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Abstract 

Modern arable agriculture is in the majority dependent upon both tillage, and application of 

crop protection products. Increasingly the intensity of tillage is being reduced, for reasons including 

cost, carbon sequestration, and to improve the biodiversity of agricultural land. Reduced intensity 

tillage alters soil properties and microbial communities, and therefore may alter the environmental 

fate of crop protection products. Understanding influence of reduced tillage intensity is essential for 

ensuring the safe use of crop protection products. 

The present study utilises high throughput amplicon sequencing of soil microbial 

communities, paired with 14C radiolabelled compound degradation studies to assess the impact of 

varied tillage intensities at two field experiments. 

Within the first field experiment, tillage intensity is found to significantly alter the 

community composition of soil eukaryotes. Additionally, soils underneath hedgerows are identified 

to host bacterial, eukaryotic and fungal communities that are distinct from infield communities. The 

rate of degradation of Mandipropamid and Simazine in intact soil cores collected from differently 

tilled field plots was similar in both soils, however the rate of degradation was more variable in soils 

under a lower intensity of tillage.  

In a second, longer term field study, tillage intensity is identified to significantly differentiate 

soil bacterial, eukaryotic and fungal communities. The role of tillage in shaping the horizontal 

heterogeneity of the soil microbiome at different depths is explored.  

In conclusion, tillage intensity is identified to alter both the composition of key soil microbial 

communities, and to affect the spatial variability of crop protection product degradation. 
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Chapter 1: General Introduction 
1.1 Tillage 

Tillage describes the range of actions that may be undertaken to prepare a seedbed for the 

sowing of crops. For much of the preceding 100 years, convention has been to till with a mouldboard 

plough, inverting the top soil (ca. 30 cm) (Lal et al., 2007). For the purposes of this thesis, such 

ploughing will be considered ‘Inversion Tillage’ (IT). IT is effective in the suppression of pest species 

and incorporating crop residues throughout the ploughed section of the soil profile. IT by ploughing 

may be followed by secondary treatments, such as harrowing (Morris et al., 2010).  

Despite the efficacy of IT in the control of weed species, alternative methods of tillage, 

including both reduced intensity tillage (RT) and no tillage (NT) are increasingly being adopted in the 

UK and Europe (Holland, 2004, Morris et al., 2010). Development of less intensive, invasive and 

disruptive tillage methods was instigated by the Dustbowl phenomenon in the USA during the 1930s 

(Lal et al., 2007). RT and NT were first developed with a focus on reducing soil erosion. RT may utilise 

tillers or harrows, but does not uniformly invert the top soil, rather scraping at the soil surface. RT is 

frequently defined by the proportion of the soil surface that remains covered with crop residues 

following cultivation, where greater than 30 % coverage is required to be considered RT (Holland, 

2004).  

RT and NT methods spread widely throughout the Americas during the 20th century, 

however adoption within European farming has been substantially slower (Holland, 2004). Alskaf et 

al. (2019) estimate that in England, 47.6% and 7% of arable land is under RT and NT management 

respectively. Where RT has been adopted within the UK, the principal reason has been a reduction in 

cost relative to IT (Ingram, 2010, Morris et al., 2010) – both Townsend et al. (2016) and Alskaf et al. 

(2019) note that RT in England is more commonly practiced on larger farms, with the financial capital 

to transition to a RT system. 

Significant co-benefits can be derived from RT, and these benefits are delivered across 

multiple scales. Lowering the intensity of tillage can increase soil porosity, reduce runoff from 

agricultural fields, reducing soil erosion, and contamination of watercourse from fertilisers and crop 

protection products (CPPs) (Holland, 2004). Lowering tillage intensity increases carbon storage 

within soils, with soil carbon becoming increasingly stratified (Haddaway et al., 2017). However this 

effect is small – Haddaway et al. (2017) found the average increase in soil organic carbon (SOC) to be 

0.13 % ± 0.022 % (standard error) in RT relative to IT, considering only the upper 15 cm of soil. 
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Both increases in SOC, and improved soil structure may be attributed to an increased 

abundance of soil macroaggregates (Six et al., 2000). A reduction in tillage intensity is associated 

with a reduction in the turnover of soil macroaggregates, which reduces the turnover of soil 

microaggregates, and in turn reduces decomposition of particulate organic matter (POM), increasing 

SOC (Six et al., 2000, Six et al., 2004). Reduced turnover of soil macroaggregates under RT is 

attributable to reduced mechanical disturbance, increased presence/non-disruption of plant roots, 

and the increased abundance of hyphal and filamentous microorganisms (Six et al., 2000, Six et al., 

2004, Blankinship et al., 2016, Hewins et al., 2017). Wilson et al. (2009) reported arbuscular 

mycorrhizal length to account for 68 % of variation in macroaggregate mass and 15 % of soil organic 

matter storage in grasslands (Figure 1.1). 

 
Figure 1.1 – Figure and figure caption adapted from Brady and Weil (2012). Soil macroaggregates 
are composed of microaggregates. This figure explores aggregate structure and formation in with 
four levels. The different factors important for aggregation at each level are noted. (a) 
Macroaggregates are formed from many microaggregates formed and held together by fine roots, 
and fungal hyphae (b) microaggregates of smaller clumps of mineral material and organic debris 
held together by fine roots, fungal hyphae, their exudates and microbial gum. (c) 
Submicroaggregates consist of fine mineral particles, coated with particulate organic matter, 
which in turn is coated with mineral material and Fe and/or Al oxides. (d) Clusters of clay platelets 
interacting with Fe and/or Al oxides and organic polymers at the smallest scale, these organoclay 
clusters bind to the surfaces of humus particles and the smallest of mineral grains.  

 

Alteration of tillage intensity may have variable effect on crop yield, and is dependent on 

factors including field history, crop, and soil type (Ekebery and Riley, 1997, Holland, 2004, Morris et 

al., 2010, Armengot et al., 2014). Sans et al. (2011) reported both an increase in weed abundance, 

and a reduction in yields under RT relative to IT. Armengot et al. (2014) report increased weed 

abundance (230% higher than IT) in organic RT farming, but yields remained similar to organic IT 
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plots. Arvidsson (1998) reports deeper tillage to increase crop yields, and reduced tillage intensity to 

increase the occurrence of Rhyncosporium secalis (leaf scald).  

In addition to the influence on crop and pest species, the intensity of agricultural 

management influences the infield soil biome. Cultivation is associated with a decline in the diversity 

of arbuscular mycorrhizal fungi, and increasing the relative abundance of bacteria to fungi, and 

lowering the abundance of earthworms (Helgason et al., 1998, Kuntz et al., 2013, Prendergast-Miller 

et al., 2021). In an meta-analysis of 62 studies, Zuber and Villamil (2016) report higher intensities of 

tillage to lower total microbial biomass, and enzyme activity. Kaurin et al. (2018) observed greater 

abundance of bacterial, crenarchaeal, and fungal communities at lower tillage intensities, the 

abundance of which was more sensitive to drought than in soils under IT, although this recovered 

following rewetting.  

1.2 Crop Protection Products 

The use of CPPs is widespread within modern agriculture. In Great Britain, the total weight 

of applied pesticides declined between 1996 (36 million kg) and 2016 (17 million kg) (FERA, 2021) 

(Figure 1.2). However the total treated area, defined as sum of areas applied to multiplied by 

number of applications, rose from 45 million ha in 1990 to in excess of 80 million ha in 2015 (FERA, 

2021) (Figure 1.3). In 2016, fungicides accounted for 50 % of the total treated area, and 35 % of total 

weight of applied CPPs, herbicides 32 % and 46 % respectively, and insecticides 7.0 % and 1.9 % 

respectively; the remainder accounted for by products including molluscicides, rodenticides, and 

growth regulators (FERA, 2021). CPPs are expected to remain a significant factor in maintaining crop 

yields globally, to support the growing human population amidst the global environmental change 

forecast for the 21st century (Beddington, 2009, Popp et al., 2012, Fenner et al., 2013).   

CPPs contain one or more active substances, one or more solvents, and adjuvants with a 

range of purposes, including surfactants, antifoaming agents and stabilisers (Krogh et al., 2003). An 

active ingredient is defined by EPA (2013) as: 

“(1) in the case of a pesticide other than a plant regulator, defoliant, desiccant, or nitrogen 

stabilizer, an ingredient which will prevent, destroy, repel, or mitigate any pest; 

(2) in the case of a plant regulator, an ingredient which, through physiological action, will 

accelerate or retard the rate of growth or rate of maturation or otherwise alter the behavior of 

ornamental or crop plants or the product thereof; 

(3) in the case of a defoliant, an ingredient which will cause the leaves or foliage to drop from 

a plant; 
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(4) in the case of a desiccant, an ingredient which will artificially accelerate the drying of 

plant tissue; and 

(5) in the case of a nitrogen stabilizer, an ingredient which will prevent or hinder the process 

of nitrification, denitrification, ammonia volatilization, or urease production through action affecting 

soil bacteria.” 

 

 
Figure 1.2 – Total weight (in millions of kg) of pesticides applied in Great Britain between 1990 
and 2016. Data from FERA (2021).   
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Figure 1.3 – Total area (in millions of ha) treated with pesticides in Great Britain between 1990 
and 2016. Data from FERA (2021). 

 

The environmental fate of a CPP is the sum of all processes that occur to a substance 

following its release into the environment, where the environment is all terrestrial, atmospheric and 

aquatic space, to the point at which the substance is mineralised, or irreversibly bound to another 

substance. Environmental fate within the present study is concerned with the fate of compounds 

applied outside, to cultivated-arable fields, and which are deposited or incorporated onto soils. 

Figure 1.4 details the major processes by which the environmental fate of CPP is determined within 

such a system. 
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Figure 1.4 – Environmental fate and transport processes in soil, adapted from figure by Dubus 
(2012).  

 

For the purposes of the present work, the environmental fate of CPPs is concerned 

principally with the fate of active substances. On differences of the environmental fate of active 

substances and formulated products, see for example Khan and Brown (2016), Gutowski et al. 

(2015a) and Gutowski et al. (2015b). 

 The environmental fate of a compound in soils is primarily predicted on the basis of its rate 

of degradation, and the sorption behaviour of the compound (Kah et al., 2007). The soil parameters 

that determine the rate of degradation of a compound vary dependent upon the properties of each 

compound, and therefore accurate universal predictions of degradation rates are not possible (Kah 

et al., 2007). However generally higher soil organic carbon, associated with higher metabolic activity, 

may be associated with higher rates of degradation (Kah et al., 2007).  Routes of loss of compounds 

or metabolites, which tend to be more mobile than their parent compound (Boxall et al., 2004), may 

be via volatilisation, run-off, drainage, or the removal of residues in crops or plant products. Sorption 
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may temporarily remove compounds from availability for either metabolism or transport processes, 

however all sorption may be reversible (Suddaby et al., 2013, Suddaby et al., 2016). 

 Microbial metabolism (degradation) is a central process in the dissipation (to mineralisation 

or bound residues) of applied compounds, which may be highly stable abiotically – such as cleaving 

C-P bonds (Fenner et al., 2013). In soil, the microbial metabolism of compounds may be principally 

associated with bacteria (Fenner et al., 2013), however for some compounds, synergistic effects 

between soil bacteria and fungi have been observed (Levanon et al., 1994). Prokaryotes are suited to 

effectively degrade agrochemicals via their propensity to metabolise them for energy or nutrients, 

and not to detoxify them (Fenner et al., 2013). Further, the pace of evolution within bacterial 

populations, and horizontal transfer of genes within bacterial communities facilitate the (relatively) 

rapid development and dissipation of pathways to degrade xenobiotics within bacterial communities 

(de Souza et al., 1998b, Fenner et al., 2013). Phototrophic communities can have a significant impact 

upon the rate of CPP degradation (Thomas and Hand, 2012, Davies et al., 2013a), and light can 

structure the communities of phototrophs, bacteria and fungi on the surfaces of soils (Davies et al., 

2013b). The relative role of crop residues in shaping microbial communities on soil surfaces is 

unclear. 

 Removal of residues via crop and plant products is dependent upon the uptake of such 

residues by plants. Briggs et al. (1982) found a relationship between the octanol:water partition 

coefficient (Kow) and plant uptake, however more recent hydroponics experiments have found 

there to be little to no relationship between Kow and plant uptake (EFSA, 2013). While plant uptake 

of CPPs may occur at a range of rates for different compounds, this may generally be considered a 

less determinant process than the most major processes such as microbial degradation. In EU and 

GB ground and surface water risk assessment of CPPs, the default position is that plant uptake is 

equivalent to 0. 

1.3 Tillage Intensity and the Environmental Fate of Crop Protection Products 

The crop residues that remain on the soil surface following RT are integral to the reduction 

in soil erosion achieved by RT farming, however these may intercept crop protection products (CPPs) 

applied within the field, altering the environmental fate of these compounds (Reddy et al., 1995, 

Locke and Bryson, 1997, Holland, 2004, Morris et al., 2010). Type and abundance of crop residue, 

and the time elapsed between tillage and CPP application alter the effect of crop residues on CPP 

fate (Alletto et al., 2010, Cassigneul et al., 2015). Cassigneul et al. (2015) report that increased crop 

residue degradation (to 56 days), increased sorption and retention of CPPs. Cassigneul et al. (2016) 

report the addition of supplementary crop residues to soil reduced the rate of glyphosate 
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mineralisation. Soluble glyphosate was found to be metabolised within the mulch fraction, but less 

efficiently than within the soil fraction. Glyphosate absorbed to soil remained available for microbial 

degradation, but that sorbed to crop resides did not (Cassigneul et al., 2016). The timing and mode 

of application of a CPP influences the relative impact of tillage intensity on CPP fate, for example, 

compound applied as seed treatments will not be subject to interception by crop residues, whilst 

preemergence broadcast applications may be most likely to be intercepted by crop residues (Alletto 

et al., 2010, Cassigneul et al., 2015).  

The greater abundance of soil macroaggregates under RT and stratification of carbon within 

the soil profile (Six et al., 2000, Holland, 2004, Haddaway et al., 2017), may change the availability of 

CPPs and metabolites to degradation processes. Greater abundance of soil macroaggregates may 

increase the occurrence of non-equilibrium/aged sorption, which may occur by diffusion of 

compounds into soil aggregates (Beulke et al., 2015, Commission, 2021), and encapsulation via 

greater concentrations of soil carbon, which may occur either stratified to the upper soil layers, or 

throughout the soil profile (Beulke et al., 2015, Haddaway et al., 2017). 

Altering tillage intensity may alter the rate and/or route of degradation of compounds 

applied to soils, influencing both abiotic and biotic degradation processes (Alletto et al., 2010). 

Abiotically, tillage intensity may alter standing water on field surfaces, and greater physical mixing of 

applied compounds by IT may reduce the occurrence of photolysis of compounds otherwise 

remaining on the soil surface. Biotically, crop residues on the soil surface may host distinct microbial 

communities that may have differing degradation potential than bulk soils, and the more 

heterogenous soil surface may influence the composition and function of the soil biological crust, 

which hosts important and distinct communities of compound degraders (Davies et al., 2013a, 

Davies et al., 2013b).  

A reduction in tillage intensity has the potential to alter the transport of CPPs via processes 

including runoff, leaching and volatilisation (Alletto et al., 2010). Runoff of CPPs may be influenced 

both by a reduction in the volume of water flowing from a field, and by the reduction of suspended 

sediments within this flow from low intensity tillage plots (Alletto et al., 2010). Tebrugge and During 

(1999) report a reduction in runoff from plots under RT, however Logan et al. (1994) identified no 

difference in CPP runoff amongst four compounds. Similarly, the effect of tillage intensity on CPP 

leaching is variable, with reports of greater, no change, and lesser leaching with greater tillage 

intensity (Alletto et al., 2010, Okada et al., 2016). RT increasing leaching may be attributable to 

greater macroporosity due to the looser packing of aggregates, and lesser disturbance of earthworm 

and root channels by tillage (Alletto et al., 2010).  
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1.4 DNA Metabarcoding 

The study of soil microbial communities has been transformed throughout the last decade 

by the development and application of omic technologies to study soil genomes, transcriptomes and 

metabolomes (Caporaso et al., 2011, Lindahl et al., 2013, Jansson and Baker, 2016). Application of 

high-throughput DNA sequencing platforms has facilitated the rise of metabarcoding studies of soil 

microbial communities (Caporaso et al., 2011, Hugerth and Andersson, 2017, Pollock et al., 2018). 

Metabarcoding studies amplify and sequence marker genes, or regions thereof, to provide 

qualitative, what sequences are present, and quantitative, relative abundance, data (Pollock et al., 

2018). 

Common target genes for metabarcoding studies of soil microbial communities include 16S 

rRNA, 18S rRNA and ITS genes (Lindahl et al., 2013, Pollock et al., 2018). These markers are 

frequently used to study prokaryotic communities including bacteria and archaea (via 16S), total 

eukaryotes (18S) and fungi (ITS) (White et al., 1990, Gardes and Burns, 1993, Stoeck et al., 2010, 

Ihrmark et al., 2012, Lindahl et al., 2013, Apprill et al., 2015, Parada et al., 2016, Pollock et al., 2018). 

The primers used to generate amplicons are subject to frequent revisions, as improvements are 

made to prevent omission or misrepresentation of members of microbial communities (Op De Beeck 

et al., 2014, Apprill et al., 2015). 

 Of equal if not greater importance to the generation of sequence data, the analysis of 

datasets from metabarcoding studies can be complex, with a range of methods applied to similar 

datasets asking similar questions, and an even greater range across different datasets and 

hypotheses (Callahan et al., 2017, Edgar, 2017a, Edgar, 2017b, Koo et al., 2017, Edgar, 2018, Knight 

et al., 2018, Pollock et al., 2018). Whilst historically, amplicon sequences have been clustered by 

sequence similarity, often at the level of 97 % sequence similarity (Hugerth and Andersson, 2017), 

this methodology is now being displaced. Use of an amplicon sequence variant (ASV) (also known as 

sequence variant (SV) or zero-radius operational taxonomic unit (ZOTU)) approach as opposed to 

operational taxonomic unit approach (OTU) methodology delivers benefits in computational cost, 

reduced batch effects, accuracy and reproducibility (Callahan et al., 2017, Edgar, 2017b). While ASV 

approaches to analysis of ITS sequence has been criticised for failure to recognise the occurrence of 

multiple distinct copies of the region within a genome (Lindner et al., 2013, Nilsson et al., 2018), 

such multiple copies are not guaranteed to cluster within a single OTU (Edgar, 2017b), and where 

the data is collapsed by taxon any inflation of seemingly unique features may be offset, provided a 

suitably accurate taxonomic assignment can be achieved. 
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 Such taxonomic assignments are however dependent upon the quality of reference 

databases and the methods by which the classifications are assigned. Methods, such as BROCC 

(Dollive et al., 2012), VSEARCH (Rognes et al., 2016), and the RCP-Classifier (Wang et al., 2007), can 

assign nominal taxonomies to query sequences, working from reference databases that may be 

general, such as the NCBI nt database (NCBI, 1988), or smaller databases such as SILVA (Pruesse et 

al., 2007), Greengenes (DeSantis et al., 2006), and UNITE (Nilsson et al., 2015). The accuracy and 

precision of taxonomic assignments is variable dependent upon the method, reference database, 

and query sequences (Werner et al., 2012, Edgar, 2018), and may fail to accurately describe rare or 

novel organisms, which remain common (Elshahed et al., 2008).  

1.5 Aims 

 Whilst the impact of tillage intensity has previously been studied upon constituents of the 

soil microbiome, and the environmental fate of crop protection products, such analyses have 

previously been independent from one another, may have relied on increasingly outdated 

approaches for assessing limited sections of soil microbial communities, and used methods that 

disrupt key differences between soils under different tillage intensities. The present work seeks to 

close key knowledge gaps, regarding both the impacts on soil microbial community composition, and 

its function in the degradation of CPPs. 

 Utilising two existing field experiments undertaken by the White Rose Sustainable 

Agriculture Consortium (WRSAC), this thesis attempts to address knowledge gaps: to understand at 

greater breadth (through studying soil archaea, bacteria, total eukaryotes, and soil fungi) and 

greater resolution (by application of high throughput amplicon sequencing (HTAS) the impact of 

tillage on soil microbial communities, both in relation to other tillage intensities, and also adjacent 

agricultural landscape components (hedgerows, field margins, and pastures). These analyses explore 

the relationship between tillage and the soil microbial community at different depths throughout 

the soil profile, and seek to understand how tillage may alter the distribution of functional genes 

associated with the degradation of CPPs. To directly assess the environmental fate of CPPs, non-

conventional compound degradation studies are conducted, utilising an intact core design to 

preserve potential differences between soils under different tillage regimes, that may in previous 

studies been lost to common soil processing techniques. 

 By application of HTAS metabarcoding, and 14C compound degradation studies, to soils from 

two established field experiments, both containing IT and RT plots, the present thesis aims to: 
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1) Identify changes in the composition of soil microbial communities under different tillage 

intensities (Chapters 2 and 5) 

2) Contextualise the composition of soil microbial communities in arable soils relative to other 

soils in an agricultural landscape (from pasture, field margins and hedgerows) (Chapter 2) 

3) Identify differences in the rate of degradation of CPP in soils at different tillage intensities 

(Chapter 3)    

4) Identify if tillage intensity alters the distribution of genes associated with CPP degradation 

within the soils (Chapter 4) 

5) Identify the effects of the incubation of soil for degradation studies on soil microbial 

communities (Chapter 4)  

6) Identify how tillage intensity alters the spatial variability of soil microbial communities 

(Chapter 5) 

In Chapter 6, results from the chapters detailed above are discussed in context of the scientific 

literature, and recommendations for further work are made.  
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Chapter 2: The soil microbiome of agricultural 

landscapes 
2.1 Introduction 

2.1.1 Tillage in context of other environmental compartments 

 Modern agricultural landscapes are a complex patchwork of pasture and arable fields, 

divided by natural (such as watercourses) and man-made barriers (such as fences and roads), and 

bordered by non-agricultural spaces either urban, managed or natural. Within fields themselves, 

marginal areas may be distinct from the actively farmed space, with bare or vegetative borders 

between crops and field boundaries (Van Vooren et al., 2017, Haddaway et al., 2018). These field 

bordering features provide a wide range of ecosystem services, including reducing flow of overland 

and subterranean flow, harbouring for some taxonomic groupings more diverse and/or more 

abundant communities, and may improve the interconnectedness of (semi)natural spaces within the 

agricultural landscape (Davies and Pullin, 2007, Van Vooren et al., 2017, Haddaway et al., 2018, 

Holden et al., 2019, Prendergast-Miller et al., 2021).  

 Holden et al. (2019), Berdeni et al. (2021) and Prendergast-Miller et al. (2021) detail results 

from the SoilBioHedge experiment, which investigated a wide range of biological and 

physicochemical properties of an agricultural landscape in Britain, including research on the use of 

grass clover-leys to improve soil properties, and the role of hedgerows to provide biodiversity 

reservoirs of ecosystem engineering organisms (WRSAC, 2014). The experiment included three 

pasture fields that had arable crop strips cultivated within them, at two tillage intensities (IT and RT). 

Winter wheat was grown within the strips for two consecutive years (2015-17) (WRSAC, 2017).  

2.1.2 Studying tillage methods 

 Assessment of tillage intensity on soil properties and microbial communities may best be 

achieved by adoption of a systems approach, to accurately capture the sum of effects that may be 

encountered by farmers changing practices (Derpsch et al., 2014). Such studies also benefit from 

long durations, in a recent metanalysis, Haddaway et al. (2017) included only results from 

experiments that had been established for ten or more years.  

 It is valuable to understand the impacts of varying tillage intensity on soil microbial 

communities, not only in context of other forms of tillage but also relative to adjacent 

environmental compartments, and land management techniques. Cultivation is known to lower the 

diversity of arbuscular mycorrhizal fungi relative to nearby woodlands (Helgason et al., 1998). Other 
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environmental compartments may host genetic reservoirs that may disperse into cultivated areas, 

either between instances of tillage, or following a reduction in tillage intensity. Prendergast-Miller et 

al. (2021) however report earthworm recruitment in arable to grass-ley conversion to be due to 

recruitment from infield communities, and not field boundaries.  

2.1.3 Aims and Objectives 

 The present study aims to identify changes in the composition of the soil microbiome – 

considering archaea, bacteria, total eukaryotes and fungi under different intensities of tillage (IT and 

RT), and contextualise these relative to other agricultural land management areas – hedgerows, field 

margins, and pasture. It was hypothesised that increasing the intensity of tillage would alter the soil 

microbiome, with IT possibly being more homogenous than other infield settings which are not 

subject to mixing. It was also expected that the studied hedgerows would host a distinct soil 

microbiome, Holden et al. (2019) having reported a distinct fungal community within the roots of 

hedgerow plants – with the present study expanding the research to include archaea, bacteria, total 

eukaryotes and fungi from bulk soils. 
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2.2 Methodology 

2.2.1 Field Site and Sampling 

 The field experiments of the SoilBioHedge project were conducted at the University of Leeds 

farm, England (53.874, -1.323). Holden et al. (2019) detail mean annual precipitation to be 674 mm, 

mean annual temperature of 9.2 °C, and the soils to be loamy calcareous brown earth (0.5-0.9 m in 

depth) above limestone. The present study draws soils from the three arable fields of the 

SoilBioHedge project; ‘Paddock’, ‘Valley’ and ‘Warren’ – Figure 2.1 farm layout, Figure 2.2 field 

layout.  

 

Figure 2.1 – University of Leeds farm layout. Adapted from (Grayson, 2016). From West to East 

the experimental strips are; in Valley RT, pasture, IT; in Warren IT, pasture, RT; in Paddock, from 

North to South, IT, pasture, RT. 

 

 Paddock and Valley fields have been pasture continuously from (at least) 2003. Warren field 

has been pasture since 2012, having previously had winter wheat (2003, 2004, 2006, 2007, 2009, 

2010), potatoes (2005) and oil seed rape (2008) grown within the field. See Appendix 1 for details of 

previous CPP applications to all fields – Warren has a substantially larger range of compounds 

previously applied. See Appendix 2 for soil property data summarized from Grayson (2020). 
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Details of field experiments from Lappage (2015), Lappage (2016), Lappage (2017), Lappage 

(2018) and Holden et al. (2019).  

Sampling was conducted on 5 occasions – April and August 2016, and February, April and 

July 2017. At each sampling event, bulk soil samples were collected as follows; pits of approximately 

0.18 x 0.18 x 0.15 m in depth were dug, with a thin slice of this soil profile collected for analysis. 

Samples were frozen (-20 °C) within 24 hours of collection. Samples were collected in strips across 

each field representing the IT, RT and pasture treatments. These were collected at 2, 8, 16, 32 and 

64 m into each field, with hedge and field margin samples collected in line with these samplings (see 

Figure 2.2). For the purposes of the present study, Holden et al. (2019)’s definition of a hedgerow as 

being a closely spaced area of trees and shrubs to form field boundaries will be adopted, with field 

margins being considered principally grassy features. 

 Note on sample naming – all samples in this Chapter are named following this scheme: four 

digits for month and year of sampling (for example 0416 for April 2016), two letter field code (PA for 

Paddock, VA for valley, and WA for Warren), two letter treatment code (CN for pasture control, IT 

for ploughed soils, and RT for lower intensity tillage), and one or two characters for strip location (H 

for hedge, M for margin, and digits for meters into the field 32 being for 32 meters into the field). 

Therefore 0416PACNH is a sample from April 2016 collected from the hedgerow in line with the 

pasture control strip, and 0717WAIT64 from July 2017 collected from Warren field 64 meters along 

the ploughed soil strip. ARC may be used as an abbreviation for archaea, BAC for bacteria, EUK for 

eukaryotes and FUN for fungi. 
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Figure 2.2 – Field layout for SoilBioHedge pasture fields with arable strips. Figures not to scale, 

strips established at approximately 64 m infield length, with an approximate width of 3m. 

Sampling locations marked in blue, being within the hedgerow, field-margin, 2 m, 8 m, 16 m, 32 

m, and 64 m from field edge. 

 

2.2.2 Molecular Methods 

Samples were stored at -20 °C prior to freeze drying. Batches of samples were freeze dried 

for approximately 48 hours, until they were visibly dry, crumbled easily, and felt cool – not cold. 

Once dried, samples were homogenised by mixing within sample containers. 0.25 g aliquots were 

milled to fine powder. DNA was extracted using MoBio/Qiagen PowerSoil DNA Isolation Kits, per the 

manufacturer’s instructions. DNA concentration was assessed using a Thermo Scientific Nanodrop 

1000.  

DNA amplicons were generated using the following primers; for archaea Arch349F and 

Arch806R (Takai and Horikoshi, 2000), for bacteria 515FY and 806rmod (Apprill et al., 2015, Parada 

et al., 2016), for eukaryotes TAReuk454FWD1 and TAReukREV3 (Stoeck et al., 2010) and for fungi 

gITS7 and ITS4 preceded by a 1TS1f and ITS4 preselect (White et al., 1990, Gardes and Burns, 1993, 

Ihrmark et al., 2012) (see Table 2.1 for primer sequences). Primers – excluding those for the fungal 

preselect – included adapters at the 5’ end for Illumina library preparation. Bovine serum albumin 

(BSA) was included in all PCR reactions to reduce PCR inhibition – see Kreader (1996), and carried 

out in a total reaction volume of 25 µl. PCR reaction conditions: 200 μM dNTPs (Promega 

Corporation, WI, USA), 200 μM forward and reverse primers (515FY, 806rmod, gITS7, ITS1f, ITS4, 

TAReuk454FWD1 and TAReukREV3, IDT, IA, USA; ITS4-ill Sigma, MO, USA), 2 mM MgCl2 (Promega 
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Corporation, WI, USA), 250 ng μl-1 BSA (New England Biolabs, MA, USA), 1x Colorless GoTaq Flexi 

Buffer (Promega Corporation, WI, USA), 0.025 U μl-1 GoTaq G2 Flexi DNA Polymerase (Promega 

Corpotation, WI, USA), made to volume with molecular biology grade water (Sigma, MO, USA). PCR 

template was 1 μl sample DNA, excluding the nested gITS7/ITS4 reaction, conducted with 1 μl of 

1:100 dilution of the preceding PCR product. PCR conditions detailed Table 2.2. 

PCR products were visually assessed on agarose gels for confirmation of product and to 

assess contamination. PCR products were purified using Agencout AMPure XP beads (Beckman 

Coulter, High Wycombe, UK); PCR product mixed in a 5:4 ratio with beads, washed 3 times with 

80:20 ethanol: H2O, and amplicons resuspended in H2O. Purified PCR products were quantified using 

Quant-it dsDNA Assay Kit (Thermo Fisher, MA, USA), and either a BMG Labtech POLARstar OPTIMA 

or BMG Labtech Clariostar. PCR products were adjusted to 10 ng μl-1. PCR products for each target 

pooled per sample in a ratio of 3:1:2:1 archaea:bacteria:eukaryotes:fungi. Library preparation and 

sequencing by Illumina MiSeq conducted by the University of York Technology Facility. 300 bp paired 

end reads were generated on an Illumina MiSeq platform. 
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Table 2.1 – PCR primer details. (Degenerate nucleotide codes: R = A,G ; Y = C,T; M = 

A,C ; K = G,T; S =C,G; W = A,T; V = A,C,G ; N = A,C,G,T)  

 

Target Region Name Sequence Fragment 

Size 

Reference 

Archaea 16S 

Arch349F GYGCASCAGKCGMGAAW 

457 

Takai and 

Horikoshi 

(2000) Arch806R GGACTACVSGGGTATCTAAT 

Bacteria 16S 

515FY GTGYCAGCMGCCGCGGTAA 

291 

Apprill et 

al. (2015), 

Parada et 

al. (2016) 
806rmod GGACTACNVGGGTWTCTAAT 

Eukaryote 18S 
TAReuk454FWD1 CCAGCASCYGCGGTAATTCC 

ca. 460 
Stoeck et 

al. (2010) 
TAReukREV3 ACTTTCGTTCTTGATYRA 

Fungi 

ITS 
ITS1F CTTGGTCATTTAGAGGAAGTAA ca. 515-

910 

(White et 

al., 1990), 

Gardes 

and Burns 

(1993), 

Ihrmark 

et al. 

(2012) 

ITS4 TCCTCCGCTTATTGATATGC 

ITS 

gITS7 GTGARTCATCGARTCTTTG 

ca. 370 
ITS4 TCCTCCGCTTATTGATATGC 
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Table 2.2 – PCR regimes 

Primer Set Initial denaturation No. Cycles Cycle details Final extension 

515FY / 806rmod 94 °C / 5 minutes 40 

94 °C / 30 seconds 

72 °C / 5 minutes 53 °C / 45 seconds 

72 °C / 90 seconds 

gITS7 / ITS4 95 °C / 5 minutes 25 

94 °C / 30 seconds 

72 °C / 10 minutes 55 °C / 45 seconds 

72 °C / 90 seconds 

ITS1F / ITS4 95 °C / 5 minutes 30 

94 °C / 30 seconds 

72 °C / 10 minutes 55 °C / 45 seconds 

72 °C / 90 seconds 

TAReuk454FWD1 

/ TAReukREV3 
95 °C / 5 minutes 40 

94 °C / 30 seconds 

72 °C / 10 minutes 50 °C / 45 seconds 

72 °C / 90 seconds 

 

2.2.3 Data Analysis - Bioinformatics 

Sequence data was received demultiplexed by sample as FASTQ files. Atropos (Didion et al., 

2017), was first used to trim 13 bases from the forward reads containing indexing information. 

Atropos was run again on each of the files four times, trimming the paired end adapters from the 

relevant reads – those containing a specific primer pair – discarding untrimmed – non-target reads – 

to form files for each sample, containing reads associated with the desired primer pair. A minimum 

read length of 1 was specified. 

Data was imported into Qiime 2 (version 2019.10) (Bolyen et al., 2018, Bolyen et al., 2019) 

.qza file format for analysis on a per target amplicon per run basis. Summaries were generated per 

target amplicon per run, and denoising parameters determined. DADA2 (Callahan et al., 2016) was 

used to denoise the data per target amplicon per run – note every instrument run should be 

denoised individually due to unique error profiles – varied DADA2 parameters detailed in Table 2.3, 

others default – maximum expected errors 2, chimera method consensus, minimum fold-parent-

over-abundance 1. Parameters chosen to ensure sufficient overlap for paired end reads to be 

successfully merged, whilst discarding lower quality base calls at end of reads for archaea, bacteria 

and eukaryotes. A single end analysis for archaea was also carried out. For fungal ITS reads that are 

variable in length, read quality was used as the sole truncation criteria.  
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Table 2.3 – DADA2 parameters 

Target 

Amplicon 

Forward or 

Paired End 

Forward read 

truncation 

length 

Forward read 

truncation 

quality 

Reverse read 

truncation 

length 

Reverse read 

truncation 

quality 

Archaea Forward 250 2 NA NA 

 Paired End 265 2 215 2 

Bacteria Paired End 220 2 150 2 

Eukaryotes Paired End 220 2 200 2 

Fungi Paired End NA 10 NA 10 

 

 Post denoising, data was pooled per target amplicon. Amplicon sequence variants (ASVs) 

were removed from frequency tables where total abundance of the ASV was <100 and/or where the 

ASV occurred in <3 samples. This was to remove spurious reads, and probable sequencing errors. 

 To assign a nominal taxonomic identity to the ASVs, classifiers were prepared based on 

reference databases – for archaea and bacteria, 16S data was imported into .qza format from the 

SILVA database release 132 (Pruesse et al., 2007, Bolyen et al., 2018, Bolyen et al., 2019), for 

eukaryotes SILVA release 132 18S reference data, and for fungi reference reads and taxonomy from 

UNITE 8.0 release (Nilsson et al., 2015). For each reference dataset, reads and reference taxonomic 

data were imported individually, for the most accurate possible assignment the complete dataset 

was used for fungi, whilst reads were extracted by primer sequence for archaea, bacteria and total 

eukaryotes, minimum and maximum lengths respectively constrained as 420/500, 250/330, 

330/430. A naïve-Bayes classifier was trained on each reference dataset using the Qiime 2 operating 

on the default parameters (Pedregosa et al., 2011, Bolyen et al., 2018, Bolyen et al., 2019). The 

Qiime 2 (version 2019.10) hybrid taxonomic classification pipeline was used to assign the taxonomy 

– following a further filtering stage, VSEARCH was used to assign firstly exact match taxonomic 

classification, followed by a least common ancestor consensus assignment, sequence without an 

exact match were then assigned a taxonomy by the pretrained naïve-Bayes classifier. Classifier non 

default parameters – random seed set to 1 for reproducibility, confidence set to 0.95, prefilter 

identity 0.5 from a sample of 10000 reference reads. Reads not identified by the classification 

process to be within the target taxonomic domain – ie bacterial reads within archaeal dataset, or 

unclassifiable – to any taxonomic level – were discarded. 

 Note that following this process, only 13 ASVs of low abundance were identified within the 

archaeal dataset, with the majority being non-target bacterial data. This, and other issues identified 
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with the archaeal primers – amplification of nontarget 18 base pair long reads (Figure 2.3) – led to 

the discarding of the archaea dataset.  

 

Figure 2.3 – Frequency of unique sequences relative to read length for archaea data 

 

 Table 2.4 details the normalization rates of the data, and the samples retained for each 

dataset. ASV – sample frequency tables were exported from Qiime 2 for analysis with R. Frequency 

tables with the data aggregated by assigned order, to compare the relative abundance of larger 

aggregations of data (conducted with R). 

Table 2.4 – Data on normalization and retention of samples  

 Normalization Total 

Samples 

Samples retained 

Study Bacteria Eukaryotes Fungi  Bacteria Eukaryotes Fungi 

SBH 15095 9572 9881 314 314 294 310 
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2.2.4 Data Analysis – Statistics 

 All statistical analysis were conducted using R (R_Core_Team, 2013). Analysis was conducted 

on both only IT and RT samples, and the complete dataset. 

 Detrending correspondence analysis (DCA) (Hill and Gauch, 1980) as implemented within the 

R package Vegan (Oksanen et al., 2018) – command decorana – was used to generate ordinations of 

Wisconsin double standardized ASVs abundance. All DCAs generated with 4 axes. Plots of 

ordinations, movement of a sample location by time within the ordination, pirate-plots (Phillips, 

2018) of distance from a median centroid of data points calculated by field, treatment, sampling, 

and location type were generated, and heatmaps of the abundance of most determinant ASVs 

plotted. Pirate-plots show mean, highest density interval (95%), data distribution, and individual 

data points (Phillips, 2018).  

 Prior to statistically testing by PERMANOVA (permutational multivariate analysis of 

variance), the R function betadisper (implemented with the R package vegan), analogous to Levene’s 

Test of equality of variance (Oksanen, 2015), was used to assess the homogeneity of dispersion of 

the sample-taxon table, by Field, Treatment, Location and Sampling. For all target communities, 

significant (P<0.05) heterogeneity of dispersion was observed, for both the complete and RT/IT 

datasets only. Anderson and Walsh (2013) suggest that where experimental design is balanced, 

PERMANOVA remains a reliable test where the data are heterogeneous in dispersion. Therefore, 

PERMANOVA is an acceptable method for the analysis of the RT/IT dataset. For the complete 

dataset, PERMANOVA is less sensitive to the over dispersion of the data than either ANOSIM or the 

Mantel test (Anderson and Walsh, 2013). Therefore, the results of PERMANOVA testing are 

presented for all communities for both the complete and IT/RT dataset, but results close to the limit 

of statistical significance should be interpreted with care. PERMANOVA was conducted using the 

adonis function in the R package vegan (Oksanen et al., 2018), using the Bray-Curtis method (Bray 

and Curtis, 1957) to generate the dissimilarity indices. All PERMANOVA analysis conducted with 

10000 permutations.  

 ASV richness and Simpson’s Index of diversity (Simpson, 1949) (as implemented in vegan 

command ‘diversity’, ‘index=simpson’) are calculated. Relative abundance of aggregated assigned 

taxa processed in Qiime 2 (Bolyen et al., 2018, Bolyen et al., 2019) were aggregated (mean taken) by 

metadata categories, with the ten most abundant taxonomic groups retained alongside ‘Other’ – the 

sum of all of taxonomic groupings. Relative abundance as a percentage was calculated, and plotted.  
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2.3 Results 

2.3.1 Analysis of cultivated soils 

 Considering only cultivated soils – from the IT and RT – strips of the SoilBioHedge 

experiment: 

 For bacteria, PERMANOVA revealed significant effects of field, sampling and location (DF=2 

F=45 P<0.001, DF=4 F=4.9 P<0.001, DF=8 F=3.7 P<0.001). Tillage method did not have a significant 

effect on bacterial community composition (DF=1 F=1.5 P>0.1). Field is the most determinant 

variable of bacterial community composition accounting for 34 % variance (as percentage of total 

sum of squares), with treatment, sampling and location accounting for 0.5 %, 7.4 % and 5.6 % 

respectively (residuals 52 %, all to 2 significant figures). Figures 2.4A and 2.4B show the DCA 

ordinations of the bacterial community composition grouped by field and treatment respectively – 

the dominant effect of field, and the minimal effect of treatment can be noted. Median distance 

from the centroid of the group for treatment and location within a field reveal bacterial communities 

within RT soils to be marginally more variable in composition than under IT (Figure 2.5), and for 

variability within community composition to decrease with distance from the field boundary (Figure 

2.6). Figures 2.7 and 2.8 show relative abundance of taxonomic groups of bacteria grouped by field 

and treatment respectively – in aggregate, treatment can be observed to have a minimal effect upon 

the relative abundance of the ten most commonly observed taxonomic groupings (Figure 2.8), whilst 

Paddock can be observed to host relatively more Chthoniobacteraceae and fewer Chloroflexi than 

Valey and Warren (Figure 2.7). 
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A 

 

B 

 

Figure 2.4 – DCA sample scores (axis 1 and 2) for bacterial community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from Paddock (blue), Valley (yellow) and Warren 

(red). (B) Coloured hulls show the range of all samples from IT (blue), and RT (yellow). 
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Figure 2.5 – Distance from median sample score (across all 4 DCA axis) for bacterial composition in 

soils under IT (blue) and RT (yellow). 
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Figure 2.6 - Distance from median sample score (across all 4 DCA axis) for bacterial composition in 

soils at distances (in meters) from field boundary. 
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Figure 2.7 – Bacterial community composition in soils under IT and RT. Grouped by field.  
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Figure 2.8 – Bacterial community composition in soils under IT and RT. Grouped by treatment.  

 

 For total eukaryotes, PERMANOVA revealed significant effects of field, treatment, sampling 

and location (DF=2 F=15 P<0.001, DF1= F=1.9 P<0.01, DF=4 F=4.8 P<0.001, DF=8 F=1.9 P<0.001 

respectively). Field is the most determinant variable of eukaryote community composition 

accounting for 17 % variance (as percentage of total sum of squares), with treatment, sampling and 

location accounting for 1.0 %, 1.0 % and 4.1 % respectively (residuals 58 %, all to 2 significant 

figures). Figures 2.9A and 2.9B show the DCA ordinations of the eukaryotic community composition 

grouped by field and treatment respectively – the dominant effect of field, and the minimal effect of 

treatment can be noted. Median distance from the centroid of the group for treatment reveal 

eukaryotic communities furthest from field boundaries (64 m) are less variable than those closer to 

the field boundary (≤32 m) (Figure 10), and within RT soils to be marginally more variable in 

composition than under IT (Figure 2.11). Figures 2.12 and 2.13 show relative abundance of 

taxonomic groups of eukaryotes grouped by field and treatment respectively, with the most ten 
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most common taxonomic groups substantially more represented within Valley than Warren, where 

Charophyta poales has a greater relative abundance than within Paddock and Valley  (Figure 2.12). 

Similarly, Charophyta poales have a greater relative abundance within RT plots than IT.  
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A 

 

B 

 

Figure 2.9 – DCA sample scores (axis 1 and 2) for eukaryotic community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from Paddock (blue), Valley (yellow) and Warren 

(red). (B) Coloured hulls show the range of all samples from IT (blue), and RT (yellow). 
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Figure 2.10 - Distance from median sample score (across all 4 DCA axis) for eukaryotic 
composition in soils at distances (in meters) from field boundary. 

 

 



42 
 

 

Figure 2.11 – Distance from median sample score (across all 4 DCA axis) for eukaryotic 

composition in soils under IT (blue) and RT (yellow).  
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Figure 2.12 – Eukaryotic community composition in soils under IT and RT. Grouped by field.  
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Figure 2.13 – Eukaryotic community composition in soils under IT and RT. Grouped by treatment.  

 

 For fungi, PERMANOVA revealed significant effects of field, sampling and location (DF=2 

F=24 P<0.001, DF=4 F=4.5 P<0.001, DF=8 F=2.7 P<0.001). Tillage method did not have a significant 

effect on fungal community composition (DF=1 F=1.4 P>0.1). Field is the most determinant variable 

of fungal community composition accounting for 22 % variance (as percentage of total sum of 

squares), with treatment, sampling and location accounting for 0.6 %, 8.4 % and 5.0 % respectively 

(residuals 64 %, all to 2 significant figures). Figures 2.14A and 2.14B show the DCA ordinations of the 

fungal community composition grouped by field and treatment respectively – the dominant effect of 

field, and the minimal effect of treatment can be noted. Median distance from the centroid of the 

group, for location within a field reveal fungal community composition further from a field margin to 

be less variable than those close to field boundaries (Figure 2.15), and for treatment show 

composition under RT to be more variable than under IT (Figure 2.16). Figures 2.17 and 2.18 show 

relative abundance of taxonomic groups of fungi grouped by field and treatment respectively. When 
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aggregated by treatment, few difference can be observed between the differently tilled areas 

(Figure 2.18), suggesting that at environmentally relevant scales (ie. Landscape or catchment scale) 

difference between smaller plots (fields or sections thereof) may be negated. Where individual fields 

are considered (Figure 2.17), Ascomycota are generally dominant within fungal community, being 9 

of the 10 most common taxonomic groupings. Within which Plectosphaerellaceae, Nectriaceae, 

Chaetomiaceae and Microasceae are have higher relative abundance in Warren field, relative to 

Paddock and Valley, where Herpotrichiellaceae and Sporomiaceae are relatively more abundant.   
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Figure 2.14 – DCA sample scores (axis 1 and 2) for fungal community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from Paddock (blue), Valley (yellow) and Warren 

(red). (B) Coloured hulls show the range of all samples from IT (blue), and RT (yellow). 
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Figure 2.15 - Distance from median sample score (across all 4 DCA axis) for fungal composition in 

soils at distances (in meters) from field boundary. 
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Figure 2.16 – Distance from median sample score (across all 4 DCA axis) for fungal composition in 

soils under IT (blue) and RT (yellow). 
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Figure 2.17 – Fungal community composition in soils under IT and RT. Grouped by field.  
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Figure 2.18 – Fungal community composition in soils under IT and RT. Grouped by treatment.  

 

2.3.2 Analysis of all soil types 

Considering soils from all areas – hedge, margin, pasture, IT and RT – of Paddock, Valley and 

Warren fields: 

For bacterial community composition, PERMANOVA revealed significant effects of field, 

treatment, sampling and location (DF=2 F=69 P<0.001, DF=4 F=11 P<0.001, DF=4 F=9.2 P<0.001, 

DF=12 F=2.2 P<0.001 respectively). Field is the most determinant variable of bacterial community 

composition accounting for 26 % variance (as percentage of total sum of squares), with treatment, 

sampling and location accounting for 8.1 %, 6.9 % and 5.0 % respectively (residuals 54 %, all to 2 

significant figures). Figures 2.19A and 2.19B show the DCA ordinations of the bacterial community 

composition grouped by field and treatment respectively – the dominant effect of field, and lower 

(on average) variability amongst samples from hedgerows than other treatment types (see also 

Figure 2.20). Figure 2.20 also show that variability within bacterial communities decreases with 
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distance into the field, with communities at 64m from hedgerows being substantially more 

homogenous than those ≤32 m of the field boundary. Figures 2.21 and 2.22 show relative 

abundance of taxonomic groups of bacteria grouped by field and treatment respectively, hedgerows 

host fewer of the ten most common taxonomic groups, and in particular few Bacillaceae, 

aggregated, the short-term RT and IT tillage plots can be observed to host similar bacterial 

communities to the untilled pastures (Figure 2.22). Between fields, Paddock contains a greater 

relative abundance of Chthoniobacteraceae than Valley and Warren (Figure 2.21). Per sample ASV 

richness and diversity (as Simpsons Index) is shown in Figure 2.23, hedges having lower ASV richness 

than infield communities, but greater diversity, due to greater evenness of ASVs. 
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Figure 2.19 – DCA sample scores (axis 1 and 2) for bacterial community from hedge, margin, 

pasture, and IT and RT soils. (A) Coloured hulls show the range of all samples from Paddock (blue), 

Valley (yellow) and Warren (red). (B) Coloured hulls show the range of all samples from pasture 

(blue), margin (red), IT (green), RT (black) and hedge (yellow). 
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Figure 2.20 – Distance from median sample score (across all 4 DCA axis) for bacterial composition 

in soils from hedgerows, margin, pasture, RT, and IT. (A) Samples grouped by treatment 

(hedgerows (green), margin (black), pasture (red), RT (yellow) and IT (blue)), and (B) samples 

grouped by location in field (hedge (blue), margin (orange), 2 m (red), 8 m (green), 16 m (black), 

32 m (yellow) and 64 m (grey). 
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Figure 2.21 – Soil bacteria community composition, grouped by field. 
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Figure 2.22 – Soil bacteria community composition, grouped by treatment. 
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Figure 2.23 – (A) Bacterial ASV richness per sample. (B) Bacterial diversity per sample. Hedge 

(green), margin (black), pasture (red), RT (orange) and IT (blue). 
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For eukaryote community composition, PERMANOVA revealed significant effects of field, 

treatment, sampling and location (DF=2 F=21 P<0.001, DF=4 F=16 P<0.001, DF=4 F=5.9 P<0.001, 

DF=12 F=1.3 P<0.001 respectively). Treatment is the most determinant variable of eukaryote 

community composition accounting for 15 % variance (as percentage of total sum of squares), with 

field, sampling and location accounting for 10 %, 5.7 % and 3.7 % respectively (residuals 65 %, all to 2 

significant figures). Figures 2.24A and 2.24B show the DCA ordinations of the eukaryotic community 

composition grouped by field and treatment respectively – the dominant effect of field, and the 

distinctness of soils from hedgerows is apparent (see also Figure 2.25). Figures 2.26 and 2.27 show 

relative abundance of taxonomic groups of eukaryotes grouped by field and treatment respectively, 

aggregated by field, the results are broadly similar (Figure 2.26), however a significant treatment 

effects separating tilled and untilled soils is apparent in Figure 2.27). All infield (pasture, RT and IT 

plots) are distinct from hedgerows and field margins by greater relative abundance of Poales, and 

tilled plots are then further distinguished from the pasture by substantially lower relative 

abundances of Charophyta. This difference in relative abundance is accounted for by growth of the 

‘other’ (non-top-ten most common) taxa. Per sample ASV richness and diversity (as Simpsons Index) 

is shown in Figure 2.28, with both richness and diversity broadly similar, despite the differences in 

relative abundance described in Figures 2.26 and 2.27. 
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Figure 2.24 – DCA sample scores (axis 1 and 2) for eukaryote community from hedge, margin, 

pasture, and IT and RT soils. (A) Coloured hulls show the range of all samples from Paddock (blue), 

Valley (yellow) and Warren (red). (B) Coloured hulls show the range of all samples from pasture 

(blue), margin (red), IT (green), RT (black) and hedge (yellow). 
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Figure 2.25 – Distance from median sample score (across all 4 DCA axis) for eukaryote 

composition in soils from hedgerows, margin, pasture, RT, and IT. (A) Samples grouped by 

treatment (hedgerows (green), margin (black), pasture (red), RT (yellow) and IT (blue)), and (B) 

samples grouped by location in field (hedge (blue), margin (orange), 2 m (red), 8 m (green), 16 m 

(black), 32 m (yellow) and 64 m (grey). 
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Figure 2.26 – Soil eukaryote community composition, grouped by field. 
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Figure 2.27 – Soil eukaryote community composition, grouped by treatment. 
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Figure 2.28 – (A) Eukaryote ASV richness per sample. (B) Eukaryote diversity per sample. Hedge 

(green), margin (black), pasture (red), RT (orange) and IT (blue). 
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For fungal community composition, PERMANOVA revealed significant effects of field, 

treatment, sampling and location (DF=2 F=36 P<0.001, DF=4 F=9.6 P<0.001, DF=4 F=5.5 P<0.001, 

DF=12 F=1.7 P<0.001 respectively). Field is the most determinant variable of fungal community 

composition accounting for 16 % variance (as percentage of total sum of squares), with treatment, 

sampling and location accounting for 8.7 %, 5.0 % and 4.6 % respectively (residuals 65 %, all to 2 

significant figures). Figures 2.29A and 2.29B show the DCA ordinations of the fungal community 

composition grouped by field and treatment respectively – the dominant effect of field, and the 

distinctness of soils from hedgerows is apparent (see also Figure 2.30). In Figure 2.30, it can be noted 

that communities at the greatest distance (64 m) are less variable than those in closer to field 

boundaries. Figures 2.31 and 2.32 show relative abundance of taxonomic groups of fungal 

communities grouped by field and treatment respectively. At a field level, Warren is distinct from 

Paddock and Vallety by means of greater relative abundances of Plectosphaerellaceae and 

Microascacese, whilst relatively fewer Sporomiaceae and Herpotrichiellaceae compared to Paddock 

and Valley (Figure 2.31). Warren’s higher relative abundance of Plectosphaerellaceae suggests it is in 

general closer in composition to hedgerows than the other fields (Figure 2.32), and this is supported 

by the near absence of Helotiales in hedgerows, which are of lower relative abundance in Warren 

than in other fields (Figure 2.31). Infield communities (pasture, RT and IT) are generally consistent 

relative to field boundary (Hedge and Margin) fungal communities.  Per sample ASV richness and 

diversity (as Simpsons Index) is shown in Figure 2.33, on average Valley contains a lower richness of 

fungal ASVs, but Simpson’s diversity values are similar relative to Paddock and Warren. 
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Figure 2.29 – DCA sample scores (axis 1 and 2) for fungal community from hedge, margin, pasture, 

and IT and RT soils. (A) Coloured hulls show the range of all samples from Paddock (blue), Valley 

(yellow) and Warren (red). (B) Coloured hulls show the range of all samples from pasture (blue), 

margin (red), IT (green), RT (black) and hedge (yellow). 
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Figure 2.30 – Distance from median sample score (across all 4 DCA axis) for fungal composition in 

soils from hedgerows, margin, pasture, RT, and IT. (A) Samples grouped by treatment (hedgerows 

(green), margin (black), pasture (red), RT (yellow) and IT (blue)), and (B) samples grouped by 

location in field (hedge (blue), margin (orange), 2 m (red), 8 m (green), 16 m (black), 32 m (yellow) 

and 64 m (grey). 
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Figure 2.31 – Soil fungal community composition, grouped by field. 
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Figure 2.32 – Soil fungal community composition, grouped by treatment. 
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Figure 2.33 – (A) Fungal ASV richness per sample. (B) Fungal diversity per sample. Hedge (green), 

margin (black), pasture (red), RT (orange) and IT (blue). 
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2.4 Discussion 

2.4.1 Field as the greatest determinant of infield soil microbiomes 

For both only cultivated soils (IT and RT), and the complete dataset (including hedge, margin, 

and pasture), field is the most significant determinant – of field, treatment, sampling, location within 

a field – of all studied components of the microbial community composition (PERMANOVA results, 

Figures 2.4, 2.9, 2.14, 2.19, 2.24, and 2.29). The heterogeneity among samples from a given field 

varies substantially – Figures 2.4A and 2.19A, 2.9A and 2.24A show Paddock to have much greater 

variability in bacterial and eukaryote (respectively) composition relative to Valley and Warren, whilst 

Figures 2.14A and 2.29A show variability in fungi to be greater in both Paddock and Valley than 

Warren. 

It is therefore important to consider what field as a variable means – most simply each field 

is a spatially distinct unit from neighbouring fields, however each field has unique natural influences 

– including topography, climate, hydrology, pedosphere and underlying lithosphere. Further, each 

field is and has been subject to human interventions – including defining field boundaries, cropping 

cycles, stocking with livestock and chemical, both CPP and fertiliser, inputs. Known differences in the 

intrinsic and human influences on the studied fields are detailed in Holden et al. (2019), and 

Appendices 1 and 2. 

For bacteria and eukaryotes, Paddock field has a greater degree of variability in community 

composition than either Valley or Warren (Figures 2.4A, 2.9A, 2.19A, 2.24A). The total bacterial 

community composition of Paddock contains a much higher relative abundance of Verrucomicrobia, 

and considering only tilled areas Paddock also a higher relative abundance of Firmicutes (Figures 

2.22 and 2.7). None of the ten most abundant taxonomic groupings of eukaryotes obviously explain 

the difference in variation between Paddock, and Valley and Warren – these differences may be 

driven by the ~40 % of ASVs grouped as ‘other’, or by ASV variation within the most abundant taxa. 

In a study of soils in prairie-wetlands, Griffin et al. (2020) found the period a sample spends 

saturated to be the most strongly correlated variable (of saturation, PH or depth) with variability in 

bacterial community composition and diversity. Paddock field may be characterised as generally 

more acidic than Valley and Warren (Appendix 2), with untilled areas also being more variable in pH 

than in other fields. Whilst this variability may be less impactful than saturation (Griffin et al., 2020), 

it may explain partially the greater variance observed within this field for bacterial and eukaryotic 

communities (Figures 2.4A, 2.9A, 2.19A, 2.24A). That this pattern does not follow for fungal 

communities (Figures 2.14A and 2.29A) may suggest these to be less sensitive to pH than bacteria or 

the total eukaryotic community.  
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For fungi, Paddock and Valley are more greatly variable in community composition than 

Warren (Figures 2.14A and 2.29A). Warren with less variability has previously had fungicides applied 

(Appendix 1), however with all sampled hedgerow soils being less dissimilar to Warren field than the 

composition of fungi from Paddock and Valley, it is considered unlikely the reduced variability is 

solely due to fungicide applications. Additionally, it can be noted that the vast majority of fungicide 

applied to Warren field would be expected to have degraded or dissipated prior to the present 

study, with half-lives of less than a year (Lewis et al., 2016), and none within four years of sampling 

(Appendix 1). All fungal data is dominated by Ascomycota (Figures 2.17 and 2.31), with Warren 

having a higher relative abundance of Plectosphaerllacese and Sordariales, and Paddock and Valley 

having higher relative abundances of Sporomiaceae and Herpotrichiellaceae (Figure 2.31).  

There remain high levels (in all cases >52%) of residual variance as percentage of sum of 

squares that is not attributable in the current analysis to Field, Treatment, Sampling or Location. 

Some variance may be attributed to small scale experimental spatial variation in sampling – no 

identical soil volume can be extracted from twice. The scales at which both the composition and 

functional variance of the soil microbiome is greatest have been considered to be both at sampling 

distance within millimetres and at landscape scales (Bending et al., 2006, Dechesne et al., 2014, 

Martiny et al., 2006, Martiny et al., 2011, O'Brien et al., 2016). Sample variance associated with 

Location may also be related to heterogeneity of vegetation within experimental plots.  

2.4.2 Hedgerows are special 

For bacteria, eukaryotes, and fungi (Figures 2.19B, 2.20, 2.24B, 2.25, 2.29B and 2.30) 

microbial communities growing under hedgerows are less dissimilar from each other than from the 

infield microbial communities. The studied hedgerows are distinct (not shared by any studied field) 

and not continuous – being separated by gateways and access points (Warren and Valley), and a 

farmyard and buildings (Paddock to Warren and Valley) (Figure 1). Hedge samples contain on 

average a lower richness of ASVs (Figures 2.23A, 2.28A and 2.33A), contain a similar diversity to 

infield eukaryote and fungal communities (Figures 2.28B and 2.33B) and have a higher and less 

variable level of diversity within bacterial communities (Figure 2.23B). That these samples cluster 

strongly despite sharing many variables from within their assigned study fields implies certain shared 

traits are more significant in microbial community composition than those that vary by space – at 

this scale. This may be due to the greater vegetative cover – implying greater root abundance – 

leading to an increase in soil carbon, stabilized in a greater abundance of soil macroaggregates, 

and/or lower moisture contents occurring under hedgerows due to interception and transpiration 

(Prendergast-Miller et al., 2021). Hedgerows were observed to have greater soil conductivity than in 



71 
 

field areas (Appendix 2), again reflecting the lower moisture content, and greater salinity of 

hedgerow soils Brady and Weil (2012). The greater relative sensitivity of soil bacteria to salts relative 

to fungi (Smith and Doran, 1997, Brady and Weil, 2012), may contribute to the greater dissimilarity 

of fungal communities within hedgerow soils, as opposed to bacterial communities, that within 

hedgerow soils are more homogenous (Figures 2.20 and 2.30). Holden et al. (2019) report soils 

under hedgerows to be less compacted, and therefore less dense than infield soils. Hedges have 

lower abundances of Bacillaceae and Chthoniobacteracea and a greater abundance of 

Microscillaceae than infield bacterial communities, and lower abundance of Helotiales and greater 

abundance of Plectosphaerellaceae and Nectriaceae than infield fungal communities. The present 

study extends upon Holden et al. (2019)’s finding of soils under hedgerows hosting a distinct soil 

community to include soil bacteria and eukaryotes, and expands the evidence base for distinct 

fungal communities.  

2.4.3 The soil microbiome within IT and RT crop strips 

 Previous studies on the effect of tillage on soil microbial communities have often focussed 

upon enzyme activity, biomass and other abundance metrics – see Zuber and Villamil (2016) and 

Kaurin et al. (2018) – with community composition and diversity studied often for a single taxonomic 

grouping – such as Yin et al. (2010) for bacteria, and Helgason et al. (1998) for arbuscular 

mycorrhizal fungal – or not by amplicon marker-gene or metagenomics approaches – see Wang et al. 

(2017) for phospholipid fatty acids analysis. However, Somenahally et al. (2018) include community 

composition analysis for both bacterial and fungal communities under different tillage techniques, 

although this was a comparison of RT and NT techniques. 

Intensity of tillage did not have a significant effect on the community composition of 

bacteria and fungi (PERMANOVA (DF=1 F=1.5 P>0.1, DF=1 F=1.4 P>0.1)), accounting for 0.5 % and 

0.6 % of variance respectively (as percentage of total sum of squares) (Figures 2.4B and 2.13B). 

These results are consistent with the findings of Somenahally et al. (2018), which does not include 

analysis of total soil eukaryotes. In the present study, tillage was identified to have a significant 

effect (PERMANOVA (DF1= F=1.9 P<0.01)) on total eukaryotes community composition, although 

this is very slight, accounting for 1.0 % variance – this difference is hard to observe within the DCA 

ordination (axis 1 and 2, Figure 2.9B). The most notable difference between IT and RT composition is 

a greater relative abundance of Chloroplastida, green-algal soil protists (Figure 2.13) within RT soils – 

however both IT and RT communities have a lower relative abundance of Chloroplastida than hedge, 

margin, and pasture samples (Figure 2.27). For all studied groups, community composition under IT 

is less variable than under RT.  
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 Within the studied crop strips, it can be observed that variance within the composition of 

bacterial, eukaryotic, and fungal communities declines with distance from the field boundary 

(Figures 2.6, 2.10 and 2.15). Why this occurs is unclear, but may be due to the more marginal 

locations receiving microorganisms dispersing into each field from hedgerows or other surrounding 

areas – it may also imply more even or intense farming management within the central zone of a 

field, whereas the outer regions of a field may be less tightly managed, due to a perceived lower 

value (Ingram, 2010, Morris et al., 2010). Where the ‘movement’ of a given sample location is 

plotted through time, it can be observed that the motion is cyclical through each year, and that 

there is no clear or singular direction as a location spends a longer time period under tillage (data 

not shown).  

2.4.4 Shortcomings 

 Two of the most significant shortcomings within the present study relate to time – firstly the 

duration of the field experiment (see below) and secondly the failure to account for relic-DNA, and 

any possible role it has in screening both seasonal effects, and divergence between treatments. 

Relic-DNA, as described by Carini et al. (2016) is DNA that is extracellular at the time of sampling. 

Such extracellular DNA may have persisted in the sampled soils for (up to) years, and yet may be 

included in present studies and analyses the same as that from organisms intact at the time of 

sampling. Within the present study, relic-DNA may in particular account for the low levels of 

dissimilarity observed between IT, RT, and pasture treatments, due to the IT and RT plots being in a 

created from (and therefore containing relic-DNA) of pasture treatments. Particularly, whilst fungal 

communities were not observed to be significantly different between IT and RT plots (PERMANOVA 

(DF=1 F=1.4 P>0.1), Figure 2.14B), potentially, this may reflect relic-DNA from hyphal networks 

which may have been destroyed or disrupted at a greater rate under IT treatments, but from which 

relic-DNA may obscure effects that may be predicted from the literature (Helgason et al., 1998). 

Whilst Carini et al. (2016) describe how relic-DNA may be removed from samples using propidium 

monoazide, the applicability of these techniques to the scale of sampling undertaken by large field 

experiments, such as the present study are questionable. This is because in freezing (and particularly 

in freeze drying, as in the present study) necessary due to the volume of samples to be processed, 

damage to live at the time of sampling organism may lead to non-relic-DNA being removed as such. 

The short – relative to continuous cropping of much arable land – duration of the 

experimental tillage plots (less than 24 months from first of two incidences of cultivation (of pasture) 

to final sampling) confound the applicability of the results to areas under sustained cultivation. That 

the treatment effect of different tillage regimes is apparent within this timeframe may be due to 
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strong difference from the different tillage techniques, or reflect different stages of a transition from 

pasture to arable conditions. Changes in soil organic carbon (SOC) content following changes in 

tillage technique may be expected to only become evident following 10 years of divergent treatment 

(Söderström et al., 2014, Haddaway et al., 2015). As changes in SOC are commonly strongly linked to 

changes in the soil microbiome (Six et al., 2000, Brady and Weil, 2012), this may be indicative to the 

duration of tillage experiments necessary to observe substantial changes in the soil microbial 

community  

 Additionally, the present study assesses the composition of the community, but does not 

address the size of the communities in question. This is a deficiency both within a single studied 

community, preventing exploration of further research questions, such as is there a greater 

abundance of bacteria under hedgerows relative to cultivated soils (as there is for earthworms 

(Prendergast-Miller et al., 2021)). And in comparison between taxonomic groupings, such as 

investigating the often reported shift in bacterial:fungal biomass with increasing tillage intensity 

(Zuber and Villamil, 2016, Kaurin et al., 2018). General criticisms of metabarcoding studies, 

sequencing by synthesis and reference taxonomic databases can be found in the general 

discussion/introduction. 
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Chapter 3: Degradation of Mandipropamid and 

Simazine in soils under inversion and reduced 

tillage 

3.1 Introduction 

3.1.1 Risk assessment of CPPs  

The majority of regulatory assessment of the environmental fate and behaviour of chemicals 

is based upon the OECD Guidelines for Testing Chemicals Section 3 (OECD, 2020). OECD 307 (OECD, 

2002) details the experimental design for evaluating the degradation of compounds in soils. In brief, 

compounds are applied to a sieved and homogenised soil substrate, and incubated in the dark, at a 

constant temperature and soil moisture. Volatile products are collected for analysis by absorption. 

At intervals, samples undergo extraction, and analysis for the parent compound and any degradants. 

Use of 14C radiolabelled compound allows for the calculation of a mass balance, the identification of 

non-extractable residues, and determination of the mineralisation rate of the study compound. 

From OECD 307 style studies, degradants of concern (>5% of total compound applied) may be 

identified, and the half-life of compound (DT50) established. Regulators of different regions require 

different ranges of soils to be used as substrate in studies, which are included in the application 

dossiers for compound approval (OECD, 2002). See regulations EC 283/2013 and 284/2013 for data 

requirements for active substance and formulated CPP product applications within the EU 

(Commission, 2013a, Commission, 2013b).  

 Regulators may also require field testing of compounds prior to approval for use, guidance 

for which is also published by the OECD (2016). Compounds are applied to study plots, at rates 

representative of intended use. Whereas there are multiple tests detailed in Section 3 of the OECD 

Guidelines for the Testing of Chemicals, the field study guidelines contain multiple modules that may 

be used to determine degradation, runoff, volatilisation, leaching and plant uptake. To establish the 

rate of degradation, at intervals throughout the experiments, soil cores are removed from the study 

plot and analysed for parent compound and transformation products. It is of note that the guidelines 

outline that for compounds to be applied to soils under RT, bare ground plots are necessary (OECD, 

2016).  
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 With the substantial difference between soils under IT and RT occurring in the physical 

structure and profile of the soil – carbon stratification, aggregate and pore size – meaningful study of 

compound degradation in soils under different tillage regimes should seek to preserve the structure 

of soils. Regulatory laboratory study of the degradation of compounds, such as OECD 307 based 

studies utilise sieved soils (OECD, 2002), and are deficient for identifying the effect of such 

differences in compound degradation. Dougan et al. (2013) demonstrate how studies conducted 

with intact soil cores may identify differences in compound degradation in the same soils, subject to 

different incubation conditions – static and variable moisture, and dark/light cycling.  

3.1.2 Study Compounds 

 Lamberth et al. (2008) report the discovery of Mandipropamid, a carboxylic acid amide, with 

fungicidal properties. In particular, Mandipropamid is highly effective in the control of oomycetes 

including Phytophthora infestans (potato and tomato late blight) and Plasmopara viticola (grape 

downy mildew), both significant pests of commercially important crops. Mandipropamid inhibits cell 

wall biosynthesis, inhibiting the cellulose synthase-like PiCesA3 (Blum et al., 2010, Blum et al., 2012). 

 Simazine is an s-triazine herbicide, and has been used globally since 1955 (Kodama et al., 

2001), although its agricultural application has been prohibited within European Union countries 

since 2004 (Scherr et al., 2017). S-triazine herbicides inhibit many weed species at concentrations 

that do not significantly inhibit crop species (Wackett, 2002). S-triazines inhibit photosynthetic 

electron transport, by binding to the quinone-binding protein in photosystem-II (Wackett, 2002). 

Simazine may be persistent in some soils, and can, with its degradation products, still be detected in 

European soils (Scherr et al., 2017, Hvezdova et al., 2018). This may be a consequence of 

persistence, illegal application, or Simazine as an impurity of Terbuthylazine (Hvezdova et al., 2018). 

3.1.3 Aims and objectives 

The present study aims to assess if Mandipropamid and Simazine degrade at different rates 

in soils under IT and RT. Given the probability of disrupting key differences – microbial community, 

macro-aggregate abundance and turnover, carbon distribution within the soil profile – between soils 

from IT and RT systems under OECD 307 guidelines (see Miranda (2019) on effects of OECD 307 on 

microbial communities), an intact soil core approach was chosen to attempt to preserve any 

differences between studied soils. It is possible that predicted increases in soil carbon and soil 

macroaggregates in RT soils may reduce compound availability for degradation (by sorption and 

aged sorption), and therefore the rate of degradation. Spatial heterogeneity (of microbiota, and soil 
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minerals and organic matter) in soils under RT may be greater than those under IT, due to reduced 

mixing – this may increase variability in degradation rates. 
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3.2 Methodology 

3.2.1 Field Site 

Samples were collected from Warren field of the SoilBioHedge experiment, as detailed in 

Chapter 2, and by Holden et al. (2019). 

Under OECD (2002) guideline OECD 307, laboratory assessments of the transformation of 

chemicals in soil, soils used for such studies should not have been treated with the test substance or 

its structural analogues within the previous four years. Previous CPP applications to Warren field are 

detailed in Appendix 1. Neither Mandipropamid, Simazine, or any structural analogues of these 

compounds were applied to Warren field in the four years previous to sampling. Therefore, the 

sampled soils may be regarded as appropriate under OECD 307 for use in the present study.   

3.2.2 Sampling 

Sampling was conducted on the 4th of September 2017. Sampling was conducted at 

approximately 48 m from the field margin. Immediately prior to sampling, crop residues from the 

recent harvest and approximately 2 cm of the uppermost soil was removed. Sampling included the 

collection (per tillage type) of 90 soil cores for incubation (dimensions 73 mm internal diameter, 75 

mm in height), 2 cores for determination of water holding capacity, and approximately four kg of 

bulk soil, from between the cores. Soil cores were collected from a region of the crop strip 

uncompacted by the passage of vehicles. 

Soils were stored in the dark at ambient temperatures, separated by treatment type, prior to 

transport to Jealott’s Hill International Research Centre on the 6th of September 2017. Thereafter 

soils were stored in the dark, at 20 ° C. Cores for determination of soil water holding capacity, and 

bulk soil for characterisation, were shipped to Agvise Laboratories (North Dakota, USA) (results Table 

3.1). 
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Table 3.1 – Bulk soil characterisation of IT and RT crop strips of Warren field (Agvise, USA) 

Parameter Reduced tillage Inversion tillage 

% Sand 51 49 

% Silt 28 30 

% Clay 21 21 

Texture class Loam Loam 

Disturbed density (g/cm3) 1.14 1.14 

% Organic matter 4.7 4.7 

% Organic carbon 2.7 2.8 

CEC (meq/100g) 16.6 17.1 

pH (1:1 in water) 7.2 7.1 

pH (1:2 CaCl2) 7.1 6.9 

Base saturation data 
  

Calcium % ppm 60.5 2010 60.7 2070 

Magnesium % ppm 23.0 459 23.2 474 

Sodium % ppm 1.4 52 0.4 15 

Potassium % ppm 1.2 76 1.2 80 

Hydrogen % ppm 14 23 14.5 25 

Disturbed soil moisture 
  

% Moisture at 1/10 bar 30.0 29.8 

% Moisture at 1/3 bar 20.6 22.5 

% Moisture at 15 bar 12.7 12.9 

Undisturbed soil moisture 
  

Mean % moisture at pF2 33.5 30.7 

Mean % moisture at 1/10 bar 33.5 30.7 

 

3.2.3 Experimental set up and moisture control 

 72 soil cores per tillage treatment were selected to undergo incubation, avoiding cores with 

visible stones, voids or substantial cracks. Cores selected for incubation were placed on moistened 

autoclaved sand (prepared as 80 g sand, 20 g water) (Figure 3.1). Triplicate cores per tillage 

treatment were selected for moisture control, each probed with a WaterScout SM 100 Soil Moisture 

Sensor (Spectrum Technologies Inc.), data logged by WatchDog 1000 series Micro Stations 

(Spectrum Technologies Inc.). Watering was conducted to maintain a mean moisture content of 25 % 
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volumetric water content (VWC). Figure 3.2 shows the 24 hour mean %VWC per tillage treatment 

throughout the sample incubation. 

 To account for the loss of moisture from the sand layer, three dummy cores containing a 

sealed mass of dry sand were incubated, and the average loss of weight from these used to estimate 

the moisture required to remoisten the sand layer.  

 

Figure 3.1 – Soil core incubation design 

 

 

Figure 3.2 – 24 hour mean moisture content of control cores. Date of treatment and final 

sampling marked. 
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Following the incubation, each of the six moisture control soil cores were homogenised, and 

three sub-samples taken. The moisture content of each sub-sample was then determined using 

either a Mettler LJ16 Moisture Analyser, Mettler PM480 Delta Range Balance with Mettler LP16 

Heater-Unit, or Sartorius MA45. Figure 3.3 shows the mean percentage %VWC measured by weight, 

relative to the final probe measurements of water content. The mean difference between %VWC 

measured by probe and by mass was 3.6%, with the probes generally reporting the soil to have a 

higher water content than determined by mass.  

 

Figure 3.3 – VWC of moisture control cores, moisture probe readings relative to moisture balance 

readings ± SD.  

 

3.2.4 Preparation of treatment solutions 

All stock solutions were stored at -20 °C.  

A batch of NOA446510 (Mandipropamid) (chlorophenyl-U-14C) (structure Figure 3.4, 

properties Table 2) in acetonitrile (MeCN), was received with a specific activity of 1.96 MBq mg-1. 

The received material was quantitatively transferred to a 15 ml volumetric flask and made to volume 
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with MeCN. For radiochemical stock check analysis by liquid scintillation counting (LSC), in duplicate 

25 µl was transferred to 10 ml volumetric flasks. The volumetric flasks were made to volume with 

MeCN. Duplicate 250 µl aliquots of each solution were transferred to LSC vials, 5 ml of scintillation 

cocktail (ProSafe+, Meridian Biotechnologies Ltd) was added, and radioactivity quantified on a 

Packard Tri Carb 3100TR Liquid Scintillation Analyser (using Quanta Smart software). The total 

received radiochemical stock had an activity of 25.009 MBq. 

Mandipropamid consists of two enantiomers, and is synthesised and applied with an isomer 

ratio of 1:1 (EFSA, 2012). Parent compound enantiomer-selective degradation has been 

demonstrated in soils (DT50 of the S enantiomer being 20-70 % greater than the R enantiomer) 

(European Food Safety Authority, 2012), however all methods in the present study consider only the 

total behaviour of both enantiomers. 

The desired rate of application for Mandipropamid was 400 g ai ha-1. Each soil core had a 

surface area of 4.19 X 10-3 m2, requiring an application of 167.4 µg ai per core, equivalent to 0.328 

MBq per core. The intended application volume was 833 µl for which 60 volumes were prepared. 

Following preparation, the concentration of the Mandipropamid solution was checked by 

LSC, in duplicate, 50 µl was transferred to 10 ml volumetric flasks. The volumetric flasks were made 

to volume with MeCN. Duplicate 250 µl aliquots of each solution were transferred to LSC vials, 5 ml 

of scintillation cocktail (ProSafe+, Meridian Biotechnologies Ltd) was added, and radioactivity 

quantified on a Packard Tri Carb 3100TR Liquid Scintillation Analyser (using Quanta Smart software). 

The Mandipropamid treatment solution had a total activity of 19.46 MBq, 98.85 % of the desired 

activity. The application volume was revised to 843 µl.  

The radiochemical purity of the Mandipropamid treatment solution was assessed by HPLC 

with radiodetection. The HPLC method used for Mandipropamid had previously been developed 

(Table 3.4). A 25 µl aliquot from a treatment solution quantification solution was used to assess 

stock purity. HPLC system details: Agilent 1100 Series HPLC G1311A Quaternary Pump, Agilent 1100 

Series HPLC G1313A Autosampler, Agilent 1100 Series HPLC G1316A Column Compartment, Agilent 

1100 Series G1315B Diode Array Detector, and β-Ram Model 5C Radiodetector – software LAURA 

4.1.14.96. The radiochemical purity of the Mandipropamid treatment solution was 100 %. 
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Figure 3.4 – Structure of Mandipropamid, location of 14C labelled ring indicated (*).  

 

Table 3.2 – Properties of Mandipropamid (Lewis et al., 2016) 

IUPAC Name (RS)-2-(4-chlorophenyl)-N-[3-methoxy-4-(prop-2-

ynyloxy)phenethyl]-2-(prop-2-ynyloxy)acetamide 

CAS Number 374727-62-2 

Molecular Formula C23H22ClNO4 

Molecular mass (g mol-1) 411.9 

Solubility in water at 20 ° C 

(mg l-1) 

4.2 

Vapour pressure at 25 ° C 

(mPa) 

9.4 x 10-4 

Henry’s law constant at 25 

° C (Pa m3 mol-1) 

9.2 x 10-5 

Log P 3.2 

 

A batch of G27692 (Simazine)(triazinyl-U-14C) (structure Figure 3.5, properties Table 3.3) in 

11 ml of tetrahydrofuran (THF), was received with a specific activity of 1.63 MBq mg-1. The received 

material was quantitatively transferred to a 25 ml volumetric flask and made to volume with THF. 

For radiochemical stock check analysis, in duplicate 25 µl was transferred to 10 ml volumetric flasks. 

The volumetric flasks were made to volume with THF. Duplicate 250 µl aliquots of each solution 

were transferred to LSC vials, 5 ml of scintillation cocktail (ProSafe+, Meridian Biotechnologies Ltd) 

was added, and radioactivity quantified on a Packard Tri Carb 3100TR Liquid Scintillation Analyser 
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(using Quanta Smart software). The total received radiochemical stock had an activity of 21.310 

MBq. 

 A stock solution of non-radiolabelled Simazine was prepared, 30 mg of technical standard 

were transferred to a 10 ml volumetric flask and made to volume with THF.  

 To minimise the use of radiochemicals, the Simazine treatment solution was prepared with 

45.8 % radiolabelled Simazine, and 54.2 % unlabelled Simazine. Following preparation, the 

concentration of the Simazine solution was checked by LSC, in duplicate, 25 µl was transferred to 10 

ml volumetric flasks. The volumetric flasks were made to volume with THF. Duplicate 250 µl aliquots 

of each solution were transferred to LSC vials, 5 ml of scintillation cocktail (ProSafe+, Meridian 

Biotechnologies Ltd) was added, and radioactivity quantified on a Packard Tri Carb 3100TR Liquid 

Scintillation Analyser (using Quanta Smart software). The Simazine treatment solution had a total 

activity of 17.92 MBq, 95.54 % of the desired activity. The application volume was revised to 872 µl.  

The desired rate of application for Simazine was 1000 g ai ha-1 (where ai is active ingredient). 

Each soil core had a surface area of 4.19 X 10-3 m2, requiring an application of 436.2 µg ai per core, 

equivalent to 0.341 MBq per core (54.2% of applied Simazine being cold material). The intended 

application volume was 833 µl for which 60 volumes were prepared. 

The radiochemical purity of the Simazine treatment solution was assessed by HPLC with 

radiodetection. The HPLC method used for Simazine had previously been developed (Table 3.5). A 25 

µl aliquot from a treatment solution quantification solution was used to assess stock purity. HPLC 

system details: Agilent 1200 Series HPLC G1311A Quaternary Pump, Agilent 1200 Series HPLC 

G1329A Autosampler, Agilent 1200 Series HPLC G1316A Column Compartment, Agilent 1200 Series 

HPLC G1315D Diode Array Detector, β-Ram Model 4C Radiodetector and SoFie Stop-Flow System – 

software LAURA 4.1.14.96. The radiochemical purity of the Simazine treatment solution was 93.02 

%. The purity of the cold Simazine stock solution was assessed by HPLC with UV detection at 254 nm, 

using the same HPLC system and method. The cold Simazine stock solution was 100 % pure.  
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Figure 3.5 – Structure of Simazine, location of 14C labelled ring indicated (*).  

 

Table 3.3 – Properties of Simazine (Lewis et al., 2016) 

IUPAC Name 6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine 

CAS Number 122-34-9 

Molecular Formula C7H12ClN5 

Molecular mass (g mol-1) 201.66 

Solubility in water at 20 ° C 

(mg l-1) 

5 

Vapour pressure at 25 ° C 

(mPa) 

8.1 x 10-4 

Henry’s law constant at 25 

° C (Pa m3 mol-1) 

5.6 x 10-5 

Log P 2.3 

 

3.2.5 Treatment 

Application was conducted on the 25th of September 2017. Treatment solutions were 

applied dropwise to the surface of the soil cores at the specified rate – Mandipropamid 843 µl per 

core equivalent to 400 g ha-1 ai, Simazine 872 µl equivalent to 1000 g ha-1 ai. Pre and post application 

checks were conducted for both compounds – the application volume being pipetted into a 10 ml 

volumetric flask prior to the first application, application made to all treated cores without 

adjustment of the pipette, and a final volume pipetted into a second 10 ml volumetric flask. The pre 
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and post treatment flasks were made to volume with MeCN for Mandipropamid, and with THF for 

Simazine. Radioactivity within 250 µl aliquots of the pre and post application checks were quantified 

by LSC. The quantified average application rate for Mandipropamid was 0.343 MBq per core, 

equivalent to 419 g ha-1 ai. The average quantified application rate for Simazine was 0.345 MBq per 

core, equivalent to 1106 g ha-1 ai.  

3.2.6 Extraction regime and quantification of extracts 

For Mandipropamid, triplicate samples per tillage treatment were analysed at 0, 4, 14, 28, 

63 and 85 days after treatment (DAT) and duplicate samples at 43 DAT. For Simazine, triplicate 

samples per tillage treatment were analysed at 0, 15, 29, 36, 50, 64 and 86 DAT. Each soil core was 

divided into approximate thirds by depth – the upper 25 mm becoming subsection A, the mid 25 

third subsection B, and the lower third, including any sand bound to the samples when lifted from 

the plastic saucer subsection C. Where necessary, large stones were removed from the subsections 

during processing. Each subsection was placed into an extraction vessel, and 150 ml extraction 

solvent (80:20 MeCN:H2O) applied. Samples were shaken at 270 rpm on an orbital shaker for 1 hour, 

then centrifuged for 10 minutes at 2500 rpm using either a  Heraeus Sepatech Varifuge 3.0 or 

Heraeus Sepatech Varifuge 3.0RS. The supernatant from each sample was decanted to a Duran 

bottle. The extraction process was repeated twice (total 3 solvent applications), with the 

supernatant pooled per subsample.  

Total extract weight was recorded. All extracts were thoroughly mixed prior to analysis. For 

each subsamples combined extracts, 14C recovery was quantified by LSC of duplicate 1 ml aliquots 

(scintillation cocktail ProSafe+ (Meridian Biotechnologies Ltd), instrument – Perkin Elmer Liquid 

Scintillation Analyzer Tri-Carb 2920 TR or Packard Tri Carb 3100TR Liquid Scintillation Analyzer (using 

Quanta Smart software)).  

For subsamples containing ≥ 5 % of applied radioactivity aliquots were concentrated to 

quantify the parent fraction of the recovered radioactivity. Aliquots were blown to dryness under a 

stream of nitrogen, and then suspended in 50:50 H2O:MeCN. Recovery through the concentration 

process was quantified by LSC with duplicate 25 µl aliquots of the concentrated solution (scintillation 

cocktail ProSafe+ (Meridian Biotechnologies Ltd), instrument – Perkin Elmer Liquid Scintillation 

Analyzer Tri-Carb 2920 TR or Packard Tri Carb 3100TR Liquid Scintillation Analyzer (using Quanta 

Smart software)). 

The purity of Mandipropamid, and parent fraction of sub-sample combined extracts at 0, 4, 

14, and 28 DAT were assessed by HPLC. HPLC system details: Agilent 1100 Series HPLC G1311A 
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Quaternary Pump, Agilent 1100 Series HPLC G1313A Autosampler, Agilent 1100 Series HPLC G1316A 

Column Compartment, Agilent 1100 Series G1315B Diode Array Detector, and β-Ram Model 5C 

Radiodetector – software LAURA 4.1.14.96. HPLC method Table 3.4. 

The parent fraction of Mandipropamid in sub-sample combined extracts at 43, 63 and 85 

DAT were assessed by HPLC. HPLC system details: Agilent 1200 Series HPLC G1311A Quaternary 

Pump, Agilent 1200 Series HPLC G1329A Autosampler, Agilent 1200 Series HPLC G1316A Column 

Compartment, Agilent 1200 Series HPLC G1315D Diode Array Detector, β-Ram Model 4C 

Radiodetector and SoFie Stop-Flow System – software LAURA 4.1.14.96. HPLC method Table 3.4.  

The purity of Simazine (unlabelled and radiolabelled stock) and parent fraction of sub-

sample combined extracts at 0, 15, 29, 36, 50, 64, and 86 DAT were assessed by HPLC. HPLC system 

details: Agilent 1200 Series HPLC G1311A Quaternary Pump, Agilent 1200 Series HPLC G1329A 

Autosampler, Agilent 1200 Series HPLC G1316A Column Compartment, Agilent 1200 Series HPLC 

G1315D Diode Array Detector, β-Ram Model 4C Radiodetector and SoFie Stop-Flow System – 

software LAURA 4.1.14.96. HPLC method Table 3.5. 

Table 3.4 – HPLC Chromatographic Conditions for Mandipropamid 
Method TK0294824-M 
Gradient TK0294824-M 
Mobile phase A Acetonitrile 
Mobile phase B Water + 0.1 % Trifluoroacetic acid 
Scintillation cocktail Meridian Proflow G+ 
Elute flow rate (ml minute-1) 1 
Scintillation cocktail flow rate (ml minute-1) 1 
Column Packing Synergi 4u Hydro-RP 80A 
Column Dimensions 250 x 4.6 mm, 4 µm 
Column Temperature (°C) 25 
Detection  Radiochemical 
Gradient Timetable 

Time (minutes) % A % B 

0 5 95 
4 5 95 

24 60 40 
31 95 5 
34 95 5 
36 5 95 
40 5 95 
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Table 3.5 – HPLC Chromatographic Conditions for Simazine 
Method TK0294824-S 
Gradient TK0294824-S 
Mobile phase A Acetonitrile 
Mobile phase B Water + 0.1 % Formic acid 
Scintillation cocktail Meridian Proflow G+ 
Elute flow rate (ml minute-1) 1 
Scintillation cocktail flow rate (ml minute-1) 1 
Column Packing Phenomenex Luna 3u C18(2) 100 A 
Column Dimensions 150 x 4.6 mm, 3 µm 
Column Temperature (°C) 25 
Detection  Radiochemical and UV at 254 nm 
Gradient Timetable 

Time (minutes) % A % B 

0 5 95 
2 5 95 

20 95 5 

24 95 5 
28 5 95 

30 5 95 
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3.2.7 Post extraction solids 

Post extraction solids (PES) for subsamples from which ≥ 5 % of applied radioactivity were 

recovered were analysed, post extraction solids for subsamples with < 5 % of applied radioactivity 

were discarded. Analysed PES samples were air dried, initially within extraction vessels, then 

removed to plastic trays, and extraction vessels rinsed with acetone, and further air dried. Dried 

samples were homogenised using a pestle and mortar, and PES subsample mass recorded. Per 

subsample, triplicate aliquots of known mass were weighed into paper cones (lined with an 

additional lid to aid combustion) and capped. Samples were combusted with a Perkin Elmer Model 

A307 Sample Oxidiser, with a combustion duration of 2-3 minutes. Prior to oxidisation, samples were 

moistened with water (approximately 2 drops) to slow combustion, and treated with (approximately 

3 drops) of CombustAid (Perkin Elmer) to aid combustion. Carbon dioxide emitted from the oxidised 

samples was adsorbed to 5 ml of Carbo-sorb E (Perkin Elmer), with 15 ml of the scintillation cocktail 

Permaflour E+ (Perkin Elmer). Quantification of evolved 14C by LSC on a Perkin Elmer Tri Carb 2910 

TR.  

3.2.8 Modelling and analysis 

Single first order (SFO) kinetic models were calculated for the degradation of parent compound, % 

parent applied defined as % recovery x % ROI (including only subsamples with ≥ 5 % recovery by 

solvent extraction), using Computer Assisted Kinetic Evaluation (CAKE) version 3.3 software (Tessella 

Software). SFO kinetic models were also calculated for dissipation (defined as the decline in total 

extractability over time). SFO model equation: 

𝐶𝑡 = 𝐶0𝑒
−𝑘𝑡 

 Where Ct = concentration at time t, C0 = concentration at time 0, e = base e, k = rate of 

constant decline 1/days, and t = time. 

CAKE fit settings for all modelling – convergence tolerance 1 x 10-5, maximum iterations 1 x 

105, SANN max iterations 1 x 105, optimiser – iteratively reweighted least squares, maximum 

reweightings 1 x 102, error variance tolerance 1 x 10-5.  
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3.3 Results 

3.3.1 Mandipropamid  

The SFO modelled time period required for 50 % degradation (DT50) of Mandipropamid 

applied to IT soils was 143 days, and to RT soils was 125 days (chi-squared 1.53 and 2.00 

respectively). SFO models and observations Figure 3.6, showing very similar rates of degradation for 

both soils. IT SFO parameters Parent_0 95.56 and k_Parent 0.004853. RT SFO parameters Parent_0 

96.57, and k_Parent 0.005566. The difference in the rate of degradation of Mandipropamid in soils 

under RT and IT is not considered significant.  

 Figure 3.7 shows the modelled (SFO) and observed data for the dissipation of 

Mandipropamid; the time period required for 50 % dissipation (DIST50) in IT soils is 170 days, and in 

RT soils 143 days (chi-squared 1.97 and 2.26 respectively). The rate of dissipation in both soils can be 

seen to be very similar (Figure 3.7), although RT observations are more variable. IT SFO parameters 

Parent_0 99.17 and K Parent 0.004834. RT SFO parameters Parent_0 101, and K_Parent 0.004068. 

The difference in the rate of dissipation of Mandipropamid in soils under IT and RT is not considered 

significant. 

 

Figure 3.6 – Degradation of Mandipropamid 
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Figure 3.7 – Dissipation of Mandipropamid 

 

Throughout the experiment, the majority of the extractable residue remained parent 

compound, with degradant(s) accounting for a maximum (in a single core) of 11.2 % extractable 

residues (Figure 3.8). As expected in a non-sealed system, the mass balance declined to 88.22 % in 

soils under IT, and 86.53 % for RT (Figure 3.9), due to an assumed loss of volatiles (including CO2). A 

small fraction of material that may not have been accounted for is that lost as non extracted 

residues in the B and C subsections from which extracts contained <5 % of applied radioactivity. 

However, there is little evidence of parent compound, or degradants being mobile within the soil 

cores (Figure 3.11). This is consistent with the known low mobility of the parent compound (EFSA, 

2012). There is an increase of residues remaining bound to the PES throughout the experiment to a 

mean of 19.29 and 19.44 % in soils under IT and RT respectively at 85 DAT, however there is a slight 

decrease in values at 43 DAT (Figures 3.9 and 3.10). 
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Figure 3.8 – Mean parent Mandipropamid fraction of extractable residues for soils under IT and 

RT. Error bars 1 standard deviation. % ROI is equivalent to % area of either parent or degradant 

peaks in HPLC chromatogram 
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A 

 

B 

 

Figure 3.9 – Mean mass balance (shown ± S.D.) of Mandipropamid degradation experiment for 

soils under (A) IT and (B) RT 
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Figure 3.10 – Mean recovery (shown ± S.D.) of applied radioactivity recovered from PES for 

degradation of Mandipropamid in soils under IT and RT 

0

5

10

15

20

25

IT RT IT RT IT RT IT RT IT RT IT RT IT RT

0 4 14 28 43 63 85

M
ea

n
 %

 r
ec

o
ve

ry
 f

ro
m

 P
ES

DAT (days)



94 
 

 

 

Figure 3.11 – Mean distribution of applied radioactivity per section combined extract for 

Mandipropamid. Where Section A is the upper section of each core, Section B the middle, and 

Section C the lowest. 

  

3.3.2 Simazine 

The SFO DT50 of Simazine applied to IT soils was 43.9 days, and to RT soils was 48.1 days (chi-
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Simazine in soils under IT and RT is not considered significant. The material that was recoverable for 

Simazine included a higher proportion of degradant(s), which in total was more variable than that 

for Mandipropamid (Figure 3.14).  

 

 

Figure 3.12 – Degradation of Simazine 
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Figure 3.13 – Dissipation of Simazine 

 

 

Figure 3.14 – Mean parent Simazine fraction of extractable residues for soils under IT and RT. 

Error bars one standard deviation. % ROI is equivalent to % area of either parent or degradant 

peaks in HPLC chromatogram. 
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3.17) and unaccounted for radioactivity was likely emitted as volatiles (including CO2). Non 

extractable residue recovery from PES increase rapidly to 29 DAT (mean 13.43 and 14.29 % recovery 

from IT and RT respectively) but then accumulate at a lower rate, reaching a mean recovery of 17.66 

and 17.19 % from IT and RT respectively at 86 DAT (Figures 3.15 and 3.16). This bimodal behaviour is 

not currently explained.  
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A  

 

B  

 

Figure 3.15 – Mean mass balance (shown ± S.D) of Simazine degradation experiment for soils 

under (A) IT and (B) RT 
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Figure 3.16 – Mean recovery (shown ± S.D.) of applied radioactivity recovered from PES for 

degradation of Simazine in soils under IT and RT 
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Figure 3.17 – Mean distribution of applied radioactivity per section combined extract for 

Simazine. Where Section A is the upper section of each core, Section B the middle, and Section C 

the lowest. 
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Figure 3.18 – Residual from modelled SFO degradation of Mandipropamid in IT soils relative to 

mass of soil in core 

 

 

Figure 3.19 – Residual from modelled SFO degradation of Mandipropamid in RT soils relative to 

mass of soil in core 
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Figure 3.20 – Residual from modelled SFO degradation of Simazine in IT soils relative to mass of 

soil in core 

 

 

Figure 3.21 – Residual from modelled SFO degradation of Simazine in RT soils relative to mass of 

soil in core 
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3.4 Discussion 

3.4.1 Degradation of Mandipropamid and Simazine 

The rate of Mandipropamid degradation is substantially slower than as determined in 

previous studies. Regulatory OECD 307 based studies have reported the DT50 of Mandipropamid to 

range between 23.4 and 83.9 days (EFSA, 2012, Lewis et al., 2016) – however such studies are 

conducted with soils from pastures, not arable land. Field studies have found the rate of 

Mandipropamid degradation to be faster than lab-based studies with DT50 values of 5.6 – 29.2 days 

(EFSA, 2012, Lewis et al., 2016). The low rate of degradation of Mandipropamid in the intact core 

system is unexpected, the cores being expected to function as an intermediate tier of ‘realism’ 

between field soils (fast degradation) and OECD 307 studies (slow degradation) that has been 

reported previously. This may reflect differences in the composition of degraders between soils, or 

that Mandipropamid is a compound subject to degradation or sorption processes captured in field 

and OECD 307 studies, but not the present core system. Similarly, Dougan et al. (2013) report the 

degradation of Fomesafen to be slower in static core systems similar to those in the present study 

than OECD 307 studies. This difference was reduced by a dynamic moisture regime, given the 

variable control of moisture content through the present study (Figures 3.2 and 3.3), the observed 

slow rate of degradation may have been greater in a more tightly controlled system.  

It is noted that the moisture control of study cores throughout the experiment – aiming to 

maintain a constant moisture content of 25% VWC – was poor (Figure 3.2). This is attributable to 

both poor experimental design – the sand moisture reserve failing to act as a sufficient or effective 

reservoir of water for the soil cores – and that being unable to access the experiment each weekend 

prevented close manual adjustment of moisture levels. The accuracy and precision of the soil 

moisture probes used in the present study is poor (Figure 3.3). These issues may be addressed by 

use of tension tables, peristaltic pumps, or weight-sensor controlled pumps to adjust moisture 

content automatically, or by closer manual access to control moisture content. Further, conducting 

the experiment in conditions where evaporation is reduced (the CT room having very high airflow for 

safety) may improve moisture control. However, Figures 3.18, 3.19, 3.20 and 3.21 show that the 

variable moisture content of the studied cores had no effect on the rate of degradation – cores of 

large range in mass (401-556g) receiving equal water to adjust for moisture, therefore having 

different moisture contents. Further work may have included normalisation of degradation rates 

based upon moisture and soil temperature – however given the variation between cores, the 

accuracy of any such adjustment is debatable.   
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The observed rate of Simazine degradation is consistent with previously reported data, 

where the DT50 of Simazine has been observed to vary between 27-102 days in soils (Lewis et al., 

2016, Liao and Xie, 2008). Inoculated soils have been shown to more rapidly degrade Simazine (Liao 

and Xie, 2008) and Simazine degradation, like that of other triazine CPPs may be subject to 

accelerated degradation, and cross acclimatisation  (Rouchaud et al., 2000). 

The variance of degradation in Simazine is greater than that observed for Mandipropamid, 

and again is greater in soils under RT than IT. Variance through the duration of the experiment can 

be seen to vary for both IT and RT, being less at both the beginning (0 and 15 DAT) and end (86 DAT) 

than for time points in the middle of incubation. This may reflect the low degree of degradation that 

had occurred prior to 15 DAT, and a reduction in variation as the faster degrading systems have a 

lower availability of Simazine to degrade. See Figure 3.12. 

Differences in the rate of degradation of compounds that may arise due to increased 

availability of compounds in IT soils relative to RT soils, from carbon accumulation are not 

observable. This is true both for effects that may have been immediately apparent – expected higher 

carbon content in RT soils reducing availability to degraders – and slower processes – such as aged 

sorption that reduce the availability of compounds to degraders as compounds diffuse into soil 

aggregates – a phenomenon that may be increased with the greater abundance and stability of soil 

macroaggregates in RT relative to IT (Suddaby et al., 2013, Suddaby et al., 2016, Commission, 2021).  

The variation observed in the fate of Simazine may reflect either uneven application – 

identified as a leading cause of variation in Simazine degradation by Walker and Brown (1983) – or 

due to chemical and/or biological variance in the soil cores. Spatial variance in the degradation 

potential of soils has been repeatedly demonstrated, and is understood to be more apparent at 

smaller spatial scales (Walker et al., 2001, Bending et al., 2006, Dechesne et al., 2014). Causes of 

such spatial variation include pH and microbial variation.  

The lack of substantial difference in the results may reflect the relatively short duration 

which the experimental plots had been under different tillage methods, a period of less than two 

years and two instances of tillage. More pronounced effects of cultivation on the environmental fate 

of crop protection products may occur in studies conducted with soils that have been managed for 

longer periods under differing systems – for instance, Haddaway et al. (2017) demonstrate reported 

SOC accumulation to be dependent on study duration.  

In conclusion, no substantial difference was identified in the rate of degradation of either 

Mandipropamid or Simazine in soils under IT or RT. However, the results are suggestive of the more 
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heterogeneous effects of RT on arable soils creating areas of greater and lesser CPP degrading 

potential relative to arable land under IT. The proposed mechanism for this increased variation is 

that reducing tillage intensity (going from IT to RT (and potentially again to no tillage systems)) 

reduces the energy input (Morris et al., 2010) and therefore mixing of the soil (Hula and Novak, 

2016). This reduced mixing is both vertical – stratification of crop residues and soil carbon at the soil 

surface and in top soils – and horizontal – reduced movement of material across a field, and reduced 

movement of material downhill, as that is encouraged by ploughing. Reduced mixing also reduces 

the rate of soil aggregate turnover, and increases macroaggregate abundance. A more diverse range 

of soil aggregates, pore spaces, and mineral and organic environments facilitated by reduced mixing 

may facilitate the development of distinct microbial communities, including variable presence of 

degraders and also more variance in non-microbial degradation processes. These more 

heterogenous soil environments may lead to more heterogenous rates of degradation within a 

sampled area. 
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Chapter 4: Microbial Community Response to 

Incubation and the Degrading Fraction 

4.1 Introduction 

4.1.1 Spatial variation in CPP degradation 

Changing tillage methodology has the potential to alter the environmental fate of 

agrochemcials, by means including the interception of CPPs by crop residues, altered soil pore 

structures, and potentially more spatially distinct soil microbial communities (Alletto et al., 2010). 

Whilst in aggregate in Chapter 3, no substantial difference was observed in the rate of degradation 

in soils under IT or RT, greater variability in the rate of degradation and dissipation was apparent in 

soils under RT relative to IT (Figures 3.6, 3.7, 3.12, and 3.13).  

At field scale, spatial variation in the degradation of Simazine may be most attributable to 

uneven application (Walker and Brown, 1983), however given the small degree of variation in 

recovered radioactivity at DAT 0 as detailed in Chapter 3, application or sample analysis variation is 

unlikely to be the cause of the observed differences in the rate of degradation between soil cores. 

The relative role of variation in biotic or abiotic processes varies by studied compound - Bending et 

al. (2006) reporting the majority of variation in isoproturon and azoxystrobin to be due to biotic 

process, but less than 7 % of variation in diflufenican may be attributed to biotic processes. Similarly 

Charnay et al. (2005) report spatial variation in atrazine and isoproturon to be related to biotic 

factors, and metamiron to sorption processes.  Alteration of pH alone can strongly influence both 

compound availability to degradation processes, and the abundance of microbial degraders (Bending 

et al., 2003, Kah et al., 2007).  

Variability in pesticide degradation tends to increase as the studied volume of soil decreases 

(Dechesne et al., 2014). Gonod et al. (2003) report greater variability in CPP degrading potential in 

soil aggregates of 2-3 mm than aggregates of 4-6 mm. Degradation potential of soil aggregates may 

depend upon both the microbiome of the aggregate, and available nutrients – principally C – to 

degraders within each aggregate (Gonod et al., 2003). Higher variability in the distribution of soil 

carbon within the soil profile due to a lower intensity of tillage could lead to increased variability 

compound degradation. 
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4.1.2 Microbial degradation of Simazine 

The degradation of Simazine, and other s-triazine herbicides is well studied within scientific 

literature, see for example Kaufman et al. (1965), Wackett (2002), Kodama et al. (2001), Caracciolo 

et al. (2005), Govantes et al. (2009), Rehan et al. (2016), (Scherr et al., 2017). Comparatively 

Mandipropamid degradation – with few recent exceptions (Han et al., 2021) – is relatively poorly 

detailed within the literature. Consequently, analysis of fraction of the soil microbiome associated 

with CPP degradation focused on degradation of Simazine. 

A possible biodegradation pathway for Simazine is proposed in Figure 4.1, adapted from 

Hershberger (1998), Govantes et al. (2009), and Sagarkar et al. (2013). Biodegradation of Simazine 

may occur by several pathways, producing a range of intermediary metabolites, leading to a 

common metabolite, cyanuric acid, which is further metabolised to the point of mineralisation 

(Hershberger, 1998, Govantes et al., 2009, Sagarkar et al., 2013).  

Genes associated with s-triazine degradation are known to be widespread amongst a 

multitude of soil bacteria (de Souza et al., 1998b). At least some of the associated genes – atzA, atzB, 

and atzC – are known to be borne by self-transmissible plasmids (de Souza et al., 1998a, Wackett, 

2002). Mineralisation of s-triazine herbicides is most commonly achieved by a cohort of bacteria 

each carrying one or more relevant genes, as opposed to a single bacteria (Govantes et al., 2009).  
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Figure 4.1 – Proposed degradation pathway of Simazine and associated functional genes. Adapted 

from Hershberger (1998), Govantes et al. (2009) and Sagarkar et al. (2013). 
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4.1.3 Incubation conditions and the soil microbiome 

Sales of CPPs in most markets are subject to extensive control from regulators (for example 

EFSA in the EU, CRD in the UK, and EPA in the USA), who permit the sale and use of active 

ingredients and pesticide formulations (Commission, 2013a, Commission, 2013b). Regulators require 

detailed dossiers which include information on the safety of compounds to humans, wildlife and the 

environment. Central to the safety profile of a CPP is the persistence of a compound and its 

metabolites. Persistence of these compounds may be assessed both in laboratory and field studies 

(Commission, 2013a, Commission, 2013b). Laboratory assessment of compound persistence in soils 

is usually centred on tests conducted to the OECD 307 standard (OECD, 2002). The incubation of 

soils under standardised conditions – moisture at pF2 (where pF is defined as the log of cm water 

column, see OECD (2002)), in the dark and at 20 °C are common to these standard regulatory tests 

and in some higher tier – or more realistic – experiments (including Chapter 3) (OECD, 2002, Dougan 

et al., 2013). Both incubation conditions, and soil processing – including sieving and moisture control 

– conducted in OECD 307 studies can alter the microbial community of study substrates (Miranda, 

2019). Miranda (2019) identified the soil processing and incubation conditions of OECD 307 to cause 

unpredictable stochastic shifts in microbial community, depletion of available nutrients, and a 

retardation of metabolism.  

Conducting degradation experiments under standardised conditions allows simpler 

comparison and modelling of compound behaviours in the environment, with OECD 307 intended to 

capture the microbial degradation of compounds (OECD, 2002). However, the current standardised 

testing is insufficient to accurately characterise total degradation of compounds by the microbial 

community, in particular failing to capture the role of phototrophs in the degradation of CPPs 

(Thomas and Hand, 2011, Davies et al., 2013a, Davies et al., 2013b).  

Moisture cycling of microbial communities, such as occurred in Chapter 3 (see Figure 3.2), 

can alter microbial communities. Patterns of drying and rewetting soils can alter soil microbiome 

structure, with communities that are frequently exposed to drought growing up to 40 % more 

rapidly following rewetting (de Nijs et al., 2019). de Vries et al. (2018) identify that soil fungal 

communities are more resilient to drought conditions than bacterial communities. Bacteria with the 

highest relative abundance were most strongly affected (reduced in abundance) by drought (de 

Vries et al., 2018). 
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4.1.4 Aims and objectives 

 The present study sought to establish if the functional genes considered responsible for the 

degradation of Simazine were more heterogeneously distributed in soils under RT than IT, either by 

way of presence/absence, abundance, or genetically. Further, the present study investigated if the 

community composition of the soil microbiome was more heterogeneous in soil cores collected from 

RT soils than IT soils, and to establish any effect of incubation conditions on soil microbial 

communities.   
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4.2 Methodology 

4.2.1 Field Site 

 Soil cores were collected from the RT and IT strips of Warren field of the SoilBioHedge 

experiment, detailed in Chapter 2 and by Holden et al. (2019), and sampled at the same time, and by 

the same techniques as detailed in Chapter 3. 

4.2.2 Incubation of soil cores 

 Soil cores for studying the soil microbiome throughout the compound degradation 

experiment detailed in Chapter 3 were collected and incubated under identical conditions (excluding 

the application of compound (due to constraints required by the sponsor)) to those in the 

degradation study. 12 soil cores for each tillage type (IT and RT) were incubated, and sampled in 

triplicate at 0, 30, 56 and 87 DAT. 

 At sampling soil was removed from the metal cores, loosely homogenised by hand, placed in 

a polyurethane bag and flattened. Samples were then rapidly frozen by being placed in a -80 °C 

freezer. Samples were stored at -80 °C at Jealott’s Hill International Research Centre before being 

shipped with dry ice to the University of York. Samples were again stored at -80 °C in York. Samples 

were halved for analysis, half being freeze dried (analysis presented within this study) and half 

remaining at -80 °C.  

4.2.3 Molecular methods for functional genes 

 In triplicate – as a single sampling was considered insufficient for a presence/absence 

assessment of functional genes – DNA was extracted as detailed in Chapter 2 for each sample. Of the 

functional genes identified in Figure 1, PCR primers and conditions were identified in the literature 

for the following genes – atzA, atzB, atzC, atzD, atzE, atzF, trzD and trzN. PCR was attempted using 

the primers as detailed in Table 4.1. Reaction conditions were varied extensively, including; multiple 

DNA polymerases, annealing temperatures, extension periods, cycle number, and primer, template, 

DNA polymerase, BSA, MgCl2 and dNTP concentrations. Repeat PCRs using the nested product of 

previous reactions were conducted. Success of PCR reactions assessed on basis of bands of desired 

product length identified by gel electrophoresis, agarose gels containing SYBRSAFE (Invitrogen) at 1-

10 µl per 100 ml of gel, excitation by blue light, loading dye 6 X Loading Dye (#R0611, Thermo 

Scientific).     

 All attempts to amplify functional genes expected to facilitate Simazine degradation were 

unsuccessful, the reasons for which are discussed below, in section 4.4.1. 
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Table 4.1 – Primers for functional genes for Simazine degradation 

Functional Gene Primer Reference 

atzA CCATGTGAACCAGATCCT de Souza et al. (1998b) 

TGAAGCGTCCACATTACC 

atzB TCACCGGGGATGTCGCGGGC  

CTCTCCCGCATGGCATCGGG 

atzC GCTCACATGCAGGTACTCCA  

GTACCATATCACCGTTTGCCA 

atzD TCCCACCTGACATCACAAAC Devers et al. (2004) 

GGGTCTCGAGGTTTGATTG 

atzE GAGCCTCTGTCCGTAGATCG  

GATGGCGTGTACCGTTTACC 

atzF ACCAGCCCTTGAATCATCAG  

TATTGTCCCGATACCCAACG 

trzD CACTGCACCATCTTCACC Fruchey et al. (2003) 

GTTACGAAC CTCACCGTC 

trzN CACCAGCACCTGTACGAAGG Mulbry et al. (2002) 

GATTCGAACCATTCCAAACG 

 

4.2.4 Molecular methods for community composition 

DNA was extracted, amplified and sequenced according to the protocols detailed in Chapter 

2. 

4.2.5 Soil property characterisation 

 General soil properties of the sampled cores are the same as those detailed in Chapter 3.  

Soil pH on a per core basis was assessed in triplicate by subsampling (10 g per measurement) 

frozen soils, allowing to thaw with 25 ml of Soil Sample Preparation Solution (Hanna Instruments HI-

7051L). Samples were thoroughly mixed by shaking, and then left to stand for 5 minutes. pH 

measurements were taken using a HI-991001 pH meter (Hanna Instruments) and a HI1292D probe 

(Hanna Instruments) following manufacturer’s instructions. pH meter calibrated with pH 4 and pH 7 

buffers (ECBU4TBC and ECBU7BTC (Thermo Scientific)). 
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4.2.6 Data Analysis – Bioinformatics 

Amplicon sequence data for community composition was analysed according to the 

protocols detailed in Chapter 2. 

Table 4.2 details the normalisation rates of the data, and the number of samples retained. 

Table 4.2 – Data on normalization and retention of samples 

 Normalization Total 

Samples 

Samples retained 

Study Bacteria Eukaryotes Fungi  Bacteria Eukaryotes Fungi 

JHC 22522 29325 9492 24 24 24 24 

 

4.2.7 Data Analysis – Statistics 

Statistical analysis of data was conducted according to the protocols detailed in Chapter 2 

Note assumptions on the dispersion of data for PERMANOVA were breached for mean core pH in 

bacteria, eukaryotes and fungi, and for time (DAT) for eukaryotes (See Chapter 2). 
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4.3 Results 

4.3.1 Functional genes for Simazine Degradation 

 All attempts to amplify genes associated with the degradation of Simazine were 

unsuccessful.  

4.3.2 Community composition of soil cores through incubation 

 Tables 4.3 and 4.4 detail mean ASV richness and Simpsons Index (respectively) per sample at 

each sampling date, for IT and RT. RT samples contained on average a higher number of unique 

bacterial and fungal ASVs, with IT samples containing on average a greater number of unique 

eukaryote ASVs.  

Table 4.3 – Mean ASV richness per sample by date of sampling and tillage treatment 

 Inversion Reduced 

DAT (days) 0 30 56 87 0 30 56 87 

Bacteria 842 783 576 715 662 677 855 767 

Eukaryotes 553 477 517 489 480 518 516 425 

Fungi 53 54 68 89 88 80 49 77 

 

Table 4.4 – Mean Simpsons Index per sample by date of sampling and tillage treatment 

 Inversion Reduced 

DAT (days) 0 30 56 87 0 30 56 87 

Bacteria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Eukaryotes 0.98 0.98 0.97 0.99 0.97 0.98 0.98 0.98 

Fungi 0.90 0.91 0.91 0.92 0.92 0.91 0.88 0.90 

 

For bacteria, tillage type and length of incubation had a significant effect on community 

composition (PERMANOVA, DF=1 F=2.3 P<0.002, DF=1 F=1.9 P<0.006). Core pH was not significant 

(DF=1, F=1.1, P>0.3), and accounted for 4.2 % of variance as percentage of total sum of squares. 

Treatment accounted for 7.7. % of variance, and length of incubation 9.2 %, with residuals totalling 

79 %. Figure 4.2 shows the DCA ordinations of bacterial community composition grouped by tillage 

and sampling point (time). There is no clear temporal shift or direction within the data in Figure 4.2B, 

however this may be explained due to each core being a discreet unit sample once, and therefore 

the data being non-continuous. Median distances from the centroid of the group for treatment 
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reveal bacterial communities within RT soils to be more variable in composition than those under IT 

(Figure 4.3), with this greater dissimilarity between RT cores also being apparent in Figure 4.2. 

Figures 4.4 and 4.5 show relative abundance of taxonomic groups of bacteria grouped by treatment 

and sampling respectively, aggregated by treatment, the relative abundance of the ten most 

frequently observed taxonomic groups is highly similar (Figure 4.4), and after 30 days of incubation, 

these abundances maintain a broadly steady state (Figure 4.5). The change from 0 DAT to 30 DAT is 

due to an increase in the relative abundance of the most common taxa, with the ‘other’ category 

declining between 0 and 30 DAT. 
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A 

 

B 

 

Figure 4.2 – DCA sample scores (axis 1 and 2) for bacterial community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from IT (blue), and RT (yellow). (B) Coloured hulls 

show different lengths of incubation – 0 DAT (blue), 30 DAT (yellow), 56 DAT (red) and 87 DAT 

(green). 
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Figure 4.3 – Distance from median sample score (across all 4 DCA axis) for bacterial composition in 

soil cores from IT (blue) and RT (yellow) treatments. 
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Figure 4.4 – Relative abundance of soil bacterial taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by tillage 

method. 
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Figure 4.5 – Relative abundance of soil bacterial taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by 

incubation period. 

 

 For total soil eukaryotes, PERMANOVA did not identify incubation period, tillage method or 

soil pH as a significant determinant of community composition (DF=1 F=0.63 P>0.95, DF=1 F=0.58 

P>0.95, DF=1 F=0.79 P>0.80) accounting for 2.9 %, 2.6 % and 3.6 % of variance respectively. Figure 

4.6 shows the DCA ordinations of eukaryotes community composition grouped by tillage and 

sampling point, consistent with the PERMANOVA results, it can be seen that the communities show 

little dissimilarity (hulls highly overlapping) between tillage type (Figure 4.6A). At the longest 

incubation time (87 DAT), dissimilarity has reduced from previous timepoints, which could be 

suggestive incubation conditions favouring a particular final state - ASV richness having declined 

from 0 DAT to 87 DAT (Table 4.3). Figures 4.7 and 4.8 show relative abundance of taxonomic groups 

of eukaryotes grouped by treatment and sampling respectively, consistent with PERMANOVA 

results, there are no clear differences in community composition from tillage method or incubation 
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period, although the relative abundance of the most abundant taxa is declining from 30 DAT to 87 

DAT (Figure 4.8). 
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A 

 

B 

 

Figure 4.6 – DCA sample scores (axis 1 and 2) for eukaryotic community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from IT (blue), and RT (yellow). (B) Coloured hulls 

show different lengths of incubation – 0 DAT (blue), 30 DAT (yellow), 56 DAT (red) and 87 DAT 

(green). 
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Figure 4.7 – Relative abundance of soil eukaryotes taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by tillage 

method. 
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Figure 4.8 – Relative abundance of soil eukaryote taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by 

incubation period. 

 

For soil fungi, PERMANOVA did not identify incubation period, tillage method or soil pH as a 

significant determinant of community composition (DF=1 F=1.6 P>0.08, DF=1 F=1.5 P>0.11, DF=1 

F=1.2 P>0.29) accounting for 6.7 %, 6.1 % and 4.8 % of variance respectively. Figure 4.9 shows the 

DCA ordinations of fungal community composition grouped by tillage and sampling point. Fungal 

communities from RT soils can be observed to be more variable than those under IT (Figure 4.9A). 

Consistent with PERMANOVA results, there is no clear trend or gradient in community dissimilarity 

through time (Figure 4.9B), and while the reduced dissimilarity between cores at 87 DAT may 

represent a convergence as a consequence of incubation, this may also be an artifact of the sampled 

units. Figures 4.10 and 4.11 show relative abundance of taxonomic groups of fungi grouped by 

treatment and sampling respectively, and these are broadly consistent both between treatments, 

and incubation length. Notable is the significantly smaller proportion of relative abundance that may 
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attributed to ‘other’ (not the 10 most abundant taxonomic groupings) in these incubated samples 

relative to ‘fresh’ environmental samples (Figure 2.30). 
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A 

 

B 

 

Figure 4.9 – DCA sample scores (axis 1 and 2) for fungal community from IT and RT soils. (A) 

Coloured hulls show the range of all samples from IT (blue), and RT (yellow). (B) Coloured hulls 

show different lengths of incubation – 0 DAT (blue), 30 DAT (yellow), 56 DAT (red) and 87 DAT 

(green). 
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Figure 4.10 – Relative abundance of soil fungal taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by tillage 

method. 
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Figure 4.11 – Relative abundance of soil fungal taxonomic groupings – 10 most common 

taxonomic groupings and ‘others’ – in incubated soil cores from IT and RT plots grouped by 

incubation period. 
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4.4 Discussion 

4.4.1 Functional Genes 

 All attempts to amplify functional genes expected to facilitate Simazine degradation were 

unsuccessful. There are a number of reasons that may explain this; (i) that trialled range of PCR 

conditions were insufficient (ii) that the trialled primers designed are too specific to account for the 

genomic variation of the studied genes (iii) that the genes responsible for Simazine degradation are 

very rare, and the conducted analysis was not sufficiently sensitive to identify their presence and (iv) 

that Simazine degradation in the study soils was dominated by genes which were not attempted to 

be amplified – potentially thcB, thcC, thcD, trzA, and triA – or other unknown genes.  

 Possibility (i) cannot be discounted, and experiments seeking to demonstrate the 

presence/absence of genes would benefit from positive controls. However, the range of PCR 

conditions trialled was extensive, and based upon published and previously successful methods (de 

Souza et al., 1998b, Mulbry et al., 2002, Fruchey et al., 2003, Devers et al., 2004, Yale et al., 2017). 

 Considering possibility (ii) it can be noted that the primers used to identify functional genes 

are much more specific than those used for community composition (see Chapter 2), containing no 

degenerate bases, and target genes with a specialised function. de Souza et al. (1998b) report s-

triazine degrading genes to be highly conserved (>99 % sequence similarity) between a diverse range 

of bacteria. Available information on sequence variants for designing primers targeting a greater 

number of sequence variants of target genes is limited, but a potential route to further studies on 

the distribution of s-triazine degrading genes.  

 Possibility (iii) would limit a study conducted with redesigned primers and ideal reaction 

conditions. Genes for s-triazine degradation are mobile, and widespread (de Souza et al., 1998b, 

Shapir et al., 2007). However, at very low abundance, PCR is not a sensitive enough technique to 

detect genes. Consequently, to detect gene presence, for analysis of presence/absence and 

sequence diversity, use of an enrichment technique would be beneficial. In an enrichment 

experiment, an s-triazine would be applied to the study soils and incubated, prior to DNA extraction. 

If the samples contain genes associated with s-triazine degradation, these would be expected to 

increase in abundance and potential detectability. Such an approach would be similar to that 

demonstrated by Yale et al. (2017) who identified an increased percentage of the bacterial microbial 

community containing the trzN gene following application of atrazine to soils. Alternate 

experimental approaches to identifying the presence/absence of these genes may include whole soil 

metagenome sequencing. 
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 Possibility (iv) is improbable, with the microbial degradation of Simazine – and other s-

triazine compounds – being well described within the literature – see Kodama et al. (2001), Wackett 

(2002), Caracciolo et al. (2005), Govantes et al. (2009), Rehan et al. (2016), (Scherr et al., 2017) and 

others. The formation of some possible Simazine metabolites – deisopropylsimazine, 

deisopropylhydroxysimazine, deisopropyldeethylsimazine, and 2-chloro-4-hydroxy-6-amino-1,3,5-

triazine – could be metabolised by genes that PCR amplification was not attempted for – thcB, thcC, 

thcD, trzA, and triA – however the loss of mass balance as detailed in Chapter 3 is suggestive of 

mineralisation to CO2 or formation of volatile compounds, which by the proposed degradation 

pathway (Figure 4.1) would involve the studied genes atzD, atzE, atzF and trzD (Govantes et al., 

2009, Sagarkar et al., 2013).  

4.4.2 Community composition 

RT samples contained on average a higher number of unique bacterial and fungal ASVs, with 

IT samples containing on average a greater number of unique eukaryote ASVs (Table 4.3). There is 

no notable temporal change decrease in the richness of any group – increases in abundance are 

considered to represent an inter-sample noise (n=3) (Table 4.3). Diversity as measured by Simpson’s 

Index was generally consistent for each taxonomic grouping throughout the experiment. 

PERMANOVA revealed the length of incubation to have had a significant effect on bacterial 

community composition. These differences are visualised in Figure 4.2B – little overlap between DAT 

0 samples and those with longer incubation periods, which are generally consistent. More 

pronounced differences due to incubation conditions may have been identified by sampling 

additional cores at the time soil cores were collected, or in the period between fieldwork and the 

start of degradation experiment – 21 days. The delay between sampling and application would 

ideally have been shorter, however was dictated by farming conditions – the final harvest of the crop 

strips having been conducted prior to sampling – and the availability of radiolabelled compounds – 

delivered to Jealott’s Hill 20 September 2017. Miranda (2019) identifies differences in the soil 

metabolome within the first 7 days of storage for soils prepared for OECD 307 testing, however the 

relative role of sieving vs incubation conditions consistent with the present study are 

indeterminable. PERMANOVA did not identify significant shifts in soil eukaryote or fungal community 

composition attributable to the period of incubation – again this may be due to shifts between 

sampling and DAT 0, may reflect no changes in community composition from incubation conditions, 

or may be attributable to relic DNA obscuring temporal processes (Carini et al., 2016). ASV richness 

and diversity show no clear trend relative to incubation condition for any studied taxonomic group 

(Tables 4.3 and 4.4). The relative abundances of taxonomic groupings are generally consistent 
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throughout the studied period of incubation, start-to-end, with a suggestion (although n=6, split 3-3 

of IT to RT per sampling) that the 10 most common bacterial taxonomic groupings increasing in 

relative abundance with a greater period of incubation (Figure 4.5), and the most common 

eukaryotic groupings decreasing in relative abundance (Figure 4.8). Fungal communities are 

dominated by Ascomycota, and the 10 most common taxonomic groupings account for >80 % of the 

measured community composition (Figures 4.10 and 4.11), whilst the 10 most abundant groupings 

of eukaryotes and bacteria account for <55 % and <35 % respectively (Figures 4.4, 4.5, 4.7, and 4.8). 

In further studies, the use of non-disruptive/non-destructive sampling techniques to study functional 

changes in soil processes, such as sampling the soil volatilome (Redeker et al., 2018), would allow for 

repeat sampling to identify functional changes through time of heterogenous soil samples. 

In the present study, tillage type was found to significantly alter bacterial community 

composition, but not that of total eukaryotes or fungi (PERMANOVA results), ordinations of DCA 

analysis (Figures 4.2A, 4.6A, and 4.9A) are consistent with these results. Treatment account for 7.7 % 

of variance (as total sum of squares) for bacteria, 2.6 % for eukaryotes and 6.1 % for fungi. RT tillage 

was found to lead to an increase in the spatial (horizontal) variance of bacterial community 

composition (Figure 4.3), but not for total eukaryotes and soil fungi (data not shown). These results 

are consistent with those observed in Chapter 3 of CPP degradation being more spatially variable in 

RT soils than those under IT, with Simazine degradation (and its variability) being controlled by the 

presence of s-triazine associated genes, within the bacterial metagenome (Kaufman et al., 1965, 

Wackett, 2002, Govantes et al., 2009). 

Core pH was not found to have a significant effect on community composition of soil 

bacteria, eukaryotes, or fungi (PERMANOVA results). Mean pH for IT soils was 7.1, and 7.2 for RT 

soils. While soil pH is a key determinant of the availability of ionisable CPPs such as Simazine (Kah et 

al., 2007), within the narrow range of soil pH (6.99-7.24) present within this study, availability of 

Simazine to degradation processes between cores is unlikely to have been substantial. Degradation 

of atrazine – an s-triazine herbicide – in soils within this pH range is typically due to growth linked 

metabolism, as opposed to cometabolic metabolism (Houot et al., 2000, Bending et al., 2006).  The 

narrow range of pH within the present study may also account for the low variability (as mean sum 

of squares) associated with soil pH – 4.2 %, 3.6 %, and 4.8% for bacteria, eukaryotes and fungi 

respectively. Whereas soil pH – usually over larger ranges – is often determined as a key driver of 

soil microbial diversity (Rousk et al., 2010, Zhalnina et al., 2015, Wang et al., 2019), and specifically 

the abundance of CPP degrading cohorts (Walker et al., 2001). Further, in contrast to Rousk et al. 

(2010) soil fungi were identified to be more strongly influenced by soil pH than soil bacteria. 
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Whilst cores for analysis of the microbial analysis were sampled and maintained under 

identical conditions to those detailed in Chapter 3, they differ in the lack of application of a 

compound (Mandipropamid or Simazine) and the corresponding solvent. This difference was a 

requirement of sponsor support of the study. However, despite this difference, the study of these 

cores has potential benefits – both in facilitating the attempted amplification of functional genes 

(see 4.4.1), and in understanding the effects of incubation on soil microbial communities in soil 

cores. The incubation conditions of the study – darkness, temperature controlled to 20 °C, moisture 

control, and the lack of plants – are substantially removed from field conditions, and equalise 

conditions between tillage treatments. Understanding if the equalisation of conditions drove 

convergence of microbial community composition, and therefore similar rates of degradation and 

dissipation is of value. Further, as core studies of similar designs may be considered to compliment 

or replace OECD 307 studies due to concerns over the design and validity of the OECD 307 guidelines 

(OECD, 2002, Dougan et al., 2013, Miranda, 2019), assessing whether core designed studies can 

support more stable, and environmentally relevant microbial communities has significant scientific 

value.   

4.4.3 Conclusion 

 The present study failed to identify the presence of Simazine degrading genes, and to assess 

their abundance or diversity. Analysis of the composition of key soil microbiome components – 

bacteria, eukaryotes and fungi revealed incubation conditions of the degradation to alter bacteria 

community composition, but not eukaryotes and fungi. Assessment of the effects of tillage on the 

soil microbiome should be considered based upon analysis in Chapter 2 and 5, with the limited 

sampling and incubation conditions limiting conclusions that can be drawn on this issue from this 

study. However the higher variability of soil bacterial communities in soils under RT than IT are 

consistent with the hypothesised causes of CPP degradation variability in Chapter 3 – more variable 

bacterial communities in soils under RT than IT may lead to more variable rates of CPP degradation. 
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Chapter 5: Tillage Intensity and Soil Depth 

5.1 Introduction 

5.1.1 Soil microbial communities and depth 

Baas Becking (1934) stated that ‘everything is everywhere, but, the environment selects’ (de 

Wit and Bouvier, 2006). However such a niche model relies upon unlimited dispersion of species or 

genes (Fondi et al., 2016), for which Baas Becking (1934) suggests dispersion of microbes by 

atmospheric transport (de Wit and Bouvier, 2006). However, dispersal within soil matrices is limited, 

and community composition may in part be considered to be a function of limited dispersion and 

stochastic processes (Dumbrell et al., 2010). Consequently, soil community composition is neither a 

true fit of niche or neutral ecological models. 

IT tillage mixes the upper soil (generally 0-30 cm) of ploughed fields, both inverting soil in 

the vertical, and translocating soil horizontally across the field (De Alba, 2003, Hula and Novak, 

2016). While RT techniques can relocate soil particles across a field, some RT techniques, e.g. disc 

tillage, may translocate particles only 33 – 50 % as far as IT, and with significantly less vertical mixing 

(Hula and Novak, 2016). Such translocation of soil will provide a means of dispersal for 

microorganisms and genes. The degree of mixing and the depth to which RT disturbs the soil profile 

varies dependent upon the exact techniques employed (Arvidsson, 1998, Derpsch et al., 2014, 

Townsend et al., 2016).  

Many of the most significant determinants of soil microbiome composition, including 

organic carbon content, nutrient availability and soil moisture, are strongly correlated to depth in 

the soil profile (Fierer, 2017). Consequently, vertical sampling within the soil profile may yield 

bacterial communities within tens of centimetres of each other that are as dissimilar as samples 

collected from horizontal distances measured in kilometres (Chu et al., 2016). Microbial biomass and 

oxidative enzyme activity declines with depth (Hsiao et al., 2018).  

Within RT tillage systems, soil organic carbon content becomes increasingly stratified 

(Haddaway et al., 2017). This change is likely a direct consequence of reduced mixing as tillage 

intensity decreases (Hula and Novak, 2016), and therefore crop residues are not incorporated 

throughout as large a depth in the soil profile. Changes in the total carbon, and carbon to nitrogen 

ratio within soils were identified by Chu et al. (2016) as the best predictors of soil microbial 

community distribution. Similarly, Fierer et al. (2003) find that soil microbial communities are shaped 

by increasing resource limitations at greater soil depths. Consequently, it may be predicted that 
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increased soil depths may favour greater relative abundances of actinomycetes, and reduce the 

relative abundance of soil fungi (Fierer et al., 2003). How soil fungal communities respond to 

reduced resource availability at depth, traded off against reductions in mechanical disturbance from 

a reduction in tillage intensity are unknown (Helgason et al., 1998, Holland, 2004). Contrastingly, 

Hsiao et al. (2018) report carbon not to be limiting to subsurface soil microbial communities, but 

rather nitrogen and phosphorus availability. 

In addition to resource availability due to tillage of arable fields, the role of plants in 

providing resources to microbial communities, should not be overlooked. Root systems exudates, in 

addition to symbiotic or parasitic interactions between plants and the microbial community may 

increase resource availability deep within soil profiles. The relative resource abundance within the 

rhizosphere may increase heterogeneity within the soil profile, and be more notable at resource 

poor depths (Johnson et al., 2002, Kamel et al., 2016, Fan et al., 2018). Such inputs may arise both 

from crops, and potentially unevenly within agricultural landscapes, with field boundaries potentially 

supporting more diverse arbuscular mycorrhizal (AM) fungal communities (Holden et al., 2019), 

potentially with greater rooting depths or distances.  

In addition to resource availability, soil moisture varies with depth in the soil profile, and can 

act as a significant determinant of soil microbial composition (Fierer, 2017, Griffin et al., 2020, Hao 

et al., 2021). Increased depth within the soil profile, and the frequency and duration within which 

soil is saturated can influence soil microbial communities (Griffin et al., 2020, Hao et al., 2021), with 

greater saturation tending to decrease bacterial diversity. RT may be associated with greater water 

holding capacity and rain infiltration due to improved pore structure, as a consequence of greater 

soil macroaggregate stability (Holland, 2004). Reducing the probability of saturation by improved 

water holding capacity may therefore be predicted to increase soil microbial community diversity, 

however such effects may be small relative to other determinants of a fields hydrological properties 

– topology, underlying lithology, and drainage systems (Brady and Weil, 2012). 

Higher intensity of tillage is associated with a higher metabolic quotient – increased 

respiration per unit biomass – than conservation tillage techniques (Zuber and Villamil, 2016). This 

may be attributable to the higher availability of crop residues to the microbial community, both by 

incorporation of all residues to within the soil profile, and reduced protection of these resources via 

incorporation into soil aggregates (Holland, 2004, Six et al., 2000, Six et al., 2004). Further, 

disturbance, or poorly aggregated soils may induced greater glomalin production by soil fungi (Rillig 

and Mummey, 2006).  
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5.1.2 Aims and objectives 

 The present study aims to identify changes in the composition of the soil microbiome, 

considering bacteria, eukaryotes and fungi, subject to different tillage techniques – IT and RT, and 

how tillage method may alter the spatial (both horizontal and vertical) variability of soil microbial 

communities. It was hypothesised that a reduction in tillage intensity would lead to an increased 

stratification of soil microbial communities in the otherwise ploughed, heavily mixed, soil layer. It 

was further hypothesised that a reduction in tillage intensity would facilitate an increase the 

horizontal heterogeneity of communities with depth as more stable and differentiated conditions 

become established. 
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5.2 Methodology 

5.2.1 Field Site and Sampling 

 The field experiments of the MycoRhizaSoil project were conducted at the University of 

Leeds farm, England (53.874, -1.323) (Leake et al., 2014, Leake et al., 2015). Holden et al. (2019) 

detail mean annual precipitation to be 674 mm, mean annual temperature of 9.2 C, and the soils to 

be loamy calcerous brown earth (0.5-0.9 m in depth) above limestone. The present study draws soils 

from the MycoRhizaSoil study field, ‘Quarry’ – Figure 5.1 farm layout, Figure 5.2 field layout. 

 

Figure 5.1 – University of Leeds farm layout. Adapted from Grayson (2016). MycoRhizaSoil field 

plots located in North-West corner of Quarry field. 

 

Quarry field has been an arable cultivated field from at least 2002, subject to IT. 

Experimental logs maintained by WRSAC technician (Lappage, 2015, Lappage, 2016, 

Lappage, 2017, Lappage, 2018) were referred to confirm details of field experiments. Briefly, the 

MycoRhizaSoil field study comprised of 124 wheat plots, each 1.2 m x 1.7 m (layout Figure 2). Field 

plots were established in Quarry field in 2014, with a crop of peas grown in the season 2014-2015. 

Two field plots under IT and RT were established, one of each treated with a mycorrhiza inoculant, 

and the others with only a clay carrier from the inoculant. A total of 7 wheat lines – 6 study and 1 in 
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guard plots – were grown over three crop cycles (2015-16, 2016-17 and 2017-18). Field plots were 

divided into four blocks (A-D), and 31 rows. IT conducted with either a 2 or 5 furrow reversible 

plough, RT with either a Lemken Heliodor or Sumo Trio, plots sown with a Oyjord plot drill. 

  



137 
 

 Fi
gu

re
 5

.2
  -

 F
ie

ld
 la

yo
u

t 
o

f 
M

yc
o

R
h

iz
aS

o
il 

ex
p

er
im

en
t 

w
it

h
in

 Q
u

ar
ry

 f
ie

ld
. (

A
M

 =
 A

rb
u

sc
u

la
r 

M
yc

o
rr

h
iz

a)
 

R
ow

 1
R

ow
 2

R
ow

 3
R

ow
 4

R
ow

 5
R

ow
 6

R
ow

 7
R

ow
 8

R
ow

 9
R

ow
 1

0
R

ow
 1

1
R

ow
 1

2
R

ow
 1

3
R

ow
 1

4
R

ow
 1

5
R

ow
 1

6
R

ow
 1

7
R

ow
 1

8
R

ow
 1

9
R

ow
 2

0
R

ow
 2

1
R

ow
 2

2
R

ow
 2

3
R

ow
 2

4
R

ow
 2

5
R

ow
 2

6
R

ow
 2

7
R

ow
 2

8
R

ow
 2

9
R

ow
 3

0
R

ow
 3

1

B
lo

ck
 

A

W
h

ea
t 

6

W
h

ea
t 

5

W
h

ea
t 

1

W
h

ea
t 

4

W
h

ea
t 

2

W
h

ea
t 

3

W
h

ea
t 

6

W
h

ea
t 

7

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

1

W
h

ea
t 

2

W
h

ea
t 

5

W
h

ea
t 

4

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

1

W
h

ea
t 

3

W
h

ea
t 

6

W
h

ea
t 

2

W
h

ea
t 

5

W
h

ea
t 

4

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

3

W
h

ea
t 

2

W
h

ea
t 

5

W
h

ea
t 

6

W
h

ea
t 

7

B
lo

ck
 

B

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

3

W
h

ea
t 

5

W
h

ea
t 

2

W
h

ea
t 

6

W
h

ea
t 

4

W
h

ea
t 

7

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

2

W
h

ea
t 

6

W
h

ea
t 

5

W
h

ea
t 

3

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

1

W
h

ea
t 

5

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

4

W
h

ea
t 

2

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

1

W
h

ea
t 

2

W
h

ea
t 

6

W
h

ea
t 

4

W
h

ea
t 

5

W
h

ea
t 

3

W
h

ea
t 

7

B
lo

ck
 

C

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

5

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

2

W
h

ea
t 

4

W
h

ea
t 

7

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

2

W
h

ea
t 

4

W
h

ea
t 

5

W
h

ea
t 

1

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

1

W
h

ea
t 

4

W
h

ea
t 

5

W
h

ea
t 

2

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

3

W
h

ea
t 

6

W
h

ea
t 

2

W
h

ea
t 

5

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

7

B
lo

ck
 

D

W
h

ea
t 

3

W
h

ea
t 

4

W
h

ea
t 

5

W
h

ea
t 

2

W
h

ea
t 

1

W
h

ea
t 

6

W
h

ea
t 

3

W
h

ea
t 

7

W
h

ea
t 

5

W
h

ea
t 

6

W
h

ea
t 

2

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

3

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

5

W
h

ea
t 

3

W
h

ea
t 

4

W
h

ea
t 

1

W
h

ea
t 

2

W
h

ea
t 

6

W
h

ea
t 

7

W
h

ea
t 

7

W
h

ea
t 

5

W
h

ea
t 

6

W
h

ea
t 

1

W
h

ea
t 

3

W
h

ea
t 

4

W
h

ea
t 

2

W
h

ea
t 

7

K
e

y

C
ro

p 
in

cl
ud

ed
 in

 p
re

se
n

t 
st

ud
y

C
ro

p 
no

t 
in

cl
ud

ed
 in

 p
re

se
n

t 
st

ud
y 

N
o

 in
o

cu
lu

m
 o

r 
ca

rr
ie

r
C

ar
ri

e
r 

o
n

ly
Li

ve
 in

o
cu

lu
m

A
M

 in
o

cu
la

n
t

A
M

 in
o

cu
la

n
t

C
ar

ri
e

r,
 n

o
 A

M

R
T

IT
R

T
IT



138 
 

 

 Sampling was conducted on seven occasions; March, May, and July 2016, March, and June 

2017, April and June 2018. In March and May 2016, sampling was conducted as soil cores taken at 

10 cm intervals in depth from 0 – 40 cm, resulting in four cores (0-10, 10-20, 20-30, 30-40 cm) per 

plot. In July 2016, sampling was conducted as soil cores taken at 10 cm intervals in depth from 10 – 

50 cm, resulting in four cores (10-20, 20-30, 30-40, and 40-50 cm) per plot. In March and June 2017, 

and April and June 2018 sampling was conducted as cores taken from 10-20 cm in depth. 

 Samples were stored at – 20 °C prior to freeze drying. Batches of samples were freeze dried 

for approximately 48 hours, until they were visibly dry, crumbled easily, and felt cool – not cold. 

Dried samples were stored at approximately 20 °C. 

 For the present study, samples collected from two wheat lines, Wheat 1 and Wheat 2, were 

analysed.  

5.2.2 Molecular Methods 

DNA was extracted, amplified and sequenced according to the protocols detailed in Chapter 

2.  

5.2.3 Data Analysis – Bioinformatics 

Amplicon sequence data for community composition was analysed according to the 

protocols detailed in Chapter 2.  

Table 5.1 details the normalisation rates of the data, and the number of samples retained. 

Table 5.1 – Data on normalization and retention of samples 

 Normalization Total 

Samples 

Samples retained 

Study Bacteria Eukaryotes Fungi  Bacteria Eukaryotes Fungi 

MRS 13792 9414 16153 284 283 258 283 

 

5.2.4 Data Analysis – Statistics 

Statistical analysis of data was conducted according to the protocols detailed in Chapter 2. 

Note assumptions on the dispersion of data for PERMANOVA were breached for sampling date and 

depth for bacteria, eukaryotes and fungi (See Chapter 2). 
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5.3 Results 

5.3.1 Analysis of cultivated soils 

For bacteria, PERMANOVA revealed significant effects of treatment, depth, sampling, row 

and block on community composition (DF=1 F=1.92 P<0.05, DF=1 F=61.2 P<0.001, DF=1 F=4.42 

P<0.001, DF=8 F=1.35 P<0.02, DF=3 F=1.75 P<0.001). Wheat variety did not have a significant effect 

on bacterial community composition (DF=1, F=0.90, P>0.4). Depth is the most determinant variable 

of bacterial community composition accounting for 17 % variance (as percentage of total sum of 

squares), with treatment, sampling, row, block and wheat variety accounting for 0.5 %, 7.2 %, 2.9 %, 

1.7 %, 0.2% respectively (residuals 71 %, all to 2 sf.). Figures 5.3A and 5.3B show the DCA ordinations 

of the bacterial community composition grouped by treatment and depth respectively – the sizeable 

effect of depth, and the slight effect of treatment can be observed. The effect of depth is evident 

both as in increased variability at ≥ 30 cm of depth, and in the suggestion of a gradient with 

increasing depth. Median distances from the centroid of the group for treatment, grouped by depth 

reveal the much greater variability in community composition in soils deeper than the reach of 

ploughs, and RT communities are more variable than IT at depths between 0 and 0.4 m (Figure 5.4). 

Figures 5.5 and 5.6 show relative abundance of taxonomic groups of bacteria grouped by treatment 

and depth respectively. Despite the PERMANOVA result that treatment has a significant difference 

on ASV composition, no clear difference can be observed in the relative abundance of the most 

abundant taxonomic groups (Figure 5.5), this may be due to the changes being within the ‘other’ 

taxonomic groups, or an effect of assessing the data at different resolutions (ASVs as opposed to 

grouped taxa). At depths greater than 30 cm from the soil surface, substantial differences can be 

observed relative to shallower soil samples – a reduction in the relative abundance of Bacillaceae, 

and an increase in Actinobacteria. Per sample ASV richness and diversity (as Simpsons Index) is 

shown in Figure 5.7, sample diversity is universally high, with no universal trend in richness or 

diversity as a function of treatment. 
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A 

 

B 

 

Figure 5.3 – DCA sample scores (axis 1 and 2) for bacterial community composition. (A) Coloured 

hulls show the range of all samples from IT (blue) and RT (yellow). (B) Coloured hulls show the 

range of all samples from 0-10 cm (blue), 10-20 cm (yellow), 20-30 cm (red), 30-40 cm (green) and 

40-50 cm (black). 
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Figure 5.4 – Distance from median sample scores (across all 4 DCA axis) for bacterial community 

composition in soils under IT (blue) and RT (yellow), split by depth. 
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Figure 5.5 – Bacterial community composition. Grouped by treatment. 
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Figure 5.6 – Bacterial community composition. Grouped by depth. 
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B 

 

Figure 5.7 – (A) Bacterial ASV richness per sample. (B) Bacterial ASV diversity per sample. 
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For eukaryotes, PERMANOVA revealed significant effects of treatment, depth, sampling, row 

and block on community composition (DF=1 F=1.97 P<0.02, DF=1 F=11.3 P<0.001, DF=1 F=4.36 

P<0.001, DF=8 F=1.39 P<0.01, DF=3 F=1.48 P<0.02). Wheat variety did not have a significant effect 

on eukaryote community composition (DF=1, F=0.89, P>0.5). Sampling is the most determinant 

variable of eukaryote community composition accounting for 8.9 % variance (as percentage of total 

sum of squares), with treatment, depth, row, block and wheat variety accounting for 0.7 %, 3.9 %, 

3.8 %, 1.5 %, 0.3% respectively (residuals 81 %, all to 2 sf.). Figures 5.8A and 5.8B show the DCA 

ordinations of the eukaryote community composition grouped by treatment and depth respectively 

– the sizeable effect of depth (increased variability at depths ≥30 cm), and the slight effect of 

treatment (increase variability with a reduction in tillage intensity) can be observed. Median 

distances from the centroid of the group for treatment, grouped by depth reveal the much greater 

variability in community composition in soils deeper than the reach of ploughs, and RT communities 

are more variable than IT at depths between 0.1 and 0.4 m (Figure 5.9). Figures 5.10 and 5.11 show 

relative abundance of taxonomic groups of eukaryotes grouped by treatment and depth 

respectively. Aggregated relative abundances for samples separated by treatment do not a 

significant treatment effects (Figure 5.10), as was assessed by PERMANOVA – this may be a 

consequence of analysis conducted at different resolutions (ASVs vs taxonomic groupings). With 

increased depth, the general trend is an increased abundance of Poales (excluding 20-30 cm in 

depth), while there is a notable reduction in Embryophyta at depths ≥30 cm (Figure 5.11).  Per 

sample ASV richness and diversity (as Simpsons Index) is shown in Figure 5.12. Within the ploughed 

layer (<30 cm in depth) of IT plots, eukaryotic diversity is less than the corresponding depths of RT 

(Figure 5.12), but this is slight, and there is no clear trend in ASV richness at these depths for 

treatment. At depths ≥30 cm in depth, there are on average slight reductions in ASV richness, and 

diversity (Figure 5.12). 
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A 

 

B 

 

Figure 5.8 – DCA sample scores (axis 1 and 2) for eukaryotic community composition. (A) Coloured 

hulls show the range of all samples from IT (blue) and RT (yellow). (B) Coloured hulls show the 

range of all samples from 0-10 cm (blue), 10-20 cm (yellow), 20-30 cm (red), 30-40 cm (green) and 

40-50 cm (black). 
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Figure 5.9 – Distance from median sample scores (across all 4 DCA axis) for eukaryotic community 

composition in soils under IT (blue) and RT (yellow), split by depth. 
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Figure 5.10 – Eukaryotic community composition. Grouped by treatment. 
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Figure 5.11 – Eukaryotic community composition. Grouped by depth. 
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B 

 

Figure 5.12 – (A) Eukaryote richness per sample. (B) Eukaryote diversity per sample. 
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For fungi, PERMANOVA revealed significant effects of treatment, depth, sampling, row and 

block on community composition (DF=1 F=5.86 P<0.001, DF=1 F=31.6 P<0.001, DF=1 F=5.43 P<0.001, 

DF=8 F=1.35 P<0.02, DF=3 F=1.75 P<0.001). Wheat variety did not have a significant effect on fungal 

community composition (DF=1, F=0.74, P>0.7). Depth is the most determinant variable of fungal 

community composition accounting for 9.3 % variance (as percentage of total sum of squares), with 

treatment, sampling, row, block and wheat variety accounting for 1.7 %, 9.1 %, 3.1 %, 1.5 %, 0.2 % 

respectively (residuals 71 %, all to 2 sf.). Figures 5.13A and 5.13B show the DCA ordinations of the 

fungal community composition grouped by treatment and depth respectively – the sizeable effect of 

depth (a gradient along DCA1 axis, with one or more of the lowest scoring (in DCA1) sample of each 

successive depth being a greater value than the proceeding (shallower) depth), and the slight effect 

(greater variability) of treatment can be observed. Median distances from the centroid of the group 

for treatment, grouped by depth reveal the greater variability in fungal community composition in 

soils deeper than the reach of ploughs, and RT communities are more variable than IT at depths 

between 0 and 0.4 m (Figure 5.14). Figures 5.15 and 5.16 show relative abundance of taxonomic 

groups of fungi grouped by treatment and depth respectively. With respect to treatment, IT relative 

to RT favours a higher relative abundance of Plectosphaerellaceae and Lasiosphaeriaceae, with a 

lower relative abundance of Didymellaceae (Figure 5.15). With respect to depth, collectively, the ten 

most abundant taxonomic groupings tend to decline with increasing depth – particularly 

Plectosphaerellaceae, Didymellaceae and Nectriaceae, whilst the relative abundance of 

Geminibasidiaceae increases substantially at depths which are expected not to be have been 

historically ploughed (≥30 cm depth) (Figure 5.16).  Per sample ASV richness and diversity (as 

Simpsons Index) is shown in Figure 5.17. Sample fungal ASV diversity at 0-10 cm in depth is lower in 

RT soils than IT soils, but at other depths consistent (Figure 5.17B), conversely ASV richness is 

greater in RT soils in all depths 0-50 cm, excluding 30-40 cm. 
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A 

 

B 

 

Figure 5.13 – DCA sample scores (axis 1 and 2) for fungal community composition. (A) Coloured 

hulls show the range of all samples from IT (blue) and RT (yellow). (B) Coloured hulls show the 

range of all samples from 0-10 cm (blue), 10-20 cm (yellow), 20-30 cm (red), 30-40 cm (green) and 

40-50 cm (black). 
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Figure 5.14 – Distance from median sample scores (across all 4 DCA axis) for fungal community 

composition in soils under IT (blue) and RT (yellow), split by depth. 
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Figure 5.15 – Fungal community composition. Grouped by treatment. 
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Figure 5.16 – Fungal community composition. Grouped by depth. 
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A 

 

B 

 

Figure 5.17 – (A) Fungal ASV richness per sample. (B) Fungal ASV diversity per sample. 
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5.4 Discussion 

5.4.1 Effects of tillage method on the soil microbiome 

Quarry field has a long history of being cultivated, and had been subject to IT for more than 

a decade before the field experiment was established. Consequently, the treatments as described 

within the present study represent the continuation of IT, and a divergence to lower intensity tillage 

techniques (RT). This transitional phase is beneficial for understanding the transition that many 

fields are undergoing as RT becomes more common, and limiting relative to longer term 

experiments to investigate differences between IT and RT. 

Nevertheless, reducing the intensity of tillage significantly alters soil microbial community 

composition, including bacteria (P<0.05), eukaryotes (P<0.02) and fungi (P<0.001) (PERMANOVA 

results). The relative differentiating impact of tillage type was slight (see Figures 5.3A, 5.8A, and 

5.13A), explaining 0.5 %, 0.7 %, and 1.7 % of variance (as percentage of total of sum of squares) for 

bacteria, eukaryotes and fungi respectively. ASV richness and diversity (Simpsons Index) are similar 

between treatments for all studied components of the soil microbiome (Figures 5.7, 5.12 and 5.17). 

These results, consistent diversity but with changes in community composition, are consistent with 

Boscutti et al. (2015), who identified the same effect in Carabids and flora.  Amongst Charophyta, IT 

communities contained a higher relative abundance of Embryophyta, with RT samples containing 

higher relative abundances of Poales, Chlamydomonadales, and other unidentified Charophyta. 

Amongst fungi, IT saw higher relative abundances of Plectosphaerellaceae, Lasiosphaeriaceae, and 

Mircoascaceae, and RT higher relative abundances of Didymellaceae and Mortierellaceae. All studied 

sections of the soil microbiome were more variable in composition under RT than IT.  

The present study further expands the evidence base of fungi being more greatly affected by 

tillage intensity than bacteria. Higher intensity of tillage is associated with a higher relative 

abundance of Glomerellales and Sordariales, and a reduction in the relative abundance of 

Pleosporales. Gosling et al. (2014) report increase tillage intensity to more negatively impact upon 

the presence of Glomerellales spp. A reduction in tillage intensity did not increase the diversity of 

fungi within the sampled soils, which may have been expected to benefit hyphal species (Helgason 

et al., 1998). 

However, disturbance of filamentous bacteria (Actinobacteria) potentially as a legacy effect 

of prolonged ploughing of the field is apparent, with their relative abundance increase at depths of 

greater than 30 cm (Figure 5.7). Amongst the total eukaryotic fraction of the soil microbiome, higher 

intensity of tillage is associated with a higher relative abundance of Charophyta, with relatively more 
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Charophyta Embryophyta to Charophyta Poales. This may be due to greater incorporation of plant 

residues throughout the soil profile.  

5.4.2 The soil microbiome varies with depth 

Depth was found to account for the greatest variance in bacterial and fungal community 

composition (17 % and 9.3 % respectively) and second (to time of sampling) for total eukaryotic 

community composition (3.9 %). The relative impact of depth can be observed in the DCA results, 

with bacteria and fungi – slightly – separating by depth along axis 1 (Figures 5.3B and 5.13B), whilst 

for eukaryotes community dissimilarity radiates in all axis from a relatively central shallow zone 

(Figure 5.8B). 

For all studied segments of the soil microbiome, variance in community composition 

increased with depth (Figures 5.4, 5.9 and 5.14). The increase in horizontal heterogeneity in 

community composition is not uniform with depth, but mostly abrupt, separating shallow (0-10, 20-

30 and 20-30 cm depth) and deep (30-40, and 40-50 cm) samples. Deeper samples contain on 

average fewer unique ASVs (Figures 5.7A, 5.12A and 5.17A) than shallower samples, and for 

eukaryotes each community is on average less diverse in deeper soils (Figure 5.16). A limitation of 

this analysis is the disproportionate number of samples per depth, with 10-20 cm samples collected 

at 7 timepoints; 20-30, and 30-40 cm at three timepoints; 0-10 at 2 timepoints; and 40-50 cm at 1 

timepoint. This suggests that soil communities at greater depths are more variable than those in the 

upper soils, even when accounting for seasonal variation in upper soils.   

The sharp transition in horizontal heterogeneity with depth between the upper and lower 

samples could be explained by the field history of the site, which has been subject to IT since as early 

as 2002. This prolonged period of IT may have homogenised the upper soil, with material 

translocated both vertically and horizontally across the field (De Alba, 2003, Yamaguchi et al., 2012, 

Hula and Novak, 2016). The relative abundance of some soil taxa are strongly separated at the 

transition at 30 cm in depth; in bacteria decreased abundances of Firmicutes and higher abundances 

of Actinobacteria below 30 cm (Figure 5.6), and for fungi decreased abundances of 

Lasiosphaeriaceae and increased abundance of Geminibasidiaceae below 30 cm (Figure 5.16). 

Conversely some taxa can be observed to taper in abundance irrespective of the 30 cm transition for 

example Didymellaceae (fungi, decreasing with depth (Figure 5.16)), or have similar relative 

abundances throughout the soil profile – Ciliophora (eukaryote (Figure 5.11)). 

The differentiation of community composition with depth may be attributable not only to 

mixing caused by tillage, but also compaction of the plough-pan underneath the cultivated soil 
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(Arvidsson, 1998, Li et al., 2019), physicochemical differences in soil dynamics with depth, and the 

influence of vegetation via the rhizosphere on bulk soils. Soil temperatures at depths greater than 30 

cm may remain near constant throughout a day, while the temperature of upper soils may fluctuate 

significantly (Gulser and Ekberli, 2004). Soil moisture is a significant determinant of soil bacterial 

diversity (Griffin et al., 2020), with both deeper and more frequently saturated soils being less 

diverse. However, within the present study bacterial diversity did not decline with depth (Figure 5.7).    

The hypothesised increase in stratification of soil microbial community composition under 

RT, expected with a decrease in mixing is not supported within the presented data. This may be 

attributable to the limited number of cultivations conducted prior to the sampling across the depth 

of the soil profile (twice), the reduction in intensity of the RT techniques within the present being 

relatively close in intensity to IT, or the hypothesis being wrong. 

5.4.3 Shortcomings 

 As detailed in Chapter 2, the presence of relic DNA may mask changes in community 

composition (Carini et al., 2016), and the same criticisms of a lack of quantitative data can be applied 

to the present study.  
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Chapter 6: General Discussion 

6.1 Discussion 

 With respect to thesis aim 1 (identify changes in the composition of soil microbial 

communities under different tillage intensities): In Chapter 2, a two-year conversion of pasture fields 

to crop strips under IT and RT, tillage intensity was found to significantly alter the community 

composition of soil eukaryotes. In a longer-term study (four instances of variable tillage intensities), 

as detailed in Chapter 5, tillage intensity was found to significantly alter the community composition 

of soil bacteria, eukaryotes, and fungi. Further, Chapter 5 clearly details that upper soils subject to 

tillage, both in the duration of the experiment and previously, contain substantially more 

homogenous bacterial, eukaryotic and fungal communities than deeper non-tilled soils. With limited 

(2 samplings after 1, and 3 samplings after 2 instances of tillage) data (see Figures 5.4B, 5.9B and 

5.13B) suggest that as hypothesised, a reduction of tillage intensity may lead to a more variable 

community composition throughout the soil profile, and that this is greater at greater depths. Thus, 

chapter 5 can be considered to also address thesis aim 6 (identify how tillage intensity alters the 

spatial variability of soil microbial communities).  

 These finds are generally consistent with the hypothesis of the present work, and with the 

scientific literature, that tillage intensity alters the soil microbiome (Helgason et al., 1998, Yin et al., 

2010, Zuber and Villamil, 2016, Wang et al., 2017, Somenahally et al., 2018). The present thesis does 

so across broad taxonomic groupings at a higher resolution than many preceding works, due to the 

application of high throughput amplicon sequencing/metabarcoding techniques. The present work 

details how tillage shapes the variability in soil communities, in both the horizontal and vertical. It 

could be concluded that a legacy effect of ploughing of Quarry field has led to a vertical divide with 

previously ploughed soils substantially more homogenous than those (deeper) that are unploughed. 

Horizontally, reduced tillage intensity can be expected to increase the heterogeneity of soil, soil 

microbial communities, and their functions, but that in aggregate these effects may be minor.   

 As detailed in Chapter 3, the rate of degradation of Mandipropamid and Simazine were 

similar in soils under IT and RT, but the rate of degradation was more variable at a lower intensity of 

tillage. Thus, thesis aim 3 (identify differences in the rate of degradation of CPP in soils at different 

tillage intensities) can be considered to have been addressed. This finding suggests whilst sampling 

regimes for studies may be need to be adapted to account for increased heterogeneity as RT 

becomes increasingly common, at landscape or catchments scales the effects of RT with respect to 

CPP environmental fate may be minimal. In Chapter 4, it was discovered that the soil cores from RT 
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tillage hosted more variable soil bacterial communities than IT soils. Combining these findings, we 

can conclude that tillage can alter the distribution of soil bacterial communities, that this alteration 

may extend to the distribution of important functional genes that might otherwise be more widely 

distributed to soil bacterial communities via self-transmissible plasmids (de Souza et al., 1998a), and 

that tillage intensity can alter, at least at small scales, the environmental fate of crop protection 

products. 

 With respect to thesis aim 5 (identify the effects of the incubation of soil for degradation 

studies on soil microbial communities), as detailed in thesis section 4.4.2, PERMANOVA analysis of 

the bacterial, eukaryotic, and fungal communities of the incubated soils, found there only to be a 

significant difference in bacterial community composition. However, such conclusions are limited, 

both due to each core being discreet units sampled destructively at each timepoint, and the 

potential for temporal effects to be masked by relic-DNA (Carini et al., 2016, Hannula et al., 2019).  

 Determination of universal rules for predicting the environmental fate of CPPs in soils is 

challenging due to the broad array of compound characteristics, variable microbial degradation 

potential, and soil physicochemical characteristics, that determine the availability to, and rate of 

degradation processes (Kah et al., 2007, Alletto et al., 2010). Altering tillage intensity can alter many 

key soil properties and microbial communities, and in some combinations of soil and CPP, compound 

persistence may increase, remain constant, or decrease. The present study can conclude that for 

Mandipropamid and Simazine, degradation rates are near consistent at differing tillage intensities. 

However, the present study can suggest that the decreased mixing in RT systems may lead to greater 

spatial variability in CPP fate. The relevance of such small-scale variation in the rate of degradation 

may be valuable to inform the sampling strategies of future studies, even if only mean or aggregated 

values from studies are then subsequently used for environmental risk assessment. 

 In Chapter 4, failure to amplify genes associated with the degradation of s-triazine herbicides 

is detailed, and possible reasons for this are discussed. Of these possible reasons, low abundance of 

the genes (or at least a subset thereof) for which amplification was attempted may be considered 

the most probable. It can be concluded that thesis aim 4 (identify if tillage intensity alters the 

distribution of genes associated with CPP degradation within the soils) was not achieved. It has been 

suggested that studies of microbial biogeography should be focussed upon genes, and not species or 

taxa (Nesbo et al., 2006, O'Malley, 2008). This is important, as it suggests that PCR amplification and 

by extension metabarcoding are not sufficiently sensitive tools to study the rarest fractions of the 

soil microbiome. In the future, use of shotgun-metagenome sequencing may be an effective way of 

assessing relatively rare but functionally important genes within soil communities. 
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 Additionally, as detailed in Chapter 2, the present work identifies, for the first time, that soils 

under hedgerows host distinct communities of soil bacteria and eukaryotes, and expands Holden et 

al. (2019) findings for distinct fungal communities to bulk soil fungal communities, Holden et al. 

(2019) detailing DNA extraction from roots, but not soil.  

 This finding suggests a need to conserve hedgerows, and the distinct communities, as these 

may act as reservoirs of functionally valuable species or genes, that may otherwise not be found 

within agricultural landscapes (Holden et al., 2019). Recovery of earthworm populations following a 

reduction in management intensity is dependent upon recruitment from infield populations, and not 

from field boundary populations (Prendergast-Miller et al., 2021). However, the greater variability of 

infield communities closer to field boundaries (see Figures 2.6, 2.14, 2.19, 2.19, 2.24 and 2.29) may 

be suggestive of dispersal from field boundary communities. Findings regarding the potential 

dispersal from field boundaries are valuable with respect to thesis aim 2 (contextualise the 

composition of soil microbial communities in arable soils relative to other soils in an agricultural 

landscape (from pastures, field margins, and hedgerows)). This suggests a need for future sampling 

of pasture or tilled soils for CPP studies (either laboratory OECD 307, or terrestrial field dissipation 

studies) to sample at greater distances from field boundaries than may currently be permissible, to 

more be representative of the majority of field conditions (abiotic) and communities (biotic). 

 Elements of both a reduction in tillage intensity, and the protection of hedgerows feature 

within DEFRA (2021b) Sustainable Farming Incentive (SFI) scheme. Under the SFI scheme, farmers 

within England will be able (the scheme will be open to all farmers from 2024) to enter agreements 

on a per field basis, to receive payments for conducting sustainable activities (DEFRA, 2021b, DEFRA, 

2021c). DEFRA (2021a) guidance on RT and NT farming includes provision for the use of ploughing 

every three years, the effects of which may limit both biodiversity and SOC gains under the scheme, 

as ploughing may disrupt fungal networks, and increase soil aggregate turnover (Helgason et al., 

1998, Sheehy et al., 2015, Six et al., 2004). As concluded from Chapter 2, hedgerows host distinct soil 

microbial communities, and whilst DEFRA (2021b) guidance describes some benefits of hedgerow 

protection, this should be extended to reflect these distinct communities. 

 In conclusion, the present study has demonstrated how tillage intensity alters the 

composition of key soil microbial communities, and that this effect may be observed even within 

short term (2 tillage events) experiments. Whilst it was observed that a reduction in tillage intensity 

may increase the heterogeneity in the rate of degradation of crop protection products, that 

aggregated amongst samples this effect is not significant. 

6.2 Recommendations for future work 
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The following are specific recommendations to develop the work presented here and to 

evolve the questions and issues raised: 

1. Application of predictive functional profiling tools, may be applied to the data detailed in 

Chapters 2, 4 and 5. For the 16S datasets, this may involve use of either PICRUST Langille et 

al. (2013) and/or Tax4Fun (Asshauer et al., 2015). Reviewing these two tools, Koo et al. 

(2017) recommends the use of both tools concurrently for a more comprehensive analysis. 

For fungal data, FUNGuild (Nguyen et al., 2016) provides a tool for functional profiling based 

upon the guild system. Such techniques would expand upon the presented findings to; 

understand the impact of tillage on soil function (where applied to Chapters 2 and 5); 

expand the understanding of incubation conditions on soil function (Chapter 4, and thesis 

aim 5); and as an alternative technique in that may address the distribution of functional 

genes associated with CPP degradation.   

2. Application of cooccurrence network analysis approaches such as those described by Cobo-

Diaz et al. (2019), would allow for exploration of associations between ASVs or taxa 

identified between samples and datasets, and may identify key nodal subjects, and/or 

symbiotic or antagonistic relationships between subjects. Were such symbiotic and/or 

antagonistic relationships to be identified, these may facilitate understanding if particular 

groups (taxonomic, or if the above point were to be completed, functional) are more 

sensitive to changes in tillage techniques, and therefore longer-term community changes 

might be predicted from short term experiments, as detailed in Chapters 2 and 5. 

The following are general recommendations for future studies that aim to assess the role of 

tillage in shaping the soil microbiome, and in determining the environmental fate of CPPs: 

1. The use of long-term field sites, in which different tillage intensities have been applied 

consistently to plots for five or more years prior to sampling. Such plots would be beneficial 

in establishing the conditions within stable agriculturally managed soils, and not transitional 

conditions as detailed within the present work. 

2. A greater sampling effort of field studies on the effect of depth on the composition, 

abundance and function of soil microbial communities under different tillage intensities. As 

described in Chapter 5, it appears that tillage through the translocation of abiotic and biotic 

materials creates a homogenised zone in the upper section of soil profiles. Had greater 

sampling been conducted through the depth of the soil profiles of the SoilBioHedge 

experiment (as described in Chapter 2, and by Holden et al. (2019)), it is possible that this 

mixing effect would have been observed as pasture plots transitioned to tilled (IT and RT 
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plots). Further, the legacy and potential recovery of Warren field (known to be previously 

tilled), relative to Paddock and Valley field may have been addressable. Additionally, while 

near surface (ca. <15 cm in depth) soils under hedgerows were found to highly distinct from 

infield communities (Chapter 2), whether this distinctness holds at greater depths in the soil 

profile is unknown. 

3. Studies to address how the environmental fate of CPPs is altered by different tillage 

intensities should address the occurrence of metabolites, which may be formed and/or 

degrade at different rates depending upon specific combinations of tillage and soil type. 

Such an analysis would address a weakness of Chapter 3, where only the rate of degradation 

of the parent compound was assessed. Were different formation fractions of metabolites 

found to be formed in soils that had been tilled differently, this would evidence that tillage 

intensity alters the route of degradation of CPPs, which in turn would imply alteration of the 

distribution of the necessary functional genes within agricultural landscapes. 

4. Field dissipation studies of CPPs applied to plots under different tillage intensities may 

identify more accurately alterations in the rates of degradation, dissipation and leaching of 

compounds, more accurately capturing differences in soil conditions. An intermediary stage 

may include the conduct of lysimeter studies. The use of field trials avoids the potential 

influence of laboratory incubation conditions, soil sampling, and soil processing techniques, 

that may influence the findings of laboratory studies, such as detailed in Chapter 3. As 

detailed in Chapter 4, incubation conditions may have led to significant differences in soil 

bacterial community composition, thereby potentially lessening or preventing a divergence 

in the rate of compound degradation in the two soil types. 

5. Studies may adopt metagenomic approaches to identify the distribution of functional genes 

within the soil profile. Such studies may investigate the abundance of CPP degrading genes 

directly, or should these remain elusive, may imply from the distribution of other functional 

genes, for example nitrate reducing, how tillage intensity shapes the variability of gene 

distribution within agricultural soils. Application of such techniques may overcome the 

significant challenges encountered in the attempted amplification of Simazine degrading 

genes, as discussed in detail in thesis section 4.4.1.   

6. Assess how the microbial community of crop residues left on the soil surface by reduced 

tillage techniques differ from the soil biological crust of adjacent soils, both compositionally 

and functionally. Inclusion of crop residues in degradation studies, such as on the surface of 

soil cores should be investigated. Inclusion of crop residues within degradation studies 

would encapsulate one of defining features of RT soils relative to IT (≥30% of the crop 
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surface being covered in crop residues) (Holland, 2004). Consequently, the interception of 

CPPs, and potential contribution for degradation of CPPs from a potentially distinct 

community should be accurately characterised across a range of compounds.  

  



166 
 

References 
ALLETTO, L., COQUET, Y., BENOIT, P., HEDDADJ, D. & BARRIUSO, E. 2010. Tillage management effects 

on pesticide fate in soils. A review. Agronomy for Sustainable Development, 30, 367-400. 

ALSKAF, K., SPARKES, D. L., MOONEY, S. J., SJÖGERSTEN, S. & WILSON, P. 2019. The uptake of 
different tillage practices in England. Soil Use and Management, 36, 27-44. 

ANDERSON, M. J. & WALSH, D. C. I. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of 
heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 
83, 557-574. 

APPRILL, A., MCNALLY, S., PARSONS, R. & WEBER, L. 2015. Minor revision to V4 region SSU rRNA 
806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial 
Ecology, 75, 129-137. 

ARMENGOT, L., BERNER, A., BLANCO-MORENO, J. M., MÄDER, P. & SANS, F. X. 2014. Long-term 
feasibility of reduced tillage in organic farming. Agronomy for Sustainable Development, 35, 
339-346. 

ARVIDSSON, J. 1998. Effects of cultivation depth in reduced tillage on soil physical properties, crop 
yield and plant pathogens. European Journal of Agronomy, 9, 79-85. 

ASSHAUER, K. P., WEMHEUER, B., DANIEL, R. & MEINICKE, P. 2015. Tax4Fun: predicting functional 
profiles from metagenomic 16S rRNA data. Bioinformatics, 31, 2882-4. 

BAAS BECKING, L. G. M. 1934. Geobiologie of inleiding tot de milieukunde., The Hague, the 
Netherlands, W.P. Van Stockum & Zoon. 

BEDDINGTON, J. 2009. Food, energy, water and the climate: a perfect storm of global events? In: 
SCIENCE, G. O. F. (ed.). London. 

BENDING, G. D., LINCOLN, S. D. & EDMONDSON, R. N. 2006. Spatial variation in the degradation rate 
of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with 
chemical and microbial properties. Environ Pollut, 139, 279-87. 

BENDING, G. D., LINCOLN, S. D., SORENSEN, S. R., MORGAN, J. A. W., AAMAND, J. & WALKER, A. 
2003. In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon 
Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH. Applied 
and Environmental Microbiology, 69, 827-834. 

BERDENI, D., TURNER, A., GRAYSON, R. P., LLANOS, J., HOLDEN, J., FIRBANK, L. G., LAPPAGE, M. G., 
HUNT, S. P. F., CHAPMAN, P. J., HODSON, M. E., HELGASON, T., WATT, P. J. & LEAKE, J. R. 
2021. Soil quality regeneration by grass-clover leys in arable rotations compared to 
permanent grassland: Effects on wheat yield and resilience to drought and flooding. Soil and 
Tillage Research, 212. 



167 
 

BEULKE, S., VAN BEINUM, W. & SUDDABY, L. 2015. Interpretation of aged sorption studies for 
pesticides and their use in European Union regulatory leaching assessments. Integr Environ 
Assess Manag, 11, 276-86. 

BLANKINSHIP, J. C., FONTE, S. J., SIX, J. & SCHIMEL, J. P. 2016. Plant versus microbial controls on soil 
aggregate stability in a seasonally dry ecosystem. Geoderma, 272, 39-50. 

BLUM, M., BOEHLER, M., RANDALL, E., YOUNG, V., CSUKAI, M., KRAUS, S., MOULIN, F., SCALLIET, G., 
AVROVA, A. O., WHISSON, S. C. & FONNE-PFISTER, R. 2010. Mandipropamid targets the 
cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant 
pathogen, Phytophthora infestans. Mol Plant Pathol, 11, 227-43. 

BLUM, M., GAMPER, H. A., WALDNER, M., SIEROTZKI, H. & GISI, U. 2012. The cellulose synthase 3 
(CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic 
acid amide (CAA) fungicides. Fungal Biol, 116, 529-42. 

BOLYEN, E., RIDEOUT, J. R., DILLON, M. R., BOKULICH, N. A., ABNET, C., AL-GHALITH, G. A., 
ALEXANDER, H., ALM, E. J., ARUMUGAM, M., ASNICAR, F., BAI, Y., BISANZ, J. E., BITTINGER, 
K., BREJNROD, A., BRISLAWN, C. J., BROWN, C. T., CALLAHAN, B. J., CARABALLO-RODRÍGUEZ, 
A. M., CHASE, J., COPE, E., DA SILVA, R., DORRESTEIN, P. C., DOUGLAS, G. M., DURALL, D. M., 
DUVALLET, C., EDWARDSON, C. F., ERNST, M., ESTAKI, M., FOUQUIER, J., GAUGLITZ, J. M., 
GIBSON, D. L., GONZALEZ, A., GORLICK, K., GUO, J., HILLMANN, B., HOLMES, S., HOLSTE, H., 
HUTTENHOWER, C., HUTTLEY, G., JANSSEN, S., JARMUSCH, A. K., JIANG, L., KAEHLER, B., 
KANG, K. B., KEEFE, C. R., KEIM, P., KELLEY, S. T., KNIGHTS, D., KOESTER, I., KOSCIOLEK, T., 
KREPS, J., LANGILLE, M. G. I., LEE, J., LEY, R., LIU, Y.-X., LOFTFIELD, E., LOZUPONE, C., MAHER, 
M., MAROTZ, C., MARTIN, B., MCDONALD, D., MCIVER, L. J., MELNIK, A. V., METCALF, J. L., 
MORGAN, S. C., MORTON, J., NAIMEY, A. T., NAVAS-MOLINA, J. A., NOTHIAS, L. F., 
ORCHANIAN, S. B., PEARSON, T., PEOPLES, S. L., PETRAS, D., PREUSS, M. L., PRUESSE, E., 
RASMUSSEN, L. B., RIVERS, A., ROBESON, I. I. M. S., ROSENTHAL, P., SEGATA, N., SHAFFER, 
M., SHIFFER, A., SINHA, R., SONG, S. J., SPEAR, J. R., SWAFFORD, A. D., THOMPSON, L. R., 
TORRES, P. J., TRINH, P., TRIPATHI, A., TURNBAUGH, P. J., UL-HASAN, S., VAN DER HOOFT, J. 
J. J., VARGAS, F., VÁZQUEZ-BAEZA, Y., VOGTMANN, E., VON HIPPEL, M., WALTERS, W., WAN, 
Y., WANG, M., et al. 2018. QIIME 2: Reproducible, interactive, scalable, and extensible 
microbiome data science. PeerJ. 

BOLYEN, E., RIDEOUT, J. R., DILLON, M. R., BOKULICH, N. A., ABNET, C. C., AL-GHALITH, G. A., 
ALEXANDER, H., ALM, E. J., ARUMUGAM, M., ASNICAR, F., BAI, Y., BISANZ, J. E., BITTINGER, 
K., BREJNROD, A., BRISLAWN, C. J., BROWN, C. T., CALLAHAN, B. J., CARABALLO-RODRÍGUEZ, 
A. M., CHASE, J., COPE, E. K., DA SILVA, R., DIENER, C., DORRESTEIN, P. C., DOUGLAS, G. M., 
DURALL, D. M., DUVALLET, C., EDWARDSON, C. F., ERNST, M., ESTAKI, M., FOUQUIER, J., 
GAUGLITZ, J. M., GIBBONS, S. M., GIBSON, D. L., GONZALEZ, A., GORLICK, K., GUO, J., 
HILLMANN, B., HOLMES, S., HOLSTE, H., HUTTENHOWER, C., HUTTLEY, G. A., JANSSEN, S., 
JARMUSCH, A. K., JIANG, L., KAEHLER, B. D., KANG, K. B., KEEFE, C. R., KEIM, P., KELLEY, S. T., 
KNIGHTS, D., KOESTER, I., KOSCIOLEK, T., KREPS, J., LANGILLE, M. G. I., LEE, J., LEY, R., LIU, Y.-
X., LOFTFIELD, E., LOZUPONE, C., MAHER, M., MAROTZ, C., MARTIN, B. D., MCDONALD, D., 
MCIVER, L. J., MELNIK, A. V., METCALF, J. L., MORGAN, S. C., MORTON, J. T., NAIMEY, A. T., 
NAVAS-MOLINA, J. A., NOTHIAS, L. F., ORCHANIAN, S. B., PEARSON, T., PEOPLES, S. L., 
PETRAS, D., PREUSS, M. L., PRUESSE, E., RASMUSSEN, L. B., RIVERS, A., ROBESON, M. S., 
ROSENTHAL, P., SEGATA, N., SHAFFER, M., SHIFFER, A., SINHA, R., SONG, S. J., SPEAR, J. R., 
SWAFFORD, A. D., THOMPSON, L. R., TORRES, P. J., TRINH, P., TRIPATHI, A., TURNBAUGH, P. 



168 
 

J., UL-HASAN, S., VAN DER HOOFT, J. J. J., VARGAS, F., VÁZQUEZ-BAEZA, Y., VOGTMANN, E., 
VON HIPPEL, M., WALTERS, W., et al. 2019. Reproducible, interactive, scalable and 
extensible microbiome data science using QIIME 2. Nature Biotechnology. 

BOSCUTTI, F., SIGURA, M., GAMBON, N., LAGAZIO, C., KRUSI, B. O. & BONFANTI, P. 2015. 
Conservation tillage affects species composition but not species diversity: a comparative 
study in Northern Italy. Environ Manage, 55, 443-52. 

BOXALL, A. B. A., SINCLAIR, C. J., FENNER, K., KOLPIN, D. & MAUND, S. J. 2004. When synthetic 
chemicals degrade in the Environment. Environmental Science and Technology. 

BRADY, N. C. & WEIL, R. C. 2012. The Nature and Property of Soils, Pearson. 

BRAY, J. R. & CURTIS, J. T. 1957. An Ordination of the Upland Forest Communities of Southern 
Wisconsin. Ecological Monographs, 27. 

BRIGGS, G., BROMILOW, R. & EVANS, A. 1982. Relationships between lipophyilicity and root uptake 
and translocation of non-ionised chemicals by barley. Pesticide Science, 13, 495-504. 

CALLAHAN, B. J., MCMURDIE, P. J. & HOLMES, S. P. 2017. Exact sequence variants should replace 
operational taxonomic units in marker-gene data analysis. ISME J, 11, 2639-2643. 

CALLAHAN, B. J., MCMURDIE, P. J., ROSEN, M. J., HAN, A. W., JOHNSON, A. J. & HOLMES, S. P. 2016. 
DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 13, 
581-3. 

CAPORASO, J. G., LAUBER, C. L., WALTERS, W. A., BERG-LYONS, D., LOZUPONE, C. A., TURNBAUGH, P. 
J., FIERER, N. & KNIGHT, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions 
of sequences per sample. PNAS, 108, 4516-4522. 

CARACCIOLO, A. B., GRENNI, P., CICCOLI, R., DI LANDA, G. & CREMISINI, C. 2005. Simazine 
biodegradation in soil: analysis of bacterial community structure by in situ hybridization. Pest 
Manag Sci, 61, 863-9. 

CARINI, P., MARSDEN, P. J., LEFF, J. W., MORGAN, E. E., STRICKLAND, M. S. & FIERER, N. 2016. Relic 
DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol, 2, 
16242. 

CASSIGNEUL, A., ALLETTO, L., BENOIT, P., BERGHEAUD, V., ETIEVANT, V., DUMENY, V., LE GAC, A. L., 
CHUETTE, D., RUMPEL, C. & JUSTES, E. 2015. Nature and decomposition degree of cover 
crops influence pesticide sorption: quantification and modelling. Chemosphere, 119, 1007-
14. 

CASSIGNEUL, A., BENOIT, P., BERGHEAUD, V., DUMENY, V., ETIEVANT, V., GOUBARD, Y., MAYLIN, A., 
JUSTES, E. & ALLETTO, L. 2016. Fate of glyphosate and degradates in cover crop residues and 
underlying soil: A laboratory study. Sci Total Environ, 545-546, 582-90. 



169 
 

CHARNAY, M. P., TUIS, S., COQUET, Y. & BARRIUSO, E. 2005. Spatial variability in 14C-herbicide 
degradation in surface and subsurface soils. Pest Manag Sci, 61, 845-55. 

CHU, H., SUN, H., TRIPATHI, B. M., ADAMS, J. M., HUANG, R., ZHANG, Y. & SHI, Y. 2016. Bacterial 
community dissimilarity between the surface and subsurface soils equals horizontal 
differences over several kilometers in the western Tibetan Plateau. Environ Microbiol, 18, 
1523-33. 

COBO-DIAZ, J. F., BARONCELLI, R., LE FLOCH, G. & PICOT, A. 2019. Combined Metabarcoding and Co-
occurrence Network Analysis to Profile the Bacterial, Fungal and Fusarium Communities and 
Their Interactions in Maize Stalks. Front Microbiol, 10, 261. 

COMMISSION, E. 2013a. Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the 
data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 
of the European Parliament and of the Council concerning the placing of plant protection 
products on the market Text with EEA relevance. Official Journal of the European Union. 

COMMISSION, E. 2013b. Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the 
data requirements for plant protection products, in accordance with Regulation (EC) No 
1107/2009 of the European Parliament and of the Council concerning the placing of plant 
protection products on the market Text with EEA relevance. Official Journal of the European 
Union. 

COMMISSION, E. 2021. Guidance on how aged sorption studies for pesticides should be conducted, 
analysed and used in regulatory assessments. SANTE/12586/2020 – REV 0. 

DAVIES, L. O., BRAMKE, I., FRANCE, E., MARSHALL, S., OLIVER, R., NICHOLS, C., SCHAFER, H. & 
BENDING, G. D. 2013a. Non-UV light influences the degradation rate of crop protection 
products. Environ Sci Technol, 47, 8229-37. 

DAVIES, L. O., SCHAFER, H., MARSHALL, S., BRAMKE, I., OLIVER, R. G. & BENDING, G. D. 2013b. Light 
structures phototroph, bacterial and fungal communities at the soil surface. PLoS One, 8, 
e69048. 

DAVIES, Z. G. & PULLIN, A. S. 2007. Are hedgerows effective corridors between fragments of 
woodland habitat? An evidence-based approach. Landscape Ecology, 22, 333-351. 

DE ALBA, S. 2003. Simulating long-term soil redistribution generated by different patterns of 
mouldboard ploughing in landscapes of complex topography. Soil and Tillage Research, 71, 
71-86. 

DE NIJS, E. A., HICKS, L. C., LEIZEAGA, A., TIETEMA, A. & ROUSK, J. 2019. Soil microbial moisture 
dependences and responses to drying-rewetting: The legacy of 18 years drought. Glob 
Chang Biol, 25, 1005-1015. 

DE SOUZA, M., WACKETT, L. P. & SADOWSKY, M. J. 1998a. The atzABC Genes Encoding Atrazine 
Catabolism Are Located on a Self-Transmissible Plasmid in  pseudomonas sp. Strain ADP. 
Applied and Environmental Microbiology, 64, 2323-2326. 



170 
 

DE SOUZA, M. L., SEFFERNICK, J., MARTINEZ, B., SADOWSKY, M. J. & WACKETT, L. P. 1998b. The 
Atrazine Catabolism Genes atzABC Are Widespread and Highly Conserved. Journal of 
Bacteriology, 180, 1951-1954. 

DE VRIES, F. T., GRIFFITHS, R. I., BAILEY, M., CRAIG, H., GIRLANDA, M., GWEON, H. S., HALLIN, S., 
KAISERMANN, A., KEITH, A. M., KRETZSCHMAR, M., LEMANCEAU, P., LUMINI, E., MASON, K. 
E., OLIVER, A., OSTLE, N., PROSSER, J. I., THION, C., THOMSON, B. & BARDGETT, R. D. 2018. 
Soil bacterial networks are less stable under drought than fungal networks. Nat Commun, 9, 
3033. 

DE WIT, R. & BOUVIER, T. 2006. 'Everything is everywhere, but, the environment selects'; what did 
Baas Becking and Beijerinck really say? Environ Microbiol, 8, 755-8. 

DECHESNE, A., BADAWI, N., AAMAND, J. & SMETS, B. F. 2014. Fine scale spatial variability of 
microbial pesticide degradation in soil: scales, controlling factors, and implications. Front 
Microbiol, 5, 667. 

DEFRA. 2021a. Guidance: Use min-till or no-till farming [Online]. Available: 
https://www.gov.uk/guidance/use-min-till-or-no-till-farming [Accessed]. 

DEFRA. 2021b. Sustainable Farming Incentive: Defra’s plans for piloting and launching the scheme 
[Online]. Available: https://www.gov.uk/government/publications/sustainable-farming-
incentive-scheme-pilot-launch-overview/sustainable-farming-incentive-defras-plans-for-
piloting-and-launching-the-scheme#annex-2 [Accessed]. 

DEFRA. 2021c. Sustainable Farming Incentive: how the scheme will work in 2022 [Online]. Available: 
https://www.gov.uk/government/publications/sustainable-farming-incentive-how-the-
scheme-will-work-in-2022/sustainable-farming-incentive-how-the-scheme-will-work-in-2022 
[Accessed]. 

DERPSCH, R., FRANZLUEBBERS, A. J., DUIKER, S. W., REICOSKY, D. C., KOELLER, K., FRIEDRICH, T., 
STURNY, W. G., SÁ, J. C. M. & WEISS, K. 2014. Why do we need to standardize no-tillage 
research? Soil and Tillage Research, 137, 16-22. 

DESANTIS, T. Z., HUGENHOLTZ, P., LARSEN, N., ROJAS, M., BRODIE, E. L., KELLER, K., HUBER, T., 
DALEVI, D., HU, P. & ANDERSEN, G. L. 2006. Greengenes, a chimera-checked 16S rRNA gene 
database and workbench compatible with ARB. Appl Environ Microbiol, 72, 5069-72. 

DEVERS, M., SOULAS, G. & MARTIN-LAURENT, F. 2004. Real-time reverse transcription PCR analysis 
of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal 
of Microbiological Methods, 56, 3-15. 

DIDION, J. P., MARTIN, M. & COLLINS, F. S. 2017. Atropos: specific, sensitive, and speedy trimming of 
sequencing reads. PeerJ, 5, e3720. 

DOLLIVE, S., PETERFREUND, G. L., SHERRILL-MIX, S., BITTINGER, K., SINHA, R., HOFFMANN, C., 
NABEL, C. S., HILL, D. A., ARTIS, D., BACHMAN, M. A., CUSTERS-ALLEN, R., GRUNBERG, S., 

https://www.gov.uk/guidance/use-min-till-or-no-till-farming
https://www.gov.uk/government/publications/sustainable-farming-incentive-scheme-pilot-launch-overview/sustainable-farming-incentive-defras-plans-for-piloting-and-launching-the-scheme#annex-2
https://www.gov.uk/government/publications/sustainable-farming-incentive-scheme-pilot-launch-overview/sustainable-farming-incentive-defras-plans-for-piloting-and-launching-the-scheme#annex-2
https://www.gov.uk/government/publications/sustainable-farming-incentive-scheme-pilot-launch-overview/sustainable-farming-incentive-defras-plans-for-piloting-and-launching-the-scheme#annex-2
https://www.gov.uk/government/publications/sustainable-farming-incentive-how-the-scheme-will-work-in-2022/sustainable-farming-incentive-how-the-scheme-will-work-in-2022
https://www.gov.uk/government/publications/sustainable-farming-incentive-how-the-scheme-will-work-in-2022/sustainable-farming-incentive-how-the-scheme-will-work-in-2022


171 
 

WU, G. D., LEWIS, J. D. & BUSHMAN, F. D. 2012. A tool kit for quantifying eukaryotic rRNA 
gene sequences from human microbiome samples. Genome Biology, 13. 

DOUGAN, C., HAND, L., NICHOLS, C. & OLIVER, R. 2013. Does preserving soil structure combined with 
on-demand moisture maintenance enhance degradation rates of Plant Protection Products? 
Pesticides Behaviour in Soils, Water and Air. York. 

DUBUS, I. 2012. Figure Provided to Introduction to Environmental Science; Earth and Man, Cresser et 
al. 2012. 

DUMBRELL, A. J., NELSON, M., HELGASON, T., DYTHAM, C. & FITTER, A. H. 2010. Relative roles of 
niche and neutral processes in structuring a soil microbial community. ISME J, 4, 337-45. 

EDGAR, R. C. 2017a. Accuracy of microbial community diversity estimated by closed- and open-
reference OTUs. PeerJ, 5, e3889. 

EDGAR, R. C. 2017b. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. 

EDGAR, R. C. 2018. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ, 6, 
e4652. 

EFSA 2012. Conclusion on the peer review of the pesticide risk assessment of the active substance 
mandipropamid. EFSA Journal, 10, 2935. 

EFSA 2013. Scientific Opinion on the report of the FOCUS groundwater working group (FOCUS, 
2009): assessment of higher tiers. EFSA Journal, 11. 

EKEBERY, E. & RILEY, H. C. F. 1997. Tillage intensity effects on soil properties and crop yields in a 
long-term trial on moainic loam soil southeast Norway. Soil and Tillage Research, 42, 227-
293. 

ELSHAHED, M. S., YOUSSEF, N. H., SPAIN, A. M., SHEIK, C., NAJAR, F. Z., SUKHARNIKOV, L. O., ROE, B. 
A., DAVIS, J. P., SCHLOSS, P. D., BAILEY, V. L. & KRUMHOLZ, L. R. 2008. Novelty and 
uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol, 74, 
5422-8. 

EPA, U. 2013. INSECTICIDES AND ENVIRONMENTAL PESTICIDE CONTROL SUBCHAPTER II - 
ENVIRONMENTAL PESTICIDE CONTROL. 

EUROPEAN FOOD SAFETY AUTHORITY 2012. Conclusion on the peer review of the pesticide risk 
assessment of the active substance mandipropamid. EFSA Journal, 10, 2935. 

FAN, K., WEISENHORN, P., GILBERT, J. A. & CHU, H. 2018. Wheat rhizosphere harbors a less complex 
and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and 
Biochemistry, 125, 251-260. 



172 
 

FENNER, K., CANONICA, S., WACKETT, L. P. & ELSNER, M. 2013. Evaluating Pesticide Degradation in 
the Environment Blind Spots and Emerging Opportunities. Science, 341, 752-758. 

FERA. 2021. Pesticide Usage Statistics - PUS Statistics [Online]. Available: 
https://secure.fera.defra.gov.uk/pusstats/myindex.cfm [Accessed]. 

FIERER, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat 
Rev Microbiol, 15, 579-590. 

FIERER, N., SCHIMEL, J. P. & HOLDEN, P. A. 2003. Variations in microbial community composition 
through two soil depth profiles. Soil Biology and Biochemistry, 35, 167-176. 

FONDI, M., KARKMAN, A., TAMMINEN, M. V., BOSI, E., VIRTA, M., FANI, R., ALM, E. & MCINERNEY, J. 
O. 2016. "Every Gene Is Everywhere but the Environment Selects": Global Geolocalization of 
Gene Sharing in Environmental Samples through Network Analysis. Genome Biol Evol, 8, 
1388-400. 

FRUCHEY, I., SHAPIR, N., SADOWSKY, M. J. & WACKETT, L. P. 2003. On the Origins of Cyanuric Acid 
Hydrolase: Purification, Substrates, and Prevalence of AtzD from Pseudomonas sp. Strain 
ADP. Applied and Environmental Microbiology, 69, 3653-3657. 

GARDES, M. & BURNS, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes - 
application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118. 

GONOD, L. V., CHENU, C. & SOULAS, G. 2003. Spatial variability of 2,4-dichlorophenoxyacetic acid 
(2,4-D) mineralisation potential at a millimetre scale in soil. Soil Biology and Biochemistry, 
35. 

GOSLING, P., PROCTOR, M., JONES, J. & BENDING, G. 2014. Distribution and diversity of Paraglomus 
spp. in tilled agricultural soils. Mycorrhiza, 24, 1-11. 

GOVANTES, F., PORRUA, O., GARCIA-GONZALEZ, V. & SANTERO, E. 2009. Atrazine biodegradation in 
the lab and in the field: enzymatic activities and gene regulation. Microb Biotechnol, 2, 178-
85. 

GRAYSON, R. P. 2016. Spen Farm Map. Personal communication. 

GRAYSON, R. P. 2020. SoilBioHedge Soil Chemistry Data. Personal communication. 

GRIFFIN, J. S., HAUG, L. A., RIVERA, V. A., GONZALEZ, L. M. H., KELLY, J. J., MILLER, W. M., WELLS, G. 
F. & PACKMAN, A. I. 2020. Soil hydrology drives ecological niche differentiation in a native 
prairie microbiome. FEMS Microbiol Ecol, 96. 

GULSER, C. & EKBERLI, I. 2004. A Comparison of Estimated and Measured Diurnal Soil Temperature 
Through a Clay Soil Depth. Journal of Applied Sciences, 4, 418-423. 

https://secure.fera.defra.gov.uk/pusstats/myindex.cfm


173 
 

GUTOWSKI, L., BAGINSKA, E., OLSSON, O., LEDER, C. & KUMMERER, K. 2015a. Assessing the 
environmental fate of S-metolachlor, its commercial product Mercantor Gold(R) and their 
photoproducts using a water-sediment test and in silico methods. Chemosphere, 138, 847-
55. 

GUTOWSKI, L., OLSSON, O., LEDER, C. & KUMMERER, K. 2015b. A comparative assessment of the 
transformation products of S-metolachlor and its commercial product Mercantor Gold((R)) 
and their fate in the aquatic environment by employing a combination of experimental and 
in silico methods. Sci Total Environ, 506-507, 369-79. 

HADDAWAY, N. R., BROWN, C., EALES, J., EGGERS, S., JOSEFSSON, J., KRONVANG, B., RANDALL, N. P. 
& UUSI-KÄMPPÄ, J. 2018. The multifunctional roles of vegetated strips around and within 
agricultural fields. Environmental Evidence, 7. 

HADDAWAY, N. R., HEDLUND, K., JACKSON, L. E., KÄTTERER, T., LUGATO, E., THOMSEN, I. K., 
JØRGENSEN, H. B. & ISBERG, P.-E. 2017. How does tillage intensity affect soil organic carbon? 
A systematic review. Environmental Evidence, 6. 

HADDAWAY, N. R., HEDLUND, K., JACKSON, L. E., KÄTTERER, T., LUGATO, E., THOMSEN, I. K., 
JØRGENSEN, H. B. & SÖDERSTRÖM, B. 2015. What are the effects of agricultural 
management on soil organic carbon in boreo-temperate systems? Environmental Evidence, 
4. 

HAN, J., CHEN, Y., LIU, Z., CHEN, D., ZHANG, K. & HU, D. 2021. Enantioselective environmental 
behavior of the chiral fungicide mandipropamid in four types of Chinese soil. Soil Science 
Society of America Journal. 

HANNULA, S. E., KIELAK, A. M., STEINAUER, K., HUBERTY, M., JONGEN, R., DE LONG, J. R., HEINEN, R. 
& BEZEMER, T. M. 2019. Time after Time: Temporal Variation in the Effects of Grass and Forb 
Species On Soil Bacterial and Fungal Communities. mBio. 

HAO, J., CHAI, Y., LOPES, L., ORDONEZ, R., WRIGHT, E., ARCHONTOULIS, S. & SCHACHTMAN, D. 2021. 
The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in 
Iowa (United States). Applied and Environmental Microbiology, 87. 

HELGASON, T., DANIELL, T. J., HUSBAND, R., FITTER, A. H. & YOUNG, J. P. 1998. Ploughing up the 
wood-wide web? Nature, 394, 431. 

HERSHBERGER, D. 1998. s-Triazine Metabolism Metapathway Map [Online]. Available: http://eawag-
bbd.ethz.ch/tria/tria_map.html [Accessed]. 

HEWINS, D. B., SINSABAUGH, R. L., ARCHER, S. R. & THROOP, H. L. 2017. Soil–litter mixing and 
microbial activity mediate decomposition and soil aggregate formation in a sandy shrub-
invaded Chihuahuan Desert grassland. Plant Ecology, 218, 459-474. 

HILL, M. O. & GAUCH, H. G. J. 1980. DETRENDED CORRESPONDENCE ANALYSIS: AN IMPROVED 
ORDINATION TECHNIQUE. Vegetatio, 42, 47-58. 

http://eawag-bbd.ethz.ch/tria/tria_map.html
http://eawag-bbd.ethz.ch/tria/tria_map.html


174 
 

HOLDEN, J., GRAYSON, R. P., BERDENI, D., BIRD, S., CHAPMAN, P. J., EDMONDSON, J. L., FIRBANK, L., 
HELGASON, T., HODSON, M. E., HUNT, S. F. P., JONES, D. T., LAPPAGE, M. G., MARSHALL-
HARRIES, E., NELSON, M., PRENDERGAST-MILLER, M., SHAW, H., WADE, R. N. & LEAKE, J. R. 
2019. The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, 
Ecosystems & Environment, 273, 1-12. 

HOLLAND, J. M. 2004. The environmental consequences of adopting conservation tillage in Europe: 
reviewing the evidence. Agriculture, Ecosystems & Environment, 103, 1-25. 

HOLLAND, S. M. 2008. DETRENDED CORRESPONDENCE ANALYSIS (DCA). Available: 
https://strata.uga.edu/software/pdf/dcaTutorial.pdf. 

HOUOT, S., TOPP, E., YASSOR, A. & SOULAS, G. 2000. Dependence of accelerated degradation of 
atrazine on soil pH in French and Canadian soils. Soil Biology and Biochemistry, 32, 615-625. 

HSIAO, C.-J., SASSENRATH, G. F., ZEGLIN, L. H., HETTIARACHCHI, G. M. & RICE, C. W. 2018. Vertical 
changes of soil microbial properties in claypan soils. Soil Biology and Biochemistry, 121, 154-
164. 

HUGERTH, L. W. & ANDERSSON, A. F. 2017. Analysing Microbial Community Composition through 
Amplicon Sequencing: From Sampling to Hypothesis Testing. Front Microbiol, 8, 1561. 

HULA, J. & NOVAK, P. 2016. Translocation of soil particles during primary soil tillage. Agronomy 
Research, 14, 392-399. 

HVEZDOVA, M., KOSUBOVA, P., KOSIKOVA, M., SCHERR, K. E., SIMEK, Z., BRODSKY, L., SUDOMA, M., 
SKULCOVA, L., SANKA, M., SVOBODOVA, M., KRKOSKOVA, L., VASICKOVA, J., NEUWIRTHOVA, 
N., BIELSKA, L. & HOFMAN, J. 2018. Currently and recently used pesticides in Central 
European arable soils. Sci Total Environ, 613-614, 361-370. 

IHRMARK, K., BODEKER, I. T., CRUZ-MARTINEZ, K., FRIBERG, H., KUBARTOVA, A., SCHENCK, J., STRID, 
Y., STENLID, J., BRANDSTROM-DURLING, M., CLEMMENSEN, K. E. & LINDAHL, B. D. 2012. 
New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and 
natural communities. FEMS Microbiol Ecol, 82, 666-77. 

INGRAM, J. 2010. Technical and Social Dimensions of Farmer Learning: An Analysis of the Emergence 
of Reduced Tillage Systems in England. Journal of Sustainable Agriculture, 34, 183-201. 

JANSSON, J. K. & BAKER, E. S. 2016. A multi-omic future for microbiome studies. Nat Microbiol, 1, 
16049. 

JOHNSON, D., LEAKE, J. R. & READ, D. J. 2002. Transfer of recent photosynthate into mycorrhizal 
mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. 
Soil Biology and Biochemistry, 34, 1521-1524. 

KAH, M., BEULKE, S. & BROWN, C. D. 2007. Factors Influencing Degradation of Pesticides in Soil. 
Journal of Agricultural and Food Chemistry, 55, 4487-4492. 

https://strata.uga.edu/software/pdf/dcaTutorial.pdf


175 
 

KAMEL, L., KELLER-PEARSON, M., ROUX, C. & ANE, J. M. 2016. Biology and evolution of arbuscular 
mycorrhizal symbiosis in the light of genomics. New Phytol. 

KAUFMAN, D. D., KEARNEY, P. C. & SHEETS, T. J. 1965. Microbial degradation of simazine. Journal of 
Agricultural and Food Chemistry, 13. 

KAURIN, A., MIHELIČ, R., KASTELEC, D., GRČMAN, H., BRU, D., PHILIPPOT, L. & SUHADOLC, M. 2018. 
Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and 
conservation tillage, to agricultural drought. Soil Biology and Biochemistry, 120, 233-245. 

KHAN, M. A. & BROWN, C. D. 2016. Influence of commercial formulation on leaching of four 
pesticides through soil. Sci Total Environ. 

KNIGHT, R., VRBANAC, A., TAYLOR, B. C., AKSENOV, A., CALLEWAERT, C., DEBELIUS, J., GONZALEZ, A., 
KOSCIOLEK, T., MCCALL, L.-I., MCDONALD, D., MELNIK, A. V., MORTON, J. T., NAVAS, J., 
QUINN, R. A., SANDERS, J. G., SWAFFORD, A. D., THOMPSON, L. R., TRIPATHI, A., XU, Z. Z., 
ZANEVELD, J. R., ZHU, Q., CAPORASO, J. G. & DORRESTEIN, P. C. 2018. Best practices for 
analysing microbiomes. Nature Reviews Microbiology. 

KODAMA, T., DING, L., YOSHIDA, M. & YAJIMA, M. 2001. Biodegradation of an s-triazine herbicide, 
simazine. Journal of Molecular Catalysis B: Enzymatic, 11, 1073-1078. 

KOO, H., HAKIM, J. A., MORROW, C. D., EIPERS, P. G., DAVILA, A., ANDERSEN, D. T. & BEJ, A. K. 2017. 
Comparison of two bioinformatics tools used to characterize the microbial diversity and 
predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J Microbiol 
Methods, 140, 15-22. 

KREADER, C. A. 1996. Relief of Amplification Inhibition in PCR with Borine Serum Albumin or T4 Gene 
32 Protein. Applied and Environmental Microbiology, 62, 1102-1106. 

KROGH, K. A., HALLING-SORENSEN, B., MOGENSEN, B. B. & VEJRUP, K. V. 2003. Environmental 
properties and effects of nonionic surfactant adjuvants in pesticides: a review. 
Chemosphere, 50. 

KUNTZ, M., BERNER, A., GATTINGER, A., SCHOLBERG, J. M., MÄDER, P. & PFIFFNER, L. 2013. 
Influence of reduced tillage on earthworm and microbial communities under organic arable 
farming. Pedobiologia, 56, 251-260. 

LAL, R., REICOSKY, D. C. & HANSON, J. D. 2007. Evolution of the plow over 10,000 years and the 
rationale for no-till farming. Soil and Tillage Research, 93, 1-12. 

LAMBERTH, C., JEANGUENAT, A., CEDERBAUM, F., DE MESMAEKER, A., ZELLER, M., KEMPF, H. J. & 
ZEUN, R. 2008. Multicomponent reactions in fungicide research: the discovery of 
mandipropamid. Bioorg Med Chem, 16, 1531-45. 

LANGILLE, M. G., ZANEVELD, J., CAPORASO, J. G., MCDONALD, D., KNIGHTS, D., REYES, J. A., 
CLEMENTE, J. C., BURKEPILE, D. E., VEGA THURBER, R. L., KNIGHT, R., BEIKO, R. G. & 



176 
 

HUTTENHOWER, C. 2013. Predictive functional profiling of microbial communities using 16S 
rRNA marker gene sequences. Nat Biotechnol, 31, 814-21. 

LAPPAGE, M. G. 2015. RE: Joint  Project Log 2014-15 (Personal Communication). 

LAPPAGE, M. G. 2016. RE: Joint Project Log 2016 (Personal Communication). 

LAPPAGE, M. G. 2017. RE: Joint Project Log 2017 (Personal Communication). 

LAPPAGE, M. G. 2018. RE: Joint Project Log 2018 (Personal Communication). 

LEAKE, J., SCHOLES, J., CAMERON, D., TON, J., BANWART, S., HOLDEN, J., FIRBANK, L., HELGASON, T. 
& HEINEMEYER, A. 2014. MycoRhizaSoil: Combining wheat genotypes with cultivation 
methods to facilitate mycorrhizosphere organisms improving soil quality and crop resilience. 
BBSRC. 

LEAKE, J., SCHOLES, J., CAMERON, D., TON, J., BANWART, S., HOLDEN, J., FIRBANK, L., HELGASON, T. 
& HEINEMEYER, A. 2015. MycoRhizaSoil. 

LEVANON, D., MEISINGER, J. J., CODLING, E. E. & STARR, J. L. 1994. Impact of tillage on microbial 
activity and the fate of pesticides in the upper soil. Water, Air and Soil Pollution, 72, 179-189. 

LEWIS, K. A., TZILIVAKIS, J., WARNER, D. J. & GREEN, A. 2016. An international database for pesticide 
risk assessments and management. Human and Ecological Risk Assessment: An International 
Journal, 22, 1050-1064. 

LI, Y., ZHAI, Z., CONG, P., ZHANG, Y., PANG, H., DONG, G. & GAO, J. 2019. Effect of plough pan 
thickness on crop growth parameters, nitrogen uptake and greenhouse gas (CO2 and N2O) 
emissions in a wheat-maize double-crop rotation in the Northern China Plain: A one-year 
study. Agricultural Water Management, 213, 534-545. 

LIAO, M. & XIE, X. 2008. Effects of combination of plant and microorganism on degradation of 
simazine in soil. Journal of Environmental Sciences, 20, 195-198. 

LINDAHL, B. D., NILSSON, R. H., TEDERSOO, L., ABARENKOV, K., CARLSEN, T., KJOLLER, R., KOLJALG, 
U., PENNANEN, T., ROSENDAHL, S., STENLID, J. & KAUSERUD, H. 2013. Fungal community 
analysis by high-throughput sequencing of amplified markers--a user's guide. New Phytol, 
199, 288-99. 

LINDNER, D. L., CARLSEN, T., HENRIK NILSSON, R., DAVEY, M., SCHUMACHER, T. & KAUSERUD, H. 
2013. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the 
internal transcribed spacer rDNA region in fungi. Ecol Evol, 3, 1751-64. 

LOCKE, M. A. & BRYSON, C. T. 1997. Herbicide-Soil Interactions in Reduced Tillage and Plant Residue 
Management Systems. Weed Science, 45, 307-320. 



177 
 

LOGAN, T. J., ECKERT, D. J. & BEAK, D. G. 1994. Tillage, crop and climatic effects on runoff and tile 
drainage losses of nitrate and four herbicides. Soil and Tillage Research, 30, 75-103. 

MARTINY, J. B., BOHANNAN, B. J., BROWN, J. H., COLWELL, R. K., FUHRMAN, J. A., GREEN, J. L., 
HORNER-DEVINE, M. C., KANE, M., KRUMINS, J. A., KUSKE, C. R., MORIN, P. J., NAEEM, S., 
OVREAS, L., REYSENBACH, A. L., SMITH, V. H. & STALEY, J. T. 2006. Microbial biogeography: 
putting microorganisms on the map. Nat Rev Microbiol, 4, 102-12. 

MARTINY, J. B. H., EISEN, J. A., PENN, K., ALLISON, S. D. & HORNER-DEVINE, M. C. 2011. Drivers of 
bacterial β-diversity depend on spatial scale. PNAS, 108, 7850–7854. 

MIRANDA, J.-P. 2019. Changes in Soil Microbial Community and Function During OECD307 
Degradation Studies. PhD, University of York. 

MORRIS, N. L., MILLER, P. C. H., J.H.ORSON & FROUD-WILLIAMS, R. J. 2010. The adoption of non-
inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and 
the environment—A review. Soil and Tillage Research, 108, 1-15. 

MULBRY, W. W., ZHU, H., NOUR, S. M. & TOPP, E. 2002. The triazine hydrolase gene trzN from 
Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS 
Microbiology Letters, 206, 75-79. 

NCBI. 1988. National Center for Biotechnology Information [Online]. Bethesda, USA: National Library 
of Medicine (US).  [Accessed]. 

NESBO, C. L., DLUTEK, M. & DOOLITTLE, W. F. 2006. Recombination in Thermotoga: implications for 
species concepts and biogeography. Genetics, 172, 759-69. 

NGUYEN, N. H., SONG, Z., BATES, S. T., BRANCO, S., TEDERSOO, L., MENKE, J., SCHILLING, J. S. & 
KENNEDY, P. G. 2016. FUNGuild: An open annotation tool for parsing fungal community 
datasets by ecological guild. Fungal Ecology, 20, 241-248. 

NILSSON, R. H., ANSLAN, S., BAHRAM, M., WURZBACHER, C., BALDRIAN, P. & TEDERSOO, L. 2018. 
Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev 
Microbiol. 

NILSSON, R. H., TEDERSOO, L., RYBERG, M., KRISTIANSSON, E., HARTMANN, M., UNTERSEHER, M., 
PORTER, T. M., BENGTSSON-PALME, J., WALKER, D. M., DE SOUSA, F., GAMPER, H. A., 
LARSSON, E., LARSSON, K. H., KOLJALG, U., EDGAR, R. C. & ABARENKOV, K. 2015. A 
Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based 
Chimera Control in Environmental Sequencing Efforts. Microbes Environ, 30, 145-50. 

O'BRIEN, S. L., GIBBONS, S. M., OWENS, S. M., HAMPTON-MARCELL, J., JOHNSTON, E. R., JASTROW, 
J. D., GILBERT, J. A., MEYER, F. & ANTONOPOULOS, D. A. 2016. Spatial scale drives patterns in 
soil bacterial diversity. Environ Microbiol, 18, 2039-51. 



178 
 

O'MALLEY, M. A. 2008. 'Everything is everywhere: but the environment selects': ubiquitous 
distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol 
Biomed Sci, 39, 314-25. 

OECD 2002. OECD 307. 

OECD 2016. GUIDANCE DOCUMENT FOR CONDUCTING PESTICIDE TERRESTRIAL FIELD DISSIPATION 
STUDIES. 

OECD. 2020. OECD Guidelines for the Testing of Chemicals, Section 3: Environmental fate and 
behaviour [Online]. OECD. Available: https://www.oecd-ilibrary.org/environment/oecd-
guidelines-for-the-testing-of-chemicals-section-3-degradation-and-accumulation_2074577x 
[Accessed]. 

OKADA, E., COSTA, J. L. & BEDMAR, F. 2016. Adsorption and mobility of glyphosate in different soils 
under no-till and conventional tillage. Geoderma, 263, 78-85. 

OKSANEN, J. 2015. Multivariate Analysis of Ecological Communities in R: vegan tutorial. 

OKSANEN, J., BLANCHET, F. G., FRIENDLY, M., KINDT, R., LEGENDRE, P., MCGLINN, D., MINCHIN, P. R., 
O'HARA, R. B., SIMPSON, G. L., SOLYMOS, P., STEVENS, M. H. H., SZOECS, E. & WAGNER, H. 
2018. Package 'vegan'. 

OP DE BEECK, M., LIEVENS, B., BUSSCHAERT, P., DECLERCK, S., VANGRONSVELD, J. & COLPAERT, J. V. 
2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding 
studies. PLoS One, 9, e97629. 

PARADA, A. E., NEEDHAM, D. M. & FUHRMAN, J. A. 2016. Every base matters: assessing small 
subunit rRNA primers for marine microbiomes with mock communities, time series and 
global field samples. Environ Microbiol, 18, 1403-14. 

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION, B., GRISEL, O., BLONDEL, M., 
PRETTENHOFER, P., WEISS, R., DUBOURG, V., VANDERPLAS, J., PASSOS, A., COURNAPEAU, 
D., BRUCHER, M., PERROT, M. & DUCHESNAY, E. 2011. Scikit-learn: Machine Learning in 
Python. Journal of Machine Learning Research, 12, 2825-2830. 

PHILLIPS, N. D. 2018. YaRrr! The Pirate’s Guide to R [Online]. Available: 
https://bookdown.org/ndphillips/YaRrr/pirateplot.html [Accessed]. 

POLLOCK, J., GLENDINNING, L., WISEDCHANWET, T. & WATSON, M. 2018. The madness of 
microbiome: Attempting to find consensus "best practice" for 16S microbiome studies. Appl 
Environ Microbiol. 

POPP, J., PETŐ, K. & NAGY, J. 2012. Pesticide productivity and food security. A review. Agronomy for 
Sustainable Development, 33, 243-255. 

https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-3-degradation-and-accumulation_2074577x
https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-3-degradation-and-accumulation_2074577x
https://bookdown.org/ndphillips/YaRrr/pirateplot.html


179 
 

PRENDERGAST-MILLER, M. T., JONES, D. T., BERDENI, D., BIRD, S., CHAPMAN, P. J., FIRBANK, L., 
GRAYSON, R., HELGASON, T., HOLDEN, J., LAPPAGE, M., LEAKE, J. & HODSON, M. E. 2021. 
Arable fields as potential reservoirs of biodiversity: Earthworm populations increase in new 
leys. Sci Total Environ, 789, 147880. 

PRUESSE, E., QUAST, C., KNITTEL, K., FUCHS, B. M., LUDWIG, W., PEPLIES, J. & GLOCKNER, F. O. 2007. 
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA 
sequence data compatible with ARB. Nucleic Acids Res, 35, 7188-96. 

R_CORE_TEAM. 2013. R: A language and environment for statistical computing. [Online]. R 
Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org/ 
[Accessed]. 

REDDY, K. N., LOCKE, M. A., WAGNER, S. C., ZABLOTOWICZ, R. M., GASTON, L. A. & SMEDA, R. J. 
1995. Chlorimuron Ethyl Sorption and Desorption Kinetics in Soils and Herbicide Desiccated 
Cover Crop Residues. Journal of Agricultural and Food Chemistry, 43, 2752-2757. 

REDEKER, K. R., CAI, L. L., DUMBRELL, A. J., BARDILL, A., CHONG, J. P. J. & HELGASON, T. 2018. 
Noninvasive Analysis of the Soil Microbiome: Biomonitoring Strategies Using the Volatilome, 
Community Analysis, and Environmental Data. Advances in Ecological Research, 59. 

REHAN, M., EL SHARKAWY, A. & EL FADLY, G. 2016. Microbial Biodegradation of S-triazine Herbicides 
in Soil. Crop Research and Fertilizers, 1. 

RILLIG, M. C. & MUMMEY, D. L. 2006. Mycorrhizas and soil structure. New Phytol, 171, 41-53. 

ROGNES, T., FLOURI, T., NICHOLS, B., QUINCE, C. & MAHE, F. 2016. VSEARCH: a versatile open source 
tool for metagenomics. PeerJ, 4, e2584. 

ROUCHAUD, J., NEUS, O., BULCKE, R., COOLS, K., EELEN, H. & DEKKERS, T. 2000. Soil dissipation of 
diuron, chlorotoluron, simazine, propyzamide, and diflufenican herbicides after repeated 
applications in fruit tree orchards. Arch Environ Contam Toxicol, 39, 60-5. 

ROUSK, J., BAATH, E., BROOKES, P. C., LAUBER, C. L., LOZUPONE, C., CAPORASO, J. G., KNIGHT, R. & 
FIERER, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. 
ISME J, 4, 1340-51. 

SAGARKAR, S., MUKHERJEE, S., NOUSIAINEN, A., BJORKLOF, K., PUROHIT, H. J., JORGENSEN, K. S. & 
KAPLEY, A. 2013. Monitoring bioremediation of atrazine in soil microcosms using molecular 
tools. Environ Pollut, 172, 108-15. 

SANS, F. X., BERNER, A., ARMENGOT, L. & MÄDER, P. 2011. Tillage effects on weed communities in 
an organic winter wheat-sunflower-spelt cropping sequence. Weed Research, 51, 413-421. 

SCHERR, K. E., BIELSKA, L., KOSUBOVA, P., DINISOVA, P., HVEZDOVA, M., SIMEK, Z. & HOFMAN, J. 
2017. Occurrence of Chlorotriazine herbicides and their transformation products in arable 
soils. Environ Pollut, 222, 283-293. 

http://www.r-project.org/


180 
 

SHAPIR, N., MONGODIN, E. F., SADOWSKY, M. J., DAUGHERTY, S. C., NELSON, K. E. & WACKETT, L. P. 
2007. Evolution of catabolic pathways: Genomic insights into microbial s-triazine 
metabolism. J Bacteriol, 189, 674-82. 

SHEEHY, J., REGINA, K., ALAKUKKU, L. & SIX, J. 2015. Impact of no-till and reduced tillage on 
aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil 
and Tillage Research, 150, 107-113. 

SIMPSON, E. H. 1949. Measurement of Diversity. Nature, 163. 

SIX, J., BOSSUYT, H., DEGRYZE, S. & DENEF, K. 2004. A history of research on the link between 
(micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 
7-31. 

SIX, J., ELLIOTT, E. T. & PAUSTIAN, K. 2000. Soil macroaggregate turnover and microaggregate 
formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and 
Biochemistry, 32, 2099-2103. 

SMITH, J. L. & DORAN, J. W. 1997. Measurement and Use of pH and Electrical Conductivity for Soil 
Quality Analysis. Methods for Assessing Soil Quality, 49, 169-185. 

SÖDERSTRÖM, B., HEDLUND, K., JACKSON, L. E., KÄTTERER, T., LUGATO, E., THOMSEN, I. K. & 
JØRGENSEN, H. B. 2014. What are the effects of agricultural management on soil organic 
carbon (SOC) stocks? Environmental Evidence, 3. 

SOMENAHALLY, A., DUPONT, J. I., BRADY, J., MCLAWRENCE, J., NORTHUP, B. & GOWDA, P. 2018. 
Microbial communities in soil profile are more responsive to legacy effects of wheat-cover 
crop rotations than tillage systems. Soil Biology and Biochemistry, 123, 126-135. 

STOECK, T., BASS, D., NEBEL, M., CHRISTEN, R., JONES, M. D., BREINER, H. W. & RICHARDS, T. A. 
2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex 
eukaryotic community in marine anoxic water. Mol Ecol, 19 Suppl 1, 21-31. 

SUDDABY, L. A., BEULKE, S., VAN BEINUM, W., CELIS, R., KOSKINEN, W. C. & BROWN, C. D. 2013. 
Reanalysis of experiments to quantify irreversibility of pesticide sorption-desorption in soil. J 
Agric Food Chem, 61, 2033-8. 

SUDDABY, L. A., BEULKE, S., VAN BEINUM, W., OLIVER, R. G., KUET, S. & BROWN, C. D. 2016. Long-
term experiments to investigate irreversibility in sorption of pesticides to soil. Chemosphere, 
162, 40-7. 

TAKAI, K. & HORIKOSHI, K. 2000. Rapid Detection and Quantification of Members of the Archaeal 
Community by Quantitative PCR Using Flurogenic Probes. Applied and Environmental 
Microbiology, 66, 5066-5072. 

TEBRUGGE, F. & DURING, R. A. 1999. Reducing tillage intensity - a review of results from a long-term 
study in Germany. Soil and Tillage Research, 53, 15-28. 



181 
 

THOMAS, K. A. & HAND, L. H. 2011. Assessing the potential for algae and macrophytes to degrade 
crop protection products in aquatic ecosystems. Environ Toxicol Chem, 30, 622-31. 

THOMAS, K. A. & HAND, L. H. 2012. Assessing the metabolic potential of phototrophic communities 
in surface water environments: fludioxonil as a model compound. Environ Toxicol Chem, 31, 
2138-46. 

TOWNSEND, T. J., RAMSDEN, S. J. & WILSON, P. 2016. How do we cultivate in England? Tillage 
practices in crop production systems. Soil Use Manag, 32, 106-117. 

VAN VOOREN, L., REUBENS, B., BROEKX, S., DE FRENNE, P., NELISSEN, V., PARDON, P. & VERHEYEN, 
K. 2017. Ecosystem service delivery of agri-environment measures: A synthesis for 
hedgerows and grass strips on arable land. Agriculture, Ecosystems & Environment, 244, 32-
51. 

WACKETT, M. S. B. M. L. 2002. Biodegradation of atrazine and related s -triazine compounds: from 
enzymes to field studies. Applied Microbiology and Biotechnology, 58, 39-45. 

WALKER, A. & BROWN, P. A. 1983. Spatial variability in herbicide degradation rates and residues in 
soil. Crop Protection, 2, 17-25. 

WALKER, A., JURADO-EXPOSITO, M., BENDING, G. D. & SMITH, V. J. R. 2001. Spatial variability in the 
degradation rate of isoproturon in soil. Environmental Pollution, 111, 407-415. 

WANG, C.-Y., ZHOU, X., GUO, D., ZHAO, J.-H., YAN, L., FENG, G.-Z., GAO, Q., YU, H. & ZHAO, L.-P. 
2019. Soil pH is the primary factor driving the distribution and function of microorganisms in 
farmland soils in northeastern China. Annals of Microbiology, 69, 1461-1473. 

WANG, Q., GARRITY, G. M., TIEDJE, J. M. & COLE, J. R. 2007. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 73, 
5261-7. 

WANG, Y., LI, C., TU, C., HOYT, G. D., DEFOREST, J. L. & HU, S. 2017. Long-term no-tillage and organic 
input management enhanced the diversity and stability of soil microbial community. Sci 
Total Environ, 609, 341-347. 

WERNER, J. J., KOREN, O., HUGENHOLTZ, P., DESANTIS, T. Z., WALTERS, W. A., CAPORASO, J. G., 
ANGENENT, L. T., KNIGHT, R. & LEY, R. E. 2012. Impact of training sets on classification of 
high-throughput bacterial 16s rRNA gene surveys. ISME J, 6, 94-103. 

WHITE, T. J., BRUNS, T., LEE, S. & TAYLOR, J. 1990. Amplification and direct sequencing of fungal 
ribosomal RNA genes for phylogenetics. 

WILSON, G. W., RICE, C. W., RILLIG, M. C., SPRINGER, A. & HARTNETT, D. C. 2009. Soil aggregation 
and carbon sequestration are tightly correlated with the abundance of arbuscular 
mycorrhizal fungi: results from long-term field experiments. Ecol Lett, 12, 452-61. 



182 
 

WRSAC. 2014. RE: SoilBioHedge: harnessing hedgerow soil biodiversity for restoration of arable soil 
quality and resilience to climatic extremes and land use changes. 

WRSAC. 2017. RE: CPP Applications to SBH. 

YALE, R. L., SAPP, M., SINCLAIR, C. J. & MOIR, J. W. 2017. Microbial changes linked to the accelerated 
degradation of the herbicide atrazine in a range of temperate soils. Environ Sci Pollut Res Int, 
24, 7359-7374. 

YAMAGUCHI, N., EGUCHI, S., FUJIWARA, H., HAYASHI, K. & TSUKADA, H. 2012. Radiocesium and 
radioiodine in soil particles agitated by agricultural practices: field observation after the 
Fukushima nuclear accident. Sci Total Environ, 425, 128-34. 

YIN, C., JONES, K. L., PETERSON, D. E., GARRETT, K. A., HULBERT, S. H. & PAULITZ, T. C. 2010. 
Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biology and 
Biochemistry, 42, 2111-2118. 

ZHALNINA, K., DIAS, R., DE QUADROS, P. D., DAVIS-RICHARDSON, A., CAMARGO, F. A., CLARK, I. M., 
MCGRATH, S. P., HIRSCH, P. R. & TRIPLETT, E. W. 2015. Soil pH determines microbial diversity 
and composition in the park grass experiment. Microb Ecol, 69, 395-406. 

ZUBER, S. M. & VILLAMIL, M. B. 2016. Meta-analysis approach to assess effect of tillage on microbial 
biomass and enzyme activities. Soil Biology and Biochemistry, 97, 176-187. 

 

  



183 
 

Appendix 1 
Appendix 1 Table 1 details applications of CPPs to SBH study fields between 2009 and the 9th of 

March 2017 (Table 1). Data summarised from data held by WRSAC (2017).  



184 
 

Table A1.1 – Active ingredients applied to each of the pasture fields with crop strips from 2009 to the 9th 

March 2017 

 Field 

Year Sub Paddock Valley Field Warren Paddock 

2009 - - Chlormequat 
Chlorothalonil 
Cyproconazole 
Diflufenican 
Epoxiconazole 
Fenpropimorph 
Flufenacet 
Fluroxypyr 
Iodosulfuron-methyl-sodium 
Kresoxim-methyl 
Mesosulfuron-methyl 
Prothioconazole 
Tebuconazole 

2010 Clopyralid 
Fluroxypyr 
Triclopyr 

Clopyralid 
Fluroxypyr 
Triclopyr 

Carbendazim 
Chlormequat 
Chlorothalonil 
Clomazone 
Cypermethrin 
Cyproconazole 
Epoxiconazole 
Florasulam 
Fluazifop-P-butyl 
Fluroxypyr 
Flusilazole 
Glyphosate 
Lambda-cyhalothrin 
Metaldehyde 
Metazachlor 
Metconazole 
Metsulfuron-methyl 
Prochloraz 
Propaquizafop 
Propiconazole 
Prothioconazole 
Pyraclostrobin 
Pyroxsulam 
Quinmerac 
Tebuconazole 
Tribenuron-methyl 

2011 Clopyralid 
Fluroxypyr 
Triclopyr 

 Clopyralid 
Glyphosate 
Lambda-cyhalothrin 
Prothioconazole 

2012 - Clopyralid 
Fluroxypyr 
Triclopyr 

Clopyralid 
Fluroxypyr 
Triclopyr 

2013 - Clopyralid 
Fluroxypyr 
Triclopyr 

- 

2014 - - - 

2015 Glyphosate Glyphosate Glyphosate 

2016 Glyphosate 
KNOWN UNKNOWNS* 

Glyphosate 
 

Glyphosate 

2017 Diflufenican 
Iodosulfuron-methyl-sodium 
Mecoprop-p 
Mesosulfuron-methyl 

Diflufenican 
Iodosulfuron-methyl-sodium 
Mecoprop-p 
Mesosulfuron-methyl 

Diflufenican 
Iodosulfuron-methyl-sodium 
Mecoprop-p 
Mesosulfuron-methyl 
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*Field notes record CPP application within this field, but records detailing the active ingredients used 

in these treatments are not available. 
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Appendix 2 
Appendix 2 Table 1 summarises data on soil properties from SoilBioHedge fields Paddock, 

Valley and Warren, generated by Grayson (2020) – data has been summarised, arithmetic means 

and standard deviations calculated. 
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Table A2.1 – Soil property data for Paddock, Valley and Warren fields. Data is arithmetic mean and standard deviation. 

Field  Treatment  

Depth  
cm pH   Conductivity  

Nitrate  
mg l-1 

Ammonia  
mg l-1 

Phosphate  
mg l-1 

DOC  
mg l-1 

DIC  
mg l-1 

   Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Paddock Hedge 5 5.58 1.20 0.89 0.30 256.23 158.42 0.99 1.73 0.50 0.61 51.65 14.66 16.30 34.30 

  40 5.64 1.29 0.66 0.26 156.30 117.03 0.30 0.36 0.06 0.09 20.45 13.43 16.15 29.04 

  All 5.60 1.21 0.80 0.30 216.26 149.62 0.71 1.39 0.32 0.52 41.67 20.41 16.25 31.89 

 Pasture 5 6.03 0.67 0.31 0.26 84.49 86.32 0.28 0.42 0.13 0.17 15.17 4.07 12.33 27.63 

  40 5.31 2.08 0.50 0.19 177.92 109.36 1.42 2.99 0.08 0.07 11.05 3.91 4.28 4.00 

  All 5.67 1.54 0.40 0.24 133.67 107.65 0.88 2.21 0.11 0.13 13.27 4.39 8.62 20.14 

 Inversion 5 7.08 0.43 0.56 0.16 124.20 89.20 0.12 0.09 0.12 0.18 21.91 2.89 28.24 25.47 

  40 6.97 0.47 0.56 0.22 232.90 156.50 0.13 0.09 0.11 0.13 19.95 7.93 2.40 0.92 

  All 7.01 0.43 0.56 0.19 186.31 139.16 0.13 0.09 0.11 0.15 20.73 6.23 12.74 19.87 

 Reduced 5 6.17 0.69 0.34 0.14 113.33 86.28 0.08 0.08 0.04 0.04 14.01 5.43 9.61 20.44 

  40 7.65 NA 0.83 0.28 362.19 181.97 0.13 0.10 0.05 0.06 3.48 NA 77.99 NA 

  All 6.33 0.81 0.54 0.30 215.66 173.48 0.10 0.09 0.05 0.05 12.84 6.17 17.21 29.75 

Valley Hedge 5 7.70 0.34 0.85 0.12 182.27 262.16 0.20 0.14 2.34 2.98 48.88 9.60 45.10 5.22 

  40 8.33 0.71 0.89 0.31 144.19 132.43 0.19 0.24 0.21 0.32 20.03 5.78 50.04 3.24 

  All 7.87 0.53 0.87 0.24 162.04 201.16 0.20 0.20 1.21 2.29 42.09 15.32 46.26 5.20 

 Pasture 5 7.68 0.56 0.63 0.11 52.98 52.88 2.69 4.06 1.81 2.47 18.38 8.66 67.10 11.60 

  40 7.73 0.31 0.65 0.07 49.51 23.41 0.14 0.11 0.12 0.28 18.69 4.45 62.98 5.99 

  All 7.70 0.45 0.64 0.09 51.24 39.71 1.42 3.07 0.97 1.91 18.51 6.94 65.38 9.53 

 Inversion 5 8.01 1.27 0.73 0.25 187.61 154.64 0.14 0.15 3.50 1.57 33.03 14.24 43.63 14.34 

  40 7.14 NA 0.65 0.12 99.93 61.79 0.22 0.17 0.14 0.16 NA NA NA NA 

  All 7.86 1.19 0.69 0.19 143.77 121.93 0.18 0.16 1.82 2.05 33.03 14.24 43.63 14.34 

 Reduced 5 8.57 0.75 0.50 0.14 64.72 59.93 1.31 3.21 0.40 0.52 46.59 41.04 48.59 6.10 

  40 7.91 0.24 0.63 0.11 103.23 75.10 0.40 0.36 0.42 0.38 30.65 11.05 63.26 20.10 

  All 8.27 0.65 0.57 0.14 85.11 69.17 0.83 2.19 0.41 0.44 37.73 27.63 56.74 16.61 
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Table A2.1 Continued 
Field 
 

Treatment 
 

Depth  
cm 

pH 
  

Conductivity 
  

Nitrate  
mg l-1  

Ammonia  
mg l-1  

Phosphate  
mg l-1  

DOC  
mg l-1  

DIC  
mg l-1  

   Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Warren Hedge 5 7.59 0.98 0.81 0.19 77.41 134.90 0.58 1.73 1.50 1.42 48.45 15.46 47.98 22.66 

  40 7.50 0.94 0.76 0.09 89.03 96.15 0.27 0.33 0.17 0.26 36.60 26.14 48.55 18.10 

  All 7.56 0.94 0.78 0.15 83.22 115.50 0.43 1.23 0.83 1.21 43.44 21.04 48.22 20.46 

 Pasture 5 7.16 1.04 0.59 0.08 64.66 69.23 0.19 0.22 0.14 0.16 12.24 3.85 57.11 28.53 

  40 7.34 0.60 0.63 0.15 78.08 106.78 0.41 0.92 0.20 0.43 18.55 17.63 63.19 44.30 

  All 7.23 0.87 0.61 0.11 70.41 83.74 0.28 0.60 0.16 0.29 14.76 11.07 59.87 34.67 

 Inversion 5 7.39 0.31 0.62 0.06 88.11 111.79 0.24 0.38 0.25 0.54 12.55 2.75 65.68 9.47 

  40 7.72 0.45 0.62 0.15 114.03 140.32 0.28 0.44 0.19 0.36 NA NA 74.57 NA 

  All 7.49 0.36 0.62 0.10 99.22 120.33 0.26 0.39 0.22 0.45 12.55 2.75 66.80 9.31 

 Reduced 5 7.23 0.49 0.57 0.13 55.21 49.45 0.08 0.08 0.17 0.29 9.52 4.06 60.21 28.02 

  40 7.50 0.17 0.79 0.11 106.21 176.60 0.09 0.07 0.06 0.06 9.16 8.57 86.66 13.98 

  All 7.37 0.38 0.68 0.16 80.71 128.51 0.08 0.07 0.12 0.21 9.34 6.44 73.43 25.31 

 


