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Abstract

This thesis considers weighted simultaneous Diophantine approximation in a variety of settings, including
approximation over real manifolds, p-adic manifolds and p-adic coordinate hyperplanes. In each of these
lower bounds on the Hausdorff dimension are obtained via appropriate Mass Transference Principle
theorems. Weighted simultaneous approximation sets are often described by lim sup sets of rectangles, so
Mass Transference Principles on rectangles are favoured. Examples of these include the Mass Transference
Principle from balls to rectangles [112], and the Mass Transference Principle from rectangles to rectangles

[111].

Chapters 1 and 2 provide an introduction to real and p-adic Diophantine approximation. Chapter 3
introduces the Mass Transference Principle, given by Beresnevich and Velani [28], and recent variations.
These Theorems are vital in the proofs of results in later chapters. In Chapter 4, Diophantine approxima-
tion over manifolds is introduced and a survey of recent results is given. It the latter part of the chapter
a Dirichlet style Theorem for T-approximable points over manifolds is proven, which generalises a similar
result in [22]. Such result allows us to apply a Mass Transference Principle result and obtain a lower
bound on the Hausdorff dimension of weighted T-approximable points over manifolds. In Chapter 5, a
variety of results in p-adic weighted Diophantine approximation are proven. Furthermore, a similar result
to that established in Chapter 4 is proven for p-adic approximable points over manifolds. In Chapter 6
the Hausdorff dimension of p-adic approximable points over coordinate hyperplanes is proven. The result
relies on a count for the number rational approximations to a p-adic integer, which is proven using p-adic
approximation lattices. The thesis is concluded by providing a brief survey on S-arithmetic Diophantine
approximation. This is followed by a discussion on how results found throughout the thesis could be

replicated in the S-arithmetic setting.
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Chapter 1

Introduction

1.1 Classical Diophantine Approximation

Diophantine approximation is essentially the study of how well real numbers can be approximated by
rational points. Dirichlet [55] proved that for any real number z € R and natural number @ € N there

exists integers p, ¢ € Z such that
1

qQ’
where 1 < ¢ < Q. This result leads to the corollary that for any € R there are infinitely many pairs
(p,q) € Z x N such that

m_p\<
q

p -2
x—q'<q . (1.1)

The question then arises as to whether the approximation on the right of (1.1)) is best possible. For

example, would the theorem hold when approximated by Cq~? for some arbitrary constant C' > 0? The
answer is no. As proven by Hurwitz, for C' < 1/4/5, there exist real numbers such that there are only

finitely many integer pairs (p,q) solving (I.1]) with the right hand side replaced with Cq~2 [71].

At this point we can classify numbers z € R into two different groups, the set of badly approximable
numbers, Bad, and the set of well approximable numbers. If x € Bad then there exists a real number
¢ > 0 such that for all % eQ
p

T — ’ > cq_2.
q

If x € Bad then x is well approximable. Rather than improving the constant ¢ one can consider improving
the exponent of approximation on ¢. This set is called the set of very well approximable numbers, VWA.

Concisely, if  has infinitely many rational points % solving

T — ’ <q%7F,
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for some € > 0, then z is said to be very well approximable. By the result of Hurwitz we know that
Bad is non-empty, for example it contains 1+T\/§ Further, a result from the theory of continued fractions
states that for any irrational x with bounded partial coefficients then x € Bad, thus Bad is at least
countably infinite. Similar results appear for the set VWA, as an easy example Q@ C VWA. In the

following section we will find that both Bad and VWA are in fact of Lebesgue measure zero.

L on the

Motivated by ((1.1) we introduce the set of i-approximable points, whereby we replace a ¢~
right hand side of inequality (1.1)) by a general approximating function ¢ : N — R4 to give us the

inequality

< —. (1.2)

Define the set of ¢-approximable numbers W(¢) as follows. Denote by A, (¢)) the set
Y (P Y(a)
Aq(w) = UB > m]L
o\ g

where I = [0, 1] and for z € R and y € R} B(x,y) denotes the open ball on R with centre = and radius
y. Then define the set of y-approximable points as

W(¢) := limsup Ag(¢)),

q—o0

that is, the set of real numbers in I that lie in infinitely many balls with rational centres g € I and radius
@. Remark here that we only consider the real numbers contained within the unit interval, however,
the setup naturally extends to the real line. The subset I is chosen here because W(WV) is translation
invariant by integers, for example if € I is ¢)-approximable then naturally = + n is also ¢-approximable

for any integer n € Z.

In some cases we wish to simplify the set of approximation functions by only considering those of the
form ¢ (q) = ¢~ 7 for 7 € R4. In this case we will use the notation W(7) = W(¢)) and refer to W(7) as

the set T-approximable points.

1.1.1 Theorems of Khintchine and Duffin-Schaeffer

To understand how well general points in R can be approximated by some approximation function ¢ we

1 we have

appeal to results of metric Diophantine approximation. By Dirichlet’s theorem when ¥ (q) = ¢~
that W(1)) = L. In the previous section we considered whether the approximation on the right hand side
of could be improved by a constant. A second natural question to ask is whether the exponent of
—2 from can be improved. For almost all x € I the answer is no, as proven by Khintchine [77]. Let

A denote Lebesgue measure, then Khintchine’s Theorem reads as follows.

12



Theorem 1.1.1. Let ¢y : N — R be a monotonic decreasing approximation function. Then

0if > 219¥(q) <oo
1 if 2311 ¥(q) = oo

Probabilistically, this gives us a surprising result. A real number x € I is contained in the set W () with
either probability 1 or probability 0, depending on the approximation function. This result is encompassed
by Cassels zero-one law [48], which states that AV (¢)) € {0, 1} for all approximation functions ¢. The
zero-one law has many equivalent results in a variety of different setting, see [31] for examples of various
zero-one laws and their proofs. What Theorem [I.1.1]shows in particular is that Bad and VWA are both
of Lebesgue measure zero. The fact that A(VWA) = 0 follows immediately by the convergence case, and
the fact that A(Bad) = 0 follows from the observation that Bad is contained in the compliment of W (7))
for 1(q) = (qlogq)~! which has full measure by the divergence case of Theorem m

Observe that Theorem [1.1.1] is only applicable to monotonic decreasing approximation functions. In
order to generalise to all approximation functions we need to slightly alter the set W(v). In particular
we wish to only consider points that can be approximated by infinitely many reduced fractions. The

following setup construct such a lim sup set. Let

- Y ()
0<p<gq
ged(p,q)=1

then we define W (v) as
W' (1) = limsup A, ().

g—+00
Clearly W (¢) € W(¢). In 1941 Duffin-Schaeffer [56] conjectured a Khintchine style theorem for W' (v)
for 1 a non-monotonic approximation function, and further gave an explicit counterexample as to why the
setup W(v) was insufficient to deal with non-monotonic functions. Gallagher [63] proved a zero-one law
for this set, that is AW/ (v)) € {0,1}, however the complete conjecture remained unsolved for decades.

Recently the conjecture was proven by Maynard and Koukoulopoulos [81].

Theorem 1.1.2. For ¢ : N — R, if

i sO(q

where ¢ is the Euler phi function, then )\(W’(d))) =1, and if the above sum converges then A\(W'()) = 0.

In a similar manner to Khintchine’s theorem the convergence case follows by the Borel-Cantelli Lemma.
The divergent case is considerably harder, so much so that the proof involved a combination of many
areas of mathematics including Graph theory, analysis, and arithmetic combinatorics. Theorem [1.1.2]is

a fundamental result in metric number theory. Due to the recent proof of this conjecture many other
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theorems that hinged on the result of the Duffin-Schaeffer conjecture now also follow. In most of the

following sections we will find a Duffin-Schaeffer style result that follows from Theorem [I.1.2]

1.1.2 The Borel-Cantelli Lemmas

For many of the Lebesgue measure statements above a key ingredient in the proofs are the Borel-Cantelli

Lemmas from probability theory. Let (€2,.4, 1) be a measure space, with measure u(Q2) < oo.

Lemma 1.1.3 (Borel-Cantelli Convergence [42] [47]). Let {E;} be a family of measurable subsets in §)
and suppose that

Z w(E;) < oo.
i=1

Then,
I (lim sup EZ> =0.

1—00
A straightforward application of Lemma [1.1.3| provides the convergence case of Theorems [1.1.1H1.1.2

above. The convergent case is the easy part of most Khintchine-style theorems due to the above lemma.

The following result, proven by Kochen and Stone [80], compliments Lemma

Lemma 1.1.4 (Borel-Cantelli Divergence [61]). Let {E;} be a family of measurable subsets in 2. Suppose
that

> u(EBy) = oo
=1

and )
n
. E.
S 03/ Y71C:1)
n—00 i,j=1 w(E; N Ej)

(1.3)

for some C > 0. Then p(limsup,;_,., E;) > C.

We remark that previous iterations of Lemma[I.1.4] had been proven prior to the result of Kochen and
Stone, including versions by Erdos & Renyi [58] and Lamperti [83] to name a few. For a brief history on

the developments of Lemma see [27].

Condition (|1.3)) is referred to as quasi-independence on average. While showing a set satisfies (|1.3)) is
not always straightforward, there are several results which make it more applicable. Firstly, if the family

of measurable subsets {M;} are pairwise independent in the probabilistic sense, that is
n(Ei N Ej) = p(E)pu(E;) Vi # j,

then if Y .2, u(E;) = oo, we have that

7 (lim sup EZ) =1.

1—00
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Secondly, if there exists some zero-one law on the measure space, then we would only need to show that

Jim sup Oict A(ED)”

>0
n—oo D4 i1 H(E; N Ej)

in order to prove the divergence case of a Khintchine type theorem.

1.1.3 Hausdorff measure and dimension

Both Theorem and Theorem [1.1.2] give a complete result in terms of the Lebesgue measure of the
set of y-approximable points. However, in both cases they fall short when differentiating between two

approximating functions where the sum
[e.e]
> 1(q)
g=1
converges. For example, by Theorem we know that AOV(3)) = A(W(100)) = 0. Intuitively we would

expect the set W(100) to be far smaller than W(3). Using Hausdorff measure and Hausdorff dimension

in place of Lebesgue measure can provide a more accurate representation of the size of W(v)).

We adopt the following conventions when defining Hausdorff measure and Hausdorff dimension. For a
locally compact metric space (U, d), a subset X C U, and p > 0, define a p-cover of X as a sequence of
balls {B;} such that X C |J, B;, with all balls r(B;) < p, where r(B) denotes the radius of the ball B.

We define a dimension function f : Ry — R, as an increasing function with f(r) — 0 as r — 0. Define

’HZ(X) = inf {Z f(r(By)) : {Bi} is a p— cover of X} ,

where the infimum is take over all p-covers of X. Clearly, as p decreases there are less possible p-covers
of X, hence the f-Hausdorff measure can be well defined by
H/(X) = lim HI(X).
(X) = lim H/(X)
The dimension function is usually taken to be f(x) = z* for some s € R, and denoted by H*. With this

notation we define the Hausdorff dimension as
dimX =inf{s >0: H*(X)=0}.

We note several properties of Hausdorff measure and Hausdorff dimension that follow from their defini-
tions. Most of these results and their proofs can be found in Chapter 3 of [59]. Firstly, observe that H*
is monotonic. That is, for any £ C F we have that H*(E) < H*(F). Secondly, by the definition of H?*,
for any single point € R™, we have that H°(z) = 1 and H*(z) = 0 for all s > 0 (we make a slight abuse
of notation here, since H?* is defined for sets when x a point we write H*({z}) = H*(x) ). This further
implies that for any countable set X we have that H%(X) = 0 for all s > 0. We also have the following
useful Lemma which is very helpful in the application of the Mass Transference Principle (see Chapter

3).
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Lemma 1.1.5. For any subset X C R™ the n-dimensional Hausdorff measure H"(X) is equal to the

n-dimensional Lebesque measure A\, (X), up to a constant multiple.

We can see this result follows clearly on the definitions of both Lebesgue and Hausdorff measure.
The following (Proposition 3.1 of [59]) essentially states that the Hausdorff measure behaves well under
Lipschitz mappings.

Proposition 1.1.6. Let F' C R™ and f: F — R", such that for all x,y € F,

[f (@) = f(y)] < clz—yl%
for some constants ¢, > 0. Then, for each s

HY(F(F)) < & H(F),

Using the above proposition we can obtain many results, one of particular importance to us is that the
Hausdorff measure is translation invariant. That is, for any x € R™ if we define F'+z = {a+x : a € F},

then H*(F + z) = H*(F).

Clearly, by the connection between Hausdorff measure and Hausdorff dimension several of the above re-
sults have Hausdorff dimension counterparts. By the monotonicity of H®, we have that dim is monotonic,
that is for any E C F, dim E < dim F. As mentioned, if X is a countable set of points the #°(X) is the
cardinality of X, but for s > 0 H*(X) = 0, and so dim X = 0 for countable set X. At the opposite end
of the scale, for any X C U = R" we have that dim X < dimR" = n, with equality reached whenever X
is an open subset of R™. The following proposition is the counterpart to Proposition for Hausdorff

dimension [59].
Proposition 1.1.7. Let ' C R™ and suppose that f : F — R™, which satisfies
[f(z) = f(y)l < clz —y|?,
for all x,y € F', where c,a > 0 are constants. Then
dim f(F) < édimF.
In particular, if f is a bi-Lipschitz transformation, that is
alr —yl < [f(x) = f(y)| < c2lz —yl,

for constants c1,co > 0, then
dim f(F) = dim F.
This Proposition is particularly useful when considering Diophantine approximation on manifolds, as

we shall see in Chapters 3-5.
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1.1.4 Theorems of Jarnik and Besicovitch

We now return to Diophantine approximation and provide results for both the Hausdorff measure and
Hausdorff dimension of W(%). For the Hausdorff dimension of W(%)) we have the result by Jarnik [75]
and Besicovitch [38] who independently proved the following.

Theorem 1.1.8. Let 7 > 1, then
2

1+7

dimW(7) =

The condition 7 > 1 is due to Dirichlet’s Theorem, since for 7 < 1 we clearly have W(7) = I and
so dimW(7) = 1. At this point we note the usefulness of the Hausdorff dimension. Going back to our

example at the beginning of the section we see that dim W(100) = % < % = dim W(3) as expected.
For the Hausdorff measure Jarnik proved the following theorem [75].

Theorem 1.1.9. Let f be a dimension function such that r=f(r) — oo as r — 0 and r=1f(r) is

decreasing. Suppose 1 : N = Ry is a monotonic decreasing approximation function with
-1 2, V(1) .
r—(r) and r*f | ——= | decreasing , ri(r) — 0 as r — oc. (1.4)
T

Then

0if o2,rf (wg)) < 00,
oo if Yoolrf (¢$j’)> = 0o0.

We remark that the conditions (|1.4]) on ¢ were originally imposed by Jarnik, however it was proven in

[18] that v being monotonic is a sufficient condition.

By setting f(r) = r® and ¥ (q) = ¢~ 7 it can be seen that Theorem easily follows from Theorem
1.1.9 In fact Theorem m goes one step further and proves that for s = 14%7 (with 7 > 1) that
H¥(W(7)) = co. As we shall see in Chapter 3 both of these theorems are implied by Theorem via
the Mass Transference Principle. Further, as proven in [28], the Mass Transference Principle can also be

used to prove the Hausdorff measure analogue of Theorem [1.1.2

1.2 n-dimensional Diophantine approximation

The results of the previous section illustrate that classical Diophantine approximation is largely complete
with respect to the Lebesgue and Hausdorff measure. The following section gives a brief layout and
overview of results for Diophantine approximation in n-dimensional space. There are several alternative
setups to consider in higher dimensions. We begin by defining each setup and the relationships between

them, and then discuss the corresponding Lebesgue and Hausdorff measure results.
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1.2.1 Weighted simultaneous approximation

The first form of approximation we will be focusing on is simultaneous approximation. We will give a
little more detail when defining this setup as it will be the main form of approximation in later Chapters.

Let ¥ = (¢1,...,%y) be an n-tuple of approximation functions ¢; : N — R, for 1 <i <n, ¢ € N and let

pi| _ vi(q)
q

q

.A,(]")(\I/):: U {m:(asl,...,mn)ellnzxi— <

0<p;<q
i=1,..,n

,1§i§n}.

Define the set of weighted simultaneously approximable points as
W, (0) := limsup A ().
q—00
The original use of weighted comes from a slightly different setup where the base approximation function
1 is the same, but a weight vector would be applied (a vector (ti,...,t,) € R™ with > " ;¢; = 1) so
that along each ith coordinate axis there would be a weighted approximation function of the form 1 (q),
see for example [3, §5.1]. In this case we use it to simply mean that the approximation function in each

coordinate axis could be different.

In the special case where the approximation functions are the same in each component (i.e. ¥ =1 =
-+« = 1)), then this is called simultaneous approximation, we denote this special case by W, (¢). When
each approximation function is the same we may use balls to define A,(]") (¢). Let |x| = max|z;| denote

the sup norm, then for x € R™ and r € Ry define the n-dimensional open ball as
B(@,r)={y = (y1,---,yn) ER" : [y —z| <7r}.
So for simultaneous approximation we may equivalently define W, () as

» =i (n) -1 <p71b((1)>
Wi () = limsup A;" (¥) = lim sup U B a )

q—0 q— o0

0<p;<q
i=1,...,n
where g = (%1, ceey %”). Since W, (1) can be described by a limsup set of balls many results are much

easier to prove in comparison to W, (V). The reasoning being that many definitions of measures and
measure theoretic results are heavily based on covers of balls. The set W, (V) is more easily described
by a limsup set of hyperrectangles. This means simple results for W), (1), such as the convergence case
of Khintchine style theorems, become less obvious for W, (¥). To overcome this issue the following
geometrical idea is used. For simplicity assume each approximation function is of the form v, (q) = ¢~ ™.
Given a vector T = (71,...,7,) € R} with 7y > --- > 7, > 0 and let ¥ = (¢, ...,%r,) be the n-tuple

of approximation functions. For a rational point % € Q" define the hyperrectangle

R <E’ ¢Tq(q)> = {(yl,...,yn) cR":

Dbi
Yi — —
q

<qmi 1§i§n}.
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Then we have that

)

q—o0

Wi (7)) = lim sup U R(
0<p;<q

i=1,...,n

Note that R (%, er@)) can be covered by a collection B of balls of radius ¢~ ! for each 1 < j < n,

where the cardinality of B is bounded above by ¢, with

n

k= Z(Tj —Ti).

=7

and so Aén) (¢+) can be covered by ¢"T* balls of radius ¢=7~!. This sort of cover is particularly useful
when obtaining upper bounds on the Hausdorff measure of W,,(¢+). Similar geometric ideas to this will

be used throughout this thesis, in particular in the upper bound proof of Theorem [5.1.4

Generally, the set W,,(¥) can be thought of as the set of points z € I" that can be approximated by
infinitely many rational points. For comparability to later setups we note that W, (¢) can be equivalently

written as

Wh(Y) = {x el™: ax lgzi — pi| < (q) for im (p,q) € Z”“} .

As with classical Diophantine approximation, our first target is to obtain optimal bounds on the ap-
proximation functions such that all x € R™ can be approximated. For our Dirichlet-style Theorem for
simultaneous and weighted simultaneous approximation we appeal to a theorem from the geometry of

numbers.

Theorem 1.2.1 (Minkowski’s theorem for systems of linear forms [89]). Given a system of linear in-

equalities of the form
.

leriz1 + - 4 | < Q1

|Cn71,1$1 + -+ Cnfl,n55n| < anh

|cn,1$1 +---+ Cn,nxn| < Qn,
where ¢; j € R fori,j e {1,...,n}, and Q; € Ry. If
n
| det(cig)izijen] < ] @i
i=1
then there exists a non-zero integer solution (x1,...xy) € Z™ to (1.5)).
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By considering the system of inequalities

lgox +q1] < Q™™

‘(JOﬂU + QH‘ < Qiﬂn

\|QO| < Q7

with " ;7 = 1 and each 7;, > 0 we can deduce an analogous statement to the corollary of Dirich-
let’s Theorem. Namely, for any (z1,...,2,) = & € R”, there exists infinitely many integer vectors

(p1,y--yPnsq) = (P,q) € Z"™ x N such that

_bi

T <q 7T, 1<i<n,

provided Y " | 7; = 1. An easy corollary to this is that in the simultaneous case we have W, (1/n) = I".
These results lead to the notion of n-dimensional badly approximable points. Let 7 = (71,...,7,) € R}

be a weight vector such that

d m=1 (1.6)

i=1
Then we may define
o n . Di 1= . p n
Bad,(7):=<xcl":3¢>0 |, ——|>cqg 7, 1<i<n, V=€Q";.
q
In the case where we have the weight vector 7 = (%, ey %) we have the set of simultaneously badly

approximable points, denoted by Bad,, = Bad,, ().

As with the classical case we may deduce that \,(Bad,(7)) = 0 via Theorem [1.2.6] Furthermore,
it was proven by Jarnik [75] that dimBad, (1) = n. This result can be generalised to also show that
Bad, (7) is of full dimension for any 7 satisfying [82]. The set Bad,(7) is of interest for several
reasons, perhaps the most notably due to Schmidt’s conjecture [I01] which stated that

() Badz((m,,7,)) # @

t=1,2

for any pairs (71,,72,), (T1,, T2,) satisfying (1.6). In 2011 Badziahin, Pollington and Velani [I2] proved

Schmidt’s conjecture to be true, in fact the following much stronger statement was proven [§].

Theorem 1.2.2. Let {(i, ji:)}}-, be a set with each iy,j; > 0 and iy + jr =1 for all 1 <t <n. Then

dim (ﬂ Badg(it,jt)> =2.

t=1

This landmark theorem has since been developed in a variety of directions. We will not pursue these

ideas further so direct the reader to [8, [9 92, [I5] and references therein for more details.
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1.2.2 Multiplicative and Dual approximation

The two other forms of n-dimensional approximation that are most widely used are multiplicative and
dual approximation. We stress here that this sections is present purely to give a complete picture of n-
dimensional approximation. The settings and concepts given in this chapter will not be pursued further.
Saying that, it should be remarked that there are still connections between the concepts of the previous
section and those that appear here. For example, as seen in the previous section, the set of weighted badly
approximable points have connections with Littlewood’s conjecture, a statement firmly in Multiplicative
approximation. Furthermore Khintchine’s transference principle, discussed at the end of this section, gives
a clear link between the set of dually approximable points and the set of simultaneously approximable

points.

In multiplicative Diophantine approximation, for ¢ : N — R, we consider the set
Wi (@) == {@ € R" : ||gz1]] ... |lgznl| < ¥(q) for im q € N},

where ||.|| denotes the minimum distance to an integer i.e. [|a|| = min{|a —n|:n € Z}. This setup
provides many interesting problems. In particular, where n = 2 we have the well-known Littlewood’s

conjecture (see for example §2 of [8§]).

Conjecture 1.2.3. For any pair (o, 3) € [0, 1)2,

lim inf gl qa]l. |g5]| = 0.
q—00

While the conjecture remains unsolved there has been significant steps towards proving the result. Most
notably is the result of Einsiedler, Katok and Lindenstrauss [57] who proved that the set of exceptions
to Conjecture has Hausdorff dimension zero. Conjecture [1.2.3] can also be shown to be related to

the behaviour of Bad, (7). In particular, it is well known that if

m Badz((71,72)) =0 then Conjecture is true, see for example [25].

0<71,m2<1
T1+712=1

The second form of Diophantine approximation in n dimensions which we will discuss is dual approx-
imation. Rather that approximating real number by rational points this setup is the approximation of
real numbers by rational hyperplanes. Concisely, a point € R" is said to be dually ¢-approximable if

there exists infinitely many (q,p) € Z" x Z satisfying

la.x — p| < ¥(lq),

where q.& = qz1 + - -+ + ¢uxp, and |q| = max; |¢;| for 1 <i < n. The set of dually approximable points

is defined as

Wi() = {@ € R" : @ — p| < (|al) for im (q,p) € Z" x Z} .
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For a Dirichlet style theorem for dual approximation we can appeal to Theorem [1.2.1] to obtain the

immediate corollary.
Corollary 1.2.4. For any (z1,...x,) € R™, there exists infinitely many (q1,...,qn,p) € (Z"\{0}) x Z
such that

—n
lqiz1 + qeza + - - + quan, —p| < <max |Qi|> .
1<i<n

Given this result we have that W;(n) = [0, 1]™.

Both simultaneous and dual approximation can be generalized by the following setup first introduced

by Groshev [106]. For a matrix X = (z;;) € R™ we say X is t-approximable if for infinitely many

(p,q) € Z™ x Z"\{0},

max |qix1j + -+ qun + pil < ¥(|q])-
1<j<m

For ease of notation we also write

llg.x+p|| = nax \q1z1; + - 4 qnng + Dyl

The set of y-approximable matrices, also called the Groshev approximation set, is defined as

Gnm () :={x e R" : ||qz + p|| < ¢(|q|) for im (p,q) € Z™ x Z"\{0}} .

We link this setup to both simultaneous and dual approximation by noting that

Gim(¥) =Win()  and  Gpa(v) = Wi (¥).

Before we begin discussing the metrical results of the above setups we note the following theorem which
highlights a relationship between W, (¢) and W (¢). In order to state the result we define the following

notation. For any & € R™ let

s(x):sup{aeR;mewn(IZO‘)},

and

dlxz) =sup{a e R:x e W,(n+a)}.
Khintchine’s transference principle (see for example [106], 49]) links these two functions.

Theorem 1.2.5. For any x € R", we have that

d(x)
n?+ (n—1)d(x)

< s(x) < d(x).

When d(x) is infinite we have




1.2.3 n-dimensional measure results

As with the classical setting, our next step is to give an overview of measure results for the ¥-approximable

sets in n dimensions. In particular we provide results for each of the following:
1. A Lebesgue measure statement analogous to Theorem [1.1.1
2. Hausdorff theory statements equivalent to Theorem and Theorem [1.1.9

Corresponding to each form of n-dimensional approximation we have several varieties of Khintchine’s
Theorem. As we are considering subsets of R" we use the n-dimensional Lebesgue measure, denoted \,,.

We begin with W,,(¥), proven by Gallagher in 1962 [62].

Theorem 1.2.6. Let ¢; : N — R"™ be monotonic decreasing functions for1 <i <n and ¥ = (¢1,...,%y).
Then
04f 32521 ¥1(q) - - ¥n(g) < oo,

Lif 3702 91(q) - - ¥n(q) = oo

Clearly this also contains the simultaneous setting, where the result depends on the convergence or

divergence of the sum

S wla)™ (L.7)

g=1
As in the one-dimensional setting, the convergence case of this result follows easily from the Borel-Cantelli
convergence Lemma (Lemma . In particular, like with classical approximation, we can deduce that
An(Bad, (7)) = 0 for all weight vectors 7 € R} with components summing to 1.
In the n-dimensional case the class of non-monotonic approximation functions was solved prior to the
proof of Theorem Using a slightly different setup Gallagher [63] proved that for any 1, A, (W, (¥))
is equal to zero or one depending on whether converges or diverges respectively. W;L(l/}) is defined

in the same way as W, (¢) with the additional requirement that the rational points we approximate over

are pairwise reduced fractions. That is,

W, (¥) = limsup U B (p’ M) )
170 0<pi<q

ged(pi,q)=1
i=1,...,n

In the multiplicative setup we have the following theorem due to Gallagher [62].

Theorem 1.2.7. Let ¢ : N — R+ be a monotonic function. Then

0 if Y02, ¥(g)log" ! g < o0,

1if 3202, ¢(g) log" ! g = oo

AW (9)) =
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Lastly we have the following result for our final setup, G, (%), which is referred to as the Khintchine-
Groshev Theorem. The following version of the theorem which removes monotonicity of the approximation
function in all cases except n = m = 1 was proven by Beresnevich and Velani in [33]. In the case where

n =m = 1 Theorem [1.1.2] can be applied.

Theorem 1.2.8. Let ¢ : N — Ry and mn > 1. Then

0 4f 302, ¢" ()™ < oo,
Lif 3202, ¢" (g)™ = oo

Note that this result contains the dual setting, Wy (¢), stating that if > 2, q" 11 (q) < oo then Wi ()

has measure zero and when the sum is divergent the set has full measure.

We now consider the second of the questions posed at the start of the section. We will begin with the
Hausdorff theory results for W, (¥), and then give the Hausdorff measure theorem for the Khinthcine-
Groshev setup as this encompasses all other Hausdorff theory results. The following result, proven in

[18], is the n-dimensional simultaneous generalisation of Theorem [L.1.9}
Theorem 1.2.9. Let 1 : N — Ry be a monotonic approximation function. Then

0 af Y02 1" Y(r)® < oo,
HET™Y) aif Yoo " EY(r)S = oo.

HWa(¥)) =

We remark that like the classical case this result was originally proven by Jarnik [75] but with additional
constraints on the approximation function 1. Evaluating the sum on the right hand side where it switches
from converging to diverging with respect to s we have the following n-dimensional Jarnik-Besicovitch
result [75] [38].

Theorem 1.2.10. Let 7 > % Then
n—+1

T+1

dim W, (1) =

We will prove this theorem in the next section as it provides a clear example of the application of the
Mass Transference Principle. We also have the following dimension result, as proven by Rynne [97], for

the more general case of weighted simultaneous approximation.
Theorem 1.2.11. Suppose that Z?:l 7; > 1 and assume that 4 > -+ > 1, > 0. Then

{n+1+2?=k(7k_”)} —s.

dim W, (7) = min Tt

1<k<n

This result will be proven in Chapter 3 as the method illustrates the use of a Mass Transference

Principle which will be used in a more complex proof later in the thesis. We note the following unexpected
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result. If 71 > 79 > 2, then we have that

. 3
dim WQ((Tl,TQ)) = 1 T . .

This means that as 71 increases the dimension of Wh((71, 72)) remains the same. This is unexpected, as it
implies that the "size” of Wa((71,72)) remains unchanged when 7 increases. As shown in [97], Theorem

1.2.11) may be extended to give a dimension result for general approximating functions. Define
—log i(q)

; = lim 1.8
K g—oo  loggq (18)
for i = 1,...,n. Suppose for an approximation function ¥ = (¢1,...,1,) each limit 7; exists and is

positive finite. Let U* = (11,..., 7).

Corollary 1.2.12. Suppose the n-tuple of approximation functions ¥ have positive finite limits stated
above, with Y, 7, > 1. Then
dim W, (¥) = s,

where s is the same as in Theorem [1.2.11]

This Corollary follows from Theorem [1.2.11{ and noting that the limits ([1.8]) imply that for any € > 0,

¢ T < Pig) S g
for sufficiently large q. Hence

Wi (W 4+ €) C Wi (F) C Wi (F* — e).

Returning to the Hausdorff measure we have the following result from [16] which provides us with the

complete theory of n-dimensional Hausdorff measure for 1-approximable sets.

Theorem 1.2.13. Let ¢ : N — Ry be a monotonic approximation function and nm > 1. Let f and g be

dimension functions with g(r) = r—™"=V f(r) and r~"™ f(r) monotonic. Then,

0 if S, rmtmlyg (@) < o0,

HE (I if Yo prtm=lg <M) = 00.

T

,Hf(gn,m(d))) =

We have the following corollary on the Hausdorff dimension of G, (7).

Corollary 1.2.14. Let 7 > 7, then

n-—+m

dim Gy, (7) = n(m — 1) + e

In particular, where n = 1 this gives us the Hausdorff dimension of W} (7), namely for 7 > m,

m—+ 1

di . =m-—1 .
imW, (r)=m—1+ p—
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1.3 What comes next: an overview of the thesis

The aim of this thesis is to emulate a variety of results displayed in this chapter in other settings, including
p-adic approximation and approximation over manifolds. As mentioned earlier in this chapter we will

chiefly be focussing on weighted simultaneous approximations in the respective settings.

Prior to proving any new results two more survey chapters are provided. The first gives an introduction

to p-adic numbers and p-adic Diophantine approximations. The chapter contains three new results

(Theorems [2.2.6| , [2.2.7] and [2.2.12), however, in order to keep the survey succinct these proofs are

reserved for Chapter 5. The third and final survey chapter introduces the Mass Transference Principle, a
beautiful theorem that enables Hausdorff dimension results to be obtained in a manner more easily than

traditional methods.

In the later chapters (Chapters 4-6) the main focus is on the study of weighted simultaneous approxi-
mation over manifolds. In Chapter 4 a brief survey on real simultaneous approximation over manifolds is
given before a new result (Theorem on the Hausdorff dimension of simultaneously T-approximable
points over C® manifolds is proven. In Chapter 5 the new results stated in Chapter 2 are proven.
One result of particular importance is a new Zero-One Law on the set of weighted simultaneously -
approximable p-adic points (Lemma . Similar results to the new Theorem in Chapter 4 are also
proven in the p-adic setting (Theorem . In Chapter 6 T-approximable points over p-adic
coordinate hyperplanes are investigated. In particular a new counting result on the set of rational ap-

proximations to a p-adic integer is proven (Theorem [6.1.3]), which enables a complete Hausdorff dimension
result to be proven (Theorem [6.2.1]).
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Chapter 2

p-adic Diophantine Approximation

In the previous chapter we studied the approximations by rational numbers to the set of real numbers.
In this chapter we discuss the approximations by rational numbers to p-adic numbers. In particular we
provide a survey of results analogous to those of the previous chapter, highlighting the key similarities

and differences.

2.1 p-adic Numbers

We begin with the definition of the p-adic norm and subsequent construction of the p-adic numbers. Most
results in this section can be found in a variety of textbooks, for example see [98] [87, [64]. Throughout
this chapter we fix some prime number p € N. For any rational point 7 € Q we may rewrite ¢ as the
reduced fraction

a d

b=y

where ged(d’,p) = ged(V',p) =1 and k € Z. For any z € Q define ord,(z) to be the unique n € Z such
that
x :p”% with pta, ptb.

Conventionally, we take ord,(0) = co. Then for any x € Q define the p-adic norm

’x‘p _ pfordp(ac).

Given the p-adic norm we define the set of p-adic numbers, Q,, to be the completion of Q by |.|,.

The p-adic norm has several properties that make @, an intriguing space to study. One such property
that sets the p-adic norm apart from the Euclidean norm is that |.|, is isolated for non-zero points. In
particular, for any z € Q,

lz|, € {p* : k € Z} U {0}.
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Secondly, and perhaps most importantly, we have the property that |.|, satisfies the strong triangle

inequality. For any x,y € @, we have the inequality

|z —ylp < max{|zlp, |ylp}-

In particular, where |z|, # |y|, we have equality in the above equation. These properties that make Q,
different from R lead to several interesting results in p-adic geometry. For any x € Q, and r € R, define

the p-adic open ball
B(z,r) ={y e Q: |z —ylp <r}.
Due to the strong triangle inequality we have the following lemma on the centres of p-adic balls.

Lemma 2.1.1. Let y € B(z,r), then B(y,r) = B(x,r).

This result follows easily from the strong triangle inequality by noting that for any point z € B(z, )
we have that

Yy —zlp =y — 2+ 2 — 2|, <max{ly — z|p, [z — 2} <,

hence B(x,r) C B(y,r). The reverse can be shown in the same way. The following lemma generally

states that any two p-adic balls are either disjoint, or one is contained within the other.

Lemma 2.1.2. Let By = B(z1,71) and By = B(x2,72) be balls in Q, with centres x1,x2 € Q, and radii
r1,m9 € Ry respectively. Assume By N By # 0, then either By C By or Bs C By.

Proof. Choose xg € By N By (we may do this since we assume By N By # (). Assume that r; > ry. Then
|21 — z2lp < max {|z1 — zolp, |20 — z2|p} < 71
Hence x5 € By. Thus for any « € Bs we have that
|z1 — 2|y < max{|z1 — @2y, [z2 — [} <11,
so x € By and hence By C By. A similar argument can be given to show that B; C By if 19 > 7. ]

There are many other interesting properties that Q) has, for example it can be shown that in the p-adic
setting at most two points are collinear in the usual sense, or that all p-adic triangles are either isosceles
or equilateral. These types of results are trivial to prove, with the key part of the proof being that the

p-adic norm satisfies the strong triangle inequality.

As such space is difficult to visualise geometrically in some ways it is easier to determine characteristics

of the space algebraically. For some x € Q, we may write the p-adic expansion of x uniquely as
[e.e]
xr = Zaipl, (2.1)
=k
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where a; € {0,...,p — 1}, k € Z and aj, # 0. Note the condition that a; # 0 is added to ensure each

expansion is unique. To shorten the notation a p-adic number may also be written as
T =...020100.0—1 - . .0,

see for example §1.4 of [98]. As an example, in 5-adic space we may write the expansion

15
7:...12040.:0.50+4-51+0.52+2-55”+1.54+....

For a method to construct such expansions and more numerical examples see §1.3-1.6 of [87]. By cal-
culating the p-adic expansion of several points we note a few properties. Firstly, for all x € Z with
corresponding expansion we have that & > 0. Further, if x € Z, then there exists large N > 0 such
that a, = 0 for all n > N, i.e. the p-adic expansion is finite. Secondly, if z € QQ then the p-adic expansion
of x is eventually periodic (see §1.4 of [87] for a proof of such result). That is, there exists some j,k,l € Z
such that
T=...Q54]...05Q;—1...Qk_10Qfk,

where a;4; ... a; is repeated infinitely. As an example we can continue the p-adic expansion of 1—75 to find
that

1—75 =...32412040.

A subset of QQ, of particular interest is the set of p-adic integers. Define the ring of p-adic integers as
Ly ={x € Qp:|z|, <1}

We have that Z, is an integral domain with 0 and 1 as the additive and multiplicative identities. As

noted by the above properties of p-adic expansions we have that
L C L.

In fact, we have the much stronger property that Z is dense in Z,. As a general proof of such statement
observe that for any ball B(z,r) C Z, we can take p-adic expansion of z = Y ;o z;p' and ¢ € Ny such
that

B(z,r) =B (Z xipi,pt> :
=0

Then observe that all integers of the form

¢
Z:cipi +p'™7Z C B(a,r),

=0
since
t [e%¢}
z— (Z :L,Z,pz +pt+lz> _ Z ZL'@'pZ _pt—l-lz <p t
i=0 i=t+1

P
Further Q is dense in Q,, since it is its completion (see Theorems 5.3 and 5.4 of [98] respectively for a

thorough proof on the matter). Topologically we also have the properties that Z, is compact and Q, is

locally compact.
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2.1.1 Analysis in Q,

In the following section we note several properties in p-adic analysis that differ from usual analysis in
R. In particular, important theorems in real analysis such as Rolle’s Theorem, the Mean value Theorem
and Taylor’s approximation Theorem do not have an immediate p-adic analogue. We begin with a few
statements on p-adic series, most of which can be found in [64] with corresponding proofs. Then we give
a class of functions that allow us to construct p-adic versions of some results in real analysis. The first

lemma shows us that in some instances p-adic series are much easier to work with.
Lemma 2.1.3. An infinite series

o0
Z an 9 a/i € Qp
n=0

is convergent if and only if lim |ay|, = 0.
n—oo
Proof. Let A, =" ;a;. Then note that

a3 Vn = Anotlp = g fanky,

so A, is a Cauchy sequence and hence convergent. The converse direction follows trivially. O

The last line of the proof follows from the fact that, in p-adic space, a sequence {a;} is a Cauchy

sequence and hence convergent, if and only if
hm an+1 — @ p = O
n— 00 | ntl n|

For a proof of this see Lemma 3.2.2 of [64]. Given this result we have that any power series

f(:L‘) = Z anz",
n=0

converges if and only if lim,_, |ap2z™|, = 0. The following lemma (Prop. 5.4.1 of [64]) gives us a p-adic

version of the radius of convergence.

Lemma 2.1.4. Let f(z) =) .7 anx™, and define

1
P= limsup {/]an|,

Then,
i) If p = oo, then f(x) converges for all z € Q.
ii) If 0 < p < o0 and |ay|,p™ — 0 as n — oo, then f(x) converges if and only if |x|, < p.

iii) If 0 < p < 0o and |ay|p,p™ # 0 as n — oo, then f(x) converges if and only if |x|, < p.
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Note at this point another difference to real analysis that makes p-adic analysis easier. By ii) and i)

of Lemma either all points |z|, = p converge or none. In the real case this is not always true.

The above results imply that p-adic analysis is considerably easier than real analysis. However, the
following argument indicates that in many respects this is not the case. In real analysis a key theorem
fundamental in many results is the Mean Value Theorem. The following example (found in §5.2.3 of [64])

provides reasoning why we cannot do this for all p-adic functions.
Example 2.1.5

Suppose f(z) is a continuous differentiable function on some U C Qp, and that |f'(x)|, < M for
all x € U. Then we would expect a Mean Value Theorem to state that for all a,b € U, with a # b,

we have that

=10
a—>b b
Considering the following function we see this is false. Take U = Z,,, f(z) =P, a =1 and b = 0.

Then
1f'(@)]p = [p2P~ ], < p 71,

for all z € Z,. However, we have that

f(1) = f(0)
1-0

=1>p 1,

p

hence the statement is false for this function.

This is not the only function where this statement is false, there are many. Furthermore, things are worse
than first appear. The following example, found in [98], shows that even the notion of differentiability in

p-adic space can have peculiar implications.
Example 2.1.6

For any x € Z, we can write out its p-adic expansion, say
(o]
xr = Z a;p'.
i=0
Then define the function f : Z, — Z, as
o
f(z) = Zaip%.
i=0

Such function f is clearly not constant, however calculating the derivative we have that

— f(b)
/ T — hm f(a) f( ,
F @)l (@b)=a)  a—b |
|p2N|p
N—oo [pN],’
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for all x € Zy.

As well as showing that zero derivative does not imply the function is constant the example also provides
reasoning for why there does not exist a general p-adic version of Taylor’s Expansion Theorem. One
such attempt to find p-adic versions of these results is to only consider small regions locally, that is, to
ensure any points under consideration are p-adically close, see for example [96, Section 3.2], [103]. Given
the above problem we are motivated to find a set of p-adic functions that satisfy some p-adic versions of
results in real analysis. A special class of p-adic functions introduced by Mahler [85] are the set of normal

functions.

Definition 2.1.7. A function f : Z, — Zj, is called a normal function if it can be written as

o0
fl@) =) an(—a),
n=0
where o, o, € Zy for each n, and lim |ay,|, = 0.
n—oo

By Lemma such functions will converge for all x € Z,. Further, the class of functions is quite
non-restrictive. For example, given any analytic function ¢g(z) we can find integers r, s such that p”g(p®z)
is a normal function [2]. Suppose y € Z,, then we have that

X £(n)
fa) =3 Wy
n=0

n

is normal, so we have a Taylor series expansion for normal functions. We also note the useful property
that if f(x) is normal then f(")(z) is also normal for any n € N. To conclude this section we show that

normal functions provide a possible p-adic version of the Mean Value Theorem akin to Example

Lemma 2.1.8. Let f be a normal function and suppose |f'(z)|, < M for all x € U C Zp. Then for any
x €U and any y € B(z, M) NU with y # x we have that

ECEVEI
T —y ’

p

Proof. Since f is normal we can consider the Taylor series expansion of f about any point y € B(z, M)NU

to find that
F™ ()

n!

F@) = fa) = -0 3> LW g gyt
n=1

Since z — y # 0 we may divide through by x — y to obtain
f@) = f(y)
T —y

I

X f(n)
ORI pe ks PR
n=2

n.

p p

X £(n)
oy S LW e
n=2

<max { | () k

p
<M,

32



where the final inequality holds since |f'(y)|, < M,y € B(z, M)NU and ‘%‘ <lforallneN. O
P

In Chapter 5 we will introduce further definitions and notations for multivariate p-adic manifolds, but

for now we return to the main focus of this chapter.

2.2 Diophantine approximation in Q,

This section is devoted to giving a p-adic analogue of the classical Euclidean results of Diophantine
approximation. We start with the following result by Mahler [86], which provides the p-adic version of

Dirichlet’s theorem.

Theorem 2.2.1. Let x € Zy, then for all h € N there exists integer pairs ag, a1 € Z with max{|ag|, |a1|} <
h such that

lagx — a1, < h™2. (2.2)

In comparison to the Euclidean case, where we had that |agx — a| < Q! for ag < Q, note that we
have an extra exponent of approximation. This is due to the fact that unlike Euclidean approximation
the rate of approximation can be increased dramatically by either of the components ag, a;. To see this

consider the p-adic expansion of agz. Let
e .
agm:Zcip’, ¢ €{0,...,p—1}.
i=0

Then choose a; = ) f:o ¢ip', so we have that
—k
lagx —ai1]p < p~".

If a; is unbounded we can let k& — oo and achieve increasingly close approximations. This observation
can be neatly summarised by the previously mentioned statement that Z is dense in Z,. Hence, in order
to provide any meaningful results we must bound both integer coefficients. To do this we usually make

the approximation function dependent on max{|agl,|a1|}, or bound |ai| < |ag].

The exponent on h in (2.2)) is best possible that we can have which allows all € Z, to have infinitely
many rational approximations. As proven by de Weger [54] the Hurwitz-style constant in p-adic space is

1, and so Theorem is best possible satisfying all x € Z,,.

Similarly to Chapter 1 we may be inclined to ask whether this approximation function on the right of
(2.2) can be improved for almost all points in Z,. As with the real case we can define the sets of badly

approximable points and well approximable points. Let
Bad® .= {:p € Zyp : e(x) >0 |gox — ql\p > c(ac)qo_2 Y(q0,q1) € N x Z with |q1| < \q()]} ,
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and the set of well approximable points being those that are not in Bad®. Define the set of very well

approximable points VWA®) o be
{z €Zp:3e>0 gz —qlp < gy°° forim. (go,q1) € NxZ with |g1| < go} .

Theorem below immediately gives us that Bad® and VWA ® are both of Haar measure zero. As

with the real case both sets are still relatively large. For example the p-adic integer
o0
n!
2P
n=0

is clearly in VWA ®) (in fact even more so, it is p-adic Liouville).

We now consider the metric theory of p-adic approximation. In p-adic space we take the associated
Haar measure p,, normalised by p,(Z,) = 1. A construction of the Haar measure for Q, can be found
in [105](Part II, Chapter 1), we highlight below the key properties of p, that we will use. Firstly, for

any p-adic ball B(z,p~*) with centre z € Q, and k € Z we have pu, (B(x,p*k)) = pk.

Secondly,
the measure is translation invariant. So for any z,y € Qp, pp (B(z,p™%)) = pp (Bly,p™")) = p~".
Lastly, the measure p, is doubling, that is, there exists ¢ > 0 such that for any ball B(x,p*k) we have

p(B(z,2p7%)) < epp(B(x,p~*)). More precisely, we have the inequality
ip (B(SU, ap_k)) < /s alp=F,

for any a > 1.

There are various ways to describe the set of p-adic y-approximable points. Initially we provide the
construction used by Jarnik in [76] to give a p-adic analogue of Theorem of Chapter 1. Let

< w(h)}) ,

T — —
a

5= U ({rezsfo-f] cvmjufres,.

a=—

p

then define
0% () := limsup Aj (¥).

h—o00

Using this setup Jarnik proved the following theorem [76].

Theorem 2.2.2. Let 1 : N — R be monotonically decreasing. Then

0 if D252y hp(h) < oo,
L df 3752, hp(h) = oo.

pp (W () =

Note the additional power of h in the above summations in comparison to Theorem This is due

to fact that both ap and aq influence the rate of approximation, as mentioned previously. As with the
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real case the convergence statement follows almost immediately from the Haar measure of 2j (1) and

Lemma (1.1.3

As shown by the following example in [65] this setup is insufficient when trying to construct a p-adic
version of Theorem As with the real case we know that in order to construct a Duffin-Schaeffer type
theorem we need to only consider points approximated by reduced fractions. Let 20°*(¢) be the subset

of 20*(¢) with the added condition that the rational approximations are reduced i.e. ged(a,h) = 1.
Example 2.2.3

Consider the function

b = p if p|h,

0 otherwise.

Then for any « € 2;*(¢) ( A} (v) with the added condition that gcd(a, h) = 1), we must have that
p|lh. This would imply that p 1 a, so ‘%!p > 1. Hence we would need x to satisfy

for some —h < a < h. As p{ a we have that |a], = 1 so we may multiply the above equation

through by |a|,, and then using the strong triangle inequality we would have that
lax|, < max{|ax — h|p, |h|p} < p L.

Hence, if x € A** (1)) then |z|, < p~!. Conversely, for any x € pZ, = {z € Z, : |z|, < p~ '}, and
any h € N such that p|h, i.e. h € pN, then

laz — hlp < max{|az|p, |h],} < p~*.

Thus if « € pZ, then x € A;* (1)) for any h € pN. Combining these we have that
A (V) = py
for all h € pN. When p { h then by our choice of 1, A;*(¢) is countable so can be ignored. Thus

pp(W* () = p~" ¢ {0,1}.

As the above example shows the setup given by Jarnik has the possibility that p,(20%*(¢)) € {0,1}.
Hence we need a new setup in order to construct a p-adic equivalent of Theorem To do this we

adopt the construction used by Haynes in [65]. For an approximation function ¢ : N — R and h € N let

W)= |J {ze€Zy:laoz—al, <y(h)}.
laol,Ja|<h
ged(ap,a)=1
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Then define the set of p-adic 1-approximable points as

W (1)) := lim sup A ().

h—o00

In comparison to the setup by Jarnik, Haynes prove that for any approximation function

pp(W(Y)) € {0,1},

thus satisfying a zero-one law (Lemma 1 of [65]). With this setup Haynes proved, modulo the proof of
Theorem the following.

Theorem 2.2.4. For any prime p and any ¥ : N — R, we have that

0 dif Dop) up(An(¥)) < o0,
Lif 3552, mp(An(y)) = oo,

1p(W(Y)) =

In a similar manner to [28] Theorem provides us with a Hausdorff measure result for 20(¢) via
the general MTP (see Theorem 7 of [65]). Given these theorems we have a complete set of results for

classical p-adic Diophantine approximation.

2.2.1 n-dimensional approximation

As in Chapter 1 there are a variety of ways we can approximate n-dimensional points. Through this
section we will focus on p-adic weighted simultaneous and Groshev-type approximation. Note that p-adic
simultaneous and p-adic dual approximation results can both be deduced from the Groshev-type setup
provided. We begin with p-adic weighted simultaneous approximation. Let a = (ag, ..., a,) € Z"!, and

let ¥ = (¢1,...,%y) be an n-tuple of approximation functions ; : N — R . Define

T — —

Ay (V) = U {x:(xl,...,xn) €Ly, : < i(ag) for alll<i<n} .

(a1,...,an ) EZ™
lai|<ao (1<i<n)

p

Then define the set of p-adic weighted simultaneously approximable points as
W, (V) = limsup AT (V).
apg—0o0

As with the real case we adopt the following simplified notation for 20,,(¥) when ¥ is of a special form:
0,(Y) if Y1 = -+ = ¢, = P; Wy(7) if Yi(q) = ¢~ for some 7 = (71,...,7,) € RY; and ,(7) if

furthermore 7 = (7,...,7) for some 7 > 0.

In the real case we could divide the whole equation through by the denominator to give us a ball/hy-
perrectangle with rational centre and radius/side lengths determined by W. In the p-adic case this is a

little more complicated. Note that ‘%‘ > 1 for all ag € Z, so we would be increasing the approximation
P
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function in many cases. To overcome this issue we will usually apply the constraint that ag and p are

coprime, hence leaving both sides of the inequality unaffected when multiplying through by =1.

1
ap P
In the Groshev setup we use the following construction. For any point y = (y1,...yn) € Z" let

lylp, = maxi<j<y |yi|p, which should not cause confusion. Let ¢ : N = Ry, g € Z™, g € Z™ and h € N.
Let

m@) = | {XezZpm:|gX +ql,<v(h)},
lgo|=h, la|<h

then define the set of ¥-approximable p-adic integer matrices to be
G (1) 1= lim sup g1 (1).
h—o0
When m = 1 then &,, 1(¢) = 20,,(¢), and when n = 1 we have the p-adic equivalent of dual approximation
which we will denote as D, (1)) = &1, ().

The following Lemma gives us the p-adic Dirichlet-style theorem for 20, (7).
Lemma 2.2.5. Let L;(x), withi = 1,...,n, be linear forms with p-adic integer coefficients. Let > ' | 7; =
n+ 1 for ; € Ry. Then there exists a non-zero rational integer vector x = (xo,x1,...,Ty) with

max |x;| < H,
0<i<n

satisfying the system of inequalities

|Li(x)|, <pH™ ™ fori=1,...,n.

For completeness we prove this lemma in Chapter 4. The proof is relatively simple, the key being the
choice of sets used to apply the Pigeon-hole principle. Given this lemma we may deduce a simultaneous
and weighted simultaneous Dirichlet-style theorem. Namely that 20, (1 + %) = Zj,, or that for any weight
vector T = (71,...,7,) € RY} such that Y7 | 7; = n + 1, then W, (7) = Z;. In [105] a dual version of
Lemma had previously been proven. The result (see Lemma 2 of Chapter 2 in [I05]) states that for
all x = (v1,...,2m) € Zy

|G, + -+ -+ a1xy + aglp, < ph™™ 7,

where h = maxo<i<m |a;|. Similarly to the Euclidean setting, as h — oo we note there are infinitely many

integer vector solutions, hence we can deduce that ©,,(m + 1) = Z}".

While not included here we note that a transference principle of a similar flavour to Theorem [1.2.5
exists. Using p-adic approximation lattices (see §5.5.1 for more details) Inoue, Kamada and Naito proved
a correspondence between 20(7) and ©(7) [73]. Given such results we move on to the Khintchine-style
Theorems for these setups. The following theorem provides a p-adic equivalent of Theorem of

Chapter 1. To ensure that the set satisfies a zero-one law we impose the additional condition that the
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rational points we consider are reduced fractions. We denote the set of weighted simultaneously W-
approximable points by reduced fractions by Qﬁ’n(\lf) Denote by pip., the n-dimensional Haar measure,

normalised by p,,(Zy) = 1.

Theorem 2.2.6. Let v; : N — R, be approzimation functions with each 1;(q) < ¢~' for 1 <i < n and

let U= (¢1,...,¢p). Suppose that [[;—, ¥i(q) is a monotonic decreasing function as ¢ — co. Then

/ 0 if Zzil q" H?:l wz(Q) < 00,
Loif 3221 a" [Ty vi(g) = oo

This is a new theorem within the p-adic setting, a proof is provided in Chapter 5. In tandem with this
result we also prove a new zero-one law on 20, (V). The proof of the convergence case is immediate upon
applying Lemma [1.1.3] The divergence case is proven by showing the limsup set of rectangles satisfies
quasi-independence on average, and thus proven by Lemma Note that Theorem [2.2.6| contains the

special simultaneous case 20,,(¢) which had previously been proven by Jarnik [76].

In Chapter 5 we also prove a Duffin-Schaeffer style theorem with the monotonicity condition on ¥

removed. As with Theorem [2.2.6] we state the result here and reserve the proof for Chapter 5.

Theorem 2.2.7. Let ¢; : N — [0,1) be approzimation functions with ¢;(q) < % for 1 <i<n and let
U = (¢1,...,1%,). For ¢ the Euler phi function suppose that

y Zévzl (@) TTiz ¥ila)
im sup ~ —
N—oo > o1 4" [y vila)

> 0. (2.3)

Then
0 if Y02y e(@)" ITisy vilg) < oo,
Ldf 32 (@)™ [, vile) = oo.

Hp.n (m];l(ql)) =

In the Groshev approximation case Lutz [84] proved the following theorem.

Theorem 2.2.8. Let i) : N — R be a monotonic decreasing function. Then

0 if Y00, (h)"hmTl < oo,

1 if S p(h)P R = oo,

,Up,nm(@n,m (V) =

Note that this theorem was proven using a setup in a style similar to the one used by Jarnik as noted

at the start of this section. More recently this theorem has been proven via ubiquity (see §12.6 of [18]).

The above theorems provide a complete set of Haar measure results over the various forms of n-

dimensional p-adic approximation. However there are still many other areas of interest, for example
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in [17] a Khintchine-style result is given for the approximation of p-adic numbers with respect to p-
adic algebraic numbers. More recently Oliveira proved a variety of Khintchine-style theorems for p-adic
simultaneous approximation over various rational subsets, including rational points contained within

p-adic balls [93].

2.2.2 Hausdorff theory in Q,

In this section we will consider the Hausdorff theory of p-adic approximation. We observe that (Qy, d),
where d(z,y) = maxi<i<n|Ti — yilp for ,y € Q, is a locally compact metric space. If we choose
the dimension function g(z) = x™ then g is doubling and Ahlfors regular, whereby we mean that the
corresponding measure H? is an Ahlfors regular measure i.e. for any ball B C Q) of radius 7 > 0 there

exists constants a,b > 0 such that

ar < HI(B) < br'".

Further, by Lemma 6 of [65] we have

Lemma 2.2.9.

'LLPJL = Hg'

Hence (Qy, d) with dimension function g satisfies the conditions for the general MTP (Theorem [3.1.1]).
With the aid of the general MTP many of the Hausdorff measure results follow from results of the previous
section. We begin with the p-adic analogue of Jarnik’s Theorem which was proven by Beresnevich, Velani

and Dickinson [18].

Theorem 2.2.10. Let f be a dimension function such that r="f(r) — oo as r — oo and r~"f(r) is

decreasing. Furthermore suppose f(r) is increasing and let v : N — R. Then

0 if Y52, Fb(h)h" < oo,
0o if Y2, f($(h)h" = .

H (W, (v)) =

Note that Theorem [2.2.10| was proven prior to the general MTP, and used the setup of ubiquitous
systems provided in [I§]. A clear corollary of the above result is the equivalent Jarnik-Besicovitch Theorem

for the dimension of 20,,(¢)).

Corollary 2.2.11. For t > % +1,
n+1
—

dim 0, (1) =

We also prove in Chapter 5 the following result for the set of weighted simultaneously approximable

points.
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Theorem 2.2.12. Let 7 = (71,...,7,) € R be a weight vector satisfying > - ;7 >n+1 and 7; > 1

foreachi=1,...,n. Then

dim 20, (7) = min

1<i<n

{n—i—l—i-Z?:i(Ti—Tj)}'

Ti

This theorem requires more work to prove than Corollary [2.2.11] primarily because the set is a lim sup
set of hyperrectangles rather than hypercubes. The full proof of this theorem is provided in §4.4.2.

The Hausdorff measure result for &, ,,(¢)) proven by Beresnevich, Dickinson and Velani in [I§] is as

follows.

Theorem 2.2.13. Let f be a dimension function such that h™"" f(h) — oo as h — 0 and h™"" f(h)
decreasing. Further suppose that h_(m_l)"f(h) is increasing. Let ¢ : N — R4 be a monotonic decreasing

function. Then

0 if 3o f(¢(h))¢(h)_(m—1)nhm+n—1 < o0,

,Hf(ﬁn,m(d})) =
oo if Yp2y f(w(R))w(h) = hmpmEn Tl = oo,

Clearly, the above theorem implies the n-dimensional p-adic Jarnik-Besicovitch theorem, which was

previous proven in [1].

Corollary 2.2.14. For 7 > ™%

dim Gy (7) = (m — D + 2"
-
In particular, for dual p-adic approximation we have that
. m+1
dim®,, (1) = (m—1) + :
T

This concludes the Hausdorff measure and dimension results for the sets of p-adic approximable points.

As a concluding remark to this Chapter note that while there are many differences between real and
p-adic approximation they both still follow a general methodology. Namely we require a Dirichlet-
style theorem e.g. Lemma Lemma [2.2.5] which via ubiquity can be used to find Khinthcine-style
theorems e.g. Theorem|1.2.6] Theorem[2.2.6] or via MTP-style theorems to construct Hausdorff dimension

statements e.g. Theorem [1.2.11} Theorem [2.2.12
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Chapter 3

The Mass Transference Principle

The Mass Transference principle (MTP), first developed by Beresnevich and Velani [28], is an invaluable
tool in Diophantine approximation and is now part of the standard machinery for studying many problems
in metric Diophantine approximation, see [6] for a survey. The theorem, and following variations, will be
used in a variety of settings throughout this thesis. Generally the MTP allows us to turn a full measure
statement into a Hausdorff measure statement. We begin by introducing the general MTP and then
provide a proof of Theorem to illustrate how the MTP can be applied. From there we discuss
the various forms of MTP from ”balls to balls” before moving on to MTP results that provide Hausdorff
measure results for lim sup sets of rectangles. Such results, including the MTP from balls to rectangles
[112] and the MTP from rectangles to rectangles [I11], are crucial in the proofs of the main theorems of
Chapters 4-6. Since these results will be used in both the real and p-adic setting we provide these results

in full generality.

3.1 From Balls to Balls

Throughout this section let (X,d) be a locally compact metric space. Define g : Ry — R4 to be a

doubling function if there exists a constant A > 1 such that for all x > 0 we have
9(2x) < Ag(x).
Suppose there exists constants 0 < ¢; < 1 < ¢ < 0o and ry > 0 such that
ag(r(B)) < HI(B) < cag(r(B)), (3.1)

for any ball B = B(z,r) with centre € X and r(B) = r < rg. Given a dimension function f and a ball
B = B(zx,r) define
B! = B (2,97 (f(r)) -
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Note that B9 = B. We may now state the general MTP as given in [2§].

Theorem 3.1.1 (General Mass Transference Principle). Let (X, d) be a locally compact metric space and
g a doubling dimension function satisfying (3.1)). Let {B;}ien be a sequence of balls in X with r(B;) — 0
as i — oo. Let f be a dimension function such that f(x)/g(x) is monotonic and suppose that for any ball

BcCcX

HI (B N limsup B/ ) = HI(B). (3.2)
1—00
Then, for any ball B C X
HS <B N lim sup Bi> =H/(B). (3.3)
1—00

We note several properties of this theorem. Firstly, as seen in [28], this theorem is applicable to to the
metric space (I",d) where d is the usual Euclidean distance or sup norm. Take the doubling dimension
function g to be g(x) = x", then we have that H" is our usual n-dimensional Lebesgue measure up to
a constant, by Lemma m Hence becomes a Lebesgue measure statement. In turn, for we
may take any ball B C X, so by taking a ball B containing our limsup set, then we have a Hausdorff
measure statement on our lim sup set. Similarly Theorem [3.1.1] could be phrased in the p-adic setting by

considering a similar argument to that above with Lemma replaced with Lemma 2 from [65].

To illustrate an application of Theorem [3.1.1] clearly we prove the Jarnik-Besicovitch Theorem for

n-dimensional simultaneous approximation (Theorem [1.2.10)).

Proof of Theorem[1.2.10, We omit the proof for the upper bound as this follows by taking a standard

covering of balls over the set provided in the definition of W, (7). For the lower bound let

B*=B (p,qfﬂ—l—”) ,
q

and define
A= | B
0<pi<q
1<i<n
For s = Z—ﬁ we have that W, (1) = limsup,_, A(gn)(r)s. By Theorem [1.2.1} A, (W, (2)) = 1, hence

by Lemma for any ball B C I"
H" (B N lim sup A((I”) (T)S> =H"(B).
q—o0
Applying Theorem we have that
H® (B N lim sup A,(]")(T)> = H*(B).
q—0
As a requisite for Theorem [1.2.10|is that 7 > %, then s < n for all 7 so taking B = I"" we have that
H® (Wa(1)) = H(I") = o0,
thus dim W, (1) > s = 2L, O
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The general MTP also works very well in a variety of other settings, see for example the proof of

Theorem in Chapter 5.

The first generalisation of the MTP was for systems of linear forms established in [29]. In this paper it
was conjectured that some of the conditions imposed were unnecessary, in [5] this was shown to be the case.
With this MTP for systems of linear forms it’s possible to prove the divergence case of Theorem [1.2.13
This proof is beyond the scope of our use of MTP theorems, we focus exclusively on balls/rectangles. For
an in depth proof of the claim made above see [4]. Subsequently, Allen and Baker [4] proved a general
MTP for sets satisfying certain conditions, these sets included points, linear forms, self similar sets, and

smooth compact manifolds amongst many others.

In all the MTP theorems mentioned thus far the sets used in the condition statement and the output
result are evenly shrunk over the whole object (e.g. ball/linear form). None of the theorems allow for a
varied rate of compression in each coordinate axis. Where this sort of desired theorem would be useful is
in providing Hausdorff dimension results for lim sup sets of hyperrectangles, in particular W, (¥). There
are various methods to obtain Hausdorff dimension results for limsup sets of rectangles via Theorem
3.1.1| (see Chapter 5.3 of [3] for more details) but these methods require an excessive amount of work in

comparison to the theorems in the following section.

3.2 From Balls to Rectangles

Here we consider MTP style theorems that provide Hausdorff measure results for lim sup sets of rectangles.
These sort of theorems will be of particular use when considering weighted simultaneous Diophantine
approximation. We will provide these theorems in the chronological order that they were proven and
discuss the advantages, and disadvantages, of each. Such pros and cons will be illustrated by proving the

Theorem of Rynne (Theorem [1.2.11)) with the two different forms of MTP.

We begin with the following theorem given by Wang, Wu, and Xu [112]. Let a = (a1,...,a,) € R} be

a vector with a; > az > -+ > a,. Then for any ball B(x,r) C R™ define
B® = B(x, (r*,...,r")),

i.e. a hyperrectangle with sidelenghts 2% and centre &. The MTP from balls to rectangles is stated as

follows.

Theorem 3.2.1. Let (x;)jen be a sequence of points in [0,1]" and (r;)jen be a sequence of positive real
numbers such that r; — 0 as j — oo. Let Bj = B(xj,r;) and let a = (a1, ..., a,) be a weight vector, with

a; € Ry anday > a9 > -+ > a, > 1. Suppose that

An <limsup Bj> =1.
Jj—00
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Then

n .
dim ( limsup Bf | > min {n + 2 izk(ar — @) } =s.
o0 1<k<n ay

Furthermore, provided ay > 1, then

H? <lim sup Bf) = 0.
j—o0

We should note immediately that unlike Theorem [3.1.1] this theorem was proven explicitly for X = R™,

however, it seems possible that the statement could be generalised to ” well-behaved” metric spacesﬂ Like

the theorems of the previous section Theorem allows us to obtain a Hausdorff dimension statement

from a full measure statement. Also we are still required to start with a full measure statement for a

lim sup set of balls, it is only the Hausdorff dimension result which is for lim sup sets of hyperrectangles.

We remark that while this result is incredibly useful in providing Hausdorff dimension results for lim sup
sets of rectangles, due to the prerequisites of Theorem (going from balls to rectangles) we have the
condition that the sidelenghts of the rectangles in the output statement are bounded from above by the
radius of the balls used in the Lebesgue statement. To show the usefulness, and issues, with Theorem

we provide a proof for a somewhat restricted version of Theorem [1.2.11

3.2.1 A restricted proof of Theorem [1.2.11| via Theorem (3.2.1

We will prove both the upper and lower bound of this dimension result. While it is only the lower bound
that requires the use of Theorem [3.2.1 we still prove the upper bound as it is less straightforward that
that of Theorem [I.2.10] As the title of this subsection suggests the following does not prove Theorem
fully. In particular the condition that

n
ZTi >1
=1

in Theorem |1.2.11]is replaced by the condition that each 7; > % Note that this condition is only needed

for the lower bound proof.

Upper Bound: Let T = (71,...,7,) € Rl. As given in the previous section define W, (7) = limsup,_, ., Ay
with
P
A= U r(Za).
o<pi<g
i=1,...,n

—T;—

Here R (%, q*"*1> is a rectangle with centre % and sidelenghts 2q I along each i-th coordinate axis.

By the above setup we clearly have that {Aén) (7')} N is a cover for W, (7). Choose a fixed 1 < j < n. As
qe

If X is a product metric space with each direction equipped with an Ahlfors regular Hausdorff measure. This was

discussed in correspondence with the authors of [112]
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mentioned previously, we may cover each hyperrectangle R <%, q*"*l) by a collection of balls Be (¢~177)
q
of radius ¢~'~7, such that

B (g7 71) < ),
q

Let Q € Z satisfy p > Q™" for each i. Then, for ¢ > @

U Be(g ™)
0<pi<qg
i=1,...,n

is a p-cover of W, (7). Hence
H (W"(T)) < Z qn(]Z?:j(Tj_Ti)(q—l—Tj)s
q=Q

which tends to zero as () — oo, provided that

e}
anJrZ?:j(Trﬂ)*S(Tﬁl) < oo.
q=0

This sum converges only when

ALY ) e
B T; + 1
for € > 0. As this holds for all j = 1,...,n, and letting € tend to zero, we have that

{n+1+ELAm—m}.

7‘j—|-1

)

: < mi
dim W, (1) < nin,

This provides us with our upper bound.

Lower bound:[condition 7; > 1/n for each 1 < i < n, rather than ;" ; 7; > 1] By Theorem we have

that
1
An <limsupAc(]") <>> =1.
q—o0 n
If we take a = (ay,...,a,) to be the weight vector with coefficients
1 .
ai:n(l—tnn) for 1<i<n (3.4)

then for the ball B,y = B(R,q 1),

a _ p —1-7 —1—7
B(p/q)_B<q’(q la"'aq )>

P/q)

Using Theorem [3.2.1] we have

n+>; <n(1+:z] - n(1+n )>

dim W, (7) > min

T1<j<n n(1+7;) ’
14+n
. {n+1+2gﬂn—n?
> min .
1<j<n 1+ 7j
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Note that in order to apply Theorem [3.2.1] we require a; > --- > a, > 1. This condition forces the
requirement that each 7; > 1/n (to see this combine the condition that each a; > 1 and (3.4)). Thus the

lower bound dimension result given above is only valid for 7 satisfying 7; > 1/n rather than the weaker

condition 1 ;7 > 1.

3.3 From Rectangles to Rectangles

We now introduce the most recent form of MTP due to Wang and Wu [I11] who established a stronger
and in a sense more versatile version of the MTP obtained in [I12]. This result can truly be seen as
a MTP from rectangles to rectangles. In [I11] two forms of MTP from rectangles to rectangles were
established. As we shall see, the first form has the advantage that we only need a full measure statement
to apply the theorem. For the second form a ubiquity hypothesis is required, similar to that of [I§], a

condition unnecessary in all of the previously stated results.

Prior to the statement of the Theorems we state the notion of local ubiquity for rectangles introduced
in [I11], which is a generalisation of the notion of local ubiquity for balls introduced in [I§]. Fix an
integer n > 1, and for each 1 < i < n let (Xj;,|- |;,m;) be a bounded locally compact measure-metric
space, where | - |; denotes the metric and m; denotes a measure over X;, which will be assume to be a

d;-Ahlfors regular probability measure. Consider the product space (X, |- |,m), where

n n
X:HXia m:Hmi’ \'|:11£1?§}§l"|z'
=1 =1

are defined in the usual way. For example, in the setting of Chapter 2 we could take X; = Z,, m; = p,
and |- [; = |-, for each 1 <i <nso X =Zy, m = ppn, and |- | is the usual sup norm. For any z € X

and r € Ry define the open ball

n

Bla,r) = {yeX: il < V=TT By
(3377‘) {y S 121%};‘331 yz|z < "”} 1—[1 ’L($Z7r)a
1=

where B; are the usual open r-balls associated with the i*" metric space X;. Let J be a countably infinite

index set, and 8 : J — Ry, a— 5, a positive function satisfying the condition that for any N € N
#{ae J:py < N} < 0.
Let I,,, u, be two sequences in R, such that w, > [, with [, — oo as n — co. Define
Jp={a e J:l, <Bo <up}.
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Let p : Ry — R4 be a non-increasing function such that p(z) — 0 as * — oco. For each 1 < i < n, let

(Ra,i)acs be a sequence of subsets in X;. The family of sets (Rq)aecs Where

Ra = H Ra,h
=1

for each a € J, are called resonant sets. For a = (a1, ...,a,) € R’} define

A<RO<7 p(r>a) - H A/(Ra,i7 p(r)ai)7
where for some set A C X; and b € Ry
A'(A,b) = | ] B(a,b)
acA

is the union of balls in X; of radius b centred at all possible points in A.

Definition 3.3.1 (Local ubiquitous system of quasi-rectangles). Call the pair ((Ra)ae}, B) a local ubig-
uitous system of rectangles with respect to (p,a) if there exists a constant ¢ > 0 such that for any ball

BcCcX

lim supm <Bﬁ U A(Ra,p(un)a)> > cm(B).

n—oo OéEJn

We remark here that the definition is stated as local ubiquitous systems of quasi-rectangles due to
fact that the objects A(Rq, p(un)®) may look nothing like rectangles in the usual sense, for example if
the resonant sets are lines. In the special case of the resonant sets being points then we could consider
Definition 3.2.2 as a ubiquitous system of rectangles. The second property needed to state the Wang-
Wu theorem is a local scaling property, which was first introduced in [4], and which is a version of the
intersection properties of [I8]. In our setting the condition will be satisfied for £ = 0 and holds trivially.

Nevertheless, we include the condition for the sake of completeness.

Definition 3.3.2 (k-scaling property). Let 0 < k < 1 and 1 < i < n. The sequence {Ry,i}acs has
k-scaling property if for any o € J, any ball B(z;,r) C X; with centre z; € Ry ;, and 0 < € < r then

eordk iR < (B(ay, ) N A(Ra i, €)) < eardikedii=k)
for some constants co, c3 > 0.
Finally, for t = (t1,...,t,) € R, define

W(t) = limsup A(Rq, p(Ba)*").
aeJ

We now state the following theorems due to Wang and Wu [I11].
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Theorem 3.3.3 (Mass Transference Principle from Rectangles to Rectangles with Ubiquity). Let (X, |-
|,m) be a product space of n bounded locally compact metric spaces (X;,| - |i,m;) with m; a 6;-Ahlfors
probability measure, for 1 <i <n. Let (Ry)acs be a sequence of subsets contained in X and assume that
((Ra)acg, B) is a local ubiquitous system of rectangles with respect to (p,a) for some a = (ai,...,a,) €
R%, and that (Ra)acy satisfies the k-scaling property. Then, for any t = (t1,...,t,) € R}

. . dieks %05 — D jercy ti;
dim W (t) 2 min Soi+ D G+k Y G+ (1—k) = 2 =5,

JEK1 JEK? JEK3

where A = {a;,a; + t;,1 < i < n} and K1, Ky, K3, dependent on the choice of A;, are a partition of
{1,...,n} defined as

Klz{j:aj ZAl}, ng{j:aj—l-tj SAZ}\Kla ng{l,...n}\(KlLJKg).

Furthermore, for any ball B C X
HI(BNW(t)) = H*(B). (3.5)

Theorem 3.3.4 (Mass Transference Principle from Rectangles to Rectangles without Ubiquity). Suppose
that each measure m; is 0;-Ahlfors reqular and Ry ; has k-scaling property for each a € J (1 <1 < n).

Suppose

o (1msup A (Rav p(52)°) ) = m(X).

Then
dim W (t) > s,

where s is defined in Theorem|[5.5.5

Note that the full measure statement of Theorem is far easier to establish than the local ubiquity
statement required in Theorem [3.3.3] However this short cut comes at the cost of s-Hausdorff measure

statement, which we cannot attain via Theorem In cases where the ubiquity statement is relatively
easy to establish (see for example Theorem [5.1.4)) this is not a problem.

3.3.1 A proof of Theorem [1.2.11| via Theorem (3.3.4

We now provide a complete lower bound proof of Theorem [I.2.11] Since Theorem is a statement
purely on the Hausdorff dimension we use Theorem [3.3.4]

Lower bound of Theorem |1.2.11¢[condition Y ;" ; 7; > 1] By Theorem we have that

An (lim sup .A((I") (a)> =1

q—00
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for any n-tuple @ = (ai,...,ay) such that a; > 0 and > ;" ; a; = 1. Without loss of generality we may

suppose that 4 > > --- > 7, > 0. For 0 <i <n — 1 define a,_; recursively by

1_23 n— 7,+1a.7}

ap—; = min {Tn—w
n—1
In the case where ¢ = 0 we take the second term to be =. We claim there exists 0 < K <n — 1 such that

I—- Zj:n—K—f—l a;
n—K ’

Ay =
forall 1 <u <n- K, and
Ay = Ty

for all n — K +1 < u < n. To show this claim is true note that 7,_(x41) > Th—k, since 71 > -+ > 7,

and so if
L= K19
Th—K = n— K
then clearly
L= k419
Tne(K+1) > TZ e = (3.6)

Furthermore note that

1- Zj=nf(K+1)+1 a; 1- Zj:anJrl aj — an—K

n—(K+1) - n— (K +1) ’
1->" a;
=N g - ()
- n— (K +1) ’

(n— K) <1 - Z?:WKH aj) (1 - Z_y =n—K+1 aa)
(n—K)(n—(K+1)) ’

n
L= n-K+1%
n—K ’

and so, by the above and (3.6, we have that

. 1 - Zn —(K41)+1 % g =n—K+14j

Ap—(K+1) = M Tp—(K+1); n— (K +1) K .
We should observe at this point that if K = 0 then each a; = % and so we would begin with a full
measure statement on a lim sup set of balls. Note that the vector (ay,...,a,) constructed above satisfies

the condition that )" ; a; = 1, since

K _ n '
2:2(1 an_";f“‘”% S 4ot
.

i=1 j=n—K+1

By construction we have that a; < 7; for each 1 < ¢ < n, so the n-tuple t = (¢1,...,t,) is well defined as

Note that for each metric space X; = I the measure X is a 1-Ahlfors probability measure. Consider the

following three cases:
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i) A; €{a1+1,...,an—k + 1}: For these values of A; we have that
Ki={l,....n— K}, Ko={n—K+1,...,n}, Ks3=0.

In the case where K = 0 take Ko = (). Applying Theorem we have that

{(n_K)(ai+1)+("_(”_K+1)+1)(ai+1) —Z}Ln_Ktj}

dim W, (7) > min p——

A;

Since t; =0 for n — K +1 < j < n we have that dim W, (7) > n.
ii) A; € {an—-x+1+1,...,a, + 1}: For such values of A; observe that
Ky={1,...,i}, Ko={i+1,...,n}, Ks=0.
Applying Theorem we have, in this case,

i(ai+ 1)+ (n—i)(ai+1) =377 ;11 4
a; +1 '

dim W, (1) > Irjl4i1’l

Similarly to the previous case, since t; = 0 for n — K +1 < j < n the r.h.s of the above equation is

n, the maximal dimension of W, (7).

i) A;e{m+1,...,7+1}: For 1; = a; with n — K +1 < i < n ii) covers such result. So we only need

to consider the set of A; € {71 +1,...7,—x + 1}. If A; is contained in such set, then
K1 :w, ng{i,...,n}, K3={1,...,’i—1}.

Thus, by Theorem [3.3.3] we have that

(n—i+1)(r+1)+ X (a0 +1) = X0t
Ti+1 7

dim W, (1) > Ir}lin

. . =S ea -
m—i+1)(m+1)+(GE—1) <1 + W) - Z?:Z'K(Tj —aj) = > k1t

(n—i+1)(ri+ 1)+ (n— K) (1‘2?:”*“1(“3‘_1)) F—1) YK oy ’

. v n—K j=i 'J j=n—K+1Y%

= Imin 9
. {n+ 1+ 370 (n —Tj)}

= Imin 9

since a; +t; = 7j.

These are all possible choices of A; and thus completes the lower bound of Theorem [1.2.11
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There are several remarks to make on this proof. Firstly, note that the general framework of proof remains
unchanged between this proof and the one above via Theorem [3.2.1] The first real difference appears
when discussing the value of K in the above proof. In the proof via Theorem this value of K is
rigidly fixed at K = 0, whereas in the application of Theorem [3.3.4] this need not be the case.

Variations of the recursive formula used above will be applied regularly when using Theorems [3.3.3
The technical details of the formula can be ignored, the key idea being that the formula ensures
our original rectangles used in the full measure statement have sufficiently large sidelenghts so that the

rectangles in our limsup set of study (e.g. W, (7) in this case) can fit inside.

As the above results show, when calculating the Hausdorff dimension of lim sup sets the MTP theorems
make the lower bound calculation much easier, provided a full measure statement can be proven. In
Chapters 4-6 where the lower bound result is difficult to calculate using traditional methods these MTP

style theorems are incredibly useful.
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Chapter 4

Real Weighted Simultaneous

Approximation over manifolds

We start this Chapter with an overview of the latest results in the field of simultaneous approximation over
manifolds. In particular we will focus on the more precise measure of Hausdorff measure and Hausdorff
dimension. This provides a background for our result proven at the end of the chapter, which is to obtain
a general lower bound on the dimension of weighted simultaneously approximable points on manifolds.
The contents of this chapter is essentially [23] jointly published with Beresnevich and Levesley. Since the
publication of [23] there has been an improvement in Mass Transference Principle results, namely the
developments given in [I1I]. This has subsequently led to an improvement in the range of approximation

functions that can be used in the main result of this chapter. See [7] for more details.

4.1 Diophantine approximation on manifolds

When considering manifolds we look at them locally on some open subset & C R% and use the following

Monge parametrisation without loss of generality
M :={(z,f(x)) :x cUU} CR",

where d is the dimension of the manifold, and f is a map such that f: &/ — R™ with m = n — d being the
codimension of the manifold. As the manifold is of this form we can consider the approximation of the
coordinates x and f(x) separately. We will refer to « as the independent variables, and the codomain
of f as the dependent variables. In the special case of simultaneous approximation on manifolds the

approximation functions on both the independent and dependent variables are the same.

Much progress has been made in establishing measure theoretic results for the set W, (1)) N M, we

highlight some of these results below. Sprindzhuk established many of the foundational results in this
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area which he referred to as Diophantine approximation on dependent variables [105]. A differentiable
manifold is called extremal if almost all points, with respect to the induced Lebesgue measure of the
manifold, are extremal, whereby we mean that the Dirichlet approximation exponent of R™ cannot be
improved for almost all points on the manifold. It was first conjectured [I07] and later proven by Kleinbock
and Margulis [78] that any non-degenerate submanifold of R™ is extremal, where non-degeneracy is defined

as below.

Definition 4.1.1. A map f: U — R" is non-degenerate at u € U C R™ if there exists some k € N such
that f is k times continuously differentiable on some sufficiently small ball centred at u, and the partial
derivatives of f at u of orders up to k span R™. The map f is non-degenerate if it is non-degenerate at
almost all points u € U, in terms of A\p,. A manifold M, with dim M = m > n, embedded in R™ is said to

be non-degenerate if it arises from a non-degenerate map f: U — R"™ where U C R™, that is M = f(U).

Generally a manifold is non-degenerate if it is sufficiently curved almost everywhere with respect to the
induced Lebesgue measure of the manifold. As an example note that any connected analytic manifold
not contained within a hyperplane is non-degenerate. For an example of a degenerate space note that

any line or hyperplane is degenerate everywhere.

For the Hausdorff dimension of W, (7) N M note trivially that
dim W, (1) " M < dim M,

with equality if > 7" | 7; < 1 by Theorem One of the first non-trivial advances with respect to the
Hausdorff dimension of the set Wa(¢)) N M was by Beresnevich, Dickinson, and Velani in [19], where they
determined the dimension of the set of simultaneously approximable points on sufficiently curved planar
curves in R2. There is also a related paper [30] which uses a similar technique to find the Hausdorff
dimension of Wa(7) N M for 7 = (71, 2) bounded below and above by 0 and 1 respectively. Both papers
give an equality for the dimension rather than just a lower bound as presented in this paper. The following

is Theorem 4 from [30]. We denote the set of n times continuously differentiable functions by €™,

Theorem 4.1.2 (Beresnevich et al. [30]). Let f be a C®) function over an interval Iy C R, and let Cy =
{(z, f(z)) : x € Iy}. Let T = (71, 72), where 71 and T2 are positive numbers such that 0 < min{m, 7} < 1

and T + 1 > 1. Assume that

. 2 — min{7m, 72}
d In: f'(z) =0} < o
im{z € Ip: f"(z) ;< 1+ max{r, 72}

(4.1)

Then
2 — min{7, 72}

1+ max{7m, 2}

dim Wsr (1) N Cf =

Theorem 4 from [19] is the simultaneous case where 71 = 79. The common approach in both papers

is ubiquity, as established in [18], to determine the lower bound. The upper bound is found through a
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combination of Huxley’s estimate [72], which gives an upper estimate on the number of rational points
within a specified neighbourhood of the curve, and the property given by . This result has been
further improved by Beresnevich and Zorin [35] who showed that the lower bound dimension result holds
for weakly non-degenerate curves (see Theorem 4 of [35]). Upper bound dimension results have been
found for various forms of weakly non-degenerate curves [68], but the complete result remains elusive. In

the n-dimensional setting Beresnevich et al. [22] proved the following result.

Theorem 4.1.3 (Beresnevich et al. [22]). Let M be any twice continuously differentiable submanifold of

R™ of codimension m and let

1
<7< —.
m

SERS

Then

1
dimWp (1) N M > s:= nt —m.
T+1

Furthermore,

HE(Wa (1) O M) = HE(M).

Remark 4.1.4. In the special case where the submanifold M is a curve this result has been proven for
a wider range of 7. In particular, for any analytic non-degenerate curve C C R", if

o, .3

n 2n — 1’
then the dimension result of Theorem still holds, that is

n—+1

di n > 5=
imW,(t)NC > s o

—(n—=1).
See Theorem 7.2 of [I4] for more details. More recently this has been extended to non-degenerate curves
[13].

A key result required in the proof of Theorem is the Mass Transference Principle (Theorem .
Recently, Beresnevich et.al. [26] worked on finding an upper bound on the distribution of rational points
within a t-neighbourhood of manifolds. Using this result they proved the following theorem, giving a
corresponding upper bound to Theorem

Theorem 4.1.5. Let My C R" be a manifold defined on an open subset U C R?, and suppose that

HP[Sael: |det ( 0t (a)) =0,]=0 (4.2)
80&13@1' 1<i,j<m ’

for
n+1
= —-m
T+1
If
1 1 1
d>n+ , and — <1< ,
2 n 2m+1
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Then
dim Wy (1) N My < s.

This is a simplified version of the main result established in [26]. In particular the convergent Hausdorff
measure result was proven for general functions 1(q) > ¢~/ ™+ (log q)2/(™+1)_ Further still, the result

was proven for the general case of inhomogeneous simultaneous approximation.

Since the establishment of Theorem there has been several results that allow for a broader range
of manifolds. Recently Simmons relaxed condition (4.2) as follows (see Theorem 2.1 of [104]). Suppose

there exists some k € N such that

k
1 1
s<+2m+k)>n+,

and
rank <y O'f (a)) >k, YyeR™{0}
.aaiaa]‘ 1<i,j<d = ’

for almost all & € U (w.r.t the Hausdorff (s — m)-measure). Then

dim Wy (1) N Mjyp < s —m.

Results of this type have also been proven for hypersurfaces. In [69] Huang proved an upper bound
on the number of rational points within a small neighbourhood of a general C") hypersurface H C R”
with Gaussian curvature bounded above zero. This theorem provided a variety of results, including the

following (Theorem 5 of [69]).

Theorem 4.1.6 (Huang [69]). Let n > 3 be an integer and let

—1
l:maX{VEJ —|—5,n+1}.

For any approximation function v, any s > "T_l, and any CW hypersurface H C R™ with non-vanishing

Gaussian curvature everywhere except possibly on a set of zero Hausdorff s-measure, we have that

HWa(@)NH) =0 if Y () g™ < .

q=1

In the special case of T-approximable functions the above theorem implies that

dim Wy (1) nH < "

< — 1.
T4+ 1

Thus we note that when considered against the applicable range of approximation functions from Theorem

this is the best possible upper bound.
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Similar results have also been found for simultaneous approximation on affine subspaces. For a matrix

M € R¥*(n=d) and row vector o € R"~4 let

« d
A= z,(l,x). x e R
M

Huang and Liu [70] proved that such affine subspace 2 C R™ with bounded Diophantine properties on

@
the matrix e R@+Dx(n=d) anq any approximation function ¢~7 with 7 > 1/n, then
M

. n+1
<——— —(n—4d).
dim Sy, (7) N A p—— (n—d)

For general manifolds Theorem and Theorem collectively give the following corollary.

Corollary 4.1.7. Let My be a manifold satisfying (4.2) and d > "T'H Suppose that

1 1
— <7< ,
n- ~ 2m+1
then
n+1
dim Wy (1) N My = L

In this chapter we adapt the arguments given in [22] to establish the following result, a weighted

simultaneous version of Theorem [.1.3l

Theorem 4.1.8. Let M = {(z, f(z)) : @ €U C R} where f : U — R™ with f € C?. Let T =
(T1,-.+,7n) € RYy with

™™ > > T > T —1 ‘;n LY d E T, <1

max ; an +i .

1 = = Id Z 1<i< 2 l I — d+i
1

Then

dim (Wy(7) N M) > min

1<j<d T +1

{n+1+2?j<fj —7;) _m}

Remark 4.1.9. Note that the minimum is taken over only the 7; for 1 < ¢ < d, that is the approximation
functions over the independent variables & € R?. This condition may only be due to the setup of our
proof and the fact that all approximation functions over the independent variables are larger than all
the dependent variable approximation functions. While we suspect this to be unnecessary, the mass

transference style result used in the proof of Theorem forces such conditions to be applied.

Remark 4.1.10. We only have a lower bound here rather than equality. This lower bound agrees with
both Theorem [H.1.2] and Theorem [£.1.6] so in these cases this is the best lower bound. In order to
prove the upper bound result to Theorem we need an upper bound result on the number of rational
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points within a W-neighbourhood of a manifold. While there are many various results for counting rational
points in the simultaneous case (e.g. [72, 26, 69, 34]), a weighted simultaneous version is yet to be proven.

Without such results an upper bound result is currently out of reach.

We would like to generalise Theorem [£.1.8|to more general approximation functions. To achieve this we
must apply some constraints on our approximation function. Given a decreasing approximation function

U = (¢1,...,%y,) define the upper order v(¥) = (v1,...,v,) of ¥ at infinity by

—log
v; := lim SUPM , 1<i<n. (4.3)
q—+00 log g

Given such a function, we can state the following Corollary.

Corollary 4.1.11. Let M := {(cc,f(a:)) rx el C Rd} where f : U — R™ with f € C?. For any
approximation function W = (¢1,...,1y,) such that (4.3)) are positive finite, and

1— Z?:d+1 Ui -
V1 > Vg > - 2> Vg > nax Vi, ———————— 5, and E v; < 1.
d+1<i<n d T
1=

we have that

{n-l—l—f—zzlj(vj—vi)}

vj+1

Proof. By properties of the approximation function given by (4.3) we have that, for any € > 0 there exists
a go € N such that for all ¢ > ¢q

Yi(q) > q " for each 1 <i<n.
Using this property, for € = (¢,...,€) € R} we obtain that
Wi (v(¥) +€) C W, (V)
so by Theorem and letting ¢ — 0, we have that

dim (W, (W) N M) > lim dim (W, (v(¥) +€) N M),

e—0t
1+ (v - v)
> min )
1<i<d v+ 1

as required. 0

Remark 4.1.12. Note that this proof is similar to the proof of Corollary 1 from [97]. However we can
use the weaker condition of the limsup rather than lim as we only need the lower bound rather than

equality.
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The remainder of this Chapter is laid out as follows. In the following section we recall some key theorems
required in the proof of Theorem [.1.8] One of these key results, the Mass transference principle from
balls to rectangles, has already been stated in Chapter 3. In §3.2.1 we prove a Dirichlet style result on
weighted simultaneous approximation over manifolds. This result is vital in order to apply the mass

transference style theorem. In the final section we combine the results to prove Theorem [4.1.8

4.2 Preliminary results

As stated above a key result in the proof of Theorem is the Mass Transference Principle (MTP)
from balls to rectangles (Theorem . We refer the reader to Chapter 3 §3.2 for the statement and
an application of the Theorem. As observed in Chapter 3 we need two key ingredients in order to apply
Theorem Firstly we need a lim sup set of balls with full Lebesgue measure. Secondly, we need to
construct a weight vector a that we can use to transform our set of full Lebesgue measure to our desired

lim sup set of hyperrectangles. We will ascertain these results in the following section.

The last measure theoretic result we will be using to prove Theorem is a lemma from [31], which
essentially states that the Lebesgue measure of a lim sup set remains the same when the balls are altered

by some fixed constant.

Lemma 4.2.1. Let {B;} be a sequence of balls in R¥ with \,(B;) — 0 as i — oo, where A\ is k-
dimensional Lebesque measure. Let {U;} be a sequence of Lebesque measurable sets such that U; C B; for

all i. Assume that for some ¢ > 0, A\p(U;) > cuw(B;) for alli. Then the sets

lim sup U; and lim sup B;

1—+00 1—+00
have the same Lebesgue measure.

We can use Lemma to change the radius of the balls used in our construction of the lim sup set

by a constant and still ensure we have full Lebesgue measure.

4.2.1 Dirichlet Style Theorem on Manifolds

In order to apply Theorem we construct a limsup set of balls with full Lebesgue measure. We
achieve this by varying the approximation functions only over the dependent variables, so we can form
a limsup set from the balls centred at certain rational points in the independent variable space. The

theorem below constructs such a set.

Theorem 4.2.2. Let M = {(z, f(z)) : @ €U C R} where f : U — R™ with f € C?. Let T =
(71, Tm) ERT, and let 7= L 3" 7, If

Tm < 1,
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then for any © € U there is an integer Qo such that for any Q > Qo there exists (p1,...,pn,q) € Z" x N
with 1 < ¢ < Q and (&,..., %) € U such that

Di 4m/d .
xi—g ST/’ 1<i<d, (4.4)
and
. —71;—1
b(pl,...,pd)—pd*] 7 1<j<m (4.5)
q q q 2

Further, for any © € U\Q? there exists infinitely many (p1,...,pn,q) € Z" x N with (%1, ol %‘i) eu

satisfying (4.5) and

2 — % < 4m/dq—1—(1—7~'m)/d’ 1<i<d. (46)

Before proving Theorem [.2.2] we will state several properties of our manifold M that we will be using.
Given that M is constructed by a twice continuously differentiable function f we can choose a suitable

U such that, without loss of generality, the following two constants exist:

82fj
= 4n
¢ 121e<d gett | Oz 0y (m)‘ = .7
I<j<m
and
0f;

D = max sup
1<i<d ey
1<55m

(x)| < oo. (4.8)

8%2'

A brief outline of the proof is as follows; firstly we alter the system of inequalities to a suitable form so
Minkowski’s Theorem for systems of linear forms can be applied. We then use Taylor’s approximation
Theorem to return the system of inequalities to the initial form and show that the dependent variable
inequalities can be displayed in terms of the independent variable approximation. We finish by concluding
that there are infinitely many different integer solutions via a proof by contradiction. The proof given

below is a generalisation of the proof of Theorem 4 in [22] to the case of approximations with weights.

Proof. Define

afj

gj fj—;:):iami’ 1< <m,

and consider the system of inequalities
d af Q—Tj
a9;(@) + D _pig H(@) —payj| < T 1<j<m, (4.9)
i=1 !
4m/d .

gl < Q. (4.11)



Taking the product of the right hand side of the above inequalities, and taking the determinant of the

matrix

o) o)

TR - - RS
Ofm Ifm

g2 Bz, Txd 0 -1

A=\ », -1 ... 0 o ... 0 )
zg O ... =1 0 ... O
1 o ... ... ... ... 0

then by Minkowski’s Theorem for systems of linear forms, there exists a non-zero integer solution (p, q) €
Z"*! to the inequalities (4.9)-(&.11). We now show that this system of inequalities implies inequalities
(4.4)-(4.5). Firstly, fix some & € U and as U is open there exists a ball B(x,r) for some r > 0 which is

1/2
= {Q eN: (4_mQ1_%m)_1/d < min {1,r, (201d2> }} ,

~1/d

contained in U. Define

where C is defined by (4.7). As ¥m < 1 we have that (47"Q'~™™)
integer ()g such that for all @ > @y we have that Q € Q. We will show that for any Q) € Q the solution

(p1,---,Pn,q) to the system of inequalities (4.9)-(4.11]) is a solution to (4.4])-(4.5).

Suppose ¢ = 0. By the definition of the set Q we have that

— 0 as () — 00, so there exists an

Y .

(4—m@1—7~'m) -

By the set of inequalities (4.10) we have that |p;| < 1, hence p; = 0 for all 1 <14 < d. Further, from (4.9))

we can see that

4
for 1 < 7 < m. This would conclude that our solution (p1,...,pn,q) = 0 which contradicts Minkowski’s

|pd+j| < < 17

Theorem for systems of linear forms, thus |¢| > 1. Without loss of generality we will assume that ¢ > 1.
Dividing (4.10) by ¢ gives us that (%,...,%d) € B(x,r) C U, and note that (4.4]) is satisfied upon
dividing (4.10)) by q.

Lastly we need to prove that (4.9)-(4.11]) implies (4.5). By Taylor’s approximation Theorem

0 .
5 <p1’m q) Zai < —xi>—|—Rj($,$),

for some & on the line connecting @ and (% , p—d), and
d d
1 O*f;i . (i Pk
e =33 @ (5 -0) (5 )



We may rewrite (4.9) using Taylor’s theorem and our definition of g; as

qg;(z) + sz

Using the triangle inequality and the assumption that

— Dd+j

b1 DPd .
‘Qf]< ""’q) —Patvj — qRj(z, &) .

—Tj

4 )

q

lqR;(z, )| < (4.12)

we obtain that
P1 Pd Q™ q
T ) TP <2

Noting the monotonicity of the approxmlation function and dividing by ¢ we obtain

b1 DPd Pd+j
f]( 7"'7>_ !

—71;—1
< a s
2

q q q
thus (4.5]) is satisfied. To complete the first part of the theorem it remains to show that (4.12)) is satisfied
for all Q € Q. Using the definition of R;(x, &) we have that

d

q Pfi oy (P (e
2zzax@amk (q “’”)(q ’“)

=1 k=1

2
C’qd2 4m/d
qQ (1-7m) )

for 1 < j < m. Hence we must show that

quQ 4m/d 2 g T
2 \qoumya) = 4

for 1 < j < m. Rearranging the equation we obtain the inequality

4qm 1/d C]l_Tj 1/2
(@) < (ez)
Considering that 7m < 1 we have that each 7; < 1, and so inf q1 77 =1 for each 1 < j < m. Thus by the
q€N

definition of the set Q the above inequality is satisfied by all Q € Q, so is true for all 1 < 57 < m.

lqR;j(z, )| =

We now prove the second part of the theorem, that is that there is infinitely many integer vector
solutions. Suppose that there are only finitely many such ¢ and let A be the corresponding set. As
x € U\Q? there exists some 1 < j < d where zj ¢ Q. Fix such j, then there exists some ¢ > 0 such that

6 < min |qx; — p;|.
- qEA,ijZ‘q J p]|

By (4.4) we now have that
4m/d

0 < |qz; — PJ|_W

However, as Q is an infinite set and Q(!=7")/4 _5 &0 as Q — oo, we have a contradiction so there are

infinitely many different ¢. Lastly, as ¢ < @, we can replace @ by ¢ in (4.4]) to obtain (4.6) as desired. [
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4.3 Proof of Theorem [4.1.§]

We are now in a position to prove Theorem [4.1.8] To do so we construct a limsup set of balls satisfying
the conditions of Theorem [.2.2] The limsup set will thus have full Lebesgue measure. Next we
choose a suitable weight vector a that we use to transform our limsup set of balls to a limsup set
of hyperrectangles with a known lower bound for its Hausdorff dimension. The proof is completed by
showing that the constructed lim sup set is at least contained within our set W, (7) N M, thus our lower

bound is a lower bound for W, (7) N M.

Proof. Take the set

N(f,7) = {(p,q) €Z"x N: <];11;d> eu,

q—Td+j—1

< 1<5< .
! 1sn)

and

b1 Pd Pd+j
fil— ., — | —
q q q

In view of Theorem [.2.2] we have that for almost all € U there are infinitely many different vectors

(p,q) € N(f, ) satisfying

Di

where 7 = % >ty Tati- By Lemma we can choose a constant & > 0 such that for almost every
& € U there are infinitely many different vectors (p, q) € N(f, 7) satisfying

Take the ball

B(IMI) = {:13 cu:

By Theorem and Lemma we have that

,ud( lim sup B(p7q)> =1,
(

P.a)EN(f,7)
where 4 is the d dimensional Lebesgue measure. Let a = (ay,...,aq) € Ri be a weight vector with each
d(l + Ti) .
= ——7, 1<i<d. 4.13
L I (4.13)

Note that by the condition that =, > 17;’” for all 1 < i < d, we have that each a; > 1. ng 9 is the

hyperrectangle with the following properties:

B&,q):{xEU: xi—%

< kYigTlTTi 1< < d} .

By Theorem we have that

d+S% (a; —a;
dim( limsup BY )> min { Zl_j(aj a)}‘
(

P.9)EN(f,7) P9 | = 1<j<a a;
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Replacing each a; with (4.13) we have that

d (dl+m)  d(+m)
" . d+> i (d+1—%]m T I+ 1-m
(p7Q) - 1212(1 d(1+T]‘) )

dim( limsup B
( d+i—7m

p,)EN (f,7)

1<j<d d(1+ 1)
) {dJrl%erZ?j(Tjn)}
= min .

- {d(d—l—l—%m)—f—zgj(d(l—f—Tj)—d(l—f—Ti))}

1<j<d (1+75)

Using the definition of 7 and that d = n — m we may rewrite this as

n—m—i—l— 7.1_ T + C,l_'7-._,7-2,
dim( limsup BZ > > min { D imdtl Zz_]( j )}7
(

paen(fn) P ) T i<i<a 111,
= min
1<j<d T+, :
o m ) + 30— )
= min ’
1<j<d 1+,
. n+1+ Z?:j (15— 73)
= min _ 7
1<j<d 1+

as required. We now finish by showing that

(p,q)

dim(Wy ()" M) > dim | limsup Bf .
(P.)EN(f,7)

Note that any y € W, (7) N M must have infinitely many solutions (p,q) € Z"™ x N to the following

system of inequalities

lqri —pil < ¢, 1 <i<d, (4.14)

¢f () — patjl < ¢ ™, 1< j<m, (4.15)

where y = (o, f(x)) for some © = (x1,...,24) € U. Let the set of x satisfying (4.14)-(4.15) be denoted
by 7g(Wh(7T) N M). This set is the orthogonal projection of W, (7) N M onto R%. A result of fractal
geometry states that a bi-Lipschitz mapping of a set has the same Hausdorff dimension of the original

set (see Proposition 3.3 of [59]). As the projection 74 is bi-Lipschitz it is sufficient to prove that

1<j<d

14300 (5 —
dim 7g(Wy(7) N M) > min {n 2i=(7 ~7) —m}.
1475

Let ¢ € B&) 9 for some (p,q) € N(f,7). On using the triangle inequality, the mean-value theorem, and
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(4.8) we have that for any 1 < j < m,

Dd+j 4! Pba P Pd Pd+j
flm_ Sfm_f(77>‘+ f'<)"'7>_7
j(x) . (@) = fj . . i\ . .

(f 0fa ([, (P pa\\| T
9y’ Oy ) PR 5 ,
d —1—Tay
pi q !
<D i— — |+ ——
> [ o R
=1
. —1=Tay;
<Dd max xi—& +q ,
1<i<d q 2
=T
<Ddkeag e T
2

We can choose k sufficiently small, and note that 74 > maxi<j<pm, T4y, S0 that we have

i@ -] < <5 m
We have that
xi—% <qg T 1<q<d,

B&q) Clxzxeld:
7 for im (p,q) € N(f,7) CZ" x N

: o . e n
Hence for any x € (plgré ;??T)B(p’q), (4.14)-(4.15)) are satisfied for infinitely many (p, q) € Z" x N, thus

dim 7g(Wy (1) N M) > dim ( lim sup B&, q)> )
(P.Q)EN(fr)

as required. ]

4.4 Concluding remarks on Theorem 4.1.8

Using the arguments above and, principally applying the MTP of [30], we have established a lower bound
for Wy, (1) N M which coincides with that of W, (¢)) N M from Theorem m The natural question
is can equality be determined. That is, can an upper bound be found which agrees with our calculated
lower bound? Thus achieving a complete analogue of Theorem In trying to attain an upper bound,
it is likely necessary to find an estimate for the number of rational points within a 7-neighbourhood of
the manifold. There are a variety of results on the cardinality of rational points within a simultaneous
y-neighbourhood of curves, manifolds, hypersurfaces, and affine subspaces (see [(2], [26], [69], [70], [34]
respectively). Unfortunately, no such results have been found for the number of rational points within a
weighted W-neighbourhood of such subsets. It may be possible to adapt the proofs of the simultaneous
results to give us weighted version of such results, but this is yet to be proven. We suspect such result

would lead to a suitable upper bound corresponding to Theorem [£.1.§]

We remark that since the our proof of Theorem there has been developments in Mass Transference

style theorems. In particular, Wang and Wu [I11] have developed a Mass Transference Principle from
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rectangles to rectangles(MTPRR), see §4.2.1 for more details. The MTPRR requires a ubiquity hypothesis
which is more restrictive than that required by the MTP. Unfortunately Theorem [4.2.2] is not sufficient
to prove the ubiquity hypothesis. While using the MTPRR would likely improve the bound on 7, it
will require additional conditions on the manifolds. In this chapter we only require the manifold be
twice continuously differentiable, whereas with the ubiquity hypothesis we would expect to need some

non-degeneracy condition. We intend to pursue this in a further paper.

Lastly, note that Corollary whilst being relatively general does not cover all approximation
functions. We provide no results for functions with infinite upper order (see ), and also provide
imprecise lower dimension results for approximation functions with different upper and lower orders.
For example, an approximation function defined by a step function bounded between two functions ¢~ ™
and ¢~ ™ would have different upper and lower bounds. It would be of interest to extend the class of

approximating functions somehow.
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Chapter 5

Simultaneous p-adic Approximation over

manifolds

In this chapter we prove the new results stated in Chapter 2. A key result used here is a new zero-
one law which is also proven here. We also provided a brief survey on the state of the art of p-adic
approximation over manifolds. Within this section we give our new results on the Hausdorff dimension
of various manifolds. These results are proven in the latter part of this chapter. The contents of this

chapter is essential that of [24] in joint work with Beresnevich and Levesley.

5.1 Weighted simultaneous p-adic approximation

We begin by restating the Theorems of Chapter 2 that we will prove here. Let ¥ = (¢1,...,%y) be an

n-tuple of approximation functions as in previous chapters, and for each ag € N let

Ty — —

Ay (V) = U {a::(xl,...,xn)GZ;:
(a17"'7an)eZn
lai|<ap (1<i<n)

< i(ag) forall 1 <i< n} . (5.1)
p

Define the set of p-adic simultaneously W-approximable points in Z, as
200, (V) = limsup Ag, (V).
ag—r00

Similarly let

A, (V) = U {ac SV

(a1,...,an)EZ"
lai|<ap & (a;,a0)=1 (1<i<n)

a;
Ty — —
aop

< i(ag) forall 1 <i< n} (5.2)
P

and define the corresponding limsup set as

20, (V) = limsup A, ().

ag—r00
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For convenience we restate the theorems of chapter 2 that we will prove in this chapter:

Theorem 5.1.1. Let 1p; : N — [0,1) be approximation functions with 1;(q) < é for each 1 <1i<n and
let W = (¢1,...,1¢n). Suppose that []I_, ¥; is monotonically decreasing. Then

0 if 324" [Ty vila) < oo,
L af 2511 q" [Ti=, ¥i(q) = oo

1 (20, (V) =

Theorem 5.1.2. Let 1); : N — [0,1) be approzimation functions with ¢;(q) < % for 1 <i<n and let
U = (¢1,...,%,). For ¢ the Euler phi function suppose that

y S e(@) T, vilg)
im sup N -
Novoo 3o 0" [Timy %il0)

> 0. (5.3)

Then
0 if Y2y e(a)" TIin vile) < o0,
Loaf 322 0@ [1is i) = oo

Mp,n(m;z(q’)) =

Remark 5.1.3. Note that the condition that each v;(q) < % is a necessary condition, since the p-adic
distance between any two rational integers can be made arbitrarily small. This is in stark contrast to the
real case where 1(q) < % is sufficient to ensure rectangles in the same ’layer’ are non-intersecting. We
remark that the monotonicity condition of Theorem is only required in the divergence case. This

condition is replaced in the Duffin-Schaeffer type theorem [56] of Theorem

These results, alongside a zero-one law on 207, (¥), will be proven in §5.3.1] In the case of Hausdorff

dimension we prove the following Theorem

Theorem 5.1.4. Let 7 = (71,...,7,) € R} be such that Y ;7 >n+1 and 7, > 1 for each 1 <i < n.
Then

n+1+ ETJ‘<TZ'(T7: - Tj)}

1<i<n T

dim 20,,(7) = min {

Remark 5.1.5. We note that the condition on the summation of the exponent vector 7 is present due
to the fact that if > " ; 7, < n + 1, then, by the p-adic version of Dirichlet’s Theorem, we have that

W, (1) =7Z,.

Remark 5.1.6. The condition that each 7; > 1 may seem unnecessarily restrictive, however, the following
reasoning shows why this must be the case. The key reasoning behind the condition is that Z is dense
in Zj, so in any coordinate axis where 7; < 1 all points along the axis can be approximated, regardless
of the choice of ap in our approximation sets. If, for example, we considered the approximation set

Ws((1—¢, 7)) for e > 0 and 7 > 2 then the above argument gives us that Wy ((1—¢, 72)) = Zp x W1 (72).
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Using well known bounds on the Hausdorff dimension of product spaces (see e.g [109]) we have that
dim 01 (72) + dimZ, < dim205((1 — ¢, 7)) < dim Wy (72) + dimp Z),

where dimp is the box-counting dimension (see [59] for the definition of box-counting dimension and it’s

relation to the Hausdorff dimension), we have that

2
dimWsa((1 —e,m)) = — + 1.

2

However, if Theorem was applicable we would have that

dim%((l—e,m)—mm{“(w—<1—s>> 3} 2 mte

T2 ’ 1—c¢ T2 T2

We will prove Theorem in An overview of the proof is as follows: Using a standard method
in ubiquitous systems we show that the lim sup set of rectangles used to construct 20,,(7) is a ubiquitous
system of rectangles. Applying the MTP for rectangles to rectangles developed in [I11](see Chapter 3 for
more details) we obtain the lower bound dimension result. The corresponding upper bound result uses

the standard cover of 20,,(7) and a similar geometrical argument to that in the real case.
We can further extend this result to general approximation functions. Suppose that the limits

| .
v; = lim M, (5.4)
q—00 log q
exist and are positive for each 1 <4 < n. Define the exponents vector v = (v1,...,v,) € R’

Corollary 5.1.7. Let U be such that the limits (5.4]) exist and are positive. Suppose thaty ;- v; >n+1
and each v; > 1. Then

dim 20,,(¥) = min

1<i<n

{n+1+zﬂj<vi(vi —Uj)}

Uy

Proof. By the condition that each function ; has corresponding positive limit ([5.4]), for any ¢ > 0 we
have that

¢ <) <q Y (1<i<n
for all sufficiently large ¢ € N. Let € = (¢,...,€) € R". Then, we have that
W, (v+e€) CW, (V) CW,(v—e¢).

By letting € — 0, and applying Theorem we get the required result. O
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5.2 p-adic approximation on manifolds

When it comes to p-adic approximation on curves and manifolds, less is known. In [79], Kleinbock and
Tomanov, generalized the key results from [78] to the S-arithmetic setting (see chapter 7 for more details
on S-arithmetic space), which includes the p-adic setting. In particular, Kleinbock and Tomanov proved
that under the natural assumption ) ;" | 7; > n+1 the set 20,,(7)NC has zero measure on C' for a large and
natural class of manifolds in Qp. Whilst there are no results relating to the Haar measure of 20, (V) N C
for C a p-adic curve or manifold in the case W is a general n-tuple of approximation functions, there are
several results for dual approximation including inhomogeneous setting, see [17), 21}, 43 44}, [45] 52, 53], [91].
Regarding the Hausdorff dimension of 20,,(7) N C, Bugeaud, Budarina, Dickinson, and O’Donnell [46]
and more lately Badziahin, Bugeaud and Schleischitz [I1] calculated dim(20,(7) N C) in the case C' =
(x,...,2™) for large exponents 7. Apart from these pair of findings nothing else seems to be known. In
this paper we obtain a sharp lower bound on the dimension of 20,,(7) N C for a natural class of manifolds
defined over Zg and relatively small exponent vector 7. Specifically we will consider manifolds immersed
by maps with the following property, which is a multivariable analogue of C! functions given in for

example [102].

Definition 5.2.1. A function f:U — Q, defined on an open set U C Qg will be referred to as differen-
tiable with quadratic error (DQE) at € U if there exists constants C > 0 and € > 0 and p-adic numbers
Of(x)/0zy € Qp (1 <€ < d), which will be referred to as partial derivatives of f at x, such that for any
y € B(z,e) CU

5 - 1@ - 3 20 - 2| < max - il 5.5)

=1 D

We will say that a map f= (f1,..., fm) : U — Z is DQE at = with if so is each coordinate function f;.
We will say that f (resp. f) is DQE on U if it is DQE at each point x € U.

Remark 5.2.2. Note that if the right hand side of was simply o (maxi<j<q |y; — ;|p) then f would
be simply differentiable at . The above definition imposes a stronger condition than differentiability in
the sense that the error term in is quadratic. It is readily verified that any C? function, as defined
in [98] (see also [79] for a brief survey of p-adic C* functions), is DQE at every point. The converse may

not be true. Mahler’s normal functions are C*° and so they are DQE.

We are now in position to state our results for 7-approximable points on Cy, extending Theorem
to the p-adic setting. This can be done in two ways: by stating our results for exactly the set 20,,(7) NCy,
or by stating them for the set of @ € U such that (x, f(x)) € 20,,(7), we opt for the latter since it requires
fewer assumptions, albeit the two ways are equivalent if we assume that f is a Lipschitz map, which

follows from Proposition [[.1.7] Thus, our statements will be about the Hausdorff measure and dimension
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of
F L (W, (7)) :={xcld: (x,f(x)) c W,(T)}.

It is easily seen that this set is subset of the projection of 20, (7) onto the first d coordinates.

Theorem 5.2.3. Let Cy := {(z, flx)) : x € U} C Zy, where f: U — Z is DQE at almost all point of
an open set U C Zg. Suppose
1 1
l+-<r<14—,
n m

Then
1
dim(F~L (W, (7)) > 5= 2 (5.6)
T
Furthermore, if f is Lipschitz on U then
HE (F~! (W, (1)) = o0 (5.7)

Theorem 5.2.4. Let Cy = {(z, fi(x),..., fu—1(x)) : x €U} be a curve, where for i = 1,...,n —1
the function f; : U — Z, is DQE at almost every point of an open subset U C Z,. Suppose that

T = (71,72,...,7Tn) € R satisfies the conditions
n
%::E;Tj<n, 71221(;1%%1{7@-,714—1—%} and 1, >1 for 2<i<n.
J:
Then s
n+14+> (11— 1—7
dim F~! (20, (7)) > s := = ) -1 =2F1TT (5.8)
71 T1
Furthermore, if f is Lipschitz on U or 71 > maxao<;<n 7; then
H* (F~! (20,(7))) = oo. (5.9)

Theorem 5.2.5. Let Cy be satisfy the conditions of Theorem and suppose that T = (11,72, ..., Ty) €

R’ satisfies the conditions

m n
7 >1, (1 <i<n), ZTd+i<m+1, Zn>n—|—1, and 1%j2d7i>lr<r;z?;17d+j.
i=1 == ==

i=1

Then

dim (F~! (20,(7))) > Iilin { (5.10)

Remark 5.2.6. Note that the dimension results of Theorem [5.2.3H5.2.4] are contained within Theorem
5.2.5 However, due to the method of proof we are not able to obtain the Hausdorff measure result in
Theorem Also note that the statements remain true if the assumptions imposed on f are imposed
on a sufficiently small ball B C U instead of U.
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Remark 5.2.7. The assumption that the approximations over the independent variables (71 in Theorem
and 7p,...,7¢ in Theorem are larger than the approximations over the dependent variables
is merely technical. Observe that this conditions is not needed amongst the approximations over each
respective variable, since we may permute the variables to obtain the desired ordering. However, the
other requirements placed on 7 are necessary to allow the result to hold for as general set of manifolds
as possible. In particular, the conditions that > ", 7q4; < m+ 1 and 7 > 1 for 1 < i < n ensure
that even if the manifold is a hyperplane passing through badly approximable points we will still have
an infinite number of rational approximations. If these conditions do not hold a counterexample can be
readily obtained on modifying the example of Remark 3 in [22]. It is also easy to see that the lower bound
71 > n+1— T is necessary for otherwise would be false. The upper bound 7 < n on 7 can likely be
improved, however this will require imposing additional conditions on the curves such as non-degeneracy
(meaning 1,z, fi(x),..., fno—1(z) are linearly independent over Z,), and will require a different approach
such as that of [14]. We plan to address the problem for non-degenerate curves separately in a subsequent

publication.

Remark 5.2.8. We expect that the lower bound of Theorem[5.2.3 is sharp and each dimension result
should indeed be equality at least for non-degenerate curves. Obtaining the upper bounds represents a
challenging open problem even in dimension 2. We would like to stress that there is currently no equivalent
to Huxley’s estimate [72] in the p-adic setting, let alone the sharper Vaughan-Velani result [I10]. The

absence of such estimates is the only obstacle when trying to establish the complementary upper bounds.

The remainder of this Chapter is devoted to proofs of the Theorems stated above. Firstly we provide
proofs of the Haar measure statement results, followed by a proof of the Hausdorff dimension result in
the classical case, and finished by proofs of the statements on approximation over p-adic manifolds. Prior
to these we provide a preliminary section on know results that will be used throughout the rest of the
chapter. Since many of the results require a lower bound Hausdorff dimension result we will be using a

variety of Mass Transference Principles all of which can be found in Chapter 3.

5.3 Auxiliary concepts and results

Before giving the proofs of Theorems [5.1.1, [5.1.4] and [5.2.3][5.2.5] we collect together some auxiliary

results and concepts which we will need. We prove the following lemma, which can be considered as the

p-adic equivalent of Minkowski’s Theorem for systems of linear forms.

Lemma 5.3.1. Let Li(x), with i = 1,...,n, be linear forms in x = (xg,x1,...,%,) with p-adic integer
coefficients. Let T = (11,...,7,) € R satisfy i 17 = n+1 and o = (01,...,0,) € R" satisfy
> i0i = n. Then there exists Hy > 0 such that for all integers Hy,...,H, > 1 such that T =
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(Ho+1)---(H,+1) > Hy there exists a non-zero rational integer vector = (xg, T1, ..., %n) satisfying
|z;| < H; forall0 <i<n (5.11)

and

|Li(x)|, < p”iT~"  foralli=1,...,n. (5.12)

As we can see, by Lemma if all 7; are equal and H; are equal then we have 7; = 1 + 1/n, which

agrees with the p-adic n-dimensional Dirichlet theorem.

Proof. This is a standard proof using Dirichlet’s pigeon-hole principle, which is given here for complete-
ness. To begin with, note that there are T different rational integer vectors = (zq, ..., x,) satisfying
, subject to the condition that x; > 0 for each i. Let ¢ € (0,1) and 7. =T —e¢. Foreachi=1,...,n
let 0; be the unique integer such that

Pl < pTTT < pli (5.13)

Assuming H,, which can be found explicitly, is sufficiently large we ensure that §; > 0 for each i. Clearly,

for each = € Z" we have that L(x) := (Li(x), ..., Ln(x)) € Zj. Split Zj into the subsets S(a) given by

n

S(a) = l_I{xZ €Ly :|zi —ailp < pf‘si}
=1

for each a = (a1, ...,a,) € Z" with 0 < a; < p%. It is readily seen that the sets S(a) are disjoint and
cover the whole of Zj. Furthermore, using the facts that ) ;7 =n+1, > 7,0, = n and (5.13)), we find

that the number of sets S(a) is
plidi < TET = Al <L

Hence, by the pigeon-hole principle, at least one of the sets S(a) contains L(x;) for at least two distinct
integer points &1 and x4 as specified above. Let @ = o1 —xo. Clearly, is satisfied and @ is non-zero.
Furthermore, for each ¢ = 1,...,n we have that

15.13)

ILi(z)| = |Li(z1 — 2)|p = |Li(z1) — Li(m2)|, <p ™% < pTiTo™. (5.14)

Since there are only finitely many integer vectors @ = (xo,...,x,) satisfying (5.11)), there is a non-zero

x subject to (5.11]) satisfying (5.14) for every € € (0,1). Letting € — 0 verifies (5.12)) and completes the
proof. O

We also require a variety of statements given in Chapters 1-3. Chiefly this includes the Borel-Cantelli
lemmas (Lemma 1.1.4), certain results in Hausdorff Theory (Proposition Lemma [2.2.9)), and
various Mass Transference Principle results (Theorem Theorem 3.5)).
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5.3.1 A zero-one law on 20 (V)

In what follows we will need a statement showing that, given a sequence of balls, if the radii of the balls are
multiplied by some constant, then the Haar measure of the corresponding lim sup set remains unchanged.
We establish this lemma in greater generality for arbitrary ultrametric spaces where such a statement
may be useful when solving problems of the same ilk, for example, in Diophantine approximation over

locally compact fields of positive characteristic.

Lemma 5.3.2. Let (X,d) be a separable ultrametric space and p be a Borel reqular measure on X. Let
(Bi)ien be a sequence of balls in X with radii r; — 0 as i — oo. Let (U;)ien be a sequence of p-measurable

sets such that U; C B; for all i. Assume that for some ¢ >0
w(Uy) > cp(By) for alli. (5.15)
Then the limsup sets
oo o
U=limsupU; == UU and B =limsupB;:= () U Bi
i—00 j=1 i>j i—00 J=1 i>j
have the same p-measure.

The R™ version of this statement is well known and can be found for example in [32) Lemma 1], which
proof is originally due to Cassels and uses Lebesgue’s density theorem. Below we give a full proof of
Lemma for completeness. Our proof is built on the ideas of [32, Lemma 1] and [105, Lemma 1 in
Part II, Ch. 1].

Proof. Let U; := U;>; Ui and Dj := B\ U;. Then, D := B\U = |J; D; and we need to prove that D
has p-measure zero. Assume the contrary. Then, since every set D; is p-measurable and D; C Djyq
for all j, by the continuity of u, there is an ¢ € N such that u(D;) > 0. Since p is Borel regular
w(Dy) = inf{u(A) : D, C A, Ais open}. Since X is separable and ultrametric, every open set A can be
written as a disjoint countable union of balls. Hence, for any € > 0 there exists a countable collection of

disjoint balls (A4;) such that
Dyc|JAi and > p(A) —e < pu(Dy) <D p(A). (5.16)

Let

- p(A; N'Dy) L ,
A= p{M(Ai) c1eN, p(4) >0} .

Note that, since u(Dy) > 0, the above set is non-empty and therefore A € [0,1]. Then, by (5.16)), we have
that

p(De) =D (A D) <AD 7 p(Ai) A((De) +2).
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Therefore,
GO
1(Dy) + ¢
Since p(Dy) > 0, on taking € > 0 small enough, we can ensure that A > 1 — ¢. Then, by the definition of
A, there exists ig € N such that pu(A;,) > 0 and
1(Aip N Dy)
1(Aig)

Take j > ¢ sufficiently large so that for every ¢ > j the radius of B is less than the radius of A;,. Then,

>1—c. (5.17)

since X is ultrametric, for all ¢ > j if B; N A;, # @ then B; C A;,. Since Dy C D C B C UiZj B;, we have
that

Ay, NDy C U B;NDy. (5.18)
i>j, BiNA;,#2

Without loss of generality assume the B; over ¢ > j are disjoint, since if not we can take a disjoint

j B; and so the sub-

collection would satisfy ([5.18]). Such sub-collection is possible to choose since X is ultrametric. Therefore,

by (.18]), we have that

sub-collection of (B;);>; such that the union of balls in this subcollection is again UZ.2

1(Aip N De) < > u(BiNDy). (5.19)
127, BiNA;y#9
By construction D; N U; = B for every i. Thus, in view of (5.15]) and the fact that U; C B; we have that
u(B;) = p(U; N B;) + u(Di N B;) = cp(B;) + p(D; N B;)
and so u(D; N B;) < (1 —¢) u(B;) for all 4. In particular, since D; C D41 for all ¢ and j > ¢ we get that

w(DeN Bi) < (DN B;) < (1—¢) u(B;) foralli>j.

Hence, by (5.19) and the assumption that the B; for ¢ > j are disjoint, we get that

A, ND) < > (I=ou(Bi)=(1-cu U Bi| <(-ou4y).
i>j, BiNA;,#2 i>j, BiNA;,#2
This contradicts (5.17). The proof is thus complete. O

Note that Lemma is only applicable to limsup sets contained between two balls with radius varying
by some constant. Since many of our sets of interest are lim sup sets of rectangles we make the following

extension to Lemma [5.3.2

Lemma 5.3.3. Letn € N. For each 1 < j < n let (X;,d;) be a separable ultrametric space equipped with
(9)

a Borel regular o-finite measure ji;, (B-(j) :

" )ien be a sequence of balls in X; with radii r

— 0 as 1 — o0,
(Ui(j))ieN be a sequence of pj-measurable sets such that Ui(j) C Bi(j) for all i and assume that for some

1 (U(j)> > c(j)uj (B(j)> for all i € N. (5.20)

7 i
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Let X = H?Zl Xj, d = max; d; be the metric on X, p = H?Zl w; be the product of measure on X and
for each i € N let B; = [}, BZ-(]) and U; = [[}_, Ui(J). Then the limsup sets

U = limsup U; and B = limsup B; (5.21)

17— 00 1—00
have the same p-measure.

The key ingredients in the proof of Lemma [5.3.3] are Lemma [5.3.2] and Fubini’s Theorem, which we
recall below in the special case of integrating the characteristic function of a measurable set, see [40] p.

233] or [60, §2.6.2].

Theorem 5.3.4 (Fubini’s Theorem). Let 1 be a o-finite measure over X and ps be a o-finite measure
over'Y. Then puy X ps is a reqular measure over X XY . Let S C X XY be a py X pg measurable set and

let
5% ={y: (z,y) € S},
Sy :=A{x: (x,y) € S}.
Then
(% 12)(5) = | (8" = [ pa(So)en

We now proceed with the proof of Lemma.[5.3.3

Proof. We initially prove that

w | limsup Bi(l) X HBi(j) = u | lim sup Uy;(l) % HBi(j) ,
1—00 j=2 1—00 j=2

and note that Lemma follows inductively. For ease of notation let
n n . n
i=1]w. B:=[[BY Xx=][x
j=2 j=2 j=2

For any y € X let
I, ={i:y€ B},

and for any F' C X let Fy denote the fiber of F' at y, that is
Fy={x:(z,y) € F'} C X;.

Observe that

A= (limsup BY x Ei> = limsupB") =: D. (5.22)
1—00 Yy 1—00
i€l
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Indeed, if x € A then it implies there exists an infinite sequence {i} such that

(x,y) € BZ.(kl) x B for all iy.

ik

Hence {i} C I, and so z € D.

Conversely, if z € D then D is non-empty and so I, must be infinite. By the definition of I, and the
fact that z € D we have that x € BZ.(l) for infinitely many 7 € I,,, and so z € A.

Similarly, we have that

(hm sup Uz-(l) X EZ) = lim supUi(l). (5.23)
1—+00 y 1—00
icl,

Applying Fubini’s Theorem we have that

I (hmsup Bi(l) X BZ> :/ 1 <<limsup BZ-(l) X BZ> ) ap,
1—00 X 1—00 y

5.2
/,ul limsupBi(l) dp,
X 17— 00
i€l
Lemma £.3.2 | limsup Ui(l) dfu,
X 1—>00
i€l y

/ 1 <limsupUi(1) XBZ> dp,
X 1—00 y

=pu <lim sup Ui(l) X BZ> .

1—>00
Note that in the above argument we have not made use of the fact B; are products of balls; we only used

the fact that these are measurable sets. Hence, the above argument can be repleaded n — 1 more times,

for £ =2,...,n — 1 each time replacing BZ-(E) by UZ-(E) so that at step ¢ we get that

/-1 n l l+1
lim su U-(j) X BY | = lim su U-(j) X BY
a i—>oop H ! H ’ H i—>oop H ! H !
Jj=1 j=t Jj=1 Jj=1
Putting all these equations for £ = 1,...,n together we get (5.21]) as claimed. ]

Lemma only proves positive measure for a limsup set. In the context of Theorem [5.1.1] we need
a zero-full law. In [65] Haynes proved a zero-full result for the simultaneous case. We adapt this method

of proof for the weighted case.

Lemma 5.3.5. Letn € N, p be a prime and W = (¢1,...,1,) be any n-tuple of approximation functions.
Then

ppin (W, (V) € {0, 1}
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We note that Haynes proved this result for the more complex set of S-arithmetic approximation. While
we suspect that the same could be proven in this context we only prove the p-adic case since this is the

only result we will need in this paper.

Proof. Firstly, note that the sets 2], (¥) used to construct our limsup set have the property that if p | ao,
then A, (¥) = 0 or Zy

p» SO assume p { ag. Define the map 7 : Z, — Z, as follows. For a p-adic integer

x € Zp with p-adic expansion

)
xzzaipiv aié{O,...,p—l},

i=0
define
Zioi() ai-i—lpia lf ag = 07
m(x) = ,
1+3 20 aiq1p', otherwise.
Let 7, : Zy, — Z,, be the transformation (r1,...,2n) = (7(21),...,7(zn)). By using the fact that p { ao,

and that each (a;,ap) = 1, it can be shown that under such mapping
™ (20,(¥)) € 2, (p¥),

where p¥ means each component of ¥ has to be multiplied by p. This can be repeated inductively to
show that 7 (20 (¥)) C 20, (pX V) for any K € N. Assuming that s, (20, (¥)) > 0, then by a p-adic
version of the Lebesgue Density Theorem (see e.g. Lemma 1 in [105, Part II, Ch. 1]) for any € > 0 there

exists integer vector xg € Z"™ and N € N such that
ppn ({2 € 20,,(T) : & — 2ol <p™V}) = (1 —e)p~™.

Further, we have that
T ({® € ,(9) : [& — xol, <p~™}) €2, (V)

and so
Hp.n (m;z(PN‘I’)) = Hpn (7911\] ({z € W (P) : |z — 2o, < P_N})) )
>pN(1—ep ™,
=(1—e).
Since € is arbitrary we have that p,,(Ux—; 20, (pV ¥)) = 1. Now observe that
W (V) C W, (p¥) C W, (p*V) C ...
and so, by Lemma|5.3.3|with X = Z, d given by the sup norm, and p = f, ,, we have that g, ,(20;,(¥)) =

ppn (200, (PN W)) for every N € N. Hence,

/ipm(w;@(q’)) = ]\}gnoo Hp,n (wln(PN\I’)) = Hpn (U QU;L(pN\IJ)> =1,
N=1

thus finishing the proof. O
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5.4 Proof of Theorems 5.1.1] & [5.1.2

By Lemma’s|1.1.3 it is clear that we need bounds on the measure of 21, (¥) and 2, (¥)N2A, (¥) for
ag,bp € N. As we are considering these measures at fixed values of ag and by the monotonicity condition
of Theorem does not appear until we consider the summations over the measures of these sets. For

that reason Theorems & are proven in tandem up to such point.

Since (ag, a;) = 1 observe that we must have p{ ag. If p | ap then the reduced fractions 2—8 used in the

composition of A}, (V) would satisfy Z—é > 1 for any component 1 < i < n. And so for sufficiently large
P
ag we have that
a:
x €Ly : z; — —| <ilag), 1<i<ny =10,
ag p

since the components of the approximation vector are less than 1. Hence without loss of generality when

considering the measure of 21}, () and 27, (¥) N2, (¥) we will assume that p { ag, bo.

With regards to the condition that each ;(q) < % note that Lemma allows us to reduce this to
the condition that each 1;(q) < % for 1 <7 < n and the measure results will remain unchanged. Similarly

such constants would not effect the convergence or divergence of the summation of interest.

Note that for any x € Z, and 0 < r < 1 there exists ¢t € Ny such that B(z,r) = B(z,p~*). For each
1 <4 < n define the function ¢; : N — Ny with ¢;(ag) satisfying

p %) < iag) < phleOH,
Then for any 1 < i < n and ag € N we have that 1;(ag) =< p~*(%) and

B (z,4i(a0)) = B <$,p_ti(“0)+1) '

Hence, without loss of generality we could replace the n-tuple of approximation functions ¥ with the func-

tion T' given by T'(ag) = (p_tl(a0)+1, e ,p_t"(“0)+1). Thus, we have that gy, (20, (¥)) = ppn (W, (T)).
For ag, by € N and ¢ Euler’s totient function we prove the following claims

(8) g (2 (9)) < p(a0)" TT1, tis(ao),

(b) tp.n (Aey () > (ao)” [T;2y Yi(ao),

(©) #pm (Uag (V) N Ay (V) < agbp [TiZy ilao)i(bo)-

Beginning with (a) observe that

b (e (1)) = 11 U HB<Z;7%(GO)> . (5.24)

lai|<ao =1
ged(ai,a0)=1,1<i<n
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If each rectangle in the above composition is disjoint then

P (Wi (©)) = > (HB( i ao))) = p(ao)" [ [ ¢i(ao), (5.25)
=1

lai|<ao
ged(ai,a0)=1,1<i<n

since iy, is the product measure of n copies of 1, and so the measure of the product of the balls in
the above expression equals the product of their measures. This provides us with an upper bound on
tipn (2}, (¥)), since any non-empty intersections in the union within would only make the measure
of the union smaller than their sum given by .

To prove (b) we simply need to show that the union within ([5.24)) contains no non-empty intersections.

Suppose this is not the case, say

(HB< Wil )) N (EB (Z,wao))) 410,

for some points b = (b1,...,by,),c = (c1,...,¢n) € Z™ with |b;],|ci| < ap and b # ¢. Then we have that
b — cil, < i(ag), 1<i<mn,

since |ag|, = 1. Such inequalities would hold if and only if 1;(ag) > for all 1 < < n such that b; # c;.
However, we have that 1;(q) < 5 forall 1 <i<mnandq € N and thus, by -, we have the required
lower bound on fup, , (Ar, (¥)).

To prove (c) define the set
Q :={(a,b) € AR la| < ag, |b] < by, ged(a, ag) = ged(b, bg) = 1}.
Observe that

b,
bo

fip.n (A, () N ) < H # { a;,b;) €Q: < Az} J;. (5.26)
p

where
A; = max{ti(ao),¥i(bo)}  and & = min{tpi(ao), Yi(bo)} -

Fix any ¢ and without loss of generality suppose that A; = v;(ag) > 1;(by) = ¢;. Note that since p 1 ag, by

then the inequality in the above equation is equivalent to (a;, b;) € @ satistying
lasbo — biaolp < 1i(ao). (5.27)
To count solutions satisfying we observe that such solutions also solve the congruence
biag — aibp =0 mod pti(®0), (5.28)
Let d = ged(ao, bp), and let ap = % and by = %‘). Suppose that
biag — a;by =k,
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for some integer k, with |k| < 2%. The bounds on k follow on the observation that
|biag — aibo| < 2agbo,
for all (a;,b;) € Q. Considering the congruence
a;by = bjay —k  mod aj,

note that per k there is at most one solution a; modulo (), and so at most i@ = 2d possible a; with
0
|a;| < ap. Clearly, each b; is uniquely determined by each a; and k, so per fixed k there are at most 2d

possible pairs (a;,b;) € Q. To solve (5.28)) we must have that
k=0 mod pt®) (5.29)

of which there are at most
4a0b0
d pti (ao)

possible k satisfying |k| < 2agbg/d. Note that one such possible value of k satisfying (5.29)) is £ = 0. But

+1

this is impossible, since it implies that
agbl- = az‘b6.
Indeed, assuming ag > by, we get that ap # 1 and ged(ay, a;) = ged(ag, by) = 1, and so we must have

that bjag — a;bj # 0. If by > ag then the argument is similar. Hence there are at most

4a0 b(]
d pti (ao)

values of k that have corresponding solutions in ), and so there are at most

dptl( o) < aobowz(ao)

pairs (a4, b;) € @Q that solve (5.27)). Combining this upper bound with ([5.26]) we have that

Hpn (U, (1) N2, (V) < afby Hw ag)i (bo).-

=1
By (c), we have that
N 2
Z ppn (e () N2A (P) < D @ bOqu, (a0)ti(bo) < (Z%Hm a0> . (5.30)
ag,bp=1 ag,bp=1 ap=1 i=1

Now assuming the monotonicity of []"" ; ¥i(g), by (a), (b), we have that

N N n N n
D i@ () = Y wlao)™ [ [ wilao) = > af [] ¢ilao) - (5.31)
ap=1 ap=1 i=1 ap=1 =1



Hence (5.31) completes the convergence case of Theorem via Lemmal[l.1.3] In turn, (5.30) and (5.31))
together with Lemma proves that i, ,(20;,(¥)) > 0 and finally applying Lemma completes

the proof of Theorem

Regarding Theorem Claim (a), completes the convergence case via Lemma In the divergence
case we note that Claim (b), (5.30)) and condition (5.3]) imply that

lim sup
N—o0

(Zi\gl ¢(ao)” TTi= ¥ilao) ) ? -0
Son—1 af TTisy ¢i(ao)

Hence, Lemma is applicable and we get that j,,,(20],(¥)) > 0. Applying Lemma completes
the proof of Theorem [5.1.2

5.5 Proof of Theorem [5.1.4]

As with many Hausdorff dimension results we prove the upper bound and lower bound independently. As
we are working with lim sup sets of hyperrectangles defined by we will naturally appeal to Theorem
to get the lower bound. We start with the upper bound which takes advantage of a standard cover
of 0, (7).

5.5.1 Upper bound result

Recall that 20, (V) = im sup,, o Aao (V) , where 2, (¥) is given by (5.1)), that is

oo (V) = U Rao,ah---,an(qj)

(al,“,,an)GZn
lai|<ao (1<i<n)

and

a;
Ty — —
ap

Ragan,..an (W) = {m = (z1,...,@y) € Zg : < i(ag) for 1 <i< n} .

p

Throughout this proof ¥ = (¢~ ™,...,¢" ™). Then for every ¢ € {1,...,n} we can trivially cover
Rag.ar,...an(T) = Rag.ar,....a, (¥) by a finite collection B(ap) of balls of radius a, " such that

i aaTj 2o, (TimT5)
#iB(a(]) <K Hmax 1, F = Qg 7o s
0

J=1
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where the power of ag on the R.H.S of the above inequality can be obtained by removing the cases where

aiTj n+1+27'<‘r~(7-i_7—j)+6
O,TZ. < 1. Let s = Lt

R0

for some § > 0. Then for any N > 0

Ti

HO(Wa(r)) < D D #Blao)ay ™™,

ao>N |a;|<ag

1<i<n
N+ <y (Tim ) =073
<Y ,
ag>N
1-6
= Z ag —0 as N — oo.
ag>N

This implies that dim 20, (7)) < sg. The above argument follows for any choice of 7;, hence we may
choose the minimum over the set of all 7; and so the upper bound for the dimension in Theorem [5.1.4

follows on letting & — 0.

5.5.2 Lower bound result

In order to apply Theorem [3.3.3] we need to construct a set of resonant points that we can show are a

locally ubiquitous system of rectangles. Let
A a;
Rayi = {Z €Q:a < ao},
ao

for each 1 <14 < n, and let Rao =1~ Ray,i- In line with the notation prior to Theorem let J =N,
and 3 : J — Ry be B(ag) = ap. Choose p: Ry — Ry to be p(ag) = a; "', and choose the two sequences

I, = M*, and u, = M**+1, for some fixed integer M > 2 to be chosen later, so that

Jip = {ao € N: Mk <ag < Mk+1}.
In order to show such set of resonant points is a local ubiquitous system of rectangles we prove the
following proposition.

Proposition 5.5.1. Let Rao, J, B, and p be defined as above. Let o = (a1,..., ) € R with each

a; > 1 be a vector satisfying

n
Y ai=n+l. (5.32)
i=1

Let M > p"tL. Then there is a co > 0 such that for any ball B C Ly

Cc1 o
Hpn | BN U A (Raou (W) ) > ¢ pip.n(B)
MFk<ag<Mk+1

for all sufficiently large k € N.
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Proof. Fix some ball B = B(y,r) for some y € Z7 and r € {p" : i € NU{0}}. We will assume that k is
sufficiently large so that M*r > 1. In view of (5.32) and the fact that a; > 1 for all 4, by Lemma

we have that for any = (z1,...,2,) € B there exists (ag,...,a,) € Z""!, satisfying
la)] < M*  (1<i<n), 0<ag< M
such that
k_;,_# —Q4
laoz; — ailp < p (M n+1> , 1<i<n. (5.33)

Since a; > 1 for each 1 < i < n, (5.33) combined with 0 < ag < M**! implies that lai|, < laglp for
each 1 < ¢ < n, provided that k is sufficiently large. Let A be the integer such that |ag|, = p~. Write

ah = agp~ and a, = a;p~*. Observe that agy, a; € Z,

0<ap<p MM a| < prMF, (5.34)
for each 1 <17 < n and that
/
a
ri— —| = p’\|a0x7; — ailp
A+1 kL T
<p (M n+1) , (5.35)

for 1 <4 < n. We want to remove the af, values that are 'too’ prime, that is |ag|, < p~ 0 for some fixed

Ao € N to be chosen later. We consider the integer vectors (ay, ..., a),) satisfying (5.34) such that

aj al,
<1 ”"a’> € B(y,r).

/7
200 0

Considering the congruence equations for af, fixed we have that there are

Mk " MEN\"
(2/\7' + 1) < (3)\7")
p D

such points. Hence

wa B0 ) U U ﬁB(Z;,pM(Mk%)m)
- 0

A>\ ME at a 1=1
0<ap< 2
k+1 n
< M 3 r pn)\Jrank(nJrl)fl
A> Ao



Taking A\ sufficiently large, e.g. p*® > 23 p , then we have that

n /
RS Ry a 1
Hpn | BN U U U HB<a/Z’p o+ (M n+1) > §§,Up,n(B)-
A> Ao |a,‘<m %7...’%>€Bi:1 0
0<aq, <MkJrl c
Then we have that
n a LN —ay
BN B (2, phott (it )
o | B0 U U IIe(%
A<Ao ‘aASMk =1
U<a0<Mk+1:‘ao|pr*A0
ai P B\ TN
> ppn | BN U HB (ar+e)
‘az‘<Mk i=1
0<ap<Mk+1
n a; 1 -y
~tpn | BN U HB(Z,pA+1 (arkm) >
Jas] <M =1 N0
0<ag<M¥+1:|ag|p,<p=0
1
= §Mp,n(B)

Similarly to the above we can deduce that

ppn | B0 U HB<ai . <Mk+"“)_ai>

la;| <Mk
Mk<a0§Mk+1:‘ao‘p2p_A0

n
a; 1\ "%
>t | B U H3<a1,pxo+1 (a++h) )
Jas| <M =t 70
0<a0<Mk+1:|a0|p2p7)‘0

n
a; 1\ T
— Bn B =, prott (prfta
Hp,n a » D
Jas| <M =1 70
0<ap<M*:|ag|p,>p~>0

Using similar calculations to those of above we have that

3npn)\0+n

. —Qy
1o | B U HB< Lot (Mk+n+1) > STMW(B)-

la;| <Mk
0<ap<MPF:|ag|p>p~>0
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Thus, provided M > 23"p"*+" then there exists some constant ¢ > 0 such that

n

a; B L\ T

ppn | BN U HB (CLZ,p/\O+1 (M +”+1> ) > ¢ ppn(B).
la;|<M*F =1 0

Mk<ao§Mk+1:‘a0|pr*/\0

Taking the constant
Ag+1 1 1

c1 = max p “ M nfl
1<i<n

completes the proof. O

Given Proposition we have that (R,,, ) is a local ubiquitous system with respect to (p, ),
provided Y ' ; a; = n + 1. Using the setup provided for Theorem let 7 = (11,...,7) = (a1 +
t1,...,an +t,) € RY, then W,(7) = W(7). Without loss of generality let 71 > --- > 7,. Define o;

n
) { n—l—l—Zj_n_iHaj}
a; = min < 7, .

n—1

recursively as

Since 2?21 7 >n+ 1 and 2?21 a; = n + 1 such recursive formula is possible and we have that o; < 7;
for each 1 <7 < n, so T is well defined. Since 7, > --- > 7,, we have that oy > --- > «,, and furthermore
there exists k € {1,...,n} such that for all 1 <i<n—k

- n+1-— Z;’L:n—k—i-l aj
n—=k '

(67}

Such observation follows by noting that at least

n
ap=n+1-— E Q;
j=n—1

by the fact that >_ ; a; = n + 1. Note that for each metric space X; = Z, the Haar measure p, is a

1-Ahlfors probability measure. With reference to Theorem [3.3.3] consider the following three cases:

i) A; € {aa,...an_}: For these values of A; we have that
K :{1,...,n—k}, ng{n—k—l—l,...,n}, K3 = 0.

Applying Theorem [3.3.3] we get that

(n—kai+n—(n—-k+1)+1a; — Z?:nktj}

Q5
2 t
. j=n—k+1"J
—mmin— — /.
A

(87
Since t; = 0 for n — k < i < n we have that dim23,,(7) > n.
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i) A; € {an_g+1,-..,an}: For such values of A; observe that
K :{1,...,i}, KQZ{i-Fl,...,TL}, K3 =10.

Applying Theorem we have, in this case,

i + (n—i)ay — Z?:iJrl t; }

Ai (67}

dim 0, (7) > in{

Similarly to the previous case, since t; = 0 for n — k£ + 1 <4 < n the r.h.s of the above equation is

n, the maximal dimension of 20, (7).

iii) A; € {m,..., 7}t Since 7; = ; for n — k 4+ 1 < i < n, ii) covers such result. So we only need to

consider the set of A; € {r1,...7,_x}. If A; is contained in such set, then
K1 :(D, KQZ{i,...,n}, ng{l,...,’i—l}.
Thus, by Theorem we have that

(n—i+ )+ >0 a;— S0t }

Ti

1

dim 20, (7) > in{

: - =3 k419 —k
=i+ + (1) ( e J) - Z?:z (75 —aj) — Z?:n—k-i—l tj
= min
Ay T ’
. +1— ”'L—nf j -
(it Dni+ (n—k) (” Ziznotl aj) — T T = ki
= min
A; Ti ’
_ {n%—l—l—zyzi(n TJ)}
= min ;
A; Ti

since a; + t; = ;.

These are all possible choices of A;. The proof of Theorem is thus complete.

5.6 Dirichlet-style Theorem on p-adic manifolds

This section provides a full measure statement needed to deploy a Mass Transference Principle for the

proofs of Theorems [5.2.3}H5.2.5

d xecl and

Theorem 5.6.1. Let f= (f1,..., fm) : U — Z;' be a map defined on an open subset U C 7,

suppose that f is DQE at x and let \ be given by

of;

A
s =p. (5.36)

1
max § 1, max, (x)

1<j<m

p
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LetT:(Tl,...,Tm)ERT,v:(vl,...,vd)ERi and

S <m41, ni>1, (1<i<m),
ch'lzlvi:n+1_2?i17'i7 v;>1, (1<i<d).
Then there exist Hy € N such that for all H > Hy and some k € Z the following system

"
ai

T — o ., < pntmA)/dpk pr—vi (1<i<d),
)E(%ww%>—%?p<@%ﬂrﬁ (1<j<m),
gmigs el <P~
has a solution (ao,...,a,) € Z" ! satisfying
(ap,p) =1, ged(ag, ... an) =1 and (Zé,,i—ﬁ) ceu.

Proof. By Lemma with o = ((n+mA)/d,...,(n +mA\)/d,—\,...,—X), Hy = ---
T = H + 1, for any integer H > H;/ ™D the following system

|box; — bi|p < p(n""m)‘)/dH_vi (1<i<d),
d
of; ‘ .
b(]p/\fj(x) - ZpAaf(m) (boxi — bz) —p/\derj < pf)‘HfTJ (1 <7< m),
i=1 v »
max |b| <H
0<i<n

has a non-zero integer solution (b, b1, .

d = ng(bg, bl, .o

..,by) € Z"L. Without loss of generality we can

.,by) is a power of p as otherwise we can divide (5.39)) through by any

(5.37)

(5.38)

H, = H and

(5.39)

assume that

other prime

powers in the factorisation of d without affecting (5.39). Let C' > 0 and 0 < € < 1 be the constants
that satisfy Definition for all f; simultaneously. In particular, we have that B(x,c) C U. Let

Umin = MiNj<;<q¥; and Tmax = Maxi<j<m, 7;. Let Hy be defined as follows

2

C'2¥min—Tmax | (al)

CominT, (a2)

Hy i=max { (e~ lprem/dymn ™ (g)
pTmin=T (")

Y/ ) )

Note that Hy is a well defined positive real number since vy, —

1 > 0 and 2Umin — Tmax > 0. The latter

follows from the facts that each 7; > 1 and Z;ﬂ’:l 7; < m+ 1 and so 7; < 2, and the condition that each

v; > 1. Note that () implies that p(*+mN/d—v < H=1 whenever H > Hy. We will use this observation

a few times in this proof.
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We will now prove two statements concerning the integer solution (bg, b1, ...,b,) to . First we
verify that by # 0. Suppose the contrary, that is by = 0. Then by the first inequality of we have
that |b;|, < p TN/ < H=' As |b;| < H and H > Hy, we have that b; = 0 for 1 < i < d.
Considering the second set of inequalities of , for each 1 < j < m we have that [bgy |, < H™™
which also forces us to conclude that bgy; = 0, since 7; > 1 for each 1 < j <m. Thus (bo,b1,...,b,) =0,

a contradiction. So we must have that by # 0.

Now we show that g—é is a p-adic integer for all 1 < i < d. Since by # 0, we may rewrite the first

inequality of (5.39)) to get

T — ﬁ < p(”+m)‘)/dH_”i, 1<3<d.

b
| 0’p bO »

b;

Suppose that > 1 for some 1 <4 < d, then e

g—é ) ) > |z, since x € U C Zg so, by the strong triangle

inequality, we have that

b;
Ji —1p
bO p} | 0|p

for H > Hy. Such inequality fails unless b; = 0, since |b;| < H. Thus, 2—3 € Zyforall 1 <i<d.

b;

zi— o < ptmA/dg—vi « g1

p

|bilp = |bo|p max { |Zi]p,

Now we are ready to construct (ag,...,a,) with (ag,p) = 1. Let k > 0 be the unique integer such that
p¥|bo but p**+1 { by. Then, since g—é € Z, so we have that p*|b; for all 1 <i < d. By (5.39)), we get that

d
91

— Ox;
=1

‘derj‘p < max ) ‘b()f](w)‘pv

p

(z) (boz; — bi)

bofi(x) = B, (&) (bozi = bi) = bay;
i=1 "

S max {H_Tj s p_k, p)\p(n+m)‘)/dH_Utl\in } — p—k’

since 7; > 1 and H > Hpy. Therefore, p*|bsy; and we have that b”éz)’j € Zp for each 1 < j < m. In

particular we have that d = ged(bg, b1, ..., b,) = pF. For 0 < i < n define the numbers a; = p~*b;, which,
by what we have proven above, are all integers satisfying ged(ag, ay,...,a,) = 1 and, by the choice of
k, (ap,p) = 1. By the third inequality of , we have that maxg<;<n |a;| < p~%H, which verifies the
third inequality in . Further, using the first set of inequalities of , we get that

laox — ail, = [p~*box — p~Fbil, = plbox — byl < pTMN/dp v (5.40)
for each 1 <14 < d, since v; > 1. This verifies the first set of inequalities in .
By and the fact that p* < H, we get that
<a1, ol ad) €eB (m,p("er’\)/dH*”mi““) C B(zx,e) C U,
ag ag
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ay ad
a0’ " @

fi (Z—(l), . “—d> is well defined and ({5.5) is applicable to f = f; for each 1 < j < 'm.

’G,O

where the last inclusion follows from condition (3) on Hy. Thus, y = ( ) € U and, in particular,

Using the fact that each f; is DQE at x we get that

ai aq 8fj <a"i > Q; 2
il —, .., — ) = filx) — )| — —x; <(C max |— —x; 5.41
(22 - e 3 e (s <ol (5.41)
<(p"H)

for each 1 < j < m, where the last inequality follows since

2 (B.40)

a; = Cp(2n+2m)\) /dp2k [~ 20min

— —
ag

C max
1<i<d

p
_ Cp(2n+2m/\)/dp—2k(vmin— 1) (p—kH) —2Vmin

(%) .
< (p—kH)—Tmax < (p—kH)—TJ )

Here (x) follows from condition (al) on Hy if p¥ < Hé/ * and it follows from condition (a2) on Hy if
pk > Hé/ 2, and we also use the facts that vpin > 1 and 2Umin > Tmax-

For each 1 < j < m in the second row of inequalities of (5.39) we may divide through by p* = |bg
and p*, and combine with (5.41]) to obtain

aq Qg Ad4-j
f‘] (7 et ) - T

ao ao ao
for each 1 < j < m. This verifies the second set of inequalities in ([5.37)), while the first set of inequalities
in (5.37) follows from ([5.40). The proof is thus complete. O

ot

<(p*H)T
p

In order to use a Mass Transference Principle, namely Theorem [3.3.4] we now establish the following

Corollary.

Corollary 5.6.2. Let f, 7 and v be as in Theorem|5.6.1. Let © € U\Q? and X be given by (5.36). Then

the following system

ai
ao

T — < plntmA)/dp—vi (1<i<d),
P (5.42)

<h™® (I<j<m),
p

a, ad+ ;5

‘fﬂ' (a2, ) -

where h = Joax la;|, has infinitely many integer solutions (ag, . ..,a,) € Z"" satisfying (5.38)).
<i<n

Proof. First, observe that (5.42) is a consequence of (5.37)) since h = maxg<j<, |a;| < p~*H and v; > 1
for all i. So we only need to verify that there are infinitely many different solutions (aq, ..., ay) to (5.37)
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as H varies. Suppose the contrary. Then, since x € Zg\(@d, there is 1 < i < d such that z; — g—é # 0 and
=)

d:=min|x; — —| >0 (5.43)

where the minimum is taken amongst the solutions (ag,as,...,a,) to (5.37) over all H > Hy. On the
other hand, by (5.37), we have that § < ptmN/dpk F—vi < prtmA)/dp—vitl _, () a5 H — oo since

v; > 1, giving a contradiction for large H. O

Corollary 5.6.3. Let f, 7 and v be as in Theorem [5.6.1 and suppose that f is DQFE for almost every
x €U. Let § > 0 be any constant. Then for almost every x € U the following system

T — k| <OhTY (1<i<d),
P (5.44)
‘fj (ff) -t <h o (<j<m),
where h = max |a;|, has infinitely many integer solutions (ao, . . ., an) € Z" ' satisfying (5.38)).
0<i<n
Proof. Define the set of integer points
(5.38) holds and for all 1 < j <m
Sr = (ao,...,an)EZ"+1 : ’f] (%7"'7%) _azi-gjp<h7‘rd+j7 s (545)
where max |a;| = h
0<i<n
and for each @ € S and § > 0 consider the hyperrectangles
Ba(1390) = {x € Zg g — il < sp (1<i< d)} . (5.46)
ap p
By Corollary the set
U limsupBg (7;0) (5.47)
§>0 @5t

has full measure in U, since the sequence of sets in (5.47)) is increasing as ¢ increases. These are Borel

sets and therefore measurable. Hence, by the continuity of measure, we have that

lm g, (lim supBg (T; 5)> = lpn U limsupBea(7;90) | = pipn(U) . (5.48)
d—r+o00 acS+ 650 acS+

By Lemma every limsup set in (5.48)) is of the same measure. Hence,

K <lim SupBa(T;5)) = tpn(U)

aeS,

for every d > 0. This is exactly what we have to prove. O
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5.6.1 Proof of Theorems [5.2.3-5.2.5|

We begin with the following proposition that lays the basis for applying the Mass Transference Principles.

Proposition 5.6.4. Let f: U — 7', where U C Zg is an open subset, and for x € U let F(x) = (x, f(x)).
Let U* be the subset of © € U such that fis DQE at x. Let T = (11,...,7,) € R}. Let Sy and Bga(T;0)

be defined by (5.45) and (5.46) respectively. Then for any 0 < 6 < 1

U* NlimsupBg(T;6) C F (W, (7)) (5.49)
CLEST
provided that
nin, 7 > \0AX o (5.50)
If
in 1 = - .01
D 7 = MAX Ty (5.51)

and f is a Lipschitz map with the Lipschitz constant L, then (5.49) holds for any 0 < § < min{1, L=1}.

)

Proof. Suppose € € U* N Bg(7;d). Then

fi(e) = £y (2 )

ag ’ ag

a;
Ty — —
ago

a;
Ty — —
ago

,C max
p  1<isd

ofi(x
< max { max fj( ) max
» 1<i<d| O p 1<i<d

< max{ max 8fj(m)

5h_7—min , 052]7/_27—min < h_Td+j
1<i<d | Oz

P
for any 1 < j < m and all sufficiently large h if (5.50) holds. In turn, if (5.51)) holds, we use the fact that
f is Lipschitz:

a;
T — —
ao

< L™ Tmin < p7Td+
p

ao "ap 1<i<d

fj(ac)—fj <al, ad)' < L max
p

for any 1 < j < m and all sufficiently large h since 0 < § < L™!. In either case, if a € S, then

ai Gq Ad+j ai aq s
§max{fj(az)—fj<,... > a]_fj<a,...,a> }<h Td+j
» 0 0 0/ 1,

Gt

() — 7
fi(@) aL
provided that h is sufficiently large. Hence, assuming that & € U* Nlimsup B, (7;J) we conclude that the

ao

)

p

acSr
system of inequalities
lapz; — ailp < Oh™7 < AT (1<i<d),
lao fj(®) — aayjlp < h™ 74+ (1<j<m), (5.52)
max{|agl,...,|an|} =h
holds for infinitely many a € Z"*!. Therefore, x € F~1(20,,(7)) and the proof is complete. O
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Proof of Theorems[5.2.345.2.7] First of all, note that (5.6) and (5.8) follow from Theorem Thus

we only need to verify the measure part of these theorems, that is and . Consequently, we
will assume that f is Lipschitz on ¢#. Let 0 < § < min{1,L~!}, where L is the Lipschitz constant
of f. With reference to the Mass Transference Principle from balls to balls (Theorem , take the
function g(z) = ¢

B = B(x,r) and dimension function f(z) = z*, define B® = B(x, g (2*)). Note that in Theorems

as our dimension function. Note that g is doubling and that H9 < p, 4. For any ball

and we have that 71 = 79 = -+ = 745. Therefore the sets Bq(7;0d) defined by (5.46) are balls. Let
the vector v = (v1,...,v4) be of the form v = (v,...,v) where
130 Tk
y .

Note that this v satisfies the requirements of Theorem [5.6.1| and its corollaries. Let

m
S_n—i-l—Zi:leH

)

Td
Then
BZ(Td;5) = {:p € Zg : max |x; — ai < 5S/dh_”} ’
1<i<d ao |,

and, by Corollary
Lp.d (hm sup By, (Tq4; 6)) = ppa(U).

GGST

Hence, for any ball B C U,

HI (B N lim sup BZ(Td;5)> =H9(B).
acSr

By the Mass Transference Principle (Theorem [3.1.1)), we have that for any ball B C U,
H® (B N lim sup BY (74; 6)) =H*(B). (5.53)
O,GST
By Proposition and the choice of d, we have that (5.49) holds, where U4* = Y. Combining (|5.53))
and (5.49) gives the required Hausdorff measure results and completes the proof. O

Proof of Theorem[5.2.5. First of all, without loss of generality we can assume throughout this proof that
(5.50]) holds. Otherwise we could consider 7/ = (11 +¢,...,74+¢€,Tg+1, ..., Tn) for a suitably small € > 0
and note that F~1 (20,,(7")) € F~! (20,,(7)). Hence, the validity of (5.10) for 7’ would give us the bound
{n+1+ZTj<n(TiTj) }

-m

Ti + €

dim (F~! (2,,(7))) > dim (F~' (20,(7"))) > min,

and on letting € — 0 we would get the required result for 7.

Now, since ({5.50)) holds, by Proposition with § = 1, get that

limsupBg(7;1) € F~H(20,,(7)) (5.54)
aceS+
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Corollary [5.6.3| provides us with a full measure statement, which will be the basis for applying the Mass
Transference Principle from rectangles to rectangles without Ubiquity (Theorem [3.3.4)). With reference
to the notation used in Theorem [B.3.4] take

J =5, plg) =q 1,

and so

limsup Bq(v; 1) = limsup A(Rq, p(Ba) 7). (5.55)
acsSr acd

By Corollary and (5.55)), we have that

Hp,d (hm sup A(Raq, p(ﬂa)v)> = ,up,d(u) (556)

aeJ

for any v = (v1,...,v4) € R% satisfying

d m
vi>1, D> vi=ntl-) 7 (5.57)
i=1 j=1

Without loss of generality we will assume that 71 > 79 > --- > 74. Similarly to what proceeds the proof

of Proposition define each v; recursively, starting with r = 0, by

m d
n+1-— Zj:l Tdtj = Dimd—rt1 Vi }

Vd—p = Min 74—
d—r { d—r> d—i
Observe that this choice of v satisfies (5.57)). Furthermore, there exists a 1 < b < d such that

d
n4+1—3 Tarj — D gy Vi
d—>

Ve =
for all 1 <c¢<d—0b. Define ty,...,tq from the equations
T, =05+ 1

then note that 7 = (¢1,...,t4) € R‘éo and thus satisfies the conditions of Theorem m Thus, the set
W (), defined in Theorem is exactly the right hand side of ([5.54)). Hence, by (5.54), we get that

dim F~1(20,, (7)) > dim W (7).

Also, in view of ([5.56|), Theorem is applicable and so dim F~!(20,,(1)) > s, where s is the same as
in Theorem [3.3:4] The proof is now split into the following three cases.

i) A; € {v1,...v4-p}: For these values of A;, which are defined in Theorem we have that

Ki={l,...,d=b}, Ky={d—b+1,....d}, Ks=0.
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Applying Theorem gives

dim F~1(2W,, (7)) > dim W (7) > min { (@=bpi+ (d=(d=bF1)+ 1o~ Z?:dib b } )

1<i<d—b V5
. Z;‘lzd—b+l tj
= min d _— .
1<i<d—b V;

Since t; = 0 for d — b+ 1 < i < d we have that dim F~!(20,,(7)) > d, which is the maximal possible
dimension for F~1(20,,(7)).

i) A; € {vg—p+1,...,vq}: For such values of A; observe that
K :{1,...,i}, KQZ{i+1,...,d}, K3 = 0.

Then in this case we have that

dim F~1(W,, (7)) > dimW(7) > min
d—b+1<i<d

{Z'UZ‘ + (d—i)v; — Z;l:iJrl t; }

(%
Similarly to the previous case, since t; = 0 for d —b+ 1 < j < d the r.h.s of the above equation is d.

iii) A; € {m1,...,7a}: Since 7; = v; for d —b+ 1 < i < d, ii) covers such result. So we only need to

consider the set of A; € {r1,...74_p}. If A; is contained in such set, then
Ky =0, Ko={i,...,d}, K3={1,...,i—1}.

Thus, by Theorem we have that
{ (d—i+ 1)+ Z;;ll v — Z;l:itj }

dim F~1(2,,(7)) > min

1<i<d T

. . nAL= 3T Ta =g 1 v d—b d
(d—i+ )7+ (i—1) < e ]> =25 (15 = Vi) — Xjdba i
ey Ti ’
, +1-37 =4 j -
(d it 1)7‘1' n (d _ b) (n 2171 Td;ib ngd b+1 UJ) . Z;i:f T — Z?:d—b-‘rl tj
T 2 7 ’

d
{” +1+ Zj:i(Ti —Tj) — Z;nzl Tdﬂ'}

= min
1<i<d Ti
n
1)
= min —myp.
1<i<d T

Considering all cases we have that

dim F~1(20(7)) > dim W (7) > min

1<i<d T

{n—l— L+ >0 (= 75) _m}

as required. H

95



5.7 Final remarks on Theorem [5.2.3-5.2.5l

We make several concluding remarks to the results of this paper. As outlined in §5.2a current obstruction
to further results in the p-adic setting over dependent variables is the lack of counting results for rational
points near manifolds. Precisely, given a manifold M with dimension d and codimension m such that

m + d = n, and functions f; : Zg — Ly, for 1 <7 < m, with parametrisation
M= {(z, fi(x),..., fm(x)) :x € ZZ} CZ,,

then for an exponent vector 7 € R} and fixed M € N, what bounds can we put on the cardinality of

% S Zp for each 1 <i <d, maxp<;<n |CLZ| <M,

a
(ag,...,a,) € Z" . : (5.58)
‘aofz' (%77%) —agti| <M, 1<i<m
p

In the real simultaneous case such bounds have been found, see [26]. Given an upper bound on ((5.58|) we
would expect the corresponding upper bound of Theorem to follow.

Secondly, while in this paper we make use of the general MTP and the MTPRR to obtain lower bounds
for dim 20(7)NCy the stronger ubiquity statement is absent hence we cannot obtain a s-Hausdorff measure
result in the full generalised case (Theorem . The main reason being that we do not have a precise
enough understanding on the distribution of rational points close to p-adic manifolds. Furthermore, as
shown in [I4] working from a purely ubiquitous setup can extend the range of applicable T-approximations
to Theorem While we suspect this would add additional constraints to our set of applicable

manifolds we intent to pursue this idea in a further paper.
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Chapter 6

Simultaneous p-adic Approximation over

coordinate hyperplanes

Recall from the previous chapters, by degenerate we generally mean a curve or surface that is flat’ for
relatively large parts, with respect to the associated measure. In particular any manifold contained within
some hyperplane is degenerate. In this chapter we will focus on the special class of degenerate manifold,
coordinate hyperplanes. Note from the comments of the previous two chapters, a key notion needed in
order to find results in such settings is a bound on the number of rational points close to the manifold.
In the p-adic setting such results are few and far between. In this chapter we find bounds on the number
of rational points close to n-dimensional p-adic integers by using p-adic approximation lattices. This
respectively allows us to obtain a Hausdorff dimension result for almost all coordinate hyperplanes with

respect to the Haar measure on Z,.

6.1 Counting rational points close to p-adic integers

The study of rational points on algebraic varieties, usually called Diophantine geometry, has a wide
variety of applications in many areas of mathematics. A variation of this is the study of rational points
that lie close to such algebraic varieties. In the setting of R™ there has been many results of this type,
including counts on the number of rational points close to curves [19, 110, 99 100, [72] and manifolds
[14] 26], 69, [70]. In the p-adic setting less is known. In [10} 1] a bound on the number of rational points
that lie on the curve Cy = {(x,22,...,2") : & € Z,} was found, but as yet no other results are available.
In this paper we provide an upper and lower bound on the number of rational points within a small
neighbourhood of a p-adic integer. Such result allows us to find bounds on the number of rational points

close to p-adic coordinate hyperplanes.
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Fix a prime number p € N and let |.|, denote the p-adic norm. Define the set of p-adic numbers Q,
as the completion of Q with respect to the p-adic norm. Denote by Z), := {z € Q, : |z|, < 1} the ring
of p-adic integers. Let € Z;, N € N, and ¥ = (¢1,...,%,) be an n-tuple of approximation functions
of the form v; : N — Ry, with 9;(¢) — 0 as ¢ — oo for each 1 < i < n. We provide bounds on the
cardinality of the set

Oz, VU,N) =< (g0, q1,---+qn) € Z": <o =X, lqowi — qil, <¥i(N), 1 <i<n
maxi<i<n [gi| < N,
If the approximation functions 1); are of the form ;(q) = ¢~ for some vector 7 = (71,...,7,) € RZ,
we will use the notation Q(x, T, N). Note that to get a result for general € Z, we must apply some
conditions. For example, if z € Q" then for sufficiently large N € N we have that #Q(z, ¥, N) < N2
for any . Here a < b means there exists constants ci,co € R such that ¢;b < a < cob. Conversely,

1
1=%~¢ for some ¢ > 0,

if & is badly approximable each approximation function satisfies 1;(q) < ¢~
then #Q(x, ¥, N) < 1. In order to obtain good bounds on the cardinality of Q(x, ¥, N) we use the

Diophantine exponent 7(x) defined as

n
7(x) := sup {Zn Cgozi — qilp < @™, for im. @ € N with |g;| < Q} )

i=1
By a Theorem of Mahler [105] we have that for all z € Z,, 7(x) > 2. Further, by a result of Jarnik [70]

we have that 7(x) = n + 1 for almost all ¢ € Z}

»» With respect to the n-dimensional Haar measure i,

on Qp, normalised by p,(Zy;) = 1.
We have the following result on the cardinality of Q(x,, N) for general x € Z,.

Lemma 6.1.1. Let = € Z, with Diophantine exponent 7(z) and let 1(q) = ¢~ for some T € Ry with
max{l,7(z) — 1} < 7 < 7(x). Then for any € > 0 there exists sufficiently large Ng € N such that for all
N > Ny

#9(z,7,N) < NTE)—T+e,

Remark 6.1.2. This result provides us with an analogous result of Huxley’s estimate (see §7.2) in the
setting of p-adic coordinate hyperplanes. Note by our previous remark on the Diophantine exponent that
for almost all z € Z, we have 7(z) = 2, so the above lemma reads that for ¢)(¢) = ¢77 with 1 < 7 < 2,
then for almost all x € Z,

#Q(w,1p, N) < N*77F¢,

While Lemma gives us an upper bound for all € Z, provided the approximation function v is
‘close’ to the function related to the Diophantine exponent the bound given has an extra N€ term. The

notion of 7(z) is inherently connected to some e term, and so for the majority of functions the N¢ term
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of Lemma cannot be removed. However, by bounding the approximation functions away from the

7(x) exponent we can remove such term. The following theorem offers an improvement in this respect.

Theorem 6.1.3. Let ¢ € Z, and suppose that T(x) = n+ 1. Let ¥ be an n-tuple of approzimation
functions with each

1
g T < i(g) < g, 1<i<n,

for some € > 0. Then there exists Ng € N such that for all N > Ny,

#Q(z, ¥, N) < O\N" M [ (),

=1

where

C1 = max {3(6\/5)”, (n+ 2)!7Tn/2\/ﬁ“+1 } .

r(2+1)

Remark 6.1.4. Akin to the comparison between Lemma and Huxley’s estimate, Theorem [6.1.3
provides the p-adic coordinate hyperplane analogue of the counting result proven by Vaughan and Velani
[L10] (see §7.2 for more details). As with Lemmal6.1.1] we can deduce that the above upper bound is true
for almost all @ € Z;. This type of result has already been proven in the real case (see Lemma 6.1 of

[200)-

Remark 6.1.5. In the case where the approximation functions are of the form ;(q) = ¢~ ™ then the
theorem reads: if

n
ZTZ‘<TL+1, and T; > 1,
i=1

then for any x € Z; with 7(z) =n +1,

#Q(:L’, T, N) < Can'H_Z?:l Ti

Lastly, we have the following lemma which provides a complimentary lower bound to the previous two

results.
Lemma 6.1.6. Let x € ZZ and
n
Zn <n4+1, and 7 >1
=1
for each 1 <1i < n. Then there exists Ng € N such that for all N > Ny we have that

#Q(x,T,N) > Lym-i,m g
b

As with Theorem the equivalent version of this result in R™ has previously been proven, (see
Lemma 3 of [95]). Further, as ) ;| 7; < n+ 1 we can choose N large enough such that

1 n
#Q(ZB7T,N) > 27]\['n—i-1—z:i:1 Ti
p
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Thus combining this with Theorem we have the expected result that #Q(x, 7, N) =< N*H -2 7,

The proofs of Lemma and Lemma use elementary techniques. The proof of Theorem [6.1.3|
is more substantial and uses p-adic approximation lattices and lattice counting techniques. Prior to the

proofs of these results we give an example of their applications in Diophantine approximation.

6.2 p-adic Diophantine approximation on coordinate hyperplanes

As an application of the main results in the previous section we consider the set of p-adic simultaneously
approximable points over coordinate hyperplanes. Recall the set of weighted simultaneously approximable
points, as defined by Haynes [65], as follows. For an n-tuple of approximation functions ¥ = (¢1, ..., 1y,)

and gg € N let

Gi
Ql'qo(\I/): U {azEZg: xi—q—; <¢,(q0)},
lgi|<qo, ged(qi,q0)=1 P
1<i<n
where @ = (z1,...,,). Define the set of weighted W-approximable p-adic points as

0, (¥) = limsup A; (V).

qo—00

Note that we adopt Haynes setting of taking approximations by reduced fractions.

In the previous chapter a lower bound for the Hausdorff dimension was found for general n-dimensional
manifolds satisfying the DQE property (see Definition . We remark here that the lower bound
dimension result of the following theorem is already proven by Theorem [5.2.5l However, the Hausdorff
s-measure result and the upper bound dimension result are new. A key reason the upper bound could
not be obtained in the previous chapter was a lack in results on the behaviour of rational points close to
p-adic manifolds. The main results of this chapter provide us with a good understanding of the behaviour
of rational points close to coordinate hyperplanes and so the upper bound result is achievable. The results
of this section are closely related to a variety of results in the real case on Diophantine approximation

over coordinate hyperplanes, see [22], [94] 05].

For a p-adic integer o € Zy' for 1 < m <n — 1 define the coordinate hyperplane
My = {(z1,...,2q,) : (x1,...,24) € Zg} C Zy,
where n = d 4+ m. For the set 2] (7) N I, we have the trivial result that
dim 2, (1) N < dimIly = n —m,

with equality when Y 7" 7, < n + 1. In this paper we prove the following result on the Hausdorff

dimension of 20, (1) N 1l4.
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Theorem 6.2.1. Let Il be a coordinate hyperplane of Zy, let a € Zy} satisfy T(a) = m + 1. Let

T = (11,...,70) € R be a weight vector with the properties that

m n

m

m+n§27d+i<m+1, ;Ti>n+1, 7> 1,
1= 1=

forall1 <1 <mn. Then

n+1—=37"0 Tapi + ijgn (1i — 75)
dim ), (7) N1y = min I==d =s.
1<i<d T

Furthermore

H® (W, (1) N1la) = oco.

Remark 6.2.2. The constraints on (7441, ..., 7,) ensure that we can apply Theorem The condition
that Y ;" ; 7; > n+ 1 ensures that we do not include the trivial case when 20),(7) = Z, in which case

=7p,
dim 0, (1) Nlg =n —m.

Remark 6.2.3. In the special case where the approximation functions are the same i.e. (7 = (7,...,7)),

then we have that, for 1 + % <T<1l+ %,

dim 7, (1) N1y = ntl_ m,

T

which is the dimension of the set of T-approximable points less the codimension of the hyperplane.

Remark 6.2.4. We can use the same style of proof used to prove the upper bound of Theorem [6.2.1] in
combination with Lemma rather than Theorem to prove that for any a € Z,, and approxima-
tion exponent max{1l,7(a) — 1} < 7, < 7(«v) we have that

n+7(a) =1=—m+3 (T —T7)),
j7#n

dim 27, (1) N1, < min
n(7) (e < 1<i<n—1 i

Proving the corresponding lower bound of this result is currently beyond our reach. This is because we

do not have a complimentary lower bound to Lemma [6.1.1

For general approximation functions ¥ = (¢1,...,vy,), let
—1
vi = tim —128(@) (6.1)
g—00 log q
Providing the limits exists and are positive and finite for each 1 < i < n then define ¥* = (vy,...,vy).

Corollary 6.2.5. Let U = (¢1,...,1%y,) be an n-tuple of approrimation functions with each 1; having
positive finite limit (6.1). If ¥* satisfy the same conditions as in Theorem then for all o € Zy
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with T7(a) = m + 1,

n+ 1- Z’?ll w;—&—z + Evj<vi (/Ui - U.])
1<j<d

dim 7, (¥) Ny = min

1<i<d v;

The corollary easily follows from the observation that by the definition of (6.1 there exists sufficiently
large ¢ € N such that
g T < ig) < g7
forall 1 <i<nande=(e,...,€6,) >0 with ¢, - 0 as ¢ — co. And so

0 (UF +¢€) CW (V) C 2, (TF —e).

Letting € — 0 we obtain the desired result. Note that while Corollary provides a result for general
U with components satisfying (6.1)), there are many functions where such limits do not exist.

As a reference of auxiliary results and concepts used in the proof of Theorem [6.2.1| we refer the reader
to §4.2 of the previous chapter for a recap of key results. One of particular importance is the Mass

Transference Principle from rectangles to rectangles, which can be found in Chapter 3.

6.3 Proof of Theorem [6.2.1]

We split the proof into the upper and lower bound, and solve each case separately. In both cases we will

use the following simplified set. Let 7 be the projection 7 : Z; — Z;~™, defined by
(1, e oymn) = (T1,. .., 2q).

By a well known theorem of Hausdorff theory (see Proposition 3.3 of [59]) as 7 is a bi-Lipschitz mapping
over 20, () NI, we have that

dim 7, (1) N g = dim 7(20,, (1) N [y).

Let 7, = (Tg41,.-.,7n) denote the m-tuple of approximation exponents of o and similarly let 74 =
(71,...,7q) denote the d-tuple of approximation exponents of the independent variables of Il,. Consider

the set of integers

_ 9d+i

g %l < qo )
< gy “™, for some @i ’ 1<i<my,

Q(a, Tm) =< q € N:
p ng(QZaQO) = 17

Q;

and the union of sets

2 (1a) = U {CL‘ € Zg :

l2:1<qo, gcd(gi,q0)=1
1<i<d




Note that this is essentially the same set as QK’qO (1), except that we are working with the d-dimensional

space rather than the whole n-dimensional space, hence the * notation. Then,

T(Wh(T)N1lg) = limsup 2 (74),
QOEQ(Q,Tm)

hence we only need to find the upper and lower bounds for dim limsup 27 (T4)-
q0€Q(a,Tm)

6.3.1 Upper bound

For the upper bound we take the standard cover of hyperrectangles used in the construction of 27 (T4).
By a standard geometrical argument note that each hyperrectangle, centred at some (%, ceey 3—3) e Q
in the construction of 2A7(74), can be covered by a finite collection of balls B,(7;) of radius ¢~7 for

1 <4 < d. Without loss of generality we can assume that
T2 2 T,

since if not then we could take some bi-Lipschitz mapping to reorder the coordinate axes such that this

was the case. Hence for each j < i,

—Tj

L)

Tgl.
q_i

Hence in the product below we only consider the 5 > i. By the above argument we have that the
cardinality of B,(7;) is

d

#%B,(r) < [ 2

—
i=i 1

—Tj

— qZ?:i(TiiTj)'

As each 1;-approximation function is decreasing as ¢ increases, for each interval 28 < ¢ < 2F+1 take g = 2¥

over such interval. Let
Ql(m,rm,N) ={q €N:(q0,...,qm) € Q(@, Tm, N) and ged(g;,q0) = 1V1 <i<n}.

Since each 7; > 1 for 1 < i < m each ¢p has unique associated (qi, ..., qm) in Q(x, T, N) so we have that

#Q/(cc, Tm, N) < #Q(x, T, N). Further, by the coprimality of each ¢; with gp note that the inequalities

\qowi — qilp < H™™, and

are equivalent since p 1 qo. To check this observe that each x; € Z, and then use the strong triangle

inequality.
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Given the above we have that Q(a, 7,,) € Upen Q' (o, Ty, 2F). Hence for any ko > 1

H( lim sup A;(Td)> <> DY e@#B(n). (0T,
9€Q(em) k=ko qe Q(ot,7m,2F)
Theorzglm Z 2]<;(m+1—z;11 Td+l‘)(2k+1)d(2k’+1)2?:i(7'i—7'j)(2’(})—‘[‘is’
k=ko
< Z 2k(n+1—2;’;1 Td+i+2?:i(n—’rj)—ns)7
k=ko

The above sum converges when

m d
s> n+1—32"0 Tapi + Zj:i(Ti = 75) te,
Ti

for any € > 0. Thus the tail end of the summation must converge to zero i.e. as ky — oo the above

summation calculation tends to zero. This is true for each 1 <+¢ < d, and as € is arbitrary, we have that

. {n + 1= 0 Tari + (i — 7)) }
S > min )

~ 1<i<d T

completing the upper bound result. Note that the result of Remark 2.2 can similarly be obtained by
replacing Theorem by Lemma [6.1.1

6.3.2 Lower bound

In order to use Theorem to prove the lower bound of Theorem we need to construct a ubiquitous
system of rectangles. In following with the ubiquity setup for Theorem let

B . el =g o
J = Q(OL,Tm), Rq,i Y\ €Q: ’ Rq - Hi:l Rq,i7
gcd(gi,q) =1

Bla) =, plg) =q e = M*, up = M*HL

where M € N is a fixed integer to be determined later. Then we have that
T ={q € Qa, ) : M* < q < M*+1}.

Note that J, C Q'(a,Tm,ZkH). For a vector a = (a1, ...,a,) € R let
A(Rg, p(r)?) = B(Z,r_al).
(Rq, p(1)%) |:| .

i=1¢q;€Ry;

We prove the following.

Proposition 6.3.1. Let R;, p, and Ji be as above, and let v = (v1,...,vq) € R‘io with each v; > 1 and

d

m
Zvi :n+1_ZTd+i7

i=1 i=1
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m
m
m—l—g SZTdH <m-+1
=1
and each ; > 1. Then for any ball B = B(z,r) C Zg, with centre x € Zg and radius 0 < r < rg for some

ro € Ry, there exists a constant ¢ > 0 such that

tpa | BN U A(Rq,p(uk)f)) > cpip,d(B),
q€ i

I
provided M > (Sdcl)”+1—22';1 Tdti |

The proof of this result follows the same style of many similar results in R™. For example see Theorem

1.3 of [25] for the one dimensional real case, or Proposition 5.1 of [24] for the n-dimensional p-adic case.

Proof. Fix some ball B = B(y,r) for some y € Z and r € {p’ : i € NU{0}}. We will assume that k is
sufficiently large so that M¥*r > 1. For any y = (y1,...,%q) € (Zp\(@)d, consider the system of inequalities

/

1 ]
’CIOO@ - qd+i|p < (Mk+n+l )*Tdﬂ', 1<i<m,
n I ,
lqoyi — ailp < pa(M*FReT)7v 1 <i<d,

max) <;<p, |gi| < MF,

|qo| < M*F1L.

By the condition on ¥ we have, by Lemma that there exists a non-zero integer solution (qo, ..., qn) €
7" to for any y € B. Furthermore, note that if (go, . . ., g,) solves then qp € Q' (o, T, Mk+%+1)
We can assume without loss of generality that ¢o > 0, and furthermore that gy # 0 since each v;, 744 > 1
forall1 <i<dand1<j<m. As we wish to have a statement for rectangles, rather than linear forms,
we need to divide through by [go|p,. To ensure we do not divide by a value too large we remove the set
of go that are too prime’, that is all go such that |go|, < p~0 for some fixed Ay € N. Since Vi, Tgqj > 1
foreach1 <i<dand 1< j<m, combined with 0 < gg < M**! implies that lgilp < |qolp for

each 1 < i < n, provided that k is sufficiently large. Let A be the integer such that |go|, = p~*. Write

qh = qop~* and ¢} = g;p~*. Observe that g}, q; € Z,
;o / M / Akl / Ak
(q07Qd+17"'7Qn)€Q<avTv p)\ >7 0<QO Spi M+ ’ ‘qllépi M ’ (63)
for each 1 <1 <n and that
/
q.
Yi— ;| = P’\\CIO% — Gilp
4o lp
n 1\
< pMi (Mk+n+1> , (6.4)
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for 1 < i < d. The same is true for the inequalities on «. At this point we only want the -
@
(qo,..., qo) € Ry, such that

BmHB <q’ (M’““)”i) £ 9.

i1 q0

This is equivalent to the set of solutions to

qi
Yi — —

<r, 1<:i<d
q0

<d. (6.5)

For qp fixed and each |g;| < go by congruence classes we have that there are at most

(2qor + 1)% < 34prkdpd

suitable values of g solving (6.5)). Hence we have that

d
a | B0 U U s (G
o< 245 (3 if)es ™™
0 0
0<af <ML afeQ! (aur M)

M+ Mk k(n+1—7)—1+ =
< #Ql (a’ T ) <3 T) pd)\JrTLM— (n+1-7)— +o T
> Y (s

+1
A>\o

o\‘s\

7 ) )

)

Th 613 MEHINTFTIT ke 7 z
eor%n Z Cl ( - ) 3d (}\) pd>\+nM7(k(n+17T)+1*n7+1)'u d(B)
A> Ao p b

=Y i BIC N mr,
A> Ao
n+(1—Xo)(m+1-7)

se D
< Cl3de o1 S Mp,d(B)-

Take A\ sufficiently large, say

1
%o Clgd n+m-+1— TMm T+ +1 m+1-—F
P> pm—i-l T_1

Observe that since 7 > m + 7 the fact that Ao is dependent on M is irrelevant since the value decreases

as M increases, hence we could replace M meT by 1. Then we have that

ey U U (G

k
|ai|§% e

O\‘&\

(M’”nil)vi) <

:up,d(B)'

| =

/ ll/
i,...,i)eB
k+1 k41
0<aO<M tapEeQ’ (a,T,M " )



and so

n
a; n L\ 7™
fiod BN U HB (Z’pko-‘rd (Mk+n+1) )
a
la;| <Mk =1 0
0<ay<M*k+1: afi€Q’ (0,7, MF+1), |agl,>p~20

n
a; n 1\ T
> ppa | BO U H3<a1,pm (ar++74) )
Jas|<M* =1 70
0<an<MHk+1: a{)EQ’(a,T,M’C+1)

n
a; n B
| B0 U IT5 (20 (arete) ™)
a
0<ah<M*k+1: afl€Q’ (o7, MHF+1), |ag|,<p=?0

1
> iﬂp,d(B)'

Similarly to the above we can deduce that

n
Qa; 1 —Qy
pna | B U [15 (2w (arteen) ™)
a
\as| <Mk i=1 0
MF<ag<M*+1: ageQ’ (a7, M*+1), |ag|p>p~0

n
a; n 1\ T
> ppa | B U e <az,pm+d (ar++4) )
Jas] <M* =1 0
0<ag<MFk+1: aOEQ/(a,T,M’H'l), lag|p>p—20

(6.6)

n
a; L\ T
i | B U L[5 (G () ™)
. a
Jasl <M =1 N0
0<ap<Mk: agGQ’(a,T,M’“), lag|p>p~20

Note that we are justified in taking the set Q'(c, T, M*) rather than Q(c, 7, M**1) in the last row of

the since

{O<a0 <M € Q(“aT,Mk)} 2 {0<a0 <MFiage Q(a,T,Mk+1)}.
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Calculating the measure of the 3rd row of gives us that

n
a; 1 —Qy
Hpa | BN U [15 (Z,pM“ (ar+e) )
- a
Jas| <M* =1 0

0<ao<M¥: apeQ’ (o, 7, M*), |ag|p>p~0

< #Q,(C}:’T’Mk) (BMkr)dpd)\0+nM—(k(n+1_7:)+1_nLH)

Theorem [6.1.3 ~ T T
Oy MM gd g phdyDotn - (Kot 1= H1=35) )

< 3l 0Ty o(B).

Taking

M > (Clgdpdxﬁn)n"Tﬂ;

for some constant ¢; < % and applying this to gives us that

n
a; n L\ "%
p.d BN U HB(;’pAO+d (M +n+1) ) > <2—C1> Np,d(B)-
Jag | <M i=1 0
MFk<ag<M*+1: ageQ’ (a7, MF+1), |ag|p>p~0

To complete the proof take the constant C associated with the function p to be
Ao+5

1
C = max p ® M w1,
1<i<n

O

Given Proposition we have that (R, ) is a local ubiquitous system of rectangles with respect to
(p,0), provided Z?Zl vi=n+1-3 ", 74+;. Observe that given this ubiquity result we are essentially
at the same stage of proof as §4.3 in the real case, or §5.6.1 of the p-adic case. The following method
is essential the same as that given in Chapter 5 (p.94-95). For completeness we give the method here,

although in a more streamline way. See the sections mentioned above for a more detailed explanation.

Given 74 = (71,...,74) € R‘io assume without loss of generality that m > 7 > .-+ > 74 and define

each vy_; recursively by

m d
. n+1=30"0 Tapi — Zj:dfiJrl Uj
Vd—; — IMIN § Td—i, d—i .

By the condition on 74 of Theorem there exists a k € {1,...,d} such that

m d
. n+1—=300 Tavi = D j—a_ks1 Y
1= ;

d—k
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for all 1 <1 <d— k. Clearly each v; < 7; for 1 < i < d, and so the associated vector t = (¢1,..

R”;! is defined by
tiZTi—?)Z‘, ISZSd

Consider the set

A=A{v1,...,04,T1,..., T4}
For each A; € A observe the following;:

i) A; € {v1,...,vq}: Then we have the sets
Ky ={1,...,max{i,d — k}}, Ko={max{i+1,d—k+1},...,d}, Ks3=0.

By Theorem we have that

tno1) €

Uy

dim 20, (7) N > min {

1<i<d
dv; — > d t;
. g j=max{i+1,d—k+1} “J
= min .

1<i<d v;

max{i,d — k}v; + (d —max{i+ 1, d = k+ 1})oi = S0 g piny b }

Since t; = 0 for d — k+1 < j < d the above equation gives that dim20] (1) = d = n — m, the

maximal dimension of 20/ (7) N Il4.

ii) A; € {r1,...,7q}: Since 7, = v; for d — k 4+ 1 < i < d the above argument covers such case, so we

only need to consider 7; for 1 <+i¢ < d — k. For such 7; we have the sets
K1 :®, KQZ{i,...,d}, ng{l,...,i—l}.

Applying Theorem we have

. / > .
dim 20, (7) N1l > min {

(d—i)m+ v — Y0t }

Ti

_ym . 5d iy
(d— i) + (d — k) ("“ D > — Y

1<i<d T

1<i<d T

: {n+1—Z?lleHJrZ?:i(Ti—Tj)}
= min .

Combining i) and ii) we have that

dim 7, (7) Ny > min
1<i<d

{n H1 =30 e+ (i — ) }

Ti
completing the proof.
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6.4 Proof of the counting results

Recall, we aim to provide bounds on the set

O<QOSN7 .
Q(xa\I/7N) = (QO7 s 7qn) € Zn+1 : ’CIO%, - QZ‘p < %(N): 1 <:<n
maxi<;<n |¢;| < N,

We begin with the proof of Lemma This style of proof is not new and follows a similar method to

the proof in the euclidean case (see Lemma 3 of [95]).

Proof of Lemma : Fix = (21,...,%,) € Zy and take t = (t1,...,t,) € N" to be the integers such
that
p—ti <N i< p—tﬁ-l’ 1<i<n.

Denote by P =[], p'i. Consider a set of open disjoint rectangles { R;}%_,, each with some centre point
ki = (kia,...,kin) € Z™ and sidelenghts p~'i. Choose the set of points {k;} such that Ly < Uf:l R;.
Consider the (N + 1)"*! set of points of the form

(@0 —q) = (01 — q1, - -, QTn — qn) € Zy,

with ¢; € [0, N] for each 0 < ¢ < n. By the Pigeon-hole principle there exists at least one rectangle, say

R;, containing at least
1
WAHD™ 1 ey
P pr

points. As > ' | 7; < n+ 1 we can choose N sufficiently large enough such that p NI T S 9
Order the points (qo, ..., ¢n), correspond to the points goz — ¢ contained in R;, by the absolute value of
the go component. If the gy components are equal then order by ¢; and so on. Suppose that the vector
(mo,...,my) is the smallest by our ordering. Then for all other vectors (rg,...,r,) contained in R; we

have that

ki — (moxi —mg) — (ki — (roxi — i)l <p™ ",

|(?”0 — mo)xi — (TZ‘ — ml)]p < piti < N7,

Hence the vectors (ro —mq, ..., n —my) € Z" solve the inequality of Q(, 7, N). Further (r; —m;) €
[~ N, N], and by the ordering stated above ro — mgy € [0, N]. To exclude the case where ro — mg = 0

observe that each 7; > 1 and so we would have that
N t<|m—myl,<p i< N?

for 1 < i < n, a contradiction. The above argument yields p~?N"+1=2i=17 — 1 such points, completing

the proof. 0
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Lemma [6.1.T] also has a relatively simple proof. The following method of assuming a contradiction and
then using the Pigeon-hole principle to prove otherwise is a well know technique used in a variety of texts

[105, [37].

Proof of Lemma We use a proof by contradiction. Suppose that
#Q(x,7,N) > 2NT@ 7+ (6.7)

We use the following notations. Let X € N be an integer such that

|x—X|p<p_M,

for some suitably large M € N, in particular we may take

M
X = Z xipza
=0

where (7;)ien is the p-adic expansion of z. . Define V¥ and Vy to be the sets

Vi i ={(¢,q1) ENXZ:0<q<N,0<q <N, },
Vv ={(¢;q1) ENXZ:0<q< N, -N<q <0, }.

Let t € N be the integer such that
pt< NTT < ptHL

and similarly £ € N be the integer such that
p*k < N*(T(:B)+6) <p*k+1.
Note that as 7(z) > 7, we have that k > ¢, and so p*~* € N. Further, observe that
Pt < pNT@Te (6.5)
Lastly, by the definition of 7(x), we have that there exists only finitely many @ € N such that
gz — qulp < QT

for 0 < ¢,|q1] < Q. Hence we may choose a sufficiently large Ny such that for all N > Ny for any pair
0< q, ’ql‘ S N7
gz — qu], > N~@+) (6.9)

for all € > 0. Consider the set of points in Q(x, 7, N). Note that (¢,q1) € Q(x,7,N) if and only if
(¢,q1) € VJ UVy, and
¢gX —¢1 =0 mod p'. (6.10)
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Thus, for all (¢,q1) € Q(z, 7, N) we have that
¢X —q1 =M,

for some A € Z. Split the set of points in Q(xz, 7, N) into two disjoint sets, the set of pairs in V', and the
set of pairs in V. As there are greater than 2V 7(#)=7+¢ pairs, at least one of the sets has greater than
N7@)=7+¢ pairs. Without loss of generality assume such set of points belong in VJ . Considering the
range of values of \p* for ¢ fixed and A varying we observe there are p*~* possible values of Ap! modulo
pF. By and we have, by the Pigeon-hole principle, that there exists at least two pairs, say
(a,a1) and (b, by), such that

(a—b)X — (a1 — b)) =0 mod p.

This is equivalent to

(@ = b)z — (a1 = by)|, < p™" < N7TEF,

with (@ —b,a1 —by1) € V]\Jf UVy,as 0 <a—b< N by our choice of ordering of a,b, and |a; —b1| < N by
the fact that the pairs (a,a1), (b,b1) € VJ . However, such result contradicts which follows from the
definition of 7(z), thus (6.7) must be false. O

6.4.1 p-adic approximation lattices

Prior to the proof of Theorem [6.1.3]| we recall some basic definitions and results of geometry of numbers
that will be needed. Define a lattice A as a discrete additive subgroup of R™. If A C Z™ the A is an
integer lattice. A set of linearly independent vectors by, ..., b, that generate A is called a basis of A. Let

B be a n x n matrix with columns b;, then call B a basis matrix. Define the fundamental region as

f(B) = {Zaibi:ai eER, 0<a; < 1}
=1

A standard result of geometry of numbers states that if B is a basis matrix for A then F(B) contains no

lattice points other than the origin (see Chapter 3, Lemma 6 of [50]).

The volume of the fundamental region can be found by taking the determinant of the basis matrix, that
is vol(F(B)) = |det B|. A basis matrix is not unique for each A, however for any lattice A the volume
of the fundamental region is the same regardless of choice of basis matrix. For this reason we use the
notation det A to denote the volume of the fundamental region. If U € Z"*" is a unimodular matrix and

Bj is a basis matrix for A then By = B1U is also a basis matrix for A.

The successive minima of a lattice is an incredibly useful notion that allows us to deduce several

properties of a lattice. Let B,, = B(0,1) denote the n-dimensional euclidean unit ball. For ¢ € R, we
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use the notation ¢B,, = B(0, ¢). Define the successive minima of a lattice A C R™ of rank n as the set of

values
Ai(A) :=min{\ > 0: dim(ANAB) > i},
for i = 1,...,n. By Minkowski’s inequalities on the successive minima (see e.g. [67]) we have that
n
vol(By) [ Ai(A) < 2" det A. (6.11)
i=1

For a count on the number of lattice points within a convex body we have the follow theorem due to

Blichfeldt [41].

Theorem 6.4.1. Let A C R"™ be a lattice of full dimension and let V- C R™ be a convex body about the

origin such that the span of vectors contained in ANV is R™. Then

vol (V)
det A

#(ANV) <nl +n.

The constant for such estimate can be excessively large, however in our use of the Theorem the size of

such constant is irrelevant.

In 1993 an alternative lattice counting theorem was proven by Betke, Henk and Wills [39], which utilised
the properties of the successive minima. This result was further generalised by Henk [66], giving us the

following theorem.

Theorem 6.4.2. Let n > 2, B(0,K) a n-dimensional ball of radius K > 0 centred at the origin and A

a n-dimensional lattice. Then

| 2K
ANK) <2t 1.
HADK) < paley bi(/\) i J
We remark that if rank(A N B(0, M)) < n then we must have at least that \,(A) > M. Thus the n'"

value of the product in Theorem [6.4.2] would be bounded above by 3, a point we make use of later on.

For the proof of Theorem [6.1.3| we use p-adic approximation lattices. Such lattices have been used in
p-adic Diophantine approximation regularly, for example De Weger [54] used them to prove a variety of
results in classical p-adic Diophantine approximation, including the p-adic analogue of Hurwitz Theorem.
Recently n-dimensional forms of p-adic approximation lattices have been used to provide lattice based
cryptosystems [73],[74]. In these papers both dual and simultaneous approximation lattices were discussed.

In particular Dirichlet-style exponents were proven for simultaneous and dual approximation.

For a n-tuple of approximation functions ¥ = (¢1,...,1,), an integer N € N, and a fixed x =

(z1,...,%p) € Zj define the ¥-approximation lattice Ay 4 over R"! by

Ana ={(ao, ..., an) € Z"" : agz; — ailp < ¢i(N), 1 <i <n}.
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To briefly justify the above claim note that the collection of points are discrete, and that any integer
linear combination of such points is also contained within the set due to the strong triangle inequality.
Observe that such claim is clearly false if we were to consider the real case analogous to the above setting.
Observe that

Q(z,¥,N) C Ay, N B(0,v/nN),

since the euclidean ball B(0,/nN) contains all integer points satisfying maxo<i<p |¢;| < N.

For any € Z, we may write each z; as the p-adic expansion

o0
Tj = Z:J:j,z-p’, zj; €{0,1,...,p—1}.
i=0
Let X; v € Z be the integer
t]
Xjn =) zap',
i=0
where each ¢; € N is the unique value associated with N satisfying
p < api(N) <plith (6.12)

Lastly, for each 1 < j <nlet ¢y = p%. Then the set of vectors

1 0 0
XN {0k 0
B= Y L : (6.13)
Xn,N 0 ;,N

form a basis for Ay . To support this claim observe that

oo
i = Xinlp = | D> wigp!| <pt <i(N),
Jj=ti+1 P
and
102 — ¢ nlp = "] = p" < i(N),

for 1 <4 < n. Hence the span of vectors B at least produces a sublattice of Ay 4. To show B is a basis
of Ay, we consider the fundamental region F(B) and show that the only lattice point contained is 0.

Suppose there exists a non-zero lattice point in F(B) of the form

n+1

Z Cibi
i=1

where b; are the vectors of B and each 0 < ¢; < 1. Since Ay, C Z"*+1 and the first vector of B is the

only vector with a non-zero entry in the first row we must have ¢; = 0. For the remaining vectors observe
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that each non-zero term is a prime power, so each ¢; must be of the form p~" for some r € N. However,

by the construction of each ¢\, we have that

[Winlp < i(N) and  |p~f lp > (N,
and so the only possible value for each ¢; is zero.

Now we have a basis for Ay, we can calculate

n n -1
=1 =1

where the implied constants can be easily found using (6.12)) to obtain

-1

n -1 n
OI%M@) éhMAMA§¢<IhMN0 : (6.14)
=1 =1

In the simultaneous case, ¥ = (v, ...,%), it was proven in [74] that

MANgz) K YP(IN) nHT,
In the following proposition we generalise this result to weighted approximation and find a lower bound
result for © € 7Z, satisfying certain Diophantine exponent properties. It should be remarked that the

upper bound result is trivial and was probably known to the authors of [74].

Proposition 6.4.3. Let Ay g be defined above with T(x) =n+ 1, and suppose that

n

[Twiv) <N

=1

Then for any € > 0 the exists sufficiently large Nog € N such that for all N > N,

<H£iwwy%%§MMM@g@(HLlNW)M’

1
n+l n\ ntl
02:2<F(2+1)p> '

where

n+1
m 2

As will become clear in the proof below the condition that 7(x) = n + 1 is only necessary in the lower

bound result.

Proof. We prove the upper bound case first. Such proof is a standard application of Minkowski’s first
Theorem on successive minima and follows almost immediately by the above calculation of det(Apsg).
Concisely, we have that

M(Ay )" ol (B(0,1)) < 2" det(Ay ).
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Rearranging for A\j(An ), using (6.14), and recalling the volume of an n 4 1-ball we obtain our result.
For the lower bound observe that for any = € Z;
[T laowi — ailp < N0,
maxo<;<n || < N,

for infinitely many N (see for example Lemma [5.3.1)). Further, since 7(x) = n + 1 there exists Ny such
that for all N > Ny then any rational integer vectors (qo, ..., qn) satisfying maxo<i<p |¢i|] < N we have
that

H lgoxi — qilp > N~ (ntlte) (6.15)

for some € > 0. Choose N sufficiently large such that

n *(%ﬂ’g)
Ny < <H ¢z‘(N)) .
i=1

Such N is possible since [[;; ¥;(N) < N~™ and so the value on the RHS of the above inequality tends

to infinity as N — oo for any small ¢ (¢ < n(n+1))

Suppose that (qo,...,¢n) is a minimum length non-zero vector of Ay g, then note that A\j(Aygz) >

maxi<j<n |¢;| due to the euclidean nature of A\j(An ). Suppose that

~(71-2)
max \q,\ < (H »i(N ) . (6.16)
We prove ([6.16)) to be false. Observe that
11 le0wi —aily < J]we(™V
i=1 i=1

since (qo, ..., qn) € ANz. Then

n n _(
H|C]0$z' —dgilp < (H%(N)>
i=1 i=1

But this contradicts (6.15)). So we must have that (6.16)) is false, and so

—(-9)
AN:I: = (le ) )

completing the proof. O

Given Proposition [6.4.3| we can proceed with the following.

Proof of Theorem For N > Ny, where Ny is chosen by Proposition [6.4.3] consider the following

two cases:
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i) rank(An N B(0,/nN)) =n+ 1: By Theorem we have that

#(An a1 BO, ViN) < (n + 1 B OVIN))
detANﬁc

- (n+ 1)!7T”/2\/ﬁn+1
T

< (n + 2)lx/2,/n"
- r(2+1)

+n+1,

n
N ein) "+ 1,
=1

Nn+l ﬁ wz(N)
i=1

Note that the last inequality follows since [[; ¥i(N) > N —(n+1-€)  This proves Theorem for

the rank n + 1 case.

ii) rank(AnzNB(0,/nN)) < n+1: Since rank(Ay NB(0,/nN)) < n+1 we must have A\ 41 (Ang) >
v/nN. Hence, by the remark made previously, the final product on the right of Theorem is less

than or equal to 3. Furthermore, for each A\j(An ), 1 <i < n we have that

Pro m 1 e
Mlbve) 22 Mlhve) = <H"¢(N)> T
=17

- (W)lm’

where the second inequality follows since

1 %_H—e 1 n—en(n+1) ﬁ
- > -
(o) = () )

S T
AN (V) \TL (V) '
combining the two ideas above, and Theorem we have that

2y/nN n 1) ’
M(ANz)

#(Avo N B0, vnN)) < 2"3]] (
=1
n 1/n
<2"3 | 2¢/nN'H/n <Hwi(N>) +1]
=1

< 3oy N [,
i=1

Thus, in either case i) or i) we have that

#(An o N B(0,v/nN)) < CIN™ ][ ws(V),
i=1

(n+2)!7f"/2ﬁn+l}

r(2+1)

with

C1 = max {3(6\/5)",
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6.5 Concluding remarks on Theorem [6.1.3

Theorem [6.1.3] provides sharp bounds on the number of rational points close to almost all n-dimensional
p-adic integers. While this result allows us to find simultaneous p-adic Diophantine approximation results
on coordinate hyperplanes, it falls a long way short of providing results for Diophantine approximation
sets on curves and manifolds. However, as will be shown in the next chapter, Theorem [6.1.3| can be used
to obtain bounds on rational points close to certain classes of submanifolds. It is hoped the techniques
used in the proof of Theorem could be developed further to find counts on the number of rational

points close to general manifolds.
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Chapter 7

Further Research

This final chapter provides a brief overview and discussion of possible developments to the preceding
chapters. We introduce S-arithmetic Diophantine approximation and discuss how the techniques of

Chapters 4 and 5 could be implemented to obtain similar results in the S-arithmetic setting.

We also discuss the latest results in counting rational points close to real manifolds, and possible

methods to obtain similar results in the p-adic setting. Such results would provide a complimentary

upper bound result to Theorem 5.2.5]

7.1 Introduction to S-arithmetic numbers

The S-arithmetic setting is a combination of both real and p-adic numbers. For that reason many of
the notions and ideas of the previous chapters can be applied in this setting. Let S be a finite set of

valuations on Q of cardinality k. Then define

Qs =[] @,

veS
where Q, is the completion of Q with respect to the valuation v. In the case where the Euclidean
valuation is contained in S we will say oo € S, and similarly we will denote R by Q... The set Qg has

the associated norm defined for any x = (m(”))yeg € Qg by
- )
|zl = max |2},
Hence, for any point y € Qg and real number r > 0 we may define the S-arithmetic open ball
Bs(y,r) ={z €Qs: |z —yls <1}.

Where it is clear we are referring to an S-arithmetic ball we will drop the notation and use B(y,r) to

denote a S-arithmetic ball with center y € Qg and radius r > 0. As with the p-adic setting, define the
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ring of S-arithmetic integers Zg C Qg as
Zs:={x € Qs :|z[s < 1}.

At this stage we note that many general properties of Qg depend on whether co € S. For example, if
o0 € S then ZF ¢ Zg, since the Euclidean norm of any integer (with the exception of 1) is greater than
one. Conversely, if co ¢ S then ZF C Zg, and further still Z* is dense in Zg (this follows by using similar
ideas to the p-adic case). Further, observe that if co ¢ S then |.|g satisfies the strong triangle inequality,

a result that is clearly false if co € S.

Denote by pg the S-arithmetic Haar measure, normalised by us(Zg) = 1. Note that pg is simply the
product measure of measures over each Q,, i.e.
ps =[] s
ves

with peo = A, the Lebesgue measure.

The notion of Diophantine approximation in Qg can be considered in a variety of ways. As with the
previous chapters we will focus on simultaneous Diophantine approximation. For a general introduction
and a variety of results on dual and Groshev S-arithmetic Diophantine approximation see [79) 90]. For

integer vector (qo,q) € ZF+1 we will be interested in the quantity

lxqo — q|s,

where xqg can be considered as usual scalar multiplication i.e. gy = (qox(”)) ves- As discussed in Chapter
2 the size of both gg and g can greatly influence the rate of approximation for the p-adic norm. The same
is clearly true for |.|s. Let ¢ : N — R4 with ¢(r) — 0 as r — oo, then we define a point € Qg to be -
simultaneously approximable if there exists infinitely many integer vectors (qo, g1, - . ., qx) = (qo, q) € ZF*1
that solve

lxqo — qls < Y(H),

max |¢;| < H.
0<i<k

For each valuation v € S denote by ¢*) the integer associated with such valuation. Precisely, let
q = (¢")ves € ZF, then
(V)’

v

|zqo — qls = max |z)gy — g
vesS
When considering weighted simultaneous approximation we will vary the rate of approximation over

each v € S. Let U = (¢,),es be a k-tuple of approximation functions. A point € Qg is said to be

U-simultaneously approximable if there exists infinitely many integer vector solutions (qo, q) € Z**! to

|~T(V)QO - q(V)|I/ < %(H)’ ves,

VN < H.
glgg{!qol,lq |} <
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In lim sup form we may describe these set of points as
Wg(¥) := limsup U {a: € Zs : |zMqy — ¢, <, (h), v e S} .
h—o0
lgol,lg™|<h

Similarly to the previous chapters we will use the notation Wg(1)) for the set of (¢, ..., )-approximable
points and Wg(7) for the set of (¢~™,...,q " )-approximable points. We will often denote each 7; by

the associated valuation i.e. 7 = (7,),es € Rﬁ for notational purposes.

As usual the initial aim is to find a Dirichlet-style theorem. In order to provide an optimal Dirichlet-
style result we need to know whether co € S. As justification for this note that if co ¢ S then for any

integer vector (qo,q) € Z*¥*! and x € Zg we have that

[z.90 —gls < 1, (7.1)
and so x.qo0 — q € Zg. If oo € S then ([7.1)) is satisfied only for certain values of ¢°) dependent on ¢q.

For each v € S\{oo} let p, € N be such prime associated to the valuation v. The following lemma
provides us with a generalised Dirichlet-style theorem for S-arithmetic approximation. Note that, as with
Lemma [5.3.1] similar versions of the lemma below have been proven prior by a number of authors, see

for example [79].

Lemma 7.1.1. For each valuation v € S let L, : Q51 — Q, be a linear form with p,-adic integer
coefficients, or real coefficients in the interval [0,1] if v = co. Let T = (Ty)ves € ]Rﬁ_ be a weight vector.

Suppose

i) oo g S and ) gy =k+1, or

i) 0o € S, Y, cqTy =k and the coefficients of the linear form

Loo(:li) =apxo + -+ aprk

satisfy
k
> lail < 2ay), (7:2)
=0
for some j € {0,...,k}.
Then for any H > 1 there exists a non-zero rational integer vector x = (xg, 1, ...,x) such that
| < H 7.3
Jnax [zif < (7.3)
and
|L,(x)|, < p,H ™ foreachv €S, (7.4)

where poo = 1.
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Note that for our purposes the conditions on the coefficients of the linear form over R is generally

unrestrictive, in particular we simply need z(>) € [0,1]. Note that the proof of Lemma follows

closely the proof of Lemma [5.3.1

Proof. Such result depends on whether co € S, so for that reason we split the proof into two cases. This

is a standard proof using Dirichlet’s pigeon-hole principle, which is given here for completeness.

i)

i)

oo ¢ S: To begin with, note that there are (H + 1)¥*! different rational integer vectors & =
(zo, ..., xk) satisfying (7.3), subject to the condition that x; > 0 for each i. Further for all of these
rational integer vectors we have that

(@), < 1.

0o € S5: Let the linear form over R be of the form
Loo(x) = apxo + . .. agxy,

for each a; € [0, 1], and suppose a; = OIE%C a;. Dividing Lo, through by a; (note that a; # 0 since
<i<
L is not a constant function) we have another linear form with each coefficient Z—; € [0, 1] for each

0 <1 < k. We may write

1 1
—Loo(x) = <Loo(a3) — xj> + x5, (7.5)
aj aj
where the quantity in the brackets satisfies
1
aj

for all 2 € {0,... H}**! due to (7.2). Thus, by (7.5) we can choose at least one zj €{0,...,H} such
that for any (xo,...,2j-1,%j4+1,...,2x) € {0, ...  HYF

[e.9]

Since a; € [0,1] we may multiply through by a; and obtain that |Ls(2)|e < 1 for at least (H + 1)k

integer vectors .

To summarize, by i), if oo ¢ S there are (H + 1)**! rational integer vectors such that

[Ly(z)|, <1, (7.6)

whereas, if oo € S there are only (H + 1)* rational integer vectors that satisfy (7.6). Denote by 7, the

7; associated with the approximation on the @, component. For each v € S\{oo} let §, be the unique

integer such that

61/ [3 5y+1
py S H™ <pyT.
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By (7.6)) we have that L(x) := (L,(x)),es € Zg. Split Zg into the subsets S(a) given by

S(a) = {2 € [0,1]: [z — ™| < H ™} x  [] {2¥ €Zp, : ¥ —a)|, <p, %}
veS\{oco}

for each @ = (a")),es € ZF! with 0 < o) < p% and a(>) € {2l . It is readily seen that the

H7oo }1§n§%H"'°°
sets S(a) are disjoint and cover the whole of Zg. Furthermore, there are exactly 3H™ x [], $\{oo0} po <
%H 2ves™ of them. Hence, by the pigeon-hole principle, in either case i) or ii) at least one of the sets
S(a) contains L(x;) for at least two distinct integer points @ and @2 as specified in i) or i) respectively.

Let @ = 1 — @9. Clearly, ([7.3)) is satisfied and @ is non-zero. Furthermore, for each v € S we have that
| Ly(x1 — @2)|y = [Ly (1) — Ly (@2)lp, <p,H T,

with poo = 1. This verifies ([7.4]) and thus completes the proof. O

As we can see, by Lemma if all 7; are equal then we have the following corollary.

Corollary 7.1.2. Let x € Zg, then for any H € N there exists an integer solution (qo,q) € ZF*' to the
system of inequalities
[z.q0 —qls <H™,

1< H
@gm_ ,

where,

1++ ifoodS,

1  otherwise.

For an idea on how one would construct such result for the dual setting see Section 10 of [79].

7.1.1 Metric S-arithmetic approximation

In following with the previous chapters the next step is to provide Haar measure and Hausdorff theory
results on the set of approximable points. Note that, to date, there are no results of this kind on the set
of weighted simultaneously approximable points. However, it is expected that the results of the previous
chapters (in particular chapter 4) could readily be adapted to work in the S-arithmetic setting. For the

time being we will focus exclusively on results for the set of simultaneously approximable points.

For a slightly different setup to ours above Jarnik [76] proved a Khintchine-style Theorem for the set
Ws (). More recently Haynes proved the following theorem (Theorem 4 of [65]).

Theorem 7.1.3. Let ¢ : Ry — Ry be a monotonic decreasing approximation function. Then

(U ol B (B))E 00,
s Wh(w)) = f i (p(h)p(h)F <

Lif 3521 (p(h)y(h)F = oc.
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Note that, as with the previous chapters Wg(¢) denotes the set of S-arithmetic points that can be
approximated by infinitely many reduced fractions (Ws(¢)) with the added condition that ged(qo,¢*)) = 1
for each v € §). The result was proven based on the assumption that the Duffin Schaeffer Conjecture
was true, which has since been proven (see Theorem , and so Theorem followed. Recently
Oliveira [93] proved a Khintchine style theorem of an S-arithmetic nature. Rather than simultaneous
approximation of S-arithmetic points they approximated p,,-adic or real points by rationals contained

within different p,,-adic balls.

For the Hausdorff theory Haynes proved the following result by applying the general MTP to Theorem
651,

Theorem 7.1.4. Let k+r > 1. Then for any dimension function f with the property that f(n)/n**" is

monotonic, we have

00 if Yoplo f(1(n)p(n)** = oo,
0 if 3020 f((n)p(n)*+" < cc.

H (Ws(v)) =

Oliveira also used the general MTP to provide a corresponding Hausdorff measure statement for ap-
proximable points by rationals from balls in other valuations (see Theorem 1.4 of [93]). The above set of

results provide a complete view of S-arithmetic simultaneous approximation.

The next step is to find results on the set of S-arithmetic approximable points over curves and manifolds.
As with the real and p-adic case there are significantly more results for the set of dual approximable points,
see for example [51], O1] and references therein. In the simultaneous setting it has been shown that non-
degenerate (see [79] for the precise definition in this setting) manifolds are extremal [79] by using similar
methods to the work of Kleinbock and Margulis [78]. Khintchine convergence and divergence results have
also been found. In [44], B6] the Khintchine divergence result for simultaneously approximable points
over polynomial functions of degree > 3 was proven, and later the corresponding convergence result was

proven by the same authors [45].

Currently there are no results on the Hausdorff dimension of simultaneously approximable S-arithmetic
points on curves or manifolds. Using the methods of Chapters 4-6 we suspect lower bounds on the
Hausdorff dimension of such sets could be obtained. The upper bound, as with the main results of

Chapters 4-6 require a knowledge of the distribution of rational points near S-arithmetic manifolds.

7.2 Counting points close to manifolds

As mentioned in Chapters 4, 5, and the end of the previous section, a knowledge of the distribution of
rational points close to manifolds is essential in order to obtain corresponding upper bound Hausdorff

dimension results of the previous chapters. When such results are available the Hausdorff dimension
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result follows readily, Chapter 6 gives an easy example of this. Generally, for a manifold M C F where
F is either [0,1]", Z; or Zg (with #S =n), a ballid C F, a fixed integer @ € N, and ) > 0 we wish to

provide bounds on the cardinality of the sets
a a
=1 - " < j -
NM(Z/[,Q>¢) {b EQ ’a|>|b| —Q7 dist (Mab> <w}a

where a € Z", and dist (M, $) :=inf{r € R: |& — ¢|r < r @ € M} with |.|7 the valuation associated
with F. Note that since we are only considering manifolds contained within some ball of radius < 1 we

may bound |a|] < @ with no adverse effect when considering real space.

It should be clear that in order to obtain useful bounds for general manifolds we need to apply some
conditions. The most important of which is that the manifold is not flat over large intervals. As an
example suppose that M is contained in some rational hyperplane of F. Then we would have that
Nm(U, Q1) < Q™ 1. In order to ensure manifolds are sufficiently curved a non-degeneracy condition
is usually applied, see [78] [79]. In the case of planar curves this condition can be simply stated as the
second derivative being non-zero for a significantly large portion of the curve. Another condition required
is that the value v is not too small relative to (). As an example take the hyperplane I1, ,, as described in
Chapter 5, with 7(a) = 2. If ¢ < Q727¢ for £ > 0 and Q sufficiently large then there will be no rational

approximations in the o component of Il,, and thus no rational points in the -neighbourhood of I1,,.

In this section we will review several results of this type in the real setting and discuss how such results

could be obtained in the p-adic setting.

Rational points close to planar curves

The first of these types of results was due to Huxley [72]. For U = [0,1]?, and M a planar curve
described by a real twice continuously differentiable function with bounded second derivatives over some

fixed interval Huxley proved that
#NmU, Q, ) < pQ***

for € > 0 arbitrary and ¥ > Q2. Such result was proven using the Swinnerton-Dyer determinant
method [I08]. It was believed that for ¢ bounded the Q¢ term of Huxley’s estimate could be removed.
In [I10] Vaughan and Velani successfully proved such result for C? curves, using duality, as used in [72],
in combination with harmonic analysis. In [I9] the complimentary upper bound was also found, thus for

planar curves we have the complete result that

#NMU, Q, ) = $Q°,

for 1 > Q~2*¢. Note that this has recently been improved by Huang, who proved the asymptotic formula
[68].
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Rational points close to manifolds

For general manifolds Beresnevich [14] proved the following. For any analytic non-degenerate manifold
M of codimension m and any v satisfying

m—+1

CQ T <yp<Cl,
for some constant C' > 0 dependant on our choice of ball I/, then for () sufficiently large we have that

#NM (Z/{, Q7 "l/)) > dijn—’_la

where the implied constants are dependent only on the choice of U (see Corollary 1.5 of [14]). In [14]
Beresnevich proves further than this, actually giving results on the distribution of the rational points close
to the manifold in the form of a ubiquity statement. In the case of n-dimensional curves the condition

on 1 can be relaxed to ¥ > Q3/(2"=1) Ag stated as a remark to Theorem it is hoped that by

applying the notion of ubiquity in a similar manner to as done in [I4] the upper bound of 7 in Theorem
could be improved to 1 + %

For the manifold M being a compact C* hypersurface with Gaussian curvature bounded away from

—1
k:max{[nz-‘ +5,n+1},

NU,Q,p) < pQ™*. (7.7)

zero, where k is
Huang [69] proved that

Note that such result had been proven previously by Beresnevich, Vaughan, Velani and Zorin in [26].
The more recent result by Huang improved the bound on the second term of ([7.7) (we have omitted such

terms in the above bounds, see [69] for more details).

p-adic points close to manifolds

As shown by the previous section there is a variety of results for the set of rational points close to real
manifolds or curves. In the p-adic setting this is not the case. As far as the author is aware Theorem

is the first result remotely of this type in the p-adic setting.
Let f: Z8 — Z7 with £ = (f1,..., fm) where f; : Z& — Z, for 1 < i <m. Let r = d +m and
Cpi={(z.f(x)):x €U CZI} C 7.
For 7 = (1,...,7n) € RY; and N € N let

O<QO§N7
(d)
Nf(u)N7T) = (q07"')q7‘) GZTJrl: qq% eua q(d) = (Q17"'7Qd)7

maxi<i<r |¢i| < N,
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As with the real case we would expect certain conditions to be imposed on the manifold Cy. In particular
it would be required that Cy avoids lying in rational hyperplanes for large regions, this would usually be
restricted by imposing conditions on the curvature of the manifold. For example, in the real case with
curves, the second derivative is bounded away from zero. However this becomes more problematic in the

p-adic case where curves can be varying but still have derivative zero, see Example

A key initial result is this setting would be to obtain the analogous result of Huxley’s estimate for
p-adic curves. Given such result the corresponding upper bound result of Theorem for the case of

planar curves would follow readily.
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