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Abstract

The detonation of a high explosive results in the rapid release of energy

as the explosive charge undergoes a rapid change in state and is con-

verted into a high pressure, high temperature gas. As the gas expands,

the surrounding air is displaced, resulting in a high pressure shock dis-

continuity – a shock wave. As this shock wave propagates away from

the charge, it can cause severe damage to any structure that it impacts

on. Structural blast engineers are tasked with designing infrastructure

in a way that it is robust enough to withstand extreme loading, whilst

dealing with several constraints such as time, cost and space. Due to the

variability in initiation conditions (such as charge shape, charge location,

chemical composition of charge and localised point of detonation), and

the subsequent variability in loading produced, it becomes impractical to

perform numerical simulations or experiments for all possible scenarios,

though an understanding of the loading is required to accurately model

structural response. Predictive models are therefore required that can

predict the blast load parameters of interest (impulse) given certain in-

put parameters that are fast to run and accurate – predictive models

such as these are known as surrogate models.

The blast protection community, when tasked with assessing the via-

bility and safety of structures (the structural response), need an accurate

picture of what exactly the loading is. This loading information is com-

posed of both a magnitude and location of a load across a structure, and

therefore any predictive approach must predict both these constituent

parts of the loading. However, obtaining this loading information, es-

pecially within a blast engineering context when the distance between a

charge and target is small, is expensive and physical or numerical exper-

iments are costly in both time and money.
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Current predictive approaches are severely limited in this regard, in

that they do not provide sufficient accurate information, nor are they

flexible to handle more than the most simple scenarios. This thesis pro-

poses strategies for surrogate model development in a blast protection

engineering context, that allow the rapid evaluation of structural load,

given input conditions for a range of scenarios. Furthermore, this thesis

demonstrates three applications of strategies that increase the utility of

data and knowledge already obtained, that address the fundamental issue

of data being expensive to obtain. To achieve this end three approaches

are presented: firstly, data transformation procedures, that reduce the

dimensionality of the data enabling the use of simpler surrogate models;

secondly, the use of directly including known physics into the objective

function when model training as a regularisation procedure; and finally,

implementing transfer learning by embedding learned knowledge into the

architecture of a neural network. These three applications provide sta-

tistically significant improvements to model performance and training

efficiency, and provide justification to their use in surrogate modelling

strategies generally within blast protection engineering.

The results of this thesis should be used to guide surrogate model

development for the prediction of peak specific impulse in the near-field

for spherical and cylindrical charges. It presents frameworks for creating

surrogate models and demonstrates how prior knowledge can be used

to improve the performance of surrogate models, or the efficiency when

training surrogate models in a new domain, and thereby drastically re-

ducing the need for new data to be obtained. It is shown extensively

that machine learning methods can reliably be used in surrogate model

development. The findings presented within this thesis have the poten-

tial to be implemented into load prediction software which would be of
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great utility to the blast protection community and insurance industry.
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Chapter 1

Introduction

1.1 Background and motivation

On April 19th 1995 at 9:02am, a pickup truck containing over 2200kg of

explosives detonated in front of the north side of the nine-story Alfred

P. Murrah federal building in Oklahoma City, Oklahoma, USA (Irving

1995). As a result, the entire front face of the building collapsed, claim-

ing 168 lives, of which 19 were children. The blast destroyed or caused

damage to 324 buildings within a 4 block radius (Oklahoma City Police

Department 2007). This event ranks as the second most damaging ter-

rorist attack on U.S. soil with a total of 842 people injured or killed, and

costs of damage exceeding 510 million dollars (Zinne & Williams 2013).

The use of high explosives for malicious attacks has become more com-

mon in recent history, in a similar attack on a Norwegian government

buildings in Oslo, on 22nd July 2011, approximately 8 people were killed

in the explosion and a further 209 people received physical injuries from

the blast and debris (The Guardian 2012).

The problem of blast protection engineering, however, is not just

limited to malicious attacks. Several large scale accidental explosions
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have occurred, such as Hemel Hempstead, U.K. (2005); Tianjin, China

(2015) and Beirut, Lebanon (2020), resulting in significant losses of life

and large costs incurred from property and business damage. There-

fore, the need for civilian infrastructure to be able to resist the intense

loading produced from a high explosive event is paramount to ensure

the safety of the buildings occupants. Yet, it is not just the engineering

community that have been forced to adapt to mitigating these threats.

The insurance industry have had to acknowledge that standard insurance

policies are not suitable in these circumstances and need to be modelled

independently through catastrophe risk modelling.

The loading experienced from blast events typically exceeds the

forces and actions a building will be designed to resist during normal

operation by several orders of magnitude. Methods to design against

these are beyond the scope of traditional civil engineering. Presently,

it is common for buildings deemed “at risk” to have had some level of

blast security considered during the design process. Typical solutions in-

volve upgrades to the structural frame, façade glazing or cladding and in-

creasing the distance between the traffic and building (through installing

bollards for example).

An engineer might need to ascertain whether a column would fail

under a certain loading scenario, or an insurer may be interested in esti-

mating the cost and likelihood of any potential damage. But to do this

the ability to predict the loading produced by explosive events is key

for the design and modelling process. Considering the first application,

Rigby et al. (2019b) show that in order to accurately predict the struc-

tural response knowledge of both the magnitude and distribution of the

loading is critical.

There exist three possible approaches to model blast loading effects:
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empirical (experimental), essentially correlations with experimental data;

semi-empirical, based on simplified models of underlying physical phe-

nomena or numerical simulation, methods that use first-principles to de-

scribe the basic laws of physics governing a problem. The blast protec-

tion community is equipped with some well-established engineering tools,

such as the US (DoD 2008) design manual UFC-3-340-02, Structures to

Resist the Effects of Accidental Explosions, and the ConWep program

(Hyde 1991) that allows for rapid evaluation of blast wave parameters

from a set of given explosive events. But these methods are unsuitable

when considering explosives located extremely close to a structure, where

complex interactions between the explosive and target result in, spatially,

highly non-uniform loading.

Experimental analysis is the most reliable method of measuring blast

loading, but it can be costly and impractical, especially if a large num-

ber of studies are required. Numerical simulation offers the potential to

produce highly accurate results, but can be considerably expensive also

in time and cost. Expensive, deterministic methods such as these also

raise the question of how useful is the analysis? An engineer may be

investigating the loading imparted on a structural column, but how do

they decide on the input parameters? Is the charge likely to be a perfect

sphere or some other shape? What would its mass be? How far away

from the structure is it likely to be? What are the chances of this event

even occurring – therefore is it reasonable to design against it?

Clearly, there are a large number of uncertainties and variables that

influence the blast loading, and there are often not clear definitive an-

swers to the questions raised previously. Therefore there is a need for a

mode of assessment that can rapidly assess a large amount of different

input scenarios, a “probabilistic” mode of assessment. Data-driven mod-
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elling approaches offer the ability to build a surrogate model, trained on

valid experimental or numerical data, that encompasses a broad range of

input scenarios and that can provide an (almost) instant output which

would enable such a probabilistic framework, provided that distributions

of the input parameters are assumed. It would be highly useful, par-

ticularly at the earlier design stage where significant cost savings can

occur. This thesis demonstrates the development of such a determinis-

tic tool (the surrogate model) that maps the input to output, and also

presents surrogate modelling strategies that increase the utility of data

and knowledge already obtained which addresses the issue of operating

data-driven models in a sparse-data environment. It is the hope of this

author that an awareness of blast-resilient design can be built into the

fabric of our cities.

1.2 Scope and objectives of thesis

This thesis aims to develop a suite of rapid predictive methods for near-

field blast load predictions, leveraging data from high-fidelity numerical

modelling, and incorporating cutting edge data-driven machine learning

techniques that can increase the utility of data already obtained and re-

duce the requirement for new data to be generated. This thesis, therefore,

has the following main objectives, related to the engineering challenges

introduced above:

1. To review the current literature on predictive approaches for blast

loading and discuss the limitations of existing approaches.

2. To establish a reliable numerical framework for generating loading

distributions that has been validated against near-field and far-field

experimental data.
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3. To rigorously assess the sensitivities of numerical approaches for

mesh effects and develop consistent rules for mesh sizing to be used

throughout the thesis study.

4. To investigate data transformations that can be applied to datasets

as a whole that reduce the dimensions of the dataset and allow the

rapid development of surrogate models.

5. To investigate physics-guided machine learning approaches in a

blast loading domain through incorporating known, or learned,

physical knowledge directly into the objective function as a physics-

based regularisation procedure.

6. To further investigate transfer learning approaches from previously

trained surrogate models applied to new datasets, to determine

whether knowledge learned from previous tasks and domains can

be applied in a new task and domain and improve the efficiency in

training, and performance of, the new surrogate models.

1.3 Thesis outline

A probabilistic framework of blast assessment would consist of a pipeline

beginning with input parameters and ending with structural response.

To achieve a probabilistic framework a fast-running method needs to

be defined that maps a broad range of inputs to an output, this will

allow distributions of input parameters to be assumed which could be

rapidly evaluated. This thesis addresses the first part of the probabilis-

tic pipeline: the relationship between sampled input parameters and the

explosive loading (output) that they produce – and is therefore determin-

istic in nature. The second stage would be then to link the loading to the
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Figure 1.1: Proposed probabilistic framework achievable with fast-running
data-driven surrogate models. Solid lines indicate the focus of this thesis.
Charge input information would be sampled from an assumed distribution to
account for the uncertainty in input parameters.

subsequent structural response, but that challenge is outside the scope

of the thesis. The high level schematic of this framework is presented in

Figure 1.1.

In Chapter 2, background information for explosive blast loading and

current data-driven modelling approaches in this domain are provided,

as well as a discussion on the limitations of such current approaches.

Chapter 3 demonstrates how the blast loading data is generated nu-

merically. It provides a discussion of how computational fluid dynamics

(CFD) software functions generally, as well as discussing how the mod-

elling techniques in the chosen software can be used, such as adaptive

mesh refinement techniques and domain resizing. Additionally, the cho-

sen CFD software is used to generate numerical data for far-field explo-

sive scenarios and is compared against experimental data in a validation

exercise.

The investigation in Chapter 4 is concerned with developing a pre-

liminary surrogate model for near-field explosive scenarios. Initially, the

chosen CFD software is validated in the near-field against experimen-

tal data, and then a numerical dataset is generated to build a surrogate

model from. A novel data transformation is found that reduces the di-

mensionality of the dataset, allowing a regression analysis and produces

a novel predictive equation (the surrogate model) to be derived that can
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predict the explosive loading for a range of input parameters and is com-

pared to unseen numerical and experimental data.

The development of the surrogate modelling approach in Chapter 4

is suitable provided a data transformation that can remove a dimension

of the data within the dataset exists or is known. When this is not the

case, more complex data-driven methods are required that can handle

this complexity. Instead of using such methods as unknowable “black-

box” models, Chapter 5 investigates how to incorporate prior domain

knowledge into the model development process and provide interpretable

machine learning that the user trusts and understands. Through incor-

porating prior knowledge of physics it is shown that the amount of data

required for effective data-driven models can be reduced. To achieve this

end, a monotonic loss constraint is added into the objective function of a

neural network due to specialist prior knowledge of the problem domain

as a physics based regularisation procedure. The results are compared

to a traditional neural network architecture, and some other black-box

models as a benchmark and stress-tested through various approaches of

restricting the available data to evaluate its generalisation ability.

To increase the capabilities of a predictive surrogate model, a large

range of parameters need to be investigated. The final investigations

in Chapter 6 investigates how prior data and domain knowledge can be

leveraged to speed up learning or model performance in a new domain or

task through implementing transfer learning, especially useful when data

may be sparse or expensive to obtain as it is in blast engineering. In the

first part, the discovered data transformations presented in Chapter 4

are utilised to rapidly develop similar surrogate models for 5 further ex-

plosive types. In the final part, a new numerical dataset (produced from

cylindrical charges) is created and two different neural network modelling
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approaches are compared. The first approach models the new numeri-

cal data (produced from cylindrical charges) with no transfer learning

implemented whilst the second model uses a neural network architecture

trained on numerical data obtained from spherical charges (from Chapter

5) and then trained again on the new numerical dataset produced from

cylindrical charges. These two implementations are stress-tested at vari-

ous levels of data restriction and their performances compared to assess

the viability of this application of transfer learning.

1.4 Published work

The work detailed in this thesis has been published in peer-reviewed aca-

demic journals or presented in academic conferences and is listed below:

• Pannell, Rigby, Panoutsos, Tyas, Cooke & Pope (2019), Predicting

near-field specific impulse distributions using machine learning, in

‘18th International Symposium on Interaction of the Effects of Mu-

nitions with Structures (ISIEMS18), Panama City Beach, Florida,

USA.

• Pannell, Rigby & Panoutsos (2020) A physics guided machine learn-

ing approach to understanding loading distributions from explosive

events, in Young Researchers Conference 2020, Institution of Struc-

tural Engineers, London, U.K.

• Dennis, Pannell, Smyl & Rigby (2021), ‘Prediction of blast loading

in an internal environment using artificial neural networks’, Inter-

national Journal of Protective Structures 12(3), 287–314.

• Pannell, Panoutsos, Cooke, Pope & Rigby (2021), ‘Predicting spe-

cific impulse distributions for spherical explosive in the extreme
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near-field using a gaussian function’, International Journal of Pro-

tective Structures 12(4), 437–459.

• Pannell, Rigby & Panoutsos (2022a), ‘Physics-informed regularisa-

tion procedure in neural networks: an application in blast protec-

tion engineering’, accepted for publication in International Journal

of Protective Structures

• Pannell, Rigby & Panoutsos (2022b), ‘Application of transfer learn-

ing for the prediction of blast impulse’, accepted for publication in

International Journal of Protective Structures
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Chapter 2

Literature review and

theoretical background

2.1 Introduction

This chapter provides background information for explosive blast load-

ing and current techniques for predicting this loading, including specific

machine learning applications. The main focus of this chapter is to pro-

vide theoretical knowledge of shock wave formation, and the subsequent

structural loading that it produces. Additionally, discussion on current

predictive methods for blast wave loading is provided. This chapter high-

lights gaps in the knowledge base that this thesis aims to address.

2.2 Explosive blast loading

2.2.1 Overview

An explosion is the result of rapid expansion in volume of gases occur-

ring from a physical, or mechanical, change in a material. This rapid

expansion is associated with a large release of energy into the surround-
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ing medium. The explosive blast loading process can be considered in

these phases:

• Initial energy release from detonated material

• Disturbance of molecules within the air between explosion source

and structure

• Interaction of air molecules with the structure

2.2.2 Detonation and air shock formation

Generally, explosions can be classified into three categories: physical,

chemical and nuclear. Though the physical impact on the surrounding

medium is similar, the detonation process is different. Physical explo-

sions are those that are not caused by any chemical reactions, an example

would be the impact of a a high velocity meteor into the earth’s atmo-

sphere. Chemical explosions release large amounts of energy into the

environment through the oxidation process. In typical chemical explo-

sions, the explosive material experiences a rapid change in state and the

oxygen required is present within the explosive material itself, resulting

in the detonation process (see Figure 2.1). Nuclear explosions are outside

the scope of this thesis and are not typically considered within the remit

for civilian blast protective engineering.

Figure 2.1 shows the mechanism of detonation. A high velocity wave

is instigated at the point of initiation by a detonator, which compresses

the surrounding material. As the surrounding material is oxidised, the

exothermic reaction begins that increases the density, temperature and

pressure behind the wave front. This pressure gradient causes the wave

front to accelerate away from the initiation point until it reaches its

detonation velocity, typically between 6000-8000 m/s.
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Figure 2.1: Detonation mechanism within a spherical explosive.

The detonation product gases can be at pressures between 10-30

GPa, and at a temperature of 3000-4000◦C (Cormie et al. 2009). As the

wave front propagates it is continually reinforced by the oxidation of the

unreacted explosive ahead of it until the boundary between explosive and

surrounding medium is reached. At this point, the explosive material

then begins to expand and displace the surrounding air at supersonic

speeds.

Air is a compressible material and the wave velocity is dependent on

the pressure of the detonation products. Wave velocity is directly pro-

portional to the gradient of the stress-strain relationship for the material

it is reacted within[i] (in this case, air) shown graphically in Figure 2.2,

where the gradient is greater at p2 than at p1 and where u1 and u2 are

representative of wave velocities at each point.

Therefore, after an air disturbance has been formed, higher pressure

components of the pressure disturbance will travel at a greater veloc-

ity relative to the lower pressure components, as shown in Figure 2.3.

At a distance away from the point of detonation, there will be a point

where the highest pressure (therefore the fastest) component will have

[i]When considering fluids, it is typical to refer to pressure-volume curves which are
analogous to this.
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Figure 2.2: Pressure-volume relationship of air and corresponding wave veloc-
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Figure 2.3: Development of explosive shock, adapted from Kinney & Graham
(1985)

migrated to the front of the disturbance. This results in a discontinu-

ous step change in pressure, temperature and density. This discontinuity

represents the shock front (Baker 1973). Once the detonation process

is completed, the total energy within the system remains constant. The

volumetric expansion of the blast is associated with an increase in en-

ergy absorbed by the surrounding air. This causes the blast wave front

to decrease in pressure and density as it expands away from the point of

initiation.

2.2.3 Blast waves in free air

As air is a compressible material, the pressure disturbance caused by

the detonation of an explosive material creates a shock front, the near

discontinuous increase in pressure and density travelling away from the

point of initiation. A blast wave is therefore a special form of stress wave:

14



2.2. Explosive blast loading

a longitudinal wave in a fluid that propagates faster than the local speed

of sound and therefore “shocks up”.

If a point at a fixed distance away from a detonation is considered,

the pressure at that point will experience a sudden increase in pressure

from ambient air pressure p0 to peak overpressure pso,max followed by a

temporal decay back to ambient pressure. The “so” subscript represents

incident pressure values, the pressure that is measured by a transducer

that offers no resistance to flow behind the shock front. It is also com-

mon in blast engineering to refer to pressures as “overpressures”, where

overpressure refers to the pressure increase above normal, atmospheric

conditions (101 kPa).

Subsequently after peak overpressure, pso,max, is reached there is

a pressure decay to ambient pressure, with duration td followed by a

period of negative overpressure. Negative overpressure is a result of the

expansion of air following the shock front (and the compression of air that

results) with peak magnitude pso,min and duration td−. After the negative

phase of overpressure, ambient pressure is restored. Figure 2.4 presents

this idealised pressure time profile, known as the Friedlander waveform.

If the pressure-time history is integrated with respect to time, the specific

impulse-time history is obtained, where specific impulse, i, is the change

in momentum (therefore the loading) a given area experiences.

2.2.4 Blast wave reflection

When the unimpeded blast wave (known as the incident blast wave) im-

pinges upon a target, conservation of mass, momentum and energy at the

collision interface result in changes in pressure, density and temperature

of the blast wave. Overpressure and specific impulse at this surface are

defined with subscript values r. The majority of blast protection engi-
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Figure 2.4: Friedlander waveform.

neering is interested in the reflected components of the blast wave as this

constitutes the structural loading.

The Rankine-Hugoniot ‘jump’ conditions describe the relationship

between states of compressed air at either side of the shock wave (An-

derson 2010). Conserving mass, momentum and energy across the dis-

continuity the particle velocity, us (immediately behind the shock front)

and density ρs can be calculated:

ρs = ρ0
(γ + 1)pso + 2γp0

(γ − 1)pso + 2γp0

(2.1)

us = psoa0

√
2

γp0[(γ + 1)pso + 2γp0]
(2.2)

Here, ρ0, p0, a0 are density, pressure and sound speed of undisturbed

air respectively. γ is the specific heat ratio (usually 1.4 for air at atmo-

spheric conditions). For normal reflection, the reflected pressure pr, can

be expressed in terms of the incident pressure, pso and dynamic pressure,

qs

16



2.2. Explosive blast loading

pr = 2pso + (γ + 1)qs (2.3)

The first term in Equation 2.3 is the acoustic term, relating to the

reflection of the incident pressure in the acoustic regime whilst the sec-

ond term represents the pressure increase that occurs when bringing the

compressed fluid to rest at the reflecting surface, given by

qs =
1

2
ρsus

2. (2.4)

By substituting Equations 2.1 and 2.2 into Equation 2.4 and then

into Equation 2.5 leads to

pr = 2pso
7p0 + 4pso
7p0 + pso

. (2.5)

The reflection coefficient, Cr, is defined as the ratio of reflected pres-

sure to the incident pressure, Cr = pr/pso. For weak shocks, where the

overpressure is small in comparison with atmospheric pressure (p0 >>

pso), the reflection coefficient, Cr ≈ 2. In strong shocks, where pso >> p0

the reflection coefficient reaches the upper limit of Cr = 8 as the reflection

is dominated by the dynamic term. However, it is important to consider

that Equation 2.5 assumes air behaves as an ideal gas at extremely high

pressure and temperatures. An ideal gas is one that obeys the ideal gas

law, often written as

PV = nRT (2.6)

where P , V and T are pressure, volume and temperature respectively, n

is the amount of substance (in moles) and R is the ideal gas constant. If

real gas effects such as dissociation and ionization of the air molecules are

taken into account, the reflection coefficient can be as high as 20 (Baker
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1973).

2.2.5 Scaling laws

Hopkinson-Cranz (or ‘cube-root’) scaling, proposed independently by

Hopkinson (1915) and Cranz (1926) is a highly useful tool used in the

blast protection community that certain parameters for a given scenario

can be scaled to another scenario, provided similitude is obeyed. This

states similarity exists between blast waves produced at identical scaled

distances from two explosive charges of the same geometry but different

masses. Therefore, the blast pressure generated at a distance R (stand-

off) from an explosive mass W will be similar to the blast pressure created

at a distance KR from a mass of K3W. Shown schematically in Figure

2.5.

The concept of scaled distance, Z, with units m/kg1/3, is expressed

mathematically as

Z =
R

W 1/3
, (2.7)

where W is the TNT equivalent charge mass in kilograms. TNT (trini-

trotoluene) is widely used as the “reference” explosive for historical rea-

sons, due to being the standard explosive at the time of the Kingery &

Bulmash (1984) compilation. To establish the scaled distance of blast

waves from sources other than TNT, the TNT equivalence must be es-

tablished. At present, there is no universally accepted way of calculating

TNT equivalence (Cormie et al. 2009), however the most simple is to

apply a TNT equivalency factor. There is substantial evidence however

that TNT equivalence factors are dependent on scaled distance (Shin

et al. 2015).

In Hopkinson-Cranz scaling, pressures are identical between scaled

and actual values, and all times are scaled by the same value as the length
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2.2. Explosive blast loading
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Figure 2.5: Hopkinson-Cranz blast wave scaling
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scale factor, K, or the cube-root of the charge mass (Kinney & Graham

1985). To summarise:

pactual = pscaled,

tactual = tscaledW
1/3,

iactual = iscaledW
1/3.

2.2.6 Empirical and semi–empirical predictive meth-

ods in blast engineering

To provide predictions of structural loading from an explosion, positive

blast wave parameters need to be quantified as a function of a given

input. Notable early research for blast wave parameter prediction by

Brode (1955), Taylor (1950), Granström (1956), are based on several as-

sumptions (such as instantaneous energy release, negligible atmospheric

pressure, point source explosive), and are not directly applicable for use

in design and research of structures subject to explosive loads (Rigby

2014).

Quantification of blast loading became a particular topic of interest

to the engineering community in the years following the second world war.

One such study by Kingery (1966), later revisited by Kingery & Bulmash

(1984) – hereafter abbreviated as KB – compiled existing blast pressure

measurements and used geometric scaling laws, formulated independently

by Hopkinson (1915) and Cranz (1926), to develop a semi-empirical tool

for predicting normally reflected and incident blast wave parameters for

hemispherical surface bursts and spherical free air bursts. Relationships

are provided from effectively contact explosions, out to Z≈40 m/kg1/3.

However, as noted by Esparza (1986, p. 2), direct measurements of

blast wave parameters in close proximity to the charge were either “non-
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2.2. Explosive blast loading

existent or very few”, and near-field semi-empirical predictive data were

inferred from non direct measurements such as smoke trails (Dewey 1964)

or rudimentary numerical analyses (Brode 1955).

The possible explosive scenarios that can be modelled by the KB

equations are spherical, free air bursts or hemispherical surface bursts,

whereby a hemisphere is placed on a rigid, perfectly reflecting surface.

The high-order polynomial curve fits are ungainly, and are therefore often

summarised as a set of curves, shown in Figure 2.6. The blast parameters

presented in Figure 2.6 form the basis of design guidance such as DoD

(2008) and the computer code Hyde (1991).

Examples of further simplified relationships for calculating blast

wave parameters are given in Baker (1973), Kinney & Graham (1985),

Swisdak (1994). For a comprehensive review of current methods for pre-

dicting blast wave parameters, detailed discussion is provided by Remen-

nikov (2003) and Shin et al. (2014b).
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2.2. Explosive blast loading

2.2.7 Near-field blast loading

When a blast wave strikes a target, the pressure imparted from the

blast wave can be in the order of several Megapascals acting over sub-

millisecond durations. If the source of the blast is located close to the

target, the interaction between the blast wave and structure, and there-

fore the imparted load, is much more complex than in far-field events.

The KB semi-empirical predictions, that are built from the com-

pilation of a number of large-scale blast trials, parametric studies and

early numerical simulations have been shown to agree with closely con-

trolled experimental tests for medium to far-field scaled distances (Rigby

et al. 2014a, Rickman & Murrell 2007, Tyas et al. 2011, Cheval et al.

2010, 2012). When reviewing the research produced by Bogosian et al.

(2002), Shin et al. (2014b, p. 179) state “the lack of direct measure-

ments of overpressure, impulse, arrival time and positive phase duration

in the near-field, as described in prior sections of this chapter, and the

significant discrepancy at the face of the charge noted above, calls into

question the accuracy of the KB charts, especially in the near-field”. Luc-

cioni et al. (2006, p. 8) state “empirical expressions are not applicable

with confidence in the near-field because of the complexity of the flow pro-

cesses involved in forming the blast wave” or that “accuracy of empirical

relations in the near-field is not guaranteed” (Luccioni et al. 2006, p.

4), citing work by Hetherington & Smith (2014). As a possible expla-

nation for the large variations in loading obtained in the late near-field

(0.5 m/kg1/3 < Z < 2 m/kg1/3), Tyas (2019) suggests that it is due to

the development of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM)

instabilities in the expanding fireball. Additionally, when using the KB

semi-empirical predictions for explosives other than TNT, the choice of

TNT equivalence factor is crucial. There is, however, no universally ac-
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Figure 2.7: Blast interaction diagram and loading parameters associated with:
far-field (left) and near-field (right). Figure adapted from Rigby et al. (2014c)

cepted way of calculating TNT equivalence factors (Cormie et al. 2009)

which has been shown to be dependent on scaled distance (Shin et al.

2015).

Near-field blast events consist of extremely high magnitude, highly

spatial and temporally non-uniform loads (Rigby et al. 2015c) and are

generally associated with scaled distances of Z < 1 m/kg1/3, or when the

shock wave has not “detached” from the explosive fireball. A comparison

between an example far-field blast wave and near-field blast wave striking

a target is shown schematically in Figure 2.7, where the complexity of

near-field loading is demonstrated.

In this near-field region, experimental methods can be used to di-

rectly measure near-field reflected specific impulse and specific impulse

distributions. Close-in experimental blast parameter measurements are

typically conducted by measuring residual momentum – therefore the im-

parted impulse – of a small, rigid metal plug embedded within a larger

target surface (Huffington & Ewing 1985, Nansteel et al. 2013). The

“impulse–plug” method gives an indication of the imparted load at dis-

crete points on the target and is shown to reduce test-to-test scatter.

However, this approach does not provide sufficient temporal resolution
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2.2. Explosive blast loading

of the applied blast overpressure, a necessary requirement to ascertain

the mechanism of near-field loading scenarios and to provide validation

data (Rigby et al. 2015c). In recent times, large scale experimental ap-

proaches for the direct measurement of spatial and temporal variation

in loading resulting from an explosive event has been developed (Rigby

et al. 2014c, Fay et al. 2014, Clarke et al. 2015). In this approach, a fixed

target plate through which Hopkinson pressure bars (HPBs) are inserted

such that the bottom of the bars are flush with the plate. Due to the

location of these bars on the plate, overpressure-time histories can be

obtained for the array of bars that provide temporal and spatial distri-

bution of blast overpressure acting on a rigid target (a similar method

with flush-mounted pressure gauges is presented by Aune et al. (2016)).

However, near-field blast load measurements are onerous for a number

of reasons. Firstly, the high magnitude of loading necessitates the use

of robust support structures and protective housing for sensitive equip-

ment (which itself is required to record in the MHz frequency range).

Secondly, the measurements themselves are highly variable owing to the

presence of surface instabilities in the early stages of expansion of the

detonation products (Rigby et al. 2020), this variability in test repeata-

bility means the semi-empirical predictions are less accurate when used

deterministically (Bogosian et al. 2002).

It is therefore not practical to develop a predictive approach based

solely on physical testing, however experimental data remains a funda-

mental requirement for validation of numerical modelling schemes. Fi-

nite element (FE) and computational fluid dynamics (CFD) approaches

have been the primary tool of previous researchers when investigating

air-shock propagation and shock-structure interaction in the near-field,

with the results generally demonstrating good agreement with experi-
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mental data where it is available (Shin et al. 2014a, Rigby et al. 2018,

Whittaker et al. 2019). From these studies, authors have researched

the complex interaction between shock wave and expanding detonation

products (Edwards et al. 1992), the limits of representing the high explo-

sive as an ideal gas (Wilkinson et al. 2013), scaled distance relationships

for near-field explosions (Cormie et al. 2013), mesh sensitivity effects

Hashemi & Bradford (2014) and the complex 3D waveform of an ex-

panding shock wave (Shin et al. 2014a). Despite research into near-field

blast loading currently being hampered by a lack of well-controlled ex-

perimental validation data (Tyas 2019), FE/CFD analyses can provide

data at considerably higher spatial and temporal resolution than exper-

imental studies and are therefore suitable tools with which to develop a

refined predictive approach. However, physics-based models have a rela-

tively high computational demand, and are unsuitable for probabilistic,

risk-based analyses.

An outstanding challenge for the blast protection community is the

provision of techniques for predicting near-field specific impulse distribu-

tions in a way which is both accurate and computationally inexpensive.

An appropriate technique, which is adopted in this thesis, is to use val-

idated CFD analyses to create datasets from which predictive methods

can be developed. This process, known as data-driven surrogate mod-

elling, is widely used in the field of computational dynamics, e.g. Loy

et al. (2017), Both et al. (2019), but has not yet been successfully ap-

plied in the field of near-field blast load prediction.

2.2.8 Angle of incidence effects

Some common assumptions in semi-empirical predictive methods are that

the blast wave impinges normally on a reflecting surface, in other words,
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Reflected wave
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Charge
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Figure 2.8: Mach Stem formation, recreated from Tyas & Rigby (2018).

the angle of incidence is 0◦. The angle of incidence of a point on a surface

is defined as the angle between the outward normal and the direct vector

from the explosive charge to that point. However, an important phe-

nomenon occurs at angle of incidences of approximately θ > 40◦ known

as “Mach reflection” which illustrates the importance of considering angle

of incidence effects in predictive approaches.

Consider a detonation of an explosive charge at an arbitrary distance

from a rigid reflecting surface. For angles of incidence of approximately

θ > 40◦, upon reflection the incidence wave no longer ‘bounces’ off the

reflecting surface (as it typically does at smaller angles of incidence), but

instead it ‘skims’ across the reflecting surface. This reflected wave will

propagate with a large component of velocity parallel to the reflecting

surface, as it coalesces with the incoming incident wave, a third wave is

formed known as the “Mach Stem”. This process is shown in Figure 2.8.

The point where the mach stem, incident wave and reflecting wave

intersect is known as the “triple point”. Between the surface and the

triple point, the Mach Stem forms a vertical wave which can result in large

amplifications in the oblique pressure which often exceed the normally

reflected pressure at that point (Kinney & Graham 1985).

Angle of incidence is known to affect the pressure and impulse dif-

ferently (Rigby et al. 2015a). A common method to account for angle
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of incidence effects on positive phase parameters involves calculating the

incident pressure at scaled slant distance, where slant distance is the dis-

tance from explosion to point of interest, and multiply this by the oblique

reflection coefficient as shown in Figure 2.9. Remennikov (2003) notes

that the recommended minimum scaled distance range for the reflection

coefficients in Figure 2.9 is Zmin = 1.2m/kg1/3, so only coefficients cor-

responding to peak side-on pressures of below 1000 kPa are applicable.

The scaled oblique impulse can then be calculated using Figure 2.9 for a

particular value of incident overpressure.

Alternative semi-empirical approaches to calculate oblique impulse

were investigated by Henrych (1979), later developed by Remennikov

et al. (2017), based on the model of instantaneous detonation of a spher-

ical explosive and subsequent expansion of the gaseous detonation prod-

ucts into a vacuum. In this scenario the loading is assumed to develop

entirely from momentum transferred by the detonation products as they

impact the loaded face. After cancelling constant terms, the Henrych

(1979) equations can be expressed in normalised form:

ī(θ) = cos4 θ (2.8)

where ī is specific impulse divided by normally reflected specific im-

pulse, and θ is angle of incidence as previously.

Randers-Pehrson & Bannister (1997) present a trigonometric expres-

sion to account for angle of incidence effects, which after some manipu-

lation can be presented as a function of normalised specific impulse and

angle of incidence:

ī(θ) = AR(θ, Z) cos2 θ + AS(θ, Z)[1 + cos2 θ − 2 cos θ] (2.9)
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2.2. Explosive blast loading

Here, AR = ir(Z̄)/ir(Z) and AS = is(Z̄)/ir(Z), where is is incident

specific impulse, Z is normal scaled distance as previously, and Z̄ is slant

scaled distance to the point of interest: Z̄ = Z/ cos(θ). Similarly, slant

stand-off distance can be defined as S̄ = S/ cos(θ). For a given normal

scaled distance, AR and AS vary non-linearly with slant distance and

hence these coefficients must be calculated separately for each and every

angle of incidence under consideration. Furthermore, this relationship is

also scaled-distance dependent.
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2.2. Explosive blast loading

XX

Figure 2.10: Early stage detonation comparison between sphere (left) and
cylinder (right). The detonation products from the spherical charge expand
spherically, whilst the detonation products from the cylindrical charge expand
axially and radially, with a “bridging wave” (Knock & Davies 2013) formed
in between. Adapted from Wisotski & Snyer (1965).

2.2.9 Charge shape effects

Existing methods for predicting blast loading on a structure, such as

those mentioned previously based on the analytical work of Brode (1955)

or the semi-empirical relations of Kingery (1966) and Kingery & Bulmash

(1984) are based on the assumption that the explosive is a sphere det-

onated in free air or a hemi-sphere placed on the ground. However, it

has been shown that the shape of the explosive charge has a considerable

impact on the expansion of the detonation products and characteristics

of the resulting blast wave (Rigby et al. 2021, Langran-Wheeler et al.

2021, Fan et al. 2022).

As a spherical explosive detonates, the detonation wave front reaches

all edges of the explosive simultaneously and the blast wave will then ex-

pand outward into the air in a uniform and symmetric way. This is not

true for a non-spherical charge such as a cylinder however, in this situ-

ation the detonation wave front will not reach all edges of the explosive

simultaneously and therefore the subsequent expansion of the detonation

products will be highly complex and non-uniform. The detonation of a
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cylinder results in two types of primary waves: one set emitted from each

end of the cylinder that expand axially and another set emanating radi-

ally from the curved surface. These two sets of wave travel in directions

orthogonal to each other, and at the point where they meet, a secondary

“bridging wave” (Knock & Davies 2013) is formed as shown in Figure

2.10. Due to this non-uniform blast wave formation, it is well known that

peak overpressure and specific impulse are dependent on azimuth angle

(Clutter & Stahl 2014).

The initial shape and subsequent expansion of a blast wave from a

cylindrical explosive is largely dependent on its aspect ratio (L/D), i.e.

the ratio between the length and diameter of the charge (Esparza 1992).

The influence of aspect ratio on blast loading has been investigated in

(Stoner & Bleakney 1948, Plooster 1977, 1982) and more recently in (Wu

et al. 2010) where it was observed that for large values of L/D most of

the energy was focussed in the radial direction, whereas for small values

of L/D most of the energy was focussed in the axial direction. Similar

observations were reported by (Sherkar et al. 2016, Artero-Guerrero et al.

2017, Langran-Wheeler et al. 2017, 2019).

2.3 Data modelling and machine intelligence

2.3.1 Overview

Broadly speaking data modelling and machine intelligence is concerned

with creating representations of the world from observations; learning

by induction in order to understand, predict or provide decisions. Of

this, there are four elements of data modelling and machine intelligence

(Harrison 2018):

• the assumption
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2.3. Data modelling and machine intelligence

– “What we think the world is like”.

– Where ytrue = ftrue(x) demonstrates some unknown process of

input x. When this ouput variable, ytrue, is observed, some

observation error, εo, is introduced as yo = ytrue + εo where yo

is the observed output variable.

• The model

– “A way of expressing the thought mathematically”.

– ftrue(x) ≈ f(x), where f is the model, or approximator. So

ytrue = ftrue(x) = f(x) + εm where εm is model error.

– f(x) has adjustable parameters, w.

– Some typical models include: neural networks (multi-layer

perceptron, radial basis function networks, functional link net-

works), kernel machines (support vector machines), basis func-

tions (sine waves, polynomials, splines).

• The inference paradigm

– “A framework of matching the model to the world”.

– Process of estimating model parameters (such as least squares,

maximum likelihood, point estimation). Concerned with find-

ing the ‘best’ values for w.

• The inference engine

– “A means of doing the matching”.

– Specific method of optimisation, typically branched into the

following methods: direct methods (calculus such as linear

least squares), numerical methods (gradient descent) or simu-

lation based (genetic algorithms, particle swarms).
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When building predictive models, some assumptions about the data

are often required. It is assumed that a pre-existing dataset of a set of

input-target pairs exists U = {(x1, y1), ..., (xn, yn)}. During the training

process, the data is fixed and only the model parameters vary and this

dataset is assumed to be representative of the problem, with sufficient

data to build accurate models with. It is also typically useful to know how

the data was collected, was it experimental (with controlled conditions

where data is “designed”) or observational (data is “found”).

The central problem within data modelling and machine intelligence

occurs due to resolution of the sampled data points from the sample

space. As a finite number of data samples are collected, there will be

gaps between sampled points, meaning a predictive model must infer a

continuous function from a finite sample set. Therefore a choice must be

made in how to create model predictions for these ‘gaps’ between points

(interpolation or generalisation)? And what happens beyond the limits

of the dataset that the model was trained on (extrapolation)?

This becomes an inverse problem, and introduces the problem of

induction. The problem of induction is the philosophical question, origi-

nally proposed by David Hume in the mid-18th century, of the justifica-

tions (or lack thereof) for inductive reasoning. In particular the problem

of generalising about the properties of a class of objects based on histori-

cal observations of that class, widely known as the “black swan” problem

(Taleb 2007, Vickers 2011). The black swan problem is the inference that

all swans we have seen are white, and, therefore, all swans are white. The

second danger of inductive reasoning is in presupposing that a sequence

of events in the future will occur as it always has in the past. A real

example of this warning is given by the Fincancial Conduct Authority

(FCA), who enforce legal obligations onto the financial services industry
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in the UK, that there is clear communication to prospective clients of

investment products that “past performance is not a reliable indicator of

future returns [ii]” (FCA 2021). Model outputs, therefore, always require a

level of scepticism, and knowledge of the problem domain is highly useful

in determining how to handle extrapolation and interpolation scenarios

when modelling.

Machine learning is the name given to describe the capability of an

intelligent machine system (AI) to acquire its own knowledge, by ex-

tracting patterns from raw data. It is the scientific study concerned with

statistical models and algorithms that the computers use to perform a

task without explicit input, relying on pattern recognition and inference

instead. Generally, machine learning can be separated into three cate-

gories:

• supervised learning

– where a dataset is split into inputs and outputs and the goal is

to predict the value of an output measure based on a number

of input measures.

– Typical predictive methods include regression (continuous data)

and classification (discrete data).

• Unsupervised learning

– where there is no outcome measure, and instead the purpose

is in discovering the structure of the data and the associations

and patterns amongst input measures.

– Typical descriptive methods include clustering and associa-

tion.

[ii]Section COBS 4.6.2
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• Reinforcement learning

– where a reward is associated with achieving a set goal.

The introduction of machine learning has allowed computers to make

decisions based on real world knowledge that appear subjective. For ex-

ample, a machine learning algorithm called logistic regression can deter-

mine whether to recommend caesarean delivery (Mor-Yosef et al. 1990)

whilst an algorithm called naive Bayes can flag spam e-mail from incom-

ing e-mail. The performance of these machine learning algorithms de-

pends on the representation of the data they are given. In the caesarean

example, the AI system will not examine the patient directly, but is given

information deemed relevant, such as presence (or absence) of a uterine

scar. The information included within this representation is known as a

feature (Goodfellow et al. 2016, chap. 1), and the machine learning algo-

rithm, in this case logistic regression, learns how these features correlate

with various outcomes. Machine learning algorithms, therefore, not only

are dependent on the data they are given, but also on the representation

of this data. For example a non-English speaker would find it difficult to

navigate from London Victoria station to Covent Garden station given

a textual description of the route, but given an underground map drawn

with a highlighted route and an arrow suggesting “you are here!”, the

task would be much easier.

Machine learning, and other data-driven approaches are therefore

highly useful tools to build predictive models that can provide accurate

predictions even when the relation between and input and output is not

explicitly known. For an extensive overview of machine learning, see

Goodfellow et al. (2016) and Hastie et al. (2009).
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2.3.2 Data-driven approaches in blast and impact

events

Surrogate modelling is an engineering method that establishes a structure

(a surrogate model) that provides an output, given some input, to a

variable that would otherwise be expensive to obtain experimentally or

numerically. Constructing surrogate models is a data-driven, bottom-up

process, and therefore machine learning approaches have been shown to

produce accurate surrogate models in a variety of specialisms within civil

engineering.

A specific type of machine learning model, artificial neural networks

(ANNs) (Agatonovic-Kustrin & Beresford 2000), have been used to pro-

vide fast running surrogate models that predict: the failure of struc-

tural columns subject to dynamic loads (Stewart 2010, Stewart & Mor-

rill 2015); impulse and mid plate displacement based on plate dimensions

from blasts generated by PE4 charges (Bortorlan Neto et al. 2020), with

a direct application in assessing the vulnerability of naval vessels (Bortor-

lan Neto et al. 2017); fatigue crack propagation in steel by considering

the loading ratio (Iacoviello 2004); the corrosion-fatigue behaviour of

steel (Haque 2001); determine ballistic performance of armour solutions

(KılıÇ et al. 2015); predict the loading produced from boiling liquid ex-

panding vapour explosions in an open environment (Li et al. 2021) and

used alongside other models such as support vector machines (Noble

2006) to provide a classification of whipple shield performance subject to

a hypervelocity impact event, providing a failure or non-failure (boolean)

result (Ryan et al. 2016).

Considering predictive methods of blast loading on a larger scale,

particularly in city geometries, is particularly challenging due to the com-

plex wave interactions that occur. Remennikov & Rose (2005) highlight
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this issue when presenting a framework to determine load enhancement

factors from adjacent buildings in urban terrain, where the authors state

“the actual blast loads can either be reduced due to shadowing by other

buildings or can be enhanced due to the presence of other buildings in the

vicinity”. For simple geometries and city streets, Smith & Rose (2006)

suggest empirical rules can be formulated to predict blast resultants on

building façades, though as the complexity of city street layouts increase,

such rules become inaccurate and the authors recommend numerical sim-

ulation instead. Remennikov & Rose (2007) and Bewick et al. (2011) use

an ANN to accurately predict the blast environment (peak overpressure

and peak scaled impulse) behind a vertical wall barrier for various blast

wall scenarios. To train and validate the ANN, the authors develop a

database through a series of experiments and the results demonstrate

the feasibility to use ANNs for prediction of non-ideal blast loading in

situations with rigid obstacles such as blast walls. Bewick et al. (2011)

note a core issue within surrogate modelling, in that it can be difficult to

construct an accurate, data-driven surrogate model when the data gen-

eration itself is expensive. Extending the blast wall analysis Remennikov

& Mendis (2012) use ANNs to predict blast loads in complex city street

environments, where street configuration parameters were the principle

inputs and peak pressures and impulses were the outputs and further

demonstrate how ANNs can be used as surrogate models for blast load-

ing prediction in complex environments.

Flood et al. (2009) also replicate the blast wall scenario modelled by

Remennikov & Rose (2007), also including a target building behind the

blast wall, and propose a concept of course-grain modelling, previously

shown to work in modelling dynamic heat transfer in buildings (Flood

et al. 2004). This concept is similar to traditional computational fluid
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dynamics or finite element analyses in that the environment is discretised

and the state of each element advances in time. The difference being that

no physical equations are solved at each time step, a trained ANN instead

implements the output of these physical equations. This proposed coarse-

grain modelling approach is efficient and accurate in a one-dimensional

framework but is not yet capable of modelling higher spatial dimensions

or predicting impulse and is still in early stages of development (Flood

et al. 2012). A coarse grain modelling approach was demonstrated in

Löhner & Baum (2004) to model blast loads on generic building config-

urations which differed in that it uses theoretically derived functions to

drive a simulation as opposed to the empirically derived functions pro-

posed by Flood et al. (2012). It is suggested that the loss of information

resulting from the coarse spatial resolution in this approach is compen-

sated by sampling in the time-domain and gaining information about the

temporal progress of the blast wave.

Alternative approaches identified for simplifying the challenge of

blast load prediction in complex environments is to use ray tracing al-

gorithms, specifically shortest path ray tracing. Ray tracing methods

search for the shortest path a wave can follow from the point of detona-

tion to any target points, considering reflection and diffraction and has

been implemented by Frank et al. (2008) to produce a fast running tool

to calculate air blast pressure waveforms in urban environments. How-

ever, although a promising methodology this tool does not provide accu-

rate enough solutions to be used reliably by blast protection engineers.

An alternative approach to simplifying the challenge lies in considering

the trade-off between mesh resolution, computational time and accuracy.

Frank et al. (2008) compare their proposed fast running model (with ray

tracing) with a coarse mesh finite element code (Löhner et al. 1987) where
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they state reasonable solutions are provided, however, more accuracy is

certainly required to be used in civil engineering applications.

Löhner & Baum (2004) argue that coarse CFD simulations can pro-

vide a much higher accuracy than line-of-site (ray tracing style) calcula-

tions, particularly in more complex geometries that entail more complex

wave interactions. The authors provide some guidance on necessary re-

quirements of running these coarse CFD simulations and provide three

important conclusions: peak impulses are adequately captured in coarse

meshes, peak pressures show discrepancies between 25 − 50% between

coarse and fine meshes and finally coarse grids do not capture weaker

shock reflections between buildings. Klomfass (2018) perform a similar

set of analyses, with the intention of investigating the discretisation error

associated with the finite spatial resolution of their own developed CFD

code. An important conclusion from this work finds a similar conclusion

to Löhner & Baum (2004) in that maximum impulse does not need an er-

ror correction, but it also concludes that practically useful predictions of

maximum overpressures can be obtained on a standard computer within

a few minutes provided the discretisation error is considered.

A common focus in the aforementioned applications is to produce a

surrogate model that can predict blast wave output for some given com-

plex scenario. Considering modelling at a larger scale, creating surrogate

models becomes difficult due to the high number of variables that influ-

ence the evolution of a blast wave and the non-linear result, and therefore

the volume of data required increases so fast the available data becomes

sparse, termed the curse of dimensionality (Bellman 1966). Similarly

when considering surrogate models focussed on structural response sub-

ject to localised blast, large numbers of variables are introduced and large

amounts of data are required. Further, in these applications the knowl-
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edge of structural loading is ‘lost’ within the model and cannot be used

elsewhere, say to model a concrete RC beam instead of a steel I beam.

2.3.3 Surrogate modelling strategies to increase data

utility

The data-driven nature of building a surrogate model naturally requires

large amounts of data. However, a particular issue in a blast engineer-

ing domain is that experimental data can be difficult to obtain due to

the loading magnitudes and sub-millisecond durations of blast events.

Combining data-intensive deep learning approaches and scientific theory

is one promising avenue of research to address this issue and is con-

sidered to be a crucial step to improve model predictive performance

whilst respecting natural laws (Reichstein et al. 2019). One method

to achieve this integration involves guiding the learning of a machine

learning model though introducing a physical consistency penalty as a

regularisation procedure (Karpatne et al. 2017, Daw et al. 2020, Jia et al.

2019, Stewart & Ermon 2017). Physics-based approaches such as these

have been used effectively in a variety of domains such as power-flow

research (Hu et al. 2020), seismic response modelling (Zhang et al. 2020)

and the geo-sciences community (Muralidhar et al. 2018, Karpatne et al.

2017).

An alternative strategy to increase data utility involves knowledge

transfer between domains, known in the machine learning as “transfer

learning”. Traditionally, data mining and machine learning algorithms

provide predictions on future data using statistical models trained on pre-

viously collected labelled or unlabelled data (Pan & Yang 2010, Ramon

et al. 2007, Taylor & Stone 2007). A core assumption underpinning many

machine learning methods is that the training and test data belong to the
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same distribution. Therefore when this distribution changes, most mod-

els need to be re-trained on newly collected training data. In such cases,

it would be highly desirable to reduce the need to re-collect training data

and therefore transfer learning between task domains would be highly

useful. Many examples exist where transfer learning can be beneficial

across a broad range of domains such as: smart buildings (Pinto et al.

2022); Alzheimer disease detection (Taher M. Ghazal 2022); Parkinson’s

disease classification (Rezaee et al. 2022); web-document classification

(Mahmud & Ray 2007, Blitzer et al. 2008, Xing et al. 2007); sentiment

classification (Li et al. 2009); image classification (Lee et al. 2007); WiFi

localisation models (Yin et al. 2005, Raina et al. 2006, Pan et al. 2007,

2008, Zheng et al. 2008) and web-page translation (Ling et al. 2008).

The research challenge, therefore, is how to effectively implement

data-driven, bottom-up surrogate modelling strategies in a domain in

which it is considerably expensive to obtain data, experimentally or

numerically, such as in explosive blast load prediction? Further, what

methods can be used that increase the utility of data or models already

obtained through incorporating prior knowledge and embedding it into

the learning process?

2.4 Summary

This chapter has focussed on the theoretical knowledge behind the shock

formation of blast waves and current predictive methods used in blast

protection engineering to predict these blast wave parameters, with a

particular focus on the near-field region. Though some of the current

predictive approaches, particularly the semi-empirical KB method, are

useful, their accuracy within the near-field region is shown repeatedly in
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the literature to be severely limited.

The near-field region is an extremely challenging domain in which to

obtain data, numerically or experimentally. Therefore an understanding

of approaches that can leverage knowledge previously obtained from a

domain or task and applied to a new domain or task such that it improves

the efficiency or accuracy of the new surrogate model would be highly

beneficial. Thereby increasing the utility of previously obtained data is of

paramount importance. Furthermore, an understanding of the particular

data points required to build an accurate surrogate model would have

considerable benefits in both time and cost in experimental design.

It has been demonstrated that to accurately model structural re-

sponse, knowledge of the magnitude and distribution of loading is critical

(Rigby et al. 2019b). Furthermore, to enable a probabilistic approach to

blast protection engineering, accurate and fast running surrogate models

are urgently required. There is therefore a clear need for accurate, fast-

running surrogate models in the near-field and extreme near-field region

to enable such a probabilistic framework that would ultimately allow

engineers better tools to quantify risk in a blast engineering context.
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Chapter 3

Numerical modelling of air

blast loading

3.1 Introduction

Computational fluid dynamics (CFD) is a branch of fluid mechanics that

uses numerical analysis and data structures to simulate fluid processes.

Fluid dynamics is a branch of physics concerned with the mechanics of

fluids and the effect of forces on them.

Within this chapter a discussion of the theoretical groundwork un-

derpinning CFD is provided. It begins by discussing the equations that

govern the motion of an inviscid fluid (Euler equations) and of a viscous

fluid (Navier-Stokes equations) and provides a high level view on the

approaches that commerical CFD codes can take to simulate fluid flow.

Numerical simulations within this thesis were performed using Apollo

blastsimulator (shortened as ‘Apollo’ hereafter). Apollo is an explicit

CFD software which specialises in the simulation of explosions, blast

waves and gas dynamics (Fraunhofer EMI 2018, Klomfass 2016, 2018).

The conservation equations for transient flows of compressible, inviscid
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and non-heat conducting, inert or chemically reacting fluid mixtures are

solved using a second-order finite-volume scheme with explicit time inte-

gration.

A discussion of specific modules in Apollo that improve computa-

tional efficiency is provided, such as dynamic mesh adaptation (DMA),

1D-to-3D mapping, and 3D-to-3D staged mapping. This is followed by

a mesh sensitivity study and then a validation exercise in the far-field

against experimental data. This chapter begins with a discussion of the

governing equations and their derivations. For an extensive overview into

the theory of CFD, including derivations, see Blazek (2015).

3.2 Governing equations

3.2.1 Mathematical description of flow and the fi-

nite control volume

“Fluid dynamics” itself is the interactive investigation of a large num-

ber of individual particles, specifically molecules or atoms (Blazek 2015,

chap. 2). By assuming the density of the fluid is sufficiently high, it

can be approximated as a continuum, where matter is modelled from a

macroscopic view rather than a microscopic view. The implication of

this is that an infinitesimally small element of the fluid contains a suf-

ficient number of particles such that a mean velocity and mean kinetic

energy can be applied. Thereby at each point in the fluid: velocity, pres-

sure, density, temperature and other important quantities can be defined

(Blazek 2015, chap. 2).

The derivation of the governing equations of fluid dynamics is grounded

on the fact that the dynamic behaviour of a fluid is determined by the

following conservation laws:
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1. conservation of mass,

2. conservation of momentum,

3. and conservation of energy.

The conservation of a specific flow quantity states that its total variation

inside some arbitrary volume can be expressed as the net effect of the

amount of the quantity being transported across the boundary, of any

internal forces and sources, and of external forces acting on the volume.

Where the amount of the quantity moving across the boundary is called

flux. The flux has two constituent parts: the first due to convective

transport and the second due to molecular motion in the fluid at rest

(diffusive) (Blazek 2015, chap. 2).

By considering a general flow field, shown by the streamlines in

Figure 3.1, a finite control volume can be defined to allow the modelling

of flow properties in a bounded region. An arbitrary finite region of

the flow, bounded by a closed surface dΩ and fixed in space, defines the

control volume, Ω, with surface element, dS, and the associated outward

unit normal vector, ~n. Through application of the conservation law to a

scalar quantity per unit volume U, its variation in time within Ω is

∂

∂t

∫
Ω

U dΩ

is equal to the sum of the contributions due to convective flux. Convective

flux is the amount of quantity U entering the control volume through the

boundary with velocity ~v.

−
∮
∂Ω

U(~v · ~n) dS

further due to diffusive flux, expressed by the generalised Fick’s gra-
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Ω

∂Ω
∂Sv

n

Figure 3.1: Finite control volume fixed in space, Figure recreated from Blazek
(2015, chap. 2)

dient law ∮
∂Ω

κρ[∇(U/ρ) · ~n] dS

with κ as thermal diffusivity coefficient. With volume and surface sources,

QV , ~QS, ∫
Ω

QV dΩ +

∮
∂Ω

( ~QS · ~n) dS

therefore summing up the above contributive terms, the general form

of the conservation law for a scalar quantity, U is obtained

∂

∂t

∫
Ω

U dΩ+

∮
∂Ω

[U(~v·~n)−κρ(∇(U*·~n)] dS =

∫
Ω

QV dΩ +

∮
∂Ω

( ~QS·~n) dS

(3.1)

in the above formulation, U* denotes the quantity U per unit mass

(U/ρ). If the conserved quantity would be a vector instead of a scalar,

the convective and diffusive flux terms become tensors instead of vectors,

the convective flux tensor, FC , and diffusive flux tensor, FD. The volume

sources would become vector ~QV , and surface sources would become QS.
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So the conservation law for a general vector quantity, ~U becomes

∂

∂t

∫
Ω

~U dΩ +

∮
∂Ω

[
(FC − FD) · ~n)

]
dS =

∫
Ω

~QV dΩ +

∮
∂Ω

(QS · ~n) dS

(3.2)

the above formulations in Equation 3.1 and 3.2 are the integral formula-

tions of the general conservation law for a control volume (Blazek 2015,

chap. 2). This formulation has two important qualities: firstly, if there

are no volume sources present, variation of U depends only on flux across

the boundary ∂Ω and not on the flux inside the control volume Ω; sec-

ondly, this form remains valid in the presence of shocks or discontinuities

in the flow field (Lax 1954). The differential form of the general conser-

vation law (in Equation 3.2) requires the solution to be differentiable. At

shock discontinuities the differential form breaks down, hence taking a

finite volume approach which requires the integral form is more robust

and generally favoured in CFD codes.

By using the integral form in Equation 3.2 the corresponding expres-

sions for the three conservation laws in fluid dynamics can be derived:

conservation of mass, conservation of momentum and conservation of

energy.

3.2.2 Conservation laws

The continuity equation

Considering first the law of mass conservation for single-phase fluids, this

states that mass cannot be created nor destroyed in such a fluid system.

Furthermore there is no diffusive flux contribution here as for a fluid at

rest, any variation of mass implies displacement of fluid particles (Blazek

2015, chap. 2).
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Considering the finite control volume in Figure 3.1, the conserved

quantity is density, ρ. For time rate of change of the total mass inside

the finite volume Ω
∂

∂t

∫
Ω

ρ dΩ

the mass flow of a fluid through some surface boundary is the prod-

uct of density × surface area × perpendicular velocity (normal to the

surface). So convective flux across each surface element, dS is

ρ(~v · ~n)dS

with ~n pointing away from the surface by definition. As there are no

volume or surface sources present, from the general form in Equation 3.2

the integral form of the continuity equation is obtained (Blazek 2015,

chap. 2)

∂

∂t

∫
Ω

ρ dΩ +

∮
∂Ω

ρ(~v · ~n)dS = 0 (3.3)

The momentum equation

Newton’s second law states the rate of change of momentum of a body

over time is directly proportional to the force applied, and occurs in the

same direction as the applied force. For the momentum of an infinitesi-

mally small portion of the control volume (in Figure 3.1), Ω

ρ~vdΩ.

The rate of change of momentum within the control volume equals

∂

∂t

∫
Ω

ρ~vdΩ.
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So the conserved variable is the product of density and velocity,

where

ρ~v = [ρu, ρv, ρw]T .

The convective flux tensor, which describes the transfer of momen-

tum across the boundary of the control volume, exists in the Cartesian

coordinate system of the following three components:

x-component: ρu~v

y-component: ρv~v

z-component: ρw~v

the contribution from the convective flux tensor to the conservation

of momentum is given as

−
∮
∂Ω

ρ~v(~v · ~n)dS.

Diffusive flux is zero for a fluid at rest. Body force per unit vol-

ume, ρ~fe, corresponds to the volume sources in Equation 3.2. Thus the

contribution of external body forces to the momentum conservation is

∫
Ω

ρ~fedΩ

Surface sources consist of two parts: an isotropic pressure component

and a viscous stress tensor τ

QS = −pI + τ

where I is the unit tensor. By summing these contributions accord-
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ing to Equation 3.2

∂

∂t

∫
Ω

ρ~vdΩ+

∮
∂Ω

ρ~v(~v ·~n)dS =

∫
Ω

ρ~fedΩ−
∮
∂Ω

p~ndS+

∮
∂Ω

(τ ·~n)dS (3.4)

for momentum conservation inside an arbitrary control volume, Ω, fixed

in space (Blazek 2015, chap. 2).

The energy equation

Considering the first law of thermodynamics, applied to the control vol-

ume in Figure 3.1, it states that any changes in time of the total energy

inside the volume are caused by the rate of work of forces acting on the

volume and the net heat flux into it (Blazek 2015, chap. 2). Total energy

per unit mass, E of a fluid is calculated by adding internal energy per

unit mass, e (sometimes called specific energy), to its kinetic energy per

unit mass. Therefore

E = e+
|~v|2

2
= e+

u2 + v2 + w2

2
.

The conserved variable in this instance is total energy per unit vol-

ume, ρE. Where its variation in time in the volume Ω is

∂

∂t

∫
Ω

ρEdΩ.

The contribution of convective flux is

−
∮
∂Ω

ρE(~v · ~n)dS.

Unlike the previous continuity and momentum derivations, there is

now a diffusive heat flux ~FD, which is proportional to the gradient of the
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conserved quantity per unit mass (Fick’s law).

~FD = −γρκ∇e,

where γ = cp/cv is the ratio of specific heat constants. Diffusion flux

represents one part of the heat flux, heat transfer due to temperature

gradients and can be re-written in Fourier’s law of heat conduction

~FD = −κ∇T

where T is absolute static temperature. The second part of net

heat flux is due to volumetric heating, from absorption or emission of

radiation, or chemical reactions. The time rate of heat transfer per unit

mass is denoted as q̇h, together with the rate of work done by body forces

~fe means that the volume sources become

QV = ρ~fe · ~v + q̇h.

The final contribution to conservation of energy are surface source

QS, they correspond to the time rate of work done by pressure, along

with shear and normal stresses

~QS = −p~v + τ · ~v.

Therefore combining the above contributions, the energy conserva-

tion equation is obtained (Blazek 2015, chap. 2)

∂

∂t

∫
Ω

ρEdΩ +

∮
∂Ω

ρE(~v · ~n)dS =

∮
∂Ω

κ(∇T · ~n)dS +

∫
Ω

(ρ~fe · ~v + q̇h)dΩ

−
∮
∂Ω

p(~v · ~n)dS +

∮
∂Ω

(τ · ~v) · ~ndS. (3.5)
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using the relation between total enthalpy, total energy and pressure

H = h+
|~v|2

2
= E +

p

ρ
.

the convective and pressure terms in the energy equation in 3.5 can

be collected to be re-written in a more concise way (Blazek 2015, chap. 2)

∂

∂t

∫
Ω

ρEdΩ +

∮
∂Ω

ρH(~v · ~n)dS =

∮
∂Ω

κ(∇T · ~n)dS +

∫
Ω

(ρ~fe · ~v + q̇h)dΩ

+

∮
∂Ω

(τ · ~v) · ~ndS. (3.6)

3.2.3 The complete Navier-Stokes equations

The previous sections, recreating the derivations demonstrated in (Blazek

2015, chap. 2), presents derivations of the conservation laws of mass

(Equation 3.3), momentum (Equation 3.4) and energy (Equation 3.6).

By collecting into one system of equations the complete system of the

Navier-Stokes equations can be obtained. Introducing two flux vectors

for brevity: the vector of convective fluxes, ~FC , and the vector of viscous

fluxes, ~FV . Additionally a source term, ~Q, comprises all volume sources

due to body forces and volumetric heating. Combining Equation 3.2 with

Equations 3.3, 3.4 and 3.6

∂

∂t

∫
Ω

~W dΩ +

∮
∂Ω

(~FC − ~FV ) dS =

∫
Ω

~Q dΩ (3.7)

From this, the vector of conservative variables, ~W , consists in three

dimensions of five components
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~W =



ρ

ρu

ρv

ρw

ρE


,

for the vector of conservative fluxes,

~FC =



ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV


,

with V as contravariant velocity, the velocity normal to the surface

element, dS. It is defined as the scaler product of velocity vector and

unit normal vector

V ≡ ~v · ~n = nxu+ nyv + nzw

and the source term is

~Q =



0

ρfe,x

ρfe,y

ρfe,z

ρfe · ~v + q̇h


.

The vector of viscous fluxes has been omitted for brevity, but can be

found in (Blazek 2015, chap. 2). The Navier-Stokes equations in Equation

3.7 describe the behaviour of a viscous fluid. In many applications, it is
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a useful approximation to remove viscous effects entirely, so the vector

of viscous fluxes, ~FV , is ommitted, leaving

∂

∂t

∫
Ω

~W dΩ +

∮
∂Ω

~FC dS =

∫
Ω

~Q dΩ (3.8)

the above formulation in Equation 3.8 is known as the Euler Equa-

tions, and they describe pure convection of flow quantities in an inviscid

fluid. The integral formulation above, allow for accurate representation

of shocks (Blazek 2015, chap. 2).

It is sometimes required to solve the Euler equations on a moving or

deforming grid. The two most popular approaches for this, as suggested

by Blazek (2015, chap. 2) are: Arbitrary Lagrangian Eulerian (ALE)

formulations (Hirt et al. 1974, Pracht 1975, Donea et al. 1982) and Dy-

namic grids (Batina 1990). Where both approaches make an alteration

to Equation 3.8 that allows relative motion between the grid and fluid

∂

∂t

∫
Ω

~W dΩ +

∮
∂Ω

(~FM
C − Vt

~W) dS =

∫
Ω

~Q dΩ. (3.9)

where Vt is contravariant velocity of the face of the control volume

and is given by

Vt = ~g · ~n = nx
∂x

∂t
+ ny

∂y

∂t
+ nz

∂z

∂t

and nx, ny and nz are components of outward facing unit normal

vector of surface ∂Ω. Adapting the previous vector of convective fluxes,

~Fc to account for the relative fluid motion
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~FC =



ρVr

ρuVr + nxp

ρvVr + nyp

ρwVr + nzp

ρHVr + Vtp


,

with Vr being the contravariant velocity relative to the motion of

the grid (Blazek 2015, chap. 2)

Vr = V− Vt.

If Vt = V then the Lagrange formulation results, if Vt = 0 the Euler

formulation results, and if Vt = other the Arbitrary Lagrangian Eulerian

(ALE) formulation results.

3.2.4 Equations of state

The Navier-Stokes equations (Equation 3.7) and Euler equations (Equa-

tion 3.8) are systems of five conservative variables ρ, ρu, ρv, ρw and ρE,

but contain seven unknown flow field variables ρ, u, v, w, E, p and T .

To close out this system of equations, two additional equations of state

need to be provided. Two common examples are expressing pressure as a

function of density and temperature, the thermal equation of state, and

expressing internal energy as a function of density and temperature, the

caloric equation of state (Blazek 2015, chap. 2).

In modelling high explosives in Apollo, an equations of state data file

provides the simulation with both caloric equation of state and thermal

equation of state information. The caloric equation of state model used

in Apollo for all fluids takes the form of a quadratic polynomial function

57



Chapter 3. Numerical modelling of air blast loading

e = e0 + cV 1T + cV 2T
2

where cV 1 and cV 2 are specific heat constants, which become temper-

ature dependent at higher temperatures. All of the simulations within

this thesis consist of an explosive reacting in air. Air is modelled as a

thermally perfect gas where it can be assumed

p = ρRT,

where R is the specific gas constant, such that under ambient condi-

tions (288 ◦K), ambient pressure is p = 101.3kPa. The ideal gas caloric

equation of state provides the relationship between thermodynamic vari-

able:

e =
p

(γ − 1)ρ

where γ is the adibiatic index (ratio of specific heats). Explosives

are modelled in Apollo with a linear model

p = a2
0(ρ− ρ0) + p0,

where a0 is sound speed, and p0 is ambient pressure (101.3kPa). Detona-

tion products are modelled with the Jones Wilkins Lee equation of state

(Lee et al. 1968).

p(ρ, T ) = C1e
−R1ρ0/ρ + C2e

−R2ρ0/ρ + ρRT

where ρ and ρ0 are density and initial density, R is a gas constant,

and T is absolute temperature. The constants C1, C2, R1, and R2 are

defined within the equation of state file for a given fluid.
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3.2. Governing equations

3.2.5 Detonations

The detonation model used in Apollo relies on the Chapman-Jouguet

model. This uses a local initiation condition and a local state dependent

burning velocity. This results in the reaction front progressing in a phys-

ically meaningful way (Fraunhofer EMI 2018). The detonation product

mass generated in a time step is calculated by:

∆ρDP = ∆λρuHE

where the progression rate is calculated from:

∆λ = ∆t
Vburn

∆x
Min(1,Max(0, θ1, θ2)),

and trigger functions, θ1 and θ2 are calculated from

θ1 = kρDP/ρ
Max
DP ,

θ2 = k(ρuHE/ρ
0
uHE − 1)

θ1,2 ∈ [0, 1].

where ρDP is the actual detonation product density in the cell and

ρuHE is density of unburned explosive with reference density, ρ0
uHE, of the

unburned explosive. k is a sensitivity coefficient fixed to 3 (Fraunhofer

EMI 2018). In the CJ model a cell is initiated only through inflow of

detonation products. Local burning velocity is determined according to

the CJ condition:

Vburn = Vdet, CJ = a+ |v|,

which represents the sum of local sound velocity, a and material velocity,

v.
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3.3 The numerical scheme

3.3.1 Spatial discretization – the finite volume method

The previous section described the derivation of the Euler Equations

(Equation 3.8) and the introduction of the equations of state to provide

thermodynamic relations between variables. There remains two key steps

to solve these system of equations: spatial discretization of the domain

(the space where the flow is being computed), and temporal discretization,

to calculate the time-wise progress of flow variables in the domain.

For spatial discretization, Apollo implements a finite volume scheme.

For a comprehensive overveiw of other spatial discretization schemes, see

(Blazek 2015, chap. 3). The finite volume method directly implements

the integral form of the Euler Equations by dividing the physical domain

into a number of arbitrary polyhedral control volumes. The surface in-

tegral on the right hand side of Equation 3.8 is approximated by the

sum of the fluxes crossing each face of the control volume (Blazek 2015,

chap. 3). Two basic approaches for defining the shape and position of

the control volumes are given by (Blazek 2015, chap. 3) as: cell-centered

schemes, where flow quantities are stored at the centroid of the grid cells

so that control volumes are identical to grid cells; cell-vertex schemes,

where flow variables are stored at grid points or some volume around a

grid point.

A common approach utilised in numerical methods is a separate

discretization in both space and time, called the method of lines (Richt-

myer & Morton 1967). In this method, the grid is either used to con-

struct control volumes and to evaluate flux integrals, or to approximate

spatial derivatives of flow quantities. Then in a further time step the

time-dependent equations are advanced in time (Blazek 2015, chap. 3).
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3.3. The numerical scheme

The finite volume approach demonstrates the general choice of spa-

tial discretization, various numerical schemes exist that can implement

the approach, and can be classified into central or upwind schemes. Cen-

tral schemes rely on central difference or central averaging formulas where

the cell states are averaged on the left and right side of a boundary to

establish the flux at the vertex in between, whilst upwind schemes ac-

count for both upstream and downstream influences. For more detail on

both approaches see Blazek (2015, chap. 3).

3.3.2 Temporal discretization – explicit time inte-

gration

The code used in Apollo uses explicit time integration. This is performed

in two steps: firstly a Lagrange step, with acceleration and deformation

of a material volume evaluated and a subsequent remap step in which

updated material volume is remapped back onto the grid cells (Klomfass

2018).

For the Lagrange step, a characteristics based approximation of pres-

sure and velocity at cell interfaces is used, which is based on the solution

of the locally one-dimensional Euler equations for discontinuous states

at an interface (Blazek 2015, chap. 3) and falls into the class of “flux-

difference splitting schemes”. This scheme solves the acoustic approx-

imation of the one-dimensional Reimann problem for material velocity

and pressure on the contact surface between the left and right cell states,

and can be considered a Godunov-type method (Godunov 1959). Con-

sidering one-dimensional Euler equations, the Reimann problem in this

instance is the hyperbolic equation with a set of piecewise constant initial

data with a single discontinuity at x = 0 and t = 0.
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=

udx
dt
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Figure 3.2: Solution of the Reimann problem in x, t space.

Initial data:

u(x, 0) =

uL, if x < 0,

uR, if x > 0.

where uL and uR are states either side of the discontinuity. The

solution of the Reimann problem is shown in Figure 3.2. The complete

solution is constant along lines emanating from the origin, depending

only on the variable x/t.

There are three waves: the middle wave is the contact disconti-

nuity, u. The left (SL) and right (SR) non-linear waves are shocks or

rarefactions. Contacts and shocks are discontinuous solutions whereas

rarefaction waves are continuous solutions. Four different states in this

instance are denoted as: WL, W∗L, W∗R, WR. The region between non-

linear waves has constant pressure and constant velocity, known as the

star region (denoted by the “*”). Density and internal energy change dis-

continuously across the contact surfaces. Solving the Reimann problem

begins with obtaining the star states using the appropriate equations.

Considering first the rarefaction wave, the isentropic law

p = Cργ,
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W

Grid cell 

Material volume at t

v∇t

*

Transported material

Average cell content

Linear reconstruction

Figure 3.3: Remap stage: the one-dimensional donor cell method. Figure
adapted from Fraunhofer EMI (2018).

and the generalised Reimann invariant

C = u+
2a

γ − 1

with u as speed, C is a constant and a is the sound speed. These are

used to relate the states across the rarefaction wave to obtain the star

state.

Specifically considering shock, the Rankine-Hugoniot conditions are

solved across the wave in the shock frame of reference:

ρû = ρ∗û∗,

ρû2 + p = ρ∗û
2
∗ + p∗,

û(Ê + p) = û∗(Ê∗ + p∗),

Non starred quantities portray the left or right initial data state. û =

u− s, û∗ = u∗ − s with s as shock speed.

The remap phase transports the updated material volume back onto

the mesh cells using the one-dimensional donor cell method. See Figure

3.3 for a schematic demonstrating this process.

Both stages (the Lagrangian and remap phase) are computed with

interpolated states based on tri-linear reconstructions of the distribution
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W
Average cell state

Linear interpolation

Extrapolated states

(a)

WW

(b)

Figure 3.4: Extension to second order accuracy. (a) shows linear interpolation
of averaged cell states, and (b) shows how the linear interpolation values are
obtained, as a function of left and right sided difference. Figure adapted from
Fraunhofer EMI (2018).

of conservative variables within the grid cells in order to achieve second

order accuracy (Klomfass 2018), and is shown schematically in Figure

3.4.

These linear reconstructions, of which there is one for each spatial

direction, are controlled individually through a slope limiter resembling

the UMIST formulation (Lien & Leschziner 1994) given as

φ(r) = max[0,min(2r, (0.25 + 0.75r), (0.75 + 0.25r), 2)]; lim
r→∞

φ(r) = 2
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where r represents the ratio of successive gradients on the solution

mesh. Implementation of a slope limiter ensures that no new extrema

are created and the extrapolated states are used in flux calculations at

the interface.

In explicit time-stepping schemes, initial values are known and used

to calculate the solution at time t+∆t. Therefore the new solution relies

solely on values already known. To ensure that the solution remains

stable, a restriction on the time step is required. This restriction prevents

information travelling further than a cell width, ∆x, in a time step, ∆t,

which means the solution calculated in a given cell is only affected by

the information that is able to affect it physically.

The time step equation takes the form:

∆t < Ccfl
∆x

|v − vt|+ a
, (3.10)

where ∆x is the smallest cell size, |v − vt| is relative velocity between

material and (moving) cell, a is sound speed and Ccfl is a dimensionless

quantity called the Courant-Friedricks-Lewy number, in Apollo this is

defined as 0.4 but can be decreased if instabilities in a model occur.

3.4 Additional features in Apollo

3.4.1 One-dimensional simulation

A significant feature of Apollo is the one-dimensional (B1D) module, it

works with uniform one-dimensional meshes and permits the first stage of

the simulation to be completed in one-dimension, provided a spherically

symmetric solution exists (it cannot therefore be used when modelling

cylinders). Whenever a pressure discontinuity (such as the shock front)
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Chapter 3. Numerical modelling of air blast loading

Initial domain Intermediate domain Final domain

Figure 3.5: Global mesh adaptation process in B1D. Recreated from Fraun-
hofer EMI (2018).

approaches the outer boundary of the present domain, it is resized, as in

Figure 3.5.

In each adaptation step, cell size and the domain are doubled so that

the total number of cells remains approximately constant throughout the

B1D simulation. Sensitivity of the re-meshing can be controlled via the

input file, and is dependent on the gradients of variables in the flow field

(with maximum sensitivity meaning that all zones are set to maximum

level of resolution). This stage is terminated when user-inputted termi-

nation criteria are met, such as number of timesteps or distance.

3.4.2 Dynamic mesh adaptation

The Dynamic Mesh Adaptation (DMA) stage is based on Cartesian

meshes which have an inconsistent resolution globally. Specific regions

of the computational domain (such as those that require a greater res-

olution, e.g. the shock front) will require different resolutions as the

simulation progresses temporally. This has the benefit of saving the

computational power for the areas that require it through reducing the

computational demand from areas where it is not needed and is shown

schematically in Figure 3.6.

The highest mesh resolution to be used is directed in the input file.
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Zone length

Resolution

Zone grid origin

Level 1

Level 2

Level 3

Level 0

Stage 1: max level = N

Stage 2: max level = N - 1

Stage 3: max level = N - 2

Full model

Zone grid origin

Figure 3.6: Dynamic mesh adaptation (left) and multi-stage concept for global
adaptation shown (right). Recreated from Fraunhofer EMI (2018).

The resolution level represents the size of the smallest mesh cell used in

the simulation, determined through resolution level “N” and zone length,

“L”. Ultimate cell size, “h”, then equals:

h =
L

2N

The DMA algorithm works in such a way that always at least one

zone (the zone with the largest gradients[i] at the time) is resolved at the

highest level. When the entire flow field is uniformly at ambient state,

and no objects are embedded then all zones will remain at level 0 (Fraun-

hofer EMI 2018). Sensitivity of DMA with respect to the distribution

of cell resolution can be defined in the simulation (similar to the B1D

module). A maximum sensitivity value would mean all cells are resolved

to the highest possible resolution, and leads to a significant increase in

computational time.

A stability level for the computations can also be defined in the input

file. This becomes useful if any non-physical states or instabilities in the

computations occur (noticeable by significantly reduced time steps). The

stability level acts on the time step size by reducing the CFL number and

the combination of parameters that act on the tri-linear reconstruction

of state variables.

[i]A focus can be applied to particular variables in the keyword file.
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Chapter 3. Numerical modelling of air blast loading

An option in the DMA module exists to perform an ALE simulation

via a mesh expansion. This means the mesh is continuously stretched

according to a pre-defined velocity-time function. If this option is se-

lected, the computational scheme changes from Eulerian (mesh fixed in

space) to ALE. A uniform mesh expansion about a central point is used

by applying a globally uniform stretch rate given by:

ε̇(t) =
1

L
×
(

V1

(1− V1(t− t0)÷ L)β
+ Vend

)
;V1 = Vbeg − Vend

where Vbeg and Vend are initial and final velocities respectively, β is

0.75, L is the distance to centre point (X, Y, Z), t0 and tend are initial

and end times, εend is the ultimate stretch ratio and all are constants to

be defined. Motion starts for t = t0 and ends at tend or the ultimate

stretch ratio is reached, calculated by:

εend =
L(t)

L(t0)
.

3.4.3 Stages

In Apollo there is the option to split up the overall simulation into a

multi-stage simulation for computational efficiency, as shown in Figure

3.6. The initial stage radius, termination criteria and growth rate can be

defined by the user, or the default “auto-staging” procedure can be used.

The “auto-staging” procedure consists of 6 stages defined with scaled

termination radii of 0.2, 0.5, 0.8, 1.25, 5 and infinity (in m/kg1/3).

Additional resolution levels are defined for each stage, beginning with

an additional 6 levels, therefore as the simulation progresses, when the

disturbance reaches some termination criteria, the total (additional) res-
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olution level will drop by 1, and the new domain size will grow by the

defined growth rate. This process repeats until the additional resolution

levels drop to 0 and the entire domain is then included in the simulation.

Successive stages are linked together through remapping of the flow field

reached at the end of the prior stage onto the mesh of the successive

stage.

3.5 Validation of Apollo blastsimulator in

in the far-field

3.5.1 Mesh sensitivity study

The first priority when validating Apollo is to ascertain the confidence

that can be placed from numerical data produced for a less challeng-

ing scenario (i.e. far-field scenarios) before completing near-field proce-

dures (in Section 4.2.2). An initial mesh sensitivity study was therefore

completed in order to determine required element sizes to achieve con-

vergence. A series of numerical simulations were completed for 0.35 kg

hemispheres of PE4 (modelled as a 0.7kg sphere in Apollo), located at a

stand-off distance, S, of 6 m (scaled distance Z = 8.51 m/kg1/3) from a

rigid reflecting surface. PE4 is a plastic explosive comprising 87% RDX

and 13% mineral oil binder (Tyas 2019) and was used throughout the

mesh sensitivity analysis and validation using Apollo’s in-built model

for C4 since the two explosives are nominally identical (Bogosian et al.

2016). The model parameters are given in Table ?? in the appendix.

In all numerical simulations the explosives were centrally detonated us-

ing the Chapman-Jouguet model and the mass of the detonator was not

included.
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Figure 3.7: Model set-up for mesh sensitivity study. The floor is modelled as
a reflecting wall and the ceiling is modelled as an outflow boundary. Eighth-
symmetry is used.

The domain size was 6 × 6 × 6 m, and eighth-symmetry was used,

with symmetry planes located in the directions orthogonal and opposite

to the reflecting wall, originating at the centre of the charge and with

a ground plane set as a reflecting surface. The use of symmetry planes

technically models the explosive as if it was situated between two walls,

spaced 12 m apart, however the assumption is that the analysis will

be terminated before any waves from the artificial wall would reach the

true wall in the model and begin to affect the results. In all models

an integer number of zones was specified for each of the domain side

lengths. Outflow boundaries were defined at the roof of the domain and

the remaining boundary. A numerical pressure gauge was placed at the

base of the wall directly opposite the charge centre. This model set-up is

shown in Figure 3.7. Apollo’s 1D module was used with the limit defined

at one zone length from the gauge (for a zone length of 300 mm, the 1D

stage extended 5700 mm from the charge centre), and the auto-staging

module was used throughout to improve the simulation time. In total

24 simulations were completed with the mesh information summarised
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3.5. Validation of Apollo blastsimulator in in the far-field

Table 3.1: Ultimate cell length (element size at highest resolution level) and
number of elements (between charge centre and normal gauge location) for
initial mesh sensitivity study, Z = 8.5 m/kg1/3. Note, this does not consider
the additional resolution provided by the staging modules.

Zone length (mm)
Res. level 1000 600 400 300 200

0 1000 600 400 300 200
1 500 300 200 150 100
2 250 150 100 75 50
3 125 75 50 37.5 25
4 62.5 37.5 25 18.75

(a) Ultimate cell length (mm)

Zone length (mm)
Res. level 1000 600 400 300 200

0 6 10 15 20 30
1 12 20 30 40 60
2 24 40 60 80 120
3 48 80 120 160 240
4 96 160 240 320

(b) Number of cells between charge and target

in Table 3.1.

Results from the mesh sensitivity analysis are shown in Figure 3.8,

each sub-figure shows: peak overpressure; peak specific impulse and total

analysis time (termed ‘wall time’), all plotted against the ratio of stand-

off distance, S, to ultimate cell length. The solid black line shows the

average experimental value from Rigby et al. (2015a) and the dashed

line shows a 10% variation from the experimental value included as a

benchmark for comparison.

The study suggests that an ultimate cell length of h = S/240 and

h = S/40 are required to be within 10% error (from experimental bench-

mark) in overpressure and specific impulse respectively. As this research

focusses on predicting specific impulse values, the less-stringent conver-

71



Chapter 3. Numerical modelling of air blast loading

0 100 200 300 400
S / cell length

0

10

20

30

40

50

Pe
ak

 o
ve

rp
re

ss
ur

e 
(k

Pa
)

Zone length 200mm Zone length 300mm Zone length 400mm Zone length 600mm Zone length 1000mm

0 100 200 300 400
S / cell length

20

25

30

35

40

45

50

55

60

Pe
ak

 s
pe

ci
fic

 im
pu

ls
e 

(k
Pa

.m
s)

0 100 200 300 400
S / cell length

100

101

102

103

104

105

W
al

l t
im

e 
(s

)

Figure 3.8: Mesh sensitivity study for 0.35 kg PE4 at 6 m stand-off from a
rigid reflecting wall. Solid line indicates average experimental value (Rigby
et al. 2015a) and dashed line indicates 10% variation from the experimental
value. Note, Apollo’s staging procedure was used so S/cell length is greater
than shown, but would apply uniformly to all models.

gence requirement of h = S/40 is implemented in later analyses. It is

worth noting here that at h = S/40, peak specific impulse is within 4%

of its converged value, considered to be acceptable as an additional 4% in

accuracy would result in a 2000000% increase in simulation time taken.

Further, it is important to note that this does not include the additional

cells from the first stage being resolved in one-dimension.

The benefits of the DMA module can be seen when wall time is

considered: at h = S/60 a noticeable reduction in wall time occurs when

going from 200 mm to 400 mm zone length. Higher resolution levels

allow Apollo to efficiently allocate computational resource, therefore a

minimum level of 3 and a minimum ultimate cell length of h = S/40 are

recommended, provided an integer number of zones are specified for each

of the domain side lengths.

3.5.2 Experimental validation

Rigby et al. (2015a) present a series of experimental trials where pressure

gauges, embedded flush with the surface of a masonry wall, were used
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Figure 3.9: Pressure gauge location and general test arrangement of experi-
mental data (Rigby et al. 2015a)

to record reflected pressure histories from 0.18–0.35 kg PE4 hemispheres

located 2–10 m from the bunker wall. The experimental set-up is shown

in Figure 3.9. For this validation exercise, only data from the normally

reflected gauge, ‘G1’, was used.

The experimental dataset consists of 19 tests at 9 unique scaled

distances, therefore a further 8 numerical analyses were performed (in

addition to the 0.35 kg at 6 m test presented in Section 3.5.1). In each,

the domain size was a regular cube with side-length equal to the stand-off

distance in each case. As in the mesh sensitivity study, eighth-symmetry

was used, with symmetry planes located in the directions orthogonal and

opposite to the reflecting wall, originating at the centre of the charge.

Spheres of PE4 were modelled with the ground modelled as a reflecting

surface. Outflow boundaries were defined at the roof of the domain and

the remaining side. A numerical pressure gauge was placed at the base of
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Figure 3.10: General model set-up for far-field validation study. The floor is
modelled as a reflecting wall and the ceiling is modelled as an outflow bound-
ary. Eighth-symmetry is used. ‘x’ is one of the stand-off distances given in
Table 3.2

the wall directly opposite the charge centre. Further information for each

of the validation models is presented in Table 3.2, including resolution

level, ultimate cell length, and resulting stand-off/cell length (S/h) ratio,

and a model schematic is given in Figure 3.10.

Results from example numerical analyses are compared to experi-

mental data in Figure 3.11 for all the experimental scenarios outline in

Table 3.2. It can be seen in all experiments that the magnitudes and gen-

eral form of the numerical pressure and impulse histories closely match

the experiments giving confidence that Apollo is correctly modelling the

mechanisms of normal reflection in far-field blast scenarios. In all cases,

the well-known secondary shock (Rigby et al. 2016) can be seen to ar-

rive later in the numerical models, indicating that afterburning of the

explosive detonation products is being slightly underestimated (Schwer

& Rigby 2017, 2018). However, the effect of on peak specific impulse

is negligible since the secondary shock consistently arrives during the

negative phase.

Additionally, a comparison of numerical and experimental scaled
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(b) 180g at 4m stand-off
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(c) 250g at 4m stand-off
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(d) 350g at 4m stand-off
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(e) 250g at 6m stand-off
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(f) 290g at 6m stand-off
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Figure 3.11: Experimental validation of numerical overpressure and specific
impulse histories for the 9 different experimental scenarios as summarised in
Table 3.2. All experiments are PE4 hemispheres.
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Table 3.2: Input parameters and meshing strategy used for validation models.
Note, the B1D module was used as previously.

Stand-
off
(m)

Charge
mass
(kg)

Zone
length
(mm)

Res.
level

Ultimate
cell

length
(mm)

S/cell
length

2 0.25 200 4 12.50 160

4 0.18 200 4 12.50 320
0.25 200 4 12.50 320
0.35 200 4 12.50 320

6 0.25 300 4 18.75 320
0.29 300 4 18.75 320
0.35 300 4 18.75 320

8 0.25 400 4 25.00 320

10 0.25 400 4 25.00 400

peak specific impulse values (divided by the cube-root of the charge mass)

is presented in Figure 3.12. The numerically generated peak specific

impulses can be seen to closely match the experimental data consistently

across the entire range of scaled distance and therefore Apollo can be

considered to provide accurate specific impulse values in this region of

scaled distances, provided the mesh requirements outlined previously are

satisfied.

3.6 Summary

This chapter has focussed on the theoretical background of fluid dynam-

ics, and demonstrates typical approaches taken in computational fluid

dynamics (CFD) codes. Within this thesis, the chosen CFD code was

Apollo, this chapter demonstrates the numerical scheme that Apollo im-

plements and describes additional features that improve computational
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Figure 3.12: Validation of Apollo scaled peak specific impulse against experi-
ments (Rigby et al. 2015a)

efficiency that are utilised in subsequent analyses to demonstrate why

Apollo is a suitable choice.

Additionally, Apollo is validated in the far-field extensively against

a range of experimental data following the presentation of a mesh sen-

sitivity analysis where it can be seen Apollo provides highly accurate

solutions that show good agreement with experimental data.
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Chapter 4

Developing a preliminary

surrogate model with data

transformations

4.1 Introduction

As previously mentioned in Chapter 2, accurate appraisal of the viability

of structures and protective systems following the close-in detonation of

a high explosive is only possible if the analyst has an accurate model de-

tailing both the distribution and magnitude of the imparted load (Rigby

et al. 2019b). In these so-called extreme near-field scenarios, the loading

is highly localised, whilst deformation and damage occur on timescales

which are orders of magnitude longer than the duration of loading. It is

clear, therefore, that the temporal form of the loading is of lesser impor-

tance, yet a description of the spatial distribution of the peak loading,

i.e. peak specific impulse, is critical. Due to the limitations of using

experimental approaches to inform a data-driven surrogate model (as

mentioned in Section 2.2.7) an appropriate technique is proposed in this

81



Chapter 4. Developing a preliminary surrogate model with
data transformations

thesis of using validated CFD analyses to create datasets from which

surrogate models can be developed for near-field blast load prediction.

This chapter addresses the near-field validation of Apollo that is

used to generate the datasets used throughout this thesis. It then demon-

strates how this data can be used to create a preliminary surrogate model

through the use of data transformations. To create this surrogate model

it is found that: the peak perpendicular specific impulse can be modelled

as a power law with respect to scaled distance and the normalised specific

impulse with respect to angle of incidence can be modelled as a modified

gaussian equation. The product of these two components allows the pre-

diction of peak specific impulse for a given range of scaled distance and

angle of incidence. The accuracy of this new approach is rigorously tested

against the existing CFD dataset, unseen CFD analyses, and available

experimental data from the literature. It is demonstrated that localised

peak specific impulse and area-integrated total impulse (for a range of

target sizes) are typically predicted to within 10%.

4.2 Numerical modelling

4.2.1 Apollo Blastsimulator

The in-built “auto-staging” procedure in Apollo was used which consists

of 6 stages defined with scaled termination radii of 0.2, 0.5, 0.8, 1.25,

5 and infinity (in m/kg1/3). Additional resolution levels are defined

for each stage, beginning with an additional 6 levels, therefore as the

simulation progresses, when the disturbance reaches some termination

criteria, the total (additional) resolution level will drop by 1, and the

new domain size will grow by the defined growth rate. This process

repeats until the additional resolution levels drop to 0 and the entire
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domain is then included in the simulation. Successive stages are linked

together through remapping of the flow field reached at the end of the

prior stage onto the mesh of the successive stage.

Apollo has the option to progressively expand a computational do-

main according to a pre-defined velocity-time function (e.g. the rate of

expansion of a freely expanding spherical blast wave), however this is

not usually required for close-in detonations. PE4 is a plastic explo-

sive comprising 87% RDX and 13% mineral oil binder (Tyas 2019). The

explosives were modelled as 100 g PE4 spheres throughout the mesh sen-

sitivity study, validation, and data harvesting aspect of this study, using

Apollo’s in-built model for C4 explosive, as the two explosives are of

nominally identical composition (Bogosian et al. 2016). The pressure-

density-temperature relationship of the post-detonation explosive prod-

ucts is given by the Jones Wilkins Lee equation of state (Lee et al. 1968):

p(ρ, T ) = C1e
−R1ρ0/ρ + C2e

−R2ρ0/ρ + ρRT

where ρ and ρ0 are density and initial density, R is a gas constant

(R = 365 J/(kg.K) for PE4), and T is absolute temperature. The

constants C1, C2, R1, and R2 are assigned the values 734.60 (GPa),

8.86 (GPa), 4.79 (-), and 1.06 (-) respectively for PE4. The air is mod-

elled as a thermally perfect gas, p = ρRT , such that under ambient con-

ditions (288 ◦K), ambient pressure is p = 101.3 kPa. Ambient pressure

has been subtracted from all pressure histories in this article to present

over -pressures and impulses only. Afterburn has been shown to influence

the development of loading in near-field blast scenarios (Tyas et al. 2016),

and so was modelled using the Klomfass Afterburning (KAB) Model. The

KAB model defines an empirical relationship for global combustion rate

based on volume and rate of change of volume of the explosive fireball,
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whereby the total mass of combustion products generated in a time-step

is obtained (Fraunhofer EMI 2018). In all numerical simulations the

explosives were centrally detonated and the mass of the detonator was

not included. The Chapman-Jouguet detonation model was used, with

the progression rate a function of: local burning velocity, defined by the

Chapman-Jouguet condition; local detonation product density; and local

un-reacted explosive density. This model allows the detonation front to

propagate in a physically meaningful manner (Fraunhofer EMI 2018).

4.2.2 Mesh sensitivity and validation

Mesh sensitivity analysis

Prior to validating Apollo results against available experimental data,

a mesh sensitivity study was conducted with the aims of determining

the required element size to achieve convergence and identifying suitable

combinations of zone length and resolution level.

A series of simulations were run for a 100 g PE4 sphere (24.3 mm

radius) located at a stand-off distance, S, of 0.05 m from the centre of the

charge to a rigid reflecting wall. This corresponds to a scaled distance of

Z = 0.108 m/kg1/3, which is the shortest scaled distance to be used in

the subsequent modelling study. The domain was 0.35× 0.35× 0.35 m,

and quarter symmetry was utilised, with symmetry planes located in the

directions orthogonal to the reflecting wall, originating at the centre of

the charge. Numerical pressure gauges were placed along the rigid surface

out to a distance of 0.28 m from the point normal to the explosive. 200

gauges in total were placed at evenly-spaced angles of incidence, θ, where

the angle of incidence is defined as the angle between the outward normal

of the reflecting surface and the direct vector from the explosive charge

to that point (Rigby et al. 2015a). The gauge which is normal to the
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Table 4.1: Ultimate cell length (element size at highest resolution level) and
number of elements (between charge centre and normal gauge location) for
initial mesh sensitivity study, Z = 0.108 m/kg1/3. Note, the × 4 multiple
accounts for the additional cells from the staging procedure.

Zone length (mm) × 4
Resolution Level 50 20 10

0 50 20 10
1 25 10 5
2 12.5 5 2.5
3 6.25 2.5 1.25
4 3.125

(a) Ultimate cell length (mm). Ultimate cell length values
should be divided by 4 to account for Apollo’s auto-staging
procedure.

Zone length (mm)
Resolution Level 50 20 10

0 4 10 20
1 8 20 40
2 16 40 80
3 32 80 160
4 64

(b) Number of cells between charge and target

explosive therefore has an angle of incidence of θ = 0◦, and the most

remote gauge has an angle of incidence of θ = 80◦. A total of 13 models

were run in the initial sensitivity analysis, with details of the meshes

provided in Table 4.1. Apollo’s auto-staging was used throughout.

Results from the mesh sensitivity analysis are shown in Figure 4.1,

where each sub-figure shows: peak specific impulse for the normal gauge

(“peak” refers to the maximum specific impulse from the specific impulse-

time history); area-integrated impulse out to a radius of 0.28 m from the

normal gauge; and total analysis time (termed ‘wall time’ in Apollo), all

plotted against the ratio of stand-off distance to ultimate cell length. The

results suggest that an ultimate cell length of S/50 is sufficient to achieve
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Figure 4.1: Mesh convergence study for Z = 0.108 m/kg1/3

convergence for both specific and total impulse, whilst maintaining a

practical analysis time: a decrease in cell length from S/64 to S/160

increases the total impulse by < 3%, whilst increasing the wall time by

approximately a factor of 25. The benefits of DMA, however, can be

seen when considering wall time: at S/40, a clear reduction in analysis

time is observed when going from a zone length of 0.01 m to 0.02 m.

Therefore a meshing strategy of 50 mm zone length and resolution level of

4 will be implemented, extending to a 100 mm zone length and resolution

level of 5 (maintaining an ultimate cell length of > S/50 throughout) to

accommodate a number of larger domain sizes required to populate the

CFD dataset in subsequent sections of this paper.

Experimental validation

The Characterisation of Blast Loading apparatus (Clarke et al. 2015)

was designed to measure spatial and temporal distribution of loading

from buried (Rigby et al. 2016) and free air explosions (Rigby et al.

2015b). The apparatus utilises two perpendicular arrays of Hopkinson

(1914) pressure bars (HPBs), mounted such that their faces lie flush

with the underside of a large (100 mm thick, 1400 mm diameter) steel

plate, which acts as a nominally rigid reflecting surface under which the
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Reinforced
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pressure bar
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(a)
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Explosive

Figure 4.2: Schematic of the University of Sheffield’s Characterisation of Blast
Loading apparatus (not to scale): (a) elevation; (b) detailed plan view of target
plate showing bar arrangement and coordinate axes. Figure taken from Rigby
et al. (2019a)

explosive charges are detonated. 17 HPBs are used in total: one bar is

located directly above the charge (which itself is aligned with the centre

of the target plate); and four bars are located at each distance of 25 mm,

50 mm, 75 mm and 100 mm from the centre, an experimental schematic

for this arrangement is shown in Figure 4.2. Numerical integration of

the recorded pressure signals enables peak specific impulse distributions

over the central 200 mm diameter region of the target to be generated.

Two different configurations were used to validate Apollo: 100 g PE4

spheres were used throughout, with three tests at 80 mm stand-off (Rigby

et al. 2019a) and three tests at 380 mm stand-off (Rigby et al. 2020),

corresponding to scaled distances of 0.172 m/kg1/3 and 0.819 m/kg1/3

respectively.

Apollo models were run with 50 mm zone length and resolution

level of 4 as informed by findings from the mesh sensitivity analysis,

and utilising the auto-staging procedure with the first stage resolved in

1D. Thereby satisfying the S/50 constraint as mentioned in the mesh
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Figure 4.3: Experimental configuration of 100g spherical charge scenarios mod-
elled in Apollo. 80mm standoff (left) and 380mm standoff (right).

sensitivity study. The reflecting surface was modelled as a rigid wall

and quarter symmetry was used as before. The domain was extended to

1.5×1.5×1.5 m to prevent expansion waves from the edge of the domain

reaching the gauge locations, and to establish a consistent domain size

for use in subsequent models. Experimental configurations are shown

in Figure 4.3. Numerical overpressure and specific impulse histories at

0, 25, and 50 mm from the target centre are compared against those

from one of the 80 mm stand-off experiments in Figure 4.4. It can be

seen that the magnitudes and general form of the numerical pressure and

impulse histories match the experiments closely, which gives confidence

that Apollo is correctly modelling the mechanisms of normal and oblique

reflection in near-field blast scenarios.

Additionally, Figure 4.5 shows compiled peak specific impulse dis-

tributions for the 80 mm stand-off and 380 mm stand-off tests with the

CFD data evaluated at 0.4◦ increments of angle of incidence. Also shown

are the mean experimental recordings at each measurement location for

ease of comparison (three data points at the target centre and 12 data
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(b) 25 mm from centre, θ = 17◦
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(c) 50 mm from centre, θ = 32◦

Figure 4.4: Experimental validation of numerical overpressure and specific
impulse histories for Z = 0.172 m/kg1/3 as 0, 25, and 50 mm distance from
the target centre
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(b) 380 mm stand-off, Z = 0.819 m/kg1/3

Figure 4.5: Experimental validation of numerical specific impulse distributions
at 0–100 mm distance from the target centre

points at each other distance from the centre). Again, the numerical re-

sults closely match the experimental data, in both form and magnitude,

although the results appear to be in better agreement with the upper

bound of the experimental results. Deriving a model based on Apollo

CFD results will therefore show conservatism, however this is still rep-

resentative of the typical variations seen in blast loading from close-in

detonations, as exhibited here.

4.2.3 Generation of dataset

Apollo was used to generate specific impulse distributions along a rigid re-

flecting surface, at angles of incidence between 0–80◦, with 200 numerical

gauges placed at regular increments of angle of incidence as per the val-

idation exercise. The analyses were formed into two groupings. Firstly,

an initial dataset was generated for extreme near-field conditions, 0.11–

0.21 m/kg1/3, at increments of ∼0.025 m/kg1/3. Here, the domain size

was fixed at 1.5 × 1.5 × 1.5 m, using quarter symmetry, with 100 mm
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zone length and resolution level of 5. This results in the same ultimate

cell length as the validation model and recommendations from the mesh

sensitivity study whilst maximising computational efficiency through the

use of the DMA feature in Apollo and the auto-staging procedure.

The dataset was then expanded to incorporate intermediate near-

field conditions, with analyses run between 0.24–0.55 m/kg1/3, again at

increments of ∼0.025 m/kg1/3. The full dataset comprised 18 analyses in

total, with 3600 data points between 0.11–0.55 m/kg1/3 and 0–80◦. For

the Z > 0.21 m/kg1/3 analyses, a separate domain was specified for each

model, with equal side lengths of an integer number of zone lengths, given

by: d1.3S tan(80◦)/Le, where S and L are stand-off and zone length as

previously, such that S tan(80◦) is the distance from the centre of the

target to the most remote gauge. The domain length was set a factor of

1.3 greater than this distance (rounded up to the nearest multiple of zone

length), again to prevent edge expansion waves from reaching the most

remote gauge location during the analysis. As with previous models,

quarter symmetry was used, with 100 mm zone length and resolution

level 5 and Apollo’s auto-staging procedure was used.

CFD results are shown in detail in Figure 4.6 for the reduced and

full datasets. Here, a Savitzky-Golay filter (Savitzky & Golay 1964) has

been applied to the specific impulse distributions to remove small spuri-

ous oscillations induced by DMA, which were more apparent in the anal-

yses at larger scaled distances. The Savitzky-Golay filter is a low-pass

data-smoothing method based on local least-squares polynomial approxi-

mation, and is particularly suited for removing high frequency noise with

the advantage of preserving the original shape and features of the signal

(Acharya et al. 2016).
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Figure 4.6: CFD results: (a) filled contours of scaled peak specific impulse for
reduced dataset, 0.11–0.21 m/kg1/3; (b) distributions of peak specific impulse
for 0.11, 0.13, 0.16, 0.19 and 0.21 m/kg1/3; (c) filled contours of scaled peak
specific impulse for full dataset, 0.11–0.55 m/kg1/3; (d) distributions of peak
specific impulse for 0.24, 0.32, 0.40, 0.48 and 0.55 m/kg1/3

92



4.3. Development of a data-driven predictive approach

4.3 Development of a data-driven predic-

tive approach

4.3.1 Overview

This section details the development of a data-driven predictive approach

for computing near-field specific impulse distributions from spherical PE4

charges. Firstly, the relationship between peak specific impulse and angle

of incidence is examined, and three different curve types are trialled to

establish the most suitable candidate for representing the spatial varia-

tion of loading. Secondly, the relationship between scaled distance and

peak specific impulse is considered and a power law fit is determined.

The proposed predictive method is given as the product of these two

relationships: spatial variation, and variation with scaled distance.

It was noted by Wilson et al. (2018) that “further research into anal-

ysis scenarios at varying angles of incidence are required. . . at a scaled

distance less than 0.16 m/kg1/3”, hence initial efforts are focussed on the

reduced dataset, and then extended to the full dataset.

4.3.2 Spatial variation of normalised impulse

From examination of Figure 4.6b and 4.6d, it appears as though that

the relationship between peak specific impulse and angle of incidence is

similar for all scaled distances considered in this article. Dividing each

through by the respective peak specific impulse at 0◦, i.e. the normally

reflected peak specific impulse, ir, allows the normalised peak specific

impulse distribution to be plotted, as shown in Figure 4.7. Here, it can

be seen that the curves form a consistent grouping, particularly for the

reduced dataset, which suggests that it is possible to define a single curve
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Figure 4.7: Normalised peak specific impulse distributions: (a) reduced
dataset, 0.11–0.21 m/kg1/3; (b) full dataset, 0.11–0.55 m/kg1/3

to describe the shape of the distributed specific impulse with respect to

angle of incidence. Three candidate curve-types have been identified: the

semi-analytical trigonometric functions of Henrych (1979), and Randers-

Pehrson & Bannister (1997); and the Gaussian function proposed by

Pannell et al. (2019).

The semi-analytical work of Henrych (1979), later developed by Re-

mennikov et al. (2017), is based on the model of instantaneous detonation

of a spherical explosive and subsequent expansion of the gaseous deto-

nation products into a vacuum. Here the loading is assumed to develop

entirely from momentum transferred by the detonation products as they

impact the loaded face. With some cancelling of constants, the Henrych

(1979) equations can be expressed in normalised form:

ī(θ) = cos4 θ (4.1)

where ī is specific impulse divided by normally reflected specific im-

pulse, and θ is angle of incidence as previously.
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Randers-Pehrson & Bannister (1997) present a trigonometric expres-

sion to account for angle of incidence effects, which after some manipu-

lation can be presented as a function of normalised specific impulse and

angle of incidence:

ī(θ) = AR(θ, Z) cos2 θ + AS(θ, Z)[1 + cos2 θ − 2 cos θ] (4.2)

Here, AR = ir(Z̄)/ir(Z) and AS = is(Z̄)/ir(Z), where is is incident

specific impulse, Z is normal scaled distance as previously, and Z̄ is slant

scaled distance to the point of interest: Z̄ = Z/ cos(θ). Similarly, slant

stand-off distance can be defined as S̄ = S/ cos(θ). For a given normal

scaled distance, AR and AS vary non-linearly with slant distance and

hence these coefficients must be calculated separately for each and every

angle of incidence under consideration. Furthermore, this relationship is

also scaled-distance dependent.

Finally, Pannell et al. (2019) presented work on using machine learn-

ing to fit Gaussian probability density functions to near-field specific

impulse distributions. Here, a modified version of the equations as a

function of angle of incidence is presented:

ī(θ) = exp

(
−θ2

AG

)
(4.3)

where AG is the Gaussian width parameter, which controls the rate

of decay of the Gaussian curve with respect to angle of incidence. Two

other parameters form a traditional Gaussian function, i.e. those which

determine the height and position of the centre of the peak respectively.

Due to the normalised and rotationally-symmetric nature of the loading

considered here, the height coefficient is unit throughout, and the position

coefficient is zero as each Gaussian curve is centred around θ = 0◦. Whilst
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the loading is considered rotationally-symmetric, the method can still be

used to model off-centre charge placements relative to the target surface,

as detailed in Section 4.4.2.

Figure 4.8 shows an assessment of the quality of fit for each of the

normalised predictions compared against the reduced CFD dataset. For

the Randers-Pehrson & Bannister (1997) model, AR and AS were deter-

mined at every angle of incidence (200 values between 0 and 80◦) for each

scaled distance using the 5th-order and 11th-order polynomial equations

for ir(Z) and is(Z) provided in Table 4-2 of Shin et al. (2014b). Neg-

ligible difference was found between the AR and AS vs. θ relationships

averaged across all scaled distances, and the AR and AS vs. θ relation-

ship for the median scaled distance (Z = 0.16 m/kg1/3) of the reduced

dataset. This low dependency of AR and AS with Z is to be expected

for this particular grouping of scaled distances owing to the similarity

of the normalised impulse curves as shown in Figure 4.7a. Even given

this simplification, however, the process for determining AR and AS is

relatively involved and required a minimum of 200 computations.

For the Pannell et al. (2019) Gaussian model, AG was determined

through a non-linear regression analysis in which the root mean squared

error (RMSE) was minimised using a trust region reflective method (Branch

et al. 1999). For the reduced dataset, the regression-estimated best fit

yielded an AG value of 1829.

Also shown in Figure 4.8 are the model residuals (CFD value minus

model prediction), with mean absolute error (MAE) and RMSE provided

for each fit against the mean CFD distribution. The Henrych (1979)

and Randers-Pehrson & Bannister (1997) trigonometric identities gener-

ally under-predict specific impulse for intermediate angles of incidence

(which would result in a degree of unconservatism when considering to-
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4.3. Development of a data-driven predictive approach

tal impulse) whereas the Gaussian function (Figure 4.8c) can be seen to

closely match the CFD data for all angles of incidence. The Gaussian

model also exhibits the best quantitative agreement when considering

both MAE and RMSE and therefore has been selected to represent the

spatial distribution of specific impulse in the predictive methodology pro-

posed in this article.

The Gaussian function was subsequently assessed against the full

dataset, Figure 4.9, again with AG determined through non-linear regres-

sion (AG = 2007 for the full dataset). Although the spread of normalised

CFD curves is larger for the full dataset, the Gaussian function can again

be seen to represent the mean CFD data to a high degree of accuracy

and is therefore suitable for use in the entire range of near-field scaled

distances, 0.11 ≤ Z ≤ 0.55 m/kg1/3.

4.3.3 Variation with scaled distance and final mod-

els

With a method for predicting distribution of normalised peak specific

established, it still remains to quantify the variation of peak normally

reflected specific impulse with scaled distance. Rather than making use

of the existing higher order polynomial expressions of Kingery & Bul-

mash (1984), Swisdak (1994), or Shin et al. (2014b), the aim here is

to develop a simple equation with a small number of coefficients over

a more focussed range of scaled distances. Accordingly, the relationship

between scaled distance and peak normally reflected specific impulse (i.e.

the peak specific impulse at θ = 0◦ for each scaled distance) is plotted in

Figure 4.10. Here, it can be seen that a power law represents the data

well, with statistically robust fits of R2 = 0.999 and R2 = 0.995 for the

reduced and full datasets respectively.
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Figure 4.8: Normalised specific impulse distributions for reduced dataset
(0.11–0.21 m/kg1/3) with associated residuals and error assessment: (a) Hen-
rych (1979) trigonometric model, equation 4.1; (b) Randers-Pehrson & Bannis-
ter (1997) trigonometric model, equation 4.2; (c) Pannell et al. (2019) Gaussian
model, equation 4.3
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Figure 4.9: Normalised specific impulse distributions for full dataset (0.11–
0.55 m/kg1/3) with associated residuals and error assessment for the Pannell
et al. (2019) Gaussian model, equation 4.3

99



C
h
a
p
t
e
r
4
.

D
e
v
e
l
o
p
in
g

a
p
r
e
l
im

in
a
r
y
su

r
r
o
g
a
t
e
m
o
d
e
l
w
it
h

d
a
t
a
t
r
a
n
sf
o
r
m
a
t
io
n
s

1.0 0.9 0.8 0.7 0.6

log(Z (m. kg1/3))

0.8

0.9

1.0

1.1

1.2

1.3

1.4

lo
g(

Pe
ak

 s
ca

le
d 

sp
ec

ifi
c 

im
pu

ls
e

(M
Pa

.m
s/

kg
1/

3 )
)

R2 = 0.999
p < 0.0001
RSE < 0.0001

fitted model
CFD data

1.0 0.9 0.8 0.7 0.6

log(Z (m/kg1/3))

0.10

0.05

0.00

0.05

0.10

R
es

id
ua

l

0.12 0.14 0.16 0.18 0.20

Z (m/kg1/3)

10

15

20

Pe
ak

 s
ca

le
d 

sp
ec

ifi
c 

im
pu

ls
e

(M
Pa

.m
s/

kg
1/

3 )

f(Z) = 0.383Z 1.858

(a)

1.0 0.8 0.6 0.4 0.2

log(Z (m. kg1/3))

0.25

0.50

0.75

1.00

1.25

lo
g(

Pe
ak

 s
ca

le
d 

sp
ec

ifi
c 

im
pu

ls
e

(M
Pa

.m
s/

kg
1/

3 )
)

R2 = 0.995
p < 0.0001
RSE = 0.001

fitted model
CFD data

1.0 0.8 0.6 0.4 0.2

log(Z (m/kg1/3))

0.10

0.05

0.00

0.05

0.10

R
es

id
ua

l

0.1 0.2 0.3 0.4 0.5

Z (m/kg1/3)

5

10

15

20

25

Pe
ak

 s
ca

le
d 

sp
ec

ifi
c 

im
pu

ls
e

(M
Pa

.m
s/

kg
1/

3 )

f(Z) = 0.557Z 1.663

(b)

Figure 4.10: Relationship between peak normally reflected specific impulse and scaled distance, residuals, and proposed fit: (a)
reduced dataset, 0.11–0.21 m/kg1/3; (b) full dataset, 0.11–0.55 m/kg1/3
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Accordingly, the derived relationship for specific impulse, scaled us-

ing Hopkinson (1915) and Cranz (1926) scaling to express the relations

as a function of charge mass, W (kg), are:

i(Z, θ,W ) = 0.383Z−1.858 exp

(
−θ2

1829

)
W 1/3 (4.4)

for 0.11 ≤ Z ≤ 0.21 m/kg1/3, and:

i(Z, θ,W ) = 0.557Z−1.663 exp

(
−θ2

2007

)
W 1/3 (4.5)

for 0.11 ≤ Z ≤ 0.55 m/kg1/3, where both expressions return specific

impulse in units of MPa.ms.

4.4 Assessment of proposed method

4.4.1 Evaluation against numerical dataset

This section presents a rigorous assessment of the quality of the proposed

predictive method by comparing the results against the full CFD dataset.

Equations 4.4 and 4.5 were solved for 0◦ ≤ θ ≤ 80◦ between the limits of

0.11 ≤ Z ≤ 0.21 m/kg1/3 and 0.11 ≤ Z ≤ 0.55 m/kg1/3 respectively, in

order to evaluate the accuracy of the predicted specific impulses against

the entire CFD dataset. Filled contours of scaled peak specific impulse

are shown for the reduced dataset in Figure 4.11a, and the full dataset in

Figure 4.11c, with associated residuals shown in Figure 4.11b and 4.11d.

It can be seen that the residuals are generally positive, particularly

for the reduced dataset. This is acceptable given the slight conservatism

shown in the CFD data itself (see Figure 4.5). The predictions for the

full dataset show slight under-predictions for small scaled distances and

θ < 30◦, which is deemed acceptable given the availability of the re-
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Figure 4.11: Predicted specific impulse distributions: (a) filled contours of
scaled peak specific impulse for reduced dataset, 0.11–0.21 m/kg1/3; (b) resid-
ual errors for reduced dataset; (c) filled contours of scaled peak specific impulse
for full dataset, 0.11–0.55 m/kg1/3; (d) residual errors for full dataset

duced dataset predictions which encompass a smaller range of scaled

distances but at higher accuracy. The maximum absolute residuals are

0.922 MPa.ms/kg1/3 for the reduced dataset, and 1.944 MPa.ms/kg1/3 for

the full dataset, and the mean absolute residuals are 0.198 MPa.ms/kg1/3

for the reduced dataset, and 0.184 MPa.ms/kg1/3 for the full dataset. The

residual errors are considerably smaller than the maximum specific im-

pulse (25 MPa.ms/kg1/3), and indicate that the predictive equations are

representative of the entire CFD dataset.
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Whilst knowledge of the distributed specific impulse is a key re-

quirement for determining structural response (Rigby et al. 2019b), total

impulse (integral of specific impulse with respect to area, often termed

‘area-integrated’ impulse) is a useful metric particularly when consider-

ing global momentum transfer. Equations 4.4 and 4.5 were numerically

integrated with respect to area for scaled target radii of 0.10, 0.25, 0.50,

and 1.00 m/kg1/3, and for scaled distances of 0.11, 0.20, 0.30, 0.40, and

0.50 m/kg1/3. These values are provided in Table 4.2, alongside area-

integrated CFD data and percentage differences between the two meth-

ods. For the two cases where Z = 0.11 m/kg1/3 and Z = 0.20 m/kg1/3,

predictions were generated for both equations (4.4 and 4.5) in order to

comment on the relative accuracy of the two approaches.

Generally the predictions are in excellent agreement with the CFD

results, particularly for Z ≤ 0.20 m/kg1/3 when using equation 4.4, where

the maximum deviation is 4% from the CFD data and the typical devi-

ation is ±1%. When the relationship in equation 4.5 is used to calculate

total impulse for Z ≤ 0.20 m/kg1/3 the results are less accurate, with a

maximum deviation of 12% from the CFD data. However, when equa-

tion 4.5 is used to make predictions for Z > 0.20 m/kg1/3 a similar level

of accuracy to equation 4.4 is obtained, with a maximum deviation of

6% from the CFD data, and a typical deviation of ±4%. Thus, the pre-

dictive methods are considered to be highly representative of the CFD

data from which they are derived.

4.4.2 Comparison against unseen CFD data

The predictive model was compared against two sets of unseen CFD data

(i.e. data not used in the development of the predictive model). The first

set comprises two models: a 5 kg spherical PE4 charge detonated at
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Table 4.2: Comparison of total area-integrated impulse from numerical in-
tegration of CFD data and predicted peak specific impulse distributions for
various scaled target radii

Scaled
distance

(m/kg1/3)

Scaled
target
radius

(m/kg1/3)

Total scaled impulse Model
eqn.

CFD
(MN.ms/kg)

Prediction
(MN.ms/kg)

%
diff.

0.11 0.10 0.719 0.710 -1 (4.4)
0.25 3.964 3.905 -1
0.50 17.88 17.95 0
1.00 22.57 23.48 4

0.20 0.10 0.236 0.233 -1
0.25 1.299 1.283 -1
0.50 6.044 5.886 -3
1.00 7.812 7.705 -1

0.11 0.10 0.719 0.664 -8 (4.5)
0.25 3.964 3.690 -7
0.50 17.883 17.820 0
1.00 22.57 23.78 5

0.20 0.10 0.234 0.244 4
0.25 1.295 1.356 5
0.50 6.039 6.556 9
1.00 7.790 8.747 12

0.30 0.10 0.130 0.124 -4
0.25 0.705 0.692 -2
0.50 3.212 3.340 4
1.00 4.245 4.458 5

0.40 0.10 0.082 0.077 -6
0.25 0.446 0.429 -4
0.50 2.095 2.070 -1
1.00 2.886 2.763 -4

0.50 0.10 0.052 0.053 3
0.25 0.283 0.296 5
0.50 1.455 1.428 -2
1.00 2.033 1.906 -6
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0.291 m normal stand-off distance (to charge centre) from a rigid surface

(Z = 0.17 m/kg1/3); and a 250 kg spherical PE4 charge detonated at

2.52 m normal stand-off distance (to charge centre) from a rigid surface

(Z = 0.40 m/kg1/3). Note that these models were not used to form the

CFD datasets outlined previously, and hence serve as unseen data for

comparative purposes. In the first model, a 2.1×2.1×2.1 m domain was

discretised into 0.1 m zone lengths with resolution level 4. In the second

model, a 19.0 × 19.0 × 19.0 m domain was discretised into 1.0 m zone

lengths with resolution level 5. Both meshes resolve the first stage in 1D

and use the auto-staging module, therefore satisfy the limit of S/50, as

determined in the mesh sensitivity study.

Figure 4.12 shows a comparison of the CFD and predicted specific

impulse distributions out to 0.25 m and 2.50 m from the target cen-

tre, with select values presented in Table 4.3 alongside percentage dif-

ferences between CFD and predicted values. Here, predictions for the

Z = 0.17 m/kg1/3 case were determined using equation 4.4, and predic-

tions for the Z = 0.40 m/kg1/3 case were determined using equation 4.5.

It can be seen that the predicted distributions closely match those from

the CFD analyses, albeit with the predictive model being slightly con-

servative by design. The quantitative agreement is excellent through-

out: the maximum deviation between CFD and prediction is 11% of the

CFD specific impulse, at 1875 mm from the centre of the target for the

Z = 0.40 m/kg1/3 case (θ = 36.7◦). This exercise also validates the use

of Hopkinson (1915) and Cranz (1926) scaling.

Detonation of explosive charges aligned with the centre of a target

plate presents the worst-case scenario in terms of imparted loading and

resulting plate deformation/failure (Chung Kim Yuen & Nurick 2005,

Chung Kim Yuen et al. 2016). However, there may be situations where
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Figure 4.12: CFD and predicted peak specific impulse distributions: (a) 5 kg
at 0.291 m stand-off, Z = 0.17 m/kg1/3; (b) 250 kg at 2.52 m stand-off,
Z = 0.40 m/kg1/3

Table 4.3: Comparison of unseen CFD data and predicted peak specific im-
pulses at various distances from the centre of the target

Charge
mass
(kg)

Stand-off
(m)

Distance
from

centre
(mm)

Angle of
incidence

(◦)

Peak specific impulse

CFD
(MPa.ms)

Prediction
(MPa.ms)

%
diff.

5 0.291 0 0 17.19 17.62 3
62.5 12.5 15.65 16.25 4

125.0 23.2 12.58 13.11 4
187.5 32.8 9.23 9.78 6
250.0 40.7 6.48 7.12 10

250 2.520 0 0 14.93 16.10 8
625 13.9 13.63 14.60 7

1250 26.4 10.46 11.39 9
1875 36.7 7.42 8.25 11
2500 44.8 5.37 5.94 10
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an off-centre detonation is of interest to the analyst, and therefore the

purpose of the following exercise is to demonstrate generality of the pre-

dictive model in terms of charge placement.

According to the terminology in Figure 4.13a, angle of incidence

at any point on the target plate can be calculated knowing the lateral

distance from the point of interest to the normal impingement point, r,

and the normal stand-off distance, S:

θ = arctan (r/S) (4.6)

Where, in the previous examples described in this article, the normal

impingement point was coincident with the plate centre, thus r = θ = 0

at that point.

The second set of unseen CFD comprises one model: a 5 kg spheri-

cal PE4 charge detonated at 291 mm normal stand-off distance (normal

scaled distance, Z = 0.17 m/kg1/3) from a 200 mm square plate, with

the charge offset from the plate centre by 50 mm in both in-plane direc-

tions, as in Figure 4.13b. Here, the mesh specifications were the same

as those in the previous 5 kg model. Noting that the plate centre is la-

belled as (0, 0), and the normal impingement point is labelled as (50, 50),

r = 70.7 mm and θ = 13.7◦ at the plate centre.

Figure 4.14 shows a comparison between the CFD results and Gaus-

sian model predictions using the Gaussian model for the off-centre charge

example, evaluated on a grid of 1× 1 mm elements. It can be seen that

a high level of qualitative agreement is attained, which demonstrates the

suitability of the method detailed herein for predicting the loading from

non-centrally aligned explosive charges.
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Figure 4.13: Experimental schematics for a spherical charge detonating above
a square target: (a) general case of a centrally located charge; (b) example
off-centre case of 5 kg PE4 at 291 mm normal stand-off distance, offset by
50 mm in both in-plane directions from the centre of a 200 mm square plate.
Note: dimensions in mm
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Figure 4.14: Peak specific impulse distributions for 5 kg spherical PE4 charge
at 291 mm normal stand-off distance, offset by 50 mm in both in-plane direc-
tions (‘X’ and ‘Y ’) from the centre of a 200 mm square plate: (a) CFD model
(b) predictive model using equation 4.4
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4.4.3 Comparison against unseen experimental data

Finally, the experimental data presented in Table 2 of Geretto et al.

(2015) is used to assess the accuracy of the method in calculating to-

tal impulse. Here spheres of PE4 explosive with masses ranging from

10–70 g were detonated at a constant stand-off distance of 100 mm (to

charge centre, 0.243 ≤ Z ≤ 0.464 m/kg1/3) from a target plate with ex-

posed area of 200 × 200 mm (70.5◦ angle of incidence to the corner of

the plate). 34 experiments were performed altogether in eight different

configurations. Total impulse was measured using a horizontal ballistic

pendulum. Figure 4.15 shows the experimental results (individual test

data and the mean at each scaled distance) and predictions from numer-

ical integration of equation 4.5 over a 200×200 mm target area on a grid

of 0.1× 0.1 mm elements. The predictions can be seen to closely match

the overall trend of the experimental results. In particular, the predic-

tions seem to better match the upper bound of the experimental data,

which again is to be expected on account of the inherent conservatism of

the CFD analyses and predictive method.

A direct comparison is provided in Table 4.4. It can be seen that,

with the exception of the furthest scaled distance (16% difference), the

predictions are all within 9% of the maximum recorded experimental

area-integrated impulse. In all instances, the predictions are greater than

the experimental values, confirming the slight conservatism of the method

presented in this article. It is tentatively suggested that, in cases where

a conservative model is not required, a factor of 0.9 may be applied to

predicted specific impulses. Applying this factor here would shift the

predictions from closely matching the maximum experimental values to

closely matching the experimental mean.
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Figure 4.15: Comparison of predicted area-integrated impulse and experimen-
tal data from Geretto et al. (2015)

Table 4.4: Comparison of experimental area-integrated impulses (Geretto et al.
2015) and predictions

Charge
mass (g)

Stand-
off

(mm)

Scaled
distance

(m/kg1/3)

Area-integrated impulse

Experiment (N.s) Prediction
(N.s)

% diff.
(from
max.)

Mean Max.

70 100 0.243 45.87 49.20 50.80 3
60 100 0.255 38.12 41.40 44.30 7
50 100 0.271 33.68 35.90 37.68 5
40 100 0.292 27.70 28.50 30.91 8
30 100 0.322 20.55 21.90 23.95 9
20 100 0.368 15.40 15.90 16.71 5
15 100 0.405 12.10 12.10 12.94 7
10 100 0.464 7.40 7.80 9.03 16
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4.5 Summary

Peak specific impulse is the primary parameter that governs structural

deformation under short-duration loading (Rigby et al. 2019b). Pre-

dicting the distribution of specific impulse acting on a reflecting surface

following detonation of a high explosive charge remains a key challenge

to engineers involved in transport security, infrastructure assessment,

and defence. This is a particular requirement in regions extremely close

to the charge, where a historic lack of experimental data has precluded

both the development of accurate semi-empirical predictive approaches

and validation of high fidelity, physics-based numerical schemes. In this

chapter, a new data-driven predictive model is developed to address a

key issue facing the blast protection engineering community: the lack of

an accurate and fast-running engineering tool for blast load prediction in

the extreme near-field.

Newly-available experimental near-field specific impulse data is used

to validate Apollo, an explicit CFD software specialising in problems

involving blast wave propagation. A CFD dataset is populated with

Apollo analyses, and the results are used to derive the novel data-driven

surrogate model presented in this chapter. The approach is formed of two

aspects: firstly, a Gaussian function is used to describe the relationship

between normalised specific impulse and angle of incidence (shown in this

chapter to form a consistent grouping for the range of scaled distances

considered). Secondly, a power law is fit to values of peak normally

reflected specific impulse, and Hopkinson-Cranz scaling (Hopkinson 1915,

Cranz 1926) is used to express the predictions in scaled form. Separate

equations are derived for the full dataset (0.11 ≤ Z ≤ 0.55 m/kg1/3)

and a reduced dataset (0.11 ≤ Z ≤ 0.21 m/kg1/3) offering the analyst

improved accuracy for extreme close-in detonations.
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Finally, accuracy of the approach is rigorously assessed against: the

full CFD dataset; two new CFD analyses using 5 kg and 250 kg ex-

plosives (which also demonstrates the applicability of the implemented

scaling laws and the generality of the approach for off-centre charge place-

ment); and experimentally-recorded impulse acting on a 200 × 200 mm

plate from a range of explosives (10–70 g) placed at 100 mm stand-off

(Geretto et al. 2015). The spatial distribution of impulsive loading and

the total impulsive load are shown to be in good agreement throughout,

with the predictive method demonstrating slight conservatism and vari-

ations ranging between 1–16% of the experimental/test examples, with

a typical variation of <5%.

The simple equations presented herein (three coefficients and three

input variables: scaled distance, angle of incidence, and charge mass)

enable the fast and accurate prediction of near-field blast loads in situa-

tions where previous methods are known to be unsuitable or inaccurate.

This chapter has demonstrated the applicability of data-driven predic-

tive approaches for blast load prediction. The methodology outlined in

this chapter has the potential to be supplemented with more advanced,

machine learning-assisted approaches to model a more complex suite of

scenarios and input parameters, such as explosive type (TNT equiva-

lence), charge shape effects, and blast wave clearing.
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Chapter 5

Physics-based regularisation

for near-field spherical

charges

5.1 Introduction

As established in Chapter 2 obtaining data in the field of blast protection

engineering is considerably expensive in both time and cost. Yet accu-

rate appraisal of the viability of structures following close-in detonation

of a high explosive is only possible with the availability of accurate mod-

els detailing both the distribution and magnitude of the imparted load.

To provide accurate appraisals of the viability of protective structures

following close in detonations, it is not only necessary to have accurate

fast-running models, but also to adopt a probabilistic rather than de-

terministic approach when modelling blast scenarios. Such approaches

(Netherton & Stewart 2016, Alterman et al. 2019, Campidelli et al. 2015)

allow for the uncertainties related to the blast event to be modelled which

accurately support a quantitative calculation of risk relating to blast
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events.

In order to adopt probabilistic approaches, it is necessary to provide

loading information for a large range of potential loading scenarios in

a reasonable time-frame. In Chapter 2 it is shown that existing empir-

ical and semi-empirical models are fast and can be accurate, but lack

flexibility to consider anything other than scenarios with few variables

and simple geometries, and typically only focus on far-field scenarios.

Conversely, artificial neural networks (ANNs or NNs) can accommodate

more variables when acting as a vector mapping model and provide the

additional flexibility required to handle highly non-linear behaviour, as

expected in extreme near-field blast events. They have been shown to

accurately predict explosive loading in confined internal environments

(Dennis et al. 2021), on a building behind a blast wall (Remennikov &

Rose 2007, Flood et al. 2009), or along simple city streets (Remennikov

& Mendis 2006).

However, there exist limitations in these ‘black-box’ approaches (such

as NNs) in that they are independent to the underlying scientific prin-

ciples that drive real-world physical phenomena and therefore do not

always provide interpretable characteristics. Due to this nature, they

often show poor generalisability when extrapolating beyond the realms

of the training data, or indeed interpolating between gaps within it as

they possess no knowledge of the underlying physics – an issue raised

in Section 2.3.1. This issue can be exacerbated in supervised learning

problems when the sample training sets may be small and, or, not evenly

distributed as the model is more likely to learn spurious, non-physical

relationships.

A fundamental challenge in machine learning (ML) is for the trained

algorithm to perform well on new, unseen data, referred to as ‘test’ data.
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The ability for a model to accurately predict previously unobserved in-

puts is called generalisation. The main factors that determine how well

a ML algorithm will perform are its ability to: a) make the training error

small; b) make the gap between training and test error small (Goodfellow

et al. 2016, chap. 5). These two factors also refer to two fundamental

challenges in ML, preventing overfitting and underfitting. The former oc-

curs when the gap between the training error and test error is too large,

whilst the latter occurs when the model does not achieve a low enough

error on the training dataset. The likelihood of a model overfitting or

underfitting can be controlled to some extent by changing its capacity

(or also known as complexity). A model’s capacity refers to its ability to

fit a wide variety of functions. A useful analogy to demonstrate model

capacity is to imagine a linear, quadratic and fifth order predictive model

attempting to fit to data that is sampled from a quadratic function. In

this instance, the linear model’s capacity will be too low and will strug-

gle to capture the curve in the underlying data (underfitting). The fifth

order model will be able to represent the correct function and many more

in between (overfitting), whilst the quadratic predictor will have the op-

timum capacity. The relationship between model capacity and error is

summarised in Figure 5.1, where the underfitting and overfitting zones

can be seen either side of the ‘optimal capacity’ region.

Enhancing the model’s capacity can be achieved in several different

ways. One way is by restricting the set of functions an algorithm can

choose as its solution through selection of its hypothesis space. In the

context of the previous example this would be allowing higher order poly-

nomials rather than just linear functions for the quadratic and fifth order

predictors. Once a family of representative functions have been chosen,

there is the issue of finding the optimum function within this, termed
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Capacity

Error

Optimal capacity

Generalization 

gap

Overfitting zoneUnderfitting zone

Training set

Test set

Figure 5.1: Typical relationship between model capacity and error. Train-
ing error and test error show different behaviour. Once a model reaches the
‘optimal’ capacity, its performance on unseen test data decreases, whereas
its performance on the training dataset increases, this is the overfitting zone
and this gap in performance is known as the generalization gap. Conversely
the underfitting zone is where the model does not have sufficient capacity to
accurately model the training set.
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the representational capacity of the model. In many cases, finding the

optimum function proves to be a difficult optimisation problem.

Recent advancements in improving generalisability suggest that, amongst

competing hypotheses that explain the data equally well, the ‘simplest’

should be chosen (Goodfellow et al. 2016, Vapnik & Chervonenkis 1971,

Vapnik 2006, Blumer et al. 1989, Vapnik 2013). From the ‘no free lunch’

theorem (Wolpert 1996), it is impossible to discover the overall optimum

ML algorithm but that instead, ML algorithms should be designed to

perform well on a specific task by building preferences into the learn-

ing algorithm (Goodfellow et al. 2016, chap. 5). Previously-mentioned

methods of modifying the model’s representational capacity have focused

on controlling the hypothesis space of possible solutions, however there

are other ways of controlling a preference for certain solutions, known

generally as regularisation. Regularisation is “any modification we make

to a learning algorithm that is intended to reduce its generalisation error

but not its training error” (Goodfellow et al. 2016, chap. 5), in other

words, the chosen learning algorithm can be forced to express a prefer-

ence for certain solutions in the hypothesis space. Alternative approaches

to regularisation exist that make use of data transformation procedures,

particularly useful if the data is well understood. These approaches trans-

form the data to a space where it is well-defined and then train on this

new transformed distribution, and have been shown to be a promising

avenue of research (Notley et al. 2021).

Integrating deep learning approaches, which are data intensive, and

scientific theory is considered to be a crucial step to improve model

predictive performance whilst respecting natural laws (Reichstein et al.

2019). A promising avenue of research to achieve this involves guiding

the learning of a ML model though introducing a physical consistency
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Figure 5.2: Schematic representation of physics-guided neural networks in the
context of other knowledge discovery approaches. Adapted from Karpatne
et al. (2017).

penalty as a regularisation procedure (Karpatne et al. 2017, Daw et al.

2020, Jia et al. 2019, Stewart & Ermon 2017). This framework aims to

combine the use of scientific theory and leveraging the power of data-

intensive approaches to develop a hybrid approach (as shown in Figure

5.2) that improves generalisability by guiding the learning process to bias

physically valid solutions. Physics-based approaches such as these have

been used effectively in a variety of domains such as the geo-sciences

community (Muralidhar et al. 2018, Karpatne et al. 2017), power-flow

research (Hu et al. 2020) and seismic response modelling (Zhang et al.

2020).

This chapter presents a novel use case of this framework in mod-

elling peak specific impulse distributions of near-field blast loading dis-

tributions with a comparison against a standard neural network. Firstly,

the dataset generation is discussed, then an overview into the develop-

ment of a neural network architecture with a sensitivity study of the

network parameters followed by the implementation of a physics-based

regularisation. Then the generalisation ability of two neural network

architectures (PGNN vs NN) is evaluated by stress-testing the models

through withholding specific fractions of the variable distribution, and is
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compared to some other “black-box” machine learning methods as an ad-

ditional means of comparison. A discussion and concluding remarks are

then provided where results show that of the seven stress tests performed,

four of the five statistically significant performance premiums were shown

by the PGNN. These results indicate that physics-based regularisation

procedures can be implemented to provide statistically significant per-

formance premiums when the modellers have specialist knowledge of the

problem domain.

5.2 Surrogate modelling and model order

reduction

5.2.1 Data-driven modelling

Surrogate modelling and model order reduction are strategies that aim

to reduce the computational complexity of mathematical models in nu-

merical simulations. Generally model order reduction in fluid dynamics

applications (and subsequently in blast engineering applications) is par-

ticularly challenging due to the presence of highly non-linear behaviour

(Lassila et al. 2014), though have been used when considering a material

or structural response to a dynamic blast load (Jiang et al. 2020, Iliopou-

los et al. 2017). An example of model order reduction is demonstrated

in Chapter 4 which made use of normalising peak specific impulse with

respect to the given angle of incidence.

A surrogate model is an engineering method when an output of in-

terest cannot be directly measured with relative ease. Particularly in

engineering, most practical problems require extensive experimental or

numerical data to evaluate design decisions. For instance, in aerospace
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engineering the design of an optimal aerofoil shape for an aircraft wing,

requires knowledge of airflow parameters for a variety of variables (length,

material, angle, etc.), typically determined through simulation (Mack

et al. 2007). However, due to the computational expense of running an

accurate numerical simulation, obtaining complete information for the

design space would carry a considerable time cost and be unsuitable in

practice, so a surrogate model is constructed that can evaluate points

in the design space that may not necessarily have been explicitly sam-

pled. Surrogate models are constructed using a data-driven, bottom-up

approach whereby data sampled from particular simulations or experi-

ments is used to inform a surrogate model (also known as a metamodel or

response surface model). The surrogate model then essentially becomes

a tool to interpolate in the input–output space of the different design

variables.

The data-driven, bottom-up nature of building a surrogate model

therefore requires large amounts of data. However, a particular issue in

blast engineering is that experimental data can be prohibitively expensive

or difficult to obtain due to the loading magnitudes and sub-millisecond

durations of blast events, as mentioned previously in Chaptere 2. Com-

putational fluid dynamics software provides engineers with the ability

to generate the data required to inform an input–output space by solv-

ing the physical equations governing fluid flow through discretisation in

space and time, and can be validated against known experimental data.

The CFD models provide a response for a given set of input parame-

ters, and these are used to fill a parameter space, requiring next the

choice of surrogate model to interpolate within this parameter space. A

detailed discussion on different types of surrogate model is given in Jin

(2005). One such surrogate model is an artificial neural network (ANN)
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and has been used extensively for this purpose in a variety of disciplines

(Papadopoulos et al. 2018, Kim et al. 2015, Ahmadi 2015, White et al.

2019) and in specific blast engineering applications (Flood et al. 2009,

Remennikov & Mendis 2006, Remennikov & Rose 2007, Dennis et al.

2021).

5.2.2 ANNs as a surrogate model

Artificial neural networks (ANNs) are collections of connected nodes (also

called neurons), inspired by a simplification of neurons in a brain (ex-

ample shown in Figure 5.3). They have been used extensively in a wide

variety of disciplines due to their ability to act as universal approximators

for complex functions. A linear model, which would map inputs to out-

puts through matrix multiplication, can only represent linear functions,

or summations thereof. The universal approximation theorem (Hornik

et al. 1989, Cybenko 1989) states that any feed-forward network with a

linear output layer and at least one hidden layer with any ‘squashing’

activation function can approximate any Borel measurable function from

one finite-dimensional space to another with any desired non-zero amount

of error, provided the network is given enough hidden units (Goodfellow

et al. 2016). Similarly, an ANN can approximate any function mapping

from any finite dimensional discrete space to another. This ability to ap-

proximate non-linear functions makes ANNs a suitable choice for a wide

variety of procedures, particularly suitable for recreating the non-linear

physical phenomena seen in near-field explosive events.

The hidden layers in an ANN consist of interconnected neurons. In-

formation is conveyed through these neurons with a series of weights

and biases, transmitted with non-linear activation functions. To train an

ANN, the optimal values for weights and biases must be found, which
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Input layer

Hidden layer

Output layerθ

Z

i

Figure 5.3: Example neural network architecture with two input nodes, 3
nodes in a hidden layer and one output node.

typically involves two stages: ‘feedforward propagation’ and ‘error back-

propagation’. Considering Equation 5.1:

yj = f

(
m∑
i=1

Wjixi + bj

)
(5.1)

where yj is the output for the jth neuron in the current hidden layer, the

output of each neuron is obtained by inputting into activation function,

f , the product of the weight connecting the two neurons, Wji and the

input, xi, then adding a bias term, bj. This summation is continued for all

hidden units until reaching the output layer, finalising the feedforward

propagation. The prediction from the network can be compared to a

target output and an error can be calculated (such as mean squared

error). Once the error has been calculated, the learning algorithm can

adjust the weights and biases after a set number of trials (the batch size)

to minimise the error between model predictions and target values. This

is termed ‘error backpropagation’ and is repeated for a given number of

complete passes through a dataset (the epoch number).

As shown previously in Figure 5.1, as the capacity of an ML model
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increases, as does the chance of overfitting. Specific to an ANN, there

are several variables that can be changed in order to find the ‘optimal

capacity’. First, considering the structure of the network itself, the ca-

pacity of the model can be altered by increasing the number of layers,

the nature of these layers, number of neurons in each layer, and the con-

nectivity of these neurons. If every neuron in each layer is connected to

every other neuron in adjacent layers, this is known as ‘fully-connected’

or ‘dense’ and is the structure of traditional multi-layer perceptrons. An

alternative class of neural networks are convolutional neural networks,

which also consist of input layers, hidden layers and output layers, but

the hidden layers perform convolutions on input data, and have been

shown to be useful in many image analysis tasks (Albawi et al. 2017).

Finding the optimal structural configuration of an ANN is a challenging

task and has been shown to be case-dependent and largely data-driven

in nature (D’souza et al. 2020).

A central problem in ML is improving the ability of a model to

generalise to unseen data. One such approach that focuses on reducing

the test error (typically at the cost of an increased training error) is

regularisation, as mentioned previously. There are several approaches to

regularisation, some target the parameters of the model, by restricting or

constraining their values in some way or including additional penalties,

thereby encoding some prior knowledge into the model. One common

example of a regularisation procedure is ‘weight decay’, where a sum is

minimised that involves an additional criterion that adds a preference

for model parameter weights to have a smaller L2 norm, as shown in

Equation 5.2 (Goodfellow et al. 2016):

J(w) = MSEtrain + λwTw, (5.2)
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Figure 5.4: Example training history of a neural network. As the model con-
tinually trains, the model performs better on the training set but worse on
the test set, increasing the generalisation gap. By early stopping the general-
isability of the model is improved.

where J(w) is the cost function to minimise, MSEtrain is the mean

squared error of training data, w is the parameter weights and λ is a

hyper-parameter. This is an obtrusive form of regularisation as the objec-

tive function of the minimisation procedure is directly modified. Because

of this, the choice of the hyper-parameter λ is crucial: too small and the

model will overfit to the data, whilst too large and it will underfit.

Another common regularisation procedure is known as ‘early-stopping’,

and is simple to implement and highly effective. Consider the training

history shown in Figure 5.4, after a certain point the model would begin

to overfit. This approach can be considered an algorithm for selecting the

optimum model parameters, as throughout training the model weights

and biases are being changed. By implementing early stopping the model

parameters that show the best generalisability are returned.

Further regularisation techniques rely on combining several different
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trained models, in the hope that their average, aggregate performance

shows better generalisability, known as bagging (Breiman 1996). This

general strategy is known as model averaging and similar methods are

known as ensemble methods. Neural networks often benefit from model

averaging of some kind due to the differences in parameter initialisa-

tion or other hyper-parameters (Goodfellow et al. 2016). On a similar

theme, another particularly useful form of regularising ANNs is known

as ‘dropout’ (Srivastava et al. 2014). When a fully-connected layer has

a large number of neurons, there is likely to be some co-adaption. Co-

adaption refers to the scenario where multiple neurons extract the same

information or features from a set of input data, the detriment of this is

an inefficient use of computational resources and an increased risk of over-

fitting by adding more significance to certain model features. In dropout,

the ensemble of all the model subnetworks that can be formed by remov-

ing units from a base network are trained. For an extensive overview of

further regularisation procedures, see Goodfellow et al. (2016).

5.2.3 Alternative data-driven surrogate models

As an additional means of comparison for the development of a surrogate

model, two alternative data-driven models were studied. Support vector

regressors, a specific implementation of a support vector machine (Boser

et al. 1992, Guyon et al. 1993, Cortes & Vapnik 1995, Schölkopf et al.

1995, 1996, Vapnik et al. 1997), map the input data’s original space into

a higher dimensional spaces through a kernel function. In this higher di-

mensional space, a hyperplane is fitted that can be used for classification

and regression tasks. In ε-SV regression the goal is to find a function

f(x) that has at most ε deviation from the targets yi for all the training

data, and is simultaneously as flat as possible.
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First considering the case for linear functions, f of the form

f(x) = 〈w, x〉+ b with w ∈ X, b ∈ R (5.3)

where 〈., .〉 is the dot product in X and flatness is a small w.

Given training vectors xi ∈ Rp, i = 1, ..., n, and a vector yi ∈ Rn,

support vector regression (ε-SVR) solves the following problem, from

Vapnik (2013):

minimise
1

2
||w||2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(5.4)

where the constant, C > 0 determines the trade-off between the flatness

of f and the amount up to which deviations larger than ε are tolerated

Smola & Schölkopf (2004). This leads to a ε-insensitive loss function |ξ|ε
as:

|ξ|ε :=

0 if |ξ| ≤ ε

|ξ| − ε otherwise.

(5.5)

Figure 5.5 represents this graphically. Only points outside of an

allowable error contribute to the ‘cost’. The dual formulation of this

optimisation problem can often be solved more easily, and is the key for

extending support vector machines to nonlinear functions.
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Figure 5.5: An example of the soft margin loss setting for a linear support
vector machine. Recreated from Schölkopf et al. (2002).

The dual formulation is given as

minimise
1

2
(α− α∗)TQ(α− α∗) + εeT (α− α∗)− yT (α− α∗)

subject to

e
T (α− α∗) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, ..., n

(5.6)

where e is the vector of all ones, C > 0 the upper bound, Q is an

n by n positive semidefinite matrix, Qij ≡ K(xi, xj) = φ(xi)
Tφ(xj) is

the kernel. Training vectors are mapped into a higher dimensional space

through the function φ. The decision function is given by:

n∑
i=1

(αi − α∗i )K(xi, x) + ρ (5.7)

with ρ as the intercept term. For a more detailed explanation of support

vector machines, see Smola & Schölkopf (2004).

The second alternative model is a specific type of ensemble method,

known as a gradient boosting regressor (GBR). It is built from an en-
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semble of decision trees, where each subsequent tree is optimised to fit to

the residuals of the previous tree (Friedman 1999). It considers additive

models of the following form:

F (x) =
M∑
m=1

γmhm(x) (5.8)

with hm(x) as the basis functions, deemed weak learners in the context of

boosting. Similar to other boosting algorithms, GBR builds the additive

model in a forward stagewise approach:

Fm(x) = Fm−1(x) + γmhm(x) (5.9)

where at each stage the decision tree hm(x) is chosen to minimize the

loss function L given the current model Fm−1 and its fit Fm−1(xi)

Fm(x) = Fm−1(x) + argmin
h

n∑
i=1

L(yi, Fm−1(xi) + h(x)) (5.10)

In gradient boosting, the minimisation problem is solved numerically by

steepest descent. The steepest descent direction is the negative gradient

of the loss function evaluated at the current model Fm−1 which can be

calculated for any differentiable loss function:

Fm(x) = Fm−1(x)− γm
n∑
i=1

∇FL(yi, Fm−1(xi)) (5.11)

where the step length γm is chosen using line search:

γm = argmin
γ

n∑
i=1

(
L(yi, Fm−1(xi)− γ

∂L(yi, Fm−1(xi))

∂Fm−1(xi)

)
(5.12)

For a more detailed overview of gradient boosting regression, see Pe-
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dregosa et al. (2011), Friedman (1999, 2001), Hastie et al. (2009).

5.2.4 Dataset overview

The dataset was generated from CFD simulations using Apollo (Fraun-

hofer EMI 2018) consisting of 100g spherical charges of PE4 located be-

tween 0.05m to 0.26m normal distance from the surface of the target,

termed ‘stand-off’ distance. This is equivalent to a scaled distance range

of 0.11-0.55m/kg1/3. For each sample, 150 gauges are linearly spaced

along the target surface at angles of incidence between 0 and 60 degrees,

where angle of incidence is defined as the angle between the outward nor-

mal of the surface and the direct vector from the explosive charge to that

point (Rigby et al. 2015a). Each gauge outputs pressure-time histories at

that location, which are numerically integrated (with respect to time) in

postprocessing to yield specific impulse-time histories.The maximum of

each of these is taken to provide the distribution of peak specific impulse.

In summary, there are 18 CFD experiments with 150 values of peak

specific impulse for each, resulting in a dataset of 2700 data points. An

overview of this dataset is given in Figure 5.6. For more information on

the validation of Apollo including mesh sensitivity studies, experimental

validation and the construction of the dataset, see Chapters 3 and 4.

Each input for the NN is shown in Table 5.1, with an example entry:

X represents the input vectors and Y represents the labelled output so

that in its entirety the dataset is a (2700, 3) array.

The variables X1 and X2 are minmax scaled across the entire dataset

with a feature range of [0, 1]. The output, Y , has a log-normal distribu-

tion and was scaled via a power transform; a family of parametric, mono-

tonic transformations applied to provide normality and homoscedastic-

ity to the training data for ease of model training, using the method
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Figure 5.6: CFD dataset: filled contours of scaled peak specific impulse for
full dataset, 0.11–0.55 m/kg1/3.

Table 5.1: Example dataset information

X1 X2 Y

Scaled distance
(m/kg1/3)

Angle of
incidence

Peak specific
impulse

(MPa.ms)
0.1 15 45.87
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Figure 5.7: Unscaled Y dataset showing a log-normal distribution (left) and
the resulting power transformation (right)

described in Yeo & Johnson (2000). The result of the power transform

is given in Figure 5.7. The data transformations are completed after

any data splitting procedures are undertaken to ensure there is no data

leakage from the transformation.

5.2.5 Training and network architecture

To create and train the networks, the open-source Keras package with

TensorFlow backend (Chollet et al. 2015) was used. The Adadelta (Zeiler

2012) gradient descent algorithm was chosen which has the added benefit

of not requiring a default learning rate. 10000 epochs with early stopping

set at 500 epochs was implemented to prevent over-fitting, with a batch

size of 32. Activation functions for the hidden units were set as hyperbolic

tangent, and layer weights initialised with the Glorot normal initialiser

(Glorot & Bengio 2010). K-fold cross validation was implemented with

5 splits, following an initial data split of 25% data randomly removed,

this data splitting schematic is summarised in Figure 5.8. The networks

to be examined all had 1 hidden layer, and are fully connected.
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Figure 5.8: Example schematic of splitting the dataset prior to and during
training and the subsequent k-fold cross-validation. The initial 25% of test
data removed is never seen by the model during training.

Initially, a varying number of hidden units were examined, from 1 to

8. The results of these analyses are presented in Figure 5.9. Ideally, the

structural optimisation of the network would be performed in parallel to

the parametric optimisation via an overarching, many-objective process

(Jin & Sendhoff 2009, Loghmanian et al. 2012), though this is considered

to be beyond the scope of this thesis. Three separate sub-figures provide

different metrics: mean squared error (Figure 5.9a), mean absolute error

(Figure 5.9b) and coefficient of determination (Figure 5.9c). For all anal-

yses, the metrics are assessed for the three separate data portions: test,

train and validation as previously summarised in Figure 5.8. If large dis-

crepancies occur between the different data types, this can be indicative

of over-fitting issues, as the models may perform far better on ‘seen’ data

rather than ‘unseen’ data. As shown, there is a general trend of error

reducing as the number of neurons increases, though this plateaus after 4
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neurons, suggesting that 4 neurons provide sufficient predictive capabil-

ity. Furthermore, from 2 neurons and upwards, there are no significant

discrepancies between the different data types, suggesting that the model

is not over-fitting. For later analyses, a network with four hidden units

was chosen to take forward.

With the network architecture chosen, it is useful to gain an insight

into the model learning performance of this network to check further for

over-fitting and that the model is learning as expected. Training histo-

ries from the cross-validation are shown in Figure 5.10 presenting the loss

from validation and training data during training. As shown, the per-

formance consistently improves as the number of epochs increases, and

also improves for each fold of the cross-validation, suggesting that the

network is learning effectively. The generalisation gap between the train-

ing and validation set is small and remains fairly constant throughout

which is demonstrative of a good fit. On initial inspection there appears

to be some stochastic behaviour in the later folds, however considering

the magnitude of the losses here these are not considered to be a cause

for concern and it can be seen the model shows a good fit.

5.2.6 A physics-based regularisation procedure

All regularisation methods are attempting to improve the generalisability

of a ML model, that is how it performs on unseen data. Regularisation

would not be required if the optimum structure, learning algorithm, and

data transformation for a given NN were known ahead of time. Typi-

cal approaches for training models without physical constraints involve

minimising empirical loss (mean square error, MSE) of model predictions

(Ŷ ) on the training data (Y ) whilst maintaining low model complexity
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Figure 5.9: Hyper-parameter configuration with various performance metrics
shown on the unseen test data. Error bars are standard deviation.
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Figure 5.10: Training loss histories for each of the 5-fold cross validation.
Analyses represent the chosen network with four hidden units.
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as follows in Equation 5.13:

argmin
f

Loss(Ŷ , Y ), (5.13)

where Y refers to target values. Through an additional physical inconsis-

tency term the model will now punish predictions that are not valid with

respect to the physical law that is incorporated. This is demonstrated in

Equation 5.14 (Karpatne et al. 2017) with the addition of a physical loss

function, Loss.Phy(Ŷ ), and the corresponding hyper-parameter (λPhy):

argmin
f

Loss(Ŷ , Y ) + λPhyLoss.Phy(Ŷ ). (5.14)

In this thesis a physics-based regularisation procedure based on each of

the input features is implemented. Firstly, the prior knowledge that

peak specific impulse decays monotonically with scaled distance for a

given angle of incidence (from Chapter 4) is utilised, which allows the

implementation of a monotonic loss constraint. This monotonic loss con-

straint is in place to only penalise values that do not satisfy the require-

ment, implemented through the use of a rectified linear unit activation

function (ReLU). The ReLU function is represented mathematically as

f(x) = max(0, x). Then the physical loss function returns the following,

adapted from Karpatne et al. (2017):

Loss.Phy1(Ŷ ) =
1

n

n−1∑
i=1

ReLU(f(X1,i+1, X2)− f(X1,i, X2)), (5.15)

where X1 refers to scaled distance and hence X1,0 being the smallest

value in the dataset with f(X1,i, X2) representing the model prediction

for a given angle of incidence, X2. The subscript i indicates the index

of the vector X1. It is important to remember here that the minimum

136



5.2. Surrogate modelling and model order reduction

X1 value (X1,0) will result in the maximum output (Y ), as increasing the

scaled distance between charge and target will increase X1 and decrease

Y . Therefore if the model predicts a greater output at a larger scaled

distance (X1,i+1) than it does for a smaller scaled distance (X1,i), this

result is non-physical and is punished by the monotonic loss constraint.

Similarly, prior knowledge that peak specific impulse decays mono-

tonically with angle of incidence for a given scaled distance (where scaled

distance is calculated from the hypotenuse distance between the charge

centre and the measurement location) allows the implementation of a

second monotonic loss constraint:

Loss.Phy2(Ŷ ) =
1

n

n−1∑
i=1

ReLU(f(X1, X2,j+1)− f(X1, X2,j)), (5.16)

where for a given X1, the maximum output will be obtained at X2,0,

decaying monotonically as X2 increases. Therefore if the model predicts

a greater output at a larger angle of incidence (X2,j+1) than it does for a

smaller angle of incidence (X2,j) this result is also deemed non-physical

and is again punished by the model. Combining the two additional physi-

cal loss constraints (Equations 5.15 and 5.16) into Equation 5.13 the final

model loss function is obtained:

argmin
f

Loss(Ŷ , Y ) + λPhy,1Loss.Phy1(Ŷ ) + λPhy,2Loss.Phy2(Ŷ ), (5.17)

where λPhy,1Loss.Phy1(Ŷ ) refers to the monotonic loss constraint with

respect to scaled distance and λPhy,2Loss.Phy2(Ŷ ) refers the monotonic

loss constraint with respect to angle of incidence.

Implementation of the physical loss function requires values for the
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Figure 5.11: Grid search of λPhy,1 and λPhy,2

hyper-parameters to be found. A sensitivity study was conducted and

with the performance metric set as root-mean-square-error (RMSE) on

unseen, test data. The sensitivity study for these hyper-parameters

(λPhy,1 and λPhy,2) assessed six logarithmically spaced values varying be-

tween 100 and 105. The results from this sensitivity study are given in

Figure 5.11, with λPhy,2 shown on the x-axis and λPhy,1 on the y-axis,

with the colour presenting the mean value for test RMSE (from the five

folds of the cross-validation). The optimum values from this exercise

were seen to be in a region of λPhy,1 = 104 and λPhy,2 = 103. However on

closer inspection of the training history data, the values taken forward

were λPhy,1 = 104 and λPhy,2 = 104.
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5.3 Stress testing evaluation

5.3.1 Overview of stress-testing procedure

It is useful for predictive models in blast loading to be able to gener-

alise both beyond the limits of the dataset and between points within

the dataset. A model which is able to generalise in this way would be

particularly beneficial to bypass physical constraints relating to availabil-

ity of equipment, placement of gauges, and limitations of the recording

equipment. For example, there may be practical limitations which pre-

vent tests from being performed at certain scaled distances (limitations

on robustness and survivability of recording equipment at smaller scaled

distances, excessive signal to noise ratios at larger scaled distances), as

well as potential issues relating to limited availability of diagnostics which

may result in a sparse dataset. Understanding how accurately a model

can extrapolate and interpolate has significant implications for the de-

sign of future experiments: such knowledge will provide experimentalists

with a clear steer on typical areas of high sensitivity and therefore those

with significant contributions to the overall accuracy of ML approaches,

as well as areas where detailed measurements may not be required.

The stress-testing evaluation procedure therefore aims to investigate

two themes of estimation ability: interpolation and extrapolation, as well

as their dependencies on the availability of data to make accurate pre-

dictions. Herein, the dataset comprises three variables: X1 (Z, scaled

distance), X2 (θ, angle of incidence) and Y (peak specific impulse). By

restricting the availability of certain regions of each variable distribu-

tion, the ability of the model to generalise can be assessed for each given

variable. Seven types of stress-test were performed, assessing either ex-

trapolation or interpolation ability with 25% of the dataset removed. For
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each stress-test, each network was trained to 100 epochs, and this pro-

cedure repeated 25 times. The information for each type of stress-test is

summarised below:

1. Interpolation

(a) Mean X1 values removed

(b) Mean X2 values removed

(c) Random data removed

2. Extrapolation

(a) Maximum X1 values removed

(b) Minimum X1 values removed

(c) Maximum X2 values removed

(d) Minimum X2 values removed

The architecture of the neural networks (NN and PGNN) follows

that summarised previously, with the two additional hyper-parameters

λPhy,1 = 104 and λPhy,2 = 104 included for the PGNN. Before the training

process, various proportions of the data were removed, dependent on

the mode of stress-testing, and the model performance was evaluated

in each case by recording the root-mean-square-error (RMSE) on the

removed, unseen test data. By also analysing the training history in

each simulation, a physical inconsistency term can be quantified as the

proportion of total epochs where physically invalid predictions are made,

this will provide an insight into how ‘physically valid’ each network is.

For clarity if physically inconsistent predictions are made in 4 of the

100 epochs, then the physical inconsistency measure will be 0.04, where

a physically inconsistent prediction is defined as a positive result from

Equation 5.15 or 5.16.
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5.3.2 Results

Interpolation

The first theme of stress-testing aims to assess the estimation ability

of the models to interpolate between the upper and lower limits of the

dataset. Firstly, removing the region of the variable distribution around

the mean of scaled distance (X1), and angle of incidence (X2), and finally

removing data randomly across the distribution space. For each analy-

sis, the distribution of the dataset with 25% of the variable removed is

presented in Figure 5.12, with the root mean squared error (RMSE) on

unseen test data and physical inconsistency values presented in Figure

5.13. Due to the cross-validation procedure and the simulation repeats,

more than one value for RMSE, and physical inconsistency, is provided

for each NN architecture, therefore the standard deviation of these values

are plotted as error bars whilst the mean indicated as the scatter point

for each architecture.

Extrapolation

The second theme of stress-testing aims to assess the estimation ability

of the models to extrapolate beyond the upper and lower limits of the

dataset. Firstly, removing the maximum values of scaled distance (X1),

and maximum values of angle of incidence (X2). It is important to note

here that the minimum values of peak specific impulse correspond to the

maximum values in scaled distance and angle of incidence, as physically

the distance between the charge and target is increased, hence the smaller

impulse value. For each analysis, the distribution of the dataset with 25%

of the variable removal is presented in Figure 5.14, with the root mean

squared error (RMSE) on unseen test data and physical inconsistency

values presented in Figure 5.15. As mentioned previously, due to the
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(c) Removing the 25% of X values randomly.

Figure 5.12: Interpolation stress tests, effects of data removal on the data
distributions. Distribution of Y (peak specific impulse) before and after data
removal (left); distribution of X1 (scaled distance) and X2 (angle of incidence)
after data removal (right).
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(c) Removing the 25% of X data randomly.

Figure 5.13: Results showing root mean square error (RMSE) of removed
test data and physical inconsistency for various interpolation stress-test pro-
cedures.
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cross-validation procedure and the simulation repeats, more than one

value for RMSE, and physical inconsistency, is provided for each neural

network architecture, therefore the standard deviation of these values are

plotted as error bars whilst the mean indicated as the scatter point for

each architecture.
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Figure 5.14: Extrapolation stress tests, effects of data removal on the data
distributions. Distribution of Y (peak specific impulse) before and after data
removal (left); distribution of X1 (scaled distance) and X2 (angle of incidence)
after data removal (right).
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Figure 5.15: Results showing root mean square error (RMSE) of removed test
data and physical inconsistency for various extrapolation stress-test proce-
dures.
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5.3.3 Discussion

The results from the stress-testing evaluation for the NN and PGNN

are compared in Table 5.2. In order to check the statistical significance

of the results from each stress-test, two-tailed Kolmogorov-Smirnov tests

(Hodges 1958) have been performed in each case. This is a two-tailed test

for the null hypothesis that two independent samples are drawn from the

same continuous distribution. In the perspective of these analyses, the

test checks whether the RMSE or physical inconsistency values recorded

by each model are drawn from the same distribution, therefore suggesting

no statistically significant difference.

Interestingly, the GBR shows optimal performance in 4 of the 7

recorded stress-tests, and would suggest a promising model to include

in further research. Both the GBR and SVR appear to show superior

performance with regards to physical inconsistency from the previous

Figures 5.13, 5.15, however this may be a slightly misleading result. The

physical inconsistency term for the SVR and GBR is based on the trained

models. In comparison, the neural networks physical inconsistency term

include the amount of training iterations that produce physically incon-

sistent results, and provides a useful indicator into the usefulness of the

imposed monotonic loss constraint, therefore it would be invalid to com-

pare the neural networks to the SVR and GBR in respect of the physical

inconsistency term. It is useful however that the trained SVR and GBR

models show a low physical inconsistency, and the performance with re-

gard to RMSE is still a valid comparison. However, the focus in this

section is on the merits of the monotonic loss constraint and therefore

comparison between NN and PGNN is more suitable.

Whilst extrapolation and interpolation with respect to X1 appears

insensitive to network type, it is clear that the PGNN outperforms the
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Table 5.2: Mean results from each stress-testing evaluation of NN and PGNN
models. Entries in bold indicate a statistically significant difference (p < 0.10)
from the Kolmogorov-Smirnov two-tailed test statistic (Hodges 1958) for both
performance premium and physical inconsistency (two-tailed p-value) for com-
parison between NN and PGNN only. SVR and GBR are included for addi-
tional benchmark comparison. “P.I.”, “Max.” and “Min.” are abbreviations
for physical inconsistency, maximum and minimum respectively.

Stress-test Test RMSE P.I.
NN PGNN SVR GBR NN PGNN

Extrapolate

Max. X1 0.15 0.17 0.52 0.28 0.49 0.27
Max. X2 0.45 0.36 1.11 0.58 0.69 0.59
Min. X1 4.05 4.05 0.93 0.89 0.30 0.19
Min. X2 4.08 3.23 0.58 0.09 0.50 0.19

Interpolate
Mean X1 0.16 0.16 0.04 0.19 0.41 0.34
Mean X2 0.69 0.60 0.35 0.35 0.56 0.43
Random 0.67 1.00 0.36 0.36 0.51 0.45

NN when extrapolating and interpolating with respect to X2. There

were three statistically significant findings with respect to test RMSE

values, the results show that the PGNN significantly outperformed the

NN when extrapolating beyond the maximum of X2, and removing data

around the mean of X2, whereas the NN outperformed the PGNN when

data was removed randomly.

The PGNN showed a statistically significant performance premium

when extrapolating beyond the maximum of X1, and beyond the min-

imum of X2 with respect to physical inconsistency. When considering

performance with respect to physical inconsistency on aggregate, how-

ever, it is shown that the PGNN outperforms the NN across all seven

stress-tests. If the null hypothesis of equal mean performance between

the PGNN and NN with respect to physical inconsistency is considered,

the observed outperformance in all seven modes of testing has a proba-

bility of 0.007 (p < 0.05), a clear performance premium.

These results are highly promising from an engineering perspective.
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The PGNN model will never under-predict when extrapolating. Essen-

tially, the networks contain inbuilt conservatism in model predictions.

This ensures that when analysing structures subjected to blast loading

following close-in detonation of a high explosive, solutions informed by

PGNNs will always be conservative; an approach that whilst not max-

imising efficiency will ensure safety. Extrapolating beyond data limits

should always be handled with caution in predictive models, however the

PGNN approach explored in this article provides additional conservatism

and maintains physical consistency if extrapolation is ever required.

5.4 Assessment of surrogate model

5.4.1 Evaluation against numerical dataset

This section assesses the predictive ability of the studied surrogate models

by comparing the results against the full CFD dataset. Filled contours of

scaled peak specific impulse are shown in Figure 5.16 with the residuals,

representing the difference between model predictions and actual data,

featured alongside. The previously studied model presented in Chapter 4

was included as an additional surrogate model for comparison in Figures

5.16a and 5.16b. All the surrogate models have the same configurations

as mentioned previously, with the neural network architectures being

trained to 1000 epochs.

The strongest overall performance was shown by the GBR (Figures

5.16e and 5.16f) and the NN (Figures 5.16g and 5.16h), as shown by the

residual plots. The PGNN (Figures 5.16i, 5.16j) showed a minor region of

weak performance at extremely low values of Z and angle of incidence but

otherwise performed similarly to the GBR and NN. The SVR showed a

large area of weak performance for low values of Z generally. Importantly
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(a) Surrogate model predictions from
Chapter 4.

0 20 40 60
Angle of incidence (degrees)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Sc
al

ed
 d

is
ta

nc
e,

 Z
 (m

/k
g1/

3 )

-2

-1

0

1

2

Sc
al

ed
 s

pe
ci

fic
 im

pu
ls

e 
(M

Pa
.m

s/
kg

1/
3 )

(b) Surrogate model residuals from Chap-
ter 4.
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(c) SVR model predictions.
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(d) SVR model residuals.
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(e) GBR model predictions.
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(f) GBR model residuals.
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(g) NN model predictions.
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(h) NN model residuals.
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(i) PGNN model predictions.
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(j) PGNN model residuals.

Figure 5.16: Predicted specific impulse distributions for Z =0.11–
0.55 m/kg1/3: filled contours of scaled peak specific impulse for full dataset
(a, c, e, g, i); residual errors for full dataset (b, d, f, h, j).
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however, the GBR and the NN showed a better performance than the

model presented in Chapter 4 and set a precedent for use of machine

learning surrogate models that can handle greater complexity.

5.4.2 Comparison against unseen CFD data

The predictive model was compared against two sets of unseen CFD

data (i.e. data not used in the development of the predictive model) as

in Chapter 4. The first set comprises two models: a 5 kg spherical PE4

charge detonated at 0.291 m normal stand-off distance (to charge centre)

from a rigid surface (Z = 0.17 m/kg1/3); and a 250 kg spherical PE4

charge detonated at 2.52 m normal stand-off distance (to charge centre)

from a rigid surface (Z = 0.40 m/kg1/3). Note that these models were

not used to form the CFD datasets outlined previously, and hence serve

as unseen data for comparative purposes. The CFD information for these

simulations is given in Chapter 4 and not repeated here for brevity.

Figure 5.17 shows a comparison of the CFD and predicted specific

impulse distributions out to 0.5 m and 4 m from the target centre. Here,

predictions for the Z = 0.17 m/kg1/3 case were determined using equa-

tion 4.4, whilst predictions for the Z = 0.40 m/kg1/3 case were deter-

mined using equation 4.5. In both cases the previously studied surrogate

models were included as an additional means of comparison, excluding

the SVR, omitted for its poor performance in the previous analysis. It

can be seen that the predicted distributions closely match those from the

CFD analyses. The minor region of slightly poorer performance previ-

ously mentioned for the PGNN at low Z and theta is demonstrated here

where the PGNN shows some fluctuations at < 0.1 m in Figure 5.17a and

< 1 m in Figure 5.17b. This is likely due to an interaction between the

physical inconsistency penalty and the MSE where the physical incon-
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Figure 5.17: CFD and predicted peak specific impulse distributions: (a) 5 kg
at 0.291 m stand-off, Z = 0.17 m/kg1/3; (b) 250 kg at 2.52 m stand-off,
Z = 0.40 m/kg1/3. “Pannell” refers to the models proposed in 4.

sistency penalty may have influenced more than ideally required at this

point. The regularisation hyper-parameter that controls this influence

was chosen from the prior grid search, and a more resolute search could

be completed within the chosen sub-region to find a more suitable value.

Alternatively an additional second order differential term could be added

to the objective function to “smooth” the profile, or more complex loss

terms than a monotonic loss could be employed generally (such as the

predictive equation in Chapter 4). However, this would further add com-

plexity to the procedure, and considering this is a small region of weak

performance should be taken in context with the entire surface where

strong performance is generally shown. Furthermore, when calculating

the area-integrated total impulse from this, the discrepancy will have

an exceedingly minor influence. Of the remaining two machine learning

models the NN shows good performance, with the weakest performance

shown by the GBR which noticeable over-predicts at < 0.1 m in Figure

5.17a and < 1 m in Figure 5.17b.
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5.5 Summary

This chapter presents a novel application of a physics-based regularisa-

tion framework for neural networks in the application of predicting blast

loading following detonation of an explosive charge. The physics-based

regularisation is shown to provide statistically significant performance

improvements over traditional neural network procedures when general-

ising beyond the dataset through extrapolation and interpolation with

regards to accuracy (shown via test RMSE) and physical validity (via

physical inconsistency metric). This finding provides positive evidence to

the theme of research in using physics-based regularisation when training

ML models, and the use of ML models generally, especially in applica-

tions involving the prediction of blast loads resulting from the detonation

of high explosives when operating in a sparse-data domain.

An initial parameter search study was completed for a traditional

neural network (NN), with the chosen parameters also used in the physics-

guided neural network (PGNN). Both models were stress-tested through

various data holdout approaches, and their ability to predict high explo-

sive blast loading were comprehensively evaluated and compared. It is

found that the PGNN out-performed the NN in (3/7) of the stress-tests

(lower RMSE), and exhibited lower physical inconsistency in the training

process in 100% (7/7) of the stress-tests (p < 0.05). With respect to the

specific mode of stress-testing, of the PGNN’s 10 performance premiums,

four were found to be statistically significant (RMSE when extrapolating

with respect to maximum X2 and interpolating with respect to mean X2,

and physical inconsistency when extrapolating with respect to maximum

X1 and minimum X2). Two additional data-driven surrogate models are

tested (a GBR and SVR) where it can be seen that in the optimum

performance with respect to RMSE is shown by the GBR in 4 of the 7
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cases. Therefore there is a benefit to implementing a physics based reg-

ularisation procedure in neural networks, but it needs to be considered

in the context of other machine learning models and the performance

of those. It is also worth considering that neural networks and other

data-driven methods would have a number of hyper-parameters: hard

(such as number of hidden units) or soft (number of data points and

distribution). These hyper-parameters are not considered in an over-

arching multi-objective optimisation process within this thesis (as it is

considered to be beyond the scope of this thesis), meaning that the “op-

timum” trained models presented are, in essence, still sub-optimal. The

fundamental concept, however, of embedding a desired control (enforcing

physically valid solutions) through an obtrusive form of regularisation,

a direct modification to the objective function, is shown to produce the

desired effect – as shown by the smaller physical inconsistency value in

7/7 stress tests.

Additionally, this research has considered the importance of careful

consideration of the parameters which govern a network’s ability to gen-

eralise, and subsequent implications for experimental design. The results

demonstrate the feasibility and enhanced accuracy achievable when de-

veloping ML models to predict near-field blast loading. As a continuation

of this research, future work will involve incorporating different charge

types, shape effects, and blast wave clearing as features in the model. An

additional research direction is to perform an overarching multi-objective

optimisation process when training data-driven models. Further, incor-

porating more complex physics (through implementing a non-linear loss

constraint instead of the monotonic loss constraint) will enable the pos-

sibility of improved PGNN performance through transfer learning. De-

velopments in this area will facilitate more accurate probabilistic-based
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approaches to engineering design and risk mitigation that encompass a

more complex suite of scenarios than is capable presently.
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Chapter 6

Transfer learning – what

information can be learned

from a spherical charge?

6.1 Introduction

As established by Rigby et al. (2019b) and discussed in Chapter 4, to per-

form the accurate appraisal of structures and protective systems, knowl-

edge of the distribution and magnitude of loading is required. A surro-

gate model allows the analyst to instantly obtain the loading information,

within the parameters of the surrogate model, for a multitude of scenar-

ios (that would otherwise be costly to ascertain) and is the first step

towards a probabilistic mode of risk assessment. The preliminary surro-

gate model presented in Chapter 4 is an equation made of three separate

terms and is suitable for a specific charge shape, type and range of scaled

distances.

However, to increase the capabilities of the surrogate model, and

therefore the situations an analyst can simulate, a model that can handle
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the additional complexity is required. Integrating data-driven methods

with scientific theory is considered crucial in order to improve surro-

gate model performance whilst respecting natural laws (Reichstein et al.

2019). Chapter 5 investigates this by implementing a physics-based reg-

ularisation procedure when training a machine learning model through

adding a monotonic loss constraint to the loss function. This could be

considered a form of transfer learning, by implementing the discover-

ies from Chapter 4 it has informed the learning procedure described in

Chapter 5 (the physics based regularisation) to enhance performance in

a specific task (producing physically valid predictions).

Traditional data mining and machine learning algorithms provide

predictions on future data using statistical models trained on previously

collected labelled or unlabelled data (Pan & Yang 2010, Ramon et al.

2007, Taylor & Stone 2007). Many machine learning methods work un-

der the assumption that the training and test data belong to the same

distribution. When this distribution changes, most statistical models

need to be re-trained on newly collected training data. Though some

methods do exist that model non-stationary data where the “data-drift”

is parameterised and modelled, alternatively there are heuristic methods

for continuous learning (Panoutsos & Mahfouf 2008). In the context of

blast protection engineering, obtaining data is considerably expensive in

time and cost (as discussed in Chapter 2) and therefore any method that

increases the utility of this data is of paramount importance, as it would

be in many other applications. In these cases, it would be highly useful

to reduce the need to re-collect training data and therefore knowledge

transfer, or transfer learning, between task domains is highly desirable.

Many examples exist where transfer learning can be beneficial such as

web-document classification (Mahmud & Ray 2007, Blitzer et al. 2008,
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Xing et al. 2007), sentiment classification (Li et al. 2009), image classifi-

cation (Lee et al. 2007), WiFi localisation models (Yin et al. 2005, Raina

et al. 2006, Pan et al. 2007, 2008, Zheng et al. 2008) and web-page trans-

lation (Ling et al. 2008). For an insight into the benefit transfer learning

can explicitly bring over traditional machine learning approaches, see

Table 5 in Pan & Yang (2010).

This chapter presents two novel applications of transfer learning

for the prediction of peak specific impulse. Firstly to model alterna-

tive spherical charge types and secondly to model cylinders, both using

knowledge already gained when modelling spheres of a single charge type.

Discussion on dataset generation is provided in each case and assessments

of the proposed models are presented where it is shown clearly that by

implementing transfer learning, the need for new training data is drasti-

cally reduced.

6.2 Transfer learning

Transfer learning, and domain adaptation, refer to the situation where

what has been learned in one scenario is exploited to improve generali-

sation in a second scenario. The inherent assumption is that the factors

that influence variations in the first scenario also apply, to some level, to

the second. In the real world, there are many clear examples of transfer

learning. For example, one may find that learning to play the organ will

facilitate learning the piano. The field of transfer learning is motivated

by this awareness that people can apply previously learned knowledge in-

telligently when faced with a new problem and can solve it more quickly

or with better solutions (Pan & Yang 2010).

To aid understanding of transfer learning it is useful to have some
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formal notation and definitions. Firstly, the definitions of “domain” and

“task”. A domain, D, consists of a feature space X and a marginal

probability distribution P (X), where X = {x1, ..., xi} ∈ X . Consider

as an example the learning task of document classification where each

term is taken as a binary feature, X is the vector space for all terms,

xi is the ith term vector (corresponding to some documents) and X is

a particular sample. It can generally be considered that if two domains

are different, then they may have different feature spaces or marginal

probability distributions (Pan & Yang 2010).

Given a specific domain, D = {X , P (X)} a task consists of two

components: label space Y and an objective predictive function f : X →

Y and is denoted T = {Y , f(·)}. This predictive function is learned from

the training data, pairs {xi, yi} where x ∈ X and y ∈ Y and can be used

to predict new labels f(x) from an instance x (Pan & Yang 2010).

A definition of transfer learning is given as follows: “Given a source

domain DS and learning task TS, a target domain DT and learning task

TT , transfer learning aims to help improve the learning of the target pre-

dictive function fT (·) in DT using the knowledge in DS and TS, where

DS 6= DT , or TS 6= TT .”.

In the above definition, from Pan & Yang (2010), a domain is a pair

D = {X,P (X)}. So the condition that DS 6= DT has the implication

that XS 6= XT or PS(X) 6= PT (X). Likewise, a task is defined as a pair

T = {Y , P (Y |X)}, therefore the condition TS 6= TT implies YS 6= YT or

P (YS|XS) 6= P (YT |XT ). If the source and target domains are the same

DS = DT , and their learning tasks are the same TS = TT , the problem

then becomes a classical machine learning problem.

There are considered to be three main research questions in the field

of transfer learning: 1) what to transfer, 2) how to transfer, and 3) when
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to transfer. “What to transfer” is concerned with ascertaining which

part of knowledge from the source can be transferred, and what may

be useful knowledge to transfer for improving performance in the target

domain or task. “How to transfer” is concerned with choosing a learning

algorithm that can transfer the knowledge from the source to the task,

and “when to transfer” considers when the transfer of knowledge should

be implemented. An important point for consideration here is that it is

equally useful in knowing when not to transfer as in when to transfer.

When transfer learning takes place and is harmful to performance in the

target, it is referred to as negative transfer (Pan & Yang 2010).

The overall objective, therefore, of transfer learning is to take advan-

tage of knowledge from the source domain (DS), and use this to improve

performance when learning, or making predictions in the target domain

(DT ) (Goodfellow et al. 2016). There are clear advantages to allowing

more accurate predictions in the target domain, but a unique benefit to

transfer learning is that accuracy of predictions can be high, even when

data is sparse or severely limited (in DS). This has the practical benefit

that gathering new data is not as important and there can be substantial

savings in cost and time. For an extensive overview of advancements in

transfer learning across a wide range of settings and implementations,

see Pan & Yang (2010).

161



Chapter 6. Transfer learning – what information can be
learned from a spherical charge?

6.3 Modelling charge composition effects

with transfer learning

6.3.1 Dataset overview

The first application of transfer learning implements the surrogate model

presented in Chapter 4 for spherical charges, in a similar range of scaled

distance but for different charge compositions. In total, five new datasets

were generated from CFD simulations using Apollo for 1kg spherical

charges of five varying charge compositions: TNT, HMX, RDX, PETN

and COMPB. For each dataset, Apollo was used to generate the specific

impulse distribution along a rigid reflecting surface at angles of incidence

between 0-60◦ with 150 gauges linearly spaced (with respect to angle of

incidence) along the rigid reflecting surface. Six different stand-off dis-

tances were analysed for each charge type from 0.2 m–0.6 m in increments

of 0.1 m. The ultimate cell size adheres to the minimum S/50 in all cases

whilst the DMA module was used throughout.

For all analyses, a separate domain was specified for each model,

with equal side lengths of an integer number of zone lengths, given by:

d1.2S tan(60◦)/Le, where S and L are stand-off and zone length as pre-

viously, such that S tan(60◦) is the distance from the centre of the target

to the most remote gauge. The domain length was set a factor of 1.2

greater than this distance (rounded up to the nearest multiple of zone

length), again to prevent edge expansion waves from reaching the most

remote gauge location during the analysis. If this distance was less than

1 m, then 1 m was used as the side lengths. Apollo’s staging procedure

was used where a spherical cutout region of the entire domain is specified

to resolve the detonation in greater detail but conserve computational ef-

ficiency. The first stage was solved in one-dimension until a boundary
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is reached (equivalent to the standoff) before implementing the DMA

module. The custom DMA conditions were defined as a 0.2 m spheri-

cal region around the charge, with an additional 2 resolution levels and

a growth rate of 2. When the shock front reaches the defined distance

(0.2 m), the resolution level is dropped by 1 and the new domain is the

previous radius multiplied by the growth rate, so becomes 0.4 m. This

continues until the additional resolution levels reach 0 and the entire do-

main is then included in the simulation. Quarter symmetry was used,

with 100 mm initial zone length and intial resolution level of 3.

For all explosive types, Apollo’s in-built model parameters were used.

The pressure-density-temperature relationship of the post-detonation ex-

plosive products is given by the Jones Wilkins Lee equation of state (Lee

et al. 1968):

p(ρ, T ) = C1e
−R1ρ0/ρ + C2e

−R2ρ0/ρ + ρRT (6.1)

where ρ and ρ0 are density and initial density, R is a gas constant, and

T absolute temperature. The constants C1, C2, R1, and R2 are assigned

the values given in Table 6.1. Air is modelled p = ρRT , such that

under ambient conditions (288◦K), ambient pressure is p = 101.3kPa.

Afterburn was modelled using the Klomfass Afterburning (KAB) model,

and the Chapman-Jouguet detonation model was used in all cases. In

all numerical simulations, the explosives were centrally detonated and

the mass of the detonator was not included. A Savitzky-Golay filter

(Savitzky & Golay 1964) has been used to remove spurious oscillations

induced by the DMA procedure.

In summary, there are 30 different CFD models (6 different stand-off

distances for each of the 5 different charge types) with 150 values of peak

specific impulse within each, therefore a total of 4500 data points.
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Table 6.1: Equation of state information for the five newly studies charge
compositions, including the previously studied PE4.

Charge
type

Gas
constant
J/(kg.K)

Initial
density
(kg/m3)

C1

(GPa)
C2

(GPa)
R1 R2

PE4 365 1660 734.60 8.86 4.79 1.06
TNT 315 1630 527.28 6.30 4.71 1.07
HMX 365 1905 1215.93 12.30 4.77 1.12
RDX 345 1805 1053.18 11.29 4.77 1.12

PETN 300 1778 946.18 9.83 4.76 1.08
COMPB 345 1725 732.74 8.83 4.68 1.09

The six stand-off distances represent a scaled distance, Z, range of

0.2 m/kg1/3–0.6 m/kg1/3 (ignoring any TNT equivalence), this range was

chosen as it partly lies within the range the original model was built

(0.11 m/kg1/3–0.55 m/kg1/3) but also extends slightly beyond.

6.3.2 Model development

As shown in Chapter 4, the surrogate model for a dataset of spherical

charges of PE4 in the near-field consists of three different parts: a term

to capture the angle of incidence effects, a term to determine the peak

perpendicular specific impulse value and a term to scale the charge mass.

The new datasets cover a similar range of scaled distance values and con-

sist of different charge compositions, but crucially are the same shape,

spheres. It would make physical sense therefore, that the term that han-

dles the angle of incidence effects would be similar for different charge

compositions (due to equivalent charge shape), and the term that would

vary the most would be the term that determines the peak normal spe-

cific impulse value. Hence the knowledge of the angular distribution of

peak specific impulse in spherical charges is transferred to other charge

compositions, and the only new part that needs to be “learned” is the
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part of the model that defines peak normal impulse (although this is still

known to be a power law).

To evaluate whether the angle of incidence component can be trans-

ferred in this way, two models were fitted for each new dataset to the

same format as the model proposed in Chapter 4. The first of these mod-

els fits new parameters for both the peak impulse component and angle

of incidence component and are presented below in Equations 6.2. The

second model only uses the new peak scaled impulse component for the

different charge type, and transfers the original angle of incidence com-

ponent for PE4 spheres from Chapter 4, these models are summarised

in Equations 6.3. The model fit process for the peak impulse component

and assessment of this fit is shown in Figure 6.1 where it is seen that a

power law still provides a good model even when the charge composition

is varied. This is demonstrated from the low values obtained for residual

standard error and the high values for coefficient of determination in each

case.

TNT: i(Z, θ,W ) = 0.383Z−1.683 exp

(
−θ2

2282

)
W 1/3 (6.2a)

HMX: i(Z, θ,W ) = 0.435Z−1.664 exp

(
−θ2

2301

)
W 1/3 (6.2b)

RDX: i(Z, θ,W ) = 0.426Z−1.671 exp

(
−θ2

2288

)
W 1/3 (6.2c)

PETN: i(Z, θ,W ) = 0.419Z−1.660 exp

(
−θ2

2308

)
W 1/3 (6.2d)

COMPB: i(Z, θ,W ) = 0.421Z−1.668 exp

(
−θ2

2298

)
W 1/3 (6.2e)
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TNTθ-transfer: i(Z, θ,W ) = 0.383Z−1.683 exp

(
−θ2

2007

)
W 1/3 (6.3a)

HMXθ-transfer: i(Z, θ,W ) = 0.435Z−1.664 exp

(
−θ2

2007

)
W 1/3 (6.3b)

RDXθ-transfer: i(Z, θ,W ) = 0.426Z−1.671 exp

(
−θ2

2007

)
W 1/3 (6.3c)

PETNθ-transfer: i(Z, θ,W ) = 0.419Z−1.660 exp

(
−θ2

2007

)
W 1/3 (6.3d)

COMPBθ-transfer: i(Z, θ,W ) = 0.421Z−1.668 exp

(
−θ2

2007

)
W 1/3 (6.3e)
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Figure 6.1: Relationship between peak normally reflected specific impulse and scaled distance, residuals, and proposed fit for five
different charge types.
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6.3. Modelling charge composition effects with transfer
learning

6.3.3 Model verification

The evaluation of the new models and the transfer learning process for

each charge composition is shown in Figures 6.2 to 6.6. In each case: the

peak impulse data and its model fit is shown; followed by the angular

component of the model which includes the transferred model, the new

fit and the normalised CFD data. Then the entire dataset is predicted

using both the transferred angle component and the new fitted angle

component; with the residuals presented by subtracting the predictions

from the true CFD values, this demonstrates how accurately each model

fits to the true CFD data.

For each new dataset, the mean absolute error of the residuals was

calculated for the transferred model and the new model and presented

in Table 6.2. There is negligible difference between the two models for

each charge composition which confirms that the angle of incidence com-

ponent of PE4 spheres can be transferred successfully to other charge

compositions. This is a highly useful finding as it means for new charge

compositions, only a few normally reflected CFD models are required

(to obtain the peak specific impulse values for different values of scaled

distance) and then the entire dataset can be constructed from this.

This exercise has demonstrated that previously learned knowledge

obtained during modelling of near-field spherical charges of a certain

charge composition and scaled distance range can be used to rapidly

speed up the learning in a new situation. Knowledge from the source

domain DS and the source task TS was used to improve performance in

the new domain DT and task TT where DS 6= DT .
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Chapter 6. Transfer learning – what information can be
learned from a spherical charge?
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Figure 6.2: Transfer learning of spherical TNT charges. (a) newly acquired
peak scaled impulse data, (b) the transferred angular distribution from PE4
spheres and the updated angular distribution built from new TNT data, (c)
predicted peak specific impulse surface from the transferred model, (d) transfer
model residuals with respect to true data, (e) predicted peak specific impulse
surface from the new model, (f) new model residuals with respect to true data

170



6.3. Modelling charge composition effects with transfer
learning
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Figure 6.3: Transfer learning of spherical HMX charges. (a) newly acquired
peak scaled impulse data, (b) the transferred angular distribution from PE4
spheres and the updated angular distribution built from new HMX data, (c)
predicted peak specific impulse surface from the transferred model, (d) transfer
model residuals with respect to true data, (e) predicted peak specific impulse
surface from the new model, (f) new model residuals with respect to true data

171



Chapter 6. Transfer learning – what information can be
learned from a spherical charge?

0.2 0.3 0.4 0.5 0.6

Z (m/kg1/3)

1

2

3

4

5

6

Pe
ak

 s
ca

le
d 

sp
ec

ifi
c 

im
pu

ls
e

(M
Pa

.m
s/

kg
1/

3 )

f(Z) = 0.426Z 1.671

(a)

0 10 20 30 40 50 60
Angle of incidence (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

 p
ea

k 
sp

ec
ifi

c 
im

pu
ls

e

Eq. 4.5
Eq. 4.5 - mod.
CFD
CFD - range

(b)

0 15 30 45 60
Angle of incidence (degrees)

0.20

0.30

0.40

0.50

0.60

Sc
al

ed
 d

is
ta

nc
e,

 Z
 (m

/k
g1/

3 )

0.0

2.0

4.0

6.0

8.0

Sc
al

ed
 s

pe
ci

fic
 im

pu
ls

e 
(M

Pa
.m

s/
kg

1/
3 )

(c)

0 15 30 45 60
Angle of incidence (degrees)

0.20

0.30

0.40

0.50

0.60

Sc
al

ed
 d

is
ta

nc
e,

 Z
 (m

/k
g1/

3 )

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Sc
al

ed
 s

pe
ci

fic
 im

pu
ls

e 
(M

Pa
.m

s/
kg

1/
3 )

(d)

0 15 30 45 60
Angle of incidence (degrees)

0.20

0.30

0.40

0.50

0.60

Sc
al

ed
 d

is
ta

nc
e,

 Z
 (m

/k
g1/

3 )

0.0

2.0

4.0

6.0

8.0

Sc
al

ed
 s

pe
ci

fic
 im

pu
ls

e 
(M

Pa
.m

s/
kg

1/
3 )

(e)

0 15 30 45 60
Angle of incidence (degrees)

0.20

0.30

0.40

0.50

0.60

Sc
al

ed
 d

is
ta

nc
e,

 Z
 (m

/k
g1/

3 )

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Sc
al

ed
 s

pe
ci

fic
 im

pu
ls

e 
(M

Pa
.m

s/
kg

1/
3 )

(f)

Figure 6.4: Transfer learning of spherical RDX charges. (a) newly acquired
peak scaled impulse data, (b) the transferred angular distribution from PE4
spheres and the updated angular distribution built from new RDX data, (c)
predicted peak specific impulse surface from the transferred model, (d) transfer
model residuals with respect to true data, (e) predicted peak specific impulse
surface from the new model, (f) new model residuals with respect to true data
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Figure 6.5: Transfer learning of spherical PETN charges. (a) newly acquired
peak scaled impulse data, (b) the transferred angular distribution from PE4
spheres and the updated angular distribution built from new PETN data,
(c) predicted peak specific impulse surface from the transferred model, (d)
transfer model residuals with respect to true data, (e) predicted peak specific
impulse surface from the new model, (f) new model residuals with respect to
true data
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Figure 6.6: Transfer learning of spherical COMPB charges. (a) newly acquired
peak scaled impulse data, (b) the transferred angular distribution from PE4
spheres and the updated angular distribution built from new COMPB data,
(c) predicted peak specific impulse surface from the transferred model, (d)
transfer model residuals with respect to true data, (e) predicted peak specific
impulse surface from the new model, (f) new model residuals with respect to
true data
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6.4. Modelling charge shape effects with transfer learning

Table 6.2: Mean absolute error of residual values from Figures 6.2 to 6.6, given
to 2 dp.

Charge
composition

MAE (MPa.ms/kg1/3)

Transfer New

TNT 0.08 0.09
HMX 0.10 0.11
RDX 0.09 0.11

PETN 0.08 0.09
COMPB 0.09 0.11

6.4 Modelling charge shape effects with trans-

fer learning

6.4.1 Numerical modelling of cylinders in Apollo

Blastsimulator

Prior to validating Apollo results against experimental data, a mesh sen-

sitivity study was conducted with the aims of determining the required

element size to achieve convergence and identifying suitable combinations

of zone length and resolution level for cylindrical explosives. The chosen

model set-up was a 0.078kg PE4 squat cylinder (L/D = 1/3) at 0.1774 m

stand-off, which was chosen due to having experimental data for this case

from Rigby et al. (2019b) and is presented schematically in Figure 6.7.

The results of the mesh sensitivity study are shown in Figure 6.8. Fig-

ure 6.9 presents the studied meshes compared to the experimental peak

specific impulse distribution where it can be shown that a mesh with a

S/cell length from 168 can be considered suitable.

The CFD model with S/cell length of 336 was chosen for further

analysis, with the overpressure-time histories and impulse-time histories

compared with experimental data and presented in Figure 6.10 where
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Figure 6.7: 0.078kg PE4 squat cylinder (L/D = 1/3), (a) CFD model set-up
and (b) blast wave development moments after detonation.
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Figure 6.8: Mesh convergence study for 0.078kg PE4 cylinder , Z =
0.415 m/kg1/3, standoff from charge centre = 0.1774m, L/D = 1/3.

good agreement between CFD and experimental data is shown.

6.4.2 Dataset overview

The dataset was generated from CFD simulations using Apollo consist-

ing of centrally-detonated 100g cylinders of PE4 located between 0.09m-

0.23m from the centre of the charge to a target. This is equivalent to a

scaled distance range of 0.2−0.5m/kg1/3 where 5 linearly spaced Z values

were chosen to sample from. Four different L/D ratios were chosen of

1/5, 1/3, 1/2, and 1, where L/D represents length/diameter ratio. Axi-
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6.4. Modelling charge shape effects with transfer learning
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Figure 6.9: Mesh sensitivity analysis - comparison of different CFD models
with experimental data.

Table 6.3: Example dataset information for cylindrical dataset

X1 X2 X3 Y

Scaled
distance

(m/kg1/3)

Angle of
incidence

L/D ratio Peak specific
impulse

(MPa.ms)
0.1 15 1 45.87

symmetry was used, with a domain of 2 m × 2 m × 2 m, with 100 mm

zone length and resolution level 3. Apollo’s auto-staging procedure was

used and otherwise, the model set up was identical to those previously.

In summary, there are 20 CFD models (representing the 5 differ-

ent stand-off distances analysed for each of the 4 different L/D ratios)

with 150 values of peak specific impulse recorded for each, resulting in

a dataset of 3000 samples. Each input in the dataset is shown in Table

6.3, with an example entry. There are 3 input features scaled distance

(X1), angle of incidence (X2) and L/D ratio (X3), the labelled values Y

are peak specific impulse.

The variables X1 and X2 are minmax scaled across the entire dataset
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(c) 50 mm from centre, θ = 16◦
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Figure 6.10: Experimental validation of numerical overpressure and specific
impulse histories for Z = 0.415 m/kg1/3 as 0, 25, 50, 75 and 100 mm distance
from the target centre
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Figure 6.11: Unscaled Y dataset (left) and the resulting power transform
(right)

with a feature range of [0,1] (using the scalars from the spherical model

in Chapter 5), whilst X3 is left unchanged, and varies between 0.2-1.

The vector of labels, Y , has a log-normal distribution and is scaled via

a power transform using the method described in Yeo & Johnson (2000)

and again uses the same scaler that scaled the spherical dataset used in

Chapter 5. The result of this data transformation in presented in Figure

6.11, and the transformation is applied prior to model training to allow

for the knowledge transfer.

Previously in Section 6.3 it was demonstrated how prior knowledge

from PE4 spheres can be leveraged to improve model development in a

new domain. The specific method of applying a charge shape effect com-

ponent was suitable as this applied across different charge compositions,

and could be captured in a single exponential equations (as shown in

Chapter 4). Figure 6.12 demonstrates why this would not be a suitable

approach, as the normalised impulse curves for cylinders are drastically

different to a sphere. Furthermore, the normalised profile for each L/D

ratio is not always monotonically decreasing.
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Figure 6.12: Normalised peak specific impulse comparison for four different
L/D ratios: (a) 1/5, (b) 1/3, (c) 1/2 and (d) 1. In each case there are five
normalised impulse curves corresponding to each scaled distance sample mod-
elled.
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6.4.3 Network architecture study

To model charge shape effects with transfer learning, two alternative

network architectures were compared using the Keras package with Ten-

sorflow backend (Chollet et al. 2015). The first model (NN) is shown in

Figure 6.13a and does not utilise any transfer learning. It is only trained

on the cylindrical dataset and provides a benchmark to compare a trans-

fer network (TNN) to. It consists of 3 input nodes, 1 hidden layer and

1 output layer and is fully connected. The number of epochs was set at

1000, with early stopping, where the patience value was set as 50 epochs,

to prevent over-fitting.

The TNN structure is shown schematically in Figure 6.13b, it con-

sists of a pre-trained spherical model that was trained on the spherical

dataset and is the network produced in Chapter 5, and a “bolt-on” net-

work that handles the additional feature, X3 (L/D). The output from

both the spherical model and the bolt-on model are summed to pro-

vide an overall model output for the TNN. During model training, the

spherical model is “frozen” so that the parameters are not updated dur-

ing back-propagation, and the only parameters that are updated are in

the bolt-on network. After the initial 1000 epochs training, the TNN

is fine-tuned by un-freezing the spherical model, reducing the learning

rate by an order of magnitude and training for 100 further epochs (with

early-stopping implemented again).

In both cases the activation functions for the hidden units were set as

hyperbolic tangent, with layer weights initialised with the Glorot normal

initialiser (Glorot & Bengio 2010). The “Adam” algorithm was chosen

as the optimiser, a stochastic gradient descent method that is based

on adaptive estimation of first-order and second-order moments. K-fold

cross-validation was implemented with 5 splits, following an initial data
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6.4. Modelling charge shape effects with transfer learning

split of 25% data randomly removed. The batch size was set at 32.

A varying number of hidden units are examined ranging from 1 to 10

in increments of 1. The hidden units apply to the hidden layer in Figure

6.13a and the hidden layer in the bolt-on network in Figure 6.13b. The

results of these analyses are presented in Figure 6.14 where three sepa-

rate sub-figures provide different metrics: mean absolute error (Figure

6.14a), mean squared error (Figure 6.14b) and coefficient of determina-

tion (Figure 6.14c). For all analyses, the metrics are evaluated for the

three separate data portions: train, validation and test data. If any large

discrepancies occur between data types, this can be indicative of over-

fitting issues. For the NN the global minimum mean MAE and MSE

occur with 6 units in the hidden layer, suggesting that this capacity

provides adequate predictive capability whilst in the TNN, a sufficient

capacity is provided by 6 hidden units in the bolt-on sub-network. These

two model architectures were taken forward for modelling.

6.4.4 Stress-testing

As previously established, obtaining data is expensive within a blast

engineering context (and commonly other domains). A useful assessment

for the utility of transfer learning would be how the models cope when

data is increasingly sparse, any model or modelling framework that would

improve the performance in a sparse data environment would be highly

beneficial. To test this, the cylindrical dataset has been restricted in three

separate levels of random data removal: a low threshold representing 20%

data removal, a medium threshold representing 55% data removal, and

a high threshold representing 90% data removal. The effects of this data

restriction on the dataset is shown in Figure 6.16.

The modelling procedure follows that set out in Section 6.4.3, with
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Figure 6.13: Model architectures for (a) NN architecture, model trained with
no transfer learning and (b) Transfer neural network (TNN). In the TNN
the previously trained “Spherical model” is used and an additional “bolt-on”
network is added to handle the additional L/D input. The output of the
spherical model (is) and bolt-on network (ic) are summed to produce the
overall model output.
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Figure 6.14: Hyper-parameter configuration of NN with various performance
metrics shown. Error bars are standard deviation.
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Figure 6.15: Hyper-parameter configuration of TNN with various performance
metrics shown. Error bars are standard deviation.
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Figure 6.16: Distributions for (a) 20%, (b) 55% and (c) 90% random data
removal. Each of the four plots in the right hand side represent a one of
the four L/D ratios. The features are scaled using the fitted scalers from the
dataset of spherical data in Chapter 5.
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Figure 6.17: Stress-test results from three data holdout proportions.

the exception that the K-fold cross-validation procedure is repeated 3

times for 5 splits. The results of these analyses are shown in Figure 6.17,

with sub-figures for each of the three assessment metrics: mean absolute

error (Figure 6.17a), mean squared error (Figure 6.17b) and coefficient of

determination (Figure 6.17c). The points plotted are mean values, whilst

the error bars represent standard deviation.

To better understand how each model is learning, a training history

from the high threshold removal (90% data removal) case is presented in
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Figure 6.18: Training history for 90% data holdout of the two different net-
works (NN and TNN). “TNN-2” represents the fine-tuning of the TNN.

Figure 6.18 comparing the two different models NN and TNN. The TNN

has been included as two separate parts in the legend, the initial training

when the spherical model is frozen, followed by the “fine-tuning”, where

the entire model can be updated.

For the critical case of 90% data removed, a closer inspection of the

models was completed and an overview of the transfer learning process

shown in Figures 6.19, 6.20, 6.21 and 6.22, representing each of the four

L/D ratios. In each figure, the training and unseen data is presented,

alongside the original PE4 spherical dataset that is used for the transfer

learning in the TNN. The NN and TNN are trained on this information

and then are subsequently used to predict the entire dataset, with the

predictions also presented. A closer inspection of these predictions is

given by presenting the relationship between predicted and true values.

Finally, the true dataset is presented in its entirety as a means of com-

parison. It can be seen in these Figures what information is available

to each model, how it influences the accuracy of model predictions and

provides a succinct overview of the stress-testing process.
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Figure 6.19: Stress-testing of 100g PE4 cylinder, L/D =1/5 with 90% of data
removed. (a) histogram of original and training data, (b) transferred spherical
PE4 dataset from Chapter 4, (c) NN predicted surface, (d) TNN predicted
surface, (e) predicted vs true unseen data and (f) true CFD dataset.
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Figure 6.20: Stress-testing of 100g PE4 cylinder, L/D =1/3 with 90% of data
removed. (a) histogram of original and training data, (b) transferred spherical
PE4 dataset from Chapter 4, (c) NN predicted surface, (d) TNN predicted
surface, (e) predicted vs true unseen data and (f) true CFD dataset.
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Figure 6.21: Stress-testing of 100g PE4 cylinder, L/D =1/2 with 90% of data
removed. (a) histogram of original and training data, (b) transferred spherical
PE4 dataset from Chapter 4, (c) NN predicted surface, (d) TNN predicted
surface, (e) predicted vs true unseen data and (f) true CFD dataset.
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Figure 6.22: Stress-testing of 100g PE4 cylinder, L/D =1 with 90% of data
removed. (a) histogram of original and training data, (b) transferred spherical
PE4 dataset from Chapter 4, (c) NN predicted surface, (d) TNN predicted
surface, (e) predicted vs true unseen data and (f) true CFD dataset.
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6.5 Discussion

The results from the stress testing evaluation for the NN and TNN are

compared in Table 6.4. To check the statistical significance of the results

from each test, two-tailed Kolmogorov-Smirnov (KS) tests (Hodges 1958)

have been performance in each case. This is a two-tailed test to test

the hypothesis that both independent samples are drawn from the same

continuous distribution. In this analysis, it establishes if any performance

premium is statistically significant.

For every metric and for each data holdout proportion it can be

seen that the TNN shows a performance premium over the NN, and this

performance premium widens as the data holdout proportion increases.

This performance premium is shown to be statistically significant for data

holdout values of 20% and 90%. As the performance premium widens as

the proportion of data removed increases, it suggests that the transfer

learning has more utility as data becomes scarce. It is also shown that

the TNN shows drastically less variability than the NN in all cases as

shown by the considerably smaller standard deviation values.

A further insight into this performance premium can be seen in the

training history from Figure 6.18. Initially it would appear that the NN

Table 6.4: Mean RMSE results from each stress-testing evaluation of NN and
TNN models, with standard deviation given in brackets. RMSE values are
from the unseen, test data. Entries in bold indicate a statistically significant
difference (p < 0.10) from the Kolmogorov-Smirnov two-tailed test statistic
(Hodges 1958) for performance premium (two-tailed p-value).

Data
holdout

Mean RMSE ± (s.d)

NN TNN

20% 1.047 (± 0.230) 1.033 (± 0.037)
55% 1.314 (± 0.335) 1.133 (± 0.106)
90% 3841.733 (± 8458.127) 3.384 (± 0.212)
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is learning well, and there is a clear gap between the NN and TNN,

until the TNN enters the fine-tuning stage. After the fine-tuning stage

the TNN shows a clear performance premium over the NN and would

appear to be a crucial element in the transfer learning implementation.

The stress-testing overview in Figures 6.19, 6.20, 6.21 and 6.22 fur-

ther demonstrate the effectiveness of transfer learning. As shown, when

predicting values at the minimum values of angle of incidence and scaled

distance, the NN often over-predicts, quite drastically in some instances

by up to 10000% from the true value, this can be seen particularly in the

Subfigure (e) in all cases, where the TNN remains closer to the “true” line

plotted and the NN lifts away from this when predicting the maximum

values. It suggests that the knowledge gained from the PE4 dataset

is considerably useful in preventing such drastic over-predictions, even

though there is considerable difference in charge shape.

These results are highly promising, particularly from an engineering

perspective. It has been established that knowledge of the source domain

(DS) and task (TS) can be used to provide more accurate predictions

and improve learning in the target domain (DT ) and task (TT ). In this

instance the source domain is the spherical dataset and the target domain

is the cylindrical dataset. The important practical implication of this

finding can improve the efficiency of experimental design and improve

the accuracy of predictive models in a blast engineering setting.

6.6 Summary

This chapter presents two novel applications of transfer learning for the

prediction of peak specific impulse in a blast engineering setting. The

first implementation used the predictive surrogate model proposed in
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Chapter 4 where it is shown to speed up the learning of new predictive

models for similar charge shapes, and scaled distance ranges but different

charge compositions. Specifically, the part of the model in Chapter 4

responsible for the normalised impulse with respect to angle of incidence

was transferred to newly studied charge compositions.

The second implementation aimed to investigate if knowledge ob-

tained when modelling spherical explosives could be used to improve the

learning when modelling cylinders. An initial architecture study was

completed for two separate network architectures to determine a model

that had a sufficient capacity to model the cylindrical charges. The first

model (NN) did not implement any transfer learning and was included as

a benchmark for comparison, this network did not have knowledge of the

spherical dataset. The second network (TNN) did implement transfer

learning through incorporating the trained spherical model proposed in

Chapter 5, with an additional “bolt-on” network to handle the new L/D

parameter. The models were stress-tested for three levels of random data

removal, where it is shown the TNN outperforms the NN for every level,

with this out-performance increasing as the percentage of data removed

increases and showing statistical significant results for the low and high

threshold. The TNN also shows drastically less variability in each case

shown by the far smaller standard deviation values.

In a domain where data is expensive to obtain, a method is proposed

here that improves the utility of data already obtained and demonstrates

how this can be used when modelling a new, but related, domain. The

implications of this research can directly affect how experiments are de-

signed and will facilitate more accurate probabilistic-based approaches to

experimental design and risk mitigation that encompass a more complex

suite of scenarios than is capable presently.
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7.1 Summary

This thesis has aimed to investigate data-driven modelling approaches

for surrogate model development, specifically to create a “loading char-

acterisation model”, that can produce peak specific impulse distributions

given parameters about the explosive and its configuration.

The detonation of a high explosive results in the rapid release of

energy as the explosive charge undergoes a rapid change in state and

is converted into a high pressure, high temperature gas. As the gas ex-

pands, the surrounding air is displaced, resulting in a high pressure shock

discontinuity (shock wave). As this shock wave propagates away from

the charge, it can cause severe damage to any structure that it impacts

on. Blast protection engineers are tasked with designing infrastructure

in a way that it is robust enough to withstand extreme loading, whilst

dealing with several constraints such as time, cost and space. Due to

the variability in initiation conditions (charge shape, position etc.), and

the subsequent variability in loading produced, it becomes impractical to

perform numerical simulations or experiments for all possible scenarios,
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though an understanding of the loading is required to accurately model

structural response. To this end, this thesis presents surrogate modelling

strategies that provide the crucial loading information an engineer will

require to design safe structures.

In Chapter 2, the current literature in the field of surrogate modelling

in a blast context is discussed, as well as the theoretical background of

shock wave formation and the detonation process. It also provides a

general overview into machine learning as a field of study, and how its

application is used in a blast engineering context. It therefore fully meets

objective 1 as defined on page 4:

“1. To review the current literature on predictive approaches for blast

loading and discuss the limitations of existing approaches.”

In Chapter 3 this thesis provides a theoretical background of com-

putational fluid dynamics (CFD), discussing the numerical scheme used

in the chosen software (Apollo) and additional modules that make Apollo

a suitable choice. Further, Apollo is then validated in the far-field using

experimental data obtained at the University of Sheffield.

Chapter 4 demonstrates preliminary approaches into surrogate mod-

elling of peak specific impulse. First it provides a validation of Apollo in

the near-field against experimental data, and then outlines a surrogate

modelling framework – from data generation to surrogate model produc-

tion. An important insight gained within Chapter 4 is the discovery of a

suitable data transformation that can reduce a dimension of the dataset,

by modelling the “normalised peak specific impulse”, therefore improv-

ing surrogate modelling efficiency. A surrogate model is proposed and

is extensively evaluated and compared to other models in the literature,

where it shown to be more accurate and considerably easier to evaluate.

Chapters 3 and 4 both fully address objectives 2, 3 and 4:
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“2. To establish a reliable numerical framework for generating loading

distributions that has been validated against near-field and far-field ex-

perimental data.

3. To rigorously assess the sensitivities of numerical approaches for mesh

effects and develop consistent rules for mesh sizing to be used throughout

the thesis study.

4. To investigate data transformations that can be applied to datasets

as a whole that reduce the dimensions of the dataset and allow the rapid

development of surrogate models.”

In Chapter 5, this thesis addresses the question of how we can incor-

porate prior domain knowledge into the model training process to speed up

performance or efficiency of model training?. To do this, insights gained

from the dataset in Chapter 4 are used and directly implemented as

an additional regularisation term into the objective function that is min-

imised during model training, to penalise “physically invalid” predictions.

This approach is compared to models without additional regularisation

and both models are stress-tested by withholding various portions of the

dataset which allows the specific evaluation of the generalisation ability

of both models. The results demonstrate statistically significant benefits

to the novel regularisation procedure in both model performance by an

accuracy metric (RMSE), and model performance with respect to physi-

cal inconsistency and can be considered a suitable approach in surrogate

modelling within this domain. This chapter fully meets objective 5:

“5. To investigate physics-guided machine learning approaches in a blast

loading domain through incorporating known, or learned, physics directly

into the objective function as a physics-based regularisation procedure.”

Finally, in Chapter 6 this thesis further investigates transfer learning

strategies to improve the utility of data already obtained, and demon-
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strate how prior knowledge can be used to improve both model perfor-

mance and learning efficiency in a new domain. Firstly, five additional

datasets of spherical charges are developed of varying charge composi-

tions. Surrogate models, of the format presented in Chapter 4 are devel-

oped for each new dataset, where crucially a component of the model

(the angular distribution component) is transferred from the original

model to the five new models. This application of transfer learning is

shown to be suitable and demonstrates the utility of the process as con-

siderably less new data is required to be obtained to create additional

subsequent surrogate models for alternative charge compositions. Then

in a second exercise of transfer learning, this thesis demonstrates how

knowledge of a spherical dataset can be used to improve the efficiency of

surrogate model development for a different charge shape entirely. Ini-

tially, four new datasets of cylindrical explosives are developed, of varying

length/diameter ratios and modelled in two different network structures.

The first is a classical neural network structure, and does not implement

transfer learning. The second novel model is a network containing the

trained spherical model in Chapter 5, with an additional “bolt-on” net-

work to handle the new L/D parameter. Both models are stress-tested

by withholding three different levels of cylindrical training data and the

results of their predictive performance on this unseen data is evaluated.

It is shown that the transfer learning implementation provides a consider-

able statistically significant performance benefit and drastically reduces

the need to obtain new data. Chapter 6 fully addresses objective 6:

“6. To further investigate transfer learning approaches from previously

trained surrogate models applied to new datasets, to determine whether

knowledge learned from previous tasks and domains can be applied in a

new task and domain and improve the efficiency in training, and perfor-
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mance of, the new surrogate models. ”

The results of this thesis should be used to guide surrogate model

development for the prediction of peak specific impulse in the near-field.

Surrogate modelling frameworks for spheres and cylinders are presented

and it is demonstrated how prior domain knowledge, and data, can be

used to improve the performance of models in a new domain, and im-

prove the efficiency when training models in a new domain. It is shown

that machine learning methods can reliably be used in surrogate model

development. The findings presented within this thesis have the poten-

tial to be implemented into load prediction software which would be of

great utility to structural engineers working in the blast protection and

resilience community.

7.2 Conclusions

The main conclusions of this thesis can be summarised in the following,

listed in their order of appearance within this thesis:

• Apollo can be used to simulate blast events in the far-field region

to a good level of agreement with data collected from a series of

experimental trials by Rigby et al. (2015a).

• Apollo can be used to simulate near-field blast events to a good

level of agreement with experimental data. Peak specific impulse

requires an ultimate cell size of S/50, where S is stand-off to the

nearest gauge.

• In a scaled distance range of 0.11–0.55 m/kg1/3 for spherical charges,

a data transformation can be applied to the specific impulse dis-

tributions by dividing through by the impulse value at the perpen-
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dicular gauge. The result is that all distributions collapse into a

“normalised specific impulse” profile.

• In a scaled distance range of 0.11–0.55 m/kg1/3 for spherical charges,

the “normalised specific impulse” profile can be well approximated

by a modified form of a Gaussian function.

• In a scaled distance range of 0.11–0.55 m/kg1/3 for spherical charges,

the peak perpendicular impulse can be well approximated as a

power law, with scaled distance as the independent variable.

• Current literature guidance for modelling angle of incidence effects

in the near-field is assessed (Randers-Pehrson & Bannister 1997,

Henrych 1979) where they are shown to be less accurate than the

model proposed herein.

• Two extensively validated surrogate models are proposed to pre-

dict the peak specific impulse produced from the detonation of

a spherical PE4 explosive between a scaled distance range 0.11–

0.55 m/kg1/3 in Equation 4.5 on page 101 and between a scaled

distance range 0.11–0.21 m/kg1/3 in Equation 4.4 on page 101.

• A fully connected neural network with four units in the hidden

layer can be used to accurately predict peak specific impulse given

scaled distance (0.11–0.55 m/kg1/3) and angle of incidence (0-60o)

as the inputs and a sufficient level of training. Activation functions

for the hidden units were set as hyperbolic tangent functions and

the layer weights initialised with the Glorot normal initialiser.

• A monotonic loss constraint can be directly included in the ob-

jective function as a physics-based regularisation procedure when
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training a neural network to produce statistically significant perfor-

mance benefits when generalising for the prediction of peak specific

impulse produced by a spherical charge of PE4 given scaled distance

(0.11–0.55 m/kg1/3) and angle of incidence (0-60o).

• The component of the surrogate model that predicts normalised

peak specific impulse given angle of incidence presented in Equa-

tions 4.5 and 4.4 can be transferred to other charge compositions

but similar shapes and range of scaled distances. These are pre-

sented in Equations 6.2 on 165 for TNT, HMX, RDX, PETN and

COMPB for a scaled distance range of 0.2–0.6 m/kg1/3.

• Knowledge of spherical charges can be used to reduce the need to

obtain new data when modelling cylindrical charges of L/D ratios

1/5, 1/3, 1/2, 1/1 for a scaled distance range of 0.2–0.6 m/kg1/3.

This knowledge transfer is established by adding an additional

“bolt-on” sub-network of 6 hidden units in a hidden layer onto the

neural network architecture presented for PE4 spheres in Chapter

5 (the “spherical model”). During model training, the “spherical

model” is frozen and only the “bolt-on” model parameters are up-

dated during back-propagation, however for the final 100 epochs,

the learning rate is dropped and the entire model is un-frozen

to allow fine tuning. This implementation of transfer learning is

shown to drastically improve model performance (compared to a

model that did not implement transfer learning), with this out-

performance increasing as the available training data becomes in-

creasingly limited.
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7.3 Evaluation and future work

Further work within this thesis falls within two broad categories: the

first, improving the existing loading characterisation models; whilst the

second is concerned with the future structural response model. These

two categories correspond to the framework suggested in Figure 1.1 on

Page 6.

To improve the loading characterisation model, suggested avenues

of work include an investigation into sampling methods for surrogate

modelling. For example, if the modeller wanted to create a peak specific

impulse surrogate model for a certain charge composition, and shape,

in the near-field domain, how many CFD simulations would they need

to run? To achieve this, a study could be completed of various mod-

elling strategies and the results compared. The work presented herein

would suggest a modelling strategy based on a complexity metric could

be promising, as the region close in to the explosive is much more com-

plex than the region further out, which would suggest more samples are

required from this complex region.

The introduction of additional regularisation terms into the objec-

tive function is a fairly underdeveloped area of the literature. Within

this thesis an application of a monotonic loss constraint is demonstrated,

but there is no reason why this could not be a more complex term. For

example, in Chapter 4 it is demonstrated that the peak specific impulse

varies with scaled distance as a power law, so it would be reasonable to

assume if the complexity of the regularisation term was extended from

a monotonic loss to a power law the results would be more accurate,

particularly when generalising.

Finally, the second part of the probabilistic framework remains un-

touched within this thesis, the connection between loading and structural
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response. However, significant developments have been made herein that

encourage the use of this framework. The conclusions presented within

this thesis should be used as positive evidence towards the theme of

surrogate modelling in a blast engineering context, and justifies the use

of machine learning models and transfer learning strategies to improve

model predictive performance and training efficiency. The results of this

thesis have direct impact guiding experimental design (due to an aware-

ness of the amount of data required) which will correspond to significant

savings in time and cost.
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Appendix A

A.1 Apollo blastsimulator equation of state

information

Table A.1: Equation of state information for the six studied charge composi-
tions

Charge
type

Gas
constant
J/(kg.K)

Initial
density
(kg/m3)

C1

(GPa)
C2

(GPa)
R1 R2

PE4 365 1660 734.60 8.86 4.79 1.06
TNT 315 1630 527.28 6.30 4.71 1.07
HMX 365 1905 1215.93 12.30 4.77 1.12
RDX 345 1805 1053.18 11.29 4.77 1.12

PETN 300 1778 946.18 9.83 4.76 1.08
COMPB 345 1725 732.74 8.83 4.68 1.09
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