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Abstract

Waves in solar and space plasma are one of the most natural man-
ifestations of dynamics. Waves are driven by restoring forces that
oppose changes in the equilibrium state.

The solar atmospheric plasma is a complex environment, where the
plasma changes from being controlled by pressure forces to a regime
where dynamics is driven by magnetic forces, but also where the
plasma changes from being partially ionised to fully ionised.

The present Thesis deals with the study of waves in partially ionised
plasma using a multi-fluid framework. In particular, we study the
nature and characteristics of waves propagating in partially ionised
plasmas in the strongly and weakly ionised limits.

By means of analytical and numerical investigations of small am-
plitude waves with frequencies comparable with the collisional fre-
quency between particles are analysed by solving the governing
equations. Our research focused on the limiting cases of weak and
strong ionisation.

We have shown that in the strongly ionised limit only the slow
waves associated to the charged species are affected by cut-off ef-
fects, and the dynamics of waves connected to neutrals is driven
by the collision with charges.

In the weakly ionised limit the dynamics of the plasma depends on
the strength of collisions and their relative magnitude compared to
the gyro-frequencies of charged particles. In the photosphere the
particles are not magnetised and acoustic modes undergo a very
quick damping. The cut-off wavenumbers are determined only by
collisional frequency. With the decrease of number density of par-
ticles, only electrons are magnetised, while ions are tightly coupled
to neutrals. Due to the different motion of the charged particles,
electric currents develop that could play an important role in the
process of plasma heating.



The present Thesis constitutes a presentation of my results I ob-
tained during my PhD studies at the University of Sheffield.

6



List of Publications

This Thesis is based on the following publications:

• Alharbi, A., Ballai, I., Fedun, V. and Verth, G. (2021), ‘Slow
magnetoacoustic waves in gravitationally stratified two-fluid
plasmas in strongly ionized limit’,Monthly Notices of the Royal
Astronomical Society (MNRAS), 501(2), 1940–1950.

• Alharbi, A., Ballai, I., Fedun, V. and Verth, G. (2022), ‘Waves
in weakly ionised solar plasmas’, Monthly Notices of the Royal
Astronomical Society (MNRAS), (submitted).





Contents

1 Introduction 1
1.1 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Solar Interior . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Solar Atmosphere . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Solar prominences . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Partially Ionised Plasmas . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Mathematical formalism and particle collisions 21
2.1 Multi-fluid description of partially ionised plasmas . . . . . . . . 21
2.2 Collision between particles in partially ionised plasmas . . . . . 23
2.3 Collisional Frequencies . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 The electron collisional frequencies . . . . . . . . . . . . 27
2.3.2 The ion collision frequency . . . . . . . . . . . . . . . . . 29

2.4 Governing equations for a multi-fluid plasma . . . . . . . . . . . 30
2.5 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Generalised Ohm’s law and the induction equation . . . . . . . 33
2.7 Prefect Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 From three-fluid to two-fluid description . . . . . . . . . . . . . 36
2.9 Waves in Partially Ionised Plasma . . . . . . . . . . . . . . . . . 38

2.9.1 Alfvén Waves . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9.2 Magnetoacoustic Waves . . . . . . . . . . . . . . . . . . 42

3 Slow magnetoacoustic waves in gravitationally stratified two-
fluid plasmas in strongly ionised limit 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Assumptions and mathematical background . . . . . . . . . . . 54
3.3 Evolutionary equations . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Asymptotic behaviour of guided slow waves . . . . . . . . . . . 62

3.4.1 Ion-acoustic modes . . . . . . . . . . . . . . . . . . . . . 63

i



3.4.2 Neutral-acoustic modes . . . . . . . . . . . . . . . . . . . 66
3.4.3 Oscillations driven by a sinusoidal pulse . . . . . . . . . 70
3.4.4 Oscillations driven by a monochromatic driver . . . . . . 73

3.5 Application to solar atmosphere . . . . . . . . . . . . . . . . . . 76
3.5.1 Excitation by a sinusoidal pulse . . . . . . . . . . . . . . 78
3.5.2 Excitation by monochromatic driver . . . . . . . . . . . 78

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Waves in weakly ionised solar plasmas 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Model restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Governing Equations and Assumptions . . . . . . . . . . . . . . 90
4.4 Waves in weakly ionised plasmas . . . . . . . . . . . . . . . . . 90

4.4.1 Waves in Region I . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Waves in Region II . . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusions and future research prospect 111
5.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Appendix 115
A.1 Evaluation of the integral in equation 3.51 . . . . . . . . . . . . 115
A.2 Evaluation of the integral in equation 3.62 . . . . . . . . . . . . 116
A.3 The inverse Laplace transform of the inhomogeneous part of

equation 3.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 118

ii



List of Figures

1.1 The structure of the Sun. The inner layers are the core, radiative
zone, and convective zone, while the visible outer layers are the
photosphere, chromosphere, and corona. The figure also shows
some observable solar atmospheric phenomena, such as solar
flares, prominences, sunspots and coronal loops, all studied in
great details. Credit: NASA/Goddard Space Flight Centre. . . . 4

1.2 An EUV image of the solar corona obtained by superimpos-
ing three images in different wavelengths of Extreme Ultravio-
let light corresponding to 171 Å, 193 Å and 304 Å. Dark and
bright regions denote regions of different temperatures. Credit:
Solar Dynamics Observatory/Atmospheric Imaging Assembly
(SDO/AIA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Burst of solar material leaps off the left side of the Sun in what’s
known as prominence eruption. Credit: NASA/SDO/AIA. . . . 10

1.4 The variation of number densities of different ions and neutral
atoms in the Earth’s upper atmosphere with height. Credit:
Pfaff (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 The variation of electron, ion and neutral temperatures with
height at the Earth’s magnetic equator at four different local
times. Credit: Pfaff (2012) . . . . . . . . . . . . . . . . . . . . . 14

1.6 The variation of temperature, T , the number densities of elec-
trons, n(e), and neutral H, n(H), with height on logarithmic
scale based on the tabulated values of the Avrett and Loeser
(AL C7) solar atmospheric model. This picture was taken from
Avrett and Loeser (2008). . . . . . . . . . . . . . . . . . . . . . 18

iii



2.1 Collisional cross sections of atomic He, Ne and Ar. The curves
labelled by 1 denote the collisional cross section corresponding
to elastic scattering, the label 2 denote the same quantity but
in the case of a charge exchange collisions, and label 3 denote
the sum of them. Here 1 eV= 11,604 K. This plot was taken
from Raizer (1991). . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The collisional cross-section for electrons colliding with the neu-
tral H (the curve labelled by "1" and He (the curve labelled by
"2") in terms of the energy of electrons. Credit: Vranjes and
Krstic (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The collisional frequency (on logarithmic scale) for the collision
of electrons with electrons (dotted line), with protons (dashed-
dotted line) and neutral hydrogen (thick solid line) in terms of
height in the solar atmosphere. The thin solid line represents
the variation of the electron gyro-frequency assuming a simple,
exponentially decaying magnetic field in the quiet Sun. Credit:
Vranjes and Krstic (2013) . . . . . . . . . . . . . . . . . . . . . 29

2.4 Integral cross section of ion-neutral collision in different inter-
actions labelled by different numbers. Here 1 a.u.= 2.8× 10−21

m2. Adapted from Vranjes and Krstic (2013). . . . . . . . . . . 30
2.5 The variation of analytical and numerical results of dispersion

relation 2.30 when χ = 2 in terms of the dimensionless col-
lisional frequency between neutrals and ions. The two panels
display the variation of the real (upper panel) and imaginary
parts (lower panel) of the solutions, respectively. Solid lines
correspond to the numerical results, while symbols correspond
to the analytic approximations. This figure was adapted from
Soler et al. (2013a). . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 The magnetoacoustic modes propagating along the magnetic
field, when χ = 0.5. The red asterisks and green diamonds
correspond to fast and slow modes associated to ions. Blue
squares denote the slow mode associated to neutrals that appear
only for large wavenumbers. The two panels show the real and
imaginary parts of the solutions. This figure was taken from
Zaqarashvili et al. (2011b). . . . . . . . . . . . . . . . . . . . . 45

iv



2.7 The damping rate for fast and slow modes. Red asterisks related
to the dispersion relation while blue lines related to the solutions
of Braginskii. This figure was adapted from Zaqarashvili et al.
(2011b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Real (left) and imaginary (right) parts of the frequency of the
magnetoacoustic waves in terms the averaged collision frequency
(in logarithmic scale) for parallel propagation to the magnetic
field, with βi = 0.04. Panels (a) and (b) correspond to a strong
ionisation (χ = 0.2), panels (c) and (d) are for intermediate
ionisation (χ = 2, and finally, panels (e) and (f) represent the
case of weak ionisation (χ = 20). All frequencies are expressed
in units of kci. Credit: Soler et al. (2013b). . . . . . . . . . . . 47

3.1 The variation of the ratio of number densities of neutrals and
ions with height based on the VAL III C atmospheric model
(Vernazza et al. (1981), red line) and the AL C7 atmospheric
model (Avrett and Loeser (2008), blue line). . . . . . . . . . . . 59

3.2 The temporal evolution of neutral-acoustic (solid lines) and ion-
acoustic (dashed lines) modes at z = 4 Mm. The slow sausage
modes associated with the two species is driven by a sinusoidal
pulse of lifetime P . Both slow modes oscillate with the ion cut-
off frequency, ωi. For an observer situated at the observational
height of 4 Mm, wave-like behaviour will be observable only
after the delay time ti = z/cT . The delay time is shown here as
a horizontal straight line. . . . . . . . . . . . . . . . . . . . . . 79

3.3 The temporal evolution of ion-acoustic modes at z = 4 Mm.
The blue curves denote oscillations at the driving frequency.
The red curve represents the oscillation of the wake with the
cut-off frequency, ωi. For comparison purposes the amplitude
of the wake has been multiplied by a factor of 100. . . . . . . . 80

4.1 The variation of the collisional frequency of various particles and
gyro-frequencies with height based on the VAL III atmospheric
model (Vernazza et al., 1981). The purple vertical lines are
showing the locations where the collisional frequencies of elec-
trons and ions cross the electron and ion gyro-frequencies and
these delimitate regions in the solar atmosphere with different
dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



4.2 The variation of the collisional frequency of electrons with ions
(νei, blue line) and electrons with neutrals (νen, red line) with
height based on a VAL IIIC solar atmospheric model (Vernazza
et al., 1981) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 The variation with height of the square of the collision-modified
cut-off frequencies for electron, ion, and neutral acoustic-gravity
waves based on equations. 4.25 and assuming a VAL IIIC at-
mospheric model. The values are given on logarithmic scale. . . 95

4.4 The real part of frequencies of modes (in units of the electron
gyro-frequency, ΩBe) given by equation 4.34 in terms of the
dimensionless variable kcS/ΩBe for the sound waves associated
to the three species. Here the variation of the frequency for
neutral, ion and electron sound waves are given by blue, red
and black solid lines, respectively). . . . . . . . . . . . . . . . . 97

4.5 The same as in Figure 4.4, but here we plot the variation of the
imaginary part of the frequencies, as given by equation 4.34. . . 98

4.6 Real part of the frequency (in units of the electron gyro-frequency,
ΩBe) in terms of the dimensionless frequency kcS/ΩBe, as solu-
tion of the system of equations 4.44–4.47. The three panels
correspond to a parallel propagation (left panel), waves propa-
gating at a π/4 angle with respect to the magnetic field (cen-
tral panel) and perpendicular to the field (right panel). The
coloured curves correspond to charged slow waves (red), neu-
tral slow wave (blue) and fast waves (black). . . . . . . . . . . . 102

4.7 The same as Figure 4.6, but here we plot the imaginary parts
of the frequency. The colours correspond to the type of waves
defined in Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 The same waves as in Figure 4.6, but here we display the period
of waves in terms of the frequency of sound waves, kcS. . . . . 104

4.9 The same waves as in Figure 4.7, but here we show the damping
times of waves in terms of the frequency of sound waves, kcS. . . 104

vi



4.10 The polar (Friedrich) diagram of the real (left panel) and imag-
inary part (right panel) of the dispersion relation. Here the
background magnetic field is along the x axis and the direction
of waves’ propagation is covering a whole 2π range. The colours
are representing the same modes as defined in Figure 4.6. Note
that in the right-hand side panel we plot the absolute value of
the damping rate. The dashed lines correspond to the reference
values of frequency and damping rate given in the text of the
article. These figures were obtained for kcS/ΩBe = 0.035 . . . . 107

4.11 The same as in Figure 4.10, but here the polar plots have been
obtained for the value kcS/ΩBe = 0.07, i.e. shorter wavelengths. 107

vii



List of Tables

1.1 The fundamental physical parameters of the Sun. These values
were adapted from Priest (2014). . . . . . . . . . . . . . . . . . 2

2.1 Characteristics of fast and slow waves in partially ionised plas-
mas (together with their approximate frequencies) in the highly
collisional limit in terms of the relative magnitude of character-
istic velocities. Adapted from Soler et al. (2013b). Note: E, I,
N, IMW, IAW, GMW, and GAW denote electron, ion, neutral
isotropic magnetic wave, isotropic acoustic wave, guided mag-
netic wave, and guided acoustic wave, respectively. . . . . . . . 50

viii



CHAPTER 1

Introduction

1.1 The Sun

Our Sun is a huge plasma ball held together by its gravity. It is the only
star that can be studied with high accuracy. The Sun is classified as a G2 V
star, with a surface temperature about 5,800 K, and it is situated on the main
sequence of the Hertzsprung–Russell (HR) diagram. Although it falls midway
between the biggest and smallest stars of its type, there are so many dwarf
stars that the Sun falls in the top 5 percent of stars in the neighbourhood that
immediately surrounds it. The next nearest star to it is Proxima Centauri at
4.25 light years distance.

The importance of studying the Sun resides in its capacity of maintaining
life on Earth. The Sun stays at the centre of the solar system and it is at 93
million miles away from the Earth (1 astronomical unit). It contains 99 % of
the total solar system’s mass. Given its proximity and importance, the Sun
is probably the most studied celestial body since ancient times. In addition
the Sun is the only place where plasma physics can be studied under extreme
conditions. As a result, it is not surprising that the Sun has been, and continues
to be a fertile field of research. The physical parameters of the Sun are in Table
1.1.

Since the ancient Chinese believed that the observed movements of stars
were closely related to the destiny of the country and its rulers, the evolution
of stars were recorded with great accuracy for thousands of years. From the
16th century BC to the end of the 19th century AD, almost every dynasty
appointed officials whose sole task was observing and recording the changes of
stars. Such observations and records have left a very rich astronomical legacy.
Chinese astronomers were the first who documented for almost 300 years more
than 35 solar eclipses.

The earliest records of sunspots were made in 28 BC by Chinese astronomers
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The Sun’s physical parameters

Age 4.5 ×109 yr

Mass 1.99 ×1030 kg

Radius 696,000 km

Mean density 1.4 ×103 kg m−3

Mean distance from Earth 1 AU=1.5 ×1011 m

Surface gravity 274 km s−2

Escape velocity at surface 618 km s−1

Radiation emitted 3.86×1026 W

Equatorial rotation period 26 d

Angular momentum 1.7 ×1041 kg m2 s−1

Mass loss rate 109 km s−1

Effective temperature 5,785 K

1 arc sec ≡ 1′′ 726 km

Table 1.1: The fundamental physical parameters of the Sun. These values
were adapted from Priest (2014).

during the reign of Emperor Cheng of the Western Han Dynasty. From
then until the late Ming Dynasty in the mid-17th century, Chinese history
books recorded more than 100 sunspots. Furthermore, they also took note of
other phenomena concerning the Sun, such as solar prominences and the solar
corona. The first record of a solar prominence has been found in a tortoise
shell inscription, which describes "three suddenly bursting fires eating a chunk
of the Sun" (Parenti, 2014).

Greek astronomers had remarkable contributions to the study of the Sun.
Aristarchus of Samos accurately predicted that the Earth revolved around the
Sun in 280 BC. He even calculated the distance between the Earth and the Sun
to be 8 million km. Although this estimate was wrong by a factor of around
20, it is no little achievement, particularly when we consider that Euler’s exact
estimate of 149.6 million km in 1770 took more than two millennia to arrive at.
Unfortunately, Ptolemy, who argued for an Earth-centric Universe, substituted
Aristarchus’ idea, a notion that was not disputed for 1400 years! Historical
documents show that the Sun played an important role in every civilisation,
throughout the evolution of the human kind. Accurate and scientifically valid
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measurements were available only in the last few hundred years, however our
knowledge about how the Sun works is far from being complete.

Nowadays a large number of space satellites (e.g. SoHO, TRACE, Hinode,
IRIS, Solar Parker Probe, etc.) and high resolution ground-based telescopes
(e.g. SST, DKIST, DSO, etc.) are providing unprecedentedly high-resolution
observations that have helped obtaining a deeper and more complete knowledge
of our star. After all, the Sun is a plasma laboratory in extreme conditions.
So far we managed to gain valuable information about its structure of, how it
works on a long time and spatial scales, however, we are still far away from
being able to really understand the physics that stays behind many important
phenomena, especially the ones that occur over smaller scales.

Primarily the Sun can be divided into its inner and the outer regions. It is
customary to consider that the surface of the Sun, separating the interior and
exterior, is the layer below which the Sun becomes opaque to visible light. The
solar atmosphere is the only region in the Sun that can be observed in many
wavelengths. A schematic diagram of the internal and external structure of
the Sun is shown in Figure 1.1.

In what follows we will review a few key properties of these regions of the
Sun.

1.1.1 Solar Interior

The solar interior can be separated into three sections, each with specific prop-
erties: the core, the radiative zone, and the convection zone. Information about
solar interior can be gained only indirectly either via the study of trapped sound
waves (helioseismology) that cause the surface of the Sun to oscillate with a
period centered around 5 mins, or we can "look" into the solar interior by
studying the solar neutrino problem, however, this gives information mainly
about the inner core of the Sun (Priest, 2014).

The solar core contains approximately 50% of the Sun’s mass. It has tem-
perature of about 15 million K, density 1.6× 105 kg m−3 and radius about 150
Mm. It is the central region of the Sun where thermonuclear reactions take
place and enourmous energy is releases in form of photons. As moving out-
wards of the core, the temperature and density are decreasing. The primary
thermonuclear reaction in the core is the proton-proton (or p-p) cycle in which
hydrogen is converted into helium, various nuclear particles and energy. The
p-p fusion can occur only if the kinetic energy (i.e. temperature) of the protons
is high enough to overcome their electrostatic repulsion. Comparing the mass

3



Figure 1.1: The structure of the Sun. The inner layers are the core, radiative
zone, and convective zone, while the visible outer layers are the photosphere,
chromosphere, and corona. The figure also shows some observable solar at-
mospheric phenomena, such as solar flares, prominences, sunspots and coronal
loops, all studied in great details. Credit: NASA/Goddard Space Flight Cen-
tre.

of the final helium with the masses of the four protons reveals that 0.7% of the
mass of the original protons has been lost. This mass has been converted into
energy, in the form of kinetic energy of produced particles, gamma rays, and
neutrinos released during each of the individual reactions. The total energy
yield of one whole chain is 26.73 MeV.

Energy released as gamma rays interact with electrons and protons and heat
the interior of the Sun. The kinetic energy of fusion products adds energy to
the plasma in the Sun. The fusion process keep the core of the Sun hot and
prevents it from collapsing under its own weight, as it would if the Sun were
to cool down.

Neutrinos do not interact significantly with matter and therefore do not
heat the interior. They can escape the Sun fairly quickly and their signatures
are observed in neutrino-capture devices on Earth. However, currently the
observed solar neutrino flux is half-one third of the expected neutrino flux,
that constitute the famous neutrino problem.

Above the core, one has the radiative zone located below the convection
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zone and extends to about 70 % of radius of the Sun outwards from the core. It
has temperature about 2 million K and density about 200 kg m−3. The core’s
energy is emitted in the form of high-frequency γ rays and neutrinos. Because
neutrinos are so tiny, they can easily pass through the solar radiation zone
and beyond without being impeded. In this layer the energy is transported
by photons that are continuously absorbed and emitted by electrons and ions.
It takes an average of 171,000 years for photons from the core of the Sun to
leave the radiation zone. The temperature at the top of the radiative zone is
approximately 1.5 million K (Priest, 2014).

Finally, the convection zone is the outer layer of the solar interior and it
is located above the radiative zone. In this region the plasma is too cool and
the radiation from the radiative zone absorbed by cool ions, leading to the
heating of the plasma. In the convective zone, heat and energy are carried
outward along with matter in swirling flows called convection cells. Once the
cells reach the surface of the Sun (these convective cells, or granules, can be
seen already on the surface of the Sun), they cool down, become heavier and
sink again inside the convective region, where they start a new cycle. The
average temperature of the convective zone is about 5,700 K and has a density
of 2× 10−4 kg m−3.

The magnetic field that dominates the dynamical processes is generated
inside the Sun. It is widely accepted that this field is generated by electrical
currents acting as a magnetic dynamo inside the Sun. The electrical currents
appear as a result of the flow of hot, ionized gases in the convection zone.
Since the Sun posses a differential rotation (the equator makes one rotation
every 34.3 days, while the poles every 25.05 days), that results in the magnetic
field lines getting wound up. Convection carries magnetic field lines towards
the surface and they appear either as massive magnetic strictures (sunspots,
pores, etc) or in the form of a weaker remnant magnetic field at the boundaries
of granules.

1.1.2 Solar Atmosphere

The solar atmosphere is the only solar region that can be visualised and anal-
ysed in great detail and the place where photons escape into the space di-
rectly. The solar atmosphere can be divided into three distinct layers: the
photosphere, chromosphere and corona, each with its own properties.

The photosphere is the visible layer of the Sun and can seen by naked eye.
Its name comes from the Greek word that translated means ’sphere of light’.
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The photosphere has thickness of about 500 km and its temperature decays
with radial distance to approximately 4,300 K from its value of 6,600 K at
the base of the photosphere. The granules cover the entire photosphere and
they are the consequence of hot outflowing plasma. Granules have a diameter
about 0.3 to 2 Mm and a lifetime between 5 and 10 minutes (Priest, 2014).
Hirzberger et al. (2010) found the granules have intensity between 5 to 15 %

and about 32 % in white light and near- UV, respectively. The magnetic field
in the photosphere layer has different strength and it appears in different forms.
Lagg et al. (2010) confirmed strong magnetic field located in the supergranule
boundaries and these count for about less than 5 % of the magnetic strength of
the entire photosphere. On the other hand, the weaker magnetic field found in
the interior of supergranular cells has an intensity of 100 - 300 G. (Khomenko
et al., 2003). Observations using SOHO/MDI and SDO/HMI instruments show
that magnetic field lines tend to congregate at the boundaries of convective
cells due to the outward motion of the granular plasma, from the cells’ center
to their edges (Foukal, 2004; Solanki et al., 2006). Here the field lines are
constantly perturbed by the buffeting motion of granules, which is a possible
driver for waves seen in the higher solar atmosphere. The photosphere also
hosts the sunspots, one of the most studied solar features. Sunspots appear as
dark areas and they are the location of the emergence of strong magnetic fields
(of the order of kG). Given the strong magnetic field, the kinetic pressure is
suppressed, leading to lower temperatures than their surroundings, sunspots
have a radius between 10 to 20 Mm. In general a sunspot has a central part
(umbra) where the magnetic field is vertical, and a penumbra, that shows a
striated pattern and here the magnetic field is more inclined (McIntosh, 1990;
Thomas et al., 2002). The low temperature of the photosphere implies that the
plasma is mainly neutral and ionisation of neutral H occurs due to collisions.
The consequences of weekly ionised photospheric plasma on wave propagation
will be discussed later in Chapter 4.

The dynamical behaviour of the plasma can be understood in terms of the
so called plasma-β parameter , that can be defined as the ratio of the plasma
pressure to the magnetic pressure. The magnitude of this parameter (relative
to 1) defines whether pressure or magnetic forces are dominant. In the solar
photosphere plasma-β � 1, so the plasma motion is driven mainly by pressure
forces. In contrast, in the solar corona plasma-β � 1, meaning that magnetic
forces are responsible for the dynamics, stability and the thermodynamical
evolution of the plasma.
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On top of the photosphere we have the 2,000 km thick chromosphere, which
is a highly dynamic layer, where the temperature increases to a few hundred
thousand K. This layer is probably the most enigmatic region, as it is the
place where the plasma is changing from being a pressure-force dominated to
magnetic force dominated, it is the place where the plasma changes from being
partially ionised to fully ionised and it is the place where the mechanisms pro-
ducing the coronal heating are operating. The network field can still be seen
at chromospheric temperatures but sunspots are not, although bright regions
known as plages are found near sunspot locations (Foukal, 2004). Dark fila-
ments are seen in the plage regions, outlining regions of different polarity and
it is likely that magnetic field lines arch over them to connect the different re-
gions (Golub and Pasachoff, 2002). Other chromospheric features are spicules,
mottles and fibrils. It is possible that these features are all related, but their
appearance is slightly different depending on where they are seen (Foukal,
2004). Spicules are seen on the limb and are considered jets of plasma rising
from the chromosphere following magnetic field lines. It is possible that mot-
tles are actually the same structures as spicules but viewed on the disk rather
than the limb. In contrast to spicules, which are approximately vertical, fibrils
are horizontal and lie parallel to the disk. However, it is still possible that
these two features are linked. Spicules are usually observed in quiet regions
of the Sun, where the magnetic field is vertical and extends higher into the
atmosphere before returning to the surface and connecting to a region of op-
posite polarity. Fibrils are seen in active regions where the field lines connect
to closer regions, leading to the flatter, horizontal shapes (Foukal, 2004). The
solar chromosphere is also in partially ionised state, but the ionisation varies
greatly with height. While at the base of the chromoshere the plasma is weakly
ionised, at its top, the plasma becomes strongly ionised.

The 100 km thick transition region is located between the chromosphere
and the corona and it is visible using ultraviolet observations. This layer
contains sharp densities gradients and the temperature increases dramatically
by two orders of magnitude by reaching approximately 106 K.

Finally, the multi-million degree solar corona with low density and pressures
expands out in the heliosphere. The solar corona is a very tenuous region that
is responsible for the activity of the Sun that is felt on Earth’s surface. The
temperatures in the solar corona makes the plasma fully ionised. The solar
corona can be observed in many wavelength, each of which reveals different
features and provides information about the overall structure of the coronal
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plasma. Due to the extreme high temperatures in the corona, the plasma
primarily emits in the EUV and soft X-ray portions of the spectrum. However,
there are also many emission lines in the visible part of the spectrum, which
are produced by emission from highly ionized elements (Golub and Pasachoff,
2010). An EUV images of the corona is shown in Figure 1.2.

Figure 1.2: An EUV image of the solar corona obtained by superimposing three
images in different wavelengths of Extreme Ultraviolet light corresponding to
171 Å, 193 Å and 304 Å. Dark and bright regions denote regions of differ-
ent temperatures. Credit: Solar Dynamics Observatory/Atmospheric Imaging
Assembly (SDO/AIA).

The bright regions coincide with active regions and are formed from many
closed magnetic field lines, whereas the dark regions correspond to areas where
the field lines are open (Priest, 2014). Although these field lines are usually
called open, it is important to remember that they are in fact closed, with
one end located in the solar magnetic field and the other in a magnetic region
far out in the Solar System. Since the field lines stretch out and away from
the Sun, this gives them the appearance of being open. This is in contrast to
the closed magnetic field lines that form active regions, which have both ends
rooted in the solar magnetic field. The closed magnetic field lines form large
coronal loops and join regions of different magnetic polarity.

Coronal loops are magnetic flux tubes, filled with plasma of a higher density
than that of the surrounding plasma. Their length varies depending on the
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type of loop. Loops connecting active regions are typically up to 700 Mm long
while post-flare loops are shorter, with lengths in the region of 100 Mm. An
individual loop might only have a lifetime of approximately a day, but a whole
loop system can last for several weeks (Priest, 2014).

The open field regions of the corona are called coronal holes and in general
they are located at the poles of the Sun. Here magnetic field lines extend
out from the Sun into the Solar System. Plasma leaving the Sun along these
field lines is known as the solar wind. A consequence of the plasma being
removed from the Sun is that the density and temperature in coronal holes
are lower than the background coronal values, therefore explaining their dark
appearance in images (Aschwanden, 2009). Coronal holes can also appear at
other latitudes during times when the solar cycle is at a minimum (Golub and
Pasachoff, 2010).

The solar atmosphere is permeated by magnetic field that appears more
isolated in the lower part of the atmosphere, but fills up the whole corona.
Magnetic field is responsible for the very high temperature of the solar corona,
the dynamical and thermal evolution of the plasma. Despite its importance, it
is probably the least understood and measured parameter, given the difficulty
to measure its magnitude (e.g. the effect of Zeeman splitting of spectroscopic
lines does not work in tenuous plasmas), but mainly its structure. One way
to address these issues is the indirect study via waves and oscillations, called
magneto-seismology. Like on Earth, seismology implies the combination of ob-
servations with theory to derive quantities that cannot be measured exactly.
High resolution observations show that one of the most obvious characteristics
of the solar plasma is that it is dynamic on all time and spatial scales. Ob-
servations can give information about measurable wave characteristic, such as
periods, amplitude, damping times and lengths, frequency, etc. These observa-
tions can be combined with theoretical results (dispersion relations, evolution-
ary equations, etc.) to derive fundamental information such as magnetic field
structure and magnitude, heating/cooling functions, transport coefficients, etc.
(De Moortel, 2005).

1.1.3 Solar prominences

Prominences are large, cold, bright and dense magnetic features in the solar
atmosphere. They are anchored in the photosphere and extend through the
corona. They are supported against gravity by the effect of the magnetic
field. An example of this kind of structures is shown in Figure 1.3, where the
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Figure 1.3: Burst of solar material leaps off the left side of the Sun in what’s
known as prominence eruption. Credit: NASA/SDO/AIA.

plasma can be clearly seen protruding from the limb of the Sun. Prominences
extend from the limb of the Sun and appear bright in comparison with the
space in the background. They form along the polarity inversion lines (PIL) of
the magnetic field, i.e. the lines that divide two regions of opposite magnetic
field polarity in the photosphere, but the precise mechanism of its formation
is still under active research. Their temperatures are typically one hundred
times lower than those found in the corona, of the order of 104 K, a reason
why the prominence plasma is partially ionized, being made up of hydrogen
and helium (Gilbert et al., 2007). In contrast, prominences are between one
hundred and one thousand times denser than the corona, with densities of the
order of 10−12 to 10−10 kg m3. Their heights are of the order of 104 km, their
widths vary between 4 and 3 × 104 kilometers and their lengths are of the
order of 105 km. When seen on the solar disk prominences are called filaments
where they appear to be dark features as they absorb the background coronal
radiation emitted in the EUV lines by the hydrogen and helium resonance
continua. Although prominences protrude the multi-million degree corona,
their temperature does not change thanks to the thermal shield provided by
the magnetic field.

Prominences and filaments can be classified in two categories: quiescent
and active. Quiescent prominences seem more stable and can have lifetimes of
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up to several months, with an average magnetic field of about 10 G.
In contrast, active prominences are associated with sunspot groups and

have much shorter lifetimes of the order of minutes to hours. Active promi-
nences posses stronger magnetic fields and they can erupt at the end of their
lifetime, ejecting large amount of mass into space as part of a Coronal Mass
Ejection (CME), also known as disparition brusque (DB). A more detailed de-
scription of the properties of prominences can be found in earlier studies by,
e.g. Labrosse et al. (2010), Mackay et al. (2010), Parenti (2014), etc.

The very first observation of a prominence was taken by Ludovico Mu-
ratori in 1239, who described it as burning hole. In 1733 Vassenius labelled
prominences as reddish clouds in the lunar atmosphere. The very first proper
observation of a solar prominence took place during the eclipse of 1842 by
French astronomers. The very first photographed prominence dates back to
1860, while the spectrum of prominences was determined in 1868, proving
the prominences are gas clouds (Jansenn and Norman Lockyer independently
observed bight emission lines of a previously unknown element, later named
Helium). Using a coronograph at the Pic-du-Midi Observatory, Lyot observed
prominences for the first time in the absence of an eclipse (Tandberg-Hanssen,
1974). Parallel to the sophistication of observations that provided more and
more details about the properties of prominences, the theoretical modelling
of prominences was developed. Despite major advances in the modelling of
these magnificent solar features, we are far from fully understand how they are
formed and and how they evolve in time. For a detailed review of the prop-
erties of solar prominences we refer readers to earlier studies by Aboudarham
et al. (2008), Priest (2012), Romeuf et al. (2007), Tandberg-Hanssen (1974),
Tandberg-Hanssen (2013) and Wang and Stenborg (2010).

Nowadays prominences are observed by high cadence Hα measurements
provided by space satellites and ground-based telescopes. With the help of
instruments like the SST (Swedish 1-m Solar Telescope) or DOT (Dutch Open
Telescope), one can see fine structures down to the resolution limit (0.15”
for SST or around 100 km). Homogeneous time series are with a similar
spatial resolution from the Solar Optical Telescope (SOT) onboard the Hinode
satellite. A large variety of fine structures and their dynamics is also seen on
TRACE movies, although the spatial resolution is lower, around 1”. These
images are usually taken with a 171 or 195 Å filter where the hot coronal
structures appear simultaneously with cool ones. The same wavelength range
was provided by the EIT instrument onboard SOHO, however, with a lower
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resolution. At 171 or 195 Å the HeI and HeII absorption dominates over the
HI. It was shown theoretically that this opacity is quite comparable to that of
the Hα line (Anzer and Heinzel, 2005).

Since prominences are considered to be partially ionised, they serve as an
ideal testing bed for validating physical effects in partially ionised plasmas, the
subject of the present Thesis.

1.2 Partially Ionised Plasmas

By definition a partially ionised plasma is a system at relatively low tempera-
ture where charged particles (positive and negative) and neutrals co-exist and
they interact via short and long-range interactions. This interaction between
species ensure a collective behavior necessary to form a plasma. Examples of
partially ionised plasmas in the Universe include solar and stellar atmospheres,
cold neutral and warm neutral regions in the interstellar medium, molecular
clouds, protoplanetary disks, Earth’s atmosphere, etc. These cover a large
spectrum of ionisation degree, from weakly ionsied to strongly ionised.

In partially ionised plasmas the temperature is not high enough to ensure a
full ionisation of the plasma (for a H plasma, full ionisation starts for temper-
atures in excess of a few 104 K). The key interaction that takes place in such
plasmas is the collision between ions and neutrals, as this is the interaction
that ensures an effective momentum transfer and coupling between different
species (collisions with electrons do not imply a significant exchange of mo-
mentum and energy given the very large difference between the mass of an
electron and the mass of ions or neutrals).

Molecular clouds are the densest and coldest structures in the interstel-
lar medium and they are the sites of star formation. The temperatures in
molecular clouds is in the range of 10-20 K, while the characteristic number
density of particles is 102 − 106 cm−3. At this temperature the plasma is very
weakly ionised, with an average ionisation fraction of 10−7 (Shu, 1992). How-
ever, even this very low level of ionisation is important for the evolution of
these clouds. In particular, the ion-neutral drift (or ambipolar diffusion) is
an important effect in various aspects of cloud dynamics. Ambipolar diffusion
was used to construct the so-called standard model of magnetically-regulated
star formation (Shu et al., 1987; Mouschovias, 1991). Ambipolar diffusion was
also considered as a possible mechanism responsible for a number of observed
properties in the interstellar medium and the molecular clouds of our galaxy.
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Partially ionised plasma effects have also been used to explain the forma-
tion of the cores of molecular clouds, the origin of the nearly constant width of
filamentary structures and the explanation of the so-called magnetic braking
catastrophe in protostellar accretion disks (Dapp and Basu, 2010; Li et al.,
2014; Ballester et al., 2018a). According to the radio observations, the mag-
netic field of molecular clouds is of the order of tens of micro Gauss.

The Earth’s outer atmosphere is a partially ionized region that can be
ionised by photo-ionization generated by the incoming EUV and soft X-ray
energy from the Sun, by impact ionization at high latitudes of energetic, pre-
cipitating particles or by impact ionization due to meteor ablation which cre-
ates a small population of metallic ions. In addition the distribution of ions in
the Earth’s ionosphere can also be influenced by charge exchange mechanisms
between neutrals and ions. The distribution of the number density of various
ions and neutral atoms with height in the Earth’s upper atmosphere is shown
in Figure 1.4 using the computed values by means of the NRLMSISE-2000
model (Picone et al., 2002). The concentrations per unit volume of ions and
neutrals and their variation with height can influence the ionosphere since they
determine the amount of neutral gas available for photo-ionization at different
altitudes, and also, they determine to what depth the solar EUV and X-ray
radiation might penetrate. For example, since the density of neutral particles
decreases with height means that photons can penetrate to lower heights.

Figure 1.4: The variation of number densities of different ions and neutral
atoms in the Earth’s upper atmosphere with height. Credit: Pfaff (2012)

The characteristics of ionospheric plasma are influenced by the ion-neutral
coupling, displaying an important dynamic interplay between upper atmo-
spheric motions, or winds, and plasma drifts. Thanks to the magnetic field
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Figure 1.5: The variation of electron, ion and neutral temperatures with height
at the Earth’s magnetic equator at four different local times. Credit: Pfaff
(2012)

around the Earth, charged particles are affected so that strong currents are
generated which depend on the local conductivities and collision frequencies,
varying with altitude and latitude. Furthermore, as the magnetic field perme-
ates the partially ionised plasma to form the magnetosphere at much higher
altitudes, it connects the ionosphere/upper atmosphere to the magnetospheric
plasma and solar wind and their sources of energy and momentum, including
large electric fields, field-aligned currents, and highly variable particle pre-
cipitation. The ionosphere is the ionized component of the Earth’s upper
atmosphere, covering the height range of approximately 90 to 1000 km. The
average ion density of the ionosphere is 104− 106 cm−3 and has a temperature
that varies with height in the interval 200-500 K. However, the temperature
does not only vary with height, it also varies with latitude, being different in
the day and night-side of the ionosphere.

The variation of the temperature of electrons, ions and neutral components
with height are shown in Figure 1.5 at the magnetic equator at dawn, noon,
sunset, and midnight as computed from the IRI model (here shown as 4 dif-
ferent local times (LT)). In the lower ionosphere (covering heights up to 120
km), the average values of the electron, ion, and neutral gas temperatures are
very close to each other thanks to the large collisional rate of of particles with
neutrals. At higher heights the three temperatures diverge. The electron tem-
perature is highest in the early morning. The neutrals, rotating into sunlight,
have yet to warm and the neutral atmosphere is still contracted from the colder,
nightside temperature. Hence, the electron-neutral collisions are less frequent.
During the day, the neutral atmosphere expands, and the electron-neutral col-
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lision frequency, thus, increases at the higher altitudes, reducing the electron
temperature. The electron temperature further decreases during the day as
it becomes close to the ion temperature due to electron-ion collisions. The
temperatures are largest at the higher altitudes where the number densities of
particles are low. The enhanced electron temperature near 300 km during the
day results from photo-electrons produced within the upper altitude portion
of the layer where the neutral atmosphere is less dense. At night, there are no
newly-formed photo-electrons and the electron, ion and neutral temperatures
quickly converge to similar values via collision processes (for details see Pfaff
(2012)).

The characteristic values of the density and temperature make the iono-
sphere a dense and weakly ionised environment where the frequency of collision
between particles is rather low. One interesting effect occurs up to a height
of 200 km. The collisional frequency between electrons and neutrals is lower
than the electron gyro-frequency, while the collisional frequency of ions and
neutrals is higher than the ion gyro-frequency, meaning that only electrons are
magnetised. This region is also the location of very strong currents. A similar
phenomena occurs in the solar atmosphere and this will be discussed in details
in Chapter 4.

In the solar atmosphere the ionisation varies between the limits correspond-
ing to weak ionisation (photosphere) to a strong ionisation (chromosphere)
thanks to the increase in temperature (see Figure 1.6). That means that over
a distance of about 2.5 Mm (the thickness of the partially ionised layer in the
solar atmosphere) the dominant effect changes with height.

Partial ionisation effects (such as the Hall effect and ambipolar diffusion)
have been shown to play important role in the process of chromospheric heating
(Khomenko et al., 2014a). Given that the collisional frequency of various
species are so different (as discussed in Chapter 2), a single fluid description of a
plasma is not possible, meaning that a multi-fluid framework is more suitable to
describe realistic effects in solar atmospheric plasmas. Recent, high-resolution
observations made by HINODE, have revealed that limb prominences show
a very active dynamics (Berger et al., 2008) that have been interpreted and
modeled in terms of different instabilities (Rayleigh-Taylor, Kelvin-Helmholtz,
etc.) which develop in the partially ionised prominence plasma (Soler et al.,
2012; Díaz et al., 2012; Khomenko et al., 2014b; Ballai et al., 2015). These
studies have shown that partial ionisation can have dramatic changes in the
evolution of instabilities, including their growth rate.
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Partial ionisation effects have been considered in conjunction with magnetic
reconnection taking place in the lower part of the solar atmosphere. To ex-
plain the observations by Katsukawa et al. (2007), who reported small jet-like
transient features in sunspot penumbra (with lifetimes of less than 2 minutes,
lengths of 1000-4000 km, and widths of about 400 km), by means of Hinode
Ca II H observations, Sakai and Smith (2008) performed 2.5D numerical simu-
lation of two horizontal penumbral filaments using a two fluid partially ionised
plasma consisting of a neutral H atom fluid interacting with a charged fluid
(protons+electrons). They showed that inclined bidirectional jet-like flows,
driven by the magnetic reconnection, propagate along the vertical magnetic
flux tube, which exists between the filaments. Their simulation also showed
that protons are heated to temperatures that are 25 times of their original
temperature. In contrast, the neutral fluid was very weakly heated. These
authors proposed that the plasma jets may be a viable explanations for the
microjects observed by Katsukawa et al. (2007). Furthermore, it was shown
that the reconnection rate of the interacting penumbral filaments is strongly
enhanced by an initial velocity of filaments, more precisely the reconnection
rate can be increased by a factor of 50 for a photospheric neutral H flow of the
order of 10 % of the local sound speed.

Leake et al. (2012) performed multi-fluid simulations of magnetic reconnec-
tion in a chromospheric weakly ionized plasma, including ion-neutral scattering
collisions, ionization, recombination, optically thin radiative loss, collisional
heating, and thermal conduction. Their results show that in the resulting
tearing mode reconnection, the neutral and ion fluids become decoupled, cre-
ating an excess of ions in the reconnection region and therefore an ioniza-
tion imbalance. Ion recombination in the reconnection region, combined with
Alfvénic outflows can remove ions from the reconnection site, leading to a
fast reconnection rate. Murphy and Lukin (2015) performed 2.5D simulations
of asymmetric reconnection in weakly ionized partially ionised plasma, where
the plasma and field parameters were different in each upstream region. In
their simulations the authors also included non-equilibrium effects, the result
of which ions can recombine into neutral H and vice-versa. During simula-
tions the ion and neutral flows remained decoupled, but the decoupling was
asymmetric. Their results showed a net neutral flow through the current sheet
directed from the region of weak magnetic field into the strong field region,
which resulted from a large scale neutral pressure gradient Similarly, thanks to
the Lorentz force acting on the ions from the strong field region led to the ions
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pulling the X-point into the weak field region. Murphy and Lukin (2015) also
studied the effect of Hall currents in the efficiency of reconnection and they
found that the asymmetry led to the development of a quadrupole magnetic
field. These results show the importance of considering partially ionised effects
in the process of reconnecting field lines that are able to significantly modify
and influence the efficiency of magnetic energy release during reconnection.

Partial ionisation effects have been shown to drastically change the prop-
erties of waves, however this will be discussed later, in Chapter 2.

The modelling framework of a partially ionised plasma depends on the
frequency domain in which we are interested in. For frequencies that are
larger than the ion-neutral collisional frequency, the plasma dynamics will
be described within the two-fluid approximation, where separate equations
will describe the evolution of charged particles and neutrals oppositely, for
frequencies that are below the ion-neutral collisional frequency the plasma
dynamics can be described within using a single-fluid approach (Krishan, 2016;
Ballester et al., 2018a) .

In the solar atmosphere the variation of the ionisation degree is due to the
increase in temperature. The variation of the temperature and other physi-
cal parameters with height can be obtained from spectroscopic measurements
that can lead to atmospheric models, such as the one presented in Figure 1.6
(Avrett and Loeser, 2008), where we plot the variation of the temperature (T ),
turbulent velocity (V ), total H density (nH), neutral H density (nH1) and elec-
tron density (ne). It is clear that in the photosphere (the first 500 or so km),
the neutral number density is much larger than the ion number density (by a
factor of 4), while in the chromosphere, the ion number density is larger. At
the transition region height the number densities of particles have a sudden
drop thanks to the very large temperature increase in this region.

The other solar atmospheric model that we will use in our research is
the model developed by Vernazza et al. (1981) (labelled as the VAL model),
who used extreme ultraviolet (EUV) observations to determine the height-
dependence of physical parameters, similar to the AL model shown in Figure
1.6. Although this model does not give accurate estimations for the number
of particles at the top of the chromosphere, nowadays it is one of the most
popular models. The temperature and number density of particles provided
by this model will be used later in Chapter 3 and 4 to estimate the variation of
collisional frequencies with height that allows us to differentiate the dominant
dynamics in different regions of the solar atmosphere.
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Figure 1.6: The variation of temperature, T , the number densities of electrons,
n(e), and neutral H, n(H), with height on logarithmic scale based on the
tabulated values of the Avrett and Loeser (AL C7) solar atmospheric model.
This picture was taken from Avrett and Loeser (2008).

Another very important parameter for the current Thesis is the collisional
frequency of particles and the variation of this frequency with height. Given
its importance, we are going to discuss this quantity later in Chapter 2.

Finally, we should mention that partially ionised plasmas appear not only
in astrophysical applications. Partially ionised plasmas are very important
for confined thermonuclear fusion plasma devices. Partial ionisation effects in
this field are considered in two instances: (a) the transformation of an initially
dilute neutral gas at room temperature into a fully ionised medium via external
heating – the plasma startup, and (b) the influence of neutral molecules in the
relatively cool edge region of the fusion plasma on its transport dynamics
and stability properties which determine the quality of the confinement and
ultimately the prospects of a future fusion reactor.

Very recently partially ionised plasmas received great attention in medicine.
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The low temperature of electrons can generate many chemical reactions, such
as modifying DNA, proteins, and so on. Research in medical plasmas helped
to develop therapeutic strategies for many diseases, such as chronic wounds
and MRSA. The plasma was used to treat antibiotic resistance in bacteria by
killing the bacteria without harming humans (for more details see, e.g. Morfill
et al., 2009; Von Woedtke et al., 2013). Applications of plasmas made up from
reactive species and charged particles recently received special attention in
biology, where scientists try to explore the impact of cold plasmas on biological
cells on macroscopic and microscopic scales. This research could lead to the
development of cold plasma-based medical therapies (Laroussi, 2020).

1.3 Thesis outline

The present Thesis constitute a summary of the research I carried in the past
years as a PhD student at the University of Sheffield. The Thesis is divided
into five Chapters and the results of my scientific research are presented in
Chapters 3 and 4. The aim of my research is the investigation of the nature
and property of waves propagating in solar atmospheric plasmas in the limits
strongly ionised plasma (ρ0n/ρ0i � 1) and weakly ionised (ρ0n/ρ0i � 1) plas-
mas.

This Thesis is structured according to the following Chapters:

• Chapter 1: Introduction into partially ionised plasmas of the solar at-
mosphere: this chapter includes the background of my research and a
review of the current literature on partially ionised astrophysical plas-
mas.

• Chapter 2: Mathematical formalism: here I plan to present the equa-
tions that stay at the core of the study of partially ionised plasmas,
paying special attention to the governing equations in the multi-fluid
approximation. Here I will also discuss the variation of collisional fre-
quency between various species. Since my research aims to study waves
in partially ionised plasmas, in this chapter I will review the current
state-of-the-art, reviewing the properties of waves and compare them to
the properties of waves in fully ionised plasmas.

• Chapter 3: Slow magnetoacoustic waves in gravitationally stratified
two-fluid plasmas in strongly ionised limit: in this chapter, I derive the
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system of coupled equations describing the propagation of ion-acoustic
and neutral-acoustic waves in space and time in a gravitationally strat-
ified plasma, where the composition of the plasma is dominated by ions
(relevant to the upper part of the solar chromosphere). The governing
equations are solved as an initial value problem (IVP) using the inverse
Laplace transform technique. Solutions are sought in the asymptotic
limit, i.e. for large values of time. We investigate the spatial and tem-
poral evolution of waves subject to various types of drivers. We will
discuss the nature of cut-off frequencies and how these are modified by
the collisions between particles.

• Chapter 4: Waves in partially ionised plasma in the weakly ionised
limit: In this chapter, we study the nature and propagation of waves in
a realistic solar atmosphere (using the standard solar atmospheric model
developed by Vernazza et al. (1981)). In the weakly ionised limit (rele-
vant to the lower part of the solar atmosphere) the proper description of
dynamics requires a multi-fluid approximation. Given the range of fre-
quencies involved in the problem, we could divide the atmosphere into
two regions. In the first region all frequencies are above the electron
gyro-frequency, meaning that waves can be described in a non-magnetic
environment. The second region involves a lower range of frequencies
where the collisional frequency of charged particles becomes comparable
with the electron gyro-frequency, meaning electrons become magnetised.
Due to the relative motion of charged particles, strong currents will de-
velop that could contribute to the chromospheric heating problem. We
will apply a normal mode analysis for each region and obtain the disper-
sion relation of waves. The dispersion relations are solved numerically
and their propagation characteristics will be investigated in terms of their
propagation direction relative to the background magnetic field.

• Chapter 5: Conclusions and future research prospect: this chapter will
contain the discussion of my results and suggestions on how my research
can be expanded in the future.
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CHAPTER 2

Mathematical formalism and particle collisions

Partially ionised plasmas are made up from electron, positive ions, and neutrals
that interact through collisions. Since collisions play a key role in describing
the dynamics at frequency ranges comparable to the collisional frequencies, the
mathematical formalism of describing dynamics in partially ionised plasmas
differs from the usual magnetohydrodynamics (MHD) approximation, valid for
fully ionised plasmas. In this chapter I will introduce the multi-fluid equations
that will be used in subsequent studies, I will discuss the problem of collisions
between various particles and their collisional frequencies and will review the
current understanding of waves in partially ionised solar plasmas.

2.1 Multi-fluid description of partially ionised

plasmas

A description of the thermodynamic state and dynamics of plasma is based
on a number of conservation laws all rooted in the statistical description of a
plasma as an ensemble of particles under the influence of internal and external
forces. As such, the most fundamental model developed is the kinetic descrip-
tion, where various parameters are understood as distributions. The dynamics
of various species is obtained by solving the Boltzmann transport equation.
Macroscopic quantities such as number densities, velocities, pressures can be
obtained by integrating the distribution function of particles equation over
velocity space. Although it is probably the most accurate description of the
plasma, the kinetic theory involves complex mathematics. Many of the re-
sults prescribed by the kinetic theory can be obtained using, e.g. the MHD
theory, which is based on macroscopic functions rather than distribution func-
tions. In the MHD theory the plasma is considered as a fluid (a continuous
medium), meaning that characteristic length scales are much larger than the
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cyclotron radius of particles. The plasma is considered to be in thermodynam-
ical equilibrium, i.e. characteristic times are much larger than the collisional
time between the particles and length scales are longer than the mean free
path. In general the MHD approximation is a low-frequency approximation,
which means that the frequency at which it operates is much smaller than the
gyro-frequencies of the electrons and ions, as well as the corresponding plasma
frequencies defined as (assuming a hydrogen plasma)

ΩBe,i =
|e|B
me,i

, ωpe,i =

(
ne,ie

2

ε0me,i

)1/2

, (2.1)

where e is the electron electric charge, B is the magnetic field, me,i is the
electron or ion mass, ne,i is the electron or ion number density and ε0 is the
electric permitivity of free space. The gyro-frequency is the frequency at which
the charged particles gyrate around magnetic field lines and the plasma fre-
quencies are the rates at which the charged particles react to changes in the
electrostatic potential. It is clear that for a quasi-neutral H plasma

ΩBe

ΩBi

=
mi

me

= µ ≈ 1836,
ωpe
ωpi

= µ1/2. (2.2)

The kinetic and fluid descriptions of a plasma are related, since the equa-
tions that describe the evolution of the fluid can be derived from the kinetic
theory by taking velocity moments of the Boltzmann equation (Braginskii,
1965; Khomenko et al., 2014a). The existence of low frequency waves driven
by magnetic tension predicted by the theoretical study by Alfvén (1949) can
be considered to be the advent of ideal MHD, which later was evidenced later
in laboratory plasma by, e.g. Lundquist (1949) and Jephcott (1959). Since
then Alfvén waves were shown to propagate in various astrophysical plasmas,
such as the Earth’s atmosphere (Chmyrev et al., 1988), in planetary iono-
spheres (Berthold et al., 1960; Gurnett and Goertz, 1981), the interstellar
medium (Arons and Max, 1975; Balsara, 1996), and in the solar atmosphere
(Murawski and Musielak, 2010; Mathioudakis et al., 2013; Zaqarashvili et al.,
2013; Ballai, 2020).

However, the mathematical formalism of ideal MHD is not accurate for
higher frequency waves, which in the solar atmosphere could be driven by
small-scale magnetic activity in the chromospheric network and reconnection of
field lines (Axford and McKenzie, 1992; Tu and Marsch, 1997) or by cascading
from low frequencies in the corona (Isenberg and Hollweg, 1983; Tu, 1987).
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Ideal MHD assumes a simplified approach by treating the plasma as a fully
ionized fluid, ignoring the effects related to neutral particles, neglecting the
Hall term in the induction equation and considering all ionized species together
as a single fluid. Such approximations are reasonable when the frequencies
of the oscillations are much lower than the collision frequencies between the
different species in the plasma. A plasma can be considered as a single fluid
when the collisional coupling between various species is very strong. However,
as we will show later, this approximation is not always accurate for solar
plasmas.

When one deals with frequencies that are comparable with the collisional
frequency of various constituent species (or, equivalently, when the relaxation
time of collisions between species is comparable to the period of the waves),
each species may react to perturbations in different time-scales and the colli-
sional coupling is weaker, meaning that a multi-fluid description of the plasma
is needed. The multi-fluid approach consists in a set of equations for each
species of the plasma, with additional terms that describe the interactions
between them. Traditionally, a multi-fluid model may be applicable up to fre-
quencies of the order of the cyclotron frequencies. For an even higher frequency
domain (of the order of the electron or ion plasma frequencies), a kinetic ap-
proach is needed. The current Thesis will discuss the dynamical behaviour of
the plasma in the multi-fluid approach, characteristic to various regions in the
solar atmosphere.

The equations that compose such model are detailed in this Chapter. How-
ever, before embarking in presenting these equations, it is necessary to discuss
one of the key ingredients of the multi-fluid approach: the collisions between
particles, as a mean of coupling mechanism and energy and momentum ex-
change between species.

2.2 Collision between particles in partially ionised

plasmas

In partially ionised plasmas there are six basic types of particles that can
interact: photons, electrons, ground-level atoms (or molecules), excited atoms
(or molecules), positive ions and negative ions. Photons are characterised by
their energy, εν = hν = hc/λ, where ν is photon frequency, c is the speed of
light, λ is the wavelength of a photon and h is Planck’s constant. Photons
are generated during recombination processes when an an energetic electron
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is captured by a positive ion and the energy excess between the energy of the
electron and the energy necessary to bond the electron is emitted as a photon.
A photon can also be generated when an electron of an atom in excited state
to a lower orbit. During the fall from high energy to low energy, the electron
emits a photon with very specific characteristics. For example, the photon
born during a decay of an electron from the n = 3 to the n = 2 energy level
of a H atom emits a photon of wavelength of 656.28 nm in air that constitutes
the famous Hα emission of the Balmer series, widely used in solar physics
observations. While the energy of a bound electron is quantified, the energy of
a free electron energy is given by its kinetic energy, εe = mew

2/2, where w is
the translation speed (often used on conjunction with the thermal speed). Free
electrons are important for the process of ionisation and recombination, but
also for the thermalisation of the plasma. In our analysis we will not deal with
photons and excited atoms/molecules, meaning that we will neglect all photo-
ionisation processes and all atoms will be considered to be in the ground state.
Since we consider a H plasma, the positive ions will be just simply protons.

Collisions in partial ionised plasmas can be categorised whether these pre-
serve the energy and momentum of colliding particles (elastic collisions) or
not (inelastic collisions). During inelastic collisions the number density of the
plasma’s components is not conserved, leading to an ionisation non-equilibrium
(see, e.g. Mitchner and Kruger Jr, 1973; Ballai, 2019). However, the consid-
eration of inelastic collisions is beyond the scope of the present Thesis, and,
therefore, will not be discussed.

Collisions between particles allow the ionised gas to be treated as a fluid.
There are many types of collisions taking place in plasma, the most important
for our purposes being the collisions between particles leading to an effec-
tive momentum transfer. Secondly, neutral atoms can lose or gain electrons
through collisions (also called collisional ionisation) leading to ionisation, and
its converse process called recombination. We should mention here that the
ionisation process can occur only when the energy of the incoming particle
is larger than the ionisation energy of electrons (for a H atom the ionisation
energy is approximately 13.6 eV for an electron on the lowest orbit, and de-
creasing according to an ∼ n−2 law for higher orbit, where here n denotes the
atomic energy level). Finally, collision between an ion and a neutral particle
in which an electron is transferred, making the ion a neutral particle and the
neutral particle an ion leads to the process of charge exchange that can be
described by reactions of the type A + A+ → A+ + A. Despite the collision
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transfer, the momentum transfer (change of the speed of both particles) is
usually small. Raizer (1991) showed that the charge exchange process is very
fast and there is no energy exchange meaning that the particles have the same
energy. In addition, the cross section and collision frequency related to charge
exchange are larger than elastic scattering cross section and elastic collision
frequency. (see Figure 2.1 for He, Ne and Ar).

Collisions between particles will take place if these interact through long
and short range collisions, meaning that the collision of charged particles would
involve a different model than the collision between charged particles and neu-
trals. A vigorous description of collisions between particles would require a
cumbersome statistical physics description involving the Fokker-Planck for-
malism and the collision operators, however this is beyond the scope of present
study. Instead, we refer to the works by Braginskii (1965) and Mitchner and
Kruger Jr (1973) for a detailed presentation of this topic. Here we will restrict
ourselves to just briefly describing the physical context, giving the expressions
of the collisional frequencies between particles.

Figure 2.1: Collisional cross sections of atomic He, Ne and Ar. The curves
labelled by 1 denote the collisional cross section corresponding to elastic scat-
tering, the label 2 denote the same quantity but in the case of a charge exchange
collisions, and label 3 denote the sum of them. Here 1 eV= 11,604 K. This
plot was taken from Raizer (1991).
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2.3 Collisional Frequencies

In a partially ionised plasma the collisions can be categorised into mutual col-
lisions (collisions of particles of the same type) and inter-particle collisions
(collisions of a particle with particles of a different species). Mutual colli-
sions (e-e, i-i, n-n) do not imply transfer of energy and momentum between
species, therefore these are important only for the internal energy of a partic-
ular species. In contrast, inter-particle collisions are essential for the transfer
of energy and momentum and to the coupling of different fluids. In what fol-
lows, and throughout the present thesis, we will focus only on the later type
of collisions.

The collision between charged particles (electron and ions) is controlled by
electrostatic (Coulomb) forces and involve long-range collisions. On the other
hand, the collision between neutrals and charged particles is a short-range
collision that is described within the traditional dynamics approach (Krishan,
2016). Collisional frequency (or its inverse, the collisional time) is a physical
quantity that can quantify the importance of particular type of collision. The
collision frequency is the average number of collisions undergone by each par-
ticle per unit time, and so the average collision frequency in a stationary state
depends on the velocity distribution functions of the colliding particles. In in-
homogeneous plasmas, the collisions of particles affect the transport processes.

Considering species having the same temperature, the binary collisional
frequencies between species α and α′ can be given as (Zhdanov, 1962)

ναα′ =
4

3
nα′

(
8kBT

πmαα′

)1/2

σαα′ , (2.3)

where nα′ is the number density of species α′, σαα′ is the collisional cross-
section of the two species, kB is the Boltzmann constant, T is temperature
and mαα′ is the reduced mass of colliding particles, defined as

mαα′ =
mαmα′

mα +mα′
.

Given that mn ≈ mi � me, it is clear that

memi

me +mi

=
memn

me +mn

≈ me,
mimn

mi +mn

≈ mi

2
.

Since our research interest is restricted to elastic collisions where the momen-
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tum is conserved, we will consider that

mαnαναα′ = mα′nα′να′α.

2.3.1 The electron collisional frequencies

Given their very low mass (compared to the mass of ions and neutrals), elec-
trons cannot transfer much of their thermal energy as heat to the heavier
plasma components, therefore the role of electrons in collisions is to ensure
that the thermal equilibrium for the ensemble of particles is reached quickly.
However, the collisions of electrons with the other particles has other, impor-
tant, consequences for the electrical and thermal conductivity of the plasma.
Coulomb collisions result in very poor energy transfer between electrons and
ions. The rate of energy transfer is roughly me/mi slower than the e-i colli-
sion frequency. Thanks to the huge difference between masses of electrons and
ions, in case of stationary ions, the electron path is deviated as a result of the
Coulomb potential of ions.

For the collision between charged particles, an electron will be affected by
a neighbouring ion if the Coulomb potential is of the order (or more than) the
electron thermal energy 3kBT/2. This defines a Coulomb interaction distance,
rC , e.g.

e2

4πε0rC
≈ 3

2
kBT,

With the help of this distance (often called the distance of the closest approach)
we can define the collisional cross-section of collision between electrons and ions
as

σei = πr2
C ln Λ ≈ π

(
e2

6πε0

)2
1

k2
BT

2
ln Λ,

where
ln Λ = 23.4− 1.16 log10 ne + 3.45 log10 T,

is the Coulomb logarithm, with ne measured in cm−3 and T in K. The Coulomb
logarithm is needed in the expression of the collisional cross section to account
for the truncation related to small angle scattering, inherent in Coulomb-type
collisions. Under solar atmospheric conditions the Coulomb logarithm takes
values between 10 and 25.

With the help of this cross section, the collisional frequency between elec-
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trons and ions becomes (Spitzer, 1962)

νei =
4

3
niσei

(
8kBT

πme

)1/2

, (2.4)

where, me is the electron mass.
The electron-ion collisional cross-section is inversely proportional to the

electron thermal speed, meaning that fast electrons contribute more to the
relative motion rather than to the momentum transfer, since their collision-
ality is relatively low. Thus, it is natural that a fully ionised plasma at high
temperature (e.g. solar corona) is nearly collisionless.

The collision between electrons and the neutral species is a head-on type
of collision and the collisional frequency for this interaction can be given as

νen =
4

3
nnσen

(
8kBT

πme

)1/2

, (2.5)

where nn is number density of neutrals and σen the collisional cross section
between electrons and neutrals. In a recent study, Vranjes and Krstic (2013)
calculated the electron-neutral cross section and the collision frequency of an
electron colliding with other species in terms of the electron energy (tempera-
ture) and this variation is shown in Figure 2.2.

Figure 2.2: The collisional cross-section for electrons colliding with the neutral
H (the curve labelled by "1" and He (the curve labelled by "2") in terms of
the energy of electrons. Credit: Vranjes and Krstic (2013)

It is clear that for the energy relevant to the solar photosphere/cromosphere
the collisional cross section between electrons and the neutral hydrogen has a
dramatic change, however, in our study we consider the representative value
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of σen = 10−19 m2.

Figure 2.3: The collisional frequency (on logarithmic scale) for the collision of
electrons with electrons (dotted line), with protons (dashed-dotted line) and
neutral hydrogen (thick solid line) in terms of height in the solar atmosphere.
The thin solid line represents the variation of the electron gyro-frequency
assuming a simple, exponentially decaying magnetic field in the quiet Sun.
Credit: Vranjes and Krstic (2013)

With the help of the collisional cross-section Vranjes and Krstic (2013)
calculated the collisional frequency of electrons with other species and the
variation of this quantity with height in the solar atmosphere is given by Figure
2.3.

Here we can see that at the base of the solar atmosphere the collisional
frequency of ions with protons is above the electron gyro-frequency and it has
a minimum around the base of the chromsophere.

2.3.2 The ion collision frequency

The collisions between ions and neutral hydrogen takes place between two
massive particles (compared to electrons). The study by Stancil et al. (1998)
considered the problem of collisions between these particles taking into account
the quantum mechanical indistinguishability of the projectile and target. The
variation of the cross-section of ion-neutral collisions for different types of
collisions with the ion energy is shown in Figure 2.4. For our study we will
concentrate only on the curve labelled by "2", as this corresponds to the type
of interaction we are interested in. The oscillatory pattern in the cross-section
is a consequence of quantum effects, which are present only at lowest collision
energies (i.e. the photosphere and chromosphere).
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Figure 2.4: Integral cross section of ion-neutral collision in different interactions
labelled by different numbers. Here 1 a.u.= 2.8 × 10−21 m2. Adapted from
Vranjes and Krstic (2013).

Following the results by Zhdanov (1962), the ion-neutral collisional fre-
quency can be written as

νin =
4

3
nnσin

(
16kBT

πmi

)1/2

, (2.6)

where σin is the ion-neutral collisional cross-section. Based on the results by
Vranjes and Krstic (2013), for the collisional cross-section between ions and
neutrals we adopt the characteristic value of 10−18 m2 in the solar photosphere
and 5× 10−19 m2 in the solar chromosphere.

2.4 Governing equations for a multi-fluid plasma

The investigation of the dynamics in a multi-fluid plasma requires the com-
bination of the hydrodynamic equations that describe the evolution of each
species in the plasma with Maxwell’s equations, which prescribe the evolution
of electromagnetic fields, and thermodynamic equation of state of each species.
We assume that each species is in thermodynamic equilibrium, meaning that
the distribution of particles for each species α obeys a Maxwellian distribution

fα = nα

(
mα

2πkBTα

)3/2

exp

(
− mαṽα

2kBTα

)
, (2.7)
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where nα, mα, and Tα are the number density, mass and temperature of the
species α. The quantity ṽα is the random part of the velocity, defined as
ṽα = vα − uα, where uα is the average velocity. Given the much lower mass of
electrons, the distribution function of ions and neutrals is much narrower than
the distribution function of electrons.

The set of governing equations are obtained by taking velocity moments
of the Boltzmann equation, and integrating over velocity space. Given the
complexity of calculations and because these are not within the scope of the
present Thesis, the details of these derivations are not given, instead we refer
the interested reader to the study by Khomenko et al. (2014a).

The equation for the mass conservation (also known as mass continuity
equation) for each species, can be given as

Dρα
Dt

+ ρα∇ · vα = 0, (2.8)

where D/Dt = ∂/∂t+ v · ∇ is the convective derivative and ρα = nαmα is the
mass density of the species α. This equation also stipulates that in equilibrium
mass cannot be created or destroyed. In an ionisation non-equilibrium plasma
the zero on the right-hand side of the above equation is replaced by the rates
of ionisation and recombination that takes place during the investigated time-
scale (Maneva et al., 2017; Ballai, 2019).

The equilibrium of forces acting on a unit volume plasma element in ion-
isation equilibrium is described by the momentum equations written for each
species in the form

ρα
Dvα
Dt

= −∇pα + ραg + qαnα(E + vα ×B) +
∑
α 6=α′

Pαα′ , (2.9)

where pα is the kinetic pressure of species α (assumed isotropic), g is the con-
stant gravitational acceleration, qα is the elementary charge (−e for electrons
and e for ions), E and B are the electric and magnetic fields, respectively.

The collisional term in the above equation (Pαα′) describing the momentum
exchange between the species α and α′ will play a key role in our research. For
binary collisions between the species α and α′ the general form can be given
as (Zhdanov, 1962)

Pαα′ = −nαmαα′ναα′(vα − vα′), (2.10)

where nα is the number density of species α, ναα′ is the collisional frequency
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between the two species discussed earlier in Section 2.3.
The last relation that can be derived from the Boltzmann equation is the

energy conservation equation that can be written as

D

Dt

(
pα
ργα

)
= 0, (2.11)

where γ is the ratio of specific heats, or the adiabatic index (taken to be 5/3
for monoatomic H). The above equation implies that there are no additional
energy sources and/or sinks in the system. Strictly speaking, all transport
mechanisms considered in our Thesis results in some sort of energy loss, how-
ever these terms will appear as squares of perturbed quantities, which in the
linear approximation employed by us, will be considered negligibly small. For
a detailed derivation of the terms that could appear in the right-hand side of
the above equation, (see, e.g. Ballester et al., 2018a; Braileanu et al., 2019).

2.5 Maxwell’s Equations

Maxwell’s equations is a set of four electrodynamics equations that describe
the characteristics and development of electric and magnetic fields. These
relationships may be represented in a variety of theoretically comparable ways,
but the differential formulation, which is provided by the following equations,
is the most helpful for the purposes of our Thesis:

∇×B = µ0J +
1

c2

∂E
∂t
, (2.12)

∇ ·B = 0, (2.13)

∂B
∂t

= −∇× E, (2.14)

∇ · E =
ρ∗

ε0
, (2.15)

where J is the current density, ρ∗ =
∑

α qαnα is the charge density, µ0 and ε0
are the magnetic permeability and electric the permittivity of free space, and
c = 1/

√
µ0ε0 is the speed of light.

Equation 2.12 is known as Ampére’s law, and it stipulates that the mag-
netic field can be produced by an electric current and time changing electric
field. Since the speed of light is much larger than plasma velocity we will
deal with, the second term in right hand side of equation 2.12 (called the dis-
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placement current) is neglected. One important consequence of neglecting the
displacement current is that the model employed by us will not consider the
presence of electromagnetic waves.

Equation 2.13 is the solenoidal equation and imposes the impossibility to
have magnetic monopoles, and that the total magnetic flux through a closed
surface is zero. This equations also prescribes the topology of the magnetic
field so that the magnetic field lines are closed.

Equation 2.14 is the Faraday’s law and it states that the time varying
magnetic field can create an electric field. Finally, equation 2.15 is the Gauss’s
Law and specifies that an electric field may be induced by charge density and
the electric flux through a surface is proportional to the total charge enclosed
by the surface. Contrary to the magnetic field, the electric field lines are
directed in a radial direction and they are open.

2.6 Generalised Ohm’s law and the induction

equation

In ideal MHD, the electric field becomes a secondary variable that is obtained
from Ohm’s law for a perfectly conducting fluid. According to this law the
electric field in a frame moving with the fluid vanishes, meaning that if E′ is
the electric field in a co-moving reference system, then

E′ = E + v ×B = 0 −→ E = −v ×B.

Ohm’s law states that the electric field is proportional to electric current,
also there is an additional electric field if the plasma moving with velocity v
in the presence of magnetic field. The generalised Ohm’s law can be calcu-
lated using the momentum equation (2.9) written for electrons. Neglecting
gravitational effects, this equation can be written as

ρe
∂ve
∂t

+∇ · (ρeveve) +∇pe = −ene(E + ve ×B) +
∑
s 6=e

Pes. (2.16)

Since the mass of electrons is very small, the variations of momentum of elec-
trons are considered to be negligible, therefore, the first two terms of the above
equation can be neglected. As a consequence, the electric field can be expressed
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as
E = −ve ×B− ∇pe

ene
+

1

ene

∑
s6=e

Pes. (2.17)

The electron velocity can be eliminated from this equation using the expression
of current defined as J = ene(vi − ve), so

ve = vi −
J

ene
.

Let us now write the collisional term as Pes = αes(vs−ve), where the quantity
αes is the friction coefficients between electrons and the other species, s. As a
result, the electric field becomes

E = −vi ×B +
J×B

ene
− ∇pe
ene

+ ηj +
1

ene

∑
s 6=e

αes(vs − vi). (2.18)

The quantity η is the resistivity coefficient (or magnetic diffusivity) and it is
defined as

η =
1

(ene)2

∑
s 6=e

αes,

and describes the Ohmic diffusion due to the collision of electrons with ions
and neutrals. Finally, combining the above equation with the Faraday’s and
Ampére’s law, we arrive at the induction equation

∂B

∂t
= ∇×

[
vi ×B− (∇×B)×B

eneµ0

− η

µ0

∇×B− 1

ene

∑
s 6=e

αes(vs − vi)

]
+

+∇×
(
∇pe
ene

)
. (2.19)

The first term in the right-hand side of the above equation is the convec-
tive term. If only this term is taken into account, the resulting expression
corresponds to the induction equation of a perfectly conducting fluid or ideal
induction equation where the magnetic field lines move with the fluid, i.e. they
are said to be “frozen” in the plasma. As a result, only motion transverse to
the magnetic field lines can modify the existing magnetic field.

All subsequent terms in equation 2.19 describe a departure from the ideal,
frozen-in situation. The second term on the right-hand side is the well-known
Hall term. When this term is important, ions are not completely frozen to
the magnetic field and may have a different dynamics than electrons. When
a perturbation is applied to the plasma, the smaller inertia of electrons can
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cause these particles to follow more easily the perturbations of the magnetic
field, compared to ions. In fully ionized plasmas, the Hall term describes a
differentiation in the properties of the left-handed and right-handed circularly
polarized waves. This effect grows when the wave frequency approaches the
cyclotron frequencies of ions but can be neglected when the frequency of oscil-
lations is much smaller. In general the Hall term introduces a new length-scale
into the problem that is of the order of the ion inertial length (or ion skin
depth). Therefore, the Hall term introduces an additional dispersion of waves.
In partially ionized plasmas, the presence of neutrals increases the importance
of Hall’s effect, specially in weakly ionized plasmas (Pandey and Wardle, 2006).

The next term on the right-hand side of equation 2.19 is the resistive term
and its relevance can be determined by carrying out a dimensional analysis
of the convective and resistive term. Assuming that the characteristic values
of speeds, magnetic fields and lengths are denoted by v0, B and L, then the
convective and resistive terms scale as∣∣∣∣∇× vi ×B

∣∣∣∣ ∼ v0B

L
,

∣∣∣∣∣∇×
(
η

µ0

∇×B

) ∣∣∣∣∣ ∼ ηB

µ0L2
.

The ratio of these two scalings results in the magnetic Reynolds number, Rm,
defined as

Rm =
µ0Lv0

η
.

Resistive effects are important in a plasma if the resistive term becomes compa-
rable to the convective term, i.e. when Rm ∼ 1. Since the resistivity coefficient
in solar plasmas is typically very small, important resistive effects appear for
small values of L (or steep gradients), i.e. large wavenumbers, as discussed
later in the present Thesis when dealing with waves in weakly ionised plasmas.

The next term in the induction equation describes an attenuation of the
magnetic field due to the velocity difference in the species and it is a term
that appears strictly in partially ionised fluids. Finally, the last term on the
right-had side of the induction equation is the Biermann battery term and it is
relevant only in those cases when there is a strong electron pressure gradient.
The battery term was recently used in the study by Khomenko et al. (2017) to
show that in the presence of strong electron pressure, local imbalances in the
partially ionized solar photospheric plasmas can generate micro Gauss fields,
that superimposed on the dynamo amplification, leads to the generation of
quiet Sun magnetic fields of a similar strength to those from solar observations.
However, in general, under solar physics conditions, the Biermann battery term
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is neglected.

2.7 Prefect Gas Law

Finally the equations that describe the dynamics in partially ionised plasmas
can be closed by a relation that connects the thermodynamic quantities, such
as pressure, temperature and number density. In reality the interaction be-
tween particles can introduce alterations that would imply the treatment of
the plasma as a non-ideal gas. It is known that at intermediate pressures and
low temperatures, attractive forces pull the particles together so the pressure
is less than for an ideal gas under the same set of conditions. At low pressure
and high temperatures (as in the solar atmosphere) these effects are far weaker,
therefore the use of ideal gas laws for each species is perfectly justified, and
they read

pe = pi = nikBT, pn = nnkBT. (2.20)

These relations can be derived using the kinetic theory of gases (Khomenko
et al., 2014a).

2.8 From three-fluid to two-fluid description

In reality, the use of the right multi-fluid approximation to describe the dy-
namical state of the plasma depends very much on the relative strengths of
collisions between particles. While in the solar photosphere the use of a three-
fluid plasma is perfectly justified (see Chapter 4), in the chromosphere the
very strong coupling of charged particles renders the plasma to be a two-fluid
system, where the fluid of charged particles can interact with the neutral fluid
(see Chapter 3). The physical reasoning for each working framework will be
given later.

In the solar chromosphere the collisional coupling between charged parti-
cles is much higher than with neutrals, therefore, it makes sense to treat the
charged particles as one single fluid that can interact with the neutral fluid (for
justification based on the VAL IIIC solar atmospherics model, see Chapter 4).
This assumptions considerably simplifies the mathematical model. Since the
present Thesis employs the equations relevant to a two-fluid description, it is
natural to introduce these equations.

The mass, momentum, and energy equations for electrons and ions can
be combined to arrive to the equations describing the charged species, here
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denoted by the index ”c”. Consequently, the continuity equation of electron
and ion particles can be reduced to

Dρc
Dt

+ ρc∇ · vc = 0, (2.21)

where ρc = ρe + ρi is the total density of charged particles and

vc =
ρeve + ρivi
ρe + ρi

,

is the center of mass velocity.
Let us recall that the momentum equations for electrons and ions read

ρe
Dve
Dt

= −∇pe + ρeg − ene(E + ve ×B) + Pe, (2.22)

ρi
Dvi
Dt

= −∇pi + ρig + ene(E + vi ×B) + Pi. (2.23)

Since we are dealing with a quasi-neutral plasma (ne = ni), the equation
for the velocity of the center of mass can be rewritten as

vc =
meve +mivi
me +mi

≈ vi +
me

mi

ve, (2.24)

where we took into account that me � mi.
When the convective derivatives on the left-hand sides of equations 2.22

and 2.23 are expanded, one has to add together the nonlinear terms ρe(ve ·∇)ve
and ρi(vi · ∇)vi.

We can rewrite equation 2.24 in terms of vi and then substitute this ex-
pression into the sum of the nonlinear terms to obtain ≈ mi(vc · ∇)vc. In all
our subsequent calculations this term will be neglected, since we are restricting
our analysis to linear, small amplitude, motion.

Adding together equations 2.22 and 2.23, and using the expression of the
center of mass velocity, we obtain the momentum equation for the charged
particles in the form

ρc
Dvc
Dt

= −∇pc + J×B + ρcg + ρ0c(νen + νin)(vc − vn), (2.25)

where pc = pe + pi is the total pressure of the charged fluid and the current
density, J, was defined earlier. For neutral fluid, the momentum equation
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transforms into

ρ0n
∂vn
∂t

+∇pn = ρng − ρ0nνnc(vn − vc). (2.26)

The Ohm’s law can be obtained by multiplying equation 2.22 by me and
equation 2.23 by mi. Neglecting gravitational effects and taking into account
that since me � mi, the terms related to the inertia of electrons are negligibly
small, we arrive at

E + vc ×B +
1

eni
∇pe =

mi

ni
J×B +

ρ0c

eni
(νei + νen)(vc − vn). (2.27)

By using Faraday’s law, the above equation reduces to the well-known
induction equation

∂B
∂t

= ∇× (vc ×B)−∇× (η∇×B) +∇×
(
c∇pe
eni

)

−∇×
(
j×B
ene

)
+∇×

[
cαen(vc − vn)

eni

]
. (2.28)

The meaning of the terms in the induction equation are similar to the ones
presented already earlier (see equation 2.19).

Finally, the energy equation of charge species reduces to

D

Dt

(
pc
ργc

)
= 0. (2.29)

The governing equations of two fluid approximation are the continuity equa-
tions 2.8 and 2.21, the momentum equations 2.25 and 2.26, the induction
equation 2.28 and the energy equations 2.11 and 2.29.

2.9 Waves in Partially Ionised Plasma

Although the plethora of waves able to propagate in partially ionised plasma
is far richer that in the case of fully ionised plasmas, here we will restrict our
attention only to Alfvén and magnetoacoustic waves, highlighting the major
differences in the properties of waves compared to their fully ionised counter-
parts. In general the studies we are going to review employed a single or a
two-fluid approximations.

Waves in plasmas appear as a response of a restoring force (magnetic ten-
sion, pressure force, gravity, etc.) to a perturbation. Each type of the restoring
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force (or their combination) will generate its own type of waves, with different
properties.

2.9.1 Alfvén Waves

When the restoring force to plasma disturbances is the magnetic tension, mag-
netic waves are able to propagate along the magnetic field lines. These waves
are known as the Alfvén waves, and they have been predicted by Hannes Alfvén
(Alfvén, 1942).

Alfvén waves are transversal waves that do not perturb the plasma density.
In general is rather difficult to detect them, because they can only be seen
in solar spectra in the emission coming from atoms in the solar atmosphere.
However, recent high-resolution observations provided evidence for their exis-
tence in solar plasmas (e.g. Jess et al., 2009; McIntosh et al., 2011; Srivastava
et al., 2017; Kohutova et al., 2020; Stangalini et al., 2021, etc.). Majority of
these observational studies overlooked the fact that Alfvén waves observed in
the lower layers of the solar atmosphere might be affected by partial ionisation.
The study by Ballai (2020) has shown, for the first time, how torsional Alfvén
waves can be used to determine the ionisation degree of the plasma.

Alfvén waves in partially ionised plasmas show a much more complicated
picture than their counterparts in fully ionised plasmas. In a fully ionised
plasma Alfvén waves can be described within the framework of ideal MHD,
where the magnetic field is frozen into the conducting charged fluid. In par-
tially ionised plasmas the magnetic field is not frozen into any of the electron
or ion fluid. The Hall term breaks the degeneracy of the electron and ion fluid.
The governing equations describing the dynamics in partially ionised plasmas
are dissipative in nature (due to the collisional coupling between species), so
these waves are rather short lived waves, propagating with frequencies that are
comparable with the collisional frequency between particles.

Unlike in fully ionised plasmas, Alfvén waves propagating in partially ionised
plasma possess a cut-off wavenumber. Using a single and two-fluid approxima-
tion Zaqarashvili et al. (2012) and Soler et al. (2013a) derived the dispersion
relation of Alfvén waves propagating in a homogeneous partially ionised plasma
along a magnetic field oriented in the z-direction by applying a normal mode
analysis in the form

s3 + i (1 + χ) νniω
2 − k2

zc
2
As+ νnik

2
zc

2
A = 0, (2.30)
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where χ = nn/ni and the variable s is defined as s = −iω, with ω being the
frequency of waves, kz the longitudinal waveneumber and vA = B0/

√
µ0ρ0 is

the Alfvén speed.
Equation 2.30 is a cubic polynomial, whose discriminant, Λd, is given by

Λd = −k2
zv

2
A

[
4ν4

ni(1 + χ)3 − (χ2 + 20χ− 8)νnik
2
zv

2
A + 4k4

zv
4
A

]
. (2.31)

Depending on the sign of Λd, different type of solutions can be found, so that
Λd < 0 corresponds to a regime where the dispersion relation admits a real
and two complex roots, while when Λd > 0, the dispersion relation has three
distinct real roots. The location when the nature of the solutions changes,
corresponds to Λs = 0, results in two values of the wavenumber, and their
expressions are given by

k±z =
νni
vA

[
χ2 + 20χ− 8

8(1 + χ)3
± χ1/2(χ− 8)3/2

8(1 + χ)3

]−1/2

. (2.32)

The analysis by Soler et al. (2013a) showed that the two values of the wavenum-
ber (k±z ) correspond to the two cut-off values.

When kz > k−z the magnetic tension makes ions to oscillate almost freely,
since the friction force is not strong enough to transfer significant inertia to
neutrals. In this case, disturbances in the magnetic field affect only the ion-
ized fluid as in the case of classic Alfvén waves in fully ionized plasmas. On
the other hand, when kz < k+

z , the ion-neutral coupling is strong enough for
neutrals to be nearly frozen into the magnetic field. When the system is per-
turbed, neutrals are dragged by ions almost instantly and both species oscillate
together as a single fluid. When the wavenumber is between the two cut-off
values, the disturbance in the magnetic field decays before the ion-neutral cou-
pling has had time to transfer the restoring properties of magnetic tension to
the neutral fluid. Therefore, neutral-ion collisions are mainly used to attenu-
ate the magnetic field perturbations, however, they do not ensure an efficient
transfer of inertia to neutrals.

In the absence of collisions the dispersion relation 2.31 reduces to

ω2 − k2
zv

2
A = 0, (2.33)

which is dispersion relation of Alfvén wave in ideal fluid.
The same authors compared the analytical and numerical solutions by solv-

ing the dispersion relation 2.30 numerically and they confirmed that the nu-
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merical result is agreement with analytical one (see Figure 2.5, the solid line
related to numerical result while symbols related to analytical result).

Figure 2.5: The variation of analytical and numerical results of dispersion
relation 2.30 when χ = 2 in terms of the dimensionless collisional frequency
between neutrals and ions. The two panels display the variation of the real
(upper panel) and imaginary parts (lower panel) of the solutions, respectively.
Solid lines correspond to the numerical results, while symbols correspond to
the analytic approximations. This figure was adapted from Soler et al. (2013a).

These figures show that the damping rates derived in the two-fluid ap-
proach reach a peak near the ion-neutral collision frequency and then decrease
for higher frequencies unlike the single-fluid approach, where the damping
increases linearly with increasing frequency, as shown in the study by Za-
qarashvili et al. (2011a).

The study by Soler et al. (2013a) also performed an initial value study of
Alfvén waves and they showed that these waves decay with a damping time

td ≈
1

νin

k2
zv

2
A + (1 + χ)ν2

ni

k2
zv

2
A + (1 + χ)2ν2

ni

,

which confirms the result that damping times are (in the first order approx-
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imation) of the order of the collisional frequency between particles. Further-
more, in the weakly collisional limit, the vorticity perturbations of the ionized
and neutral fluids are decoupled from each other. Excited waves propagating
weakly damped along the field oscillate with a frequency kzvA, and a damping
time proportional to 1/νni. On the other hand, disturbances in the neutral fluid
are evanescent in time because, due to the weak coupling between particles,
there is no driving force for the motions in the neutral fluid.

In the limit of strong collisions the oscillations in the two fluids tend to
couple each other (almost like a single fluid), propagating with a frequency
kzvA/

√
1 + χ and decay exponential in time with a decay time proportional to

(νin + νni)
−1.

Later, Ballai (2019) studied the properties of Alfvén waves in a partially
ionised plasma in ionisation non-equilibrium. His results suggest that ioni-
sation non-equilibrium waves could damp even in the collisionless limit, and
this result can have serious consequences for the evolution of Alfvén waves in
plasmas where the collision between particles is very weak (solar wind, Earth’s
atmosphere, etc). Furthermore, Ballai (2020) investigated the diagnostic of
plasma ionisation using torsional Alfvén waves. Using observational data he
found that the number of neutrals in the solar prominence fibrils is about
5× 1010 cm−3.

Alfvén waves in partially ionised plasmas have also been studied within the
context of plasma heating. Dong and Paty (2011) found that the non-resonant
Alfvén waves in partially ionized plasma are important for heating as long as
the ion-neutral collisional frequency becomes comparable to the ion cyclotron
frequency.

2.9.2 Magnetoacoustic Waves

Magnetoacoustic waves in partially ionised plasmas can be divided into two
types, similar to their fully ionised counterparts: fast and slow. However, the
number of modes and the way they couple is very specific to the partially
ionised plasma environment. Magnetoacousic modes are driven by the com-
bination of pressure forces and magnetic tension. In the absence of magnetic
field the slow wave disappears and fast wave reduces to sound wave.

Forteza et al. (2007) studied the propagation of linear waves in single-fluid
partially ionized plasma considering the effect of ambipolar diffusion. These
authors found that the most affected wave is the fast wave, which damps
more heavily and this strongly depends on the ionisation degree of the plasma.
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Later, Carbonell et al. (2010) investigated the same problem in the presence
of plasma flows, modelling the propagation and damping of waves in solar
prominences. Their results show that the strong damping of fast and Alfvén
waves depends on the joint action of flow and resistivity. The damping lengths
of adiabatic fast and slow waves are strongly affected by partial ionisation. The
properties of adiabatic fast waves are similar to the properties of Alfvén waves.
In the case of non-adiabatic slow waves, the wavelength and damping length
are comparable with the values obtained from the observations of prominence
oscillations.

Later, Ballester et al. (2018b) addressed the problem of heating or cooling in
optically thin partially ionised plasmas. In this case the period, damping time
and cut-off wavenumber of Alfvén waves became time dependent quantities.
The attenuation rate of waves was shown to be different in a cooling or heating
process. Although the properties of slow waves in a cooling partially ionised
plasma are very similar to the slow waves in fully ionised plasma, the period
and damping time of these waves in both plasmas are completely different
when the plasma is heated. The temporal behaviour of the Alfvén and fast
wave is very similar in the cooling case, but in the heating case, an important
difference appears in the temporal damping of waves.

Magnetoacostic waves have also been studied in two-fluid approximation,
i.e. when the frequency of waves is comparable with the collisional frequency
between particles. In this framework there are two slow waves associated to
charged particles and neutrals, and one fast mode. The existence of this richer
spectrum compared to fully ionised plasmas is very easy to understand. Slow
waves are acoustic in nature, connected to the compressibility of the plasmas.
That is why, it is natural to have two slow waves. In contrast, fast waves are
Alfvénic in nature, meaning that these waves are connected to the charged
species, i.e. the species that is affected by the presence of the magnetic field.
Of course, the properties of these waves are not strictly linked to a species,
instead their properties are modified by the existence of the other species.

Zaqarashvili et al. (2011b) investigated the MHD waves in two-fluid plasma
under solar atmospheric conditions. The authors applied the Fourier analy-
sis for the system of two-fluid MHD equations, which resulted in a seventh
order dispersion relation describing the 3 pairs of waves propagating in oppo-
site direction and one entropy, non-propagating mode. In the case of parallel
propagation, taking χ = 0.5, these authors found that the three waves are
propagating only for large wavenumbers with strong damping rate. The slow
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mode associated to neutrals disappears for small wavenumbers, because at
strong coupling between ions and neutrals, the two fluids behave like a single
fluid (see Figure 2.6).

In the low frequency two-fluid approximation, the frequencies and damping
rate are similar to single-fluid approximation while they are different in high
frequency two-fluid description. They also found that the maximum damping
rate of fast waves is larger than the ion-neutral collisional frequency. The
authors confirmed that the damping rate of slow mode in low plasma β regime
is the same one was obtained by Braginskii (1965) (see Figure 2.7).

The problem of wave propagation in two-fluid plasmas has been reconsid-
ered later by Soler et al. (2013b). These authors determined the modification
of the waves’ frequency due to the collision between particles and then stud-
ied the frictional damping during ion-neutral collisions. Using a normal mode
analysis, the two-fluid MHD equations were reduced to the system of coupled
equations

(
ω4 − ω2k2(c2

i + v2
A) + k2

zk
2c2
i v

2
A

)
∆i = −iνinω3(∆i −∆n)

+
iνin

ω + i(νni + νin)
v2
Ak

2
zk

2(c2
i∆i − c2

n∆n), (2.34)

(ω2 − k2c2
n)∆n = −iνniω(∆n −∆i), (2.35)

where k2 = k2
x + k2

y + k2
z , ci = γpi/ρi, cn = γpn/ρn and the quantities ∆i and

∆n are describing the compressibility of the charged and neutrals fluids, and
are given by

∆i = ∇ · vi = ikxvx,i + ikyvy,i + ikzvz,i,

∆n = ∇ · vn = ikxvx,n + ikyvy,n + ikzvz,n.

The authors studied analytically the solutions of the dispersion relation
in the two limiting cases corresponding to the uncoupled plasma (collisions
between particles is neglected), and the case of strongly coupled plasma, where
the collisional frequencies tend to infinity. In the uncoupled case the solutions
of the dispersion relation are the acoustic mode corresponding to neutrals, and
two magnetoacoustic modes (slow and fast) associated to the charged species.
In the strongly coupled case there are only two propagating waves, i.e. the
modified slow and fast magnetoacoustic modes. The mode corresponding to
the neutral species is absent because they became entropy modes. The neutral
acoustic mode and the charged magnetoacoustic modes interact in the presence
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Figure 2.6: The magnetoacoustic modes propagating along the magnetic field,
when χ = 0.5. The red asterisks and green diamonds correspond to fast and
slow modes associated to ions. Blue squares denote the slow mode associated
to neutrals that appear only for large wavenumbers. The two panels show
the real and imaginary parts of the solutions. This figure was taken from
Zaqarashvili et al. (2011b).

Figure 2.7: The damping rate for fast and slow modes. Red asterisks related
to the dispersion relation while blue lines related to the solutions of Braginskii.
This figure was adapted from Zaqarashvili et al. (2011b).
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of ion-neutral collisions. The two resulting modes in the strongly coupled
regime have mixed properties and are influenced by the physical conditions in
the two fluids, in particular by the relative magnitude of characteristic speeds
and the ionisation degree of the plasma.

Magnetoacoustic waves are damped by the ion-neutral collisions in a rather
differentiated way. As a typical example of the variation of the frequencies
of waves in terms of the collisional frequency of waves (normalised by kci)
propagating parallel to the equilibrium magnetic field is shown in Figure 2.8
for the particular value of ion plasma-βi = 0.04. The slow magnetoacoustic
wave and the neutral acoustic wave interact strongly, with a visible change
of the character of the waves depending on the value of the ionisation factor,
χ. When χ � 1, the neutral acoustic mode has a cut-off and the classic slow
mode becomes the modified slow mode in the limit of large ν̄/kci, where ν̄ is
averaged collision frequency. This situation is reversed when χ ≥ 1, so that
the solution that is cut-off is the classic slow mode while the neutral acoustic
mode is the solution that becomes the modified slow mode. The behave of
the fast magnetoacoustic wave in the low-βi limit is very similar to that of the
Alfvén waves studied since in this limit fast waves behave as Alfvén waves for
parallel propagation to the magnetic field. Fast magnetoacoustic waves are
non-propagating in a short interval of ν̄/kci when the collisional frequency is
approximately equal to kci, where fast waves become entropy waves.

The study by Soler et al. (2013b) also classified the frequencies of slow
and fast waves depending on the relative magnitude of characteristic speeds in
the high collisional limit, showing the very complex nature of magnetoacoustic
waves in partially ionised plasmas (see Table 2.1). These results show that
depending on the relative magnitude of the Alfvén and the two sounds speeds,
but also the ionisation degree of the plasma, the properties of waves can change
and the propagation speed of magnetoacoustic modes are influenced by the
ionisation degree of the plasma.

In the next chapters we will assume that all species have the same temper-
ature, so that Te = Ti = Tn = T . This assumption is in line with the physical
requirement that a system will tend towards a state of equipartition of energy
and uniform temperature that maximises the system’s entropy. As a result,
any local modification of temperature (and increase in the thermal speed of
particles) is smoothed out after a few collisional times, i.e. over times that are
smaller than the period of waves (very often this time is called the equilibration
time) and any modifications in the distribution of particles is reduced in time,
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Figure 2.8: Real (left) and imaginary (right) parts of the frequency of the mag-
netoacoustic waves in terms the averaged collision frequency (in logarithmic
scale) for parallel propagation to the magnetic field, with βi = 0.04. Panels
(a) and (b) correspond to a strong ionisation (χ = 0.2), panels (c) and (d) are
for intermediate ionisation (χ = 2, and finally, panels (e) and (f) represent the
case of weak ionisation (χ = 20). All frequencies are expressed in units of kci.
Credit: Soler et al. (2013b).

leading to a Maxwellian distribution. Since for the hydrogen plasma assumed
here the mass of ions and neutrals are nearly identical, ions rapidly exchange
energy with neutrals and tend to reach a thermal equilibrium with neutrals.
Indeed, the amount of energy that is exchanged between ions and neutrals
can be at most mimn/(mi + mn)2 ≈ 0.25 times of their energy, making the
process of thermalisation through collision very effective. In contrast, during

47



the collision between electrons and hydrogen neutral atoms, electrons are able
to transfer only memn/(me + mn)2 ≈ 5.4 × 10−4th part of their energy and
it requires approximately 1850 collisions to reach the equipartition of energy
between electrons and neutrals, and consequently, equality of their tempera-
ture. For a typical strongly ionised plasma where T = 104 K plasma and a
neutral number density of nn = 2× 1015 m−3 (as discussed in Chapter 3) the
collisional frequency between electrons and neutrals is approximately 39 s−1,
meaning that in about 47 seconds the electron and neutral population reach a
thermal equilibrium.

Let us estimate the equilibration time between ions and neutrals in a
strongly ionised plasma. In the absence of flows and other spatial inhomo-
geneities, the evolution of the temperature is given by the energy equations
written for the two species

dTi
dt

= νin(Tn − Ti),

dTn
dt

= νni(Ti − Tn).

Assuming that the temperatures of the two species at the start of our inves-
tigation are T̂i and T̂i, the temporal evolution of the temperatures with time
(see Soler et al., 2013b) is given by

Ti = Tf − (T̂n − T̂i)
νin

νin + νni
e−(νin+νni)t,

Tn = Tf + (T̂n − T̂i)
νni

νin + νni
e−(νin+νni)t,

where

Tf =
νinT̂n + νniT̂i
νin + νni

,

is the final temperature the two species will tend to through collision. We can
easily estimate the time (tf ) required for the two species to reach 99% of the
common temperature as

tf =
1

νni (1 + νin/νni)
ln

[
102 (T̂i − T̂n)

T̂i + T̂nνin/νni

]
.

Given the relationship between the two collisional frequencies we can write tf
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as

tf =
1

νni (1 + nn/ni)

[
ln 102 (T̂i − T̂n)

T̂i + T̂nnn/ni

]
.

Finally, taking into account that in the present study we deal with strongly
ionised plasma for which ni � nn, the above relation simplifies to

tf ≈
1

νni

[
4.6 + ln

(
1− T̂n

T̂i

)]
.

For an order of magnitude estimate let us consider that T̂i = 3T̂n, and νni =

10 s−1. As a result, the time needed for the two species to reach 99% of
the thermal equilibrium is 0.4 seconds, i.e. thermal equilibrium between the
massive particles is settled, indeed, very quickly. This conclusion is in line with
the results obtained by earlier studies, e.g. Zaqarashvili et al. (2011b); Soler
et al. (2013b); Oliver et al. (2016).

In a weakly ionised plasma (nn � ni) as discussed in Chapter 4 the equi-
libration time in the case of collisions between ions and neutrals reads

tf =
1

νin

(
4.6 + ln

∣∣∣∣∣ T̂iT̂n − 1

∣∣∣∣∣
)
,

where, as before, T̂i and T̂n are the temperatures of the ion and neutral fluids
and νin is the ion-neutral collisional frequency. For an order of magnitude
estimate let us consider that T̂i = 3T̂n, and νin = 5 × 106 s−1. As a result,
the time needed for the two species to reach 99% of the thermal equilibrium is
10−8 seconds, i.e. thermal equilibrium between the massive particles is settled,
indeed, very quickly, much quicker than in the upper part of the atmosphere,
thanks to the very high collisional frequency. A similar conclusion can be
drawn after analysing the time required to reach the equilibrium temperature
between electrons and neutrals (where tf is now of the order of ν−1

en ). Therefore,
assuming equal temperatures in such plasma is a realistic assumption.
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Behavior of the Modified Fast and Slow Waves

Velocities Modified Fast Wave Modified Slow Wave

c2
A � c2

i �
χc2

n

I-E IMW, ω2 ≈ k2c2
A I-E GAW, ω2 ≈ k2c2

i cos2 θ

c2
A � c2

i ∼
χc2

n

Effective IMW, ω2 ≈ k2c2A
1+χ

Effective GAW, ω2 ≈
k2(c2i +χc2n)

1+χ
cos2 θ

c2
A � χc2

n �
c2
i

N IMW, ω2 ≈ k2c2A
χ

N GAW, ω2 ≈ k2c2
n cos2 θ

χc2
n � c2

A �
c2
i

N IAW, ω2 ≈ k2c2
n N GMW, ω2 ≈ k2c2A

χ
cos2 θ

c2
i � c2

A �
χc2

n

I-E IAW, ω2 ≈ k2c2
i I-E GMW, ω2 ≈ k2c2

A cos2 θ

c2
i � χc2

n �
c2
A

I-E IAW, ω2 ≈ k2c2
i I-E GMW, ω2 ≈ k2c2

A cos2 θ

c2
i ∼ χc2

n �
c2
A

Effective IAW ω2 ≈
k2(c2i +χc2n)

1+χ

Effective GMW, ω2 ≈ k2c2A
1+χ

cos2 θ

χc2
n � c2

i �
c2
A

N IAW, ω2 ≈ k2c2
n N GMW, ω2 ≈ k2c2A

χ
cos2 θ

Table 2.1: Characteristics of fast and slow waves in partially ionised plasmas
(together with their approximate frequencies) in the highly collisional limit in
terms of the relative magnitude of characteristic velocities. Adapted from Soler
et al. (2013b). Note: E, I, N, IMW, IAW, GMW, and GAW denote electron,
ion, neutral isotropic magnetic wave, isotropic acoustic wave, guided magnetic
wave, and guided acoustic wave, respectively.
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CHAPTER 3

Slow magnetoacoustic waves in gravitationally strat-
ified two-fluid plasmas in strongly ionised limit 1

3.1 Introduction

One of the key characteristics of solar atmosphere is that in the lower regions
(photosphere and chromosphere) the plasma is partially ionised, where neutral
atoms, electrons and positively charged ions can interact through collisions.
The ionisation degree of the plasma depends mainly on temperature, however,
as shown by Heinzel et al. (2015) in the case solar prominences, the ionisa-
tion degree also depends on density and pressure. Existing solar atmospheric
models predict a very low ionisation degree in the deep photosphere (where for
every ion there are approximately 104 neutrals), and increases with height due
to the increase of temperature (Vernazza et al., 1981; Fontenla et al., 1990).

The different species of particles present in the plasma interact through
collisions and the frequency of the collisions also decreases with height due
to the decrease of density of particles with height (a quantitative descrip-
tion is presented in Chapter 2). Although collisions between various species
are important for various aspects related to partially ionised plasmas such as
thermalisation of the plasma, various ionisation/recombination processes, ap-
pearance of thermal layers for shock waves in partially ionised plasmas, etc.
(Shanmugasundaram and Murty, 1978; Mathers, 1980; Terradas et al., 2015;
Martínez-Gómez et al., 2018; Ballai, 2019; Kuźma et al., 2020), the short-
range collisions between neutrals and charged particles are of key importance
as only this physical mechanism ensures that neutrals are a constituent part
of the plasma. The collisions between electrons and the ions/neutrals help in
the Maxwellisation of the electron population but is not affecting considerably
the energy and momentum of massive particles.

1This Chapter is based on the study by Alharbi et al. (2021), published in MNRAS.
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Unfortunately the characteristics of current ground-based and space-borne
observational facilities are not suitable for the direct observation of waves with
frequencies of the order of the collisional frequencies in partially ionised plas-
mas, as these waves require a time cadence that currently cannot be achieved.
Nevertheless, waves and instabilities in partially ionised plasmas, together with
their effects and consequences, have been largely explored theoretically and
numerically. For a recent review on the progress of research on dynamical
processes in solar and astrophysical plasmas (see Ballester et al., 2018a).

The theoretical investigation of waves in partially ionised plasmas under
solar conditions has received recently an increased attention. More and more
studies started to take into account the realistic model of a solar atmosphere,
where the plasma is not hot enough to ensure a full ionisation. We should
mention here that the consideration of partial ionisation effects depends on
the range of frequencies we are interested in. If the frequency of waves we
plan to investigate is much smaller than the collisional frequency of particles,
the dynamics can be described within the framework of usual magnetohydro-
dynamics (MHD). Since current observational capabilities are mostly centered
onto this regime, the observation of waves outside the MHD regime can be
achieved only indirectly. Although the observation of high-frequency waves is
still nearly impossible, several attempts have been made to evidence the effect
of partial ionisation in solar lower atmosphere. Due to an imperfect collisional
coupling between massive particles (ions and neutrals), there is an imbalance
in the velocity of these species and this has been evidenced through a simul-
taneous measuring of the Doppler shift in the Fe II ion and neutral Fe I lines
over the same volume of plasma in the sunspot penumbra (Khomenko et al.,
2015). Later, Khomenko et al. (2016) found non-negligible differences in He I
and Ca II velocities in solar prominences. Gilbert et al. (2007) compared He
I and Hα data in multiple solar prominences in different phases of their life
cycle and detected the drainage effect across the prominence magnetic field
with different timescales for He and H atom. Later, de la Cruz Rodriguez
and Socas-Navarro (2011) have reported misalignment in the visible direction
of chromospheric fibrils that were attributed to the large ambipolar diffusion,
that is, when the ion-neutral collisional frequency drops, the magnetic field
can slip through the neutral population. This observational result has been
later confirmed through numerical simulations by Martínez-Sykora et al. (2016)
using advanced radiative MHD simulations. Finally, some observations have
found evidence for higher frequency waves with periods as short as 45 s (0.15
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Hz) in spicules (Okamoto and De Pontieu, 2011). Transition region spectral
lines often show significant broadening beyond the thermal width of the order
of 20 km s−1 in exposure times as short as 4 s (De Pontieu et al., 2015). If this
non-thermal broadening were to be caused by waves, wave frequencies could
be significantly higher than 1 Hz.

The framework used to describe the dynamics of waves in partially ionised
plasmas depends on the frequency range of interest. For wave frequencies that
are of the order of the collisional frequency between ions and neutrals we can
employ a model where charged and neutrals particles are treated as separate,
but interacting, fluids. Waves propagating in partially ionised plasmas differ
qualitatively and quantitatively from their counterpart in fully ionised plasmas.
As shown earlier, the spectrum of possible waves is larger as now, in addition
to the ion-related modes, there are also acoustic modes associated to neutrals.

The study of waves in inhomogeneous plasma is not an easy task as inhomo-
geneities can change dramatically the property of waves and the coefficients
of equations that describe the evolution of perturbations will be dependent
of the coordinate. The damping of Alfvén waves in gravitationally stratified
plasmas and their contribution to the heating of chromospheric plasma has
been studied by a number of authors. Leake et al. (2005) used a single-fluid
plasma approximation in the presence of Cowling resistivity and they found
a very clear frequency-dependent damping of waves for chromospheric heights
of 1000-2500 km above the solar surface. According to these authors Alfvén
waves with frequencies below 0.01 Hz are unaffected by dissipative effects and
propagate through the partially ionised plasma with little diffusion. In con-
trast, Alfvén waves with frequency above 0.6 Hz are completely damped. The
research in this topic has been extended later by Tu and Song (2013), who
carried out a numerical investigation of the two-fluid approximation, where
collisions between various species (neutrals, electrons and positive ions) have
been considered. The results of this analysis show that thanks to the density
gradient, Alfvén waves are partially reflected throughout the chromosphere and
more strongly at higher altitudes. Waves were observed to be damped in the
lower chromosphere dominantly through Joule dissipation, producing heating
strong enough to balance the radiative loss for the quiet chromosphere with-
out invoking anomalous processes or turbulences. These authors also found
that there is an upper cutoff frequency, depending on the background mag-
netic field, above which waves are completely damped. For a magnetic field
of 100 G, the determined cut-off (or critical) frequency was found to be 0.12
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Hz (Soler et al., 2019, 2021). A numerical analysis of the variation of the
cut-off frequency with height has recently been made by Wójcik et al. (2019)
assuming a two-fluid plasma.

When applied to chromospheric situations the study by Soler et al. (2013b)
revealed that wavelengths smaller than 103 m are affected by two-fluid ef-
fects in the presence of strong magnetic fields. However, their approach is
an eigenvalue problem, meaning that the temporal evolution of waves cannot
be studied. Furthermore, they neglected gravitational stratification, meaning
that important effects such as the presence of frequency cut-offs could not be
studied. In the present Chapter we plan to address both of these shortcomings.

Here we will derive the evolutionary equations describing the spatial and
temporal evolution of slow sausage modes attached to each species, i.e. waves
that propagate such that the symmetry axis of the magnetic flux does not
change. Solutions of the governing equations, assuming a strong ionisation
thermal equilibrium is obtained. For mathematical progress we will consider
asymptotic solutions corresponding to large values of time.

3.2 Assumptions and mathematical background

Before we embark on describing the evolution of slow guided waves in a gravita-
tionally stratified plasma we need to make a few assumptions that will simplify
our analysis. First of all we assume that during the typical time-scales involved
in wave description the plasma remains in ionisation equilibrium, i.e. no ad-
ditional ions are created by ionisation or neutrals due to recombination. This
assumption is rather restrictive as typical time-scales associated to ionisation
and recombination often can be comparable to period of waves. A treatment
of waves in partially ionised non-equilibrium plasma can be found in the study
by Ballai (2019).

Waves will propagate in a vertically unbounded magnetic cylinder and the
magnetic field is parallel to the symmetry axis of the flux tube in the positive
z-direction. For simplicity, the environment of the flux tube is non-magnetic.

To reduce the complexity of our analysis we will assume that the flux tube
of cross-sectional area A(z, t) is thin, i.e. waves propagating in the flux tube
have wavelengths much larger than the radius of the tube (also known as the
slender tube approximation). In this limit waves will not "sense" the boundary
of waveguide. Due to the gravitational stratification, the dispersion relation
of slow waves in a fully ionised plasma becomes ω2 ≈ k2c2

T + ω2
c (Roberts and

54



Webb, 1978), where k is wavenumber, c2
T = c2

Sv
2
A/(c

2
S + v2

A) is cusp speed and
ωc is the cut-off frequency of waves that depends on characteristic speeds and
gravitational acceleration. As a result, the frequency of waves is increased
compared to the unstratified case and waves become dispersive, which means
that waves with longer wavelength will propagate faster. In the opposite case,
when the wavelength of waves is comparable (or smaller) to the radius of the
flux tube we are dealing with a thick flux tube, where the properties of waves
are considerably changed. The propagation characteristics of slow sausage
waves in a thick flux tube in a fully ionised plasma has been investigated by
Pardi et al. (2014).

Since we aim to study the propagation of longitudinal waves, we can con-
sider only the longitudinal velocity components of the species involved in the
problem.

We assume that the length scales of variables that describe the dynamical
and thermodynamical state of the plasma are much longer than the scatter-
ing mean free path, so that the concept of fluid is applicable. We are going
to employ a two-fluid approximation where neutrals and charged species will
interact through collisions. Although the interaction between electrons and
neutrals also takes place, we are going to limit ourselves to the collisions be-
tween the massive particles, i.e. ions and neutrals as this interaction is mainly
responsible for the collisional coupling between species. For simplicity we are
going to label the charged species as "ions". Physical quantities related to
this fluid are labeled by an index i and the parameters of the neutral fluid will
be labelled by an index n. We should mention here that the charged parti-
cles (ions and electrons) all have a common velocity since differences in the
divergence of the ion and electron velocities would lead to charge separation
and strong electric fields opposing the charge separation. This assumption will
be relaxed in the following Chapter, where the charged particles will have a
distinct and different dynamics.

The system of equations describing the linear dynamics of the two-fluid
plasma is given by

∂

∂t
(ρ0iA+ ρiA0) +

∂

∂z
(ρ0iA0vi) = 0, (3.1)

∂

∂t
(ρ0nA+ ρnA0) +

∂

∂z
(ρ0nA0vn) = 0, (3.2)

ρ0i
∂vi
∂t

+
∂pi
∂z

+ ρig + αin(vi − vn) = 0, (3.3)
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ρ0n
∂vn
∂t

+
∂pn
∂z

+ ρng + αin(vn − vi) = 0, (3.4)

∂pi
∂t

+ vi
dp0i

dz
= c2

Si

(
∂ρi
∂t

+ vi
∂ρ0i

∂z

)
, (3.5)

∂pn
∂t

+ vn
dp0n

dz
= c2

Sn

(
∂ρn
∂t

+ vn
∂ρ0n

∂z

)
. (3.6)

Mathematical details of the governing equations can be found in earlier studies
by Defouw (1976) and Herbold et al. (1985). The above system of equations
has to be supplemented by the two conditions

B0A+BA0 = 0, pi + pn +
B0

µ0

B = π(z, t), (3.7)

expressing the conservation (in a linearised way) of the magnetic flux, and
the total pressure at the boundaries of the flux tube. The quantities with an
index ’0’ denote equilibrium values. In the above equations ρi, vi and pi are
the density, longitudinal velocity component and pressure of charged particles
(ions and electrons), ρn, vn and pn are the corresponding quantities for neutral
species, g = 274 m s−2 the constant gravitational acceleration, and the sound
speed associated with the two species are defined as

cSi =

(
γp0i

ρ0i

)1/2

, cSn =

(
γp0n

ρ0n

)1/2

,

with γ being the usual ratio of specific heats. In equation 3.7 B0 and B are
the equilibrium and perturbed magnetic field, A0 and A are the equilibrium
cross-section area of the tube and the associated perturbation, while in the
pressure balance equation π(z, t) is the external pressure. For completeness,
we should mention that, strictly speaking, the energy conservation equations
for the two species should have contained a term that describes the energy
lost due to the collisional friction between particles, however, since this term
is nonlinear (proportional to the square of (vi − vn), these will be neglected
and the energy conservation is described by an adiabatic equation written for
each fluid.

During the propagation of waves particles will undergo collisions with other
particles. Neglecting mutual collisions between particles of the same type, the
frictional coefficients between the colliding ions and neutrals is αin and is given
by

αin = ρiνin = ρnνni, (3.8)
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where νin and νni are the frequencies of ion-neutral and neutral-ions collisions
defined earlier (see equation 2.6). Although normally the collisional frequencies
are also height dependent, we are going to treat these quantities as constants
and we are going to evaluate them for particular solar parameters, at particular
height.

The collisions between the massive particles in the system acts as a dissipa-
tive term and waves will be expected to decay due to the collisions. Using the
standard atmospheric models it can be shown that up to a height of approx-
imately 2 Mm, νin > νni, however, after this height, this inequality reverses
due to the decrease in the number of neutrals thanks to the ionisation driven
by the increase in temperature.

Due to the gravitational stratification equilibrium quantities will have a
height-dependence. In a hydrostatic equilibrium the variation of the pressure
with height for the two constituent fluids is given by

p0i(z) = p0i(0)e−γi(z), p0n(z) = p0n(0)e−γn(z).

The dimensionless quantities γi(z) and γn(z) are given by

γi(z) =

∫ z

0

1

Hi(z′)
dz′, γn(z) =

∫ z

0

1

Hn(z′)
dz′

where
Hi(z) =

RTi(z)

µ̃ig
, Hn(z) =

RTn(z)

µ̃ng

are the gravitational pressure scale heights for ions and neutrals, R is the
gas constant, µ̃i and µ̃n are the mean atomic weights and Ti and Tn are the
temperature of the ion and neutral fluid (such that the mean translational
kinetic energy or fluid particle in a frame moving with the fluid is (3/2)kBTi

and (3/2)kBTn, respectively). We should stress out that Ti stands for the
temperature of the charged fluid, therefore it is the sum of the temperatures
corresponding to ions and electrons. For simplicity we assume that the plasma
is isothermal, meaning that the temperatures do not depend on height. As a
result, the scale-heights are also constant, so the height-variation of the two
pressures are simply given by

p0i = p0i(0)e−z/Hi , p0n = p0n(0)e−z/Hn .

Using the ideal gas law the equilibrium densities of the two species also vary
according to similar laws. One important implication of the isothermal limit
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is that the sound speeds for the two species will be constant and the two
scale-heights will be simply Hi = c2

Si/γg and Hn = c2
Sn/γg.

As a consequence of the variation of pressure and density with height, the
equilibrium is reached if the magnetic field and the magnetic flux tube’s cross
section area vary with height according to (for explanation see, e,g, Roberts
and Webb (1978))

B0(z) = B0(0)e−z/2Hi , A0(z) = A0(0)ez/2Hi .

With this particular choice of the magnetic field even the Alfvén speed, defined
as,

vA(z) =
B0(z)

(µ0ρ0i(z))1/2
,

becomes also height-independent.
Our calculations will be further simplified by considering that temporal

changes in the environment (the plasma outside the magnetic flux tube) take
place over time scales that are much longer than any characteristic times scales
of interest occurring inside the flux tube (very often this is also called the
rigid boundary approximation). As a result every term that contains a time
derivative of the external pressure, π(z, t) will be neglected.

The propagation of slow waves in an unbounded plasma has been investi-
gated previously in great detail as an eigenvalue problem by Zaqarashvili et al.
(2011b) and Soler et al. (2013b) for varying collisional rate between ions and
neutrals. While in the collisionless limit the two slow modes propagate with
the ion cusp speed, and neutral sound speed, respectively, in the collisional
case the propagation speed of slow waves becomes complex due to their inter-
action. In the weakly ionised and very low plasma-beta regime these authors
found that the neutral slow waves are affected by a frequency cut-off, while
the slow mode associated to ions becomes the modified slow mode

ω2 ≈ k2 c
2
Si + χc2

Sn

1 + χ
,

where χ is defined as χ = ρ0n/ρ0i. When χ� 1, the propagation speed of ion
slow waves becomes essentially ω2 ≈ k2c2

Si.
Since we aim to analyse the spatial and temporal evolution of waves, we

will not discuss explicitly the role of collisions as in the study by Soler et al.
(2013b), instead we will assume a fixed value of the collisional frequency that
is representative for the region of the solar atmosphere where our analysis is
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valid. In our study we will also assume that the parameter χ is much less than
one, and this parameter can be used as an expansion parameter to simplify
the mathematics. Accordingly, the density ratio, χ, can be written as

χ =
ρ0n(z)

ρ0i(z)
=
ρ0n(0)

ρ0i(0)
exp

[
−z
(

1

Hn

− 1

Hi

)]
= χ0e

−z/h. (3.9)

Clearly the condition χ � 1 means not only that χ0 � 1, but also that
h > 0, i.e. Hi > Hn. This assumption is based on the relative variation of
the neutral density compared to the density of ions with height according to
the AL C7 atmospheric model (Avrett and Loeser, 2008). In Figure 3.1 we
compare the predictions of the VAL IIIC atmospheric model (Vernazza et al.,
1981) shown by red line, with the AL C7 model shown by the blue line. Clearly
the two models show a good similarity up to heights of about 2 Mm. The large
discrepancy following this height is due to more extensive set of chromospheric
observations included in the solar atmospheric model developed by Avrett and
Loeser (2008).

Figure 3.1: The variation of the ratio of number densities of neutrals and ions
with height based on the VAL III C atmospheric model (Vernazza et al. (1981),
red line) and the AL C7 atmospheric model (Avrett and Loeser (2008), blue
line).

It is clear that, while in the photosphere the density ratio can be even of
the order of 104, for chromospheric heights the density ratio is very small, and,
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therefore, our assumption is justified.

3.3 Evolutionary equations

The governing equations 3.1 – 3.6 together with the particular choice of equi-
librium parameters and the two conservation relations can be reduced to a
system of coupled differential equations for the longitudinal velocity compo-
nents of the two fluids of the form

∂2vi
∂t2
− c2

T

∂2vi
∂z2

+ α1
∂vi
∂z

+ α2vi = 0, (3.10)

∂2vn
∂t2
− c2

Sn

∂2vn
∂z2

+ α3
∂vn
∂z

+ α4vn + νni
∂vn
∂t

=

− c2
Snc

2
T

v2
A

∂2vi
∂z2

+ α5
∂vi
∂z

+ α6vi, (3.11)

where c2
T = c2

Siv
2
A/(c

2
Si + v2

A) is the cusp speed related to ions. The above
two relations describe the evolution of two slow magnetoacoustic modes prop-
agating with the cusp speed and neutral sound speed, respectively. We should
note that due to the relative low number of neutrals ion-acoustic modes will
propagate (to leading order) unaffected by collisions, while the propagation of
neutral-acoustic modes is strongly affected by collisions with ions and their dy-
namical behaviour is driven by ions through the set of terms on the right-hand
side of equation 3.11.

The coefficients that appear in the above two equations are given by

α1 =
c2
T

2Hi

, α2 =
γ − 1

γ2H2
i

[
c2
Si − c2

T (1− γ/2)
]
, (3.12)

α3 =
c2
Sn

Hn

(
1− Hn

2Hi

)
, α4 =

c2
Sn(γ − 1)

2γHnHi

, (3.13)

α5 =
c2
Snc

2
T (γ − 1)

γHnv2
A

(
1− Hn

Hi

)
, α6 =

c2
Snα1

γ2Hnv2
A

(γ2 − 3γ + 2). (3.14)

Equations 3.10 and 3.11 describing the evolution of the two waves can be
brought into a simpler form by introducing the reduced function for ions and
neutrals of the form

vi(z, t) = Qi(z, t) exp(λiz), vn(z, t) = Qn(z, t) exp(λnz).

As the quantities λi and λn can be arbitrary, we can choose their values so
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that first-order derivatives with respect to the spatial coordinate, z, vanish.
Therefore, by choosing

λi =
1

4Hi

, λn =
1

4Hi

− 1

2Hn

, (3.15)

the evolutionary equations 3.10 and 3.11 can be reduced to

∂2Qi

∂t2
− c2

T

∂2Qi

∂z2
+ ω2

iQi = 0, (3.16)

∂2Qn

∂t2
− c2

Sn

∂2Qn

∂z2
+ Ω2

nQn + νni
∂Qn

∂t
=

=

(
−c

2
Snc

2
T

v2
A

∂2Qi

∂z2
+ δQi

)
exp

(
− z

2γh

)
, (3.17)

where now the coefficients ω2
i , Ω2

n and δ are given by

ω2
i =

(
9

4
− 2

γ

)
ω2
Ai − ω2

Ai

βγ

2 + βγ

(
3

2
− 2

γ

)2

,

Ω2
n =

c2
Sn

2c2
Si

ω2
Ai + ω2

An +
c2
Sn

4γHiHn

(γ − 2),

and

δ =
c2
Sn

v2
A(2 + γβ)

[
ω2
Ai

(
1

2
− 2

γ
+

2

γ2

)
+

2c2
Si

c2
Sn

ω2
An

(
1− 2

γ
+

1

γ2

)
+

c2
Si

HiHn

(
1

4
− 3

2γ
+

1

γ2

)]
,

with β = 2c2
Si/(γv

2
A) is the usual plasma-β parameter associated to ions, and

ωAi = cSi/(2Hi) and ωAn = cSn/(2Hn) are the acoustic cut-off frequency for
ions and neutrals.

The significance of the quantity ωi in equation 3.16 becomes clear once a
normal mode analysis is applied to this equation and consider that the function
Qi(z, t) has a plane-wave dependence of the form Qi(z, t) ∼ ei(kz−ωt). The
resulting dispersion relation can be rearranged into the form

k2 =
ω2 − ω2

i

c2
T

. (3.18)

Propagating waves are possible only when the wavenumber, k, is real and this
condition is satisfied if k2 > 0, i.e. ω2 > ω2

i . Therefore, waves will propagate
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only if their frequencies are larger than the cut-off value ωi, so the stratified
solar atmosphere acts as a frequency filter, where only high frequency waves
propagate. When ω < ωi waves will be evanescent with an e-folding length
of cSi/

√
ω2
i − ω2. The acoustic cut-off arises when ion-acoustic waves cannot

propagate vertically because the wavelength is comparable with the density
scale-height; consequently there is insufficient inertia on the low-density side
of a compression to resist the acceleration of plasma, thereby cancelling too
much of the pressure gradient to permit adequate subsequent compression of
the surroundings, essential for causing the perturbation to propagate in a wave-
like way. The dynamics operates on the vertical component of the motion, and
is most effective for motion that is purely vertical.

Equation 3.18 can also be written as

d2Qi

dz2
+
ω2 − ω2

i

c2
Si

Qi = 0,

meaning that propagating/evanescent waves correspond to d2Qi/dz
2 < 0 and

d2Qi/dz
2 > 0, respectively.

A similar treatment for neutral-acoustic modes is not possible, and we will
return to this aspect later. We should note here that in the strongly ionised
limit the value of the ion cut-off frequency agrees (qualitatively) with the cut-
off frequency for a fully ionised plasma, derived by, e.g. Rae and Roberts
(1982).

The system of coupled equations 3.16 and 3.17 describe the propagation of
ion-acoustic and neutral-acoustic waves in space and time. All the coefficients
that appear in homogeneous part of these equations are constants. The two
partial differential equations will be solved as an initial value problem (IVP),
where we aim to study the asymptotic evolution of waves.

3.4 Asymptotic behaviour of guided slow waves

In order to discuss the asymptotic behaviour of waves for large values of time we
will need to solve the initial value problem associated with the two evolutionary
equations 3.16 and 3.17. As a consequence of the thermal equilibrium discussed
in Chapter 2, the relationship between the sound speeds associated with the
two constituent fluids becomes

c2
Si =

γ(p0i + p0e)

ρ0i

=
γkB(Ti + Te)

mi

=
2γkBTn
mn

=
2γp0n

ρ0n

= 2c2
Sn.
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Using this result, the ratio of the propagation speed of waves associated to
neutral and charged species takes the form

c2
Sn

c2
T

=
c2
Sn

c2
Si

(
1 +

c2
Si

v2
A

)
=

1

2

(
1 +

γβ

2

)
≈ 1

2
, (3.19)

where we used the consideration that our investigation is valid for the low
plasma-beta case. The above result shows that the wave associated to charged
particles propagates with a speed that is roughly twice the propagation speed
of neutral-acoustic mode. Another straightforward implication of the above
assumption is that the gravitational scale-height of ions (Hi) is twice the scale
height corresponding to neutrals (Hn), i.e. the density decrease of neutrals
with height is faster than for ions. In addition, the reduced scale-height, h,
defined by equation 3.9, becomes h = 2Hn.

Because the two modes always appear together the above consideration
raises an important aspect. Since the neutral acoustic modes are trailing the
ion acoustic modes, the former waves will propagate in an environment that
is already modified by the ion acoustic mode and this materialises partly in a
modified temperature and density that results from the perturbations caused
by the ion acoustic modes. The passage of the ion acoustic mode will also
modify the density of ions, and through collisions, the density of neutrals will
also be modified. However, in the present study we will assume that these
changes are insignificant and, therefore, will be neglected. It is likely that
the correctness of our assumption can be checked only by rigorous numerical
investigation.

3.4.1 Ion-acoustic modes

Let us recall that the evolutionary equation for the charged fluid was obtained
to be given by the Klein-Gordon equation

∂2Qi

∂t2
− c2

T

∂2Qi

∂z2
+ ω2

iQi = 0. (3.20)

We are going to consider the spatial positive domain and the solution of the
above equation will be sought subject to the initial conditions Qi(z, 0) =

∂Qi(z, 0)/∂t = 0. In addition, we require that waves will vanish at z → ∞,
i.e. Qi(z →∞, t) = 0.

The IVP problem can be studied by means of the Laplace transform. Ac-
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cordingly, we introduce the Laplace transform of the function Qi(z, t) as

Ψi(z, s) = L[Qi(z, t] =

∫ ∞
0

Qi(z, t)e
−st dt. (3.21)

As a result, the Klein-Gordon equation for ions reduces

s2Ψi(z, s)− c2
T

d2

dz2
Ψi(z, s) + ω2

i Ψi(z, s) = 0, (3.22)

that has to be solved subject to the boundary condition Ψi(z → ∞, s) = 0.
The above equation can rearranged as

d2

dz2
Ψi(z, s)−

s2 + ω2
i

c2
T

Ψi(z, s) = 0, (3.23)

whose general solution can be simply written as

Ψi(z, s) = C1 exp

(
z

cT

√
s2 + ω2

i

)
+ C2 exp

(
− z

cT

√
s2 + ω2

i

)
, (3.24)

where C1 and C2 are arbitrary constants. Clearly, the first term will not satisfy
the required boundary condition, therefore we choose C1 = 0. Let us consider
that at z = 0 the wave is driven by a function Qi(0, t) = A0(t) and its Laplace
transform is Ψi(0, s) = a0(s). After applying this condition to the general
solution, we obtain

Ψi(z, s) = a0(s) exp

(
−

√
s2 + ω2

i

c2
T

z

)
. (3.25)

Now, the function Qi(z, t) can be obtained by applying the inverse Laplace
transform to the function given by equation 3.25. Since we have to compute the
inverse Laplace transform of a product, we will use the convolution theorem.
In finding the value of the inverse Laplace transform we will closely follow the
method outlined by Sutmann et al. (1998).

In order to find the inverse Laplace transform of equation 3.25 we use the
identity (Bateman, 1954)

L−1

[
e−a
√
s2+ω2

i√
s2 + ω2

i

]
=


J0

(
ωi
√
t2 − a2

)
, for t > a

0, for 0 < t < a,

(3.26)
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where J0 is the zero-th order Bessel function. Let us define the function

I =
e−a
√
s2+ω2

i√
s2 + ω2

i

=

∫ ∞
a

J0

(
ωi
√
t2 − a2

)
e−stdt. (3.27)

We differentiate both sides of equation 3.27 with respect a, so that

dI

da
=

− ωia
∫ ∞
a

J
′
0

(
ωi
√
t2 − a2

)
√
t2 − a2

e−stdt− e−as = − exp

(
−a
√
ω2
i + s2

)
. (3.28)

We can use the identity J
′
0(x) = −J1(x), and substitute a by ti = z/cT to

obtain

exp

(
−ti
√
ω2
i + s2

)
= exp(−sti)− ωiti

∫ ∞
ti

J1

(
ωi
√
t2 − t2i

)
√
t2 − t2i

e−stdt. (3.29)

Now, introducing equation 3.29 into equation 3.25, we find that

Ψi(z, s) = a0(s) exp(−sti)− a0(s)ωiti

∫ ∞
ti

J1

(
ωi
√
t2 − t2i

)
√
t2 − t2i

e−stdt. (3.30)

Note that the z-dependence of the above function is ensured through the ex-
pression of ti, which was introduced to simplify the notation. Let us define the
function

Zi(z, t) = −ωiti
J1

(
ωi
√
t2 − t2i

)
√
t2 − t2i

H (t− ti) , (3.31)

where the H(t− ti) is the Heaviside step function defined as

H(t− ti) =


1, for t > ti

0, for 0 < t < ti,

With the help of the second shifting theorem applied in connection to the
first term on the right-hand side of equation 3.30, we obtain

a0(s) exp(−sti) = L [A0 (t− ti)H (t− ti)] . (3.32)
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As a result, equation 3.30 becomes

Ψi(z, s) = L [A0(t− ti)H(t− ti)] + L [A0(t)Zi(z, t)] . (3.33)

Using the convolution theorem, the second term in right-hand side of above
equation can be written as

L [A0(t)Zi(z, t)] = L
[∫ t

0

A0(t− τ)Zi(z, τ)dτ

]
. (3.34)

Since the original function Qi(z, t) can be determined as the inverse Laplace
transform of the function Ψi(z, s) given by equation 3.33, eventually we we
obtain

Qi(z, t) = A0 (t− ti)H (t− ti) +

∫ t

0

A0(t− τ)Zi(z, τ)d τ. (3.35)

3.4.2 Neutral-acoustic modes

The equation that describes the spatial-temporal evolution of these waves is
given by equation 3.17. It is clear that the evolution of these waves (described
by the left-hand side of equation 3.17 is driven by ions. In contrast to ions,
where in the first order of approximation the collisions with neutrals can be
neglected, in the case of neutrals the collisions with ions will play an essential
role, and this effect is described by the last term on the left-hand side of
equation 3.17. This equation is an inhomogeneous partial differential equation
and solutions can be obtained by determining the complementary solution and
a particular solution that is driven by the form of the inhomogeneous term.
The complementary solution can be obtained after solving the equation

∂2Qn

∂t2
− c2

Sn

∂2Qn

∂z2
+ Ω2

nQn + νni
∂Qn

∂t
= 0. (3.36)

The above equation is the well-known telegrapher’s equation that can be easily
reduced to a Klein-Gordon equation. Accordingly, let us introduce a new func-
tion so that Qn(z, t) = qn(z, t)e−νnit/2 As a result the equation that describes
the complementary solution of neutral-acoustic modes becomes

∂2qn
∂t2
− c2

Sn

∂2qn
∂z2

+

(
Ω2
n −

ν2
ni

4

)
qn = 0. (3.37)
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It can be shown that the quantity Ω2
n− ν2

ni/4 is always negative. Again, using
a normal mode analysis similar to the method employed in the case of ion-
acoustic modes, it becomes clear that neutral-acoustic modes propagate with
no cut-off.

Now, let us write the governing equation for the neutral-acoustic mode in
the form

∂2qn
∂t2
− c2

Sn

∂2qn
∂z2
− ω2

nqn =

=

(
−c

2
Snc

2
T

v2
A

∂2Qi

∂z2
+ νni

∂Qi

∂t
+ δQi

)
eνnit/2e−z/4γHn , (3.38)

where ω2
n = ν2

ni/4 − Ω2
n. Next, we apply the Laplace transform to the above

equation and denote the Laplace transform of the function qn as

Ψn(z, s) =

∫
qn(z, t)e−st dt.

Using the expression of Ψi(z, s) given by equation 3.25 we can write the gov-
erning equation for neutrals as

∂2Ψn

∂z2
− s2 − ω2

n

c2
Sn

Ψn = f(z, s), (3.39)

where, with the help of the shifting theorem, the inhomogeneous part, f(z, s)

is given by

f(z, s) =

{
− 1

v2
A

[(
s− νni

2

)2

+ ω2
i

]
+
νni
c2
Sn

(
s− νni

2

)
+

δ

c2
Sn

}
×

a0

(
s− νni

2

)
exp

[
−ti

√(
s− νni

2

)2

+ ω2
i −

z

4γHn

]
. (3.40)

The solution of the homogeneous part of the equation 3.39 that satisfies the
condition at infinity becomes

Ψhom
n = B1 exp

[
− z

cSn

√
s2 − ω2

n

]
, (3.41)

and the value of the constant B1 will be chosen such that its value will be the
Laplace transform of the driver at z = 0. For simplicity we will assume that
the waves associated to both fluids are initiated by the same driver, therefore
we will write B1 = a0(s).

To find the inverse Laplace transform of the homogeneous solution we use
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the identity (Bateman, 1954)

L−1

[
e−a
√
s2−ω2

n√
s2 − ω2

n

]
=


I0

(
ωn
√
t2 − a2

)
, for t > a,

0, for 0 < t < a,

where I0(x) is the modified Bessel function of order zero. Now let us define
the function

J =
e−a
√
s2−ω2

n√
s2 − ω2

n

=

∫ ∞
a

I0(ωn
√
t2 − a2)e−st dt. (3.42)

After differentiating the above function with respect to a, we obtain

dJ

da
= −e−a

√
s2−ω2

n = −aωn
∫ ∞
a

I ′0(ωn
√
t2 − a2)√

t2 − a2
e−st dt− e−as,

where dash denotes the derivative of the function I0(x) with respect to its
argument. Using the identity I ′0(x) = I1(x) and replacing a by tn = z/cSn we
obtain

exp
(
−tn

√
s2 − ω2

n

)
= ωntn

∫ ∞
tn

I1(ωn
√
t2 − t2n)√

t2 − t2n
e−stdt+ e−stn . (3.43)

It can be easily shown that in the low beta approximation ti ≈ tn/
√

2. Let us
define the function

Zn(z, t) = ωntn
I1(ωn

√
t2 − t2n)√

t2 − t2n
H (t− tn) .

As a result, the solution of the homogeneous part of the governing equation
for neutral-acoustic slow waves becomes

qn(z, s) = a0(s)e−stn + a0(s)L [Zn(z, t)] .

After applying the inverse Laplace transform and the convolution theorem, the
solution becomes

qn(z, t) = A0 (t− tn)H (t− tn) +

∫ t

0

A0(t− τ)Zn(z, τ) dτ. (3.44)

In order to determine the particular solution of the evolutionary equation
for neutrals, we will need to calculate the inverse Laplace transform of the
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expression

D(z, s) = a0

(
s− νni

2

)
K(s)e−z/4γHn exp

[
−ti
√

(s− νni/2)2 + ω2
i

]
, (3.45)

where the function K(s) is defined as

K(s) =
−βγ

4

[(
s− νni

2

)2
+ ω2

i

]
+ νni

(
s− νni

2

)
+ δ

s2 − ω2
n − c2

Sn

[
1

4γHn
+ 1

cT

√(
s− νni

2

)2
+ ω2

i

]2 .

The above relation shows that we will need to deal with the inverse Laplace
transform of a triple product, therefore we will use the triple convolution for-
mula. According to the standard definition if F (s), G(s) and H(s) are the
Laplace transforms of the functions f(t), g(t) and h(t), then

L−1 [F (s)G(s)H(s)] =

∫ t

0

[
f(t− τ)

∫ τ

0

g(τ − ζ)h(ζ)dζ

]
dτ.

Since the inverse Laplace transform of the exponential term in equation 3.45
has already been obtained (see equation 3.34), the only task here will be to
derive the inverse Laplace transform of the function K(s). This function has
two simple poles at the zeros of the denominator, therefore the inverse Laplace
transform can be obtained as the sum of the residues at the two poles. It is
easy to see that the denominator is singular at

Γ1,2 =
−νni ± G

1− g/2ωicT
, (3.46)

where

G =

[
ν2
ni −

(
2− g

ωicT

)(
Ω2
n −

g2

16c2
Sn

− ω2
i

2
− ωig

2cT

)]1/2

.

It can be shown that for typical chromospheric conditions G is real, there-
fore both roots, Γ1,2, are real and negative. As a result, the inverse Laplace
transform of the function K(s) becomes

L−1[K(s)] =
iπ (1− g/2ωicT )

G
eνnit/2

(
y1e

Γ1t − y2e
Γ2t
)
, (3.47)

with
yj = δ − βγ

4

(
ω2
i + Γ2

j

)
+ νniΓj, j = 1, 2.

Taking into account the inverse Laplace transform of all terms that appear in
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the expression of D(z, s) given by equation 3.45 after a lengthy, but straight-
forward calculation we can obtain the the particular solution of equation 3.38.
However, since the expression of the whole particular solution is far too long
and the expression of this solution will not be used in the present form, we
choose to give the detailed solution once the asymptotic expression for large
values of time is derived.

The asymptotic solution of these equations refers to the case of large values
of time, i.e. for values of time for which t � z/cT . Given the relationship
between the propagation speed of the two modes, this condition includes the
condition we impose for neutral-acoustic modes.

3.4.3 Oscillations driven by a sinusoidal pulse

We choose to drive the system (both species) with a harmonic pulse of the
form A0(t) = V0e

−iωt[H(t)−H(t− P )], where P = 2π/ω. This driver acts for
a duration P , after which is stopped. The driver acts at z = 0. In what follows
we are going to discuss separately the asymptotic solution for both species.

In the case of ion-acoustic modes the spatial and temporal evolution of the
reduced speed, Qi(z, t) is given by equation 3.35. Given the specific driver we
have

A0(t− ti) = V0[H(t− ti)−H(t− ti − P )]eiω(t−ti).

Since we are interested in the asymptotic behaviour of waves it is clear that
t � ti, which implies t � (ti + P ). As a result both Heaviside functions
become unity, and the first term of equation 3.35 becomes zero. Further, the
second term of equation 3.35 can be written as

Qi(z, t) = V0

∫ t

0

H(t− τ)e−iω(t−τ)Zi(z, τ)dτ−

−V0

∫ t

0

H(t− τ − P )e−iω(t−τ)Zi(z, τ)dτ.

It is clear that the first term cancels because all the values of τ have to be in
the interval (0, t), for which the Heaviside function is zero. Using the Heaviside
function, the reduced speed, Qi can be written as

Qi(z, t) = −V0

∫ t

t−P
e−iω(t−τ)Zi(z, τ)dτ.

In order to make analytical progress we will rewrite the convolutive integral
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such that ∫ t

t−P
. . . dτ =

∫ ∞
t−P

. . . dτ −
∫ ∞
t

. . . dτ.

In order to estimate the value of these integrals we should keep in mind that
the asymptotic analysis is valid provided t� ti or τ � ti for which the Bessel
function J1(x) for large arguments can be written as

J1(x) ≈ 2√
πx

[
cos

(
x− 3π

4

)
+O

(
1

x

)]
.

After some straightforward calculations (for details see Sutmann et al., 1998,
Appendix B) we eventually obtain

Qi(z, t) = V0

√
2ωi
π

1

ω2 − ω2
i

2ti
t3/2

sin

(
ωiP

2

)
×

[
ωi sin

(
ωi(t− P/2)− 3π

4

)
− iω cos

(
ωi(t− P/2)− 3π

4

)]
. (3.48)

Clearly this solution describes a wave whose transient part that oscillates with
the cut-off frequency, ωi, but this decays in time as t−3/2. As a result, an
observer situated at a given height, z0, would observe a damped slow wave
propagating with the cut-off frequency ωi and free oscillations (the steady
solution) are not present.

Now let us return to neutral acoustic modes, whose evolutionary equation
is given by equation 3.38. First, let us investigate the asymptotic form of
the homogeneous solution given by equation 3.44. Again, assuming the same
harmonic driver of the form A0(t) = V0e

−iωt[H(t)−H(t−P )] situated at z = 0

we have
qn(z, t) = V0e

−iω(t−tn)[H (t− tn)−H(t− P − tn)]+

+V0

∫ t

0

H(t− τ)e−iω(t−τ)Zn(z, τ) dτ−

− V0

∫ t

0

H(t− τ − P )e−iω(t−τ)Zn(z, τ) dτ. (3.49)

Similar to the discussion presented in the case of ion-acoustic slow modes
the contributions of the first two terms of the above equation are zero. As
a result after taking into account the restriction imposed by the Heaviside
function, the homogeneous part of the equation of qn is given by

qn(z, t) = −V0

∫ t

t−P
e−iω(t−τ)Zn(z, τ) dτ.
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Since we are investigating the asymptotic behaviour of waves for large values
of time, we can write that this corresponds to τ � tn, which means that our
equation reduces to

qn(z, t) = −V0e
−iωt

∫ t

t−P

I1 (ωnτ)

τ
eiωτ dτ. (3.50)

For large arguments the modified Bessel function can be written as

I1(ωnτ) ≈ eωnτ

(2πωnτ)1/2
.

Therefore the evolutionary equation for the homogeneous part of the governing
equation for neutrals becomes

qn(z, t) = −V0e
−iωt

√
2πωn

∫ t

t−P

e(ωn+iω)τ

τ 3/2
dτ. (3.51)

The integral in the above relation can be given approximately (see Appendix
A.1). As a result the evolution of the homogeneous part of qn(z, t) becomes

qn(z, t) = − V0(ωn − iω)eωnt

√
2πωnt3/2(ω2

n + ω2)

[
1− e(ωn+iω)P

]
, (3.52)

where we used the approximation

1

(t− P )3/2
≈
(

1 +
3

2

P

t

)
1

t3/2
=

1

t3/2
+O

(
t−5/2

)
. (3.53)

Now taking into account the relationship between qn(z, t) and Qn(z, t) we can
find that the homogeneous solution of the evolutionary equation for neutrals
becomes

Qhom
n = −V0

√
ωn
2π

ωn − iω
ω2
n + ω2

e(ωn−νni/2)t

t3/2
[
1− e−(ωn+iω)P

]
. (3.54)

Since νni/2 > ωn, it is clear that the above solution describes an evanescent
wave whose amplitude decays very rapidly due to collisions.

Finally, using the technique presented earlier, the inverse Laplace transform
of the inhomogeneous part of equation 3.45 that gives the particular solution
of equation 3.38 is

Qinh
n (z, t) =

A2A3V0

t3/2
×
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[
(ω sin Φ1 − iωi cos Φ1)

(
y1Γ1

Γ2
1 + ω2

i

− y2Γ2

Γ2
2 + ω2

i

)
−

−(ω sin Φ2 − iωi cos Φ2)

(
y1Γ1e

Γ1P

Γ2
1 + ω2

i

− y2Γ2e
Γ2P

Γ2
2 + ω2

i

)
−

−ωi(ω cos Φ1 − iωi sin Φ1)

(
y1

Γ2
1 + ω2

i

− y2

Γ2
2 + ω2

i

)
+

+ωi (ω cos Φ2 − iωi sin Φ2)

(
y1e

Γ1P

Γ2
1 + ω2

i

− y2e
Γ2P

Γ2
2 + ω2

i

)]
, (3.55)

where we used the notations

A2 =
πe−z/4γHn (1− g/2ωicT ) sin (ωiP/2)

G
,

A3 =

√
2ωi
π

2

ω2 − ω2
i

ti,

Φ1 = ωi

(
t− P

2

)
− 3π

4
, Φi = ωi

(
t− 3P

2

)
− 3π

4
.

In contrast to the homogeneous solution, the particular solution shows a de-
caying oscillatory motion with the cut-off frequency of ions. This behaviour
is a consequence of the coupling between neutrals and ions, where ions pro-
vide the oscillatory background for neutrals and the oscillatory behaviour of
neutrals is driven by ions via collisions.

3.4.4 Oscillations driven by a monochromatic driver

We choose to drive the system (both species) with a harmonic and monochro-
matic source of the form A0(t) = V0e

−iωt situated at z = 0. In what follows
we are going to discuss separately the asymptotic solution for both species.

In the case of ion-acoustic modes the spatial and temporal evolution of the
reduced speed, Qi(z, t) is given by equation 3.35. In order to make analytical
progress we will rewrite the convolutive integral such that∫ t

0

. . . dτ =

∫ ∞
0

. . . dτ −
∫ ∞
t

. . . dτ.

As a result the expression of Qi(z, t) is given by

Qi(z, t) = V0

[
e−iω(t−z/cT )H

(
t− z

cT

)
− I1 + I2

]
, (3.56)
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where the quantities I1 and I2 are given by

I1 = C0

∫ ∞
0

J1

(
ωi
√
τ 2 − z2/c2

T

)
√
τ 2 − z2/c2

T

H

(
t− z

cT

)
eiωτdτ,

I2 = C0

∫ ∞
t

J1

(
ωi
√
τ 2 − z2/c2

T

)
√
τ 2 − z2/c2

T

H

(
t− z

cT

)
eiωτdτ.

In the above relations C0 = ωi(z/cT )e−iωt. In order to estimate the value of I1

we make use of the properties given by equation 3.21 and obtain that

I1 = e−iωt
[
e−iωz/cT − e−i

√
ω2−ω2

i z/cT
]
. (3.57)

In order to estimate the value of I2 we should keep in mind that the asymp-
totic analysis is valid provided t � z/cT or τ � z/cT . In addition, the value
of the Bessel function J1(x) for large arguments can be written as

J1(x) ≈ 2√
πx

[
cos

(
x− 3π

4

)
+O

(
1

x

)]
.

After some straightforward calculations (for details see Sutmann et al., 1998,
Appendix B) we can obtain that

I2 =

√
2ωi
π

1

ω2 − ω2
i

z

cT

1

t3/2

[
ωi sin

(
ωit−

3π

4

)
+ iω cos

(
ωit−

3π

4

)]
. (3.58)

Introducing the values of the integrals into the expression of Qi(z, t) given
by equation 3.56, we eventually obtain

Qi(z, t) = V0e
−i

(
ωt−
√
ω2−ω2

i z/cT

)

+ V0

√
2ωi
π

1

ω2 − ω2
i

z

cT

1

t3/2

[
ωi sin

(
ωit−

3π

4

)
+ iω cos

(
ωit−

3π

4

)]
. (3.59)

Clearly this solution describes a wave whose steady part oscillates with
the driving frequency, ω, and a transient part that oscillates with the cut-off
frequency, ωi, but this decays in time as t−3/2. As a result, an observer situated
at a given height, z0, would first observe a slow wave propagating with the
frequency ω and a speed cT followed by a wake with decaying amplitude. The
amplitude of the wake is always smaller than the amplitude of the wave itself.

Now let us return to neutral acoustic modes, whose evolutionary equation
is given by equation 3.38. First, let us investigate the asymptotic form of
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the homogeneous solution given by equation 3.44. Again, assuming the same
harmonic driver of the form A0(t) = V0e

−iωt situated at z = 0 we have

qn(z, t) = V0e
−iω(t−z/cSn)H

(
t− z

cSn

)

+D0

∫ ∞
0

I1

(
ωn
√
τ 2 − (z/cSn)2

)
√
τ 2 − (z/cSn)2

eiωτH (t− (z/cSn)) dτ, (3.60)

where,

D0 =
V0ωnz

cSn
e−iωt.

Since we are investigating the asymptotic behaviour of waves for large
values of time, we can write that this corresponds to τ � z/cSn, which means
that our equation reduces to

qn(z, t) = V0e
−iωt +D0

∫ t

z/cSn

I1(ωnτ)

τ
eiωτdτ. (3.61)

For large arguments the modified Bessel function can be written as

I1(ωnτ) ≈ eωnτ

(2πωnτ)1/2
.

Therefore the evolutionary equation for the homogeneous part of the governing
equation for neutrals becomes

qn(z, t) = V0e
−iωt +

D0√
2πωn

∫ t

z/cSn

e(ωn+iω)t

τ 3/2
dτ. (3.62)

The integral in the above relation can be given approximately (see Appendix
A.2). As a result the evolution of the homogeneous part of qn(z, t) becomes

qn(z, t) = V0e
−iωt +

D0(ωn − iω)√
2πωn(ω2

n + ω2)

[
e(ωn+iω)t

t3/2
− e(ωn+iω)z/cSn

(z/cSn)3/2

]
. (3.63)

Now taking into account the relationship between qn(z, t) and Qn(z, t) we can
find that the homogeneous solution of the evolutionary equation for neutrals
becomes

Qhom
n = V0e

−νnit/2e−iωt + V0

√
ωn
2π

z

cSn

ωn − iω
ω2
n + ω2

×
[
e(ωn−νni/2)t

t3/2
− (eωnz/cSn−νnit/2e−iωt)

(z/cSn)3/2

]
. (3.64)
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It is clear that although the above solution describes a wave that oscil-
lates with the driving frequency, ω, its amplitude decays very rapidly due to
collisions.

Finally, the inhomogeneous part of the solution can be found by using the
results shown in Appendix A.3, which has to be transformed according to the
relationship between qn(z, t) and Qn(z, t). As a result, the particular solution
of the evolutionary equation for neutrals becomes

Qinh
n (z, t) =

iA2V0 [δ − βγ/4(1 + 2Γ2
1)] e−iωz/cT

P1 + iωi

[
eΓ1t − e−iωte−νnit/2

]
e
√
ω2−ω2

i z/cT

−iA2V0 [δ − βγ/4(1 + 2Γ2
2)] e−iωz/cT

P2 + iωi

[
eΓ2t − e−iωte−νnit/2

]
e
√
ω2−ω2

i z/cT

−iA2V0A3ωi
P 2

1 + ω2
i

[
δ − βγ

4
(1 + 2Γ2

1)

]{
e−νnit/2

t3/2

[
P1 sin

(
ωit−

3π

4

)
− ωi cos

(
ωit−

3π

4

)]

− eΓ1t

(z/cT )3/2

[
P1 sin

(
ωi
z

cT
− 3π

4

)
− ωi cos

(
ωi
z

cT
− 3π

4

)]}

+
A2A3V0ω

P 2
2 + ω2

i

[
δ − βγ

4
(1 + 2Γ2

2)

]{
e−νnit/2

t3/2

[
P2 cos

(
ωit−

3π

4

)
− ωi sin

(
ωit−

3π

4

)]

− eΓ2t

(z/cT )3/2

[
P2 cos

(
ωi
z

cT
− 3π

4

)
− ωi sin

(
ωi
z

cT
− 3π

4

)]}
. (3.65)

Similar to the homogeneous solution, the particular solution also shows
an oscillatory pattern with a very rapid decay of the amplitude due to colli-
sions. These solutions will be investigated numerically in the next section for
particular solar atmospheric values.

3.5 Application to solar atmosphere

In what follows we are going to analyse our results assuming typical solar
chromsopheric values for density and temperature. For magnetic field we as-
sume a field strength of 10 G throughout all our investigations.

In order to estimate key parameters that are important for our calcula-
tions we are going to consider that the plasma has a temperature of T = 104

K and the number densities of ions and neutrals are ni = 2 × 1015 m−3 and
nn = 2 × 1013 m−3. With these parameters we can estimate that the charac-
teristic speeds will be cSi = 16.6 km s−1, cSn = 11.7 km s−1 and vA = 450 km
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s−1, which would result in a plasma-β = 1.7 × 10−3 and a cusp speed on the
charged fluid cT = 15.58 km s−1. For the given density and temperature values
the collisional frequency between neutrals and ions can be determined with the
help of equations 2.6 and 3.8 and results in νni = 10.48 s−1. Finally, the grav-
itational scale-heights connected to ions and neutrals in thermal equilibrium
become Hi = 2Hn = 0.5 Mm.

Our analysis showed that ion-acoustic modes propagate in the stratified
plasma such that their frequency is affected by a cut-off value. Using the
definition of this quantity given by equation 3.16 we obtain that for the repre-
sentative temperature we have chosen, ωi ≈ 0.015 Hz and it varies as T−1/2 (we
should mention here that the value of the cut-off we would obtain for a fully
ionised plasma for the same values of temperature and magnetic field, would be
almost identical with the above value thanks to the strongly ionised limit em-
ployed by us). In addition, the variation of the cut-off frequency with respect
to plasma-beta shows a very weak dependence. It is interesting to note that
Leake et al. (2005) found that Alfvén waves have a cut-off frequency of 0.6 Hz.
As we proved earlier in Section 3.4.2, neutral-acoustic modes propagate with
no cut-off frequency, however employing a normal mode analysis (i.e. assume
that perturbations are proportional to the exponential factor ei(kz−ωt) the ho-
mogeneous part of equation 3.38 reduces to ω2 = k2c2

Sn−ω2
n, so the requirement

of propagating wave (ω2 > 0) means that in the case of neutral-acoustic waves
the condition k > ωn/cSn ≈ νni/2cSn has to be satisfied (here the stratification
effects are much smaller). Since ωn depends on collisional frequency, the wave-
number cut-off will be influenced by collisions. For the values of characteristic
speeds and collisional frequency determined earlier neutral-acoustic waves will
propagate provided their wavenumber is larger than 5 × 10−4 m−1, or their
wavelength is shorter than 1.25 × 104 m. Clearly, such small wavelengths are
impossible to observe with the current observational facilities. That is why ob-
servations can detect only one mode (connected to the charged species), while
the neutral-acoustic modes remain sub-resolution modes. Such condition con-
nected to wavenumbers is not imposed on ion-acoustic modes, for these waves
the only restriction remains that their frequency has to be larger than the
cut-off frequency ωi.

If the above conditions are not satisfied, neutral-acoustic modes are be-
coming non-propagating entropy modes, i.e. modes whose frequency is purely
imaginary. In the case of these modes all perturbations are zero, except density
and temperature perturbations in such a way that the pressure perturbation is

77



constant. Entropy modes owe their existence to the collisions of neutrals with
ions in strongly ionised limit and they play important role in the development
and evolution of turbulences in the presence of small spatial scales (see, e.g.
Lithwick and Goldreich, 2001; Soler et al., 2013b).

Now let us return to the study of the temporal evolution of the two waves.
For that we are going to fix the value of height and study the temporal evolution
of the reduced velocity for the two waves.

3.5.1 Excitation by a sinusoidal pulse

In Figure 3.2 we plot the temporal evolution of neutral-acoustic (solid line) and
ion-acoustic (dashed line) slow mode at a given height (z = 4 Mm) as given
by the real parts of equations 3.48 and 3.55. Due to the coupling between the
two species, both waves oscillate with the same frequency ωi. It is clear that
the neutral-acoustic mode has a larger amplitude and decays slower than the
corresponding ion-acoustic modes. The two modes are excited at the z = 0

level with the driving frequency ω = 0.1 Hz. Since the lifetime of the driver
is limited (here chosen to be P = 20π s), the free oscillations associated with
the two species are absent, instead both slow modes attenuate. However, we
should keep in mind that this attenuation is not due to physical damping (here
collisions), instead it is due to dispersion and expansion of the cross section of
the magnetic flux tube.

3.5.2 Excitation by monochromatic driver

In Figure 3.3 we plot the temporal evolution of ion-acoustic slow mode at a
given height (z = 4 Mm) as given by the real part of equation 3.59. Here the
blue line correspond to the first term of this equation and describes a harmonic
change of the amplitude of oscillations. This part of the reduced velocity
Qi(z, t) oscillates with the driving frequency chosen to be ω = 0.1 Hz. As we
described earlier based on a phenomenological approach, indeed this part of
the solution oscillates harmonically with no damping, which is a consequence
of a constant driving of waves. The red curve represents the second term of
the solution and it shows a very small amplitude oscillations with rapid decay.
Obviously, an observer would see the combined effects of these two modes.
Since for the chosen atmospheric parameters the two oscillations are in anti-
phase, an observer at the chosen height will see an increasing amplitude wave
oscillating with a frequency that is combination of the driving frequency and
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Figure 3.2: The temporal evolution of neutral-acoustic (solid lines) and ion-
acoustic (dashed lines) modes at z = 4 Mm. The slow sausage modes as-
sociated with the two species is driven by a sinusoidal pulse of lifetime P .
Both slow modes oscillate with the ion cut-off frequency, ωi. For an observer
situated at the observational height of 4 Mm, wave-like behaviour will be ob-
servable only after the delay time ti = z/cT . The delay time is shown here as
a horizontal straight line.

cut-off frequency, followed by a steady oscillation with the frequency ω.
The asymptotic evolution of the slow sausage mode associated to the neu-

tral species is given by equations 3.64 and 3.65. Since these equations contain
an exponentially decaying solution with a damping time of Td = νni/2 valid for
large values of time, these slow sausage modes will undergo a very rapid decay
and their temporal evolution will not be plotted as the amplitudes (even after
returning to the original variable, vn(z, t)) we are dealing with are infinitesi-
mally small. This result has serious consequences for observations of waves in
the chromosphere, where the degree of plasma ionisation is high. While the
slow sausage mode associated to ions has a clear and observable behaviour,
the slow sausage modes associated to neutrals become undetectable. This be-
haviour is likely to remain similar in the case of other kinds drivers that could
be imposed at z = 0.
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Figure 3.3: The temporal evolution of ion-acoustic modes at z = 4 Mm. The
blue curves denote oscillations at the driving frequency. The red curve repre-
sents the oscillation of the wake with the cut-off frequency, ωi. For comparison
purposes the amplitude of the wake has been multiplied by a factor of 100.

3.6 Conclusions

The present Chapter was devoted to the investigation of the temporal and spa-
tial evolution of slow sausage waves propagating in an expanding magnetic flux
tube in a gravitationally stratified atmosphere. The plasma temperatures are
typical for the solar chromosphere, where the ionisation degree of the plasma
is high, nevertheless the plasma is not fully ionised. Given the very different
concentration of neutrals and charged species, the ratio between neutral and
charged density is very small and this ratio was used as a small parameter in
deriving the evolutionary equation for waves. The plasma was assumed to be
isothermal, which implies that all characteristic speeds are constant quantities.

The evolutionary equation for slow sausage waves associated with the two
species was derived in the linear limit. While the equation for waves associated
with the charged particles is described by a Klein-Gordon equation, for neutrals
this becomes the telegrapher’s equation. Given the plasmas’s high degree of
ionisation the collisions have different role for the two species. For ions the
collision with neutrals is just a secondary effect (and proportional to the density
ratio between neutrals and ions). As a result the equation for ions (in the

80



leading order) is not affected by collisions. In contrast, the equation for the
neutrals species is strongly affected by the collisions between neutrals and ions,
causing a strong decay of waves. While the ion-related waves propagate with a
cut-off frequency, neutral sausage modes propagate with no frequency cut-off
thanks to the collisions between species. In contrast, propagating slow waves
associated to neutrals are possible only for wavelengths that are shorter than
12.5 km, that is they are small wavelength waves.

The evolutionary equations have been solved as an initial value problem,
imposing a oscillatory pulse and a monochromatic driver and an atmosphere
that is unbounded in the z direction. We considered the situation when the sig-
nal has already passed through the atmosphere (i.e. we performed an asymp-
totic analysis valid for t � z/cT ), which implies that an observer would just
observe the wake left behind the pulse. This wake oscillates with the cut-off
frequency of the ion population. In other words, steady oscillations are ex-
cluded, and the system will oscillate with the transient part of the solution
that decays as t−3/2. This result is similar to the findings of Kalkofen et al.
(1994) and Sutmann et al. (1998).

Slow sausage waves associated with neutrals propagate with no cut-off but
given the high degree of coupling with ions, these will impose on neutrals the
same behaviour, i.e. the transient solution of neutral slow wave oscillate with
the same ion-related cut-off frequency and show the same temporal damping
pattern as in the case of ions. It is very likely that in strongly ionised plasmas
these waves will have a very rapid decay, even in the absence of the simplifica-
tions we imposed to the employed model. That would mean that any possible
observation of these waves has to be carried out in an environment where the
ionisation degree is moderate. The presence of the cut-off frequency for ion-
acoustic waves also implies that for a driving frequency smaller than the cut-off
frequency, the ion-acoustic mode becomes evanescent (exponentially decaying),
while the slow waves associated with neutrals will still propagate unaffected.
This has large ranging consequences for observation of waves in the solar at-
mosphere. Finally we should mention that when oscillations are driven by a
sinusoidal pulse, whose frequency is identical with the ion cut-off frequency,
the slow sausage modes associated to the two species will not propagate as
these are free oscillations (for details see, e.g. Sutmann et al., 1998).

Any attempt to describe wave propagation in a different plasma and field
environments would require a detailed numerical analysis of the coupled system
of charged particles and neutrals
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CHAPTER 4

Waves in weakly ionised solar plasmas 1

4.1 Introduction

Study of waves and oscillations in the solar atmosphere received new impetus
in the last few decades thanks to a plethora of high-resolution observations
showing plasma dynamics on all sort of spatial and temporal scales. Waves
proved to be an essential tool for plasma and magnetic field diagnostics when
combining theoretical results (dispersion relations, evolutionary equation, po-
larisation of waves, etc.) with observations (wavelengths, periods, damping
time and length, etc.) similar to the seismological techniques on Earth. The
solar atmospheric seismology aims to obtain values for physical parameters
that cannot be directly or indirectly measured, such as the magnitude and the
(sub)resolution of the magnetic field, plasma density, transport coefficients,
heating/cooling functions, etc.

In recent years there was a substantial surge in the number of studies of
waves where the plasma was considered to be partially ionised, describing a
situation one can meet in the lower part of the solar atmosphere where the
temperature is not high enough to ensure a complete ionisation of the plasma.
In such plasmas the governing equations describing the dynamical and thermo-
dynamical state of the plasma requires a multi-fluid approach, where particles
interact via collisions and the frequencies at which changes occur are com-
parable to the collisional frequencies of particles (Zaqarashvili et al., 2011b;
Khomenko et al., 2014a). A multi-fluid approach not only increases consid-
erably the number of equations (and so the number of waves present in such
plasmas) and the complexity of the mathematical description, but also involves
some physical aspects that cannot be recovered in a single fluid approximation
(e.g. existence of cut-offs, forbidden propagation regimes, plasma filamenta-

1This Chapter is based on a paper (Alharbi et al., 2022), submitted for publication to
MNRAS
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tion, etc.).
The study of waves and instabilities in partially ionised plasmas has shed

light on the effect of interaction between particles on the nature and proper-
ties of waves, and on the onset and evolution of instabilities. In this respect
Zaqarashvili et al. (2011b), Soler et al. (2013b) and Braileanu et al. (2019)
studied the propagation of magnetoacoustic waves in two-fluid plasma, where
the two components are the charged particles (positive ions and electrons) and
neutrals. Their results showed that in this configuration waves are affected by
the collision between particles, leading to a damping of waves. In addition,
when considering chromospheric conditions, these studies found that magne-
toacoustic waves with wavelengths smaller than 1 km are affected by two-fluid
effects in regions with intense magnetic fields, while much shorter wavelengths
have to be considered for these effects to be relevant in quiet Sun conditions.

The same two-fluid model has been also considered when analysing Alfvén
waves by Soler et al. (2013a). These authors found that similar to magnetoa-
coustic modes, Alfvén waves are also strongly influenced by the collision be-
tween particles and the damping of these modes is most efficient when the wave
frequency and the collision frequency are of the same order of magnitude. The
effect of heavy particles (He atoms) and stratification on the propagation of
torsional Alfvén waves was investigated by Zaqarashvili et al. (2013) and their
results show that shorter-period (< 5 s) torsional Alfvén waves damp quickly
in the chromospheric network due to ion-neutral collision, while longer-period
(> 5 s) waves do not reach the transition region as they become evanescent at
lower heights in the network cores, meaning that stratification of the plasma
has a filtering effect on wave propagation.

The partially ionised solar plasma in the lower part of the solar atmosphere
is a very dynamical environment, where the chemical composition of the plasma
can change over time scales comparable with the temporal characteristic of
waves due to additional ionisation and recombination. These processes confer
the plasma a non-equilibrium state. Waves in such plasmas have been modelled
numerically and analytically (e.g. Maneva et al., 2017; Ballai, 2019; Braileanu
et al., 2019; Zhang et al., 2021) showing that the propagation of waves and the
process of plasma heating is seriously affected by non-equilibrium effects. For
a comprehensive review on the property of waves in partially ionised plasma
(see, e.g. Ballester et al., 2018a).

In Chapter 3 we have studied the propagation of guided slow sausage waves
in the presence of gravitational stratification in the solar chromosphere, where
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the ionisation degree is high. There we used a two-fluid model (neutrals and
charged particles), and the small value of the density ratio between neutrals
and ions was employed as an expansion parameter. Considering an initial
value problem, our analysis showed that while ion-acoustic modes possessed
an acoustic cut-off, the slow mode associated with neutrals propagated with
no cut-off frequency and the absence of this value was due to the collisions
between neutrals and ions.

The above studies considered a two-fluid approach, however, their model
choice was not always justified within the framework of solar and space plas-
mas. In many investigations listed earlier the collisional frequency was con-
sidered a free parameter and the analysis focused on the investigation of wave
properties when the collisional frequency was varying between the collision-
free case and a regime completely dominated by collisions. While such in-
vestigations are important to analyse the variation of wave properties over a
large parametric space, these have a rather restricted connectivity to real so-
lar physics applications. In the present study we plan to apply observational
constrains and construct our model on realistic background.

Our research can be considered to be a continuation (or complementary) of
the study described by Chapter 3, but now we focus on the study of waves in
weakly ionised limit, corresponding to the lower part of the solar atmosphere.

We will start by constructing our working environment using standard solar
atmospheric models and investigate the key properties that are important for
our purposes. Later we will introduce the mathematical formalism together
with assumptions that are based on observational facts aimed to simplify our
treatment as much as possible, yet describing a realistic physical situation. The
governing equations describing the evolution of waves are solved and analysed
for a simple configuration to elucidate the role of gravitational stratification
in the process of wave propagation. A normal mode analysis is employed
different frequency regimes in order to study the properties of waves and their
propagation characteristics.

4.2 Model restrictions

In order to correctly describe the evolution of waves and their properties, we
will need to impose a few physical restrictions derived from observations. The
lower part of the solar atmosphere is a layer of the solar atmosphere which is
characterised by relatively low temperatures and high densities. This means
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that here the plasma is weakly ionised. Various solar atmospheric models
predict a ratio of neutral number density to ions of the order of 104 (for details
see Chapter 3). Since we assume a quasi-neutral hydrogen plasma, the above
statement also means that the ratio between the number density of neutrals
and electrons is equally very high.

During their motion particles interact through short and long-range colli-
sions, during which the plasma can be thermalised and effective momentum
transfer can take place. While electrons have much lower mass than ions and
neutrals and they do not contribute significantly to the process of momentum
and energy transfer, however, their interaction with massive particles (neutrals
and ions) is important because any thermal inhomogeneity will be smoothed
out through the electron collisions. Given the high density of particles in the
solar photosphere, collisions will play a very important role.

Another important ingredient in our analysis is the magnetic field. The
region of our interest corresponding to low level of ionisation, is the region
whose magnetic field, its properties and structure, was determined and mea-
sured most reliably using various techniques (e.g. spectroscopic measurements,
the Zeeman and Hanle-effects, etc.). The magnetic field in the solar photo-
sphere takes various forms. The most prominent structures dominating the
active regions and the network are the sunspots and pores (appearing as dark
regions), that have field strengths of a few kG. In addition, the quiet Sun is
permeated by a weaker field, often forming structures such as small-scale Ω

loops, U -loops and turbulent field. Although such features are found every-
where in the photosphere, they are most typical for the quiet Sun, in particular
the interiors of supergeranular cells, the internetwork (for a review of the quiet
Sun magnetism see, e.g. Almeida, 2003; Khomenko, 2006; Trujillo Bueno et al.,
2006; Title, 2007; Solanki, 2009). In our study we will focus on weaker field
regions and assume a simple variation of the magnetic field with height.

The formulaic variation of the magnetic field with height is an open question
and this depends very much on the nature of the magnetic structure we would
like to investigate. Applying the thin flux-tube model and pressure balance
equation, Khomenko et al. (2015) proposed a magnetic field variation law with
height of the form

B0(z) = B0(0) exp
[
− z

600

]
, (4.1)

where B0 is the magnetic field at z = 0 reference level and the height, z,
is measured in km. We should mention here that the choice of the above
dependence is somehow arbitrary. Using the same considerations Vranjes and
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Krstic (2013) proposed a height variation where the e-folding length was 250
km. The same thin flux tube principle was used by Goodman (2000) who,
inspired by a series of considerations made by Parker (1979), assumed a height
dependence of the magnetic field of the form

B(z) = B0(0) exp[−Γ(z)],

where
Γ(z) =

mig

2kB

∫ z

0

dz′

T (z′)
,

with mi being the ion mass and T (z) the height-dependent temperature.
Finally, Pillet et al. (1997) proposed a height variation of the magnetic field

above the plage region of the form

B(z) = B0(0)

[
ρ(z)

ρ(0)

]a
,

where the value of the constant a is taken to be 0.3 and ρ(0) is the density
at height z = 0. While the first two relations give an empirical dependence
on the height, the last two equations connect the variation of the magnetic
field with height to the variation of the temperature and density, respectively.
In our study we are going to use the relation proposed by Khomenko et al.
(2015) assuming a 100 G magnetic field at the z = 0 level. At the z = 2 Mm
chromospheric height this model predicts a magnetic field of 3.57 G.

With the values of the magnetic field determined using equation 4.1 we can
determine the values of the electron and ion gyro (or cyclotron) frequencies
defined earlier (see equations 2.1 and 2.2).

The cyclotron frequencies are the frequencies at which the charged particles
gyrate around the magnetic field lines and these are going to play an important
role in the determination of the nature of the dynamics. The variation of these
two important quantities with height is shown in Figure 4.1 by solid green and
black lines, respectively (on logarithmic scale). It is clear that in the case of
both species the gyro-frequency decays with height.

The second key physical ingredient of our problem is the collision between
particles. While collisions between neutral and charged species is a short-
range collision (head-on), the collision between charged particles, is a long-
range collision, controlled by electrostatic forces. As before, we are going
to determine the characteristic values of collisional frequencies based on the
tabulated values of number densities of particles and temperature given by
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Figure 4.1: The variation of the collisional frequency of various particles and
gyro-frequencies with height based on the VAL III atmospheric model (Ver-
nazza et al., 1981). The purple vertical lines are showing the locations where
the collisional frequencies of electrons and ions cross the electron and ion gyro-
frequencies and these delimitate regions in the solar atmosphere with different
dynamics.

the VAL IIIC model (Vernazza et al., 1981). The collisions between various
particles are important as these processes ensure an effective transfer of energy
and momentum between species, and provide a mechanism for thermalisation
of the plasma.

Let us assume that the collision between particles are elastic and no further
ionisation/recombination, excitation and charge exchange take place. Consid-
ering species having the same temperature, the binary collisional frequencies
between species was given as earlier by equation 2.3.

Clearly, due to the height variation of the number densities and tempera-
tures, the collisional frequencies between the three species will also vary with
height. To illustrate this we employ the VAL III model (Vernazza et al., 1981)
and we plot the total collisional frequencies of particles together with the gyro-
frequencies of charged particles with height (see Figure 4.1). In this figure
the total collisional frequency denote the collisional frequency of a particular
species with the other two species, e.g. νi = νie + νin. The lines corresponding
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to the electron, ion and neutral total collisional frequencies are shown by red,
yellow and blue solid lines, respectively.

Figure 4.1 constitutes the physical background of the investigation pre-
sented here. We can clearly identify several regions will distinct physics gov-
erning the evolution of the plasma (the boundaries of these regions are shown
by the purple vertical lines). First of all below heights of approximately 600
km, (Region I) covering the extent of the whole photosphere, the collisional fre-
quencies of both charged species are larger than the gyro-frequencies of both
electrons and ions, meaning that in this region particles collide many times
within a gyro-period, so magnetic effects can be neglected. In the absence of
magnetic forces particles have a simple Brownian motion and the dynamics
can be described within the framework of usual hydrodynamics. Above this
height (Region II), up to approximately 1900 km, both the collisional frequency
of charged species become smaller than the electron gyro-frequency, but they
are still larger than the ion gyro frequency, meaning that electrons become
magnetised, however, ions are still non-magnetised and they are collisionally
coupled to neutrals. That implies that magnetic forces affect only the motion
of electrons. Finally, above the height of 1900 km the collisional frequency
of both charged species becomes smaller than the ion gyro-frequency, mean-
ing that ions also become magnetised. For completeness, electrons remains
unmagnetised as long as the magnetic field is below the critical value

Bc ≤
2πνeme

e
.

Considering a characteristic electron-neutrals collisional frequency of 1.5×1010

Hz, the critical magnetic field takes the value of 5.5 kG. Since such magnetic
fields are unrealistically high in the quiet solar photosphere, our working frame-
work is valid for any magnetic field. Sunspots are known to have kG magnetic
fields, however, there the atmospheric model employed by us is not applica-
ble. The solar photosphere is the region of the solar atmosphere where one
can have not only very intense magnetic fields (e.g. sunpots and pores are
typical examples where field strength is of the order of a few kG), but also a
remnant quiet Sun magnetic field of the order of a few tens of G (Ballai and
Forgács-Dajka, 2010).

Another key aspect that can be derived from variation of collisional fre-
quencies of electrons with height (see Figure 4.2) is that starting from the low
chromosphere electrons are much more tightly coupled to ions than to neutrals.
As a consequence the charged particles can form a single fluid that can interact
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Figure 4.2: The variation of the collisional frequency of electrons with ions
(νei, blue line) and electrons with neutrals (νen, red line) with height based on
a VAL IIIC solar atmospheric model (Vernazza et al., 1981)

with the neutral fluid. Below this height, the collisional frequencies of elec-
trons and the other species are close to each other, meaning that the plasma
dynamics can be described within the framework of a three-fluid plasma.

On the other hand, in Region II electrons are magnetised, however, the
collision of electrons with ions and neutrals will not change the dynamics of
the system, when the frequency domain is restricted to frequencies of the order
of ion-neutral collisional frequency, i.e. the frequency regime described by a
two-fluid approximation, where ions and electrons are strongly coupled and
form a charged fluid that interacts with the neutral fluid.

Given the relatively low temperature of the lower solar atmosphere, the
gravitational scales heights might be comparable with the wavelength of waves,
meaning that gravitational stratification could play an important role in the
propagation of waves. This aspect will be elucidated later in this paper.

In Chapter 2 we found that a multi-temperature plasma can reach thermal
equilibrium very fast, therefore, all sound speeds will be considered equal. In
a uni-thermal plasma the sound speeds associated to different species will be
equal.
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4.3 Governing Equations and Assumptions

The dynamics of waves studied in this paper can be described within the
framework of a multi-fluid MHD approximation, where the governing equations
describe conservation laws for each species (electrons, ions, neutrals) denoted
by the index α (α = e, i, n). In the absence of magnetic forces, equations (2.8),
(2.9) and (2.11) reduce to

∂ρα
∂t

+∇ · (ραvα) = 0, (4.2)

ρα
dvα
∂t

+∇pα = ραg +
∑
α′ 6=α

Pαα′ + F , (4.3)

d

dt

(
pα
ργα

)
= 0, (4.4)

where F represents any other force that will be introduced later in Section
4.4, ρα, vα and pα are the density, velocity vector and pressure of species
α, γ is the adiabatic index, and Pαα′ represents the longitudinal momentum
transfer between species α and α′ (given by equation 2.10), and the summation
is made for α′ 6= α. We should note that, under normal circumstances, the
above energy equations should contain a heating term due to collisions between
particles, however, these terms are proportional to the squares of velocities (i.e.
nonlinear).

4.4 Waves in weakly ionised plasmas

Based on the complex picture revealed by Figure 4.1, it is natural to divide
the region containing weakly ionised plasma in different regimes and study the
properties of waves for each separate case.

4.4.1 Waves in Region I

The spatial extent of this region is determined by the condition νe > ΩBe. For
the chosen magnetic field profile, this region covers the whole photosphere. The
fact that magnetic effects can be neglected when concentrating on the dynamics
of waves in weakly ionised photospheric plasma, considerably simplifies the
modelling because the only waves that can propagate are the acoustic modes.
In the present study we are going to study only linear waves, therefore all
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governing equations will be linearised.
Since, in the first instance, we would like to elucidate the importance of

gravity and the effects connected to this important ingredient, we are going
to concentrate on one-dimensional dynamics and consider that perturbations
propagate vertically, against the gravitational field. That is why the dynamics
of waves in the three-fluid plasma will be given by the linearised system of
equations 4.2–4.4 as

∂ρα
∂t

+
∂

∂z
(ρ0αvα) = 0, (4.5)

ρ0α
∂vα
∂t

+
∂pα
∂z

+ ραg =
∑
α′ 6=α

Pαα′ , (4.6)

∂pα
∂t

+ vα
dp0α

dz
= c2

S

(
∂ρα
∂t

+ vα
∂ρα
∂z

)
. (4.7)

As before, the quantities with an index ’0’ denote equilibrium values. Since
we consider uni-thermal plasma, the sound speeds for all three species will be
equal, therefore we will drop the index α from the sound speeds. The quantities
Pαα′ refer only to the longitudinal transfer of momentum between species and
the velocity vα refers to the vertical component of velocity.

Now let us discuss in details the momentum transfer for each species using
equation 2.10. In the case of neutrals, the transfer of momentum will have two
terms corresponding to the collision of neutrals with electrons and with ions.
Accordingly we have

Pne = −8

3

√
2nennme

(
kBT

πme

)1/2

σne(vn − ve), (4.8)

Pni = −8

3
nnnimi

(
kBT

πmi

)1/2

σni(vn − vi). (4.9)

For ions the relevant momentum transfer terms become

Pin = −8

3
nnnimi

(
kBT

πmi

)1/2

σin(vi − vn), (4.10)

and

Pie = −8

3

√
2nineme

(
kBT

πme

)1/2

σie(vi − ve). (4.11)

Finally, for electrons these expressions become

Pen = −8

3

√
2nennme

(
kBT

πme

)1/2

σen(ve − vn), (4.12)
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and

Pei = −8

3

√
2nenime

(
kBT

πme

)1/2

σei(ve − vi). (4.13)

We should point out that since we are dealing with elastic collisions, the mo-
mentum conservation requires that Pαα′ + Pα′α = 0.

Now let us estimate the magnitude of the two terms for each species. As-
suming that velocity perturbations are of the same order we have that∣∣∣∣PnePni

∣∣∣∣ = O
(
µ−1/2σne

σni

)
,

∣∣∣∣PinPie
∣∣∣∣ = O

(
nn
ne
µ1/2σin

σie

)
,

∣∣∣∣PenPei
∣∣∣∣ = O

(
nn
ni

σen
σei

)
. (4.14)

Taking into account that we are dealing with a weakly ionised quasi-neutral
hydrogen plasma (ni = ne � nn) and the typical values of collisional cross
sections available in the literature, we can show that Pne � Pni, Pin � Pie

and Pen � Pei. These orderings between momentum transfer rates will help
us simplify the momentum equations for the three species.

The plasma is in hydrostatic equilibrium so that for each species we have

dp0α

dz
= −gρ0α.

In addition, the equilibrium state also satisfies the equations of state, i.e.

p0j =
kBρ0αT0

m̃α

,

where T0 is the equilibrium values of the temperature, and m̃α denotes the
mean particle mass for the species α.

As a result, the three simplified momentum equations read

ρ0n
∂vn
∂t

+
∂pn
∂z

+ ρng = −nnmiνnc(vn − vc),

ρ0e
∂ve
∂t

+
∂pe
∂z

+ ρeg = −nemeνen(ve − vn),

ρ0i
∂vi
∂t

+
∂pi
∂z

+ ρig = −nimiνin(vi − vn), (4.15)

where we used the fact that in a hydrogen plasma mi ≈ mn. Clearly, the evo-
lution of charged particles will be driven by neutrals, which is natural in such
weakly ionised and highly collisional plasmas. The above equations, together
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with the mass and energy conservation equations (4.2, 4.4) will be used to
determine the evolutionary equations of waves associated with various species
and the property of these waves in the presence of gravitational stratification.

With the simplifications listed above, we can reduce the system of equations
to

∂2ve
∂t2
− c2

S

∂2ve
∂z2

+ γg
∂ve
∂z

+ νen

(
∂ve
∂t
− ∂vn

∂t

)
= 0, (4.16)

∂2vi
∂t2
− c2

S

∂2vi
∂z2

+ γg
∂vi
∂z

+ νin

(
∂vi
∂t
− ∂vn

∂t

)
= 0, (4.17)

∂2vn
∂t2
− c2

S

∂2vn
∂z2

+ γg
∂vn
∂z

+ νni

(
∂vn
∂t
− ∂vi

∂t

)
= 0. (4.18)

Inspired from the results in Chapter 3, equations 4.16– 4.18 can be writ-
ten in the standard form of telegrapher’s equations for the three species, by
introducing new functions of the form

vα(z, t) = (γp0α)−1/2Qα(z, t).

After some straightforward calculations, the three momentum equations can
be written as

∂2Qe

∂t2
− c2

S

∂2Qe

∂z2
+ ω2

eQe = −νen
(
∂Qe

∂t
− χ1/2∂Qn

∂t

)
, (4.19)

∂2Qi

∂t2
− c2

S

∂2Qi

∂z2
+ ω2

iQi = −νin
(
∂Qi

∂t
− χ1/2∂Qn

∂t

)
, (4.20)

∂2Qn

∂t2
− c2

S

∂2Qn

∂z2
+ ω2

nQn = 0, (4.21)

where,

ω2
α = −3

4

γ2g2

c2
S

− γg d
dz

(ln ρ0α)− γg

2

d

dz

(
ln c2

S

)
,

are the acoustic cut-off frequencies for each species, and χ is the ionisation
fraction defined as χ = ρ0i/ρ0n = µρ0e/ρ0n � 1.

It is straightforward to show that the above equations can be written as a
form of Klein-Gordon equation by introducing a new function for each species
of the form

Qα(z, t) = qα(z, t) exp(λαt),

where the values of the parameters λα are chosen such that the first-order
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derivatives with respect to t vanish. Indeed, by choosing

λe = −νen
2
, λi = −νin

2
, λn = −νni

2
,

the system of equations describing the spatial and temporal evolution of waves
for the three species becomes

∂2qe
∂t2
− c2

S

∂2qe
∂z2

+ Ω̃2
eqe = νenχ

1/2e(νen−νni)t/2

(
∂qn
∂t
− νni

2
qn

)
, (4.22)

∂2qi
∂t2
− c2

S

∂2qi
∂z2

+ Ω̃2
i qi = νinχ

1/2e(νin−νni)t/2

(
∂qn
∂t
− νni

2
qn

)
, (4.23)

∂2qn
∂t2
− c2

S

∂2qn
∂z2

+ Ω̃2
nqn = 0, (4.24)

where
Ω̃2
e = ω2

e −
ν2
en

4
, Ω̃2

i = ω2
i −

ν2
in

4
, Ω̃2

n = ω2
n −

ν2
ni

4
, (4.25)

are the squares of the collision-modified cut-off frequencies for electron, ion,
and neutral sound waves, respectively.

In order to estimate the magnitude and importance of these modified cut-
off frequencies, we plot their variation with height, where the values of various
physical parameters (e.g. densities, temperatures, etc.) are taken from the
VAL IIIC atmospheric model (see Figure 4.3), with the blue, yellow and red
line corresponding to the variation for neutrals, ions and electrons, respec-
tively. It is clear that in the region of the interest (but true for the whole
weakly ionised solar atmosphere) these quantities are negative, meaning that
collisional effects are more important than stratification effects and collisions
between particles will prevent any growth of waves’ amplitudes. This result im-
plies that gravitational effects can be confidently neglected when discussing the
propagation of waves in a multi-fluid framework, so the dynamics of waves can
be described within the framework of a homogeneous (non-stratified )plasma.
As a result, the Ω̃2

α coefficients of the last terms on the left-hand side of equa-
tions 4.22–4.24 will be negative, therefore, waves will propagate with no cut-off
frequency.

We can carry out a normal mode analysis for the homogeneous part of
equations 4.22-4.24, by assuming perturbations proportional to ei(kz−ωt), where
k is the wavenumber of waves and ω is the frequency. Now the governing
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Figure 4.3: The variation with height of the square of the collision-modified
cut-off frequencies for electron, ion, and neutral acoustic-gravity waves based
on equations. 4.25 and assuming a VAL IIIC atmospheric model. The values
are given on logarithmic scale.

equations for the three species reduce to the dispersion relations

ω2 = k2c2
S − Ω̃2

α. (4.26)

Clearly, waves will propagate (i.e. ω2 > 0) provided the wavenumbers attached
to these waves satisfy the conditions

kec >
Ω̃e

cS
≈ νen

2cS
, kic >

Ω̃i

cS
≈ νin

2cS
, knc >

Ω̃n

cS
≈ νni

2cS
, (4.27)

where the quantities kαc constitute the values of the wavenumber cut-off corre-
sponding to the three species.

With the gravitational effects safely neglected we can treat the problem of
dynamics in a homogeneous plasma, allowing us to discuss a more complex
model. Without loss of generality, we can assume a two dimensional propa-
gation in the xz plane. In this case the governing linearised equations 4.2–4.4
for the three species become

∂ρα
∂t

+ ρ0α

(
∂vxα
∂x

+
∂vzα
∂z

)
= 0, (4.28)
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ρ0α
∂vxα
∂t

+
∂pα
∂x

=
∑
α′ 6=α

Pαα′ , (4.29)

ρ0α
∂vzα
∂t

+
∂pα
∂z

=
∑
α′ 6=α

Pαα′ , (4.30)

∂pα
∂t

= c2
S

∂ρα
∂t

. (4.31)

After long but straightforward calculations, the system of governing equa-
tions can be reduced to a system of partial differential equations for each
species (

c2
S

∂2

∂x2
− ∂2

∂t2
− ναα′

∂

∂t

)
vxα + c2

S

∂2vzα
∂x∂z

+ ναα′
∂vxα′

∂t
= 0, (4.32)

(
c2
S

∂2

∂z2
− ∂2

∂t2
− ναα′

∂

∂t

)
vzα + c2

S

∂2vxα
∂x∂z

+ ναα′
∂vzα′

∂t
= 0. (4.33)

Next, in the above two equations we apply a Fourier analysis, writing all
velocity components proportional to exp(ikx+ikz−iωt). Using the compatibil-
ity condition of the system of equations written for the amplitude of velocities,
we obtain the dispersion relation of the three acoustic modes in the form of a
sixth order polynomial of the form

(
−ω2 + k2c2

S − iωνen
) [
ω4 + iω3(νin + νni)− ω2(νinνni − ν2

ni + 2k2c2
S)

− iωk2c2
S(νin + νni) + k4c4

S

]
= 0. (4.34)

The variation of the real and imaginary parts of the dimensionless frequency
(in units of the electron gyro-frequency) with respect to the dimensionless
frequency kcS/ΩBe are shown in Figures 4.4 and 4.5 for the acoustic modes
associated to the neutral, ion and electron species shown by blue, red and black
solid lines, respectively. To produce these figures the characteristic values of
physical parameters were chosen to be cS = 10 km s−1, T = 4465 K, νin =

1.8×108 Hz, νni = 2×104 Hz, νen = 5.5×108 Hz and ΩBe = 1.5×108 Hz. The
cut-off values given by equation 4.27 are represented as vertical dotted lines.
In practice these plots display the variation of the dimensionless frequencies
with the wavenumber (or its inverse, the wavelength). It is clear that in this
region the sound waves associated to neutrals propagate practically with no
cut-off value and their frequency increases with decreasing the wavelength.
Their dispersion curve follows the ω = kcS line and these waves propagate
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Figure 4.4: The real part of frequencies of modes (in units of the electron gyro-
frequency, ΩBe) given by equation 4.34 in terms of the dimensionless variable
kcS/ΩBe for the sound waves associated to the three species. Here the variation
of the frequency for neutral, ion and electron sound waves are given by blue,
red and black solid lines, respectively).

practically with no damping (see Figure 4.5).
Given the high collisional frequency between ions and neutrals, the fre-

quency of ion sound waves quickly becomes equal to the frequency of neutral
sound waves. For large values of the wavelength (small values of kcS/ΩBe sound
waves associated with ions propagate only if their wavenumber is larger than a
critical value that can be defined as k ≥ νin/2cS ≈ 9.2 km−1. Below the criti-
cal wavenumber ion sound waves are simple entropy modes (Goedbloed et al.,
2004; Murawski et al., 2011; Soler et al., 2013b), i.e. non-propagating. The
frequency of entropy modes is purely imaginary and involves perturbations in
the plasma density (or internal energy), but not in pressure. The transition
of these waves from entropy, non-propagating waves, to acoustic propagating
waves occurs at the critical wavenumber. For propagating ion sound waves
their frequency increases with decreasing wavelength and their damping rate
is independent on the wavelength of waves. Finally, the sound waves associ-
ated with electrons have a much higher cut-off value and will propagate when
k ≥ νen/2cS ≈ 27.3 km−1. Although the electron-related sound waves show
initially a distinct behaviour compared to the other two modes (due to the
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Figure 4.5: The same as in Figure 4.4, but here we plot the variation of the
imaginary part of the frequencies, as given by equation 4.34.

increased mobility of electrons), for decreasing wavelengths, the frequency of
these waves will tend to the frequency of neutral sound waves. The imaginary
part of the electron sound waves is shown in Figure 4.5 (black lines). Similar
to the ion sound waves, as long as the wavenumber is smaller than the criti-
cal value, these waves are non-propagating, entropy waves. For wavenumbers
larger than the critical value, waves have a wavelength-independent strong
damping. Comparing the magnitude of the real and imaginary parts of the
frequency it is obvious that while initially these waves have a strong damping,
for smaller wavelengths the waves become weakly damped.

The important result of these figures is that the collisional frequencies play
an essential role in the propagation of waves. Waves will be damped with rate
that depend only on collisional frequency. In addition, the critical wavenum-
bers of waves are determined by the strength of collisions between species.

4.4.2 Waves in Region II

The variation of the collisional and gyro-frequencies with height shown in
Figure 4.1 reveals that at heights roughly corresponding to the base of the
chromosphere, the collisional frequency of electrons falls below the electron
gyro-frequency, therefore, electrons become magnetised. At the same time the
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collisional frequency of ions is still above the ion gyro-frequency, meaning that
ions are still not affected by the magnetic field and their dynamics of predom-
inantly driven by the collisions with neutrals. As a result, the dynamics of
electrons and ions becomes different, however they form a single fluid since the
collisional frequency of electrons with ions is still very strong (see Figure 4.2).
In frequency domain Region II corresponds to ΩBi < ω < ΩBe, where ΩBe,i

were defined earlier. The strong collisional coupling between neutrals and ions
prevents ions to magnetise. Electrons moving along the magnetic field, drift
due to E × B in the transversal direction, while ions will continue to move
together with neutrals. Here E is the electric field generated as a result of the
different motion of electrons and ions.

The disassociation of charged particles results in generation of an electric
current J = ene(vi − ve). This current will generate an electric force (eneE)

aimed to oppose the movement of ions.
We assume a uni-directional homogeneous magnetic field of the form B0 =

B0ẑ. Based on the results we obtained earlier, gravitational effects will be
neglected.

Since we are dealing with a two-fluid plasma, the momentum equation
for charged particles can be obtained by combining the linearised momentum
equations of electrons and ions

ρ0e
∂ve
∂t

+∇pe = −ene(E + ve ×B0)− ρeνen(ve − vn), (4.35)

ρ0i
∂vi
∂t

+∇pi = +eniE− ρeνin(vi − vn). (4.36)

As a result, the momentum equation for charges becomes

ρ0c
∂vc
∂t

+∇pc = −eneve ×B0 − ρ0cνcn(vc − vn), (4.37)

where
ρ0c = ρ0e + ρ0i, vc =

ρ0ivi + ρ0eve
ρ0c

,

νcn =
ρ0iνin + ρ0eνen

ρ0c

,

are the total density of charged species, the velocity of the center of the mass,
and the collisional frequency of charged fluid weighed by the density of the
two species. Finally, the momentum conservation of neutrals can be simply
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written as
ρ0n

∂vn
∂t

+∇pn = −ρ0nνnc(vn − vc). (4.38)

Despite the two-fluid approximation, only electrons are magnetised and,
through collisions, electrons are perturbing the ion population. We should
also keep in mind that neutrals and ions are still coupled, which results in a
strong drag force resulting in the bulk of ion velocity, vi closely matching the
velocity of the neutral gas. With the charged particles having different motion
(electrons gyrating around the equilibrium magnetic field and ions having a
rectilinear motion advected by neutrals) the quasi-neutrality of the plasma is
going to be perturbed, however the electric field generated will always aim to
restore the quasi-neutrality of the system. Ions are still more strongly coupled
to neutrals than to electrons since

νin
νie
≈ nn
ni

σin
σie

µ3/2 � 1.

Therefore, the current can be written as J ≈ ene(vn − ve) or

ve = vn −
J

ene
. (4.39)

The role of the current generated in this layer of the solar atmosphere thanks
to the disassociation of charged particles was discussed in details in an earlier
study by Krasnoselskikh et al. (2010), who showed that these currents are
formed around the layer where electron gyrofrequency and collisional frequency
are comparable. Currents can also effectively dissipate via ohmic dissipation
resulting in typical temperature increases with altitude as large as 0.1 − 0.3

eV km−1. The heat generated as a result of dissipation can create additional
ionisation of particles, leading to the modification in the thermal equilibrium
of the plasma. In addition, the currents can generate local magnetic fields
(acting as dynamos) comparable with the background magnetic field. The idea
of current dissipation in the partially ionised solar atmosphere is relatively new
aspect of solar atmospheric research, and remains to be seen how much the
dissipation of these currents contribute to the global process of chromospheric
plasma heating.

Taking into account the Ampére’s law, we can write the momentum equa-
tion for the charged species as

ρ0c
∂vc
∂t

+∇pc = −enevn ×B0 +
1

µ0

(∇× b)×B0 − ρ0cνcn(vc − vn). (4.40)
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Since the magnetic field is present in the above equation, we will also need
to derive the induction equation from the momentum equation for electrons,
assuming that the electron inertia and electron pressure can be neglected. As
a result we have

ene(E + ve ×B) = (νei + νen)
me

e
J, (4.41)

where we took into account equation 4.39. Using the same equation on the
left hand side of the above relation, we obtain

E + vn ×B− 1

ene
J×B = νe

me

e2ne
J, (4.42)

where νe = νen + νei is the total collisional frequency of electrons. After
taking the curl of the above equation and using Faraday’s law of induction
(∇× E = −∂B/∂t), we obtain

∂B

∂t
= ∇× (vn ×B)− 1

ene
∇× (J×B)− meνe

e2ne
∇× J, (4.43)

which means that when ions and neutrals are strongly coupled, the neutrals
get magnetized. The last two terms of the above equation are the Hall term
that renders waves to be dispersive on scales of the order of the ion inertial
length and the resistive term that contains, as coefficient, the resistivity due
to electrons moving along the magnetic field (and describes the dissipation of
field-aligned currents). The currents in this model can dissipate through the
collisions of electrons not only with ions, but also with neutrals.

The governing equations in Region II will be the mass conservation equa-
tions for charged particles and neutrals given by equation 4.2, the momentum
equations for ions and neutrals (4.37 and 4.38), the induction equation 4.41
and the energy equations for the two species (similar to the linearised equation
4.4), considering, again, an adiabatic process. Similar to the waves studied in
Region I, we assume a two-dimensional dynamics and write k = (kx, 0, kz) or
k = (k sin θ, 0, k cos θ), where θ is the angle between the direction of propaga-
tion and the z axis. We also assume waves oscillating in time, so we consider
all perturbations proportional to e−iωt, where ω is the complex frequency.

The combination of all these equations results in the system of equations
written for the components of velocity, as

(ω2 − k2
xc

2
S + iχωνcn)vnx − kxkzc2

Svnz − iχωνcnvcx = 0, (4.44)

(ω2 − k2
zc

2
S + iχωνcn)vnz − kxkzc2

Svnx − iχωνcnvcz = 0, (4.45)
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Figure 4.6: Real part of the frequency (in units of the electron gyro-frequency,
ΩBe) in terms of the dimensionless frequency kcS/ΩBe, as solution of the system
of equations 4.44–4.47. The three panels correspond to a parallel propagation
(left panel), waves propagating at a π/4 angle with respect to the magnetic
field (central panel) and perpendicular to the field (right panel). The coloured
curves correspond to charged slow waves (red), neutral slow wave (blue) and
fast waves (black).

Figure 4.7: The same as Figure 4.6, but here we plot the imaginary parts of
the frequency. The colours correspond to the type of waves defined in Figure
4.6.
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(ω2 − k2
xc

2
S + iωνcn)vcx − kxkzc2

Svcz − iω
(

k2
zc

2
A

iω − ηk2
+ νcn

)
vnx

+
iωkxkzc

2
A

iω − ηk2
vnz = 0, (4.46)

(ω2 − k2
zc

2
S + iωνcn)vcz − kxkzc2

cvcx − iω
(

k2
xc

2
A

iω − ηk2
+ νcn

)
vnz

+
iωkxkzv

2
A

iω − ηk2
vnx = 0, (4.47)

where the constant η is the resistivity coefficient, valid in a partially ionised
plasmas, and it is defined as

η =
νeme

niµ0e2
,

and vA = B0/
√
µ0ρ0c is the Alfvén speed of the charged species.

The above homogeneous system of equations admits solutions only if the
determinant of the matrix constructed by means of the coefficients multiplying
the components of velocity for the two fluids is vanishing. The dispersion rela-
tion is solved numerically and the real and imaginary solutions are represented
in Figures 4.6 and 4.7. The real and imaginary parts of the frequency are plot-
ted in units of the electron gyro-frequency (ΩBe) as a function of the dimen-
sionless quantity kcS/ΩBe for the characteristic values in Region II: T = 5650

K, B = 24.05 G, ni = 1.06 × 1017 m−3, vA = 206.83 km s−1, cS = 11.42 km
s−1, νin = 1.28× 106 Hz and νe = 2.57× 107 Hz. In these figures the possible
modes are represented by symbols of different colours, so red crosses describe
the solution of the dispersion relation corresponding to slow waves associated
to charges, the slow wave associated to neutrals is shown by blue circles, and
the fast mode is shown by black squares. The three panels correspond parallel
propagation (θ = 0), a π/4 inclined propagation with respect to the ambient
magnetic field, and a perpendicular propagation, respectively.

The behaviour of the three waves shows a strong dependence with the
propagation direction. In the case of parallel propagation for very small values
of wavenumber, k, (very large wavelengths) the waves that propagate are the
fast waves that have a phase speed determined mainly by the Alfvén speed
and the neutral slow waves. Due to the strong coupling on neutrals and ions
the frequency of these two waves is equal as the wavelength is decreasing. The
slow waves associated to charged particles has a cut-off wavenumber and for
decreasing wavelength the frequency of these waves becomes independent on
their wavelength, i.e. they become non-dispersive.

The damping rate of waves propagating parallel to the magnetic field is
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Figure 4.8: The same waves as in Figure 4.6, but here we display the period
of waves in terms of the frequency of sound waves, kcS.

Figure 4.9: The same waves as in Figure 4.7, but here we show the damping
times of waves in terms of the frequency of sound waves, kcS.

shown in the left-hand panel of Figure 4.7. While the slow waves associated
to the neutral particles propagate practically with no damping, the damping
rates of slow waves of charged species and the fast waves are identical and
show very little dependence on the wavelength of waves.

When the propagation direction is such that the wavevector makes an angle
of π/4 with respect to the ambient magnetic field the slow waves due to the
charged species has, again, a cut-off value and the propagation speed increases
inversely proportional to the wavelength of waves. Similar to the parallel
propagation, at a value of kcS/ΩBe ≈ 0.05, the speed saturates and becomes
independent on the wavelength of the waves. Compared to the case of parallel
propagation, these waves have a lower frequency.

Once the waves propagate in a non-parallel direction to the magnetic field,
the fast and neutral-associated slow waves decouple. Their frequency is close to
each other and they follow the same dependence on the wavelength. As before,
frequency of the neutral slow waves increases monotonically along the direction
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ω = kcS. The damping rates of these waves are shown in the middle panel of
Figure 4.7. In the case of charged-related slow waves the damping rate becomes
again independent on the wavelength of waves for kcS/ΩBe ≈ 0.07. These
waves posses the largest damping rate. The damping rate of fast waves has
a similar behaviour as in the case of parallel propagation and, again, it tends
to saturate so that it becomes independent on the wavelength of waves. The
damping rate of slow waves associated with neutrals has an interest behaviour
since for large wavelengths, the damping rate of these waves is zero, i.e. these
waves propagate with no damping. The damping rate of these waves increases,
and saturates with decreasing the wavelength of waves. The damping rate
of fast waves damp quickly for large wavelengths, and their damping rate
decreases with the wavelength. For decreasing wavelengths the damping rate
of fast waves also saturates and tends to be equal to the damping rates of slow
waves associated to neutrals.

For propagation perpendicular to the background equilibrium magnetic
field slow waves associated with charged particles ceases to exist, instead neu-
tral slow waves and fast waves can propagate with frequencies that increase
with decreasing wavelength. Similar to the previous cases, and the frequency
separation between these two modes increases. The imaginary part of the
frequency of these two waves show that with decreasing the wavelength the
damping rate of neutral slow wave increases, while for fast waves, it decreases.
For smaller wavelengths the damping rate of the two modes becomes almost
independent on the wavelength of waves and they tend to converge towards
the same value.

We have repeated these plots for higher heights in the solar chromosphere
and the results show that the pattern of the real and imaginary parts of the
frequencies shown in Figures 4.6 and 4.7 are preserved, the only change is a
change of the values. Accordingly, with height, the real part of frequencies for
neutral slow and fast waves are practically unaffected, however they tend to be
closer to each other with the increase with height. In contrast the values of the
frequencies for slow waves associated to charges decreases. The imaginary part
of the frequencies corresponding to all three waves tends to decrease, meaning
that with height these waves tend to have weaker damping.

The period and the damping times of waves corresponding to the field and
plasma parameters mentioned earlier are shown in Figures 4.8 and 4.9. Here
these quantities are plotted in terms of the frequency of sound waves, kcS,
or, since the sound speed is constant, in terms of the wavenumber, k. Apart
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from the period of slow waves associated with the charged particles, where the
period becomes constant for decreasing wavelength, the period of the other
two ways decreases with the wavelength. In all cases the periods are of the
order of 10−6, i.e. the collisonal time between ions and neutrals.

When looking at the damping times shown in Figure 4.9, the curve cor-
responding to neutral slow waves propagating along the field is not shown
because these waves propagate practically undamped. For any propagation
angle the damping time of waves becomes gradually independent on the wave-
length of waves, when their wavelength decreases.

A full picture of the propagation speed of the waves and their damping
rate can be obtained by plotting these values in a Friedrich polar diagram (see
Figure 4.10), where the equilibrium magnetic field points in the x-direction and
the angle of propagation of waves covers a full 2π range. The diagrams shown
in Figure 4.10 were obtained by assuming kcS/ΩBe = 0.035 and a plasma-β
parameter of 3× 10−3. In these plots the modes are represented by the same
colours as in Figures 4.6 and 4.7. The dashed in the polar plots are used for
reference values. For the real part of the frequency the blue and black dashed
line correspond to 2 and 3.25 MHz, respectively. In the case of the imaginary
part of the frequency the dashed blue and black lines correspond to 1.33 and
1.6 MHz.

From these diagrams it is obvious that fast waves propagate with the high-
est frequency in the perpendicular direction to the magnetic field, a similar
characteristic as fast magnetoacoustic waves in fully ionised plasmas. In the
solar atmospheric region we are investigating there are two slow waves as-
sociated to the two species, but the slow wave associated with the neutral
species propagates always with a higher speed than the one that corresponds
to charges. Due to the strong coupling between ions and neutrals, in the case of
parallel propagation, the fast waves and slow waves due to neutrals propagate
with the same frequency. For parallel propagation the frequency of neutral
slow waves is always larger than the phase speed of slow waves associated with
the charged particles.

In the right panel of Figure 4.10 we plot the absolute value of the damping
rate of the three waves, when the propagation direction is, again, covering the
full 2π range. It is clear that not only the propagation speed of waves depends
on the propagation angle of waves, but also the damping rate.

First of all, the slow mode associated to the charged particles has the largest
damping rate, and its value takes its minimum when these waves propagate
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Figure 4.10: The polar (Friedrich) diagram of the real (left panel) and imagi-
nary part (right panel) of the dispersion relation. Here the background mag-
netic field is along the x axis and the direction of waves’ propagation is covering
a whole 2π range. The colours are representing the same modes as defined in
Figure 4.6. Note that in the right-hand side panel we plot the absolute value
of the damping rate. The dashed lines correspond to the reference values of
frequency and damping rate given in the text of the article. These figures were
obtained for kcS/ΩBe = 0.035

Figure 4.11: The same as in Figure 4.10, but here the polar plots have been
obtained for the value kcS/ΩBe = 0.07, i.e. shorter wavelengths.
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along the direction of the magnetic field. The polar plot of imaginary part of
the frequency (but also visible on the diagram corresponding to the real part)
shows that these modes do not propagate when the angle of propagation is
±2π/9 = 40◦ with respect to the perpendicular direction.

The polar diagram of the damping rate of neutral slow waves (blue curve)
also shows a very anisotropic behaviour. These waves propagate along the
magnetic field lines with practically no damping, while their damping rate is
maximum when they propagate perpendicular to the magnetic field. Among
the three possible modes, the slow waves associated with the neutral species
has the smallest damping rate.

Finally, fast waves have their largest damping rate when they propagate
along the equilibrium magnetic field (where the damping rate is equal to the
damping rate of slow waves), and their smallest damping rate is attained when
they propagate across the magnetic field.

The same analysis was repeated for another value of kcS/ΩBe (here we
considered the value of 0.07) to evidence the change in the properties of waves
for shorter wavelengths (higher wavenumbers) and the results we obtained for
the real and imaginary part of the frequency are shown in Figure 4.11. The
differently coloured curves correspond to the same modes as in Figure 4.10, but
here the reference levels (shown by the dashed lines) are at 5.5 and 6.9 MHz
for the real part, and 1.33 and 1.6 MHz, respectively. The change in the size
of the polar plot corresponding slow waves attached to the charged species is
only apparent, instead the frequencies of slow modes associated to neutrals and
the fast mode increase, however, we maintain the proportionality. Comparing
the two polar plots we obtained for the real part of the frequencies, it is clear
that with decreasing the wavelength, the domain where the frequencies of
neutral slow waves and fast waves are approximately equal is increased, for the
particular values chosen here the two waves have almost identical frequency for
propagation angle corresponding to ±π/6 = 30◦ with respect to the direction
of the equilibrium magnetic field.

The polar plot corresponding to the damping rate of waves shows that,
while the curves corresponding to slow waves connected to charges and fast
waves do not show significant variation in terms of wavelength (with the ref-
erence curves showing the same values as before), the damping rate of slow
waves associated to neutrals increases.

Finally, the polar plots shown here are qualitatively similar to the plots we
would obtain for the propagation speed.
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4.5 Conclusions

Our study deals with the properties of waves in weakly ionised plasmas, char-
acteristic to the lower regions of the solar atmosphere, where the dynamics is
determined mainly by the strong collisional coupling between particles.

First of all, our results showed that since we are dealing with very short
wavelength waves, their dynamics is not affected by gravitational stratifica-
tion. A comparative study of the collisional frequency associated with various
species and the gyro-frequency of charged particles revealed the existence of
two distinctive regions, where the first region covers the whole photosphere.
In the first region the collisional frequency of charged particles are larger than
the gyro-frequencies of charged particles, meaning that here the dynamics of
particles is not affected by the presence of magnetic fields and the only waves
that can propagate are acoustic in nature. Since the collisional frequency of
electrons to ions and neutrals are very close to each other, the wave dynamics
was described in a full three-fluid framework. These results show that in a
multi-fluid description of plasma in the solar photosphere the effects of the
magnetic field can be neglected.

Given the very low ionisation degree of the plasma, the neutral acoustic
modes propagate undamped, and their amplitude is not affected by the colli-
sions with other particles. In contrast, the acoustic modes associated with ions
and electrons propagate only when their wavenumber is greater that a cut-off
value, determined by the collisional frequency with neutrals. Their frequency
tends to the frequency of neutral acoustic modes when their wavelength de-
creases. These waves are damped, but the damping rate does not depend on
the wavelength of waves. For small wavelengths there is no distinction between
various waves, all propagate with the frequency of the neutral species.

The second region corresponds to a frequency regime bounded by the two
gyro-frequencies, so electrons become magnetised, while the dynamics of ions
are still mainly driven by the collisions with neutrals. Thanks to the different
dynamics of the charged particles, an electric current is generated, together
with an electric field that opposes the disassociation of charges. In this re-
gion the charged particles become strongly coupled (their collisional frequency
is much higher than the collisional frequency with neutrals), meaning that
charged particles form a single fluid that interacts with neutrals through col-
lisions.

In such plasmas waves become magnetoacoustic in nature, however the slow
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waves associated with neutrals retains much of the characteristics of neutrals
sounds waves in Region I, however, it propagates with no damping only when
the wave propagates mainly along the magnetic field. In addition to the neutral
slow waves, ion slow waves can also propagate, however these waves propagate
with a cut-off and their frequency becomes fairly quickly independent on the
wavelength of waves (non-dispersive). In contrast, the fast waves are non-
dipersive only for very large wavelengths and become attached to neutral slow
waves. The Friedrich polar diagram shows a strong dependence of frequency
and damping rate with the propagation angle of waves.

Our analysis considered only the two-dimensional propagation of magneto-
coustic waves. It is obvious that a full, three dimensional propagation, would
recover an even richer spectrum of waves, however this (numerical) investiga-
tion would be subject to future studies.
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CHAPTER 5

Conclusions and future research prospect

5.1 Thesis Summary

The study of waves in partially ionised plasma is a relatively new area of solar
physics and has received considerable attention in the last decade. Results
show that the spectrum and properties of waves in such plasmas is more com-
plex than we could meet in fully ionised environments.

The aim of my research was the study of waves in partially ionised plasma
in different regimes corresponding to to different layers in the solar atmosphere.
In particular, our analysis was carried in two limiting cases: strongly ionised
(ρ0n/ρ0i � 1) and weakly ionised (ρ0n/ρ0i � 1) plasma. These regimes are
relevant for the upper and lower part of the solar atmosphere. The properties of
waves was analysed using a multi-fluid approach, where the constituent species
of the plasma were described by a different set of equations. The governing
equations for each species were connected via the collisional terms, ensure an
effective coupling and a momentum transfer between species.

A short introduction on the physical properties of the Sun, together with
a brief historical overview of the solar studied is provided in Chapter 1. In
addition, here we review the literature of partial ionised plasma in the solar
atmosphere and other astrophysical areas, such as the Earth’s ionosphere,
molecular clouds, etc.

Chapter 2 covers the mathematical background of my research. Here I
present the set of governing equations that will be used in later chapters, with
their assumptions and limitations. The MHD-type equations are given for
a three-fluid plasma, and a two-fluid approximation, both used extensively
later. Since collisions between particles play a key role in our analysis, this
chapter also contains a detailed description of the collisions between particles,
the collisional cross-section and the collisional frequencies. Finally, we review
the current state-of-the-art connected to magnetic and magnetoacoustic waves
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in partially ionised plasmas, highlighting the major differences of these waves
compared to their counterparts in fully ionised plasmas.

Waves in strongly ionised plasmas (the upper part of the solar chromo-
sphere) plasma have been studied in Chapter 3, and here we investigate the
spatial and temporal evolution of slow waves propagating in an expanding
magnetic flux tube in a gravitationally stratified plasma environment. The
properties of waves was studied using a two-fluid approach, where the inter-
acting fluids are the charges and neutrals. The temporal and spatial evolution
of waves was studied by solving the initial value problem using inverse Laplace
transform for the charged and neutral species in section 3.4.1 and 3.4.2, re-
spectively. Since we are interested in the asymptotic behaviour of waves over
very large time scales, we choose to drive the system with a harmonic pulse in
section 3.4.3 and a monochromatic source in section 3.4.4. Our results show
that the neutral-acoustic mode has a larger amplitude and decays slower than
the corresponding ion-acoustic modes. Given the strongly ionised limit only
slow sausage waves associated with ions propagate with a cut-off frequency and
waves will have a very rapid decay, even in the absence of the simplifications
(see section 3.5).

Chapter 4 was devoted to the study of waves in weakly ionised plasma using
the VAL IIIC atmospheric model (Vernazza et al., 1981). The variation of col-
lisional and gyro-frequencies with height displayed in Figure 4.1 show that the
weakly ionised solar atmosphere can be divided into two distinct regions, each
with its own characteristics. The first region (up to a height of about to 600
km) corresponds to the regime where the collisional frequencies of electron and
ions are larger than ion and electron gyro-frequencies, meaning that the effect
of magnetic field can be neglected. Given the relative magnitude of collisional
frequencies, the dynamics in this region is described by the three-fluid approx-
imation. Our results presented in section 4.4.1 show that the acoustic modes
connected to the neutral species propagate with no cut-off wavenumber and
with a decreasing wavelength their frequency will increase. The acoustic wave
associated to ions propagates only if the wavenumber satisfied the condition
k > 9.2 km−1. Finally, electron sound waves propagate if their wavenumber
satisfies the condition k > 27.3 km−1. In contrast to the fully ionised limit
(where cut-off appear due to the plasma stratification), here all the above cut-
off values are determined only by collisions. The damping rate of all species is
represented in Figure 4.5. Clearly, the neutral sound wave propagates without
damping, while the other two species have a strong damping, but the damping
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rate is independent on the waves’ wavelength.
On the other hand, in section 4.4.2, we discussed the properties of waves in

the second region (up to 1,900 km), where the electron gyro-frequency is larger
than the electron collisional frequency, meaning that electrons are magnetised,
however the motions of ions is still driven by the collisions with neutrals. Due
to the strong coupling between the charged species, they form a single fluid,
therefore, the dynamics is described in the two-fluid approximation. Due to the
different motion of charged particles, currents are developed. The dispersion
relation was solved numerically, and the solutions were represented in Figures
4.6 and 4.7. The full picture of wave propagation for an arbitrary propagation
angle is shown in the polar diagrams 4.10 and 4.11.

Finally, in the region above 1,900 km, where all collisional frequencies are
below electron and ion gyro-frequencies, all charged particles will be mag-
netised and the properties of waves that can propagate in this region was
discussed in Chapter 3.

5.2 Future work

The study of waves in solar partially ionised plasmas and their role in various
mechanisms (e.g. stability, heating, plasma acceleration, etc.) is not fully de-
veloped. The results presented in this Thesis cover just a small area of this
science, with plenty of directions along which our research can be continued in
the future.

(i) Observations revealed that solar prominences contain approximately 90%

hydrogen atoms, while the rest is made up of helium. Most studies of waves in
partial ionised plasma assume the plasma has a single component (hydrogen),
as this simplifies considerably the mathematical treatment.

Soler et al. (2010) and Zaqarashvili et al. (2011a) investigated the effect of
helium on wave propagation in partially ionised plasma, discussing the prop-
agation and damping of Alfvén waves in three fluid partially ionised plasma.
They showed that damping rates have a peak near the ion-neutral collision
frequency, but decrease for the higher part of the wave spectrum. In addition,
they concluded that the collision of ions with neutral helium for the damping
of Alfvén waves is important in some regions in chromosphere and corona. In
this respect, it would be interesting to apply the approach presented in Chap-
ter 3 to a partially ionised plasma taking into account the effect of neutral
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and ionised helium on the damping of waves and the appearance of cut-off
frequencies.

(ii) In the solar atmosphere, the study of the waves have been assumed the
equilibrium ionisation, but this assumption is not always valid (in, e.g. high
frequency waves and shock waves). Non-equilibrium ionisation has been con-
sidered as a inelastic collision between particles and appeared during heating
or cooling of the plasma. Carlsson and Stein (2002) showed that dynamics
occurring below the ionization/recombination relaxation times scales of 10−3

to 10−5 s will be affected by non-equilibrium effects in the chromosphere. Bal-
lai (2019) investigated the wave properties in non-equilibrium partially ionised
plasma, arriving at the problem of partial ionisation and non-equilibrium ion-
isation, introducing new aspects of plasma dynamics with implications for the
evolution waves and their dissipation.

Inspired from results obtained in this thesis, we could use the developed
techniques to study the behaviour of waves where the plasma is in ionisation
non-equilibrium.

(iii) In Chapter 4 we have shown that due to the different motion of electrons
and ions electric currents can be developed that could be subject to effective
Ohmic dissipation, when electrons collide with ions and neutrals. Therefore,
these currents can contribute to the chromospheric plasma heating.

Another way to expand the research of my Thesis is to investigate how ef-
fective this heating is and how well the heating rate produced by these currents
can balance the energetic loss observed in the solar chromosphere. To evidence
that, we could study the appearance and dissipation of currents assuming a
simple VAL solar atmospheric model together with a realistic magnetic field.
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APPENDIX A

Appendix

A.1 Evaluation of the integral in equation 3.51

The value of the integral that is given in equation 3.51 can be given in approx-
imate form for large values of τ . The integral we have to estimate is

R(z, t) =

∫ t

t−P

e(ωn+iω)t

τ 3/2
dτ. (A.1)

Using integration by parts we have

R(z, t) =
1

ωn + iω

e(ωn+iω)τ

τ 3/2

∣∣∣∣t
t−P

+
3

2(ωn + iω

∫ t

t−P

e(ωn+iω)t

τ 5/2
dτ =

=
1

ωn + iω

e(ωn+iω)τ

τ 3/2

[
1 +

3

2(ωn + iω)τ

]t
t−P

+

15

4(ωn + iω)2

∫ t

t−P

e(ωn+iω)t

τ 7/2
dτ.

The above relation can be re-arranged into∫ t

t−P

e(ωn+iω)t

τ 3/2

(
1− 15

2τ(ωn + iω)

)
dτ =

1

ωn + iω

e(ωn+iω)τ

τ 3/2

[
1 +

3

2(ωn + iω)τ

]t
t−P

.

It is clear that for large values of τ the second terms in the two brackets are
of the order of O(τ−1) and therefore, they can be neglected. As a result, using
the approximation 3.53 the integral R(z, t) can be given as as

R(z, t) ≈ e(ωn+iω)t

t3/2(ωn + iω)

[
1− e−(ωn+iω)P

]
. (A.2)
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A.2 Evaluation of the integral in equation 3.62

P (z, t) =

∫ t

z/cSn

e(ωn+iω)t

τ 3/2
dτ. (A.3)

Using integration by parts we have

P (z, t) =
1

ωn + iω

e(ωn+iω)τ

τ 3/2

∣∣∣∣t
z/cSn

+
3

2(ωn + iω)

∫ t

z/cSn

e(ωn+iω)t

τ 5/2
dτ =

=
1

ωn + iω

e(ωn+iω)τ

τ 3/2

[
1 +

3

2(ωn + iω)τ

]t
z/cSn

+

15

4(ωn + iω)2

∫ t

z/cSn

e(ωn+iω)t

τ 7/2
dτ.

The above relation can be re-arranged into∫ t

z/cSn

e(ωn+iω)t

τ 3/2

(
1− 15

2τ(ωn + iω)

)
dτ =

1

ωn + iω

e(ωn+iω)τ

τ 3/2

[
1 +

3

2(ωn + iω)τ

]t
z/cSn

.

It is clear that for large values of τ the second terms in the two brackets are
of the order of O(τ−1) and therefore, they can be neglected. As a result, the
integral P (z, t) can be given as

P (z, t) ≈ 1

(ωn + iω)

[
e(ωn+iω)t

t3/2
− e(ωn+iω)z/cSn

(z/cSn)3/2

]
. (A.4)

A.3 The inverse Laplace transform of the inho-

mogeneous part of equation 3.45

Using the technique presented in the main body of the paper, the inverse
Laplace transform of the inhomogeneous part of equation 3.45 that gives the
particular solution of equation 3.38 is

qinhn (z, t) =
iA2V0 [δ − βγ/4(1 + 2Γ2

1)] e−iωz/cT

P1 + iωi

[
e(νni/2+Γ1)t − e−iωt

]
e
√
ω2−ω2

i z/cT

−iA2V0 [δ − βγ/4(1 + 2Γ2
2)] e−iωz/cT

P2 + iωi

[
e(νni/2+Γ2)t − e−iωt

]
e
√
ω2−ω2

i z/cT
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where we used the notations

A2 =
4πe−z/4γHn

G(1− g/2ωicT )
,

A3 =
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2ωi
π

1

ω2 − ω2
i

z
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