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Abstract

Critical services from domains as diverse as finance, manufacturing and healthcare are often delivered
by complex enterprise applications (EAs). High-availability clusters (HACs) are software-managed IT
infrastructures that enable these EAs to operate with minimum downtime. To that end, HACs monitor
the health of EA layers (e.g., application servers and databases) and resources (i.e., components),
and attempt to reinitialise or restart failed resources swiftly. When this is unsuccessful, HACs try to
failover (i.e., relocate) the resource group to which the failed resource belongs to another server. If
the resource group failover is also unsuccessful, or when a system-wide critical failure occurs, HACs
initiate a complete system failover.

Despite the availability of multiple commercial and open-source HAC solutions, these HACs
(i) disregard important sources of historical and runtime information, and (ii) have limited reasoning
capabilities. Therefore, they may conservatively perform unnecessary resource group or system
failovers or delay justified failovers for longer than necessary.

This thesis introduces the first HAC taxonomy, uses it to carry out an extensive survey of
current HAC solutions, and develops a novel Bayesian prognostic (BP) framework that addresses
the significant HAC limitations that are mentioned above and are identified by the survey. The BP
framework comprises four modules. The first module is a technique for modelling high availability
using a combination of established and new HAC characteristics. The second is a suite of methods
for obtaining and maintaining the information required by the other modules. The third is a HAC-
independent Bayesian decision network (BDN) that predicts whether resource failures can be managed
locally (i.e., without failovers). The fourth is a method for constructing a HAC-specific Bayesian
network for the fast prediction of resource group and system failures. Used together, these modules
reduce the downtime of HAC-protected EAs significantly. The experiments presented in this thesis
show that the BP framework can deliver downtimes between 5.5 and 7.9 times smaller than those
obtained with an established open-source HAC.





Contents

List of Figures xiii

List of Tables xix

Nomenclature xxiii

I Introduction and Background 1

1 Introduction 3
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Taxonomy of High Availability Clusters . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Survey of High Availability Clusters . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Holistic Modelling Technique for High Availability . . . . . . . . . . . . . . 8
1.4.4 Bayesian Prognostic Framework Preparation . . . . . . . . . . . . . . . . . 8
1.4.5 Bayesian Decision Network for Predicting Locally Manageable Resource

Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 Bayesian Network for Failure Propagation and Prediction . . . . . . . . . . 9
1.4.7 Bayesian Prognostic Framework for High-Availability Clusters . . . . . . . . 10

1.5 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Uses and Architecture of High-Availability Clusters 13
2.1 Key Concepts and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Layers of Enterprise Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 HAC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Disaster Recovery and High-Availability Clusters . . . . . . . . . . . . . . . . . . . 20



Contents

3 Taxonomy and Survey of High-availability Clusters 21
3.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 A: Deployment Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 B: Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 C: Type of Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 D: Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5 E: Cluster Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 F: Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.7 G: Consistency and Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.8 H: Data Synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Survey of High-availability Cluster Solutions . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Survey Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Approach for Selecting the Surveyed HACs . . . . . . . . . . . . . . . . . . 44
3.2.3 HAC Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Analysis of the Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.6 Limitations, Challenges and Opportunities . . . . . . . . . . . . . . . . . . 57
3.2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.8 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.9 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Bayesian Networks 63
4.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Representation of Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Types of Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Learning in Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3.1 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3.2 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Learning Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.6 Motivation for Using Bayesian Networks . . . . . . . . . . . . . . . . . . . 70

4.4 Bayesian Decision Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Representation of Conditional Probabilities . . . . . . . . . . . . . . . . . . 73
4.4.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Constructing and Using a Baysian Network/Decision Network . . . . . . . . . . . . 73
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



Contents

II A Bayesian Prognostic Framework for High-Availability Clusters 77

5 Holistic Modelling Technique for High Availability 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Holistic Modelling Technique for High Availability . . . . . . . . . . . . . . . . . . 82

5.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 HHAM Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Mapping Table (M-table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.4 Translation Rules (T-rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Building the HHAM model and M-table of an IT application . . . . . . . . . . . . . 89
5.5 Tool Support for the Holistic Modelling Technique for High Availability . . . . . . . 94
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Predicting Locally Manageable Resource Failures 97
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 HAC Characteristics for Predicting Locally Manageable Resource Failures . . . . . . 103
6.4 General Variable and State Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Relative Weight Assignment and Dimensionality Reduction . . . . . . . . . . . . . . 108
6.6 BDN-HAC-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6.1 Variable and State Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.2 Transformation into the Bayesian Decision Network . . . . . . . . . . . . . 112
6.6.3 Conditional Probability Tables . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6.4 Model Inference Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 BDN-HAC-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.7.1 Variable and State Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.7.2 Transformation into the Bayesian Decision Network . . . . . . . . . . . . . 119
6.7.3 Conditional Probability Tables . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.7.4 Model Inference Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 Causality and Decision Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.8.1 Reasoning with Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8.2 Influence of the Decision Node ‘Current State’ . . . . . . . . . . . . . . . . 126

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Bayesian Network for Failure Propagation and Prediction 129
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Method for Constructing the BN Model . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.1 Transformation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.2 Transformation from HMTHA to BN-HAC . . . . . . . . . . . . . . . . . . 133

vii



Contents

7.2.3 Variables and State Definition . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.4 Incorporating the Weak Node Concept . . . . . . . . . . . . . . . . . . . . . 135
7.2.5 T-rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.6 Assigning Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Failure Propagation and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3.1 Working with Latent Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Working with Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.3 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.3.4 Failure Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.5 Inference Using Production Data . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.6 Causal Reasoning with the BN-HAC Failure Propagation and Prediction Model141

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Bayesian Prognostic Framework Preparation 147
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2 Database for Storing Log and Configuration Data . . . . . . . . . . . . . . . . . . . 148
8.3 Configuration Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Log Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.5 Transformation and Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.6 Database Table for Storing Model Data . . . . . . . . . . . . . . . . . . . . . . . . 156
8.7 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Bayesian Prognostic Framework 159
9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2 Bayesian Prognostic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3 Implementation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

III Implementation and Evaluation 165

10 Evaluation 167
10.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1.1 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.1.2 Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.1.3 Storage Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.1.4 HAC Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.5 Enterprise Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.6 Enterprise Application Deployment in the Testbed . . . . . . . . . . . . . . 171

viii



Contents

10.1.7 HAC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.8 HAC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.1.9 Quorum Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.1.10 Conditions of the HAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.2.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.2.1.1 Fault Injection Methodology . . . . . . . . . . . . . . . . . . . . 177
10.2.1.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.2.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.2.3 Data Set Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.2.4.1 Evaluation Metrics for Runtime Overhead and Execution Time . . 188
10.2.5 Expected Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.3 Evaluation of Bayesian Prognostic Framework Modules . . . . . . . . . . . . . . . . 192
10.3.1 Evaluation of the Holistic Modelling Technique for High Availability . . . . 192

10.3.1.1 Evaluation of the Model Construction . . . . . . . . . . . . . . . . 192
10.3.1.2 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.3.2 Evaluation of the Locally Manageable Resource Failure Prediction . . . . . . 196
10.3.2.1 Evaluation of the Models . . . . . . . . . . . . . . . . . . . . . . 196
10.3.2.2 Prediction Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.3.2.3 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.3.3 Evaluation of the Bayesian Network model for Failure Propagation and
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.3.3.1 Evaluation of the Model Construction . . . . . . . . . . . . . . . . 207
10.3.3.2 Prediction Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.3.3.3 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.3.4 Evaluation of Bayesian Prognostic Framework Preparation . . . . . . . . . . 219
10.3.4.1 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.4 Evaluation of Bayesian Prognostic Framework . . . . . . . . . . . . . . . . . . . . . 219
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11 Conclusion and Future Work 227
11.1 Taxonomy of the High Availability Clusters . . . . . . . . . . . . . . . . . . . . . . 228

11.1.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 228
11.1.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11.2 Survey of High Availability Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.2.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 228

ix



Contents

11.2.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.3 Holistic Modelling Technique for High Availability . . . . . . . . . . . . . . . . . . 229

11.3.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 229
11.3.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.4 Bayesian Prognostic Framework Preparation . . . . . . . . . . . . . . . . . . . . . . 230
11.4.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 230
11.4.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.5 Bayesian Decision Network for Predicting Locally Manageable Resource Failures . . 231
11.5.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 231
11.5.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 231

11.6 Bayesian Network for Failure Propagation and Prediction . . . . . . . . . . . . . . . 232
11.6.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 232
11.6.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.7 Bayesian Prognostic Framework for High-Availability Clusters . . . . . . . . . . . . 233
11.7.1 Research Contributions and Discussion . . . . . . . . . . . . . . . . . . . . 233
11.7.2 Further Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Bibliography 235

Appendix A High Availability Resource Characteristics 255

Appendix B Use of the Taxonomy 259

Appendix C Evaluation of Runtime Overhead of the Holistic Modelling Technique for High
Availability 261
C.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
C.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
C.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
C.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Appendix D Implementation and Evaluation of Bayesian Prognostic Framework Prepara-
tion 267
D.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

D.1.1 Prepare the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
D.1.2 Implement the Database for Storing Log and Configuration Data . . . . . . . 267
D.1.3 Apply Configuration Refinement . . . . . . . . . . . . . . . . . . . . . . . . 268
D.1.4 Implement the Log Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 268
D.1.5 Enable Transformation and Conversion . . . . . . . . . . . . . . . . . . . . 269
D.1.6 Implement the Database Table for Storing Model Data . . . . . . . . . . . . 269
D.1.7 Apply Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

x



Contents

D.2 Evaluation of Bayesian Prognostic Framework Preparation . . . . . . . . . . . . . . 270
D.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
D.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

D.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
D.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Appendix E Implementation of the Bayesian Decision Network for Predicting Locally
Manageable Resource Failures 275
E.1 Implement the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
E.2 Change the Target Environment Details . . . . . . . . . . . . . . . . . . . . . . . . 275
E.3 Test the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
E.4 Inference Using Production data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

xi





List of Figures

1.1 High-level view of the Bayesian prognostic framework. . . . . . . . . . . . . . . . . 7

2.1 Structure of the running example application and its components. . . . . . . . . . . . 15
2.2 Architecture of a high availability cluster (HAC) with 𝑛 ≥ 2 nodes. . . . . . . . . . . 18

3.1 Top-level classes of the HAC taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Deployment patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Kubernetes architecture and communication flow between key components. . . . . . 23
3.4 Application areas of HACs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Type of cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 HAC topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Cluster management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Cluster communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Failure detection and recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 Consistency and integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.11 Data synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.12 File systems related to shared storage. Key: ext4 – Fourth extended file system, ZFS –

Z File System, OCFS2 – Oracle Cluster File System, vxCFS – Veritas Cluster File
System, NFS – Network File System, IBM Spectrum Scale – A distributed file system,
formerly called the General Parallel File System (GPFS) . . . . . . . . . . . . . . . 41

3.13 Platform and operating system support of the surveyed high availability clusters
(HACs) grouped by operating system. . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 The causal connections: (i) Serial, (ii) Diverging, and (iii) Converging connections. . 65
4.2 Types of Bayesian networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Parameter learning approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Learning scenarios and the corresponding learning methods. . . . . . . . . . . . . . 69
4.5 Bayesian network model for the HAC from the running example. Latent nodes are

highlighted in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Components associated with Bayesian network model construction and inference. . . 73

xiii



List of Figures

5.1 Classification of major availability modelling formalisms. . . . . . . . . . . . . . . . 81
5.2 Metamodel of the holistic availability modelling technique presented as a UML class

diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Simplified process for creating a holistic high availability model for high availability. 89
5.4 High availability model for an example IT application using a graphical notation to

represent the different types of vertices and arcs from Definition 1. The different
graphical elements are shown in the legend. . . . . . . . . . . . . . . . . . . . . . . 90

5.5 High availability cluster (HAC) of the running example. . . . . . . . . . . . . . . . . 93
5.6 The HMTHA tool showing the high availability model (HHAM) for the running

example using the graphical notation for the different types of vertices and arcs from
Definition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 HMTHA tool showing the second view to analyse the model. . . . . . . . . . . . . . 94

6.1 Overview of locally manageable resource failure prediction. Dashed boxes and arrows
indicate that the data are already available in the runtime environment and are retrieved
from sources in the design phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Timeline of resource failure events showing the HAC activities in the lower level, and
the related activities of the Bayesian decision network model for predicting locally
manageable failures in the upper level. . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Reducing dimensionality and adding relative weights to the variables in (i) the error-
related properties set E, (ii) the dependency-related properties set D, and (iii) com-
bining the outcomes of (i) and (ii) with criticality-related property set C and current
status-related property set S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Bayesian decision network model BDN-HAC-1. Random nodes are depicted with a
white background, blue shading indicates latent nodes, green shading indicates the
decision node, and the utility node is shaded orange. . . . . . . . . . . . . . . . . . . 112

6.5 The Bayesian decision network model, BDN-HAC-2, showing the nodes and the
related edges. White represents random nodes, green indicates decision nodes, and
utility nodes are represented by red. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 An illustrative example of the BDN-HAC model inference for the running example. . 124

7.1 Timeline of resource failure events where HAC activities are shown in the lower
level, and the activities of the Bayesian network model for failure propagation and
prediction are displayed in the upper level. . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Mapping the HHAM to the BN-HAC model: i) HHAM model; ii) mapped BN-HAC
model. In the BN-HAC model, the nodes shaded in blue are latent nodes; all the other
nodes are random nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Failure propagation in the BN-HAC model when node 𝐴3 fails. Red indicates a failed
node, white represents running random nodes and blue indicates latent nodes. . . . . 138

xiv



List of Figures

7.4 Node failure probability distribution after parameter learning using the three data sets. 139
7.5 Joint probability distribution of the model for the running example. . . . . . . . . . 140
7.6 An illustrative example of the BN-HAC model inference for the running example. . . 142
7.7 Identified causal connections in the BN-HAC model for the running example. . . . . 142
7.8 Failure propagation and the impact on the nodes in the same layer when node 𝐴3 fails. 144
7.9 Diverging connection depicting nodes representing two resource groups. White

represent random nodes and blue indicates latent nodes. . . . . . . . . . . . . . . . . 144

8.1 Components of the preparation environment are depicted, which show the log pro-
cessing steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Database structures for storing configuration and runtime data. . . . . . . . . . . . . 149
8.3 High availability cluster log extract and the key elements. . . . . . . . . . . . . . . . 152
8.4 An illustration of the log management approach by the log interface. . . . . . . . . . 153
8.5 Database table for storing data for the BDN-HAC model. . . . . . . . . . . . . . . . 156

9.1 Modules and components of the Bayesian prognostic framework, annotated to indicate
whether they are used during D(esign), I(mplementation) and/or at R(untime), e.g.,
’DI-’ indicates that a component is used during design and implementation and is not
used at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Bayesian prognostic framework development process. . . . . . . . . . . . . . . . . . 162

10.1 Main layers of the enterprise resource planning (ERP) solution in the testbed. . . . . 170
10.2 Architecture of the high availability cluster (HAC) in the testbed application. . . . . 172
10.3 Extract from the quorum configuration file. . . . . . . . . . . . . . . . . . . . . . . 173
10.4 Distribution of the failed-resource types in data sets. . . . . . . . . . . . . . . . . . . 183
10.5 Distribution of mitigation actions based on the threefold strategy to handle failures by

the HAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.6 Contingency table for the basic metrics. . . . . . . . . . . . . . . . . . . . . . . . . 185
10.7 Holistic high-availability model (HHAM) for the testbed application. . . . . . . . . . 194
10.8 Utility analysis results between BDN-HAC-1 and BDN-HAC-2 models for (a) Data

Set 1 and (b) Data Set 2. The horizontal cutoff lines at zero utility for BDN-HAC-1
(cf. eq. (6.10)) and at utility 200 for BDN-HAC-2 (cf. eq. (6.17)) separate the positive
outcomes (filled markers) and negative outcomes (empty markers). . . . . . . . . . . 197

10.9 Strength of influence for the parent-child node pairs from the two BDN-HAC models. 197
10.10Receiver operating characteristic (ROC) curve showing prediction quality for Data

Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.11Receiver operating characteristic (ROC) curve showing prediction quality for Data

Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.12Receiver operating characteristic (ROC) curve showing prediction quality for Data

Set 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xv



List of Figures

10.13Receiver operating characteristic (ROC) curve showing prediction quality for Data
Set 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.14Changes in the prediction outcome based on nodes receiving data for (a) Data Set 1,
(b) Data Set 2, (c) Data Set 5 and (d) Data Set 7. The labels on the horizontal axis
show the last node that was supplied with data, e.g., the values for ‘𝐵2’ were obtained
when the nodes 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐵2 were supplied with data, and all of the other
BDN nodes were not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.15Comparison of prediction quality for experiments in which only the critical or only
the noncritical nodes were supplied with data for: (a) Data Set 1, (b) Data Set 2, (c)
Data Set 5, and (d) Data Set 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.16Comparison of prediction quality between existing characteristics (ECs) and new
characteristics (NCs) for (a) Data Set 1, (b) Data Set 2, (c) Data Set 5 and (d) Data Set 7.204

10.17Mean execution time for the three steps associated with the invocation of the BDN-
HAC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.18Box plots of CPU utilisation of the BDN-HAC steps for (a) Data Set 1, (b) Data Set 2,
(c) Data Set 5 and (d) Data Set 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.19Box plot of memory utilisation of the BDN-HAC steps for (a) Data Set 1, (b) Data
Set 2, (c) Data Set 5 and (d) Data Set 7. . . . . . . . . . . . . . . . . . . . . . . . . 206

10.20Bayesian network model for failure propagation and prediction (BN-HAC), represent-
ing the testbed high-availability cluster (HAC). The model details are presented in
Table 10.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10.21Strength of influence analysis for the BN-HAC model. . . . . . . . . . . . . . . . . 212
10.22Receiver operating characteristic (ROC) curve showing prediction quality for Data

Set 6 using Data Sets 3, 9 and 10 for parameter learning. . . . . . . . . . . . . . . . 213
10.23Receiver operating characteristic (ROC) curve showing prediction quality for Data

Set 8 using Data Set 4 for parameter learning. . . . . . . . . . . . . . . . . . . . . . 214
10.24Failure probability distributions for each node in the BN-HAC model (in percentage)

after parameter learning with different data set sizes, shown for Data Sets 3, 4, 9 and 10.216
10.25Mean execution times for the three steps associated with the invocation of the BN-

HAC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.26CPU utilisation of the BN-HAC model invocation steps for inference (a) Data Set 6

and (b) Data Set 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.27Memory utilisation of the BN-HAC model invocation steps for inference (a) Data

Set 6 and (b) Data Set 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.28TTR analysis with the recovery time when only HAC results are observed in blue and

when the BP framework is employed is shown in red. Panels (a), (b) and (c) are from
Data Set 11, and (d), (e) and (f) are from Data Set 12. . . . . . . . . . . . . . . . . . 220

xvi



List of Figures

C.1 Utilisation of memory per vertex, cumulative memory, and absolute memory for (a)
model 1, (b) model 2, and (c) model 3. . . . . . . . . . . . . . . . . . . . . . . . . . 263

C.2 CPU (a) and memory (b) utilisation when adding vertices. . . . . . . . . . . . . . . 263
C.3 Mean CPU (a) and memory (b) utilisation per vertex type. . . . . . . . . . . . . . . 264
C.4 Mean CPU (a) and memory (b) utilisation per layer. . . . . . . . . . . . . . . . . . . 264

D.1 Configuration refinement for one record using the details from the holistic high-
availability model (HHAM), mapping table (M-table), and high availability cluster
(HAC) configuration details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

D.2 Extract from the log file from the testbed high availability cluster (HAC). . . . . . . 268
D.3 Extract from table model_data showing the result of the transformation, conversion,

and filter application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
D.4 Box plot of the CPU utilisation of the BPFP components presented for (a) Data Set 1,

(b) Data Set 2, (c) Data Set 5 and (d) Data Set 7. . . . . . . . . . . . . . . . . . . . . 271
D.5 Box plot of the memory utilisation of the BPFP components presented for (a) Data

Set 2, (b) Data Set 3, (c) Data Set 5 and (d) Data Set 7. . . . . . . . . . . . . . . . . 272

xvii





List of Tables

2.1 Enterprise application (EA) layers with possible high availability (HA) solutions . . 17
2.2 HAC terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Connection between deployment patterns, application areas and the rest of the taxonomy 24
3.2 Roles and responsibilities for service models in a public cloud, and for on-premises

deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Type of clusters and potential configurations . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Active-passive topology variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Quorum implementation with Windows server failover cluster (WSFC) . . . . . . . 39
3.6 Selection questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Evaluation of selected HAC solutions . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Eliminated HAC solutions in the six-step approach for selecting HACs for survey . . 47
3.9 Outcome of the survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 The surveyed HACs, versions and vendors . . . . . . . . . . . . . . . . . . . . . . . 52
3.11 Comparison of Kubernetes and high availability cluster features . . . . . . . . . . . 55

4.1 An example CPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Modelling rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Six-step approach to mapping an M-table to a BN model . . . . . . . . . . . . . . . 87
5.3 Translation rules (T-rules) for each vertex type . . . . . . . . . . . . . . . . . . . . . 87
5.4 M-table of the running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 HAC configuration for the running example . . . . . . . . . . . . . . . . . . . . . . 93

6.1 BDN-HAC model construction steps and step components . . . . . . . . . . . . . . 98
6.2 Resource properties of high-availability clusters grouped by sets . . . . . . . . . . . 104
6.3 Basic variables representing the properties of high-availability clusters, related sym-

bols, values, and variable groups (including group 4 of derived variables) . . . . . . 108
6.4 Description of all the nodes in the BDN-HAC-1 model . . . . . . . . . . . . . . . . 111
6.5 Probability distributions for all nodes in the model BDN-HAC-1 and their states . . . 115
6.6 Description of the BDN-HAC-2 model . . . . . . . . . . . . . . . . . . . . . . . . . 119

xix



List of Tables

6.7 Probability distributions associated with the nodes in the BDN-HAC-2 model . . . . 122
6.8 The impact of incomplete data on the prediction outcomes for model BDN-HAC-1 . 125

7.1 BN-HAC model construction steps and step components . . . . . . . . . . . . . . . 131
7.2 Completed M-table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Prior probability distributions of the BN-HAC model . . . . . . . . . . . . . . . . . 136
7.4 Data set with incomplete data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5 Data set with substituted values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6 Three data sets used during parameter learning experimentation . . . . . . . . . . . 138
7.7 Prediction that node 𝐶1 will fail (shown as a percentage) when each of nodes 𝐴3, 𝐴4

and 𝐴5 fails (individually) after parameter learning using the three data sets from
Table 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.8 BD-HAC inference for the running example in five scenarios involving the individual
failures of resources 𝐴2, 𝐴3, 𝐴4 and 𝐴5 (scenarios No 1–4), and the combined failure
of 𝐴3 and 𝐴5 (scenario No 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.1 Description of the table resource_type . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Description of the table cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.3 Description of the table node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Description of the table group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.5 Description of the table configuration . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.6 Description of the table hac_main . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.7 A record entered in the table configuration as part of the configuration refinement . . 152
8.8 Basic variables that represent the properties of high-availability clusters, related

symbols, values, types, value description and sources for obtaining the values . . . . 154

9.1 Reusability of framework components . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.1 Virtual machines used to enable high availability in the testbed . . . . . . . . . . . . 168
10.2 List of virtual IP addresses and associated resource groups . . . . . . . . . . . . . . 168
10.3 Storage configuration of the testbed . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.4 High availability cluster (HAC) configuration listing all resources, HAC names,

resource types, resource groups, and short service descriptions . . . . . . . . . . . . 174
10.5 Applied policies for the testbed high availability cluster (HAC) . . . . . . . . . . . . 175
10.6 Resource-level configuration parameters for the testbed high availability cluster (HAC)175
10.7 Overview of test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.8 Full details of test case T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.9 Overview of the data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.10Mean execution time in seconds for three mitigation steps of the HAC in the testbed . 184
10.11Metrics derived from the basic metrics, respective symbols, formulas and descriptions 186

xx



List of Tables

10.12Area under the curve intervals and their interpretations . . . . . . . . . . . . . . . . 187
10.13Mapping values used in plotting the receiver operating characteristic (ROC) curves . 187
10.14Execution time metrics and the related notation associated with the high-availability

cluster (HAC), Bayesian decision network (BDN-HAC) model and Bayesian network
(BN-HAC) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.15Runtime metrics and the related notation for the individual steps of the Bayesian
decision network (BDN-HAC) model and Bayesian network (BN-HAC) model . . . 188

10.16Metrics and the related notation associated with the components of the Bayesian
prognostic framework preparation (BPFP) module . . . . . . . . . . . . . . . . . . . 189

10.17Holistic high-availability model grouped by vertex type . . . . . . . . . . . . . . . . 193
10.18First part of the mapping table (M-table) for the testbed application . . . . . . . . . . 195
10.19Details of the two BDN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.20Summary of the receiver operating characteristic (ROC) analysis grouped by data set 201
10.21Completed M-table for the testbed high availability cluster (HAC) showing the struc-

ture of the mapped BN-HAC model . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.22Details of the Bayesian network for the failure propagation and prediction (BN-HAC)

model for the high availability cluster (HAC) in the testbed . . . . . . . . . . . . . . 209
10.23Local probabilities and conditional probabilities of the Bayesian network for the

failure propagation and prediction (BN-HAC) model . . . . . . . . . . . . . . . . . 210
10.24Summary of the prediction results grouped by the inference data set . . . . . . . . . 215
10.25Performance of the parameter learning for Data Sets 3, 4, 9 and 10 . . . . . . . . . . 215
10.26Mean failover time in seconds for different types of resource groups . . . . . . . . . 220
10.27Availability analysis results between the standalone HAC and the HAC supported by

the BP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1 Excluded resource properties of high-availability (HAC) clusters . . . . . . . . . . . 255

B.1 Application of the taxonomy to the testbed application . . . . . . . . . . . . . . . . 259

C.1 Evaluated HHAM models—vertex types . . . . . . . . . . . . . . . . . . . . . . . . 261
C.2 Evaluated HHAM models—vertices in each layer . . . . . . . . . . . . . . . . . . . 262

D.1 Mean execution time in seconds for different components of the BPFP . . . . . . . . 270

xxi





Nomenclature

Acronyms / Abbreviations

ALU Additive Linear Utility

AUC Area Under the Curve

BDN Bayesian Decision Network

BN Bayesian Network

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DR Disaster Recovery

EA Enterprise Application

EM Expectation Maximisation

ERP Enterprise Resource Planning

EU Expected Utility

FMEA Failure Mode and Effects Analysis

HAC High Availability Cluster

HMM Hidden Markov Model

HA High Availability

HHAM Holistic High Availability Model

HMTHA Holistic Modelling Technique for High Availability

xxiii



Nomenclature

JPD Joint Probability Distribution

MAU Multi Attribute utility

MEU Maximum Expected Utility

MTBF Mean Time Between Failures

MTTF Mean Time to Failure

MTTR Mean Time to Recover

OLTP Online Transaction Processing

ROC Receiver Operating Characteristics

SAN Storage Area Network

SLA Service Level Agreement

SPOF Single Point of Failure

VIP Virtual IP

xxiv



Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor Radu Calinescu for his
indispensable support, valuable advice, insightful guidance and always being available throughout
this research project. Without his support, this thesis would have never materialised.

Special thanks to Professor Dimitris Kolovos, my internal examiner, for his invaluable advice
and support. I would also like to thank my external examiner Professor Marin Litoiu. Thank you
to Dr Colin Paterson for the support and fruitful discussions. I am thankful to the Postgraduate
administration of the Department of Computer Science for giving excellent support.

I want to thank Stacey Karlsson for her encouragement and support. I would also like to thank the
late Roderick Hall for all the support I have received from him. I am grateful to Anders Haggren at
Linnaeus University for his support.

I would like to express my warmest gratitude to my family, Sujatha Premathas and Clara Premathas,
for their continuous support, without whom this would not have been possible. Finally, a special
thanks to my mother Mangayarkarasy Somasekaram, Thulasi Jagadeeswaran, the rest of my family,
and my friends for all their encouragement and support.





Declaration

I declare that this thesis is a presentation of original work, which I undertook at the University of
York during 2017 – 2021, and I am its sole author. This work has not previously been presented for an
award at this, or any other, University. All sources are acknowledged as References.

Parts of the research described in this thesis have appeared in the following research papers:
I. Premathas Somasekaram, Radu Calinescu, Rajkumar Buyya. High-Availability Clusters: A

Taxonomy, Survey, and Future Directions. Journal of Systems and Software, Volume 187, 2022.
II. Premathas Somasekaram, Radu Calinescu. Towards a Bayesian Prognostic Framework for

High-Availability Clusters. In 2021 IEEE/ACM 14th International Conference on Utility and Cloud
Computing (UCC), 2021.

III. Premathas Somasekaram, Radu Calinescu. Predicting Locally Manageable Resource
Failures of High Availability Clusters. Software: Practice and Experience, Under review, 2022.

IV. Premathas Somasekaram, Radu Calinescu. Bayesian Prognostic Framework for High-
Availability Clusters. Unpublished manuscript, 2022.

V. Premathas Somasekaram, Radu Calinescu. Bayesian Prognostic Framework for High-
Availability Clusters: A Method for Failure Propagation and Prediction. Draft, 2022.

Premathas Somasekaram
December 2021





Part I

Introduction and Background

1





Chapter 1

Introduction

1.1 Context and Motivation

The delivery of key services in domains ranging from finance and manufacturing to healthcare and
transportation is underpinned by a rapidly growing number of business-critical enterprise applications
(EAs) 1. Continuous availability is a matter of significant concern for these EAs because disruptions
in the services can negatively impact essential business processes [291, 194, 185, 32]. Therefore,
the concept of high availability (HA) has emerged. The usual way to achieve HA is through the use
of software-based solutions called high-availability clusters (HACs) [167, 239] or failover clusters.
HACs are autonomous systems that support the reliable execution of complex EAs or their key
layers and components. They comprise physical servers, storage, communication and other hardware
infrastructure with sophisticated HAC management software.

A key requirement of HACs is to ensure the continuous operation of the single-point-of-failure
(SPOF) components of protected EA layers. Such SPOF components may include databases, dis-
tributed transaction coordinators, software load balancers and storage. However, due to the diverse
HA needs of business-critical EAs, HACs must satisfy a wide range of additional requirements,
which differ significantly from one EA to another. For example, enterprise resource planning (ERP)
applications facilitate transactions (e.g., online transaction processing). Therefore, they must be
deployed on HACs capable of satisfying the atomicity, consistency, isolation and durability (ACID)
requirements associated with transaction processing [167, 49].

In contrast, EAs such as online analytical processing solutions may not have the same stringent
requirements for ACID properties because such solutions tend to be read-only in contrast to trans-
actional EAs that are read-write intensive [165]. Moreover, the focus of analytical EAs is to handle
analytical data in multiple steps, such as staging, transformation, processing and reporting, which
are typically reflected in the EA architectural layers and their components [281, 57, 106]. Hence, the

1This thesis adopts the definition of an enterprise application from [86], according to which “the term enterprise
application applies to a large class of applications that perform important business functions, such as planning enterprise
resource usage, automating key business functions, and managing supply chains and customer relationships”.
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SPOF components of analytical EAs differ from those of transactional EAs. Therefore, the setup of
HACs used to protect such solutions also varies significantly.

Further HAC requirements arise from the need to monitor and maintain the “health” of the
cluster. An essential monitor called a heartbeat [223, 288] is required to periodically check the
health of individual cluster nodes (i.e., servers) so that the appropriate failover procedure can be
initiated when node failures are detected. At the cluster level, a quorum system [49, 26] is needed for
scenarios in which the cluster is divided into cluster partitions that can no longer communicate with
each other. A voting protocol is enacted to select a single partition that continues to run the EA in
these scenarios. In this way, quorum systems prevent the occurrence of a split-brain [239, 167], a
situation in which multiple partitions attempt to use EA resources (i.e., components)2 simultaneously,
potentially corrupting important EA data [223].

HACs are also responsible for continuously monitoring the protected EA layers (e.g., the ap-
plication server and database layers) and seamlessly mitigating EA component failures. When a
component fails, the HAC typically follows a threefold strategy to handle the failure. First, the HAC
attempts to mitigate the failure by reinitialising the component (e.g., restarting the component) and its
child components. Second, if the failure cannot be resolved, the failure is propagated to the resource
group level where related resources are grouped. The HAC attempts to resolve the problem by failing
over the resource group to another node. If no other nodes are available, the HAC can also try to
reinitialise the resource group within the same node if the node is functional. Third, if dependencies
exist between the resource groups or critical failures occur at the node level, a complete system
failover to another node may be performed.

Despite the availability of multiple HAC solutions (including commercial solutions from leading
technology companies such as PowerHA SystemMirror [220], Serviceguard [101] and Solaris Cluster
[198]), HACs still face significant challenges due to the lack of standardisation, restrictions in IT
environments (such as public clouds for monitoring, shared storage and failure mitigation) and
limited capability to support EA-specific requirements. Furthermore, today’s HAC solutions operate
suboptimally due to limited utilisation of multiple opportunities:

1. The components of an EA are organised hierarchically, but the effect on other components in
the hierarchy is typically not evaluated when a component fails even though the failure of a
component in the hierarchy affects all the components under the failed component.

2. The criticality of an EA resource is not considered in HAC decision making, which means that
the failure of a noncritical resource can unnecessarily trigger a complete system failover.

3. The type of the component (e.g., local file system or global CPU) is not considered, though
different component types can have different degrees of influence on the HAC.

2The terms ‘resource’ and ‘component’ of an EA are used interchangeably in this thesis to refer elements of an EA such
as databases, disks and IP addresses.
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4. Modern EAs provide self-healing capabilities to improve availability. However, HACs do not
consider these capabilities and the exploitation of which has the potential to significantly reduce
downtime as certain failures could be managed automatically and very efficiently by the EAs.

5. A HAC typically records all system events, including the failure of individual components and
failovers, but such historical data are not exploited in HAC decision making.

This thesis introduces a Bayesian prognostic framework (BP framework) that leverages these
underutilised EA capabilities and historical data to address multiple HAC challenges and to improve
the overall effectiveness of HAC solutions. This BP framework comprises four modules:

1. a holistic modelling technique for high availability (HMTHA);

2. a BP framework preparation module (BPFP);

3. a Bayesian decision network (BDN) model for predicting locally manageable resource failures
(BDN-HAC);

4. a Bayesian network (BN) model for failure propagation and prediction (BN-HAC).

The first module, HMTHA, provides a tool-supported technique for modelling the wide range
of interrelated factors that affect the availability of an application. The second module, BPFP, is
responsible for extracting EA and HAC log data, and for processing and preparing these data to be
used by the third module. The third module, BDN-HAC, is used to predict which resource-level
failures are locally manageable so that the unnecessary use of failure propagation and failover to
mitigate these failures (as done by current HAC solutions) can be avoided. The fourth module,
BN-HAC, propagates (information about) resource-level failures that cannot be managed locally to
the resource group and system level. This enables HACs to predict and mitigate the potential failure
of upper-level EA components earlier than currently possible.

1.2 Research Hypothesis

The research presented in this thesis is underpinned by the hypothesis that:

BN-based probabilistic reasoning can support:

1. a more accurate prediction of locally manageable resource failures, and

2. the propagation of information about non-locally manageable resource failures to
predict resource group and system failures, thereby enabling failure mitigation that
achieves higher levels of EA availability compared to what is currently possible
using today’s HAC solutions.

We further hypothesise that these considerable benefits can be achieved through leveraging the
following capabilities of BNs:

5



Introduction

• encoding complex dependencies between HAC components;

• incorporating HAC configuration and runtime characteristics that support assessing the hierar-
chy, component types, component criticality and application-provided self-healing capabilities;

• exploiting historical data.

1.3 Research Questions

To pursue the research hypothesis stated above, this thesis addresses the following research questions
(RQs).

RQ1. How can a holistic HA modelling technique be created for systems comprising different
types of components while also capturing HA-relevant concerns such as the interdependencies and
criticality of components?

RQ2. How can failure data from the available HAC logs be used to develop a reusable BP framework
that is able to predict future failures in other HACs? Answering this research question is particularly
challenging for two reasons. First, the same failure is often recorded in HAC logs by multiple modules,
and determining that these records correspond to a single failure is non-trivial [288, 198, 115]. Second,
HAC logs tend to be HAC solution-specific [288, 198], and deriving HAC-independent data for a
reusable BP framework is challenging.

RQ3. How can a BDN model be developed that incorporates both established availability-relevant
characteristics of a component and currently unexploited characteristics to predict locally manageable
failures at a component level? Answering this research question is challenging for several reasons.
First, there are no current methods that can be used to determine which novel characteristics can
improve the BDN detection capabilities. Second, the identified characteristics need to be reduced
through the use of BN impact weights [131, 188, 244] to enable delivering data to the next BN
model, though determining these weights is difficult. Last but not least, the BDN needs to cope with
incomplete data, which is a known challenge in Bayesian reasoning [131, 188].

RQ4. How can a BN model be developed to assess a resource-level failure and propagate this
information to predict potential failures at the resource group and system level? This question can be
broken down into several sub-questions:

• How can a BN model with all the components of a HAC be constructed?

• How can the different types of components of an IT solution be represented in such a BN
model?
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Figure 1.1 High-level view of the Bayesian prognostic framework.

• How can a noncritical or weak component and components with no physical representation be
represented?

• How can the parameters of the BN be learnt? How does the data set size for learning parameter
distributions affect inference outcomes?
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1.4 Research Contributions

This thesis presents seven research contributions. These contributions consist of a new HAC taxonomy,
a HAC survey and a set of five technical contributions (summarised in Sections 1.4.3–1.4.7) that are
associated with the BP framework shown in Figure 1.1.

1.4.1 Taxonomy of High Availability Clusters

A comprehensive taxonomy of HACs has been devised and organised into eight top-level classes
and numerous subclasses. The taxonomy introduces several new terms to capture key HAC features
so that the elements of HACs can be addressed with more clarity. The new terms are symmetric
application-based topology, symmetric server-based topology, cluster-based replication, client-state
synchronisation, cluster-state synchronisation and application-state synchronisation. The HAC
taxonomy is presented in Section 3.1.

1.4.2 Survey of High Availability Clusters

An extensive survey has been conducted on the current HAC solutions (focusing on EAs) using the
taxonomy. Subsequently, we identified several limitations, open challenges and opportunities that
require further research in the HAC domain. The survey and findings are presented in Section 3.2.

1.4.3 Holistic Modelling Technique for High Availability

We have developed a new holistic technique for modelling HA for IT systems. As shown in Figure 1.1,
this technique represents the first key module of our BP framework. The new technique introduces
a graphical notation that can be used to specify the range of components encountered within an
IT system, as well as the different types of dependencies between them. The resulting models can
be used to visualise EA component characteristics, such as the component type, dependency type,
criticality and position in a hierarchy. The result is a special graph that we term a holistic HA model.
An accompanying mapping table (M-table) and translation rules (T-rules) simplify the mapping of
the HA model to a probabilistic model. The HA model is used to create and configure other modules
in the BP framework. A process to create the HA model is also introduced to simplify creating such
models. This contribution is presented in Chapter 5.

1.4.4 Bayesian Prognostic Framework Preparation

We have developed a Bayesian prognostic framework preparation (BPFP) module that has two
objectives:

1. support the preparation of an environment 3 to deploy the BP framework;

3The activities associated with preparing an environment include installing the required database objects, libraries, the
developed software programs, and populating the database objects with configuration data.
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2. prepare HAC log data for the consumption by the BDN model of the BP framework.

These two objectives are delivered by four core components: configuration refinement, log interface,
transformation and conversion, and a filter. The component configuration refinement updates the
BPFP tables with actual HAC details in the design phase. The log interface is crucial because it
interfaces with the HAC logs through polling and extracts distinct failure information. Moreover, it is
also responsible for parsing and enriching to enable the BDN-HAC module to consume the prepared
data. The components transformation and conversion and the filter are used when data is prepared and
preprocessed. This contribution is presented in Chapter 8.

1.4.5 Bayesian Decision Network for Predicting Locally Manageable Resource Fail-
ures

We have devised a new BDN-based model (BDN-HAC) that can be used to predict locally manageable
resource failures. This is the third module in the BP framework, and because it represents a BDN
model, it is also referred to as a model. The model is a HAC solution-independent module and uses a
BDN to manage decision making under uncertainty. The model uses four groups of characteristics
to evaluate a failure. The first group is used to identify and understand the behaviour of the HAC
when a resource failure occurs. We introduce new characteristics for the remaining three groups to
improve the detection capabilities. The second group extends the detection scope to include additional
characteristics, such as the hierarchical position of a failed resource. The third group assesses the
criticality of the failed resource, and the fourth group assesses the self-healing capabilities provided
by the application. These characteristics are then translated into variables that are combined to detect
component failures. The number of variables is reduced by employing a dimensional reduction
approach, where weights are added to each variable to ensure that the correct impact factor is captured.
Finally, a utility node is used to output a value that indicates whether a resource failure can be managed
locally or not. Information about any locally unmanageable failure is sent to the BN-HAC model
to propagate the failure and to predict the failure of higher-level components. This contribution is
presented in Chapter 6.

1.4.6 Bayesian Network for Failure Propagation and Prediction

We have introduced a novel method for constructing BN models for HACs. This the fourth module
(BN-HAC) in the BP framework and it enables failure propagation and prediction for HACs. The
module is referred to as a model because it comprises a BN model. The model receives output from
the BDN-HAC model to evaluate the probability of failure in high-level components, including at the
level of the complete system.

The BN model is constructed to reflect the actual composition of a HAC, and the dependency
connections are encoded in the model using conditional probabilities. A weak node (noncritical)
concept is also presented along with a mapping procedure for all HAC resources. The model uses
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an M-table (mapping table) to map the components discovered in the holistic availability model.
Parameter learning is used as the primary means to update the probability distributions. When new
failure information is received from the BDN-HAC model, the failure is assessed for the appropriate
BN node considering prior failure distributions for the node and other related nodes. The failure
is then propagated to high-level nodes to predict their potential failure using the joint probability
distribution (JPD). The model also deals with an extreme form of latent nodes, implying that only one
node (the node representing the failed resource) obtains data while the other nodes become latent.
Moreover, failure can occur in any node, which means failure node variability is also an essential
factor that the model addresses. The model outcome is a value that predicts the probability of failure
for a resource group, multiple resource groups or the complete system. This contribution is presented
in Chapter 7.

1.4.7 Bayesian Prognostic Framework for High-Availability Clusters

A final key contribution of this thesis is the BP framework itself, which integrates the components
provided by all the technical contributions. Thus, the framework consists of four modules (Figure 1.1)
aided by a set of conventions, rules and mapping procedures. Two modules are based on the BDN
(BDN-HAC) and BN (BN-HAC). Three steps are associated with the BP framework: design time,
implementation and runtime, and not all modules are part of all steps. For example, the runtime
step does not have the HMTHA because it is only used when designing and implementing the BP
framework. This contribution is presented in Chapter 9.

1.5 Thesis Organisation

This thesis is organised into three parts. Part I comprises Chapters 1 to 4 and provides the introduction
and background for HACs and BNs. Chapter 2 describes the key concepts and terminology related to
HA, how the different layers of EAs require protection, and the role of HACs in delivering HA for
some of these layers. The reference architecture of a HAC and its components are also detailed in this
chapter. Chapter 3 presents our comprehensive taxonomy and survey of HACs. Chapter 4 introduces
BN and BDNs, and briefly describes BN-related concepts used in this thesis.

Part II consists of Chapters 5 to 9, which detail the main technical contributions of this research.
Chapter 5 presents the HMTHA, which models HA for IT solutions. Once a model is created, it
can be used to identify components that are part of an HA solution. The resulting model is used in
subsequent chapters. Chapter 6 introduces the BDN-HAC model for predicting locally manageable
HAC resource failures. The known characteristics of HACs are described, and then a set of new
characteristics are presented. A description of translating these characteristics into a set of BDN
variables and subsequently performing dimensionality reduction and weight assignment on those
variables is also detailed. Chapter 7 presents the BN for the failure propagation and prediction model.
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The steps for constructing a model using the outcomes of the HMTHA are described. The propagation
of a failure and how propagation is performed for high-level components are also detailed.

Chapter 8 presents the BP framework preparation module and details the different components of
the module responsible for preparing an environment to deploy the BP framework and process HAC
log data. Chapter 9 describes the integrations of the modules presented in Chapters 5 to 8 into the
complete BP framework.

Part III contains Chapters 10 and 11. Chapter 10 describes the testbed, evaluation metrics, test
cases and the two-step approach used to evaluate the individual modules of the BP framework and to
evaluate the complete framework itself. The evaluation results are also presented and discussed in this
chapter. Finally, Chapter 11 concludes this thesis by summarising the findings and contributions of
this research, and providing further research directions in the field.
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Chapter 2

Uses and Architecture of
High-Availability Clusters

In this chapter, we first describe the terminology related to availability and high availability, and
then we describe the role of the HAC. We then provide a detailed definition of the threefold failure
management strategy employed by HACs. Next, we present the layers of the EA and discuss the
manifold uses of HACs to protect essential layers of a critical application and present the architecture
of HACs. Finally, we discuss how HACs can support the realisation of disaster recovery (DR)
requirements.

This chapter is organised as follows. Section 2.1 presents the key concepts and terminology related
to availability and high availability. Section 2.2 explains how HACs are used to protect different
layers of critical EAs. Section 2.2.1 presents an overview of HAC, and introduces a reference HAC
architecture. Section 2.3 provides an overview of disaster recovery in the context of HACs.

2.1 Key Concepts and Terminology

The ISO/IEC 25010 standard defines availability as the degree to which a system, product or component
is operational and accessible when required for use [119]. Availability is calculated as the ratio
between the time for which a system is operational and the total time over which the system was
observed. Equivalently, availability can be computed as the ratio between the mean time between
failures, MTBF, and the sum of the mean time between failures and the mean time to recover after
failures, i.e., the mean time to repair, MTTR : availability = MTBF/(MTBF +MTTR) [135, 191].

Component failures lead to downtime, periods when the system is not operational or accessible,
which results in a decrease in availability. As such, HACs are responsible for reducing both the
frequency and the duration of failures, and thus their impact on the availability of the protected
EAs. Discharging the first responsibility involves monitoring specific EA components to identify and
resolve faults before they lead to errors and the identification of errors before they trigger failures,
i.e., violations of requirements observable to EA users [135].
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A fault can occur in any resource (i.e., atomic component) of an EA, and the critical resources are
usually combined into one or several SPOFs (or SPOF groups). If such a resource fails irrecoverably,
it will lead to the failure of its associated SPOF as well. When a SPOF fails, it may bring down an
entire application. Achieving high availability requires that the SPOFs of an application are entirely
eliminated, partially eliminated or masked. Consequently, HACs discharge their second responsibility
by relocating SPOF-related resources to a secondary server after irrecoverable failures. In this way,
they mask the failures of resources and thus also of application SPOFs.

In this context, HACs employ a threefold strategy for failure management:

1. HACs avoid EA downtime, even in the presence of failures of individual resources. To achieve
this, HACs reinitialise or restart resources after faults and errors (increasing MTBF) and after
failures (reducing MTTR).

2. HACs promote the failure management to a resource group level if the failure at a resource-level
cannot be resolved locally. This leads to a failover of the concerned resource group to another
node. A resource group can also be reinitialised on the same node if there are no available
secondary nodes. A resource group failover is faster than a complete system failover. Therefore,
the likely outcome is that the failover does not cause downtime.

3. If there are dependencies between the resource groups and after critical failures, a complete
system failure may occur. In this event, the complete system is failed over to another node.

In the first scenario, components are restarted, whereas in the other two scenarios components are first
stopped and then started in a specific order determined by their interdependences.

As a simple example, consider a web application comprising Service, IP, File system 1, File
system 2, where the resource Database group is a logical resource that groups all the underlying
resources as depicted in Figure 2.1 (This application is used as a running example throughout this
thesis). When the parent Service with three child resources (IP, File system 1, and File system 1)
fails, all child components also fail. The HAC aims to resolve the failure by restarting the service
(strategy 1). However, because the service component depends on two child components, they must
be restarted before restarting the parent component. Similarly, when stopping a component, all related
child components are stopped before the parent node can be stopped. If a failure is not resolved, it
may lead to the failure of the related resource group or the entire application. For example, if File
system 1 fails and the failure is not resolved, it may bring down the entire resource group. In that case,
the HAC stops all components in a specific order in the primary node, relocates the components to a
secondary node, and starts the components in a specific order (strategy 2). The third strategy deals
with a complete system failover. In such a case, all resource groups and the corresponding resources
are stopped in a specific order, relocated to the secondary node, and started in a specific order. All
three actions are automated, which reduces MTTR significantly by avoiding time-consuming manual
detection, diagnosis, and recovery activities, thus improving availability.
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Figure 2.1 Structure of the running example application and its components.

2.2 Layers of Enterprise Application

EAs such as ERPs are transaction-intensive and require stateful communication. Moreover, data
consistency and data integrity are vital for such applications. Additionally, modern EAs are highly
integrated, which means that data corruption in one application may lead to data corruption in other
integrated systems. Therefore, data corruption and data loss must be prevented even when failures
occur. To identify and achieve HA holistically for an EA, it needs to be broken down into a set of
essential building blocks that are referred to as layers. Critchley [49] proposes a layered architecture
in describing an IT environment. Somasekaram [255] suggests a similar approach of separating the
layers of an IT solution for outsourcing purposes.

When all layers of an EA are identified, an appropriate solution for ensuring HA of each layer can
be devised. Multiple solutions are typically possible for each layer, including the use of a HAC. As
such, different EA critical layers can each be protected by a separate HAC. Alternatively, a single
HAC can be employed to protect several critical layers of an EA. In either case, any EA layer not
protected by HAC(s) may require other types of HA solutions (e.g., redundancy or fault tolerance).
In the special case of applications with only one critical layer (e.g., firewalls), HA can be ensured
through using a single-layer HAC [10, 239, 39].

Based on the HA solutions that can ensure the availability of EAs [49, 255, 12, 304, 235, 69, 15,
63, 6, 290, 296], the components of an EA can be organised into nine layers, as shown in Table 2.1.
For each layer, the table shows the typical role(s) that the layer can play within an EA, the solutions
available for ensuring its availability, and whether an application HAC (i.e., a multi-layer HAC) is
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among these solutions. As indicated in this table, an application HAC can protect the application
server, application core, and database layers of an EA, as well as the client resources associated
with the EA network and the storage layers.1 In contrast, a HAC is not typically used to protect the
operating system, and the virtual machine (VM) or server layers of the EA (i.e., layers 4–6 from
Table 2.1), as a failover always involves relocating the application environment to a different VM
or server, respectively. The protection of the data centre layer is also beyond the scope of a HAC.
However, the HAC still needs to monitor critical elements from layers 4–6 in order to identify critical
issues such unacceptably high levels of CPU utilisation for a server.

A few research initiatives have addressed the challenges of achieving HA solutions for multiple
EA layers from Table 2.1. Bajohr et al. [12] have devised an HA framework for Springer Verlag’s
Online Conference Service. Their framework combines different solutions for several layers of this
multi-tier applications, including an N+M HAC (these terms are explained in the topology section
of our taxonomy) for application servers (layer 1) and a master-slave configuration for the database
(layer 3). Similarly, Sun et al. [262] present an HA architecture for a multi-tier application in which
multiple HA solutions are combined to enable HA for the application. However, most research to date
has focused on HACs for single EA layers. For instance, Cheng et al. [40] developed an application
cluster service (APCS) scheme comprising separate methods that support state recovery and failure
management, respectively. APCS assumes that the state of a shared-storage database layer does not
change, and therefore focuses on the protection of the application layer of a three-tier architecture.
In many other approaches, the layer protected by different types of HA solutions is the database
layer [298], as in the case of Riley et al.’s HA cloud for research computing [228]. Built using the
OpenNebula cloud computing platform, this solution employs an active-active HA MariaDB cluster
(layer 3) to support the storage of cloud objects.

In summary, modern EAs require a combination of HA solutions to achieve the required levels of
end-to-end availability. More often than not, the infrastructure components of EAs have their own HA
setups, and thus HACs typically focus on ensuring the availability of the actual applications.

2.2.1 HAC Architecture

Figure 2.2 shows the high-level architecture of a generic HAC operating on 𝑛 ≥ 2 nodes distributed
across one or multiple locations (i.e., data centres). The HAC is responsible for the management of an
EA whose resources are organised into 𝑚 ≥ 1 resource groups, out of which only the resource groups
on the primary node 1 are active. The HAC uses three dedicated private networks—a cluster network
for communication across cluster nodes, a quorum network to connect all nodes to a quorum device
(i.e., a facilitator of the quorum service), and a heartbeat network whose role is explained later in this
section. The HAC modules deployed on each cluster node [223, 288, 139] are described below using
the terminology summarised in Table 2.2.

1The network and storage EA layers are part of the EA infrastructure, and present both a server view and a client view.
As an example, a storage system in itself is part of the server view, while its individual disks associated with a server or with
a virtual machine become part of the client view, and thus need to be protected by the application HAC.
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Table 2.1 Enterprise application (EA) layers with possible high availability (HA) solutions

No Layer Typical Role(s) within the
EA

Possible HA Solution(s) HAC†

1 application server
(e.g., web servers
[30, 237, 196])

key tier in multi-tier EAs,
e.g., presentation layer

use multiple instances with
load balancing [223, 204]

optional

2 application core
(e.g., ERP central
[158, 200]

coordination of distributed
transactions, application
servers

use application HAC [200,
239, 284]

yes

3 database (e.g., Oracle,
DB2, HANA [239,
16])

databases to support the main
application

high-availability features pro-
vided by database, such as
replication and mirroring [239,
176, 284] which can be used
with application HAC

yes

4 operating system
(e.g., Linux, UNIX)

operating environments redundant server environment no

5 virtual machine (VM) VM (e.g., virtualisation plat-
form)

VM cluster [50] (a HAC can
be combined with a VM clus-
ter [287])

no

6 server server hardware redundant servers and fault tol-
erance

no

7 network (e.g., private,
public networks)

local area network (LAN),
virtual LAN (VLAN)

redundant network devices,
fault tolerance, hardware
HACs (e.g., for routers and
load balancers) [15, 207, 250]

only
client re-
sources

8 storage (e.g., the dif-
ferent type of storage
systems)

storage area network (SAN),
NAS, direct attached storage
(DAS) [167]

redundant devices, fault toler-
ance, storage HAC [167, 304,
238]

only
client re-
sources

9 data centre (e.g., es-
sential data centre
components)

supporting utilities such as
UPS, power distribution unit
(PDU) [301], cloud operat-
ing systems [98], and backup
infrastructure

redundancy by multiple sites,
and redundant data centre
equipment, such as UPS and
fault tolerance for components,
HA for the individual data cen-
tre components [15, 230]

no

† - High availability of layer can be ensured by an application HAC

I. Cluster management: This is the core HAC module responsible for overseeing the operation
of the other modules and includes the following sub-modules:

(a) Cluster data: It comprises the data stores managed by a cluster and shared by all nodes.

• Configuration: It comprises static data (e.g., HAC configuration parameters).

• Runtime: This consists of dynamic data (e.g., current status of the cluster compo-
nents).

(b) Communication: This module manages the communication between the HAC modules
on the same node and between the cluster nodes, as well as the heartbeat communications.
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Figure 2.2 Architecture of a high availability cluster (HAC) with 𝑛 ≥ 2 nodes.

• Cluster: Cluster communication (also known as intra-cluster or inter-node communi-
cation) deals with communication between cluster nodes.

• Heartbeat: This is an essential health monitor that checks the health of member
nodes, notifying the HAC when the heartbeat of a particular node fails [167, 288].
During such an event, the HAC consults with a quorum to ensure that there are
enough votes to continue to run the cluster. If it is the active node that has failed, this
will result in a failover, provided that the cluster can reach a quorum [223].

• Node: Communication (also known as intra-node communication) manages commu-
nication within a node.

(c) Resource management: This module is responsible for managing two main groups of
EA resources:

• Base: It manages base resources, which include key components such as CPUs and
disks.

• Application: It manages resources that are specific to the HAC-protected applica-
tions.

II. Failure detection and recovery: This module is responsible for managing failovers and
recoveries, and includes the following sub-modules:

(a) Monitoring: A monitoring mechanism to monitor the EA resources and notifies other
HAC components (e.g., resource management) about any problems.

(b) Failover: It is responsible for moving resource groups to a secondary node. Depending on
the failure type, a failover can be at resource group or system (i.e., complete application)
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Table 2.2 HAC terminology

Term Description

Resource A logical or physical component of an EA layer (e.g., an IP address used
by a database, or an application component) that is managed as an atomic
entity by a HAC, and is either fully operational or unavailable. Resources
have interdependencies that can be described by a hierarchical map [223,
288, 167].

Resource
group

A set of logically related resources that can be relocated to a secondary
node as one entity. As such, each resource can only belong to one resource
group. An EA may comprise numerous resource groups, each of which may
represent a significant part of the EA, such as a database [239, 223, 288].

Split-
brain

A condition that occurs when a cluster ends up divided into partitions that
perform conflicting operations on the same resources, typically causing data
corruption [167, 25].

Amnesia A condition that occurs when cluster nodes operate with different configura-
tions, e.g., because nodes that are rebooted resume operation with an older
configuration. If such nodes are to become primary, a problem is created
because they will run with an out-of-date configuration [197].

Switchover The manual migration of resources from one node to another [49].

Shared
storage

A HAC whose cluster members have access to the same storage. When it
comes to EAs, typically only one node at a time can allocate the shared
storage resources so that data integrity is not affected [223].

Dependency Resources and resource groups have dependencies that must be taken into
account during a failover and the subsequent restart of services. These
dependencies can be modelled using an acyclic directed graph termed a
dependency configuration [223].

level. The latter involves moving all resource groups that belong to an application
[167, 49].

(c) Recovery: This component decides whether failures need to be resolved at resource,
resource group or node level by considering their criticality and resource dependencies.
When a failure cannot be resolved, the failover sub-module is notified, so that failover can
be initiated.

III. Consistency and integrity: This module ensures consistency and integrity across all cluster
nodes through the following sub-modules:

(a) Fencing: A protection mechanism that isolates a resource or node that experienced
failures, removing its ability to connect to any of the critical EA resources [49, 265].

19



Uses and Architecture of High-Availability Clusters

(b) Quorum: A voting system for determining which partition is allowed to run a cluster
when a split of the cluster occurs [49, 288, 220]. The partition that has the quorum is
considered quorate, and can be used to run the cluster without causing a split-brain.

These terms are described in greater detail in the taxonomy in Chapter 3.

2.3 Disaster Recovery and High-Availability Clusters

The fundamental objective of disaster recovery (DR) is to protect an IT system from failures due to
disasters such as earthquakes or flooding [49]. DR is considered part of Business Continuity (BC).
However, the focus of BC is to ensure the operations of the business during a disaster, while DR aims
to support the restoration of the required infrastructure to support redeploying or relocating an IT
system.

A DR solution can be implemented in several ways [239], and one option is to use a HAC. In this
case, the HAC employs a cluster type (Section 3.1) that can operate geographically dispersed nodes.
For example, the cluster type continental cluster can manage cluster nodes over extended distances. A
DR setup can be either active or passive, and in the case of an active setup, the primary infrastructure
is mirrored to enable continuous synchronisation between the sites. In contrast, a passive DR solution
only requires a minimal setup to facilitate data synchronisation. Nevertheless, a HAC can function
as an orchestrator in both cases and then failover the complete application to a DR site in the event
of a disaster. The difference is that the former setup supports instantaneous failover while the latter
is associated with delays to ensure the operability of the infrastructure in the DR site first before a
failover can occur.
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Chapter 3

Taxonomy and Survey of
High-availability Clusters

This chapter presents a taxonomy covering all key aspects of HACs. We use this taxonomy to provide
a comprehensive survey of the end-to-end HAC software solutions available for the HAC deployment
of EAs. Finally, we discuss the limitations and challenges of existing HAC solutions, and we present
opportunities for future research in the area.

This chapter is organised as follows. Section 3.1 proposes the HAC taxonomy and presents
the techniques underpinning core HAC operations such as monitoring, heartbeat, quorum, failure
detection, and EA component failover. Section 3.2 applies the taxonomy to survey end-to-end and
state-of-the-art EA HAC solutions, available commercially or from open-source projects. Section 3.2.6
discusses HAC limitations, open challenges, and research opportunities. Lastly, Section 3.3 concludes
the chapter with a summary.

3.1 Taxonomy

Our taxonomy applies to single-layer HACs and multilayer HACs, which can provide application-
specific services, such as understanding the internals of applications and managing those services
accordingly upon the failure of one or more resources. Further, the focus is on HACs sharing common
characteristics, such as monitoring, fencing, heartbeat or quorum.

The taxonomy is organised into eight top-level classes, as depicted in Figure 3.1. The first four
classes capture how HACs are deployed (deployment patterns), which EA layers are protected by
HACs (application areas), how this protection is achieved (type of cluster), and how the HAC nodes
are structured and interconnected (topology). The next two classes reflect how HACs manage the
resources of the protected EA (cluster management) and perform detection of and recovery from
failures of these resources (failure detection and recovery). Finally, the last two classes indicate how
the HACs preserve the consistency of the EA data and the integrity of the cluster (consistency and
integrity), and how the EA data are synchronised across cluster nodes (data synchronisation).
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Figure 3.1 Top-level classes of the HAC taxonomy.
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Figure 3.2 Deployment patterns.

3.1.1 A: Deployment Pattern

The deployment pattern of a HAC represents the platform where the HAC solution is deployed. As
shown in Figure 3.2, we distinguish between the deployment environment—which can be a public
cloud or on-premise IT infrastructure of the organisation using the HAC, and the type of host used for
the cluster—which can be physical, virtual or container.

The deployment pattern decides, along with business requirements and technical capabilities,
what cluster type can be implemented for an application area. Table 3.1 describes the relationship
between deployment patterns, application areas, and the rest of the taxonomy. A cluster type, on
the other hand, decides how an application area can be protected and the subsequent topology and
related configuration. An example of this is as follows: if the deployment pattern is a set of virtual
servers in a single data centre, it will not be possible to deploy topologies such as metro or continental
(described under Type of cluster). Thus each HAC solution comes with deployment restrictions (e.g.,
whether it can be deployed in a public cloud or not).

Cloud environments impose restrictions that can cause problems for a HAC because many of the
infrastructure elements that a HAC needs to monitor and manage may not be available for a cloud
deployment. However, a distinction needs to be made between private (i.e., on-premises) clouds and
public clouds because private clouds offer much more flexibility, and functionalities may be identical
to an on-premises physical environment. Furthermore, the roles and responsibilities of different
stakeholders play an essential role when deploying a HAC in a cloud. Table 3.2 describes the roles
and responsibilities of customers and cloud providers for private clouds and for the service models
available in public clouds [148, 173, 7], showing that multiple stakeholders may need to collaborate
to support the different layers of a HAC in a public cloud.

Containerisation is facilitated through orchestration technologies to deploy and manage con-
tainerised microservices, and Kubernetes has become a de facto standard orchestration platform
[211]. Kubernetes provides a range of services, including HA for containers. We investigate the HA
capabilities of Kubernetes in this section, and further analyses are provided in Section 3.2.5. To study
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Figure 3.3 Kubernetes architecture and communication flow between key components.

the HA capabilities of Kubernetes, we first present the Kubernetes architecture and then analyse the
HA capabilities. The key components of a Kubernetes cluster are illustrated in Figure 3.3, where the
arrows mark the flow of communication [266]. There is at least one master node (control plane), one
or more worker nodes, or just nodes managed by the master node [266]. A node can be a virtual or
physical server.

The components of a Kubernetes cluster are described as follows [266]. A master node comprises
multiple global components used to operate components in the nodes. The master node is also
responsible for detecting and responding to cluster events. A controller manager is responsible for
running controller processes which perform different tasks, such as monitoring the individual nodes
and reporting back when a node stops (node controller). Similarly, there are controllers for watching
jobs, endpoint controllers to populate endpoint objects, such as a pod, and service-account and token
controllers to create default accounts and access tokens for the API. A scheduler is responsible for
monitoring new pods without an assignment and assigning them to a node to run. An API server is
responsible for presenting APIs for communication. An etcd is a key-value repository that stores data
regarding the cluster, such as the current and desired states. When the state of the cluster changes,
appropriate actions are initiated to ensure the desired state [266].

Each node has a set of node-level components to manage pods running on the nodes [266]. A
Kubelet is an agent running on every node to support the Kubernetes services (ensuring that containers
run in a pod) [266]. A Kube proxy is responsible for managing network rules in the nodes to enable
communication between pods and network sessions originating from outside or inside the cluster.
A container engine (container runtime) is responsible for maintaining the runtime environment for
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Table 3.1 Connection between deployment patterns, application areas and the rest of the taxonomy

Deployment Patterns Application Areas Rest of the taxonomy

Objectives Where to deploy the
solution?

What application or
application components
need to be protected?

How should the solution
be set up to meet the
requirements?

Examples data centre locations,
public cloud, virtual
server

enterprise system, NAS,
network appliance (e.g.,
firewall), storage system

cluster type, topology,
replication, mirroring

Table 3.2 Roles and responsibilities for service models in a public cloud, and for on-premises
deployment

No Layers On-premises IaaS PaaS SaaS

1 Application server C C C AP
2 Application core C C C AP
3 Database C C C AP
4 Operating system C C CP CP
5 Virtual machine C CP CP CP
6 Server C CP CP CP
7 Network C CP CP CP
8 Storage C CP CP CP
9 Data centre C CP CP CP

Key: IaaS – Infrastructure as a Service, PaaS - Platform as a Service, SaaS – Software as a Service, C - Customer, AP -
Application provider, CP - Cloud provider (who may also be application provider for the SaaS service model SaaS).

containers. A container is responsible for running the workload and is placed inside a pod, and the
pod runs on nodes and groups containers with the same purpose. A pod is the smallest entity that
Kubernetes can deploy, enabling inter-communication between the deployed containers.

Kubernetes has built-in HA capabilities to monitor and ensure that failed containers are restarted
or replaced, and it can also terminate an unresponsive container [266]. However, ensuring that the
critical components in the master node are also protected is critical for delivering HA. This outcome
can be achieved by setting up multiple master nodes, with each master node hosting all components.
A load balancer enables access to multiple master nodes. This topology is called a stacked control
plane, and a second topology is called external etcd nodes, in which only the etcd nodes are separated
into a set of redundant nodes, whereas the rest of the master node components run on a different node
set. This topology improves the availability by separating the key component of etcd to facilitate
distributed data storage.
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3.1.2 B: Application Areas

Application areas are the different IT solutions that can be protected by HACs, and a list of typical
applications areas is presented in Figure 3.4. Considering the application area has dual purposes:
(1) to identify if HACs can support the multiple layers that an application is composed of; and
(2) to address all areas that are part of an IT solution, so that HA requirements for those areas can
be achieved. For instance, the application area enterprise system may require other related areas,
such as application server, database, server, network, and storage to be included to ensure that the
enterprise system is protected across all critical layers. Some layers can be protected by an application
HAC while others may require a different set of options which may include application area specific
HACs (presented in Table 2.1) [296]. Moreover, application areas with fewer layers may need to
protect fewer components [161]. For instance, a HAC in the context of a distributed system (e.g.,
high-performance computing—HPC) may need to protect fewer components than an EA HAC. In
case of an HPC, a head node (principal node) is identified as a SPOF. Thus, a HAC can be deployed to
protect the head node [272]. Therefore, the application areas of a solution are determined dynamically
during an implementation phase, and the numbers of protected resources will change with the type of
primary application to be protected.

Several recent projects have implemented HACs that support multiple application areas, as also
discussed in Section 2.2. Xiong et al. [298] present a HAC for a relational database in a multi-cloud
environment which supports the requirements of both HA and Disaster Recovery (DR). Engelmann et
al. [66] have experimented with a HAC to protect the head nodes of an HPC environment. Addressing
complex systems that consist of multiple layers, hence also several application areas, is a challenge.
Wang et al. [290] address the challenge by proposing an HA solution for a comprehensive medical
system which consisted of several layers hence also multiple application areas. The proposed solution
used a multitude of HACs to enable HA across the different layers.
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Table 3.3 Type of clusters and potential configurations

Type of HAC Distance
(in
km)

Network
Latency
(ms)

Data
Centres

Storage
Systems

Disaster Recovery Support

Local ≤1 ≤1 ≥1 ≥1 No
Campus ≤30 <1 ≥1 ≥1 Limited due to short distance
Metro ≥30 <5 ≥2 ≥2 Limited due to distance
Continental ≥300 >5 ≥2 ≥2 Yes

3.1.3 C: Type of Cluster

The type of cluster plays a vital role in selecting the right topology and related configuration for
a HAC. An important characteristic is the distance between nodes, and therefore the number of
sites (e.g., data centres). The type could be chosen to meet business requirements, such as business
continuity or DR. A DR solution requires at least two data centres with a sufficient distance between
them and a related configuration. When a HAC solution is explicitly deployed to support DR, it has to
comply with restrictions (e.g., low network latency between data centres). Moreover, supplementary
mechanisms must be used to guarantee data integrity during failovers. Therefore, the type of cluster
should be treated as the starting point for HAC selection, along with the two top-level taxonomy
classes presented previously. There are four types of clusters, as shown in Figure 3.5 and Table 3.3.
Based on a rule of thumb derived from [167, 239, 282, 99, 112], we assumed a communication speed
of 3 ms per 160 km to calculate network latency. The distances described in the table may differ
due to the use of different technologies. Moreover, the different HAC solutions can also come with
specific recommendations.

C.1: Local. A local HAC is hosted in one data centre and uses one storage system, usually shared.
When there are two data centres, the distance between data centres is often less than one km [265]. In
such case, there exist two options. Option 1 is to distribute the HAC nodes across two data centres,
with all nodes utilising shared storage from one of the data centres. Option 2, on the other hand,
uses two storage systems in the two data centres, with the HAC becoming a shared-nothing cluster.
However, because data integrity is crucial for EAs, either replication or mirroring must be enabled to
synchronise data between the two data centres. The two-data centre setup with replication or mirroring
is also a feasible solution for other types of cluster. Since there is usually one data centre associated
with a local cluster, the setup is not compliant with DR requirements.

C.2: Campus. A campus cluster is usually deployed across two or more data centres, and the distance
between the data centres is less than 30 km [249, 265]. Since a campus HAC has a redundant setup
for data centres and related components, it can comply with DR requirements (e.g., it can handle
DR scenarios such as a data centre failure). However, the distance requirement between data centres
means that businesses may opt for other types of HACs which are optimised for longer distances.
Nevertheless, campus clusters can support longer distances when combined with other HAC types,
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becoming hybrid clusters — for instance, multiple interconnected campus clusters with one campus
cluster functioning as the primary. This setup enables failover locally for most incidents but will
trigger a failover to a different site only when a DR scenario takes place at the primary site.

C.3: Metro. In a metro cluster, the nodes are distributed across a distance of up to 300 km. Although
there is no definite cut-off for this distance, the restrictions come from the techniques that are employed
to synchronise data [112, 199]. For example, in some cases, the distance can be extended to 400 km
by employing Wave Division Multiplexors (WDM) [195].

C.4: Continental. When cluster nodes are geographically dispersed, usually at a distance of more
than 300 km, the cluster is characterised as a continental cluster. [100]. A continental cluster can also
be referred to as a global cluster or geo-cluster.

3.1.4 D: Topology

The topology (or redundancy model [125]) of a HAC represents the way in which the HAC nodes
are structured and linked. The topology of a HAC (Figure 3.6) depends on multiple characteristics
of its nodes, on the roles of these nodes (primary or secondary), and on its communication devices,
networks, storage systems, and supporting tools (e.g., quorum devices).

D.1: Symmetric. In a symmetric topology, all cluster nodes can be utilised concurrently: there is no
standby node.

D.1.1: Active-active. While symmetric active-active describes that all nodes are utilised, there
have been research efforts to implement variations of the topology to address the specific needs of
distributed systems. Engelmann et al. [65, 97] implemented a prototype with a symmetric active-active
topology that operated on more than two nodes to provide HA for an HPC. The prototype employed
two replication mechanisms, internal and external, using reliable and totally ordered message delivery.
The internal replication provided synchronisation for the HPC file system metadata service, while the
external replication supported the same for the HPC job and resource manager [97]. The evaluation of
the prototype showed that the availability could be improved significantly as more nodes were added
to the cluster. Therefore, depending on how applications are hosted on such HACs, we distinguish
between symmetric application-based and symmetric server-based topologies.
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D.1.1.1: Application-based. In a symmetric application-based topology, an application is active on all
available cluster nodes. This topology requires application support because managing transactions
across multiple nodes is only possible by using additional mechanisms, such as distributed lock
management. A component of an application, for instance, a database, may provide these mechanisms,
which can then be combined with a HAC solution [203]. For example, IBM Purescale supports
parallel access to IBM DB2 databases [16], and Oracle provides active-active concurrent access
support for Oracle databases using the Oracle Real Application Clusters [262, 285, 201].

D.1.1.2: Server-based. A symmetric server-based topology is frequently referred to as an active-active
topology, and this implies that multiple applications are hosted on all server nodes of a cluster;
hence, the servers are fully utilised [284]. Since all servers are utilised, the topology is considered
active-active. When a failover takes place for one or more applications, they failover to one or more
of the available servers, implying that a standby node is not required.

D.1.2: N-to-N. In the symmetric N-to-N topology, multiple applications share the same set of N servers,
like for the symmetric server-based topology. Upon failure of a primary node for an application, the
application is failed over to one of the predefined member nodes of the cluster [59]. The new server
will then host both the application that has failed over, and the previously running application [284].
The topology supports failing over multiple applications to multiple nodes.

D.2: Asymmetric. An asymmetric topology is an active-passive configuration in which one node is
active while one or more nodes are in a passive or a standby mode [29].

D.2.1: Active-passive. An active-passive topology is the typical asymmetric topology consisting of a
two-node cluster setup in which one node is active while the other node is passive or standby. This
topology is sometimes referred to as 2N redundancy [246]. Today’s HACs make a distinction between
the different layers of an application. In protecting a layer 3 component (i.e., database), a HAC can
either manage it by employing a database-specific extension (agent) or utilising replica or mirroring
features that are offered natively by the database [160]. Most database vendors provide a replica or
mirroring option to set up standby databases of primary databases [216], and this configuration can
effectively be integrated with a HAC. The prerequisite in such a case is that the HAC has support for
the specific feature so that the HAC can recognise and support it as part of its operations.

Several variants of the active-passive topology exist, depending on the set up for a standby
database and for the secondary node [16, 49, 239], as shown in Table 3.4. While the standby modes
from this table are often used with databases, other application layers may also employ a similar
configuration. For example, a layer two component (i.e., application core), employs the active-warm
(or warm) standby mode due to the limited need for data synchronisation. However, a common setup
by a HAC is to employ either active-hot (or hot) standby or active-warm because otherwise failover
time and MTTR will increase and, as a consequence, availability will go down. The primary reason
for using the active-cold (or cold) standby or active-warm standby is cost, as using an active host
node is associated with higher costs. The standby modes are usually not explicitly supported by
modern HAC solutions; instead, the different standby modes of databases and related features that are
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Table 3.4 Active-passive topology variants

Standby
Mode

Recovery
Time

Data
Synchronisation
Method

Description

Active-
Cold

Hours Backup/restore A secondary node is installed and configured but
brought up only when the primary node is down.
Subsequently, the related services are started, as
well [144].

Active-
Warm

Minutes Mirroring, shared
storage

The secondary node is installed and configured
and is running. Related application services are
started upon failure of the primary node.

Active-
Hot

Seconds Mirroring, replication,
shared storage

The secondary node is fully installed and
configured, and services are also started. The
secondary node takes over responsibilities
immediately upon failure of the primary node.

supported are specified [16, 239]. Moreover, the standby modes are frequently used to refer to the
modes of the data centres, particularly in the context of establishing DR for a system [186].

D.2.2: N-to-1. In an N-to-1 topology, multiple applications are supported by one dedicated standby
node. Hence the name N-to-1 [59, 284]. If a node fails, the application is failed over to the standby
node and made available there temporarily. However, while the application is active on the standby
node, there will be no HA for that application until the primary node is back online. Another aspect of
an N-to-1 topology is that such a standby node must be able to host all N applications simultaneously.
Hence, sufficient capacity must be available on the standby node.

D.2.3: N+1. In an N+1 topology, one passive (spare) node supports multiple active applications,
similarly to the N-to-1 topology. However, unlike the N-to-1 topology, the N+1 topology employs a
rotation scheme for failovers [284]. This means that, during a failover, an application is failed over to
the standby node, but the failed node, once the problems are resolved, effectively becomes the standby
node. Hence, any node in the cluster can become a standby node. A variant of the N+1 topology
that uses 2+1 nodes (with two active nodes and one node operating as a standby or backup) has been
referred to as asymmetric active-active in the context of HACs for HPC [140].

D.2.4: N+M. The N+M topology refers to HACs that comprise N active nodes and M passive nodes
in the cluster, and is called an N+N topology when the number of passive nodes equals the number of
active nodes. The topology is employed when one passive node is not sufficient, and M>1 passive
nodes are required for failovers [125, 90].
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3.1.5 E: Cluster Management

The cluster management module of a HAC is responsible for managing the resources, resource groups,
nodes, heartbeats, cluster data, and failovers of a cluster, directly or through other modules. The
characteristics used to distinguish between different types of HAC cluster management are shown in
Figure 3.7 and described below.

E.1: Cluster data. Two types of cluster data are relevant to HACs: configuration and runtime.
Configuration data contains configuration details of a HAC while runtime data stores status of the
cluster components. Cluster data can be stored in three types of repositories: disk, file and memory.

A repository can be either local or shared. However, a prerequisite for a repository is that it is
accessible by all cluster nodes. Hence, if a repository is local, a replication mechanism is used to
replicate it between the nodes at regular intervals. However, in some cases, when persistent files
are employed, the replication is a manual activity. Both in-memory and file repositories are local.
However, there are differences in what cluster data type they support. Configuration data is static and
is commonly stored in files, while an in-memory repository is generally used to store runtime data to
capture changes in real-time. This means there is a rigorous requirement for in-memory repositories
to replicate data to other nodes. Therefore, a designated process governs the synchronisation of the
runtime data, for instance, Designated Coordinator (DC) in the case of a Pacemaker-based HAC
[288, 265]. The coordinator ensures that one master repository exists in the primary node while a copy
of it, a replica, is distributed across all the member nodes. A shared repository (e.g., disk or file share),
on the other hand, stores both configuration and runtime data. In many cases, a quorum repository,
which is shared, can support the requirements. Cluster data in a repository is organised using an
information model. For instance, a Cluster Information Base (CIB) uses an XML-based object model
to represent both configuration and runtime data. However, there are no standardised information
models for dealing with cluster data, and, as such, HACs use different information models. Open
Service Availability Framework (OpenSAF), for example, employs Information Model Management
(IMM), and objects represent the two types of data: configuration and runtime [268].

E.2: Communication. HACs can use different communication types and methods (Figure 3.8).
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E.2.1: Type. A communication type describes the different kinds of communications that a HAC
employs and is split further into three subclasses: heartbeat, node and cluster.

E.2.1.1: Heartbeat. A heartbeat is a form of intra-cluster communication. However, it is separated
in the taxonomy to highlight its importance and use of additional resources, such as a dedicated
network. The type and content of heartbeat messages differ from solution to solution. In some cases,
a heartbeat message could be a simple ping or a keepalive to provide the status of a cluster node
[103, 29]. Heartbeat communication use a LAN-based or a disk-based method [167, 284, 265, 111].

E.2.1.1.1: LAN-based heartbeat communication uses a Transmission Control Protocol/Internet Proto-
col (TCP/IP) network [167, 239]. Since heartbeat is a key component of a HAC, the recommendation
for business-critical solutions is to set up a dedicated network, such as a virtual LAN, to facilitate
heartbeat communication [167, 284, 111]. With this approach, the heartbeat traffic is not disturbed
or delayed by other kinds of traffic in a network, which could be the case if the network is shared.
Furthermore, adding redundancy to a heartbeat network by using multiple networks is also a good
option so that a single network does not become a SPOF.

E.2.1.1.2: Disk-based heartbeat uses a shared disk and also the SAN fabric as a means to facilitate
communication [111]. In some cases, LAN-based and disk-based heartbeat types can be combined to
create a full heartbeat service. If a heartbeat mechanism is not employed, an alternative and robust
mechanism is required to detect node failures. Cheng et al. [40] propose a HA solution that employs
a module that can detect whether a node is sick or not and subsequently forecast the time of failure.
This renders the heartbeat setup to be nonessential in such cases. However, there is no information
regarding how such a solution works when there are many nodes in a cluster.
E.2.1.2: Node communication is referred to as intra-node and deals with communication within a
cluster node. The node communication uses internal communication schemes, for instance, inter-
process communication (IPC) within a server. Two types of such communication exist in HACs: user
interface and resource management.

E.2.1.2.1: User interface communication refers to the different means to connect to the cluster on a
particular node, including Graphical User Interfaces (GUIs) for cluster administration.

E.2.1.2.2: Resource management communication can belong to two subclasses: base resource and
agent. Base resource describes the communication between the cluster resource management and
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those resources that are available as a standard (e.g., IP, CPU of a server). An agent describes the
communication between the cluster resource management and the agents that are responsible for
managing application-specific resources (e.g., database, EA components) [51, 284].

E.2.1.3: Cluster communication, also termed intra-cluster, inter-node (or resource group) communi-
cation, describes communication between cluster nodes. For a HAC, internal cluster communication
is crucial. It is required for continuous communication between nodes regarding changes in configura-
tion, the health status of nodes, quorum status, and failure notification. Furthermore, since cluster
communication is often a basis for making necessary decisions by a cluster, the requirement for cluster
communication is that it is enabled using an atomic (ordered) and reliable messaging scheme. Even
though several HAC solutions use different types of cluster communication, a strict definition can be
used to distinguish the two main types: runtime and configuration. Thus, cluster communication deals
primarily with the synchronisation of cluster configuration and cluster runtime data (e.g., the status of
the nodes).

E.2.2: Method. The types of communications utilise different transmission methods, and these
methods can employ different protocols, such as UDP and TCP. Some HAC solutions employ custom
protocols to meet the HAC-specific requirements, and an example is the Transparent Inter-Process
Communication (TIPC) protocol, used by OpenSAF [268, 164]. The methods are further divided into
four subclasses: multicast, broadcast, unicast, and IP socket.

E.2.2.1: Multicast. Multicast enables transmission from one node to multiple nodes. Thus, it can
be characterised as a one-to-many (1:m) method. The receivers are usually a group of nodes, which
means that a subset of cluster nodes can also be addressed [74, 60, 167].

E.2.2.1.1: Atomic. Atomic multicast (or total order multicast) implies that all nodes receive the same
message in their sent order [54].

E.2.2.1.2: Virtual synchrony. Virtual synchrony is an atomic multicast technology that supports reliable
inter-process messaging. Corosync, the open-source communication protocol, employs the Totem
Single-Ring Ordering and Membership (TOTEM) protocol, which is an example of implementation
of virtual synchrony [51]. Engelmann et al. [67] present a multi-node HAC solution for HPC that
employs virtual synchrony to support state machine replication between the nodes in a symmetric
active-active topology.

E.2.2.2: Broadcast. This method supports one-to-all (1:n) transmissions. While multicast supports
transmission to a group of nodes, broadcast transmits to all nodes [74, 239].

E.2.2.3: Unicast. This method facilitates transmission between two nodes, and it is characterised as a
one-to-one (1:1) transmission [167, 74].

E.2.2.4: IP socket. An IP socket can also be used in some cases to facilitate communication between
cluster nodes [74, 254]. However, the majority of the HACs do not support this method but rely on
other methods.

Cluster communication employs either multicast or broadcast, but in some cases, unicast is also
used. On the other hand, heartbeat communication employs either unicast or multicast [167].

32



3.1 Taxonomy

E.3: Resource management. Resources are structured hierarchically to form a resource group, and
links between the resources define the relationships between the resources [167].

E.3.1: Type. HACs can manage two types of resources: base resources and applications (Figure 3.7).

E.3.1.1: Base resource. A base resource is a standard building block (e.g., IP address, file system)
[49, 284, 265, 203]. A HAC can manage base resources without requiring additional tools. Hence,
a distinction is made between base and application resources. While managing base resources is
supported by all HAC solutions to different degrees, application support must be provided explicitly.

E.3.1.2: Application. Application management is the capability to manage application-specific
functionalities and features. Since each application must be handled individually, an extension to a
HAC is usually required [49, 283, 114]. Such addition is provided in the form of either an extension
or an agent.

E.3.1.2.1: Agent-based. Agents manage two main types of applications: application and database.
Application agents deal with managing several application-specific layers (e.g., application core
of an ERP as in layer 2). Database agents manage database-specific components (layer 3). The
application agent functionality connects application-specific (this includes both types: database and
application) configuration and procedures with the resource management module of a HAC and
supports functionalities including [283, 114]:

• Monitoring application-specific components

• An application-specific configuration, which can recognise the architecture of the application
components

• Complying with application-specific dependencies

• Logging

• Procedures – to stop and start related application components in a specific order

• Supporting Application Programming Interfaces (APIs) or specification by the application
vendor

However, not all HAC solutions can support all applications, as each will require separate lifecycle
management. When an application changes, for instance, when it is upgraded, the HAC application
agent may also need to be updated to reflect the changes. Likewise, when the HAC solution is
upgraded, the application agent may also need to be updated. Thus, supporting a large number of
application agents could be connected to much effort. Furthermore, such support may be subject to
licensing conditions, and HAC vendors could treat individual application support as an extension to
license terms.

E.3.2: Method. Two main methods are used when managing resources: policy- and rule-based.
Policy-based resource management uses policies to configure conditions, and, when a particular
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condition is satisfied, appropriate action is triggered [139, 284, 114]. On the other hand, rule-based
resource management uses one or more rules to make decisions and act upon them [167].

3.1.6 F: Failure Detection and Recovery

Failure detection implies detecting failures by monitoring and analysing monitoring output [300].
If the monitoring identifies a status change in a resource or a resource group, it invokes recovery
management to initiate a recovery. If the recovery is not successful, the recovery manager may initiate
a failover of a resource group or even a system; therefore, failover is part of recovery management.
Figure 3.9 depicts the top-level class with its subclasses.

F.1: Monitoring. HAC failure detection and recovery monitoring can be further organised into
subclasses depending on its area, type and method. The area describes the monitored domains, while
the type of monitoring addresses monitoring from a configuration point of view. In most cases, HACs
can provide support for specific monitoring metrics; however, if there is no support, a custom approach
where HAC users define their own monitoring metrics is adopted. The monitoring scope may also
vary and can range from the simple state monitoring of a resource to the monitoring of a resource in a
detailed manner [167, 239, 284, 111, 77]. Several research initiatives refer to the monitoring aspect of
HACs as means to detect failures. Cheng et al. [40] present a state-based internal monitoring approach
for the experimental cluster APCS+PEV, while Leangsuksun et al. [139] employ threshold-based
monitoring for the cluster HA-OSCAR.

F.1.1: Area. The monitoring areas that a HAC can support play an important role in the overall
solution. This is because monitoring is the process that collects details regarding monitored elements
from different areas and delivers that data to the cluster management to make appropriate decisions.
The areas that a solution can support can roughly be split into three subclasses: server, cluster, and
application.

F.1.1.1: Server. Server-specific metrics focus on critical and noncritical monitoring elements of an
operating system and a server level. Examples of metrics are CPU utilisation and memory utilisation
[284, 203, 111, 183].

F.1.1.2: Cluster. Cluster monitoring implies that monitoring is enabled, even for the internal com-
ponents of a HAC, including cluster-related processes and objects [183, 184, 284]. This approach
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enables a HAC to distinguish between failures of cluster and application elements, thus preventing
making incorrect decisions.

F.1.1.3: Application. Application monitoring is usually administered by an application-specific agent
or an extension that is specifically designed to support a particular application and its architecture.
This implies that an application agent is aware of the internals of the application [201, 114].

F.1.2: Type. A monitoring type describes how the state of the resources is measured. There are two
types of monitoring: state- and threshold-based.

F.1.2.1: State-based monitoring uses the state of a resource as a monitoring metric, and the states can
be as simple as “up” and “down,” or the monitoring can be more elaborate and contain more states
[284, 265, 111, 114].

F.1.2.2: Threshold-based monitoring uses a set of threshold values related to metrics [293]. As such,
alerts with different severity levels can be generated, depending on which threshold is exceeded.
While the threshold-based type gives the flexibility to configure monitoring at a granular level, it
also adds complexity as the HAC must interpret all the different values and severity levels and act
accordingly. One advantage is that a HAC will have more data that can be analysed, and decisions
can be made at a granular level.

Even though state-based monitoring is the common type of monitoring, both monitoring types
(and others) are sometimes combined. For example, OpenSAF HACs combine threshold-based
monitoring with a type called watermark monitoring. The threshold-based monitoring is used to
monitor system resources, while the watermark monitoring is employed to register the highest and
lowest utilisation per configured resource [246].

F.1.3: Method. There are mainly three methods for monitoring, and they are push, poll, and event-
based. Polling implies that the monitoring module of HAC and agents poll for state changes of
resources periodically [293, 64]. On the other hand, push implies monitoring data is pushed to the
monitoring module or agents [64, 293]. Such a setup will require additional enablers to interact with
resources and push monitoring data to HAC agents. Polling is the most common method of monitoring
[64], and it usually employs synchronous communication. However, this procedure is associated
with a specific overhead. Therefore, other methods are studied by both industry and academia, and
a technique that applies an event-based design is viewed as less resource-demanding. One type of
event-based monitoring employs an intermediate module that interfaces with an operating system
to capture instantaneous notifications relevant, for instance, the state change of a process. It passes
that to an appropriate module of a HAC. An example of such a setup is the Intelligent Monitoring
Framework (IMF) by Veritas [284]. The IMF has a monitoring feature integrated into an operating
system for a particular resource so that state changes are captured instantaneously, and a relevant
HAC agent is alerted. However, this approach requires specific development towards an operating
system for a particular set of resources. Thus, IMF is not available for all types of resources but is
being released gradually for different applications. Another recent development is to enable a HAC to
interact with the monitoring feature of an operating system directly [111], which means that the HAC
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needs only a slim variant of the monitoring module. The downside of this approach is that the HAC
becomes highly dependent on the operating system and its developments.

F.2: Failover. Failover management includes procedures for failover and failback, and all such
actions are usually policy-driven. Policy-based indicates that policies can be associated with events
so that the appropriate policies are triggered whenever a related event occurs [102]. Policies can
be used, for example, to determine the target node for failover. Furthermore, policies can encode
application-specific requirements, such as the order for starting up or shutting down resources. Failover
management can further be split into two subclasses: reactive and proactive [122].

F.2.1: Reactive. A reactive measure uses policies to ensure the correct failover actions. There are
two types of policies: static and dynamic. A static policy is created during the implementation or
when applying manual changes, while a dynamic policy is created automatically by HACs to enforce
policies based on runtime failure cases [20].

F.2.2: Proactive. A proactive measure assumes that a predictive model is employed to ensure that
a failover can be initiated based on predictions [122]. The predictions can, in turn, use policies to
trigger the required actions [139]. However, the proactive approach could be a challenge in HAC
environments that deal with complex EAs because all relevant layers must be addressed in such cases
while evaluating the HAC behaviour. Therefore, all active HAC solutions employ only the reactive
mechanism.

F.3: Recovery level. The threefold strategy to manage failures is implemented using three recovery
procedures: resource, resource group, and node (system) level [239, 284].

F.3.1: Resource. A resource-level recovery deals with recovery attempts on a resource-level, imply-
ing reinitialisation of a failed resource while adhering to the dependency rules between resources.
However, if this step fails, the failure is propagated to a resource group level [239].

F.3.2: Group. A group level recovery attempts to failover the entire resource group to a secondary
node. However, if there are no available secondary nodes, an attempt to reinitialise the resource group
within the same node can also be initiated. If a resource group have dependencies on other resource
groups, it may lead to a node (system) recovery [239].

F.3.3: Node. A node-level (system) recovery deals with failing over the resource groups to a secondary
node. Moreover, a resource or resource group failure can also have a cascading effect due to
dependencies, and, in such cases, it might lead to recovery on a node level. Since the previous node
is labelled as "failed," policies may prevent any resources from being started there until that node is
repaired [239].

F.4: Prediction. Current HACs do not commonly employ prediction. However, some research
initiatives explore the area of predicting failures, but often with a limited scope. An example of such
an initiative is the HA-OSCAR project which assesses prediction by evaluating hardware component
failures [139]. The research team used a Hardware Platform Interface (HPI), which the Service
Availability Forum specifies, to identify hardware events and, subsequently, analyse such data to
provide predictions [139]. Similarly, Lee et al. [142] propose a stochastic prediction model for node
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failure or a node-switch interconnected system failure of HA-OSCAR head nodes. Leangsuksun et al.
[150] have also explored a failure-repair model for predicting the availability of HA-OSCAR cluster
by using Stochastic Reward Nets (SRNs). While many of the prediction models use HA-OSCAR
as the platform, some initiatives explore other platforms. For example, Cheng et al. [40] have used
a module for a custom cluster solution that detects sick nodes and subsequently uses a prediction
method to forecast the time-to-failure of nodes.

Both Veritas InfoScale Availability and Oracle Clusterware provide functionalities to simulate
failures and observe potential paths to failovers [284, 202] . However, the objective of the subclass
prediction is to ensure that the wealth of information that HACs produce can be incorporated to
predict failures or optimise failovers. An example of such an approach could be using prediction to
optimise the quorum voting process by dynamically evaluating scenarios.

3.1.7 G: Consistency and Integrity

Figure 3.10 presents the top-level class consistency and integrity and its subclasses. A HAC employs
measures, such as a cluster lock or quorum, to preserve the data integrity of cluster resources and,
most importantly, the clustered application by preventing harmful situations, for instance, split-brain
and amnesia.

G.1: Cluster lock. Cluster lock is a technique used to lock cluster resources to a particular node, thus
preventing other nodes from claiming the same resources. While a quorum-based approach could also
be viewed as a cluster lock, a distinction is made to separate a quorum from a cluster lock. A cluster
lock is a technique that does not employ a quorum-based approach but uses other means, such as a
software-based lock mechanism. In the case of HACs, a distributed cluster lock is one such option,
and an example is OpenSAF, which uses a global lock service to manage shared resources and ensure
that only one node can access the resources at any given time [268]. Such configurations are deemed
quorum-less.

G.2: Quorum. A HAC quorum serves two purposes: 1) maintaining cluster consistency by
storing configuration and runtime data (e.g., cluster data) [88], and 2) managing a voting system
required in the event of a cluster partition. For the latter purpose, the quorum hosts a voting mechanism
in which every healthy and active node has a vote [181, 49]. Furthermore, the quorum also has a vote,
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a potential decider, hence the alternative name tiebreaker. Other names that are used to refer to the
quorum mechanism are arbitrator, witness and voting system [239]. When a partition of a cluster
occurs after the failure of one or more nodes, a quorum is gathered to decide which partition should
have the quorum. To reach a quorum, a partition must have a majority of votes [292]. The quorum
service casting its vote can ensure that one of the partitions achieves this majority. Ultimately, the
majority cluster is allowed to run the cluster. If a quorum cannot be reached, the surviving nodes
will shut down to ensure cluster consistency. The quorum collaborates closely with the heartbeat
mechanism, as the heartbeat is the method used to identify unhealthy nodes. Additionally, the quorum
or a similar service is required for fencing, as the two often collaborate to determine a quorum and
subsequent fencing. A quorum consists of a device and a process [49, 288, 99]. A device describes
where quorum elements are stored, and a device facilitates the process, which uses an algorithm to
calculate votes dynamically to achieve a quorum. The process employs a mode to determine what
policy to use when performing the quorum voting.

G.2.1: Device realisation. Three types of devices can be used by a HAC: server, disk, and file share.
A quorum server is a service that runs on a server that is usually hosted outside a cluster configuration
[49]. The cluster is subsequently configured to connect to the quorum server. A disk-based quorum is
based on a disk, which can be either local or shared [239, 49]. A file share uses a shared file location,
and it can be ideal for geographically distributed HACs since member nodes do not have access to a
shared disk [171]. The prerequisite for all quorum devices is that they support concurrent access by
all cluster members.

G.2.2: Mode. Four modes are possible: server, node, disk and file share. The modes and the devices
are an integral part of the quorum solution. However, the supported combination of devices and
modes are specific to the different HAC solutions. The mode server uses the device server, and the
device Disk is used by the mode Disk. Similarly, the device File share is used by the mode File share.
While the devices disk and File share imply that they are storage points that are managed by the
quorum process, a quorum server indicates an advanced device type. The mode node is implemented
implicitly. Hence, it does not require any additional devices but uses the number of available nodes to
decide, and the arrangement is referred to as the ‘majority node’ mode.

A quorum can be set up in different ways, and, in some cases, the several modes of a quorum can
be combined. For example, Windows Server Failover Clustering (WSFC) supports a combination
of devices and modes, as detailed in Table 3.5 [171]. However, the same combination is not always
supported by other HAC solutions, and an example of this is that the Serviceguard HAC does not
recommend combining a quorum server with a quorum disk [99]. There are new quorum device types
introduced to meet the advances in IT. For example, Microsoft has introduced recently a new quorum
device called cloud witness, and the purpose is to support a server-based quorum in the Azure cloud,
which could be ideal for cloud-based solutions [174].

The standard for all explicit quorum devices is that they are placed outside a HAC to avoid
creating a quorum device as a SPOF. Moreover, redundancy of quorum is also preferred because
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Table 3.5 Quorum implementation with Windows server failover cluster (WSFC)

Combination of
Modes

Devices
Realisation

Formula for
Number of Nodes

Purpose

Majority Node Node only (implicit
device)

𝑛 = 2𝑘 +1 (odd
numbers)

Survive failures of (𝑛−1)/2
nodes.

Node and Disk
Majority

Node and disk 𝑛 = 2𝑘 (even
numbers)

Survive failures of 𝑛/2 nodes
when disk is available.

Node and File
Share Majority

Node and file share 𝑛 = 2𝑘 (even
numbers)

Survive failures of 𝑛/2 nodes
when file share is available.

No Majority: Disk
Only

Disk only - Survive failures of 𝑛−1 nodes
when disk is available.

the quorum is a critical HAC functionality. For this reason, most current HAC solutions support a
dynamic reconfiguration procedure for quorum devices, which enables adding or removing quorum
devices without impacting the running clusters. While quorum is crucial for a two-node cluster, it can
also be opted out using a different mechanism. Furthermore, when a cluster has more than two nodes,
an explicit quorum device could become optional because that cluster can survive the failure of a
single node. However, a configuration using the mode node is still required to achieve a quorum. The
research in this area focuses on enabling probabilistic approaches. For instance, Malkhi et al. [163]
have explored a probabilistic approach to address both benign server failures and arbitrary (Byzantine)
ones.

G.3: Dynamic quorum. While a quorum deals with static votes, a dynamic quorum calculates the
number of votes and adjusts the quorum dynamically upon the failure of one or more nodes [174].
Thus, if a node is unavailable, it will effectively be out of the quorum voting process. This gives more
flexibility to continue running a cluster even when other nodes fail. For example, dynamic quorum
enables WSFC to run a cluster when only one node and a quorum device are available [172].

G.4: Isolation. HACs may “isolate” a particular node from the rest of the cluster, i.e., prevent it from
allocating any resources. The objective of node isolation is to preserve data integrity by employing
several mechanisms, such as putting a fence around a node (fencing) or shutting down a node.

G.4.1: Fencing. There are two types of fencing, node-level and resource-level [49, 284, 265, 111].
The common implementation is to employ the node-level fencing [284, 265, 111].

G.4.1.1: Resource. Resource-level fencing isolates one or more critical resources and, by doing so,
renders a node unusable because the node cannot allocate resources. Resource-level fencing can
be based on a SAN switch, allowing only one node to connect to the SAN-based storage or SCSI.
SCSI-based fencing often uses a SCSI-3 option called persistent reservation, which means there can
be only one SCSI-3 persistent reservation per disk at any given time, making it an efficient method for
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isolating disks [284, 265, 111, 303]. Since resource-level fencing is based on storage input/output
(I/O), it is sometimes called I/O fencing [218].

G.4.1.2: Node. On the other hand, node-level fencing acts at a node-level and isolates or quarantines
the node completely [156]. In some cases, the node can be shut down instead, but the fencing
functionality still manages the operation. Furthermore, the state of the fenced node is effectively
changed so that it is no longer recognised as an active node by the cluster. Thus, the isolated node is
not participating in any cluster operations.

G.4.2: Shutdown. A node shutdown is different from the shutdown procedure managed by the
fencing functionality because it operates outside the fencing mechanism. This can be achieved by a
HAC module that interacts with operating systems or servers using industry-standard specifications.
Examples of APIs based on specifications are: Intelligent Platform Management Interface (IPMI) and
vendor-specific embedded technology, such as Integrated Lights-Out (iLO) by HPE [265, 246, 183,
143].

3.1.8 H: Data Synchronisation.

Data synchronisation refers to the means, technologies and methods used to synchronise data between
cluster nodes. The different layers of EAs require that data are synchronised to ensure consistency
across all cluster nodes. Although a diverse range of synchronisation methods can be employed
at the different layers, the overall responsibility for all layers managed by HACs lies with the
HACs because they are responsible for failover management and ensuring data integrity. HACs
may employ additional tools or features that come with the application components to facilitate data
synchronisation. Hence, we identify three principal areas of data synchronisation:

1. Client-state (i.e., session state replication) deals mainly with client connectivity (e.g., sessions),
which means the client state of an application running on a primary node is synchronised with
other cluster nodes [231, 276, 178]. Subsequently, a failover can occur seamlessly and without
losing any connection data or affecting any active connections. Hence, other nodes can continue
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to support the connections instead. Client-state synchronisation is widely employed in HAC for
the application area network appliances (e.g., firewalls) [189, 39, 207, 73].

2. Cluster-state employs different methods to synchronise the state of a cluster, and it can be
considered as an intra-cluster activity. For instance, OpenSAF uses a checkpoint service to
record the state of an application or a service. Subsequently, states are replicated to a standby
application or service that is hosted on the secondary node [268]. A more advanced approach is
a State Machine Replication (SMR) which creates replicas of client and process states to one
or more nodes deterministically [137], which can even support more comprehensive solutions
such as databases [210, 160]. An example of SMR concerning a HAC is an implementation of
a HAC for HPC, which employed SMR to synchronise states between nodes in a symmetric
active-active topology [66]. A variation of SMR is Replicated State Machine (RSM) employed
by Veritas Cluster Server (VCS) to synchronise the resource status across all nodes [284].

3. Application-state, on the other hand, implies that the data of an application that a HAC
protects are synchronised to one or more nodes to support a possible failover. Hence, data
synchronisation in this taxonomy refers implicitly to application-state synchronisation. Such
synchronisation can occur at different levels, such as on an application or a file system level.

The top-level class data synchronisation is shown in Figure 3.11. It is further divided into two
storage technologies, shared storage and shared-nothing. They both can be connected to a subclass of
file systems which, in turn, can influence the configuration of a HAC. An example of file systems
related to shared storage is presented in Figure 3.12. Both cluster and distributed file systems support
concurrent access and are ideal for sharing data between multiple nodes [251]. A distributed file
system can be deployed on the top of either shared storage or shared-nothing, and some file systems
can be deployed on both. For example, IBM Spectrum Scale (formerly the General Parallel File
System (GPFS)) file system can be deployed using both storage technologies [113].

H.1: Shared storage. HAC solutions use several forms of shared storage. However, requirements
for such implementation usually come from business requirements, such as supporting DR or geo-
graphically dispersed user groups. While shared storage might be ideal for the cluster types local and
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campus, metro and continental clusters require a different solution due to extended distances between
nodes. Shared-nothing is an option in such cases. A hybrid approach is also possible, which means
that shared storage and shared-nothing can support a combination of a local cluster (or campus) and
continental cluster, as discussed in the topology section.

H.2: Shared-nothing. This setup assumes that there is no shared storage. Instead, each cluster node
is connected to separate storage, which could either be SAN-based or based on local storage (e.g.,
Direct-attached storage (DAS)) [167, 239, 49]. However, EAs must explicitly support these kinds
of setups. Moreover, there are also challenges with accessing shared storage in new and emerging
technologies. For example, shared storage is limited in the public cloud; hence, it becomes difficult to
set up a HAC using shared storage. In such cases, replication between the individual storage units
is required, and this has led to the new term SANless (SAN-Less) [252]. There are two techniques
associated with the synchronisation of data in a shared-nothing setup: replication and mirroring.

H.2.1: Replication. Replication describes the process of replicating from a primary node to other
nodes so that data is synchronised and consistent across all participating nodes [167, 239, 49, 284].
Since there are different kinds of replications in HACs, we group them by type and method. The type
describes the replication approaches, while the method specifies the execution technique.

H.2.1.1: Type. Four types of HAC replication are possible: application-based, array-based, cluster-
based, and host-based.

Application-based replication is set up at an application level, and it uses replication features
that are provided natively by an application [238]. One of the nodes will be active in such a setup,
while other nodes will be either warm standby or hot standby. To include an application in a HAC,
explicit support for the application-specific replication feature by the HAC is required. Databases
employ application-based replication to synchronise with standby databases [298, 141, 203, 155].
Array-based replication is set up on a storage system level to enable synchronisation between two
storage systems (e.g., SAN- or NAS-based) [49, 238]. Additional software may be required to
facilitate array-based replication. In cluster-based replication, the replication functionality is within a
HAC and entirely administrated by the HAC [183, 253]. It means that the solution is independent of
the operating environment or any other tool; instead, it relies on a high-speed network connection.
Host-based replication uses software tools on a host (server or nodes) to perform replication. An
example is using a Linux logical volume manager (LVM) to set up replication between two logical
volumes across two nodes [49, 112]. Tools that operate on an operating system level and are similar
to host-based replication can also be included in this category [303]. For instance, Gómez et al. [89]
use a software-based Distributed Replicated Block Device (DRBD) solution to enable replication
between two volumes at a block-level in a virtual cluster setup.

H.2.1.2: Method. HACs can perform the replication synchronously or asynchronously.
Synchronous replication waits until a write is completed and an acknowledgement is received

from the other replication end, guaranteeing consistency between the two replication points [49].
From a transaction viewpoint, synchronous replication can support all the ACID properties. Therefore,
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no data loss is usually associated with it [123, 216]. However, synchronous replication is challenging
with extended distances. Nevertheless, modern techniques may offer solutions. For instance, Schmidt
[239] means that connections up to a distance of 100 km can be achieved by using dark fibre. This
results in latencies of 0.5 𝜇s, which is adequate for synchronous replication. On the other hand,
asynchronous replication does not wait until the writing is completed but gets an acknowledgement as
soon as data is received at the second point [49, 155]. As such, it may not comply with the ACID
properties entirely, which, in turn, may result in data loss.

Different factors influence the selection of a method, and some of the critical factors are [167, 49]:
the distance between two nodes; the volume of data transported between nodes; type of data; frequency
(continuous or burst); business requirements, such as DR. There is a network latency recommendation
for synchronous replication, as it implies real-time mirroring, while asynchronous replication does
not have the same kind of rigorous requirement [49, 216].

H.2.2: Mirroring. In some cases, the terms replication and mirroring are used interchangeably. For
example, a host-based mirroring of a file system can also be referred to as file system replication.
However, in other cases, a few differences can be observed; for instance, mirroring may differ by not
having a running instance on the standby node [49, 239]. Mirroring can be performed synchronously
or asynchronously [167, 49, 239].

Synchronous mirroring ensures that the mirroring process waits until a write is completed and
committed on the standby node and an acknowledgement is sent back. This method secures consistency
of data between two nodes. An asynchronous mirroring process, on the other hand, does not wait
until a write is ended on the secondary node. This approach may result in data loss when the primary
node fails abruptly.

3.2 Survey of High-availability Cluster Solutions

There are many different implementations of HAC across all layers. In this section, we focus on
enterprise and large systems. This means the selected HACs can support typically a subset or all of
the layers 1, 2 and 3 from Table 2.1.

3.2.1 Survey Methodology

We used a systematic approach detailed in Section 3.2.2 to select our survey’s 17 end-to-end HAC
solutions. For the analysis of these solutions, we combined the analysis of the HAC documentation,
white papers, case studies, books and articles, and an online questionnaire sent to the vendors of the
selected HACs. This hybrid analysis methodology is presented in Section 3.2.3.

The detailed results of the survey, which involved categorising the selected HAC solutions based
on the HAC taxonomy from Section 3.1, are provided in Section 3.2.4. The following section,
Section 3.2.5, presents an analysis of the survey results and discusses our key findings.
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Table 3.6 Selection questions

No Question Evaluation Parameters

Q1 Support for enterprise class
databases?

SAP ASE, DB2, HANA, Informix,
MySQL, Oracle, PostgreSQL, SQL Server,
Teradata

Q2 Support for EAs? Oracle Siebel Customer relationship
management (CRM), Oracle†, SAP† ,
Others†, WebSphere

Q3 Multi-tier support for EAs? X-Yes, N-no, ?-no information
Q4 Enterprise support provided? 24x7x365
Q5 Application features can be

supported by further developments?
X-Yes, N-no, ?-no information

Q6 Support for disaster recovery? X-Yes, N-no, ?-no information
Q7 Support for virtualization? X-Yes, N-no, ?-no information
Q8 Cloud support? X-Yes, N-no, ?-no information
Q9 Support for enterprise operating

environments?
AIX, HP-UX, IBM i, Linux, Solaris,
Windows

Q10Support for multiple platforms? Power, SPARC, x86
Q11Support for large-scale clusters? Number of nodes
Q12Support for multiple topologies? Active-active, application-based,

server-based, N-to-N, active-passive, N+1,
N+M, N-to-1

Q13Support for availability level? Minimum 99.9%
Q14Active lifecycle management? X-Yes, N-no, ?-no information

† - any of the business suite EAs (e.g., ERP).

3.2.2 Approach for Selecting the Surveyed HACs

The systematic six-step approach we employed to select the relevant HACs for our survey is detailed
below.

Step 1. Identification of HACs that support enterprise applications (EAs). Our survey focused
on HACs that can protect EAs. However, only a limited number of HACs support EAs due to the
complex composition of EAs, which are multi-tiered and multi-layered. We identified likely candidate
HACs using comprehensive research reports [118, 219] and articles [139, 65, 221, 48], resulting in
23 candidate HAC solutions.

Step 2. Identification of relevant EAs and databases. In this step, we gathered information for
assessing the applicability of each HAC solution to distinct layers of enterprise applications. To this
end, we used relevant research and analysis reports, e.g. [81, 82, 80], to identify the databases and
EAs listed next to questions Q1 and Q2 from Table 3.6.

Step 3. Elimination of HACs not supported by EA vendors. In this step, we used the lists of supported
HACs released regularly by enterprise application vendors, e.g. [236, 116], to check which HAC
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solutions are supported (and sometimes certified) by these EA vendors. “Supported” HAC solutions
are solutions that fulfil the requirements of the application vendor for a specific application, with the
added implication that support channels have been established between the vendors.

We assessed the candidate HAC solutions using the following criteria to narrow down the list:

1. Does the HAC solution being assessed focus on only specific IT solutions (such as HPC or
Hadoop)?

2. Is the HAC solution no longer active, implying that the product lifecycle has ended or the
research project that developed it has ended?

3. Is the information available to analyse the HAC solution properly insufficient?

4. Are EAs supported by the HAC solution, or is it the case that the information available cannot
be used to conclude whether EAs are supported or not?

We eliminated all the candidate solutions for which one or several of these questions were answered
affirmatively. As a result, six HAC candidates were removed in this step, and we proceeded with
the remaining 17 candidates. We made an exception for two of the candidate HAC solutions for the
reasons described below:

• OpenSAF does not provide enterprise support directly. Nevertheless, we retained OpenSAF
because of its stability as a HAC [124, 128]. Besides, application support can be developed
individually with OpenSAF, meaning that an OpenSAF HAC can be used to support enterprise-
class databases and applications.

• Similarly, the ClusterLabs stack does not support enterprise applications on its own. However,
we retained the ClusterLabs stack because it provides the core components for two other
selected solutions, SUSE Linux Enterprise High Availability Extension and Red Hat High
Availability Add-On. This implies that customisation and further developments are possible
using it.
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Table 3.7 Evaluation of selected HAC solutions
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Q1 X X X X X X X X X X X X X X X X X

Q2 X X X X X X X X X X X X X X X X X

Q3 X X X X X X X X X X X X X X X X X

Q4 X X X X N N X X X X X X X X X X X

Q5 X X X X X X X X X X X X X X X X X

Q6 ? ? X X X X X ? X ? ? X X X X X ?

Q7 X X X X X X X X X X X X X X X X X

Q8 X X X X X X X X X X X X X X X X X

Q9 X X X X X X X X X X X X X X X X X

Q10 X X X X X X X X X X X X X X X X X

Q11 X X X X X X X X X X X X X X X X X

Q12 X X X X X X X X X X X X X X X X X

Q13 X X X X X X X X X X X X X X X X X

Q14 X X X X X X X X X X X X X X X X X

X - Yes, N - No, ? - No information

Step 4. Retention of only HACs that support automatic failover. We used this filter to retain only the
HAC solutions that support automatic failover, which is crucial for an EA to minimise downtime. All
17 candidates support automatic failover; hence, all were retained.

Step 5. Design of additional questions for the selection and evaluation of HACs. In this step, we
created the questions to evaluate the HACs. The queries reflected the typical requirements of EAs
[75], and the objective was to select those HACs that could respond to most of the questions positively.
The set of questions is listed in Table 3.6.

Step 6. Selection of the set of HAC solutions for the survey. We selected all the HAC solutions that
can support EAs and fulfil the additional criteria from the questions Q1–Q14 in Table 3.6, where a
positive response for any of the “evaluation parameters” from questions Q1, Q2, Q9, Q10 and Q12 was
deemed sufficient to consider that a HAC solution met the criterion associated with that question. The
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Table 3.8 Eliminated HAC solutions in the six-step approach for selecting HACs for survey

Product Reason(s) for Elimination

Apache Mesos [56] focus on specific IT solutions (HPC)
DxEnterprise [58] lack of EA support; insufficient information available to evaluate

the solution properly
everRun [259] lack of EA support; insufficient information available to evaluate

the solution properly
HA-OSCAR [91] no longer active
Kimberlite [139] no longer active
Linux FailSafe
[139]

no longer active

result of the HAC selection is presented in Table 3.7, which comprises 17 HAC solutions for which
we obtained positive responses to all queries and products, while noting the following exception:

• DR support (question Q6) for the following solution was unclear or not available: Applica-
tionHA, Clusterware 12c, Primecluster, RSF-1, SafeKit and WSFC.

For completeness, we also provide, in Table 3.8, a list of the six HAC solutions considered initially
but eliminated in Step 3 of our selection approach. For each of these solutions, Table 3.8 also provides
a summary of the reasons for its elimination from the survey.

3.2.3 HAC Analysis Methodology

As a first step, we created a comprehensive spreadsheet and an online questionnaire covering our
entire HAC taxonomy, which we used as a basis for the survey. In the second step, we employed a
hybrid methodology to survey the 17 selected HACs. We populated the spreadsheet ourselves for 17
HACs by analysing product documentation, technical white papers, case studies, books, and articles in
the primary method. We noticed several inconsistencies between the different materials for the same
edition and version of a HAC solution. To resolve these inconsistencies, we crosschecked the results
by using a diverse set of materials (e.g., reference guides, technical manuals and documentation)
whenever inconsistencies were observed. In the secondary method, we prepared an email that
described what we were trying to achieve. We sent it to all the vendors of selected HACs, particularly
to the experts responsible for the HAC products. After two weeks, we sent a reminder to those who did
not reply to our original invitation; a second reminder was sent after an additional two weeks. After
six weeks, we collected the data provided by the vendors and transferred it to a spreadsheet. Despite
assurance from multiple vendors, we managed to obtain a response from only one vendor, High
Availability for the HAC RSF-1. Subsequently, we transferred all collected data to the spreadsheet for
conducting further analysis.
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3.2.4 Survey Results

We used the taxonomy to establish the characteristics of the 17 end-to-end HAC solutions selected for
the survey. The outcome of the survey is presented in Table 3.9, starting with general information
about each HAC solution (i.e., version and vendor) in the second and third row. The remaining rows
from the table present the main results of the survey, organised in the same way as our HAC taxonomy.
The results are analysed in Section 3.2.5.

The surveyed HAC solutions usually consist of multiple editions with varying features, some
of which are subject to additional licensing. Our survey covers only advanced editions that include
most of the features. As even advanced editions do not support all the features when different
operating systems and platforms are considered, we provide details about the limitations relating to
the individual HACs where applicable (as footnotes at the end of Table 3.9).

As discussed, a HAC vendor may enforce further constraints by stating explicitly what version
and edition of an EA are supported. Likewise, an EA vendor may also list what HACs are supported
with a particular version and edition of an EA. Many combinations of EA version, database version,
HAC version and edition, operating system version, and platform make it challenging to crosscheck
every single combination. Therefore, only the relevant EAs and databases are included in Table 3.9.

Table 3.9 Outcome of the survey
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A: Deployment Patterns
OS and platform
AIX on Power X

1
X4 NS X NS NS X NS NS NS NS22 NS NS NS NS X NS

HP-UX on IA64 NS X NS NS NS NS NS NS NS NS NS X NS NS NS NS NS
IBM i on Power NS NS NS NS NS NS X NS NS NS NS NS NS NS NS NS NS
Oracle Linux on SPARC NS NS NS NS X?8 X NS NS NS NS NS NS NS NS NS NS NS
Oracle Linux on x86_64 X

1
X4 X X X X NS NS NS X NS NS X NS NS NS NS

Red Hat Enterprise Linux
on Power

NS NS X NS X?8 X X NS X X NS NS NS NS NS X NS

Red Hat Enterprise Linux
on x86_64

X
1

X X X X X NS X X X X X X NS NS X10 NS

Continued on next page
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Table 3.9 – Continued from previous page

Solaris on SPARC X
1

X NS X NS NS NS X NS X NS NS NS X NS X NS

Solaris on x86_64 NS X NS X NS NS NS NS NS X NS NS NS X11 NS NS NS
SUSE Linux Enterprise
Server on Power

NS NS X NS X?8 X X NS NS X NS NS NS NS X X NS

SUSE Linux Enterprise
Server on x86_64

X
1

X X X X X NS X NS X NS22 X X NS X X10 NS

Windows X
1

X X X NS NS NS NS NS NS X NS X NS NS NS X

Support for virtualized
environments

X X X X X X X X X X X X X X X X X

Supported virtual solutions
(E-Xen, H-Hyper-V,
K-KVM, O-Others,
V-VMware)

E,
H,
K,
O,
V

O E,
H,
V

H,
K,
O,
V

K,
O,
V,
X

E,
H,
K,
V

O9 K,
O,
V

K ? H H,
K,
V

E,
H,
K,
V

O E,
K

K,
O,
V

H,
V

Maximum number of nodes
per cluster

? 64
5

32 128 100 32 16 16 16 64 ? 16/32
25

32 8/16
26

32 32/
13014

64

B: Application Areas (EA
category, B-
Business-critical, T-telecom
(carrier-grade))

B B B B T,
B

B B B B B B B B B B B B

C: Type of cluster
C.1: Local X X X X X X X X X X X X X X X X X
C.2: Campus X X X X X X X X X X X X X X X X X
C.3: Metro ? X X X x X X NS? X X? NS? X X X X x X
C.4: Continental ? NS? X X x X X NS? X NS NS? X X? X X x NS?
D: Topology
D.1: Symmetric
D.1.1: Active-active
D.1.1.1: Application-based NS X X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 ? X7

D.1.1.2: Server-based X X X X X? X X X X X X X X X X X X
D.1.2: N-to-N X? ? X X X X X? X? ? NS ? X? X X X ? X
D.2: Asymmetric
D.2.1: Active-passive X X X X X X X X X X X X X X X X X
D.2.2: N-to-1 X? ? X X X X X ? X X X X X X X ? NS
D.2.3: N+1 ? ? X X X X X? ? ? X ? X? X? X X ? NS?
D.2.4: N+M ? ? X X X X X? ? ? X X X? X? X X ? NS?
E: Cluster management
E.1: Cluster data
E.1.1: Configuration
(D-Disk or file share, F-File,
M-memory)

D,F F F F F F D,F F F D,F F F D,F F F F F

E.1.2: Runtime (D-Disk or
file share, F-File,
M-memory)

D,
M?

F,
M?

F,
M?

F,
M?

F,
M?

F,
M

D,F,M? F,
M?

F,
M?

D,
M?

F,
M?

F,
M?

D,M? F,
M?

F,
M?

F,
M?

F,
M?

E.2: Communication
E.2.1: Type

E.2.1.1: Heartbeat X16 X X X NS X X X X X X X X X X X X
E.2.1.1.1: LAN-based X X X X NS X X X X X X X X X X X X
E.2.1.1.2: Disk-based ? NS X NS NS NS X NS NS X NS NS? NS? X NS X NS?
E.2.1.2: Node
E.2.1.2.1:User interface X X X X X X X X X X X X X X X X X
E.2.1.2.2: Resource
management
E.2.1.2.2.1: Agent X X X X X X X X X X X X X X X NS NS
E.2.1.2.2.2: Base resource X X X X X X X X X X X X X X X X X
E.2.1.3: Cluster
E.2.1.3.1: Configuration X X X X X X X X X X X X X X X X X
E.2.1.3.2: Runtime X X X X X X X X X X X X X X X X X
E.2.2: Method
E.2.2.1: Multicast X? X ? NS? X X X ? X X NS? X NS? X X ? X?
E.2.2.1.1: Atomic ? ? ? NS? X X ? ? X ? ? ? ? ? X ? ?
E.2.2.1.2: Virtual
synchrony

NS NS NS NS ? X NS NS X NS NS NS NS NS X NS NS

E.2.2.2: Broadcast ? ? ? X X X X X X ? X X X X X X X
E.2.2.3: Unicast ? ? ? X X X X ? X X X X ? ? X ? ?
E.2.2.4: IP socket NS NS NS NS NS NS NS NS NS X NS NS X NS NS NS NS
E.3: Resource management
E.3.1: Type

Continued on next page
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Table 3.9 – Continued from previous page

E.3.1.1: Base resource X X X X X X X X X X X X X X X X X
E.3.1.2: Application X X X X x X X X X X X X X X X X x
E.3.1.2.1: Agent-based X X X X X X X X X X X X X X X NS NS
E.3.1.2.1.1: Application (C-
Siebel CRM, O-Oracle,
S-SAP, T-Others
W-WebSphere)

C,
S,
T

C,
O,
S,
T

S,
T,
W

O,
S

T12 O,
S

O,
S,
T,
W

S,
T

O,
S,
W

O,
S,
T

T O,
S

S,
W

C,
O,
S,
W

O,
S,
W

S C,
O,
S,
T,
W
15

E.3.1.2.1.2: Database
(A-SAP ASE, D-DB2,
H-HANA, I-Informix,
M-MySQL, O-Oracle,
P-PostgreSQL, S-SQL
Server, T-Teradata)

D,
M,
O,
S

M,
O

A,
D,
H,
M,
O,
P,
S

A,
D,
H,
O,
S

M
12

D,
M,
O,
P

D,
H,
O

O A,
D,
M,
O,
P

A,
D,
I,
M,
O,
P

O,
M,
P,
S

A,
D,
H,
O,
P

A,
D,
I,
M,
O,
P,
S

A,
M,
P,
O

D,
H,
I,
M,
O,
P

D,
H,
O

A,
D,
M,
O,
P,
S
15

E.3.2: Method
E.3.2.1: Policy-based X X X X X X X X X NS X X X X X X X
E.3.2.2: Rule-based ? ? ? ? ? X ? ? ? X ? ? ? ? ? ? X?
F: Failure detection and
recovery
F.1: Monitoring X X X X X X X X X X X X X X X X X
F.1.1: Area
F.1.1.1: Server X X X X X X X X X X X X X X X X X
F.1.1.2: Cluster X X X X X X X X X X X X X X X X X
F.1.1.3: Application X X X X X X X X X X X X X X X X X8

F.1.2: Type
F.1.2.1: State-based X X X X X X X X X X X X X X X X X
F.1.2.2: Threshold-based ? X X X X NS? NS? X NS X NS? ? X ? NS? NS? X
F.1.3: Method
F.1.3.1: Poll X X X X X X X X X X X X X X X X X
F.1.3.2: Push NS NS ? NS ? NS ? ? NS? NS NS ? NS? NS NS NS? ?
F.1.3.3: Event-based X2 NS? NS? X ? NS NS X NS NS NS NS NS NS NS NS NS
F.2: Failover
F.2.1: Reactive X X X X X X X X X X X X X X X X X
F.2.2: Proactive NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
F.3: Recovery level
F.3.1: Resource X X X X X X X X X ? ? X X X X X X
F.3.2: Group X X X X X X X X X ? X X X X X X X
F.3.3: Node X X? X X X X X X X X X X X X X X X
F.4: Prediction NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
G: Consistency and
integrity
G.1: Cluster lock NS ? X NS X NS NS X X ? ? X X NS NS X NS
G.2: Quorum ? X NS X NS X X X20 X NS NS X X X X X X
G.2.1: Device realisation
G.2.1.1: Server ? NS NS X NS X NS X X NS NS X X X X X X
G.2.1.2: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X
G.2.1.3: File share NS NS NS NS NS NS X21 NS NS NS NS NS NS X NS X X
G.2.2: Mode
G.2.2.1: Server ? NS NS X NS X NS X X NS NS X X X X X X
G.2.2.2: Node NS NS NS ? NS ? ? ? ? NS NS ? ? ? ? ? X
G.2.2.3: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X
G.2.2.4: File share NS NS NS NS NS NS X NS NS NS NS NS NS X NS X X
G.3: Dynamic quorum ? ? NS X NS X X X X NS NS X ? X X X X
G.4: Isolation
G.4.1: Fencing NS X NS X NS X X X X X NS X X X X ? NS
G.4.1.1: Resource NS NS? NS X NS X X X X X NS X X X X ? NS?
G.4.1.2: Node NS X NS X NS X ? ? X X X19 ? X ? X ? NS
G.4.2: Shutdown NS X X NS X x13 X X X X NS X X X? NS? X NS
H: Data synchronisation
H.1: Shared storage X X X X X X X X X X ? X X X X X X
H.2: Shared-nothing X X X X X X X X X X X X X X X X X
H.2.1: Replication X X x X X X X X X X X X X X X X x
H.2.1.1: Type

H.2.1.1.1:
Application-based

X6 X6 X6 X6 ? X6 X6 X6 X6 X6 X6 X6 X6 X6 X6 X6 X6

H.2.1.1.2: Array-based x x x x x x x x x ? ? x x x x ? x
H.2.1.1.3: Cluster-based NS NS X NS NS NS NS NS NS NS X NS X18 NS NS NS NS

Continued on next page
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Table 3.9 – Continued from previous page

H.2.1.1.4: Host-based x17 x x X x X X X X ? NS X X X X ? x
H.2.1.2: Method
H.2.1.2.1: Synchronous X X X X X X X X X ? X X X X X X X
H.2.1.2.2: Asynchronous X X X X X X X X X ? X X X X X X X
H.2.2: Mirroring x x x x ? x x x x x x x x x x ? x
H.2.2.1: Synchronous x x x x ? x x x x x x x x x x ? x
H.2.2.2: Asynchronous x x x x ? x x x x x x x x x x ? x

Rows that are blue-coloured indicate top-level classes and subclasses

?- No information

X - Supported

NS - Not supported

X? - Supported. Not explicitly stated in the documentation, but this interpretation has been made by analysing the
documentation.

x - Supported together with additional components, and an example is replication support by the operating system volume
manager.

NS? - Not supported. Not explicitly stated in the documentation, but this interpretation has been made by analysing the
documentation.

1 Supported only on virtualized environments.

2 Intelligent monitoring framework.

3 Replication or mirroring support by additional tools is included.

4 Supported on both virtual and physical environments.

5 64 nodes are supported for the hub, while leaf nodes can support many more.

6 Replication is provided natively by an application, but a HAC must support the feature.

7 If an application supports parallel deployments.

8 OpenSAF provides a generic development package; it can be ported to other UNIX and Linux flavours.

9 LPARs: 2 logical partitions (LPARs) on IBM PowerVM

10 Supported on System x hardware that is based on the x86 platform.

11 Supported only on Oracle’s x86 platforms.

12 The implementer can develop application support.

13 Fencing by STONITH (Shoot the Other Node in the Head).

14 The maximum number of nodes on Linux is 32, and, for AIX, it is 130.

15 Application vendors provide application support for WSFC.

16 Usually, guest heartbeat is passed to a host.
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Table 3.10 The surveyed HACs, versions and vendors

Surveyed HAC Vendor Surveyed HAC Vendor

ApplicationHA 6.2∗ Veritas RSF-1 3.9.10∗ High-
Availability

ClusterLabs stack 2.3.2∗ ClusterLabs SafeKit 7.2∗ Evidian
Clusterware 12c∗ Oracle Serviceguard A.12.20∗ HPE
EXPRESSCLUSTER X 3.3∗ NEC SIOS Protection Suite 9.2∗ SIOS
InfoScale Availability 7.3.1∗ Veritas Solaris Cluster 4 Oracle
OpenSAF 5.17.07∗ SA Forum SUSE Linux Enterprise High Availability

Extension 12∗
SUSE

PowerHA SystemMirror 7.2.1 IBM Tivoli System Automation for Multiplatforms
(SA MP) 4.1∗

IBM

PRIMECLUSTER 4.5∗ Fujitsu Windows Server Failover Clustering (WSFC)
2016

Microsoft

Red Hat High Availability
Add-On 7.0∗

Red hat

∗ = Solution that functions as middleware

17 Replication features of a virtual machine can also be used.

18 Replication feature is provided by the product DataKeeper, which is part of the SIOS Protection Suite.

19 Fencing as a concept is not employed, but, instead, the node with the problem is put into a waiting state..

20 The solution uses a quorum technique called cluster integrity.

21 Implies repository disk.

22 Supported by SafeKit 7.1.3.

23 The vendor provided most details.

24 Version for Linux. Current version for HP-UX is A.11.20.

25 The maximum number of supported nodes for Linux is 32, while for HP-UX, it is 16.

26 The maximum number of supported nodes on Solaris on x86 is 8, and Solaris on SPARC supports 16.

Notes:
Although the operating system version is not stated, it is the most recent version at the time this survey was carried
out.

3.2.5 Analysis of the Survey Results

The distribution of the operating system and platform support for the surveyed HACs is shown in
Figure 3.13 grouped by the operating system. Linux is the dominating operating system, and 15
solutions support Linux, out of which 12 support SUSE Linux on an x86-based platform, seven
support SUSE Linux on Power-based platforms. Similarly, Red Hat Linux supports 13 HACs on the
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Figure 3.13 Platform and operating system support of the surveyed high availability clusters (HACs)
grouped by operating system.

x86 platform and seven on the Power platforms. Oracle Linux is supported by 8 HAC solutions on x86
platforms, while only two support it on the SPARC platform. Solaris operating system is supported
by seven HACs on the SPARC platform, while only four support Solaris on the x86 platform. Seven
solutions support windows, and the platform is always x86. Five HACs support AIX on power, and
only two HACs support HP-UX on the IA64 platform. Lastly, the rare environment is IBM i on the
Power platform, which only one HAC supports.

The surveyed HAC solutions can be divided into two groups. The first group, comprising 14
of the 17 surveyed solutions, comprises the HACs marked with a star ‘*’ in Table 3.10. Each of
these HACs functions as middleware, which means that it creates an additional layer on the top of
an operating environment. The HACs from the second group, which comprises the remaining three
solutions, are tightly integrated with an operating system and make use of the features that are offered
by an operating environment. The latter type of HAC functions as part of an operating environment,
operating in the kernel mode and directly interacting with operating system functionalities. While
such features can make a HAC more efficient, they may also create problems with modularity and
portability, and that is why, for example, such HAC solutions only support specific operating systems.
Furthermore, the lifecycle management of such a HAC solution also becomes the operating system’s
lifecycle management. WSFC has already embraced this approach, and it is entirely integrated with
the Windows server operating system.
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Major software and hardware vendors have their HAC solutions. However, some of them are
supported only by the operating environment and platform from the vendor. An example of this is
WFCS, which is only available on the Windows server enterprise edition. On the other hand, some
independent vendors specialise in HAC products, and these vendors can support multiple operating
systems and platform combinations. Typically, such HACs belong to the middleware group.

Cloud deployment has also come to play an important role. In the early days of cloud computing, a
separate development of HAC was considered. This led to the development of specific HAC solutions,
such as ApplicationHA by Veritas and vSphere App HA by VMware. However, a better approach
is to port existing solutions to the cloud environment, which made developing cloud-specific HAC
solutions unnecessary. An such, solutions like App HA by VMware were discontinued. However,
HACs in the public cloud comes with limitations. For example, using shared storage is a challenge.
On the other hand, this has contributed to developing enhancements to enable deploying HACs in the
cloud. One such enhancement is the so-called storage-less or SANless HAC, which allows HACs to
operate without shared storage. Moreover, the transition to cloud services models, such as SaaS, PaaS,
and IaaS, changes the way HACs are deployed and managed. Likewise, roles and responsibilities for
managing a HAC with the different service models also change.

Furthermore, the introduction of multi-clouds can also complicate a HAC deployment, not least
from a roles and responsibilities perspective. Somasekaram highlights the issues with roles and
responsibilities of HA and DR solutions in the context of outsourcing [255]. He argues that the issues
are valid even for the cloud environment because the cloud is regarded as outsourcing, and cloud
providers are usually responsible for multiple layers (e.g., network and storage). At the same time,
other suppliers manage the rest of the layers.

The emerging deployment host container also faces challenges similar to those described for the
deployment-environment public cloud and virtual host [1, 177, 170, 145]. In Table 3.11, we compare
the key features for Kubernetes-provided HA and the HACs investigated in this thesis.

As presented in Section 3.1.1, Kubernetes provides efficient HA for workloads deployed in
containers. However, a separate master node introduces new challenges because a master node is
considered a SPOF, and HA must be ensured for the master node. Ensuring HA for stateful application
has also been recognised as a challenge [1, 280]; however, this has changed recently, and Kubernetes
now even supports stateful applications [266]. The main difference is the application-specific support
provided by HACs. The HACs can monitor at the resource level, including application-specific
components, whereas Kubernetes monitors at the container level. Application awareness is provided
by out-of-the-box agents and extensions so that HACs understand the internals of an application and
take appropriate measures based on these, for example, restarting application components in a certain
order.

Furthermore, explicit support from EAs investigated in Section 3.2 was missing for Kubernetes
at the time of investigation, which is perceived as critical for obtaining support for business-critical
EAs. The primary reason might be associated with the effort required to transition applications to use
microservice architecture [170]. However, this is rapidly changing, and some commercial vendors
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Table 3.11 Comparison of Kubernetes and high availability cluster features

Characteristics Kubernetes HAC

Deployment host Containers
All (only experimental
deployments for containers)

Node resource-level monitoring
(CPU and memory)

Yes Yes

Application resource-level
monitoring

No Yes

Failover management Yes (only at container
level)

Yes

Application resource-level failure
detection

No Yes

Heartbeat Yes (between nodes) Yes (between nodes)

Application-specific start up and
shutdown sequence

No Yes

Application support No
Application-specific
agents and extensions

have recently announced support for Kubernetes [206, 205], but it is unclear at this point how HA
will be provided for applications at a component level.

Another major difference is that Kubernetes is limited to the host container in the deployment
pattern, whereas HACs can be deployed using all host types, although only experimental deployment
has been performed on containers. Both can monitor node-level resources, such as the CPU usage
and memory. There are also differences in the way failures are handled. Kubernetes restarts failed
containers, whereas HACs can reinitialise at the resource level [278] and support managing failures at
several levels.

Both Kubernetes and HACs offer distinct features. Combining them can improve the availability
of container-based applications. However, challenges occur when implementing HACs in a container-
based environment to support multilayered EAs. For example, containers run as a process in the user
space, which may restrict the implementation of HAC features that require running in the kernel space
[222]. Moreover, containers typically support a single application or service in a container, which
means the HAC cannot deploy agents in the same container to manage the application resources [286].

To overcome this limitation, the commonly implemented container orchestration system Kuber-
netes provides a sidecar option (i.e., a separate container), enabling deployments of HAC-related
components. The sidecar container runs along with the container that hosts the application. Using this
approach, commercial vendors have started providing HACs for containers. InfoScale availability
(formerly Cluster Server—VCS) for containers from Veritas is one such HAC that works with Kuber-
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netes. This HAC provides monitoring, integrated I/O fencing, arbitration and shared storage using
a container storage interface plugin [286] to ensure that the HAC can deliver HA for applications.
The solution requires at least two private networks to enable cluster communication and one public
network to facilitate heartbeat communication. Research projects also explore the use of existing
HACs, such as Pacemaker/Corosync [279] and OpenSAF [4] to support container-based applications.

Latency over long distances has traditionally been a major problem for HACs. However, the
technology has evolved and techniques are currently available to reduce latency considerably, enabling
the setting up of HACs across substantial distances. Atomic broadcast and multicast (total order
messaging) are often associated with fault-tolerance in distributed systems; hence, there are persuasive
arguments to employ it even for HAC communication [246]. However, it is only employed by some
of the HACs today.

On the whole, prediction is absent from the surveyed HAC solutions. Most solutions employ
a poll-based monitoring mechanism that is often state-based, meaning that only the states of the
resources are monitored. Moving towards industry-standards has also been observed in some areas,
such as when using the IPMI to shut down nodes as part of isolating a problematical node. The SCSI-3
interface is widely employed to isolate on a resource-level, and often as part of fencing. The quorum
concept is commonly employed so that a cluster can take action upon a situation that leads to the
partitioning of a cluster.

In conclusion, the current HAC solutions for EAs are dominated by commercial vendors (15
out of the 17 surveyed solutions). This is unsurprising because customers look for HAC solutions
for their business-critical applications, and, as such, proper support is paramount. However, this
also means that the vendors conduct most of the research. There are, however, some open-source
initiatives, and two active initiatives are OpenSAF and ClusterLabs stack (Pacemaker/Corosync).
The open-source initiatives often focus on Linux, and there have been different projects to develop
a consistent HAC solution for Linux. While such efforts have been split into other projects or
discontinued, some of the components are still active, and the current open-source cluster solutions are
a combination of various initiatives. The main components of the current setup of the ClusterLabs stack
are Corosync, Pacemaker, DRBD, STONITH, and a diverse range of application agents, which are
packaged under a ClusterLabs stack. OpenAIS was an initiative to support implementing Application
Interface Specification (AIS) developed by the Service Availability Forum (SA Forum), and Corosync
originated from that initiative. Pacemaker is a cluster resource manager (CRM) tool that originates
from the Linux-HA project.

Application agents follow the standard API established by the Open Cluster Framework (OCF),
which helps standardise the application resource management. Both SuSe Linux Enterprise HA
Extension and Red Hat Enterprise Linux HA add-on use Pacemaker, Corosync, the OCF concept, and
many other open-source components. OpenSAF, on the other hand, focuses on the telecommunications
sector, where there is a need to support very high availability for carrier-grade servers that operate in
the telecommunication infrastructure. However, there have been initiatives to deploy OpenSAF in a
range of environments, such as the cloud. For example, Kanso et al. [124] proposed an OpenSAF
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based deployment in the cloud, but it too focuses on telecom applications. The challenge with open-
source initiatives is to secure proper support, which is crucial for EAs. On the other hand, Red Hat and
SuSe provide such support even though they have developed their HACs using mainly open-source
components. It must be noted that there have been several projects related to the development of
HACs, both commercial and open-source, over the years. However, many of them are no longer active,
and examples include FailSafe by Silicon Graphics (SG) in the commercial area, while HA-OSCAR
represents an open-source equivalent.

3.2.6 Limitations, Challenges and Opportunities

We have identified several limitations, challenges and opportunities as part of constructing the HAC
taxonomy from Section 3.1 and conducting the survey from Section 3.2. The limitations and challenges
are from an implementation perspective and an operations viewpoint, while opportunities can improve
the overall HAC solutions. Using the identified limitations, challenges and opportunities, we discuss
future research directions.

3.2.7 Limitations

The HAC limitations presented in this section apply to a majority of the HAC solutions that we have
studied, with limitations L1, L5, and L7 common for all solutions.

L1. Standardisation. Standardisation of the HA domain, its components, and related processes is
missing. For example, the terminology used by HAC solutions differs considerably. Standard-
isation could improve research approaches and could enable better discussions and research
quality. Furthermore, the lack of standardisation makes it challenging to develop standard
APIs that can function with multiple solutions to support specific functionalities, for instance,
application-specific agent development. We have addressed this lack of standard terminology
using consistent terminology while constructing the taxonomy and performing the subsequent
survey.

L2. Virtual environments. The separation between host and guest in virtualised environments
complicates some of the functionalities of HACs, such as coordinated monitoring of two
operating environments, guest and host, which must be correlated when hosting a critical
application. If such a setup is not in place, a guest HAC may not be aware of the host at all. If
there are problems in the host which impact all the guests hosted there, the guest HAC may
not be able to recognise the problems [154], which could potentially impact the application.
Likewise, if the guest application experiences problems, the host may not react since it is
unaware of any issues except when hardware resource utilisation significantly increases. Kanso
et al. [124] highlighted the problem with a guest HAC that is not aware of the host environment.
Some HAC solutions promote a solution by running additional components on the host that also
interact with the guest HAC. However, there is no uniformity for deploying such components
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because they may differ based on the virtual environment, such as VMWare or kernel-based
VM (KVM). In KVM, additional tools are typically required on the host, while VMware comes
with a set of accessories that can be used instead so that no additional means are required. Some
HAC solutions, such as ApplicationHA on KVM, employ a separate HAC installation on a host
machine. For example, ApplicationHA on the guest can interact with the host HAC. This setup
can support monitoring of the host and enable the use of features that are not otherwise available
in the guest environment due to restrictions. However, a heterogeneous virtual environment with
different operating environments for hosts and guests may also complicate the cross-deployment
of a HAC as each operating system, platform, and virtual environment comes with restrictions.

L3. Cloud environment limitations. Both private and public clouds come with limitations. In
such a cloud environment, particularly in an IaaS model, customers have access to a guest
environment (e.g., VMs). To support an EA, a HAC will require access to some host elements
well. In addition, the host environment must be monitored as well as part of a holistic HAC
approach, which may mean deploying additional tools, as described in L2, on the host. The
limitations of a cloud environment may require changes in the architecture of the HAC, hence
also the protected application [179].

L4. Public cloud limitations. In addition to what is described in L2 and L3, the public cloud
has some additional infrastructure-related restrictions, which are usually different from those
of a private cloud. For example, shared storage is not typically supported [6]. Hence any
shared-storage-based HAC must find an alternative solution that implies that shared-disk-based
quorums cannot be employed. Further, there could be additional restrictions impacting the
core functionality of a HAC, such as multicast or broadcast communication not being allowed
[6], which would impact the HAC’s ability to communicate. Again, this means alternative
solutions must be identified and implemented by adding new tools and procedures, which may,
in turn, add more complexity to a solution. Moreover, if an application is deployed in a virtual
environment, additional restrictions, described in L2, apply. For instance, the deployment of
additional HAC tools on a host, as explained in L2, is usually not possible as hosts are managed
entirely by cloud providers in such settings (L3).

L5. Rating of errors. Often a severity rating is not used for errors on a resource-level, which
means that all errors are treated equally. Adding severity levels would help distinguish between
the different types of errors and by the different modules of HACs (e.g., monitoring, failure
management) so that actions can be taken accordingly. In addition, multilevel severity would
help to improve the recovery process so that, in some cases, errors can be disregarded, indicating
that such errors do not result in a complete failover.

L6. Standardisation of error, failure, and event message representation. The current approach
is very much individualised to different HAC solutions, implying no standard structure for
log messages. This makes it hard to develop a general solution to analyse log messages (e.g.,
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for analytical purposes). Furthermore, several modules of a HAC (e.g., monitoring, failure
management) may write the same error messages with the same timestamp when a resource
fails, making it challenging to mine the log for distinct error messages. Moreover, log sources
can also vary as some HAC solutions may employ more than one log source. The difference
presents a challenge in mining data from log sources, as it will require one or more data
extraction interfaces for each HAC solution.

L7. Rating of resource and resource group dependencies. Resource and resource group depen-
dencies are not always rated, which means that the same failover and recovery policies are
applied to all dependencies, regardless of the strength of the dependencies. The dependency
rating describes how the failure of a resource can impact another resource through a dependency
connection and on what level, which can ultimately influence the mitigation action.

L8. Application monitoring. Even though many of the current HAC solutions employ applica-
tion monitoring, application-specific errors (e.g., hang situations), are not usually captured.
Furthermore, application-related errors are often difficult to monitor with a HAC. This may
require additional modules and steps, such as logging in to an application, to detect such failure.
Hence, the current situation is that an application may be completely unresponsive, yet it is still
regarded as running by a HAC. Therefore, such errors do not trigger any action until the problem
is reported by the users of the application. Consequently, this will also result in incorrect values
for MTTR and MTBF since no accurate time of failure is available, thus providing unreliable
figures for availability.

3.2.8 Challenges

Challenges are associated with functionalities or features that can be implemented to improve the
effectiveness of HACs, but that are difficult to realise due to limitations and other constraints.

C1. Roles and responsibilities. HACs work closely with operating environments and infrastructure
components to provide the required HAC functionalities, such as heartbeat, monitoring, fencing,
and quorum. While the roles and responsibilities of the experts in charge of setting up a HAC
change with the different cloud service models [273], it is unlikely that one team can manage a
complete HAC implementation and operations. Instead, multiple teams and even organisations
must work together to support HAC implementation and operations. Moreover, a heterogeneous
virtual environment further complicates the setup because at least two operating systems will be
associated with host and guest, which means different teams are usually designated to support
the host and guest environments. This means that there must be a support process that links
all the different teams together according to a well-defined roles and responsibilities matrix.
Moreover, the related support processes, for instance, change and incident management, must
be designed accordingly.
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C2. Lifecycle management. The combination of many application agents, HAC components,
VMs, operating systems, and platforms complicates the lifecycle management of HACs. While
having a standard across architecture components (including agents) can reduce the number
of combinations, this is extremely difficult to achieve. In particular, in virtual environments,
lifecycle management must take into account other elements, such as host and guest operating
environments on various VMs, which adds further complexity, as described in L2. The number
of combinations may prompt more threads of lifecycle management. For example, when an EA
vendor releases an update to the application, a HAC vendor must also make sure to release an
update of the HAC or agent to support the changes in the application.

C3. Client-state synchronisation. Client-state synchronisation for EAs is a difficulty. However, if
achieved by a HAC, it can improve availability significantly because it can transfer user sessions
in the event of a failover, which means that no user data is lost. When a failover takes place,
all user input that is not saved is lost. When the failover is complete, users can log in again to
establish new sessions and start their work from scratch. If an EA supports thousands of users,
this means losing countless hours of work. On the other hand, if a client-state synchronisation
can be achieved, it will preserve all connections and sessions, saving considerable time. It
is also likely that, with faster failovers using client-state synchronisation, users will not even
notice that a failover has taken place. Instead, they will be able to continue working as if nothing
has happened. However, state synchronisation for an EA is a significant challenge because it
requires replicating user connections, user sessions, user context, session context, user work,
and global and local variables. While solutions with a limited scope, such as a firewall, widely
employ client-state synchronisation, these are difficult to adopt for the much more complex
settings of EAs. Since the problem is about preserving user sessions and related data, in many
cases, an applications server layer may also need to be synchronised, as they are the front-
ends for user communication in a multi-tier system. Furthermore, applications with a sizable
workload require substantial time to stop and start application components in a specific order.
Some portion of that time is consumed on ending user sessions gracefully during the stop and
establishing non-user (e.g., batch) sessions at the start. However, client-state synchronisation
may reduce that time significantly since user data would be already synchronised across the
HAC members.

3.2.9 Opportunities

We have identified a set of opportunities that can improve HAC solutions considerably, typically by
overcoming HAC limitations from Section 3.2.7. For instance, introducing probabilistic and statistical
methods as detailed in opportunity O5 below requires that ratings of errors and dependencies are in
place. Hence, the exploitation of opportunity O5 requires solutions to limitations L5 and L7.

O1. Architecture components. HAC solutions employ different architecture components, and
therefore having a standard and modular architecture will help standardise these components.
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This assumes that such an architecture will consist of standard modules, and that a HAC solution
can choose to implement only a subset of modules, but it can always refer such modules to the
standard modules. A set of specifications can support defining the roles of the modules and
even provide means to develop interfaces (e.g., APIs). Solutions that are developed using the
APIs can potentially be used with multiple HAC solutions. Moreover, the approach would aid
in simplifying and interpreting architecture components while enabling the development of
approaches for new and emerging technologies (e.g., containerisation), standard testing, and
benchmarking.

O2. Evaluation of historical data. HACs produce a large volume of data, and such data can be
invaluable when analysing past events and mitigations. These data are generated mainly through
logging of events, failures, recoveries, and failovers. Historical data, together with current data,
can be analysed to identify patterns, enabling proactive approaches to ensuring high availability.
Therefore, evaluation of past data and current data can be used to predict failures of a repeating
nature and other related failures.

O3. Reliable cluster communication protocols. The reliability of cluster communication can
be increased significantly by employing protocols with atomic features such as TOTEM [51].
These features are only supported by a few HAC solutions today. Employing a standard protocol
will also enhance development in the areas, as more people can be involved in the development,
which means that issues can be addressed quickly.

O4. Monitoring. Most HAC solutions use a poll-based monitoring method, which is linked to
performance problems [284]. If the polling frequency increases, it will improve the moni-
toring data quality because more up-to-date data will then be available. However, there is
an additional overhead associated with frequent polling of many resources, which could be
resource-demanding. Furthermore, detecting application-specific errors might also present
some challenges as described in L8. The monitoring functionality of a HAC may not detect
such cases since HACs often focus on monitoring state changes of a resource or a resource
group. Therefore, relevant monitoring models should be evaluated to improve the data quality
while reducing the performance overhead. The current monitoring type is mostly state-based.
However, a different option might be to use a standard API to interact with the operating
environments so that the enhanced monitoring features of the operating systems can be utilised.
Though this approach may still require an application-specific development, it can be simplified
by using standard APIs, as discussed in L1 and O1.

O5. Incorporation of probabilistic and statistical methods. Such methods are not employed
currently, but they can improve effectiveness significantly and reduce downtime by analysing
data, checking behaviours, and providing predictions. In addition, such methods will also
improve the quality of the service for HACs and their components, in general, and promote a
more robust proactive approach than currently employed by mostly reactive mechanisms. One
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example of such an improvement is introducing statistical analysis to enable the management
of quorum services more intelligently.

O6. Analytical services. Analytical services will help identify patterns in the behaviour of HACs
and their components while also providing a consolidated view of total downtime and causes.
Analytical services can also incorporate data from multiple sources so that data can be combined
to provide reliable analysis and even produce predictions on potential failures. An example is
that if some HAC components manifest intermittent failures before complete failure, patterns
can be analysed to estimate the subsequent failure or an eventual complete failure.

O7. Benchmark. A standard benchmarking approach that can measure availability at a granular
level will improve the performance measurements of HACs, while also enabling more a natural
comparison between different solutions.

O8. Security. HAC security is a rarely concern. However, unauthorised access to the services of
a HAC means effectively that the protected application is also jeopardised because a HAC
has typically complete control of the operations of the protected application. Security is of
particular concern in cloud environments with shared responsibilities (C1), since multiple teams
assume responsibility for the different layers, which may present new vulnerabilities without
a proper security model in place. Moreover, operating a HAC solution in a public cloud may
also introduce new vulnerabilities [42], mainly when new and alternative solutions must be
introduced due to restrictions, as described in L4.

O9. Complete HA. The notion of complete HA implies that HA for all SPOF components across all
layers are identified and addressed. We have presented nine layers and discussed how HA could
be achieved for each layer (Section 2.2). However, further research is required to streamline the
various layers and provide a robust strategy to approach HA holistically. This is different from
the current view, which focuses more on a system level. An example of a research purpose can
be to develop a process to ensure HA across all layers.

3.3 Summary

This chapter has presented a novel taxonomy of high-availability clusters which classifies the key
aspects of HACs such as deployment patterns, application areas and topology. The taxonomy
is organised in eight top-level classes and many subclasses covering the vast domain of HACs.
Subsequently, we applied the taxonomy to survey end-to-end HAC solutions that can support large-
scale applications and EAs. Further, we analysed the outcome of the survey, and we presented
limitations, challenges and opportunities of HACs.
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Chapter 4

Bayesian Networks

This chapter presents an overview of Bayesian networks (BNs) and Bayesian decision network
(BDNs), and the focus of the chapter is only on those areas relevant to this thesis. Sections 4.1, 4.2
and 4.3 describe BNs and their key characteristics. Section 4.4 describes BDNs and Section 4.6
summarises this chapter.

4.1 Bayes Theorem

Bayes theorem states that the conditional probability of events can be computed using prior and
posterior distributions of the events. Mathematically, the Bayes theorem can be described in terms of
probability given that X and Y are random variables [134]

𝑃 (𝑋 |𝑌 ) = 𝑃 (𝑋,𝑌 )
𝑃 (𝑌 ) (4.1)

and
𝑃 (𝑌 |𝑋 ) = 𝑃 (𝑋,𝑌 )

𝑃 (𝑋 ) (4.2)

where P(X) represents the prior distribution of X, P(Y|X) is the likelihood that describes the probability
of Y given X, P(Y) is the marginal likelihood of Y or the normalising factor [134], and P(X|Y) describes
the posterior distribution of X given Y. Bayes theorem is then expressed as

𝑃 (𝑋 |𝑌 ) = 𝑃 (𝑋 )𝑃 (𝑌 |𝑋 )
𝑃 (𝑌 ) . (4.3)

4.2 Bayesian Statistics

Bayesian statistics, which is based on Bayes theorem, differs from classical statistics (frequentist) in
the way that it considers prior information. Moreover, the parameters of a model are also considered
random, while data are considered fixed. This is opposite to how classical statistics deal with
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parameters and data, which is where data are considered random while parameters are considered
fixed [136].

4.3 Bayesian Networks

Pearl introduced BNs and related mathematical theory [188]. Since then, extensive research has
been ongoing in this area. BNs play a crucial role in artificial intelligence (AI) and are typically
used to represent interconnected data and perform inference under uncertainty. BNs are essentially a
graph-based solution, and are frequently referred to as Bayesian belief networks, Bayes nets, belief
networks, causal probabilistic network and probabilistic networks. BNs can be either continuous
or discrete. The focus of the research presented in this thesis is on discrete models; hence, further
descriptions are limited to discrete BNs.

BNs consists of two main parts, a qualitative part and a quantitative part. The qualitative part is a
directed acyclic graph (DAG). The nodes of this DAG represent random variables, while the edges
between nodes describe causal or statistical dependencies between the variables [261]. In contrast,
the quantitative part deals with probability distributions representing the strength of dependency
relationships stored in each node [261]. Hence, the two parts are combined to form BNs.

At the edges, the direction in the form of an arrow indicates the dependency or relation between
nodes, and as such, the node to which an arrow points is referred to as the ‘child’ node, while the node
on the other end of the arrow is called the ‘parent’. This relationship is described as a conditional
probability, which implies that the probability of a node is computed while considering one or more
of the other nodes [261]. Given a child node ‘X’ and a parent node ‘Y’, their relationship is described
by the conditional probability

𝑃 (𝑋 |𝑌 ) . (4.4)

If the two nodes are independent, i.e., if there is no influence between them, this is denoted as

𝑃 (𝑋,𝑌 ) = 𝑃 (𝑋 )𝑃 (𝑌 ) . (4.5)

This can be written formally as
𝑋 ⊥ 𝑌, (4.6)

which effectively means
𝑃 (𝑋 |𝑌 ) = 𝑃 (𝑋 ) . (4.7)

Two nodes are conditionally independent if a third node Z exists so that X is independent given Z,
and this is denoted as

𝑃 (𝑋 |𝑌,𝑍 ) = 𝑃 (𝑋 |𝑍 ) . (4.8)
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Figure 4.1 The causal connections: (i) Serial, (ii) Diverging, and (iii) Converging connections.

This can be written formally as
𝑋 ⊥ 𝑌 |𝑍 . (4.9)

As shown in Figure 4.1, there are three types of causal connections of the edges when constructing
BNs: serial (sequential), diverging and converging.

In a serial connection (also called a chain), a message can flow from 𝐴1 to 𝐴3 unless 𝐴2 is
instantiated. If 𝐴2 is instantiated, 𝐴1 and 𝐴2 become independent, which means 𝐴2 blocks the flow
between 𝐴1 and 𝐴3. This can be expressed as

𝑃 (𝐴1,𝐴2,𝐴3) = 𝑃 (𝐴3 |𝐴2)𝑃 (𝐴2 |𝐴1)𝑃 (𝐴1) . (4.10)

This type of serial connection usually refers to a forward connection, which means there is also a
backward serial connection where a message can flow from 𝐴3 to 𝐴1 unless 𝐴3 is instantiated.

In a diverging connection (also called a fork), as shown in Figure 4.1 (ii), a connection is
established between 𝐴1 and 𝐴2 through 𝐴3. This means a message can flow between 𝐴1 and 𝐴2 unless
𝐴3 is instantiated. If 𝐴3 is instantiated, the message propagation is blocked, which implies that 𝐴1

and 𝐴2 become independent. This is written as

𝑃 (𝐴1,𝐴2,𝐴3) = 𝑃 (𝐴2 |𝐴3)𝑃 (𝐴1 |𝐴3)𝑃 (𝐴3) . (4.11)

The converging connection (common effect or Collider), shown in Figure 4.1 (iii), allows the
flow between 𝐴1 and 𝐴2 only if 𝐴3 is initiated, but is blocked if 𝐴3 is not instantiated, and this can be
expressed as

𝑃 (𝐴1,𝐴2,𝐴3) = 𝑃 (𝐴3 |𝐴1,𝐴2)𝑃 (𝐴1)𝑃 (𝐴2) . (4.12)

A special case of the converging connection is explaining away. 𝐴1 and 𝐴2 (cause variable)
influence 𝐴3 (effect variable). If either 𝐴1 or 𝐴2 is conditioned on 𝐴3, it reduces the probability of the
other cause. If 𝐴1 is conditioned on 𝐴3, it reduces the posterior probability of 𝐴2, which means 𝐴1

has explained away 𝐴2.
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4.3.1 Representation of Probabilities

A probability distribution is associated with each node. This distribution is updated based on the
probability distribution of other nodes, typically that of the parent nodes. The different combinations
of the values of the node and its parents are stored in a conditional probability table (CPT) [134]
and are presented as conditional probability distributions. The sum of all values in a column of a
CPT must be precisely 1.0, which is the standard in computing probability distributions. The activity
of ensuring that the sum of all values in a column equals 1 is called normalisation.The activity of
complementation ensures that all cells in a column are automatically populated based on the existing
values. For instance, when a column has three cells, and if two are populated, complementation is
used to automatically populate the third cell and by using the probability distribution from the other
two cells. If a node does not have any parents, the CPT contains only local distributions pertaining
probability distributions for the available states in the node. If a node has parents, the CPT contains
probability distributions that are conditioned on parents.

Each node represents a local probability distribution, and a joint probability distribution (JPD) is
calculated from all the nodes that are connected through conditional dependencies. The chain rule is
used to compute the JPD, and it is expressed as follows for the entire variable domain P(U)

𝑃 (𝑈 ) = 𝑃 (𝑋1, ....,𝑋𝑛)
= 𝑃 (𝑋1 |𝑋2, . . . ,𝑋𝑛)𝑃 (𝑋2 |𝑋3, . . . ,𝑋𝑛). . . 𝑃 (𝑋𝑛)

=

𝑛∏
𝑖=1

𝑃 (𝑋𝑖 |𝑋1 , . . . ,𝑋 𝑖−1 )

=

𝑛∏
𝑖=1

𝑃 (𝑋𝑖 |𝑃𝑎(𝑋𝑖))

(4.13)

where 𝑈 = {𝑋1, . . . ,𝑋𝑛} is a set of 𝑛 random variables, 𝑃 (𝑈 ) = 𝑃 (𝑋1, . . . ,𝑋𝑛) is the JPD of those
random variables, 𝑃 (𝑋1 |𝑋2, . . . ,𝑋𝑛) is the probability of 𝑋1 conditioned on 𝑋2, . . . ,𝑋𝑛, and 𝑃𝑎(𝑋𝑖)
denotes the parent node of 𝑋𝑖 .

As an example of a simple CPT, Table 4.1 shows the CPT for the converging connection in
Figure 4.1 (iii). This CPT describes the conditional probabilities of the child node 𝐴3, which is
conditioned on the parent nodes.

4.3.2 Types of Bayesian Networks

There are different types of BNs and the most widely used ones are displayed in Figure 4.2, which was
constructed from multiple sources [217, 133, 261] as part of the literature review that we conducted
for this thesis.
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Table 4.1 An example CPT

P(𝐴3 |𝐴1, 𝐴2) t,t t,f f,t f,f

t 0.8 0.6 0.5 0.2
f 0.2 0.4 0.5 0.8Bayesian network types

Bayesian 
networks

Hierarchical 

Dynamic

Kalman

HMM

Gaussian 

General

Tree-augmented 
Naïve Bayes

Hybrid Bayesian 
Networks

Static Bayesian 
Network (SBN) 

Figure 4.2 Types of Bayesian networks.

The naïve-Bayes BN has a simple network structure that only allows connections from a parent
to one or more child nodes [41]. A tree-augmented naïve-Bayes (TAN) allows connections from
one node to another, thus forming a tree-like structure. A BN augmented naïve-Bayes (BAN) can
have nodes connecting to other nodes that are different from a TAN. The general BN (GBN) is
an unrestricted BN type that treats a class node, typically a parent node, as a common node [41].
A hierarchical BN is typically formed in a hierarchical form with latent variables that can have
aggregated data.

There are also dynamic variations of BNs, and the primary type are dynamic BNs (DBN). The
DBN can be considered to be an expansion of BNs, although it incorporates a time series into BNs.
Other similar instances include the temporal BN (TBN) and time series network. The difference
between the TBN and DBN is that the structure of the TBN network does not change over time slices,
while the structure can change in the DBN [83]. Since the differences are minor, the three terms
are often used interchangeably to refer to the DBN. The DBN supports dynamic processes, which
is different from BNs. The DBN supports two basic types of dynamic processes: state-based and
event-based [260]. In a state-based model, each variable point represents the state of each variable
at discrete time intervals. This effectively means that such a network consists of a set of time slices,
and each slice represents the value of a variable at time 𝑡 . On the other hand, the event-based model
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represents changes in the state of variables where each variable points to the time of state change [260].
Dependencies between variables are defined for a specific time and are called a base network. The
directions of the edges between variables follow the direction of time and are defined as a transition
network. A variable in the DBN is also called a temporal variable, as it is related to time [217]. Since
the DBN includes time series, it typically supports continuous variables. The Kalman filter and hidden
Markov model (HMM) are also considered a variation of the DBN [188].

4.3.3 Learning in Bayesian Networks

There are two main learning approaches related to BNs: 1) structure learning, which is applied to
create the structure of the DAG; and 2) parameter learning, which involves learning the parameter
distributions of the nodes. Both supervised and unsupervised learning can be used for the two
approaches.

4.3.3.1 Structure Learning

Structure learning in BNs implies that a structure can be constructed either manually or automatically.
Manual construction assumes that extensive expert knowledge exists and can be used to construct a
BN structure. This requires identifying and defining nodes and edges to build a BN structure. The
automatic process may employ a constraint-based or a score-based approach, but a hybrid approach
combines the constraint-based and score-based approaches. [14, 261, 133, 209].

Constraint-based Approach The constraint-based approach treats the BNs as a representation of
dependencies. Thus, this approach focuses on finding a network that can describe the dependencies.
However, it is susceptible to errors in single dependencies [134].

Score-based Approach The score-based approach sees learning as a model selection problem.
Therefore, it focuses on defining a score function to observe how well a model fits the data. Thus, the
objective is to look for a network structure with high scores [14]. A disadvantage of this approach is
that a search space can be highly exponential.

4.3.3.2 Parameter Learning

Figure 4.3 summarises parameter learning approaches for discrete and continuous data, and it em-
phasises the fact that the different algorithms and methods may need to be employed to support the
different approaches. For instance, a maximum likelihood algorithm is used when data are discrete,
while either a logit distribution or a conditional Gaussian can be used when data are continuous [14].

Learning with Incomplete Data A challenge with BNs is that not all nodes can be supplied with
data, which creates a situation in which some nodes will not receive any data [14]. This situation
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Figure 4.4 Learning scenarios and the corresponding learning methods.

changes which learning method can be employed, and this is presented in Figure 4.4, which was
compiled from the literature review for this thesis [14, 261, 133, 209].

When data are complete and the network structure is known, learning can be performed using
the Maximum Likelihood Estimation (MLE) or Maximum A posteriori Probability (MAP) [24]. If
a structure is unknown, which implies that the structure must be learned as well, and the data are
complete, techniques such as optimisation can be employed. Further limitations may apply depending
on whether the data are discrete or continuous. When the network structure is known but data are
incomplete, an optimisation approach can be used where either gradient descent or expectation-
maximisation (EM) can be employed to estimate the parameters. EM consists of two main steps, and
they are expectation (E) and maximisation (M). The E step uses the current model to compute the
expectation over missing data while the M step maximises the probability of data and updates the
model parameters. EM can work effectively even when the sample data is small or when a significant
portion of data is incomplete.
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As we show later in Chapter 7, the BN model representing a HAC is considered to have known
nodes because such a model must have a known structure (i.e., the same as the HAC). However,
data are considered incomplete data because only data for the node(s) corresponding to failed HAC
component(s) are delivered to the BN model.

4.3.4 Learning Modes

The learning mode dictates the approach for learning the distributions of parameters in a model. There
are three main modes: batch, online and incremental [188, 225]. In batch mode, the required data
are assembled and sent in a batch to the model. Hence, batch mode is associated with historical data.
Online mode updates the parameter distributions continuously and immediately. Incremental mode is
hybrid of batch and online modes where batches of data are sent to the model periodically to update
the distributions.

4.3.5 Inference

BNs can employ primarily three different approaches for inference: exact, approximate and hybrid.
Exact inference implies that the conditional probability distributions are computed precisely [14].An
approximate inference performs only approximate inference, which means there is no guarantee
that it will result in a correct response [14]. Both approaches can be combined to create a hybrid
approach. Inference algorithms can further be classified as deterministic and non-deterministic. With
deterministic algorithms, the same result is achieved each time, while non-deterministic algorithms
may return different values [14].

4.3.6 Motivation for Using Bayesian Networks

HACs consist of interdependent elements (resources and resource groups applications) that present
stochastic characteristics (e.g., failures and recoveries). As such, the ability of BNs to model both
dependency relationships and stochasticity is particularly suited. Furthermore, we are interested in a
model that supports prediction, which is the typical use of BNs. Finally, BNs have been successfully
used in modelling and/or prediction in other application domains that present similar characteristics
to HACs, including [215, 28].

We use the running example described in Section 2.1 to present a BN model (Figure 4.5). All
resources are mapped to nodes in the model, and the dependencies between them are shown as
edges. Hence the child node Service is conditionally dependent on the parent node File system
1. The nodes IP address, File system 1 and File system 2 have a local distribution representing
failure distribution. The child nodes Service, Database group and Web application have conditional
probability distributions set in the corresponding CPT. If there is a failure of a parent node (e.g., File
system 1), a JPD can be computed to present the likelihood of failure in a child node (database group)
or at a system level (web application).
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Figure 4.5 Bayesian network model for the HAC from the running example. Latent nodes are
highlighted in blue.

There are additional (potential) benefits of using BNs to model HAcs, which are as listed follows:

• Visualisation of complex structures in a BN graphical form makes it easier to understand and
enables knowledge discovery by graph structure [78].

• Cause and effect relationships between the BN nodes can be clearly presented, and this means
even complex relations can also be visualised and studied [78].

• A large number of data interconnected through causal relationships can be represented.

• Unlike “black-box” techniques, such as support vector machines or neural networks, the struc-
ture of BNs can be studied, offering insights into the relationships between HAC components.

• Several types of reasoning, such as prediction (causal) and diagnostics, anomaly detection and
time series prediction are supported.

• BNs can work well with incomplete data, which is essential for decoding HAC failures since
failure typically occurs on a resource-level.

• BNs can represent the complete structure of a HAC by mapping resources to nodes. In particular,
a node will represent each low-level resource, and a resource group can be represented by a
latent node. Additionally, the edge directions show the cause and effect in relationships, and, in
the context of a HAC, this is ideal for describing a high degree of dependencies between HAC
resources.
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• Finally, conditional probabilities can be used to propagate a failure through the dependency
path to a child node where the JPD can be computed to indicate a potential failure of the child
node.

4.4 Bayesian Decision Networks

A Bayesian decision network (BDN) (or influence diagram) is an extension to a Bayesian network
that combines BNs with decision-theory, enabling decision making under uncertainty [188]. To
facilitate this, a BDN introduces two functionalities: utility and decision. A utility functionality
(function) uses preferences as a means to define the desirability of a state; hence, the utility can be
described as a measure of quantified preference of a state. A decision function describes the decision
options while considering the information available at the time. To support these functionalities,
BDNs introduce two new node types: utility and decision [131]. This means there can be four types
of nodes in a BDN model: chance (or random), decision, deterministic and utility. A chance node
represents a random variable, and it is similar to random nodes in a BN model. A decision node
models the choices available for a decision, and the expectation is that such a choice is selected by a
decision-maker interactively [188]. The selection of a choice, in turn, influences the entire network.
When the selection process is automated, it can be referred to as decision automation. A deterministic
node is discrete and represents a constant or a value that is calculated. While a random node deals
with uncertainty, a deterministic node deals with certainty because the outcomes are known. A utility
node is based on the utility theory and represents the utility function. Thus, a utility node presents
preferences associated with all the possible outcomes of the parent nodes.

A BDN can have one or more utility nodes; however, there are specific rules that must be followed.
For instance, a child utility node cannot have multiple parent utility nodes [17]. These restrictions, as
well as further developments in the area, have led to the introduction of new types of utility nodes,
which can be grouped into three types: regular utility (the normal utility), Additive-Linear Utility
(ALU) and Multi-Attribute Utility (MAU) [17, 72]. A regular utility node is the utility type that
is used if not stated explicitly otherwise. An ALU allows connecting multiple parent utility nodes
to a single ALU node, thus summing the outcomes linearly into the ALU node. While an ALU is
associated with a utility function, an MLU generalises it and allows any function to be defined at
the node-level. Similar to BNs, BDNs also use edges to connect the different types of nodes, and
there are three types of edges in a BDN: probabilistic, informational and functional. A probabilistic
edge goes into a chance node and describes the probabilistic dependencies between such nodes. An
informational edge describes the direction and the target, and it points to a decision node. Hence, a
node that influences a decision node can be explained by the informational edge [134]. A functional
edge describes the connection towards utility nodes hence representing the functional dependencies.
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Figure 4.6 Components associated with Bayesian network model construction and inference.

4.4.1 Representation of Conditional Probabilities

The introduction of new nodes in BDNs requires changes in the way that conditional probabilities are
handled. Chance nodes in BDNs have the corresponding CPTs that describe probability distributions.
A decision node has a decision table that lists all the available decision options, which are called
policies where different policies lead to different outcomes. A decision node has a set of policies for
each decision, and all policies for a decision node are called a strategy [188]. Similarly, a utility node
has a utility table that lists all the outcomes conditioned on its parents, and the values are numerical
and expressed as a measure of preference [134].

4.4.2 Inference

The concept of expected utility (EU) is used to calculate the action that can provide the utility with
most value in a wide range of decision-making problems [134]. Consider a finite set of actions 𝐴 and
a finite set of possible outcomes 𝑂 of these actions, and suppose that 𝑈

(
𝑜 𝑗
��𝑎𝑖 ) represents the utility of

achieving outcome 𝑜 𝑗 ∈𝑂 having performed action 𝑎𝑖 ∈ 𝐴. Then, the expected utility of action 𝑎𝑖 is
given by

𝐸𝑈 (𝑎𝑖) =
∑︁
𝑜 𝑗 ∈𝑂

𝑃 (𝑜 𝑗 |𝑎𝑖) ×𝑈
(
𝑜 𝑗
��𝑎𝑖 ) , (4.14)

where 𝑃
(
𝑜 𝑗
��𝑎𝑖 ) is the probability of achieving outcome 𝑜 𝑗 through executing action 𝑎𝑖 .

The action 𝑎∗ ∈ 𝐴 associated with the maximum expected utility (MEU) is then calculated as
[131]

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖 ∈𝐴𝐸𝑈 (𝑎𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖 ∈𝐴

∑︁
𝑜 𝑗 ∈𝑂

(
𝑃 (𝑜 𝑗 |𝑎𝑖) ×𝑈

(
𝑜 𝑗
��𝑎𝑖 ) ) . (4.15)

4.5 Constructing and Using a Baysian Network/Decision Network

This section describes the activities and components related to constructing and exploiting a BN or
BDN model as summarised in Figure 4.6. The processes involved in the construction and use of
a BN or BDN are complex, and heavily influence the effectiveness of the model. These processes
typically comprise three main steps. The first step is to construct the model structure (as described
in Section 4.3.3.1). The second step addresses the corresponding probability distributions, i.e., the
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assignment of prior probabilities to each node in the network and the setting of appropriate conditional
probabilities (as described in Section 4.3.3.2. The third step deals with inference such that the model
is invoked to produce an output (as described in Section 4.3.5). We summarise these three steps below.

1. Establishing the network structure. There are three primary methods associated with con-
structing the structure: elicitation, learning from data and learning from other models [134].
Elicitation describes using expert knowledge, which can come from domain experts or through
a survey. Learning from data implies that a structure is constructed using data as a source
employing different algorithms. Additionally, machine learning can be employed to construct
the structure of the model using data. Finally, existing models can be used to learn a new model
structure by using a mapping procedure.

2. Establishing the probability distributions. A range of methods can used in this step, alone or
in conjunction. Similar to constructing the structure, elicitation can be based on a survey or on
information provided by domain experts. Additionally, a method of using a probability scale
can be employed to identify the probability distributions [131]. However, in such cases, expert
knowledge or domain knowledge is required to assign the probabilities correctly. Parameter
learning is an automated method; hence the different algorithms that can be employed play
an important role in handling incomplete data. Furthermore, the distributions can be updated
using an online learning mode; batch or incremental learning modes for this are discussed in
Section 4.3.4. Online learning assumes data are delivered continuously, while batch mode
implies that the learning can be done by providing batches of data. Finally, the incremental
mode is essentially a hybrid of both methods where necessary data are provided incrementally
to learn and update the probability distributions.

3. Inference. The third step is inference, in which the model computes the posterior probability
distribution for a set of nodes when evidence is provided to one or more nodes.

We will detail how these three steps are carried out for each of the Bayesian networks developed
later in this thesis.

4.6 Summary

This chapter presented the basic of BNs and BDNs, with a focus on the terminology and concepts
used in the rest of this thesis. The probability-weighted utility can be used to capture the essential
characteristics of a HAC, which is a prerequisite to predicting the manageability of a failure at a
resource-level. As shown later in Chapter 6, a BDN model can therefore predict locally manageable
resource failures while evaluating the characteristics of a HAC. A BN model can then be used to
represent the dependencies in a HAC using the causal relationships of a BN model. The nodes in
the BN model can represent the resources and other components of the HAC. As we will show in
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Chapter 7, this means a complete HAC can be modelled using BNs to emulate failure propagation
and failure prediction of the HAC.
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Chapter 5

Holistic Modelling Technique for High
Availability

This chapter introduces a holistic modelling technique for high availability (HMTHA), which repre-
sents a key part of our Bayesian prognostic framework. The objective of the technique is to generate
a formal model of the resources, resource groups and dependencies of an IT application to support
the generation of probabilistic models (e.g., Bayesian networks) for the analysis of the application’s
HA properties. The input to the technique is information about the IT application’s structure and
components, the IT infrastructure on which the application is deployed and the set of HA requirements
for the application, e.g., based on Service Level Agreements (SLAs). The technique produces:

1. A special graph comprising several types of vertices that correspond to different types of
application elements and several types of both directed and nondirected arcs correspond to the
different types of dependencies between application elements. We call this special graph the
holistic high availability model (HHAM) of the application.

2. A mapping table (M-table) with information that simplifies the mapping of the HHAM to a
probabilistic model such as a BN.

3. A set of translation rules (T-rules) that aids in the mapping of probabilities between an HHAM
and a probabilistic model.

The technique enables the modelling of complex high-availability solutions at a granular level,
which enables us to detail the dependencies between the components of the modelled system. The
HMTHA is a crucial part of the BP framework, and modules including BN-HAC (Chapter 7) and BPFP
(Chapter 8) use the outcomes of the HMTHA. Thus, the technique presented in this chapter answers
research question RQ1 from Chapter 1, that being the the development of a technique for modelling
complex high-availability solutions and presenting dependencies between the HA components.

This chapter is organised as follows. Section 5.1 summarises the existing approaches to modelling
the HA of IT applications. Next, Section 5.2 describes the related work. Section 5.3 presents the
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proposed technique to modelling HA holistically and describes its outcomes. Section 5.4 presents a
simplified process for applying the technique, and an example of this is provided using the running
example. Section 5.5 describes the HMTHA software tool, which facilitates the use of the modelling
technique. Lastly, Section 5.6 summarises the chapter.

5.1 Introduction

In an IT-driven world, numerous applications are required to be available around the clock. Achieving
this requirement is typically facilitated by HA solutions. An example of such a solution is a HAC.
However, IT applications and deployment environments are evolving, and the types and number of
components that need to be managed by HA solutions are continually increasing. For instance, the
wide adoption of cloud computing [64] and the emergence of technologies including fog computing,
edge computing and containerisation have added more components to a system. Additionally, new
architecture paradigms, such as microservices, have also introduced new types of components [61].
As a result of this diversification, correctly identifying and quantifying the dependencies among IT
systems components have become a highly complex undertaking. This makes it challenging to address
HA holistically. For instance, an application whose components span both cloud and fog computing
infrastructure requires that the related resources in both environments are considered together to
achieve HA [27].

Availability is, in some cases, discussed as part of the broader concept of dependability. In such
cases, the terms availability and dependability are used interchangeably because availability is one
of the characteristics of dependability [9]. Moreover, HA modelling typically employs the same
techniques as availability modelling; therefore, it is often regarded as availability modelling. The
current modelling approaches for availability can roughly be classified into two groups (Figure 5.1):
state-based and structure-based. State-based approaches, also known as state-space-based, deal with
states of components (available, unavailable) and with transitions between these states. Structure-
based approaches, also called non-state-based or non-state-space-based, model both the structural
relationships and the behaviours of components.

State-based modelling is typically stochastic and is used to examine different state transitions
of components and their potential effects. Markov models represent a significant portion of the
state-based modelling domain [270]. Markov models are based on stochastic processes, and the
components of the models are statistically dependent. The Markov chain is an essential branch of
Markov models, and it too can be grouped into two distinct approaches: continuous-time Markov
chains (CTMC) and discrete-time Markov chains (DTMC) [270]. The primary difference between
CTMC and DTMC is the time aspect of state changes. The DTMC resides precisely in a unit of
time before changing the state, whereas CTMC allows a continuous length of time in any state while
adhering to the Markov properties. Several extensions are also made to the Markov chains. For
instance, when a reward rate is added to the Markov chain, it is known as a Markov reward model
[270]. Petri nets are used as another modelling technique. Unlike Markov models, Petri nets are
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Figure 5.1 Classification of major availability modelling formalisms.

directed bipartite graphs with two disjoint sets of vertices: places and transitions [162]. The stochastic
Petri net is a variant of the Petri net that has been extended with stochastic properties and, as such,
incorporates a probabilistic approach. These techniques can also be combined to form new ones, and
an example is the stochastic reward nets (SRNs), which combines Markov chains with a Petri net
[153].

On the other hand, a structure-based approach captures the actual structure of the modelled system,
although only a subset of the complete availability structure is typically used to perform a specific
analysis. Structure-based approaches are typically presented graphically. Fault tree analysis is an
event-driven graphical tree structure that is used to identify the basic events that cause a system failure
[11]. The reliability block diagram is another technique that represents components of a system using
block structures. Subsequently, the blocks are connected by dependencies in the context of availability
[270]. However, structure-based models have a number of drawbacks. In particular, it is challenging
to represent complex dependencies for this type of approach [270, 11]. This often leads to limitations
in the encoding of complex dependencies.

The holistic high availability modelling technique introduced in this chapter is a structure-based
approach (Figure 5.1) that can encode complex dependencies, and can therefore address multiple limi-
tations of existing approaches when modelling availability. As detailed in the following sections, the
technique supports the multilevel hierarchical composition of resources and multilevel dependencies
between the resources, which are paramount for the development of HA solutions.

5.2 Related work

Modelling the availability and HA of IT applications has been the focus of intense research over the
years. However, existing approaches often target narrow aspects of availability, such as observing
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the state of a component or a system, which is often facilitated by state-based modelling approaches.
Hunter et al. [108] employ an availability model using Markov modelling techniques to examine the
potential availability of a two-node HAC. Petri nets and variations of Petri nets are also used frequently.
Extended coloured stochastic Petri nets (ECSPN) are used to model production systems and their
availability in Industry 4.0 [152]. SRNs are also generally employed to support the construction of
availability models. Longo et al. [153] present a scalable method for availability analysis of large-scale
infrastructure as a service cloud employing SRNs. Nguyen et al. deploy [186] a comprehensive
availability model of a data centre using SRNs for disaster tolerance to facilitate availability assessment.
SRNs are also employed by a component-based availability modelling framework used to quantify the
availability of cloud services [159]. Another project that analyses the availability of cloud data centres
using a monolithic SRNs is presented in [147]. Markov chain techniques are broadly employed
to model availability while observing failures, and an example of this is the availability model for
Cassandra, which deals with two types of failures, transient and memoryless [212].

It is also common for state-based and structure-based approaches to be combined. For instance,
Dantas et al. [52] present a hierarchical heterogeneous modelling approach using reliability block
diagrams (RBDs) and Markov reward model (MRM) in a Eucalyptus cloud computing environment.
This modelling approach is used to represent a redundant architecture and to capture the availability
measures so that results can be compared to a nonredundant architecture. Kim et al. [129] present an
availability model for a virtualised system. The model organises system components in a two-level
hierarchy where the upper level represents the complete system. In contrast, the lower level is used to
capture the behaviour of the individual components. The model employs fault tree analysis for the
upper-level and CTMC for the lower-level. Another research initiative combines RBDs and Markov
chains to create an availability model for an HA platform using three-level hierarchical decomposition
[271].

In summary, numerous methods of modelling availability exist. Nevertheless, an approach for
encoding the actual system requirements (both software and hardware) from an HA viewpoint is
missing. Furthermore, existing models often focus only on specific cases of live IT application
architectures. Hence, to the best of our knowledge, no holistic approach to modelling a system exists
to represent a multilayered IT application with intricate dependency patterns. Another significant
difference between the existing modelling approaches and our HMTHA is that our modelling technique
can be used during the design phase. In contrast, most other modelling approaches rely on existing
deployment environments or facilitators.

5.3 Holistic Modelling Technique for High Availability

5.3.1 Terminology

Before presenting our HMTHA technique, we revisit the definitions of several HAC terms:
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• Application: An application represents a complete IT application, which is further broken down
into resources, resource groups and arcs.

• Resource: A resource represents an element of an IT application and it is often the smallest
entity of an application. A resource can represent a software-based or a hardware-based element.
The typical properties of a resource are monitorable, invokable and initiable. Examples of
resources include processes (e.g., database), IP addresses, file systems and network interface
cards.

• Resource group: A collection of related resources that are grouped to provide specific function-
ality.

• Arc: An arc in an IT application represents a dependency relationship between two or more
resources or resource groups.

• Facilitator: We introduce the term ‘facilitator‘ to indicate a solution that enables the delivery
of HA services. For instance, a HAC is typically implemented to provide HA for applications.
However, many such solutions can be employed to deliver HA across the multiple layers of a
complex system.

• Enabler: We introduce the term ‘enabler’ to refer to a probabilistic model (e.g., a Bayesian
network) that can make use of an HHAM.

5.3.2 HHAM Model Definition

The HHAMs generated by our technique are graph-like structures that have vertices corresponding
to resources, resource groups and the application, and arcs corresponding to dependencies between
these. To distinguish between different classes of IT application resources and between different types
of dependencies, HHAM uses six types of vertices and five types of arcs, respectively. The definition
of the HHAMs is, therefore, provided as follows.

Definition 1 (Holistic high availability model). A holistic high availability model of an IT application
is a tuple

HHAM = (𝑉𝑅,𝑉𝑊 ,𝑉𝐺 , 𝑣𝐴,𝑉𝐿𝐷 ,𝑉𝐺𝐷 ,𝐴𝑅,𝐴𝐺 ,𝐴𝐴,𝐴𝐿𝐷 ,𝐴𝐺𝐷 ), (5.1)

where:

• 𝑉𝑅 is a finite set of simple resource vertices, i.e., vertices corresponding to the simple resources
of the application (e.g., IP address, file system). Hence, the majority of the resources are
identified as simple vertices.

• 𝑉𝑊 is a finite set of weak resource vertices that are associated with resources whose failure
does not lead to the failure of a resource group or an application. Therefore, these resources are
not required to ensure high availability but are still required to satisfy business requirements.
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• 𝑉𝐺 is a finite set of resource group vertices. For example, all resources required to maintain a
database instance are grouped into a database resource group.

• 𝑉𝐴 is the application vertex and models the top-level application. The modelling technique is
typically applied to one application, and therefore a model represents one application. Hence,
there is only one such vertex for a model.

• 𝑉𝐿𝐷 is a finite set of shared dependency vertices, i.e., vertices corresponding to resources
that are shared by resources such as simple resources, weak resources and resource group.
Hence, resources that can affect individual resources or resource groups are created as shared
dependency vertices.

• 𝑉𝐺𝐷 is a finite set of global dependency vertices, i.e., vertices corresponding to resources that
are essential for the functionality of other types of resources. Failure of such a resource can
affect the entire system.

• 𝐴𝑅 ⊂ (𝑉𝑅∪𝑉𝑊 ) × (𝑉𝑅∪𝑉𝑊 ) is a finite set of resource arcs that connect resource vertices (simple
or weak). Each arc (𝑣1, 𝑣2) ∈ 𝐴𝑅 models a dependency between a simple or weak resource 𝑣1

and another simple or weak resource 𝑣2 ≠ 𝑣1.

• 𝐴𝐺 ⊂ (𝑉𝑅 ∪𝑉𝑊 ) ×𝑉𝐺 is a finite set of resource group arcs, i.e., arcs that model dependencies
between (simple or weak) resource vertices and resource group vertices.

• 𝐴𝐴 ⊂ (𝑉𝑅 ∪𝑉𝑊 ∪𝑉𝐺 ) ×𝑉𝐴 is a finite set of application arcs, i.e., arcs that model dependencies
between simple/weak resource vertices or resource group vertices and the application vertex.

• 𝐴𝐿𝐷 ⊂ (𝑉𝑅 ∪𝑉𝑊 ∪𝑉𝐺 ) ×𝑉𝐿𝐷 is a finite set of shared dependency arcs, i.e., arcs modelling
dependencies between simple/weak resource vertices, resource group vertices and shared
dependency vertices.

• 𝐴𝐺𝐷 ⊂ (𝑉𝐴 ×𝑉𝐺𝐷 ) is a finite set of global dependency arcs, i.e., arcs representing connections
between global dependency vertices and the application vertex.

The corresponding metamodel of the HHAM is depicted in Figure 5.2 using a UML class diagram.
The different vertex types can also be combined. For example, a global dependency vertex that
exhibits weak resource characteristics can be designated as a global dependency and weak resource
vertex. Furthermore, an application vertex and resource group vertices are logical without direct
representation of resources such as IP address, while simple resource and weak resource vertices
always represent a corresponding HA resource. To ensure that the models are created accurately, we
provide a set of modelling rules in Table 5.1.

Additionally, the modelling technique provides a naming convention and an addressing scheme
to uniquely identify a resource, a resource group, a top-level application and the different types of
arcs. Moreover, the position of each element can also be identified, which can assist in evaluating a

84



5.3 Holistic Modelling Technique for High Availability

1

*

1

*

*
1

*
1

11

1

*

1

*

1..* *1..* *1

*

1

*

1

1..*

1

1..*

1..*

*

1..*

*

1

*

1

* 0..1

1

*

0..1

1

*

0..1

*

0..1

*

*

ApplicationApplication

-applicationId

-name

GlobalDependencyGlobalDependency

-id

-name

-parentId

SharedDependencySharedDependency

-id

-name

-parentId

Child

ResourceGroupResourceGroup

-Id

-name

-parentId

SimpleResourceSimpleResource

-simpleResourceId

-name

-parentId

WeakResourceWeakResource

-weakResourceId

-name

-parentId

ChildParent

Child

Parent

**

ChildParent

Parent

Child

*Child

Parent

Parent

Child

Child

Child

Parent

1..*

Parent

Parent

Child

*

Parent

Child

Parent

Child

Parent

Figure 5.2 Metamodel of the holistic availability modelling technique presented as a UML class
diagram.

potential effect. For instance, if the state of the resource changes, the position can be evaluated to
assess the effect on the underlying resources in the hierarchical tree. Similarly, the upwards effect
can also be evaluated. As dependencies are presented in multiple levels, they present opportunities to
perform in-depth analysis on dependencies [33].

5.3.3 Mapping Table (M-table)

A table is constructed immediately after creating the HHAM, and the objective of the table is to assist
in mapping the HHAM to a probabilistic model, hence the name mapping table (M-table). The table
consists of two parts, and the first part consists of four columns and presents resources, vertex types,
arc types and layers of the system being modelled. The second part consists of three columns added
when a probabilistic approach is identified. A six-step mapping approach (Table 5.2) is used to map
an M-table to a probabilistic model. However, because the focus of this thesis is on BNs, we use BNs
as the probabilistic approach. Hence, the M-table and the T-rules are created accordingly.

The first part of the M-table for the running example is provided in Table 5.4. The creation of the
second part of the M-table and mapping to a BN structure is presented in Section 7.2.2. Similarly, the
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Table 5.1 Modelling rules

No Modelling Rules

1 A vertex cannot be simple, global dependency or shared dependency simultaneously,
and only one such type can be associated with a vertex.

2 A weak resource vertex can be a global dependency vertex or shared dependency vertex
to indicate the noncriticality of a resource.

3 One application vertex per model is allowed because a model is created to represent an
IT application.

4 Global dependency vertices can only be connected to an application vertex to indicate
that a global dependency vertex affects the entire application.

5 Shared dependency vertices can be connected to simple/weak or resource group vertices
to indicate the dependency to one or more vertices.

6 If there are 𝑛 resource group vertices and 𝑛−1 resource group vertices are connected
to the same shared dependency vertex, the shared dependency vertex can be defined as
a global dependency vertex. When a majority of the resource group vertices depend
on the same shared dependency vertex, it can affect the entire application; hence, it is
defined as a global dependency vertex.

7 An application vertex cannot be a weak resource vertex because if it is defined as
a weak, the application is not considered critical; hence, it does not require high
availability.

8 If there are 𝑛 resource group vertices, a maximum of 𝑛 − 1 can be defined as weak
because if all are designated as weak, this can indirectly label the application as weak;
hence the need to set up high availability is no longer present.

9 Arcs point from child vertices to parent vertices to show the dependency. This means
an application resource is always the top-level parent.

construction of the first part of the M-table for the testbed application is presented in Section 10.3.1.
The construction of the second part and mapping to a BN structure is described in Section 10.3.3.1.

5.3.4 Translation Rules (T-rules)

Transformation rules (T-rules) enable a transition from an HHAM to an enabler (a probability model).
Therefore, the T-rules are specific to the probabilistic approach because different approaches differ in
how the models are constructed and probabilities are assigned. A T-rule is defined for each vertex
type, providing instructions on calculating and assigning the initial probabilities. We list the T-rules
created for BNs as the probabilistic approach and three approaches to calculate the probabilities. The
approaches use the BN structure to describe the relationship between a parent and child component
because HHAM and BN employ different orientations for the model structure. The three approaches
are presented below.

86



5.3 Holistic Modelling Technique for High Availability

Table 5.2 Six-step approach to mapping an M-table to a BN model

Step M-table Objects Description

1 Simple Map each simple vertex with a physical representation to a corre-
sponding node in the BN model using a reversed layer approach

2 Resource group and
application

Map vertex types that do not have a physical representation to latent
or hidden nodes

3 Weak Map a weak vertex type to a node and assign the conditional proba-
bility to a child node based on the effect on the child node

4 Dependency Map the dependency nodes (shared and global) to nodes and assign
the conditional probability based on the effect on the child nodes

5 Layers Map the layers of HHAM to the reversed layers of a Bayesian
network model to organise the structure

6 N/A Assign probabilities to nodes using the T-rules

N/A - Not applicable to a specific M-table object.

Table 5.3 Translation rules (T-rules) for each vertex type

No Vertex Type T-rules

1 Application Assign conditional probabilities using an impact analysis for all re-
source groups (Approach 3). If global dependency vertices exist, per-
form an impact analysis using Approach 2 to determine and assign
probability distributions

2 Resource group Assign probabilities conditioned on parent vertices, including weak
vertices, using an impact analysis (Approach 2). If one or more shared
dependency vertices are connected, estimate the probability distribution
using an impact analysis (Approach 3)

3 Simple Assign probabilities according to the SLA (Approach 1). If the simple
vertex is a child to several parent vertices, use an impact analysis to
assign probabilities (Approach 2). If the simple resource is connected
to one or more shared dependency vertices, perform an impact analysis
using Approach 3

4 Weak Assign probabilities using the SLA (Approach 1)

5 Shared dependency Use SLA to assign probabilities (Approach 1)

6 Global dependency Assign probabilities using the SLA (Approach 1)

Approach 1: The SLA defined for the availability of the application under analysis is used because
availability requirements defined by SLAs guide the implementation of the HAC solution that ensures
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HA for the application [245, 45]. Therefore, the SLA value is translated directly into probabilities as
follows

𝐶(no failure) =
𝑆𝐿𝐴

100
, (5.2)

𝐶(failure) = 1− 𝑆𝐿𝐴

100
. (5.3)

Assuming that the SLA is 99%, this yields:
Failure = .01

No failure = .99

Approach 2: The failure of a parent component and its effect on the child node for each potential
failure mode is calculated using the failure mode and effects analysis (FMEA), which is a systematic
analysis technique to identify potential failures and their effects [213, 149]. FMEA is well suited
for a system comprising multiple interconnected components, and uses three factors to calculate the
risk priority number (RPN): the severity of the consequences (severity - S), the probability of failure
(occurrence - O), and the probability of undetected failure (detectability - D). The RPN is given by
the product of these factors:

𝑅𝑃𝑁 = 𝑆 ×𝑂 ×𝐷. (5.4)

Throughout this thesis, we used a scale of 1 to 10 for each of these factors, where 10 is associated
with a high impact (severity - most likely, likelihood - most likely, and detectability - least detectable).
Approach 2 calculates the effect of the failure of the individual parent components on a common child
component for each potential failure mode as

𝐶𝑖 =
𝑅𝑃𝑁𝑖

𝑅𝑃𝑁𝑚𝑎𝑥

, (5.5)

where 𝑅𝑃𝑁𝑚𝑎𝑥 is the maximum obtainable value for RPN, and 𝐶𝑖 is the component under analysis.
Approach 3: The effect of one or more component (parent) failures on a common component

(child) for potential failure mode is calculated using FMEA. Hence, the relative effect of all parent
components connected to a common child component is calculated as

𝐶𝑖 =
𝑅𝑃𝑁𝑖∑𝑛
𝑗=1𝑅𝑃𝑁 𝑗

, (5.6)

where 𝑅𝑃𝑁 𝑗 denotes the RPN for the 𝑗-th parent component, and n indicates the total number of
components connected to the child (common or target) component 𝐶𝑖 .

If 𝐶 is an application, the result is adjusted to reflect the fact that an application fails when at least
𝑛−1 of its 𝑛 resource groups fail:

A =

{
failure, if RG ≥ 𝑛−1
no failure, otherwise,

(5.7)
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Figure 5.3 Simplified process for creating a holistic high availability model for high availability.

where 𝑅𝐺 denotes the number of resource group failures. The calculation and assignment of prob-
abilities are provided in Section 7.2.6 for the running example and Section 10.3.3.1 for the testbed
application.

5.4 Building the HHAM model and M-table of an IT application

Since the modelling technique is dependent on other activities such as gathering requirements of an
IT application, we present a simplified model creation process that consists of five steps, as illustrated
in Figure 5.3. Moreover, now that we have described the process for building an HHAM model and
other outcomes, we use the running example application (presented first in Section 2.1) to illustrate its
steps.

1. Obtain the high availability application requirements

Three different categories are considered when combining the requirements that function as inputs to
the model, and they are:

1. Requirements based on availability (i.e., SLA)

2. Application architecture (i.e., SPOF and non-SPOF components)

3. Deployment environment (i.e., network, storage solution)

The first category represents the established SLA for an application, and the assumption is that the
HHAM model’s depth and complexity increase when the availability SLA increases. For example, an
availability SLA of 99.9% expects an annual downtime of 8 hours and 46 minutes. This means the
HA solution must be designed and implemented to reduce the MTTR to achieve that goal. The second
category focuses on the application’s requirements. Hence, all SPOF components (e.g., service, file
system) required for the operations of the application are considered first. Next, all the non-SPOF
components required to support the business functionalities are added. For example, a different file
system to store temporary files even though the file system is not considered a SPOF because the
application can continue to function even without this file system for a few hours. Nevertheless, the
component is added to the HA facilitator to satisfy business requirements. The existing deployment
environment and its capabilities, such as an SAN solution, are considered in the third category.

89



Holistic Modelling Technique for High Availability

Example 1. Identification of the availability requirements of an application is the first step in the five-
step modelling process. We assume categories 1 and 2 as described above for the running example.
This means assuming an availability SLA of 99.9% while also considering application-specific
requirements.

2. Apply the holistic modelling technique for high availability

The model creation process is iterative, and uses dependency patterns to identify and add the relevant
components. The application is the top-level vertex (parent to all the other vertices) added first,
and there is only one such vertex for each model. The layer two vertices are added next using the
dependency relationships that they have with the parent vertex. These are typically the resource group
vertices and the arcs used to link are application arcs. The subsequent vertices are added for each
resource group vertex, and this iteration continues until all SPOF components and business-required
components are identified and added. A relevant arc is added for each dependency to form a child-
parent relationship. For example, if a simple vertex points to its parent resource group vertex, the
corresponding arc type is a resource group arc. Finally, the dependency vertices are added. The
shared dependency vertices are added first and then global dependency vertices are added. The shared
dependency vertices point to either a resource group vertex or an individual simple/weak resource
vertex. The global dependency vertex always points to the application vertex.

c
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Global dependency
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Figure 5.4 High availability model for an example IT application using a graphical notation to
represent the different types of vertices and arcs from Definition 1. The different graphical elements
are shown in the legend.
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To depict an HHAM model graphically, we use a different graphical notation for each type of
HHAM vertex. Figure 5.4 presents an HHAM model that shows this notation. As illustrated in
this figure, the HHAM vertices are organised hierarchically into layers labelled as a, b,. . . . The
components of the HHAM from eq. (5.1) are as follows:

• The set of simple resource vertices is given by

𝑉𝑅 = {Service,FileSys1, IPAddr},

where Service is the service of the Web application, FileSys1 is a file system for the Service,
and IPAddr is the related IP address.

• The weak resource vertex is given by

𝑉𝑊 = {FileSys2},

where FileSys2 is a temporary file system.

• The resource group vertex is given by

𝑉𝐺 = {DatabaseGr},

where DatabaseGr represents a resource group.

• The application resource vertex is given by

𝑉𝐴 = {WebApp},

where WebApp represents the top-level application.

Example 2. A set of instructions used to create the example in Figure 5.4 are listed as follows:

1. Add the first vertex that represents the main application (Web Application).

2. Add the second vertex, a resource group, to represent the database group.

3. Add the simple vertex representing the resource Service 1 and link it to the vertex database
group.

4. Add the three vertices that represent IP address, File system 1 and File system 2. All are
connected to the parent vertex Service1 using resource links. File system 2 is not a SPOF
component but is required in the HA solution to satisfy business requirements for storing
temporary files and the label weak indicates this. This means that the application can survive
without the weak resource for a few hours.
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Table 5.4 M-table of the running example

Resource Vertex Type Arc Type HHAM Layer

Application Application Application
Database Resource group Resource group a
Service1 Simple Resource b
IP address Simple Resource c
File system 1 Simple Resource c
File system 2 Weak Resource c

3. Create/update the holistic high-availability model (HHAM) and M-table

While the previous step describes the input aspects, this step describes the outcomes of the
modelling technique. The primary outcome is the finalised HHAM (the model) presented in Figure 5.4.
Subsequently, a corresponding M-table is created using the following steps:

1. Create a table with four columns: resource, vertex type, arc type and HHAM layer. The resource
is the name of the resource, and vertex type represents the vertex type that the resource belongs
to, while arc type indicates the type of the arc used to connect to this resource. The HHAM
layer presents the layer that the resource is located. Table 5.4 presents the M-table for the
running example model shown in Figure 5.4.

2. Populate the M-table with the resources, related vertex type, arc type and the layer.

3. In the last step, as part of constructing a BN model, three more columns are added to represent
the BN model components BN node identifier, node type and the corresponding layer. A
six-step mapping approach (presented in Table 5.2) is used to complete the table. For example,
the vertex types application and resource groups are mapped to latent nodes in a BN model.
Similarly, the layers are also mapped, though they are reversed because the HHAM has the
parent vertex at the top level while a BN model has a child node at the top level.

The accompanying T-rules are presented in Table 5.3, which aid in setting probability distributions
based on the vertex type. For example, they recommend setting a reduced conditional probability for
a weak node in the child node of a BN model to indicate that the failure of such a node will not have
an impact on the child node.

Example 3. The HHAM in Figure 5.4 shows the essential components that require protection when
HA is considered. The model consists of four layers and there are six vertices in the model. A dotted
circle represents a weak vertex (File system 2) and a bold circle indicates the associated resource
group vertex. The top-level vertex represents the web application. Two vertices (application and
resource group) are identified as logical without any physical representation. The corresponding
M-table is constructed as presented in Table 5.4.
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Server/node 1 Server/node 2

Resource group 1
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Resource group 1

database
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High-availability cluster

Heartbeat network 

High-availability cluster

Figure 5.5 High availability cluster (HAC) of the running example.

Table 5.5 HAC configuration for the running example

Vertex ID/resource ID Resource HAC Name

C1 Application WEB
C1G1A1 database grp_WEB_database
C1G1A1B1 Service1 rsc_WEB_database
C1G1A1B1C1 IP address vip_WEB_database
C1G1A1B1C2 File system 1 fs_WEB_database
C1G1A1B1C3 File system 2 fs_2_WEB_database

4. Enable HA Facilitators (e.g., HAC)

In this step, the relevant HA facilitator is added. Suppose the facilitator requires additional
resources to operate. The model needs to be updated with that information. This is indicated by an
arrow between the output of step 4 leading to step 3.

Example 4. We present a facilitator (HAC) in Figure 5.5. The HAC is set up in a two-node cluster,
and it consists of one resource group and four resources. Table 5.5 lists all the related resources, the
vertex ID/resource ID and the HAC names.

5. Enable other models (e.g., Bayesian networks)

The model and the accompanying M-table and T-rules are used to construct a BN model for the HAC
of the running example. The detailed steps are provided in Chapter 7.
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Figure 5.6 The HMTHA tool showing the high availability model (HHAM) for the running example
using the graphical notation for the different types of vertices and arcs from Definition 1.

Figure 5.7 HMTHA tool showing the second view to analyse the model.

5.5 Tool Support for the Holistic Modelling Technique for High Avail-
ability

The HMTHA tool is a software solution to facilitate HMTHA1. The tool has two views presented as
tabs, and Figure 5.6 and Figure 5.7 show screenshots of the two tabs. The model visualised in these

1The corresponding software is available on GitHub [257].
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figures is the model of the running example. There are two sections in tab one, where the left-side
presents a selection screen and the right-side displays the vertices and arcs. Each is labelled using a
unique identifier to connect them to other models (enabler or facilitator). All types of vertices and arcs,
as described in Section 5.3.2, can be visualised. An application vertex is always the first to be created,
and subsequently, other types of vertices are added. Moreover, the different properties of the resources
represented by vertex types and the modelling rules (described in Table 5.1) are incorporated into the
tool to simplify the modelling activities. For example, the tool will not allow multiple application
resources in one model because only one such resource per model can be created. The completed
model (HHAM) can be saved in a database and retrieved later. The second tab provides options to
analyse the model. For example, the model can be rotated by 180 degrees to represent a BN model
structure. All or some vertices can be selected, and the resulting structure and the corresponding
relationships can be downloaded to a text file, which can then be used by a probabilistic modelling
tool to create a corresponding graphical model automatically.

The vertices are also uniquely identified, and the unique name comprises indicators of an appli-
cation vertex, a resource group vertex and a parent vertex. All arcs are depicted as directed arrows.
The arcs are also uniquely identified, and the name provides details, such as an arc indicator, and
indicators for the application, resource group and flow (from child to parent).

The HMTHA tool is developed in Java and requires a Java runtime environment and a database to
run. The models can be saved in the database to be loaded at a later time to make additional changes
or display. The corresponding database table is created using an SQL script, and a configuration
file is provided with the tool that allows changing the database uniform resource identifier. For the
evaluation, we used JDK 1.8 and MySQL 8.0 on a Windows 10 PC.

5.6 Summary

In this chapter, we have presented a holistic modelling technique for high availability. The key
advantage of our new modelling technique is its support for holistically representing complex IT
applications, which implies that core components and other dependencies of an application or a
system are addressed. Hence, the HMTHA improves the overall HA solution by presenting the related
components and dependencies at multiple levels, and it facilitates attaching the means to perform
further analyses. We presented the primary output, a model (HHAM), and a complementary mapping
table (M-table) to simplify mapping the model to a probabilistic model structure. Moreover, a set
of translation rules (T-rules) that accompanies the technique is presented, and these rules assist in
assigning probabilities to a probabilistic model. We focus on Bayesian networks in this thesis and
present the translation rules accordingly. Finally, we present a software tool that incorporates all the
modelling rules to enable the application of the technique.
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Chapter 6

Predicting Locally Manageable Resource
Failures

This chapter presents a novel BDN model (BDN-HAC) that represents the third module of the BP
framework and that improves the first part of the threefold strategy employed by HACs to deal with
individual resource failures, as described in Chapter 1. The BDN-HAC model is used to predict
whether a resource failure can be managed locally (with no or minimal disruption) or its resolution
requires recovery actions at the resource group or system level (with potentially very significant
disruption, including application downtime). To make this important prediction, BDN-HAC uses a
comprehensive set of characteristics for the analysed resource (i.e., the resource that failed).

To carry out all the activities associated with the construction of a BDN (Section 4.5), this chapter
covers these activities as summarised in Table 6.1 and details in the following sections. Section 6.1
provides an overview of our locally manageable resource failure prediction and related work is
discussed in Section 6.2. Section 6.3 presents a formalised, general approach to identifying and
capturing the behaviour of HACs and improving their detection and decision capabilities using a set
of characteristics. Section 6.4 describes the general variables and state definitions associated with
properties representing these characteristics. Section 6.5 discusses the relative weight assignment and
dimensionality reduction for the variables. Two alternative BDN models are then proposed in the
chapter. Section 6.6 introduces the first BDN model and covers such topics as the variable and state
definitions, transformation into the Bayesian decision network, conditional probability and model
inferences. Similarly, Section 6.7 details the second BDN model under the same subsections as for the
first model. In Section 6.8, inference examples and outcomes are presented, followed by a discussion
of the causality, decision network and reasoning with incomplete data. Section 6.9 summarises the
chapter.
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Table 6.1 BDN-HAC model construction steps and step components

No Component BDN-HAC Model Considerations

Step 1: Establish the network structure

1 Method The structure is constructed using the identified HAC characteristics, and
cause and effect are identified by employing FMEA (Section 6.3). States
are identified using FMEA (Section 6.4).

2 Algorithm BDN data do not support structure learning using data.
3 Training data N/A

Step 2: Establish the probability distributions

4 Method Combination of two approaches: probability scale (Section 6.6.3) and HAC
taxonomy as a repository of domain expertise (Section 3.1).

5 Algorithm N/A
6 Training data Training is not applicable to the BDN model.
7 Production data HAC log
8 Mode N/A

Step 3: Inference

9 Algorithm Policy evaluation
10 Data Inference data are prepared from HAC logs using BPFP (Section 6.6.4).

N/A - Not applicable

6.1 Overview

Understanding how HACs behave upon failure is required to predict whether a resource-level failure
is locally manageable or not. To capture that information, our model uses a set of characteristics (or
“properties”) that comprises both (i) established characteristics extracted from the research literature
and the current practice and (ii) new characteristics identified by our project. The properties associated
with these characteristics include Boolean-value properties, indicating whether certain failure recovery
mechanisms are present, and integer-value properties specifying the number of times that such a
mechanism was activated within a given time window. As such, we organise these characteristics into
four groups based on their objectives.

1. The objective of the first group is to understand and interpret the runtime behaviour of HACs for
a specific resource failure. As the BDN-HAC model operates as a standalone solution, it must
consider the behaviour of the HAC upon failure. Hence, our characteristics indicate whether
the HAC failure management modules can automatically reinitialise a resource.

2. The second group improves the failure detection capability by extending the detection scope to
include additional characteristics (e.g., the position of a resource in a hierarchy and resource

98



6.1 Overview

Property groups in Bayesian 

prognostic framework runtime 

environment

1. HAC runtime 

behaviour

2. Extended HAC 

runtime behaviour

3. Resource 

criticality

4. Application 

provided 

capabilities

Bayesian decision network for 

predicting locally manageable 

resource failures

Resolution group 1

Resolution group 2

Resolution group 3

Resolution group 4

Prediction

Data source

HAC log

Estimated at 

runtime

Holistic high 

availability model

Application 

documentation

Figure 6.1 Overview of locally manageable resource failure prediction. Dashed boxes and arrows
indicate that the data are already available in the runtime environment and are retrieved from sources
in the design phase.

types). The objective is to improve the detection capabilities and to detect failure behaviour at a
low level of granularity.

3. The objective of the third group is to assess the criticality of a resource. If a resource is identified
as noncritical, the implication could be that the failure does not affect the operation of the EA
or lead to the failure of any other interconnected resources. Hence, such failure can be masked,
and the outcome could be treated as a ‘manageable’ failure.

4. The fourth group is associated with failures that are resolved by events triggered outside the
control of the HAC, e.g., failures managed by the protected EAs as part of the application-
provided self-healing capabilities [107].

Out of the four groups, only the first group of characteristics is taken into account by the current
HACs. The characteristics of the second group are usually not considered by HACs, but the values
can be obtained from HACs at runtime. Groups 3 and 4 have new characteristics; hence, Groups 2,
3 and 4 are introduced for the first time in this thesis.

As shown in Figure 6.1, the information associated with the four groups of characteristics used by
the BDN-HAC model are obtained from multiple sources. First, the data structures required to support
the four property groups are set up in the BPFP module during the design phase. These structures
are populated with static values obtained from multiple sources (e.g., HAC configuration, HAC logs,
application capabilities and the corresponding HHAM model). When a HAC resource fails at runtime,
the failure data are captured from HAC logs and processed by the BPFP module. Hence, some
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Figure 6.2 Timeline of resource failure events showing the HAC activities in the lower level, and the
related activities of the Bayesian decision network model for predicting locally manageable failures
in the upper level.

property values come from the HAC log whereas others come from the static information already
available in the runtime environment. Additional property values (e.g., the frequency of resource
failures) are calculated at runtime. Hence, data for all four property groups are prepared and included
into the runtime environment of the BP framework by the BPFP module, as detailed in Figure 6.1.

Values associated with the four property groups are linked to four resolution groups in the BDN-
HAC model. These resolution groups and the relationships between the characteristics are encoded in
the BDN-HAC model using conditional probabilities and utility preferences. Therefore, the BDN-
HAC model assesses characteristics in all four groups, and the model output is a binary value that
indicates whether resource failure can be managed locally or not. Hence, our BP framework does
not pass this information to its next component (i.e., the BD-HAC) if the output indicates a high
probability of managing the failure locally. In contrast, if the value indicates a low probability of
managing the failure locally, the failure is classified as locally unmanageable. Subsequently, the
information is passed to the next model, the BN-HAC, to propagate and predict a resource group or
system level failure.

To work with the characteristics from the four groups in our BDN-HAC model, we introduce
techniques that: (i) capture the characteristics as variables, (ii) add relative weights to the variables,
and (iii) use these weights to reduce the number of variables (dimensionality reduction).

In this chapter, we devise two alternative variants of the BDN model with distinct decision-
making techniques, which we label BDN-HAC-1 and BDN-HAC-2. The objective is to include the
best-performing model in the BDN-HAC module of the BP framework (as presented in Figure 1.1).

We illustrate the envisaged benefit of the BDN-HAC in Figure 6.2, which shows how, after a
period of regular operation Δ𝑡𝑜 , a resource (e.g., a file system or an IP address) fails at time 𝑡𝑓 .

1. With current HAC solutions, the failure is detected by the HAC during a detection window Δ𝑡𝑑

and log entries are generated to indicate this resource failure. The same information is then
passed to other modules of the HAC for failure management. Assume, however, the failed
resource has a self-healing capability provided by the application. Therefore, when the resource
fails, the application initiates the self-healing action (e.g., a restart of the resource) to resolve
the problem. Because the HAC is not aware of such capabilities, it proceeds with its threefold
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strategy of (1) reinitialising the resource during the window Δ𝑡𝑟 , (2) initiating a resource group
failover in the Δ𝑡𝑔 window if the reinitialisation was unsuccessful, and (3) triggering a system
failover (Δ𝑡 𝑗 ) if both the reinitialisation and the resource group failover were unsuccessful.

2. In contrast, the BDN-HAC model (and thus a HAC solution using it) considers additional
characteristics related to the self-healing capability of an EA (Group 4), and it therefore
predicts that the failure is manageable locally by the self-healing capabilities of the application,
indicating that no further action is required. This BDN-HAC prediction is completed within a
brief time window Δ𝑡𝑖 +Δ𝑡 𝑗 , where Δ𝑡𝑖 is the time for extracting and preparing the relevant log
entries to generate BDN-HAC inputs, and Δ𝑡 𝑗 is the prediction window for BDN-HAC.

Therefore, the most significant improvement of using the BDN-HAC model is the avoidance of the
failover of a resource group or of the entire system (and thus the avoidance of potentially significant
downtime), as demonstrated by our evaluation of the BP framework in Chapter 10. This improvement
can make a significant difference because it can reduce the application MTTR, which improves the
overall availability of the application protected by the HAC. Thus, the BDN-HAC model can improve
the detection and decision capabilities in HACs by identifying locally manageable resource failures
through evaluating a combination of established and newly proposed resource characteristics in a
novel way. Therefore, the objective of the model is sixfold and can be described as follows:

1. To capture the behaviour of a HAC upon resource failure using a set of existing (known)
characteristics (Group 1).

2. To improve detection and resolution capabilities by evaluating a set of new characteristics
(Group 2).

3. To improve detection and resolution capabilities by evaluating a new characteristic related to
the criticality of a resource (Group 3).

4. To improve detection and resolution capabilities by introducing a new characteristic to assess
the application-provided self-healing capability for a resource (Group 4).

5. To introduce a BDN-based approach that considers all key HAC resource characteristics (both
existing and new) and the relationships between the characteristics to predict whether the failure
can be managed locally by assessing objectives 1 to 4.

6. To pass only information about unmanageable failures to the BN-HAC model.

Hence, the two variants of the BDN-HAC models presented in this chapter address research question
RQ3 from Chapter 1, that being the development of a probabilistic model that captures the essential
resource characteristics, reduces dimensions, adds weight and predicts whether the resource failure is
manageable. We present the evaluation of the models in Chapter 10.
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6.2 Related Work

BDNs are frequently used to optimise the decision-making process under uncertainty in disciplines
including engineering [138, 295, 187, 127], medicine [70, 126, 247, 47], biology [157, 35], and
information technology [229, 193, 121]. BDNs are also ideal for reducing risk in the decision-making
process because risk is associated with uncertainty. For instance, risk can be expressed as a product of
likelihood and consequence, which BDNs can represent. The expected utility (EU) of the BDN can
then be calculated to maximise the utility, which consequently reduces the risk. Using eq. (4.14), we
can express this relationship as:

𝑅𝑖𝑠𝑘 = 𝑃 (𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑜𝑢𝑡𝑐𝑜𝑚𝑒 |𝐴𝑐𝑡𝑖𝑜𝑛) ×𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑜𝑢𝑡𝑐𝑜𝑚𝑒 |𝐴𝑐𝑡𝑖𝑜𝑛)

In economics, BDNs are used to reduce risk (e.g., invest in a new product with minimum risk) [104].
Similarly, reducing risks in projects and other implementation initiatives allow one to choose the
option that reduces the risk significantly [151]. BDNs are also widely studied to support complex
decision-making processes where there is a need to evaluate a large volume of interconnected data
[242]. For instance, Seixas et al. [243] propose a BDN model to support diagnosing Alzheimer’s
disease (AD) and mild cognitive impairment (MCI). The models show better results for diagnosing
MCI when compared to many of the well-known classifiers and competitive results for dementia
and AD. Similarly, Neapolitan et al. [182] developed a BDN model to determine whether kidney
transplants are beneficial for a particular group of patients by evaluating the likelihood of treatment
success.

BDNs are also used in combination with other techniques. For instance, Seixas et al. [36]
combined a BDN-based clinical guideline-based system with a rule-based system. Another discipline
that employs BDNs to address complex decision-making processes is engineering. For example,
Rashid et al. [224] use a BDN model to investigate oil system failure analysis in helicopters, focusing
on random failure probabilities. In an example from IT, Christoforou et al. [43] use a BDN model to
investigate and determine cloud adaptability for IT services. The research team stated that ‘the model
provided highly capable results for predicting the right decision’.

To summarise, many studies have explored BDN to support the complex decision-making process
under uncertainty. However, none of our surveyed HAC solutions (Section 3.2.4) uses any form
of BDNs. Moreover, we could not find any HAC-related research initiatives that employ BDNs or
other stochastic decision models. Hence, to the best of our knowledge, the approach proposed in
this chapter is the first to construct a BDN model to predict whether resource-level HAC failures are
manageable or not based on evaluations of key characteristics of a HAC resource.
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6.3 HAC Characteristics for Predicting Locally Manageable Resource
Failures

We used a two-stage systematic process to identify HAC characteristics and related properties relevant
to detecting and resolving a resource failure and to improving the detection and decision capabilities.
In the first stage, we analysed and identified a set of characteristics by using research studies, technical
manuals, HAC and EA documentation, as well as the taxonomy and survey presented in Chapter 3. We
then organised the identified characteristics into two categories. The first category consists of key HAC
characteristics already known to impact resource failure analysis (established characteristics). For
example, the characteristic to enable reinitialisation by a HAC assumes that the HAC understands how
the resource works to proceed with the correct initialisation (e.g., remount a file system). The second
group consists of characteristics mentioned in the literature but not related to the HAC resolution
of resource failures. Therefore, we deem these as new characteristics when used alongside HACs
for the first time in this thesis. These new characteristics can significantly improve detection and
resolution capabilities. For example, some EAs have in-built fault tolerance capabilities to resolve
resource failures using self-healing or rejuvenation (e.g., restarting a service or a process) [84]. In
such a case, the first attempt to resolve the failure is managed by the application. Therefore, using this
characteristic improves failure management. The two categories are defined as follows:

1. Established characteristics (EC). EC is a set of established HAC characteristics that influence
how a HAC behaves upon a resource’s failure.

2. New characteristics (NC). NC is a set of new characteristics that extend the EC category to
improve the detection and resolution capabilities by capturing more details to make accurate
detections upon a resource’s failure.

In the second stage, we performed FMEA (Section 5.3.4), which aims to capture the characteristics
that significantly influence a resource upon failure. FMEA was performed in two steps:

(i) each characteristic was treated as a component, and the different states of a characteristic were
considered potential failure modes. Characteristics with a high RPN to rank system failures
were selected. Further, we narrowed the list of characteristics by ranking them using RPNs and
their applicability. Applicability implies whether it is possible to obtain information related
to a characteristic given the conditions of the testbed environment. We identified nine critical
properties (four ECs and five NCs) out of the six ECs and 10 NCs initially considered. A
complete list of the characteristics that were eventually dismissed as insufficiently relevant is
provided in Appendix A.

(ii) We used three common components to connect to the nine characteristics [85]. For example,
error-related characteristics were connected to an error-related common component. Thus, we
used these three common components as component failures and the nine characteristics as fail-
ure modes to identify the effect of the individual characteristics on common component failures.
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Table 6.2 Resource properties of high-availability clusters grouped by sets

HAC Resource Property Description CategoryValues RG

Error-related properties set 𝐸

Failure repetition (fr) Number of failures that occurred in the last 𝑛 > 0
minutes

EC {0,..,n} 1

Redundancy factor (rf ) Application provides in-built self-healing capabili-
ties

NC {0,1} 4

Aggregated failure count
(afc)

Distinct failures of the resource within the last𝑚 >

0 hours
EC {0,..,n} 1

Reinitialisation factor (rc) Resource reinitialisation possible EC {1,2} 1

Dependency-related properties set 𝐷

Dependency type (dt) The type of a resource NC {1,2,3} 2

Dependency levels down
(dld)

The number of lower-level resources NC {0,..,n} 2

Dependency levels up (dlu) The number of upper-level resources NC {0,..,n} 2

Criticality-related property set 𝐶

Critical factor (cf ) Indicates the criticality of a resource NC {0,1} 3

Current status-related property set 𝑆

Current state (cs) Current status of a resource EC {On,Off} 1

On - Online, Off - Offline, PG - Resolution group, EC - Established characteristics, NC - New characteristics

This approach helped identify the cause-and-effect relationship between the characteristics and
common components. The common components are described further as derived variables in
the next section.

Table 6.2 lists the nine retained properties used as inputs for our BDN-HAC models, as well as the
descriptions and categories for each one of them. The values column specifies their value ranges, and
the column RG (Resolution group) lists the related resolution groups (cf. Section 6.1). The motivation
for the selection of each property, and its goal in the proposed model are as follows:

1. Failure repetition
Motivation. When a HAC reinitialises a failed resource, it uses a local timeout value for the
reinitialisation to complete [21, 128, 168]. If the reinitialisation does not complete successfully
within the time limit imposed by this timeout, the HAC will retry the reinitialisation procedure
(up to several times). If none of these reinitialisation attempts succeeds, the HAC will eventually
reclassify the resource as not reinitialisable. Therefore, the number of such attempts that have
been performed within the last 𝑛 minutes is an important indicator of how likely the resource is
to incur a more severe failure. The value for 𝑛 is estimated from the number of failures allowed
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in a HAC for a resource type and the resource’s start time. However, the resource types have
different values for start time, and the number of allowed failures per node could be different
per resource. Therefore an average value is calculated from multiple resource types.
The role in the BDN-HAC model. The model considers the number of failures while also
assessing other properties (for example, the aggregated failure count or the reinitialisation
factor) to determine whether the likelihood of unmanageable failure increases or not.

2. Redundancy factor
Motivation. An application that a HAC protects may have in-built self-healing capabilities (e.g.,
software rejuvenation [297, 84]) for key resources, enabling the application to automatically
initiate the first mitigation action upon the failure of a resource [93, 274, 107]. HACs must
recognise these features to avoid initiating any mitigating actions that could conflict with the
application’s actions. However, this property is not used by HACs.
The role in the BDN-HAC model. This property indicates how the application-provided
self-healing capabilities can be used to reinitialise a resource, thus increasing the likelihood of
managing the resource failure locally.

3. Aggregated failure count
Motivation. The number of failures of a resource during a period is aggregated to indicate a
potential persistent failure. It can also show that a global threshold value for the timeout to
manage resource failures is reached [21, 168, 284]. The implication is that a HAC classifies the
resource as more error-prone in a specific node and may ban the resource from getting started
in that node. A high number of failures of a resource within the last 𝑛 hours is an indicator
for a potential persistent failure. The aggregated failure count is calculated using a global
timeout value [21, 168, 284], the number of failures allowed in a node for a resource type, and
the average start time per resource type. When a resource cannot be started on a node after
exceeding the number of allowed starts on the node, this may be because: (1) policies are set
automatically by the HAC to prevent the resource from starting on the node; (2) policies are set
automatically by the HAC to prevent the resource from starting on other nodes; or (3) policies
are set not to allow the resource to start on any node. An example of the third case is file system
corruption. Suppose the corruption is on a block level. In that case, it affects shared storage or
replication, showing the same failure in all nodes, which results in setting a policy to prevent
the resource from being brought up in any node, affecting all the related resources.

The role in the BDN-HAC model. This property identifies a persistent failure pattern and
whether the mitigation actions have been successful or not. For example, a high value indicates
a more persistent failure. Moreover, the high value could also indicate that the mitigation
actions may not have been successful, and the HAC may have set one of the three policies to
prevent the resource from getting started. A low value indicates a low probability of failure,
and when combined with other positive outcomes, the result may indicate a high likelihood of
managing the failure locally.
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4. Reinitialisation factor
Motivation. This refers to a HAC’s ability to reinitialise a resource [21, 239] 1. The reinitiali-
sation procedures are different for the different types of resources. For example, if the resource
type is a service, the procedure is to restart the service. If the resource type is a file system,
the mitigation action is to remount the file system. There are multiple steps associated with
these procedures, such as checking the resource status and shutting it down gracefully before
restarting.

The role in the BDN-HAC model. This property evaluates whether a HAC can reinitialise a
resource or not. If the property is set to true, the probability of managing failure for the resource
increases significantly.

5. Dependency type
Motivation. There are three types of resource dependencies (local, shared and global), and they
have different impact factors [239] when the related resources fail. Hence, each resource is
assessed based on the impact factor. A local dependency type can only impact other resources
in the same group, while a shared resource may impact one or more related resource groups. On
the other hand, a global resource is likely to impact all resource groups and the entire system.
The role in the BDN-HAC model. This property evaluates the impact factor associated with
each resource type and combines the outcome with the results from evaluating other properties
to enable accurate predictions.

6. Dependency levels down
Motivation. The HAC resources have a hierarchical organisation [167, 239], which means start
and stop procedures follow a particular sequence to start or stop all the related resources. For
example, when a resource fails, an attempt to reinitialise the resource is started, including the
resources at the lower level within the hierarchy. If the number of such lower-level resources is
high, it may impact the overall start or stop time which can, in turn, decrease the likelihood of
managing failure of any of those resources.
The role in the BDN-HAC model. Considers the impact of losing lower-level resources when
a resource fails or when a resource is reinitialised. A lower value indicates an impact on fewer
resources; the evaluation can be combined with other properties such as the critical factor and
reinitialisation factor.

7. Dependency levels up
Motivation. Similar to the dependency level down, a high number of upper-level resources
decreases the likelihood of managing failure [167, 239]. When a low-level resource fails,
it may impact all the related upper-level resources within the hierarchy. For example, if a
low-level resource "disk" crashes, it may terminate all the processes using that disk, causing
those resources’ failures. These, in turn, can cause failures of other resources to adhere to the

1The ability to reinitialise failed resources or the failed components of a resource automatically by the HAC.
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start and stop dependencies. If a sufficient number of resources fail, it can be interpreted by the
HAC as critical, thus initiating a failover either for a resource group or for the entire system.
The role in the BDN-HAC model. This property assesses the impact on upper-level resources.
A higher value results in a low likelihood of managing failure.

8. Critical factor
Motivation. If a resource is critical, the probability of causing a resource group failure or a
system failure is estimated to be high [49]. The objective is to evaluate whether such a resource
has an immediate impact on the system’s operations. For example, if a system can survive
without a particular resource for a short period, it can be rendered as noncritical. Failure of
such a resource does not need to be propagated to other resources; hence, there is no impact at
the resource group or system level.
The role in the BDN-HAC model. Considers the critical factor of a resource; if a resource is
not critical, the likelihood of the propagated failure is reduced significantly.

9. Current state
Motivation. This property captures the current status of a resource [49]. If the status is offline
and the property failure repetition has also recorded a high number, this may indicate that the
failure’s resolution was unsuccessful. If the resource is online after recording a momentary
failure, it may indicate that the procedures associated with either the reinitialisation factor or
the redundancy factor may have resolved the problem.
The role in the BDN-HAC model. The model considers the current state of a resource. For
example, when the state is online, it significantly increases the likelihood of managing failure.

6.4 General Variable and State Definitions

Before we can use the HAC resource properties from Table 6.2 with the BDN introduced in this
chapter, they need to be mapped to basic variables.2 This mapping is described in Table 6.3, which
shows the symbols, values, and groups for these variables. Four groups of variables are identified
based on the change they have to undergo before being part of a model (Table 6.3). Group 1 variables
require categorising the value of their corresponding property as either ‘low’ when this value is not
larger than a threshold specified later in the thesis or ‘high’ when this value exceeds the threshold.
This group includes the variables failure repetition, aggregated failure count, dependency levels down,
and dependency levels up. Group 2 variables are converted from integer to Boolean, and the variables
in the scope are redundancy factor, reinitialisation factor, and critical factor. The third group of
variables do not change but are transferred directly to the model, and they are current state and
dependency type. The fourth group represents the derived variables (i.e., variables obtained from
the set properties in Table 6.2); the variables in this group are error rating, dependency factor and

2Properties have multiple values, and mapping them to variables allows them to be processed (e.g., by transforming
them into categorical variables).
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Table 6.3 Basic variables representing the properties of high-availability clusters, related symbols,
values, and variable groups (including group 4 of derived variables)

Property/Variable name Symbol Values Group

Failure repetition fr {low, high} 1
Redundancy factor rf {true, false} 2
Aggregated failure count afc {low, high} 1
Reinitialisation factor rc {true, false} 2
Dependency type dt {local, shared, global} 3
Dependency levels down dld {low, high} 1
Dependency levels up dlu {low, high} 1
Critical factor cf {true, false} 2
Current state cs {online, offline} 3

Error rating e {failure, no_failure} 4
Dependency factor d {low, high} 4
Resource state r {failure, no_failure} 4

resource state. The steps for our variable transformation and conversion are described further in
Section 8.5 .

All variables are binary except for the dependency type, which is multivalued to represent the three
types of dependency. The decision to use such binary variables comes from our FMEA performed in
Section 6.3 (step i), where possible states of each property were included to investigate the different
states of resources, potential failures, and effects [213, 149].

6.5 Relative Weight Assignment and Dimensionality Reduction

The different variables from Table 6.3 have different impacts on the outcome of the BDN-HAC model.
Hence, a weighting factor is encoded in the model to reflect these different levels of impact. For
example, the variable reinitialisation factor (rf ) has more weight than dependency levels down (dld)
because, if the reinitialisation factor is set to true, the implication is that the HAC can reinitialise the
resource. If that activity succeeds, the resource is no longer considered a failed resource; hence, the
BDN-HAC model does not interpret the failure as a failure that needs to be managed locally. This
means that the reinitialisation factor is more important than dependency levels down, and more weight
is associated with it. Furthermore, the number of variables must also be reduced (dimensionality
reduction) in order for the BDN-HAC model to process and compute an outcome for the next model in
the BP framework. This section presents our approach for applying relative weights to each property
and reducing dimensionality.

Dimensionality reduction and weight assignment are performed in two steps. In the first step, the
variables are grouped based on the defined sets in Table 6.2. There is a causal relationship between the
variables within a set. For example, when the value of a variable changes, this also influences other
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Figure 6.3 Reducing dimensionality and adding relative weights to the variables in (i) the error-related
properties set E, (ii) the dependency-related properties set D, and (iii) combining the outcomes of (i)
and (ii) with criticality-related property set C and current status-related property set S.

variables in the same set, as described in stage 2 of the FMEA (Section 6.3). The relative weights
within a set are used to derive a target variable reflecting the impacts of the variables from that set.
This target variable represents all the variables in the set, hence reducing the dimensionality effectively.
Two main variable sets are defined: error rating (E) and dependency factor (D). The former comprises
all variables related to errors in a resource, while the latter comprises the dependency-related variables.
Figure 6.3 (i) shows the variable set error rating (𝐸) and the four variables that are part of this set. The
four variables undergo dimensionality reduction where they are consolidated into the target variable
e with a relative weight w(v) assigned to each variable 𝑣 ∈ 𝐸. Similarly, Figure 6.3 (ii) shows the
set dependency factor (𝐷), which has three variables, and its dimensionality is reduced to one target
variable d through associating relative weights to its elements.

In the second step (Figure 6.3 (iii)), the dimensionality is reduced further. To this end, both the
target variables 𝑒 and 𝑑 derived from the sets E and D, respectively, and the two variables from sets
C and S from Table 6.2 are consolidated into a target variable r. Thus, eleven variables are reduced
to one variable. The value of the target variable 𝑟 is an indicator of whether the resource failure in
question can be managed or not.

The relative weights were calculated from the RPNs obtained using FMEA (Section 6.3) as
follows

𝑊𝑖 =
𝑤𝑖∑𝑛
𝑖=1𝑤𝑖

, (6.1)

where w𝑖 represents the value obtained from the 𝑖-th RPN, and n denotes the total number of compo-
nents connected to a target variable.

In the remainder of this section, we demonstrate the two steps used to perform dimensionality
reduction and weight assignment.

All variables are assumed to be random, and therefore a probabilistic approach when adding
weights for a given state of a child (target) variable is formalised. For any combination of values fr0,
rf 0, afc0 and rc0 of the four input variables from Figure 6.3 (i), the conditional probability that the
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error 𝑒 has a specific value 𝑒0 is given by

𝑃
(
𝑒 = 𝑒0 | fr = fr0, rf = rf 0,afc = afc0, rc = rc0

)
=
∑︁
𝑣∈𝐸

[𝑤 (𝑣)𝑃 (𝑒 = 𝑒0 | 𝑣 = 𝑣0)] , (6.2)

where 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ 𝐸 such that
∑

𝑣∈𝐸𝑤 (𝑣) = 1.
Similarly, for any combination of values dt0, dtd0 and dlu0 of the three input variables from

Figure 6.3 (ii), the conditional probability that the dependency 𝑑 has a specific value 𝑑0 is given by

𝑃 (𝑑 = 𝑑0 | dt = dt0,dld = dld0,dlu = dlu0) =
∑︁
𝑣∈𝐷

[𝑤 (𝑣)𝑃 (𝑑 = 𝑑0 | 𝑣 = 𝑣0)] , (6.3)

where 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ 𝐷 such that
∑

𝑣∈𝐷𝑤 (𝑣) = 1.
In the second step, the outcomes of equations (6.2) and (6.3) are combined with the two variables

from the property sets 𝐶 and 𝑆 in Table 6.2. For any combination of values cf 0, cs0, e0 and d0 of the
input variables from Figure 6.3 (iii), the conditional probability that the resource state 𝑟 has a specific
value 𝑟0 is given by

𝑃
(
𝑟 = 𝑟0 | cf = cf 0,cs = cs0,e = e0,d = d0

)
=
∑︁
𝑣∈𝑅

[𝑤 (𝑣)𝑃 (𝑟 = 𝑟0 | 𝑣 = 𝑣0)] , (6.4)

where 𝑅 = {𝑐 𝑓 ,𝑐𝑠,𝑒,𝑑},𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ 𝑅 such that
∑

𝑣∈𝑅𝑤 (𝑣) =
1. This equation provides the likelihood of resource failure after reducing dimensionality and adding
weights.

Our two proposed BDN-HAC model variants (BDN-HAC-1 and BDN-HAC-2) use different
variants of the equations (6.2), (6.3) and (6.4). Weight assignment and dimensionality reduction are
performed as part of constructing the model and defining CPT, and this is described in Section 6.6
(for model BDN-HAC-1) and in Section 6.7 (for model BDN-HAC-2).

6.6 BDN-HAC-1

In this section, we present our first variant of the BDN model. The model uses the variables from
Section 6.3, but the types are changed to represent a BDN model. Additionally, a standard utility
function is employed to output the outcome in the model. The model construction is described in the
next sections.

6.6.1 Variable and State Definition

The BDN-HAC-1 model includes one utility node and one decision node. Table 6.4 lists the node
identifiers, the nodes representing the variables (node name), the node type, state and the relative
weights associated with each node.
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Table 6.4 Description of all the nodes in the BDN-HAC-1 model

Node ID Node Name Node Type State Relative Weights

𝐴1 Error rating Chance {failure, no_failure} {≈ 0.15}
𝐴2 Failure repetition Chance {low, high} {≈ 0.1}
𝐴3 Redundancy factor Chance {true, false} {≈ 0.4}
𝐴4 Aggregated failure count Chance {low, high} {≈ 0.1}
𝐴5 Reinitialisation factor Chance {true, false} {≈ 0.4}
𝐵1 Dependency factor Chance {low, high} {≈ 0.15}
𝐵2 Dependency type Chance {local, shared, global} {≈ 0.3}
𝐵3 Dependency levels down Chance {low, high} {≈ 0.4}
𝐵4 Dependency levels up Chance {low, high} {≈ 0.3}
𝐶1 Critical factor Chance {true, false} {≈ 0.35}
𝐷1 Current state Decision {online, offline} {≈ 0.35}
𝑈1 Resource state Utility {−100 <𝑈1 < 100} Target

The node ID column shows the technical names of the nodes. The node names are the same as in
Section 6.3. Node type refers to the type of the node in the model, and it also shows how the variable
types in Section 6.3 are mapped onto node types in the model. The column ’state’ describes the states
associated with each node, and the column ’relative weights’ lists the relative weights associated
with each node. The model mainly uses the variables defined in Section 6.3. However, two variables
are changed to reflect the BDN nature of the model. Node 𝐷1 (variable current state) is changed to
a decision node with two states, online and offline, while node 𝑈1 represents the variable resource
state. Node 𝑈1 is a utility node responsible for assembling the outcome; hence, it does not follow a
probabilistic approach but instead uses a utility function. The node uses a scale between -100 and
100, where 0 is used as a boundary to interpret the outcome. The utility node is continuous, while all
the other nodes are discrete.

The relative weights were obtained using eq. (6.1). First, we calculated the weights for each
variable connected to a target variable, and an example is provided for the target variable 𝐴1 and
connected variable 𝐴2 below. Assuming that the variable 𝐴2 has the RPN of 100, we obtain the
following

𝐴2 =
100
1000

= 0.1, (6.5)

where 100 represents the RPN obtained from the FMEA, and 1000 denotes the sum of all RPNs for
the connected variables 𝐴2, 𝐴3, 𝐴4 and 𝐴5.

Second, we calculated the relative weights of the nodes 𝐴2, 𝐷1, 𝐵1 and 𝐶1 using eq. (6.1), and the
resulting relative weights were added to the utility table of 𝑈1. Further, if the outcome of a common
node is negative, a negative weight is added, and when the outcome of a common variable is positive,
a positive weight is used, which can be expressed as follows
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Figure 6.4 Bayesian decision network model BDN-HAC-1. Random nodes are depicted with a white
background, blue shading indicates latent nodes, green shading indicates the decision node, and the
utility node is shaded orange.

Wi =

{
−𝑤𝑖 , if 𝑐𝑖 = negative outcome
𝑤𝑖 , otherwise,

(6.6)

where 𝑐𝑖 represents a negative outcome in a child node, such as that obtained for 𝐴1 = failure, 𝐵1 =
low, 𝐶1 = true and 𝐷1 = offline.

The calculation of utility values using both weights and conditional probabilities is described in
Section 6.6.2, and examples are provided in Section 6.6.4. We validated the BDN models and the
corresponding numbers using two example applications constructed from HAC log files obtained
from a company. Further validations were done using the running example (Section 2.1) and the
testbed application (Section 10.1).

6.6.2 Transformation into the Bayesian Decision Network

As shown in Figure 6.4, the BDN-HAC-1 model is organised into three layers and twelve nodes. The
third layer consists of nodes that represent most of the HAC properties. The causality is maintained
by ensuring that the nodes belonging to the same set build a causal relationship. Subsequently,
conditional probabilities are used to quantify the causal relationships.

Two nodes (𝐴1 and 𝐵1) in layer two are responsible for reducing the parent nodes’ dimensionality
from layer three and adding relative weights. This is possible due to conditional probabilities in
the two child nodes. These two nodes are latent nodes in the BDN; hence, they are unobservable.

112



6.6 BDN-HAC-1

In addition, two nodes (𝐷1 and 𝐶1) in layer two capture the crucial properties of HACs, which can
significantly influence the overall outcome. All four nodes in layer two converge in the first layer.

The only node in layer one is a utility node (𝑈1), which is responsible for adding weights and
reducing the dimensionality further by associating each parent node with a preference. Both chance
nodes and the decision node in layer two influence the utility node, while the nodes in layer three
have an indirect influence on the utility node. Hence, 𝐷1 has a significant influence on 𝑈1 because 𝑈1

aims to maximise the expected utility of the decisions by 𝐷1. This relationship is represented by a
functional edge from 𝐷1 to 𝑈1, which indicates a functional dependency. The decisions made by 𝐷1

also influence the rest of the network. However, the model considers all nodes, which means that the
decision from 𝐷1 may not reflect the actual outcome. For example, an unfavourable decision by 𝐷1

may not lead to a negative outcome by the model.
Following the two-step approach defined in Section 6.5, and using equations (6.2), (6.3) and (6.4),

we present the following equations to represent the model.
First, given any combination of values A2,0, A3,0, A4,0 and A5,0 for nodes 𝐴2 to 𝐴5, the conditional

probability that the error rating node 𝐴1 has a specific value A1,0 is given by

𝑃
(
𝐴1 = A1,0 | A2 = A2,0,A3 = A3,0,A4 = A4,0,A5 = A5,0

)
=∑︁

𝑣∈{A2,A3,A4,A5 }

[
𝑤 (𝑣)𝑃

(
𝐴1 = A1,0 | 𝑣 = 𝑣0

) ]
, (6.7)

where 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ {A2,A3,A4,A5} such that∑︁
𝑣∈{A2,A3,A4,A5 }

𝑤 (𝑣) = 1.

Similarly, given any combination of values B2,0, B3,0 and B4,0 for nodes 𝐵2, 𝐵3 and 𝐵4, respectively,
the conditional probability that the dependency factor node 𝐵1 has a specific value B1,0 is given by

𝑃
(
𝐵1 = B1,0 | B2 = B2,0,B3 = B3,0,B4 = B4,0

)
=∑︁

𝑣∈{B2,B3,B4 }

[
𝑤 (𝑣)𝑃

(
𝐵1 = B1,0 | 𝑣 = 𝑣0

) ]
, (6.8)

where 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ {B2,B3,B4} such that∑︁
𝑣∈{B2,B3,B4 }

𝑤 (𝑣)} = 1.

In a second step, the outcomes of equations (6.7) and (6.8) are combined with nodes C1 and D1.
For any combination of values A1,0, B1,0, C1,0, D1,0 of nodes 𝐴1, 𝐵1, 𝐶1 and 𝐷1, respectively, the
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preference that the utility node resource state 𝑈1 ∈ [−100,100] has a specific value U1,0 is given by:

𝑈
(
𝑈1 = U1,0 | A1 = A1,0,B1 = B1,0,C1 = C1,0,D1 = D1,0

)
=∑︁

𝑣∈{A1,B1,C1,D1 }

[
𝑤 (𝑣)𝑈

(
𝑈1 = U1,0 | 𝑣 = 𝑣0

) ]
, (6.9)

where 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈ {A1,B1,C1,D1} such that∑︁
𝑣∈{A1,B1,C1,D1 }

𝑤 (𝑣) = 1.

The outcome of the utility node U1 (and thus of our BDN-HAC-1 model) is interpreted as

𝑃 (locally_manageable_resource_failure) =
{
𝑙𝑜𝑤, if 𝑈1 < 0
ℎ𝑖𝑔ℎ, otherwise

(6.10)

Hence, a utility 𝑈1 = 0 functions as the cutoff value for the BDN-HAC-1 decision making.

6.6.3 Conditional Probability Tables

All or most non-utility and non-latent nodes must be instantiated to predict the outcomes as accurately
as possible. When nodes are instantiated, only the posterior distributions are evaluated. However, if
a situation with incomplete data arises, the prior distribution is also evaluated. Hence, the model’s
objective is to instantiate as many nodes as possible to improve the prediction quality.

This section describes the conditional probabilities associated with each node, as well as the
reasons and justifications for the way in which we set their prior distributions. The probability
distributions are estimated using a method of elicitation [226, 131]. The method uses a numerical
probability scale [227, 275], and elicitation is performed at a single probability level [131]. As input,
we used extensive literature reviews and the expert knowledge developed in this research. However,
it was challenging to obtain statistics concerning HAC failures, and in particular, failures at the
resource-level. Therefore, we used studies of several non-HAC systems and configurations (e.g., HPC
[241, 240]) to estimate the probability distributions.

Table 6.5 lists the probability distributions obtained by using the above method for all relevant
nodes in the model BDN-HAC-1. While chance nodes have CPTs, there are no probability distributions
associated with the utility (𝑈1) and decision (𝐷1) nodes. The decision table 𝐷1 lists two possible
states, online and offline. The utility table 𝑈1 represents weight assignments and dimensionality
reductions as a numerical measure of preferences over the entire network. Hence, there are ten CPTs,
one decision table, and one utility table associated with the BDN-HAC-1 model. The CPTs for all
the nodes in layer three and the layer two node, 𝐶1, have local distributions. The CPTs for (𝐴1 and
𝐵1) are specified as conditional probabilities over their parent nodes. The weight assignments and
dimensionality reductions are encoded into those conditional probabilities and are presented in the
CPTs.
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Table 6.5 Probability distributions for all nodes in the model BDN-HAC-1 and their states

Node Probability Distribution

𝐴1 𝑃 (𝐴1 |𝐴2,𝐴3,𝐴4,𝐴5)

𝐴2
low =.75
high =.25

𝐴3
true =.3
false=.7

𝐴4
low=.9
high=.1

𝐴5
true =.75
false=.25

𝐵1 𝑃 (𝐵1|𝐵2,𝐵3,𝐵4)

𝐵2
local=.8
shared=.15
global=.05

𝐵3
low =.5
high =.5

𝐵4
low =.3
high =.7

𝐶1
true =.8
false=.2

𝐷1
online
offline

𝑈1 utility node

The distribution of 𝐴2 reflects the fact that the probability of repeated failures is relatively low
because the HAC has the responsibility of mitigating the failures promptly, and a failover is triggered
otherwise [284]. Therefore, the state low is set to a higher probability distribution than the state high.

The distribution of 𝐴3 represents the in-built redundancy factor provided by the applications. An
EA include self-healing capabilities on a resource-level, such as restarting a crucial process quickly
[146, 194]. However, such systems may only deal with issues associated with specific components,
such as processes; this means that such capabilities cannot be extended to include a platform or
infrastructure-related components because the applications do not manage those. When applications
provide these capabilities, the HAC must still evaluate the impact on other linked resources. Therefore,
the probability distributions are set while considering all these factors.

The distribution for 𝐴4 is set to reflect the fact that a HAC can mitigate repeated errors in most
cases [223, 194]. The value for 𝐴5 is derived from the fact that most HACs provide a mechanism to
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reinitialise a resource. Therefore, 𝐴5 is considered to be a typical property of HACs. However, some
resources cannot be reinitialised by HACs, such as a CPU, memory and operating system-related
errors [120].

𝐵2 captures the type of dependency on a resource [223, 284]. The assumption here is that the
failure of a resource with local dependency is restricted to the resource group. In contrast, the failure
of a shared resource may impact multiple resource groups. Similarly, a global dependency can have
an impact at a system level. Therefore, the distribution is set based on the distributions of these in
typical HAC configurations.

The distribution of 𝐵3 describes the impact on all the lower-level nodes [223]. Similarily, 𝐵4

presents the distribution based on the impact on all the upper-level resources.
Finally, the distribution of 𝐶1 reflects the criticality of a resource. Most of the resources are

considered to be critical [223]. However, some resources can be classified as noncritical because they
do not pose an immediate threat to the application’s operation.

6.6.4 Model Inference Example

In this section, we provide an example of model inference. However, the BDN-HAC model only
expects input values to output a value. Therefore, the example calculation does not reflect how the
model computes the outcome. To provide an example of model inference, we assume that all parent
nodes in layer three (𝐴2,𝐴3,𝐴4,𝐴5, 𝐵2,𝐵3 and 𝐵4) and the nodes𝐶1 and 𝐷1 in layer two are instantiated.
First, we assume that nodes 𝐴2 to 𝐴5 are instantiated as follows:

• 𝐴2 is instantiated as having a low value, which indicates that there is no or negligible failure
repetition of the resource.

• 𝐴3 = true indicates that the resource has in-built self-healing capability that reduces the likeli-
hood of failure and increases the likelihood of managing failure locally.

• 𝐴4 is set to low, which means that the aggregated failure count is low (none or negligible).

• 𝐴5, which is a key property of HAC, has the state true, which means the HAC can reinitialise
the resource, and this reduces the likelihood of failure significantly.

Assuming that the four weights from eq. (6.7) are 𝑤 (𝐴2) = 0.1, 𝑤 (𝐴3) = 0.4, 𝑤 (𝐴4) = 0.1 and
𝑤 (𝐴5) = 0.4, we obtain

𝑃 (𝐴1 = A1,0 | A2 = 𝑙𝑜𝑤,A3 = 𝑡𝑟𝑢𝑒,A4 = 𝑙𝑜𝑤,A5 = 𝑡𝑟𝑢𝑒) =
= 0.1 ·𝑃

(
A1 = A1,0 | A2 = 𝑙𝑜𝑤

)
+0.4 ·𝑃

(
A1 = A1,0 | A3 = 𝑡𝑟𝑢𝑒

)
+

+0.1 ·𝑃
(
A1 = A1,0 | A4 = 𝑙𝑜𝑤

)
+0.4 ·𝑃

(
A1 = A1,0 | A5 = 𝑡𝑟𝑢𝑒

)
=

= 0.99

(6.11)
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where 𝐴1 represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈
A2,A3,A4 and A5 such that

∑
𝑣∈A2,A3,A4,A5𝑤 (𝑣) = 1. Hence, when we instantiate the BDN-HAC model

with these values, it outputs 𝑛𝑜_𝑓 𝑎𝑖𝑙𝑢𝑟𝑒, and the probability of that state is calculated as 99%.
Similarly, we assume that 𝐵2,𝐵3 and 𝐵4 are instantiated as follows:

• 𝐵2 is instantiated as having a local value, which indicates low impact upon failure.

• 𝐵3 = low indicates that the number of lower-level resources is low within the hierarchy that
reduces the likelihood of failure and increases the likelihood of managing failure locally.

• 𝐵4 is set to low, which means the number of upper-level resources is low within the hierarchy,
and thus reduces the likelihood of failure and increases the likelihood of managing failure
locally.

Assuming that the three weights from eq. (6.8) are 𝑤 (𝐵2) = 0.3, 𝑤 (𝐵3) = 0.4 and 𝑤 (𝐵4) = 0.3, we
obtain

𝑃 (𝐵1 = B1,0 | B2 = 𝑙𝑜𝑐𝑎𝑙,B3 = 𝑙𝑜𝑤,B4 = 𝑙𝑜𝑤) =
= 0.3 ·𝑃

(
B1 = B1,0 | B2 = 𝑙𝑜𝑤

)
+0.4 ·𝑃

(
B1 = B1,0 | B3 = 𝑡𝑟𝑢𝑒

)
+

+0.3 ·𝑃
(
B1 = B1,0 | B4 = 𝑙𝑜𝑤

)
=

= 0.90

(6.12)

where 𝐵1 represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable 𝑣 ∈
B2,B3,B4 such that

∑
𝑣∈B2,B3,B4𝑤 (𝑣) = 1. The outcome is 𝑙𝑜𝑤 , and the probability of that state is

calculated as 90%, which effectively lowers the risk of failure due to dependencies.
In the second step, we use the output from the layer three nodes to consolidate into layer two

nodes, and instantiate two additional nodes, as follows:

• 𝐶1 is set to true to indicate that the resource is a critical resource which increases the likelihood
of failure while reducing the likelihood of managing the failure locally.

• the decision node 𝐷1 is instantiated with the state offline, which means the resource is offline.

• 𝐴1 has the state 𝑛𝑜_𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 with a probability of 99% as computed in eq. (6.11).

• 𝐵1 has the state 𝑙𝑜𝑤 and probability of that state is calculated as 90% from eq. (6.12).

All four nodes are then consolidated into the layer one utility node as follows:

Assuming that the four weights from eq. (6.9) are 𝑤 (𝐶1) = 0.35, 𝑤 (𝐷1) = 0.35, 𝑤 (𝐴1) = 0.15 and
𝑤 (𝐵1) = 0.15, we obtain
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𝑈 (𝑈1 = U1,0 | C1 = 𝑡𝑟𝑢𝑒,D1 = 𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒,A1 = 𝑛𝑜_𝑓 𝑎𝑖𝑙𝑢𝑟𝑒,B1 = 𝑙𝑜𝑤) =
=≈ 0.35 ·𝑈

(
U1 = U1,0 | C1 = 𝑡𝑟𝑢𝑒

)
+ ≈ 0.35 ·𝑈

(
U1 = U1,0 | D1 = 𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒

)
+

+ ≈ 0.15 ·𝑈
(
U1 = U1,0 | A1 = 𝑛𝑜_𝑓 𝑎𝑖𝑙𝑢𝑟𝑒

)
+ ≈ 0.15 ·𝑈

(
U1 = U1,0 | B1 = 𝑙𝑜𝑤

)
=

= ≈ 56
(6.13)

where 𝑈1 ∈ [−100,100] represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the
variable 𝑣 ∈ C1,D1,A1,B1 such that

∑
𝑣∈C1,D1,A1,B1𝑤 (𝑣) = 1.

Revisiting eq. (6.10) and considering that the output of the utility node is 56, the model predicts
that the resource failure can be managed locally (no failure) with a high degree of confidence. This is
despite having the current status offline for the resource. Although it is the evaluation of all nodes and
their combinations that dictate the outcome, three nodes play a significant role in this case. Node 𝐶1

is set to true, which means the resource is a critical resource. The second node 𝐴3 has the value true,
which means there is an in-built self-healing capability by the protected application that enables the
application to reinitialise the resource. The third node 𝐴5 is set to true, which means that HAC can
also reinitialise the resource.

6.7 BDN-HAC-2

In this section, we present our second variant of the BDN model, BDN-HAC-2. This model variant
uses a variation of utility known as Additive-Linear Utility (ALU) [71]. An ALU approach enables
the linear addition of multiple utility nodes to an ALU node.

6.7.1 Variable and State Definition

The BDN-HAC-2 model has three utility and two decision nodes. Two parent utility nodes are linked
to a child utility node (the ALU node). Table 6.6 lists the nodes, descriptive node names (variable
name), node types, and the states and relative weights associated with each node.

The model uses variables that represent the different properties of HACs, as explained in Sec-
tion 6.4. However, four variables are changed: (1) error rating is a utility node represented by 𝑈2; (2)
dependency factor is also a utility node (𝑈3); (3) both (1) and (2) converge as a third ALU utility node
𝑈1; and (4) the variable critical factor is changed into a decision node with two states: true and false
represented by 𝐷2. The variable current state is a decision node, similar to the BDN-HAC-1 model.
The resource state is represented by the ALU node 𝑈1, which outputs the prediction. 𝑈2 uses a scale
between 1 and 20 while 𝑈3 uses a scale between 2 and 14. 𝑈1 uses a scale between 0 and 400 where
200 is used as a boundary to separate the two states.
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Table 6.6 Description of the BDN-HAC-2 model

Node Node Name Node Type State Relative Weights

𝑈2 Error rating Utility {1 <𝑈2 < 20} {≈ 0.15}
𝐴2 Failure repetition Chance {low, high} {≈ 0.1}
𝐴3 Redundancy factor Chance {low, high} {≈ 0.4}
𝐴4 Aggregated failure count Chance {low, high} {≈ 0.1}
𝐴5 reinitialisation factor Chance {true, false} {≈ 0.4}
𝑈3 Dependency factor Utility {2 <𝑈3 < 14} {≈ 0.15}
𝐵2 Dependency type Chance local,shared, global {≈ 0.3}
𝐵3 Dependency levels down Chance {low, high} {≈ 0.4}
𝐵4 Dependency levels up Chance {low, high} {≈ 0.3}
𝐷2 Critical factor Decision {true, false} {≈ 0.35}
𝐷1 Current state Decision {online, offline} {≈ 0.35}
𝑈1 Resource state Utility (ALU) {0 <𝑈1 < 400} Target node

The relative weights were calculated using eq. (6.1), and we followed the same calculation method
as described in Section 6.6.1. However, eq. (6.6) was not used because the BDN-HAC-2 model does
not deal with negative numbers. Further, in Section 6.7.2, we describe how the utility values are
calculated and provide examples in Section 6.7.4.

6.7.2 Transformation into the Bayesian Decision Network

Like the BDN-HAC-1 model, the BDN-HAC-2 model also consists of twelve nodes across three
layers (Figure 6.5). The chance nodes representing most of the HAC properties are in layer three,
but (unlike in the BDN-HAC-1 model) they converge as utility nodes in this model. The weight
assignment and dimensionality reduction are performed using a measure of preference over the parent
nodes. All the nodes related to error (set 𝐸) are consolidated in 𝑈2, and all dependency-related nodes
(set 𝐷) are consolidated in𝑈3. Hence, the first step in dimensionality reduction and weight assignment
occurs in layer two and is performed by the two utility nodes. Furthermore, the four nodes in layer
two,𝑈2,𝑈3, 𝐷1 and 𝐷2, are consolidated in𝑈1. 𝑈1 is responsible for dimensionality reduction and the
assignment of weights in step 2. The outcome is interpreted as a prediction of failure of the resource.
This model does not have latent nodes because it takes a different decision path than the BDN-HAC-1
model.

Following the two-step approach defined in Section 6.5, and using equations (6.2), (6.3) and (6.4),
we present the following equations to represent the model.

First, given any combination of values A2,0, A3,0, A4,0 and A5,0 for nodes 𝐴2 to 𝐴5, the preference
that the error rating utility node 𝑈2 has a specific value U2,0 is given by
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Figure 6.5 The Bayesian decision network model, BDN-HAC-2, showing the nodes and the related
edges. White represents random nodes, green indicates decision nodes, and utility nodes are repre-
sented by red.

𝑈
(
𝑈2 = U2,0 | A2 = A2,0,A3 = A3,0,A4 = A4,0,A5 = A5,0

)
=∑︁

𝑣∈{A2,A3,A4,A5 }

[
𝑤 (𝑣)𝑈

(
𝑈2 = U2,0 | 𝑣 = 𝑣0

) ]
, (6.14)

where U(v) denotes a utility function, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ {A2,A3,A4,A5} such that ∑︁

𝑣∈{A2,A3,A4,A5 }
𝑤 (𝑣) = 1.

Similarly, given any combination of values B2,0, B3,0 and B4,0 for nodes 𝐵2, 𝐵3 and 𝐵4, respectively,
the preference that the dependency factor utility node 𝑈3 has a specific value U3,0 is given by

𝑈
(
𝑈3 = U3,0 | B2 = B2,0,B3 = B3,0,B4 = B4,0

)
=∑︁

𝑣∈{B2,B3,B4 }

[
𝑤 (𝑣)𝑈

(
𝑈3 = U3,0 | 𝑣 = 𝑣0

) ]
, (6.15)

where U(v) denotes a utility function, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ {B2,B3,B4} such that ∑︁

𝑣∈{B2,B3,B4 }
𝑤 (𝑣)} = 1.
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In a second step, the outcomes of equations (6.14) and (6.15) are combined with the nodes D1 and
D2. For any combination of values U2,0, U3,0, D1,0 and D2,0 of nodes 𝑈2, 𝑈3, 𝐷1 and 𝐷2, respectively,
the preference that the ALU node resource state 𝑈1 ∈ [0,400] has a specific value U1,0 is given by

𝑈
(
𝑈1 = U1,0 | U2 = U2,0,U3 = U3,0,D1 = D1,0,D2 = D2,0

)
=∑︁

𝑣∈{U2,U3,D1,D2 }

[
𝑤 (𝑣)𝑈

(
𝑈1 = U1,0 | 𝑣 = 𝑣0

) ]
, (6.16)

where U(v) denotes a utility function, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ {U2,U3,D1,D2} such that ∑︁

𝑣∈{U2,U3,D1,D2 }
𝑤 (𝑣) = 1.

The outcome of the utility node U1 (and thus of our BDN-HAC-2 model) is interpreted as

𝑃 (locally_manageable_resource_failure) =
{
𝑙𝑜𝑤, if 𝑈1 < 200
ℎ𝑖𝑔ℎ, otherwise

(6.17)

In this model, a utility value of 200 functions as the cutoff value.

6.7.3 Conditional Probability Tables

There are seven CPTs, three utility tables and two decision tables in the BDN-HAC-2 model. Table 6.7
lists the probability distributions for each state. The probability distributions for nodes 𝐴2-𝐴5 and
𝐵2-𝐵4 are the same as those described in Section 6.6.3. However, compared to the BDN-HAC-1
model, this model does not have chance nodes as the target (consolidation target) but has utility nodes
instead.

6.7.4 Model Inference Example

Comparable to the BDN-HAC-1 model, this model also processes the outcome in two steps. However,
there are differences in the network structure and in the way in which inference takes place. The
model is more inclined towards a deterministic estimation due to the introduction of two additional
utility nodes, which profoundly affects inference. We provide an example model inference, although
the example does not illustrate the actual model inference because the model computation takes
place at runtime and considers all nodes and dependencies. We instantiate the nodes in layer three
(𝐴2,𝐴3,𝐴4,𝐴5, 𝐵2,𝐵3 and 𝐵4) as follows:

• 𝐴2 is set to low to indicate that the failure repetition has a negligible effect on the target node
U2.

• 𝐴3 is instantiated to true to indicate that the resource has self-healing capability, which reduces
the likelihood of failure.
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Table 6.7 Probability distributions associated with the nodes in the BDN-HAC-2 model

Node Probability Distribution

𝑈2 Utility node

𝐴2
low =.75
high =.25

𝐴3
true =.3
false=.7

𝐴4
low=.9
high=.1

𝐴5
true =.75
false=.25

𝑈3 Utility node

𝐵2
local=.8
shared=.15
global=.05

𝐵3
low =.5
high =.5

𝐵4
low =.3
high =.7

𝐷2
true
false

𝐷1
online
offline

𝑈1 utility node

• 𝐴4 is set to low, implying that the potential effect by the aggregated failure count is negligible.

• 𝐴5 is instantiated to true, which shows that the resource can be reinitialised, reducing the
likelihood of failure.

Suppose the four weights from eq. (6.14) are𝑤 (𝐴2) = 0.1,𝑤 (𝐴3) = 0.4,𝑤 (𝐴4) = 0.1 and𝑤 (𝐴5) =
0.4, we obtain

𝑈 (𝑈2 = U2,0 | A2 = 𝑙𝑜𝑤,A3 = 𝑡𝑟𝑢𝑒,A4 = 𝑙𝑜𝑤,A5 = 𝑡𝑟𝑢𝑒) =
= 0.1 ·𝑈

(
U2 = U2,0 | A2 = 𝑙𝑜𝑤

)
+0.4 ·𝑈

(
U2 = U2,0 | A3 = 𝑡𝑟𝑢𝑒

)
+

+0.1 ·𝑈
(
U2 = U2,0 | A4 = 𝑙𝑜𝑤

)
+0.4 ·𝑈

(
U2 = U2,0 | A5 = 𝑡𝑟𝑢𝑒

)
=

= ≈ 20

(6.18)
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where 𝑈2 ∈ [0,20] represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ A2,A3,A4,A5 such that

∑
𝑣∈A2,A3,A4,A5𝑤 (𝑣) = 1. The utility outcome is estimated as a numerical

value of 20, indicating a high probability that the resource will not fail.
Similarly, we instantiate the nodes 𝐵2,𝐵3 and 𝐵4 as follows:

• 𝐵2 is set to local to indicate that the resource is a local resource and that the failure of the
resource has a low effect on the target node U3.

• 𝐵3 is instantiated to low to indicate that number of lower-level resources are low within the
hierarchy, which increases the likelihood of managing failure locally.

• 𝐵4 is instantiated to low to indicate that the number of upper-level resources is low within the
hierarchy, which reduces the likelihood of failure and increases the likelihood of managing the
failure locally.

We assume the three weights from eq. (6.15) are 𝑤 (𝑣) ∈ (0,1], 𝑤 (𝐵3) = 0.4 and 𝑤 (𝐵4) = 0.3, and
we obtain

𝑈 (𝑈3 = U3,0 | B2 = 𝑙𝑜𝑐𝑎𝑙,B3 = 𝑙𝑜𝑤,B4 = 𝑙𝑜𝑤) =
= 0.3 ·𝑈

(
U3 = U3,0 | B2 = 𝑙𝑜𝑤

)
+0.4 ·𝑈

(
U3 = U3,0 | B3 = 𝑡𝑟𝑢𝑒

)
+

+0.3 ·𝑈
(
U3 = U3,0 | B4 = 𝑙𝑜𝑤

)
=

= ≈ 14

(6.19)

where 𝑈3 ∈ [0,14] represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ B2,B3,B4 such that

∑
𝑣∈B2,B3,B4𝑤 (𝑣) = 1. The outcome, a numerical value of 14, indicates a high

probability that the combined outcome of 𝑈3 has a low affect on the failure of the resource.
In the second step, the outcome of the layer two utility nodes and the other two nodes are

consolidated into the ALU node. These nodes are instantiated as follows:

• 𝐷1 gets the value offline, implying that the resource is offline.

• 𝐷2 is instantiated to true, which indicates that the resource is a critical resource that increases
the likelihood of failure and reduces the likelihood of managing the failure locally.

• 𝑈2 has the value 20 to indicate a low probability of failure.

• 𝑈3 has the value of 14 to indicate a low probability of failure caused by dependencies.

Considering the the four weights from eq. (6.16) are 𝑤 (𝐷2) = 0.35, 𝑤 (𝐷1) = 0.35, 𝑤 (𝑈2) = 0.15
and 𝑤 (𝑈3) = 0.15, we obtain
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Figure 6.6 An illustrative example of the BDN-HAC model inference for the running example.

𝑈 (𝑈1 = U1,0 | D2 = 𝑡𝑟𝑢𝑒,D1 = 𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒,U2 = 20,U3 = 14) =
=≈ 0.35 ·𝑈

(
U1 = U1,0 | D2 = 𝑡𝑟𝑢𝑒

)
+ ≈ 0.35 ·𝑈

(
U1 = U1,0 | D1 = 𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒

)
+

+ ≈ 0.15 ·𝑈
(
U1 = U1,0 | U2 = 20

)
+ ≈ 0.15 ·𝑈

(
U1 = U1,0 | U3 = 14

)
=

= ≈ 270

(6.20)

where𝑈1 ∈ [0,400] represents a target node, and 𝑤 (𝑣) ∈ (0,1] is a weight associated with the variable
𝑣 ∈ D2,D1,U2,U3 such that

∑
𝑣∈D2,D1,U2,U3𝑤 (𝑣) = 1.

Considering eq. (6.17), the outcome indicates that the resource failure can be managed locally.
The prediction is identical to that of the BDN-HAC-1 model.

6.8 Causality and Decision Network

The inference of our BDN-HAC model (in both its variants) assumes that one or more nodes are
instantiated. The decision node is usually set to offline because “failure” is a keyword used to extract
failure events from log data in the BPFP module (i.e., the BDN-HAC model is used when a resource
failure is detected). Therefore, the model is set to consider an automated decision in this case. Nodes
that are not instantiated rely on both prior and posterior probability distributions. Figure 6.6 illustrates
the model inference. We use the running example and the related HAC setup (described in Chapter 5)
to present the complete flow, and subsequently to describe the reasoning. To simplify the illustration,
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Table 6.8 The impact of incomplete data on the prediction outcomes for model BDN-HAC-1

No A2 A3 A4 A5 B2 B3 B4 C1 D1 U1

1 low true low true local low low true offline 54.62
2 NI true low true local NI NI true offline 31.94
3 low NI low NI local low low NI offline 18.58
4 low NI low NI local low low NI online 87.4

NI - not instantiated

we use only one of the model variants, BDN-HAC-1, to describe the flow. The reasoning is similar for
BDN-HAC-2.

Example 5. Suppose that a first failure event occurred in the resource "File system 2". This event
is depicted by the arrow labelled 1 in Figure 6.6 where the dotted circle around the failed resource
indicates that it is a noncritical resource (in the HHAM of the HAC). When event 1 occurs in the
resource, the failure information is extracted by the BPFP module, which adds all the values obtained
from the runtime environment of the BP framework. This means data for all four property groups
are added, which are then passed to the BDN-HAC model. Our BDN-HAC-1 model is initiated and
considers the resource failure while incorporating the properties and their causal relationships in two
steps. The error-related and dependency-related nodes are consolidated in the two latent nodes (shown
as blue circles). In the second step, the outcomes from the latent nodes and the two nodes (𝐶1 and
𝐷1) are consolidated into the utility node (𝑈1). The utility node 𝑈1 outputs a value that shows a low
failure probability that the resource related to 1′ will fail, and hence the failure can be managed locally.
Although the model considers all values, the deciding factor is that resolution group 3 promotes
masking the failure for a noncritical failure.

Suppose now that a new failure event 2 occurs in resource ‘IP address’, which is shown as a red
circle in Figure 6.6. Our BDN-HAC-1 model is initiated and considers the resource failure while also
incorporating the properties and their causal relationships in two steps. Consequently, the utility node
𝑈1 outputs a value that shows a high probability that the failure of the resource related to 2′ cannot be
managed locally.

6.8.1 Reasoning with Incomplete Data

Incomplete data influence the prediction outcome. If different subsets of nodes are instantiated for the
same resource’s failure, the outcome may differ each time. Further, if data are missing for those nodes
that add significant weight to the outcome, it will also significantly impact the BDN-HAC utility
calculation. It may even increase the likelihood of mispredicting whether a resource failure can be
handled locally or not. Similarly, in some cases, nodes with lesser weights can take precedence over
nodes with significant weights.
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Example 6. To demonstrate these behaviours, four sets of data (including a complete set and
three incomplete sets) are used to initiate our BDN-HAC-1 model, and the outcomes are listed in
Table 6.8. Latent nodes (𝐴1 and 𝐵1) are not listed because they do not receive any data. However, the
conditional probability distributions of the latent nodes are updated automatically when the probability
distributions of the parent nodes are updated. The weights, as presented in Section 6.6.1, are implicitly
managed because they are part of the conditional probability construction. The sample data are
constructed to emulate a nonfailure outcome and are performed for the same resource to provide a
consistent view.

The first data set in Table 6.8 is fully instantiated, while the second data set has some incomplete
data. The outcome shows that in both scenarios the BDN-HAC model yields an optimistic prediction
that the resource failure will be locally manageable (since 𝑈1 > 0, see eq. (6.10)). When some
nodes are not instantiated, both prior and posterior (instantiated nodes) probability distributions are
computed, impacting the outcome. There are also differences between nodes with significant weights
and those with lesser weights. For example, two of the critical nodes (𝐶1 and 𝐴5) are not instantiated
in Data Set 3, and the prediction (i.e., the utility 𝑈1) differs significantly compared to Data Sets 1
and 2.

The prediction for Data Set 3 is still optimistic, which means that the likelihood of the resource
failure not being locally manageable is low. However, the outcome has a lower utility value than
for the other scenarios. This is because 𝐴5 has a favourable prior probability distribution, which
assumes that the resource can be reinitialised and decreases the likelihood of failure. Hence, the prior
probability distribution of node 𝐴5 has precedence over the prior probability of node 𝐶1 even though
𝐶1 has a high weight factor. Suppose 𝐴5 is instantiated with a false value. In that case, the prior
probability of 𝐶1 takes precedence because it favours the state true (most of the HAC resources are
considered critical), increasing the likelihood of failure.

6.8.2 Influence of the Decision Node ‘Current State’

The decision node 𝐷1 has a significant impact on the overall outcome. When none of the other nodes
is instantiated, the default decision is online, and the expected utilities for the policies online and
offline are obtained from the model as online 83.7 and offline 2.45, respectively. This means that the
combined prior and posterior probability distributions, weights and preferences favour the decision
policy online, and the decision outcome only changes when other nodes are considered.

Example 7. 𝐷1 is set to offline in Table 6.8 for Data Sets 1–3, but when other nodes are considered,
the final prediction in all cases is that the resource failure in question will be manageable locally.
If the decision changes to online (Data Set 4 in Table 6.8), it changes the prediction significantly.
The reason for this is that, when the decision is set to online, it adds significant weight to the overall
outcome. Therefore, the prediction indicates that the failure of the resource is manageable locally.
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6.9 Summary

This chapter presented the BDN-HAC model of the BP framework. The model’s objective is to
predict locally manageable failures at a HAC resource-level using property values corresponding to
key characteristics as the BDN model inputs. Firstly, we identified four groups of characteristics
that are representative of any HAC solution. We then mapped the corresponding properties onto
variables and identified the relevant states related to each variable. We then introduced a method
for reducing the dimensionality of these variables, and we added weights to influence the decision
making process. Subsequently, we introduced two model variants, BDN-HAC-1 and BDN-HAC-2,
with two distinct decision-making techniques and with the idea that the most suitable one is included
in the BP framework. The BDN-HAC-1 model uses a standard utility function to add preferences to
the outcomes. In contrast, the BDN-HAC-2 model uses ALU, enabling the addition of multiple utility
nodes and connecting them to an ALU utility node. We also described how to transform the variables
to construct the models. An example of inference was also provided for each model where the decision-
making process was emulated using an automated decision-making process. Finally, we illustrated
reasoning under uncertainty using one of the proposed models. We studied reasoning with incomplete
data and provided several examples to emphasise that the prediction accuracy improves when more
nodes are instantiated. Thus, this chapter answered research question RQ3 from Section 1.3.
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Chapter 7

Bayesian Network for Failure
Propagation and Prediction

This chapter presents the method for constructing a Bayesian network for the failure propagation
and prediction (BN-HAC) model, representing the fourth module in the BP framework (Figure 1.1).
The method is used to construct a BN-HAC model that represents the underlying HAC. Hence, when
a HAC resource fails, the BDN-HAC model (Chapter 6) predicts whether the resource failure can
be managed locally or not using the key HAC characteristics described in the previous chapter. The
model outputs a numerical value as a prediction, and this value is interpreted as a binary value to
indicate the state of the resource (failure manageable or unmanageable locally). Only unmanageable
failures are input into the BN-HAC model, which performs inference in three steps. First, the model
considers the corresponding node value while assessing the potential influence on other related
resources (e.g., children and parents). Second, the model propagates the node-level failure along
with the structure of the Bayesian network. Third, the model predicts the outcome for high-level
nodes (e.g., the resource group or system). The outcome of the model indicates whether the HAC
components modelled by these high-level nodes will fail or not. The relationships between resource
failure and models BDN-HAC and BN-HAC are illustrated in Figure 7.1, which is an extension of,
and reuses the notation from, the diagram in Figure 6.2. As in the previous diagram, the failure of a
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Time t
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Figure 7.1 Timeline of resource failure events where HAC activities are shown in the lower level, and
the activities of the Bayesian network model for failure propagation and prediction are displayed in
the upper level.
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HAC resource (indicated by its time of failure 𝑡𝑓 ) is followed by a period Δ𝑡𝑑 required for the HAC
to detect the problem and generate log entries about it and the BDN-HAC prediction time Δ𝑡𝑖 +Δ𝑡 𝑗 .
In addition, the new diagram shows Δ𝑡𝑘 , the time required for the BN-HAC model to compute its
prediction.

To propagate a resource-level failure and predict a resource group or system level failure in a HAC,
the BN model must consider the complete structure of a HAC, including all the resources, resource
types, and dependencies between them. Therefore, a BN model should directly represent a HAC,
which requires a systematic method to map all HAC resources to a BN model. Several challenges
must be addressed as part of constructing such a BN model because of the specific properties of a
HAC. For example, when a resource fails, the event data related to only that failure are captured.
Thus, only data for the node of the BN model that represents the failed resource are available for the
analysis, which represents an extreme form of dealing with incomplete data. Another challenge is that
any resource can fail at any time. This behaviour is interpreted as a random node failure in the BN
model, and each time a different node is initiated.

Furthermore, some HAC resources do not have a physical representation but are only logical, and
examples include the main application and resource groups. Further challenges arise from considering
the criticality of a resource. For example, a resource must be part of the HAC, although such a
resource failure does not present an immediate concern for the entire HAC. However, a HAC may still
treat it as any other resource. Thus, it becomes subject to failure propagation and failover if the HAC
does not handle the failure.

To address these challenges, we introduce a general approach for constructing a BN model from
an underlying HAC using the outcomes of our HMTHA method (Chapter 5) and the configuration
details of the HAC. This approach involves identifying and transforming the structure and related
variables of the HHAM model built by the HMTHA method in order to construct a BN model. The
approach enables modelling each resource within a HAC as a node in the BN model, with the logical
resources of the HAC modelled as the latent nodes of the BN model. Moreover, a set of transformation
rules (T-rules) is used to simplify the prior probability distribution assignments to each BN node. The
dependencies in a HAC are encoded through conditional dependencies in the BN model. Furthermore,
we propose the concept of a weak node for modelling a noncritical resource. The challenges of
incomplete data are dealt with by substituting the missing data and employing the EM algorithm
presented in Section 4.3.3.2.

Moreover, although prior probability distributions are initially assigned, parameter learning is
used to learn and update the distributions, ensuring that the prior probability distributions are updated
to reflect the actual HAC situation. However, the latent nodes are excluded in the learning process
to ensure that only the probabilities of the representative nodes are updated. The propagation of
the failure along the network is performed by updating the posterior probability when evidence is
observed. This allows the high-level nodes to use posterior probabilities to provide predictions. Thus,
the model presented in this chapter addresses research question RQ4 from Chapter 1, i.e., developing
a probabilistic model to propagate the node-level failure to provide prediction at high-level nodes.

130



Table 7.1 BN-HAC model construction steps and step components

No Component BN-HAC Model Considerations

Step 1: Establish the network structure

1 Method The method "learning from other models" is used, and the other model is
the HHAM model and the accompanying M-table (Section 7.2). States of
the nodes are identified using the state of the underlying HAC resources.
Therefore, only two states were considered (Section 7.2.3).

2 Algorithm N/A
3 Training data N/A

Step 2: Establish the probability distributions

4 Method Combination of two approaches: prior probability distribution is estab-
lished using the availability SLA and FMEA (Section 5.3.4) —T-rules aid
in setting conditional probabilities (Sections 7.2.5,7.2.6), and parameter
learning (Section 7.3.3) to update the distributions incrementally.

5 Algorithm EM
6 Training data Data sets containing only unmanaged failures, output by the BDN-HAC

model
7 Production data Same as the training data but using a different group of failures.
8 Mode Incremental

Step 3: Inference

9 Algorithm Clustering
10 Data Only unmanageable failure information output by the BDN-HAC model

(Section 7.3.5).

N/A - Not applicable

To carry out all the activities associated with the construction of a BN (Section 4.5), this chapter
covers these activities as summarised in Table 7.1. We discuss related work in Section 7.1. Section 7.2
presents our general approach to constructing a BN model using the outcome from the holistic
modelling technique for high availability (HHAM and M-table) and the configuration data from the
HAC. The probability assignment is described in Section 7.2.6, and the related T-rules are described
in Section 7.2.5. Section 7.3 elaborates on inference under a range of conditions and how these
conditions are handled (e.g., latent variables, incomplete data, and joint probability distributions).
Section 7.3.3 describes the model parameter learning approach, and Section 7.3.5 presents inference
using production data. Section 7.3.6 provides a discussion on reasoning with the model using the
causal relationship between the nodes. Finally, Section 7.4 summarises the chapter.
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7.1 Related Work

Evaluating the impact of an individual resource failure within a system with many interconnected
components needs to be done at the resource group or system level. Here, we investigate related work
that addresses this from a BN perspective. Additionally, the focus of the related work summarised in
this section is on 1) failure evaluation and detection at the component level and 2) failure propagation
and prediction at the system level.

The use of BNs to predict failures of individual components is widely studied. For example,
Chaves et al. [38] propose a BN-based method to predict failure in hard disk drives (HDD). The
method uses the deterioration over the time of an HDD to predict failure. The method provides better
results than a baseline model.

The characteristics of interconnecting multiple nodes in BNs are useful to present systems
comprising many components while encoding the dependencies between them. Thus, failure detection
and prediction can be provided while considering all components in the BNs. Hence, BNs are used in
a broad range of disciplines, including biology [76] and medicine [23, 208]. For example, Agrahari
et al. [2] developed a BN model to predict types of haematological malignancies. The model has
an accuracy of 93%, a precision of 98%, and a recall of 90% on the training data set. This result
outperforms the results reported by other researchers on the same data set. Park et al. [208] proposed
a BN model to predict post-stroke outcomes and the results showed that the model had high prediction
accuracy.

BNs are often effective even for safety-critical systems. For instance, Baldoni et al. [13] tested
the BN model that uses HMM to predict failures. The results reveal that failures could be accurately
predicted within a few hundred seconds before the failure. Wang et al. [289] developed a BN model
to predict weather-related failures in railway turnout systems, and the model performed well with
high prediction accuracy. Similarly, Codetta-Raiteri et al. [46] present an approach for fault detection,
identification, and recovery of autonomous spacecraft by employing a DBN method.

When a method exists for detecting or predicting failures at the component level in a system with
many components, the next step is usually to propagate the failure so that its influence on high-level
components (e.g., a system) can be modelled. Pitakrat et al. [215] proposed a hierarchical online
failure prediction approach, called HORA, which combines failure prediction at a component level
with a failure propagation model. BNs are used to model the failure propagation part of the HORA.
The HORA approach is compared to a monolithic approach by its authors who show that HORA
improves the area under the ROC curve by 9.9%. Bottone et al. [28] proposed a BN model to predict
failures of a satellite earth terminal. The system consists of multiple components, and the BN model
enables propagating probabilities and provides predictions at the system level.

To summarise, many studies on BN areas support failure evaluation, failure detection, failure
propagation, and prediction. However, no such approach exists for HACs. Currently, no HAC
products we surveyed (Section 3.2) employ BNs or any stochastic models. Therefore, to the best
of our knowledge, the approach introduced in this chapter is the first to construct a model that
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considers failures at the component level of the HAC and propagates this component failure to predict
system-level failure.

7.2 Method for Constructing the BN Model

The HAC structure is different for each HAC implementation. All such components that make up the
HAC must be represented in a BN model to enable failure propagation and subsequent prediction.
Therefore, a systematic approach to creating a BN-HAC model is presented in this section. The
approach enables creating the network structure of the BN model and assigning the conditional
probabilities to it. The outcomes of the HMTHA method (described in Chapter 5) are used as the
primary sources for performing the transformation. In addition, the HAC configuration data are used
as a reference to ensure that the BN model reflects the HAC structure.

7.2.1 Transformation Methodology

The three outcomes of the HMTHA are used to transform the HAC to a BN model. The two outcomes
(HHAM and M-table) are used directly in the transformation process, whereas the T-rules are explicitly
designed for the target BN model to simplify assigning probabilities. The outcomes of HMTHA and
their roles in the transformation are presented in this section.

1. HHAM
Analyse the HHAM model to identify the node types, edge types, dependencies, and layers.

2. M-table
Perform the six-step mapping approach (Table 5.2) to complete the M-table to map between the
HMTHA components and BN components.

3. T-rules
Create a set of T-rules specifically for the BN model using the guidelines described in Sec-
tion 5.3.4.

7.2.2 Transformation from HMTHA to BN-HAC

We use the running example to explain the transformation steps. The first step is to complete the
M-table mapping to decide how vertices, vertex types, and layers will be represented in the BN model.
Hence, as described in Section 5.3.3, the six-step mapping approach is used to map and complete the
M-table.

Example 8. The first part of the M-table, which we presented in Table 5.4, is completed with a second
part, as shown in Table 7.2. This table shows how the logical resources are mapped to latent nodes
and how the layers between the models are mapped. In the second step, both the M-table and HHAM
are used to construct the BN model structure.
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Table 7.2 Completed M-table

HHAM BN

Resource Vertex Type Edge Type Layer BN Node BN Node Type Layer

Application Application Application - 𝐶1 Latent 1
Database Resource group Resource group a 𝐴1 Latent 2
Service 1 Simple Resource b 𝐴2 Node 3
IP address Simple Resource c 𝐴3 Node 4
File system 1 Simple Resource c 𝐴4 Node 4
File system 2 Weak Resource c 𝐴5 Node 4
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Figure 7.2 Mapping the HHAM to the BN-HAC model: i) HHAM model; ii) mapped BN-HAC model.
In the BN-HAC model, the nodes shaded in blue are latent nodes; all the other nodes are random
nodes.

Example 9. The direct mapping between the HHAM and the BN-HAC model is depicted in Figure 7.2.
Figure 7.2 (i) displays the HHAM, which was first presented in Section 5.4. The layers of the HHAM
are mapped in reverse order, and six resources from the HMTHA are represented in the equal number
of nodes in the BN model. The logical resources application and resource group are created as latent
nodes (shaded in blue). The accompanying T-rules are described in Section 7.2.5.
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7.2.3 Variables and State Definition

The variables in a BN-HAC model represent the HAC resources and these are obtained from the
M-table (Table 7.2). The column ‘resource’ in the table lists all the HAC resources, and the column
‘BN node’ lists the related BN nodes. All variables are treated as discrete random variables with two
states: 1) failure and 2) no failure. Keeping the same type and state ensures a smooth mapping of
HAC resources to the BN-HAC model.

7.2.4 Incorporating the Weak Node Concept

The weak node concept is realised by assigning conditional probabilities to child nodes. However, if a
weak node experiences repeated failure, the posterior probabilities are updated to reflect this. The
implication is that the model may promote the ‘failure’ state while considering historical failures.

Example 10. Node 𝐴5 is identified as a weak node in the running example (Figure 7.2 (ii)). Hence,
the conditional probability in child node 𝐴2 is updated according to the T-rule number 4 . This
condition reflects that, even in the event of the failure of 𝐴5, 𝐴2 will not promote the ‘failure’ state,
and the posterior probabilities of the network are updated accordingly.

7.2.5 T-rules

There are two steps associated with updating the probability distributions in a BN-HAC model: (i)
assigning the distributions initially; and (ii) updating the distributions using a learning approach
(Section 4.3.4). T-rules are used in the first step and only aid in assigning the prior probability
distributions. The second step is to apply parameter learning, which updates the parameter distributions
using data from the HAC environment.

A basic set of T-rules is provided in Table 5.3. These T-rules are applicable when constructing
BN models. The SLA of the application may play an important role when interpreting the T-rules to
assign probabilities because HACs are often deployed to ensure that SLA requirements are met.

Example 11. Consider an SLA of 99.9% availability, which represents a monthly downtime of 43.2
minutes for the running example, and which can be translated and represented in prior probabilities.
Hence, the values are based on the business requirements. However, these values are later updated
using parameter learning, which reflects the current situation in a HAC solution. Therefore, nodes 𝐴3,
𝐴4 and 𝐴5 can be assigned a probability distribution of 0.1% for the state failure and 99.9% for no
failure. Additionally, conditional probabilities are set in the child node 𝐴2 to reflect the same values
except for the weak node. In that case, the conditional probability distribution is set to indicate the
noncritical characteristic of the node.

7.2.6 Assigning Prior Probabilities
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Table 7.3 Prior probability distributions of the BN-HAC model

Node Probability Distribution

𝐶1 𝑃 (𝐶1 |𝐴1)
𝐴1 𝑃 (𝐴1 |𝐴2)
𝐴2 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5)
𝐴3 Failure = .001; no failure = .999
𝐴4 Failure = .001; no failure = .999
𝐴5 Failure = .001; no failure = .999

We used the T-rules and three approaches from Section 5.3.4 to calculate and assign probabilities. For
example, all low-level parent nodes (Layer 4 in the BN model) with local probabilities are assigned a
uniform probability distribution (i.e., using SLA). The child nodes in Layer 3 and the latent nodes in
Layer 2 were assigned conditional probabilities. Table 7.3 lists the prior probability distributions for
the model from the running example, and the example below describes how these probabilities were
calculated and assigned.

Example 12. First, we used Approach 1 (eqs. (5.2) and (5.3)) to assign uniform probabilities to
nodes 𝐴3, 𝐴4 and 𝐴5. The probabilities were calculated directly from the availability SLA of the
application as Failure = .001 and No failure = .999. We used Approach 2 for nodes 𝐴2 and 𝐴1. FMEA
and eq. (5.5) produced a low value for node 𝐴5 (weak node), which was then assigned as a conditional
probability to node 𝐴2, as Failure = .03 and No failure = .97. Thus, if the parent node 𝐴5 fails, it does
not result in the failure of the child node 𝐴2. However, the parent nodes 𝐴3 and 𝐴4 have a high impact
factor, which means if any of them fail, it results in the failure of 𝐴2, and the conditional probability
was assigned as Failure = .999 and No failure = .001. Similarly, the failure of the parent node 𝐴2

results in the failure of the latent node 𝐴1, and the conditional probability was assigned accordingly.
We used eq. (5.6) to calculate the conditional probability for the main application 𝐶1. The application
has only one resource group; therefore, we did not use eq. (5.7). The outcome of the calculation is
that if the parent node 𝐴1 fails, the application node also fails. Table 7.3 lists the prior probability
distributions for the model from the running example.

While the prior probability distributions are set initially, as a one-time activity, the primary focus is
on parameter learning to ensure that the model distributions are learned from the actual data (described
in Section 7.3.3).

7.3 Failure Propagation and Prediction

The model inference consists of three steps. The first step considers the failure at a node level, and
the second step propagates the failure to upper levels. The third step predicts the potential failure at
high-level nodes.
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Table 7.4 Data set with incomplete data

No 𝐶1 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

1 Latent Latent Failure ? ? ?
2 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) Failure ? ?
3 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) ? Failure ?
4 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) ? ? Failure
5 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) Failure ? Failure

Table 7.5 Data set with substituted values

No 𝐶1 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

1 Latent Latent Failure No failure No failure No failure
2 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) Failure No failure No failure
3 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) No failure Failure No failure
4 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) No failure No failure Failure
5 Latent Latent 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) Failure No failure Failure

Section 7.3.1 provides a brief discussion about working with latent nodes, and Section 7.3.2
describes working with incomplete data. Section 7.3.3 describes the model parameter learning
approach, and Section 7.3.5 presents inference using production data. Section 7.3.4 describes the JPD,
and Section 7.3.6 describes the causal reasoning with the model.

7.3.1 Working with Latent Nodes

Figure 7.2 (ii) presents the latent nodes in blue. These nodes are always unobserved when the
model receives data. Hence, they do not participate in the parameter learning process but instead are
associated with conditional probabilities. During inference, the conditional probabilities are updated
due to the conditioned parent node influence. Based on this, the high-level latent nodes can provide a
prediction. For example, 𝑃 (𝐶1 |𝐴3) predicts the outcome of node 𝐶1 (latent) given the failure of node
𝐴3 (Figure 7.2) (ii).

7.3.2 Working with Incomplete Data

Incomplete data are expected from the HAC because the related BN model usually receives evidence
for a single resource (node) failure. More than one resource may also fail, but this can be considered a
rarity because the HAC tries to resolve individual failures continuously.

In Figure 7.3, we assume that node 𝐴3 is failed, which means only data about that node are
captured and passed to the model. All other nodes do not receive any data. Five examples of data
sets for the model are presented in the rows of Table 7.4 showing that only one node receives data
(Records 1 to 4), whereas Record 5 indicates a two-node failure, and thus two nodes receive data in
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Figure 7.3 Failure propagation in the BN-HAC model when node 𝐴3 fails. Red indicates a failed node,
white represents running random nodes and blue indicates latent nodes.

Table 7.6 Three data sets used during parameter learning experimentation

#Records Failures (𝐴3) Failures (𝐴4) Failures (𝐴5)

Data set 1 8 3 3 2
Data set 2 16 3 3 2
Data set 3 340 15 21 12

this last case. We perceive this as only one or two resources failing, and all other resources continue
to run. Therefore, we propose substituting the incomplete data with a running state (no failure) before
the inference. Table 7.5 displays the same data set that has undergone substitution.

7.3.3 Parameter Learning

The model requires up-to-date probability distributions to provide accurate predictions. An updated
probability distribution considers the historical failures of related nodes, which improves the overall
prediction accuracy. Therefore, the model employs a parameter learning approach to learn distributions
from data. However, the BDN-HAC model, which supplies data to the BN-HAC model, only delivers
data related to failure events. Thus, learning the distributions only from failures would result in these
distributions being updated incorrectly (i.e., failure state is preferred for the failed nodes). Moreover,
to capture the resolution features of HAC, the learning should be reset at regular intervals to reflect the
failure distributions correctly. To address these, we experimented with three data sets, and Table 7.6
describes the records and failure distribution of the parent nodes.

The first data set contains only failure events (standard output from the BDN-HAC model), the
second data set has 50% failures, and the third data set has only 14% failures. We employ parameter
learning to learn from the three data sets independently, and the results are presented for each node in
Figure 7.4. As shown by these results, the probability distributions differ considerably. Data Set 1
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Figure 7.4 Node failure probability distribution after parameter learning using the three data sets.

Table 7.7 Prediction that node 𝐶1 will fail (shown as a percentage) when each of nodes 𝐴3, 𝐴4 and 𝐴5
fails (individually) after parameter learning using the three data sets from Table 7.6

𝐴3 fails (%) 𝐴4 fails (%) 𝐴5 fails (%)

Data set 1 91 90 59
Data set 2 89 88 36
Data set 3 87 87 14

exhibits high values for failure probability distributions, which significantly increases the probability
of predicting failures. The second data set also results in a high value, whereas the third data set has
significantly reduced the distributions. To observe the prediction in node 𝐶1, we perform inference
after parameter learning by providing evidence to nodes 𝐴3, 𝐴4 and 𝐴5. Table 7.7 presents the
prediction results in 𝐶1 when nodes 𝐴3, 𝐴4 and 𝐴5 fail independently.

The first data set provides an incorrect prediction when node 𝐴5 fails by predicting that the
application node 𝐶1 will also fail (59% probability) when 𝐴5 fails. However, because 𝐴5 is a weak
node, the failure of such a node should not result in application failure. Data Set 2 predicts this
correctly, but the probability value is still high. Further, Data Set 3 provides predictions with high
accuracy. Therefore, the conclusion is that the data set for parameter learning should be based on the
time series to represent the failure distributions correctly.

However, because the baseline data sets are outputs of the BDN-HAC model, we propose aug-
menting the data sets. The augmentation technique is to increase the number of records to reflect the
behaviour of the HAC. For example, nonfailure events are added at regular intervals (as illustrated in
Data Set 3). Furthermore, the parameter learning process should be initiated regularly to correctly
capture the HAC failure pattern while excluding the latent nodes. Consequently, we propose initiating
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Figure 7.5 Joint probability distribution of the model for the running example.

the process daily to update the distributions while resetting the previous distributions. This approach
improves the accuracy for identifying the failure behaviour of the individual nodes of the model.

Moreover, parameter learning should be initiated when structural changes to the HAC occur,
which results in changes to the BN model. An example of a structural change is adding a new resource
to the HAC. The proposed model can use different algorithms to achieve parameter learning. However,
the proposed algorithm is EM to facilitate the maximum likelihood estimation.

7.3.4 Failure Propagation

The model uses JPDs to calculate the conditional probabilities of the nodes from the corresponding
CPT tables. Furthermore, the JPDs are computed at several levels, such as the node representing a
resource group and the main application.

The calculation of the JPD for the model can be performed as follows

𝑃 (𝐴5, . . . ,𝐶1) =
𝑃 (𝐴3)𝑃 (𝐴4)𝑃 (𝐴5)𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5)𝑃 (𝐴1 |𝐴2)𝑃 (𝐶1 |𝐴1) .

(7.1)

The JPD of the model is presented in Figure 7.4. The local probability distributions are presented
for nodes 𝐴3, 𝐴4 and 𝐴5, whereas the conditional probability distributions are associated with nodes
𝐶1, 𝐴1 and 𝐴2. Both 𝐴1 and 𝐶1 are latent nodes, which implies that the JPD computation in these
nodes provides predictions.

Example 13. 𝑃 (𝐶1 |𝐴1) provides the probability of a system (𝐶1) failure given the resource group
(𝐴1) failure. Similarly, 𝑃 (𝐴1 |𝐴2) provides the probability of the resource group (𝐴1) failure given
the service failure (𝐴2). Hence, 𝑃 (𝐶1 |𝐴3) provides the probability of a system (𝐶1) failure given a
resource (𝐴3) failure.
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Table 7.8 BD-HAC inference for the running example in five scenarios involving the individual
failures of resources 𝐴2, 𝐴3, 𝐴4 and 𝐴5 (scenarios No 1–4), and the combined failure of 𝐴3 and 𝐴5
(scenario No 5)

No 𝐶1 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

1 Failure Failure Failure No failure Failure No failure
2 Failure Failure Failure Failure No failure No failure
3 Failure Failure Failure No failure Failure No failure
4 No failure No failure No failure No failure No failure Failure
5 Failure Failure Failure Failure No failure Failure

7.3.5 Inference Using Production Data

The inference using production data is the last step in the BP framework, which occurs after parameter
learning. Whenever a resource failure that cannot be managed locally occurs within the HAC, the
BN-HAC model is initiated to perform the inference. A correlation exists between the parameter
learning process and inference, as detailed in Section 7.3.3, and updating the distributions through
parameter learning directly affects the prediction quality.

Example 14. The model inference and outcomes using Data Set 3 for five failure scenarios (Sec-
tion 7.3.3) are presented in Table 7.8. Red indicates a failed node, whereas blue indicates latent
nodes.

In the first scenario, node 𝐴2 fails and the prediction for nodes 𝐴1 and 𝐶1 is that a resource group
failure (𝐴1) and system failure (𝐶1) will occur. In contrast, the prediction is no failure for scenario 𝐴4

because the probability of child node failure is estimated to be low.

7.3.6 Causal Reasoning with the BN-HAC Failure Propagation and Prediction Model

An illustrative example of the model inference is shown in Figure 7.6, which presents the complete
flow using the running example. The figure is an extension of Figure 6.6, in which the BDN-HAC
module first predicted that the failure event labelled 1′ could be managed locally. Hence, the failure
information was not passed further to the BN-HAC model. We then described the failure of the
resource "IP address", which was predicted by the BDN-HAC to be unmanageable. Now, we continue
with the same resource failure to describe the complete flow. The failure of the resource is marked
in red in the HHAM of the HAC. Subsequently, the corresponding failure event 2 is captured by the
BPFP module, which enriches, transforms, converts and filters the data before passing the results to
the BDN-HAC model. The event is depicted by the arrow labelled 2′. The BDN-HAC model predicts
that the resource failure is unmanageable, then passed to the BN-HAC model as shown by the event
2′′. As demonstrated in the figure, the BN-HAC model directly represents the HAC, and the failed
resource is mapped to a corresponding node (𝐴3). The red node 𝐴3 indicates that the resource failed,
which means the network posterior probability is updated to reflect that. The failure is propagated to

141



Bayesian Network for Failure Propagation and Prediction

Bayesian decision network for 

predicting locally manageable 

resource failures (BDN-HAC)Database 

group

Service 

1

File 

system 

1

File 

system 

2

Application

IP 

address

A2

D1

U1

A1 B1

A4 A5

C1

B2A3 B3 B4

High availability cluster model

P(resource(IP address)manage_failure=low

P(A1|A3)=?

P(C1|A3)=?

2″

Bayesian prognostic 

framework 

preparation (BPFP)

1′

Preprocessing 

prepration of data

2′

2

Bayesian network for failure 

propagation and prediction 

(BN-HAC)

1

A1

A2

C1

A4 A5A3
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Figure 7.7 Identified causal connections in the BN-HAC model for the running example.

the node in the next level (indicated in Figure 7.3 with red arrows), 𝐴2, and then to the next levels,
𝐴1 and 𝐶1, which are latent nodes. The outcome (prediction) of these nodes indicates whether the
high-level nodes (𝐶1 and 𝐴1) will fail or not. However, no direct influence exists between 𝐴3 and 𝐴1

and between 𝐴3 and 𝐶1, but the influence occurs through 𝐴2. Similarly, the influence between 𝐴3 and
𝐶1 is routed through both 𝐴2 and 𝐴1.

Two types of causal connections can be observed in the example BN-HAC model: serial and
converging. Figure 7.7 (i, ii, iii and iv) identifies the four serial connections. In the first connection
(Figure 7.7 (i)), the failure is propagated from the source (𝐴3) to 𝐴1 through 𝐴2 to provide predictions
in 𝐴1. If the failure occurs in 𝐴2 (𝐴2 is instantiated), the flow is blocked in 𝐴2, and 𝐴3 becomes
independent. In this case, the failure is propagated to the high-level node (𝐴1), which is denoted as
follows
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𝑃 (𝐴3,𝐴2,𝐴1) = 𝑃 (𝐴3)𝑃 (𝐴2 | 𝐴3)𝑃 (𝐴1 |𝐴2)
𝑃 (𝐴1 |𝐴3) =

∑︁
𝐴2

𝑃 (𝐴2 |𝐴3)𝑃 (𝐴1 |𝐴2) . (7.2)

In the second serial connection, the failure is propagated from 𝐴2 to 𝐶1 through 𝐴1 (Figure 7.7
(ii)), which is denoted as follows

𝑃 (𝐴2,𝐴1,𝐶1) = 𝑃 (𝐴2)𝑃 (𝐴1 |𝐴2)𝑃 (𝐶1 |𝐴1)
𝑃 (𝐶1 |𝐴2) =

∑︁
𝐴1

𝑃 (𝐴1 |𝐴2)𝑃 (𝐶1 |𝐴1) . (7.3)

In this case, the parent nodes (𝐴3, 𝐴4, and 𝐴5) become independent (orphans), which means they
do not participate in failure propagation. However, to avoid creating situations with independent
parents, the BDN-HAC model considers several crucial characteristics of HAC to ensure this, for
example, only those that cannot be reinitialised are predicted to fail. The third serial connection
(Figure 7.7 (iii)) indicates that a failure is propagated from 𝐴4 to 𝐴1 and is denoted as follows

𝑃 (𝐴4,𝐴2,𝐴1) = 𝑃 (𝐴4)𝑃 (𝐴2 |𝐴4)𝑃 (𝐴1 |𝐴2)
𝑃 (𝐴1 |𝐴4) =

∑︁
𝐴2

𝑃 (𝐴2 |𝐴4)𝑃 (𝐴1 |𝐴2) . (7.4)

The fourth serial connection describes the failure propagation from 𝐴5 to 𝐴1 (Figure 7.7 (iv)) and
is denoted as follows

𝑃 (𝐴5,𝐴2,𝐴1) = 𝑃 (𝐴5)𝑃 (𝐴2 |𝐴5)𝑃 (𝐴1 |𝐴2)
𝑃 (𝐴1 |𝐴5) =

∑︁
𝐴2

𝑃 (𝐴2 |𝐴5)𝑃 (𝐴1 |𝐴2) . (7.5)

Both 𝐴1 and 𝐶1 are latent nodes, which suggests that if a failure occurs in 𝐴2, it is propagated to
𝐶1 through 𝐴1. A latent node fails only when a critical parent node or a combination of parent nodes
fail, and when the posterior probabilities are changed accordingly. The corresponding converging
connection is represented by 𝐴3, 𝐴4, 𝐴5 and 𝐴2 (Figure 7.7 (v)), which is denoted as follows

𝑃 (𝐴2,𝐴3,𝐴4,𝐴5) = 𝑃 (𝐴3)𝑃 (𝐴4)𝑃 (𝐴5)𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5) , (7.6)

where 𝐴4 is independent of 𝐴3, 𝐴3 is independent of 𝐴5, and 𝐴5 is independent of 𝐴4.
This indicates that the propagation between 𝐴3 and 𝐴4 is allowed when 𝐴2 is initiated only.

Although 𝐴2 is not explicitly instantiated, it is regarded as initiated due to the conditional probabilities.
Thus, when 𝐴3 fails and the failure is propagated to 𝐴2, which also fails, the flow can go to 𝐴4

(Figure 7.8). Moreover, the intercausal inference ’explaining away’ can also be observed because all
parents are conditioned on child nodes. When 𝐴3 and 𝐴4 fail, the first node (𝐴3) failure is propagated
to 𝐴2, which implies the failure of 𝐴4 is not considered. Moreover, the posterior probability of 𝐴4 is
reduced in child node 𝐴2, which can be interpreted as 𝐴3 explaining away 𝐴4.
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Figure 7.8 Failure propagation and the impact on the nodes in the same layer when node 𝐴3 fails.
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Figure 7.9 Diverging connection depicting nodes representing two resource groups. White represent
random nodes and blue indicates latent nodes.

A diverging connection is not present in the BN model for the running example. However, it may
exist in a complex BN-HAC model with numerous nodes. In such a case, a diverging connection may
indicate the existence of a dependency between two nodes representing either resource groups, or
between a shared resource and two or more simple resources. Consider a second resource group 𝐵1,
as illustrated in Figure 7.9, such that 𝐴1 forms a diverging connection with 𝐶1 and 𝐵1. Thus, if 𝐴1

fails (instantiated), 𝐵1 and 𝐶1 become conditionally independent, which can be denoted as follows

𝑃 (𝐶1,𝐴1,𝐵1) = 𝑃 (𝐴1)𝑃 (𝐶1 |𝐴1)𝑃 (𝐵1 |𝐴1)
𝑃 (𝐵1 |𝐶1) =

∑︁
𝐴1

𝑃 (𝐴1)𝑃 (𝐶1 |𝐴1)𝑃 (𝐵1 |𝐴1) . (7.7)

However, 𝐴1 is a latent node, and it may fail when the parent nodes fail based on the conditional
probabilities. When 𝐴1 fails, it influences both 𝐶1 and 𝐵1 while maintaining both 𝐶1 and 𝐵1 as
conditionally independent. Nonetheless, if 𝐴1 does not fail, but 𝐶1 fails, it changes the failure
probability of 𝐴1 and 𝐵1. The serial connections allow the failure propagation from the child (𝐶1) to
𝐴2 and then to 𝐵2 if 𝐴1 and 𝐵1 are not observed. If the resource group 𝐴1 fails, the HAC perspective
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means that it is likely to cause 𝐶1 and 𝐵1 failures based on the conditional probabilities. Similarly,
if the system (𝐶1) fails, it affects both resource groups (𝐴1 and 𝐵1). Alternatively, if only 𝐵1 fails,
it influences system 𝐶1 but may not result in a system failure, which means 𝐴1 and 𝐶1 continue to
function. Furthermore, only 𝐵1 and the parent resources are subject to a potential failover.

In conclusion, all three basic connections (serial, converging and diverging) can exist in a BN-
HAC model and can influence how failure is propagated. However, a diverging connection is a rarity
and can only be observed when establishing dependencies between two resource groups or when a
shared dependency resource is present. A BN-HAC model representing the HAC with many resources
and resource groups can have multiple basic connections.

7.4 Summary

This chapter presented the steps involved in building a BN model for failure propagation and prediction
(BN-HAC) and answers research question RQ4. We first described the transformation steps to
construct a BN-HAC model using the outcomes of the HMTHA (HHAM and the accompanying
M-table and T-rules) and to assign prior probabilities. Then, we present an approach for parameter
learning to update the probability distributions using log data (which is processed by the BDN-HAC
model). Finally, a brief discussion is provided on the causal reasoning. Examples are provided on
how a node failure is propagated to child nodes to predict high-level child nodes’ potential failure.
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Chapter 8

Bayesian Prognostic Framework
Preparation

This chapter presents the BPFP module, which represents the second module in the BP framework
(Figure 1.1). The objective of the module is twofold: (1) to prepare an environment to deploy
the BP framework and (2) to prepare log data for the BP framework models (BDN-HAC and BN-
HAC). Hence, the former facilitates the latter, and this is shown in Figure 8.1. The environment’s
preparation is attributed to the following components: (1) configuration refinement, (2) log interface,
(3) transformation and conversion and (4) filter. These components are supported by additional
components: (5) database models and (6) database structures. Components 1 and 5 are one-off
activities that do not need to be repeated once implemented. Thus, the module presented in this
chapter addresses the research question RQ2 from Chapter 1, i.e., creating a module to prepare the
environment and log data and to facilitate the deployment of the BP framework.

The chapter is organised as follows. Section 8.1 presents related work. Next, in Section 8.2,
the database tables required to manage configuration and runtime data are described. Section 8.3
presents the configuration refinement component that is responsible for entering configuration data
into the relevant tables. The log interface is introduced in Section 8.4. This component is responsible
for extracting, parsing, enriching and updating log data. Subsequently, log data is transformed and
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Figure 8.1 Components of the preparation environment are depicted, which show the log processing
steps.
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converted by the transformation and conversion component described in Section 8.5. Section 8.6
presents the database table for storing model data for the BDN-HAC model. Section 8.7 presents
the filter applied to the log data before they are stored in the database table described in the previous
section. Finally, Section 8.8 summaries this chapter.

8.1 Related Work

The preprocessing of data is an integral part of developing probabilistic models to ensure that the
source data are prepared correctly to improve the prediction quality. Preprocessing may consist of
multiple steps such as transformation, discretisation and conversion, all of which are applied to the
source data. The need for such preprocessing also emphasises the importance of securing reliable
data sources, and one of the widely employed data sources is log files [109]. Log files descriptively
record key system events, and therefore represent a rich source for obtaining data. The event recording
details can often be adjusted to capture more data (e.g., enabling logging in multiple levels).

Because log data typically represent a reliable source for obtaining data, log management and
processing have evolved into a broad research area that includes log analysis, log management,
parsing and pattern search. However, this also means that the focus is often on the subdisciplines. For
example, Zheng et al. [302] presented a log preprocessing method to improve failure prediction and
observed that the method improved failure prediction by 174%. He et al. [96] focused on log analysis
and proposed an online log parser using DAG for distributed systems that can parse log entries in
streaming data. The volume of data and type (e.g., streaming) have changed significantly nowadays,
which has promoted log analysis using machine learning (ML) and AI to facilitate automated analysis
[79, 294]. For example, Du et al. [62] proposed a deep neural-based approach to model system
log as a natural language sequence. The solution learns log patterns that are then used to detect
anomalies. Similarly, Xu et al. [299] proposed an anomaly detection method to mining console logs
using principal component analysis (PCA).

In contrast to these solutions, our BPFP module aims mainly to provide a range of services to
enable the deployment of the BP framework and to prepare the HAC log data. Therefore, to the best
of our knowledge, the proposed BPFP module is the first to facilitate pattern search, log parsing,
transformation, conversion, enrichment and filtering in the context of HAC logs.

8.2 Database for Storing Log and Configuration Data

The BPFP module tables can be categorised into two types based on what data they store: configuration
and runtime. The content of configuration tables is provided initially as part of the configuration
refinement step (Section 8.3). The runtime tables are updated at runtime, and they store the extracted,
parsed and enriched event messages in a structured form. There are two kinds of runtime tables:
(1) tables used to store the initial structured data, and (2) tables used to store data prepared specifically
for the BDN-HAC model (as described in Section 8.6).
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cluster

cluster_id VARCHAR(20)

cluster_name VARCHAR(20)

Indexes

configuration

resource_id VARCHAR(16)

resource_name VARCHAR(30)

HAC_resource_name VARCHAR(30)

group_group_id VARCHAR(20)

cluster_cluster_id VARCHAR(20)

node_node_id INT(11)

resource_type_resource_type VARCHAR(20)

reinitialization_factor INT(11)

redundancy_factor INT(11)

dependency_type INT(11)

critical_factor INT(11)

dependency_level INT(11)

dependency_depth INT(11)

dependency_levels_up INT(11)

dependency_levels_down INT(11)

Indexes

group

group_id VARCHAR(20)

group_name VARCHAR(40)

description VARCHAR(45)

Indexes

hac_main

entry_id INT(11)

configuration_resource_id VARCHAR(16)

resource_name VARCHAR(30)

HAC_resource_name VARCHAR(30)

group_id VARCHAR(20)

cluster_id VARCHAR(20)

node_id INT(11)

error_message VARCHAR(100)

event_date DATETIME

current_state VARCHAR(16)

aggeregated_failure_count INT(11)

failure_repetition INT(11)

error_rating INT(11)

dependency_factor INT(11)

Indexes

node

node_id INT(11)

server VARCHAR(30)

Indexes

resource_type

resource_type VARCHAR(20)

reinitialization_factor INT(11)

Indexes

Figure 8.2 Database structures for storing configuration and runtime data.

Table 8.1 Description of the table resource_type

Attributes Description Source for Values

resource_type Type of a resource Literature study, HAC and the application in scope
reinitialization_factor Reinitialisation factor HAC and the application in scope

The BPFP module uses five configuration tables and two runtime tables. Figure 8.2 shows the
main runtime table (hac_main) and all the configuration tables (configuration, resource type, group,
cluster and node) and their relationships. The second runtime table (model_data) is described in
Section 8.6. Most of the table attributes are described in the previous chapters. For example, Chapter 6
identifies the characteristics and their associated properties of HACs. The other attributes are explicitly
designed to capture the common properties of a HAC (e.g., cluster name, node identifier, group name).
Each table is described briefly below, while Tables 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 list their attributes,
attribute description and the source for obtaining the attribute values.

1. Table resource_type: This table stores data about the HAC resource types and their reinitalisa-
tion values (Table 8.1). The reinitialisation value (attribute reinitialization_factor) is linked to a
resource type. This combination indicates whether resources belonging to that resource type
can be reinitialised by a HAC or not. Nineteen resource types (e.g., disk, process and service)
are identified, and additional resource types can be added if and when needed.

2. Table cluster: This table stores the cluster identifier and the cluster name (Table 8.2).
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Table 8.2 Description of the table cluster

Attributes Description Source for Values

cluster_id Cluster identifier Primary key (auto generated)
cluster_name Name of the cluster HAC

Table 8.3 Description of the table node

Attributes Description Source for Values

node_id Node identifier Primary key (auto generated)
server Server on which a node is hosted HAC

3. Table node: This table stores the server names associated with the cluster nodes and their
identifiers (Table 8.3).

4. Table group: This table (Table 8.4) stores resource group identifiers, names and descriptions.

5. Table configuration: The main configuration table (Table 8.5) has all the details about the
HAC configuration, including the specific properties. The configuration table has a foreign key
relationship to all the other four configuration tables.

6. Table hac_main: The main runtime table (Table 8.6) stores log entries that are parsed, enriched
and structured. Whenever there is a failure event recorded in the HAC log, this table is
updated by the log interface. The table has a foreign key relationship to the main configuration
table configuration. The attributes error_rating and dependency_factor are used only for the
internal validations to ensure that the values match the corresponding latent nodes’ output in
the BDN-HAC model.

8.3 Configuration Refinement

The configuration refinement BDFP component ensures that all configuration details are entered
correctly into the corresponding tables (described in Section 8.2). This component uses three
primary sources to obtain the required data: (1) the HHAM model, (2) the M-table and (3) the
HAC configuration. HHAM and M-table provide granular details about resources, such as the position
of resources in the HAC hierarchy and the number of levels up and down in this hierarchy. Moreover, it

Table 8.4 Description of the table group

Attributes Description Source for Values

group_id Resource group identifier Primary key (auto generated)
group_name Name of the group HAC
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Table 8.5 Description of the table configuration

Attributes Description Source for Values

resource_id Unique resource identifier HHAM
resource_name Resource name HHAM
HAC_resource_name The HAC resource name HAC
group_id Resource group identifier Table group
cluster_id Cluster identifier Table cluster
node_id Node identifier Table node
resource_type Resource type Table resource_type
reinitialization_factor Reinitialisation factor Table resource_type
redundancy_factor Redundancy measures by the application Application in scope
dependency_type The type of a resource HAC
critical_factor Criticality of a resource HAC, application in scope
dependency_level Depth of a resource HHAM, M-table
dependency_depth Depth of the structure HHAM, M-table
dependency_levels_down The number of lower levels HHAM, M-table
dependency_levels_up The number of upper levels HHAM, M-table

Table 8.6 Description of the table hac_main

Attributes Description Source for Values

entry_id Unique id Primary key (auto generated)
resource_id Unique resource identifier config. (HHAM)
resource_name The generic resource name config.
HAC_resource_name The HAC resource name config.
group_id Resource group identifier config.
cluster_id Cluster identifier config.
node_id Node identifier config.
error_message Error message HAC log
event_date Time stamp HAC log
current_state Current status of the resource HAC log
aggeregated_failure_count Aggregates distinct number of failures Runtime1
failure_repetition Counts the failures Runtime1
error_rating Error rating of a resource Runtime2
dependency_factor Dependency factor of the resource Runtime3

Config. - table configuration, Log - HAC log, Runtime1 - computed at run-time using table HAC_main and HAC log,
Runtime2 - computed at run-time using table configuration and HAC log, Runtime3 - computed at run-time using the
dependency attributes from table configuration

updates details about specific features of HAC and the protected application (e.g., ability to reinitialise
an application resource). One important attribute of this component is a unique identifier (resource_id
in both the runtime and configuration tables) generated by the HMTHA. This identifier is used to
associate HAC resources with the BN-HAC model.
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Table 8.7 A record entered in the table configuration as part of the configuration refinement

Attributes Example Values

resource_id C1G1A1B1
resource_name database
HAC_resource_name rsc_WEB_database
group_id C1G1A1
cluster_id cluster1
node_id 1
resource_type service
reinitialization_factor 1
redundancy_factor 2
dependency_type 1
critical_factor 1
dependency_level 2
dependency_depth 3
dependency_levels_up 1
dependency_levels_down 1

1

Jun 22 07:54:30 [1619] vmi243500       crmd:   notice: process_lrm_event: Result of probe operation for rsc_DEV_database
on vmi243500: 7 (not running) | call=17 key=rsc_DEV_database_monitor_0 confirmed=true cib-update=38

Jun 22 08:38:53 [1619] vmi243500       crmd:     info: update_failcount: Updating failcount for rsc_DEV_CI on vmi243500 
after failed start: rc=1 (update=INFINITY, time=1592807933)

2 3 4

5 6

7

Figure 8.3 High availability cluster log extract and the key elements.

Example 15. Table 8.7 shows one record in the configuration table for the system from the running
example, as created during the configuration refinement.

8.4 Log Interface

As described in Section 3.2.6, the log format and structure differ between HACs and there is no
standard. Some logs record more details, while others have minimum information. A log extract from
the HAC Pacemaker/Corosync is presented in Figure 8.3 where key elements are highlighted. A short
description of the key elements is as follows.

1. timestamp: Jun 22 2020 07:54:30 (event timestamp)

2. server: vmi243500 (Server (node) where the log entry is recorded)

3. process: crmd (the HAC process that is responsible for this entry)
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Aug 12 07:24:30[1619] vmi243500       crmd:   notice: process_lrm_event: Result of probe operation for 

rsc_WEB_database on vmi243500: 7 (not running) | call=17 key=rsc_WEB_database_monitor_0 confirmed=true 

cib-update=38

Aug 12 07:24:30 rsc_WEB_database server1   not running

Log Parsing (2)

C

Raw log

Parsed log

Structured data

Log data enrichment (4)

Query (3)

entry_id resource_id resource_name HAC_resource_name group_idcluster_id node_id error_messageevent_date current_state

112 C1G1A1B1 Database service rsc_WEB_database C1G1A1 cluster1 1 not running

2020-08-12 

07:24:30 0

….

Update (5)

Configuration data

C

Runtime data

Query (1)

Insert (6)

Figure 8.4 An illustration of the log management approach by the log interface.

4. HAC resource name: rsc_DEV_database (A resource name that is used by the HAC)

5. status: not running (Current status of the resource)

6. failure count details: Whenever a resource fails, the cluster increases the failcount for the
resource

7. a score-based calculation per resource and node: If the attempt to start or stop a resource
fails, the resource’s failure count is set accordingly (here +INFINITY) to influence the HAC’s
behaviour, for example, a resource is banned from running in a node

The first five elements are typically present in HAC logs because they are essential for the HAC to
take actions. However, the last two elements are specific to the HAC that is used as an example here.
Element 6 indicates that the HAC counts the number of failures that have occurred in a particular
resource. After reaching a timeout value, the HAC may automatically take actions or enforce policies
such as relocating the resource. Element 7 describes a policy update that is set after experiencing
multiple failures. When set to a particular value (for example, INFINITY for the resource on a specific
node), it implies that the HAC will stop trying to start the resource. Instead, it can move the resource
immediately to a secondary node when certain conditions are met. The log interface introduced in
this section recognises log elements between one and five; however, it can be extended to extract and
interpret other log elements [256].

The log interface employs a pattern search method to identify a specific event related to resource
failures, and it uses positions in a log entry to identify the different elements.1 However, the log files
of different HACs have different structure and positioning, and therefore the position of the elements
and the search pattern must be updated during the implementation.

As shown in Figure 8.4, when the log interface is initiated, it queries the runtime database to
retrieve the latest timestamp 1, which is then used as a separator to ensure that only those log entries
after the timestamp are extracted. Those entries are sorted to identify only the distinct log entries,

1The corresponding software is available on the GitHub repository for the project [256].
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Table 8.8 Basic variables that represent the properties of high-availability clusters, related symbols,
values, types, value description and sources for obtaining the values

Variable Values Value Description Group Source

Failure repetition {low, high} Low - >4, high-<4 1 Runtime
Redundancy factor {true, false} Redundancy factor 2 Runtime
Aggregated failure count {low, high} Low - >8, high-<8 1 Runtime
Reinitialisation factor {true, false} Resource Reinitialisation 2 Runtime
Dependency type {local, shared, global} Three types of dependencies 3 Runtime
Dependency levels down {low, high} Low = >2, high= <3 1 Runtime
Dependency levels up {low, high} Low = >2, high= <3 1 Runtime
Critical factor {true, false} Criticality of a resource 2 Runtime
Current state {online, offline} Current state of a resource 3 HAC log

Error rating {failure, no_failure} Derived 4 CP
Dependency factor {low, high} Derived 4 CP
Resource state {failure, no_failure} Derived 4 CP

Log - HAC log, CP - Conditional probabilities.

which are then passed for parsing at time 2. The log interface then uses key elements to query (3),
match and fetch (4) additional data from the configuration database. The new data is appended (5) to
the structured log data as part of the enrichment. The enriched entries are written (6) to the runtime
database (HAC_Main table in Section 8.2). The log interface faces a challenge when extracting the
log entries, and that is, multiple entries with the same event message at the same time are created. For
instance, multiple modules of a HAC (e.g., ‘crmd’ in Figure 8.3) may attempt to write the same entry
at the same time because events are passed between the HAC modules. However, only a distinct entry
must be captured and inserted into the database for further processing. Therefore, the log interface
ensures that only one distinct entry is extracted using sorted timestamps.

8.5 Transformation and Conversion

We described the four groups of variables in Section 6.4, and the group indicates what kind of changes
the group variables must undergo before the BDN-HAC model can use them. The changes associated
with each group are listed as follows.

1. Transformation

2. Conversion

3. No change

4. Derived variables
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8.5 Transformation and Conversion

We present these four groups of variables, their values, value descriptions, groups and sources to
provide the required data at runtime in Table 8.8. Hence, group 1 variables are transformed while
group 2 variables are converted. In contrast, group 3 variables undergo no changes and group 4
variables are derived variables, implying that they are associated with conditional probabilities. We
describe how the changes are applied to the variables in the groups in the remainder of this section.

1. Transformation. We followed a three-step approach to applying a transformation to the group
1 variables.

(a) Identify the potential variables to be included

(b) Identify the split interval domains to represent the states

(c) Create the transformation condition

In this group, the variables are transformed, i.e., changed to categorical (ordinal) variables.
Four variables were identified already as part of identifying the variables associated with the
characteristics in Section 6.4: failure repetition, aggregated failure count, dependency levels
down and dependency level up. Two states are identified using the split interval domains: low
and high.

The transformation conditions for the variables dependency levels down and dependency level
up are defined using FMEA assessment to indicate a potential impact on the related resources
(upper or lower) in the hierarchical representation of a HAC upon the resource’s failure [223].
Hence, a low value indicates the impact on a smaller number of resources, while a high value
indicates an impact on many resources. The transformation conditions for the variablesfailure
repetition and aggregated failure count are defined as follows. Suppose a particular resource
failure is repeated and captured by the variable failure repetition, and this repetition is greater
than four in the last two minutes, it may indicate that any attempt to reinitialise the resource
by the HAC has reached a timeout threshold [277, 22, 20]. It may, in turn, imply that the
probability of resource failure is increased. Therefore, a value greater than four is categorised
as high to indicate a high probability of failure. Similarly, the variable aggregated failure
count aggregates all failures for a resource in the last four hours. If the counter is greater than
eight, the value is set to high, which indicates that a global timeout is reached or the resource
experiences a permanent error, and hence the probability of failure is increased.

2. Conversion. Variables in this group are converted to Boolean, where true indicates that the
related properties are active and where false indicates related properties are not active. Three
variables are part of this group: redundancy factor, reinitialisation factor and critical factor.

3. No change. The variables in this group do not undergo any changes, and two variables are
part of this group: dependency type and current state. The variable current state presents the
actual status of a resource, which can be either online or offline. The variable dependency
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model_data

entry_id INT(11)

resource_id VARCHAR(16)

resource_name VARCHAR(30)

HAC_resource_name VARCHAR(30)

group_id VARCHAR(20)

cluster_id VARCHAR(20)

node_id INT(11)

event_date DATETIME

current_state VARCHAR(16)

critical_factor VARCHAR(5)

failure_repetition VARCHAR(5)

redundancy_factor VARCHAR(5)

aggeregated_failure_count VARCHAR(5)

reinitialization_factor VARCHAR(30)

dependency_type VARCHAR(8)

dependency_levels_up VARCHAR(5)

dependency_levels_down VARCHAR(5)

Indexes

Figure 8.5 Database table for storing data for the BDN-HAC model.

type represents the three types of dependencies. Each can increase the probability of failure in
various degrees (local-low, shared-medium and global-high).

4. Derived variables. The fourth group consists of three derived variables to aid in assigning
weights and reducing dimensionality. These variables have two states, failure and no failure.
The state no failure indicates that the failure can be managed locally, and the state failure
implies that the failure cannot be managed locally.

8.6 Database Table for Storing Model Data

The structured log data (described in Section 8.2) undergoes the process of transformation, conversion
and filtration before it is stored in the table for storing model data. The table update is triggered at
runtime as soon as there is a new entry in the main table. The structure is presented in Figure 8.5.

After applying the filter, 17 attributes are extracted. 𝑒𝑛𝑡𝑟𝑦_𝑖𝑑 is a primary key and generates
sequential numeric values automatically when new records are created. 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑 is the resource
identifier that is generated by the HMTHA tool (Chapter 6). 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑎𝑚𝑒 represents the name of
a resource, while 𝐻𝐴𝐶_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑎𝑚𝑒 is the HAC name of the resource. The descriptions of the
attributes 𝑔𝑟𝑜𝑢𝑝_𝑖𝑑 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 , 𝑛𝑜𝑑𝑒_𝑖𝑑 and 𝑒𝑣𝑒𝑛𝑡_𝑑𝑎𝑡𝑒 are provided in Section 8.2. The remaining
nine attributes are passed to the BDN-HAC model.
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8.7 Filter

8.7 Filter

The filter is the final step in the BPFP module, and the objective of the filter is to prepare the data for
the BDN-HAC model. Therefore, the filter is applied to the log data that has undergone transformation
and conversion to select the required data for the BDN-HAC model. The filter is implemented together
with the transformation and conversion in the same software tool.

8.8 Summary

This chapter presents the BPFP module, the second module in the BP framework, and answers
research question RQ2. The module prepares an environment that facilitates processing the log data so
that they can be used by our BDN-HAC model. To this end, the BPFP module consists of components
for configuration refinement, transformation and conversion, the log interface, filtration and the
related database objects. These components ensure that the log data undergo parsing, enrichment,
transformation and conversion and filtration.
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Chapter 9

Bayesian Prognostic Framework

This chapter presents the BP framework that integrates the four modules introduced in Chapters 5, 6,
7 and 8. The chapter is organised as follows. Section 9.1 presents related work, and Section 9.2
describes the BP framework. Section 9.3 lists the steps associated with the implementation of the BP
framework. Finally, Section 9.4 summarises the chapter.

9.1 Related Work

It is not uncommon that a series of probabilistic models are used in conjunction [233, 8] to deliver
specific functionality. For example, one model supports detection or diagnosis. In contrast, the
second model predicts, e.g., the potential failure of another component, based on the outcome of the
analysis performed using the previous model. However, to deliver an accurate diagnosis, detection
or prediction, knowledge is required about a component or all interconnected components through
dependencies. Obtaining such information could also be part of the modelling framework. Pitakrat et
al. [214] proposed an online failure prediction framework for component-based software systems. This
framework captures the dependency information between components from the system architecture
models and uses this information for failure prediction at runtime. Cai et al. [31] proposed a prognostic
model based on BNs to identify the key factors that influence the survival of patients who underwent
surgery for gallbladder cancer. The study combined the BN model with essential measures such as
age and sex.

Another frequent application area where one or more BN models are used is the industrial sector.
Such models can support a range of steps, such as identification, isolation and prediction of failures in
industrial equipment. One area where these steps can be combined is to predict the remaining useful
life (RUL) of a machine. For example, Medjaher et al. [169] used a DBN-based failure prognostic
model to estimate the value of the RUL of industrial machines before a failure. The model could also
be used to study the propagation of the effect of one state on other states. Similarly, Tobon-Mejia et al.
[267] constructed a model to estimate the RUL of a computer numerical control (CNC) tool machine
by capturing the degradation behaviour of the machine.
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However, to the best of our knowledge, our proposed BP approach is the first to provide a complete
framework to extract log entries, preprocess data through a series of components, deliver data to a
BDN-based detection model and BN-based prediction model, and then process the outcomes. The
outcome of a prediction indicates whether the higher-level components (resource group or system)
will fail or not. The framework also provides an approach for constructing a BN model aided by the
HHAM model and accompanying M-table.

9.2 Bayesian Prognostic Framework

The four modules of our BP framework are shown in Figure 9.1. Three steps associated with the
framework are also depicted in the figure. The use of the components is indicated by ’DIR’, which
stands for ’design, ’implementation’ and ’runtime’ while ’-’ means that a component is not used
within a particular step. As shown in Figure 9.1, the module HMTHA is a standalone module that
is used mainly at design time. For example, the primary outcome of the HMTHA, HHAM, and the
corresponding M-table and T-rules are used further with the BPFP and BN-HAC modules. However,
the HMTHA can also be revisited to make changes during the implementation phase in order to reflect
any changes in the HAC environment. Thus, the use of the model is annotated with ’implementation’
as well.

The BPFP module (described in detail in Chapter 8) prepares an IT environment for deploying
the BP framework and enables preprocessing using six module components as shown in Figure 9.1.
Hence, the step environment preparation deals with creating the required database structures and
implementing the module components. For example, the relevant database objects are updated to
incorporate the information related to the HAC configuration using the naming convention introduced
by the HMTHA. One key component is the log interface that identifies unique failure entries from
HAC logs. It initiates a series of steps, such as query, extract, enrich, update, transform, convert and
filter. However, the preparation components, such as configuration refinement, are not used at runtime.
Instead, only the preprocessing of the HAC failure information is conducted. The preprocessed
information is then stored in a database table before the BDN-HAC model is initiated.

The BDN-HAC model is a HAC solution-independent model. The model is employed to detect
whether a resource failures can be managed at the resource-level. To that end, the model uses a
set of characteristics to understand and interpret the failures. In addition to the set of established
characteristics typically employed by HAC solutions, we added new characteristics to improve
the overall detection capabilities (e.g., the self-healing capability of an application). In the model,
conditional probability adds weight to parent nodes, whereas preferences add weight to the top-level
child nodes in the utility node. After variable consolidation and dimensionality reduction, the result is
a utility value that indicates whether a resource failure can be managed locally or not. This utility
value is interpreted, and only those individual failures predicted as not manageable locally are sent to
the BN-HAC model.

160



9.2 Bayesian Prognostic Framework

HAC log

Expert

knowledge

1. HMTHA

HAC 

configuration

HHAM

M-table

T-rules

4. BN-HAC

Conditional 

probability tables

Network structure

M-table

Inference

T-rulesAugmentation

Substitution

2. BPFP

3. BDN-HAC

Weights

Conditional 

probability tables

Network structure

Inference

Database

Filter

Database 

models

Configuration

refinement

Transformation 

ConversionL
o

g
 i
n

te
rf

a
c
e

Training/

test data

Production 

data

Output of 

prediction

Production 

data

Training/

test data

DIR

--R

DI-

DI-

-I-

-IR

DIR

--RDI-

DIR

-I-

DI-

D--

-IR

DIR

-IR

DI-

DIR

DIR

-IR

DIR

DIR

DIR

-IR

Figure 9.1 Modules and components of the Bayesian prognostic framework, annotated to indicate
whether they are used during D(esign), I(mplementation) and/or at R(untime), e.g., ’DI-’ indicates
that a component is used during design and implementation and is not used at runtime.

Notes: HMTHA - Holistic modelling technique for high availability, HHAM -Holistic high availability model, M-table -
Mapping table, T-rules - Translation rules, BPFP - Bayesian prognostic framework preparation, BDN-HAC - Bayesian
decision network for predicting locally manageable resource failures, BN-HAC - Bayesian network for failure propagation
and prediction.
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1.1 Create the holistic high-
availability model (use software tool 
to specify high-availability 
components, variables, dependencies, 
and causal relationships).
1.2 Create the accompanying  
mapping table (M-table).
1.3 Create the accompanying 
translation rules (T-rules).

1. Holistic modelling technique for 

high availability (HMTHA)

2.1 Prepare environment (install 
database software (e.g, MySQL) and 
set up development components (e.g.,  
R and the Python) on all high-
availability cluster nodes).

2.2 Implement database for storing 
log and configuration data.

2.3 Apply configuration refinement.

2.4 Implement the log interface.

2.5 Enable transformation and 
conversion.

2.6 Implement database table for 
storing model data.

2.7 Apply filter.

2. Bayesian prognostic framework 

preparation (BPFP)

3.1 Implement the model (e.g., a 
program or script).
3.2 Change target environment details.
3.3 Test the model.
3.4 Inference using production data.

3. Bayesian decision network for 

predicting locally manageable 

resource failures (BDN-HAC)

4.1 Transform from holistic high 
availability model to Bayesian 
network model for failure 
propagation and prediction.

4.2 Construct the Bayesian network 
model for failure propagation and 
prediction.

4.3 Implement the model (e.g., a 
program or script).

4.4 Substitute incomplete data. 

4.5 Augment data set.

4.6 Enable parameter learning.

4.7 Inference using production 
data.

4. Bayesian network for failure 

propagation and prediction (BN-

HAC)

Figure 9.2 Bayesian prognostic framework development process.

The BN-HAC provides a method for constructing a BN model for the corresponding HAC. Thus,
the resulting model mirrors the setup of the HAC, meaning that all HAC components are represented
in the BN-HAC model. The HMTHA (HHAM, M-table and T-rules) outcomes are used to construct
the BN model and to map the HAC resources to the appropriate BN nodes. For example, weak
resources are mapped to ordinary nodes, but conditional probabilities are assigned to the child node to
indicate a weak influence. Additionally, all resources without physical representations are mapped to
latent nodes. Apart from assigning conditional probabilities to child nodes, uniform prior distributions
are given to all other nodes. Parameter learning is employed in the implementation phase to train
the BN model using a data set where incomplete data are substituted. During the runtime phase, the
inference of the model occurs using the learnt parameter distributions to predict the potential failure
of the related resource group or system.

To summarise, the HMTHA module is only used during the design phase. Similarly, the expert
knowledge (Figure 9.1) is also used to construct the BDN-HAC and BN-HAC models during the design
phase. All components are implemented during the implementation phase, and failure information
from the HAC is collected, prepared and processed by the BDN-HAC model to create a training data
set. The training data set is then processed by the BN-HAC model to learn the parameter distributions.
In the third phase (runtime), the BPFP module extracts failure information whenever a failure occurs
in the production HAC and prepares data before improved detection by the BDN-HAC can occur.
Only the confirmed failure information is passed to the BN-HAC model to propagate the failure and
to predict the potential failure at the resource group or system level.

9.3 Implementation Steps

Figure 9.2 summarises the process for developing our complete BP framework. The first step is
to create an HHAM model using the holistic HA modelling technique. The resulting model and
accompanying M-table and T-rules are required to construct the BN model in Step 4. The second step
is to prepare the environment to deploy the BPF and to prepare the data to be processed by the model
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Table 9.1 Reusability of framework components

Framework Component Reusability

Holistic modelling technique for high availability (HMTHA)

HMTHA tool (Java program
and database script)

Reusable as is

Bayesian prognostic framework preparation (BPFP)

Database objects for storing
log and configuration data

Reusable as is (scripts to create the objects)

Log interface Reusable as is (positions for extracting log records must be changed)

Script for transformation,
conversion and filtering

Reusable as is

Database object for storing
model data

Reusable as is (script to create the object)

Bayesian decision network for predicting locally manageable resource failures (BDN-HAC)

BDN model Development required (the model used in the thesis is provided but a script is
required to automate the inference)

Bayesian network for failure propagation and prediction (BN-HAC)

BN model Development required (a sample model for the testbed application and HAC is
provided but a model must be generated for the target application and HAC
specifically, and a script is required to automate the inference)

in Step 3. In the third step, the BDN-based model is implemented and configured to accept data from
Step 2. Finally, the inference output is prepared and sent to the model in Step 4, which details the
construction of the BN model using the outcome from Step 1. The model uses parameter learning
to learn the distributions. Subsequently, the model is used for inference with runtime data from the
BDN-HAC model.

We summarise the framework components and whether they are reusable as-is, are customisable
or require development from scratch in Table 9.1. All framework components require minor changes
to accommodate the target deployment environment, such as the OS and database.

9.4 Summary

This chapter presented the BP framework, which brings together the four modules from in Chapters 5,
6, 7 and 8. The four modules are combined to deliver a prognostic framework for a HAC. All four
modules are integrated so that the first module, HMTHA, provides input to both the BPFP and BN-
HAC modules. The BDN-HAC is a HAC solution-independent module that improves the detection of
failures at the resource-level by exploiting data associated with established HAC characteristics and
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new characteristics introduced in this thesis. In contrast, the BN-HAC module must be constructed to
reflect an underlying HAC solution. Therefore, we present a method for constructing and mapping
the HAC components to a BN model. The parameters of the constructed model are then learnt using
data from the HAC under analysis. Using this information, the BN-HAC can then assess failures
confirmed as locally unmanageable and propagate them to the resource group or system level to
predict a potential failure at these levels.
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Implementation and Evaluation
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Chapter 10

Evaluation

This chapter presents the evaluation of the individual modules of our BP framework and the framework
as a whole by comparing them to a widely used open-source HAC solution. To this end, we performed
extensive experiments by subjecting an ERP application deployed in a production-like environment
to a broad range of injected failures over a period of 8 months (between 6 July 2020 and 12 March
2021). This testbed is presented in detail in Section 10.1, followed by a description of our evaluation
methodology in Section 10.2. This chapter then presents the evaluation of the four BP framework
modules in Section 10.3 and the evaluation of the end-to-end framework in Section 10.4. We conclude
with a discussion of threats to validity in Section 10.6 and a brief summary in Section 10.7.

10.1 Testbed

The testbed was established in the public cloud 1, and the open-source HAC we deployed in the
testbed was HAC ClusterLabs stack 2 (Pacemaker/Corosync) [128, 20]. Subsequently, we deployed
the ERP solution and included it in the HAC. The testbed was running continuously for more than
two years and three months between February 2019 and May 2021 to facilitate the development, test,
optimisation and evaluation of the individual modules of the framework and the complete framework.
To identify all the required components for a HAC deployment, we applied the taxonomy introduced
in Section 3.1, and an extract of the result is described in Appendix B. Using this information, we
present the deployment of the infrastructure components (virtual machines, network and storage.) for
the HAC in the testbed. In the following sections, we also describe the selected ERP and how the
ERP components were integrated into the HAC.
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Table 10.1 Virtual machines used to enable high availability in the testbed

Server 1 Server 2 Server 3
CPU (vCPU Cores) 8 vCPU Cores 2.20 GHz 8 vCPU Cores 2.20 GHz 6 vCPU Cores 2.40 GHz
Memory (GB) 30 30 20
Operating system (64-bit) openSUSE Leap 15.0 openSUSE Leap 15.0 openSUSE Leap 15.0
Role Primary node Secondary node Storage server
IP-address IP address 1 IP address 2 IP address 3
network Network 1 Network 2 Network 3

VCPU – Virtual CPU

Table 10.2 List of virtual IP addresses and associated resource groups

IP Network HAC Resource group Virtual Host Name

IP address 4 Network 4 Message and lock instance group Virtual name 1
IP address 5 Network 5 Database group Virtual name 2
IP address 6 Network 6 Main instance group Virtual name 3
IP address 7 Network 7 Backup lock server group Virtual name 4

10.1.1 Virtual Machines

We configured three virtual machines for the testbed environment, and the details are presented in
Table 10.1. Servers 1 and 2 functioned as the primary and secondary nodes of the HAC, respectively.
Server 3 was employed as the shared storage provider.

The three virtual servers were placed in the same physical location (data centre); thus, the only
type of cluster possible is ‘local’. We selected the open-source operating system OpenSUSE Leap
15.0 for all virtual machines. In addition, the software packages (e.g., libraries) that were prerequisites
for the ERP solution were installed.

10.1.2 Network Configuration

The HAC requires multiple networks to enable independent communication between different compo-
nents (e.g., heartbeat and cluster) [239]. However, setting up multiple dedicated networks is expensive
and time-consuming. We therefore chose the setup available in the selected public cloud environment.
Thus, we shared the same network for some of the communications, for example. Table 10.2 lists the
different subnetworks used in the configuration. When using multiple networks, multiple network
interfaces (NICs) are required to ensure redundancy. However, we opted to proceed with only one
NIC per virtual server in the standard virtual machine setup. Furthermore, the HAC employs multiple
VIP addresses (called relocatable or floating) to ensure that each resource group can be addressed
individually and relocated independently. Table 10.2 lists the virtual hostnames associated with the
VIPs for the resource groups. The virtual hostnames were used when implementing the application.

1https://contabo.com/en/
2https://www.clusterlabs.org/
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Table 10.3 Storage configuration of the testbed

Device Mount Point Resource Group
Name

Size
(GB)

File
System
Type†

LVG LV

/dev/sdc /usr/sap/DEV/ASCS00 Message and lock
instance group

9.8 ext4 vg_ ASCS00 lv_ ASCS00

/dev/sdc /usr/sap/trans FS transport 3.9 ext4 vg_trans lv_trans
/dev/sdh N/A SBD 0.5 N/A vg_sbd lv_sbd
/dev/sdi /sapmnt Distributed lock

manager (DLM)
group

19.5 OCFS2 vg_sapmnt lv_sapmnt

/dev/sdd /sapdb Database 781.3 ext4 Vg_sapdb lv_sapdb
/dev/sdj /interface FS interface 2 ext4 vg_interface lv_interface
/dev/sdf /usr/sap/DEV/DVEBMGS01 FS main instance

group
19.5 ext4 vg_DVEBMGS01 lv_DVEBMGS01

† All file systems had EXT4 as the file system type except disk sdi, which had a shared cluster file system, and the file
system type was OCFS2.

LVG - Logical Volume Group, LV - Logical Volume, FS - File system, SBD - Storage-Based Death, DLM - Distributed
lock manager, N/A - Not applicable.

10.1.3 Storage Configuration

We implemented an iSCSI-based storage solution to enable shared storage for the HAC. There are
two terms associated with the iSCSI domain: the iSCSI server (target) and clients (initiator) [3].
The communication between the iSCSI target and initiators occurs using an IP network; therefore,
a dedicated network and related NICs are typically required. However, we used the single NIC
available in the servers and the shared network to facilitate storage communication. Thus, Server 3
functioned as the iSCSI target and provisioned the required storage to the initiator, Servers 1 and 2.
We partitioned the available disks in Server 3 and presented them as raw disks to the iSCSI initiator
servers.

The presented raw disks were then configured using logical volume management [94] and created
as logical volumes (LVs) in the primary node. Each LV was then formatted using a specific file
system type to be included in the resource groups. The complete list of the raw partitions devices,
corresponding mount points, related resource group name, size, file system type, related LVG and LV
are listed in Table 10.3. The shared storage signifies that the same file systems are available to both
servers, Servers 1 and 2. However, only the active node has full access to the shared storage at any
given time in an active-passive topology like the one we used.

In the case of a failover to the secondary node, the HAC ensures that the shared file systems
are available in the active node. However, there was an application requirement to allow a specific
file system to be distributed and made available on both nodes simultaneously. For this purpose, a
cluster file system was set up using OCFS2 as the file system type. Then, we set up a DLM service to
coordinate the read-write activities from both servers. Moreover, an SBD disk was also presented on
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Figure 10.1 Main layers of the enterprise resource planning (ERP) solution in the testbed.

both servers to provide a fencing mechanism. The disk was explicitly formatted to store SBD-specific
data.

10.1.4 HAC Solution

The ClusterLabs stack HAC (Pacemaker/Corosync) that we selected was also part of the survey
presented in Section 3.2, and it is a comprehensive solution that can support a broad range of features
(Section 3.2). Although the clusterLab stack is an open-source HAC, it has been commercialised and
included in commercial HACs such as SUSE Linux Enterprise High Availability Extension and Red
Hat High Availability Add-On; both of which were part of our survey. We selected this HAC for three
main reasons: (1) it is based on an open-source license and is free of charge, (2) it supports many
EAs, including the selected ERP solution, and (3) the HAC could be deployed in the public cloud
where we established our testbed. This means the HAC provides ERP-specific agents to manage the
ERP resources and that it understands the internals of the ERP solution.

10.1.5 Enterprise Application

We used the above infrastructure to deploy, configure and run a fully fledged commercial ERP appli-
cation that is widely used in industry to manage business functions such as accounting, procurement
and logistics. The licence to use this application was secured with the help of a project collaborator.
The actual ERP application used and the details of our collaborator cannot be listed here due to
confidentiality reasons. However, the high-level architecture of the ERP application is presented in
Figure 10.1.

The selected ERP solution is a multilayered and multitiered solution that can be implemented
across several servers. To show how different layers are addressed in an HA setup, we present the
layers of the ERP solution in Figure 10.1. However, there is also a layer for application servers to
distribute and manage the workload of the solution. We did not include this layer in Figure 10.1
because it was not used. Instead, we placed the application layer in the main instance because it
provides the same services. Furthermore, application layers are usually not part of the HAC setup
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because HA is enabled by a load distribution mechanism (e.g., load balancer). The message and lock
instance enables the distributed transaction management for the EA. In contrast, the backup lock
instance ensures that it can take over some responsibilities from the message and lock instance when
the latter fails. The relational database stores the complete data related to the application. All four
layers and their components are treated as SPOF in this implementation.

10.1.6 Enterprise Application Deployment in the Testbed

Deploying the ERP application in an HA setup consists of multiple steps and requires that the
environment is also prepared to support the implementation. For example, virtual hostnames pointing
to VIPs are required to enable relocation for the resource groups. Hence, the installation requires that
the VIPs and related hostnames are available before starting the installation. Hence, the preparation
activities are listed as follows:

• The required virtual servers are prepared (e.g., the operating system is installed).

• The network configuration is completed, including the allocation of the new IPs and VIPs. The
related virtual hostnames are also defined.

• Storage is prepared, and the required file systems are implemented.

• The cluster file system is prepared and added to the HAC.

When all preparation activities are completed, the installation of the application can start, which must
be performed sequentially. Moreover, because the ERP application must be included in the HAC, the
installation must consider the target node for the installation. Most components are installed in the
primary node, but some may be installed in the secondary node. Hence, we installed the following
application components:

1. the message and lock instance using the virtual hostname in the primary node,

2. the backup lock server instance using the virtual hostname in the secondary node,

3. the database instance using the hostname in the primary node,

4. the main instance in the primary node, and

5. the front-end component.

The first four components (which are described as layers) were identified as SPOFs; hence, they
were included as resource groups in the HAC. The fifth component is a graphical user interface tool
installed on a computer to access the application.
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Figure 10.2 Architecture of the high availability cluster (HAC) in the testbed application.

10.1.7 HAC Architecture

The different aspects of the HAC discussed in the previous sections were brought together to present
the HAC architecture illustrated in Figure 10.2. The implemented HAC software, ClusterLabs stack,
is an open-source package comprising two primary components: Pacemaker (cluster management)
and Corosync (cluster communication). Further, we also deployed multiple resource agents to manage
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quorum { 
provider: corosync_votequorum    
two_node: 1        
expected_votes: 2            
wait_for_all: 1           
last_man_standing: 1           
last_man_standing_window: 10000       
}

Figure 10.3 Extract from the quorum configuration file.

the ERP application, and some of the agents were standard (e.g., to manage a relocatable IP file
system). In contrast, others were specific to the ERP components (e.g., the message and lock instance
and database). Hence, the HAC consisted of five resource groups to provide complete protection
for the application. Four resource groups represented the SPOF components of the application. In
contrast, the fifth resource group, the cluster file system, hosted a cluster fail system. A DLM service
was also included in the resource group because it was a prerequisite for the cluster file system.

We established a heartbeat network using the shared network for the heartbeat communication be-
tween servers. Moreover, we also set up a cluster network to enable node (inter-node) communication.
Resource groups represent all four instances of the ERP application. All running resource groups are
on Node 1, the primary node, whereas resource Group 3 runs on Node 2 because the backup lock
server runs on the secondary node. Hence, active resource groups are displayed in green and passive
resource groups are in yellow. Further details of the configuration are provided in the next section.

10.1.8 HAC Configuration

The complete configuration of the HAC is provided in Table 10.4, which presents the resource names,
related HAC resource names, resource types, corresponding resource groups and short descriptions.
The five resource groups provide complete protection for the ERP application. All resource groups,
except the resource group ‘distributed lock manager’, had dedicated VIPs to enable relocation. In
contrast, the resource group ’distributed lock manager’ hosted a cluster file system. A VIP is not
required because the services are available on both nodes simultaneously, managed by the DLM
service.

There are also three global dependency resources, and two are simple monitors without any
governing function on the underlying resource. The third resource, SBD, is a critical resource to
enable fencing. The resource represents an SBD disk and SBD daemon, presented on both nodes. The
SBD disk stores messages monitored by the SBD daemon. The SBD service is included in the HAC
by configuring an SBD STONITH resource.
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Table 10.4 High availability cluster (HAC) configuration listing all resources, HAC names, resource
types, resource groups, and short service descriptions

Resource Name HAC Resource Name Resource Type Resource Gruop

Message and lock instance group grp_DEV_ascs Resource group N/A
Message and lock service rsc_DEV_ASCS00 Service MLI
FS message and lock instance fs_DEV_ASCS File system MLI
FS trans fs_2_DEV_ASCS File system MLI
FS interface fs_3_DEV_ASCS File system MLI
VIP vip_DEV_ASCS VIP MLI
Database group grp_DEV_database Resource group N/A
Database rsc_DEV_database Service DB
FS database fs_DEV_database File system DB
VIP vip_DEV_database VIP DB
Main instance group grp_DEV_ci Resource group N/A
Main instance rsc_DEV_CI Service MI
FS main instance fs_DEV_CI File system MI
VIP vip_DEV_CI VIP MI
Backup lock server group grp_DEV_ers Resource group N/A
lock system rsc_DEV_ERS10 Service BLS
VIP vip_DEV_ERS VIP BLS
Distributed lock manager (DLM) group grp_DEV_storage_dlm Resource group N/A
DLM dlm_DEV DLM DLM
FS DLM fs_DEV_sapmnt File system DLM
CPU monitor global_rsc_DEV_CPU Monitor N/A
NIC monitor global_rsc_DEV_NIC Monitor N/A
SBD stonith-sbd SBD N/A

Resource Group: N/A - Not applicable because it is a resource group, MLI - Message and lock instance group, DB -
Database, MI - Main instance group, BLS - Backup lock server group, DLM - Distributed lock manager, FS - File
system, SBD - Storage-Based Death, VIP - Virtual IP

10.1.9 Quorum Configuration

We implemented a quorum service using the device realisation ‘node only’, implying no separate
quorum device was required. Instead, the available nodes were used to provide the quorum service.
The quorum mode was a ‘majority node’, which allows running a cluster with only one node. An
extract from the configuration is provided in Figure 10.3.

The service corosync_votequorum runs on all available nodes. The two_node parameter indicates
that the cluster consists of only two nodes, whereas the parameter expected_votes refers to the
number of votes when all nodes are active. The feature wait_for_all enables a quorate when all
nodes are online. The feature last_man_standing enables the cluster to recalculate the expected_votes
dynamically, whereas the last_man_standing_window (in ms) indicates a timer, and when the timer
expires, the expected_votes and quorum are recalculated.

174



10.1 Testbed

Table 10.5 Applied policies for the testbed high availability cluster (HAC)

Policies Description

Failover Fails over to the secondary node when failures occur and when local reinitiali-
sation fails

Failback Policies that enforce a node to be preferred are not considered
Start-up Policies to manage the resource start-up order
Automatic failover Automatic failover is enabled
Automatic policy Automatic policy setting is not considered (e.g., after multiple failovers on the

primary node, the HAC may decide to favour the second node)

Table 10.6 Resource-level configuration parameters for the testbed high availability cluster (HAC)

HAC Resource Start (s) Stop(s) Monitor(s) Monitor Interval(s)

Message and lock service 180 240 120 60
VIP 20 20 20 10
FS message and lock instance 60 60 40 20
FS trans 60 60 40 20
FS interface 60 60 40 20
Database service 1800 1800 60 120
VIP 20 20 20 10
File system for the database 60 60 20 40
Main instance service 180 240 60 120
VIP 20 20 20 10
FS main instance 60 60 40 20
Backup lock server service 190 240 60 120
VIP 20 20 20 10
DLM service 90 100 60 60
FS DLM 60 60 40 20
CPU monitor 10 10 10 10
NIC monitor 60 20 60 10
SBD 20 15 20 3600

DLM - Distributed lock manager, FS - File system, SBD - Storage-Based Death, VIP - Virtual IP

10.1.10 Conditions of the HAC

The HACs have different policies and rules that influence their failure management behaviour.
Therefore, to evaluate the test cases consistently, the HA policies and configuration parameters were
set to ensure that the different HACs can be represented accurately within the testbed setup. Moreover,
to promote solution independence, no HAC-specific features were used. Table 10.5 presents the
policies set in the testbed environment.

The configuration parameters can be set either on a resource or global level, or both. The resource-
level parameters are specific to a particular resource type, whereas a global-level parameter can be
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valid for all resources. Hence, each resource is associated with parameter values for ‘start’, ‘stop’,
‘monitor’ and ‘interval’ [128]. The start is the allowed start time, and the stop is the allowed stop time.
The time to complete the resource status check is the monitor time, whereas the interval for such a
check is specified as the interval time. Thus, a timeout may occur after the specified value. We chose
to use the default values listed in Table 10.6.

Furthermore, the Pacemaker/Corosync HAC has a multitude of configuration options. Three
distinct configurations were considered to allow the experiments to be as accurate as possible:

1. The HAC automatically sets the policies, rules and constraints upon failure of a resource to
influence the failback, resource group failover or system failover. This ensures that the resource
group or the system stays in the secondary node, thus preventing the failback to the primary
node. However, because we executed many test cases in the primary node, this affected the
testing. Therefore, we did not consider all those policies, rules and constraints created after a
failure. Furthermore, we also validated that these changes did not affect the functionality of the
HAC by injecting multiple failures, observing the results and then comparing these with the
default configuration when all such policies were enabled.

2. A stickiness policy was applied to ensure that all resources remain in the same node as they
were running to avoid failovers even when only one resource fails. If one resource fails, it
may affect all the related resources resulting in either a resource group failover or a system
failover. However, to capture the behaviour of the HAC, our test cases were executed under
two conditions: with stickiness policy applied and without the policy. The latter enables the
standard behaviour of the HAC to be observed.

3. All the other Pacemaker/Corosync constraints and policies were set to default.

10.2 Evaluation Methodology

As described earlier in Section 10.1, the HAC-protected ERP application from our testbed was run
for approximately two years. During the first nearly 14 months, the testbed was monitored to collect
information used to develop the BP framework and its modules. Afterwards, the ERP application
was subjected to numerous injected failures for the final eight months. Our objective was to induce
faults in two ways: first, by simulating high application usage, creating a substantial workload and
forcing resources to fail, and second, by injecting faults. We selected a prepackaged ERP application
(Section 10.1.5) with a model company configured with considerable batch processes to simulate the
workload. The batch processes performed data extraction for reporting and writing, and collected
system and performance statistics. Some of the batch jobs were long-running and required significant
system resources. However, when the workload did not result in underlying resource failures, we
proceeded with injecting the failures, as described in Section 10.2.1.1.

The logs generated by the application and the HAC were used to create multiple data sets, which
were used both to train the Bayesian networks from our BP framework and for evaluation purposes.
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The BP framework was not integrated with the HAC, so the evaluation of its modules and of the
end-to-end framework were conducted by passing inputs from these data sets to the BP framework
modules. This enabled us to establish the effect of using the BP framework as part of a future HAC.

We executed the test cases (Section 10.2.1.2) in the testbed and observed the results, and when
required, repeated the test cases. The HAC supporting the ERP required multiple checks such as
data consistency checks after execution of each test case, which took between 10 and 240 minutes.
Hence, completing all test cases took more than eight months between 6 July 2020 and 12 March
2021. Because the execution of each test case took time to complete, we followed two approaches to
executing test cases. The first approach scheduled scripts to run in the background to initiate failures
without supervision. In the second approach, we executed the test cases interactively. Most of the test
cases were executed using this second approach. We established the test protocols to document each
step and the outcome when executing each test case. All the relevant data sets, log files, test protocols,
calculations and graphs are available on our Github repository3.

10.2.1 Test Cases

HACs experience failure on multiple levels, and these failures are handled using the threefold strategy
detailed earlier in the thesis. As the size and complexity of a HAC increases, so does the combination
of failures that can occur. Testing all conceivable kinds of failures is ,in general, not possible. As such,
we chose to induce the critical failures using fault injection methods [105, 232].

The HAC solution (Pacemaker/Corosync) uses scores to determine the target for relocation. For
example, if a node with a high score is available upon a resource failure, the HAC solution relocates
the service to that node. Moreover, the HAC solution can also automatically distribute the resources
across all available nodes (Pacemaker-specific feature). This behaviour could incur downtime because
some resources might be relocated automatically after a failover or failback. However, to ensure that
we covered most of the critical combinations of the configuration parameters of HACs, our test cases
were repeated under two conditions: with the stickiness set and without stickiness, meaning that the
standard behaviour of the HAC under analysis could be observed. The stickiness parameter prefers
the node where the resources are currently running.

10.2.1.1 Fault Injection Methodology

The objective of using fault injection was to induce many of the real-life failures related to EAs and
HACs. Hence, we identified the corresponding failures by analysing the research literature, case
studies and documentation [21, 110, 117, 264]. Moreover, we also identified several fault injections
recommended by vendors of both the EA and HAC that we implemented in the testbed [190, 55, 264].
A typical failure in the HAC is at a single resource-level, but multiple failures can also occur across
two or more resource groups. Further, we created additional fault injections to capture failures related
to the characteristics introduced in Chapter 6, e.g., application-provided self-healing capabilities or a

3https://github.com/ps234/Project
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weak (noncritical) resource. Hence, the following types of failures are included in our evaluation of
the BP framework:

1. A critical resource fails.

2. A resource with application-provided self-healing capabilities fails.

3. A noncritical resource fails.

4. Two resources in the same resource group fail.

5. Two resources in two different resource groups fail.

6. A resource repeatedly fails.

7. A shared-dependency resource fails.

Moreover, with each such failure, we also considered the hierarchical position of the failed resource
and the resource type. Consequently, fault injection approaches were designed to simulate failures
either manually or automatically. Finally, the identified fault injections were included in test cases to
capture comprehensive information related to conditions, rules and policies associated with the HAC,
protected EA and deployment environment.

10.2.1.2 Test Cases

Two groups of test cases were created. The first group consists of nine test cases, and the second
group has 10 test cases. The data sets generated by the first group were used to train and test the
model (BN-HAC), and the data sets from the second group were used to supply online testing data
to the models in the framework evaluation experiments. Each test case consists of one or more fault
injections. Usually, only one fault injection is associated with a test case. However, when two faults
are injected on two different resources, the test case consists of two fault injections. The resources in
such a case could come from the same resource group or two resource groups (scope). Table 10.7 lists
all test cases used in our evaluation. The table shows the criticality, dependency level (D-level), scope,
whether the test case was reiterated multiple times or not (R), the resource type (RT) affected by the
failure, and whether the test case is a direct measurement of learning performance (LP) or not. Each
test case was repeated multiple times to draw a statistically significant conclusion.

The test case T1 was performed on a single critical resource, and its scope was within the same
group. Test case T2 was performed on a weak resource. The resource was noncritical, had a medium
dependency level, and the scope was within the resource group. There was no reiteration of the test
case, meaning that the test case was not repeated several times consecutively on the same resource. In
contrast, Test Case T7 injected a fault on two different resources across two resource groups, which is
indicated in the table by the scope, and which is set to two. Test Case T3 indicates that the test case
was repeated five times to observe the outcome. For example, if the time-out threshold was reached
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Table 10.7 Overview of test cases

TC ID Fault Injection Scope R RF DT DLD DLU CF RT LP

T1 Kill a key process of a service 1 Y Y L L L Y S Y

T2 Simulate disk crash 1 N N L L H N F Y

T3 Stop a service in OS-level 1 Y N L L L Y S N

T4 Kill the main database processes 1 N N L L L Y S N

T5 Simulate disk crash 1 N N L L H Y F N
Kill a key process of a service N Y L L L Y S N

T6 Kill a key process of a service 1 N Y L L L Y S N
Simulate disk crash N N L L H N F N

T7 Simulate disk crash 1 N N L L H N F N
Simulate disk crash N N L L H N F N

T8 Simulate disk crash 2 N N L L H Y F N
Stop a service in OS-level N N L L L Y S N

T9 Kill a key process of a shared service 1 N N S L L Y S N

T10 (T1) Kill a key process of a service 1 Y Y L L L Y S Y

T11 (T2) Simulate disk crash 1 N N L L H N F Y

T12 Simulate disk crash 1 N N L L H Y F N

T13 Simulate disk crash 1 Y N L L H Y F N

T14 Simulate disk crash of the database 1 N N L L H Y F N

T15 Stop a service in OS-level 1 N N L L L Y S N
Simulate disk crash N N L L H Y F N

T16 Simulate disk crash 1 N N L L H Y F N
Simulate disk crash N N L L H N F N

T17 Simulate disk crash 1 N N L L H N F N
Simulate disk crash N N L L H N F N

T18 Simulate disk crash 2 N N L L H Y F N
Kill a key process of a service N Y L L L Y S N

T19 Simulate disk crash of a shared resource 1 N N L L S Y F N

TC - Test case.

Fault injection methods: Kill a key process of a service - kill forcibly a key process of an application service. Simulate
disk crash - unmount the file system forcibly while killing all the processes using the disk. Kill the main database
server processes (kernel) - kill the kernel processes of the database at OS level. Stop a service in OS-level - a service
with a large number of processes is stopped.Kill a key process of a shared service - a key process of the shared
service is terminated. Simulate disk crash of the database - unmount the file system forcibly while killing all the
processes using the disk. Simulate disk crash of a shared resource - unmount the file system forcibly while killing
all the processes using the disk.

Scope: 1-within a resource group, 2-within two resource groups. Reiteration (R): Y - the test case is executed consecutively
five times, N - one-off execution. Redundancy factor (RF): T - true, F -false. Dependency type (DT): L - local,
S - shared, G - global. Dependency levels down (DLD): L - low, H - high. Dependency levels up (DLU: L - low,
H - high. Critical factor (CF): T - true, F - false. Resource type (RT): S - Service, FS - File system. Learning
performance (LP): whether part of the direct measurement of learning performance Y - Yes, N - No.
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Table 10.8 Full details of test case T1

Parameter Value

Test ID T1
Test Case A single resource fails
Scope Within a resource group
Category Recoverable, no failover
Reiteration No
Constraints Policies associated with failover preferences are removed
Prerequisites The HAC is running
Expected outcome The process is restarted automatically by the service
Resource id C1G1A1B1
Resource name Message and lock service
HAC Resource name rsc_DEV_ASCS00
Group ID C1G1A1
Cluster id cluster1
Node id 1
Resource type Service
Reinitialization factor Reinitialisable
Redundancy factor No
Dependency type Local
Critical factor 2
Dependency type 2
Critical factor 3
Dependency level 1
Dependency depth 1
Dependency levels up 1
Dependency levels down 1
Fault injection method Execute the script to kill the key process of the service
Script script_01

for reinitialisation, the HAC could take a different mitigation action than for a single failure. The
complete list of all details captured in a test case is illustrated, for test case T1, in Table 10.8.

10.2.2 Data Sets

We recorded the following information during the execution of the tests cases mentioned in the
previous section: name of the failed resource, event timestamp, the related resource group and the
characteristics that were introduced in Chapter 6. The characteristics are: reinitialisation factor,
location of the resource in the hierarchy and the number of resources above and below the failed
resource, type of the resource, failure repetition count, criticality and self-healing capabilities provided
by the application.

The execution of the BP framework uses two data sets at any given time. For example, the
BDN-HAC model uses Data Set 1 as an input into the model, and the BPFP prepares this data set
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after extracting it from the HAC log. The output of the BDN-HAC model becomes Data Set 3, which
is then used as an input to the BN-HAC model. We created 12 data sets and organised them into four
groups: (1) training; (2) production; (3) derived; and (4) availability. We further associate the data
sets in groups 1 and 2 with a stickiness policy of the HAC, as described in Section 10.2.1.2, to ensure
that HAC failover preferences are considered in the evaluation. Therefore, we used two cases when
creating the data sets, stickiness policy enabled and stickiness policy disabled.

The first group of data sets focuses on training by parameter learning and consists of Data
Sets 1, 2, 3 and 4, which were obtained by running test cases T1–T9. Data Sets 2 and 4 were created
with the stickiness policy enabled, while Data Sets 1 and 3 were created with the stickiness policy
disabled. The second group supports inference using production data and comprises Data Sets 5, 6, 7
and 8, which were obtained by executing test cases T10-T19. Data Sets 7 and 8 were created using
the stickiness policy enabled, and Data Sets 5 and 6 were obtained with the stickiness policy disabled.
The objective of the third group is to test the correlation between parameter learning and data sizes.
Hence, Data Sets 9 and 10 were created by inputting Data Set 1 into the BDN-HAC model and adding
a different number of instances with the state nonfailure. The fourth group was created to measure
MTTR and availability over time. Hence, the Data Sets 11 and 12 obtained failure instances from
Data sets 6 and 8, respectively.

The complete list of data sets produced by the experiments is presented in Table 10.9, and we
detail each data set as follows:

1. Data Set 1 was obtained by executing test cases T1–T9 twice in the HAC with the stickiness
policy disabled. The resulting HAC log file was extracted, processed and prepared by the BPFP
because the primary objective of this data set was to provide data to the BDN-HAC model. The
HAC failures identified and prepared by the BPFP were duplicated to test the prediction quality
of the BDN-model and the BN-HAC model.

2. Data Set 2 was acquired by executing test cases T1-T9 twice in the HAC with the stickiness
policy enabled. The resulting HAC log file was extracted, processed and prepared by the BPFP
to be inputted into the BDN-HAC model.We duplicated the output from the BPFP to validate
the prediction quality of the BDN-HAC and BN-HAC models.

3. Data Set 3 was created by retaining those instances from Data Set 1 that the BDN-HAC
model predicted to be associated with locally unmanageable failures. These data samples were
replicated 15 times to obtain sufficient failures for training the BN-HAC model. Moreover, to
ensure that the failures were distributed evenly, we inserted additional nonfailure data samples,
one for each 20s to emulate data for a week with 20s interval.

Data Set 4 was created the same way as Data Set 3 but by obtaining unmanageable failures
from Data Set 2. We replicated data samples 15 times and used the same configuration as Data
Set 4 to obtain additional data samples.
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Table 10.9 Overview of the data sets

Data Set Model #Nodes #Instances #Failures Test Cases Scope Dependency S† Group

1 BDN-HAC 12 72 48 T1-T9 Tr None N 1
2 BDN-HAC 12 68 48 T1-T9 Tr None Y 1
3 BN-HAC 24 30240 180 T1-T9 Tr Data Set 1 N 1
4 BN-HAC 24 30240 180 T1-T9 Tr Data Set 2 Y 1
5 BDN-HAC 12 36 26 T10-T19 Pd None N 2
6 BN-HAC 24 10 10 T10-T19 Pd Data Set 5 N 2
7 BDN-HAC 12 37 28 T10-T19 Pd None Y 2
8 BN-HAC 24 10 10 T10-T19 Pd Data Set 7 Y 2
9 BN-HAC 24 672 180 T1-T9 Tr Data Set 1 N 3
10 BN-HAC 24 10080 180 T1-T9 Tr Data Set 1 N 3
11 BPF 24 10080 10 T10-T19 Pd Data Set 6 N 4
12 BPF 24 10080 10 T10-T19 Pd Data Set 8 Y 4

#Nodes: number of nodes in the model, #Instances: total number of obtained records, #Failures: number of failures for
further analysis, Test cases: T1-T9 - part of producing training (learning), 10-T19 part of producing production data,
Scope: Tr - Test/training, Pd - Production data, Dependency: dependency to another data set, † (Stickiness): Y -
used, N - not used, Group: 1 - Training, 2 - Production, 3 - Derived, 4 - Availability.

Dependency implies that the previous data set was used to create a new data set.

For Data Sets 3, 4, 9 and 10, the number of instances reflects the frequency of the collection in seconds, k = 20s for Data
Sets 3 and 4, k = 60s for Data Set 10 and k = 900s for Data Set 9.

For Data Sets 11 and 12, the number of instances reflects the frequency of the collection in seconds, k = 60s.

4. Data Set 5 was acquired by executing test cases T10-T19 twice in the HAC with the stickiness
policy disabled. The resulting HAC log file was extracted, processed and prepared by the BPFP
to deliver the data to the BDN-HAC model.

Data Set 6 was obtained by obtaining those instances from Data Set 5 that the BDN-HAC model
predicted to be locally unmanageable failures.

5. Data Set 7 was obtained by executing test cases T10-T19 twice in the HAC with the stickiness
policy enabled. The resulting HAC log file was extracted, processed and prepared by the BPFP
to be inputted into the BDN-HAC model.

6. Data Set 8 was created from the outcome of inputting Data Set 7 to the BDN-HAC model.
Therefore, it has only unmanageable failures.

7. Data Set 9 was created from the outcome of Data Set 1 from the BDN-HAC model, and as such,
it has only unmanageable failures. The failure information was replicated by a factor of 15. We
then inserted a new instance for every 900s to produce data for a week with a 900s interval.
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Figure 10.4 Distribution of the failed-resource types in data sets.

8. Data Set 10 was created similarly to Data Set 9 and using the outcome of Data Set 1 from the
BDN-HAC model. However, the nonfailure instances were inserted for every 60s instead.

9. Data Set 11 was created using failure data from Data Set 6, which was updated with new
instances to represent nonfailure data. The total number of instances was 10080 to emulate
continuous data for a week with a one-minute interval to represent availability over time. The
instances were updated with the percentage of availability that the system experienced during a
failure. Hence, the failure instances received 0% while those without failures received 100%.

10. Data Set 12 was created in the same manner as Data Set 11, but it obtained failure data from
Data Set 8 instead.

10.2.3 Data Set Analysis

We analysed Data Sets 1, 2, 5 and 7 because they are the source data sets obtained directly from the
HAC logs. The types of the failed resources from the HAC determine what mitigation action can be
initiated. Other characteristics that can influence the mitigation actions are as follows:

• position in a resource hierarchy,

• dependency relationships with other resources,

• whether the resource can be reinitialised,

• criticality,

• an application providing the self-healing capability.
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Figure 10.5 Distribution of mitigation actions based on the threefold strategy to handle failures by the
HAC.

Table 10.10 Mean execution time in seconds for three mitigation steps of the HAC in the testbed

Resource Reinitialisation Resource Group Failover ∗ System Failover

Data Set 1 26 836 927
Data Set 2 97 107 2498
Data Set 5 15 no 824
Data Set 7 11 no 1142
Mean 37 236 1348

no - no occurrences of resource group failover, ∗ the failure of the distributed lock manager (DLM) group 𝐸1 always
resulted in a system failure; hence, it is not presented in the table.

In the case of a resource group, the dependency on other resource groups is considered. Figure 10.4
illustrates the distribution of the resource types in Data Sets 1, 2, 6 and 7.

The mitigation actions taken by the HAC to resolve different failures are presented in Figure 10.5.
In most cases, the HAC could reinitialise the resources, avoiding any downtime for the EA.

There are significant differences in the time required for reinitialisation, resource group failover or
system failover. For example, a file system requires 15s to reinitialise; however, the same resource can
require 30s in other circumstances. Some complex resources (e.g., a database service) take more than
two minutes to complete reinitialisation. Similarly, the time required to complete a resource group
failure also differs based on the type of resources in the group. A system failover is always the most
expensive mitigation action because it requires all resource groups to be stopped in the source node
and restarted in the target node. Therefore, the system failover is the least preferred. We analysed the
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Figure 10.6 Contingency table for the basic metrics.

execution time for each mitigation action from the data sets and presented the mean values for each
action in Table 10.10.

10.2.4 Evaluation Metrics

Several metrics are used to evaluate the BP framework. Of these, some are relevant to individual
modules, whereas others are appropriate for the complete BP framework. Achieving high prediction
quality for the individual models, BDN-HAC and BN-HAC, is the basis for ensuring high prediction
quality for the complete framework. When measuring the prediction quality, four outcomes are
possible, and we refer to them as basic metrics, which are used to define derived metrics [234].
Figure 10.6 presents the contingency table with the basic metrics, and a concise description of each
outcome is provided as follows:

• True positive (TP)
Both the prediction and the actual result are positive.

• False positive (FP)
The prediction is positive, whereas the actual result is negative.

• False negative (FN)
The prediction is negative, whereas the actual result is positive.

• True negative (TN)
Both prediction and the actual result are negative.

The derived metrics used in our evaluation and defined in terms of the basic metrics are presented
in Table 10.11. We also present several other relevant metrics below that we use to evaluate the BP
framework from additional perspectives:
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Table 10.11 Metrics derived from the basic metrics, respective symbols, formulas and descriptions

Metric Symbol Formula Description

Recall or sensitivity
or
true-positive rate
(TPR)

𝑟 , tpr 𝑇𝑃
(𝑇𝑃+𝐹𝑁 ) Correctly predicted

failures/all true failures

False positive rate
(FPR)

fpr 𝐹𝑃
(𝐹𝑃+𝑇𝑁 ) Incorrectly predicted

failures/all non failure

Accuracy ac (𝑇𝑃+𝑇𝑁 )
(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ) Correctly predicted

failures/all predictions

Precision pr 𝑇𝑃
(𝑇𝑃+𝐹𝑃 ) Correctly predicted

failures/all predicted failures

Specificity 1− fpr 𝑇𝑁
(𝑇𝑁+𝐹𝑃 ) Correctly predicted

nonfailures/all non failures

F-measure fm 2×𝑝𝑟×𝑡𝑝𝑟
𝑝𝑟+𝑡𝑝𝑟 ∈ [0,1] Weighted harmonic mean of

precision and recall

MCC† mcc (𝑇𝑃×𝑇𝑁 − 𝐹𝑃× 𝐹𝑁 )√
(𝑇𝑃+𝐹𝑃 ) (𝑇𝑃+𝐹𝑁 ) (𝑇𝑁+𝐹𝑃 ) (𝑇𝑁+𝐹𝑁 )

Provides a balanced measure
to measure the quality of
binary classifications

†MCC - Matthews correlation coefficient

M1. Receiver operating characteristics (ROC) curve. The ROC analysis and resulting ROC
curves are used to evaluate the prediction quality of a binary model or compare the prediction
quality of multiple binary models [166]. The ROC curve depicts the trade-offs between the𝑇𝑃𝑅
(sensitivity) and 𝐹𝑃𝑅 (1– specificity). Hence, the curve presents the𝑇𝑃𝑅 on the vertical axis and
the 𝐹𝑃𝑅 on the horizontal axis, and the corresponding area under the curve (AUC) represents
the area underneath the ROC curve. The AUC ranks randomly chosen positive predictions
higher than randomly chosen negative predictions. If 𝑇𝑃𝑅 ≈ 1 and 𝐹𝑃𝑅 ≈ 0, it indicates the
model performs well [68]. The following paragraph describes the experimental design for ROC
analysis to measure the prediction quality of the BDN and BN models.

We assumed a 95% confidence interval for measuring the prediction quality using the ROC
analysis. Further, we used a state variable to indicate the binary outcome and used 0 to indicate
failure and 1 for no failure using the expected outcome (Section 10.2.5). Thus, the binary value
was given as the "value of the state variable" when plotting the ROC curves, which means 0
represents both resource group and system failures. Subsequently, we mapped the outcomes
from the HAC and BDN models using a mapping table derived from the threefold strategy
that HACs use to deal with failures. These values were entered as test variables for HAC,
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Table 10.12 Area under the curve intervals and their interpretations

AUC Interval Interpretation

0.9-1.0 Excellent (A)
0.8-0.9 Good (B)
0.7-0.8 Fair (C)
0.6-0.7 Poor (D)
0.5-0.6 Fail (F)

Table 10.13 Mapping values used in plotting the receiver operating characteristic (ROC) curves

Mapping Value Description

1 System failover
2 Resource group failover
3 No failure †

† This implies that reinitialisation is enabled; thus, HAC can reinitialise the resource.

BDN-HAC and BN-HAC. Therefore, if the HAC performs a system failover, this outcome is
mapped to 1. Similarly, if the HAC performs a resource group failover, the mapping value
becomes 2, and then 3 for no failure, indicating that the resource in question is successfully
reinitialised. The BDN-HAC outcomes are mapped to either 1 or 3 to indicate failure and no
failure, as it deals only with binary outcomes. For example, if the HAC performs a system
failover and the BDN-HAC predicts no failure, these values are mapped to 1 and 3, respectively.
On the other hand, the BN-HAC output can be mapped to all three values as listed in table
Table 10.13. If the BN-HAC predicts a resource group failover is required, the test variable is
set to 2. Using this procedure, we used the actual outcomes to map and plot the ROC curves
using SPSS Statistics.

M2. Utility analysis. The objective of the utility analysis is to compare utility outcomes between the
two variants of our BDN model. The resulting curve presents utility outcomes on the vertical
axis as a function of test cases on the horizontal axis.

M3. Strength of influence. The strength of influence is computed using the CPTs of the child
nodes, and therefore it shows the distance between the conditional probabilities conditioned
on the state of the parent nodes [192]. The objective of the measurement is to compare our
two BDN models to ensure that the conditional probabilities are accurately represented even
when weights are considered in the child nodes. Furthermore, we employ the measurement to
ensure that the conditional probabilities reflect the expected influence between child and parent
nodes (resources and resource groups) in the BN model. Two types of measurements are used:
Euclidean and Hellinger. The Euclidean distance measures the absolute difference between
probability distributions, whereas the Hellinger distance focuses on relative differences [132].
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Table 10.14 Execution time metrics and the related notation associated with the high-availability
cluster (HAC), Bayesian decision network (BDN-HAC) model and Bayesian network (BN-HAC)
model

Notation Scope Description

Δ𝑡𝑜 Common Period of normal operation
𝑡𝑓 Common Time instant of suspected failure
Δ𝑡𝑑 Common HAC detection window
Δ𝑡𝑟 Baseline HAC resource reinitialisation window
Δ𝑡𝑔 Baseline HAC resource group failover window
Δ𝑡𝑠 Baseline HAC system failover window
Δ𝑡𝑖 BPFP BP framework preparation window for resource
Δ𝑡 𝑗 BDN-HAC BDN-HAC prediction window for locally manageable resource
Δ𝑡𝑘 BN-HAC BN-HAC failure propagation and prediction window

Table 10.15 Runtime metrics and the related notation for the individual steps of the Bayesian decision
network (BDN-HAC) model and Bayesian network (BN-HAC) model

Notation Scope Description

Δ𝑡 𝑗𝑎 BDN-HAC BDN input time
Δ𝑡 𝑗𝑏 BDN-HAC BDN inference time
Δ𝑡 𝑗𝑐 BDN-HAC BDN output time
Δ𝑡𝑘𝑎 BN-HAC BN input time
Δ𝑡𝑘𝑏 BN-HAC BN inference time
Δ𝑡𝑘𝑐 BN-HAC BN output time

10.2.4.1 Evaluation Metrics for Runtime Overhead and Execution Time

We measure the execution times for the each step of the activities carried out by the baseline
HAC solution and by the modules of our BP framework as shown in Figure 9.1 earlier in the
thesis and summarised in Table 10.14. The scope ‘common’ indicates that such a metric is used
by both the HAC and BP framework modules. For example, the HAC detection window is
used by both, and it is therefore described as ‘common’. The scope ‘baseline’ shows metrics
associated with the HAC runtime, whereas the name of a module from out BP framework
indicates a module-specific metric. We note that the threefold strategy employed by HACs is
associated with the three ‘baseline’ execution times, where Δ𝑡𝑟 , Δ𝑡𝑔 and Δ𝑡𝑠 correspond to the
first strategy of reinitialising a resource, the second strategy of resource group failover and
the third strategy of system failover, respectively. Thus, the system failover time (𝑆) for the
baseline HAC solution can be calculated as follows

𝑆 = Δ𝑡𝑑 +Δ𝑡𝑟 +Δ𝑡𝑔 +Δ𝑡𝑠 . (10.1)
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Table 10.16 Metrics and the related notation associated with the components of the Bayesian prognostic
framework preparation (BPFP) module

Notation BPFP
Component

Description

Δ𝑡𝑖𝑎 2 Polling frequency for extracting log entries
𝑡𝑖𝑏 2 Time to query the configuration information
𝑡𝑖𝑐 2 Time to extract
𝑡𝑖𝑑 2 Time to parse the log entries into a structured form
𝑡𝑖𝑒 2 Time to enrich data by obtaining more information from the

configuration and runtime environment
𝑡𝑖 𝑓 3 Time to complete the transformation of certain values
𝑡𝑖𝑔 3 Time required for conversion
𝑡𝑖ℎ 4 Time to complete filtering

BPFP components: 2 - log interface, 3 - transformation and conversion, 4 - filter.

We further break down the module-specific metrics for our BP framework into multiple metrics
that measure the execution time and computational overhead at a fine-grained level. Table 10.15
lists the metrics associated with the module metrics of BDN-HAC and BN-HAC. Each module-
specific metric is broken down into three metrics. For example, the module metric associated
with the BN-HAC comprises BN input time, BN inference time and BN output time. Thus, input
time is the time required to invoke and deliver data to the model, and inference time is the
model inference time. In contrast, output time is required to prepare the model output (e.g.,
interpreting the utility value of the BDN model and sending it to the next model). Similarly, the
BN-HAC model metric comprises three metrics with the same meaning as for the BDN-HAC
model metric. The following equations present the connection between the module metrics and
their components

Δ𝑡 𝑗 = Δ𝑡 𝑗𝑎 +Δ𝑡 𝑗𝑏 +Δ𝑡 𝑗𝑐 , (10.2)

Δ𝑡𝑘 = Δ𝑡𝑘𝑎 +Δ𝑡𝑘𝑏 +Δ𝑡𝑘𝑐 . (10.3)

M4. Runtime overhead of the BPFP module. We break down the four runtime-related compo-
nents of BPFP presented in Chapter 8 to define several execution time metrics for the BPFP
components used at runtime (Table 10.16). The total BPFP execution time can be calculated as
follows

𝛥ti = Δ𝑡𝑖𝑎 + 𝑡𝑖𝑏 + 𝑡𝑖𝑐 + 𝑡𝑖𝑑 + 𝑡𝑖𝑒 + 𝑡𝑖 𝑓 + 𝑡𝑖 𝑓 + 𝑡𝑖𝑔 + 𝑡𝑖ℎ . (10.4)
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Δ𝑡𝑖𝑎 is considered even though the execution time depends on the polling frequency because it
helps measuring the total time required to execute the complete BPFP.

M5. MTTR evaluation. We use two MTTR representations to evaluate the improvements provided
by the BP framework. The first, 𝑀𝑇𝑇𝑅𝑏𝑎𝑠𝑒 , represents the metric associated with the baseline,
which measures the time to recovery by the HAC until the application is fully operational. The
second ,𝑀𝑇𝑇𝑅𝐵𝑃𝐹 , measures the time to recovery when the BP framework is employed. In
general, an MTTR is derived from all 𝑁 > 0 TTR (time to recover) durations within a specific
time window and can be formally expressed as follows

𝑀𝑇𝑇𝑅 =
1
𝑁

𝑁∑︁
𝑖=1

TTR𝑖 . (10.5)

The first MTTR representation for baseline can be expressed as follows

𝑀𝑇𝑇𝑅𝑏𝑎𝑠𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

TTR𝑏𝑎𝑠𝑒,𝑖 , (10.6)

where𝑇𝑇𝑅𝑏𝑎𝑠𝑒,𝑖 represents the TTR for the 𝑖-th failure within the time window used to calculate
𝑀𝑇𝑇𝑅𝑏𝑎𝑠𝑒 . Note that this TTR always includes the terms Δ𝑡𝑑 +Δ𝑡𝑟 . Additionally, if a resource
group failover is performed by the HAC, the term Δ𝑡𝑔 will also be included in the calculation.
Finally, if a system failover is required, the term Δ𝑡𝑠 will be included in the TTR calculation as
well.

The second representation that describes the MTTR when the BP framework is employed is
expressed as follows

𝑀𝑇𝑇𝑅𝐵𝑃𝐹 =
1
𝑁

𝑁∑︁
𝑖=1

TTR𝐵𝑃𝐹,𝑖 , (10.7)

where𝑇𝑇𝑅𝐵𝑃𝐹,𝑖 represents the TTR for the 𝑖-th failure within the time window used to calculate
𝑀𝑇𝑇𝑅𝐵𝑃𝐹 . In the worst-case scenario, this TTR includes all the time periods: Δ𝑡𝑑 , Δ𝑡𝑟 , Δ𝑡𝑔, Δ𝑡𝑠 ,
Δ𝑡𝑖 , Δ𝑡 𝑗 and Δ𝑡𝑘 , but fewer time periods may be needed, e.g., only Δ𝑡𝑑 , Δ𝑡𝑟 , Δ𝑡𝑖 and Δ𝑡 𝑗 , when
the BDN-HAC module correctly predicts that the 𝑖-th failure of a resource can be managed
locally.

M6. Analysis of availability over time. The objective of this metric is to evaluate the availability of
the application using the previously defined MTTR representations, as described in M5. Thus,
percent availability is measured using the following equations [167]

availability(𝐻𝐴𝐶𝑏𝑎𝑠𝑒) =
(

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅𝑏𝑎𝑠𝑒

)
×100%, (10.8)
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availability(𝐻𝐴𝐶𝐵𝑃𝐹 ) =
(

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅𝐵𝑃𝐹

)
×100%. (10.9)

In these calculations, the values of MTBF are the same for the two measurements because
using the BP framework (or not) does not influence the operation of the IT application between
failures. Equation (10.8) calculates the availability over time for the baseline, and eq. (10.9)
presents the measurement when the BPF is employed.

M7. Runtime overhead. Two metrics are captured: CPU and memory utilisations. These metrics
are used when evaluating the performance of the individual components of a BP framework
module or the complete module (e.g., the HMTHA tool).

M8. Execution time. The aim is to capture the execution time of individual components of a module
and to present the total execution time for a module. For example, to measure the execution
time of the BDN-HAC model, the execution time of its three components are captured and
added to obtain the entire execution time of the model.

10.2.5 Expected Outcome

Expected outcomes are results that are expected from the HAC when a particular type of resource fails.
For example, when a specific type of resource fails, the expected result may suggest that a resource
group failover is sufficient to resolve the problem. To assess a typical HAC outcome upon a failure,
we identified the set of expected outcomes. The actual outcomes of the HAC, BDN and BN were then
checked against the expected outcomes to evaluate the quality of the actions taken by the HAC and
the quality of the predictions by the BDN and BN.

To obtain the expected outcomes, we reviewed the results and test cases that the vendors and
service providers published for the EA under analysis [190, 110, 55, 117, 175, 263, 264]. Furthermore,
we validated these outcomes with further experiments on the HAC in the testbed. Hence, the empirical
evidence was obtained using the following three approaches:

1. We analysed the HAC log files from different HAC solutions for the same type of EA architec-
ture.

2. We performed multiple iterations of experiments in the testbed to study the results. For example,
we performed failovers manually to ensure that the resource groups can failover independently
and we verified that the HAC in question could handle such failures and take suitable mitigation
actions.

3. We analysed the data produced by our experiments and derived conclusions. For example, the
HAC initiated a system failover when a shared resource failed. However, in the subsequent
experiments, the HAC reinitialised the resource and achieved no failure.
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10.3 Evaluation of Bayesian Prognostic Framework Modules

10.3.1 Evaluation of the Holistic Modelling Technique for High Availability

This section presents the evaluation of the HMTHA technique described in Chapter 5, and we use
the technique to create an HHAM model and the accompanying M-table for the testbed application.
The T-rules are reused from Chapter 5. In Appendix C, we present the results from investigating the
computational overheads associated with creating an HHAM model, notating here that this represents
a one-off, offline activity, and that these overheads are comparable to those of other modelling tools.

10.3.1.1 Evaluation of the Model Construction

The HMTHA is the first step in designing and implementing the BP framework, as illustrated in
Figure 9.1. The software tool that we developed (described in Section 5.5) is written in Java [257],
which we installed and ran on a computer with a 3.4 GHz Intel Core i7 and 64 GB of memory running
Windows 10 64-bit. The database was MySQL 8.0.18 (64-bit).

Technique for Obtaining an Instance of the Model for the Testbed Application The five-step
modelling process from Section 5.3.3 was used to identify the components of the testbed environment
to create the HHAM model, M-table and T-rules as detailed below.

1. Obtain the high availability application requirements

The first step in the process was to identify the availability requirements for the ERP solution, and we
assumed an annual SLA of 99% (Category 1). We identified all critical resources by employing a
diverse range of techniques, such as identifying an SPOF component, evaluating single resource failure
effects, and performing a risk assessment on the resource-level [49]. Furthermore, documentation
and guidelines from the application vendor were also employed to identify the relevant resources.
Subsequently, we combined the identified resources into resource groups. There was a requirement to
support two non-SPOF resources, file systems for interface and software logistics (Category 2), as
part of the HA setup . The deployment pattern was a public cloud so that the capabilities available in
that environment could be used (Category 3).

2. Apply the holistic modelling technique for high availability

This section describes the application of the HMTHA tool to create an HHAM model and manually
construct the accompanying M-table and T-rules for the testbed environment. The top-level application
vertex was identified first. Subsequently, five resource group vertices were added. Next, simple
vertices representing service vertices were added using the resource group vertices as parents. A
vertex representing the file system was added to all resource group vertices.

Moreover, all resource groups except the resource group representing the DLM have a VIP to
enable the relocation of the resource groups individually. The DLM group is a shared group and
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Table 10.17 Holistic high-availability model grouped by vertex type

Vertex Type Model

Application 1
Resource group 5
Weak 2
Simple 13
Global 3
Shared 0

Total 24

presents a shared file system (cluster file system) for all other resource groups. Consequently, the
DLM group is responsible for retaining locks even during failures to preserve transactional integrity.
Three global dependencies were added to represent the CPU, memory and SBD. The first two were
created as global and weak vertices to indicate that failure of the corresponding resources does not
lead to failure of any other resources.

In contrast, the SBD vertex was created as a global dependency because a failure of the correspond-
ing resource leads to the failure of the entire system. Considering the Category 2 HA requirements,
we added two file systems representing the interface and software logistics as weak vertices. We also
added the related arc for each vertex type, and this iteration continued until all required vertices were
added.

3. Create/update the holistic high-availability model and M-table

The resulting HHAM model is displayed in Figure 10.7, and Table 10.17 lists the identified
vertices for the HHAM grouped by vertex type. The model consists of 24 resources in four layers
organised into five resource groups. Six of the resources are logical without physical representation.
The three global dependency resources are illustrated using thick ellipses, whereas the two non-SPOF
resources are depicted using dashed circles. Using the HHAM, we constructed the first part of the
M-table, which is presented in Table 10.18. The table is completed with a second part as part of
constructing the BN model, which is described in Section 10.3.3.1. The same T-rules presented in
Table 5.3 were reused because the rules were explicitly created to map BN-based models.

4. Enable HA Facilitators

The focus of the HAC solution ClusterLabs stack was to protect the critical components of the ERP
solution [21]. The implementation and configuration of the HAC are described in Sections 10.1.7 and
10.1.8.

5. Enable other models

Section 10.3.3.1 describes how the HHAM and accompanying M-table and T-rules are used to create
the corresponding BN model.
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Table 10.18 First part of the mapping table (M-table) for the testbed application

HHAM

Resource Vertex Type Arc Type Layer

Main application (ERP) A A Top
Message and lock group RG RG a
Message and lock service S R b
VIP S R c
FS message and lock S R c
FS trans W R c
FS interface W R c
Database group RG RG a
Database S R b
VIP S R c
FS database S R c
Main instance group RG RG a
Main instance service S R b
VIP S R c
FS main instance S R c
Backup lock server group RG RG a
Backup lock server service S R b
VIP S R c
DLM group RG,GD SG a
DLM GD G b
FS DLM GD G b
CPU monitor GW G Top
NIC monitor GW G Top
SBD service GD G Top

Vertex Type: A - Application, RG - Resource group, S - Simple, W - Weak, GD - Global dependency, GW - Global
dependency, weak.

Arc Type: A - Application, RG - Resource group, R - Resource, SG - Shared resource group, G - Global.

10.3.1.2 Runtime Overhead

Appendix C shows that the memory requirement is cumulative as more vertices are added. The mean
utilisation is between 2 and 4 MB per node. Similarly, the CPU utilisation was under 2.5% when
adding nodes, which is experienced for a period of 0.6±0.4s. The conclusion is that scalability is not
a concern as modern PCs are powerful and can support constructing a model with many vertices and
arcs in a model.
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Table 10.19 Details of the two BDN models

Models Total
Nodes

Chance
Nodes

Latent
Nodes

Utility
Nodes

Decision
Nodes

ALU
Node States Parameters

BDN-HAC-1 12 10 2 1 1 N/A 23 89
BDN-HAC-2 12 7 N/A 2 2 1 19 51

N/A - Not applicable.

10.3.2 Evaluation of the Locally Manageable Resource Failure Prediction

The evaluation of the BDN-HAC model is presented in two steps. First, we compared the two models,
BDN-HAC-1 and BDN-HAC-2, to identify the most accurate of the two for use within the BDN-HAC
module of our BP framework. Next, we evaluated the ability of the selected model to deal with
incomplete data, with the difference in prediction quality between data, and with critical nodes versus
noncritical nodes between established characteristics (ECs) and new characteristics (NCs).

We present the details of the two implemented BDN models in Table 10.19. Using these models,
we used the data sets prepared in Section 10.2.2 to perform the evaluation. All the latent nodes were
excluded when the model was inferred to ensure they did not obtain any data. The decision node
“𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒” was set to offline because the BDN-HAC models were constructed for use after
failures of individual HAC resources. Furthermore, we employed policy evaluation as the primary
algorithm for BDN inference.

We used the GeNIe modeller v3.0 as the primary tool [18] to construct and test the BDN models.
We also employed multiple software solutions such as SPSS Statistics, Power BI and Excel to analyse
and visualise the results.

10.3.2.1 Evaluation of the Models

Utility Analysis We used the evaluation metric M2 described in Section 10.2.4 to evaluate the utility
values for the two models using Data Set 1 and 2. We selected these two data sets because they cover
a broad range of failure types. Utility values are in the prediction outputs when data are supplied to
the BDN model as described in Section 4.4. Using the outputs, we plotted the related curves for both
models for each data set, which are depicted in Figure 10.84. Figure 10.8 (a) presents the results from
Data Set 1, and Figure 10.8 (b) presents the results from Data Set 2. The horizontal lines represent the
cut-off values to indicate positive (no failure) and negative (failure) outcomes for the two BDN-HAC
models. Any results above the line are positive (failures can be managed locally) and are shown by
filled markers, whereas the ones below the line are negative (unmanageable failures) and are shown
by empty markers. As the figure displays, we obtained identical predictions from both models, which

4The figures only show failures from the original Data Sets 1 and 2 because the duplicated failures provided identical
results from the BDN-HAC-1 and BDN-HAC-2 models.
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Figure 10.8 Utility analysis results between BDN-HAC-1 and BDN-HAC-2 models for (a) Data Set 1
and (b) Data Set 2. The horizontal cutoff lines at zero utility for BDN-HAC-1 (cf. eq. (6.10)) and
at utility 200 for BDN-HAC-2 (cf. eq. (6.17)) separate the positive outcomes (filled markers) and
negative outcomes (empty markers).
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Figure 10.9 Strength of influence for the parent-child node pairs from the two BDN-HAC models.

we validated against the expected outcome (Section 10.2.5), confirming that both models provided
accurate predictions for all test cases.

Strength of Influence We used GeNIe Modeler is to compute the strength of influence for the
parent-child node pairs from our two BDN-HAC models. Figure 10.9 displays the strength of influence
for the two models using the Euclidean measure. The length of the link indicates the influence, where
a longer link indicates a stronger influence. Each value is labelled with the names of the corresponding
parent node (top label) and child node (bottom label). In a BDN model, the strength of influence
should reflect the conditional probabilities in the child nodes. However, this is not the case with the
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BDN-HAC-2 model. For example, the parent node ‘dependency factor’ significantly influences the
child node ‘resource state’. Similarly, the parent node ‘error rating’ strongly influences the child
node ‘resource state’ as the‘ dependency factor’. On the contrary, the influence between the parent
node ‘dependency factor’ and the child node ‘resource state’ in the BDN-HAC-1 reflects the intended
use correctly. One reason for this behaviour of BDN-HAC-2 could be that BDN-HAC-2 does not
have chance nodes for the dependency factor, error rating and resource state; instead, utility nodes
significantly reduce the flexibility provided by the use of additional parameters. For example, BDN-
HAC-1 has 89 parameters, whereas BDN-HAC-2 works with 51 parameters (listed in Table 10.19).
These results suggest that the BDN-HAC-1 can perform the required prediction with better accuracy
than BDN-HAC-2.

Selection of a Model The conclusion is that both models performed well in terms of prediction
quality. However, BDN-HAC-2 uses three utility nodes, as listed in Table 10.19, and thus it tends
to be more deterministic and limits the available options (e.g., the flexibility to define conditional
probabilities and to work with more parameters). Moreover, the experimental result from the strength
of influence analysis indicates that BDN-HAC-1 reflects conditional probabilities and, thus, more
accurately reflects the relationship between parent and child nodes. Therefore, we selected the
BDN-HAC-1 model for inclusion into the BP framework. Although we used the HAC in the testbed
to select a model, the results are expected to be the same because the BDN-HAC module is a HAC
independent module that can work with any HAC solution. As such, only the term ‘BDN-HAC’ is
used to refer to this model and a model-specific name (e.g., BDN-HAC-1) is no longer used.

10.3.2.2 Prediction Quality

Using the experimental design for ROC analysis from Section 10.2.4, we plotted the ROC curves
for Data Sets 1, 2, 5 and 7 (i.e., for all the data sets that were processed by the BDN-HAC model)
as shown in Figures 10.10, 10.11, 10.12 and 10.13. The HAC outcome had 8% FNs in Data Set 1
(Figure 10.10), indicating that the HAC performed a system failover when a service such as a database
failed. However, the expected outcome was ‘manageable (no failure)’ because the HAC was expected
to reinitialise the resource without triggering a complete system failover.

In contrast, the BDN-HAC model detected the failure and predicted it as a locally manageable
failure, and the FN therefore became a TP. Another example is that the HAC performed a resource
group failover when the resource ‘main instance service’ was terminated as part of the fault injection
in Data Set 2 (Figure 10.11). This event occurred only once, and in the subsequent events, the HAC
was able to restart the same service successfully. The BDN-HAC model correctly predicted that the
HAC would be able to manage the failure locally (i.e., restart the service). In Data Set 5, both the
HAC and BDN model performed identically, reaching a higher AUC (Figure 10.12). In Data Set 7, the
HAC initiated unnecessary system failures for a shared resource failure (cluster file system), whereas
the BDN-HAC treated the failure as locally manageable (no failure) (Figure 10.13).
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Figure 10.10 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 1.
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Figure 10.11 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 2.

We calculated the results from Data Sets 1, 2, 5 and 7, and the BDN-HAC model achieved a mean
AUC that was 4.85% better (i.e., higher) than that achieved by the HAC. Furthermore, the BDN-HAC
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Figure 10.12 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 5.

1 - Specificity

1,00,80,60,40,20,0

S
en

si
tiv

ity

1,0

0,8

0,6

0,4

0,2

0,0

Diagonal segments are produced by ties.

AUC              
HAC: 0.917 
BDN-HAC: 1.00

Reference Line
BDN-HAC
HAC

Page 1

Figure 10.13 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 7.

model using the data sets without stickiness (Data Sets 1 and 5) performed better than those with
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Table 10.20 Summary of the receiver operating characteristic (ROC) analysis grouped by data set

Test Result AUC AS SE Confidence Interval

Lower Bound Upper Bound

Data Set 1

HAC result 0.944 0.016 0.000 0.913 0.976
BDN-HAC Data Set 1 1.000 0.000 0.000 1.000 1.000

Data Set 2

HAC result 0.972 0.011 0.000 0.950 0.995
BDN-HAC Data Set 2 1.000 0.000 0.000 1.000 1.000

Data Set 5

HAC result 1.000 0.000 0.000 1.000 1.000
BDN-HAC Data Set 5 1.000 0.000 0.000 1.000 1.000

Data Set 7

HAC result 0.917 0.020 0.000 0.878 0.955
BDN-HAC Data Set 7 1.000 0.000 0.000 1.000 1.000

AUC - Area under curve

AS - Asymptotic significance (null hypothesis: true area = 0.5). It is used to determine the statistical significance of the
relationship between the variables. 𝑝 < 0.05 indicates a statistical significance relationship.

SE - Standard error (under the nonparametric assumption)

HAC - High availability cluster (Pacemaker/Corosync HAC)

BDN-HAC - Bayesian decision network for predicting locally manageable resource failures

stickiness (Data Sets 2 and 7). For example, the BDN-HAC model using the Data Set 5 with stickiness
achieved the same result as the HAC. The results are summarised in Table 10.20.

Effect of Incomplete Data on Prediction Quality We analysed the effect of incomplete data on the
prediction quality by providing data to only a subset of the BDN-HAC nodes (and using the default
probability distributions for the other nodes). In a first step, we started with node 𝐴2. In the second
step, we delivered data to both 𝐴2 and 𝐴3. In the third step, we provided data to three nodes, 𝐴2, 𝐴3

and 𝐴4, and we continued until all nodes were supplied with data in the final step.5 Figure 10.14
illustrates the model output as each node was provided with data, and it is presented using the accuracy,
F1-score and Matthews correlation coefficient (MCC) evaluation metrics. Including MCC overcomes
imbalanced classes, as we noted that our data sets are imbalanced since they contain many FPs and
FNs. However, the BDN-HAC model aims to eliminate FPs and FNs because the purpose of the

5BDN uses the prior probability distribution for the nodes not provided with data, except for the latent and utility nodes.
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Figure 10.14 Changes in the prediction outcome based on nodes receiving data for (a) Data Set 1, (b)
Data Set 2, (c) Data Set 5 and (d) Data Set 7. The labels on the horizontal axis show the last node that
was supplied with data, e.g., the values for ‘𝐵2’ were obtained when the nodes 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐵2
were supplied with data, and all of the other BDN nodes were not.

model is to reduce the downtime for business-critical systems. Therefore, a balanced measure is
required when measuring the model quality. Hence, the primary metric for measuring prediction
quality with incomplete data is MCC.

A high percentage of FPs was observed when only 𝐴2 obtained data. For instance, the percentage
was 27% in Data Set 1 and 45% in Data Sets 5 and 7. This resulted in relatively high accuracy (0.4167,
0.75 and 0.5455, respectively) and F-score (0.3636, 0.8571 and 0.6667, respectively) but a low value
for MCC. However, when the second node, 𝐴3, also received data, a shift from FPs to FNs occurred.
We observed 58% FNs in Data Set 1 and 45% FNs in Data Sets 5 and 7. The curve presents this
shift by reducing the accuracy to 0.4167 in Data Set 1. However, no change in accuracy or F1-score
occurred in Data Sets 5 and 7, but a significant change in MCC occurred. In Data Set 7, 45% of the
FPs shifted to 45% FNs in 𝐴3.

These results show that incomplete data, primarily when very few nodes are supplied with data,
provide poor predictions. When only 𝐴1 is instantiated and all the other nodes use prior probabilities,
it leads to high FPs. Moreover, the results demonstrate that whenever the next node that receives data
is a critical node, it shifts the FPs to FNs in most cases (i.e., 𝐴3 and 𝐴5), which results in negative
values for MCC.

Influence of Critical and Noncritical Nodes Figure 10.15 displays a comparison between the
prediction quality achieved when only the critical nodes were supplied with data, and that achieved
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Figure 10.15 Comparison of prediction quality for experiments in which only the critical or only the
noncritical nodes were supplied with data for: (a) Data Set 1, (b) Data Set 2, (c) Data Set 5, and
(d) Data Set 7.

when only the noncritical nodes were supplied with data. The number of noncritical nodes is five (𝐴2,
𝐴4, 𝐵2, 𝐵3 and 𝐵4), whereas the number of critical nodes is three (𝐴3, 𝐴5 and 𝐶1). However, the three
critical nodes have a higher influence than the five noncritical nodes due to weight assignment. In
Data Set 1, the data to critical nodes results in 27% FPs, whereas for noncritical notes, the outcome
was 9% FNs and 18% FPs. This results, in general, in higher values for critical nodes across all the
evaluation metrics, as depicted in Figure 10.15. A similar pattern was observed in all data sets. For
example, we observed 9% FNs for critical nodes in Data Set 7, but the figures were 9% FNs and 40%
FPs for noncritical nodes, which results in a negative value for MCC for noncritical nodes. Therefore,
when data are supplied only to noncritical nodes, it tends to create more FPs, while when data are
supplied only to critical nodes, it creates FNs. The results confirm that critical nodes play a crucial
role in providing prediction capabilities for the BDN-HAC model.

Existing vs New Characteristics As described in Chapter 6, the BDN nodes take into account
two types of HAC characteristics, namely characteristics also used outside of our project (which
we termed ‘existing characteristics’ or ECs) and characteristics proposed by this project (which we
term ‘new characteristics’ or NCs). There are three EC nodes (𝐴2, 𝐴4 and 𝐴5), and the fourth node
is a decision node for which a negative decision to indicate failure is assumed. The NCs consists
of five nodes (𝐶1, 𝐴3, 𝐵2,𝐵3 and 𝐵4). We investigated the BDN-HAC prediction quality when only
EC nodes receive data and compared the result to the scenario when only the NC nodes receive data.
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Figure 10.16 Comparison of prediction quality between existing characteristics (ECs) and new
characteristics (NCs) for (a) Data Set 1, (b) Data Set 2, (c) Data Set 5 and (d) Data Set 7.

Figure 10.16 depicts the results from the evaluation. There are 17% FPs in ECs compared to 25% FNs
in NCs in Data Set 1, and a similar pattern can be observed in Data Set 2. As shown in Figure 10.16
(a) and (b), accuracy is reduced in NCs as a result. However, significant changes exist in Data Set 5,
which indicates that ECs have 45% FPs but 9% FNs, resulting in lower values for ECs across all
evaluation metrics except for sensitivity.

Similarly, 45% FPs could be observed in ECs, whereas 9% FPs and 9% FNs in NCs could be
observed in Data Set 7. However, ECs have only one critical node (𝐴5), whereas NCs have two (𝐶1

and 𝐴3), and this could influence the outcome considerably. Overall, the results reveal that NCs
improve the prediction quality. For example, if the accuracy is 0.69 with EC nodes, the quality is
improved by 32% when NCs are introduced (Data Set 5).

BDN-HAC Model Execution Time Three steps are associated with using the BDN-HAC model to
obtain predictions: BDN input, BDN inference and BDN output. The BDN input transfers data to
the BDN model to be processed, and the BDN inference performs the actual model execution using
data from the previous step. Subsequently, the outcome is interpreted as either a failure or not and is
transferred to the BN-HAC model. The mean execution time for each step is depicted for the four data
sets in Figure 10.17, which were obtained from running the experiments on a computer with a 3.4
GHz Intel Core i7 and 64 GB of memory running Windows 10. The BDN model requires, on average,
1ms to complete the inference as the model is small (with only 12 nodes) and employs a utility node
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Figure 10.17 Mean execution time for the three steps associated with the invocation of the BDN-HAC
model.

with predefined preferences, which reduces the computational complexity. The BDN input and output
execution times are higher because they correspond to steps that convert the input/output values of
the BDN. Overall, the evaluation result (a mean value of 84ms for all steps and data sets considered,
which is 1.3% of the overall BP framework execution time) indicates that the BDN-HAC module’s
execution time is negligible. Furthermore, a significant part of the execution times associated with
‘BDN input’ and ‘BDN output’ would be eliminated if the BDN-HAC was integrated into a future
HAC solution, as in that case, the reading and processing of the logs would be replaced by using
events received by the HAC.

10.3.2.3 Runtime Overhead

We used GeNIe modeller to perform inference on a computer with a 3.4 GHz Intel Core i7 and 64
GB of memory running Windows 10. The two steps, BDN input and BDN output, were executed
using Linux scripts in the testbed. We measured the CPU utilisation and memory by monitoring the
utilisation at the process level and the CPU utilisation was experienced for a period of < 85ms as
displayed in Figure 10.17. Figure 10.18 depicts box plot distributions of CPU utilisation for the three
steps presented for the data sets. The median values for the BDN input are 0.20%, 0.28%, 0.27%
and 0.26% for Data Sets 1, 2, 5 and 7, respectively. The maximum values are 0.32%, 0.42%, 0.42%
and 0.41%. The BDN inference also has little CPU utilisation, and the maximum values are 0.40%,
0.50%, 0.42% and 0.42%. The reason could be that the BDN model has only 89 parameter, and thus
it does not require complex runtime calculations. The BDN output has the lowest utilisation of all
three, and the maximum values are 0.20%, 0.36%, 0.35% and 0.38%. The results reveal that most
values are in the lower quartile except for the BDN inference in Data Sets 1 and 7, which are in the
upper quartile.

205



Evaluation

CPU

(a) (b)

(c) (d)

1 BDN input BDN 
inference

BDN output

Maximum 0.32 0.40 0.20

2 BDN input BDN 
inference

BDN output

Maximum 0.42 0.50 0.36

7 BDN input BDN 
inference

BDN output

Maximum 0.41 0.42 0.38

Figure 10.18 Box plots of CPU utilisation of the BDN-HAC steps for (a) Data Set 1, (b) Data Set 2,
(c) Data Set 5 and (d) Data Set 7.
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Figure 10.19 Box plot of memory utilisation of the BDN-HAC steps for (a) Data Set 1, (b) Data Set 2,
(c) Data Set 5 and (d) Data Set 7.
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Figure 10.19 presents box plot distributions of memory utilisation (measured in KB) for the three
steps. The BDN inference has the highest utilisation, indicated by the maximum values (68, 63, 68
and 68 KB) in the four data sets. Comparatively, the other two steps used less memory because they
dealt with fewer variables. The BDN input processes data for only those variables that the BDN
model requires. Moreover, the BDN output has only the utility value from the BDN model, which is
translated into a value that the BN model can use. Even if the maximum memory utilisation for all
three steps is combined, it is still less than 180 KB. However, considering that each step is executed
sequentially, the computational overhead associated with the CPU and memory is only linked to one
step at a time. Therefore, the conclusion is that the overhead associated with executing all three steps
of the BDN-HAC model is negligible.

10.3.3 Evaluation of the Bayesian Network model for Failure Propagation and Predic-
tion

In this section, we first evaluate the method for constructing a BN model for the testbed HAC, and we
then validate the model before evaluating the prediction quality and runtime overhead of the model.

10.3.3.1 Evaluation of the Model Construction

The modelling method introduced in Chapter 7 was used to construct a BN model for the testbed HAC.
Unlike the BDN-HAC model, the BN-HAC model must be explicitly modelled for the corresponding
HAC solution and subsequently trained and tested. The model structure was obtained from the
outcomes of the HMTHA (described in Section 10.3.1) and the specifics of the HAC, and its variables
and states were obtained from the HHAM and M-table. Prior probability distributions for the model
were assigned using the T-rules. Finally, log data from the testbed was used to train and test the model;
thus, parameter learning was used to update the probability distributions. This section presents the
different steps associated with constructing and implementing the BN-HAC model.

Transformation from HMTHA to BN-HAC The HHAM model from Section 10.3.1 and the
accompanying M-table were used to transform the HHAM into a BN model. We used the six-step
mapping approach (Section 5.3.3) to map and complete the M-table. Hence, the first part of the
M-table from Section 10.3.1 was completed with a second part, presented in Table 10.21.

There were three layers in the HHAM (a, b, c), mapped to four layers (Layers 1 to 4) of the
BN model. All resource groups and the application vertex types in the HHAM were mapped to
latent nodes in the BN model. Two simple vertex types were identified as weak. Similarly, two
global dependency vertex types were classified as weak. All weak vertices were handled by assigning
conditional probabilities to reflect the influence on other resources.
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Table 10.21 Completed M-table for the testbed high availability cluster (HAC) showing the structure
of the mapped BN-HAC model

HHAM BN

Resource Vertex Type Arc Type Layer BN Node BN Node Type Layer

Main appliation (ERP) A A Top 𝑋1 Latent 1
Message and lock group RG RG a 𝐴1 Latent 2
Message and lock service S R b 𝐴2 Node 3
VIP S R c 𝐴3 Node 4
FS message and lock S R c 𝐴4 Node 4
FS trans W R c 𝐴5 Node 4
FS interface W R c 𝐴6 Node 4
Database group RG RG a 𝐵1 Latent 2
database S R b 𝐵2 Node 3
VIP S R c 𝐵3 Node 4
FS database S R c 𝐵4 Node 4
Main instance group RG RG a 𝐶1 Latent 2
Main instance service S R b 𝐶2 Node 3
VIP S R c 𝐶3 Node 4
FS main instance S R c 𝐶4 Node 4
Backup lock server group RG RG a 𝐷1 Latent 2
Backup lock server service S R b 𝐷2 Node 3
VIP S R c 𝐷3 Node 4
DLM group RG,GD SG a 𝐸1 Latent 2
DLM GD G b 𝐸2 Node 3
FS DLM GD G b 𝐸3 Node 3
CPU monitor GW G Top 𝐺1 Node 1
NIC monitor GW G Top 𝐺2 Node 1
SBD service GD G Top 𝐺3 Node 1

Resource: FS - file system, VIP - Virtual IP, DLM - distributed lock manager, SBD - STONITH block device ource
group, G - Global

Vertex Type: A - Application, RG - Resource group, S - Simple, W - Weak, GD-Global dependency, GW - Global
dependency and weak

Arc Type: A - Application, RG - Resource group, R - Resource, SG - Shared resource group, G - Global

Construction of the BN-HAC Model In this step, we used the HHAM and the completed M-table
to construct the BN model. Figure 10.22 displays the resulting BN-HAC model representing the HAC
in the testbed environment.

The HHAM layers were mapped in reverse order to construct the BN-HAC model. The BN-HAC
model consists of 24 random nodes organised into four layers. Each node has two states: failure
to indicate failure and no_failure to indicate nonfailure. Thus, the model has 48 states and 620
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Figure 10.20 Bayesian network model for failure propagation and prediction (BN-HAC), representing
the testbed high-availability cluster (HAC). The model details are presented in Table 10.22.

Table 10.22 Details of the Bayesian network for the failure propagation and prediction (BN-HAC)
model for the high availability cluster (HAC) in the testbed

Total Nodes Latent Nodes Weak Nodes States Parameters

BN-HAC 24 6 4 48 620

parameters. Most HAC resources are in Layer 4, whereas the latent and global dependency nodes are
in Layer 2. The application node is in Layer 1. All nonlatent nodes represent physical resources.

In contrast, the latent nodes representing resource groups and the main application are highlighted
in blue. Four nodes are identified as weak nodes. Two nodes, 𝐴5 and 𝐴6, are created to meet business
requirements, whereas the other two are global resources, 𝐺2 and 𝐺3, which only monitor two critical
server resources (CPU and memory).

Assigning Prior Probabilities We used Approach 1 from Section 5.3.4 (eqs. (5.2) and (5.3)) to
calculate probabilities for all Layer 4 nodes and global dependency nodes in Layer 2 and obtained the
following values for the defined SLA of 99.0%:

Failure = .01

No failure = .99

Thus, we assigned uniform probability distributions to nodes 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐵3, 𝐵4, 𝐶3, 𝐷3, 𝐸2,
𝐸3, 𝐺1, 𝐺2 and 𝐺3. Further, we employed Approach 2 to calculate the probabilities for the nodes in
Layers 2 and 3 and set the conditional probabilities accordingly. This included nodes 𝐴2, 𝐵2, 𝐶2 and
𝐷2, and latent nodes 𝐴1, 𝐵1, 𝐶1, 𝐷1 and 𝐸1. Thus, the failure of weak nodes 𝐴5 and 𝐴6 does not result
in the failure of child node 𝐴2 (e.g., failure = .03 for a weak node).

Similarly, conditional probabilities were assigned to the application node 𝑋1 to ensure that the
failure of the global dependency weak nodes 𝐺2 and 𝐺3 does not result in a failure of the application.
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Table 10.23 Local probabilities and conditional probabilities of the Bayesian network for the failure
propagation and prediction (BN-HAC) model

Node Probability Distribution

𝐴1 𝑃 (𝐴1 |𝐴2)
𝐴2 𝑃 (𝐴2 |𝐴3,𝐴4,𝐴5,𝐴6)

𝐴3
failure =.01
no_failure =.99

𝐴3
failure =.01
no_failure =.99

𝐴4
failure =.01
no_failure =.99

𝐴5
failure =.01
no_failure =.99

𝐴6
failure =.01
no_failure =.99

𝐵1 𝑃 (𝐵1 |𝐵2)
𝐵2 𝑃 (𝐵2 |𝐵3,𝐵4)

𝐵3
failure =.01
no_failure =.99

𝐵4
failure =.01
no_failure =.99

𝐶1 𝑃 (𝐶1 |𝐶2)
𝐶2 𝑃 (𝐶2 |𝐶3,𝐶4)

𝐶3
failure =.01
no_failure =.99

𝐶4
failure =.01
no_failure =.99

𝐷1 𝑃 (𝐷1 |𝐷2)
𝐷2 𝑃 (𝐷2 |𝐷3)

𝐷3
failure =.01
no_failure =.99

𝐸1 𝑃 (𝐸1 |𝐸2,𝐸3)

𝐸2
failure =.01
no_failure=.99

𝐸3
failure=.01
no_failure=.99

𝐺1
failure=.01
no_failure=.99

𝐺2
failure=.01
no_failure=.99

𝐺3
failure=.01
no_failure=.99

𝑋1 𝑃 (𝑋1 |𝐴1,𝐵1,𝐶1,𝐷1,𝐸1,𝐺1.𝐺2,𝐺3)
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However, the failure of critical global dependency 𝐺1 (SBD) affects the entire cluster (the primary
node) because it can lead to fencing off the entire node upon failure, affecting all resources running
on that node. Therefore, the conditional probability at child level 𝑋1 was set accordingly using the
first rule and Approach 2 in the T-rules.

Finally, we used Approach 3 to calculate the failure effect of the resource groups (latent nodes) on
the application. We used eq. (5.6) and (5.7) to calculate the failure of one or more resource groups,
𝐴1, 𝐵1,𝐶1, 𝐷1 and 𝐸1, and assigned the conditional probabilities accordingly. The application has five
resource groups, and using eq. (5.7), we calculated that the HAC could tolerate the failures of up to
four resource groups; this is reflected in setting the conditional probabilities in 𝑋1. Table 10.23 lists
all probabilities and conditional probabilities.

Implementation of the Model To simplify the evaluation, we developed and deployed the BN-HAC
model using the software package GeNIe Modeler. However, in a live production environment, the
model must be implemented using a script (e.g., encoded in R using open-source BN libraries) that
can be invoked as and when required after the invocation of the BDN-HAC model.

Substitute Incomplete Data The incomplete data in the training data sets are substituted with the
value of no failure to ensure that the probability distributions are updated accurately, significantly
improving the prediction capability.

Augment Data Set An optional augmentation step can be performed to ensure that the correct
failure distribution is in place if there are insufficient failures. Hence, the training data sets were
augmented to reflect operations of an actual HAC environment and to optimise the parameter learning
process. For each failure instance, 100 nonfailure instances were added. Moreover, the failure
frequency was increased in the second data set to ensure that the repeating failures were also captured.
In the third data set, the failure frequency for one resource (node) was increased first. Then, a test case
was initiated on that node to determine the prediction quality when historical failures were observed
with a particular resource.

Enable Parameter Learning We used the test cases (described in Section 10.2.1.2) to create
training data sets to learn the parameter distributions of the model. Subsequently, the training data are
first input into the BDN-HAC model. Then, the output was transformed and input into the BN-HAC
model. The training employed the EM algorithm to perform maximum likelihood estimation.

Inference Using Production data The BN-HAC model processes only those failures that the BDN-
HAC model predicts as unmanageable failures. The subsequent inference of the BN-HAC model
relies on the learnt distributions to predict a potential resource group or system failure. Thus, we used
test cases T9–T16 to perform the inference, and the details regarding the data sets and evaluation are
described in Chapter 10.
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Figure 10.21 Strength of influence analysis for the BN-HAC model.

10.3.3.2 Prediction Quality

The evaluation of the BN-HAC model was conducted in two steps. First, we initiated parameter
learning using the EM algorithm and performed inference using the clustering algorithm to observe
the results. Data Sets 3 and 4 were used to learn the parameters. Data Sets 9 and 10 were created
using Data Set 2 but with different sizes to test the correlation between learning data set sizes and
predictions. Data Sets 6 and 8 were used to perform the inference after parameter learning. All latent
variables were excluded in the parameter learning process.

Moreover, the parameter initialisation was set to keep the latest distributions as priors so that new
distributions could continue from the last learning. This approach enables running parameter learning
multiple times to improve the distributions, i.e., the incremental parameter learning mode (as presented
in Section 4.3.4). The update of the distributions by parameter learning on existing distributions can
be expressed by a confidence parameter (equivalent sample size or ESS) [269], which uses a weighted
approach to update new distributions. If it is set to a higher value, the update progresses slowly for
new data, whereas a low value indicates that even a small data size can considerably change the
network distributions when new data are learnt.

Therefore, we experimented with several data set sizes and confidence parameter values and
we identified the equivalent sample size 125 as the optimum value for the learning process. This
is because our objective was to consider both historical data and also changes due to new data.
Hence, the value means sufficient weight is given to new data to update the parameter distributions
without significantly affecting the prior distributions. Similarly, the changes to conditional probability
distributions also occur progressively. We employed the clustering algorithm as the primary algorithm
for inference. The prediction quality was measured using ROC curves with a 95% confidence interval.
The experimental design for ROC analysis is presented in Section 10.2.4. We used GeNIe modeller
v3.0 [18] and the bnlearn library [180] to construct the BN models. Parameter learning and inference
was also conducted using the GeNIe modeller.
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Figure 10.22 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 6
using Data Sets 3, 9 and 10 for parameter learning.

Model Validation Using GeNIe Modeler we computed the strength of influence for the parent-child
node pairs from our BN-HAC model to validate the model construction. Figure 10.21 displays the
results using the Euclidean measure, and the length of the link indicates the influence; the longer a link
is, the stronger the influence becomes. The figure shows the same strength of influence between the
nodes representing resource groups (parents) and child nodes. Moreover, the nodes 𝐴1, 𝐵1, 𝐶1 and 𝐷1

are parent nodes to child node 𝑋1 (the application). These parent nodes influence 𝑋1 equally, reducing
the likelihood of the failure of one specific resource group causing a system failure, reflecting the
intended use correctly. However, 𝐸1 represents a shared resource group; hence, the failure of the
resource group results in a system failure, and the strength of influence illustrates this. Overall, the
strength of influence reflects the preferred influence on child nodes using conditional probabilities.

Prediction Quality We evaluated the prediction quality of the BN-HAC model by initiating param-
eter learning using a training data set and by subsequently performing inference using a production
data set. The training data sets for parameter learning we used were as follows:

1. We used Data Sets 3, 9 and 10 with sample sizes, and these were created as described in
Section 10.2.2.

2. Data Set 4 which was created as described in Section 10.2.2.
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Figure 10.23 Receiver operating characteristic (ROC) curve showing prediction quality for Data Set 8
using Data Set 4 for parameter learning.

Subsequently, we performed inference using the corresponding production data sets, listed as
follows:

1. Data Set 6 was created as described in Section 10.2.2 with the stickiness policy disabled.

2. Data Set 8 was created as described in Section 10.2.2 with the stickiness policy enabled.

Using the conditions for ROC analysis presented in Section 10.2.4, we plotted the ROC curves
presented in Figures 10.22 and 10.23. Figure 10.22 depicts inference results using Data Set 6 and the
results per the parameter learning (training) data sets.

Similarly, the HAC outcome was also validated using the expected outcome, and the result is
plotted as a diagonal line with an AUC value of 0.500. The curves plotted by the model outcomes
overlap because they all have an AUC value of 1.0, which means the HAC solution that uses the
BN-HAC model can improve the baseline HAC by 50%. The primary reason for this was that many
of the HAC-determined system failovers were unnecessary, as a resource group failover was sufficient
for these, as correctly predicted by the BN-HAC model. Such resource group failovers are less
expensive than system failovers. For example, when the file system of the main instance failed,
the HAC decision was to perform an unnecessary system failover after going through the threefold
strategy of first trying to reinitialise the failed resource and then attempting to failover the concerned
resource group. In contrast, the BN-HAC model correctly predicted that a resource group failover
was sufficient to resolve the problem. In other cases, when the HAC opted for a system failover, the
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Table 10.24 Summary of the prediction results grouped by the inference data set

Test Result AUC AS SE Confidence Interval

Lower Bound Upper Bound

Data Set 6

HAC result 0.500 0.089 1.000 0.325 0.675
Data Set 3 1.000 0.000 0.000 1.000 1.000
Data Set 9 1.000 0.000 0.000 1.000 1.000
Data Set 10 1.000 0.000 0.000 1.000 1.000

Data Set 8

HAC result 0.500 0.050 1.000 0.402 0.598
Data Set 4 1.000 0.000 0.000 1.000 1.000

AUC - Area under curve

AS - Asymptotic significance (null hypothesis: true area = 0.5). It is used to determine the statistical significance of the
relationship between the variables. 𝑝 < 0.05 indicates a statistical significance relationship.

SE - Standard error (under the nonparametric assumption)

HAC - High availability cluster (Pacemaker/Corosync HAC)

BN - HAC Bayesian network for failure propagation and prediction

Table 10.25 Performance of the parameter learning for Data Sets 3, 4, 9 and 10

Data Set #Instances Log(p) Elapsed Time (s)

3 30240 -1549 2
4 30240 -1380 2
9 672 -748 1
10 10080 -1320 1

BDN-HAC model predicted no failure. An example of this behaviour is where the BDN-HAC model
predicted consistently that no action is required when the file system of the DLM service (node 𝐸3)
fails because HAC reinitialises it. However, the HAC in the testbed performed system failovers for
such failures in Data Sets 7 and 8, but in Data Sets 5 and 6, it could reinitialise the resource, having
identified that no failover was required.

Table 10.24 summarises the prediction results grouped by the inference data sets, and the results
are presented per training data set. The HAC result indicates that the observed results are verified
against the expected outcomes.

Parameter learning performance Details about the learning performance are presented in Ta-
ble 10.25, which shows the elapsed time and learning quality in terms of 𝑙𝑜𝑔(𝑝) for different data sets.
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Figure 10.24 Failure probability distributions for each node in the BN-HAC model (in percentage)
after parameter learning with different data set sizes, shown for Data Sets 3, 4, 9 and 10.

The metric 𝑙𝑜𝑔(𝑝) measures how well a model fits the data, and this value ranges between negative
infinity and zero, where a higher value indicates a better fit [19].

As presented in Table 10.25, the largest data sets, Data Sets 3 and 4, required 2s to complete
the learning, whereas the small data set, Data Set 9 with 672 instances, required 1s to complete the
learning. The obtained values for 𝑙𝑜𝑔(𝑝) indicate that the model fit is better with smaller data set sizes.

Parameter Learning and Data Size To study how parameter learning changes the failure probabil-
ity distributions for each node in our BN-HAC model when data sets with different sizes are used, we
used the four training data sets listed in Table 10.25. Accordingly, we executed parameter learning for
each data set and obtained the results. We reset the distributions after each learning to ensure that we
can study the relationship between parameter learning in our model and the data set sizes. We then
used the results to plot curves representing the failure distributions for each node in Figure 10.24.

The large data sets ( 3 and 4) exhibit no increase in the likelihood of failures because the number
of failures is insignificant relative to nonfailures because the ratio of failures to nonfailures is 13:2160.
In contrast, the small data set (9) with 672 instances, including 184 failures (27% of failures or a
ratio of failures to nonfailures is 23:84), significantly increases the likelihood of failures in those
nodes that have failed frequently. For example, node 𝐴4 exhibits a failure distribution of 12%. The
conditional probabilities in the upper-level (latent) nodes are updated automatically to reflect the
increase in the likelihood of failures. For example, the latent node representing resource group node
(𝐴1) has a failure distribution of 7%. Similar patterns were observed with other nodes with frequent
failures. When the likelihood of failures increases for the individual and related latent nodes, the
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Figure 10.25 Mean execution times for the three steps associated with the invocation of the BN-HAC
model.

distribution of the main application (a latent node) is also updated. For example, the application node
𝑋1 is updated with a failure distribution of 8% for Data Set 9, whereas the value is only 2% for Data
Sets 3 and 4. Although all data sets that are used to update the parameters resulted in no change in the
final prediction quality, the results reveal that smaller data sets with numerous failures tend to increase
the failure probability distributions of the BN model. When the failure distribution in the BN model
increases, it also increases the likelihood of a resource, resource group or system failure.

10.3.3.3 Runtime Overhead

BN-HAC Model Execution Time The model execution time is evaluated to ensure that it does
not add a notable increase to the overall execution time of the HAC. Therefore, we measured the
execution times of three steps (BN input, BN inference and BN output) that are part of the invocation
of the BN-HAC model. In the first step, the input is prepared for the required format of the BN-HAC
model and includes steps to map the failure information from the BDN-HAC to the appropriate
BN-HAC node. In the second step, inference using new information occurs, and in the third step,
the prediction is provided for the resource group to which the failed resource belongs and for the
system. We evaluated BN inference using GeNIe Modeler on a computer with a 3.4 GHz Intel Core
i7 and 64 GB of memory running Windows 10. The two others steps were executed using Linux
scripts in the testbed. The mean execution times for the three steps, BN input, BN inference and BN
output, over the instances in Data Set 6 were 591ms, 824ms and 303ms. Similarly, the mean execution
times over the instances in Data Set 8 are 594ms, 781ms, and 371ms, as depicted in Figure 10.25.
When taken together, the mean execution time for Data Set 6 is 1.72s, 1.75s for Data Set 8, and the
mean value for both data sets is 27.3% of the mean execution time of the BP framework. The BN
model requires, on average, 802ms to complete the inference, and the model has 24 nodes and 620
parameters, which means the model complexity could be one reason for the high inference time. For
example, the BDN-HAC model with 12 nodes and 89 parameters required 1ms on average to complete
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Figure 10.26 CPU utilisation of the BN-HAC model invocation steps for inference (a) Data Set 6 and
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Figure 10.27 Memory utilisation of the BN-HAC model invocation steps for inference (a) Data Set 6
and (b) Data Set 8.

the inference and a mean of 84ms for all steps combined in all data sets. However, integrating the BP
framework into future HAC solutions would significantly reduce the overall BN-HAC execution time
by removing the need for the BN input or output because an event-based and instantaneous message
transfer can replace these.

Furthermore, high-performing servers are typically used in a production HAC solution to protect
business-critical EA, significantly reducing execution time. Therefore, while this result shows that the
BN-HAC model adds a short delay, this can be mitigated using high-end servers and integrating the
BP framework into HACs.

Runtime Overhead The overhead evaluation for all three steps is presented in Figure 10.26 for
CPU utilisation and Figure 10.27 for memory utilisation using the inference Data Sets 6 and 8. The
CPU utilisation was experienced for a period of 500±300ms. Figures 10.26 (a) and (b) indicate that
the BN inference step used more CPU than the other two steps and recorded a maximum utilisation of
0.58% in Data Set 8. The median is 0.33% in Data Set 6 and 0.41% in Data Set 8. Most inner points
are in the upper quartile in Data Set 6, whereas the points are reversed in Data Set 8 (most inner points
are in the lower quartile). The BN input has a maximum value of 0.39% in Data Set 6 and 0.41% for
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Data Set 8, and the median value is 0.28% in both data sets. The BN output exhibits a similar pattern;
the maximum value is 0.37% and 0.38% in Data Sets 6 and 8, and the median values are 0.22% and
0.08%, respectively. On average, the BN inference step uses more memory than the other two steps,
though the values are still low. For example, the maximum values are 127 KB and 139 KB in Data
Sets 6 and 8, respectively. The median values are 71.5 KB and 92.5 KB, respectively. However, most
of the inner points are in the lower quartile. Comparatively, both the BN input and output utilisation
values are significantly lower. The maximum values are 48 KB and 47 KB for BN input in Data
Sets 6 and 8, whereas the BN output has a maximum value of 58 KN in both data sets. The median
values (31 to 38 KB) also confirm the low utilisation. We observed that the BN inference uses more
CPU cycles and memory than the other two steps because it manages 24 nodes and 616 parameters.
However, overall, the results show that the overhead associated with the BDN model is insignificant.

10.3.4 Evaluation of Bayesian Prognostic Framework Preparation

We introduced the BP framework preparation module in Chapter 8 and validated it successfully by
implementing it in the testbed environment (described in Appendix D).

10.3.4.1 Runtime Overhead

We also investigated the runtime overheads associated with the execution of the BPFP, and we present
the results of this investigation in Appendix D. We show that polling is the only component with
a significant execution time of up to 10s. However, the polling time depends on the scheduling
frequency and therefore increasing the frequency will reduce the polling time. Though the polling
time was set to 10s, the actual polling time was observed to be less. If the polling takes place 1s after
the failure, the HAC records the failure directly, and therefore the polling time becomes 1s. The CPU
and memory utilisation evaluation shows that the overhead is negligible, and CPU utilisation was
experienced for a period of 5±0.8s as listed in Table D.1.

10.4 Evaluation of Bayesian Prognostic Framework

In this section, the improvements achieved using the BP framework are presented, which means all the
modules that are part of the framework contribute to the results. The consolidated result is compared
with the HAC baseline measurement.

We prepared Data Sets 11 and 12 for MTTR and availability analysis. Each was created with 10080
instances to emulate continuous data for a week with one minute intervals to represent availability
over time. Each instance consists of a timestamp, availability with 𝑇𝑇𝑅𝑏𝑎𝑠𝑒 and availability with
𝑇𝑇𝑅𝐵𝑃𝐹 . The availability figures were either 100 or 0 (default 100 to indicate 100% availability) to
indicate whether the EA is available or not.

In the next step, we extracted failures that require downtime (e.g., resource group failover and
system failover) from Data Sets 6 and 8. We distributed the failures over a week and inserted the
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Table 10.26 Mean failover time in seconds for different types of resource groups

BN Node Description Failover Time (s)

𝐴1 Message and lock instance group 41
𝐵1 Database group 152
𝐶1 Main instance group 153
𝐷1 Backup lock server group 11

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

A
v
a

ila
b

ili
ty

(%
)

Time (minutes)

TTRbpf=0s 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

TTRbase TTRBPF

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

TTRbase=16.01m 

TTRbpf=4.13m 

TTRbase=16.28m 

TTRbpf=3.10m TTRbpf=1.11m 

TTRbase=9.14m 

TTRbase=18.14m TTRbase=25.52m TTRbase=25.54m 

TTRbpf=1.04m TTRbpf=2.52m 

(a) (b) (c)

(d) (e) (f)

BN node: A4

BN node: E3

BN node: B4 BN node: C4

BN node: A4 BN node: B4

Figure 10.28 TTR analysis with the recovery time when only HAC results are observed in blue and
when the BP framework is employed is shown in red. Panels (a), (b) and (c) are from Data Set 11, and
(d), (e) and (f) are from Data Set 12.

related downtimes into the newly created data sets. Then, we calculated the TTR for each failure when
the BPF is implemented and inserted these values into the data sets. The TTR per failure consists of all
execution times presented previously (e.g., the BN inference time and resource group failover time).
The resource failover time for the different resource groups was obtained by performing multiple
failovers, and Table 10.26 lists the mean values for the different resource groups. Finally, we analysed
the two data sets, and the results are presented in the next section. We did not consider the resources
subject to reinitialisation in the calculation because such resolutions typically do not affect the overall
availability.

We present the results from the evaluations using the TTR evaluation and availability analysis
metrics in this section.

MTTR Analysis We observed that the use of the BP framework within a HAC solution can improve
the MTTR significantly. To illustrate this, we selected three instances of failures from each of Data
Sets 11 and 12. Figure 10.28 depicts the TTR for the three failures from each data set.
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Table 10.27 Availability analysis results between the standalone HAC and the HAC supported by the
BP framework

Data Set
𝐻𝐴𝐶𝑏𝑎𝑠𝑒

Downtime
(min)

𝐻𝐴𝐶𝑏𝑎𝑠𝑒

Uptime
(%)

𝐻𝐴𝐶𝐵𝑃𝐹

Downtime
(min)

𝐻𝐴𝐶𝐵𝑃𝐹

Uptime
(%)

Downtime
Improvement
(%)

Uptime
Improvement
(%)

Data Set 11 ∗ 144 98.57 26 99.74 81.94 1.19
Data Set 12 ∗ 238 97.64 30 99.7 87.39 2.11

∗ Indicates that the failure information for the Data Sets 11 and 12 originates from Data Sets 6 and 8.

Figure 10.28(a) displays the system availability and TTR achieved by the baseline HAC and by
using our BP framework (as part of a HAC) in the scenario in which the message and lock service
file system (𝐴4) experienced a failure. The correct mitigation for this failure is a resource group
failure, which is suggested by our BP framework. By applying this mitigation, a HAC using the
BP framework would have restored the 100% availability with a short 𝑇𝑇𝑅𝐵𝑃𝐹 of only 1.1m (this
time includes the delay introduced by the BP framework). In contrast, the baseline HAC solution
performed a time-consuming system failover, achieving a much poorer𝑇𝑇𝑅𝑏𝑎𝑠𝑒 of over 9m. Similarly,
Figure 10.28 (b) displays the availability and TTR achieved for the failure of the database file system
(𝐵4), where the BP framework correctly recommended a resource group failover, which reduced the
recovery time compared to the system failover performed by the baseline HAC solution from the
testbed. Figure 10.28 (c) shows the TTR reduction by the BP framework when the main instance file
system (𝐶4) failed.

In the second data set, the failures of the same resources as in (a) and (b) are illustrated in (d)
and (e). However, both have increased downtime by the baseline HAC, whereas the BP framework
provided values with only minor differences. However, the TTR analysis in Figure 10.28 (f) shows
that the resource DLM file system (𝐸3) failure is not considered a failure by the BP framework because
it was predicted as a locally manageable failure by the BDN-HAC module.

We analysed six failures, out of which the BP framework predicted that five failures would only
require a resource group failover, and the sixth failure would require no action because the failed
resource can be reinitialised. Hence, the results illustrate how the BP framework can reduce the
MTTR compared to the unnecessarily conservative baseline HAC.

Availability Analysis Table 10.27 presents the availability results across the whole data sets used in
the evaluation. The total downtime with the 𝐻𝐴𝐶𝑏𝑎𝑠𝑒 is 144 minutes in Data Set 11 and 238 minutes
in Data Set 12. The BP framework predicted and advised changing many of the decisions presented in
the previous section, reducing the MTTR. Therefore, the 𝐻𝐴𝐶𝐵𝑃𝐹 improved the availability by 1.19%
in Data Set 11 and 2.11% in Data Set 12. The downtime improvement is 81.94% in Data Set 11 and
87.39% in Data Set 12. The results demonstrate that the 𝐻𝐴𝐶𝐵𝑃𝐹 can achieve significant improvement
compared to the 𝐻𝐴𝐶𝑏𝑎𝑠𝑒 .
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10.5 Discussion

We injected a total of 213 failures for both training and production scenarios. The total count included
12 test cases where failures were injected five times consecutively for each test case, resulting in 60
fault injections. However, we treated them as 12 test cases in the evaluation because these failures
were often not recorded by the HAC. For example, the application used the self-healing capability
to reinitialise the resource. Therefore, we excluded these repeated failure injections (48) from the
total number of failure injections and only included test cases in the count, which resulted in 165
failure injections. Further, we used two fault injections in some test cases to evaluate the impact of
two resources failing simultaneously. When the first failure resulted in either resource group failover
or a system failover, the result of the second failure injection became unobservable. Thus, nine failure
injections affected by this were not considered. Out of the remaining failures, the HAC reinitialised
65 resources and carried out one resource group failover and 36 system failovers.

The BDN-HAC model predicted correctly that 70 failures could be managed locally and 32
failures were unmanageable locally. The BDN-HAC produced more true positives (TPs) and fewer
true negatives (TNs) compared to the results of the HAC because it considered the additional properties
introduced in this thesis as follows:

• The HAC performed four system failovers for a critical resource (database service) that could
be reinitialised. At the same time, the BDN-HAC produced TPs for all of them, considering the
properties in groups 1 and 2 as described in Section 6.1.

• Two failures associated with noncritical resources led to a resource group failover by the HAC.
In contrast, the BDN-HAC produced TPs for all considering the property group three.

• The test cases T1 and T10 were used to consecutively inject failures five times on a resource
with self-healing capabilities (redundancy factor in Table 10.7). The application reinitialised
the resource rapidly for all these 60 failures. The first three fault injections in the same test case
were quickly remedied within under 100ms, but the application required a longer time for the
last two. The HAC was not aware of any of the failures or the self-healing capability provided
by the application. However, when the delay in reinitialising the resource by the application
in the later part of the fault injections coincided with the HAC’s monitoring interval for that
resource, and therefore the HAC was able to identify the failures and record them in the log file.
The HAC then proceeded with reinitialising the resource though the application had already
reinitialised it. When the HAC reinitialised the resource, it always reinitiated the four parent
nodes (𝐴3,𝐴4,𝐴5 and 𝐴6), which which resulted in a delay of over one second.

• In the same resource group, eight fault injections were associated with two resources, one
noncritical (weak) and one with self-healing capability. The HAC reinitialised the weak
resource, and the application started the second resource. However, when we injected 12
failures on two resources, one critical and one with self-healing capability, the BN-HAC model
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predicted consistently that only a resource group failover was required for the critical resource.
However, the HAC performed a system failover which brought down the second resource. In
the future, a BP framework-based HAC would have only performed a resource group failover
without disrupting other resources while also considering the self-healing capabilities of the
application to avoid unnecessary delays and disruptions.

For the 44 unmanageable failures predicted by the BDN-HAC, the HAC performed system failover
for all of them, but the BN-HAC model predicted correctly as follows:

• Thirty-six failures were predicted to require only a resource group failover. The failover time
differs for the different resources as listed in Table 10.26. The resource group represented by
node 𝐴1 required an average of> 41s, while the resource group 𝐶1 required > 151s.

• The model predicted that eight failures still required a system failover due to global dependency
resource and other critical resource failures.

We have grouped the results from both training and inference together to provide the results discussed
so far. However, the inference was typically performed using the failure distributions learnt by
parameter learning and the production data. Therefore, we present the results observed for inference
as follows:

• The BDN-HAC model delivered information about 20 unmanageable failures to the BN-HAC
model. The BN-HAC correctly predicted that resource group failovers were sufficient to deal
all 20 failures, while the HAC performed system failover for all of them.

Considering that some resource group failovers are fast (as listed in Table 10.26), there were only
minor disruptions for the application. In other cases, the upper-level application layers could ensure
connectivity using a reconnect functionality [87], thus recording only small windows of downtime.
Therefore, the BP framework exploits the capabilities provided by the EA and other properties to
achieve a significant improvement in reducing downtime compared to the HAC in the testbed.

10.6 Threats to Validity

We identified several threats that could affect the validity of the evaluation presented in this chapter:

• Unlike the EA used in out testbed, resource groups of EAs may have dependencies on one
another. In such a case, the BN-HAC would need to take into account the fact that a failover of
one resource group may have a cascading effect resulting in a system failover. We addressed
this threat by providing a general-purpose method for constructing a BN model by using the
exact composition of the HAC aided by the holistic availability modelling technique. Therefore,
the dependencies between resource groups can also be defined as conditional probabilities in
latent nodes. Thus, the BN-HACs constructing using our method should be able to deal with
these situations, although evaluation with such EAs is needed to confirm this.
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• The experiments were conducted using one primary HAC solution. The different HAC solutions
available have distinct characteristics that can influence the prediction outcome. To reduce this
threat, we used logs from multiple HAC solutions to develop the BP framework. Furthermore,
we evaluated our BP framework using a HAC solution with different configurations of HAC,
such as stickiness, to ensure that the evaluation captures the behaviour of multiple types of
HACs.

• While the empirical evaluation of the BP framework was performed in a production-like
environment, with a complete ERP solution, only data from one EA were used in the evaluation.
To mitigate this threat, we used data from multiple HAC solutions to develop the framework.

• The HAC supporting an EA could have numerous configuration options, as described in our
taxonomy. However, we only used one combination of configuration options, such as an
active-passive configuration for the HAC topology. The results using different combinations of
HAC configuration options may differ. To reduce this threat, we developed our BP framework
so that it can be deployed across all available nodes of a HAC, in order to capture the individual
nodes’ failure information and assess them accordingly.

• The testbed does not have all the possible components, redundancy setups and related config-
urations required to fully mirror an environment for hosting a business-critical system. For
example, a business-critical setup typically requires a separate network to be set up to allow
quorum communication, but we could not provide that in the public cloud. Another example
is that a business-critical system may use a quorum with a redundant setup using external
devices. However, we could only deploy a quorum on the two available nodes. Therefore,
HACs may perform better than in the evaluation results presented. To reduce this threat, we set
up the testbed as close as possible to an environment used to support a business-critical system.
Moreover, our objective is to demonstrate this new approach using probabilistic reasoning and
improved detection and prediction capabilities. Therefore, the overall solutions are expected to
perform better when the BP framework is deployed on HACs.

10.7 Summary

This chapter presented the evaluation methodology and evaluated the individual BP framework
modules and the complete BP framework. First, we established the testbed to mirror the environment
of a business-critical system, which included servers, storage and a network. Subsequently, we
implemented a real ERP application and an open-source HAC to protect the application. We included
all applications and related infrastructure resources in the HAC. We presented the related evaluation
metrics, including the basic metrics and other metrics derived from the basics. Furthermore, we also
proposed two metrics to measure MTTR and the availability of the HAC for the baseline scenario and
for when the BP framework is implemented. These two metrics aid in quantifying the improvements
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achieved by using the BP framework. A fault injection methodology was described, and associated
test cases were also presented.

To evaluate the HMTHA technique, we assessed the construction of a model for the testbed HAC,
and demonstrated that the technique satisfies its primary objective, which is to capture the complex
dependencies of an EA. Furthermore, we evaluated the runtime overhead of the technique when
creating models for three IT solutions, including the one for the testbed HAC; Appendix C presents
the results of this evaluation in detail.

We evaluated the two BDN-HAC models and selected BDN-HAC-1 for use as the BDN-HAC
module of our BP framework. Then, we evaluated the model for prediction quality, including in
multiple scenarios in which incomplete data are involved. We also analysed different variations of
incomplete data, such as when critical nodes receive data compared to noncritical nodes receive data.
Overall, the use of our BDN model improves the AUC by 4.2% compared to the baseline HAC results.
The evaluation of execution time demonstrates that it rarely exceeds 100ms, which does not add
significant time to the overall execution time of the BP framework. The results from the runtime
overhead evaluation demonstrate that the overhead is insignificant.

We evaluated the method for constructing the BN-HAC model in three steps. In Step 1, we
transformed the HHAM and M-table to a corresponding BN model representing the underlying
HAC. We allowed parameter learning to learn the distributions in Step 2. In Step 3, the model was
inferred with runtime data to provide failure propagation and prediction. Then, we assessed the model
prediction quality, revealing that the BN-HAC model can improve the AUC by 50% compared to the
baseline results delivered by the HAC. We studied the reason for such improvement and found out
that the BN-HAC model predicted a resource group failover correctly in scenarios where the baseline
HAC performed system failovers unnecessarily. Naturally, a system failover is more expensive than
a resource group failover. We also investigated the relationship between the learning data size and
subsequent inference, and revealed that smaller data sets could affect the prediction quality.

The BPFP module was evaluated by analysing the computational overhead. We demonstrated that
the CPU and memory utilisation is negligible for its components, and the overall execution time was
also not expected to increase.

Finally, we evaluated the complete BP framework, finding that it can reduce the MTTR and can
improve the availability of the testbed application by a mean value of 1.65%, which is a significant
improvement.
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Chapter 11

Conclusion and Future Work

Multiple challenges stand in the way of ensuring the availability of modern EAs. Some of these come
from the significant changes in EA deployment patterns, for example, due to moving applications
to public clouds. Other challenges arise from changes in the architecture composition of EAs,
for instance, from the transition to microservice-based solutions, and from the integration of new
fault-tolerance capabilities (e.g., self-healing) so that some SPOF components can be managed
by the application itself. As such, HACs need to continue to evolve to address these challenges
while continuing to improve the availability of the protected applications. The Bayesian prognostic
framework introduced in this thesis is intended to enable future HACs in this endeavour in two ways.
First, the framework supports a more accurate prediction of locally manageable resources. Second,
the framework allows the unmanageable failures to be accurately propagated to the resource group
and system levels, supporting the prediction of potential failures earlier than currently possible.

To achieve these two improvements, the BP framework integrates and exploits novel capabilities
provided by four modules:

1. We devised the HMTHA to discover the complex dependencies between components and
represent them in the corresponding BN-HAC model. For example, we introduced the concept
of a weak resource, which is presented as a weak vertex in the HHAM. Then, we mapped it to a
weak node in the corresponding BN-HAC model using conditional probabilities.

2. We developed the BPFP to prepare the environment to deploy the BPF and to aid in preparing
HAC failure information.

3. We constructed the BDN-HAC model to incorporate the existing and new characteristics to
predict locally manageable resource failures. The existing characteristics include common
characteristics that can influence resource availability. The new characteristics identified in this
thesis can be used to assess the hierarchy, resource types, resource criticality and application-
provided self-healing capabilities. The characteristics are obtained from both the runtime and
configuration environments.
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4. We provided a method for constructing a BN-HAC model capable of propagating individual
resource failures to predict resource group and system failures. The exploitation of the historical
failures is realised using characteristics that measure a resource’s repeated failure and failure
count in the BDN-HAC model. Furthermore, in the BN-HAC model, historical data are used to
learn the parameter distributions of past failures so that inference considers them appropriately
at runtime.

This chapter summarises the contributions underpinning the BP framework and its four modules,
and proposes further research directions.

11.1 Taxonomy of the High Availability Clusters

11.1.1 Research Contributions and Discussion

We developed a novel taxonomy of HACs that organises many classes and subclasses in the HAC
domain. We introduced new terms to distinguish the critical areas so that HAC elements can be
addressed with more clarity. The new terms are: symmetric application-based, symmetric server-based,
cluster-based replication, client-state synchronisation, cluster-state synchronisation and application-
state synchronisation. We used the taxonomy as a knowledge repository throughout this thesis, and to
construct the BDN and BN models.

The taxonomy can be used to discover, explore, analyse and understand the composition of a HAC
environment for an application, which was demonstrated by applying it to the testbed environment
(described in Appendix B). We also revealed how the taxonomy could aid in identifying the correct
configuration of a HAC, which simplified the implementation of the testbed.

11.1.2 Further Research Directions

We envisage that our taxonomy could support developing a tool-supported method enabling the
developers of HHAM models to exploit the domain knowledge encoded by our taxonomy. This
tool-supported method could automate key steps associated with devising HHAM models for a specific
HAC solution, including discovering the components of a system, identifying the relationship between
the components, and using that information to construct the HHAM model automatically.

11.2 Survey of High Availability Clusters

11.2.1 Research Contributions and Discussion

We presented an extensive survey of the HAC solutions using the taxonomy. We developed a
systematic approach for selecting the HACs, focusing on EAs that apply filters to narrow the list of
HACs for the survey. We designed a comprehensive questionnaire to collect data from the vendors of
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HACs. Finally, we analysed the survey results, presented the limitations and challenges associated
with the current HACs and proposed further research opportunities.

11.2.2 Further Research Directions

A wide range of further research opportunities was already identified in our survey and this is detailed
in Section 3.2.6.

Additionally, several future directions can add further value to the research in the HAC domain. A
survey on downtime and the cost associated with all aspects of downtime (i.e., loss of productivity,
support costs, operational costs, delays in deliveries and escalation efforts) can produce a wealth of
information while also presenting a holistic way of measuring the downtime effects.

A survey on the current challenges related to HAC solutions can help identify and group the
challenges into either HAC-related or operations-related challenges to be addressed accordingly. For
example, if the challenges are related to HACs, they can be resolved by proposing potential solutions
to the HACs. In contrast, if the challenges are related to operations and a common pattern can be
observed, they can be addressed by proposing changes in the operational model.

11.3 Holistic Modelling Technique for High Availability

11.3.1 Research Contributions and Discussion

We introduced HMTHA to model HA for IT systems to discover and visualise all components required
to set up HA while also depicting the dependency relationships between the components. We defined
a graphical notation to represent the different component types of an IT system using vertices and arcs.
We proposed a simplified process for gathering requirements and creating a model. The resulting
model can analyse different component characteristics, such as the criticality and hierarchy position.
The model is accompanied by an M-table and T-rules to simplify mapping the HHAM model to
a probabilistic model. Furthermore, we developed a software tool to ease the applicability of the
technique. The HMTHA is a crucial technique to create the BN-HAC model for a given HAC. Further,
we demonstrated that the HMTHA outcomes could prepare the deployment environment of the BP
framework by providing input to the BPFP module in the testbed.

We evaluated the technique by creating three distinct models. The first model represents the
testbed environment, while the other two models represent realistic IT systems (Appendix C). All three
models have different vertices and arcs with varying depths (layers). We analysed the computational
overhead (CPU and memory utilisation) associated with creating the models using the software-based
tool. We noted that the CPU cycles were used when adding vertices and that the CPU utilisation
was insignificant (under 2.5%). However, the memory utilisation was linear and increased with each
added node. We discussed linear memory utilisation and its effect on the overall BP framework. We
concluded that applying HMTHA is a one-time activity, and therefore it does not add any overhead to
the runtime of the BP framework.
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11.3.2 Further Research Directions

The HMTHA can be extended to discover the components of an IT solution automatically, which may
require connecting to different information sources across multiple layers (e.g., server) to discover
such information. A possible source of such information is a configuration management database
(CMDB) that stores information about IT systems and the related components [248]. Open standards-
based techniques can also be utilised, such as standards by Distributed Management Task Force
(DMTF) [34].

An application programming interface could be developed to provide model information to other
solutions automatically. For example, such information can be used to construct the structure of a BN
model with significantly reduced effort.

11.4 Bayesian Prognostic Framework Preparation

11.4.1 Research Contributions and Discussion

We developed a BPFP module to satisfy two objectives. The first was to enable the deployment of the
BP framework, and the second was to enable the processing and preparation of the failure information
to be input into the BDN-HAC model. To support the two objectives, we designed and developed
several components: configuration refinement, log interface, transformation and conversion, and the
filter. We also introduced a new algorithm for uniquely extracting failure entries using a timestamp
and a process identifier in the component log interface.

We evaluated the module and its subcomponents and showed that little computational overhead
is associated with the module runtime. The measurement of the execution time indicated that the
polling used by the log interface requires a significant portion of the overall execution time of the BP
framework However, the value depends on the polling frequency. Therefore, this frequency can be
reduced to improve the overheads.

11.4.2 Further Research Directions

The log interface can be extended to support multiple HACs, in order to enable the BP framework to
work with several HACs. The BPFP is already developed to function as an independent “interface”
layer between a HAC solution and the other modules of the BP framework. Therefore, the approach
should connect the HAC logs to the BPFP intermediate layer. However, this could present a significant
challenge because of the lack of standardisation regarding log structure and format as described in
Section 3.2.6. A machine learning approach could potentially be employed to identify the structure of
a HAC log before proposing how such information can be utilised by the log interface [130].
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11.5 Bayesian Decision Network for Predicting Locally Manageable
Resource Failures

11.5.1 Research Contributions and Discussion

We introduced a HAC solution-independent BDN model to predict locally manageable resource
failures of HACs by incorporating a set of characteristics comprising both existing and new character-
istics proposed in this thesis. Each characteristic is mapped to a BDN node and most are mapped to a
chance node in the BDN model. A decision node indicates the failure status of a HAC resource, and a
utility node presents the prediction outcome. Finally, conditional probabilities are used to encode the
node dependencies and add weight to indicate the degree of influence between the parent and child
nodes. In contrast, the utility node uses preferences to add weight to the child nodes.

We constructed two models with two distinct paths to enable the comparison and validation of
alternative BDN structures. We employed two metrics, utility analysis and strength of influence, to
select the better of the two models as the BDN-HAC module of our BP framework.

We evaluated the prediction quality of this model using the testbed environment and showed that
the model performed prediction better than the established HAC solution used as a baseline. Moreover,
we also investigated the impact of incomplete data and demonstrated that it significantly affected
the prediction quality. We also evaluated the scenario when critical nodes (nodes with a high weight
factor) received data and compared this to the scenario when noncritical nodes were supplied with
data. The experimental results confirmed that the critical nodes play a vital role in the BDN-HAC
model. Similarly, we tested the differences between roles of the existing and new characteristics of the
BDN-HAC model, and we showed that the new characteristics improved the prediction quality more
than the existing characteristics. Furthermore, we measured the computational overhead and execution
time associated with the model. We found very little overhead (CPU and memory utilisation), and the
execution time is also on the order of milliseconds, which is acceptable for the intended use of this
model.

11.5.2 Further Research Directions

In Chapter 2, we demonstrated that a BDN utility output could represent the probability of managing
failure locally at two levels, manageable or unmanageable. This shows that the utility output can be
correlated to the different levels of failures. Therefore, it is worth exploring and interpreting the utility
outcomes at a granular level, which can then be connected to multiple failure states of a resource.
This has the potential to improve the prediction quality in the BDN-HAC and BN-HAC models.

If the BDN-HAC model is integrated with HAC solutions, the model can be used in the decision-
making process of HACs, resulting in faster failure mitigation times and reduced overhead. The
overall purpose of the BP framework is to be integrated into HAC solutions. As a first step, even
integrating only the BDN-HAC module into a HAC solution is bound to improve detection and

231



Conclusion and Future Work

prediction capabilities because the model can consider a wide range of properties associated with EAs
and HACs.

Considering additional HAC characteristics in the BDN-HAC model could improve the detection
and prediction qualities. For example, the self-protection ability provided by modern EAs to block
cyberattacks, and thereby avoiding potential downtimes caused by such attacks [44, 53], can also be
added as a new characteristic.

11.6 Bayesian Network for Failure Propagation and Prediction

11.6.1 Research Contributions and Discussion

We introduced a method for constructing a HAC-specific Bayesian network model. The resulting
model is used to propagate unmanageable failures from the BDN-HAC model to predict failures at
the resource group or system level. Our method obtains input from the HMTHA outcomes for the
structure of the BN model, and assigns appropriate prior probabilities to complete the construction
of this model. Furthermore, we presented an approach for mapping the different vertex types in the
HHAM model to the corresponding elements of the BN model, for example, mapping weak vertex
types to weak BN nodes by assigning conditional probabilities at the related child node level. The
model learns the parameter distribution and uses this information to provide predictions. However, the
HAC failure data are incomplete because only the failed node passes the information. To resolve this,
we added a substitution step to replace all incomplete data with positive values, and we demonstrated
that this approach correctly updates the BN parameter distributions.

We evaluated the method for constructing a model using the testbed environment, and showed
that the resulting model could accurately predict all cases considered in our experiments. Moreover,
we showed that the model could distinguish between different type of failures. For example, the
model could predict a resource group failure in many scenarios in which the baseline HAC used in
the testbed performed a system failover unnecessarily. Therefore, the model predictions reduced the
MTTR and improved the availability of the protected EA. We measured the computational overhead
and execution time associated with the model and found both to be insignificant.

11.6.2 Further Research Directions

Online learning can further improve the framework because the accurate and continuous updates of
the parameter distributions has the potential to improve the prediction quality of the BN-HAC model
when considering new failures. Online parameter learning could be used to update the parameter
distributions continuously [225], ensuring that the parameter distributions reflect up-to-date failure
occurrences in the HAC, ultimately improving the probability of predicting failures correctly.

Changing the BN-HAC model to a DBN-based model can improve prediction quality using time
series data because the HAC log data are based on a time series [133, 134]. Thus, both failures and
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nonfailures can be input into the model using online learning. Inference can then use the updated
parameter distributions to provide accurate predictions.

Another area worth exploring is the automatic creation of the BN model structure using the
underlying structure of the HAC. This thesis laid the foundations for constructing a BN-HAC model
from the outcomes of the HMTHA. Automating these steps would simplify the model creation process
while reducing the errors associated with the manual creation of the models.

11.7 Bayesian Prognostic Framework for High-Availability Clusters

11.7.1 Research Contributions and Discussion

We devised the BP framework, the first end-to-end solution that employs probabilistic reasoning within
the domain of HACs. The BP framework consists of four modules: HMTHA, BPFP, BDN-HAC and
BN-HAC. The integrated framework functions as a single solution to enable a series of tasks. The
framework, for example, enables modelling HA for an IT solution using HMTHA. The outcomes are
subsequently used in the BPFP module to update information about the HA environment, whereas the
BN-HAC module uses them to construct the BN-HAC model. The BPFP module extracts distinct
failure information from HAC logs and prepares such data for the BDN-HAC module. The BDN-HAC
model utilises the prediction capabilities by incorporating a set of characteristics, existing and new,
to determine the manageability of the failure. The confirmed failure is then passed to the BN-HAC
model to propagate the failure and to predict a potential failure at high-level components (the resource
group or system).

The framework supports complete lifecycle management by providing three views: the design,
implementation and runtime. The framework is designed specifically for the underlying HAC and
EA in the design phase. Therefore, in the design phase, the HHAM model, M-table and T-rules
are created. Furthermore, the BN-HAC model is constructed, reflecting the precise structure of the
HAC. In the implementation phase, all modules are implemented in the HAC environment, and a
training data set is prepared to enable the BN-HAC model to learn the parameter distributions. In the
runtime phase, failure information is captured and processed before applying the prediction of locally
manageable failures. The information related to unmanageable failures is passed to the BN-HAC
model to propagate the failure to upper-level components (the resource group or system) and predict a
potential failure.

We established the applicability of the framework by implementing it in a realistic tested envi-
ronment. We performed an MTTR analysis to evaluate the framework efficiency, and the results
revealed a significant reduction in the MTTR. Furthermore, we applied the TTR values from both
the baseline HAC and the HAC when the BP framework is deployed (BPF) to two data sets to obtain
the availability over time for both. The results show that the BP framework improved the weekly
availability by 1.65% (from 98.11% to 99.72%), which is a significant improvement. Furthermore,
we evaluated the runtime overhead and execution time for all modules, and neither was significant.
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11.7.2 Further Research Directions

The full potential of the framework can be realised once it is fully integrated with the failover
management or cluster management module of a HAC. Therefore, the main area of future research is
this integration, which has the potential to deliver the following benefits:

1. The BP framework can assess more characteristics, as proposed in the ’Further Research
Directions’ (Section 11.5.2) of the BDN-HAC, which significantly improves the detection
quality and the ability to predict locally manageable failures.

2. The BN-HAC introduces Bayesian probabilistic reasoning using prior and posterior failure
probability distributions and can assess the dependencies between a large number of resources
simultaneously. For example, the framework can even consider the effect of a resource failure
that is not directly related, e.g., in a different resource group.

3. The response time for detection, prediction and decision will also be faster because the commu-
nication could be event-based and in real-time, similar to how current HACs manage internal
communication between the different modules today.

4. The integrated framework can capture failures directly from the monitoring module of HACs,
and this can speed up the entire process.

5. The framework enables implementing more complex solutions such as capturing information
regarding multiple states of a node/resource, which could improve the BP framework’s detection
and prediction qualities due to a granular interpretation of failures can be achieved.

Therefore, the integrated solution can reduce the MTTR significantly, which could improve the overall
availability.

The BP framework can be developed further to support assessing a large number of intercon-
nected components where assessing the individual component’s state changes and its effect on other
components is essential. An analogous BP framework can be developed to detect, predict and mitigate
cyberattacks in public clouds. The BDN-HAC can assess the individual resources such as a server or
a service using a use a set of characteristics based on the local capabilities available to resolve the
issues. If a threat cannot be resolved locally, it will be passed to the BN-HAC model, assessing the
impact on other related sources. The BN-HAC model then can invoke the procedure to mitigate the
threat, which could be an alert or another system that blocks the traffic into the network.
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Appendix A

High Availability Resource
Characteristics

1. VM indicator
This property helps identify whether a resource is deployed in a VM host or VM guest instance.
If it is a guest instance, the host’s critical resources can be monitored to capture the state so that
the failure probability can be assessed considering such failures [37].

Motivation for exclusion. It is impossible to obtain access at the host level in most operating
models (e.g., a public cloud). Hence, it is not possible to deploy a monitoring tool. We excluded
this property due to the challenges of gaining access at the host level to deploy an appropriate
monitoring tool in the public cloud environment where the testbed was established.

2. Error severity
This characteristic can identify different severity levels of an error to provide detailed infor-
mation, indicating that different mitigation actions can be devised based on the severity level
[92].

Table A.1 Excluded resource properties of high-availability (HAC) clusters

HAC Resource Property Description CategoryValues
VM indicator An indicator for either the guest or host of a VM EC {0,1}
Error severity Multiple severity levels of an error NC {0,...,n}
Error type Multiple types of errors (e.g., intermittent, transient) NC {0,...,n}
Resource type Type of failed resource EC {0,...,n}
Application state Current state of an application or a business process NC {0,1}
Resource CPU utilisation CPU utilisation by resource NC {0,...,n}
Resource memory utilisation Memory utilisation by resource NC {0,...,n}

VM - Virtual machine

EC - Established characteristics

NC - New characteristics
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High Availability Resource Characteristics

Motivation for exclusion. The primary challenge is to obtain such values from the HAC logs.
Second, it is difficult to interpret such information and map it into detection capabilities because
all such severities must be translated into values that the model can understand. Moreover, no
standards exist for providing severity because different HACs and protected applications may
have specific severity levels and interpretations.

3. Error type
This property can capture different types of errors, such as transient errors [5].

Motivation for exclusion. The HAC logs typically do not provide this information. Moreover,
application-specific error types may require such information provided by the application, but
usually, HACs do not read or interpret application-provided logs. However, some limited scope
is included in the selected characteristics by evaluating the failure repetition and aggregated
failure count.

4. Resource type
A resource type can identify different types of resources and how different resolution actions
can be performed upon failure [49].

Motivation for exclusion. The resource type is captured indirectly by associating the resource
type with the characteristic reinitialisation factor. Therefore, this property was not included.

5. Application state
An application state indicates the state of an application resource, which includes a business
process hosted on an application. Suppose an application is in the hang state [95]. In that case,
it can still be considered running by the HAC [239], and only by specifically monitoring the
application can one decide whether a failure has occurred. If such an application resource is not
responding, understanding the correct state can identify a potential failure to initiate the correct
mitigation activities.

Motivation for exclusion. This property requires monitoring an application resource to ensure
that the application resource is operational. Therefore, an appropriate monitoring mechanism
must be in place to check and understand the behaviour of the application resource, which
requires considerable effort. Thus, this property was excluded.

6. Resource CPU utilisation
The CPU utilisation by a resource may indicate a potential failure shortly if the utilisation is
high [239]. Moreover, such high utilisation can also affect other resources. Hence, this can lead
to the failure of multiple interconnected resources or even high-level components.

Motivation for exclusion. The CPU utilisation for an individual resource is difficult to obtain
for different resource types [258]. This property would require additional tools that support
extracting such information. Therefore, we chose not to include this property.
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7. Resource memory utilisation
A high value for this property can be used to identify or predict a potential resource failure or
even the potential failure of other interconnected resources [49].

Motivation for exclusion. Memory utilisation for an individual resource is difficult to obtain for
different resource types. Moreover, monitoring does not capture such details but only on memory
utilisation at the server level. We chose not to include this characteristic because it requires
additional development to capture memory utilisation for all HAC resources continuously.
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Appendix B

Use of the Taxonomy

We applied the taxonomy (described in Section 3.1) to identify and organise the information required
to set up the environment, implement the HAC, and incorporate the ERP solution into the HAC.
Table B.1 lists a selected number of taxonomy classes and the corresponding values for the testbed
environment.

Table B.1 Application of the taxonomy to the testbed application

Taxonomy Classes Value

A: Deployment patterns
A: Deployment patterns Environment:public cloud Host:virtual

B: Application Areas
B: Application areas Enterprise system

C: Type of Cluster
C: Type of cluster C.1: Local
D.2: Asymmetric D.2.1: Active-passive

E: Cluster Management
E.1.1: Configuration E.1.1.1: Disk
E.1.2: Runtime E.1.2.3: Memory
E.2.1.1: Heartbeat E.2.1.1.1: LAN-based
E.2.2.1.2: Virtual synchrony TOTEM
E.3.1.2.1.1: Application ERP
E.3.1.2.1.2: Database MaxDB 7.9.10

F: Failure Detection and Recovery
F.1.2: Type F.1.2.1: State-based
F.1.3: Method F.1.3.1: Poll
F.2: Failover F.2.1: Reactive
G.4.1.1: Resource SBD

H: Data Synchronisation
H.1: Shared storage iSCSI
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Use of the Taxonomy

The deployment pattern indicates that the environment is established in a public cloud, and virtual
servers were used. The application area is an enterprise system (ERP solution), and the cluster is
a local cluster that is set up using the active-passive topology (asymmetric). Moreover, the pattern
also provides details at the granular level. For example, the TOTEM protocol supports intercluster
communication, and heartbeat communication is based on a local area network. The application class
is used to identify the application components, such as specific enterprise application and database
so that the appropriate resource agents (e.g., agent for the ERP and database) can be installed. The
failure detection and recovery class indicates that the monitoring type is state-based, and the method
for collecting monitoring data is through polling. Failover is based on policy, whereas fencing is
performed at the node level. Data synchronisation is based on shared storage, and the technology is
based on iSCSI.
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Appendix C

Evaluation of Runtime Overhead of the
Holistic Modelling Technique for High
Availability

This section presents the evaluation of the HMTHA technique described in Chapter 5. We validated
the technique by using it to create a HHAM model for the HAC from our testbed environment in
Section 10.3.1. Subsequently, we used this HHAM model to successfully construct the BN-HAC
model. In this section, we present the results from investigating the computational overhead associated
with creating a HHAM model. Section C.1 presents the experimental setup, and Section C.2 presents
and discusses the evaluation results. Section C.3 reviews the threats to the validity of the experiments
and the results. Section C.4 summarises the section.

Table C.1 Evaluated HHAM models—vertex types

Number of vertices

Vertex Type Model 1 (testbed) Model 2 Model 3

Application 1 1 1
Resource group 5 4 5
Weak 2 2 2
Simple 13 16 28
Global 3 2 n/a
Shared n/a 1 n/a

Total 24 26 36
n/a – no vertex of this type
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Table C.2 Evaluated HHAM models—vertices in each layer

Number of vertices

Layer Model 1 (testbed) Model 2 Model 3

App(1) 1 1 1
a (2) 8 4 5
b (3) 6 6 6
c (4) 9 4 16
d (5) 0 11 5
e (6) 0 0 1
f (7) 0 0 2

Total 24 26 36

C.1 Experimental Setup

For the experimental evaluation, we ran the HMTHA tool on a computer with 3.4 GHz Intel Core
i7 and 64 GB memory running Windows 10 64-bit. The database was MySQL 8.0.18 (64-bit). We
created three HHAM models. The first model was for the HA solution implemented in the testbed.
The other two models represented two realistic IT systems with a variety of components and depths.
Table C.1 presents the three models according to the vertex types, whereas Table C.2 lists the three
models grouped by layers.

We measured the computational overhead by measuring the CPU and memory when adding a
vertex and assessing the type and layer of the vertex. The results are presented in the next section.

C.2 Results and Discussion

When the HMTHA tool was initiated, it used between 152 and 162 MB of memory, and more memory
was used gradually as different types of vertices were added, as depicted in Figure C.1. Memory
per vertex indicates how much memory was added per vertex, and the cumulative curve presents the
cumulative values. However, the absolute value presents the absolute memory usage, which includes
all memory used by the model.

We observed that the changes to memory utilisation when adding a vertex was constant, apart
from some minor deviations. Figure C.2 (b) displays the deviations more clearly. The mean utilisation
is between 2 and 4 MB, but it exceeds the mean value in some cases. For example, when adding
nodes 18 or 20, all their models exhibit the same behaviour. Figure C.3 (b) presents the mean memory
utilisation per vertex type, and dependency vertices appear to be using more memory. However, only
a few vertices of each type are present in each model (e.g., only three global vertices in Model 1).
Therefore, the result cannot be treated as statistically significant.
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Figure C.1 Utilisation of memory per vertex, cumulative memory, and absolute memory for (a) model
1, (b) model 2, and (c) model 3.
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Figure C.2 CPU (a) and memory (b) utilisation when adding vertices.

Figure C.4 presents the CPU and memory utilisation per model layer. Figure C.4(b) shows that the
fourth layer (which has more vertices than the other layers) requires the highest amount of memory
for Models 1 and 2, while Layer 1 has the highest value for Model 3. Initially, the pattern that emerges
from Figure C.4(b) is that when the number of vertices in the HHAM model layers increases, the
memory requirements also increase. The only exception is Layer 1 in Model 3, which has a high
value. However, the two models (1 and 2) do not have more than six layers; hence, it is difficult to
reach a conclusion regarding the correlation between layers and memory.

In contrast to memory utilisation, which grows with each node, CPU utilisation occurs only when
a new node is added, and the percentages shown for CPU utilisation were experienced for a period of
0.6±0.4s. Figure C.2 (a) presents CPU utilisation when adding a node, which is observed to be under
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Figure C.3 Mean CPU (a) and memory (b) utilisation per vertex type.
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Figure C.4 Mean CPU (a) and memory (b) utilisation per layer.

2.5%. Similarly, Figure C.3 (a) displays the mean CPU utilisation per vertex type, and Figure C.4 (a)
displays CPU utilisation per layer. No significant difference can be observed.

The results indicate that memory might be a concern for modelling very large and complex HACs
because the the technique is typically used on PCs. However, although HMTHA is part of the BP
framework, it should be considered an independent module because it does not participate in the
runtime operations of the framework. Therefore, resource utilisation does not add additional overhead
to the runtime of the BP framework.

C.3 Threats to Validity

There are several threats to the validity of the HMTHA tool evaluation presented in this section:

• We used a high performing PC to evaluate; therefore, the results may be different when a less
powerful computer is used. To mitigate this threat, we used a standard PC set up with commonly
deployed processors. Furthermore, the amount of memory on the computer does not influence
how much memory is needed to store the data associated with a node.

• The HMTHA can be implemented on different operating systems, but we only used one
operating system, and the results could be different when other operating systems are used. To
mitigate this, we developed the tool in Java to be as operating system independent as possible
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using Java VM. Therefore, even if there are changes in the operating system, the software’s
functionality should not be affected. the software uses Java VM to run

C.4 Summary

In Chapter 10.3.1 we validated the HMTHA tool to create an HA model for the testbed application.
We demonstrated that the model could be used to identify all key components while presenting
dependency relationships. The outcomes of the HMTHA were used to construct the BN-HAC model
for the HAC in the testbed. Moreover, the model aided in creating the configuration environment of
the BPFP module.

In this section, we evaluated the runtime overhead of the HMTHA, which was implemented as a
software tool. We created three HA models and evaluated them using the metrics of CPU and memory
utilisation. We also investigated the correlation between resource utilisation and vertex type and the
depth in the hierarchy and resource utilisation. The conclusion is that that the memory requirement
is cumulative as more vertices are added. However, CPU utilisation is not persistent but only used
when new nodes are added. We also evaluated the scalability of the technique and concluded that it
could support numerous components. However, the visualisation and analysis of all such components
can be a challenge. In summary, the modelling approach satisfies the primary objective, which is to
capture the complex dependencies of an EA.
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Appendix D

Implementation and Evaluation of
Bayesian Prognostic Framework
Preparation

The implementation of the BPFP module is presented in this section. Section D.1.1 presents the steps
to prepare the environment, and Section D.1.2 details creating the required database objects. The
configuration refinement step is described in Section D.1.3, and the implementation of the log interface
is detailed in Section D.1.4. Section D.1.5 describes the transformation and conversion process, and
Section D.1.6 presents the implementation of the database object to store the preprocessed data.
Finally, Section D.1.7 presents the application of the filter.

D.1 Implementation

D.1.1 Prepare the Environment

The BPFP is a platform- and database-independent solution; thus, only minor changes are required
when implementing it on a different platform and database combination. However, the BPFP requires
that a set of runtime tools are implemented to support the component execution (e.g., Python, R
runtime libraries). Therefore, the first step was to install an appropriate development environment.
Furthermore, a separate database (MySQL) was installed to store the configuration and runtime data
of the BP framework.

D.1.2 Implement the Database for Storing Log and Configuration Data

Once the required database objects (described in Chapter 8) were created, we used the accompanying
scripts to create the required stored procedures and triggers to facilitate transformation, conversion,
and filtering.
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Figure D.1 Configuration refinement for one record using the details from the holistic high-availability
model (HHAM), mapping table (M-table), and high availability cluster (HAC) configuration details.

Jun 22 07:54:30 [1619] vmi243500       crmd:   notice: process_lrm_event: Result of probe operation for fs_3_DEV_ASCS on vmi243500: 7 (not running) | call=37 key=fs_3_DEV_ASCS_monitor_0 confirmed=true cib-
update=49
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_perform_op: ++ /cib/status/node_state[@id='771304931']/lrm[@id='771304931']/lrm_resources:  <lrm_resource id="global_rsc_DEV_CPU" type="HealthCPU" class="ocf" 
provider="pacemaker"/>
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_perform_op: ++                                                                                <lrm_rsc_op id="global_rsc_DEV_CPU_last_0" operation_key="global_rsc_DEV_CPU_monitor_0" 
operation="monitor" crm-debug-origin="do_update_resource" crm_feature_set="3.1.0" transition-key="16:0:7:b58f891c-6e09-4d3a-be21-ca68613900d7" transition-magic="-1:193;16:0:7:b58f891c-6e09-4d3a-be21-
ca68613900d7" exit-reason="" on_node="vmi243500" call-id="-1" rc-code="
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_perform_op: ++                                                                              </lrm_resource>
Jun 22 07:54:30 [1619] vmi243500       crmd:   notice: process_lrm_event: Result of probe operation for fs_DEV_CI on vmi243500: 7 (not running) | call=41 key=fs_DEV_CI_monitor_0 confirmed=true cib-update=50
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_process_request: Completed cib_modify operation for section status: OK (rc=0, origin=vmi243500/crmd/47, version=1.589.25)
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_process_request: Forwarding cib_modify operation for section status to all (origin=local/crmd/48)
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_process_request: Forwarding cib_modify operation for section status to all (origin=local/crmd/49)
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_process_request: Forwarding cib_modify operation for section status to all (origin=local/crmd/50)
Jun 22 07:54:30 [1619] vmi243500       crmd:   notice: process_lrm_event: Result of probe operation for vip_DEV_CI on vmi243500: 7 (not running) | call=45 key=vip_DEV_CI_monitor_0 confirmed=true cib-update=51
Jun 22 07:54:30 [1614] vmi243500        cib:     info: cib_process_request: Forwarding cib_modify operation for section status to all (origin=local/crmd/51)
Jun 22 07:54:30 [1615] vmi243500 stonith-ng:     info: update_cib_stonith_devices_v2: Updating device list from the cib: create lrm_resources
Jun 22 07:54:30 [1615] vmi243500 stonith-ng:     info: cib_devices_update: Updating devices to version 1.589.25
Jun 22 07:54:30 [1615] vmi243500 stonith-ng:   notice: unpack_config: Watchdog will be used via SBD if fencing is required

Figure D.2 Extract from the log file from the testbed high availability cluster (HAC).

D.1.3 Apply Configuration Refinement

One critical activity is to insert the information regarding the HAC environment into a set of tables
so that the runtime environment can use the information. The information was obtained from the
HHAM model, M-table, and HAC configuration and was entered into the appropriate tables using the
‘configuration refinement’ activity. An example of entering a record is displayed in Figure D.1. This
step was repeated until entries related to all resources were inserted. Similarly, the configuration table
nodes, clusters, resource types, and groups were updated as described in Section 8.3.

D.1.4 Implement the Log Interface

We developed the log interface in Python, and it was provided as an executable Python script. Three
changes are required in the script to function correctly in a new environment. The first change is to
identify the pattern of the error message to be captured. The second change is to identify the relative
position of the error messages. In the third change, the database connection is identified. All changes
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Figure D.3 Extract from table model_data showing the result of the transformation, conversion, and
filter application.

can be updated directly in the script. An extract from the log file from the testbed HAC is presented in
Figure D.2, where the error messages are depicted in red. The script can be executed either directly or
in the background. We scheduled the script to run every 10 s, which also becomes the polling time.

D.1.5 Enable Transformation and Conversion

The three steps, transformation, conversion, and filtering, were combined and implemented as a
database trigger (created in Section D.1.2). The trigger was initiated as soon as the log interface enters
new data in the Hac_main table. The processed data were inserted into the table model_data. An
example is provided in Figure D.3.

D.1.6 Implement the Database Table for Storing Model Data

In this step, we created the table to store the prepared and preprocessed information after applying the
filter step so that the BDN-HAC model can process such information. An SQL script was used to
implement the table for storing the model data, as described in Section 8.6.

D.1.7 Apply Filter

As described in Section D.1.5, the filter was implemented as a database trigger. Figure D.3 presents
an entry from the table model_data.
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Table D.1 Mean execution time in seconds for different components of the BPFP

Data Sets Poll Query Extract Parse Enrich Transform Convert Filter

1 4.54 0.05 0.05 0.07 0.04 0.06 0.03 0.05
2 3.32 0.05 0.05 0.05 0.05 0.06 0.03 0.04
5 3.70 0.06 0.05 0.05 0.05 0.06 0.04 0.04
7 5.27 0.06 0.05 0.05 0.05 0.05 0.04 0.04

D.2 Evaluation of Bayesian Prognostic Framework Preparation

In this section, the evaluation of the BPFP module is presented. The model consists of numerous
components. Therefore, to evaluate the model, we first evaluated each component individually, and
then combined the results from these evaluations to obtain the results for the end-to-end BPFP module.
Section D.2.1 describes the experimental setup, and Section D.2.2 presents the results from the
evaluation. Section D.3 reviews the threats to the validity of the experiments. Finally, Section D.4
summarises the section.

D.2.1 Experimental Setup

The individual components of the BPFP module operate differently; therefore, many approaches are
required to monitor and capture the outcomes. For instance, polling time was obtained by subtracting
the scheduled polling time from the failure time recorded by the HAC. In contrast, a tool in the
operating system is required to monitor the CPU and memory utilisation for polling. Therefore, we
used several tools, such as MySQL workbench, Windows performance analyzer (WPA), and Linux
performance monitor utilities (e.g., top and sar). The polling interval plays a crucial role in changing
the execution time and overhead for the entire BPFP. However, the polling frequency is adjustable,
and we set the polling interval to 10s for the experiments.

D.2.2 Results and Discussion

Execution Time Table D.1 presents the mean execution time for different BPFP components. The
execution time for polling stands out and consumes a sizeable portion of the total runtime of the BPFP
module with an interval between 2s and 10s. In contrast, the maximum execution time for each of the
other components is less than 0.07s. Although the polling interval is set to 10s, extracting the failure
information can occur earlier because a failure can occur close to the polling time. Taken together,
the mean execution time of BPFP when considering all data set is 4.5s. Moreover, considering all
the execution steps in all the related data sets, we obtain 27.3% for the BN-HAC model, 1.3% for
the BDN-HAC model and 71.4% for the BPFP. The execution time of the BPFP contributes to a
significant portion of the overall execution time for the BP framework. The total time required by the
BPFP module is a concern, particularly the polling time. However, the polling time can be increased,
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Figure D.4 Box plot of the CPU utilisation of the BPFP components presented for (a) Data Set 1, (b)
Data Set 2, (c) Data Set 5 and (d) Data Set 7.

which should reduce the overall time required by the module. Moreover, if the BP framework is
integrated with HACs in the future, it will eliminate the polling time because the HAC will pass the
failure information directly to the BPFP in that case.

Runtime Overhead We evaluated the runtime overhead of the BPFP module by measuring the
individual model components. Figure D.4 presents the CPU utilisation by different modules using
Data Sets 1, 2, 5 and 7. The CPU utilisation was experienced for a period of < 5.27s for the duration of
the BPFP execution times from Table D.1.The polling component stands out from other components
because it uses consistently more CPU resources. The maximum utilisation is 0.9% across all data
sets, and the median is 0.7%. However, a significant part is in the lower quartile, indicating that the
CPU utilisation is below 0.7% in most cases. The component query has little utilisation and uses less
than 0.05% in all data sets. The component extract has a slightly higher utilisation between 0.03%
and 0.16%. The maximum utilisation for the parse component is 0.3%, and the median is 0.07%. The
enrich component also has a similar utilisation pattern, and the maximum value is 0.16%, whereas
the median is 0.10% on average, putting most instances in the lower quartile. Transform and convert
have a maximum utilisation of 0.18% and 0.19%, respectively. The component filter also has low
utilisation, with a maximum of 0.24% and a median between 0.12% and 0.19%. However, the only
deviation is that an outlier is identified in Data Set 5 with a value of 0.04% (Figure D.4 (c)). Overall,
the results indicate negligible CPU utilisation for all components except for polling. However, because
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Figure D.5 Box plot of the memory utilisation of the BPFP components presented for (a) Data Set 2,
(b) Data Set 3, (c) Data Set 5 and (d) Data Set 7.

polling was scheduled to run every 10 s, sometimes a polling process may create a new process while
the previous one is still running, explaining the standout behaviour.

Memory utilisation is depicted in Figure D.5 for Data Sets 1, 2, 5 and 7, and the maximum
utilisation is shared by both poll and parse with a value of 120 KB. The median for poll is between
66 and 77 KB, whereas the median for parse is between 76 and 102 KB, and both have more than
50% of instances in the lower quartile. The component query has a median value between 43 and
59 KB. The component enrich has a pattern similar to that of the query. Enrich has a median value
between 43 and 61 KB, whereas transform has a median value between 46 and 61 KB. Convert has a
maximum value of 82 KB (in Data Sets 1, 5 and 7), and filter has a maximum value of between 55
and 60 KB. The results reveal that the memory utilisation by the BPFP is very low.

The combined view of resource utilisation demonstrates that the BPFP adds little overhead. The
components of the BPFP are executed sequentially; therefore, CPU utilisation is not cumulative. The
memory utilisation tends to be sequential, as the next component is initiated only when the previous
component is finished. Therefore, even the combined memory utilisation is considered low.

D.3 Threats to Validity

The identified threats to validity are the following:
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• In the empirical evaluation, we used data from one HAC solution. Because different HAC
solutions produce and manage log data differently, the log interface could be considered specific
to the HAC from our testbed. To mitigate this threat, we employ a modular architecture in
which only the log interface needs to be adjusted for a different HAC solution.

• The measurements were performed only in one environment, and the results may likely differ if
the experiments are executed in a different environment, for example, if the experiments were
executed in an environment with lower-spec hardware. To mitigate this, the hardware used in
the testbed is not high spec compared to what an organisation may use to run their EAs.

D.4 Summary

We introduced the BP framework preparation module in Chapter 8 and validated it by implementing
it in the testbed environment described in Section 10.1). In this section, we evaluated the execution
time and overhead of the individual components of the BPFP. The results demonstrate that polling is
the only component with significant execution time of up to 10s, whereas all the other components
require much less time (typically tens of milliseconds). However, the polling time depends on the
scheduling frequency and therefore increasing the frequency will reduce the polling time. Moreover,
only the maximum time is 10s because if the polling is 1s after the failure, the polling time becomes
1s. Additionally, future integration of the BP framework into HACs can also eliminate the polling
time because failure events will be captured and passed in realtime to the BP framework in such cases,
We evaluated the overhead by measuring the CPU and memory utilisation, and the results indicate
that the overhead is negligible, and CPU utilisation was experienced for a period of 5±0.8s.
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Appendix E

Implementation of the Bayesian Decision
Network for Predicting Locally
Manageable Resource Failures

This section describes how the BDN-HAC model was implemented. The BDN-HAC is a HAC
solution-independent model that can be implemented without changes to the model. We implemented
the two BDN models as described in Chapter 6 to evaluate the detection quality and select the best
performing model. Hence, the evaluation is described in Section 10.3.2. However, we only describe
the implementation of one model in this section, considering that only one model must be set up
during implementation.

E.1 Implement the Model

The model can be implemented as a script, and a prerequisite is used to prepare the environment.
For example, if the script is based on R, an R environment must be prepared using R software and
the required libraries specifically for the operating environment in scope. However, we used a BN
modelling tool to create and evaluate the model.

E.2 Change the Target Environment Details

The R script can be triggered upon completion of preparing and preprocessing the failure information.
Similarly, upon completing the execution of the BDN-HAC model, the script must call the next model,
BN-HAC. Thus, the location of the next model must be specified in the script.
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Failures

E.3 Test the Model

We used the test cases T1-T9, described in Section 10.2.1.2, to create data sets for training, and the
model uses the data sets to apply the improved detection capabilities to predict whether a resource
failure can be managed locally. Only those failures considered unmanaged are passed to the BDN-
HAC model.

E.4 Inference Using Production data

The model infers using production data in the runtime phase, and we used test cases T10-T19,
described in Section 10.2.1.2, to create the data sets and evaluate the model. The unmanaged failure
information was passed to the BN-HAC model. All such steps can be fully automated in the runtime
phase.
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