72 1.1 1.66 2.65 5.35 

GFPLAIN250 0.73 1.46 2.24 3.34 5.36 10.94 

South Africa - 1020011530 
RFSM 0.42 0.86 1.29 1.87 2.68 4.4 

GFPLAIN250 0.58 1.19 1.78 2.58 3.69 6.06 

Congo - 1020018110 
RFSM 0.52 0.86 1.2 1.66 2.42 4.32 

GFPLAIN250 0.76 1.25 1.75 2.42 3.53 6.3 

Niger - 1020021940 
RFSM 0.6 1.1 1.5 2.21 3.46 7.06 

GFPLAIN250 1.09 1.83 2.71 4 6.27 12.79 

North Africa - 1020027430 
RFSM 1.03 3.51 10.03 25.6 69.3 266.4 

GFPLAIN250 0.71 2.45 7 17.87 48.36 185.89 

Nile - 1020034170 
RFSM 0.75 1.13 1.53 2.09 3.08 3.63 

GFPLAIN250 0.89 1.33 1.81 2.47 7.66 9.05 

Madagascar - 1020035180 
RFSM 0.29 0.52 0.81 1.24 2.13 2.96 

GFPLAIN250 0.41 0.72 1.13 1.73 4.82 6.71 

Chad - 1020040190 
RFSM 0.71 1.3 2.14 3.54 6.24 14.2 

GFPLAIN250 1.55 2.83 4.66 7.73 13.63 31 
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applying / not applying a mask would have little impact on the final results. 

Secondly, applying a mask could mistakenly remove areas that do contain rivers. 

This is evident in the Nile Basin in Figure B.9. The mask applied to the 

GFPLAIN250 removes a portion of the Nile River in Northern Sudan. 

We have shown, in our validation of the RFSM against the aggregated output of six 

GFMs, that the RFSM does a good job at capturing areas where there is high 

agreement between the GFMs. It also does a better job at predicting the 100-year 

flood extent than existing global geomorphological floodplain datasets.  
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Figure B.4  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the East Africa 

Basin (1020000010) 
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Figure B.5  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the South Africa 

Basin (1020011530) 
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Figure B.6  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the Congo Basin 

(1020018110) 
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Figure B.7  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the Niger Basin 

(1020021940) 
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Figure B.8  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the North Africa 

Basin (1020027430) 
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Figure B.9  Overlap of the RFSM and GFPLAIN250 maps with the 100-year return 

period aggregated global flood map (Trigg et al., 2016a) in the Nile Basin 

(1020034170) 
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Figure B.10  Overlap of the RFSM and GFPLAIN250 maps with the 100-year 

return period aggregated global flood map (Trigg et al., 2016a) in the 

Madagascar Basin (1020035180) 
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Figure B.11  Overlap of the RFSM and GFPLAIN250 maps with the 100-year 

return period aggregated global flood map (Trigg et al., 2016a) in the Chad 

Basin (1020040190) 
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B.2.2 Validation Against Observed Events 

 In a follow up study to the Trigg et al. (2016b) GFM intercomparison study, 

Bernhofen et al. (2018b) did a comparative validation of 6 GFMs against observed 

flood events in Nigeria and Mozambique. The two flood events used for validation 

were the 2012 floods in Nigeria and the 2007 floods in Mozambique. Validation was 

split into three hydraulically diverse analysis regions: two in Nigeria and one in 

Mozambique. The analysis areas in Nigeria were Lokoja, which is a narrow, 

confined floodplain that sits at the confluence of the Niger and Benue rivers; and 

Idah, which sits downstream of Lokoja and is a flat extensive floodplain. The 

analysis area in Mozambique is Chemba, which is a multichannel portion of the 

lower Zambezi river. Six global flood models were tested in total, GLOFRIS 

(Winsemius et al., 2013), JRC (Dottori et al., 2016c), U-Tokyo (Winsemius et al., 

2013), ECMWF (Pappenberger et al., 2012), CIMA-UNEP (Rudari et al., 2015), and 

Fathom (Sampson et al., 2015). The study found varied performance between the 

GFMs, with some models scoring very well and others not very well (Bernhofen et 

al., 2018b). 

 Here, we use the validation outputs from Bernhofen et al. (2018a) to see how 

the RFSM map compares when validated against the same observed flood events as 

six other GFMs. We use the three performance scores outlined in the Calibration 

section (equations B.1-B.3). These are the same scores used in the Bernhofen et al. 

(2018b) study. We use the 100-year return period extents for each of the six GFMs 

for our validation. The overlap between the models and the observed events can be 

visualized in Figure B.12a and the performance scores for each of the models can be 

visualized graphically in Figure B.12b.  

 Across the three study regions, the RFSM consistently scores amongst the 

best GFMs in terms of CSI. In Chemba, the RFSM CSI score is the higher than any 

of the GFMs. In both basins in Nigeria, the RFSM has the second highest Bias score. 

The low river initiation threshold of the RFSM map (10 km2 UDA) contributes to 

this overprediction. You can see in Figure B.12a that a number of tributaries are 

included in Lokoja on which there is no flooding. Similarly, in Idah several 

floodplain channels not modelled by the other GFMs are represented in the RFSM, 

resulting in a larger flood extent and higher overprediction within the floodplain.  
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 We’ve shown that the RFSM map performs similarly to the best performing 

GFMs when validated against historical flood events in three regions in Nigeria and 

Mozambique. This indicates that the RFSM does a good job of mapping the flood 

susceptibility of rivers and is appropriate for use in this study.  

 

Figure B.12  (a) Overlap of modelled 100-year flood extent and observed flood 

events in the three validation regions for 6 global flood models and the RFSM. 

(b) Performance scores for 6 global flood models and the RFSM in the three 

validation regions.  

Figure adjusted from (Bernhofen et al., 2018b) 
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B.3 Top 50 Countries Exposure 

  

Figure B.13  WorldPop calculated flood exposure. 

(a) Top 50 most exposed countries in terms of total flood exposure. (b) Top 50 

most exposed countries in terms of normalized flood exposure (normalized to 

country’s total population) 
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Figure B.14  HRSL calculated flood exposure. 

(a) Top 50 most exposed countries in terms of total flood exposure. (b) Top 50 

most exposed countries in terms of normalized flood exposure (normalized to 

country’s total population). Note: flood exposure is calculate only for the 168 

countries where HRSL is available. For countries missing from this analysis 

see Table B.11 
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B.4 GHS-POP Exposure Change 1975-1990-2000-2015 

Table B.10 Normalized GHS-POP Total Flood Exposure 1975-1990-2000-2015 

(people exposed per 1000) 

Country 1975 1990 2000 2015 

Aaland Islands 4.58 4.49 4.51 5.87 

Afghanistan 149.25 157.55 156.43 156.53 

Albania 138.18 163.11 165.59 168.56 

Algeria 91.02 74.67 71.28 72.57 

Andorra 223.04 207.99 188.52 167.90 

Angola 28.15 39.71 49.25 57 

Anguilla 15.36 14.02 8.75 8.55 

Argentina 215.72 215.93 218.78 218.09 

Armenia 64.98 65.51 65.14 65.43 

Aruba 0.94 1.00 0.98 0.96 

Australia 85.94 85.46 85.18 85.34 

Austria 208.18 207.20 206.05 207.24 

Azerbaijan 96.10 89.78 92.32 89.98 

Bahamas 423.73 426.20 422.18 423.41 

Bahrain 30.38 26.71 23.68 20.84 

Bangladesh 835.97 828.39 823.49 815.49 

Barbados 32.18 32.01 33.45 33.89 

Belarus 91.65 91.36 92.88 99.44 

Belgium 268.15 266.87 266.33 266.26 

Belize 195.68 193.03 194.93 194.06 

Benin 241.05 219.47 209.06 208.44 

Bhutan 50.01 59.50 72.97 84.52 

Bolivia 115.71 113.76 122.79 129.47 

Bonaire Saint Eustatius and 

Saba 

4.48 4.48 4.29 4.38 

Bosnia and Herzegovina 330.71 299.24 288.51 276.69 

Botswana 101.62 100.21 101.39 108.46 

Brazil 113.70 114.50 115.73 117.56 

British Virgin Islands 0 0 0 0 

Brunei 372.20 382.18 371.09 357.00 

Bulgaria 189.84 179.45 176.52 174.82 

Burkina Faso 147.92 135.42 125.61 117.56 
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Burundi 55.95 50.74 53.23 60.87 

Cambodia 688.96 667.62 662.91 634.40 

Cameroon 116.84 123.93 133.34 143.56 

Canada 145.92 141.22 138.09 134.19 

Cayman Islands 9.16 5.76 4.52 3.49 

Central African Republic 130 132.02 138.97 146.09 

Chad 375.95 358.47 358.47 353.06 

Chile 96.46 95.97 95.85 97.95 

China 344.07 344.99 348.70 353.79 

Colombia 162.37 169.69 172.73 176.27 

Comoros 14.32 14.57 14.73 12.73 

Congo 113.22 109.52 113.43 190.56 

Costa Rica 102.21 104.94 104.46 105.55 

Croatia 269.66 265.10 263.76 263.55 

Cuba 133.04 136.48 138.25 142.10 

Curacao 3.66 3.62 3.41 3.06 

Cyprus 42.00 41.41 40.58 39.64 

Czech Republic 176.36 169.78 167.36 163.10 

Democratic Republic of Congo 95.47 96.24 95.8 96.07 

Denmark 82.51 82.72 82.44 82.21 

Djibouti 30.04 35.41 34.24 35.75 

Dominica 58.49 60.19 62.76 66.66 

Dominican Republic 291.21 125.18 112.04 113.18 

Ecuador 264.38 264.19 262.56 257.03 

Egypt 542.36 533.38 535.79 536.38 

El Salvador 73.30 71.84 73.22 78.69 

Equatorial Guinea 124.83 116.14 117.28 121.67 

Eritrea 34.02 32.91 51.75 58.93 

Estonia 30.86 66.66 98.35 103.27 

Ethiopia 53.14 49.38 48.09 52.08 

Falkland Islands 1.63 2.38 2.82 3.32 

Faroe Islands 5.98 6.56 6.82 6.98 

Fiji 182.86 183.96 184.69 190.78 

Finland 200.64 178.71 171.11 166.69 

France 178.09 171.63 167.68 163.66 

French Guiana 259.45 317.51 372.09 459.89 

Gabon 134.63 125.4 123.76 122.25 
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Gambia 133.95 132.72 129.06 122.93 

Georgia 111.40 100.95 97.14 93.63 

Germany 205.31 204.25 205.37 207.91 

Ghana 103.45 105.9 104.71 107.09 

Gibraltar 0 0 0 0 

Greece 62.87 62.91 64.34 65.84 

Grenada 11.31 11.50 11.92 11.38 

Guadeloupe 68.11 63.94 60.60 56.35 

Guatemala 77.21 79.22 81.35 87.18 

Guam 26.11 27.31 27.97 28.60 

Guernsey 0 0 0 0 

Guinea 94.49 101.89 109.36 121.24 

Guinea Bissau 96.64 98.65 99.63 104.44 

Guyana 490.06 488.23 487.58 487.22 

Haiti 60.72 149.72 157.31 156.11 

Honduras 127.87 128.20 128.68 130.16 

Hong Kong 35.17 39.60 42.09 46.65 

Hungary 346.48 346.95 347.18 348.72 

Iceland 35.10 34.81 40.46 42.78 

India 303.04 307.43 317.00 331.29 

Indonesia 333.65 317.91 310.11 300.44 

Iran 51.12 89.76 97.82 96.68 

Iraq 450.51 421.74 432.13 439.50 

Ireland 121.15 115.23 113.80 115.38 

Isle of Man 48.54 49.25 50.46 51.56 

Israel 70.13 65.78 64.09 64.33 

Italy 120.68 124.39 126.98 130.81 

Ivory Coast 127.71 128.02 127.59 126.48 

Jamaica 127.35 127.54 126.41 125.51 

Japan 216.51 212.56 211.06 210.11 

Jersey 19.88 20.90 21.58 22.60 

Jordan 42.35 25.03 22.71 22.61 

Kazakhstan 148.52 147.56 150.10 154.68 

Kenya 74.79 77.29 77.17 81.91 

Kiribati 0 0 0 0 

Kosovo 169.53 162.07 155.75 151.41 
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Kuwait 54.80 48.01 51.08 54.09 

Kyrgyzstan 62.01 62.56 62.05 62.38 

Laos 233.60 267.83 280.07 290.38 

Latvia 323.73 320.94 319.35 320.82 

Lebanon 26.19 23.94 26.32 24.42 

Lesotho 56.89 46.38 45.63 48.93 

Liberia 229.25 248.73 259.36 280.51 

Libya 151.56 142.65 142.32 144.43 

Liechtenstein 127.40 128.90 134.36 137.72 

Lithuania 92.01 91.49 91.14 92.30 

Luxembourg 131.32 124.89 119.51 114.45 

Macao 37.42 38.20 36.71 32.57 

Macedonia 142.71 136.14 133.96 136.82 

Madagascar 152.53 166.61 181.61 183.90 

Malawi 126.97 129.02 128.21 126.02 

Malaysia 383.19 365.57 350.96 334.21 

Mali 374.23 355.15 343.98 329.31 

Malta 23.57 21.18 21.05 20.86 

Marshall Islands 0 0 0 0 

Martinique 57.88 55.12 52.60 50.02 

Mauritania 378.34 395.32 391.08 415.86 

Mayotte 9.46 9.67 9.70 10.02 

Mexico 215.58 204.55 198.85 191.50 

Micronesia 3.81 5.01 5.57 5.84 

Moldova 112.21 99.21 95.98 94.57 

Monaco 0 0 0 0 

Mongolia 124.52 125.12 129.14 128.39 

Montenegro 155.39 143.23 140.12 137.74 

Montserrat 2.20 2.20 3.91 4.63 

Morocco 93.58 92.85 94.59 96.15 

Mozambique 152.54 151.09 145.63 147.36 

Myanmar 477.15 441.42 417.63 417.30 

Namibia 324.82 309.36 296.99 271.60 

Nauru 0 0 0 0 

Nepal 52.83 129.49 195.13 253.94 

Netherlands 699.35 712.36 724.71 738.06 

New Caledonia 132.82 93.10 75.80 60.41 
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New Zealand 131.65 125.18 120.56 113.60 

Nicaragua 99.59 105.12 111.04 122.93 

Niger 317.70 291.97 276.43 269.06 

Nigeria 174.89 175.57 184.34 194.97 

Norfolk Island 0 0 0 0 

Northern Mariana Islands 3.26 3.24 3.22 4.03 

North Korea 172.42 173.71 178.76 184.87 

Norway 101.69 94.11 86.99 77.54 

Oman 79.61 78.64 76.25 75.83 

Pakistan 300.87 309.20 332.03 354.45 

Palau 11.99 11.55 10.49 7.33 

Palestine 17.63 19.04 19.90 21.64 

Panama 90.42 92.93 101.34 109.05 

Papa New Guinea 85.30 101.89 100.14 98.45 

Paraguay 68.03 64.10 64.41 70.51 

Peru 83.60 89.44 93.26 98.15 

Philippines 262.80 251.42 247.09 243.54 

Poland 153.75 152.49 152.82 155.60 

Portugal 31.91 31.80 31.67 31.56 

Puerto Rico 124.80 121.67 119.84 116.85 

Qatar 82.98 79.97 83.98 88.26 

Romania 240.42 238.53 240.44 268.43 

Russia 132.63 132.32 133.47 139.27 

Rwanda 62.28 57.63 52.28 51.87 

Saint Barthelemy 0 0 0 0 

Saint Martin (French) 46.02 65.01 75.58 78.05 

Saint Lucia 34.92 36.71 37.62 38.28 

Saint Pierre and Miquelon 0 0 0 0 

Saint Vincent and the 

Grenadines 

23.05 22.70 22.26 21.54 

San Marino 20.05 18.86 18.67 18.90 

Saudi Arabia 84.28 71.62 71.04 73.02 

Sao Tome and Principe 48.69 48.66 48.64 45.00 

Senegal 177.88 172.26 176.42 177.40 

Serbia 397.30 396.53 397.18 401.71 

Seychelles 0 0 0 0 
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Sierra Leone 147.18 144.95 140.83 141.10 

Singapore 52.45 50.29 48.86 47.90 

Sint Maarten (Dutch) 28.50 30.69 26.89 26.65 

Slovakia 304.02 300.32 298.66 299.67 

Slovenia 158.07 156.71 156.36 157.28 

Solomon Islands 51.68 55.26 55.97 65.89 

Somalia 313.39 310.90 309.76 303.01 

South Africa 38.07 36.68 36.14 36.20 

South Korea 109.07 103.01 100.59 99.33 

South Sudan 765.72 716.32 687.14 593.82 

Spain 80.60 79.35 77.93 76.24 

Sri Lanka 183.00 188.09 187.47 188.22 

Sudan 346.81 346.50 349.60 343.28 

Suriname 885.55 887.18 888.74 893.98 

Swaziland 131.30 141.66 122.49 109.67 

Sweden 153.84 145.08 141.13 136.23 

Switzerland 143.04 139.86 138.97 138.37 

Syria 130.56 117.98 117.66 119.01 

Taiwan 159.93 153.82 152.50 147.31 

Tajikistan 75.61 75.60 76.87 77.85 

Tanzania 114.47 104.10 104.11 110.51 

Timor-Leste 144.38 149.69 143.17 141.17 

Thailand 530.14 550.91 567.44 605.17 

Togo 118.84 111.79 109.13 120.18 

Trinidad and Tobago 218.92 224.22 227.41 229.96 

Tunisia 77.45 74.98 78.03 85.57 

Turkey 108.09 104.32 101.51 99.78 

Turkmenistan 272.90 269.52 271.73 272.14 

Turks and Caicos Islands 3.48 4.03 3.85 3.72 

Tuvalu 0 0 0 0 

Uganda 95.10 85.57 77.93 77.75 

Ukraine 136.61 133.58 135.49 139.96 

United Arab Emirates 103.30 94.26 92.10 91.63 

United Kingdom 114.54 117.13 119.02 121.97 

United States of America 130.15 131.61 132.46 130.59 

United States Virgin Islands 8.77 9.12 8.93 8.77 

Uruguay 42.41 38.74 39.64 39.71 
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Uzbekistan 139.01 139.01 141.24 142.49 

Vanuatu 37.06 39.91 41.79 45.11 

Vatican City 0 0 0 0 

Venezuela 151.66 152.30 153.58 159.67 

Vietnam 622.03 629.97 619.10 597.67 

Western Sahara 74.64 67.14 61.52 55.35 

Yemen 46.44 47.64 50.51 55.95 

Zambia 190.44 104.17 101.80 113.21 

Zimbabwe 136.45 125.30 120.25 114.46 

Global 256.5 259.29 262.82 264.85 
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B.5 HRSL Missing Countries 

Table B.11 Countries not mapped by HRSL (at time of writing). These countries 

were not represented in any of the results calculated using the HRSL dataset. 

Aaland Islands Gibraltar Pakistan 

Afghanistan Guernsey  Palestine 

Antarctica Iran Russia 

Andorra Isle of Man Saint Pierre and Miquelon 

Armenia Israel Saint-Barthelemy 

Azerbaijan Jersey Saint-Martin (French) 

Bhutan Kosovo Sint Maarten (Dutch) 

Brunei Kuwait Somalia 

Canada Laos South Sudan 

China Lebanon Sudan 

Cuba Luxembourg Sweden 

Curacao Martinique Sweden 

Cyprus Montserrat Syria 

Denmark Morocco Turkey  

Falkland Islands Myanmar Ukraine 

Faroe Islands Norfolk Island Vatican City 

Finland North Korea Venezuela 

Georgia Norway Yemen 
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B.6 GFM Coverage Maps 

  

Figure B.15  What size GFM river initiation threshold is required to capture _% of a 

country’s total GFM flood (>50 km2) exposure calculated with WorldPop. 

Each map is a different target percentage. 

This map is intended to inform users of GFMs about the appropriate GFM to 

use in a given country.  
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Figure B.16  What size GFM river initiation threshold is required to capture _% of a 

country’s total GFM flood (>50 km2) exposure calculated with GHS-POP. 

Each map is a different target percentage. 

This map is intended to inform users of GFMs about the appropriate GFM to 

use in a given country.  
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Figure B.17  What size GFM river initiation threshold is required to capture _% of a 

country’s total GFM flood (>50 km2) exposure calculated with HRSL. Each 

map is a different target percentage. 

This map is intended to inform users of GFMs about the appropriate GFM to 

use in a given country.  
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Appendix C 

Supplementary Material to Chapter 5 

Appendix C consists of the supplementary material that accompanied the manuscript 

on which Chapter 5 is based. 

C.1  Global Flood Hazard Dataset Details 

C.1.1 CaMa-UT 

 Developed at the University of Tokyo, the CaMa-UT global flood model 

(GFM) uses the global hydrodynamic river routing model CaMa-Flood (Catchment-

based Macro-scale Floodplain model) (Yamazaki et al., 2011) to simulate inundation 

using runoff inputs from a global hydrological model and global forcing data. River 

discharge is calculated in CaMa-Flood using the local inertial formulation of the 

shallow water equations (Yamazaki et al., 2013) with explicit representation of 

channel bifurcations (Yamazaki et al., 2014). Floodplain inundation is simulated 

using a floodplain storage elevation relationship and sub-grid topographic 

information (Yamazaki et al., 2011). The flood maps used in this study, described in 

detail in Zhou et al. (2020), are run using CaMa-Flood v4 forced by e2o_ecmwf 

runoff data from the eartH20Observe (e2o) project (Schellekens et al., 2017). The 

runoff data is forced by the WATCH Forcing Data methodology applied to ERA-

Interim data for the years 1980 to 2014 (Weedon et al., 2014) and return periods are 

determined using the generalized extreme value (GEV) fitting function. Storage 

volumes are calculated globally at 0.25° resolution and then downscaled to the 

native output resolution of 3 arc seconds (~90 m at the equator) using the Multi-

Error-Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) 

(Yamazaki et al., 2017) and MERIT derived hydrography (MERIT Hydro) 

(Yamazaki et al., 2019). The downscaling approach follows the assumption that the 

water surface is flat within the unit catchment and areas of lowest elevation are 

inundated first until the total water volume of the unit catchment matches the 

computed storage volume (Zhou et al., 2020). Catchments smaller than a 0.25° 

resolution grid box (~ 600 km2 at the equator) are not explicitly modelled, however, 
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some rivers below this catchment threshold are inundated in the downscaling 

procedure.  

C.1.2 CIMA-UNEP 

 The CIMA-UNEP GFM was produced as an input for the 2015 Global 

Assessment Report (GAR) on Disaster Risk Reduction (UNDRR, 2015). It is the 

only GFM which simulates flooding in one dimension. Cross sections are generated 

along sections of a river network derived from HydroSHEDS (Lehner and Grill, 

2013) and Manning’s equation is used to derive stage-discharge functions at each 

section. Flooded area along each cross section is then simulated for each return 

period and merged into a flood hazard map using a reconditioned SRTM3 DEM 

(Rudari et al., 2015). Flood flows are estimated using a regionalized flood frequency 

approach using data from over 8000 gauging stations globally. Regression 

techniques were used to estimate extreme flows in ungauged basins using 

geomorphological and climatological variables. This regionalized flood frequency 

approach was improved in areas with insufficient gauge observations by a global 

hydrological model, Continuum GHM (Silvestro et al., 2013), forced by version 3 of 

the EC-Earth Global Climatic Model (Hazeleger et al., 2012) for the time period 

1960-2012. The CIMA-UNEP GFM models flooding on all rivers with an upstream 

drainage area of 1000 km2. Simulations are performed at 3 arcsecond resolution 

(~90 m at the equator) with no downscaling. There are two available resolutions of 

CIMA-UNEP. The native 3 arc second resolution global flood hazard maps and 

aggregated 32 arc second maps (~1 km at the equator). We use the native 3 

arcsecond global flood hazard maps in this study. 

C.1.3 Fathom 

 Fathom Global is the only GFM used in this study that is an ‘industry’ 

model. But their model can be used free-of-charge for research purposes. The 

Fathom model uses a regionalized flood frequency approach to simulate extreme 

flows (Sampson et al., 2015). The catchment characteristics of well gauged basins 

are used to extrapolate extreme flows from data-rich catchments to data-poor 

catchments that share similar catchment characteristics. This regionalized flood 

frequency approach is described in detail in Smith et al. (2015). Flooding is 

simulated using the sub-grid channel version (Neal et al., 2012) of the two-
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dimensional hydrodynamic model LISFLOOD-FP, which solves the local inertia 

approximation of the shallow water equations (Bates et al., 2010). Hydraulic 

simulations are carried out at the native model output resolution (3 arcsecond 

globally, 1 arcsecond nationally). The Fathom Global 2.0 GFM improves on Fathom 

Global 1.0 by incorporating new terrain: MERIT DEM (Yamazaki et al., 2017), and 

hydrography data: MERIT Hydro (Yamazaki et al., 2019), as well as improving the 

representation of river channels (Neal et al., 2021). The Fathom Global modelling 

framework has been applied in both the US (Wing et al., 2017) and the UK to 

produce higher accuracy flood maps by ingesting higher accuracy local terrain and 

gauge data. Fathom-UK incorporates the latest LiDAR data and gauge data to 

produce flood maps at 1 arcsecond resolution (~10 m in the UK). We use both the 

Fathom Global 2.0 flood maps and the Fathom-UK flood maps in this study. In 

Colombia, Ethiopia, India, and Malaysia we use Fathom Global 2.0 flood hazard 

maps at 3 arcsecond resolution (~90 m at the equator) on rivers with an upstream 

drainage area of 50 km2 or greater. In England, we use the Fathom-UK model which 

simulates flood hazard on all rivers to produce flood hazard maps at 1 arcsecond 

resolution (~10 m in England, ~30 m at the equator). In this study, we use only the 

fluvial undefended Fathom flood maps. Flood defenses, as well as pluvial and 

coastal flooding, are not considered.  

C.1.4 GLOFRIS 

 The Global Flood Risk with IMAGE Scenarios (GLOFRIS) model simulates 

fluvial flood hazard for the Aqueduct Flood Platform 

(https://www.wri.org/applications/aqueduct/floods/). To simulate flooding under 

current climate conditions, the European Union Water and Global Change 

(EUWATCH) (Weedon et al., 2011) forcing data is used for the years 1960 to 1999 

(Ward et al., 2020). Hydrological simulations were run using the PCRaster Global 

Water Balance (PCR-GLOBWB) (Sutanudjaja et al., 2018) hydrological model, 

which simulates flood levels and discharge using the kinematic wave approximation 

of the Saint-Venant Equation (van Beek et al., 2011) at 5 arcmin resolution (~9 km 

at the equator). Extreme value statistics are then used to calculate floodplain 

volumes in each grid cell for different return periods. Floodplain volumes are 

downscaled from 5 arcmin resolution onto a 30 arcseconds (~900 m at the equator) 

HydroSHEDS DEM (Lehner et al., 2008) using a volume redistribution approach 

outlined in Winsemius et al. (2013). The final global flood hazard maps represent 
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flooding at 30 arcsecond resolution on rivers with a Strahler stream order of 6 or 

greater. Flood maps under different climate conditions are available on the Aqueduct 

floods platform. In this study, we use the fluvial flood maps under current climate 

conditions. 

C.1.5 JRC 

 The GFM developed by the European Union Joint Research Centre (JRC) 

uses ERA-Interim forcing data (Dee et al., 2011, Balsamo et al., 2015) for the years 

1980-2013 to feed hydrological simulations using the Global Flood Awareness 

System (GloFAS) (Alfieri et al., 2013) modelling framework. GloFAS uses the land 

surface model HTESSEL (Balsamo et al., 2009) to simulate surface and sub-surface 

runoff and LISFLOOD Global to simulate streamflow across the river network at 

0.1 degree resolution (~11 km at the equator) (Alfieri et al., 2013). Return period 

streamflows are calculated for each point along the GloFAS river network using a 

Gumbel distribution (Dottori et al., 2016). The streamflow information is 

downscaled from 0.1 degree resolution (~11 km at the equator) to 30 arcseconds 

resolution (~900 m at the equator) onto a river network derived from the 

HydroSHEDs DEM (Lehner et al., 2008). Flood maps are then simulated at 30 

arcsecond resolution using the 2D hydrodynamic model CAD2D, which solves the 

semi-inertial formulation of the shallow water equations (Dottori and Todini, 2011). 

The final flood hazard maps represent flooding at 30 arcseconds resolution for rivers 

with an upstream drainage area of 5000 km2 or greater. 

C.1.6 GFD 

 The Global Flood Database (GFD) is a catalogue of 913 satellite observed 

large flood events captured between 2000-2018 (Tellman et al., 2021). The dates 

and locations of historic flood events are taken from the Dartmouth Flood 

Observatory (DFO) archive of large flood events (Kettner et al., 2021). Inundation is 

detected from optical MODIS satellite imagery at 250 m resolution using an 

algorithm that detects the surface reflectance of water. Of the total 3,054 flood 

events listed in the DFO archive, 913 events are found to have sufficient cloud-free 

MODIS images for inundation detection (Tellman et al., 2021). Flood events are 

categorized by the type of flood: dam breaks, heavy rain, snow or ice melt, and 

tropical storms and surges. In this study, we use flood data from snow or ice melt 
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and heavy rain events only. The total number of observed flood events used for each 

country are as follows: Colombia (29), England (12), Ethiopia (28), India (147), and 

Malaysia (21). 

C.2 Global Population Dataset Details 

C.2.1 GPW4 

 The Gridded Population of the World (GPW) dataset, which is currently in 

version 4 (GPW4), uses sub-national census data and uniformly distributes it over an 

area of land. GPW4 improves on previous iterations of GPW in that it incorporates 

the latest census data and the size of administrative areas are reduced in 87 countries 

(Doxsey-Whitfield et al., 2015). The accuracy of GPW’s approach of uniformly 

distributing population over an area, known as areal weighting, is highly dependent 

on the size of these administrative areas; smaller administrative areas result in more 

precise grid cell population estimates. This means that the appropriate scale for 

analysis differs in countries with detailed census and administrative units compared 

to countries with coarser input data (Leyk et al., 2019). Despite these drawbacks, the 

areal weighting approach to population distribution ensures that the census data 

retains its fidelity (Doxsey-Whitfield et al., 2015) and GPW data can be used as the 

population input for a number of other global population maps (Freire et al., 2016, 

Tiecke, 2017, Lloyd et al., 2019). GPW4 reports data on population density and 

population counts as well as demographics and data quality across five epochs: 

2000, 2005, 2010, 2015, and 2020. The output resolution of the gridded data is 30 

arcseconds (~900 m at the equator). In this study, we use the GPW v4.11 population 

counts for the year 2020, adjusted to match United Nation’s World Population 

Prospects.  

C.2.2 GHS-POP 

 Developed by the European Union JRC, the Global Human Settlement 

Population Grid (GHS-POP) (Freire et al., 2016) uses the built-up area grids defined 

by the Global Human Settlement Layer (GHSL) project (Pesaresi et al., 2013) to 

distribute census data over built up areas. Built up areas are identified in the GHSL 

project using Landsat imagery across four epochs: 1975, 1990, 2000, and 2014. 

Over 30,000 Landsat scenes (resolution ~30 m) were processed to identify structures 

and produce grids of proportion of built-up area at 250 m resolution globally 
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(Pesaresi et al., 2016). The GHS-POP dataset uses the GHSL built-up area grid and 

population estimates from GPW4 to distribute population over a census area by 

proportionally allocating population to gridded cells according to the ratio of built-

up area in each cell as defined by GHSL (Freire et al., 2015, Freire et al., 2020). In 

areas where no built-up area is detected by GHSL, but where census data indicates 

there is population, the population data is disaggregated across the census area using 

areal weighting (Freire et al., 2016). GHS-POP data is available globally at 9 

arcseconds resolution (~250 m at the equator) across four epochs: 1975, 1990, 2000, 

2015. In this study, we use the R2019a revision of GHS-POP for the population year 

2015.  

C.2.3 GRUMP 

 The Global Rural-Urban Mapping Project (GRUMP) uses a similar 

allocation approach to GPW but attempts to explicitly identify the population of 

urban areas (Balk et al., 2005). GRUMP uses night-time light data to determine the 

footprints of major cities (Elvidge et al., 1997). Population totals derived from both 

urban center estimates and GPW census unit estimates are proportionally allocated 

across the identified urban footprints (Balk et al., 2006). The nighttime lights’ data 

used to determine the urban footprint in GRUMP has been shown to overestimate 

urban areas (Balk et al., 2006). GRUMP is available globally at 30 arcsecond (~900 

m at the equator) resolution across three epochs: 1990, 1995, 2000. The GRUMP 

dataset is no longer being updated but is still being used today (Arnell and Gosling, 

2016, Tanoue et al., 2016). In this study, we use the GRUMP population count grid 

v1 for the year 2000.  

C.2.4 HRSL 

 The High Resolution Settlement Layer (HRSL) developed by Facebook in 

collaboration with Columbia University’s Centre for International Earth Science 

Information Network (CIESIN) uses Convolutional Neural Networks (CNN) to 

identify individual buildings from ultra-high resolution DigitalGlobe (now Maxar) 

satellite data (0.5 m resolution) to produce maps of human settlements at 1 

arcsecond (~30 m at the equator) resolution (Tiecke, 2017). GPW4 census data is 

proportionally allocated across these settlements to produce maps of both total 
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population and population demographics. We use the latest iteration of the HRSL, 

which gives population estimates for the years 2018-2019. 

C.2.5 HYDE 

 The History Database of the Global Environment (HYDE) maps global 

population totals, urban/rural population, population density, and fractions of built-

up area as well as land use changes for the years 10,000 BC to 2015 AD (Klein 

Goldewijk et al., 2010, Klein Goldewijk et al., 2017). Population estimates for the 

years 1950-2015 are based on the United Nations Population Prospects (2008 

Revision). Pre-1950 population estimates are taken from a number of previous 

studies and historical population sources outlined in Klein Goldewijk et al. (2010). 

Population is distributed across the grid using weights determined by auxiliary 

datasets such as slope, soil suitability, distance to water, as well as a number of 

historical case studies (Klein Goldewijk et al., 2017). The HYDE population maps 

estimate global population at 5 arc minute resolution (~10 km at the equator). In this 

study, we use the HYDE 3.2 population estimates for the year 2015. 

C.2.6 LandScan 

 Developed by the Oak Ridge National Laboratory, LandScan has produced 

annual global population maps since 1998. In contrast to other global population 

maps, where the use of census data results in estimates of night-time population, 

LandScan estimates the ambient global population (a combination of where people 

work and live) (TReNDS, 2020). The LandScan population modelling method uses 

Digital Global (now Maxar) satellite imagery and a number of ancillary datasets 

such as roads, landcover, water bodies, and urban and environmental data to 

calculate the likelihood that a gridded cell is populated during the day. These 

likelihood coefficients are then used to weight the distribution of subnational census 

data across the gridded area (Leyk et al., 2019). LandScan maps are available 

globally at 30 arcseconds resolution (~900 m at the equator) and are open access for 

academic research and for humanitarian projects. In this study, we use Landscan 

global population maps for the year 2019. 

C.2.7 WorldPop 

 WorldPop uses a Random Forest model and a number of ancillary datasets to 

weight the distribution of GPW4 census data across a gridded area (Stevens et al., 
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2015). Ancillary datasets include land cover, roads, nighttime lights, water bodies, 

OpenStreetMap data and images from a number of satellite sources such as Landsat 

and TerrSAR-x. These datasets, and others used by WorldPop, are all summarized in 

Lloyd et al. (2019). WorldPop produces global population estimates at 3 arcseconds 

(~90 m at the equator) resolution annually for the years 2000-2020. Because GPW4 

data is used as input, these population maps also include the same demogprahic 

breakdowns as GPW4. In this study, we use the 3 arcsecond (~90 m at the equator) 

resolution WorldPop UN adjusted unconstrained population counts for the year 

2020. 
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Table C.1 Global flood hazard data access 

Dataset Availability  Access 

CaMa-UT Available on 

request from 

developer 

Maps can be obtained from developer 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/  

CIMA-UNEP Online / 

available on 

request from 

developer 

Aggregated 1 km maps available from 

https://preview.grid.unep.ch 

3 arcsecond maps available on request from 

developer  

Fathom Available on 

request from 

developer (free 

for research 

purposes) 

Maps can be requested from developer website 

https://www.fathom.global/ 

GLOFRIS Online https://www.wri.org/applications/aqueduct/floods/ 

JRC Online https://data.jrc.ec.europa.eu/collection/id-0054 

GFD Online https://global-flood-database.cloudtostreet.ai/ 
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Table C.2 Non-exhaustive list of previous studies using global flood hazard data  

Yellow highlighted studies use multiple datasets 

Dataset Study 

CaMa-UT 

Yamazaki et al. (2011), Hirabayashi et al. (2013), Trigg et al. (2016), 

Tanoue et al. (2016), Aerts et al. (2020), Zhou et al. (2020), Hirabayashi 

et al. (2021) 

CIMA-UNEP 
Rudari et al. (2015), Trigg et al. (2016), Aerts et al. (2020), Lindersson 

et al. (2021) 

Fathom 
Sampson et al. (2015), Trigg et al. (2016), Smith et al. (2019), Aerts et 

al. (2020), Rentschler and Salhab (2020) 

GLOFRIS 
Ward et al. (2013), Winsemius et al. (2016), Trigg et al. (2016), Ward et 

al. (2017), Aerts et al. (2020) 

JRC 

Dottori et al. (2016), Trigg et al. (2016), Alfieri et al. (2017), Dottori et 

al. (2018), Aerts et al. (2020), Zischg and Bermúdez (2020), Lindersson 

et al. (2021) 

GFD Tellman et al. (2021) 
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Table C.3 Global population data access 

Dataset Availability  Access 

GPW4 Online https://doi.org/10.7927/H4PN93PB 

GHS-POP Online 
https://doi.org/10.2905/42E8BE89-54FF-464E-

BE7B-BF9E64DA5218 

GRUMP Online https://doi.org/10.7927/H4VT1Q1H 

HRSL Online 
https://data.humdata.org/organization/facebook  

search ‘population density’ 

HYDE Online https://dataportaal.pbl.nl/downloads/HYDE/ 

LandScan 

Online (free for 

research 

purposes) 

https://landscan.ornl.gov/landscan-datasets 

need to register to download 

WorldPop Online https://www.worldpop.org/geodata/listing?id=69 
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Table C.4 Non-exhaustive list of previous studies using global population data 

Yellow highlighted studies use multiple datasets 

Dataset Study 

GPW4 Willner et al. (2018), Zischg and Bermúdez (2020), Gu et al. (2020) 

GHS-POP Alfieri et al. (2017), Dottori et al. (2018) Rentschler and Salhab 

(2020), Tellman et al. (2021), Bernhofen et al. (2021), Lindersson et 

al. (2021) 

GRUMP Arnell and Gosling (2016), Tanoue et al. (2016) 

HRSL Smith et al. (2019), Tellman et al. (2021), Bernhofen et al. (2021) 

Lindersson et al. (2021) 

HYDE Jongman et al. (2012), Tanoue et al. (2016) 

LandScan Ward et al. (2013), Winsemius et al. (2013), Smith et al. (2019) 

WorldPop Trigg et al. (2016), Smith et al. (2019), Eilander et al. (2020), Dryden 

et al. (2021), Bernhofen et al. (2021), Lindersson et al. (2021) 
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Figure C.1 HydroAtlas Basin Level 4 Model Agreement Index (MAI) scores for (a) 

Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of MAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.2 HydroAtlas Basin Level 5 Model Agreement Index (MAI) scores for (a) 

Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of MAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.3 HydroAtlas Basin Level 6 Model Agreement Index (MAI) scores for (a) 

Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of MAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.4 HydroAtlas Basin Level 4 Volume Agreement Index (VAI) scores for 

(a) Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of VAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.5 HydroAtlas Basin Level 5 Volume Agreement Index (VAI) scores for 

(a) Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of VAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.6 HydroAtlas Basin Level 6 Volume Agreement Index (VAI) scores for 

(a) Colombia (b) Malaysia (c) Ethiopia (d) England (e) India. (f) Histogram of 

coastal and inland basin Model Agreement (g) Scatterplot of VAI scores vs. 

catchment area upstream of the basin with calculated Spearman’s Rank 

coefficient (ρ) 
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Figure C.7 Basin level GPW4 exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.8 Basin level GHS-POP exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.9 Basin level GRUMP exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.10 Basin level HRSL exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.11 Basin level HYDE exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.12 Basin level LandScan exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.13 Basin level WorldPop exposure agreement index scores for HydroAtlas 

basin levels 4-6. 
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Figure C.14 Comparison of global population datasets in the town of Mitú, 

Colombia 

(a) Location of Mitú in Colombia. (b) Satellite image of Mitú and offical 2018 

census population total. (c) Aggregated GFM flood map in Mitú. (d) GPW4 

Mitú population distribution. (e) GHS-POP Mitú population distribution. (f) 

GRUMP Mitú population distribution. (g) HRSL Mitú population distribution. 

(h) HYDE Mitú population distribution. (i) LandScan Mitú population 

distribution. (j) WorldPop Mitú population distribution. All global population 

datasets resampled to 1 arcsecond for comparison. All dataset’s total national 

populations scaled to WorldPop 2020 total national population for comparison. 

Map data: © Google, Maxar Technologies 2021.  
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Figure C.15 Which dataset has the largest influence on exposure estimates at the 

basin level (HydroAtlas basins level 4-6)? 

Calculated by comparing the average coefficient of variation for exposure 

estimates when the choice of GFM is held constant to the average coefficient 

of variation for exposure estimates when the choice of global population 

dataset is held constant. 
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