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Abstract

The Amazon rainforest is hyperdiverse, supporting as many as 16,000 tree species.

However, the processes governing the spatial structure of plant community compo-

sition is poorly understood. This is especially true of large canopy trees which have

proven difficult to study owing to the small spatial scales of the current network

of forest plots. This is a key knowledge gap given that canopy trees are the primary

seeddispersers, competitors and carbon storers. In this thesis I use landscape scale,

contiguous forest inventories from the logging sector to address this. I first assess

the capacity of neutral models to adequately reconstruct the observed patterns of

beta-diversity. I demonstrate that stochastic dispersal and environmental filtering

processes superimpose to drive compositional turnover. While dispersal processes

explain the majority of compositional turnover, environmental filtering can operate

at small spatial scales to dictate community composition. I then assess composi-

tional turnover under the lens of niche conservatism. Phylogenetic diversity met-

rics revealed that environmental variables play a greater role in driving community

composition of canopy trees than was previously detectable and that environmen-

tal factors can operate at scales as low as 1 ha to influence community composi-

tion. Lastly I examined the key drivers of species aggregation patterns and asked

whether species functional traits could explain the degree of aggregation. Surpris-

ingly, canopy trees exhibited similar aggregation patterns to those of juveniles with

respect to environmental associations and dispersal limitation. Further, I found that

species dispersal syndrome and seed mass controlled aggregation patterns. Put

together, my findings show that both environmental variables and dispersal limita-

tion are key drivers of the spatial structure of large tropical canopy tree community

composition and that species identity and functional traits play an important role.

As we enter the Anthropocene, tropical forests face increasing threats of logging

and land-use change. My results reveal key community assembly processes which

should be taken into consideration when planning sustainable forest management

and conservation measures.
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Chapter 1

Introduction

At the very core of community ecology, is the goal to understand the processes re-

sponsible for driving the composition of species within communities. The key ques-

tions in community ecology are disarmingly simple, yet, despite enormous research

efforts, definitive answers to many key questions remain elusive.

A particularly heavily debated topic surrounds the fundamental question of how

large numbers of plant species are able to coexist at small spatial scales. The per-

vasive hurdle in tackling the question has rested in resolving the competitive exclu-

sion principle (Hardin, 1960) which posits that two species competing for the same

resource cannot coexist if one has the slightest of competitive advantages. In the

long-term, the dominant species will always out-compete the other to extinction.

The response offered by classical ecology is niche theory (Gause, 1934), which

asserts that coexistence between competing species relies on the occupancy of

different niches. Although niche theory is easily observable in communities with

trophic levels, and therebydifferent resource requirements and availability, this con-

cept falls apart for plant communities. Plants require a similar set of resources,

competing for light, water, CO2 and soil nutrients, and have limited mechanisms

of acquiring them. This is best demonstrated by the fact that for all extant seed

plants, only three pathways for carbon acquisition exist whereas over 30,000 de-

fensive compounds have evolved (Harborne, 1993). Clearly, there are strong con-

straints on the evolutionary capacity for nutrient acquisition mechanisms. So the

question persists, how can competing plant species coexist despite the absence of

niche differences demanded by classical niche theory?

Over 100 hypotheses have been proposed to overcome this challenge by delay-

ing or preventing competitive exclusion (Palmer, 1994), each of which attempt to

demonstrate that the premises of the competitive exclusion principle are violated

under given conditions (Wright, 2002). However, the contexts in which, and the

1



2 1.1. Coexistence mechanisms

degree to which, competing theories act in maintaining high levels of plant species

richness remains undetermined.

Resolving these competing theories is of particular relevance to tropical forest

ecosystems which are capable of supporting extraordinary levels of plant species

diversity. Global terrestrial biodiversity is centred on the tropics (Fig. 1.1), where a

single hectare of rainforest can support over 280 tree species (De Oliveira andMori,

1999, Valencia et al., 1994) ≥ 10 cm diameter at breast height (DBH). How such high

levels of plant species diversity are maintained at small spatial scales in, typically,

nutrient-poor environments remains a continually debated subject with both deter-

ministic environmental and stochastic processes being implicated (Wright, 2002).

Figure 1.1: Map of global rainforests (a; Figure from Edwards et al. (2019)) and global plant

species richness (b; Figure from Kier et al. (2005))

1.1 Coexistence mechanisms

The mechanisms of species coexistence proposed to overcome the competitive ex-

clusion principle in explaining how such high levels of plant diversity can persist in

the tropics can be broadly categorised into two camps: those that assert ameaning-

ful role in the differences of ecological strategies between coexisting species, and
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those that propose that stochastic dispersal, mortality and recruitment are suffi-

cient to explain given diversity, the latter coined ‘neutral theory’.

1.1.1 Neutral Theory

Neutral theory is, perhaps, the most controversial mechanism proposed to explain

species coexistence. Hubbell (2001) proposed that species on the same tropic-level

are functionally equivalent – they are demographically equivalent with respect to

their per capita mortality, recruitment, dispersal and speciation rates, regardless of

any underlying environmental factors. Under classic neutral theory, species coexis-

tence is maintained by a balance between local extinction and speciation/immigra-

tion (Fig. 1.2).

Figure 1.2: Species coexistence under classic neutral theory. Figure from Rosindell et al.

(2011)

At first glance, neutral theory contradicts our intuition of what we see in the field

and of what we understand about plant environmental tolerances. However, under

neutral theory, functional equivalence is not meant to imply that species-specific

characteristics do not exist in the real world. Instead, neutral theory approaches

the subject of species coexistence from the simplest possible hypothesis, i.e. func-

tional equivalence, and adds complexity to the system as required to reproduce ob-

served patterns of species coexistence and community composition . To this end the

question then becomes, what is the maximum complexity necessary to adequately

reproduce patterns of community composition? (Hubbell, 2005)

Neutralmodels have, indeed, been successful in demonstrating how speciesmay

coexist without needing to address the competitive exclusion principle. Further,

more complex neutral models which incorporate species abundances, spatially ex-

plicit models and varying seed-dispersal kernels have been able to reproduce a va-

riety of observed community composition metrics such as relative species abun-

dance curves (Volkov et al., 2003), species-area relationships (Rosindell andCornell,

2009), species aggregation and β-diversity patterns (May et al., 2015). However, the

underlying assumption of species functional equivalence is incompatible with the
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countless studies demonstrating species-habitat correlations, ecological succession

and species functional trait-based competition (Purves and Turnbull, 2010). As such,

neutral theory has proven to be a valuable tool as a null model against which to study

the importance of deterministic ecological processes.

1.1.2 Deterministic coexistence mechanisms

In contrast to neutral theory, deterministic mechanisms of species coexistence ac-

cept that species are functionally different. These proposed mechanisms of coexis-

tence aim to demonstrate that one ormore of the conditions necessary for compet-

itive exclusion are violated. Two of the six key premises of the competitive exclusion

principle (see Wright (2002)) state that interspecific competition will result in the

exclusion of all but one species when:

(1) Rare species are not favoured demographically

(2) The environment is spatially and temporally homogeneous

Evidence whereby species coexistence is promoted via the violation of both of

these conditions has been documented in the tropics:

(1) Negative density dependence

Diminished performance in the present of high densities of conspecifics is known

as negative density dependence andmanifests as increasedmortality, decreased re-

cruitment or slower growth. Both pest facilitation and intraspecific competition can

contribute to negative density dependence, allowing rare species to be favoured de-

mographically, thereby promoting species coexistence. The Janzen-Connell hypoth-

esis (Connell, 1971, Janzen, 1970) argues that an abundance of host-specific pests

near conspecific adult species can impair seedling recruitment, opening space for

other species to occupy. Ameta-analysis byComita et al. (2014) revealedwidespread

support for Janzen-Connell processes, especially within the tropics. Further, in-

traspecific competition for the same set of resources has repeatedly been found to

impair performance of abundant species in the tropics (Alvarez-Buylla, 1994, Condit

et al., 1994, Gilbert et al., 1994, Martinez-Ramos, Silva Matos et al., 1999).

(2) Environmental niche theory

Environmental niche theory asserts that species coexistence can occur when differ-

ent species occupy different niche spaces or utilise resources in different ways.

Numerous studies have demonstrated that spatial environmental heterogeneity

influences plant community composition in the tropics (Clark et al., 1998, John et al.,
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2007a, Kraft et al., 2008, Silvertown et al., 1999, Svenning, 1999, Whittaker, 1967).

The physiological tolerances of plants differ between species with varying degrees

of tolerance to drought, shade and soil composition (McKane et al., 2002, Sairam

and Tyagi, 2004, Valladares and Niinemets, 2008, Yordanov et al., 2000). As such,

spatial variation in climatic, edaphic and hydrological factors can influence species

distributions via environmental filtering and habitat associations, thereby promoting

species coexistence. For example Harms et al. (2001a) demonstrated that 64% of

species at Barro Colorado Island exhibited significant habitat associations.

Environmental filtering influences the competitive interactions between species,

whereby species that are well-adapted to a given habitat will outcompete poorly-

adapted species (Anderse et al., 2014, Baltzer et al., 2005, Russo et al., 2008). Ulti-

mately, environmental filtering drives community composition (Werner and Home-

ier, 2015), a concept that is universally accepted within community ecology.

1.2 Community composition and beta-diversity

Our understanding of β-diversity also remains a poorly subject within community

ecology. β-diversity defines the processes governing the turnover of species com-

position across space. β-diversity is the link dictating the relationship between local

(alpha) and regional (gamma) diversity (Whittaker, 1960). Research in this area can

shed light on core theoretical research. In particular, it can aid explanation of how

huge numbers of species are able to coexist within hyperdiverse systems, especially

tropical forests (Valencia et al., 1994). Environmental factors are well known to be

responsible for the turnover of species across environmental gradients, for exam-

ple, the substantial turnover of species that occurs with elevation from lowlands to

mountain tops. However, the magnitude of the role of environmental gradients on

β-diversity, the key environmental factors at play, and the spatial scales atwhich they

operate to produce community turnover remain poorly understood in the tropics.

As we enter the Anthropocene, severe land-use change, over-hunting, climate

change and other anthropogenic-driven disturbances are causing a mass extinction

event. Understanding the processes that maintain diversity over space can play a

crucial role in quantifying these impacts and, in turn, developing conservation strate-

gies to minimise biodiversity loss (Socolar et al., 2016).
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1.3 Reconcilingnicheandneutral theory: Theniche-strength

continuum

Although niche theory is supported by a swathe of evidence, deterministic models

based on niche differentiation fail to account for the full degree of diversity observed

in tropical forests (Silvertown, 2004). Equally, the premise of species-equivalence

under neutral theory is often violated, and while neutral models have successfully

managed to reconstruct observed patterns of β-diversity at small scales (May et al.,

2015), they have failed to replicate β-diversity patterns across large scales (Condit

et al., 2002).

Although it is clear that neutral theory alone cannot fully account for community

composition, recent thinking has driven research on the notion that both determin-

istic environmental and stochastic processes can superimpose, playing dual roles in

the spatial structure of community composition (Adler et al., 2007). Multiple stud-

ies have demonstrated that stochastic dispersal and environmental variability both

contribute to observed patterns of compositional turnover (Chang et al., 2013, Leg-

endre et al., 2009, Lin et al., 2011, Liu et al., 2016, Pinto and MacDougall, 2010, Qiao

et al., 2015). The question then turns to the degree in which tropical tree communi-

ties are structured along a ‘niche-strength continuum’, ranging from purely neutral

to strongly niche-structured (Purves and Turnbull, 2010).

However, the challenge in disentangling the precise drivers lies in the fact that

whilst community composition is spatially autocorrelated, so too is the underlying

environment. Chisholm and Pacala (2010) demonstrated that both niche and neu-

tral models can give rise to the same patterns of species abundance distributions.

Patterns of β-diversity could, therefore, be explained by environmental filtering due

to the underlying spatially autocorrelated environment, but equally by stochastic

dispersal limitation.

1.4 Spatial scales of species patterns

At the frontier of current research is the consideration of the degree at which differ-

ent processes act across different spatial scales (Hart et al., 2017). The difficulty in

disentangling the relative roles of deterministic environmental filtering and stochas-

tic processes across large scales stems from the lack of large-scale contiguous for-

est inventory data.

Large networks of permanent forest plots such as BCI (Hubbell et al., 2005),

RAINFOR (Peacock et al., 2007), ATDN (ter Steege) and CTFS (Anderson-Teixeira

et al., 2015) have provided invaluable insights into spatial ecological dynamics (Duque
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et al., 2017, May et al., 2015, Phillips et al., 2004, ter Steege et al., 2006). However, in-

dividual plots are limited to 50 ha, a scale over which biodiversity patterns of large

canopy trees cannot be fully assessed (Marvin et al., 2014). Even summed together,

these plots represent only∼ 2,000 ha, with plots often separated by large distances.

This represents a significant current limitation given that canopy trees are the

primary competitors (Wright, 2002), seed dispersers (Thomson et al., 2011) and

carbon storers (Pan et al., 2011). If deterministic and stochastic processes oper-

ate to shape spatial biodiversity patterns at different scales, this may explain why

neutral models have successfully reproduced intra-plot β-diversity patterns (May

et al., 2015) but failed at the inter-plot level (Condit et al., 2000a).

Recent advances in airborne imaging spectrometry have sought to bridge this

scale-gap and have proven key to revealing β-diversity patterns at the landscape

scale. Draper et al. (2019) demonstrated that patterns of β-diversity vary between

forest-types, suggesting that deterministic niche processes play a key role across

large spatial scales. Bongalov et al. (2019) further demonstrated that stochastic

dispersal processes can account for compositional turnover within, but not across

forest-types, suggesting that environmental filtering and neutral processes act at

different scales. Alternatively, Draper et al. (2019) finds that stochastic processes

cannot replicate observed β-diversity. As such, the use of ‘spectral species’ requires

validation using spatially explicit forest inventory field data.

1.5 Study region and data

This thesis investigates the drivers of community assembly for canopy trees in the

Amazon Basin. The Amazon rainforest spans an area of ∼6 million km2 (Fig. 1.3),

representing half of the planets remaining tropical forests and is highly diverse, sup-

porting as many as 16,000 tree species (Ter Steege et al., 2013). The topography of

the Amazon Basin is relatively flat with the large majority of this vast region sitting

below 400 meters above sea level (m.a.s.l). It is subject to heavy rainfall between

2000 and 11,000mm annually, with average temperatures ranging from 22 and 24°C.

In 2006, Brazil, which owns 60% of the Amazon, passed legislation to allow sus-

tainable selective logging concessions within certain National Forests in attempt to

curb deforestation (Azevedo-Ramos et al., 2015). The legislation demands that log-

ging actions are planned in a sustainable manner such that commercially valuable

species are not overexploited. Thus, trees are spatiallymappedprior to planning and

species identification is heavily monitored by the Brazilian Forestry service (SFB).

This has led to an emergence of spatially explicit forest inventories of large canopy

trees, identified to species-level.
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Major Rivers

Amazon Basin

Figure 1.3: Map of the Amazon Basin

Here I use such datasets, obtained from seven companies in the forestry sec-

tor to investigate the roles of deterministic environmental filtering and stochastic

processes in driving the spatial structure of community composition for (1) large

canopy trees (2) identified to the species-level, (3) across large spatial scales (4) of

contiguous forest. This combination of dataset features have previously been un-

available, thus, have allowed me to address key questions that have previously been

impossible to resolve.
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1.6 Thesis aims and rationale

Themain aims of this thesis are to determine how stochastic and deterministic pro-

cesses operate to drive: (1) community composition, (2) compositional turnover,

and (3) patterns of species aggregation for tropical canopy trees in the Amazon. I

begin by comparing neutral simulations to observed patterns of β-diversity to dis-

entangle the relative roles of environmental filtering and stochastic dispersal pro-

cesses in dictating compositional turnover. I then compare phylogenetic β-diversity

(PBD) metrics against, traditional, taxonomic β-diversity (TBD) metrics to assess

whether niche conservatismcan elucidate the role of environmental variableswithin

spatially autocorrelated environment. Finally, I use spatial point pattern modelling

in concert with five landscape-scale forest inventories spanning the Amazon Basin

to identify aggregation patterns and determine their habitat associations and de-

gree of dispersal limitation. Further, I assess how species functional traits determine

species aggregation patterns. In the general discussion, I synthesise all results, giving

an overall summary of my findings and their significance within community ecology.

I then discuss the implications of these findings in the context of selective logging

and provide some preliminary results for future studies. The specific objectives of

each chapter is briefly outlined below:

Chapter 2. Fine-scale variation in environmental factors shape β-diversity in

tropical canopy tree communities

Understanding of the relative importance of deterministic and stochastic processes

in driving community composition remains elusive within community ecology. Neu-

tral processes have often failed to replicate observed patterns of β-diversity. One

explanation is that bothprocesses act together todetermine compositional turnover.

Such patterns could be explained by environmental filtering due to the underlying

spatially autocorrelated environment, but equally by stochastic dispersal limitation.

This chapter uses spatially explicit floristic data from a complete forest census of

canopy trees covering 5,100 ha of tropical forest in the Amazonian basin to: (1) As-

sess the scale and degree of spatial autocorrelation of community composition’ (2)

quantify the role of geographical distance, environmental factors and spatially au-

tocorrelated environment in determining β-diversity; and (3) determine whether

stochastic dispersal processes can fully account for β-diversity patterns within a

single forest type.
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Chapter 3. Phylogenetic beta-diversity informs the factors driving composi-

tional turnover in tropical canopy tree communities

Recent ecological theory has explored the notion that stochastic and deterministic

processes act jointly to explain compositional turnover. β-diversity studies in this

vein have been widespread, but have typically focussed on taxonomic dissimilari-

ties between assemblages. The implementation of PBD to unpick the components

of β-diversity have recently become more prevalent, but has previously not been

possible for large tropical canopy trees given the current network of tropical forest

plots being limited to 50 ha or smaller in size. Here, I use spatially explicit floristic

data from a complete forest census of canopy trees covering 5,100 ha of tropical for-

est in the Amazonian basin to address the following objectives: (1) Assess extent of

spatial autocorrelation of taxonomic and phylogenetic community similarity to de-

termine how lineages turnover across space; (2) quantify the contribution of spatial

and environmental variables driving TBD and PBD; and (3) investigate the scales at

which environmental and spatial variables operate to influence TBD and PBD.

Chapter4. Do functional traits explainaggregationpatternsof tropical canopy

trees?

The spatial clustering of conspecific trees in tropical forests is observed across the

full range of life-stages and at multiple spatial scales. However, aggregation can be

explained by both environmental filtering and seed dispersal limitation. Coupling

spatial point pattern analyses with functional traits provides the opportunity to dis-

tinguish the underlying mechanisms governing plant distributions. I investigate how

environmental filtering, dispersal limitation and species functional traits interact to

form aggregated intraspecific patterns in emergent tropical trees at a regional scale

within spatially contiguous forests to: (1) categorise species aggregation patterns by

their habitat associations and dispersal limitations; (2) assess how the strength of

habitat associations and dispersal limitation varies across sites and within species;

(3) testwhether the strength of clustering andhabitat associations canbedescribed

by species functional traits related to resource use and/or dispersal limitation; and

(4) assess phylogenetic signal in aggregation and habitat association parameters.

Chapter 5. General introduction and future directions

I summarise the main findings of the thesis and put them in the wider context of

how understanding the drivers of species distribution can inform improved sus-

tainable forest management. In doing so, I first present some preliminary results

that demonstrate how logging may impact β-diversity patterns. I then identify po-



Chapter 1. Introduction 11

tential questions related to recruitment-growth-mortality dynamics across a range

of logging intensities and plant life-stages that can be answered utilising field data

collected that I collected throughout the duration of my PhD.



Chapter 2

Fine-scale variation in

environmental factors shape

β-diversity in tropical canopy

tree communities

2.1 Introduction

The relative importance of deterministic and stochastic processes in driving com-

munity composition remains a continually debated subject within community ecol-

ogy. The question of how such high levels of plant species diversity are maintained

in tropical forests (Wilson et al., 2012) is of particular interest, where competition

for resources is strong and environments are typically nutrient-poor. In particular,

explaining how species composition varies across space, i.e. β-diversity, continues

to present a key question. The answer holds far-reaching implications for conser-

vation (Liang et al., 2016, Socolar et al., 2016).

Correlation between environmental variables and plant community composition

has long been observed (Clark et al., 1998, John et al., 2007a, Kraft et al., 2008, Sven-

ning, 1999). Topographic features have a strong influence on variation in microcli-

mate, hydrology and soil properties (Chadwick and Asner, 2016, Tiessen et al., 1994,

Xia et al., 2016), promoting environmental filtering. Environmental filtering influ-

ences competitive interactions and, (Anderse et al., 2014, Baltzer et al., 2005, Russo

et al., 2008) ultimately, drives community composition (Werner and Homeier, 2015).

However, deterministicmodels based on niche differentiation have failed to account

for the degree of diversity observed in tropical forests (Silvertown, 2004).

Conversely, neutral theory (Hubbell, 2001) proposes that stochastic processes

12
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of mortality, dispersal and recruitment are sufficient to maintain the high levels of

species diversity in tropical forests. Neutral models have successfully replicated

spatial biodiversity patterns such as species-area relationships and species abun-

dancedistributions (Hubbell, 2001,May et al., 2015). However, thepremiseof species-

equivalence under neutral theory has been proven invalid (Purves and Turnbull,

2010). Whilst neutral models have been able to match β-diversity patterns at local

scales, they have been unable to so over large scales (Condit et al., 2002). Further-

more, neutral simulations havebeenunable to simultaneously replicate species-area

relationships and β-diversity patterns under the same parameters (May et al., 2015).

One proposed explanation for the failure of either deterministic and stochas-

tic (neutral) processes to replicate observed β-diversity patterns is that both pro-

cesses act together to determine compositional turnover (Adler et al., 2007). How-

ever, the complication in demonstrating this lies in the fact that whilst community

composition is spatially autocorrelated, so too is theunderlying environment. Chisholm

and Pacala (2010) demonstrated that both niche and neutral models can give rise to

the same patterns of species abundance distributions. Patterns of β-diversity could,

therefore, be explained by environmental filtering due to the underlying spatially au-

tocorrelated environment, but equally by stochastic dispersal limitation.

The difficulty in disentangling the relative roles of deterministic environmental

filtering and stochastic dispersal processes arises from the lack of large-scale con-

tinuous forest inventory data. Whilst large networks of permanent forest plots (e.g.

BCI, RAINFOR, ATDN, CTFS) have provided key insights into spatial ecological dynam-

ics (Duque et al., 2017, May et al., 2015, Phillips et al., 2004, ter Steege et al., 2006), in-

dividual plots are limited to 50 ha, a scale over which biodiversity patterns of canopy

trees cannot be fully assessed (Marvin et al., 2014). This presents a key knowledge

gap given that canopy trees are the primary competitors (Wright, 2002) and seed

dispersers. Further, if deterministic and stochastic processes operate to shape spa-

tial biodiversity patterns at different scales, this may explain why neutral models

have successfully reproduced intra-plot β-diversity patterns (May et al., 2015) but

failed at the inter-plot level (Condit et al., 2000a).

Recent advances in airborne imaging spectrometry have bridged the scale-gap,

accurately estimating β-diversity patterns at the landscape scale (Bongalov et al.,

2019, Draper et al., 2019). Such studies havedemonstrated that patterns ofβ-diversity

vary between forest-types, corroborating the notion that deterministic niche pro-

cesses play a key role in shaping community composition at a large scale. Bongalov

et al. (2019) further demonstrate that stochastic dispersal processes can account

for compositional turnover within, but not across forest-types, corroborating the

notion that β-diversity patterns can be explained by spatially autocorrelated envi-
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ronmental filtering and stochastic dispersal processes operating at different scales.

Conversely, Draper et al. (2019) finds that stochastic processes cannot replicate ob-

served β-diversity. However, their use of the Poisson cluster process does not con-

sider dispersal limitation or differences in forest type. As such, the question remains

whether fine niche structuring can drive patterns of β-diversity i.e. within a single

forest type.

While advances in technology that allow aerial mapping of biological diversity

provide a powerful technique for studying biodiversity patterns over large spatial

scales, spectral reflectancedata is not yet capable of identifying plants to the species

level. The emergence of landscape-scale forest inventory data within the logging

sector therefore affords the unique opportunity to link both approaches. Here, we

use spatially explicit floristic data from a complete forest census of canopy trees

covering 5,100 ha of tropical forest in the Amazonian basin to:

(1) Assess the scale and degree of spatial autocorrelation of community compo-

sition

(2) Quantify the role of geographical distance, environmental factors and spatially

autocorrelated environment in determining β-diversity

(3) Determine whether stochastic dispersal processes can fully account for β-

diversity patterns within a single forest type.

2.2 Materials and Methods

2.2.1 Study site

The study site (1°13’12”S 52°33’36”W) is located within the wet tropical lowland for-

est of the Amazon Basin, in the region of Vale do Jari, Pará, Brazil (Fig. 2.1). The

dominant soil type is ferrasol, (Dijkshoorn et al., 2005) characterised by high clay

content and low nutrient availability, and climate is typical of equatorial regions with

a mean annual precipitation of 2055 mm and temperature of 25°C. The site is under

concession for sustainable forest management by the logging company Orsa Flore-

stal, in accordance with environmental legislation imposed by the Brazilian Institute

of Environment and Renewable Natural Resources (IBAMA). A complete, spatially

mapped, forest inventory was conducted between 2002–2003 for all stems≥ 35 cm

diameter at breast height (DBH) over 5100 ha of undisturbed forest. Mapping was

conducted manually, operating within 12.5 m width bands and species were iden-

tified to species level where possible. Geolocation and species identification has

previously been verified for key species (Ferreira, 2009). The census, comprises
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283,954 stems of 377 species, 196 genera and 56 families (see Table A.1 for species

list and abundances). Species nomenclature was standardised to adhere to The

Plant List database (TPL, 2013).

2.2.2 Quantifying β-diversity

To quantify β-diversity across the landscape, we divided the floristic data into cells

of 3 ha (173 m × 173 m) in size, which provides an optimal trade-off between vari-

ance in species richness / stemdensity and stability of alpha diversity (Fig. A.1). After

overlaying a 3 hamesh across the landscape, wemanually placed further cells within

the sampling area since the set of tessellated cells that fit fully within the sampling

area resulted in under-representation of some local regions, a product of the irregu-

larly shaped network of sampling ‘islands’ (Fig. 2.1a). The resulting cell configuration

gave 1036 cells with amean stemdensity of 150 (ranging from 48–280). We removed

the 8% of stems that were not identified to species level. While this may result in

reduced cell dissimilarity, β-diversity is highly robust to such levels of species exclu-

sions (Pos et al., 2014). We calculated β-diversity using the Bray-Curtis dissimilarity

index (dBC), an abundanceweighted extension of the Sørensen index (Legendre and

Legendre, 2012);

dBCjk
=

∑
i|xij − xik|∑
i xij + xik

(2.1)

where dBCjk
is a value bounded by [0, 1], describing dissimilarity between cells j

and k with high values representing strong dissimilarity, and xij and xik represent

species abundance of species i for cells j and k, respectively. The resulting distance

matrix comprised 536,130 pairwise comparisons.

2.2.3 Environmental variables

To identify the contribution of environmental factors to compositional differences,

we calculated five topographical variables known to influence community compo-

sition: elevation, slope, Topographic Position Index (TPI), Topographic Wetness In-

dex (TWI) and Terrain Ruggedness Index (TRI). Elevational gradients are associated

with ambient humidity, precipitation, wind velocity and soil composition gradients

(Jucker et al., 2018, Sundqvist et al., 2013). Hill slope is responsible for the distri-

bution of soil nutrients (Chadwick and Asner, 2016, Xia et al., 2016). TPI refers to

cell position with respect to hilltops and valleys and has been linked to evapotran-

spiration rates, solar radiation and species associations (Clark et al., 1999a, Dyer,

2009). TWI gives a measure of water availability, but has further been linked with

soil depth, soil pH and nutrient availability (Moore et al., 1993). TRI gives a measure
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of the variance in topography is thus linked with many of the aforementioned asso-

ciations. Furthermore, many of these metrics are likely be implicated in dispersal

limitation, particularly for autochorous and anemochorous species.

All variables were derived from the terrain-corrected ALOS PALSAR Digital Ele-

vation Model (DEM) (JAXA/METI, 2011) at a resolution of 12.5 m. Elevation was taken

as the mean elevation within the cell (range 6–115 m.a.s.l). Slope was calculated as

the mean slope of the four planes formed by considering 3 cell corners at a time.

TPI compares the elevation of a pixel against the mean elevation within a 50 m ra-

dius, with positive values representing ridges and negative values representing val-

leys (Guisan et al., 1999). TWI was calculated per Böhner and Selige (2006) via SAGA

(Conrad et al., 2015) which improves upon the standard TWI by correcting erratic

flow patterns on flat areas and deep valleys, and averaged across each cell. Finally,

TRI was calculated as

√√√√√ 8∑
n=1

(pi − pn)
2

8
, where pi is the focal pixel and pn is one of

the 8 surrounding pixels, averaged across the cell. Variable correlation and spread

is displayed in Figure A.2.
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Figure 2.1: The forest inventory in Vale do Jari, Pará, Brazil (b) spans a heterogeneous envi-

ronment. Floristic data was separated into 1036 3 ha cells of varying density (a).
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2.2.4 Statistical methods

Assessing spatial autocorrelation of community composition

We determined the degree of spatial autocorrelation across the whole study area

via a Mantel correlogram. Here, we created a geographical distance matrix corre-

sponding to our community dissimilarity matrix. The Mantel correlogram assesses

autocorrelation over geographical space by assigning distance classes and perform-

ing the Mantel test (Mantel, 1967), which tests for correlation between distance ma-

trices, for each distance class. Significance is tested by randomly shuffling the val-

ues of the community dissimilarity matrix for 999 permutations. Positive Mantel r

values demonstrate greater compositional similarity than expected by chance and

negative values demonstrate dissimilarity. We used Sturges’ rule (Sturges, 2012)

to determine the number of distances classes to use. Further, since the number of

comparable cell pairs decreases as the geographical separation approaches the two

most distant cells, we set a distance class limit such that no cell is discounted for any

given distance class. (Legendre and Legendre, 2012)

Quantifying environmental and geographical effects

To determine the relative roles of environmental and geographical distance, both in-

dividually and jointly , we implemented Generalised Dissimilarity Modelling (GDM)

(Ferrier et al., 2007) to partition β-diversity variance into its environmental (E), dis-

tance (D) and co-variance components. Here, the co-variance component (D×E)
refers to the variance described by spatially autocorrelated environment.

GDM is an extension of matrix regression that accommodates non-linearity be-

tween β-diversity and each environmental and geographical component. This is

achieved by fitting non-linear functions directly to each variable in the form of flexi-

ble I-splines (Ramsay andOthers, 1988), giving the best relationship between cell en-

vironmental/geographical distance and compositional turnover. The combination of

these I-splines provides a linear-predictor coined as the ‘predicted ecological dis-

tance’, enabling the curvilinear relationship between inter-cell ecological distance

and β-diversity to be estimated. The salient feature of this method is that the maxi-

mum height of each I-spline represents the total amount of compositional turnover

associated with the given variable while holding all other variables constant, thereby

indicating its relative importance.

The slope of the I-spline also indicates the rate of species turnover along the vari-

able in question (Ferrier et al., 2007). This allowed us to address our second ques-

tion regarding the relative importance of geographical and environmental distance

in predicting compositional dissimilarity. We used the default of three I-spline func-
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tions per predictor and determined variable significance and importance by ran-

domising the positions of each variable in the dissimilarity matrix in turn, over 50

permutations, and noting the loss of explanatory power. Backwards stepwise selec-

tion was used to obtain the final model in which all variables were significant. GDM

was conducted using the gdm package (Manion et al., 2018) in R (R Core Team, 2019).

Neutral simulations

In determining the role of stochastic dispersal processes in the formation of com-

positional dissimilarity gradients, we produced a set of spatially-explicit neutral sim-

ulations with which to compare against observed patterns, using a similar approach

to Bongalov et al. (2019). We implemented a backwards-time coalescence approach

(Rosindell et al., 2008), which replicates the results of forwards-simulated neutral

models with several orders of magnitude in reduced computational cost.

Spatially explicit neutral simulations generally function on the following princi-

ples:

• An arena composed of n individuals ofm species is established

• A random individual is chosen to die and a replacement individual occupies its

space

• The species identity of the replacement is determined by either:

(a) a speciation event, of probability v (the per capita speciation rate); or

(b) dispersal from an existing individual with probability 1− v where species

identity is determined by a dispersal kernel such that the replacement is

more likely to an offspring of nearby individuals

• The process is repeated over many time-steps to produce a final community

Weestablished an arena surrounding the study site composedof 3 ha cells (Fig. A.3a).

We used an arena 100 times the area of the study site extent (Fig. A.3b), providing a

more realistic scenario of how migration into the study site may occur in the Ama-

zon Basin. Stem density of each cell was matched to that of the observed forest

inventory, while all cells falling outside the study site were assumed to have the me-

dian observed density. We used a two parameter, fat-tailed dispersal kernel since

it replicates a more biologically realistic kernel than the typical Gaussian Probability

Density Function (PDF) (Clark et al., 1999b). Specifically, we implemented a dis-

persal kernel, equivalent to that in Rosindell and Cornell (2009), with rescaled pa-

rameters where σ roughly corresponds to the peak and τ dictates to the fatness
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of the tail (Fig. 2.2). Note that decreasing values of τ produce fatter tails and as

τ → ∞, the kernel becomes equivalent to the Gaussian PDF. We simulated 350 neu-

tral communities using pycoalescence (v1.2.7a available at https://pypi.org/project/
pycoalescence/) with 50 combinations of dispersal kernel parameters, selected by

Latin hypercube sampling, with σ ∈ [0.1, 2] and τ ∈ [0.1, 20], for seven speciation

rates v ∈ {1e−7, 5e−6, 1e−6, 5e−5, 1e−5, 5e−4, 1e−4}.
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Figure 2.2: The dispersal kernel implemented in our neutral simulations is controlled by

two parameters: σ which dictates the peak; and τ which dictates the fatness of the tail.

Assessing the contribution of stochastic processes to β-diversity patterns

Given that any spatial autocorrelation within our simulated neutral communities is

inherently a product of geographical distance, we should expect that there exists

a parameter set that can replicate the observed pattern of compositional turnover

attributed to geographical distance only (D) at our study site i.e independent of en-

vironmental factors (E) and spatially autocorrelated environment (D×E). Further,
given that stochastic dispersal processes act independently of environmental filter-

ing, we should also expect that a parameter set can replicate observed composi-

https://pypi.org/project/pycoalescence/
https://pypi.org/project/pycoalescence/


Chapter 2. Fine-scale variation in environmental factors shape β-diversity in
tropical canopy tree communities 21

tional turnover attributed to spatial autocorrelation (D + D×E) i.e. geographical dis-
tance only (D) and spatially autocorrelated environment (D×E). It then follows that,
if a single parameter set is able to reconstruct the observed pattern of spatial auto-

correlation explained by geographical distance only (D) and geographical distance

and spatially autocorrelated environment (D + D×E) concurrently, that stochastic
dispersal processes are the primary driver of spatial autocorrelation in community

composition. Conversely, if distinct simulation parameters are necessary to match

observed patterns, environmental filtering plays a key role in spatial autocorrelation

of communities.

To test this, it was first necessary to align each neutral community with the sam-

ple cells used in the observed community since some cells were manually placed as

mentioned in section 2.2.2. To achieve this, the stationary Poisson process was used

to randomly distribute individuals to points within each neutral cell. Communities

were subsequently resampled across the sample cell configuration used for the ob-

served dataset (Fig. A.3c). GDM analyses were subsequently run for each simulated

census with geographical distance as the only predictor variable since environmen-

tal variables are not relevant under a neutral framework. The resulting I-splines

from each model were then compared to I-splines of the observed community rep-

resenting: (a) the geographical component only (D) and (b) the full extent of spatial

autocorrelation (D + D×E).

Determining matches between simulated and observed patterns

To decide whether a given I-spline was an adequate match to I-splines of the ob-

served data, it was necessary to define a rejection threshold pertaining to the de-

viation between observed and simulated communities. To this end, we defined a

baseline level of uncertainty for each I-spline that reflects the underlying variation

in the observed data (May et al., 2015). Observed pairwise cell comparisons were

randomly divided into five ‘samples’ such that no cell-pair was shared between sam-

ples, yet cells were roughly equally represented across samples. This prevented bi-

ases that might arise from cells with environmental, geographical or compositional

identities at the extremes being overrepresentedwithin a sample (Fig. A.4). I-splines

for each sample were extracted and the average I-spline across all samples was cal-

culated (Fig. 2.3). Subsequently, the mean relative deviation (mRD) between each

sample, s, and the average I-spline was calculated as;

mRDi,s =
1

ni

ni∑
x=1

∣∣∣∣Ssamp(i, x, s)− S̄(i, x)

S̄(i, x)

∣∣∣∣ (2.2)

where S̄(i, x) is the average I-spline, i, derived from the five samples at geo-



22 2.2. Materials and Methods

graphic distance, x.

Thebaseline uncertainties, εi, then, weredefinedas thegreatest observedmRDi,p,

giving rejection thresholds of 0.0744 and 0.0846 for D and D×E respectively. This

definition of baseline uncertainty is similar to that of May et al. (2015), who used

the stricter,meanmRDi,p. However, note that β-diversity specifically, could only be

matched to their neutral simulations by adjusting the species diversity of their, non-

spatial, meta-community beyond the bounds congruent to other spatial summary

statistics without relaxing rejection thresholds. Our definition of baseline uncer-

tainty thereby stands as a coherent and valid method of rejection.

Wedivided each neutral simulation in the sameway, with each sample composed

of equivalent cell-pairs and, again, took the average I-spline across the samples. A

given parameter set, p, was defined as a match when the mRD between the aver-

age simulated and average observed I-splines was less than the rejection threshold,

under the slightly modified definition:

mRDi,p =
1

ni

ni∑
x=1

∣∣∣∣Ssim(p, x)− Sobs(i, x)

Sobs(i, x)

∣∣∣∣ (2.3)

where, Sobs(i, x) is the average I-spline, i, and Ssim(p, x) is the average I-spline

for parameter set p at geographical distance x. Note, Ssim(p, x) has no i component

since simulated GDMs contain no environmental variables.

In short, a given parameter set was deemed to replicate the observed pattern

of compositional turnover when it deviated from the observed pattern less than the

highest underlying variability exhibited at the study site. This enabled us to answer

our third question ofwhether stochastic dispersal processes can explain the pattern

of spatial autocorrelation at the study site or whether environmental filtering plays

a key role.
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Figure 2.3: I-splines, representing contribution to observed dissimilarity of distance (a) and

spatial autocorrelation (b) were extracted for five samples of the forest inventory to deter-

mine rejection thresholds, εi, for simulated communities. Rejection thresholdsweredefined

as the mean relative deviation between the sample that deviated the most from the I-spline

averaged across all samples (dashed black line). Thin coloured lines represent I-splines for

individual samples, here the sample represented by the blue I-splines exhibited the greatest

mRD, giving rejection thresholds, ε, of 0.074 and 0.085 for D and D×E respectively
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2.3 Results

2.3.1 Spatial autocorrelation of community composition

Community similarity between cells was significantly correlated with geographical

separation up to the 8.5 km limit of our analysis (Fig. 2.4) Canopy tree communities

were more similar than expected by chance up to distances of 4.2 km. Positive cor-

relation ceased at cell separations of roughly 4.9 km, but beyond this distance, plots

were increasingly more dissimilar than expected by chance.
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Figure 2.4: Canopy tree community composition exhibits spatial autocorrelation at scales

of up to 8.5 km at Vale do Jari. Positive values of Mantel r signify that communities are more

similar than expected by chance and vice versa. Confidence intervals are calculated from

500 bootstrap permutations.

2.3.2 The contribution of environmental and geographical distances

to β-diversity

β-diversity was partitioned into three components using Generalised Dissimilarity

Modelling (GDM); environmental (E), geographical distance (D) and spatially auto-

correlated environment (D×E), where D + D× E represents the full extent of spatial

autocorrelation. Four of the six considered variables were significantly associated

withβ-diversity; geographical distancebetween cells anddifferences in Topographic

Wetness Index (TWI), elevation and Topographic Position Index (TPI). All variables

together explained 14.7% of community dissimilarity, with geographical separation

representing the majority of explained variance (10.6%) while only 1.2% was signifi-

cantly attributable to environmental variables.
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The spatial structure of the underlying environment (D×E) was not able to fully

account for the spatial autocorrelation (D + D×E) at the study site, explaining 2.8%
of the variance, (Fig. 2.5a). Cell pair difference in TWI was the most important envi-

ronmental variable, explaining 0.56% of the variance, followed by elevation and TPI,

explaining 0.4 and 0.1% respectively. Slope and Terrain Ruggedness Index (TRI) were

not significantly associated with β-diversity and were removed from the final model

via backwards stepwise selection (Table 2.1).

TWI and TPI contributed to community dissimilarity only beyond a given thresh-

old (Fig. 2.5c&e), such that cell-pairs with extreme differences in water availability

and “ridge top vs valley bottom” cell-pairs were more dissimilar yet no dissimilarity

was observedwithin dry and valley bottom cell-pairs. Conversely, separation in geo-

graphical distance and elevation resulted in community dissimilarity at small offsets

along the full extent of their gradients (Fig. 2.5b&d).

The fullmodel produced a curvilinear response across ecological distance, which

represents cell-pair differences as a combination of all variables. The contribution of

ecological distance to community dissimilarity decayed along its gradient, although

this effect was minimal and the model fit was close to linear (Fig. 2.5f).

Table 2.1: Results from β-diversity variance partitioning of GDMVale do Jari forest inventory

data. Geographic distance, Topographic Wetness Index (TWI), elevation and Topographic

Position Index (TPI) were significantly associated with β-diversity. Note, the full amount of

variance explained by constituents of E could not be allocated due to co-variance with D.

Partition Variance explained (%)
Variable importance

(%∆(Deviance))
p

D 10.60 71.96 0***

E 1.24 8.33 0***

D×E 2.83 – NA

Total 14.67 – 0***

D + D×E 13.44 – NA

E + D×E 4.07 – NA

Constituents of E

TWI 0.56 4.46 0***

Elevation 0.40 3.02 0***

TPI 0.10 0.85 0.02*

Co-variance 3.01 – NA
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Figure 2.5: Variance in compositional turnover was partitioned into that explained by ge-

ographical separation (D), environmental differences (E) and spatially autocorrelated en-

vironment (D×E) (a). GDM produced I-splines (partial regression fits) for each variable

significantly associated with β-diversity (b-e). The maximum height of each I-spline rep-

resents the total amount of compositional turnover associated with that variable and the

shape indicates how the rate of turnover varies along the gradient. Compositional dissim-

ilarity increased with predicted ecological distance, which represents cell-pair separation

for all variables (f).
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2.3.3 The role of stochastic dispersal processes

Under a neutral framework, stochastic dispersal processes act independently of

the underlying environment. Therefore, we expect neutral models to be able to re-

construct the observed pattern of compositional turnover attributed to both geo-

graphical distance (D) and geographical distance plus spatially autocorrelated envi-

ronment (D + D×E). Further if spatial autocorrelation of community composition is

primarily driven by dispersal and dispersal is truly stochastic we can expect that a

single parameter set can replicate both D and D + D×E jointly.

Of the 350 neutral communities simulated we found two parameter sets that

matched the observed patterns of β-diversity attributed to geographic distance (D)

and three for β-diversity attributed to spatial autocorrelation (D + D×E) (Fig. 2.6).
However, no parameter set was a match for both D and D + D×E (Table 2.2) which

is consistent with the notion that local environmental filtering is a key driver of β-

diversity within spatially autocorrelated environments (D×E).

Table 2.2: Parameter sets of matching neutral models. No parameter set was able to repli-

cate the patterns of both D and D + D×E simultaneously.

Speciation

rate
σ τ mRDD only mRDD+D×E MatchD only MatchD+D×E

1e−5 1.69 6.55 0.068 0.122 � X
1e−5 1.16 16.61 0.070 0.118 � X
1e−5 1.35 10.52 0.118 0.082 X �

5e−5 1.06 9.12 0.076 0.067 X �

5e−6 0.51 5.64 0.096 0.084 X �

εD only = 0.0744

εD+D×E = 0.0846
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Figure 2.6: I-splines generated via GDM, representing the contribution to β-diversity ob-
served in the forest inventory at Vale do Jari (red) and those modelled by matching neutral

simulations (black). Two neutral simulations successfully matched the pattern of composi-

tional turnover that does not covary with environmental structure (D only) (a). Three simu-

lations matched the full pattern of spatial autocorrelation (D + D×E) (b), but no parameter

set was able to replicate the patterns of both D and D + D×E. See Table 2.2 for simulation

parameters.
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2.4 Discussion

Ourfindings advance the our understanding of the role of deterministic and stochas-

tic processes in driving β-diversity in tropical forests. The use of landscape scale

forest inventory data afforded the opportunity to disentangle the underlying com-

ponents driving compositional turnover of canopy trees species, addressing a crit-

ical knowledge gap given the key role that canopy tree communities play in disper-

sal, competition, ecosystem functioning and carbon storage. We demonstrate that

spatial autocorrelation of community composition for canopy trees extendswell be-

yond what was previously detectable under the existing network of tropical forest

plots and that various environmental factors play a role in shaping community com-

position along niche gradients. Building upon recent philosophical, theoretical and

empirical assertions that neutral and deterministic processes act together to con-

struct patterns of community composition (Bongalov et al., 2019, May et al., 2015,

Purves and Turnbull, 2010, Wennekes et al., 2012), we corroborate the dual roles of

environmental and stochastic dispersal processes with landscape-scale field data.

We further show that environmental structuring is not limited to distinct forest-type

shifts. Stochastic dispersal processes are unable to fully reconstruct spatially auto-

correlated patterns of community composition within a single forest type, indica-

tive of environmental structuring at scales finer than previously demonstrated for

canopy tree communities.

2.4.1 The scale of spatial autocorrelation

Spatial autocorrelation of community composition is widely observed in tropical

forests, with our results showing a similar pattern to previous studies in the re-

gion revealing autocorrelation decay with distance between communities (Condit

et al., 2002, Duque et al., 2009, Zhang et al., 2013). However, the majority of results

are derived from small forest plots of up to 50 ha, a scale at which large canopy

tree community assembly is undetectable. Further, inter-plot studies are often sep-

arated over large distances of non-contiguous forest, which presents difficulties in

making assertions on fine scale spatial autocorrelation, as well as, suffering from

under-representation of rare species.

Typically, spatial autocorrelation of community composition decays rapidly at

short distances, exhibiting almost no further decay beyond4km(Condit et al., 2000a,

2002, Duque et al., 2009). Our results present a key finding that for large canopy

trees, community autocorrelation is maintained over larger scales than was previ-

ously known, with community similarity persisting up to distances of 5 km and con-

tinuing to decline up to at least 8.5 km. Whilst novel, this finding should not be so
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surprising. Firstly, seed dispersal is strongly correlated with tree height, allowing

for greater dispersal distances amongst canopy tree communities (Thomson et al.,

2011). Secondly, longer life cycles and survival rates associated with adult stature

(Visser et al., 2016) may enable the maintenance of autocorrelation due to resis-

tance to temporal environmental variance (Chisholm et al., 2014).

2.4.2 Environmental drivers of β-diversity

Environmental variance has long been observed as a key determinant of species dis-

tributions and biodiversity in tropical forests, across a range of scales (Draper et al.,

2019, Harms et al., 2001b, Kahn, 1987, Lieberman et al., 1985, Tuomisto and Ruoko-

lainen, 1994, Valencia et al., 2004). However the question of how environmental vari-

ation impacts canopy trees has remained elusive due to the spatial constraints of

the current network of vegetation plots within tropical forests (Marvin et al., 2014).

The large scale of the forest inventory analysed here enabled us to unpick the con-

tributions of several environmental variables to compositional turnover.

Environmental variables (E only), explained only a small proportion of observed

variance (1.3%), considerably less than has been observed for small woody stems at

local scales (Johnet al., 2007b,Myers et al., 2013, Tuomisto et al., 2003). This suggests

that at the seedling stage, environmental filtering occurs at much finer scales than

is represented in our analysis. Habitat filtering occurs during the early life stages of

trees (Baldeck et al., 2013), therefore, homogenising environmental variables at the

scale of 3 ha reduces their explanatory power. Further, we considered only a handful

of available topology-derived variables derived fromDEMs, while soil composition is

known to play a key role in environmental filtering (Anderse et al., 2014). Bongalov

et al. (2019) were also able to attribute more variance to environmental variables

through hyperspectral imaging of canopy trees. Their smaller cell size of 1 ha may

help explain this, but more likely the greater degree of environmental heterogeneity

within their sampling area is responsible for greater environmental constraints that

generate increased impact on community composition.

Topographic Wetness Index (TWI) was the most important environmental vari-

able at the 3 ha scale. Divergent water-use strategies are an important mecha-

nism controlling environmental associations (Baltzer et al., 2005). Engelbrecht et al.

(2007b) found that species drought sensitivity played a key role in shaping species

distributions. Our results replicate these findings, influencing community dissimi-

larity only beyonda threshold of cell-valuedifferences, suggesting that certain species

fail to establish within drier environments.

Community dissimilarity responded to small changes in mean elevation. While

elevation has been linked with differences in humidity and precipitation, the eleva-
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tional gradient in the study sampling area is unlikely to be strong enough to impact

such processes. Our result more likely reflects differences in soil chemistry, which

covarieswith elevational gradients (Chadwick andAsner, 2016, Xia et al., 2016), thereby

impacting environmental filtering.

Lastly, we find Topographic Position Index (TPI) to have a small but statistically

significant impact on community dissimilarity. Dissimilarity was only observed be-

tween valleys and ridges, i.e. not between cells with intermediate TPI values. Ridges

are assumed to influence radiation load (Dyer, 2009) and dissimilarities may be

driven by dominance of light demanding species.

Compositional turnover was present in the absence of any environmental vari-

ables (E + D×E), with 10% of the variance in community composition attributable

to geographic distance (D). This is highly consistent with the variance attributed in

Bongalov et al. (2019), supporting our reasoning for the lower explained variance at-

tributed to environmental variables. Overall, our results provide further proof that

niche theory cannot fully account for community composition patterns.

2.4.3 Stochastic processes

Debate surrounding processes driving β-diversity have typically revolved around a

niche vs neutral standpoint. More recently, the notion of stochastic dispersal and

environmental processes superimposing to recreate the patterns of beta-diversity

we observe has gained traction (Wennekes et al., 2012). Fully disentangling their

relative roles has proven difficult since the component of β-diversity attributable to

spatially autocorrelated environment (D×E) can equally arise fromniche or stochas-

tic dispersal processes.

We show that environmental factors represent a key driver of β-diversity within

spatially autocorrelatedenvironments. Neutral simulationswere able to reconstruct

observed patterns of compositional turnover attributed to both geographical dis-

tance (D) and geographical distance, plus spatially autocorrelated environment (D

+ D×E). However, no parameter set was capable of matching both patterns simulta-

neously. It follows that environmental variables must be an important component of

the variance attributed to the spatially autocorrelated environment (D×E) partition
and cannot be attributed solely to stochastic dispersal. This finding gives further

credence to the notion that stochastic and dispersal processes can act jointly to

determine the patterns of compositional turnover.

This finding also suggests that strong environmental separation is not necessary

for environmental variables to shape compositional turnover. Bongalov et al. (2019)

demonstrate that neutral models could not match observed patterns of composi-

tional turnover across forest-types and assert that species with similar competitive



32 2.4. Discussion

strategies may interact in a neutral manner within forest types (where environmen-

tal variance is low) to drive compositional turnover. In contrast, we found that stark

‘forest-type’ differences are not necessary for environmental filtering to operate,

environmental variables can act at finer scales within forest-types to affect compo-

sitional turnover.

This leaves us with two potential scenarios: (i) environmental filtering is a key

driver at fine scales or (ii) dispersal is not truly stochastic. Scenario (ii) could mani-

fest through the environment impacting dispersal limitation, such as anemochorous

species having greater dispersal capacity at higher elevations; or via species specific

dispersal kernels.

Theprocessesdrivingβ-diversity in tropical canopy tree communities are clearly

more nuanced than strict niche vs neutral theories. Negative density dependence

processes, for example, could further superimpose over compositional structuring.

Future study should focus on reconciling the multitude of theories that have been

proposed to explain community assembly (Wright, 2002). The opportunity to use

landscape-scale forest inventories and hyperspectral imaging in concert presents

a potentially fruitful way forward. Further, the study of phylogenetic and functional

β-diversity could provide key insights into the role of environmental variance under

niche conservatism.

2.4.4 Caveats

Our study has three key caveats. Firstly, althoughour sampling area allows for landscape-

scale community patterns to be analysed, it is not fully contiguous. Forest inventory

data was collected only in regions viable for selective logging; such ‘sampling islands’

are thus likely separated by areas with inherently different environmental condi-

tions and probably tree communities (see Fig 2.1a). For example, elevation ranges

from 0–240 m across the landscape but reaches a maximum of only 206 m within

the sampling area, with mean cell elevation spanning only 6–115 m. This may pro-

vide a potential explanation for the large scale of spatial autocorrelation of commu-

nity composition reported; if environmental factors play a key role in determining

community composition, we would expect greater dissimilarity between communi-

ties within and outside the sampling area. High-fidelity hyperspectral imaging at the

landscape scale (Bongalov et al., 2019, Draper et al., 2019) corroborates the notion

that spatial autocorrelation plateaus at scales of roughly 4 km. However, Bongalov

et al. (2019) found roughly similar scales of autocorrelation for communities that

traverse forest-types. While hyperspectral imaging provides a powerful technique

for analysing diversity patterns over large scales, ‘spectral species’ do not neces-

sarily represent biologically distinct species, instead acting as a proxy for under-
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lying biodiversity patterns. Combining hyperspectral imagining with the emerging

landscape-scale forest inventories would help to resolve this issue.

Second, logging companies used trained para-botanists. However, whilst these

are particularly expert at identifying commercially viable species, there is a danger

that some rarer or harder to separate species were misidentified. Nevertheless, it

is unlikely that mis-identification would have occurred within specific components

of environmental gradients and not others.

Lastly, although this study presents a case for local scale environmental filter-

ing in driving the community assembly, our dataset represents only a ‘snapshot’ of

community composition in time. This precludes strong assertions regarding the

processes governing community assembly to be made, since processes are inher-

ently time-dependent. However, given the current data constraints and the long

life spans of canopy trees, our results provide evidence to support the notion that

environmental factors operate at local scales to shape canopy tree community com-

position.



Chapter 3

Phylogenetic beta-diversity

informs the factors driving

compositional turnover in

tropical canopy tree

communities

3.1 Introduction

Understanding processes governing the turnover of species composition – termed

β-diversity – remains a key unresolved issue in community ecology, with core impli-

cations for applied and theoretical research. β-diversity is the link dictating the re-

lationship between local (alpha) and regional (gamma) diversity (Whittaker, 1960).

In aworld facing increasing land-use change, over-hunting and other anthropogenic-

drivendisturbances, understanding theprocesses thatmaintain diversity over space

can play a crucial role in conservation strategy (Socolar et al., 2016). Similarly, a key

theoretical problem is to explain how large numbers of species are able to coexist

within hyperdiverse systems, especially tropical forests (Valencia et al., 1994).

One heavily debated aspect of β-diversity surrounds the relative importance of

stochastic processes and environmental factors in dictating compositional turnover.

Debates have historically revolved around niche vs. neutral standpoints. Environ-

mental filtering is well established as a key ecological process (Clark et al., 1998,

John et al., 2007a, Kraft et al., 2008, Svenning, 1999) governing community compo-

sition, yet niche theory has long been recognised as being insufficient in explaining

the high degree of species diversity in tropical forests (Grubb, 1977). However, more

34
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than 100 mechanisms have been postulated to salvage niche theory (Wright, 2002).

Conversely, neutral theory (Hubbell, 2001) proposes that stochastic demographic,

dispersal, mortality and recruitment processes can account for observed biodiver-

sity. In reality, neutral theory is regularly violated, failing to: (1) explain multiple pat-

terns of biodiversity concurrently (May et al., 2015); (2) account for negative density

dependence mechanisms (Connell, 1971, Hubbell, 2001, Purves and Turnbull, 2010);

and (3) replicate β-diversity patterns over large spatial scales (Condit et al., 2002).

Recent ecological theory has explored the notion that stochastic and determin-

istic processes act jointly to explain compositional turnover (Purves and Turnbull,

2010, Wennekes et al., 2012). Chisholm and Pacala (2010) demonstrated that spa-

tial autocorrelation of community composition is generally accompanied by spatial

autocorrelation of the underlying environment, meaning β-diversity patterns could

equally arise from environmental filtering as from stochastic mortality-dispersal-

recruitment mechanics. This has presented a major challenge for community ecol-

ogists.

Considerable efforts have been aimed at disentangling the ecological processes

that driveβ-diversity into their environmental and geographical components (Cáceres

et al., 2012, Legendre et al., 2009, Myers et al., 2013). However, their relative impor-

tance varies with study design and spatial scale. Stochastic dispersal limitation has

been implicated as dominating at local scales (Condit et al., 2002, Tuomisto et al.,

2003), with environmental filtering operating at the landscape scale (Davidar et al.,

2007, Hardy et al., 2012). The component attributed to spatially autocorrelated en-

vironment has, thus, proven difficult to unpick.

β-diversity studies in this vein have beenwidespread, but have typically focussed

on taxonomic dissimilarities between assemblages. However, this approach con-

siders all species as equivalent, not taking into account evolutionary dissimilarities.

Analogous to taxonomicβ-diversity (TBD),measures of phylogeneticβ-diversity (PBD)

represent differences in phylogenetic diversity between communities. PBD met-

rics come with the added dimensionality of evolutionary history and are, thus, more

stringent measures of dissimilarity but comparisons with TBD provide key insights

into the processes governing β-diversity (Graham and Fine, 2008, Jin et al., 2015). Jin

et al. (2015) demonstrated that tracking phylogenetic β-diversity (PBD) along envi-

ronmental gradients reveals niche responses of lineages, i.e., niche conservatism – a

theory at odds with neutral theory. Under the premises of species equivalence and

stochastic dispersal, inherent within neutral theory, PBD should not be expected to

covary with environmental factors more than does TBD. Comparing patterns of tax-

onomic β-diversity (TBD) against phylogenetic β-diversity (PBD) thereby affords a

valuable opportunity to unpick the relative roles of spatial and environmental factors
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within spatially structured environments.

The implementation of PBD to unpick the components of β-diversity has recently

become more prevalent, however, conflicting results (Hardy et al., 2012, Legendre

et al., 2009, Liu et al., 2016, Qiao et al., 2015, Saito et al., 2015) have meant a clear pat-

tern is yet to emerge. For large tropical canopy trees, the scale over which stochas-

tic dispersal and environmental filtering act in driving β-diversity has been espe-

cially elusive. The current network of tropical forest plots (e.g. BCI, RAINFOR, ATDN,

CTFS) are generally limited to 50 ha in size and are distantly separated, generating

two key problems: (1) community dynamics of canopy tree communities operate

at a far greater scale; and (2) the large spatial separation excludes the potential of

quantifying the component of β-diversity attributed to spatially autocorrelated en-

vironment. This presents as a key knowledge gap given that canopy trees are the

primary seed producers, competitors and carbon storers (Pan et al., 2011, Thomson

et al., 2011, Wright, 2002).

Advances in airborne high-fidelity hyperspectral imaging technology have proven

a powerful tool in bridging the gap in spatial scale (Bongalov et al., 2019, Draper

et al., 2019, Jucker et al., 2018) and disentangling aspects of biodiversity patterns.

However, the technology is not currently able to distinguish individual tree species

and is therefore limited to assessing estimates of turnover of tree forms (‘spectral

species’). As such, phylogenetic β-diversity (PBD) patterns are not assessable via

this route.

The recent emergence of landscape-scale forest inventory data from the forest

sector, which identifies trees to species level, affords a fruitful opportunity to bridge

this scale gap. However, the scale atwhich to divide floristic data into cells to capture

both environmental and spatial variance remains an unknown for such datasets. A

trade-off may occur whereby homogenisation of environmental variables over large

scales reduces their explanatory power, yet become irrelevant at fine scales due to

processes such as negative density dependence and stochastic demographic inter-

actions dominating.

Here, we use spatially explicit floristic data from a complete forest census of

canopy trees covering 5,100 ha of tropical forest in the Amazonian basin to address

the following objectives:

(1) To assess and compare the extents of spatial autocorrelation of taxonomic and

phylogenetic community similarity to determine how lineages turnover across

space.

(2) To quantify the contribution of spatial and environmental variables driving tax-

onomic β-diversity (TBD) and phylogenetic β-diversity (PBD)
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(3) To investigate the scales at which environmental and spatial variables operate

to influence TBD and PBD

We expect that:

(1) Spatial autocorrelation of taxonomic community composition will be greater

thanphylogenetic community composition due to the addeddimension in vari-

anceof evolutionary history, inherent inmetrics of phylogenetic similaritymea-

sures.

(2) Environmental variables will explain a greater proportion of phylogenetic β-

diversity (PBD) than taxonomic β-diversity (TBD) since environmental affini-

ties are likely to shared across closely related species.

(3) Environmental variableswill operate primarily across large scales as previously

asserted but will further be significantly detectable at finer scales, especially

for PBD.

3.2 Materials and Methods

3.2.1 Study site

The study site (1°13’12”S 52°33’36”W) is based in the region of Vale do Jari, Pará, Brazil,

a wet tropical lowland forest of the Amazon Basin, (Fig. 3.1). The soil is characterised

by high clay content and low nutrient availability (Dijkshoorn et al., 2005), withmean

annual precipitation of 2055 mm and a mean temperature of 25°C. The site is under

concession for sustainable forest management by the logging company Orsa Flore-

stal, in accordance with environmental legislation imposed by the Brazilian Institute

of Environment and Renewable Natural Resources (IBAMA).

Floristic data comprises 283,954 spatially mapped stems ≥ 35cm over ∼5100
ha of undisturbed forest from a forest inventory conducted between 2002–2003.

Stems were mapped manually, operating within 12.5 m width bands and species

were identified to species level where possible, with 377 species, 196 genera and

56 families recorded (see Table A.1 for species list). Geolocation and species identi-

fication were independently verified for key species (Ferreira, 2009).
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3.2.2 Environmental variables

In analysing the role of environmental factors dictating patterns of taxonomic β-

diversity (TBD) and phylogenetic β-diversity (PBD), we considered five environmen-

tal factors known to influence habitat and community composition. Elevation, slope,

Topographic Position Index (TPI), Topographic Wetness Index (TWI) and Terrain

Ruggedness Index (TRI)werederived froma terrain-correctedDigital ElevationModel

(DEM) (JAXA/METI, 2011) with resolution of 12.5 m.

Elevational gradients are associated with ambient humidity, precipitation, wind

velocity and soil composition gradients (Jucker et al., 2018, Sundqvist et al., 2013).

Hill slope is responsible for the distribution of soil nutrients (Chadwick and Asner,

2016, Xia et al., 2016) and was calculated as the mean slope of the four planes which

are formed by connecting combinations of 3 cell corners. TPI refers to a pixel’s posi-

tion in the landscapewith respect to hilltops and valleys and has been linked to evap-

otranspiration rates, solar radiation and species associations (Clark et al., 1999a,

Dyer, 2009). TPI is calculated as the relative elevation compared to pixels within a

50 m radius. TWI gives a measure of water availability, but has also been linked with

soil depth, soil pH and nutrient availability (Moore et al., 1993) and was calculated

using the SAGA algorithm (Conrad et al., 2015) per Böhner and Selige (2006). TRI

gives ameasure of the variance in elevation and is, therefore, linkedwithmany of the

aforementioned associations. It was calculated as the elevational deviation from the

8 surrounding pixels. All environmental factors, with the exception of slope, were

taken as the mean value of the pixels within a sampling cell. Variance inflation fac-

tors (VIFs) were checked for multicollinearity prior to all analyses but in no case did

VIFs exceed 10 (Naimi, 2015).

3.2.3 Spatial variables

To investigate the scale at which spatial and environmental factors operate in driving

β-diversity, four cell size scenarioswere createdbydividing the forest inventory data

into 1 ha (100 m× 100 m), 3 ha (173 m× 173 m), 5 ha (224 m× 224 m) and 10 ha (316

m × 316 m) cells.

For each cell size scenario, we used distance-based Moran’s eigenvector maps

(dbMEMs) as spatial variables (Dray et al., 2006). DbMEM variables are an efficient

way of modelling spatial structure at multiple scales. They are derived from an ex-

tension of principle coordinates of neighbourhoodmatrix (PCNM) analysis (Borcard

and Legendre, 2002) in which the Euclidean geographic distances are decomposed

into a set of eigenvectors that represent the spatial structure of the cell arrange-

ment. The salient features of dbMEMs are that: (1) they are proportional to Moran’s



40 3.2. Materials and Methods

I coefficient, enabling eigenvectors that model positive spatial correlation to be eas-

ily identified; and (2) they are ordered such that the first spatial eigenvectors show

broad-scale spatial correlation increasing to finer scales (Fig. B.2). (Borcard et al.,

2018)

Significant dbMEMs were selected on the detrended community matrices via

forward selection using the Blanchet et al. (2008) double stopping criterion. For-

ward selection retained 47 of 1289, 44 of 324, 20 of 154, and 24 of 51 dbMEM variables

for 1 ha, 3 ha, 5 ha and 10 ha cell size scenarios respectively (Fig. 3.2). R2
a for the re-

duced set of dbMEMvariableswas nearly equivalent to the full set for all cell size sce-

narios. Significant environmental variables were selected in the same manner but

on the undetrended community matrices as per Borcard et al. (2018). Calculation

and forward-selection of dbMEM variables were conducted using the adespatial
package (Dray et al., 2019).

3.2.4 Quantifying taxonomic and phylogenetic β-diversity

An abundance of β-diversity metrics have been utilised in previous studies (Ander-

son et al., 2011, Tucker et al., 2017) resulting in some redundancy (Jin et al., 2015,

Swenson, 2011). Therefore, a selection of metrics pertinent to unpicking the pro-

cesses dictating community composition and turnover at both taxonomic (TBD) and

phylogenetic (PBD) were considered:

(1) Taxonomic β-diversity (TBD) was quantified using the Bray-Curtis dissimilar-

ity index (dBC) (see Eqn. 2.1) as a means of comparison to phylogenetic β-

diversity (PBD) metrics.

Then, in comparing patterns of TBD, we considered three metrics of PBD that

differ in their sensitivity to thedepthof phylogenetic differencesbetweencom-

munities, allowing us to discern whether turnover is phylogenetically basal or

terminal:

(2) Phylosor (βsor) is a presence-absence index related to the Sørensen index

(Legendre andLegendre, 2012),measuring the fractionof branch-length shared

between two communities, defined as:

βsorij =
2×BLij

BLi +BLj
(3.1)

where BLij is the total length of the branches shared between communities

i and j and BLi and BLj are the total branch lengths found in communities i

and j, respectively.
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Figure 3.2: Adjusted R2 values for the distance-based Moran’s eigenvector map (dbMEM)

variables used as spatial variables in distance-based redundancy analysis (dbRDA) analyses.

Forward selection retained 47 (a), 44 (b), 20 (c) and 24 (d) dbMEM variables, sorted from

broad- to fine-scaled variation along the x-axis. R2
a values for dbMEMs are shown only for

those retained in by forward selection. Note, plots have been truncated along the x-axis
showing only the retained dbMEM variables. The global set of dbMEM variables consisted of

1289, 324, 154 and 51 dbMEMs, respectively.

βsor is considered as a terminal-PBDmetric, with most variability coming from

variation in terminal branches of the phylogeny, except for cases where com-

munities turnover almost entirely at basal levels, which is highly improbable

within canopy tree communities (Swenson, 2011).

(3) D′
nn is an abundance-weighted metric based on mean nearest taxon distance

(MNTD), originally described by Ricotta and Burrascano (2009):

D′
nn =

nk1∑
i=1

fi min δik2 +
nk2∑
j=1

fj min δjk1

2
(3.2)
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where min δik2 is the minimum phylogenetic distance between species i and

all species in community k1 and all species in community k2, min δik1 is the

minimum phylogenetic distance between species j in community k2 and all

species in community k1, fi and fj are the relative abundance of species i and

j and n is the species richness of the respective communities (Swenson, 2011).

D′
nn describes how closely related the closest relative in one community is

to the other, while accounting for species abundance. It, therefore, acts as a

robust measure of terminal-PBD.

(4) D′
pw is an abundanceweightedmetric basedonmeanpairwisedistance (MPD):

D′
pw =

nk1∑
i=1

fiδik2 +
nk2∑
j=1

fjδjk1

2
(3.3)

where δik2 is the mean pairwise phylogenetic distance between species i in

community k2, δjk2 is themeanpairwise phylogenetic distancebetween species

j in community k1, fi and fj are the relative abundance of species i and j and

n is the species richness of the respective communities (Swenson, 2011).

D′
pw gives ameasure of the overall phylogenetic dissimilarity between commu-

nities and detects changes occurring deeper in the phylogeny, while account-

ing for species abundance. It is sensitive to phylogenetic restructuring at basal

levels and provides a metric of basal-PBD.

The phylogenetic tree implemented in the calculation of PBDmetrics was recon-

structed with the V.PhyloMaker package (Jin and Qian, 2019) which implements the

current, largest, dated plant phylogeny, derived froma combination of the Smith and

Brown (2018) and Zanne et al. (2014)mega-phylogenies (Figs. 3.3 & B.1). Genera and

species were added to their families or genera following the same approach imple-

mented in Phylomatic and BLADJ (Qian and Jin, 2016,Webb andDonoghue, 2005). Of

the 377 species present at Vale do Jari, 52% were fully resolved, 44% resolved to the

genus level and 4% to the family level only. While this results in some loss of explana-

tory power, PBDmetrics derived from synthesis phylogenies correlate strongly with

purpose built phylogenies (Li et al., 2019). Species nomenclature was standardised

to adhere to The Plant List database (TPL, 2013).
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Figure 3.3: The phylogenetic tree used to derive metrics of phylogenetic β-diversity (PBD)
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and grey bars at the tips separate plant families as a visual aid only. See Fig. B.1 for the phy-

logeny with species names provided.
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3.2.5 Statistical methods

Assessing taxonomic and phylogenetic spatial autocorrelation

The scale of spatial autocorrelation of taxonomic and phylogenetic community com-

position, in conjunction with the influence of cell size, was assessed via Mantel cor-

relograms (Legendre and Legendre, 2012). Forest inventory data were divided into 1

ha, 3 ha, 5ha and 10 ha cells and community dissimilarity matrices were paired with

the corresponding geographical distance matrices for each index. The Mantel cor-

relogram assesses autocorrelation over geographical space by assigning distance

classes and performing Mantel tests (Mantel, 1967), which test for correlation be-

tween distance matrices at each distance class. Significance is tested by randomly

shuffling the values of the community dissimilarity matrix for 999 permutations.

Positive Mantel r values demonstrate greater compositional/phylogenetic simi-

larity than expected by chance and negative values demonstrate dissimilarity. The

rate of change thereby indicates the rate of turnover across space. As a more strin-

gent measure of dissimilarity, phylogenetic β-diversity (PBD) will always be lower

than taxonomic β-diversity (TBD), however, the relative differences in extent of au-

tocorrelation and rate of turnover allows the processes driving β-diversity to be un-

picked (Graham and Fine, 2008).

WeusedSturges’ rule (Sturges, 2012) todetermine thenumberof distance classes

to use. Further, since the number of comparable cell pairs decreases as the geo-

graphical separation approaches the two most distant cells, we set a distance class

threshold such that no cell is discounted for any given distance class.

Disentangling the drivers of TBD and PBD

Neutral-based theories of community assembly assume species equivalence. Un-

der this assumption, we should not expect that the components of phylogenetic

β-diversity (PBD) metrics attributed to environmental variables (E + D×E) should
differ from those of taxonomic β-diversity (TBD).

To test this, variance attributed to environmental variables only (E only), spatial

variables only (D only) and spatially autocorrelated environment (D×E) in driving

TBD and PBDwas partitioned over distance-based redundancy analysis (dbRDA) for

each index and cell size scenario (Legendre and Anderson, 1999) . The adjusted

R2 metric (R2
a) represents the relative contribution of each component. Further,

the importance of each environmental variable was assessed via partial dbRDA to

understand the key ecological drivers. Significance was tested via 999 permutation

tests (Anderson, 2017).



Chapter 3. Phylogenetic beta-diversity informs the factors driving

compositional turnover in tropical canopy tree communities 45

Determining the scale at which environmental factors operate

To further understand the scale over at which environmental factors act to influ-

ence taxonomic β-diversity (TBD) and phylogenetic β-diversity (PBD), we further

investigated patterns at the 3 ha cell size scenario. The 3 ha scenario was chosen,

primarily because all environmental variables were retained following forward se-

lection at this scale, suggesting that it represents the tipping point in the trade-off

between homogenisation of environmental variables and relevancy at finer scales.

Conveniently, this also grants comparability to the findings presented in Chapter 2.

The variance explained by each dbMEM variable was calculated via dbRDA and

compared against the variance explained with environmental variables partialled

out, enabling us to assess the scales atwhich environmental factors operate to shape

TBD and PBD. To further elucidate this question, the 44 spatial dbMEM variables cor-

responding to the 3 ha cell size scenario were split into ‘broad-scale’, ‘intermediate-

scale’ and ‘fine-scale’ fractions comprising 15, 15 and 14 dbMEMs, respectively. The

variance was subsequently partitioned alongside the full set of environmental fac-

tors to inform how the variance explained by environmental factors (E + D×E) act
at broad- , intermediate- and fine-scales.

3.3 Results

3.3.1 Assessing taxonomic and phylogenetic spatial autocorrelation

Mantel correlograms allowed the extents of spatial autocorrelation to be compared

between taxonomic β-diversity (TBD) and phylogenetic β-diversity (PBD) metrics

and between cell size scenarios. All metrics of taxonomic and phylogenetic com-

munity composition exhibited a general trend of decreasing autocorrelation with

geographical separation (spatial turnover) at 1 ha, 3 ha, 5 ha and 10 ha cell sizes. For

each cell size the positive spatial autocorrelation was lost at ∼5 km with exception

ofD′
pw (a measure of basal-PBD), which was lost at ∼3 km.

As expected, TBD (dBC) was higher than PBD, with spatial autocorrelation and

turnover of nominal community composition being higher than turnover of evolu-

tionary history for all cell size scenarios. Terminal-PBD (βsor , D
′
nn) was higher than

basal-PBD (D′
pw), demonstrating that more phylogenetic turnover occurs at the tips

of the phylogeny (within clades) than at basal nodes (across clades).

Although significant autocorrelation was detected at the 1ha scale, the strength

and pattern of autocorrelation was increased with increasing cell size for all metrics

which is consistent with compositional turnover of canopy trees operating at scales

of at least 10 ha or greater. However, spatial autocorrelation of D′
pw became non-
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significant at shorter distances with increasing cell size. (Fig. 3.4)
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Figure 3.4: Taxonomic and phylogenetic community composition exhibited significant spa-

tial autocorrelation. The degree of spatial autocorrelation increased for all metrics with

increasing cell size (a–d). dBC , βsor and D′
nn all exhibit positive autocorrelation up to scale

of∼5 km, whereasD′
pw is positively autocorrelated up to∼ 3 km. Positive values of Mantel r

signify that community composition is more similar than expected by chance and vice versa.

Confidence intervals are calculated from 500 bootstrap permutations.

3.3.2 Disentangling the drivers of TBD and PBD

Variance partitioning on dbRDAs enabled the roles of spatial and environmental vari-

ables to be disentangled. Spatial variables were the dominant drivers of both tax-

onomic β-diversity (TBD) and phylogenetic β-diversity (PBD). The total variance

explained by all variables tended to increase with cell size, with the exception of
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basal-PBD (D′
pw), which exhibited the opposite trend (Fig. 3.5a). Although, while

significant,D′
pw (basal-PBD) explained a very small proportion of the variance, with

R2
a ranging from 0.015 to 0.026.

The total variance explained for D′
nn (terminal-PBD) was higher than for dBC

(TBD) for all cell sizes. Critically, variance attributed to both environment only (E)

and spatially autocorrelated environment (D×E) was higher which is inconsistent

with the premise of species equivalence under neutral theory (see Table B.1 for all

R2
a values). However, βsor , another presence-based metric of terminal-PBD, did not

show the same pattern.

0.0

0.2

0.4

0.6

1 3 5 10

(i) dBC

1 3 5 10

(ii) βsor

1 3 5 10

(iii) D'nn

1 3 5 10

(iv) D'pw

E
xp

la
in

ed
 v

ar
ia

nc
e 

R
2 a

(a)

0

25

50

75

100

1 3 5 10

(i) dBC

1 3 5 10

(ii) βsor

1 3 5 10

(iii) D'nn

1 3 5 10

(iv) D'pw

%
  o

f e
xp

la
in

ed
 v

ar
ia

nc
e

Cell size (ha)

(b)

Partition
Distance
only (D)

Combined
contribution (D+E)

Environment
only (E)
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The proportion of explained variance attributable purely to environment (E) was

generally consistent across all metrics (within cell size scenarios) but slightly ele-

vated for terminal-PBD metrics (βsor &D′
nn). The proportion attributed to spatially

autocorrelated environment was higher (D×E) forD′
nn andD′

pw than βsor and dBC .

Table 3.1: The percentage of explained variance attributed to spatial (D), spatially autocor-

related environment (D×E) and environmental (E) factors, derived fromR2
a values following

variance partitioning on dbRDAs. Significance was calculated from 999 permutation tests,

note, significance of spatially autocorrelated environment cannot be assessed due to covari-

ance. Significance levels: p∗∗∗ ≤ 0.001, p∗∗ ≤ 0.01, p∗ ≤ 0.05, pns > 0.05

Cell size (ha) n D D×E E

dBC
1 3785 80.1∗∗∗ 17.6 2.3∗∗∗

3 1048 77.1∗∗∗ 20.1 2.8∗∗∗

5 541 70.7∗∗∗ 22.4 6.9∗∗∗

10 215 70.3∗∗∗ 23.3 6.3∗∗∗

βsor
1 3785 78.7∗∗∗ 18.3 3.0∗∗∗

3 1048 77.6∗∗∗ 18.4 4.0∗∗∗

5 541 72.6∗∗∗ 18.1 9.3∗∗∗

10 215 73.2∗∗∗ 20.0 6.7∗∗∗

D′
nn

1 3785 75.5∗∗∗ 21.6 2.9∗∗∗

3 1048 70.2∗∗∗ 25.7 4.1∗∗∗

5 541 62.0∗∗∗ 29.7 8.3∗∗∗

10 215 61.7∗∗∗ 31.2 7.1∗∗∗

D′
pw

1 3785 76.5∗∗∗ 21.2 2.4∗∗∗

3 1048 72.9∗∗∗ 23.4 3.7∗∗∗

5 541 62.2∗∗∗ 31.6 6.2∗∗∗

10 215 63.7∗∗∗ 31.1 5.2∗

Environmental variables retained via forward selection varied across cell size

scenarios. At the 3 ha cell size, all environmental variables were retained, Topo-

graphic Position Index (TPI) was excluded for 1 ha, 5 ha and 10 ha cell sizes, and slope

was also excluded at the 1 ha cell size. Topographic Wetness Index (TWI) and eleva-

tionwere generally themost important environmental variables, especially for larger

cell sizes, while Terrain Ruggedness Index (TRI) was more important at smaller cell

sizes (Table 3.2).

3.3.3 Determining the scales at which environmental and spatial fac-

tors operate

Beyond comparative analyses across cell sizes, further investigation of each dbMEM

variable via partial dbRDA at the 3 ha cell size allowed us to determine the scale at

which environmental factors operate across a large range of spatial structuring.
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Table 3.2: The amount of explained variance attributed to each constituent of environmen-

tal variation (R2
a) following variance partitioning on partial dbRDAs. Empty variables are

those that were not retained following forward selection for that cell size scenario. Sig-

nificance was calculated from 9999 permutation tests. Significance levels: p∗∗∗ ≤ 0.001,
p∗∗ ≤ 0.01, p∗ ≤ 0.05, pns > 0.05

Cell size (ha) Elevation TWI TRI TPI Slope

dBC
1 0.146e–2∗∗∗ 0.153e–2∗∗∗ 0.199e–2∗∗∗ – –

3 0.151e–2∗∗∗ 0.195e–2∗∗∗ 0.288e–2∗∗∗ 0.034e–2∗ 0.070e–2∗∗∗

5 0.495e–2∗∗∗ 0.982e–2∗∗∗ 0.403e–2∗∗∗ – 0.035e–2ns

10 0.779e–2∗∗∗ 1.055e–2∗∗∗ 0.349e–2∗∗ – 0.156e–2ns

βsor
1 0.111e–2∗∗∗ 0.207e–2∗∗∗ 0.219e–2∗∗∗ – –

3 0.139e–2∗∗∗ 0.231e–2∗∗∗ 0.319e–2∗∗∗ 0.043e–2ns 0.041e–2ns

5 0.401e–2∗∗∗ 0.660e–2∗∗∗ 0.363e–2∗∗∗ – 0.044e–2ns

10 0.859e–2∗∗∗ 0.740e–2∗∗∗ 0.026e–2ns – 0.000e–2ns

D′
nn

1 0.162e–2∗∗∗ 0.421e–2∗∗∗ 0.485e–2∗∗∗ – –

3 0.148e–2∗ 0.633e–2∗∗∗ 0.710e–2∗∗∗ 0.072e–2ns 0.176e–2∗∗

5 0.418e–2∗ 1.523e–2∗∗∗ 0.763e–2∗∗∗ – 0.000e–2ns

10 1.169e–2∗∗ 2.549e–2∗∗∗ 0.000e–2ns – 0.000e–2ns

D′
pw

1 0.010e–2∗∗∗ 0.017e–2∗∗∗ 0.024e–2∗∗∗ – –

3 0.006e–2∗ 0.014e–2∗∗∗ 0.041e–2∗∗∗ 0.006e–2∗ 0.019e–2∗∗∗

5 0.025e–2∗∗ 0.051e–2∗∗∗ 0.028e–2∗∗∗ – 0.001e–2ns

10 0.012e–2ns 0.038e–2∗ 0.015e–2ns – 0.000e–2ns
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The distribution of variation explained by individual dbMEM variables (D + D×E)
(ordered from broad- to fine-scaled spatial variables) was right-skewed for all in-

dices except D′
pw, with broad-scaled dbMEM variables being the most important.

However, this trend was irregular, for example dbMEM9, explained an unexpectedly

large amount of turnover (Fig. 3.6). Visual analysis of the maps of dbMEM9 map

scores (Fig. B.2) shows a strong North-South division which may account for this

unexpected result which we address in the Discussion section.

Partialling out environmental factors from each dbMEM had varying impacts on

individual dbMEM variables and somewhat influenced the distribution shape. How-

ever, the right-skewed distribution still prevailed. In fact, the importance of two

most broad-scaled dbMEMs increased for allβ-diversity indices. In contrast, beyond

the first twodbMEMs the importance of dbMEMs generally reduced up to dbMEM19,

beyondwhich, dbMEMs variable tended to increase again. The resulting distribution

was, thus, further right-skewed at extreme broad scales but flattened across inter-

mediate and fine scales. This pattern was most apparent forD′
nn (Fig. 3.6c). Equally

noteworthy, is that the unexpectedly high variance attributed to dbMEM9 was ex-

plained by the spatially autocorrelated environment component (D×E) across all

metrics (Fig. 3.6).

Given the irregular distribution of variation explained by individual dbMEM vari-

ables, splitting the significant dbMEMs into broad-, intermediate- and fine-scaled

fractions enabled us to evaluate the general scales atwhich spatially structured envi-

ronment (D×E) acts in driving β-diversity. For all metrics of β-diversity, spatially au-

tocorrelated environment explained none of the variance at fine scales, acting more

strongly at broad scales than intermediate scales. Echoing the right-skewed distri-

bution of explained variance for spatial dbMEMs (Fig. 3.6), spatial variables only (D)

explained increasingly less variation from broad- to fine-scale fractions (Fig. 3.7).
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Figure 3.6: Variation in taxonomic (a) and phylogenetic (b–d) composition explained in

partial distance-based redundancy analysis (dbRDA) by individual spatial distance-based

Moran’s eigenvector map (dbMEM) variables. Partialling out environmental variables had

varying influence on the explained variance of individual spatial variables but broad-scaled

spatial variables explained the majority of taxonomic β-diversity (TBD) and phylogenetic β-
diversity (PBD). The dbMEM variables are sorted from broad to fine scaled along the x-axis
(left to right). Thick bars represent the variance explained by each dbMEM (D + D×E) and
thin lines represent the variance with environmental factors partialled out (D). Red bars

indicate non-significant variables.
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Figure 3.7: dbMEM variables were split into broad- (Dbroad), intermediate- (Dint) and fine-

scaled (Dfine) fractions and variance was partitioned across dbRDAs for dBC (a), βsor (b),

D′
nn (c) andD′

pw (d). Spatially structured environment acted to shape β-diversity patterns
most strongly at broad scales and did not act at fine scales. Note that the Venn diagrams

are to scale with respect to the the proportion of explained variance, with bounding boxes

representing total variance. All fractions were significant following 999 permutation tests.
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3.4 Discussion

Our findings demonstrate the importance of considering evolutionary history of

community composition in unpicking the relative roles of environmental and spatial

factors in driving β-diversity patterns. The use of landscape scale forest inventory

data, identified to the species level, afforded the opportunity to use phylogenetic β-

diversity (PBD) analyses to assess the ecological drivers contributing to community

assembly. To our knowledge, this is the first study to disentangle the roles of spatial

and environmental factors driving β-diversity of large canopy trees via PBD analy-

sis. Given the key role that canopy tree communities play in dispersal, competition,

ecosystem functioning and carbon storage, we address a critical knowledge gap.

We demonstrate that species’ names turnover more rapidly across space than

their evolutionary relationships, specifically, species turnover occurs within closely

related clades. We further demonstrate that spatial and environmental factors act

jointly to construct patterns of community composition but we further show that

PBD patterns track environmental gradients more closely than patterns of taxo-

nomic β-diversity (TBD). This result is at odds with neutral theory, in which species

are assumed to be equivalent. Our results also substantiate the notion that environ-

mental factors shape β-diversity patterns most strongly at broad scales (Bongalov

et al., 2019, Davidar et al., 2007, Hardy et al., 2012), however, environmental factors

alone can act at scales as low as 1 ha in determining community composition, even

within canopy tree communities.

Assessing taxonomic and phylogenetic spatial autocorrelation

Spatial autocorrelation of tropical tree community composition is widely observed

but small-scale, large-separation, vegetation plot networks have limited our under-

standing of community turnover to juveniles at the fine-scale (Condit et al., 2002,

Duque et al., 2009) or adults at the regional-scale (Qiao et al., 2015) for canopy

trees. Further, the phylogenetic relationships between communities over across

space has only recently begun to receive attention (Graham and Fine, 2008, Jin et al.,

2015, Pashirzad et al., 2018), with only a handful of studies focussed tropical forests

(Baldeck et al., 2016, Yang et al., 2015, Zhang et al., 2013)

We find that taxonomic community composition exhibited greater spatial auto-

correlation and turnover across space than all measures of phylogenetic commu-

nity composition, i.e., taxonomic β-diversity (TBD) was higher than phylogenetic

β-diversity (PBD). This is an expected result since the added complexity of evo-

lutionary history contained within PBD metrics determines that higher PBD than

TBD should be expected (Graham and Fine, 2008). The interesting findings instead
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came from comparing the spatial extents of community similarity for between TBD,

terminal-PBD and basal-PBD.

Our results demonstrated that spatial autocorrelation of large canopy trees ex-

tendbeyonddistancespreviously reported for small forest stems(Condit et al., 2000a,

2002, Duque et al., 2009) and that extent of spatial autocorrelation of terminal-PBD

metrics (βsor &D′
nn) closely matched that of TBD (dBC). Conversely, basal-PBDwas

weaker than terminal-PBD and basal phylogenetic similarity between communities

persisted over shorter distances. Together, these findings demonstrate that the pat-

tern of nominal turnover (TBD) exhibited in large tropical canopy trees is driven pri-

marily by turnover at the terminal branches of the phylogeny at the landscape scale.

Previous studies have attributed phylogenetic varying to different degrees of basal

and terminal turnover depending on study design, vegetation type and biogeograph-

ical region (Jin et al., 2015, Liu et al., 2016, Pashirzad et al., 2018, Zhang et al., 2013).

Our findings, thus, highlight the value of contiguous forest inventories in assessing

phylogenetic turnover across spatial scale.

Disentangling the drivers of taxonomic β-diversity (TBD) and phylogenetic β-

diversity (PBD)

While spatial patterns of TBD and PBD provide important insights into how commu-

nity evolutionary history changes across space, only through variation partitioning

were we able to unpick the key drivers of β-diversity.

PBD has emerged as a valuable tool in disentangling the relative roles of stochas-

tic and deterministic processes driving β-diversity. Where the traditional ecophylo-

genetic framework proposed byWebb et al. (2002) has proven insufficient in assert-

ing specific assembly processes (Losos, 2008, Mayfield and Levine, 2010), PBD can

discern between processes tracked along environmental gradients. Under neutral

theory, species are assumed to be equivalent. Equally, TBD is blind to species evo-

lutionary history, thereby, comparing environmental partitions of TBD against PBD

enabled us to further disentangle the role of environmental factors.

We find that environmental factors were capable of explaining greater variance

of PBD than TBD. Specifically, both environmental factors alone (E) and spatially au-

tocorrelated environment (D×E) explained greater variance in D′
nn, a measure of

terminal-PBD, than dBC (TBD) (Fig. 3.5a). Further, the proportion of explained vari-

ance increased for environmental factors (E + D×E), with reduced relative explana-

tory power of spatial variables. These results were not echoed by βsor , an absence-

presence index for terminal-PBD, however, dismissing species abundance precludes

key information of ecological processes. The abundance of a given species can relate

to the strength of environmental associations as well as the degree of competition
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exclusion, both of which can impact terminal phylogenetic diversity.

Although the proportion of explained variance attributed to each partition for

basal-PBD (D′pw) closely matched that of terminal-PBD, only a small proportion

of absolute variance was explained. This finding matches previous studies PBD in

tropical forests (Liu et al., 2016, Zhang et al., 2013) and suggests that environmental

affinities are not maintained deep into evolutionary history. Instead, terminal-PBD

patterns are indicative of strong selective pressures promoting recent species di-

vergence (Jin et al., 2015).

Spatial variables remained the strongest drivers of PBD but this should not be

surprising in this study. Firstly, studies that have found environmental factors to play

the strongest role in community assembly typically traverse strong environmental

gradients (Hardy et al., 2012, Jin et al., 2015, Liu et al., 2016) whereas the environ-

ment is comparatively homogenous at Vale do Jari. Secondly, we consider only a

handful of topographical variables; Chang et al. (2013) demonstrated that including

soil composition alongside topographical variables can reverse the prevalent driver

in favour of deterministic niche processes. Indeed, spatial variables can only be fully

attributed to dispersal processeswhen all environmental variables are taken into ac-

count, therefore, we likely underestimate the importance of environmental filtering

here.

Thus, our findings demonstrate that environmental filtering plays a larger role in

driving community composition of canopy trees thanwas previously detectablewith

TBD (Chapter 2) yet supports the notion that stochastic dispersal and deterministic

niche processes superimpose to control β-diversity (Bongalov et al., 2019, Chisholm

et al., 2014, Wennekes et al., 2012).

Determining the scales at which environmental and spatial factors operate

In determining the scale at which environmental factors operate in shaping patterns

of β-diversity, we explored two lines of investigation. Firstly, we divided the forest

inventory data into cells of 1 ha, 3 ha, 5 ha and 10 ha in area, enabling us to assess

which, and to what degree, environmental factors influence β-diversity at various

scales. Secondly, we investigated how the component of spatially autocorrelated

environment varies along scales of spatial structure.

Cell size scenarios

We find that the strength of spatial autocorrelation for taxonomic (taxonomic β-

diversity (TBD)) and terminal phylogenetic (terminal-phylogeneticβ-diversity (PBD))

community composition decreased with decreasing cell size. This is consistent with
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increasing variability in community composition at finer scales. Such variability could

arise from: (1) negative density dependence (Hammond et al., 1998); (2) stochastic

demographic processes which can occur when environmental gradients are weak

(Purves and Turnbull, 2010); and/or (3) fine-scale environmental filtering. Although

unpicking the precise roles of each process is beyond the capacity of our analysis,

variation partitioning at each cell size enabled us to examine evidence for such pro-

cesses:

(1) Negative density dependence, can be generated via resource competition or

natural enemies (Connell, 1971, Janzen, 1970) acting at the fine-scale seedling-

stage. Studies have demonstrated that close phylogenetic relatedness can

drive negative density dependence (Ness et al., 2011, Paine et al., 2012). How-

ever, we find that across all cell sizes, communities weremore similar than ex-

pected at terminal branches (D′
nn) than at basal nodes (D′

pw). Further, their

relative differences did not change between cell sizes (Fig. 3.4), suggesting that

negative density dependence does not play major role in driving community

assembly of canopy trees at scales detectable in this study.

(2) In homogenous environments, species can interact in apparently neutral ways,

essentially randomising community composition. Our finding that the pro-

portion of variance attributed to spatially autocorrelated environment (D×E)
reduced with decreasing cell size supports this notion (Fig. 3.5 & Tables 3.1

& B.1). The reduced explanatory power of spatially structured environment

with decreasing cell size in concert with increasing residual variance indicates

that communities do not respond to weak environmental gradients over small

scales.

(3) Given the near consistent result across all metrics that environmental vari-

ables alone (E) explained decreasing amounts of variance with decreasing cell

size suggests that fine-scale environmental filtering has a limited impact in

driving community composition of large canopy trees. It is worth noting that

the variance explained at the 5 ha scale was marginally higher than at the 10 ha

scale, however, larger cell sizes would need to be considered to determine a

pattern.

Alternatively, the individual environmental factors found to significantly im-

pact community composition varied with cell size. Further, the variance ex-

plained by each factor exhibits diverging patterns, with elevation and Topo-

graphicWetness Index (TWI) explaining greater variancewith greater cell size,

Terrain Ruggedness Index (TRI) explaining the most variance at 5ha and slope

explaining more variance at smaller cell sizes.
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It is unsurprising that Topographic Position Index (TPI) is non-significant for

larger cell sizes since it is related to valley-ridge effects which are highly lo-

calised and would be homogenised across large cells. Slope, too, operates at

fine scales to control soil nutrient availability (Chadwick and Asner, 2016, Xia

et al., 2016), yet neither were significant in the 1 ha cell size scenario. This

is likely a reflection of the relatively homogenous environment at Vale do Jari

but further demonstrates that stochastic demographic processes operate at

fine scales. However, while spatial variables remain the dominant driver of β-

diversity, we find that environmental variables can operate differentially and

at scales as low as 1 ha in driving community composition.

In contrast to TBD and terminal-PBD, basal-PBD exhibited a different pattern.

At cell sizes of 5 ha and 10 ha, significant spatial autocorrelation of basal phyloge-

netic composition (D′
pw) was lost at small distances. This suggests that turnover at

basal nodes of the phylogeny occurs at smaller scales than can be captured within

5 ha (Fig. 3.4). Further, spatial variables explained increasingly more variance of

basal-PBD with decreasing cell size whereas environmental variables remained un-

changed (Table B.1. This suggests that dispersal limitation drives turnover at basal

nodes of the phylogeny at very small scales, whereby, certain species are highly

abundant and strongly aggregated.

Variance partitioning along scales of spatial structure

Our results from multi-scale analysis of dbMEM variables in the 3 ha cell size sce-

nario show that broad-scale spatial structure is the dominant driver of composi-

tional turnover for large canopy tropical trees and that environmental variables also

act primarily at broad scales. The distribution of variation explained by dbMEM vari-

ables (D + D×E), sorted from broad- to fine-scaled, was heavily right-skewed and

somewhat irregular for all β-diversity metrics (Fig. 3.6).

Partialling out environmental variables resolved some irregular patterns but broad-

scaled spatial variables remained the strongest driver. Environmental factors had

varying impacts on individual dbMEM variables, suggesting that environmental vari-

ables canhavedifferential impacts ondifferent spatial structures, regardless of ‘broad-

ness’. In particular environmental variables explained the majority of the variance

for dbMEM9 which was represented mostly by a single ‘sampling island’, located in

a region of high Topographic Wetness Index (TWI).

Our results from variance partitioning over fractions of dbMEMs elucidated the

irregular pattern exhibited from individual dbMEM analysis. Environmental vari-

ables alone (E) act to shape community composition at the 3 ha scale but describe
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only a small amount of the total variance. However, structured environment (E +

D×E) is capable of explaining a much greater amount of compositional turnover

and acts over broad and intermediate scales. This pattern was observable across all

metrics (Fig. 3.7)), yet spatially structured environment (E + D×E) explained twice

the amount variance of phylogenetic β-diversity (PBD) than taxonomic β-diversity

(TBD)

Our findings corroborate assertions in the literature that community assembly

is driven primarily by spatial variables at fine scales and environmental variance over

large scales (Bongalov et al., 2019, Davidar et al., 2007, Hardy et al., 2012). However,

considering the relative environmental homogeneity at Vale do Jari combined with

the role of phylogenetic associations, environmental variables have a greater influ-

ence in driving compositional turnover of large canopy trees than was previously

detectable.

Limitations

Despite our key findings, several limitations of this study preclude us from mak-

ing definitive assertions on relative roles of environmental and spatial drivers of β-

diversity.

Primarily, the forest inventory at Vale do Jari is comprised of ‘sampling islands’

where connectivity between cells is limited. In the calculation of dbMEM variables,

geographic distance matrices are truncated according the threshold distance that

enables all cell sites to remain connected. For example, in the 3 ha cell size scenario,

this threshold was∼2.5 km, thereby constraining dbMEM variables as representing

spatial structures spanning aminimum of 2.5km. Thus, our ability to truly unpick the

drivers of fine-scale β-diversity patterns is limited in comparison to regular sampling

designs (Chang et al., 2013, Legendre et al., 2009, Qiao et al., 2015) and could explain

why such little variance was explained for D′
pw which exhibited positive spatial au-

tocorrelation up to ∼3 km. The use of dbMEM variables also has implications for

interpretation with irregular (Munoz, 2009) or separated samples (Borcard et al.,

2018) which likely explains the irregular distribution of dbMEM variables. Further

investigation may provide clearer insights into fine-scale contributions by taking a

regularly spaced subset of the cells or by redefining the associated connectivity ma-

trix.

Secondly, our analyses considered only a handful of topographically derived en-

vironmental variables. In reality, many more environmental factors may be capable

of influencing community composition. For example, Chang et al. (2013) demon-

strated that topographical factors explained only a small proportion of variance, yet,

with topographical and soil variables considered, spatial variables became consid-
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erably important. Our analyses have most likely underestimated the true power of

environment in driving environmental variables.

Lastly, our assertions that phylogenetic diversity associations with environmen-

tal factors are driven by environmental factors rest on the notion that closely related

species are functionally similar since, ultimately, species’ functional traits respond

to environmental conditions. Although phylogenetic diversity has been shown to

capture functional diversity (Srivastava et al., 2012), closely related species can have

divergent traits. Indeed, whilst functional andphylogeneticβ-diversity patterns have

been demonstrated to concur (Wang et al., 2015, Yang et al., 2015), Asefa et al. (2019)

found contrasting results.

Conclusion

Our results demonstrate the value of emerging landscape scale forestry sector in-

ventories in disentangling thedrivers compositional turnover for large tropical canopy

trees which have previously remained an unknown. Further, the use of phylogenetic

β-diversity (PBD) metrics can elucidate the role of environmental factors in driving

community assembly currently not possible using airborne hyperspectral imaging

technology.

The improvement ofmegaphylogenies and plant functional trait databases could

prove to be a key link in reconciling stochastic and deterministic processes. As

more 100% forest inventories emerge, comparisons across the entire Amazon Basin

may further disentangle the environmental and spatial drivers of β-diversity. With

tropical forests at ever-increasing risks of anthropogenic change, our understand-

ing of β-diversity is key to informing conservation efforts. Maximising taxonomic

β-diversity is not always the appropriate conservation action (Socolar et al., 2016),

hence, improving our understanding of how functional β-diversity operates remains

a key knowledge gap with far-reaching implications for forest conservation.



Chapter 4

Do functional traits explain

aggregation patterns of tropical

canopy trees?

4.1 Introduction

The processes enabling the maintenance of high species diversity remains a fun-

damental problem in community ecology and is of special significance in tropical

forests, where a single hectare can contain 280 tree species with diameter at breast

height (DBH) ≥ 10 cm (Valencia et al., 1994). Well-observed evidence for environ-

mental correlation (Clark et al., 1998, John et al., 2007a, Kraft et al., 2008, Sven-

ning, 1999) and different environmental tolerances of species (Engelbrecht et al.,

2007a, Poorter and Markesteijn, 2008) suggest that spatial heterogeneity is inher-

ent to community assembly dynamics. However, models based on niche differentia-

tion and limiting similarity fail to explain the level of observed diversity (Silvertown,

2004). A key question, therefore, is how so many species are able to co-exist given

that they rely on the same set of resources. Many theories of coexistence, such

as Neutral theory (Hubbell, 2001) and Janzen-Connell (Connell, 1971, Janzen, 1970),

incorporate mechanisms whereby coexistence can occur independently of habitat,

yet the relative roles of niche and non-niche based theories has remained elusive

(Wright, 2002).

The spatial clustering of conspecific trees in tropical forests is observed across

the full range of life-stages and atmultiple spatial scales (Condit et al., 2000b, Réjou-

Méchain et al., 2011). However, aggregation can be explained via both environmental

filtering, (Cornwell and Ackerly, 2009, Harms et al., 2001a), in which species are ex-

cluded due to non-adaptation to local environmental factors, and/or seed dispersal

60
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limitation (Hubbell, 2001, Seidler and Plotkin, 2006), in which species distributions

are constrained by their capacity to disperse their seeds over long distances. For

example, a highly specialised species may exhibit tight clustering due to spatially

autocorrelated habitat and resource constraints or, equally, due to the inability to

disperse over a larger distance. This can result in the drivers responsible for aggre-

gation being confounded when not considered concurrently.

Advances in spatial point pattern analysis (Shenet al., 2009a, 2013,Waagepetersen

and Guan, 2009) have allowed aggregation to be quantified independently of envi-

ronmental covariates at fine spatial scales and empirical evidence of the dual roles

of environmental filtering and dispersal limitation in the formation of species dis-

tributions have been demonstrated (Lin et al., 2011, Pinto and MacDougall, 2010).

Given that plant functional traits influence both habitat associations (Engelbrecht

et al., 2007a, Liu et al., 2014, Visser et al., 2016) and dispersal limitation (McFadden

et al., 2019, Seidler and Plotkin, 2006), coupling spatial point pattern analyses with

functional traits provides the opportunity to distinguish the underlying mechanisms

governing plant distributions.

A critical knowledge gap is understanding intraspecific aggregation of canopy

trees in climax communities. Whether spatial patterns driven by dispersal limitation

persists beyond the juvenile stage is not well understood. This is a core problem

in ecology given that canopy trees are the primary seed dispersers, that dispersal

dynamics play a role in colonisation and diversity maintenance, and in turn, have

important implications for succession, regeneration and conservation (Wang and

Smith, 2002, Webb and Peart, 2001). Until recently, the majority of studies consider

trees above 1 cm DBH and all are within plots not larger than 50 hectares (Lin et al.,

2011, McFadden et al., 2019), a scale at which canopy tree aggregation cannot be

assessed. This is due to the lack of spatially explicit forest inventory data of canopy

trees at a large enough scale tomake spatial point pattern analyses viable. So, whilst

our understanding of the processes governing species aggregation at the juvenile

stage and at the local-scale is developing rapidly, the key question of how, and if,

these dynamics translate to the climax community remains a core knowledge gap in

the ‘seed dispersal loop’ (Wang and Smith, 2002).

We investigate howenvironmental filtering, dispersal limitation and species func-

tional traits interact to form aggregated intraspecific patterns in emergent tropi-

cal trees at a regional scale within spatially contiguous forests. We assess five sites

across theAmazonBasin (Fig. 4.1), totalling∼52,000hectares and comprising∼390,000
spatially mapped trees≥ 40 cmDBH of 133 species. These data are derived from the

advent of regulated reduced-impact logging over the last 8 years, in which trees are

spatially mapped, offering a unique opportunity to work over massive spatial scales.
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Using these data, we tackle the following specific objectives:

(1) To categorise whether each tree species exhibits habitat association and/or

dispersal limitation via goodness-of-fit for a series of spatial point patternmod-

els. We predict that given the reduced role of both dispersal limitation and

environmental covariates in dictating aggregation patterns in larger species,

as identified by McFadden et al. (2019), that dispersal limitation and habitat

associations will play a limited role in the intraspecific aggregation of canopy

trees;

(2) To assess how the strength of habitat associations and dispersal limitation

varies across sites and within species. We predict that the strength of habi-

tat associations will depend on the degree of environmental heterogeneity at

each site and that dispersal limitation will be consistent for species that occur

at multiple sites.

(3) To test whether the strength of clustering and habitat associations can be de-

scribed by species functional traits related to resource use and/or disper-

sal limitation. We expect that anemochorous and autochorous species will

be more dispersal limited than animal dispersed species (Seidler and Plotkin,

2006) and that species associatedwithdrier topographywill havemore resource-

conservative traits i.e. lower specific leaf area (SLA), lower leaf nitrogen con-

tent and higher dry seed mass; and

(4) To control for common ancestry among species by assessing phylogenetic sig-

nal in aggregation and habitat association parameters, predicting that phy-

logeny will explain a large proportion of variation in aggregation strength given

that dispersal mode rarely varies within genus.

4.2 Materials and Methods

4.2.1 Study sites

The study sites are located across thewet lowland tropical forests of Brazil and Peru,

spanning the Amazon Basin. Annual rainfall ranges from 2005 to 3324 mm across

site locations (Hijmans et al., 2005) with elevation not exceeding 236 meters above

sea level (m.a.s.l) (JAXA/METI, 2011). We obtained forest inventory data from seven

logging companies in six areas of contiguous forest.

Inventory data are split across five sites, located in the Napo district, Peru (NP,

Fig. 4.1b), Jamari and JacundáNational Forests (RO, Fig. 4.1c) Rondônia, Saracá-Taquera
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National Forest (ST, Fig. 4.1d) Vale do Jarí (VJ, Fig. 4.1e) and Caxiuanã National Forest

(CX, Fig. 4.1f), Pará, Brazil. We considered Jamari and Jacundá National Forests as a

single site due to their proximity and matching soil types (Fischer et al., 2008). Al-

though they are no longer directly spatially contiguous following some deforestation

over the past 20 years, wewould not expect this timescale to impact the canopy tree

community.

Concessions are split into Annual Production Units (APUs) in which forest cen-

suses are conducted in the year preceding harvest. Trees ≥ 40 cm diameter at

breast height (DBH) aremapped,measured and identified to the species level where

possible, for species of interest to the concessionaire (ranges from61 to 351 species).

For all subsequent analyses, we excluded riparian strips and non-operational areas,

where inventories were not conducted, from the observation windows.

To account for potentialmis-identification, we consideredonly commercial species,

species protected by law and highly conspicuous species. At several concessions, in-

dependent botanical verifications have been conducted and strict monitoring of in-

ventory and logging activitieswithin BrazilianNational Forests by theBrazilian Forestry

Service (SFB) diminishes the possibility of systematicmis-identification. We further

eliminated species where confusion with other species was a possibility.

Our analyses thereby considered 211 spatial point patterns of 133 species (NP: 35,

RO: 31, ST: 35, VJ: 74, CX: 36) for which species identification was reliable, totalling

∼392,000 spatially mapped and identified trees across ∼60,000 ha. Nomenclature

was standardised to adhere to The Plant List database (TPL, 2013).

4.2.2 Environmental data

To determine the impact of abiotic environmental factors on observed spatial pat-

terns, we considered three local-habitat attributes (Fig. C.1). Elevation, at 12.5 m

resolution (JAXA/METI, 2011), which was further used to calculate slope and the

SAGA Wetness Index (TWI) (Böhner and Selige, 2006), which improves upon the

standard Topographic Wetness Index (Beven and Kirkby, 1979). Environmental co-

variates were checked for multicollinearity via VIF assessment (Brown, 2015).
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4.2.3 Categorisation of clustering

Weassessed the relative roles of functional traits and habitat filtering in determining

canopy tree aggregation patterns through the use of spatial point pattern analyses.

We characterised observed spatial patterns into four categories in accordance

with their drivers of aggregation, or lack thereof, namely, ‘Complete Spatial Ran-

domness’ (CSR) (C1), ‘Habitat Associations Only’ (C2), ‘Dispersal Limitation Only’

(C3) and ‘Habitat and Dispersal Limitation’ (C4). We used a three-step approach

proposed byWaagepetersen and Guan (2009) and followingMcFadden et al. (2019),

whereby patterns are categorised based on non-random departure from a pair of

spatial point pattern null models (Fig. 4.2).

To determine such departure, it is first necessary to quantify the spatial struc-

ture of each spatial pattern. Here we implemented the pair correlation function,

g(r), which gives the observed number of pairs of points that are r meters apart,

standardised for the density of points within the observationwindow. We restricted

analysis up to a maximum radius of 1200 m to account for the variation in observa-

tion window size between sites and used the ‘translation’ correction to control for

border effects. We also considered Besag’s L-function and the F-, or empty space,

function but ultimately excluded them from the analysis since simulations demon-

strated high rates of false positives, even after Benjamini-Hochberg correction. 

Figure 4.2: Decision tree used to categorise species spatial point patterns
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The first step in the categorisation, then, used 999 simulations of the homoge-

neous Poisson process as a null model and Loosmore’s goodness-of-fit test (Cressie,

1992, Diggle, 1986, Loosmore and Ford, 2006) to determine whether the structure

of each point pattern differed significantly from CSR. Those patterns exhibiting no

departure from CSR were assigned to the ‘Complete Spatial Randomness’ category

(C1). For the second step, for patterns demonstrating non-random spatial struc-

ture, we fit the inhomogeneous Poisson model to each pattern with elevation, slope

and TWI as environmental covariates. Model reduction via backward AIC selection

was used to determine the set of environmental covariates to be included in the null

model. We tested for further aggregation beyond that explained by environmen-

tal covariates via goodness-of-fit tests with 999 simulations of the inhomogeneous

Poisson model. Patterns not exhibiting significant departure were assigned to the

‘Habitat Only’ category (C2).

Patterns departing from the inhomogeneous Poisson model can be considered

as exhibiting a further clustering effect, considered to bemainly a result of dispersal

limitation (Lin et al., 2011, Shen et al., 2009a). However it should be noted that further

clustering may also arise frommissing environmental variables. For those exhibiting

significant departure, patterns with no habitat associations were placed into the

‘Dispersal LimitationOnly’ category (C3) and to the ‘Habitat andDispersal Limitation’

category (C4) when at least one environmental association was present.

Table 4.1: Spatial point pattern categories. Species patterns were categorised according

to a decision tree using increasingly complex spatial point pattern models following McFad-

den et al. (2019), fromwhich, the corresponding habitat association and cluster parameters

were estimated.

Category Spatial point model Parameters

C1: Complete

spatial randomness
Homogeneous Poisson –

C2: Habitat only Inhomogenous Poisson
Habitat association

coefficients, βn

C3: Dispersal only log-Gaussian Cox process
Cluster size (α) and
cluster intensity (σ2)

C4: Habitat

and dispersal
log-Gaussian Cox process βn, α, σ

2

4.2.4 Parameterisation of habitat association and dispersal limita-

tion

Beyond classification of each observed pattern, we quantified habitat associations

and dispersal limitation. No parameters were estimated for patterns in C1 given that
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they exhibited no deviance from CSR. We used the inhomogeneous Poisson model

to estimate habitat association parameters for patterns in C2, with the reduced set

of environmental variables as covariates. To quantify clustering for those patterns

placed in C3 and C4, we implemented the log-Gaussian Cox process (LGCP) models

to estimate habitat associations (C4 only), cluster size and intensity. Cluster size (α)

represents an estimate of the spatial radius overwhich clustering occurs and cluster

intensity (σ2) represents the density of trees within clusters. Here, aggregation is

modelled by the random intensity function:

log
∧
(u) = µ+H(u)βᵀ +D(u)

where µ is the intercept, β is a vector of habitat association coefficients for

the vector of environmental variables, H(u), and D(u) is a general Matérn covari-

ance function (MCF) which describes additional clustering beyond that described

by habitat associations. The salient property of the LGCP is that it considers habi-

tat associations and clustering processes concurrently, thereby accounting for the

effect of each simultaneously. To optimise model fit, we selected the optimal clus-

ter shape value (v) for the MCF from the set of values 0.1, 0.25, 0.5, 1, 4 and 100. All

point pattern analyseswere performed using the spatstat package (Baddeley et al.,
2015).

4.2.5 Functional traits

Todetermine the drivers of species functional traits on their spatial distributions, we

considered six traits related to resource use and dispersal limitation. Adult stature

was taken as the maximum DBH observed across all sites, yet we controlled for po-

tential measurement errors by taking the 5th percentile. Values for SLA (excluding

rachis andpetiole; mm2mg-1), leaf nitrogen content (Nmass; mg g−1), dispersalmode

and dry seed mass (mg) were obtained via the TRY database (Kattge et al., 2011)

whilst wood density (mg mm-3) utilised data from both TRY and direct measure-

ments taken from the logging company at VJ. In modelling aggregation for species

at VJ, only their site-specific wood density values were used (Table C.2). For disper-

sal mode, we assigned any missing categories as that of the closest related set of

species after confirming consistency of diaspore morphological features (presence

of fleshy aril, fruit, wing) using identification keys and herbarium specimens.

Of the 133 species analyses across all sites, the number of missing trait values

were high for many traits, specifically dry seed mass, SLA and Nmass (Table 4.2).

To estimatemissing trait values we used phylogenetic imputation for dry seedmass,

SLA, Nmass, andwooddensity. Thismethod has proven to give accurate estimates for

trait values where phylogenetic signal is strong (Swenson, 2014). Phylogenies were

generated with the V.PhyloMaker package (Jin and Qian, 2019) which implements
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the current largest dated plant phylogeny, derived from a combination of the Smith

and Brown (2018) and Zanne et al. (2014)mega-phylogenies. We conducted trait im-

putation via maximum likelihood estimation and accounted for within species varia-

tion by considering multiple observations. We used all available trait data within the

genera of species with missing trait values. Entries in the TRY Database often pro-

vide data for multiple traits, for example, Nmass (mg g−1), nitrogen content per unit

area (Narea, g m
−2) and SLA (mm2 mg−1) may be recorded for a single leaf observa-

tion. Other entries may record only nitrogen content per unit area and/or SLA, yet,

contain valuable information regarding Nmass given that it can be expressly calcu-

lated as Narea×SLA
1000 . Therefore, to fill data gaps and optimise imputation accuracy, we

included inherently related traits as phylogenetic covariates (Table 4.2). Imputation

was performed using Phylopars (Bruggeman et al., 2009) which implements cross

validation to improve estimates (see Table C.1 for the list of imputed trait values).

Table 4.2: Functional trait data availability for the 133 subject species and those used for phy-

logenetic imputation. SLA = Specific leaf area excluding rachis and petiole, SLAinc = Specific

leaf area excluding rachis and petiole, Nmass = Leaf nitrogen content per unit mass, Narea =

Leaf nitrogen content per unit area

Trait nmissing

n spp
used for

imputation

n observations
used for

imputation

Phylogenetic

covariates used

Dry seed

mass (mg)
88 327 346 Fresh seed mass (mg)

SLA

(mm2 mg-1)
56 539 11000

Leaf dry mass (mg)

SLAinc (mm2 mg−1)

Nmass

(mg g-1)
34 696 5212

Narea (g m
−2)

SLA (mm2 mg−1)

Wood density

(mg mm-3)
10 1032 3606 –

4.2.6 Functional drivers and phylogenetic signal of spatial patterns

To determine how spatial patterns of canopy trees may be driven by their functional

traits we fit multivariate linear models for each aggregation and habitat association

parameter, namely, cluster size, cluster intensity, elevation, slope and Topographic

Wetness Index (TWI). For aggregation parameters, we included all traits plus an in-

teraction term between dispersal syndrome and dry seed mass since we expect

large, wind dispersed seeds to exhibit stronger dispersal limitationwhile heavier an-

imal dispersed seeds to be dispersed by larger mammals with a larger home range,
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hence, less dispersal limited. For the three habitat association parameters we used

all traits but did excluded the interaction term between dispersal mode and dry

seed mass since there is no clear ecological interpretation for such an interaction

with respect to environmental filtering. The final model was determined via back-

ward stepwise selection via AIC.

Lastly, to identify phylogenetic signal in spatial patterns and to control for any

phylogenetic correlation in functional trait values, we fit phylogenetic generalised

least squares (PGLS) models to the same set of models with the caper package

(Orme et al., 2013). Pagel’s lamda (δ), which measures the degree of phylogenetic

correlation in the response variable, was estimated via maximum likelihood. Again,

we used backward stepwise selection via AIC. This method would be inadvisable in

some cases since it compares AIC values of models with different lambda values,

however for all models, lambda was largely stable throughout model selection and

significance did not change.

4.3 Results

4.3.1 Categorising patterns of habitat association and dispersal limi-

tation

Contrary to our prediction, the large majority (82%) of observed spatial point pat-

terns were best described by habitat association and dispersal limitation models

(C4)whilst only 1% of patterns (n = 2) exhibited a pattern of CSR (C1) (Fig. 4.3a). The

proportion of patterns assigned to each category varied between sites, although C4

was consistently the most prominent at all sites. At RO, all species exhibited both

habitat associations and dispersal limitation. Comparatively less species showed

patterns consistent with C4 at NP and CX, with comparatively more species exhibit-

ing only habitat associations (C2). Further, NP and CX were the only two sites con-

taining species exhibiting CSR (Fig. 4.3b). (See Table C.3 for full list of pattern cate-

gories)

For the 42 species that occurred atmultiple sites, category placementwas not al-

ways consistent between sites. Although 25 species were consistently placed within

the same category, the remaining 17 varied from site to site. Almost all category dis-

parities within species were generally ‘downgrades’ from C4 to C2 or C3 and the

proportion of patterns attributed to each category almost exactly matched that of

cross-site patterns (Table 4.3 & Fig. 4.3a). This indicates that habitat associations

and dispersal limitation are no more similar within species than expected by ran-

dom.
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Figure 4.3: Species point patterns were categorised into four spatial aggregation patterns

via a decision tree (Table 4.1). Across all sites (a) the large majority of species were best

described by models that incorporated both habitat associations and dispersal limitation

(category C4). The proportion assigned to each category varied somewhat between sites

(b), the most striking of which, being that all species at RO exhibited habitat associations

and dispersal limitation.

4.3.2 Habitat associations

Of the patterns that exhibited habitat associations with at least one environmental

variable (C2 & C4), 83% were associated with elevation, 58% with slope and 77%

with TWI. For all sites, fewer species responded to slope as a driver of aggregation

than elevation and TWI. Elevation was the most prominent factor at ST, VJ and CX

whilst more species associated with TWI at NP and RO (Fig. 4.4a).

There was some correspondence between environmental associations and the

variance of that environmental factor at each site. For example, RO, ST and VJ exhib-

ited the greatest variance in elevation and, equally, had the most amount of species

associating with elevation. Likewise, TWI drove the most species aggregation pat-

terns at NP and RO, where the spread of TWI was also greater (Fig. 4.4b). This is

consistent with the notion that strong environmental gradients are necessary to in-

fluence environmental filtering. However, this observation was not a rule. Variance

in slope exhibited almost no observable difference in the proportion of habitat as-

sociations and at CX a large proportion of species associated with elevation despite

the topography at CX being considerably flatter than other sites.

Despite elevation influencing the majority of aggregation patterns, the strength

of associations with TWI and slope were generally stronger. For TWI, more species

patterns associatedwithdrier habitats (negative TWI association) thanwet (Fig. 4.5).
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Table 4.3: The number of species assigned to each aggregation category for species ob-

served at more than one site. The proportion patterns assigned to each category almost

exactly matched that of patterns for all species across all sites (Fig. 4.3a). Species with con-

sistent categories are indicated in italics.

Species C1 C2 C3 C4

Allantoma decandra 0 1 0 1

Apuleia leiocarpa 0 0 0 2

Astronium lecointei 0 0 0 3

Bowdichia nitida 1 0 1 1

Brosimum rubescens 0 1 0 2

Buchenavia parvifolia 0 0 0 2

Carapa guianensis 0 0 0 3

Cariniana micrantha 0 0 0 3

Caryocar glabrum 0 0 0 5

Caryocar villosum 0 0 0 4

Cedrelinga cateniformis 0 0 0 3

Ceiba pentandra 0 0 0 2

Clarisia racemosa 0 2 0 2

Cordia goeldiana 0 1 0 1

Couratari guianensis 0 0 0 4

Dialium guianense 0 0 0 2

Dinizia excelsa 0 0 0 3

Diplotropis racemosa 0 1 0 2

Dipteryx odorata 0 0 0 5

Endopleura uchi 0 2 0 2

Enterolobium schomburgkii 0 0 0 4

Eschweilera coriacea 0 1 0 2

Goupia glabra 0 0 1 3

Handroanthus impetiginosus 0 0 0 2

Handroanthus incanus 0 1 0 1

Handroanthus serratifolius 0 1 0 1

Hymenaea courbaril 0 1 0 2

Hymenolobium excelsum 0 1 0 1

Jacaranda copaia 0 0 0 2

Lecythis pisonis 0 0 0 2

Manilkara bidentata 0 1 0 1

Manilkara huberi 0 0 0 4

Mezilaurus ita-uba 0 0 0 4

Minquartia guianensis 0 0 1 2

Parkia nitida 0 0 0 2

Parkia pendula 0 1 0 2

Peltogyne lecointei 0 0 0 2

Pouteria guianensis 0 0 0 2

Qualea paraensis 0 0 0 3

Simarouba amara 0 1 1 2

Tetragastris panamensis 0 0 0 2

Vouacapoua americana 0 0 0 2

Total 1 16 4 100

Proportion 0.8% 13.2% 3.3% 82.6%

For species that occurred across multiple sites, habitat associations were not

consistent; elevational, TWI and slope associations did not always manifest equally
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Figure 4.4: For aggregation patterns exhibiting habitat associations (C2 & C4), slope asso-

ciated with the fewest proportion of species across all sites, with elevation and TWI being

the prominent drivers. The proportion of habitat associations varied between sites (a) and

there was some correspondence with the environmental heterogeneity (b).
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Figure 4.5: Of the species aggregation patterns associating with elevation, TWI or slope (C2

& C4), the strength of association tended to be stronger with TWI and slope than elevation.

Note: the apparent bimodal distribution is simply due to patterns in C1 and C3 not repre-

sented here.

across sites. For example, Simarouba amara was positively correlated with eleva-

tion and TWI at RO, VJ and CX but did not exhibit any habitat associations at NP. Fur-

ther, Simarouba amara associated more strongly with TWI at VJ and CX than RO.

More interestingly, for many species, the direction of association for environmental

factors also varied. For example, while Cariniana micrantha consistently associated

with drier topography, it associated positively with elevation at RO and CX but neg-

atively at ST (Table C.3).

4.3.3 Dispersal limitation

After accounting for habitat associations, aggregation patterns exhibited a range of

dispersal limitation (C2 &C4). Cluster size (α), an estimate of the radius over which
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clustering occurs, ranged from 32–1720 m, while cluster intensity (σ2), describing

stem density within clusters ranged from values of 1.0–4.7. This result is inconsistent

with a theory of species dispersal equivalence. Further, whilst the range of cluster

sizes was generally similar between sites, cluster intensity values varied between

sites. At the extremes NP exhibited strong clustering, whereas species at ST exhib-

ited a range of clustering intensity (Fig. 4.6).
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Figure 4.6: Dispersal limitation varied between species at all sites; both cluster size (a) and

cluster intensity (b) spanned a range of values. There was little difference in variability of

cluster size between sites but the range of cluster intensities varied from site to site. Note:

the x axis for α is on the log-scale.

Contrary to our predictions, for species that spanned multiple sites, the degree

of dispersal limitation varied. However, variation differed from species to species.

For example, dispersal limitationwas consistent forEnterolobiumschomburgkii (n =

4)with cluster size rangingbetween47.1–69.8mandcluster intensity between3.71–4.03.

Conversely, cluster size of Simarouba amara (n = 4) ranged from 92–1720 m and

exhibited no dispersal limitation at CX. In general, cluster size exhibited considerably

more variation than cluster intensity.

4.3.4 Dospecies functional traits explainhabitat associationsanddis-

persal limitation?

Following backwards stepwise selection of multivariate linear models, only cluster

intensity (σ2), slope and TWI retained any functional traits as explanatory variables.

Species with larger seed mass exhibited reduced clustering intensity (Fig. 4.7a) and

in line with our predictions, species with low nitrogen content associated more

strongly with drier habitats (Fig. 4.7b). Species with higher SLA associated more

strongly with sloped topography (Fig. 4.7c). Although each corresponding functional

trait was retained in the final model, thereby representing the best model, none

were significant and explanatory power was low (Fig. 4.7 & Table C.4).
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Figure 4.7: Species functional traits predict spatial properties. Dry seed mass is negatively

related to dry seed mass (a). Species negatively associated with TWI (i.e. drier habitats)

tended to have lower nitrogen content (b). Species positively associated with slope to-

pography tended to have higher specific leaf area (SLA). Red lines represent ordinary least

sqaures fits and confidence bands represent the 95% confidence interval. Dry seed mass is

measured in mg, SLA in mm2 mg−1, Nmass represents leaf nitrogen content in mg g−1 and

cluster intensity is unitless.

PGLSmodels allowed us determine the phylogenetic signal associated with each

aggregation parameter and, further, account for species relatedness. The only spa-

tial aggregation parameter explained by functional traits after accounting for phylo-

genetic signal was cluster intensity which exhibited the same negative relationship

with dry seed mass as with the linear model. Interestingly however, effect size was

greater (-0.065 v.s. -0.108) and the relationship was statistically significant. Further,

dispersal syndromewas a significant predictor, with anemochorous species exhibit-

ing lower clustering intensity than zoochorous species (Fig. 4.8 & Table 4.4).
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Figure 4.8: After accounting for phylogenetic signal, dry seed mass was more strongly neg-

atively related to cluster intensity and wind-dispersed species tended exhibit less clustering

intensity than animal-dispersed species. Lines represent PGLSmodel fits for each dispersal

syndrome.
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Table 4.4: PGLS model summary statistics for clustering intensity. Anemochorous and au-

tochorous effect sizes are in comparison to zoochorous species.

σ2

Dispersal syndrome: -0.046ns

Autochorous (0.315)

Dispersal syndrome: −0.261∗

Anemochorous (0.129)

log(Dry seed mass) −0.108∗

(0.042)

R2 0.044

F Statistic 2.78∗ (df = 3; 181)

Pagel’s λ 0.104ns

4.4 Discussion

The use of landscape-scale forest inventory data from the forestry sector enabled

us to answer key questions regarding the drivers of aggregation of large tropical

canopy trees.

4.4.1 Categorising patterns of habitat association and dispersal limi-

tation

The large majority of species were best described by spatial point pattern mod-

els that incorporated both habitat associations and dispersal limitation which indi-

cates that both mechanisms play a key role in driving spatial structure of canopy

trees. Although the dual roles of habitat association and dispersal limitation has

beendemonstrated in tropical Asian, Central andSouthAmerican andAfrican forests

(Jalilian et al., 2013, Lin et al., 2011, Réjou-Méchain et al., 2011, Shen et al., 2009b, 2013),

such studies were limited to small plots up to 50 ha or across non-contiguous forest.

Whether the dual roles scaled to canopy trees, therefore, remained unanswered.

McFadden et al. (2019) observed that trees ≥ 10 cm DBH were less associated with

environmental factors than those < 10 cm DBH. Thus, our finding that 94% of aggre-

gation patterns for trees≥ 40 cmwere associatedwith environmental variables was

a surprising and important discovery.

4.4.2 Habitat associations

Under neutral theorywe should expect little to no species habitat association (Hubbell,

2001), yet environmental factors drove species aggregation patterns consistently,

acrossmultiple sites spanning the Amazon Basin. Further, the number of species as-

sociating with individual environmental variables tended to correspondwith the de-

gree of environmental heterogeneity at the site, adding credence to the importance
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of environmental filtering as a key driver, shaping spatial structure of canopy trees.

Although habitat associations were often weak, the large scale of our study design

enabled us to detect their influence. Further, we might expect adult canopy trees

to exhibit weaker habitat associations. Although Visser et al. (2016) found survival

rates of canopy tree seedlings to be greater than small statured species, the inher-

ently longer life cycle of canopy treesmeans they aremore susceptible to stochastic

mortality events through time, thus, weakening the observed environmental associ-

ations.

Elevation was associated with a large proportion of species, despite exhibiting

the weakest associations. One possible explanation for this is that elevational gradi-

ents are associated with a wide range of habitat conditions including ambient hu-

midity, precipitation, wind velocity and soil composition gradients (Jucker et al.,

2018, Sundqvist et al., 2013). Further, elevation is likely to covary with topograph-

ical position, i.e., ‘valley v.s. ridge’, which is implicated in solar irradiance. Thus,

elevational associations may represent different ecological processes for different

species depending on their habitat tolerances. The finding that TWI was a strong

predictor of spatial aggregation was an unsurprising results, drought tolerance has

been demonstrated to shape species distributions (Engelbrecht et al., 2007b) and

TWI has been a common driver of species distributions throughout this thesis. Our

finding that more species associated with drier habitats in this study could be due

the fact that the majority of species considered here were commercially valuable,

hardwood species. Slowgrowing, hardwood species tend tobe resource-conservative

and hence are more likely to outcompete drought-intolerant species in drier habi-

tats.

4.4.3 Dispersal limitation

Our results find that dispersal limitation, too, is pervasive across all sites and for the

large majority of species. This supports recent theory that environmental factors

and stochastic dispersal processes superimpose to shape the spatial distributions

of species (Bongalov et al., 2019, Chisholm and Pacala, 2010). However, contrary

to assertions that dispersal-recruitment processes are stochastic and that species

specific dispersal kernels do not contribute to spatial structuring of communities

(Bongalov et al., 2019, May et al., 2015), we find species cluster size to exhibit a wide

range of scales. Hence, species-specific dispersal limitation is likely to play a key role

in shaping canopy tree communities.

Interestingly, variance in cluster intensity (density of stems within clusters) dif-

fered between sites. This could arise from differences in communities at each site.

Firstly, different species may inherently exhibit different clustering intensities ac-
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cording to functional traits. Secondly, the number of species occupying the same

niche within the community may vary from site to site which would impact localised

species abundance.

4.4.4 Dospecies functional traits explainhabitat associationsanddis-

persal limitation?

Few functional traits explain habitat associations anddispersal limitation in our study.

Species with low leaf nitrogen content were found to be associated with drier en-

vironments. This is an expected result given that nitrogen is the key nutrient in-

volved in leaf production, low leaf nitrogen content is consistent with a resource-

conservative ecological strategy (Westoby et al., 2002), promoting survival under

harsh conditions. Low SLA is also a resource conservative trait and was found to be

associated with flatter topography. Slope is implicated in controlling soil nutrient

gradients (Chadwick and Asner, 2016, Xia et al., 2016) yet how nutrients are dis-

tributed is context-dependent. Flat habitats on ridges will have different soil com-

position to flat habitats in valleys, hence this result is difficult to interpret without

soil composition data. Considering Topographic Position Index (TPI), may help to

elucidate this relationship.

Species’ seed mass was found to predict cluster intensity, with larger-seeded

species having lower density within clusters. While cluster intensity can be an in-

dication of dispersal limitation, large-seeded species tend to produce few seeds

(Muller-Landau, 2010), resulting in reduced local density, which may also explain

this result. Alternatively, larger seeds tend to be dispersed by large vertebrates with

large home-ranges (Russo et al., 2007), carrying seeds further. However, contrary

to our predictions and previous studies (McFadden et al., 2019, Seidler and Plotkin,

2006), dispersal syndrome was not found to determine cluster size (α).

After accounting for species relatedness via PGLS modelling, we found anemo-

chorous (wind-dispersed species) to exhibit lower cluster density alongside higher

seedmass (Fig. 4.8). This is an interesting finding sincewewould expect anemochrous

species to exhibitmore limiteddispersal than zoochorous species andhence greater

density. This observation also contradicts the notion that stronger clustering inten-

sity with larger seed mass is a result of dispersal from large invertebrates. There

are several explanations that may account for these observations. Animal dispersed

seeds are typically nutrient-rich, whichmaypromote successful recruitment (Muller-

Landau, 2010) resulting in greater local stemdensity. More likely, however, is that the

complexities of dispersal are clouded within the rudimentary categorisation of dis-

persal syndrome used here. Wind dispersed species can suffer from both pre- and

post-dispersal seed predation and insect dispersed seeds are unlikely to disperse
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far from the parent.

Dispersal syndrome data were taken from the TRY database (Kattge et al., 2011),

yet classifications into the ‘animal-dispersed’ category were often based on single

observations. For example Ormosia coccinea has a dehiscent seed pod and a di-

aspore with no aril, typically associated with autochory, yet is designated as zoo-

chorous following a single observation of ingestion by a bird. Further, insect disper-

sal is not likely occur far from the parent. Taking a morphological approach such as

that usedby Seidler andPlotkin (2006)may provemore fruitful. In addition, because

we imputed functional traits based upon a phylogeny that was not fully resolved, this

could result in a phylogenetic homogenisation of traits within polytomies.

Lastly, we only had three environmental variables and aggregation patterns could

be confused or confounded with dispersal limitation when in fact it is an environ-

mental variable that we did not account for. In particular, we did not measure soil

properties, but these have been shown to strongly predict species aggregation pat-

terns McFadden et al. (2019). That said, in our study area, as accross much of the

Amazon, there is unlikely to be substantial variation in soils at small spatial scales

given the highly weathered nature of lowland tropical soils.



Chapter 5

Discussion

A core issue in community ecology is understanding the processes responsible for

driving the composition of species within hyperdiverse tree communities in tropi-

cal forests. Here, a single hectare of rainforest can support over 280 tree species

(DeOliveira andMori, 1999, Valencia et al., 1994). Yet despite substantial research ef-

forts, definitive answers to explaining how large numbers of plant species are able to

coexist at small spatial scales remain elusive. Tackling this key question requires an

understanding of the drivers of hyperdiverse community composition, and in par-

ticular teasing apart the roles of deterministic and stochastic processes. While a

large number of studies have attempted to disentangle the relative roles of such

processes in small forest plots, whether and how these processes scale up to the

canopy tree community has previously remained unknown. This thesis sits at this

juncture and specifically dealswith this issue by focusing on the roles of environmen-

tal filtering and dispersal limitation as core, dual drivers of species turnover within

tropical forests, in particular demonstrating that stochastic dispersal and environ-

mental filtering can superimpose to dictate spatial community structure.

InChapter 2, I tackled the question surrounding the relative roles of environmen-

tal factors and stochastic dispersal processes in driving β-diversity – the turnover

of species with space – and addressed the scale at which environmental factors act

to influence community composition. Building upon a recent body of work demon-

strating that environmental gradients and stochastic dispersal can act in concert

to drive compositional turnover (Adler et al., 2007, Chisholm and Pacala, 2010, Wen-

nekes et al., 2012), I usedfielddata topartition the varianceof compositional turnover

attributable to environmental variables and geographic distance. My results corrob-

orated recent results from studies implementing high-fidelity hyperspectral imaging

across the landscape scale (Bongalov et al., 2019, Draper et al., 2019) and that assert

the dual roles of stochastic dispersal and environmental filtering do indeed scale to

79
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the level of the canopy tree community.

I then implemented neutral models using a range of parameters to test whether

neutral theory is capable of concurrently explaining the variance attributable to envi-

ronmental variables and spatially autocorrelated environment. I revealed that neu-

tral simulations were unable to match both the variance attributed to geographic

distance only (D) and geographic distance and spatially autocorrelated environment

(D + D×E) concurrently within a single forest type. This was a key finding since pre-
vious work had only been able to demonstrate that environmental filtering operated

at large scales across extreme environmental gradients (Bongalov et al., 2019). In-

stead, environmental factors can influence community composition at finer scales

than previously known for canopy tree communities, indicating that stark forest-

type environmental heterogeneity is not a prerequisite for environment to shape

community composition.

Whilst the use of high-fidelity hyperspectral imaging offers a promising route

forwards in analysing patterns of species distributions, spectral signatures cannot

identify individual species. Meanwhile, phylogenetic β-diversity offers insightful in-

roads into decomposing the drivers of β-diversity (Hardy et al., 2012, Legendre et al.,

2009, Liu et al., 2016, Qiao et al., 2015, Saito et al., 2015). In chapter 3, I again tackled

the key question of the relative roles of environmental and spatial factors in driving

compositional turnover and spatial structuring (Chapter 2), but this time doing so

through the lens of phylogenetic β-diversity. I implemented phylogenetic β-diversity

(PBD) to analyse the relative roles of environmental and spatial variables through the

lens of niche conservatism (Graham and Fine, 2008, Jin et al., 2015). Comparing re-

sults against traditionally used taxonomic β-diversity (TBD) metrics demonstrated

that environmental factors play a greater role in driving community composition

than previously detectable for canopy trees.

I then investigated the scale at which spatial and environmental variables act us-

ing two methods, firstly by considering a range of cell sizes and secondly by using

partial distance-based redundancy analysis (dbRDA)on fractions of broad-, intermediate-

and fine-scaled spatial variables. This revealed two key findings: (1) environmental

variables can act alone at scales as low as 1 ha in shaping community composition;

but (2) the greatest variation in community composition came from environmental

variables acting in concert with spatial factors at broad- and intermediate-scales.

These findings both corroborate assertions that environmental variables act more

strongly across wider scales (Bongalov et al., 2019, Davidar et al., 2007, Hardy et al.,

2012) and strengthen the results of Chapter 2, indicating that environmental vari-

ables can operate at fine scales.

Studies working at the local scale on juvenile and sub-adult trees show that envi-
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ronmental factors and dispersal limitation explain species aggregation patterns (Lin

et al., 2011,McFadden et al., 2019, Réjou-Méchain et al., 2011). In Chapter 4, I furthered

this understanding by investigating whether broad-scale variation in canopy (adult)

tree patterns of distribution are similarly impacted by environmental variables and

dispersal limitation, which is critical given that these are the seed trees from which

recruitment occurs. To do so, I took advantage of recent advances in spatial point

pattern models (Shen et al., 2009a, 2013, Waagepetersen and Guan, 2009) in com-

bination with a dataset of 392,000 canopy trees spanning 60,000 ha of undisturbed

forest across the Amazon Basin. Firstly, I categorised species aggregation patterns in

accordance with their environmental associations and dispersal limitation patterns

in using a decision tree of increasingly complex spatial point pattern models. This

revealed that the large majority of species patterns exhibited both habitat associa-

tions and dispersal limitation. This represented a key finding since it was previously

unknown whether patterns of spatial aggregation would manifest in the same way

for canopy trees as juvenile stems (McFadden et al., 2019). Given that we used envi-

ronmental variables with a resolution of 12.5 m, this provides further evidence that

environmental variables shape spatial structure of community composition.

I then investigated how the strength of environmental associations and clus-

tering parameters varied between sites and species. Cluster size varied consid-

erably, demonstrating that dispersal is not neutral (Lowe and McPeek, 2014) and

that dispersal kernels vary between species and sites. Using phylogenetic impu-

tation, I imputed functional traits for the species found across all sites to deter-

mine whether environmental associations and/or clustering parameters were de-

termined by species functional traits. Clustering intensity was predicted by both

species dispersal syndrome and dry seed mass. This represents a novel finding,

demonstrating that functional traits operate to control species aggregation patterns

and that these patterns span the entire Amazon Basin.

In combination, therefore, these Chapters yield overarching support for the dual

roles of deterministic and stochastic processes in dictating spatial structure of com-

munity composition for large tropical canopy trees. This supports work from else-

where in Latin America (Draper et al., 2019, May et al., 2015) and across the wider

tropics (Bongalov et al., 2019, Liu et al., 2016). Further, they demonstrate the power

of phylogenetic, functional and spatial point pattern methods for disentangling the

key contributors to community assembly dynamics. Withmore landscape-scale for-

est inventory datasets emerging from the forestry sector, the prospects for unfurl-

ing unanswered questions regarding the key processes governing species distribu-

tions of tropical canopy trees are strong. Determining the key processes, especially

for canopy trees is of vital importance given that tropical canopy trees are the pri-
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mary seed dispersers, competitors and carbons storers within tropical rainforests

(Pan et al., 2011, Thomson et al., 2011, Wright, 2002). As tropical forests face increas-

ing threats of land-use change, understanding the underlying mechanisms of com-

munity assembly can provide key insights into conservation actions (Socolar et al.,

2016).

5.1 Implications for forest management

Selective logging is a key commercial industry within tropical forest nations and

is by far the largest-scale degrading force within tropical forests (Edwards et al.,

2014a). At least 403 million hectares of tropical forest is committed to selective log-

ging (Blaser et al., 2011) – an area the size of the European Union – with a substantial

additional forest area logged illegally (Pacheco et al., 2016); accounting for an esti-

mated 50-90% of tropical timber; (Nellemann and Others, 2012). As such, selective

logging is currently responsible for 6% of tropical greenhouse gas emissions (Ellis

et al., 2019), a major concern given ongoing climate change.

Selective logging involves the harvesting of commercially viable adult (canopy)

trees, which in combination with their extraction along skid trails and roads, dam-

ages neighbouring unharvested trees, opens gaps in the forest canopy and simpli-

fies the forest age structure. The resulting penetration of the sunlight to the for-

est floor and understorey promotes regeneration via growth of the remaining sub-

canopy trees and understorey saplings (Edwards et al., 2014b). It also can result

in impeded succession if climbing vines and bamboos thrive (Putz et al., 2008) and

thus greatly reduced long-term productivity (Hawthorne et al., 2012).

The vast majority (99%) of legally mandated selective logging involves ’sustain-

able forest management (SFM)’, which implements regulations designed to retain

the economic, social and environmental values of tropical forests over time (Keenan

et al., 2015). Specifically, SFM requires regulations on harvest intensity (number of

trees cut), minimum felling diameters (cutting only large adult trees), minimum cut-

ting cycle lengths (typically 30 to c.70 years, in Brazil and Malaysia, respectively) and

seed-tree retention rates. In turn, the impacts of logging on plant communities ap-

pears minimal, given that species richness is similar between logged and primary

old-growth (unlogged) forest (Berry et al., 2010). Thus, in theory, selective logging

in the tropics will permit harvesting for generations to come.

There are, however, two key reasons for concern. First, many governments have

insufficient regulatory conditions and monitoring capacity to enforce prescribed

SFM. For example, by 2015, only 37% of low-income countries reported forest in-

ventories that detailed how forests are managed (MacDicken et al., 2015). Second,



Chapter 5. Discussion 83

recent research from the Amazon suggests that even when SFM is appropriately ap-

plied, the intensity of harvest is too high and the return time too short to permit the

full recovery of timber stocks to baseline levels (MacDicken et al., 2015). A major

area of ongoing forestry research is thus seeking to understand how harvested tree

communities are impacted at the large spatial scales relevant to harvest and in turn

what that means for forest recovery.

Results and data stemming from this thesis can offer critical insights. The impor-

tant role of environmental filtering in dictating species distributions at fine scales

(Chapter 2 and Chapter 3) may suggest that logging should be performed across

entire concessions (akin to land-sharing logging) rather than being concentrated

within one area or habitat type (Edwards et al., 2014a). In turn, Chapter 4 identifies

habitat associations and variation in dispersal kernels. Of particular concern are

those species that have a strong tendency to aggregate, but are also highly dispersal

limited. If harvesting such species, it would be vital to ensure that some adult trees

are retained within the cluster, via sufficient seed-tree retention, although how such

rates should be determined is an area for further research. Currently, in the Ama-

zon, these rules are set at the same level for each tree, but Chapter 4 indicates that

species-specific rules are needed with respect to both the number of individuals

and how their retention is organised spatially.

Subtractive heterogenisation

Chapter 3 revealed the scales at which environmental variables operate to drive

β-diversity. Pivotally, because of the inherently spatial nature of species turnover

within tree communities, loggingmay reorganise this structuring. Of particular con-

cern is the potential for subtractive heterogenisation to occur (Socolar et al., 2016).

Via the selective removal of common tree species, logging may increase the rates of

species turnoverwith unknownconsequences for ecological processes (e.g. Janzen-

Connell effects; (Connell, 1971, Janzen, 1970)), ecosystem functioning (fruit availabil-

ity) and ecosystem services (carbon stocking, given that logged species tend to have

higher wood density).

One potential route in determining whether logging drives substractive hetero-

genisation is to use spatially explicit records of tree distributions (such as those in

Chapters 2-4; Fig. 5.1) in combination with logging records of which stems were cut

during harvest (Fig. 5.2). It is thus possible to generate a clearer understanding of

howharvesting at realistic intensities per species impacts both diversitymetrics and

β-diversity patterns.
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Jamari	National
Forest
Area	of	Operation
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Figure 5.1: Map showing stem locations for Bertholletia excelsa and Shannon diversity for

cells
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Figure 5.2: Phylogeny of species mapped by AMATA logging concession, Rôndonia, Brazil.

Species dots indicate whether a species is harvested or not, and for those harvested, the

proportion that were harvested

Apreliminary assessment using intensity simulations basedupon the spatial point

maps and harvest intensities (Fig. 5.3) to generate predicted communities reveals

two things. First, as expected, while βsor and βsim increase with pairwise distance

between cells, βnes declines. Shared branch lengths between cell pairs increases

over distance whilst the nestedness decreases (Baselga, 2012). Assuming functional

traits express a phylogenetic signal, this suggests that ecosystem functioning has

been altered, likely due to the reduced influenceof common, over-harvested species.

In turn, changes in functional diversity may represent shifts in key ecosystem ser-

vices (Tilman et al., 1997).
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Second, logged forest has higher turnover of lineages across all separation dis-

tances between pairs of cells, suggesting that logging heterogenises phylogenetic

community composition across scales (Socolar et al., 2016). This has significant

implications for the management of selective logging, suggesting that adoption of

harvesting of more species, perhaps via generation of more market opportunities

of currently unused species, is important to retain diversity turnover patterns that

are similar to primary forest. Forestry services could, for instance, reduce stumpage

fees for currently commercially less valuable species and/or increase fees for species

that are currently favoured.
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Figure 5.3: Intensity simulations for one species, Dinizia excelsa. A range of logging intensi-

ties were calculated based on the proportion of stems cut
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Forest recovery with logging intensity

While many studies have investigated how selective logging impacts forest recovery,

the vast majority have done so focusing on broad-scale categories (’conventional’

logging or ’reduced-impact’ logging) versus patterns in primary forest. What is lack-

ing is a combined assessment of logging impacts at small scales and across life histo-

ries. An assessment made at the finer scales at which logging impacts occur would

specifically consider the impacts of local intensity (ie number of stems/trees har-

vested) as well as the spatial arrangement of treefall gaps and skid trails, areas that

are edge effected by these impacts, and those that have no (discernable) logging im-

pacts. Similarly, key is understanding survival, growth and recruitment of seedling,

sapling, juvenile, and adult life stages.

To this end, I focusedupon theAMATA logging concession, Rôndonia, Brazil (page60;

Appendix E) to create a series of 0.5 ha (50 x 100m) forest plots within primary (x17)

and selectively logged (x40) forest (Fig. 5.5).

Figure 5.5: Map of sampling locations at AMATA logging concession

We restricted plots to at least 500 m from each other to minimize spatial auto-

correlation. Additionally, locations were restricted to 200 m from the main access

road, 100 m from secondary roads and 50m from streams to limit plant community

edge effects. The logged plots spanned intensities from 1 to 8 stems harvested per

hectare, the latter representing extremely high intensities that are far higher than
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the legal limit for the Brazilian Amazon (30 m3/ha), and across 1 to 5 years since

harvest in 2016 (Fig. 5.6). Local-scale logging intensity metrics were taken from the

forest inventory dataset following verification of stump location. Road density met-

rics were extracted from the forest inventory dataset which includes all primary and

secondary roads, mappedwith a GPS. Skid trails weremapped by handwithin plots.

Figure 5.6: Count of sampling plots within logged forests between logging intensities and

years since logging in 2016

Within each 0.5 ha plot, I measured, tagged and mapped seedlings (12 m2 in

total), saplings (72 m2), juveniles (500 m2), and adults (5000 m2 / 0.5 ha) as per

(Fig. 5.7). Sizes of seedlings, saplings, juveniles and adults are in Table 5.1 and abun-

dances of size classes in the 2018 sampling are in Table 5.2. These plotswere set up in

Apr-Oct 2016, and then re-measured in May-Nov 2017 and Apr-Jul 2018, accounting

for 19 months of fieldwork in total.

Table 5.1: Plot dimensions and plant size classes

Life

stage

Subplot

dimenstions

Number

of subplots

Sampling

rules

Adult 100×50m 1 DBH ≥ 40cm

Juvenile 100×5m 1
DBH ≥ 15cm

DBH < 40cm

Sapling 8×3m 1
DBH < 1cm

Height ≥ 50cm

Seedling 4×1m 3
Height ≥ 10cm

Height < 50cm
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Figure 5.7: Each 100×50 m plot is comprised of a series of subplots representing adult, ju-

venile, sapling and seedling life stages. Adults are sampled in the full 100×50m plot (subplot

A) and juveniles in a nested 100×5m belt transect, split into 8 sections (subplot B), that runs

down the centre and spans the length of the full plot such that plot-wide logging intensity

effects are represented. Three 8×3 m sapling plots (subplots C) are established at 25, 50

and 75 m along the length of the full plot and offset from the juvenile plot by 5 m to prevent

damage during sampling of the juvenile plot. A 4×1 m seedling plot (subplots D) is nested

centrally within each of the three sapling plots

Species identification was initially made by parabotanist Alex Elias dos Santos.

However, as I became better at tree identification towards the end of the 2017 field

season it became apparent that the identification of many individuals was egre-

giously wrong. This revealed that in instances where dos Santos could not identify

a plant, he had selected from a short list of ∼50 species rather than registering it

as identification unknown. In 2018, In 2018 I collected leaf samples from 4,797 of

the individuals in question. These were sent for identification by the lead botanist at

INPA (National Institute of Amazonian Research), Paulo Apóstolo Assunção. Unfortu-

nately, the identifications were only concluded and sent tome on 21st July 2019, with

c. 1 month of cleaning up still required, and thus precluding their inclusion within

the main data-based chapters of this thesis.
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Table 5.2: Woody stems sampled for each life stage and their mean abundances in logged

and unlogged plots in the 2018 sampling season

Life stage n
Mean abundance

in primary plots

Mean abundance

in logged plots

Seedling 8045 118 151

Sapling 7654 115 143

Juvenile 14851 227 275

Adult 7602 137 132

Nevertheless, these data now represent an important repository from which to

investigate key questions about logging management impacts on tree recruitment

and survival. In particular, important questions include: (1) Howdo logging skid trails

and intensity impact recruitment, survival, and growth; (2) how does the spatial ar-

rangement of congeners affect survival, including Janzen-Connell processes; and (3)

how does logging intensity and time since logging impact phylogenetic diversity of

seedling, sapling, and juvenile tree communities.

5.2 Conclusions

Asweenter the Anthropocene, threats to global biodiversity are growing at an alarm-

ing rate. Many predict that we are entering the 6th mass extinction event (Barnosky

et al., 2011), in large part driven by land-use change and overharvesting. Improving

our understanding of the processes that drive hyperdiversity is the critical founda-

tion upon which predictions of these impacts can be made. In this thesis, I have

revealed the relative roles of stochastic and deterministic processes driving com-

munity composition and its turnover over space. I have done so focussing on adult

canopy trees, which to date have been overlooked at the scales required to fully

assess their patterns.

The global importance of tropical timbers and, consequently, the enormous area

of tropical forest that has been and that will be selectively logged cannot be under-

stated. The techniques and findings in this thesis highlight potentially fruitful lines

for scientific examination of how best to ensure sustainability in wood supply and

the recovery towards the spatial patterns and processes of an old-growth tropical

forest.
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Appendix A

Fine-scale variation in

environmental factors shape

β-diversity in tropical canopy

tree communities
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Figure A.1: We overlaid grids of varying resolution over the study site to determine an op-

timal cell size such that we had sufficient replication (a), variance in stem abundance (b),

variance in species richness (c) and stability of alpha diversity (d).
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Figure A.2: The spread and autocorrelation of the five environmental variables considered

in our analyses.
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Figure A.3: Neutral simulations were conducted in an arena composed of 672,345 three

hectare cells (a), surrounding the study site (b). Stem density (represented here in

greyscale) for each cell was assigned as equivalent to that observed at the study site, with

all cells falling outside the study area assumed to have the median density of observed cells,

following Bongalov et al. (2019) (c). Since the locations of some cells were manually placed

and, therefore, offset from the original cell grid, spatially explicit locations were randomly

assigned for each simulated individual via the stationary Poisson process. Neutral commu-

nities were subsequently assigned to sample cells matching the spatial arrangement of cells

used to assess observed communities (c). Stems portrayed in (c) are the result of a match-

ing neutral community. Locations for four species are displayed to illustrate local species

distributions under a neutral model
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Figure A.4: Observed communities were divided into five samples to determine the under-

lying variability within observed communities to determine the rejection threshold, σi, for

simulated communities. Cell representation (a), Bray-Curtis dissimilarity (b), geographic

separation (c), TWI separation (d), TPI separation (e) and elevation separation (f) between

cell-pair samples are close to evenly distributed

A.2 Species list

Table A.1: List of species observed at Vale do Jari and their corresponding abundances

Family Genus Species Abundance

Anacardiaceae Anacardium Anacardium giganteum 984

Anacardiaceae Anacardium Anacardium spruceanum 1

Anacardiaceae Astronium Astronium graveolens 452

Anacardiaceae Astronium Astronium obliquum 675

Continued on next page
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Family Genus Species Abundance

Anacardiaceae Tapirira Tapirira guianensis 41

Anacardiaceae Tapirira Tapirira obtusa 4

Anacardiaceae Thyrsodium Thyrsodium guianense 379

Anacardiaceae Thyrsodium Thyrsodium spruceanum 31

Annonaceae Anaxagorea Anaxagorea dolichocarpa 3

Annonaceae Duguetia Duguetia cauliflora 14

Annonaceae Duguetia Duguetia surinamensis 3

Annonaceae Guatteria Guatteria longicuspis 1

Annonaceae Guatteria Guatteria poeppigiana 53

Annonaceae Onychopetalum Onychopetalum amazonicum 87

Annonaceae Rollinia Rollinia fendleri 1

Annonaceae Xylopia Xylopia aromatica 16

Apocynaceae Aspidosperma Aspidosperma album 100

Apocynaceae Aspidosperma Aspidosperma auriculatum 6

Apocynaceae Aspidosperma Aspidosperma carapanauba 14

Apocynaceae Aspidosperma Aspidosperma eteanum 429

Apocynaceae Aspidosperma Aspidosperma macrocarpon 310

Apocynaceae Aspidosperma Aspidosperma megalocarpon 51

Apocynaceae Aspidosperma Aspidosperma oblongum 39

Apocynaceae Aspidosperma Aspidosperma sandwithianum 25

Apocynaceae Couma Couma guianensis 818

Apocynaceae Geissospermum Geissospermum sericeum 8

Apocynaceae Macoubea Macoubea guianensis 584

Apocynaceae Malouetia Malouetia lata 6

Apocynaceae Parahancornia Parahancornia fasciculata 88

Apocynaceae Rauvolfia Rauvolfia pentaphylla 4

Araliaceae Schefflera Schefflera morototoni 332

Arecaceae Oenocarpus Oenocarpus bacaba 6

Bignoniaceae Handroanthus Handroanthus impetiginosus 7

Bignoniaceae Handroanthus Handroanthus serratifolius 141

Bignoniaceae Jacaranda Jacaranda copaia 1302

Bignoniaceae Tabebuia Tabebuia insignis 35

Bixaceae Cochlospermum Cochlospermum orinocense 10

Boraginaceae Cordia Cordia americana 1

Boraginaceae Cordia Cordia sericicalyx 2

Boraginaceae Cordia Cordia sprucei 3

Burseraceae Protium Protium apiculatum 1

Burseraceae Protium Protium araguense 7

Burseraceae Protium Protium decandrum 665

Burseraceae Protium Protium giganteum 12

Burseraceae Protium Protium guianense 1

Burseraceae Protium Protium krukoffii 121

Burseraceae Protium Protium pallidum 241

Burseraceae Protium Protium paniculatum 4

Burseraceae Protium Protium polybotryum 87

Continued on next page
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Family Genus Species Abundance

Burseraceae Protium Protium sagotianum 49

Burseraceae Tetragastris Tetragastris altissima 19

Burseraceae Tetragastris Tetragastris panamensis 517

Burseraceae Trattinnickia Trattinnickia burserifolia 496

Burseraceae Trattinnickia Trattinnickia rhoifolia 766

Calophyllaceae Caraipa Caraipa densifolia 3

Cannabaceae Trema Trema micrantha 4

Caryocaraceae Caryocar Caryocar glabrum 2212

Caryocaraceae Caryocar Caryocar microcarpum 7

Caryocaraceae Caryocar Caryocar pallidum 9

Caryocaraceae Caryocar Caryocar villosum 933

Celastraceae Cheiloclinium Cheiloclinium cognatum 23

Celastraceae Maytenus Maytenus pittieriana 3

Chrysobalanaceae Couepia Couepia guianensis 1

Chrysobalanaceae Couepia Couepia robusta 522

Chrysobalanaceae Hirtella Hirtella bicornis 320

Chrysobalanaceae Hirtella Hirtella eriandra 103

Chrysobalanaceae Hirtella Hirtella macrophylla 1

Chrysobalanaceae Hirtella Hirtella obidensis 19

Chrysobalanaceae Hirtella Hirtella piresii 787

Chrysobalanaceae Hirtella Hirtella sprucei 7

Chrysobalanaceae Licania Licania egleri 25

Chrysobalanaceae Licania Licania heteromorpha 1341

Chrysobalanaceae Licania Licania impressa 35

Chrysobalanaceae Licania Licania kunthiana 114

Chrysobalanaceae Licania Licania laevigata 2

Chrysobalanaceae Licania Licania latifolia 481

Chrysobalanaceae Licania Licania macrophylla 9

Chrysobalanaceae Licania Licania membranacea 10835

Chrysobalanaceae Licania Licania micrantha 5467

Chrysobalanaceae Licania Licania minutiflora 4

Chrysobalanaceae Licania Licania octandra 1241

Chrysobalanaceae Licania Licania paraensis 113

Chrysobalanaceae Licania Licania silvae 32

Chrysobalanaceae Parinari Parinari excelsa 11052

Chrysobalanaceae Parinari Parinari montana 664

Clusiaceae Calophyllum Calophyllum brasiliense 71

Clusiaceae Symphonia Symphonia globulifera 35

Combretaceae Buchenavia Buchenavia grandis 36

Combretaceae Buchenavia Buchenavia parvifolia 632

Combretaceae Terminalia Terminalia amazonia 991

Combretaceae Terminalia Terminalia argentea 211

Combretaceae Terminalia Terminalia catappa 2

Combretaceae Terminalia Terminalia guyanensis 16

Connaraceae Connarus Connarus perrottetii 5

Continued on next page
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Family Genus Species Abundance

Ebenaceae Diospyros Diospyros carbonaria 92

Ebenaceae Diospyros Diospyros santaremnensis 21

Ebenaceae Diospyros Diospyros velutinosa 25

Elaeocarpaceae Sloanea Sloanea grandis 233

Elaeocarpaceae Sloanea Sloanea guianensis 270

Elaeocarpaceae Sloanea Sloanea obtusifolia 674

Euphorbiaceae Alchorneopsis Alchorneopsis floribunda 23

Euphorbiaceae Conceveiba Conceveiba guianensis 186

Euphorbiaceae Glycydendron Glycydendron amazonicum 1

Euphorbiaceae Hevea Hevea brasiliensis 59

Euphorbiaceae Hevea Hevea guianensis 85

Euphorbiaceae Hevea Hevea spruceana 16

Euphorbiaceae Mabea Mabea caudata 1

Euphorbiaceae Maprounea Maprounea guianensis 9

Goupiaceae Goupia Goupia glabra 13576

Humiriaceae Endopleura Endopleura uchi 645

Humiriaceae Humiria Humiria balsamifera 345

Humiriaceae Sacoglottis Sacoglottis amazonica 53

Humiriaceae Sacoglottis Sacoglottis guianensis 1592

Humiriaceae Vantanea Vantanea parviflora 4943

Hypericaceae Vismia Vismia cayennensis 31

Icacinaceae Emmotum Emmotum fagifolium 668

Icacinaceae Poraqueiba Poraqueiba guianensis 5

Lacistemataceae Lacistema Lacistema aggregatum 8

Lauraceae Aniba Aniba canellila 27

Lauraceae Aniba Aniba parviflora 4

Lauraceae Aniba Aniba puchury-minor 66

Lauraceae Aniba Aniba rosaeodora 11

Lauraceae Dicypellium Dicypellium caryophyllatum 1

Lauraceae Licaria Licaria canella 369

Lauraceae Mezilaurus Mezilaurus ita-uba 1059

Lauraceae Mezilaurus Mezilaurus lindaviana 4823

Lauraceae Nectandra Nectandra cissiflora 148

Lauraceae Nectandra Nectandra pichurim 1

Lauraceae Ocotea Ocotea aciphylla 45

Lauraceae Ocotea Ocotea guianensis 797

Lauraceae Ocotea Ocotea schomburgkiana 19

Lauraceae Ocotea Ocotea silvae 5

Lauraceae Ocotea Ocotea splendens 81

Lauraceae Ocotea Ocotea sprucei 11

Lauraceae Persea Persea jariensis 1383

Lecythidaceae Bertholletia Bertholletia excelsa 8

Lecythidaceae Corythophora Corythophora rimosa 427

Lecythidaceae Couratari Couratari guianensis 618

Lecythidaceae Couratari Couratari oblongifolia 426

Continued on next page
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Family Genus Species Abundance

Lecythidaceae Couroupita Couroupita guianensis 17

Lecythidaceae Eschweilera Eschweilera coriacea 2254

Lecythidaceae Eschweilera Eschweilera juruensis 6

Lecythidaceae Eschweilera Eschweilera micrantha 108

Lecythidaceae Eschweilera Eschweilera obversa 25

Lecythidaceae Eschweilera Eschweilera paniculata 1721

Lecythidaceae Eschweilera Eschweilera pedicellata 808

Lecythidaceae Eschweilera Eschweilera subglandulosa 8

Lecythidaceae Gustavia Gustavia hexapetala 1

Lecythidaceae Lecythis Lecythis chartacea 57

Lecythidaceae Lecythis Lecythis pisonis 1270

Lecythidaceae Lecythis Lecythis poiteaui 1980

Leguminosae Abarema Abarema curvicarpa 8

Leguminosae Abarema Abarema jupunba 315

Leguminosae Abarema Abarema piresii 9

Leguminosae Acacia Acacia polyphylla 3

Leguminosae Acosmium Acosmium nitens 101

Leguminosae Albizia Albizia pedicellaris 1890

Leguminosae Alexa Alexa grandiflora 38

Leguminosae Apuleia Apuleia leiocarpa 7

Leguminosae Balizia Balizia elegans 1110

Leguminosae Batesia Batesia floribunda 1299

Leguminosae Bowdichia Bowdichia nitida 3411

Leguminosae Campsiandra Campsiandra implexicaulis 1

Leguminosae Cedrelinga Cedrelinga cateniformis 275

Leguminosae Chamaecrista Chamaecrista adiantifolia 17

Leguminosae Chamaecrista Chamaecrista bahiae 4

Leguminosae Copaifera Copaifera martii 136

Leguminosae Copaifera Copaifera officinalis 97

Leguminosae Copaifera Copaifera reticulata 4

Leguminosae Crudia Crudia amazonica 1

Leguminosae Cynometra Cynometra spruceana 12

Leguminosae Dalbergia Dalbergia spruceana 11

Leguminosae Dialium Dialium guianense 965

Leguminosae Dimorphandra Dimorphandra macrostachya 19

Leguminosae Dimorphandra Dimorphandra multiflora 110

Leguminosae Dinizia Dinizia excelsa 8676

Leguminosae Diplotropis Diplotropis purpurea 1213

Leguminosae Diplotropis Diplotropis racemosa 569

Leguminosae Dipteryx Dipteryx magnifica 2295

Leguminosae Dipteryx Dipteryx odorata 2343

Leguminosae Dussia Dussia discolor 14

Leguminosae Elizabetha Elizabetha durissima 1

Leguminosae Enterolobium Enterolobium maximum 7

Leguminosae Enterolobium Enterolobium schomburgkii 869

Continued on next page
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Family Genus Species Abundance

Leguminosae Hydrochorea Hydrochorea corymbosa 2

Leguminosae Hymenaea Hymenaea courbaril 1347

Leguminosae Hymenaea Hymenaea intermedia 80

Leguminosae Hymenaea Hymenaea parvifolia 10

Leguminosae Hymenolobium Hymenolobium excelsum 690

Leguminosae Hymenolobium Hymenolobium flavum 336

Leguminosae Hymenolobium Hymenolobium petraeum 498

Leguminosae Hymenolobium Hymenolobium sericeum 355

Leguminosae Inga Inga alba 233

Leguminosae Inga Inga capitata 1

Leguminosae Inga Inga gracilifolia 28

Leguminosae Inga Inga heterophylla 2075

Leguminosae Inga Inga micradenia 3

Leguminosae Inga Inga oerstediana 278

Leguminosae Inga Inga panurensis 1

Leguminosae Inga Inga pezizifera 37

Leguminosae Inga Inga rubiginosa 3

Leguminosae Inga Inga splendens 141

Leguminosae Inga Inga tarapotensis 28

Leguminosae Macrolobium Macrolobium brevense 5

Leguminosae Macrolobium Macrolobium campestre 5

Leguminosae Macrolobium Macrolobium pendulum 47

Leguminosae Martiodendron Martiodendron parviflorum 19

Leguminosae Mora Mora paraensis 2

Leguminosae Myrocarpus Myrocarpus frondosus 2

Leguminosae Ormosia Ormosia coccinea 45

Leguminosae Ormosia Ormosia coutinhoi 6

Leguminosae Ormosia Ormosia flava 68

Leguminosae Ormosia Ormosia paraensis 55

Leguminosae Parkia Parkia decussata 29

Leguminosae Parkia Parkia gigantocarpa 22

Leguminosae Parkia Parkia nitida 2179

Leguminosae Parkia Parkia pendula 1359

Leguminosae Parkia Parkia reticulata 267

Leguminosae Parkia Parkia ulei 625

Leguminosae Peltogyne Peltogyne paniculata 259

Leguminosae Peltogyne Peltogyne paradoxa 115

Leguminosae Pentaclethra Pentaclethra macroloba 60

Leguminosae Piptadenia Piptadenia gonoacantha 2217

Leguminosae Pithecellobium Pithecellobium decandrum 1524

Leguminosae Platymiscium Platymiscium ulei 31

Leguminosae Pterocarpus Pterocarpus rohrii 188

Leguminosae Pterocarpus Pterocarpus santalinoides 19

Leguminosae Recordoxylon Recordoxylon stenopetalum 4

Leguminosae Sclerolobium Sclerolobium melanocarpum 1678

Continued on next page
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Family Genus Species Abundance

Leguminosae Stryphnodendron Stryphnodendron paniculatum 11

Leguminosae Stryphnodendron Stryphnodendron polystachyum 4

Leguminosae Stryphnodendron Stryphnodendron pulcherrimum 181

Leguminosae Swartzia Swartzia acuminata 369

Leguminosae Swartzia Swartzia grandifolia 11

Leguminosae Swartzia Swartzia panacoco 466

Leguminosae Swartzia Swartzia polyphylla 3047

Leguminosae Swartzia Swartzia racemosa 12

Leguminosae Swartzia Swartzia sprucei 6

Leguminosae Tachigali Tachigali guianensis 11

Leguminosae Tachigali Tachigali melinonii 2177

Leguminosae Tachigali Tachigali myrmecophila 9081

Leguminosae Tachigali Tachigali paniculata 4954

Leguminosae Tachigali Tachigali paraensis 105

Leguminosae Tachigali Tachigali tinctoria 1305

Leguminosae Taralea Taralea oppositifolia 110

Leguminosae Vatairea Vatairea erythrocarpa 753

Leguminosae Vataireopsis Vataireopsis speciosa 91

Leguminosae Vouacapoua Vouacapoua americana 14962

Leguminosae Zollernia Zollernia paraensis 176

Leguminosae Zygia Zygia ampla 2

Leguminosae Zygia Zygia racemosa 228

Loganiaceae Antonia Antonia ovata 284

Malpighiaceae Byrsonima Byrsonima aerugo 13

Malpighiaceae Byrsonima Byrsonima stipulacea 131

Malvaceae Apeiba Apeiba glabra 1081

Malvaceae Apeiba Apeiba tibourbou 9

Malvaceae Guazuma Guazuma ulmifolia 17

Malvaceae Luehea Luehea speciosa 1073

Malvaceae Lueheopsis Lueheopsis rosea 569

Malvaceae Mollia Mollia speciosa 10

Malvaceae Pachira Pachira nervosa 33

Malvaceae Pseudobombax Pseudobombax munguba 8

Malvaceae Quararibea Quararibea guianensis 2

Malvaceae Sterculia Sterculia amazonica 33

Malvaceae Sterculia Sterculia frondosa 164

Malvaceae Sterculia Sterculia pruriens 4

Malvaceae Sterculia Sterculia speciosa 329

Malvaceae Theobroma Theobroma subincanum 5

Melastomataceae Mouriri Mouriri brachyanthera 3190

Melastomataceae Mouriri Mouriri collocarpa 928

Melastomataceae Mouriri Mouriri grandiflora 120

Meliaceae Carapa Carapa guianensis 419

Meliaceae Cedrela Cedrela odorata 8

Meliaceae Trichilia Trichilia lecointei 2

Continued on next page
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Family Genus Species Abundance

Meliaceae Trichilia Trichilia septentrionalis 26

Moraceae Bagassa Bagassa guianensis 5

Moraceae Brosimum Brosimum acutifolium 5

Moraceae Brosimum Brosimum lactescens 25

Moraceae Brosimum Brosimum parinarioides 4289

Moraceae Brosimum Brosimum rubescens 6

Moraceae Clarisia Clarisia racemosa 8

Moraceae Ficus Ficus nymphaeifolia 65

Moraceae Helicostylis Helicostylis pedunculata 604

Moraceae Maquira Maquira sclerophylla 56

Moraceae Perebea Perebea guianensis 124

Myristicaceae Iryanthera Iryanthera juruensis 7

Myristicaceae Iryanthera Iryanthera sagotiana 35

Myristicaceae Osteophloeum Osteophloeum platyspermum 49

Myristicaceae Virola Virola calophylla 13

Myristicaceae Virola Virola flexuosa 24

Myristicaceae Virola Virola michelii 150

Myristicaceae Virola Virola multicostata 7

Myristicaceae Virola Virola sebifera 98

Myristicaceae Virola Virola surinamensis 22

Myrtaceae Myrcia Myrcia amapensis 3

Myrtaceae Myrcia Myrcia splendens 19

Myrtaceae Myrciaria Myrciaria floribunda 180

Nyctaginaceae Guapira Guapira tomentosa 22

Nyctaginaceae Neea Neea constricta 340

Ochnaceae Ouratea Ouratea polygyna 4

Ochnaceae Quiina Quiina florida 1

Ochnaceae Touroulia Touroulia guianensis 5

Olacaceae Chaunochiton Chaunochiton kappleri 236

Olacaceae Douradoa Douradoa consimilis 197

Olacaceae Dulacia Dulacia guianensis 10

Olacaceae Minquartia Minquartia guianensis 6228

Olacaceae Ptychopetalum Ptychopetalum olacoides 4

Peraceae Pera Pera bicolor 90

Peraceae Pogonophora Pogonophora schomburgkiana 401

Phyllanthaceae Amanoa Amanoa guianensis 151

Polygonaceae Triplaris Triplaris weigeltiana 7

Putranjivaceae Drypetes Drypetes variabilis 623

Rhabdodendraceae Rhabdodendron Rhabdodendron amazonicum 1

Rubiaceae Capirona Capirona decorticans 8

Rubiaceae Chimarrhis Chimarrhis turbinata 4595

Rubiaceae Duroia Duroia macrophylla 4

Rubiaceae Ferdinandusa Ferdinandusa elliptica 134

Rubiaceae Ferdinandusa Ferdinandusa paraensis 1050

Rubiaceae Genipa Genipa americana 3

Continued on next page
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Family Genus Species Abundance

Rubiaceae Psychotria Psychotria mapourioides 155

Rutaceae Euxylophora Euxylophora paraensis 2

Rutaceae Zanthoxylum Zanthoxylum culantrillo 17

Rutaceae Zanthoxylum Zanthoxylum rhoifolium 4

Salicaceae Casearia Casearia arborea 167

Salicaceae Laetia Laetia procera 2322

Sapotaceae Chrysophyllum Chrysophyllum prieurii 5

Sapotaceae Manilkara Manilkara bidentata 13187

Sapotaceae Manilkara Manilkara huberi 6447

Sapotaceae Micropholis Micropholis acutangula 88

Sapotaceae Micropholis Micropholis guyanensis 5

Sapotaceae Micropholis Micropholis humboldtiana 778

Sapotaceae Micropholis Micropholis mensalis 132

Sapotaceae Pouteria Pouteria amazonica 642

Sapotaceae Pouteria Pouteria bracteata 158

Sapotaceae Pouteria Pouteria caimito 348

Sapotaceae Pouteria Pouteria elegans 135

Sapotaceae Pouteria Pouteria engleri 175

Sapotaceae Pouteria Pouteria franciscana 1

Sapotaceae Pouteria Pouteria jariensis 1655

Sapotaceae Pouteria Pouteria krukovii 470

Sapotaceae Pouteria Pouteria macrocarpa 3318

Sapotaceae Pouteria Pouteria oblanceolata 33

Sapotaceae Pouteria Pouteria oppositifolia 813

Sapotaceae Pouteria Pouteria reticulata 19

Sapotaceae Pouteria Pouteria rodriguesiana 1082

Sapotaceae Pouteria Pouteria torta 229

Sapotaceae Sarcaulus Sarcaulus brasiliensis 29

Simaroubaceae Simaba Simaba cedron 1

Simaroubaceae Simaba Simaba orinocensis 10

Simaroubaceae Simarouba Simarouba amara 480

Siparunaceae Siparuna Siparuna decipiens 72

Styracaceae Styrax Styrax sieberi 51

Theaceae Gordonia Gordonia fruticosa 5

Ulmaceae Ampelocera Ampelocera edentula 26

Urticaceae Cecropia Cecropia obtusa 1

Urticaceae Cecropia Cecropia sciadophylla 1

Urticaceae Pourouma Pourouma minor 12

Violaceae Paypayrola Paypayrola grandiflora 2

Violaceae Rinorea Rinorea guianensis 200

Vochysiaceae Erisma Erisma calcaratum 9

Vochysiaceae Erisma Erisma uncinatum 938

Vochysiaceae Qualea Qualea albiflora 5958

Vochysiaceae Qualea Qualea coerulea 199

Vochysiaceae Qualea Qualea paraensis 9254

Continued on next page
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Family Genus Species Abundance

Vochysiaceae Qualea Qualea rosea 3170

Vochysiaceae Qualea Qualea wittrockii 1212

Vochysiaceae Ruizterania Ruizterania cassiquiarensis 4

Vochysiaceae Vochysia Vochysia cayennensis 2

Vochysiaceae Vochysia Vochysia divergens 497

Vochysiaceae Vochysia Vochysia guianensis 120

Vochysiaceae Vochysia Vochysia inundata 7

Vochysiaceae Vochysia Vochysia maxima 30

Vochysiaceae Vochysia Vochysia obscura 6108

Vochysiaceae Vochysia Vochysia splendens 395

Vochysiaceae Vochysia Vochysia surinamensis 22

Vochysiaceae Vochysia Vochysia tomentosa 3

Vochysiaceae Vochysia Vochysia vismiifolia 1071
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Figure B.1: The phylogenetic tree used to derive metrics of PBD was reconstructed from

Zanne et al. (2014) & Smith and Brown (2018) mega-phylogenies. 52% of species were fully

resolved to the species level, 44% to the genus level and 4% to the family level. Shading of

the points represent species abundance across the study site. Alternating black and grey

bars at the tips separate plant families as a visual aid only.
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Figure B.2: Map of the 44 distance-based Moran’s eigenvector map (dbMEM) variables re-

tained following forward selection for the 3 ha cell size scenario. Points represent the fitted

site scores. (continued on next page)
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Figure B.2: Maps of the 44 dbMEM variables retained following forward selection for the 3

ha cell size scenario. Points represent the fitted site scores.
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B.2 Supplementary tables

Table B.1: The explained variance attributed to spatial (D), spatially autocorrelated environ-

ment (D×E) and environmental (E) factors, as R2
a values, following variance partitioning on

dbRDAs. Significance was calculated from 999 permutation tests, note, significance of spa-

tially autocorrelated environment cannot be assessed due to covariance. Significance levels:

p∗∗∗ ≤ 0.001, p∗∗ ≤ 0.01, p∗ ≤ 0.05, pns > 0.05

Cell size (ha) n All D D×E E

dBC
1 3785 0.225∗∗∗ 0.180∗∗∗ 0.039 0.0051∗∗∗

3 1048 0.335∗∗∗ 0.258∗∗∗ 0.067 0.0095∗∗∗

5 541 0.306∗∗∗ 0.216∗∗∗ 0.068 0.0210∗∗∗

10 215 0.381∗∗∗ 0.268∗∗∗ 0.088 0.0241∗∗∗

βsor
1 3785 0.166∗∗∗ 0.131∗∗∗ 0.030 0.0050∗∗∗

3 1048 0.223∗∗∗ 0.173∗∗∗ 0.041 0.0090∗∗∗

5 541 0.202∗∗∗ 0.146∗∗∗ 0.036 0.0188∗∗∗

10 215 0.263∗∗∗ 0.193∗∗∗ 0.052 0.0177∗∗∗

D′
nn
1 3785 0.335∗∗∗ 0.252∗∗∗ 0.072 0.0098∗∗∗

3 1048 0.504∗∗∗ 0.354∗∗∗ 0.129 0.0208∗∗∗

5 541 0.489∗∗∗ 0.303∗∗∗ 0.145 0.0406∗∗∗

10 215 0.594∗∗∗ 0.367∗∗∗ 0.185 0.0419∗∗∗

D′
pw
1 3785 0.026∗∗∗ 0.020∗∗∗ 0.005 0.0006∗∗∗

3 1048 0.025∗∗∗ 0.018∗∗∗ 0.005 0.0009∗∗∗

5 541 0.017∗∗∗ 0.010∗∗∗ 0.005 0.0010∗∗∗

10 215 0.015∗∗∗ 0.009∗∗∗ 0.004 0.0007∗
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C.1 Supplementary figures

Observation	window
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Figure C.1: Elevation (a), slope (b) and TWI (c) were derived from a Digital Elevation Model

(DEM) with 12.5 m resolution (JAXA/METI, 2011) in order to determine habitat associations.

Environmental variables displayed here are from the Caxiuanã National Forest (CX)

C.2 Supplementary tables
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TableC.1: Trait values estimated via phylogenetic imputation. Trait values used in imputation

were obtained from the TRY database (Kattge et al., 2011)

Family Species
max

DBH

Dispersal

syndrome
Nmass SLA

Dry seed

mass

Wood

density

Anacardiaceae Anacardium giganteum 95 Animal 19 15.9 2704 0.456

Anacardiaceae Anacardium parvifolium 111 Animal 24.3 15.6 2226 0.493

Anacardiaceae Astronium graveolens 79 Animal 27.5 16.9 103 0.858

Anacardiaceae Astronium lecointei 113 Wind 22.2 14.5 244 0.797

Anacardiaceae Astronium obliquum 70 Wind 24.2 15.2 303 0.851

Apocynaceae Aspidosperma excelsum 145 Wind 22.4 12 484 0.757

Apocynaceae Aspidosperma spruceanum 104 Wind 16.7 9.3 656 0.757

Apocynaceae Couma guianensis 64 Animal 17.4 12.3 162 0.477

Apocynaceae Macoubea guianensis 83 Animal 18.8 17.7 479 0.428

Apocynaceae Macoubea sprucei 126 Animal 15.9 16.1 479 0.438

Apocynaceae Parahancornia fasciculata 67 Animal 17.4 11.6 469 0.478

Araliaceae Schefflera morototoni 64 Animal 18.7 11.3 15 0.444

Bignoniaceae Handroanthus impetiginosus 150 Wind 26.5 18.2 121 0.832

Bignoniaceae Handroanthus incanus 123 Wind 31.7 19.4 163 0.902

Bignoniaceae Handroanthus serratifolius 103 Wind 30.5 21.4 214 0.917

Bignoniaceae Jacaranda copaia 86 Wind 26.9 15 134 0.368

Boraginaceae Cordia goeldiana 103 Wind 22.9 23 118 0.492

Burseraceae Protium decandrum 89 Animal 16.9 10.6 3408 0.529

Burseraceae Protium pallidum 75 Animal 17.6 12.9 1386 0.523

Burseraceae Tetragastris panamensis 86 Animal 15.5 11.4 328 0.691

Burseraceae Trattinnickia rhoifolia 127 Animal 17.7 17.6 375 0.455

Caryocaraceae Caryocar glabrum 129 Animal 20.8 14.3 8217 0.661

Caryocaraceae Caryocar villosum 162 Animal 20.7 13.2 25971 0.734

Chrysobalanaceae Parinari excelsa 88 Animal 18.4 10.4 5173 0.702

Combretaceae Buchenavia huberi 170 Animal 21.4 18.6 1101 0.766

Combretaceae Buchenavia parvifolia 159 Animal 22.8 29.4 1101 0.814

Combretaceae Terminalia amazonia 95 Wind 16.4 15.5 136 0.665

Combretaceae Terminalia argentea 128 Wind 17.1 14.3 952 0.759

Combretaceae Terminalia oblonga 113 Wind 24.5 24.7 165 0.676

Euphorbiaceae Glycydendron amazonicum 91 Animal 29.1 22.4 3828 0.672

Euphorbiaceae Hevea brasiliensis 77 Auto 27.1 15.1 2630 0.504

Goupiaceae Goupia glabra 117 Animal 17 13.6 333 0.742

Humiriaceae Endopleura uchi 92 Animal 15.9 14.8 4369 0.793

Lauraceae Aniba panurensis 105 Animal 21.7 12.4 1212 0.599

Lauraceae Beilschmiedia brasiliensis 110 Animal 18.1 14.6 2379 0.59

Lauraceae Caryodaphnopsis inaequalis 97 Animal 21.6 17.4 3118 0.583

Lauraceae Licaria canella 68 Animal 22.7 12 1463 0.817

Lauraceae Mezilaurus ita-uba 118 Animal 20.2 11.6 2379 0.748

Lauraceae Mezilaurus lindaviana 102 Animal 20.5 15.6 2379 0.706

Lauraceae Nectandra cissiflora 57 Animal 20.9 13.6 1031 0.581

Lauraceae Ocotea aciphylla 84 Animal 15.7 11.3 825 0.522

Lauraceae Ocotea canaliculata 97 Animal 23.4 12.7 949 0.477

Lauraceae Ocotea guianensis 65 Animal 19.3 11 594 0.5

Lauraceae Ocotea obovata 86 Animal 21.4 12.7 949 0.533

Lecythidaceae Allantoma decandra 140 Wind 19 12.2 1894 0.564

Lecythidaceae Bertholletia excelsa 201 Animal 24.9 11.9 6380 0.643

Lecythidaceae Cariniana micrantha 201 Wind 20.9 16.6 929 0.585

Lecythidaceae Couratari guianensis 130 Wind 21.9 13.2 281 0.576

Lecythidaceae Couratari oblongifolia 100 Wind 23.1 13.5 407 0.57
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Lecythidaceae Eschweilera coriacea 91 Animal 20.3 10.2 319 0.724

Lecythidaceae Eschweilera paniculata 73 Animal 21.9 12 2699 0.747

Lecythidaceae Eschweilera pedicellata 67 Animal 21.6 12.6 1794 0.833

Lecythidaceae Lecythis lurida 86 Animal 21.8 9.2 2524 0.842

Lecythidaceae Lecythis pisonis 127 Animal 20.6 14.5 2009 0.834

Lecythidaceae Lecythis poiteaui 70 Animal 27.4 12.5 2524 0.802

Leguminosae Abarema jupunba 89 Animal 27.8 14.1 329 0.556

Leguminosae Acosmium nitens 97 Wind 24 10 128 0.789

Leguminosae Apuleia leiocarpa 156 Wind 24.7 32.9 607 0.802

Leguminosae Bowdichia nitida 77 Auto 21.3 8.4 44 0.785

Leguminosae Cedrelinga cateniformis 207 Wind 37.8 18.1 391 0.485

Leguminosae Copaifera langsdorffii 115 Animal 22.7 14.5 1072 0.581

Leguminosae Copaifera martii 89 Animal 23 13.1 1072 0.59

Leguminosae Copaifera multijuga 91 Animal 26.3 13.1 1072 0.544

Leguminosae Copaifera officinalis 68 Animal 23 13.1 1072 0.645

Leguminosae Dialium guianense 67 Animal 26.8 19.1 383 0.854

Leguminosae Dinizia excelsa 220 Auto 19.8 17.3 3325 0.94

Leguminosae Diplotropis purpurea 65 Wind 26.7 12.4 330 0.732

Leguminosae Diplotropis racemosa 89 Wind 27.4 12 406 0.62

Leguminosae Dipteryx magnifica 95 Animal 19.8 15.1 4796 0.902

Leguminosae Dipteryx odorata 120 Animal 21.9 14.7 4323 0.931

Leguminosae Enterolobium schomburgkii 113 Animal 28.2 10.8 70 0.673

Leguminosae Hymenaea courbaril 125 Animal 18.9 9.6 3234 0.787

Leguminosae Hymenaea oblongifolia 93 Animal 19.9 13.5 1944 0.739

Leguminosae Hymenaea parvifolia 100 Animal 17.6 11.5 1945 0.862

Leguminosae Hymenolobium elatum 163 Wind 24.7 16.4 1672 0.666

Leguminosae Hymenolobium excelsum 124 Wind 24.3 16.4 1672 0.651

Leguminosae Hymenolobium flavum 112 Wind 27.8 16.4 1672 0.676

Leguminosae Hymenolobium petraeum 127 Wind 24.4 16.4 1672 0.663

Leguminosae Hymenolobium sericeum 91 Wind 24.2 16.4 1672 0.682

Leguminosae Marmaroxylon racemosum 77 Animal 33.3 17.3 2843 0.836

Leguminosae Martiodendron elatum 108 Wind 24.5 23.3 717 0.826

Leguminosae Ormosia coarctata 95 Animal 20.2 12.9 1305 0.589

Leguminosae Ormosia coccinea 128 Animal 17.6 11.6 660 0.632

Leguminosae Parkia nitida 100 Animal 21.9 11.3 565 0.373

Leguminosae Parkia pendula 162 Animal 21.5 17.4 292 0.481

Leguminosae Parkia ulei 80 Animal 30.4 7.7 470 0.426

Leguminosae Peltogyne lecointei 88 Wind 16.9 10.5 992 0.736

Leguminosae Piptadenia gonoacantha 102 Wind 35.7 14.6 270 0.697

Leguminosae Pseudopiptadenia psilostachya 111 Wind 28.9 9.4 470 0.517

Leguminosae Pseudopiptadenia suaveolens 118 Wind 30.7 8.9 470 0.629

Leguminosae Sclerolobium melanocarpum 95 Wind 20.7 11.2 1114 0.621

Leguminosae Swartzia polyphylla 127 Animal 25.9 14.5 29062 0.724

Leguminosae Tachigali melinonii 78 Wind 33.1 14.2 951 0.598

Leguminosae Tachigali myrmecophila 80 Wind 33.9 11.8 951 0.579

Leguminosae Tachigali paniculata 80 Wind 26.8 12.6 951 0.562

Leguminosae Vatairea guianensis 115 Auto 18.1 12.5 23139 0.675

Leguminosae Vatairea paraensis 100 Wind 18.2 12.4 7868 0.691

Leguminosae Vouacapoua americana 76 Animal 26 14.2 32194 0.767

Malvaceae Ceiba pentandra 189 Wind 21.2 13.4 133 0.307

Malvaceae Lueheopsis rosea 67 Wind 17.3 11.1 1182 0.592

Malvaceae Pterygota alata 105 Wind 22.7 13.2 666 0.547
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Meliaceae Carapa guianensis 92 Animal 17.3 14.6 15567 0.518

Moraceae Bagassa guianensis 145 Animal 25.2 18.7 1234 0.714

Moraceae Brosimum guianense 121 Animal 21.7 15.8 1077 0.815

Moraceae Brosimum parinarioides 89 Animal 15.6 14.1 1170 0.617

Moraceae Brosimum rubescens 116 Animal 18.6 13.4 513 0.801

Moraceae Castilla ulei 98 Animal 24.5 29.2 691 0.412

Moraceae Clarisia racemosa 93 Animal 23.8 15.7 1946 0.567

Moraceae Pseudolmedia laevis 83 Animal 19.2 13.8 455 0.584

Myristicaceae Virola albidiflora 90 Animal 21.2 13.7 1141 0.408

Myristicaceae Virola elongata 96 Animal 24.3 14.5 347 0.54

Myristicaceae Virola loretensis 96 Animal 21.2 13.7 1141 0.503

Myristicaceae Virola sebifera 85 Animal 23.9 13.8 728 0.474

Olacaceae Minquartia guianensis 95 Animal 20.7 13.4 2324 0.754

Proteaceae Euplassa pinnata 108 Animal 13 13.5 177 0.534

Rubiaceae Calycophyllum megistocaulum 119 Wind 28.6 15.6 866 0.691

Rubiaceae Capirona decorticans 116 Wind 31.9 12.1 866 0.606

Rutaceae Zanthoxylum juniperinum 86 Animal 22.6 14.6 121 0.486

Salicaceae Laetia procera 70 Animal 24.7 14.4 164 0.628

Sapotaceae Manilkara bidentata 92 Animal 15 7.4 835 0.857

Sapotaceae Manilkara huberi 127 Animal 14 6.1 680 0.842

Sapotaceae Pouteria caimito 95 Animal 19.5 10.8 3450 0.805

Sapotaceae Pouteria caimito 95 Animal 19.5 10.8 3450 0.805

Sapotaceae Pouteria caimito 95 Animal 19.5 10.8 3450 0.805

Sapotaceae Pouteria caimito 95 Animal 19.5 10.8 3450 0.805

Sapotaceae Pouteria elegans 64 Animal 17.8 11.7 1785 0.71

Sapotaceae Pouteria guianensis 94 Animal 17.6 8.7 2648 0.866

Sapotaceae Sarcaulus brasiliensis 111 Animal 17.8 13.5 8348 0.659

Simaroubaceae Simarouba amara 92 Animal 17.3 14.8 693 0.392

Vochysiaceae Qualea albiflora 99 Wind 17.3 11.5 647 0.562

Vochysiaceae Qualea brevipedicellata 124 Wind 16.4 10.4 635 0.663

Vochysiaceae Qualea paraensis 95 Wind 17.4 10.6 635 0.634

Vochysiaceae Vochysia densiflora 102 Wind 16.2 13.6 222 0.378

Vochysiaceae Vochysia divergens 76 Wind 16.2 13.6 222 0.51

Vochysiaceae Vochysia obscura 70 Wind 16.2 13.6 222 0.467

Vochysiaceae Vochysia vismiifolia 76 Wind 16.2 13.6 222 0.467

Table C.2: Wood density values specific to species at the Vale do Jari site (VJ), obtained

from the concessionaire

Family Species Wood density

Anacardiaceae Anacardium giganteum 0.465

Anacardiaceae Astronium obliquum 0.844

Apocynaceae Couma guianensis 0.499

Apocynaceae Macoubea guianensis 0.427

Apocynaceae Parahancornia fasciculata 0.488

Bignoniaceae Handroanthus impetiginosus 0.614

Boraginaceae Cordia goeldiana 0.33

Burseraceae Protium pallidum 0.463

Burseraceae Tetragastris panamensis 0.773

Burseraceae Trattinnickia rhoifolia 0.453

Caryocaraceae Caryocar glabrum 0.597
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Caryocaraceae Caryocar villosum 0.642

Chrysobalanaceae Parinari excelsa 0.71

Euphorbiaceae Glycydendron amazonicum 0.686

Goupiaceae Goupia glabra 0.713

Lauraceae Licaria canella 0.679

Lauraceae Mezilaurus ita-uba 0.823

Lauraceae Mezilaurus lindaviana 0.733

Lauraceae Nectandra cissiflora 0.488

Lauraceae Ocotea aciphylla 0.643

Lauraceae Ocotea guianensis 0.467

Lecythidaceae Bertholletia excelsa 0.635

Lecythidaceae Couratari guianensis 0.781

Lecythidaceae Couratari oblongifolia 0.752

Lecythidaceae Lecythis lurida 0.833

Lecythidaceae Lecythis pisonis 0.809

Lecythidaceae Lecythis poiteaui 0.81

Leguminosae Acosmium nitens 0.819

Leguminosae Apuleia leiocarpa 0.678

Leguminosae Bowdichia nitida 0.567

Leguminosae Cedrelinga cateniformis 0.521

Leguminosae Copaifera martii 0.573

Leguminosae Copaifera officinalis 0.744

Leguminosae Dialium guianense 0.921

Leguminosae Dinizia excelsa 0.774

Leguminosae Diplotropis purpurea 0.573

Leguminosae Diplotropis racemosa 0.465

Leguminosae Dipteryx magnifica 0.917

Leguminosae Dipteryx odorata 0.974

Leguminosae Enterolobium schomburgkii 0.622

Leguminosae Hymenaea courbaril 0.78

Leguminosae Hymenaea parvifolia 0.769

Leguminosae Hymenolobium excelsum 0.627

Leguminosae Hymenolobium flavum 0.661

Leguminosae Hymenolobium petraeum 0.7

Leguminosae Hymenolobium sericeum 0.759

Leguminosae Marmaroxylon racemosum 0.772

Leguminosae Ormosia coccinea 0.783

Leguminosae Parkia nitida 0.324

Leguminosae Parkia pendula 0.572

Leguminosae Parkia ulei 0.33

Leguminosae Peltogyne lecointei 0.619

Leguminosae Pseudopiptadenia psilostachya 0.416

Leguminosae Tachigali myrmecophila 0.484

Leguminosae Vouacapoua americana 0.757

Malvaceae Lueheopsis rosea 0.602

Malvaceae Pterygota alata 0.747

Meliaceae Carapa guianensis 0.576

Moraceae Brosimum guianense 0.911

Moraceae Brosimum parinarioides 0.685

Moraceae Brosimum rubescens 0.636

Moraceae Clarisia racemosa 0.707

Myristicaceae Virola sebifera 0.675

Olacaceae Minquartia guianensis 0.895
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Rubiaceae Capirona decorticans 0.819

Salicaceae Laetia procera 0.657

Sapotaceae Manilkara huberi 0.562

Sapotaceae Pouteria caimito 0.709

Sapotaceae Pouteria caimito 0.709

Sapotaceae Pouteria caimito 0.686

Sapotaceae Pouteria caimito 0.686

Sapotaceae Pouteria elegans 0.874

Vochysiaceae Qualea albiflora 0.399

Vochysiaceae Qualea paraensis 0.448

Table C.3: Species habitat associations and dispersal limitation parameters per

species and site: Species aggregation patterns were categorised describing their habitat

associations and dispersal limitation via a decision tree, implementing a series of increas-

ingly complex spatial point patternmodels (Table 4.1). Subsequently, parameters describing

elevational, TWI and slope associations and dispersal limitation as cluster size (α) and clus-

ter intensity (σ2) were extracted.

Species Site Category Elevation TWI Slope α σ2

Abarema jupunba VJ C3 – – – 123.9 3.57

Acosmium nitens VJ C4 -0.015 -0.149 -0.061 322.1 3.87

Allantoma decandra NP C2 0.138 – 0.050 – –

Allantoma decandra RO C4 -0.019 0.017 – 66.8 3.71

Anacardium giganteum VJ C4 – 0.021 0.062 49.3 3.85

Anacardium parvifolium CX C2 -0.018 -0.047 -0.034 – –

Aniba panurensis NP C4 – -0.122 -0.04 109.6 3.93

Apuleia leiocarpa NP C4 -0.062 -0.138 – 109.3 4.10

Apuleia leiocarpa RO C4 0.024 -0.024 0.019 521.9 2.64

Aspidosperma excelsum ST C4 -0.005 -0.028 – 541.8 1.72

Aspidosperma spruceanum ST C4 -0.009 – 0.066 1226.3 1.77

Astronium graveolens VJ C4 -0.012 – – 161.9 3.13

Astronium lecointei RO C4 0.018 -0.007 -0.019 60.5 3.24

Astronium lecointei ST C4 0.006 -0.043 -0.056 178.6 2.39

Astronium lecointei CX C4 0.041 – – 56.1 3.88

Astronium obliquum VJ C4 -0.01 – – 59.8 3.85

Bagassa guianensis RO C4 -0.017 -0.092 – 181.0 2.85

Beilschmiedia brasiliensis NP C4 -0.014 -0.132 -0.038 103.6 3.30

Bertholletia excelsa RO C4 0.012 -0.034 -0.025 63.0 3.22

Bowdichia nitida ST C3 – – – 153.9 4.34

Bowdichia nitida VJ C4 -0.009 -0.028 -0.022 52.5 3.81

Bowdichia nitida CX C1 – – – – –

Brosimum guianense NP C4 0.035 -0.069 – 109.9 4.23

Brosimum parinarioides VJ C4 -0.008 0.037 0.020 59.3 3.77

Brosimum rubescens NP C2 0.069 -0.082 -0.057 – –

Brosimum rubescens RO C4 -0.033 -0.104 -0.041 101.8 3.91

Brosimum rubescens ST C4 -0.021 – – 107.5 3.15

Buchenavia huberi RO C4 0.015 -0.038 -0.042 198.8 3.42

Buchenavia parvifolia ST C4 -0.013 -0.034 -0.088 147.7 2.28

Buchenavia parvifolia VJ C4 -0.011 -0.045 – 89.2 3.53

Calycophyllum megistocaulum ST C4 – -0.165 -0.089 97.3 2.69

Capirona decorticans CX C3 – – – 56.1 3.79
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Carapa guianensis NP C4 – -0.121 – 72.1 3.79

Carapa guianensis VJ C4 0.010 0.132 0.114 202.5 4.43

Carapa guianensis CX C4 0.162 0.109 0.042 358.9 2.08

Cariniana micrantha RO C4 0.002 -0.032 -0.015 47.3 3.62

Cariniana micrantha ST C4 -0.035 -0.054 -0.103 457.0 2.17

Cariniana micrantha CX C4 0.043 -0.104 – 110.9 2.39

Caryocar glabrum NP C4 – -0.168 -0.055 121.9 3.92

Caryocar glabrum RO C4 -0.004 0.049 0.009 77.8 3.89

Caryocar glabrum ST C4 -0.02 – – 76.2 3.87

Caryocar glabrum VJ C4 -0.005 -0.02 0.034 52.1 3.69

Caryocar glabrum CX C4 – -0.09 -0.067 59.4 3.80

Caryocar villosum RO C4 -0.012 0.021 0.011 81.5 4.01

Caryocar villosum ST C4 0.006 -0.044 – 172.2 2.36

Caryocar villosum VJ C4 0.009 – 0.022 234.7 2.53

Caryocar villosum CX C4 -0.022 -0.051 – 92.7 3.45

Caryodaphnopsis inaequalis NP C4 – -0.172 – 58.8 3.81

Castilla ulei RO C4 – -0.041 -0.017 75.9 3.26

Cedrelinga cateniformis NP C4 0.071 -0.093 – 72.1 3.49

Cedrelinga cateniformis RO C4 0.012 0.061 – 195.2 3.47

Cedrelinga cateniformis VJ C4 – 0.228 0.102 380.1 3.30

Ceiba pentandra NP C4 0.076 0.068 – 225.2 3.36

Ceiba pentandra CX C4 0.077 – 0.109 165.7 3.27

Clarisia racemosa NP C2 -0.143 -0.32 -0.113 – –

Clarisia racemosa RO C4 -0.003 0.008 -0.031 70.5 2.86

Clarisia racemosa ST C4 -0.026 -0.072 – 969.6 2.88

Clarisia racemosa CX C2 -0.063 -0.062 – – –

Copaifera langsdorffii CX C2 0.044 0.047 – – –

Copaifera martii VJ C4 0.037 – -0.064 125.4 3.69

Copaifera multijuga RO C4 -0.015 0.007 -0.013 60.4 2.84

Copaifera officinalis VJ C2 0.034 0.102 – – –

Cordia goeldiana RO C4 -0.019 -0.153 -0.059 80.1 3.52

Cordia goeldiana CX C2 0.232 0.350 0.139 – –

Couma guianensis VJ C4 -0.01 -0.042 -0.049 222.9 2.57

Couratari guianensis RO C4 0.003 -0.04 -0.037 53.2 3.79

Couratari guianensis ST C4 – -0.087 – 281.5 1.64

Couratari guianensis VJ C4 0.007 0.106 0.087 194.7 2.68

Couratari guianensis CX C4 0.098 0.029 – 41.5 3.62

Couratari oblongifolia VJ C4 0.022 0.120 0.034 229.0 2.69

Dialium guianense NP C4 – -0.061 – 78.1 3.85

Dialium guianense VJ C4 -0.016 – 0.071 77.0 3.20

Dinizia excelsa RO C4 0.022 0.025 0.034 151.6 2.37

Dinizia excelsa VJ C4 – -0.065 -0.033 364.4 1.83

Dinizia excelsa CX C4 0.033 -0.094 – 61.8 3.74

Diplotropis purpurea VJ C4 -0.012 -0.056 – 60.0 3.81

Diplotropis racemosa ST C4 – 0.091 – 94.4 3.62

Diplotropis racemosa VJ C4 – 0.069 – 95.1 4.11

Diplotropis racemosa CX C2 – – – – –

Dipteryx magnifica VJ C4 0.007 0.015 0.013 79.7 3.82

Dipteryx odorata NP C4 – -0.085 -0.04 121.5 3.74

Dipteryx odorata RO C4 0.003 -0.037 -0.022 108.2 4.09

Dipteryx odorata ST C4 0.004 0.070 0.051 63.0 2.48

Dipteryx odorata VJ C4 0.005 0.034 0.024 56.5 3.78
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Dipteryx odorata CX C4 -0.021 -0.047 -0.107 369.6 2.04

Endopleura uchi RO C4 0.026 0.025 0.030 308.8 2.50

Endopleura uchi ST C2 0.008 0.018 -0.025 – –

Endopleura uchi VJ C4 0.020 0.059 – 303.1 2.75

Endopleura uchi CX C2 -0.06 -0.213 -0.107 – –

Enterolobium schomburgkii RO C4 -0.013 -0.044 -0.021 67.3 4.00

Enterolobium schomburgkii ST C4 -0.007 -0.037 -0.044 69.8 4.03

Enterolobium schomburgkii VJ C4 -0.005 – 0.034 47.1 3.74

Enterolobium schomburgkii CX C4 0.024 – – 60.8 3.71

Eschweilera coriacea NP C2 0.044 -0.048 – – –

Eschweilera coriacea VJ C4 0.019 0.153 0.072 1090.4 3.81

Eschweilera coriacea CX C4 -0.013 -0.163 – 91.7 3.20

Eschweilera paniculata VJ C4 0.028 0.073 – 1504.7 2.80

Eschweilera pedicellata VJ C4 0.014 – – 473.2 2.47

Euplassa pinnata CX C4 -0.034 -0.166 – 132.2 2.94

Glycydendron amazonicum CX C4 0.027 -0.154 -0.042 242.4 1.02

Goupia glabra RO C4 0.002 – – 107.9 3.32

Goupia glabra ST C3 – – – 61.1 3.54

Goupia glabra VJ C4 -0.016 -0.027 -0.018 56.0 3.66

Goupia glabra CX C4 -0.031 -0.131 -0.073 64.7 3.65

Handroanthus impetiginosus RO C4 -0.005 – – 137.4 3.29

Handroanthus impetiginosus ST C4 0.015 – 0.112 561.8 3.06

Handroanthus incanus NP C2 -0.066 – – – –

Handroanthus incanus RO C4 0.037 -0.028 – 389.7 4.66

Handroanthus serratifolius ST C4 0.033 0.110 0.131 317.6 4.10

Handroanthus serratifolius VJ C2 0.020 – – – –

Hevea brasiliensis NP C2 -0.036 -0.167 – – –

Hymenaea courbaril ST C4 -0.007 -0.034 -0.025 45.5 3.72

Hymenaea courbaril VJ C4 0.015 0.050 0.017 72.6 3.05

Hymenaea courbaril CX C2 0.084 0.110 0.048 – –

Hymenaea oblongifolia NP C4 – -0.034 0.055 89.0 4.02

Hymenaea parvifolia ST C4 -0.015 -0.017 -0.034 49.4 3.41

Hymenolobium elatum CX C4 -0.039 -0.051 -0.101 79.2 3.81

Hymenolobium excelsum ST C2 -0.011 – -0.026 – –

Hymenolobium excelsum VJ C4 – 0.051 0.023 78.1 4.01

Hymenolobium flavum VJ C4 0.008 0.063 0.031 109.1 2.76

Hymenolobium petraeum VJ C3 – – – 151.7 4.27

Hymenolobium sericeum VJ C4 – 0.035 – 105.1 4.14

Jacaranda copaia ST C4 -0.009 – – 82.8 3.77

Jacaranda copaia VJ C4 -0.018 -0.034 0.038 68.5 3.49

Laetia procera VJ C4 – 0.042 0.060 167.9 2.34

Lecythis lurida CX C4 0.052 0.037 – 52.4 3.49

Lecythis pisonis ST C4 0.006 – 0.040 64.7 3.40

Lecythis pisonis VJ C4 -0.008 0.060 0.075 129.3 2.55

Lecythis poiteaui VJ C4 0.031 0.140 – 593.4 2.12

Licaria canella VJ C4 -0.015 – – 231.8 3.23

Lueheopsis rosea VJ C4 -0.01 – – 181.8 2.57

Macoubea guianensis VJ C4 -0.007 – – 107.5 3.77

Macoubea sprucei NP C1 – – – – –

Manilkara bidentata NP C2 – -0.09 – – –

Manilkara bidentata ST C4 -0.007 -0.188 -0.166 1594.6 3.61

Manilkara huberi RO C4 0.011 -0.048 – 132.3 3.40

Continued on next page
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Species Site Category Elevation TWI Slope α σ2

Manilkara huberi ST C4 0.013 -0.028 -0.045 49.6 3.52

Manilkara huberi VJ C4 0.025 0.058 -0.014 90.7 2.62

Manilkara huberi CX C4 – – -0.045 36.1 3.50

Marmaroxylon racemosum CX C2 – – -0.053 – –

Martiodendron elatum RO C4 – -0.035 – 82.2 3.98

Mezilaurus ita-uba RO C4 0.024 0.076 – 227.3 3.28

Mezilaurus ita-uba ST C4 -0.008 -0.084 -0.119 802.5 1.35

Mezilaurus ita-uba VJ C4 -0.012 -0.053 – 259.7 1.98

Mezilaurus ita-uba CX C4 – -0.059 – 43.2 3.60

Mezilaurus lindaviana VJ C4 -0.022 -0.067 – 151.3 1.91

Minquartia guianensis RO C4 0.005 -0.102 -0.033 64.3 3.76

Minquartia guianensis ST C3 – – – 130.3 2.76

Minquartia guianensis VJ C4 -0.008 – 0.038 48.9 2.62

Nectandra cissiflora VJ C3 – – – 124.0 4000

Ocotea aciphylla NP C4 -0.054 -0.134 – 157.8 4.01

Ocotea canaliculata ST C4 -0.01 -0.045 – 276.9 2.32

Ocotea guianensis VJ C4 -0.012 – – 193.4 3.39

Ocotea obovata NP C4 – -0.065 – 78.7 4.07

Ormosia coarctata ST C2 – – – – –

Ormosia coccinea NP C2 0.024 -0.053 – – –

Parahancornia fasciculata VJ C2 0.013 – – – –

Parinari excelsa VJ C4 0.012 0.059 – 92.7 3.55

Parkia nitida NP C4 0.085 0.067 0.058 95.2 3.38

Parkia nitida VJ C4 -0.009 -0.019 – 80.7 3.93

Parkia pendula RO C4 -0.004 -0.077 -0.039 77.2 4.07

Parkia pendula ST C4 -0.005 -0.044 – 70.8 3.51

Parkia pendula VJ C2 -0.012 -0.017 0.025 – –

Parkia ulei VJ C3 – – – 64.2 3.81

Peltogyne lecointei RO C4 0.028 0.030 -0.008 55.6 3.76

Peltogyne lecointei CX C4 -0.041 – 0.074 70.4 3.56

Piptadenia gonoacantha VJ C4 0.020 0.086 – 67.8 2.93

Pouteria caimito NP C4 0.068 -0.049 – 47.6 3.78

Pouteria elegans VJ C4 0.024 0.107 – 138.5 4.27

Pouteria guianensis RO C4 0.013 -0.065 -0.037 358.5 1.36

Pouteria guianensis CX C4 -0.042 -0.198 – 113.8 2.61

Protium decandrum VJ C2 -0.025 – 0.062 – –

Protium pallidum VJ C4 0.019 – – 337.7 3.29

Pseudolmedia laevis RO C4 – -0.073 -0.066 140.4 2.74

Pseudopiptadenia psilostachya ST C4 0.007 -0.065 -0.055 69.7 2.40

Pseudopiptadenia suaveolens ST C4 0.030 – -0.043 374.3 1.49

Pterygota alata ST C4 -0.036 -0.03 -0.043 1484.2 1.85

Qualea albiflora VJ C4 – -0.026 -0.038 77.3 3.34

Qualea brevipedicellata CX C4 -0.044 -0.055 -0.077 120.7 3.41

Qualea paraensis NP C4 0.042 – – 57.5 3.55

Qualea paraensis VJ C4 -0.016 -0.038 -0.016 31.9 2.75

Qualea paraensis CX C4 -0.035 -0.039 – 87.4 2.79

Sarcaulus brasiliensis CX C4 – -0.085 -0.093 55.2 3.07

Schefflera morototoni VJ C4 0.012 0.037 – 87.6 3.76

Sclerolobium melanocarpum VJ C4 0.011 -0.049 -0.117 1538.6 1.71

Simarouba amara NP C3 – – – 92.0 4.06

Simarouba amara RO C4 0.005 0.013 – 103.6 3.78

Simarouba amara VJ C4 0.023 0.120 0.068 1720.6 2.68

Continued on next page
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Species Site Category Elevation TWI Slope α σ2

Simarouba amara CX C2 0.027 0.081 – – –

Swartzia polyphylla VJ C3 – – – 47.9 3.59

Tachigali melinonii VJ C4 0.005 – -0.029 80.2 2.82

Tachigali myrmecophila VJ C4 0.015 0.046 – 47.7 2.34

Tachigali paniculata VJ C4 -0.009 -0.016 0.021 122.8 1.97

Terminalia amazonia VJ C4 – -0.023 – 66.3 3.49

Terminalia argentea VJ C4 -0.02 -0.066 – 134.1 3.37

Terminalia oblonga NP C4 0.056 – 0.036 88.6 3.93

Tetragastris panamensis VJ C4 – – 0.070 342.5 2.90

Tetragastris panamensis CX C4 0.244 0.297 0.140 596.8 1.76

Trattinnickia rhoifolia VJ C4 -0.021 -0.023 0.041 74.6 3.41

Vatairea guianensis NP C4 0.038 – – 89.2 3.93

Vatairea paraensis ST C4 -0.014 – -0.081 604.0 1.92

Virola albidiflora NP C3 – – – 103.4 3.82

Virola elongata NP C4 -0.045 0.056 – 41.7 3.51

Virola loretensis NP C4 -0.025 -0.121 -0.022 65.7 3.60

Virola sebifera NP C4 -0.017 – – 209.1 2.01

Vochysia densiflora NP C4 0.087 – 0.029 105.7 2.60

Vochysia divergens VJ C4 -0.016 -0.08 -0.084 801.0 2.13

Vochysia obscura VJ C4 -0.047 -0.114 -0.088 229.8 3.13

Vochysia vismiifolia VJ C4 -0.017 -0.05 -0.024 197.7 2.70

Vouacapoua americana VJ C4 0.031 0.084 -0.008 310.5 3.20

Vouacapoua americana CX C4 0.077 – 0.014 90.3 2.23

Zanthoxylum juniperinum NP C4 – -0.085 -0.037 147.6 4.02

Table C.4: Results from multivariate linear models spatial parameters predicted by

species functional traits: Following backwards stepwise selection via AIC, only models for

cluster intensity (σ2), Slope and TWI retained functional traits. Although retained, neither

log(Dry seedmass), log(SLA) or Nmass were significant for (σ
2), slope and TWI, respectively.

The numbers in parenthesis below the effect size represent the standard error.

σ2 Slope TWI

log(Dry seed mass) −0.065
(0.037)

log(SLA) 0.030

(0.020)

Nmass 0.003

(0.002)

Observations 185 115 154

R2 0.016 0.019 0.017

Adjusted R2 0.011 0.011 0.010

Residual Std. Error 0.727 (df = 183) 0.061 (df = 113) 0.092 (df = 152)

F Statistic 3.041∗ (df = 1; 183) 2.220 (df = 1; 113) 2.618 (df = 1; 152)
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National Forest
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Appendix E

Forest recovery with logging

intensity

E.1 Study site

The study site is based in Jamari National Forest, Rondonia, Brazil, (9°22’S, 62°58’W).

Precipitation is seasonal with distinct wet and dry seasons and a mean annual rain-

fall of 2315 mm and the dominant soil type is alluvial ferrasol. The area comprises

220,000 ha ofwet lowland tropical forest containing three ForestManagement Units

(FMU) which were offered to auction by the Brazilian government in 2009 for sus-

tainable harvesting. Our study is located within the 96,000 ha making up FMUIII and

is divided into Annual Production Units (APU) which are logged during each dry sea-

son (Fig. 5.5). Selective logging commenced here in 2011with and average of 1.6 trees

harvested per hectare extracted. A forest inventory is conducted in each APU in the

year preceding logging activities whereby all commercial and protected species are

identified, GPS mapped and their height and DBH recorded. Extraction rate varies

spatially across the landscape due to natural differences in the abundance of com-

mercially desirable species which affords the opportunity to study the impacts of

logging intensity using explicitly derived disturbance metrics.
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Acronyms

βsor Phylosor. 40, 41, 45–49, 52, 54

dBC Bray-Curtis dissimilarity index. 15, 40, 45–48, 52, 54

APU Annual Production Unit. 63

CSR Complete Spatial Randomness. 65–67, 69

DBH diameter at breast height. 2, 14, 38, 63, 67, 75, 112–114

dbMEM distance-based Moran’s eigenvector map. vii–ix, 39–41, 45, 48, 50–52, 57,

58, 108, 109

dbRDA distance-based redundancy analysis. vii, viii, x, 41, 44–49, 51, 52, 80, 110

DEM Digital Elevation Model. 16, 30, 39, 111

GDM Generalised Dissimilarity Modelling. x, 18, 19, 21, 22, 24–26, 28

IBAMA Brazilian Institute of Environment and Renewable Natural Resources. 14, 37

LGCP log-Gaussian Cox process. 67

m.a.s.l meters above sea level. 7, 16, 62

MCF Matérn covariance function. 67

MNTD mean nearest taxon distance. 41

MPD mean pairwise distance. 42

mRD mean relative deviation. vii, 21–23

PBD phylogenetic β-diversity. v, vii–ix, 9, 10, 35–37, 39–48, 51, 53–55, 57–59, 80, 87,

107
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Acronyms 125

PCNM principle coordinates of neighbourhood matrix. 39

PDF Probability Density Function. 19, 20

PGLS phylogenetic generalised least squares. viii, x, 69, 74, 75, 77

SLA specific leaf area. viii, x, 62, 67, 68, 73, 74, 77

TBD taxonomic β-diversity. v, viii, 9, 10, 35–37, 39, 40, 44–47, 51, 53–55, 57, 58, 80

TPI Topographic Position Index. 15, 16, 24, 25, 31, 39, 48, 57, 77, 96

TRI Terrain Ruggedness Index. 15, 16, 25, 39, 48, 56

TWI Topographic Wetness Index. viii, 15, 16, 24, 25, 30, 39, 48, 56, 57, 68, 70–74, 76,

96, 111, 116–120

VIF variance inflation factor. 39
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