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David Bawden 

Summa ry 

Ph. D. Thesis, 1978 

Substructural Analysis Techniques for Structure-Property Correlation 

within Computerised Chemical Information Systems 

Summary 

The work described in this thesis involves a novel method 

of substructural analysis, with potential application for structure- 

property correlation and information retrieval within computerised 

chemical information systems. 

A review is given of the development of the concept of chemical 

structure and its representation, its application in computerised 

chemical information systems, and methods for correlating structure 

with molecular properties. 

A method is presented for derivation of structural features, 

representing the whole structure, from Wiswesser Line Notation (WLN) 

by computer program. These features are then used as variables in 

statistical analysis procedures: in this work multiple regression 

analysis and cluster analysis are used. This procedure allows for a 

rapid, convenient and thorough analysis of large data-sets. The type 

of structural features used may be easily varied, allowing for investi- 

gation of factors such as ring substitution patterns, group interactions, 

and three-dimensional structure. The method is applicable to sets of 

diverse or structurally related compounds. Statistical tests of the 

results enable quantitative testing of hypotheses. 

Multiple regression analysis allows a direct, quantitative 

correlation between structure and molecular property, and subsequent 

property prediction. It is applied to sets of aliphatic, alicyclic, 
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aromatic, and heterocyclic compounds, including sets of highly diverse 

structures. Properties examined include biological effects, toxicty, 

pK, thermochemical properties, boiling point, solubility, and 

partition coefficient. Some of these properties are highly dependent 

upon electronic and steric effects, and hence upon relative position 

of substituents, and on three-dimensional structure. Highly significant 

correlations are obtained in all cases, and the potential for property 

prediction is demonstrated. 

Cluster analysis is applied to several sets of structures. 

Intuitively sensible classifications are obtained, and the potential 

for both property prediction and information retrieval discussed. 

Since these techniques involve the widely used WLN, 

relatively simple COBOL programs, and standard statistical packages, 

they should be applicable within operational environments. 



Chapter One 

Introduction 

'Book One, Part One, Chapter One, Page One. 

What ä great start' 

(Charles Schulz) 

I, / 
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This thesis is divided into four main sections. 

Chapter 2 "sets the scene" by reviewing the background to 

this work. Firstly, the development of the concept of chemical 

structure, and its representation is discussed. Secondly, the 

relatively recent incorporation of these ideas within computerised 

chemical information systems is outlined. Thirdly, the various 

methods of quantitative structure-property correlation are described. 

In Chapter 3, aspects of substructural Analysis techniques 

are outlined. Fragmentation techniques are discussed, and the 

statistical techniques to be used are described. 

Chapter 4 contains an account of the analyses based on WLN 

structure representation which comprise the practical work of this 

study. This chapter is divided into two parts, the first dealing 

with multiple regression analysis, and the second with cluster analysis. 

Chapter 5 concludes and summarises the work. Brief details 

of the computer programs are given in an Appendix. 



Chapter Two 

Background 

'It is hard enough to keep up with life, let. alone 

technical information' 

(Anonymous survey respondent) 

/ 
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The purpo_e of this chapter is to give an outline of the 

historical development, present state of knowledge, and current 

practical applications of areas of study relevant to the subject 

matter of this thesis, in order to put the work described below 

into context. This involves concentration on two major themes: 

firstly the development and applications of chemical structure 

representations, and secondly the development and application of 

methods for the correlation of chemical structure with molecular 

properties. 

The unifying factor here is the concept of chemical 

structure. This provides an unambiguous description of a compound, 

and a basis for rationalising its observed properties, from which 

may be deduced general principles regarding the relationships 

between structuro and property. It is significant that the first 

concept of a straightforward quantitative relationship between 

chemical structure end biological activity was put forward partly 

by Alexander Crum Brown (CRUD{ 331 VN et nl, 1868) who made notable 

contributions to the development and use of structural representations. 

This structure concept is fundamental to the greater part of modern 

chemically related Sciences. 

The ability to adequately end conveniently represent 

chemical structure is of obvious importance. It will be seen that, 

ailthough sophisticated nathematical nedels of stoleculr: r structure 

have been devised, the chemical structure diagrran remains the rroat - 

widely used and valuable representation, and that computer- 

readable structure representations are, for the most part, partial 

or total representations of 'a structure diagram. These structural 

formulae are not only the most convenient means for communication 
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of chemical ideas, but are, as Hammond has pointed out, ftthe basic 

vehicle in the search for patterns (in chemical data)" (HAM MOND, 1974). 

Much of the discussion below will centre on their adequacy in this 

search. 

/ 
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2.2. 

Chemical Structure Representation 



In the aection below, the development of the concept 

of chemical at rscture and its representation will be considered 

first. The handling of structural representations in chemical 

information systems will be briefly discussed, and some relevant 

aspects of the operation of such aystema will be considered. The 

discussion will centre on chemical structure information systems, 

i. e. those having files of structural representations with which 

other forms of data are associated. It is with such systems, especially 

if computer-based, that the techniques of structure-property correlation 

to be described below are likely to prove of most value. 

/ 
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2.2.1. 

Development of the Concept of Chemical Structure and its 
Repreaentati onto 
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2.2.1. ßevelopmPnt of the Concept of Che-mic*1 Str-aatcro enG its 
13epre een t Rt i. on 

The advances made within the past two centuries in those 

aspects of the natural sciences which depend on an understanding of 

the properties of material substances, which encompass a large part 

of modern science and technology, have depended heavily upon the 

development of two chemical concepts. The first of these is the 

concept of chemical composition, i. e. the make-up of a substance in 

terms of numbers of constituent atoms. The second is the concept 

of chemical structure, i. e. the arrangement of the constituent atoms. 

The recognition of the significance of these factors and 

their elucidation for a great variety of compounds were in themselves 

important for the development-of all branches of chemistry. Their 

full value could only be realised, however, with the devising of 

methods for representing composition and structure, either as a 

nomenclature, a notation, or a diagram. Only when this was achieved 

could the unifying concepts of composition and structure be used 

to rationalise, systematise and record the mass of experimental 

observations produced in the upsurge of chemical research which 

commenced in the early nineteenth century (PARTINGTON, 1964a). 
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It has been pointed out that "to write a full description 

of the origin, growth and misadventures of the language of cher is3try 

is to write a history of the sciencelt (HUM, 1907). Similarly, 

in order to describe the development of chemical structural represen- 

tation it is necessary to touch on the more important stages in the 

increasing understanding of chemical structure, This subject has 

been fully treated elsewhere (RUSSELL, 1971a, PORTER, 1965, 

MASON, 1976, MACHIE, 1954) and will beidealt with very briefly here. 

An excellent detailed account of the history of chemical 

symbolism and nomenclature is available (CI. )SlsiND, 1962a) on which 

much of the discussion below is based, and reviews of particular 

aspects of this topic also exist (DYSON, 1953, WISWESSER, 1968, 

IIIS +TESSER, 1975, WINDE U1ICH, 1953). 
. The discussion below will concentrate on the development 

and use of the chemical structure diagram, which, in addition to its 

role as a major tool for the coo. -sunication of chemical ideas, is the 

basis for structure representation in the majority*of chemical 

information cyrtem (HYDE, 1975). 1/ 
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Early Chemical Nomenclature 

Chemistry, in the viodeni sense of the term, is often 

considered to have originated in the late eighteenth century, with 

the introduction of new theories of chemical composition and 

reaction, most notably by Priestley and Lavoisier (PARTINGTON, 1960. 

For thousands of years prior to this, however, ' 

investigations of chemical substances had been carried out for 

technical, medicinal, and alchemical purposes (TAYLOR, 1976a, 

PAfTI: NGTON, 1970) and appropriate terminologies and symboliasmss 

had been developed for the substances used (CRUSL&ND, 1962a, 

RUSSELL, 1971g, RUSSELL, 1971H). These could not be systematic, 

in a modern sense, since the idea of chemical composition was unknown, 

the distinctions between elements, compounds, and mixtures or 

alloys were not understood, and adequate methods for the identification 

of substances did not exist. 

Probably the first example of an attempt to produce a form 

of systematic nomenclature or classification for chemical substances 

was that of the Sumerians of about the seventh century B. C. 

(THOMSON, 1936). 

An initial term, in their cuneiform language, represented 

an outstanding property of a class of substances, e. g. ZA (denoting 

rock or stone), and was followed by suffixes indicating property, 

e. g. GIN (blue), TW (heavy), AS (hard) s AS-AS (very hard), AZTU 

(effervescent with acid). Thus sapphire was denoted by ZA. GIN. AS. AS, 

i. e. very hard blue stone. 

The majority of other early terminologies were based upon 

the appearance or an obvious property of the substance, or upon a 

person or place associated with it. 
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Some oxatnpleo of this type of terminology are given here : 

i) based on colour (widely used, particularly in 

early civilisations, and having magical connotations) 

e. g. plumbum ccndidum (white lead), denoting tin. 

ii) based on consistency 

e. g. butter of zinc, denoting zinc chloride. 

iii) based on crystalline form 

e. g. cubic nitre, denoting sodium nitrate 

iv) based on taste or smell 

e. g. sugar of lead, denoting lead acetate 

bitter salt, denoting magnesium sulphate. 

v) based on personal name 

e. g. Glauber's salt �denoting sodium sulphateo 

vi) based-on Place name 

e. g. Rochelle aalt, denoting sodium potassium tartrate. 

vii) based on medicinal properties 

e. g. diuretic salt, denoting potassium acetate. 

viii) based on 
, 
method of prenxrotion (attained wide use 

only in the eighteenth century) 

e. g. Spiritus salis ammoniaci cues sale akali parata+ 

denoting ammonium carbonate. 

An additional complicating factor was the uco of terminology 

based on astrological and alchemical-mystical premises (TAYLOR, 1976b). 

Thus the retale were hold to be associated with specific planets, 

resulting in names such as "lunar nitro" for tlilver nitrate and 

"martial chalk" for a carbonate of iron. Mystical terminology was 

videly. used in alchemical tests, often deliberately obrcure, and was 

adapted into early chemical writings, with terms such as "philosophical 
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water" for aqua regia and "arcanum duplicatum" (twofold secret 

preparation) for potassium sulphate. 
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r, arly Chemical Sn, b oliem 

Symbols have been used from the earliest times to represent 

chemical substances and processes. (BOLTON, 1882, C1OSIAND, 1962c, 

VINBERLICii, 1953). The majority of these were alchemical in origin, 

and were in no sense systematic, generally being derived from pict- 

ograms or abbreviations, or simply convenient, arbitrary signs. 

Examples of these are givens 

O denoting gold (from the hieroglyphic for the sun) 

-ý'% danoting water (from a pictogram) 

ä 0. ä denoting amalgaEza (an abbreviation) 

denoting vinegar (an arbitrary sign) 

There was nevertheless a persistent belief that symbols 

directly represented the properties of a substance (BOERHAAVE, 1735)" 

Thus the symbol for copper? was interpreted to indicate that the 

metal was partly gold (represented by a circle) and also contained 

a sharp, corrosive component (represented by a cross). 

Perhaps surprisingly the use of these alcherically-derived 

symbols underwent a revival in the eighteenth century, with the 

introduction of a considerable number of new symbols, due largely 

to their usefulness in briefly cu=arising properties and reactions 

(NICHOLSON, 1795). Two influential tables were constructed by 

Geoffroy (GEOFFIlOY, 1718) and Bergman (LEF. MAN, 1775) , which made 

use of such symbols to display relationchipa between substances. Despite 

the considerable possibility for misunderstanding involved in the 

use of these symbols they continued to be used into the nineteenth 
i 

century. ."' 
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Reform of Nomenclature 

The terminologies and symbolisms described above continued 

in widespread use to the latter part of the eighteenth century. Up 

to this time the knowledge of the composition of substances was too 

limited to make the development of any more systematic nomenclature 

worthwhile, though criticisms of existing practice had been 

expressed throughout the seventeenth and eighteenth centuries 

(CROSLAND, 1962d). With the great increase in the number of 

substances being identified and investigated, the necessity for a 

systematic nomenclature capable of describing substances according 

to their constituents became evident. There is evidence that its 

development was influenced by the success of the newly-introduced 

biological classification-nomenclature of Linnaeus (CROSLAND, 1962e). 

Various nomenclature systems were devised by Macquer (MACQUER, 1766), 

Bergman, (BERGMAN, 1784) and Guyton de Morveau (GUYTON, 1782). The 

process culminated with the production of a definitive nomenclature 

system, derived collaboratively and adopting a good deal from the 

earlier schemes, which is generally associated with Lavoisier, the 

'Methode de Nomenclature Chimique' (LAVOISIER et all 1787). These 

schemes all aimed at giving a unique name, of the greatest possible 

simplicity, to a substance; and to reflect composition in the case of 

compound substances by compound terms with generic and specific parts 

(CItUSLAND, 1962f, SMEATON, 1954). Lavoisier's 'Methode' pioneered 

the use of various terminations to the root of a common word to 

express different compositions. 

Lavoisier's scheme rapidly gained a widespread acceptance. 

It should be noted that this scheme was primarily aimed at inorganic 

substances. Only a few dozen organic substances were known, mostly 
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derived from natural sources, and existing techniques of quantitative 

analysis were not adequate to accurately determine composition. 

Lavoisier's scheme was entirely suitable at that time for inorganic 

substances, which could be named adequately by composition alone. 

It was to be found that this is not so for organic substances. 

I, / 

I- 
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Reform of Symbolism 

Concurrent with the reforms in chemical nomenclature, and 

largely resulting from them, there came a series of advances in the 

use of symbols to represent chemical substances. These advances 

have been described in detail (CROSLAND, 1952c), and will be dealt 

with briefly here. 

As a part of the 'Methode do nomenclature chimique' there 

was presented a scheme for chemical symbolism to complement the new 

nomenclature (HHASSENFRATZ et al., 1787). This sought to replace the 

inconsistent and confusing symbols then in use by a system in which 

simple substances were represented by simple symbols and compound 

substances by combinations of the appropriate simple symbols. 

This was not an entirely new concept: symbol combination 

had been used in Greek manuscripts, with, for instance, the symbols 

for stone, '(, and silver, , being combined to represent litharge. 

Bergman's scheme (BERGMAN, 1775) also allowed for a good deal of 

symbol combination. The iiassenfratz-Adet scheme, however, systematised 

the practice for the first time, with a unique representation for each 

substance. The system was geometrical in conception, with major 

classes of substances being represented by geometrical figures, e. g. 

circles for metals and triangles for alkalis and earths. Finer 

distinction was made by the use of letters within these figures: 

thus manganese was represented bye )l and potash by r',, 
. Compound 

substances were represented by joining together the appropriate 

symbols. This'system found favour because of its clarity, particularly 

in representing the course of reactions, but was never used on a 

large scale in print because of typographical problems. Later 
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modifications to the system allowed for the use of numbers to indicate 

proportions of constituents. 

John Dalton's atomic theory was introduced in the early 

nineteenth century. Dalton devised a symbolism to express his 

theory with atoms denoted by circular symbols, and compounds denoted 

by such circles in contact (DALTON, 1810). 

e. g. 0 oxygen 0 carbon gold 

carbon dioxide 

This system attracted much interest, though it also faced 

typographical problems. It will be noted that the positions of atoms 

within a compound substance may be represented in this way. 

A major step in the development of chemical symbolism came 

with Berzelius' realisation of the many advantages in using the initial 

letters of the Latin name of an element as its chemical symbol 

. (BERZELIUS, 1813). Though this system originally had several flaws, 

particularly Berzelius'introduction of barred symbols and representation 

of oxygen by dots, it was to find wide acceptance. With modifications 

introduced by Liebig, notably subscripted numerals, it was found to 

be ideally suited to the representation of the composition of organic 

substances. 

'A 
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Concepts of Valency and Chemical Structure 

These concepts, and the consequent methods for their 

representation, were devised by investigators into organic rather 

than'inorganic chemistry, since, as has been stated, the simplicity 

of the inorganic substances dealt with throughout most of the nine- 

teenth century meant that composition was an adequate description 

for such substances. 

The techniques of quantitative analysis available in the 

early part of the nineteenth century were adequate for a reasonably 

accurate determination of the percentage of the elements in organic 

substances. It was then necessary to determine the molecular weight, 

and to have accurate atomic weights available, in order to decide on 

the molecular formula and hence the structure. However, the nature 

of atoms and molecules was not well understood at this time, and the 

lack of any agreed set of, atomic weights bedevilled chemistry until 

after 1860 when Avagadro's Hypothesis finally gained acceptance 

(DEMILT, 1951). 

Two theories, or-: more accurately broad theoretical systems, 

describing the nature of organic substances flourished during the 

first half of the nineteenth century. Both were firmly based on 

Dalton's atomic theory and both, although originally seeming 

irreconcilable, merged in the later theory of structure. 

The first of these, chronologically, was the so-called 

"Radical Theory", of which the most notable adherents were Berzelius, 

Kolbe and Frankland. This followed Davy's early suggestion of the 

association of chemical affinity with electrical attraction, and 

described molecule formation as a conjunction of groups of atoms 

of opposing electrical character. It therefore introduced the idea 

of a number of atoms forming a definite unit within a molecule 
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(RUSSELL, 1971b, PARTINGTON, 1964b). 

The second was the "Unitary" or "Type Theory", supported 

by Dumas, Laurent and Gerhardt among others. 
This style of theory 

in its original form regarded molecules as indivisible entities, 

so that investigation into their internal structure was valueless 

(RUSSELL, 1971c, PARTINGTON, 1964c). The properties of organic 

substances were rationalised by regarding each substance as an 

example of a particular "chemical type"; - animonia type, water type 

etc. This resulted in a considerable interest in classification of 

organic substances (KAPOOR, 1969, FISHER, 1973a, FISHER, 1973b). 

From a fusion of modified forms of these two theories, 

there emerged in the middle decades of the nineteenth century a 

coherent theory of valency (RUSSELL, 1971a, PORTER, 1965, BROWN, 1959). 

An early example of the new thought was due to Williamson, an adherent 

of the Type Theory, who stated "Formulae ... may be used as an actual 

image of what we rationally suppose to be the arrangement of 

constituent atoms in a compound" (WILLIAMSON, 11352). 

Priority in the introduction of the theory of valency as 

applied to organic structures has been claimed on behalf of a number 

of leading workers. A widely-accepted, though perhaps over-simpli- 

fied, view is that Kekule and Couper independently developed the idea 

of the tetravalent carbon atom, while Butlerov first used the to m 

"chemical structure" to denote the arrangement of atoms within a 

molecule, and formally proposed that this arrangement uniquely 

determined the-molecule and its properties. (BROWN, 1959, BYKOV, 1962. 

RUSSELL, 1971d). 

This new understanding of the valency concept led to the 
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rapid development of two areas of chemical knowledge. The 

first of these was the impetus it gave to attempts to achieve a 

satisfactory classification of the elements. The formulation of 

the Periodic Law by Lothar Meyer and Mendeleef initiated a 

widespread and profitable use of such classifications (RUSSELL, 

1971e, QUAM et al., 1934, HAZ. URS, 1974, LOACH, 1974). 

The second was the widespread adoption of the theory 

of structure in organic chemistry, which played a considerable part 

in the subsequent growth of the subject (RUSSELL, 1971f, FINDLAY, 

1965b). 

This topic will be discussed briefly below. 

/ 
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Development of Organic Structure Representations 

Full accounts of this topic are available (RUSSELL, 1971g, 

CROSLAND, 1962g) and a brief summary will therefore be presented here. 

Although the greater part of organic nomenclature depended 

on the use of trivial names, some attempts at systematisation based 

on structure were made in the early nineteenth century. Abbreviated 

word forma to give a more convenient terminology, e. g. "aldehyde" for 

"alcohol dehydrogenate" were used, and some systematic word endings, 

e. g. "-one" for ketones, were adopted. The rise of the radical theory 

resulted in names being devised for common groupings of atoms which 

remained unchanged through many reactions, e. g. methyl, ethyl, acetyl. 

The type theory had a considerable effect on nomenclature, and various 

systems were devised reflecting the new concepts of "homologous series" 

and "parent nucleus" (FISHER, 1973a, FISHER, 1973b). 

With the spreading of structural ideas there came an increasing 

use of structural formulae and diagrams. Initially used as a short- 

hand for the representation of composition, such structural representations 

later came to be regarded as directly portraying the arrangement of 

atoms with a molecule. 

An early kind of notation was the superscript dash, introduced 

by Odling and used by Kekule and WurtT among others, to indicate the 

valencies of atoms and groups. Esampice are shown in Figure 1. As 

valencies became better known, and structural formulae widely used, 

this notation lost its usefulness. 

Brackets were introduced in connection with type theory to 

link together groups of atoms without implying a corresponding physical 

arrangement. Later they were used, notably by Kekule and Frankland, to 

indicate the linking of groups, and this type of notation lasted over 
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a long period. Examples are shown in Figure :. 

Parentheses were originally introduced by Williamson to 

enclose groups of atoms remaining unchanged during reaction 

e. g. Ag(N03) + KC1 = AgCl + K(N03) 

but were only used in this way for simple inorganic substences. 

Widespread use of this notation was later made to represent organic 

structural diagrams in a linear form (WISWESSER, 1975) 

e. g. CI13CH(OIi)CH2CH(OI1)CH3 

Notations involving the use of touching and intersecting 

circles to represent bonded atoms were devised by Loschmidt and 

Kekule, and examples of these are given in Figure 3. Neither gained 

wide acceptance: Loschmidt's clear and relatively simple scheme 

went unnoticed, while Kekule's system was too complex for general use. 

Once the representation of atoms by alphabet: symbols had 

been established, the use of a simple linear representation of inter- 

atomic connections appears, in retrospect, obvious. As early as 1739 

-such a notation had been used by Higgins, in such representations as 

S-d for the compound of sulphur with dephylogisticated air, i. o. 

oxygen (IHIGGINS, 1789). An obstacle to its u-e in structural formulae 

was the assumption that by such a notation its user was implying the 

physical reality of the inter-atomic linkage. Although the term "bond" 

had been coined by Frankland in 1866, the acceptance;. of this concept, 

as with "valency" as more than a convenient abstract notation came 

only slowly (RUSSELL, 19716, PORTER, 1965). 

The first use of lines to reprejent valencies is due to 

Couper, who initially used dotted lines and later full lines. Examples 

of such formulae are shown in Figure 1. Thi. i type of notation was 
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much superior to other structure representations available at that 

time, but was never developed fully, e. g. lack of provision for 

denoting multiple bonding. Thus it was not widely adopted, though it 

was briefly influential. 

Chemical structure diagrams of the kind used to the present 

day were originated by Crum Brown (CRUM BROWN, 1864, LARDER, 1967). 

These formulae showed each atom separately and indicated all single and 

multiple bonds unambiguously. They rapidly proved their value by 

demonstrating that only two isomers of propanol could exist, while 

other structural notations could not allow rationalisation of this 

experimental observation. Because of. their clarity they rapidly gained 

acceptance in Britain, and were widely used in the teaching. of chemistry, 

though their acceptance abroad was considerably delayed. Examples of 

Crum Brown's original formulae are shown in Figure 5. With the emission 

of the circles around the atomic symbols, which rapidly followed, these 

graphic formulae have been used essentially unchanged to the present day. 

Other forms of graphic formulae were used for a time on the 

Continent. Lothar Meyer had, independently of Crum Brown, devised a 

notation with linear inter-atomic connections, while Wilbrand attempted 

a systematic graphic representation of the variable valency of carbon. 

Examples of these representations are given in Figure 6. Within a 

decade, however, graphic formulae of the Crum Brown type had largely 

superceded all other representations. 
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Later Development of Structural Representation 

Two modifications were made to the original form of Crum- 

Brown's structural diagrams following their widespread adoption. 

Firstly, the bonds to hydrogen atoms were not always specified, with 

abbreviated notations such as -CH 3, -NH2, and -0H being used. 

Secondly, carbon atoms were not always represented by the C symbol, but 

were denoted by the intersection of lines denoting bonds. These 

modifications made the structural diagrams simpler and more convenient, 

particularly for printing. 

Two areas of development of structural theory in the late 

nineteenth century necessitated amendments and additions to the original 

form of structure diagram. These were the introduction of-the theory of 

stereochemistry, and developments in the understanding of the problem 

of variable valency. 

The tetrahedral arrangement of the -ralencies of the tetravalent 

carbon atom, the foundation of all current stereochemical theory, was 

discovered independently by van't Hoff and Le Bel in 1874 (RICHARDSON, 

1901, DAVIDSON, 1973). This led to an understanding of the nature of 

geometrical and optical isomerism (ELIEL, 1962b), and of the distinction 

between isomerism and tautomerism (IHDE, 1959)" Methods were then 

devised, over a long period, for representing isomers both diagramatically 

and by nomenclature, thounh stereochcmical nomenclature is still far from 

totally satisfactory (ELIEL, 1962b): this topic has been comprehensively 

reviewed (MASON, 1976). 

The greatest problem in this area is the representation in 

a structure diagram of compounds containing one or more assymetric carbon 

atoms. Examples of the most widely used conventions for both cyclic 



and acyclic structures are shown in Figure 7. 

These are-the Fischer projection (FISCHER, 1891) and its 

abbreviated form (ROSANOFF, 1906) designed to represent assymetric 

acyclic structures in a systematic diagramatic form: the perspective 

representation, sometimes termed the "sawhorse", (CURTIN, 1954) and 

the Newman projection (NEWMAN, 1955), both designed to show molecular 

conformation more clearly than the Fischer projection: and an example 

of-a class of widely used "wedge/dot" representations (CRAM, 1952). 

The development of stereochemical ideas led to the use of 

molecular models, to directly represent the concept of three-dimensional 

structure. Models had been used at an earlier stage to exemplify structural 

ideas by, among others, Dalton, who represented "compound atoms" by 

spheres joined by pins (DALTON, 1840), Hofmann, who used coloured 

croquet balls joined by tubes and pins to demonstrate the valency concept 

(HOFMANN, 1865), Dewar (DEWAR, 1866) and Kekule (KEKULE, 1867), who both 

used simple models to demonstrate the tetravalency of carbon. Three- 

dimensional models became widely accepted and many types were devised 

(PLATT, 1960, PETERSEN, 1970). Such models are still used to a large 

extent for teaching (WALTON, 1969, ORMEFOD; 1970, SANDERSON, 1962, 

BASSOW, 1968, SAVORY, 1974)- 

The use of computer display systems for three-dimensional 

structures (FELDMANN et al., 1972b, LITTLE, 1973, MARSHALL et al., 1974) 

may be regarded as a natural development of the use of stereochemical 

models. 

The problem of the observed variable vaiency of carbon in 

organic compounds was to a large extent solved by Kekule, who formulated 

the concept of multiple bonding (KEKULE, 1867b), which had been 

represented diagramatically by Crum Brown, There remained considerable 
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difficulty in accounting for conjugated molecules, and in particular 

the aromatic substances typified by benzene (BADGER, 1969, RUSSELL, 1971i). 

Some of the types of structural formulae used to represent such 

compounds are shown in Figure 8. 

Kekule represented the structure of benzene by alternating 

single and double bonds, and assumed a rapid oscillation between the 

two possible forms to account for the known symmetrical nature of 

the benzene nucleus. Attempts to represent benzene by a single 

structural diagram were made by a number of workers. The formulae 

proposed by Claus, and the "centric formulae" of Armstrong, Baeycr 

and Luthar Meyer adequately represented the nature of benzene, as 

it was then understood, but conveyed little insight into the nature 

of the bonding in the molecule. Thiele introduced the concept of a 

"partial valency" of an unsaturated carbon atom, which provided I-Artial 

bonding (represented by dotted lines) in conjugated and aromatic 

systems (THIELE, 1899). Thiele's representation of benzene led to t-te 

symmetrical formula used by Thomson (THOMSON, 1916), and the modern 

representation, more convenient for typography, used as an alternative 

to Kekule's formula. 

More recently, variable valency concepts have been widely used 

to account for the many relatively unstable species identified in organic 

chemical research. Structural formulae have been used to represent a 

variety of charged and free radical structures (KERMACK et al., 1922), 

and "non-classical" species with delocall^ation and partial bonding 

(DARTLETT, 1965, HUDSON, 1967). The success with which structure 

diagrams can represent such factors will be discussed more fully below. 

The study of variable valency in inorganic chemistry led to 

the discoveries of Werner in the field of the co-ordination compounds 
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of metals (WERNER, 1893, SOLOVEICHIK et al., 1967, PARTINGTON, 196lid). 

This work, an important advance in valency theory, established the 

necessity for the use of structural and stereochemical concepts in 

this area of inorganic chemistry. The usefulness of a structural 

representation with directed bonds between metals and ligands, and 

the inadequacy of composition as a description of this type of 

inorganic substance, was demonstrated by Werner, as for example in his 

discovery of the octahedral nature of the platinum anmine chlorides 

shown in Figure 9 (WERNER, 1893). The structural diagram has, however, 

only been found useful to a limited extent in inorganic compared with 

organic chemistry. This is due partly to the less readily categorisable 

types of bonding found in inorganic structures. Also inorganic com- 

pounds are in general smaller and less complex structurally than 

organic species, so that molecular formula is often an adequate 

descriptor. 

During the latter part of the nineteenth century organic 

nomenclature underwent a development paralleling that of diagramatic 

structural representation. (VERICADE, 1953, CROSLAND, 1962h). Following 

general agreement at the Karlsruhe Congress of 1860 as to the necessity 

for a standardised nomenclature and notation, a considerable amount of 

progress was made internationally. At the Geneva Congress of 1892 

the first generally agreed system of systematic organic nomenclature 

was devised. Subsequent international co-operation in this field 

ensued, - until in 1930 the newly-formed IUPAC organisation tool: 

responsibility for the officially-recognised nomenclature system. None- 

theless, even at the present day a number of alternative nomenclature 

systems are in use (CAHN, 1974a). The use of nomenclature within 

chemical information bysterzs will be discussed below. It is interesting 
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to note that the increasing complexity of modern organic nomen- 

clature, and its consequent lack of familiarity to many chemists, 

has resulted in indexes based on molecular formula, the earliest 

pre-structural systematic compound identifiers, being widely used 

for chemical substance searches (HYDE et ei., 1975)" 

Although a link between electricity and chemical structures 

had been proposed early in the nineteenth century (RUSSELL, 1963a, 

RUSSELL, 1963b), it was over a century later that the concept of 

the electron-pair bond was developed (LEWIS, 1916, KOSSEL, 1916, 

LANGMUIR, 1921). 

The introduction of electronic ideas into chemical, 

particularly organic chemical, thought has been reviewed (D11COV, 

1965). 

The principles of this theory were given a more sophisticated 

form with the application of quantum mechanics to chemical problems 

SCHRODINGER, 1928). Two forms of quantum theory have been used, 

generally known as Valence Bond theory and Molecular Orbital theory. 

A brief account of these methods will be given below. One early and 

notable result of the introduction of electronic ideas into chemistry 

was the work on the so-called "English school" of physical organic 

chemists in the study of the properties of organic compounds (ROBINSON$ 

1932, INGOLD, 1933). This approach relied heavily on a visualisati^n 

on chemical structure and bonding, by means of structural diagrams, 

and a qualitative, pictorial representation of electronic effects by 

the well-known "curly arrows" notation (MALKIN at al., 1925). 

Similarly much of the success of the valence bond formulation of 

quantum mechanics has been ascribed to the ability to represent the 

"resonance forms" associated with this approach by means of conventional 
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structural formulae (PAULING, 1939,611ELAND, 1944). 

The most sophisticated description of chemical structure 

and bonding now available, provided by quantum mechanical calculations, 

is couched in purely mathematical terms, and is not amenable to any 

accurate pictorial or physical visualisation. To this extent the 

most sophisticated model has grown away from its most useful represent- 

ation, the chemical structure diagram. These diagrams however are 

still adequate for very many purposes: they are, as Gold has pointed 

out, "the unambiguous language in which chemists*thiiik, formulate and 

communicate their ideas" (GOLD, 1976). 
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2.2.2. Chemical Structure Representation 

The handling of chemical structure information in 

fundamental to the operation of most chemical information systems, 

whether computer-based or otherwise. It is the potentiality for 

unique and unambiguous description of the items stored in such a 

system, i. e. chemical structures, in a manner for which conventional 

information processing techniques are inadequate, which gives 

chemical structure information systems their distinctive character. 

The techniques for representing chemical structure, have 

been comprehensively reviewed (N. A. S. 1964, N. A. S. 1965, N. A. S. 

1969, TATE, 1967, HOLM et al., 1973, WISWESSER et al., 1973s 

LYNCH, 1968a). and have been the subject of recent monographs 

(LYNCH et al., 1971a, DAVIS et al., 1974a, ASH et al., 1975) 

and conference proceedings (WIPKE et al., 1974a) and therefore 

no full discussion of these topics will be given here. The major 

features of the various structural representations, will be briefly 

summarised, with emphasis on the aspects relevant to structure- 

property correlations to be discussed later. 
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A number of techniques are currently used to represent 

chemical structure within information systems. All of these doscribe 

chemical structure by representing, partly or wholly, the structure 

diagram. Although in some cases the distinction is not clear-cut, 

four types of representation may be noted, i. e. systematic nomen- 

clature, fragmentation codes, linear notations, and connectivity or 

topological representations. Each of these will be considered 

in turn, as will developments in the automatic interconversion of these 

representations. Finally, methods for input and output of structural 

representations will be discussed. 

/ 
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Systematic Nomenclature 

Systematic nomenclature is the oldest form of structural 

representation and the most widely used as an alternative to the 

structure diagram in inter-chemist communication. A number of 

alternative nomenclature systems exist (CAHN, 1974a), most notably 

those of the International Union of Pure and Applied Chemistry for 

organic (IUPAC, 1974a) and inorganic (IUPAC, 1971b) compounds, and 

of Chemical Abstracts Service (DONALDSON et al., 19711, BLACKWOOD et al.,, 

1975). Attention has also been paid to the development of specialist 

nomenclature systems, e. g. for biological compounds and for polymers 

(CAHN, 1974b). 

Nomenclature however suffers from several disadvantages 

for use in chemical information systems (DOWMAN, 1975)" The com- 

plexities of the truly systematic nomenclature necessary for such 

application make it too difficult and unwieldy to be an acceptable 

substitute for the structure diagram for the system's users. 

Additionally, and perhaps more importantly, systematic nomenclature 

is generally felt to be unsuitable for cc. nputer processing (DOWHAN, 

1975, HYDE, 1975a). Few present-day computer-based systems therefore 

use nomenclature as the sole, or major, representation, although 

nomenclature has been found to be a valuable component of overall 

structure handling systc., ns, notably at Chamical Abstracts Service 

(VANDER STOVkW et al., 1974). A form of substructure search procedure 

using systematic nomenclature has been described (FISANICK et al., 

1975)" 
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Fragmentation Codes 

A distinction may be made between two types of fragmentation 

codes; those which are manually assigned, and those which are 

algorithmically generated from a total structure representation. 

Manually assigned fragment codes consist of a series of 

symbols, often numeric, assigned to structural features considered 

of importance. In entry of a compound into the system, the appropriate 

codes are assigned for those structural features present. A file of 

structures may then be searched for a particular code, i. e. structural 

feature, or combination of codes. This procedure was well suited 

for implementation on unsophisticated information processing equip- 

ment, e. g. punched card sorters, and hence fragment codes were one 

of the earliest forms of structural representation to be adopted 

(N. A. S. 1961k). Such codes have been widely used, with several 

hundred different codes devised and used in conjunction with a variety 

of equipment from card files to computerised systems (BOWMAN, 1975, 

N. A. S. 1969). 

These codes have the advantages of simplicity in conception 

and use, and of familiarity to users and system operators. No 

standardisation of such codes has been attempted, since a major point 

in their favour is the usefulness of such a code when it is designed 

for a specific purpose. 

Their disadvantages stem from two points (BOWMAN, 1970. 

Firstly such codes are not a total structural representation. Even 

if all atoms and bonds of a structure are included in the assigned codes, 

which is not necessarily the case, little or no information is 

included, in most cases, about the relative positions of the 
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structural features. Thus a fragment code description of a structure 

is both ambiguous and non-unique, often leading to much irrelevant 

material being retrieved from a search of a large file. Secondly 

the list of assignable codes is fixed when the system is introduced. 

If it is found in practice to be inadequate, or the interests of 

the system users change, an alteration of the code would require 

re-indexing all the existing file. 

For these reaons manually assigned fragmentation codes 

have not in general been found suitable for structure representation 

in large systems, although they may well be entirely adequate for 

specialised files or for particular purposes, e. g. recording structures 

in patent documentation (BALENT et al., 1975). A small number of 

such codes have been highly-developed for use in large systems, 

notably the Smith, Kline and French code (CRAIG et al., 1969), the 

GREMAS code, used by the IDC group (ROSSLER et al., 1970, FUGMANN, 

1975) and the Ring Code, originally developed by the Pharma 

Documentation Ring and since used in Derwent Publications services 

(PHARMA-DOK, 1972, NUBLING, 1970). Algorithmic generation of frag- 

ments from a total structure representaticn has been described, using 

connection tables (ASH, 1975)or a linear notation (BOWMAN, 1970), 

mainly as a screening system for substructure search (LYNCH, 1975a). 

Fragmentation codes of both types have been used more 

widely than other forms of structural representation for structure- 

property correlation, as will be discu3sed below. 
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Linear Notations 

Linear notations are complete structural representations, 

and therefore denote a compound unambiguously. A chemical structure 

is coded as a string of alphanumeric characters, governed by relatively 

complex rules of syntax. Most such notations achieve economy by 

denoting chemically significant groups, ring systems etc. by a very 

few symbols. Precedence and ordering rules, similar to those for 

systematic nomenclature, are used to give a unique notation for 

any given structure. (DAVIS et al., 1974b, LYNCH et al., 1971b). 

The first proposal for such a notation was made by Dyson (DYSON, 

1944), and a number of linear notations have been used operationally 

(BOWMAN, 1975, N. A. S. 1969). 

These include Dyson's IUPAC notation (DYSON, 1975, 

DAMMERS et al., 1968) and notations due to Hayward (HAYWARD et al., 

1965), Silk (SILK, 1963), and Skolhik (SKOLNIK et al., 1964). The 

only linear notation to have gained wide use outside a single 

organisation is that orginally proposed by Wiswesser (WISWESSER, 1952), 

and now generally known as Wiswesser Line Notation (WLN) (BAKER et al., 

1975, SMITH et al., 1975). 

This notation is currently in use in more than forty 

information systems of various types, and is applicable both as the 

sole structural representation in a small file with unsophisticated 

equipment (GELBERG et al., 1962), and as a main representation in a 

computerised system (EAKIN, 1975). WLN is also becoming commonly 

used in handbooks, tables of property values etc. (GRASSELLI, 1973, 

MARTIN, 1971, CRISTENSEN et al., 1974) partly because of its 

relative readability, an advantage of most linear notations. 

One reason for the success of WLN, in addition to its 



intrinsic merits, particularly its compatability with many forms 

of information processing equipment, is the activity of a user group, 

the Chemical Notation Association, in publicising and giving advise 

on the notation, modifying the rules in accordance with exp-. rience, 

and producing a. generally-available encoding manual (SMITH et al., 1975)" 

Rules have been devised to deal with particular problems in the 

practical use of tgLN, e. g. representation of stereochemistry, and 

encoding of polymers. Provision is also incorporated in the WLN 

coding rules for contracting, i. e. shortening, certain notations 

in order to save storage space. These contraction rules however 

increase the complexity of handling WLN to such an extent that they 

are not universally employed. 

A modified form of WLN, known as ALWIN, i. e. algorithmic 

Wiswesser Notation, with a more rigorous mathematically defined basis, 

has been described, but has not been adopted as yet by any 

operational system (KRISHNAMURTHY et al., 1974, SANY. AR et al., 1974). 

Linea notations are widely use for computerised 

structure . xnd substructure retrieval, and techniques are well- 

established for string search, fragmentation, permutation etc. 

(LYNCH et al., 1971f, CROWE et al., 1973% GRANITO et al., 1965, 

BOWMAN et al., 1970, EAKIN, 1975). One inevitable problem with the 

use of most linear notations for substructure search is the variety 

of possible notation strings which arise for even a simple sub- 

structure. Thus for a search in a Wiswesser Line Notation file, 

i1 
bearing in mind that the Wiswesser symbols for -N-, -NH, -NH2 and 

0 
u 

-C- are N, M, Z, and V respectively, the notations for the 
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substructure Mown 

R3 ý+ 
\° -/ t1-cN 

Rý ýý4 
R 

1_4 may or may not be 

hydrogen 

may be ZVZ, ZVM, ZVN, HIM, MVZ, 1IVN, NVZ, NVN, NVN, and a large 

number of further alternatives if one or both of the nitrogen atoms 

are included within a ring system. 

The use of linear notation�, most notably WLN, for 

structure-property correlation will be considered later. 

x 

SHEFFIELD 
UNIVERSITY 
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Connectivity Tables 

Connectivity or topological records are a form of complete, 

and hence unambiguous, structural representation (AS! {, 1975, DAVIS 

et al., 1974c). These representations are highly specific in that 

each atom, except for hydrogen in some cases, and/or each bond 

is explicitly and separately recorded in appropriate detail. Stereo- 

chemical information may be included in such representations 

(ESACK et al., 1975, WIPKE, 1974, BLAIR et al., 1974). Connectivity 

records are usually not unique, since there is a lack of complex 

coding rules, making the encoding of structures in this way a purely 

clerical process. Procedures are available for canonicalisation, i. e. 

production of a unique form of the connection table (LYNCH et al., 1971c). 

Although by their nature these representations are not economical 

in storage space, compacted forms may be produced, contrasting with the 

redundant forms more generally used. 

Some chemical information systems have been described 

which use connectivity records as the sole structural representation 

(Astl, 1975, GLUCK, 1965). 

In other systems these representations are used for specific 

purposes, e. g. as intermediates for input-output and interconversion 

of representations, for atom-by-atom search, which has a precision 

much greater than that possible with linear notations or fragment 

codes, and for other applications requiring similar precision, e. g. 

computer design of synthesis routes (WIPKE et al., 1974b, BEfSOHN et al., 

1976, COREY et al., 1976) and some types of structure-property 

correlation. 

A considerable number of sophisticated topological 
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representations have been devised (DAVIS et a1., 1974c, N. A. S. 1969) 

notably the French DARC system (DUBOIS, 1974) and the matrix 

representations used by Ugi for aynthesia planning (BLAIR et al., 

1974). 
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Interconversion of Representations 

The capability for the automatic interconversion of 

structural representations within computer-based chemical information 

systems has been a topic of active investigation, since this 

capability has two major advantages for the operators and users of such 

systems (LYNCH et al., 1971d). Firstly appropriate representations 

may be produced for specific purposes, e. g. a connection table for 

atom-by-atom search. Secondly a system in able to accept structural 

information from external sources, without the need for recokding. 

The production of partial structural representations, 

fragment codes, from full structural representations, has been 

i. e. 

mentioned above, and is relatively atraight-forward, though the 

reverse process is not in general possible. In particular the produc- 

tion of Ring Codes from WLN, of interest because of the wide use of 

both representations, has been described (GRANITO, 1973, GRANITO et al., 

1972). 

Conversions from the more complex full structural representations 

to a connectivity record have been reported, starting from both WLN 

(GRANIT0,1973, HYDE et al., 1967), and sy3tematic nomenclature 

(VANDERSTOUW et al., 1974). 

The reverse process is more difficult and only limited 

success has been reported in generating WLN (LYNCH, 1968b, BOWMAN 

et al., 1968, FARRELL et al., 1971) and nomenclature (CONROW, 1966) 

from connection tables. 

Interconversion of different forms of the same type of 

representation may be important, and such techniques have been 

described for connection tables and linear notations (CANPEX et al., 

1970). 
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Input and Output of Structural Information 

Input and output procedures are of considerable importance 

for chemical information systems (LYNCH et al., 1971e). Choice of an 

appropriate input technique can have a considerable effect on the 

costs of information processing, while the form of output chosen 

can greatly influence the acceptance of the system by its users. 

Input of chemical structures was originally achieved by 

entry, by keyboarding or similar means, of the structural 

representation. A number of such input media have been compared 

from a cost-effectiveness viewpoint (MENDENHALL, 1974). More 

recently the alternative of directly entering a structural diagram 

by some appropriate technique has been possible. Most commonly, 

a special form of typewriter or teletype has been used to generate 

'a digital record of the structural symbols and their co-ordinates, 

from which a coiinectivity record is derived algorithmically (FELDMAN, 

19731 GOTTARDI, 1970, MULLEN, 1967). 

A formula reader has been devised with which a structural 

formula, dr? wn'according to cortain conventions, is scanned by 

photocells to produce a similar digital record (MEYER, 1974)- In 

interactive systems, structures may be entered via a light pen and 

RAND tablet to give a connectivity record. This has been described 

for interactive systems designed both for retrieval (FELDMANN et al., 

1972a, FELDMANN, 1974) and for synthesis planning (COREY et al., 

1972). 

There is an evident advantage to any chemical information 

system, by ray of increased acceptability to users, if output from 

searches can be presented in the form of structural diagrams, 

rather than registry numbers, names or notations. I Iowever, production of 
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structure diagram output has been found to be both difficult and 

expensive (ASIH, 1975). A structure diagram may be obtained from a 

structural representation either by a look-up process with a file 

of stored structure diagrams, or automatically from the structural 

representation, which gives much greater flexibility. Such automatic 

structure display methods usually require a connectivity table 

representation (HYDE et al., 1968), in which case the majority 

of structures can be dealt with satisfactorily, although it may 

prove useful to store the structures of the relatively small number 

of complex structures which cause problems. The generation of 

structure diagrams directly from WLN has been described (FELDMANN 

et al., 1971) though this cannot be as efficient as generation via 

connection tables, because of the problems of WLN syntax. 

Structure diagrams are commonly printed on paper or cards 

(THOMSON et al., 1967, JACOBUS et al., 1970), or may bn output on a 

graphics terminal (FELDMANN et al., 1972, COREY at al., 1972). 

If, ir. addition to a structural reprosentation, some form 

of atomic co-ordinates are input for a compound, a three-dimensional 

structural image may be displayed, as have been described for several 

interactive systems (MARSHALL of al., 1974i; MEYER, 1970, FELDMANN et al., 

1972b). 

Because of these technical advances it is now possible to 

devise a system in which input and output are performed solely with 

structure diagrams, while conversion to and from structural rep- 

resentations takes place internally and automatically. Systems of 

this sort 11"vo been described, for operation in both batch (STOCKTON. 

et al., 1974) and interactive (FELDMANN, 1974, FELDMANN et al., 1972a) 

modes. 
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2.2.3. 

Chemical Structure Information Systems 

/ 
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Chemical Structure Information Systems 

A full account of the various aspects of such systems 

has been recently published (ASH et al., 1975). The discussion below 

will therefore be brief, and will concentrate on those aspects 

relevant to the applicability of structure-property correlation 

and similar techniques in these systems. 

The effective and efficient operation of chemical structure 

information systems depends on the use of appropriate chemical 

structure handling techniques together with more conventional methods 

for information retrieval (BOW? IAN, 1975). This allows for two 

means of approach to such systems; the "structure-directed" approach, 

and an approach via queries directed to properties, uses, or subjects. 

Any search may therefore be regarded as either structure- 

directed, for example "how many compounds contaning this substructure 

are known", or subject-directed, for example "how many applications 

of wave mechanics calculations using the PRDDO technique have been 

published", or as a mixture of the two components, for example "are 

any examples known of aminoindans as enzyme inhibitors". 

The distinction between these two components of a search 

may not be of any importance in "conventional" information systems, 

and may involve no difference in search technique. However in the 

computer-based chemical structure information systems considered hero, 

two difference approaches to the search may be used, and it is 

convenient to consider these separately. 

The first of these, the "structure-directed" approach, aims 

to deal with queries concerning a particular structure or partial 

structure. To deal adequately with such qeuries requires a file 

of structures, coded in one of the representations discussed in the 
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preceding section, a routine for updating this file as necessary, 

and some form of substructure search procedure. A variety of such 

procedures have been developed, varying for highly complex multi- 

step systems using several types of structure representation (EAKIN 

et al., 1974, EAKIN, 1975) to the simple, though within limits 

highly effective, production and use of permuted indexes from linear 

notations (GRANITO et al., 1965). The advantages of interactive use 

of the more complex systems have been noted (EAKIN et al., 1974, 

FELDMANN, 1974)- 

A related function necessary for some chemical information 

systems is that of providing a capability for chemical reaction 

documentation. This is essentially a structure-directed problem, 

although reaction conditions etc. may be an additional factor, but 

has been an area of considerable difficulty because of the complexities 

involved in adequately representing chemical reactions for storage 

and retrieval (VALLS, 1974, VALLS et al., 1975). No method for 

automatically indexing and searching reaction information in files 

of structure representations, in a manner analagoua to substructure 

searching, has been adopted in an operational system, though research to 

this end has been and is being undertaken (CLINGING et al.,. l974, 

LYNCH, 1975b, OSINGA et al., 1976, WILLETT, 1976, VLEDUTZ, 1963). 

In order to deal with the second type of query, that 

involvii, g a non-structural approach to information or data held in 

the system, chemical structure information systems will generally 

have available files of non-structural material, which with appropriate 

techniques may be searched either alone or in conjunction with a 

structural search. 
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Perhaps the best known type is the bibliographic file, 

which may contain literature references and also, in the case of 

in-house systems, company reports etc. Examples of the operation 

of such files have been described (KENNARD et al., 1972, 

SCHULTZ, 1974). The well-developed methods of computerised 

information retrieval are applicable to such files (2'L%TTHEWS, 1975, 

WILLIAMS, 1974, MEADOW et al., 1970)- 

Machine-readable property files, becoming increasingly 

widely used, may contain either textual or, more commonly, numerical 

data. Specialised searching techniques are, in some cases, necessary 

for the most effective use of such files. Techniques for data analysis 

and structuresproperty correlation, which make use of such files, will 

be discussed in detail in a later section. 

Files of biological data are widely used in industrial 

information systems, particularly in connection with compound screening 

programmes in the pharmaceutical and agrochemical industries. Such 

files are particularly useful when used in conjunction with utructural 

information, which may be used to link data in several property filet, 

Subfiles may be readily created, for detailed study of specific sets 

of data. Descriptions of the design and application of such systems 

have been given (EAKIN et al., 1974, EAKIN, 1975, BOND et al., 1971, 

HANSCH et al., 1974a, BROWN et al., 1976, SAGGERS, 1974, WISWESSER et al., 

1974). 

Machine-readable structure-property files have also found 

application for spectroscopic data (HELLER, 1974, HELLER et al., 1973, 

WOODRUFF et al., 19751 }TELLER et al., 1972, JAGER et al., 1968) 

crystallographic data (ALLEN et al., 1973, WILLARRF. AL et al., 1976) 

physicochemical properties (LEO et al., 1971), thermochemical data 

(PEDLEY, 1976), composition-property data (ADLER et al., 1969), 



toxicological data (OXMAN et al. 9 1976) and environmental hazards 

data (GEISS et al., 1975)" 
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Few detailed descriptions of "total systems" incorporating 

such files have been published. The ICI CROSSBOW system has a 

sophisticated structure-handling capability, including interconversion 

of structure representations, and allows access to property files 

containing biological screening results. Additionally, files of 

medical, toxicological and physical property data on the company's 

compounds, and commercial files of physicochemical properties and 

bibliographic data are accessible (EAKIN et al., 1974, EAKIN,; 1975)" 

An interactive system, using a graphics terminal, has been 

described (FELDMANN et al., 1972a). This allows on-line access 

to files of structural data, bibliographic data, and files of 

physical and spectroscopic data. 
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The very considerable problems of attaining effective 

and efficient storage and retrieval within chemical structure 

information systems have been overcome, in the ways described above, 

to such an extent that the operation of the powerful and flexible systems 

described above is now a matter of routine. A considerable amount of 

effort, needless to say, is still expended on further improving the 

retrieval capabilities of such systems, and on maximising their cost- 

effectiveness. 

There is an increasing interest in making use of such 

computer-based chemical structure systems for information and data 

analysis and interpretation, in addition to conventional storage and 

retrieval. These techniques have an aim which Damnera has described 

as "manipulating data/information as an aid to assimilation and under- 

standing ... to highlight relationships and order in the retrieved data" 

(DAPIMERS, 1975). 

Data analysis techniques are finding application in many 

fields (PERKINS et al., 1975, TUKEY at al., 19b6, KOSKINEN at al., 1975), 

and will be applicable to both of the components of the approach to 

the contents of a chemical structure information system mentioned above. 

Relative simple techniques for data analysis and presentation may well 

be found valuable, as will be discussed in a later section. Conversely, 

some of the highly sophisticated work on organic synthesis design 

(WIPKE et al., 1974b, BERSOHN et al., 1976, COREY at al., 1976, BLAIR 

et al., 1974) and on graph theory as applied to chemical structures 

(SMITH, 1975, RANDIC, 1974, MISINTER et al., 1971.,. GUND at al., 1975) 

could have useful application in the "structure-directed" aspects of 

systems' operations. Unconventional techniques of information retrieval, 

devised largely for textual matter (VAN RIJSBEItG: N, 1975) could be 



054 

applicable to non-structural information within such systems. The 

possible use of such methods, particularly cluster analysis and 

related techniques, with structural data will be discussed in detail 

below. Techniques of statistical analysis and pattern recognition 

have already found application with both structural information and 

numerical data. The use of these methods with files of structural 

and non-structural data in conjunction may be very valuable for 

structure-property correlation. These aspects will be discussed 

in detail in a later section. 

It should be noted at this point that such techniques are 

applicable to some extent to structural and non-structural data files, 

regardless of the type of structural representation used and of the 

degree of sophistication of the implementation of the system. However, 

the use of a total structural representation in a computerised system 

enables a much fuller advantage to be taken of these methods, which 

is further enhanced by the additional ability to interconvert structural 

representations or to access property files in conjunction with 

structural data. 
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2.3. 

Structure-Property Correlation 

i 
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The discussion of methods of structure-property 

correlation must inevitably be limited in scope, since much of 

chemical science may be described in this way, being concerned with 

the rationalisation of properties by consideration of structure. 

The term will be taken to mean generalised methods for the investi- 

gation of structure-property relationships for a large number of 

structures and applicable to a number of properties, at least in 

principle, 'rather than rationalisations for particular cases. The 

discussion will centre largely on quantitative techniques, including 

the calculation of molecular conformations, and on methods involving 

the classification or categorisation of chemical species. It will be 

largely, though not exclusively, concerned with methods for dealing 

with pure, non-polymeric, organic substances. 

The historical development of such techniques is outlined 

below, with consideration of the differing purposes for which various 

methods have been devised and used. A discussion of the more widely- 

used techniques follows, inevitably brief and with'the aim of illust- 

rating the practical successes, potential limitations, similarities 

and differences of these methods. No single comprehensive account of 

the applications of these methods exists, though there are many 

descriptions of particular procedures and types of procedure, referred 

to when appropriate below, and useful reviews of the applications of the 

techniques in particular fields of study, e. g. drug design (REDL et al., 

1974, N. C. I., 1974), and thermodynamic property estimation (JANZ, 1967a). 

For the discussion below the techniques are categorised, 

somewhat crudely, according to the nature of the method, rather than 

by their application. Firstly, theoretical methods are considered. 
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By this is meant those methods which enable calculation of some 

property value for one particular chemical species, by mathematical 

procedures based on a theoretical model, without reliance on large. 

amounts of experimental data. Secondly, semi-empirical techniques, 

in which the property under investigation is correlated with other 

measured or calculated molecular properties, or with parameters 

dervied from such properties, are then considered. Thirdly, fully 

empirical methods will be discussed. This group comprises a wide 

range of parametric and non-parametric statistical techniques for 

analysing quantitative and qualitative data. Most involve structural 

parameters directly, and it is in this area that substructural analysis 

techniques have been developed. 

Finally the use, or lack of use, of published accounts of 

property predictions using such methods, and the possible effects of 

the use of such methods upon patentability will be noted. 
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2.3.1. 

Development-of Structure-Property-Correlation 



Background to the Development of Structure-Property Correlation Methods 

The properties of naturally-occurring chemical substances 

were noted in a qualitative sense from the earliest times, largely 

for their possible practical value. 

Attempts to develop systematic and quantitative relationships 

became possible with an understanding of chemical composition in the 

early nineteenth century. These involved the deduction of empirical 

relationships between properties for a substance, and, as structural ideas 

gained acceptance, between structure and property (CRLR"I lROWN, 1869). 

Such relationships, at that time, were largely derived for physico- 

chemical properties or organic compounds; boiling point, molar volumes, 

refractivities etc. (PARTINGTON, 1951). 

The first explicit statement of a generalised quantitative 

structure-activity relation was due to Crum Brown, based on the 

investigation of the biological effects of alkaloids (CRUN BROWN et al., 

1868). 

Two lines of development in the study of the properties 

of chemical substances may be identifitd, from their beginnings 

at the end of the nineteenth century. The first of these is the 

essentially qualitative detailed rationalisation of property, 

exemplified in more recent years by the elucidation of organic 

reaction mechanisms and by the investigation of the biochemical basin 

of medicinal chemistry. The second, of more immediate concern here, 

is the quantitative empirical or semi-empirical npproach to structure- 

property correlation. 

The early development of the correlation of biological 

activities has been reviewed (HANSCH, 1971b, PURCELL et al., 1971). 
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In most cases thin involved the correlation of a biological activity 

with a physicochemical property. Typical, and most widely noted, 

of these studies were the correlations between narcosis and partition 

coefficient achieved independently by Meyer and Overton (MEYER, 1899, 

OVERTON, 1897). In a somewhat different field, the study of physico- 

chemical properties for organic structures was actively pursued, when 

it was realised that many such properties were additive functions of 

the atoms and bonds present. This proved to be a valuable tool for 

structure determination before the advent of sophisticated instru- 

mentation for this purpose: molar refractivity and parachor were 

widely used in this way (SUGDEN, 1930, VOGEL, 1948, VOGEL et al., 1950). 

In the 1920's the newly developed quantum theory was given 

the wave mechanical formalism which was to enable its application 

to chemical problems (SCIIRODINGER, 1928), and occasioned Dirac's. 

comment that "the underlying physical laws necessary for the 

mathematical theory of ... the whole of chemistry are thus 

completely known" (DIRAC, 1929). It was some decades however, 

before quantum mechanical calculations could achieve widespread 

use, and Dirac's proviso that "the difficulty is only that the exact 

application of these laws leads to equations much too complicated to 

be soluble" remains unchallenged. Despite there advances in theory, 

purely empirical additive property relationships gained wide use, 

notably in the estimation of thermodynamic properties (PARKS et ai-s 

1932, SIDGWICK, 1933). The increased emphasis on the quantitative 

aspects of organic chemistry led to the-emergence of the specialism 

termed "physical organic chemistry" (HA11METT, 1940). This 

discipline is very largely concerned with the quantitative 
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rationalisation of chemical reactivity and similar properties in 

structural terms (IUINE, 1975a, NINE, 1962) largely by the development 

of empirical and semi-empirical relationships. Considerable effort 

was also expended on development of very simple procedures based on 

quantum mechanical principles for qualitative and semi-quantitative 

treatment of organic chemical problems. These included the valence 

bond theory with its concept of resonance (PAUTLING, 1939, WHELAND, 1944) 

and the Iluckel molecular orbital theory (STREITWIESER, 1961). 

Up to 1950 methods of quantitative structure-property 

correlation had little practical importance, apart from the use of 

atom and bond additivities for structure determination and for 

estimation of physical and thermodynamic properties. Two developments 

were to change this situation markedly. The first was the increasing 

investment in those industries producing chemical substances with 

specific biological effects, coupled with the rising costs of the 

traditional means of discovering compounds of appropriate activity. 

The second was the increased availability of data-processing equip- 

went, and especially of digital computers. 

The expansion of the pharmaceutical and agrochemicals industries 

since 1945 is notable (Tý= 
=iýIwc. - SMtTtt 1,7). 

This increased investment has however been accompanied by an increase in 

the costa of the research process, and by a tightening of legal 

restrictions on the commercial introduction of new products (ROBINSON, 

1974, BLOOM, 1971). The conventional means of research has involved 

identification of an active compound by either extraction from a 

natural product, random screening of available substances, or bio- 

chemical rationalization, followed by modification of this basic 
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structure in an attempt to suitably alter the compound's properties 

(ARIENS, 1971c, BLOOM at al., 1971b). This procedure has 

become steadily more costly and unproductive: recent-estimates 

suggest that between 3,000 and 10,000 compounds are synthesized and 

tested for every one which becomes commercially available (SPINKS, 

1973, HAHN, 1975, ROBINSON, 1974). There has, within the last twenty 

years, come a great interest in methods for predicting new active 

structures, 'lead generation', and for optimising the activity within 

a particular set of structures, 'lead optimisation'; without the 

necessity for synthesising all possible compounds. This naturally 

involves consideration of a wide variety of structure-property 

correlation methods, and has provided the impetus for the develop- 

ment of such methods (REDL at al., 1974, HAHN, 1975). 

The introduction of data-processing equipment, in the 

form of punched-card handling machinery, coincided with some of the 

first large-scale screening programmes for biologically active comp-. 

ounds, and greatly ameliorated the problems associated with large 

volumes of data (SAGGERS, 1974, CRAIG, 1975)" 

The subsequent wide availability of powerful digital 

computers in both academic and industrial environments has had three 

main consequences for the applications of structure-property corre- 

lation methods. 

rirstly, quantum mechanical calculations may now be 

regarded as a routine tool in certain areas, though as Cook has 

suggested regarding the application of rigorous wave mechanical tech- 

niques to "the va;. t bulk of chemistry and biochemistry ... at the 

present time the only contribution to this field (quantum chemists) 
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can sensibly make is to wish experimental workers luck in developing 

empirical theories" (COOK, 1974e). In addition to increased 

computing power, the development of many methodologies of varying 

degrees of approximation has contributed to the greater use of this 

approach. Other theoretical techniques involving extensive calculations 

have similarly become feasible. 

Secondly a variety of multivariate statistical techniques 

have been applied to structure-activity problems since about 1960 

(PLRCELL et al., 1973b). These include multipara! teter semiempirical 

correlations, additive modelling, and variety of non-parametric tech- 

niques, all of which will be discussed below. Routine application of 

such techniques is dependent upon adequate computing facilities, 

and also to a large extent upon the availability of standard statistical 

programs, in addition to the necessity for appropriate experi- 

mental data. 

Thirdly the capability of current computer systems to deal. 

with large data-bases allows for manipulation of files of structure 

and property data in a way not possible without this technology. 

Such computer-based files were originally developed largely for use 

within the pharmaceutical and agrochemical industries to control 

biological test data, and have had a profound effect on the. type of 

structure-property work carried out (IIANSCII, 1976, HANSCII et al., 

1974). 

Applications of such computer-based files have not been 

widespread in other areas, although some have been reported, as is 

noted elsewhere. 
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2.3.2. 

Theoretical Methods of Structure-Property Correlation 

/ 
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Quantum Mechanics Calculations 

The application of 
3 

quantum mechanical methods to chemical 

problems has increased greatly in the past twenty-five years, due 

largely to the greater availability of large digital computers which 

has stimulated the development of appropriate techniques of cal- 

culation (HALL, 1973). 

In the discussion below, some of the more widely used 

techniques will be outlined and their applications noted. Many 

detailed accounts of quantum theory and its application to chemical 

problems are available, and the outline of quantum chemistry below 

is based on the treatments in some of these (COOK, 1974a, DEWAR, 

1969a, KIER, 1971a). The application of quantum techniques. to "large" 

molecules, i. e. those of chemical and biological interest, will be 

emphasised: this area has been recently reviewed (DUKE, 1975a). 

The application of these methods in the field of drug research has 

been described in detail (KIER, 1971a, ICIER, 1970). 

The basis for all quantum chemical calculations is the 

well-known Schrödinger equation, with application of the Born- 

Oppenheimer fixed-nucleus approximation and with the Pauli 

electron-exclusion principle as a constraint. The most usual rep- 

resentation of this is 

II lý1 E 

where H is the Hamiltonian operator, P is the molccular wave function, 

and E represents the eigenvalues of the equation. It is not possible 

to solve this equation exactly for any system large enough to be of 

general chemical interest, and it has been pointed out that exact 

solutions would be unnecessarily complex for most purposes (COOK, 

1974b). 
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The most commonly-used simplification of the quantum 

mechanical model is to partition the n-electron Hamiltonian operator, 

in an approximate way, into n one-electron Hamiltonians. The linear 

combination of products of orbitals given by one-electron Hamilt- 

onians is an approximate solution to the Schrödinger equation. The 

inherent inaccuracy of this method, generally known as the llartree- 

Fock self-consistent field method, due to its neglect of electron 

correlation, has been noted, and some methods for counteracting this 

will be mentioned below. 

'I' The form of the wave functicn, T , resulting from this 

approach is given by 

where Di represents linear coefficients, and 
OZrepresents the 

determinants of orbitals. The beat wave-function may then in principle 

be determined by optimising the coefficients and orbitals, using the 

variation method. However the computational difficulties of full 

optimisation of both are so great that this technique, known as multi- 

configurational self-consistent field, is not at present feasible for 

chemically interesting systems. 

Two more approximate approaches have been used to generate 

wave-functions, starting from some form of upproximate atomic orbitals. 

The first involves choice of a single set of orbitals, represented by 

a single determinant, and optimization of these orbitals: this the 

'Molecular Orbital' (MO) method. The second involves selection of 

fixed orbitals, generally atomic orbitals, and optimization of the 

coefficients for a multiconfigurational wave function: this is the 
r 

'Valence Bond' (VB) method. 
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The valence bond method gained considerable popularity 

immediately following its introduction, largely because of its 

compatability with chemical concepts, bonds, lone pairs, resonance 

etc., and its findings have been widely used in a qualitative sense 

(WHELAND, 1944, PAULING, 1939). However it has not subsequently 

been used extensively for quantitative work, because its unwieldy 

formalism is not well suited to computation for large molecules 

(HALL, 1973). Recently there has been a revival'of interest in this 

method of calculation (GERRATT, 1974). 

One recent study has suggested that a greatly simplified 

varient of valence bond theory, considering only the 'chemically 

sensible' resonance forms, may give useful results (HERNDON, 1973)" 

The alternative molecular orbital method has predominated 

quantitative work, particularly for organic and biological molecules. 

The most commonly used form of this theory enables the calculation of 

molecular wave-functions by means of the linear combination of atomic 

orbitals (LCAO) approximation. When carried out directly such cal- 

culations are termed "ab initio", by distinction with the "semi- 

empirical" methods discussed below. Although these calculations contain 

severe approximations (DEWAR, 1969b, COOK, 1974c) they are the most 

rigorous which can at present be attempted on chemically useful systems. 

Although ab initio MO calculations have been refined to the point where 

they may be regarded as routine, with a considerable number of appli- 

cations having been described (DUKE, 1975b, CHRISTOFFERSON, 1972, 

RICHARDS et al., 1974), they remain expensive in computer time, so that 
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any large-scale application is not at present feasible. Examples 

have been described where these methods have been used to 

investigate particular problems, which could not be solved by more 

economical approximate MO methods (PORT et al., 1974, PULLMAN et al., 

1973)- 

It will be noted that there are two major drawbacks to the 

ab initio LCAO MO methodology: its uneconomical requirements for 

computing facilities and time, due in large measure to the necessity 

for calculating and storing complex integrals representing electron 

interaction, and its inherent inaccuracy due to the approximations 

involved in its formulation. A range of methods, generally termed 

"semi-empirical", have been devised to counteract these problems. 

These methods avoid the calculation of some or all the integrals 

resulting from the LCAO 140 formulism, either by ignoring them or by 

deriving empirical values. Such methods may have one of two purposes: 

they may simply aim to mimic ab initio results more economically, 

or by use of suitable empirically derived parameters may aim to over- 

come the inherent inaccuracies of the 1: 0 approximations. A variety 

of such methods have been developed and have found application to 

chemical and biological systems (DUKE, ' 1975c, MURRELL at al., 1972, 

IIOYLAND, 1969, HERNDON, 1972). Only a small number of the more 

widely-used methods can be mentioned here. The techniques described 

as CNDO (Complete Neglect of Differential Overlap) are simple and 

economical (POPLE et al., 1970) and have been widely applied to both 

chemical and biological problems (PULLMAN, 1972, KLOFMAN et al., 

1970). 

The MINDO (Modified INDO) technique makes extensive use of 

empirical data, in order to parametrize the method to give results 
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of the same accuracy as experimental data, and has been used to 

calculate physical properties of organic compounds(BINGHAH et al., 

1975) : 

The PRDDO (Partial Retention of Diatomic Differential 

Overlap) method aims to mimic ab initio results as accurately as 

possible, with a considerable gain in computational economy. It 

is one of the few such "accurate semi-empirical" techniques to have 

been applied to large molecules (KIER et al., 1975, DIXON et al.,. 

1976). 

At a greater level of approximation than the methods 

discuzzed previously is the collection of techniques known generally 

as iluckel MO theory. The original form of this theory was developed 

before the general availability of computers, to provide an elementary 

but useful way of dealing with fº-electron systems in terms of MO 

theory. It is essentially a very simplified form of LCAO MO theory, 

with the integrals treated ax parameters to be determined empirically 

rather thar c"lculated. Despite the evident crudity of the method, 

it gained popularity and has been widely used in organic and biological 

chemical applications (STREITWIESER, 1961). It is largely a*qualitative 

and semiquantitative technique, and has been found useful for calculating 

molecular indices within related series of compounds (SCHNAARE, 1971, 

GREENWOOD et al., 1966). 

Various modifications have been made to the basic theory, in 

attempts to overcome its known defects. In particular the Extended 

Huckel Theory, Khici allows for the treatment for cr electrons, has 

attained wide uso, despite criticism of its unsatisfactory theoretical 

basis (HERNDON, 1972, WOHL, 1971). 
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A number of alternatives to the LCAO approximation for 

calculating 130 wave functions have been proposed. None has been 

widely applied, though the so-called X-4scattered-wave method 

has produced useful results for inorganic and biological molecules 

(JOHNSON et al., 1973, JOHNSON, 1973c). 

Various methods have been proposed to overcome the inherent 

inaccuracy in the MO formalism, by taking explicit account of 

electron correlation. The semi-empirical PCILO (perturbative Config- 

uration Interaction over Localised Orbitals) method is the only 

such technique to have achieved wide-spread use (DINER et al., 1969). 

This computationally very economical technique has been applied 

mainly to the conformations of biological molecules (PULLMAN, 1972). 

One feature of molecular orbital theory which should be 

noted is the invariance of the overall molecular wave function to 

certain types of transformation of the constituent MOs. Thus it 

becomes possible to choose between alternative, and entirely equivalent, 

sets of MOs and select the most useful set for some particular purpose 

(COOK, 1971td, RVEDENBERG, 1973). One particularly useful procedure.. 

is to transform the "canonical" set of ? 10s, which are generally 

delocaliscd over the whole molecule and thus most useful for describing 

"whole molecule properties" into a set of localised orbitals. Such 

localised representations may have three advantages (WEINSTEIN et al., 

1971, ENGLAND et al., 1971) : 

i) they may be conceptually preferable, in that they 

are compatable with conventional chemical structural ideas, e. g. bond 

energy (VON NIESSEN, 1975). 
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ii) they may be transferrable between molecules, and could 

thereby simplify calculation - this has been investigated by a number 

of workers (O'LEARY et al., 1975) particularly in von Niessen's 

'Molecules in Molecules' method (VON NIESSEN, 1973, VON NIESSEN, 1971k). 

iii) they may form the starting point for a more elaborate 

treatment including configuration interaction, e. g. PCILO or some more 

complex treatment. 

A number of mathematical criteria have been advanced for 

localization (WEINSTEIN et al., 1971). 

Localised orbitals may be produced either directly or by 

transforming canonical orbitals. They may be produced by any ab initio 

or semi-empirical NO technique: in particular the PRDDO method has 

been largely used to produce orbital sets of this type (DIXON et al., 

1976, KLEIR et al., 1975) and the CNDO/INDO methodologies have been 

used to this end (FIGEYS et al., 1975). 

This localisation concept is very relevant to the subject- 

matter of this thesis, and is discussed in detail below. 
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Other Theoretical Methods 

In addition to these quantum mechanical techniques, other 

methods which may be categorised as "theoretical" according to the 

criteria given above have found application. 

Calculations based on the thecry of statistical thermodynamics 

can give very accurate values for the physical properties of some 

simple compounds. They are however of little value generally, because 

of the complexity of the calculations for any structure other than the 

simplest hydrocarbons and because of the lack of the structural parameters 

needed for such calculations (JANZ, 1967b, PITZER, 1940). A quantum 

statistical methodology has been suggested for the investigation of 

certain biological properties (LIN4 1974)- 

A variety of methods for calculating preferred conformations 

have been developed, in addition to the use of quantum mechanical methods 

mentioned above. The use of rigorous techniques based on classical 

mechanics has been limited (GOLEBIEWSKI et al., 1974), but techniques 

making use of empirical potential energy functions have found appli- 

cation to both biological molecules (SCHERAGA, 1968) and organic species 

(ENGLER et al., 1973). It has been suggested that for some 

applications these methods may give results considerably superior to 

those obtainable by quantum mechanical methods, in addition to their 

advantage of computationpl economy (LILJEFORS et al., 1976). Such 

techniques have also been applied to the problems of solvent inter- 

actions, and to the prediction of partition coefficients (HOPFINGER 

et al., 1976). 



Q7ý 

Summary of applications of theoretical methods 

The applications of the theoretical techniques discussed 

above to the investigation of structure-property relationships, and 

to the prediction of unknown property values may be divided into 

three categories. Such applications, using the techniques as a 

means to an end, may be distinguished from the considerable effort 

put into developments of methodology and testing of the methods on 

relatively small molecules. 

First, and most obvious, is the direct calculation of 

numerical values for unknown properties of chemical species, using a 

wave mechanical technique. This is only possible for relatively 

straight-forward properties directly related to molecular energies, 

most commonly thermodynamic properties. The calculation by this 

means of, for example, a pharmacological property is at present out 

of the question, because of the complexity of biological processes 

(ARIENS, 1971d). 

Because of the inaccuracies implicit in all quantum 

mechanical formulations at present feasible, as discussed above, 

the only methodology so far suggested to produce results of chemical 

accuracy is the heavily parametrized MINDO/3 technique (BINGHA. M et al., 

1975)" 
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The second manner of application of theoretical techniques 

involves the calculation of quantum mechanical indices: orbital energies, 

electron densities, bond orders, atom charges etc. (KIER, 1971b). 

This has the advantage that, since such indices are usually compared 

across a series of structures, the inaccuracies inherent in the cal- 

culations may be nullified, since the values calculated are treated 

as purely relative. The simpler, and more economical techniques, 

are generally used in this way, especially the Huckel and Extended 

Huckel methods. The main applications of this procedure have been in 

studies of chemical reactivity and biological activity (SCHNAARE, 

1971, GREENWOOD et al., 1966). Indices calculated in this way have 

been used in multiparameter semi-empirical correlations, generally 

as a parameter representing electronic effects (PURCELL et al., 1970, 

ANDREWS, 1972). This will be discussed further below. 



The third important aspect of the application of theoretical 

techniques is the investigation of molecular conformation, which involves 

both wave mechanical and other methods as described above. 

A wide variety of quantum mechanical methods have been applied 

to this purpose, from the more sophisticated ab initio methods to 

Huckel and Extended Huckel techniques (ICIER, 1971c, KIER, 1972, 

PULLMAN, 1976). It is not uncommon for alternative methods to give 

entirely different results, with little rationalisation possible: 

the authors of a recent study regarded their chosen method, the Extended 

Huckel procedure, as an essentially empirical technique which fortui- 

tously gave useful results in a certain area (GAN1sLLIN at al., 1973). 

This may be regarded as a more realistic attitude than is expressed 

in many theoretical studies. 

One major problem with the investigation of conformations 

is that an accurately calculated minimum energy conformation may be 

drastically altered due to intermolecular interactions, particularly 

in a biological environment. Some of the simpler methodologies, 

e. g. PCILO and some empirical conformation techniques, appear to have 

so far shown most promise in dealing with this problem (PULLMAN, 1972, 

HOPFINGER et al., 1976). 



2.3.3" 

Semi-Empirical Structure-Property-Correlation 
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Semi-empirical Structure-Property Correlation. 

This part of the chapter will consider methods of structure- 

property correlation which relate the property under investigation 

with other measured or calculated molecular properties, or parameters 

derived from such properties. The term "semi-empirical" is most 

commonly used for techniques, and so is adopted here, though it tends 

to obscure the empirical nature of much of this work. The terms "linear 

free-energy relationship" and "extrathermodynamic relationship" have 

often been used, referred to the thermodynamic basis of such correlations 

(EXNER, 1972b), while the self-explanatory term "physicochemical 

activity relationship" has been suggested for the multiparameter bio- 

logical applications (NORRINGTON et al., 1975), and the less specific 

"correlation analysis" for chemical aspects (E)NER, 1972b). 

Hansch and co-workers have used "correlation analysis" and also "quan- 

titative structure-activity relationship (QSA1)". 

A distinction is often drawn between the two major appli- 

cations of such correlation methods: application to chemical reactivities 

and similar aspects of physical organic chemistry, often termed 

"Hammett correlation", and application to biological activities, 

generally referred to as "Hansch analysis". Although rather arbitrary, 

this distinction is convenient for the purposes of discussion and will 

in general be adhered to below. 

Interest in this type of relationship, as has been noted above, 

began at tt-.;: end of the last century with observations-of quantitative 

relationships between biological activities and physicochemical 

properties, nctably solubilities, partition coefficients, and boiling 

points, leading to a rationalisation of these effects in thermodynamic 

terms. 

The Hammett Approach ' 

Lis development of physical organic chemistry led to the amassing of 
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much quantitative data, in particular rate and equilibrium constants, 

and a consequent search for quantitative relationships to summarise 

and rationalise this data. The relationship which has since found 

very wide use was originally postulated by Hammett (HAMMETT, 1937), 

and has provided the basis for virtually all correlation analysis in 

organic chemistry. Comprehensive reviews of the by now vast literature 

of the application of Hammett-type analysis are available (CHAPDIAN et al., 

1972, JAFFE., 1953, JOHNSON, 1973a, IIINE, 1976b) and the discussion below 

will do no more than outline the main points. 

Hammett's equation is usually expressed in the form 

log k= log k° +eo 

where k denotes a rate constant or equilibrium constant for some 

compound; k° denotes a statistical quantity corresponding to k for an 

'unsubstituted' or 'parent' compound; e, the so-called 'reaction 

constant' depends on the nature and conditions of the reaction or 

equilibrium process; O, the so-called 'substituent constant', is 

characteristic of a particular substituent in a particular position and 

independent of the reaction. The equation was formulated originally 

to deal only with meta- and para- substituted benzene derivatives, and 
I 

most applications have been restricted, to this system, although work has 

been carried out with acyclics, heterocyclics and fused systems 

(EXNER, 1972c, JOHNSON, 1973b). 

The Hammett equation remains essentially empirical, although 

a good deal of effect has gone into providing a theoretical rationale 

and establishing its range of validity (RITCHIE et al., 1964, EXNER, 19? 2d, 

WOLD, 1974). It is now regarded as well-proven, 'and in general as "a 

convenient tool to summarise experimental results and to detect 

exceptions" (EXNER, 1972e). 
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The substituent constants of the Hammett equation reflect 

electronic effects of substituents. It is evident that these will to( 

some extent vary in different reactions, depending on the nature of 

the interaction between substituent and reaction site. It was found 

necessary to introduce dual o values for certain zubstituents; a 

"normal" constant, and one or more alternative constants to be used when 

a strong mesomeric interaction could occur (JAFFE, 1953, STOCK of al., 

1963). This was a highly artificial solution, in view of the continuous 

variation in effects observed, and various alternative and more complex 

formalisms were proposed (YUKAWA et al., 1959, YUKAWA et al., 1966, 

HUMFFRAY et al., 1969). 

Theee were equations of the form 

log k= log k° +Q 
[Cr 

+r (er * -ý 
0 

where Cr is the normal substituent constant, cr * is an alternative 

substituent constant and r is a variable depending on the nature of 

the reaction. 

Such equations lead to a "sliding scale" of substituent 

constant values. 

This tends towards the situation where a different LT constant 

would be required for each reaction, negating the general principlos 

of this type of correlation procedure. An an alternative to this pro- 

liferation of substituent constants, procedures were devised for 

partitioning the electronic effect into inductive and resonance factors 

(TAFT et al., 1959, SWtIN et al., 1968, EHRENSON et al., 1973)" 

Recent work has involved the "positional weighting" for substituent 

constants representing these effects, to allow for positional effects 

in benzene derivatives and thereby increase the generality of the 

model WILLIAMS et al., 1976). 
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The notable work of Taft twenty years ago enabled steric effects 

to be included in Hammett-type analysis, with the introduction of a 

steric parameter Es (TAFT, 1952), Totally sterically controlled 

reactions then conform to the equation 

log k= log k° + SEs 

where S is a steric susceptibility constant. More general equations 

involving both electronic and steric parameters have been found useful 

in some cases. The introduction of the steric parameter is generally 

regarded as a great advance in Hammett-type work, not least since it 

enables ortho substituents to be included, though the "ortho-effect" 

is still a considerable problem (CHARTON, 1971, SHORTER, 1972b). 

The partitioning of substituent effects into polar (or field, 

or inductive), resonance (or mosomeric), and steric factors is ore of 

the major features of this type of correlation analysis (SHORTER, 1972a)- 

A number of authors have however warned against the possibility of drawing 

unjustified mechanistic conclusions from a successful empirical correlation, 

particularly in view of uncertainty as to the physical meaning and inter- 

relationships of the constants (WILLIAMS et al., 1976, DEWAR et al., 

1962, RITCHIE et al., 1964, W'OLD, 1974). 

In addition to an analysis of reactivity in terms of reactant 

structure, Hammett correlation analysis has enabled studies of the 

effect of the reagent (PEARSON, 1972) and the solvent (KUPPEL et al., 

1972) on reactivity. 

Such correlations have also been employed, with mixed succesaº 

in the interpretation of spectra (BURSEY, 1972, KATRITZKY et all., 

1972, TRIBBLE et al., 1972). 

A problem for all correlation analysis of this sort is the 

choice of the "best" substituent constant or reaction constant. A 
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notable attempt has been made to put into practice the ideas of Jaffe 

(JAFFE, 1953) by carrying out statistical analysis of large data sets, 

in order to derive optimal values for the substituent constants, and 

thereby give a firmer statistical base to such correlation analysis 

(WOLD et al., 1972, SJOSTROM et al., 1974). 

It may finally be noted that the major uses of the Hammett 

equation and related correlation analysis techniques have been the 

summarising of data, the detection of anomalous results, and the 

rationalization of experimental observations. -Little use has been 

made of such techniques for the prediction of reactivity or similar 

chemical properties (EXNER, 1972f). Their major application, as 

discussed above, has been in organic chemistry, but they have also been 

applied in inorganic chemistry (CHIPPERFIELD, 1972) and in enzymology 

(KIRSCH, 1972). Their use in the correlation of biological activities 

will be discussed in the next section. 
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The Hannch Approach 

The methodology generally termed "flansch analysis" involves 

the correlation, by means of regression analysis, of biological 

activities with measured or calculated physicochemical parameters. 

It has been reviewed in detail by a number of authors (HANSCH, 1971a, 

VERLOOP, 1972, CAMMARATA et al., 1972, CRAIG, 1972a, MCFARLAND, 1971, 

VAN VALKENBERG, 1972, GOODFORD, 1973, TUTE, 1971, PURCELL et al., 1973c, 

HANSCH, 1969) and will only be outlined here. 

As mentioned above, a number of early studies in structure- 

property relationships involved the correlation of biological activities 

with physicochemical properties. Following the adoption of the Hammett 

analysis procedure in organic chemistry, this technique was applied to 

biological problems, but the use of parameters reflecting almost solely 

electronic effects met with limited success (HANSCH, 1971c). 

A major advance was made by Hansch and co-workers, with the use of 

partition coefficient values for correlation, reflecting the lipophilic 

character of chemical compounds (HANSCH et al., 1962, HANSCH et al., 1964a). 

Such parameters have been found to be the most generally useful, of 

a number investigated, in the correlation of a range of biological 

properties (LEO et al., 1969). Two main types of relationship have been 

found to link lipophilicity with biological activity. The first is a 

linear relationship (HANSCH, 1971d, IIANSCH et al., 1972) represented 

as 

logl/c=alogP+b 

and the second is a non-linear relationship (HANSCH, 1971e, IIANSCH et al., 

1973a) 

log 1/c = k1(log P)2 + k2(log P) + k3 

1/c represents a biological response, P is a partition coefficient, 

while at h, kl, k2 and k3 are coefficients, taking particular values 
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for a given biological effect. Many examples of correlations 

using both types of relationship have been published. 

Because of the additive -constitutive nature of partition 

coefficient values, it in possible to deal with contributions frcm 

parts of a molecule. A quantity generally termed T was defined 

(FUJITA et al., 1964) as being the logarithm of the partition 

coefficient for a part of a compound 

i.. e. ii = log p 
px - log P 

p 

where Ppx is the partition coefficient of a structure substituted with 

X, and Pp is the partition coefficient of its parent (i. e. unsub- 

stituted) structure. Such IT values have been widely used, either to 

estimate an unknown partition coefficient, or directly iii-... correlation. 

Alternative methods for deriving parameters reflecting 

the lipophilicity of structural fragments have been reported (LEO 

et al., 1975, NYS et al., 197), NYS et al., 19740. These will be 

discussed in detail below, since they are of considerable relevance 

to the main subject-matter of this thesis. Other empirically derived 

lipophilic parameters, essentially similar tot , have been used 

(ZAIIRADNIK et al., 1960, KOPECKY et al., 1967). 

It is recognized that T values are at best an approximation, 

since the lipophilicity of any grouping will differ according to its 

environment. In particular, deviations can occur due to conformation 

flexibility and steric or electronic interaction: the only reliable 

safeguard is to use measured partition coefficient values whenever 

feasible (L. EO et al., 1975, HANSCH et al., 1973b, CAMAS-RODRIGUEZ 

et al., 1972). Problems in the definition and derivation of fl values 

have been noted (DAVIS, 1973, NYS et al., 1973). 



The so-called multiparameter procedure involves the use 

of multiple regression analysis to correlate a biological activity 

with a number of parameters, intended to represent different relevant 

aspects of the compound. A great variety of such parameters have 

been used, which may be divided roughly into three categories 

(IIANSCH, 1971f, VERLOOP, 1972). 

Firstly, there are parameters to represent lipophilicity: 

generally T values or their equivalent. Chromatographic parameters 

have also been used (BIAGI et al., 1972), because they are in general 

simpler to measure than are partition coefficients. Limited use of 

other parameters related to lipophilicity has been reported (MORIGUCHI, 

1975, MCGOWAN, 1952). 

Secondly, parameters representing electronic effects: a large 

number of forms of Hammett o'-constants and similar have been extensively 

used, and recently the Swain and Lupton parameters have been applied. 

Various quantum mechanical indices have also been utilised. 

Thirdly, parameters representing steric factors: the Taft 

steric parameter was the first to be employed in this way (KUTTER et al., 

1969), but simpler measures of bulk, notably molar refractivity, have 

been more widely used. 

It should be noted that these three groups are not entirely 

independent, since for example molar refractivity, generally used as 

a steric parameter, is also a measure of electronic effects (HANSCH 

et al., 1973b). A study of the interrelations between such parameters 

has-indicated that there is a fairly clear division between polar 

and non-polar parameters, but a considerable amount of inter-correlation 

otherwise (CRAIG, 1971a). 
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Collections of self-consistent values for such parameters have 

been published (HANSCH et al., 1973b, NORRINGTON et al., 1975). 

It will be seen that no distinction is made between parameters 

derived from experimental measurements and from theoretical calculations. 

The choice of parameters used will largely depend on convenience, on 

the significance of the correlations attained, and on any mechanistic 

rationale for the observed activities. The possible dangers of an 

over-enthusiastic "mode-of-action" interpretation of such correlations 

have been discussed (VERLOOP, 1972). 

It has been found useful in some cases to introduce "dummy 

variables", representing structural features of the compound, in 

addition to physicochemical property measures in multiparameter 

studies (HANSCH et al., 1974b, FUKUNAGA et al. -, 1976). This indicates 

a possible overlap of physicochemical parameter correlations with 

additive modelling techniques. This aspect will be discussed in the 

section dealing with additive modelling methodologies. 

Although physicochemical-activity relationships are in principle 

applicable to. sets of diverse structures, and have indeed been applied 

to such cases (HANSCH, 1971a), their most extensive use has been 

within homologous series; i. e. for lead optimisation rather than 

lead generation (REDL et al., 1974). 

The thermodynamic basis of such relationships, as with 

the Hammett equation, has long been recognised, and was first explicitly 

employed in a rationalisation of the equivalence of the varied parameters 

used in early work (FERGUSON, 1939). More recently the analysis of such 



correlations in terms of thermodynamics and theoretical models has 

been investigated (HIGUCIIIet al., 1970, DAVIS et al., 1974d, HYDE, 

1975b, MARTIN et al., 1976, MCFARLAND, 1971). 

These methods are dependent upon adequate computing facilities 

for statistical analysis, and more recently data-processing techniques 

have been utilised to assisting in handling structural parameters. 

These aspects have been discussed (CRAIG, 1971b, HANSCH et a!., 

1973bß HANSCH, 1972). 

The statistical evaluation of such correlations has also been 

discussed, particularly with regard to the necessity for a sufficiently 

large ratio of observed property values to parameters in order to 

minimise the possibility of chance correlations (TOPLISS et al., 1972, 

UNGER et al., 1973, CRAIG, 1972a). 

With'the widespread use of physicochemical parameter 

correlations for optimisation of activity within a tet of structures, 

it is of evident importance to carry out investigations in a rational 

and systematic fashion, so as to minimize costly synthesis and testing 

procedures. Methods have been suggested for choosing appropriate 

derivatives for synthesis in order to give a wide range of physico- 

chemical parameter values for formulation of useful correlation 

equations. These have included procedures for the cluster analysis 

of substituents based on physicochemical properties, with subsequent 

synthesis of derivatives from each cluster (flANSCH et al., 1973c), 

and for maintaining minimum distances in multidimensional parameter 

space between substituents (k'OOTOON et al., 1975)- 

A simpler means to achieve the same aim is the 'scatter 

diagram' in which substituents are plotted on axes representing 

physicochemical parameters (CRAIG, 1971a). Other methods for 
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rationalising synthesis programmes, based on a knowledge of 

physicochemical parameters, have'been reported (BUSTARD, 1974 � 

SANTORA et al., 1975, DEEMING, 1976, DARVAS, 1974, TOPLISS, 1972, 

MARTIN et al., 1973g, TOPLISS et al., 1975). 

Various means for presenting the results of physicochemical- 

activity analyses graphically have been devised (VERLOOP, 1972). 

One such method involves the plotting of 'structure-activity surfaces', 

i. e. three-dimensional plots of activity against two physicochemical 

parameters (NEELY at al., 1968, NEELY at al., 1970). 



2.3.4. 

Empirical Structure-Property Correlation 

1-11, 
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Empirical Structure-Property Correlation Techniques 

Under this heading will be grouped a wide variety of 

techniques. Following a common convention, a distinction 

will be made between"parametric"and"non-parametric"methods. By 

parametric is meant those methods designed to operate on interval or 

ratio data, which in this field implies the use of regression analysis, 

or similar techniques. Those parametric techniques falling within 

the area'of pattern recognition, which presume a knowledge of the 

distributions of the patterns to be studied, and make use of Bayesian 

strategies in a classification process (HOEL, 1971, NILSSON, 1965b) 

have not be applied in the structure-property area, and will not be 

further discussed. 

Non-parametric methods include all those techniques which 

do not require interval or ratio nor any knowledge of 

the distributions of the variables considered. This section includes 

a number of methods which are not strictly statistical analysis 

techniques, since they involve the displaying or listing-of data. 

A distinction is made between classificatory and non-classificatory 

methods. 

Classification methods are divided into supervised learning, 

where some predetermined categorisation is imposed on the data to 

be analysed, and unsupervised techniques, where no a priori categori- 

sation is applied. In this latter section are included the various 

data ordering and display methods. 

In the section on non-classificatory methods are discussed 

several non-parametric statistical techniques which have found 

application in this area. 
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"Pattern recognition" is a term which has been used to 

describe a variety of non-parametric techniques used in this area. 

It is generally applied to supervised learning, and to some of the 

unsupervised analysis and display methods (KCOWALSKI et al., 1972). 

An integral part of all the pattern recognition techniques applied 

in this area is "preprocessing" of the data: this will be further 

discussed below. 

It should be noted that only software techniques, 

i. e. involving computer programs, are of concern here. Various 

pattern recognition techniques have been devised for spectral analysis 

using digital electronics hardware (STONIIAN et al., 1975 

these will not be further discussed. 

A number of the methods described here are included in the 

"substructural analysis" categories, with automatically derived 

structural features. This aspect will be noted in the discussion 

below, but a detailed discussion of structural feature derivation will 

be left for the following chapter. 
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Additive models for physical property estimation 

As noted in an earlier section, empirical relaticnships 

between structure and physical properties have been studied for more 

than a century. 

At the present time such methods are most extensively used 

for estimation of thermodynamic properties, an area of considerable 

practical importance. Many such empirical schemes have been devised, 

of varying degrees of sophistication, all based on the assumption that 

structural units make constant contributions to property, regardless 

of the environment of each unit (REID et al., 1966, JANZ, 1967c, IIINE, 

1975c, COX et al., 1970b, STULL et al., 1969, BENSON et al., 1969, 

KITAIGORODSKY, 1973). The-complexity of the structural units used vary 

greatly, and various methods have involved atomic contributions, bond 

contributions, and group contributions, and the more sophisticated 

techniques allow for substituent interactions and for strain energy 

contributions. 

The performance of some of these techniques will be examined 

in detail, for comparison with work carried out as part of the study 

reported in this thesis, in a later chapter. 

With the increasing use of computers for handling thermo- 

chemical information (ZIOLINSKI et al., 1972b, PEDLEY, 1976) has come 

a consequent interest in the development of automated methods for 

estimating such physical properties (MEADOWS, 1965). 

The use of substructure search techniques to identify the 

structural units for estimation procedures has been demonstrated, using 

connection tabies (JOCHELSON et al., 1968) and Wiswesser Line Notation 

(BRASIE et al., 1965). 'A fragment code, especially suitable for this 

purpose, has been devised (RONANEC, 1974). 
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Other physical properties which are approximately additive 

functions of simple structural units, which as noted above were 

widely used in the past for structure determination, are still a topic 

of investigation (EXNER, 1966). Properties which reflect molecular 

bulk are of particular interest (EXNER, 1967a, EXNER, 1967b). A 

recent study has shown that such relations can be of value in investigating 

conformational problems, if appropriate structural units are used 

(KELLIE et al., 1975): this work will be considered in detail in a 

later chapter. 

An additive modelling approach of this sort has been applied 

to partition coefficients (NYS et al., 1973, NYS et al., 1974): 

this work will be discussed further below. 



Additive Modelling for Biological Properties 

This area has been reviewed (PURCELL et al., 1973d, CRAIG, 

1972a, CRAIG, 1975)" 

The first example of this kind of empirical relationship 

was given in a study of thyroxine analogues (BRUICE et al., 1956), 

which made use of the equation 

log activity =k fi +c 

where fi is a coefficient representing the effect of substituents 

at a particular position in the parent ring system :k and c are 

constants. 

This approach was given a more general form in the so- 

called Free-Wilson methodology (FREE et al., 1964). This is based on 

the single assumption that a particular substituent group in a 

particular position in a parent structure has a constant and additive 

effect on biological activity. Thus 

log activity = overall average + (group contributions) 

It is important Lo note that this model can be app. ied only to sets 

of structurally similar compounds. The constant term is the overall 

average of the biological activities because this original form of 

the model is based on symmetry equations. Various modified forms of 

the Free-Wilson method have been used (KUBINYI et al., 1976). 

In one such modification (FUJITA et al., 1971), which dispenses with 

symmetry equations, the contributions to activity for all substituents 

are relative to hydrogen as a substituent, assumed to have zero 

contribution, a modification originally devised by Cammarata 

(CAMARATA et al., 1970). The equation then becomes 

log activity a` +I 



where ai are the activity coefficients for the subrtituents: 

the constant, jt, is the theoretically derived log activity value 

for the unsubstituted parent compound. 

The presumption of additivity of substituent effects 

in this model generally means that substituent interactions must 

be discounted. An example has been published where a tenn representing 

the interaction of two substituents was included in such an analysis, 

and shown to significantly improve the correlation (FUJITA et al., 

1971). 

More generally, an additive model has been proposed which 

includes terms representing possible intersubstituent interaction, 

generally termed the Bocek-Kopecky model (BOCEK et al., 1964, KOPECKY 

et al., 1965,, BOCEK et al., 1967). In this model the activity of 

a compound with substituents X and Y would be given by 

log activity = bX + by +exey+k 

which may be regarded as a Free-Wilson relatiorizhip with the additional 

term exey representing substituent interaction. 

Additive empirical models of this kind will give different 

activity coefficients for each set of data analysed. This, as has 

been pointed out, may be both a strength aril a weakness (CRAIG, 195)" 

The coefficients are not generally applicable, as are eg ivalues, 

but are a more accurate representation of a particular data set than 

would in general be possible using generalised parameters. Since the 

coefficients embody all factors, knowm and unknown, which affect 

activity, there is no necessity to prejudge which type of parameter 
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to use. Examination of empirical coefficients may give sequences 

correlating with physical property and so give an indication of 

the physicochemical factors involved, perhaps leading to the formu- 

lation of a useful Hansch-type correlation equation (CRAIG,: 1972a, 

KUBINYI et al., 1976a). The physicochemical and empirical corre- 

lation methods are closely related: it has been suggested that the 

Free-Wilson model is equivalent to the linear Hansch approach, while 

the Bocek-Kopecky model is related to the parabolic Hansch method 

(SINGER et al., 1967, CAM1IARATA, 1972, KUBINYI-et al., 1976). 

A mixed approach has been described, essentially a generali- 

zation of the use of dummy variables in Hansch analysis as discussed 

above, which combines the empirical and physicochemical parameters 

approaches (KUBINYI, 1976). This yields equations of the form 

log i/c = k1IT 
2 

+ý(ai +(k. 0 + lci 

is ai are the Free-Wilson activity coefficients, 1 'N ýj 

the "Hansch part" for phynicochemical parameters 0, the term kilt" 
2 

allows for a parabolic dependence on partition coefficient, 
k 

is a constant. 

Empirical methods of the Free-Wilson type are particularly, 

valuable for complex structures with several possible positions of 

substitution, where the possible permutations of a relatively-small 

number of substituents increase drastically. Thus in one such study 

a series of structures with six substituent positions, substituted 

by 16,4,7,4,5 and 4 groups respectively} with a resultant possible 

35,840 analogues were subjected to Free-Wilson analysis which gave a 

good structure-activity relation based on property values for sixty-nine 



U9I) 

structures (CRAIG, 1972b). Such complex systems are the only area 

in which additive modelling techniques have been used to anything 

like the same extent as physicochemical activity relations. This may 

perhaps be ascribed to their restricted applicability to certain 

kinds of closely. related sets of structures, and to the relatively 

large number of compounds for which property values must be available 

before the Free-Wilson approach is practicable (CRAIG, 1D75). 

The statistical bases for this type of analysis have been 

discussed (HUDSON at al., 1970, CRAIG, 1972a). It is suggested that 

a compromise is necessary between the requirements of statistical 

rigour and those of convenience and economy, particularly as regards 

the ratio of measured property values to variables in the analysis. 

The number of variables produced may be a particular problem with the 

Bocek-Kopecky type models including interaction terms. 

Recent work has demonstrated the applicability of sub- 

structural analysis to additive modelling of biological properties 

(BUSH, 1976, ADAMSON at al., 1974, ADAMSON at al., 1976a).. Property 

values are assumed to be an additive function of structural features 

automatically derived from a connection table representation of 

structure, and correlated by multiple regression analysis. This method 

may be applied to groups of structurally diverse compounds. This 

work will be discussed in detail in the next chapter. 



Classification Techniques - Supervised 

Supervised classification techniques, often termed 

supervised learning, form a branch of pattern recognition. The 

published literature of this field, generally dealt with from a 

mathematical viewpoint, is considerable. It will not be reviewed 

here, since it has been very adequately dealt with in discussions of 

the applications of these techniques in chemistry-related fields 

(KOWALSKI et al., 1972, JURS et al., 1975a, BUSK, 1976, KOWALSKI, 1974, 

ISENHOUR et 
_ 
al- i 1974). 

The basis of supervised learning involves a set of entities which 

are to be categorised in some pre-determined fashion. The categorisation 

may be binary, e. g. active or inactive for a pharmacologically-tested 

compound, or may be multicategory, e. g. type of functional group present. 

The majority of applications have used binary classifications. A 

"learning set", i. e. a set of entities whose categorisation is known, 

is used to create a decison-making process, so that subsequently input 

entities will be classified on the basis of their attributes. 

Two forms of decision-making method have been largely used 

for supervised learning in chemistry-related areas. The first of these 

is the so-called "learning machine", or "trainable classifier" 

(NILSSON, 1965, KOWALSKI, 1974). These are discriminant functions 

which operate on an input pattern, i. e. set of attributes of an 

entity to be classified, to produce a numeric value, which indicates 

the classification. A simple and widely-used example of this is the 

binary pattern classifier using a linear discriminant function (JURS 

et al., 1975b). This is essentially a weighting function which when 

multiplied by a pattern vector gives a scalar result, the sign of 

which indicates the classification. Such discriminant functions are 



"trained" by inputting the pattern vectors of the entities comprising 

the "learning set" one by one. As each is entered the function is 

altered according to various criteria (KOWALSKI et al., 1969, NILSSON, 

1965c) so as to give the correct classification. The classifier, thus 

trained, is used to classify other entities, whose categorisation is 

unknown. 

The use of such learning machines has been criticised on 

various grounds (KOWALSKI et al., 1972b). In particular these authors 

suggest that these methods are poorly adapted for anything other than 

two-class, linearly-separable data, that they generate non-unique solutions, 

and that their ill-defined statistical foundation makes their applica- 

bility to many cases difficult to assess. It has been suggested that 

in order to use these methods with any confidence, a ratio of entities 

to attributes of at least 3 to 1 is required (FOLEY, 1972). 

The second decision-making method which has been applied is 

the "K-nearest neighbour" methodology (K. OWAL. KI et al., 1972b, KOWALSI: I, 

1974)" This has been suggested to be superior to the learning machine 

because of a firmer statistical basis, and its ability to generate a unique 

solution. Entities are projected as vectors in n-dimensional space, 

according to the value of their n attributes, and classified according 

to a "majority vote" of the categorisation of their K nearest neighbours 

in n-dimensional space, where K is usually a small number, generally 

1,2 or 3. The learning set entities are used to categorise the unknowns 

in this way. 

Other related pattern recognition techniques have been 

suggested for application in drug design (HILLER et al., 1973) and 

chemical reactivity (IOFFE et al., 1969), but do not appear to have 

attained practical use. 
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An integral part of supervised learning procedures is pre- 

processing of data before it is input as features by which the entities 

are to be classified (KOWALSKI et al., 1972a, JURS at al., 1975c, 

KOWALSKI, 1974). 

This may be necessary to allow the simultaneous use of varying 

kinds of input, e. g. different forms of spectral data. It may make 

classification more distinct, e. g. by weighting appropriate features, 

or may make the process more economical computationally by reducing 

the dimensionality of the problem, either by omitting certain attributes, 

or by combining attributes by some transformation procedure. Most 

pattern recognition feature selection techniques are purely statistic- 

ally based, and may therefore be inappropriate for chemical problems, 

since the frequency of occurrence of structural features, spectral 

peaks etc. is no indication of their importance. One widely-used 

method to overcome this problem is the so-called "weight-sign" feature 

selection procedure (JURS, 1970), whereby features are discarded from 

the classification procedure so long as their omission does not affect 

the overall decision process. 

The great majority of chemical applications of supervised 

learning techniques have been in the area of analytical chemistry, 

where data from analytical measurements, often spectroscopy, are 

used to categorise the nature of the substance (JURS et al., 1975a, 

KOWALSKI, 1974, ISENIIOUR at Rl., 1974). Applications involving the 

input of features representing molecular structure to deduce, properties 

have been more limited. 

Learning machine techniques have been used to classify 

groups of compounds having pharmacological activity as hypnotics 
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into subgroups of tranquillisers and sedatives. One such study 

used connection table fragments to represent molecular structure 

(CHU, 1974)" while another, on a larger group of structures used 

a variety of structural descriptors as input (STUPER et al., 1975). 

Learning machines and K-nearest neighbour methods have 

been applied to the categorisation of potential anti-tumour drugs as 

active or inactive. One such study used a variety of structural 

descriptors to classify a set of purine and pyriwidine nucleoside 

derivatives (KOWALSKI et al., 1974), while another used a complex 

set of structural features, derived automatically, to deal with a 

set of structurally diverse compounds (CHU et al., 1975). 

The use of learning machines to predict mass spectra, 

i. e. the presence or absence of a strong peak in each relevant position, 

based on input structural descriptors has been described (JURS et al., 

1974d). 

Features representing molecular structure other than structure 

diagram fragments have been used as input for supervised learning proce- 

dures. Descriptors including electronepat?. vities, dipole moments, 

and intramolecular dimensions were used with learning machine and K- 

nearest neighbour techniques to classify substituted benzoic acids 

as more or less reactive toward, hydrolysis than the parent structure 

(KOSKINEN et al., 1974). In a further learning machine distinction 

between sedatives and tranquillisers, three-dimensional co-ordinates 

were obtained from crystallographic data or from standard bond dimensions, 

and rendered suitable for input by a molecular transform (SOLTLB&RG 

et al., 1976). A similar study used three-dimensional data from 

compilations of bond dimensions plus atom eleetronegativities to 
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classify aliphatic and polycyclic aromatic structures as active 

or inactive carcinogens using learning machine and K-nearest neigh- 

bour techniques, following appropriate molecular transforms (DIERUORE 

et al., 1974). 

Criticisms have been levelled at these pattern recognition 

techniques, and others to be described below, largely on the grounds 

that the data sets used have been unbalanced so as to make the 

results either trivial or misleading (CLERC et al., 1973, PERRIN, 1974, 

MATHEWS, 1975)" 
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Classification Techniques - Unsupervised: Clustering, Display etc. 

A wide variety of methodologies will be considered in this 

section. Firstly, the techniques known generally as "unsupervised 

learning" or "cluster analysis" will be discussed. Secondly, a 

variety of display and mapping methods will be considered, together 

with other simple data analysis techniques. 

The terms "unsupervised learning" and "cluster analysis" 

are for practical purposes synonymous, except perhaps for "unsuper- 

vised learning" to refer to mathematically simpler techniques, and they 

will be used interchangably here. Other essentially synonymous terms 

are "numerical taxonomy", generally applied to biological studies, 

and "automatic classification", used in the context of information 

retrieval. 

The underlying rationale of the many techniques of this kind 

is straightforward in principle. Starting from the vector in n- 

dimensional feature space representing each of the objects to be' 

classified, a matrix is computed giving a coefficient of the similarity 
/ 

between each pair of objects, according to some measure of similarity 

of dissimilarity. From this matrix some form of clustering procedure 

is used to identify clusters within the data set and to output this.. 

result in some appropriate format. A great variety of such tech- 

niques have been devised (SNEATH et al., 1973, BUSH11976). 

Since cluster analysis is one of the techniques used for the 

work described in this thesis, a detailed discussion of aspects of this 

procedure is necessary. This will be given in a later chapter. 

It is sufficient to note at this point that there is relatively little 

theoretical statistical basis for preferring one clustering method 
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cver another, and that therefore many investigations are empirical 

in nature (EVERITT, 1974). 

Relatively few examples of the applications of these methods 

to structure-property correlation have been published. 

They have been used to a limited extent as complements 

to supervised learning (KOWALSKI, 1974), as in certain of the studies 

cited in the previous section (CHU, 1974, KOSKINEN et al., 1974). 

An early study of this kind used unsupervised methods to distinguish 

between sedatives and tranquillisers on the basis of the position of 

peaks in the mass spectrum (TING et al., 1973). This publication was 

one of those included in the general criticisms of pattern recognition 

applications mentioned above. 

Hierarchicalclustering procedures have been applied to 

chemical structure problems. An early study of this sort involved 

a classification of the twenty naturally occurring amino-acids, using 

a large set of structural descriptors and physicochemical parameters 

(SNEATH, 1966), giving intuitively sensible results. 

Substructural analysis methods have been used in conjunction 

with hierarchical clustering techniques, using structural features 

automatically derived from connection table representations (BUSH9 1976), 

These methods may be used for property prediction, taking an unknown 

property value as equal to that of its nearest neighbour, to the 

average of the values of the other structure in its cluster, or some 

similar measure - this procedure is obviously similar to the K-nearest 

neighbour supervised learning procedure. Examples have been given of the 

application of this methodology to pK values for amino-acids 

(ADAMSON et al., 1973) and anaesthetic activity of diverse structures 

(ADAMSON et al., 1975a). This work will be discussed in detail below. 
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The application of hierarchical cluster analysis based on the 

biological activity values of the compounds to be classified, thereby 

possibly giving an insight into similarity of mode of action, has been 

described (SAGGERS, 1974). 

The use of cluster analysis procedures for selection of 

substituents for Hansch-type analysis has been discussed in an 

earlier section. 

The procedures described as "display" or "mapping" have as 

their general aim the representation of points in n-space by the same 

number of points in m-space, where m is less than n, and will usually 

be 2, for a graphical representation. Some information loss is 

inevitable in this process, and a variety of methods have been devised 

to minimise this loss (KOWALSKI et al., 1973). These methods may be 

divided into two categories: linear methods, for which the co-ordinate 

axes of the points in m-space are linear combinations of the co-ordinates 

of the n-space points; and non-linear methods, where this is not the 

case. It is obviously advantageous if such display methods can be used 

with an interactive graphics computer system, for "informal exploration 

of a given data set" (BALL et al., 1970): the application of such a 

system to chemical problems has been described (KOSKINEN et al., 

1975)" 

It has been suggested that methods of this kind may be the 

most valuable of the "pattern recognition" techniques, in allowing 

the investigator to examine a complex data set from several respects, 

and thereby either solve a problem directly or formulate a more 

complex analysis approach (KOWALSKI et al., 1973). Although these 
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techniques have been found useful for analytical problems (KOWALSKI, 

19711), few applications to structure-property relationships have 

been reported (KOSKINEN et al., 1974, TING et al., 1973). 

The use of a similar technique to deal with data of the 

olfactory properties of substances has been described (SCHIFFMAN, 

1975). Each substance was represented as a point in n-space based on 

judged olfactory attributes, and multidimensional scaling used to 

give a two-dimensional representation, for a subsequent rationalisation 

by consideration of structural and physicochemical factors. 

A simple but highly effective way of displaying structure- 

activity data is the permuted list. Generally used with linear 

notations, such lists allow all significant notation symbols to appear 

as "headings", with appropriate property data listed alongside. 

Alternatively, if several types of property data are available, these 

may be permuted, thus giving an overview of their interrelatedness. 

The use of this admittedly crude technique has been described by 

several authors (SAGGERS, 1974, GRANITO et al., 1965, EAKIN, 1975, 

OYNACKER et al., 1970). 

Under the general heading of display techniques should be 

mentioned the methods of graphically representing physicochemical 

factors, the ! 'scatter diagram" and the "structure-activity surface", 

mentioned in a previous section. 
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Non-Classificatory Methods 

One relatively simple method of quantitative structure- 

property correlation, suitable for application to large files of 

structures and properties, involves calculation of "substructure- 

activity frequencies", i. e. approximate measures of the contribution 

to a particular activity by a given structural feature over a wide 

range of structures (EAKIN, 1975, REDL et al., 1974, CRAMER et al., 

1974). These procedures may be used with qualitative'biological data, 

e. g. active/inactive, and the results may be assessed by standard 

non-parametric statistical tests, e. g. chi-squared. Rough measures 

of the likely activities of substances for which quantitative measure- 

ments are not available may be made in this way, and smaller groups of 

structures may be identified for more detailed study. This technique 

is particuarly suited for automatic substructural analysis, and the 

published examples cited above have described the use of structural 

features derived from fragment codes. 

Discriminant analysis is a non-parametric statistical 

technique, which, when dealing with entities arbitrarily divided into 

groups, can determine which of the properties or combination. of 

properties of the entities gives the best classification of the entities 

into their assigned groups. This technique has been applied to a group 

of enzyme inhibitors, divided into groups on the basis of semiquanti- 

tative activity measurements: physicochemical properties and structural 

descriptors were assessed for discriminatory power, i. e. effect on 

activity (MARTIN et al., 1974). It is suggested that this method 

may be valuable as an initial tool to determine the major factors in 
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causing molecular activity, since it can deal with qualitative data, 

and inactive compounds can be included in the analysis, which is not 

the case with parametric methods. 

Factor analysis and principal component analysis are closely 

related non-parametric techniques, devised to simplify the description 

of the variance observed in a complex data set. They have been used in 

this way in certain of the strcture-activity investigations mentioned 

above (SNEATII, 1966,5CIIIFFNAN, 1975), and for preprocessing of data 

for pattern recognition (DIERDURF et al., 19711). A study of eleven 

different biological activity values for structure in a set by factor 

analysis enabled the investigation of the interrelatedness of the 

biological tests, and, by identification of the abstract factors with 

structural features and physicochemical properties, allowed an insight 

into the causes of activity (WEINER et al., 1973)- 

A recent study has used factor analysis techniques to classify 

structures into groups corresponding to pharmacological activities on 

the basis of structural descriptors and physicochemical properties 

(CAMNARATA et al., 1976). 

Assessments of the interrelations of molecular properties 

and of various parameters have featured largely in many investigators 

of structure-property relationships. A recent study has demonstrated an 

unusually systematic approach (DOVING, 1973). Similarity measures 

between the physiological effects of a number of substances causing 

olfactory stimuli were correlated with Euclidean distances calculated 

from a large number of physicochemical parameters for each pair of 

substances, to enable some insight into the factors associated with 

physiological effect. 
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2.3.5. 

Property Prediction 
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Use of Quantitative Structure-Property Correlation Procedures for 

'Prediction' of Biological Activity 

Despite the many published accounts of the application of 

structure-property relaticnships to biological problems (detailed in 

the review articles cited above), very few property predictions have 

been reported (REDL et al., 1974). This excludes simulated predictions. 

made solely to test the performance of a particular technique. 

Such predictions, followed by synthesis and testing, have 

been described resulting from Free-Wilson analysis (BEASLEY et al., 

1969, COUSSE et al., 1973) from Iiansch-type analysis (FULLER et al., 

1968, GOODFORD et al., 1973) and from regression analysis with parameters 

derived from Huckel M. O. theory (MARTIN et al., 1973b). 

The potential application of these methods for prediction 

of biological activity has been reviewed in detail (GOODFORD, 1973)" 

It may be noted at this point that attention has been dravm 

to the possible effects of the use of quantitative structure-activity. 

correlation technique on the patentability of compounds with pharma- 

cological activity (HUMBER et al., 1975). It is suggested that prediction 

of a biological activity of an as yet unsynthesised compound may preclude 

its subsequent patenting, and may thus'inhibit the synthesis'and testing 

of such compounds. These authors feel that the problem will be more likely 

to arise with predictions for novel types of structures, i. e. lead 

generation, than with optimisation of a parent structure. 

It is conceivable that such considerations may affect the 

nature of what appears in the published literature concerning the 

application of structure-property correlation techniques. 
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Chapter Three 

Substructural Analysis Techniques 

(The scientists) can analyse the face - 

but will they not lose the smile? 

(Antoine de Saint-Exupery) 



The term "substructural analysis" was first used only recently 

(CRAMER et al., 1976) to denote empirical methods of structure-property 

correlation, using structural features derived automatically from com- 

puter-readable representations of the chemical structure diagram. 

Since all the work described in this thesis falls within this category, 

the examples of these, and related, methods so far reported in the 

literature will be described in detail, with emphasis upon the types of 

structural features used. 

Substructural analysis techniques may be used in conjunction 

with a variety of statistical procedures. Multiple regression analysis 

and cluster analysis were used in the work described below, and in 

related work (ADAMSON et al., 1973a, ADAMSON et al., 1974, ADAMSON et al., 

1975a, ADAMSON et al., 1976a, BUSH, 1976), and these statistical tech- 

niques will be described in detail in later chapters. Applications of 

pattern recognition techniques (CHU et al., 1975) and of other non- 

parametric methods (CRAI R et al., 1974, EAKIN, 1975) have also been 

reported. 

Representation of Chemical Structure 

The choice of the type of chemical structure representation 

is of evident importance for any substructural analysis procedure, 

and the various possibilities will now be considered. 

The simplest representation is molecular formula, a representation 

of composition rather than of structure. It is too crude to be of use 

as the sole structural representation for correlation, although des- 

criptors derived from molecular formula, e. g. atom counts and molecular 

weight, have been used in conjunction with more specific structural 

features, particularly in applications of pattern recognition techniques. 

This will be discussed further below. 



I. I.? 
The chemical structure diagram is the most widely used 

structural representation for correlation purposes, and the term 

"substructural analysis" generally implies the derivation of structural 

features from this form of representation. Three main reasons for 

this may be noted. Firstly the structural diagram is known, by 

definition, for all compounds whose structure has been determined. 

Additionally it may be used to represent hypothetical compounds, 

for which no experimental data is available. Secondly, as discussed 

in an earlier chapter, the structure diagram has been, "since its 

inception, the major conceptual tool for the rationalisation of the 

properties of chemical species. Thirdly the techniques devised for the 

computerised representation and handling of the chemical structure 

diagram for storage and retrieval may be readily adapted for substructural 

analysis. 

Since the work described in this thesis involves the use of 

computer-readable representations of the chemical structure diagram, 

the adequacy of such diagrams as a structural representation is of 

considerable importance, and will be discussed in detail below. 
/ 

In order to represent explicitly three-dimensional structure, 

three approaches are possible. Structure diagrams, and their computer- 

readable forms, will represent certain stereochemical factors, e. g. 

cis-trans isomerism, configuration about asymmetric carbon, and equa- 

torial-axial conformations; and appropriate structural features may be 

derived. Experimental data on molecular dimensions may be utilised, 

though this is available only for a few thousand compounds as yet. Use 

may alternatively be made of known standard bond dimensions, or of some 

form of calculation of conformation etc., as described in an earlier 

chapter. 
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Calculated molecular wave functions are potentially the most 

sophisticated structural representation thus far envisaged. However, 

the twin problems of lack of accuracy, and considerable cost have so 

far prevented their widespread use. Indices calculated from the 

simpler quantum mechanical procedures have been used as alternatives 

to physicochemical property values in semi-empirical correlation 

techniques, as discussed in an earlier chapter. 

Experimentally measured molecular properties, used in semi- 

empirical correlation, may also be regarded as representations of 

particular aspects of molecular structure. It has been suggested that 

physicochemical properties are intermediate in the correlation between 

biological properties and chemical structure, represented in an 

appropriate fashion (MURRAY et al., 1976). The use of substructural 

features and property values are in any sense mutually exclusive: it 

is likely that they will achieve maximum usefulness if they are regarded 

as complementary. The possible manner of use of substructural analysis 

will be discussed at a later stage. 



Adequacy of the Chemical Structure Diagram Representation 

In this section the adequacy of the structural diagram 

as a representation of chemical structure, suitable for the derivation 

of structural features for correlation, will be discussed. These 

factors will apply equally to the computer-readable forms of the 

structure diagram. 

The chemical structure diagram serves two functions. On 

the one hand it acts as a means of communication of structural ideas: 

such diagrams, and their computerised forms, have been analysed in 

terms of linguistic concepts (RANKIN et al., 1971, TAUBER et al., 

1972, MUNZ, 1968). On the other hand the structure diagram is a 

representation of a model of an underlying physical reality, and it 

is this aspect which will now be examined. 

Three points must be considered: firstly the adequacy with 

which the model, the chemical structure concept, represents physical 

reality, secondly the adequacy with which the chemical structure diagram 

represents the model, and thirdly the adequacy with'which the computer- 

readable forms repr, sent the structure diagram. The term "model" is 

here used to mean the conceptual basis of the theory of chemical 

structure (IIESSE, 1963, RUSSELL, 1971j). 

There is little point in any detailed consideration of the 

deficienci. es of the theory of chemical structure, i. e. the adequacy 

with which the model represents reality. Although in some cases the 

nature of bonding etc. is still a matter for debate, the successful 

rationalibation of the great amount of data associated with chemical 

compounds indicates the overall adequacy of the structural concept. 

Additionally, as discussed below, deficiencies in the model need not 



necessarily negate the usefulness of its representation. 

As noted in an earlier chapter, the chemical structure 

diagram, in essentially its present form, was devised soon after the 

middle of the last century, at a time when the existence of the 

electron had not been demonstrated, the nature of the forces within 

molecules was entirely unknown, and even the physical existence of atoms 

was still a matter for debate (RUSSELL, 1971j). That the structure 

diagram should still be of use at the present time, when the underlying 

model of chemical structure has changed so drastically, is a measure 

of the remarkable power of this simple representation, and the associated 

concept of the chemical bond. 

In general terms the adequacy of the structural diagram is 

shown by its wide use, in both qualitative and quantitative applications. 

Its major potential failing appears to be its unsophisticated represen- 

tation of atoms and bonds: thus a -C}U2- linkage or a -C=O grouping 

are represented as the same, regardless of their environment, an 

evident, though not necessarily gross, approximation. A more sophisticated 

form of structural representation may be envisaged, with quantities 

from wave mechanical calculations replacing or supplementing the 

conventional atom and bond representations. It is likely however that 

for most structure-property correlation applications such sophistication, 

regardless of any practical problems in deriving the values to be used, 

would not be justified by the accuracy of the data available. 

Two particular potential problems with the use of features 

from the structure diagram for correlation should be noted: these are 

electronic molecular properties and effects due to three-dimensional 

structure. 

As described in an earlier chapter, the molecular wave 
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function may be built up from either delocalised or localised molecular 

orbitals. Those molecular properties tenned "additive.,, constitutive", 

i. e. those related to bond energies, are most readily accounted for 

in terms of localised orbitals, which extend over groupings of atoms 

and bonds closely resembling chemically significant groupings from the 

structure diagram (ENGLAND et al., 1975, VON NIESSEN, 1975). 

This gives theoretical support to the many bond- and group- contribution 

energy schemes in thermochemisty, and indeed to the general pr-inciples 

of substructural analysis for such properties. It is however generally 

necessary to use delocalised orbitals in order to deal with rolecular 

electronic properties, and this indicates that substructural analysis 

techniques could be inappropriate for such properties. In practice 

however, this limitation may be circumvented, either by choosing appro- 

priate structural features so as to avoid the necessity of fragmenting 

a possibly delocalised system, or by dealing only with derivatives of 

le- 
a single system. In this latter case only a single orbital will be 

affected, to a reasonable degree of approximation, by a change in sub- 

stituent, and the problem could then be c'ealt with, at an approximate 

empirical level, by substructural analysis. This type of approach 

has led to some success in the application of the Hammett relationship 

to the electronic spectra of organic substances (KATIITLKY et al., 1972). 

The three-dimensional structure of a molecule is a second 

potential problem for substructural analysis techniques, using features 

derived from the structure diagram. Certain stereochemicai factors, 

e. g. cis-trans isomerism and equatorial-axial conformation, may be 

dealt with explicitly. Additionally, information on molecular size and 

shape is included implicitly in such descriptors as number of atoms 

and bonds, type of branching etc., and deviations from non-additivity 

with simple, structural features may indicate k, teric or conformational 
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factors. Although some workers in this field have used explicit 

three-dimensional descriptors, using information other than the 

structure diagram, others have considered that molecular size and shape 

may be adequately accounted for using the structure diagram alone 

(MURRAY et al., 1976). These points will be further considered belcw. 

One particular aspect of molecular structure affecting the 

applicability of these techniques, is the possible difficulty of 

correlating structure with vector properties, e. g. dipole moments. 

A recent study has shown a successful correlation of dipole moment 

with structure for benzene derivatives, using structural features rep- 

resenting relative positions of substitution (KELLIE. et al., - 1975). 

This indicates that such properties are amenable to substructural analysis 

techniques, though the derivation of appropriate structural features 

would pose considerable difficulty for more c.. mplex compounds. 

The general conclusion appears to be that the structural 
11 

diagram is an adequate representation of chemical structure, within the 

limits required to allow correlations to the accuracy of most of the 

data available, and with possible reservations for particular structural 

types and particular properties. 

For substructural analysis techniques of the type studied in 

this thesis, it is necessary to consider also the adequacy of the 

possible computer-readable forms of the structure diagram. 

Some information is inevitabl'y"lost with the use of a frag- 

mentation code, since this is not a total structural representation. 

However, fragmentation codes have generally been designed for information 

storage and retrieval in a specific environment, and therefore usually 

reflect the interests of a particular uszr group, or the characteristics 

of a particular data base. It may well be that such a code will include 
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most of the substructures necessary for adequate structure-property 

correlation in its specific environment. Nonetheles �use of such 

a representation inevitably involves loss of flexibility in the choice 

of structural features: this applies whether the code is fixed or 

open-ended, since in either case the type of features are essentially 

pre-ordained. 

The use of a total structural representation, either a 

connectivity table or'a linear notation, gives a greater flexibility 

to structural feature derivation, since these are in general total rep- 

resentations of the structure diagram. The only notable general failing 

of these representations is an inability to represent partial, i. e. 

non-classical, bonding: however this is not a great drawback for the 

majority of substructural analysis applications which may be envisaged. 

The techniques of structural feature derivation from such comp!! ter- 

readable representations will be discussed in detail below. 

The use of systematic nomenclature for substructural analysis 

has not yet been reported. In view of the development of techniques 

for substrtict'ire searching with nomenclature, there seems no obstacle 

to its use for substructural analysis, at least for limited types of 

structure. 
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I 
Structural Feature Derivation 

In this section there will be given a brief outline of the 

various structural features used in published reports of substructural 

analysis and related correlation methods. These will be divided into 

three types: topological descriptors, geometrical (three-dimensional) 

descriptors, and single indices representing structure. 

Topological Descriptors 

The simplest-such descriptors are features such as molecular 

weight, and numbers of particular types of atoms and bonds. These. are 

not generally used alone, but rather in conjunction with structural 

fragments; functional groups, types of ring systems, substitution patterns 

etc., usually derived non-algorithmically. Several examples of the use 

of descriptors of these sorts have been reported (KOWALSKI et al., 1974, 

JULIS et al., 1975d), sometimes in conjunction with property values for 

structural features or for the compound (KOSKINEN et al., 1974, 

SCUIFFNAN, 1975, SNEATH, 1966). The Itindicator variables" used by Hansch, 

either alone (HANSCH et al., 1975) or in conjunction with physicochemical 

properties (flANSCH et al., 1974b), are structural fragments of this sort. 

Such structural fragments may to applied in a more systematic 

fashion by use of a fragment code. Algorithmic derivation of such features 

has been described from a fixed fragment code (CRATER et al., 1974) and 

from an open-ended code derived from a linear notation (EAKIN, 1975). 

A fragmentation code devised specifically for biological structure- 

property correlation has been described(AVIDON et al., 19710- 

A variety of schemes for systematic derivation of features 

from the structure diagram have been devised for the estimation of thermo- 

chemical properties (BENSON et al., 1959, JANZ, 1967c, REID et al., 

1966). The structural units are of varying levels of complexity, 
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from simple atom and bond fragments to more complex functional group 

fragments, and including in some cases intergroup interactions. 

Several examples have been reported of automatic structural 

feature derivation from total structural representations. Two alternative 

procedures are possible: firstly the generation of pre-selected 

structural features by substructure search techniques, and secondly the 

systematic algorithmic fragmentation of the structure. 

Both procedures have been applied to connection table represen- 

tations of structure. One pattern recognition study used an interactive 

substructural search system to generate structural features including 

augmented atoms, heteropath fragments and ring fragments (CIHU et al., 

1975), following an earlier study in which augmented atom descriptors 

were assigned manually (CHU, 1974). A similar system has been used to 

produce simple atom and, bond counts, substructural descriptors, and 

features representing the environment of particular groups (I3RUGGER et al., 

1976, STUPER et al., 1975). As noted Tn a previous chapter, substructure 

search procedures on connection table records have. been used to generate 

structural features for the estimation of ; thermochemical properties 

(JOClP3LSON et al., 1968). 

Systematic algorithmic feature derivation from connection table 

representations, with the generation of a variety of atom- and bond- 

centred fragment types, has been reported (ADAMSON et a]., 1973g, ADAMSON 

et al., 1976, ADAMSON. et al., 1975a, ADAMSON et al., 1976a, I3USII, 1976). 
0 

Less use has been made of linear notations for this purpose. 

The derivation of a fragment code from WLN has been noted earlier in 

this section, and substructural analysis techniques for this notation 

have been used fo: - thermochemical estimation procedures (BRASIE et al., 1965) 
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Geometrical Descriptors 

Relatively few structure-property correlation studies 

have made use of descriptors explicitly representing three-dimensional 

structure. Simple manually assigned descriptors representing config- 

uration and conformation have been used in studies described in the 

previous chapter (KELLIE at al., 1975, SCIIIFFMAN, 1975), as have 

standard values for structural dimensions. (DOVING, 1973, KOSMINEN et al., 

1974, DIEB. DORF et al., - 1974). 

Pattern recognition studies have used structural descriptors 

derived from three-dimensional molecular structure, deduced from experi- 

mentally established atomic co-ordinates (SOLTJBERG et al., 1976) or 

from a molecular mechanics calculation procedure (DRUGGER of al., 1976). 

In the latter case the geometrical descriptors were used together with 

automatically derived topological descriptors. 

A procedure for searching a file of connection table structural 

representations for three-dimensional "pharmacophoric patterns" has 

been described (GUND et al., 1973)7 

though no application of such a procedure for quantitative correlation 

has been reported. 
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Single Index Structure Representation 

A highly desirable development in the area of structure- 

property correlation would be the introduction of a single numerical 

index, derived solely from the structure diagram, capable of rep- 

resenting chemical structure sufficiently for correlation with a large 

number of properties. The only index of this sort to have achieved any 

extensive application is the "branching index" or "connectivity index" 

devised by Randics frori. graph theoretical considerations 

(RANDIC, 1975)" 

This index, calculated by a simple arithmetic formula allowing for the 

degree of branching, appears to be a measure of molecular size and 

shape. It has since been applied to the correlation of a variety of 

physicochemical and biological properties, with considerable success 

(KIER et al., 1975a, HALL et al., 1975, MURRAY et al., 1975, KIER et al., 

1975b, MURRAY et al., 1976). It has been suggested by these authors 

49 
that direct correlation between structure, represented by the connectivity 

index, and biological properties, without resort to semi-empirical 

calculations 
(MURRAY et al., 1976). 

An index representing molecular structure based on the concepts, 

of information theory has been devised (RASHKVSKY, 1955, Y. AI: RKASAh, 1955)" 

This sort of index does not appear to be suitable for structure-property 

correlations and no such application has been reported. 
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Feature Selection and Preprocessing 

These topics, which have been briefly discussed in the previous 

chapter, are relevant to all substructural analysis and related procedures, 

although this terminology is not always used. 

The first problem is the choice of structural features to be 

used, out of many possible for any given structure. With the majority 

of the techniques previously described this is an unsystematic and 

intellectual procedure, with descriptors being chosen on an intuitive 

judgement of their suitability. The use of structural features from 

fragmentation codes (EAKIN, 1975, CRAMER et al., 1974) reduces the extent 

of possible choice, since in general the appropriate structural features 

will be assigned algorithmically. A major amount of intellectual effort 

has of course been put into the ccnstruction of the code, i. e. the choice 

of fragments, at an earlier date. 

Those procedures involving algorithmic generation of structural 

features from connection tables (ADAMSON et al., 1973a, ADAMSON et ales 

1974, ADAMSON et al., 1975a, ADAMSON et al., 1976a, 'USH, 1976) involve 

the choice of the appropriate level of description: augmented atom, 

simple pair etc. Derivation of appropriate structural features rep- 

resenting the total structure is then automatic. 

A rationale for one form of substructural analysis has been 

given, by a Qet theoretical study of molecular structures ( KIHO, 

1971). 

A related problem is the reduction in number of structural 

features to give a smaller set to be used in the statistical analysis 

procedures. This is often regarded as desirable in order to reduce 

the sample: feat"re ratio, or to allow concentration on a relatively 

small number of features considered of particular importance. 
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Some . pattern recognition studies have used feature reduction 

techniques based solely on statistical distribitions of features 

(C1lU, 1974). This has been suggested to be unsuitable for the non- 

parametric data sets generally found in chemical applications. Alter- 

native techniques based on the discriminating power of each feature, 

generally known as weight-sign feature selection, have been more widely 

adopted (JURS, 1970, JURS et al., 1975e). 

If the data set is being dealt with by multiple regression 

analysis, the same effect may be obtained by carrying out the analysis 

so as to omit structural features insignificant at some predetermined 

level of confidence. This will be discussed further in the next chapter. 

A variety of other preprocessing methods may be applied to the 

structural features before analysis. The features may be coded as 

binary (i. e. present/absent) or numerically, or may have some arbitrary 

numeric cading, to indicate one of several possibilities. Preprocessing 

methods such as weighting,, normalising, autoscaling, and creation of 

new variables play an important role in virtually all pattern recognition 

applications (JURS et al., 1975a, KOSKINEN et al., 1975, STUPER et al., 

1976). Much the same ends, with parametric techniques, may be achieved 

by the use of non-linear functions, i. e. including higher order terms. 

It should be noted that no firm distinction can be drawn 

between the various topics discussed above. Thus any feature reduction 

procedure necessary will depend very much on the initial feature 

derivation. Similarly the use of non-linear functions in multiple 

regression analysis may be regarded as an alternative to generation of 

larger, and hence more complex, structural features (ADAMSON et al. * 

19; 6a). 



Substructural Analysis techniques used in this study 

The substructural analysis procedures used for the work 

described in succeeding chapters involved algorithmic generation of 

structural features from Wiswesser Line Notation (WLN) representation of 

structure. They resemble most closely, of all previous work in this 

field, the structure-property correlations carried out with features 

derived from connection tables by algorithmic means (ADAIISON et al., 

1973a, ADAMSON et at., 1974s ADAMSON et at., 1975a, ADAMSON et al., 1976a). 

Like these studies, the work described in this thesis involves algorithmic 

generation of features representing the total structure, from computer- 

readable representations of the chemical structure diagram, by methods 

generally compatible with the operations of chemical structure handling 

information systems. The differences between these studies and this 

work are very largely due to the differences in the structural rep- 

resentations used, and this aspect will now be considered. 

WLN, as noted in an earlier chapter, is widely, and increasingly, 

used in chemical information systems and in data compilations, handbooks 

etc. A demonstration of its usefulness for, structure-property correlation, 

and related data analysis procedures, could therefore be of considerable 

practical importance. The only such application of this notation to date, 

apart from relatively simple techniques such as permuted lists and the 

generation of a fragment code mentioned at an earlier stage, has been 

the derivation of structural features for thermochemical property 

estimations by substructure search techniques (IRASIE et al., 1965). 

Although these authors suggested the use of algorithmically generated 

WLN fragments for direct structure-property correlation, no such 

application has been reported. 
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WLN,. as a total structural representation, shares with 

connection tables the potential for allowing generation of any desired 

aspects of the structure diagram as structural features. It should be 

emphasised here that any such structural feature may be generated from 

any total structural representation. However, it is certainly true 

that some forms of structural feature are very much more simply generated 

from WLN than from connection tables, and vice versa. It may well be 

that it will be regarded as preferable to choose an appropriate 

structural representation, rather than to use highly complex structural 

feature derivation procedures with a less suitable representation. This 

is particularly so in view of the possibilities for interconversion 

of representations, as discussed in the previous chapter. 

The coding rules of WLN include a good deal of allowance 

for ideas of "chemical significance", e. g. the coding of functional 

groups and ring systems (RAKER et al., 1975), 

and advantage may be taken of this in devising structural feature deri- 

vation procedures. It should be recognised that this is a possible 

source of bias, in that if only structural features corresponding to 

conventional chemical groupings are generated, possible insight may be 

lost. The use of connection table fragments, which do not correspond 

to "chemically sensible" groupings, may help to rectify this. This 

is one of many examples of cases which indicate that the use of different 

structural representations, and hence of different types of structural 

feature, are complementary. 

The procedure adopted was to select a particular specificity 

of structure feature, e. g. simple functional groups, whole ring systems 
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and whole side-chains, interaction terms between ring substituents etc., 

and to allow these to be produced algorithmically from the WLN. This 

produced structural features of a wide range of size: for example 

C1 and S02NH2 could both be functional groups. This is by contrast 

to connection table fragmentation of the Adamson and Bush type, where 

features of a more nearly constant size are produced. 

The type of 1TLN fragmentation used involved no overlap 

of fragments (except for bond overlap). This again is in contrast to 

Adamson-Bush connection table fragmentation, where considerable overlap 

occurs, since each atom and bond in turn is taken as the centre of a 

structural feature (BUSH, 1976). The results of an analysis using 

structural features derived from WLN are therefore usually more easily 

interpreted, since WLN features correspond more immediately to chemically 

significant groupings. 
t4 

There is thus very considerable control over the type of 

structural features produced from a WLN analysis, unlike a corresponding 

connection table analysis, where only the centre and extent of fragments 

may be easily specified. The advantages of this are obvious, although 

the possibility of bias mentioned above, i. e. of seeing only that which 

is looked for, should again be noted. 

The derivation of particular substructures as structural 

features was not in general carried out in this work, since it was 

thought that, if required in a practical situation, as a complement 

to the algorithmic form of feature derivation, this could be most easily 

achieved by a standard substructural search procedure. 
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It was considered that there were three major areas in which 

WLN could be used to particular advantage in substructural analysis, 

in addition to the practical importance of assessing the usefulness of 

the widely-used representation. These were functional groupings, cyclic 

systems, and stereochemistry. 

Although the generation of functional groups from connectivity 

representations has been described (ESACK et al., 1975), 

WLN appeared to offer a particularly ready approach to this sort of 

structural feature. 

A WLN representation appeared likely to allow a convenient 

derivation of. structural features representing whole ring syRtems, by 

contrast to Adamson-Bush connection table fragmentation in which ring 

a 
systems were fragmented into subunits. Further, the WLN ring locant 

rules seemed to make possible the ready derivation of features accounting 

for substituent patterns, and for interactions between substituents, 

heteroatoms etc. Although a good deal of work has been carried out on 

the analysis of ring systems using computerised representations 

(ADAMSON et al., 1973b, ADAMSON et al., 1973c), no such systematic 

substructural analysis procedure has been reported. 

The rules of WLN include sufficient stereochemical information 

for it to seem likely that structural features explicitly accounting 

for stereochemical factors could be relatively simply derived. 

It should, be noted here that one major objective was to develop 

procedures which could, if proved to be useful, have wide applicability. 

To this end a widely-used structural representation, WLN, and a widely- 

used programming language, COBOL, were adopted. Additionally the 

substructural analysis procedures were designed to be as straightforward 

as possible, in some areas at the expense of neatness and economy 

of programming. 



The statistical analysis procedures adopted were multiple 

regression analysis, for quantitative structure-property correlation, 

and cluster analysis, potentially useful for both correlation and more 

general data analysis and information retrieval. These were used for 

three reasons. Firstly the performance of WLN structural features with 

these methods was thought likely to give a good indication of their 

overall performance. Secondly a direct comparison was possible with the 

work of Adamson and Bush, where these methods were applied with connect- 

ion table fragments. Thirdly these are widely-used techniques, which 

in the case of this worle involved standard commercially-available program 

packages, which should tend to aid the general applicability-of the 

whole procedure. 
q 

As a general principle, preprocessing of the feature sets 

before analysis was minimised, and the various statistical procedures 

were carried out as straightforwardly as possible. This was firstly 

to maintain the overall simplicity of the process, and Secondly because 

it was-felt that alteration of the feature generation algorithm was the 

preferable way of achieving the best results. For example it has been 

shown in one case (ADAMSON et al., 1976a) that use of larger structural 

features is slightly more effective than application of a non-linear 

regression function. Since WLN is well suited to the derivation of 

large structural features, this was in general the preferred method, and 

higher-order regression analyzes were only rarely used. 
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Statistical Techniques 

4 
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Multiple regression analysis I! rocedure 

Multiple regression analysis is a parametric technique 

for statistical analysis of multivariate data. In recent years it has 

been widely applied in a variety of fields of study, largely due to 

the increased availability of standard computer programs. 

The technique will not be discussed in detail here. Very 

full descriptions of such methods (SC: EDECOR et al., 1967a) and of their 

application in substructural analysis (BUSH, 1976) are available. 

Accounts of these statistical procedures as used in semi-empirical 

structure-property correlation have been given (SHORTER, 1973, VERLOOP, 

1972). 

The assumptions underlying multiple regression analysis are those 

applying, in general, to all parametric procedures (SN; DECOit, 1967b, 

SIEGAL, 1956). It is presumed that the observations are independent, 

and are drawn randomly from normally distributed populations having the 

same variance, or a known ratio of variances. The multiple regression 

model. is only fully valid if the observations are measured on an inter-al 

or ratio scale. It is generally assuned that these conditions are ade- 

quately fulfilled for quantitative property measurements, although the 

underlying distributions will not in fact usually be known. 

The simplest form of regression analysis, linear regression, 

seeks to calculate the best linear relationship between two variables. 

This is achieved using the method of least squares, in which the sum 

of the squares of the deviations between observed and estimated values 

of the dependent variable are minimised. The linear relationship ful- 

filling this condition is taken as the best such relationship. 

This relatively simple procedure is the basis of multiple 



132 

regression analysis, in which a number of explanatory variablen are 

tested for their effect in accounting for the variance of the dependent 

variable. Deriving the "best" linear relationship for a relatively 

large number of explanatory variables is a highly complex process, 

and correspondingly costly in computing time. The majority of computer 

programs for multiple regression analysis therefore use a "stepwise" 

procedure. Variables are introduced one At a time in decreasing order 

of their effect on the variance of the dependent variables. At each 

stage variables whose effect on the overall regression falls below 

some pre-determined level of significance are excluded. This process 

continues until no significant improvement in correlation can be 

brought about. 

45 
It should be noted that the results produced by such step- 

wise techniques will not necessarily show the best possible correlation. 

An analysis involving simultaneous consideration of the effect of all 

explanatory variables, impracticable in most cases because of the computing 

power required, would be necessary to guarantee an optimal solution. 

The standard program package used for the work described below 

makes'use of such a stepwise multiple regression procedure (I. C. L. 1971). 

In the work described below, the property value for each 

structure was the dependent variable, while the structural features 

present in any of a set of structures were the explanatory variables. 

The numerical values for the occurrence of structural features were used 

directly, without normalisation, weighting or any other preprocessing. 

In most cases the logarithmic (base 10) value of the property was used, 

as is conventional in both the semi-empirical and additive modelling 

techniques discussed above. 

For the most part, a simple linear function was adopted. 

The property value was assumed to be an additive function of the structural 
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units present, so that its value, y, for the ith compound is given by: 
n 

yi =< bjxij + constant 
j=1 

13. i 

where there are a total of n types of structural feature in the set 

of structures, and xij is the number of times that the jth feature 

occurs in the ith structure; bj is the regression coefficient for the 

jth feature and represents the effect of that feature in increasing 

(positive coefficient) or decreasing (negative coefficient) the measured 

property values for those compounds in which it occurs. 

Higher order functions were in some cases also considered. 

A function including squared terms takes the form: 

yi =` bjxij + cj(xij)2 + constant 
j=1 j=l 

where cj is the regression cgefficient for the squared term for the jth 

structural feature, and other terms are as defined above. 

A full quadratic function takes the form: 
nnnn2 

y= bj xij + djk(xij. xlk) + cj(xij) 
j=1 j=1 k=k+1 j=1 

+ constant 

where xik is the number of times that the kth feature occurs in the ith 

structure, where j<k<n, djk is the coefficient for the cross-product 

term for the jth and kth structural features, and other terms are as 

defined above. 
/ 

The use of higher order functions of this sort in substructural 

analysis has been shown (ADAMSCN, 1976a, BUS!!, 1976). However, as 

discussed in the preceding chapter, larger structural features were 

generally used in preference to more complex functions. 

The use of multiple regression analysis enables a number of 

parametric tests of significance to be carried out on the results (SNEDECOlt, 

1967a, BUSH, 1976). 
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The basic statistical quantity denoting the goodness of fit, 

i. e. the success of the correlation, is the multiple correlation 

coefficient, R. R2 gives the fraction of the variance in the dependent 

variable which is accounted for by the regression. This coefficient, 

and similar quantities, have been used in many cases as the sole 

criteria of the success of structure-property correlations (SHORTER, 

1973). This is not however a satisfactory state of affairs. These 

quantities take no account of the degrees of freedom of the regression, 

and in most cases an increase in the number of parameters in the analysis 

will of itself increase the correlation coefficient. Such coefficients 

are in general insensitive measures of goodness of fit, but may be 

greatly affected by the inclusion or exclusion of a regression constant 

(BUSH, 1976). a 

The residual error, r, of a regression, defined as the residual 

error sum of squares divided by the number of degrees of freedom, gives 

a more realistic assessment of the success of an analysis. The sig- 

nificance of the difference between any two regressions may be assessed 

by the F-test. An F-value is calculated as the ratio of the squares of 

the residual errors of the regressions, a. id its significance found from 

tables of F-values with the same numbers of degrees of freedom as the 

regressions. 

The 1''-value for a single regression is given by: 

F= Rý. n 
ý1 R 

where R is the multiple correlation coefficient, n is the number of 

degrees of freedom, and m is the number of explanatory variables in 

the analysis. The statistical significance of the correlation may then 

be assessed by comparison with tables ofr values with n and n degrees 

of freedom. 
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The multiple regression program provides t statistics for each 

regression coefficient, so that the significance of individual coefficient 

values may be assessed by comparison with tables of t 
-statistics with 

the same number of degrees of freedom as the analysis. 

The statistical significance of the difference between pairs 

of coefficient values may be assessed by calculation of at value: 

1(b1, b2) =A2+ S22 - 2r2C12 

r 

where Sl and S2 are the standard errors of the coefficients, r is the 

residual error of the regression, and C12 is the corresponding term from 

the inverse cross-product matrix. The value of t(b1b2) is then compared 

with values in tables of t statistics with the same number of degrees 

44 
of freedom as the regression. 

The ability to make such statistical tests on the results of 

the analysis is a valuable feature of this procedure. It acts as a 

caution against drawing firm conclusions from particular values, or 

1-1 
differences between pairs of values, of low statistical significance. 

It may be or course that useful information may be gained from statisti- 

cally insignificant results, particularly if trends are observed among 

individually insignificant values. 

It may be noted at this point that statistical significance 

is not an additive quantity. Thus, to take a simple example, it may 

be that the inclusion of a structural feature a, will bring about no 

significant improvement in correlation, and the same will be found for 

another feature a2. iiowever, inclusion of both a and a2 may give a 

significant imp"ovement in correlation. Effects of this sort, although 

sometimes appearing anomalous, are to be expected. 
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In the majority of cases the regression analyses were carried 

out so as to include as many structural features as possible, within 

the accuracy of the calculation. This is termed analysis at the 

99.99iß level. The cut-off point of the calculation is governed by the 

setting of the pivot size (I. C. L. 1971). This was not varied during the 

work described below, but was setat the value found to be the best 

compromise to allow reasonable accuracy with stability of the analysis 

(BUSH, 1976). 

Features were omitted by the regression program in analysis 

at the 99.99% level for any of three reasons. Firstly, because they had 

no effect, within the accuracy of the calculation, on the property value 

under consideration. Secondly, because they occurred to the same extent 

in all structures of the s et. Thirdly, because they were perfectly 

correlated, i. e. a number of types of structural feature occurred only in 

a fixed ratio in the same structures. Only one of any group of perfectly 

correlated features could be included in the regression, and its coe- 

fficient value reflected the effect of the group of features as a whole. 

On occasions the analyses were carried out so as to omit from 

the regression any structural features whose effect on the property value 

was insignificant at some pre-determined level of confidence. This is 

termed analysis at the n% level, where features whose coefficient values 

are insignificant at the n% level are excluded. This, may be useful in 

concentrating attention on the more important factors affecting the variance 

of the property values. 

A number of authors hive commented on the need for a 

sufficiently large ratio of observations to variables in multiple regression 

analysis, the suggestions ranging from an acceptable minimum of 5 to a sta- 

tistically desirable 20 (TCPLISS et al., 1972, CRAIG, 1975, LTNG:; R et al., 

1973). 



Attention has been drawn to the possibility of chance corre- 

lations with large numbers of explanatory variables (TOPLISS et al., 

1972): these authors' suggestions for guarding against this eventuality 

are essentially equivalent to the use of the F values for comparing 

the significance of regression results. 

It has been suggested that "the statistical methodology must 

be used as a guide, but need not be rigidly adhered to. Thus, there 

may frequently be fewer compounds than is desirable, but one may still 

try to obtain correlations. Common sense must always be applied to the 

consideration of correlations" (CRAIG, 1975). This attitude may well be 

appropriate in many practical situations, and these principles were borne 

in mind in carrying out the analyses required below. 

In addition to examining the overall regression results and the 

individual coefficient values, the estimated values for each observation, 

i. e. the residuals of the regression, were studied. These indicated if 

any type of structure were particularly badly estimated, and also allowed 

examination of the effects of a different set of structural features or 

a different type of analysis on the estimations for particular structures. 

The extent of agreement of observed and estimated values iß 

however not a good indication of the likely success of property pre- 

diction, where the compound under consideration is not included in the 

analysis since its property value is unknown. In order to simulate this 

situation the "hold-one-out" method was used. This involves exclusion 

of one structure from the set to be analysed, so that its property 

value may be "predicted" by summation of the regression coefficients 

from the analysis of the remainder of the set of structures for those 

structural features in the excluded structure (REDL at al., 1974, 
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ADAMSON et al., 1976a, BUSii, 1976). Each structure in a set may 

be excluded in turn, so as to gain an overall impression of the 

predictive power of the method. 

4 



13), 13 

Cluster Analysis Techniques 

Cluster analysis, as described here, is a general term for tech- 

niques for the analysis of multivariate data, which aim at grouping 

objects, on the basis of variables describing the objects, into classes, 

where the number and characteristics of the classes is not known 

a priori. These techniques fall within the area termed "unsupervised 

pattern recognition". A variety of other terminology is applied to 

these and related techniques, e. g. "numerical taxonomy", "clumping", 

and "automatic classification", perhaps due to their use in many different 

areas of study (EVERITT, 1974). These techniques have been widely ut'ed, 

most notably in the biological and social sciences. 

A number of full accounts and critical reviews of this'subject are 

available (CORHACK, 1971, EVERITT, 1974, SNEATH et al., 1973, JARDINE et al., 
4 

1971a) and those aspects of particular relevance to the classification 

of chemical structures have been discussed in dstail (BUSH, 1976). No 

detailed account will therefore be attempted hare. Rather, a brief survey 

of the major points will be attempted, based largely upon the treatment 

by Everitt referred to above. 

The clustering process, as noted above, consists of the grouping 

of'entities on the basis of a number of attributes. There are a number 

of distinguishable types of clustering tecnnique: the methods used 

here fall into the category termed hierarchical, agglomerative. The 

set of entities (structures) are fused into, groupings at varying levels 

of inter-entity similarity. The results of these procedures are generally 

expressed as a dendrogram or "classification tree". 

The first step in these methods is the calculation of scco measure 

of similarity (or dissimilarity) between each pair of entities 

on the basis of their attributes (structural features). From this 
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"similarity matrix" groups of the most similar entitites are formed, 

by some clustering method. This process is repeated at decreasing 

levels of similarity to form the dendrogram. 

It is evident that there is scope for investigation of three 

factors in the classification of any group of structures: firstly, 

choice of attributes, secondly, choice of similarity measure, thirdly, 

choice of clustering method. Theses will now be considered individually. 

J) Choice of attributes 

N. E. The terms "attribute" and "variable" are here used vynonymously. 

Since in this work the attributes are algorithzt. cally generated 

structural features, the choice of attributes amounts to the choice of 

appropriate WLN structural feature set. The effect on the classification 

of the use of different feature sets was investigated empirically, as 
.w 

will be described below. 

It is known that standardisation of input data ray considerably 

affect the classification (SNEATH et al., 1973) and standardisation was 

carried out in the examples below to investigate this effect. Standardi- 

zation involved the transformation 

Zik s Xik/ek 

where Xik is the value for the kth variable of the ith structure, Zik 

is its standardised value, and c -k is the standard deviation of the 

kth variable. 

Weighting of variables, in order to bias the classification torards 

the effect of particular attributes, is a comon pre-processing step, 

though it has been criticised on theoretical grounds (SNEATH, 1957). 

Weighting can only be potentially useful if there is come purpose in 

mind for the classification, and its effect was therefore not investigated 

in the work described below. 



ii) Choice of similarity measure 

A wide variety of similarity/dissimilarity measures have been used 

in cluster analysis (SNEATH et al., 1973). A detailed study has been 

made of the performance of a number of such coefficients in the classifi- 

cation of chemical structure (ADAMSON et al., 1971,5a, BUSH1 1976). This 

study indicated that there is little advantage in the use of the more 

complex coefficients. It was not thought worthwhile to further investigate 

this point, and it was decided to make use of one-simple measure of 

similarity in the work described below. The measure chosen was the 

Euclidean distance squared coefficient. This coefficient, dij, for 

two entities. i and j is given by 

dij (Xik - Xjk) 
2 

k=1 

where Xik and Xjk are the values of the kth variable for the entities 

i and j respectively, and there are a total of p variables. 

This distance measure has the advantages of relative conceptual 

simplicity and computational econ(xmy, and may be used with any of the 

hierarchical clustering procedures to be considered. It in a widely 

used coefficient, of generally high reliability. 

iii) Choice of clustering procedure 

A considerable number of procedures for hierarchical agglomerative 

clustering based on a distance coefficient are available, and a number 

of these were investigated. In general terms, all of the methods 

calculate the distance, measured in terms of the Euclidean distance 

matrix, between clusters, consisting of one or more entities, and fuses 

those clusters with the smallest inter-cluster distances. This process 

continues until all the entities are fused into a single cluster. 
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The difference between the methods lies in their different 

definitions of inter-cluster distances. 

In single link or nearest neighbour clustering the distance between 

groups is defined as the distance between their closest members (SNEATH, 

1957). In addition to its wide use in biological taxonomy (SNEATH et al., 

1973), this type of classification has been applied to chemical structures 

(ADAFMSON et al., 1973a, ADAMSON et al., 1975a, BUSH, 1976, SNEATH, 1966), 

and to problems of document retrieval (VAN REIJSBERGEN, 1976). It has 

been suggested that this is the only clustering technique, of the kind 

considered here, to satisfy certain theoretical criteria (JARDINE et al., 

1971a). Other workers have argued this is too restrictive a viewpoint, 

and have suggested that single link clustering is rarely able to reveal. 

a clear data structure (3ILLIAMS et al., 1971). 

Furtheatneighbour or complete link clustering defines the distance 

between clusters as the distance between the most remote pair of members, 

while in group average clustering the inter-cluster distance is defined 

as the average of the distance between all pairs of entities in the two 

groups (SOKAL et al., 1958). The method of McQuitty is essentially the 

came as group average (McQUITTY, 1966). 

In centroid clustering, and the very similar median clustering, 

the entities are depicted in Euclidean space and the co-ordinates of 

the centroid of each group calculated. Inter-cluster distances are 

then taken to be the distances between the centroids of the clusters 

(GOWER, 1967, SOKAL et al., 1958). 

Ward's method of clustering is derived from the assumption that the 

loss of information which inevitably occurs when entities are grouped 

into clusters may be measured by the total sum of squared deviations 

4 
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of every point from the mean of the cluster to which it belongs. This 

information loss is minimised at each step of the analysis, by fusing 

those two clusters whose fusion results in the minimum increase in the 

sum of squares deviations (WARD, 1963)- 

A number of empirical comparisons of the performance of various 

clustering procedures have been reported (PRITCHARD pt al., 1971, 

HODSON et al., 1966, EVERITT, 1974, JARDINE et al., 1971b). 

These have been subject to the problems implicit in the judgement 

of classifications mentioned above, and have involved generally intuitive 

assessments. No clear indication of the superiority of any particular 

method emerges from these reports. Rather, the usefulness of the methods 

appears to depend upon the data set being analysed, and the purpose of 

the classification. IL 

/ 
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Chapter Four 

Analyses 

'Computerised means of frustration, and electronically 

encoded ineptitude are no better than the manual variety' 

(Hans Welliach) 

eL 

/ 
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Chapter Four, Part 1 

Multiple Regression Analyses 

4 

/ 
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Serum Binding Activity of Penicillins 

The work described in this section was aimed at invest- 

gating the possible use of structural features derived from 

Wiewesser Line Notation for structure-property correlation. The 

data set consisted of values for serum binding activities for at. 

series of 79 penicillin structures with diverse side-chains. The 

logarithm of the ratio of bound: free compound was used as the 

property value. The structures and properties are listed in 

Table 1. 

'A structure-activity study of this data set using 

Hansch analysis has been reported (BIRD et al., 1967). This study 

has been reassessed, using similar semiempirical methods, by other 

workers (TUTE, 1971, NYS et al., 1974). Substructural analysis 

techniques, using connection table features, have also been applied 

to this data set (ADAMSON et al., 1974, BUSH, 1976). The possibility 

of comparison with the results of these otud? ez made this series 

particularly suitable for the initial trial of WLN features. 

The structural features used were derived manually, so 

that their usefulness could be assessed before any effort was put 

into programming. Structural features were devised with a view to 

a relatively simple algorithmic generation from WLN representation. 

Two sets of structural features were originally used in 

the analysis. 

Set As a relatively simple sit, included as structural 

features whole ring systems, hydrocarbon fragments, halogen atoms 

and other simple functional- groups. 

Set B, a more complex set, distinguished between halogen,. 

-Nit 2, -OH, and -0- features according to whether they occurred in 

an aliphatic chain, or substituted on an aromatic ring. Substitution 

patterns of ring systems were also distinguished: this distinction 



has been reported using connection tables (ADAMSON et al., 1973c). 

but would be particularly convenient using WLN locants. 

Examples of structural feature derivation using these sets 
0 c... a 11 

are shown in Figuresll. J1. The structural features from these sets are 

listed in Tables 2 and 3 (together with the results of the regressicn 

analyses tobe discussed below). The corresponding WLN symbols are 

included to illustrate the ready derivation of such features from. 

WLN. It should be noted that these*WLNs are illustrative and do not 

enumerate possible permutations, alternative ring locant sets etc. 

Two other structural feature sets were tested, to assess 

the effect of a more complex treatment of particular types of 

structural features. 

Set C distinguished naphthalene rings according to sub- 

stitution pattern and environment. The structural features in this 

set are listed in Table 4. 

Set D distinguished the substitution patterns of halog, ýn 

substituted benzene rings, and also made a more complex distinction 

than set B between the environments of halogen atoms. The structural 

features of this set are listed in Table 5. 

The overall results of the regression analyses with these 

-sets of structural features are given in Table 6. All the analysec 

show reasonably good correlations, statistically significant at the 

1% level. The F-test shows that the correlation with set B structural 

features is statistically superior to that with set A features at 

the 5% level. This indicates that the more complex structural 

features are accounting better for the variation in property value, 

and that the improvement in correlation is probably not simply a 

result of the introduction of a larger number of parameters. 



Sets C and D show correlations very little different, 

as assessed by the residual error, from set A. This indicates 

that the use of more detailed structural features to represent 

particular structural types has, in this case, little effect on 

the overall correlation. 

The individual coefficient values for the analyses with 

structural feature sets A and 13, together with the: ir t statistics, 

are listed in 'fables 2 and 3. In general these results indicate 

that lipophilic groups, i. e. hydrocarbons, aromatic rings, and 

halogens, tend to increase serum binding activity, while hydrophilic 

groups, e. g. -OH, -NH2, -SO2NH2, tend to decrease activity. This 

is in agreement with the results of a study of this data set using 

semi-empirical methods (BIRD et al;, 1967), and also with those of a 

substructural analysis using connection table fragments (ADAMSON et Al., 

1976). 

There is no statistically significant difference between 

the overall regression results of the analyses using augmented atom 

connection table fragments and structural feature set 13 described here. 

It should be noted that, although a large proportion of the 

coefficient values are individually statistically significant, there 

is; in the great majority of cases, no significant difference between 

pairs of coefficient values. Only in cases of pairs of widely. differing 

coefficient values, e. g. -SO 2Nii2 and 2-naphthyl in feature set ß, 

was the difference significant at the 10% level. This suggasts that 

it may be unwise to draw firm conclusions from particular pairs of 

coefficient values from these analyser. 

Several interesting points may be noted in these results. 

For all those groups for which comparisons are possible, 

a more positive contribution to activity is observed for substitution 

on an aromatic ring compared with the same group in an alkyl chain. 
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Although the differences between pairs of values are not statistically 

significant, a trend such as this may be regarded with more confidence. 

This effect has been noted in studies of group contributions to 

partition coefficients (NYS et al., 1974), and is in agreement with 

the generally accepted close connection between serum binding activity 

and lipcphilicity. 

The analyses with both set A and set B features show that 

the effect in increasing serum binding activity of hydrocarbon frag- 

I1 
ments increases in the order -CH3 < -CH2 < -CH- < -C-, i. e. increasing 

with increasing degree of branching. This is the opposite of what 

might be expected from the generally accepted effects of chain branching 

on lipophilicity (HANSCH 1971a, NYS et al., 1973, NYS et al., 1974), 

though the lack of statistical significance in the differences should 

be borne in mind. It is possible that this may be due to the lack of 

distinction between these fragments in hydrocarbon chains and attached 

to hydrophilic groups: this factor has been found to obscure assess- 

meet of the lipophilicity of hydrocarbon groups (NYS et al., 1974). 

Such a distinction was made in choosing 'R values in the original 

flansch analysis of these compounds (BIRD et al., 1967). This idea 

is supported by examination of the coefficients of the augmented atom 

fragments from the analysis of this data set using connection tables 

(ADAMSON et al., 1974). These structural features include several 

atoms, and for purely hydrocarbon fragments branching is found to 

consistently decrease serum binding activity, in accordance with 

expected trends in lipophilicity. This suggests that larger 

structural features derived from WLN could perhaps be used with 

advantage in this case. 

Considering the coefficient values for the various benzene 

substitution patterns, the 1,2,3 substituted ring has a value 
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considerably, though not significantly, lower than the remainder. 

It has been suggested that steric factors will force some rings 

of this kind from planatary with the amide linkage, preventing any 

mes meric interaction (NYS et al., 1974), and this may be a 

contributing factor to the discrepancy. 

The estimated log (b/f) values from the residual. s of the 

regression analysis with set B structural features are listed in 

Table 1. No particular type of structure appears to be particularly 

badly predicted. Only structure 14, with an unsubstituted benzene ring 

directly attached to the amide linkage, has a discrepancy between 

observed and estimated log (b/f) values greater than 0,5, perhaps 

indicating some aromatic interaction (NYS et al., 1974)" 

As noted above the distinction between the different modes 

of attachment of the naphthalene ring to the penicillin nucleus, 

feature set C, made a negligible difference to the overall corre- 

lation achieved. To assess what improvement is brought about for 

those few compounds affected1 the estimated values for the seven 

structures containing naphthalene rings from the analyses with 

structural feature sets A and C were compared. The discrepancy 

for all txcept one structure are much reduced by use of structural 

features of set C. Structures 65,69 and 70 contain a unique set C 

feature, and their discrepancy is therefore essentially zero. 

It seems that use of complex structural features applicable 

only to a relatively small number of compounds is likely to produce 

this form of results for many data-sets; a negligible change in 

overall correlation, with greatly improved estimations, perhaps 

tending towards triviality, for those compounds directly affected. 



It may therefore not be a generally useful approach. 

All the regression analyses described above were carried 

out at the 99.99% level, i. e. so as to include as many structural 

features as possible. In order to assess the usefulness of analyses 

including fewer variables, the analysis with set B features was 

carried out excluding variables not significant at the 10%. The 

overall regression result is included in Table 6.9 structural 

features included at the 99.997% level analysis are excluded at the 

10% level, and to this extent consideration of these results enables 

a concentration on the more important aspects. Those. structural 

features included in the 10% level analysis are listed in Table 7, 

together with regression coefficients and t statistics. 

It appears that these results do not greatly aid inter- 

pretation of the data set. The coefficient values are in no case 

greatly altered from those from the 99.99% 
. 
level analysis. Those 

structural features excluded as insignificant in the 10% level 

analysis were nonetheless useful in confirming tends among coe- 

fficients in the results of the 99.99% level. analysis. 

It may be that analysis excluding individually insignificant 

variables will be of more use with larger sets of structural features, 

where interpretation is confused by a relatively large number of 

insignificant features. This type of analysis may therefore be 

less valuable for feature sets derived from WLN than those derived 

from connection tables. 
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The work described in this section demonstrated, for the 

first time, the usefulness of structural features derived from 

Wiswesser Line Notation for structure-property correlation. It 

showed that this form of substructural analysis can give good 

correlations, and results readily interpretable in conventional 

chemical terms. In this case the analysis brought out points of 

considerable interest in the data, and the results were largely in 

accordance with the generally accepted nature of serum binding. The 

results were for the most part in line with those obtained using 

connection table fragments, as had been anticipated, since both types 

of analysis use structural diagram features. If the results had not 

been similar, it would have cast doubt on the reliability of these 

forms of substructural analysis. 

These results suggested that two general types of WZN 

structural features might be of use. The first type, similar to 

the set A used here, would be a simple, basic set, applicable to a 

wide range of structural types. Structural features of this sort 

would correspond to chemically significant units, ring systems, 

functional groups etc. The size'and complexity of such structural 

features would be of obvious importance. These results suggested 

that the hydrocarbon fragments used may have been too small, while 

the more complex naphthalene features may have been too large. 

The second, and more complex, type of structural feature 

would be of the sort in set B. They might include ring substitution 

patterns, and a generally more specific description of fragment 

environment. Such feature sets would probably be to some extent 

dependent on the type of structures under consideration. ` 
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These findings were encouraging, in that they indicated 

the likely value of the sort of structural features which could bs 

readily derived algorithmically from k'LN; in particular functional 

groups and ring systems with their substitution patterns. It was 

decided not to investigate this data set further, since it had been 

analysed to a reasonably satisfactory extent, but rather to apply 

these findings to other data sets with a view to devising algorithmic 

feature generation procedures. 

The work described in this section has been described in 

a paper published in the Journal of Chemical Information and Computer 

Sciences. 

/ 
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Partition Coefficients of Diverse Compounds 

Following on the work described in the previous section, 

it was thought worthwhile to further investigate structural feature 

derivation from Wiswesser Line Notation representations. Initially 

relatively simple and straightforward structural features were to be 

considered, with a view to algorithmic generation. 

Two papers had been published, describing a form of sub- 

structural analysis closely related to the methods considered here, 

allowing the correlation of partition coefficient with structure 

for diverse structural types (NYS et al., 1973) and for aromatic and 

heterocyclic compounds (NYS et al., 1974). The studies used manually 

derived structural fragments, whose contribution to partition coefficient 

was calculated by multiple regression analysis, giving "hydrophobic 

fragmental constants" or "f values". The structural fragments which 

might be derived from WLN, e. g. CI13-, -CH 2-, -NH-9 -0-, -COON. 

Both alicyclic and aromatic rings were broken down into smaller frag- 

ments, much as is done in substructural analysis of connection table 

representations. Distinctions were made between the effect of a given 

substructure substituted on an aromatic ring and in a non-aromatic 

environment, and proximity effects were included for hydrophilic groups. 

This approach has been suggested to have considerable 

advantages over use of the W constants, since problems of definition 

of parent structures and corrections for branching and chain-folding 

are avoided (NYS et al., 1974, LEO et al., 1975). 

It was decided to re-examine the data for the set of diverse 

structures (NYS et al., 1973), with the aim of arriving at a useful 

algorithmic technique based on Wiswesser Line Notation. This investi- 

gation had the advantages of allowing comparison with the original 

study, and of testing the applicability of the methods to a property 

of considerable practical importance. 
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In the analyses in the original paper several property 

values were included for each of a considerable number of the 

structures considered. For the work described here these values 

were averaged, so as to give a single property value for each of the 

84 structures. The data set used in these analyses are shown in 

Table 8. 

Structural features were initially derived manually from 

the structure diagrams. Three structural feature sets were used, 

differing in the way in which ulicyclic ring systems were fragmented. 

In feature set A these rings were fragmented into smaller units, which 

were not distinguished from similar fragments in aliphatic structures 

or side-chains on aromatic rings. Feature set B fragmented the rings 

similarly, but distinguished ring fragments from others. Set C 

treated whole ring systems as single structural features. 

All'three feature sets involved fragmentation of aliphatic 

structures and side-chains into smaller units, and treated the benzene 

ring as a single structural feature. 

Examples of structural feature derivation are given in 

Figure 12. 

The overall results of the multiple regression analyses using 

the three structural feature sets, with log P as dependent variable, 

are shown in Table 9. All give correlations statistically significant.. 

at the 1ö level. There is essentially no difference in correlation, 

assessed by the residual errors, in the mnalyses using the three 

different sets. This insensitivity to the nature of the structural 

features used to represent the alicyclic rings suggests that any 

differences in the effect on partition coefficient of particular 

fragments, according to their occurrence in rings or chains, are not 
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sufficient to be shown by data of this accuracy. 

The structural features in each set are listed, together 

with their regression coefficients and t statistics in Tables 10, 

11 and 12., 

The coefficient values are in general consistent for similar 

structural features in each of the analyses. The values for set A 

structural features, equivalent to the structural fragments of Nys and 

Rekker, are generally in line with the f values (NYS et al. ) 1973)" 

The discrepancies are presumably due to the different method of handling 

the raw data, i. e. inclusion of several values for one compound as 

against averaging before inclusion in the analysis. The use of 

different computer programs for the analysis may also have'affected the 

results. The only notable difference concerns the nitrogen atom 

fragments. Nys and Rekker's original analysis gave a lower f value 

for a tertiary N atom than for the secondary -NIL- fragment, tin un- 

expected result, which was reversed on inclusion of. a proximity effect 

I 
variable. liowevor, in the analyses performed here, the -N- fragment 

coefficients were found to show the expected trend, indicating that 

the data handling method may affect the results to sonic extent. 

The coefficient values from, the three analyses are all mach 

as might be expected from the generally-accepted principles of 

lipophilic/hydrophilic forces (FUJITA et al., 1964, HANSCH, 1971a)- 

Virtually all the coefficient values in the three analyses were of 

high statistical significance. However, when the statistical signifi- 

cance of the difference between pairs of coefficient values was 

assessed, by calculation of at statistic, in no case was the difference 

significant at the 10% level or higher. This suggests that it may 

well he unwise to draw firm conclusions front comparison of particular 

coefficient values in this data set. 
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In the analysis with set B structural features, the values 

for hydrocarbon fragments within acyclic rings appear to be anomalous. 

Thus the value for secondary -CH2- in a ring is considerably lower 

than for the corresponding chain fragment, while for the tertiary 

1 
-C11- fragment with one non-ring bond the coefficient value shows 

an extremely high lipophilicity, approaching that of the benzene 

ring. Perfect correlation unfortunately prevents comparison with 

1' 
the -CH- fragment with three ring bonds. Although all the coefficients 

concerned are of high statistical significance, the cautionary remarks 

above regarding the lack of significance of the difference between 

coefficients apply here. Also, the lack of overall improvement in 

correlation on distinguishing ring and chain fragments may indicate 

that any such effect, even if real, is not of great importance in the 

set as a whole. It is nonetheless possible that some difference in. 

lipophilicity is to be found between chain and alicyclic ring fragtents, 

perhaps associated with ring strain. 

In general the effect of branching on the lipophilicity of 

hydrocarbon fragments shown in these results is in accordance with 

that found by Nys and Rekker, and with the generally accepted variation. 

This is in contrast to the anomalous effects noted in the previous 

section. 
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Examination of the residuals of the regressions show that 

very few compounds are badly estimated, i. e. with errors approaching 

half of one log P unit. In all three regressions compounds 9,76 

and 77 are-badly estimated, and in the analyses with sets A and B 

compounds 78 and 79 also fall into this category. These are all 

structures with two oxygen-containing groups, i. e. -COON, -0H, or 

-0-. This may indicate the existence of some interaction between 

such groups. This type of interaction was noted by Ranch's group 

(IWASA et al., 1965), and also by Nys and Rekker, and for this 

reason the proximity effect factor was introduced (NYS et al., 1973)" 

The estimated values from the analysis with set C features are included 

in Table 8. 

The regression analyses discussed above were carried out 

at the 99.99% level. There seemed little point in attempting an 

analysis at any other significance level, since virtually all the 

coefficient values are of high statistical significance, and hence 

it would be expected that few would be omitted in such ai analysis. 

Little would be gained in any event, since the feature sets are 

already sufficiently small to allow ready interpretation of the reeults. 

In view of the good correlations and sensible interpretation 

of results in chemical terms achieved with these feature sets, and the 

consequent hope of the general usefulness of such sets, it waa 

decided to write a computer program to allow automatic generation 

of structural features. Set C, with ring systems treated as whole 

units, was regarded as most suitable for straightforward feature 

derivation for WLN. Such an algorithm could also be the basis for 

a consideration of substituent position on rings. Structural features 

of the types in sets A and $, i. e. with rings fragiiented, could more 
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conveniently be generated from connection tables, although production 

of such structural units from WLN is possible (OSIILGA et al., 1974)- 

A computer program to derive structural features including 

ring systems, hydrocarbon fragments, nitrogen fragments, end simple 

functional groups was written, and tested on this data set. It 

gave a fragmentation indentical to the manual feature derivation 

of stst C. An extended version of this program is fully described 

in the Appendix. It may be noted here that this program is intended 

to produce relatively simple structural features, as in set C here, 

and set A for the penicillin structures in the preceding section. The 

program is intended to deal with a wide range of structural types. 

It takes as input straightforward WLN's using the standard coding 

rules (SMITH et al., 1975) without multipliers or contractions. 
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Rates of Bromination for Benzane Derivatives 

Cyclic structures comprise a large majority of known 

chemical substances (ADAMSON et al., 1973b). It is therefore of 

importance, if substructural analysis techniques are to be of 

general applicability, that they should be able to deal with cyclic 

structures, including heterocyclics and complex multiring systems. 

Such tecnniques could be of particular value, if they could be used 

to investigate the effect on molecular properties of such factors 

as relative positions of heteroatoms, substi. tuents, and ring fusion 

points. 

It seemed probable that structural features nuitable for 

such application could be very readily derived from WLN, and that 

this was one of the areas where the use of substructural analysis with 

this notation could be most valuable. 

It was decided to initially, invectigato the use of WLN 

structural features with benzene derivatives, before going on to more 

complex situations. A detailed Hammett-type study of non-additivity of 

substituent effects on reaction kinetic data of benzene derivatives 

had been reported (DUBOIS et al., 1972). This was a particularly 

suitable data-set for the initial WLN investigation. It included 

a larger number of compounds, 44, and a wider range of property value, 

over 15 log. units, than is usual in such Hammett equation work. 

A large proportion of the structures, 15 out of 44, had three or more 

substituents on the ring. The property examined, electrophilic 

bromination on the aromatic ring, is well-known to be highly sensitive 

to substituent effects (STOCK et al., 1963, DE LA MARE et al., 1959)" 

This enabled a clear assessment of the usefulness of structural 

features derived from WLN in accounting for effects due to position, 
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of aubstituents relative to the reaction-situ, and relative to ane 

another. 

A good performance by the substructural analysis method 

here would be notable, since multisubstitution of this sort accounts 

for some of the poorer performances of the Hammett equation (E)NER, 

1972c) and of some thermochemical property estimation schemes 

(ui c, 1975c). 

The data-set used is listed in Table 13. 'The property 

value was taken to be the logarithm to base 10 of the reaction rate 

constant, log k. 

A computer program was written to derive structural features 

from benzene derivatives: this is described in detail in the 

Appendix The benzene ring was treated as a whole unit, common 

to all structures. All substituent groups were treated as whole 

units, and structural features representing relative position 

were derived by consideration of 1. 'LN locant pairs. The shortest 

path between ring locants was always considered, so that the conven- 

tional ortho, meta, and para representations of relative positions 

could be used. 

Hydrogen atoms, in accordance with the convention in the 

majority of structure-property correlation techniques, were not 

considered explicitly as substituents in these analyses, nor in the 

other correlations of aromatic structures described in this thesis. 

Although hydrogen atom3 are known to make a definite contribution to 

phyaicochenical properties (NYS et al., 1971k, LEO et al., 1975), in 

cases where absence of any other substituent implies the presence 

of hydrogen its inclusion is not likely to be useful. A substructural 
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analysis study, closely related to work to be described in a later 

section of this thesis, has confirmed that under these circumstances 

inclusion of hydrogen does not affect the overall correlation, and 

adds little to the interpretation of the results (UFTON, 1976). 

Each interaction was accounted for by a single tern: e. g. a compound 

with Br meta to Me would have the term Br-m-Me assigned, rather than 

the two terms Br-m-Me and also Me-m-Br. 
_ 

Use of multiple terms 

would have unnecessarily increased the number of structural features, 

without affecting the correlation achieved. 

This program was capable of producing structural features 

at varying levels of complexity (sets B, C and D below). For 

comparison the more generally applicable program discussed in"a previous 

section was used to generate structural features which did not maintain 

substituents as whole units (set A below). 

Four sets of structural features were derived and used in 

multiple regression analyses. 

Set A: log k was assumed to be affected only by the type 

and number of small structural units present. 

Set B: log k was assumed to be affected only by the type 

and number of substituents. 

Set C: log k was assumed to be affected by the type and 

number of substituents, and by the positions of the substituents 

relative to the reaction site. 

Set D: log k was assumed to be affected by type, number, 

and position relative to reaction site of all substituents, and also 

by the interaction between each pair of substituents. 

Examples of structural feature derivation are given in 

Figure 13. 

These sets of structural features were chosenn, as being the 
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most suitable for investigation of this data-set. Certain other 

sets were later applied, with a somewhat different rationale, as will 

be discussed below. 

The results of the multiple regression analyses for the 4 

sets of structural features, carried out at the 99.99% level, are 

summarised in Table 14. All give good correlations, significant at the 

1% level. 

Sets A and B differ in that set A substituents such as 

-OMe and -NMe2 are fragmented into smaller units, while in set B 

such substituents are treated as whole features. For this particular 

data-set each feature in set B which is fragmented in set A corresponds 

uniquely to one feature in set A: i. e. -CH2CII gives -CH2-, -OMe gives 

1 
-0-1 and -NMe2 gives -N-. The analyses using the two sets therefore 

show identical correlations. 

Set C gives a correlation statistically superior at the 1% 

level to that with set B, as assessed by the F-test. Set D gives 

a similarly improved correlation over set C. This indicates that 

positions of substituents relative both to the reaction site and to 

each. other have an important effect on the variation in the observed 

reaction rate constants, as had been expected. 

The regression coefficients and t statistics for the 

structural features of sets B, C and D from regression analyzes carried 

out at the 99.99% level are shown in Tables 15,16 and 17. 

These results are largely in accordance with the generally 

accepted mechanism of substituent effects in this kind of reaction 

(DE LA MARE et al., 1959, STOCK et al., 1963). Me groups are 

activating, and OMe groups very strongly so, in the order of position 

relative to reaction site para > ortho » meta: steric factors are 

likely to be at least partially responsible for the reduced ortho 
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effect, OH and NMe2 groups are also very strongly activating, but 

comparison of relative positions is not possible, since the values 

were not available in this data-set. Halogen substituents are 

generally deactivating: F and Cl in the order m>o>p, and Br 

rather anomalously in the order m>p>o. Particular coefficients 

change sign in the various analyses, but the general trend remains 

constant. I is deactivating, but a value is available only for 

one position relative to the reaction site. 

Of the terms representing substituent"interaction, Me-We 

and Me-Me 2 show a strongly deactivating effect, and Me-Me a weaker 

deactivating effect. These factors, ascribed to electronic inter- 

actions between activating, i. e. electron-releasing, substituents, 

have been noted (DUBOIS et al., 1972). 

The multiple regression analysis with set D structural 

features was repeated, omitting variables insignificant at the 10% 

level. The overall result is shown in Table 14, and the regression 

coefficients etc. in Table 18. These results show clearly all the 

factors mentioned above, and enable a more rapid and convenient 

understanding than the corresponding 99.99% analysis, which includes 

a number of insignificant variables and high correlations. 

It may be that with feature sets of this size and complexity, or 

greater, analysis omitting insignificant variables may become valuable. 

Analysis including as many variables as possible could still be worth- 

while, in order to investigate possibly interesting trends among 

individually insignificant coefficients. 

It will be noted that in this last analysis the regression 

constant, which would normally take the estimated value for the 

ünsubstituted compound, was omitted from the regression, and the benzene 

ring, common to all structures, included. This is an artefact of 
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the regression program, and does not affect the overall correlation. 

From the estimated values of log k from the regression 

with structural feature set C, eleven structures have a discrepancy 

between observed and estimated values greater than 0.5 log units. 

These are structures 1,3,4,8,10,16,35,37,39,41 and 44. 

Apart from the unsubstituted parent compound these are all Me, OMe, 

or NFe2 derivatives, indicating that the poor estimation is probably 

due to non-additivity caused by large substituent interactions. 

The estimated values for the regression at the 99.99% level 

using set D structural features are listed in Table 13. Many of these 

are "perfectly estimated", since the structure contains a unique 

structural feature. 

property predictions were simulated using the "hold-one-out" 

method, i. e. omitting the structure under consideration from the 

regressionl analysis. Since the aim was to d(--termine the maximum 

accuracy which can be obtained using such methods, structural feature 

set D, which gives a significantly better correlation than any other 

set, was used for the predictions. however, since this set is complex, 

and contains a number of unique features and perfectly correlated 

features, it is only possible to obtain predictedvalues for 26 out 

of the 44 compounds. The remaining compounds each contained structural 

features for which no value could be obtained when this structure was 

removed from the regression analysis. . 

It may be that this will prove: to be a common problem 

with such complex structural feature gets, which might consequently 

be of less general use for property prediction than simpler sets. 

Prediction of log k values were simulated by summing the 

regression coefficients for the structural features present in the 

compound, from the regression analysis excluding that structure, 

as shown for structure 14 in Figure 14, i. e. gibing a predicted 
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value for log k of 5.01k, cf. observed value of 4.95. It may be 

noted that the regression coefficientsdiffer somewhat from those 

in Table 17: this is due to the omission of structure 14 from 

the analysis. 

The predicted values are listed in Table 13. Polysubstituted 

compounds are dealt with as adequately as simpler structures. The 

mean discrepancy between observed and predicted values is 0.22 

log units, and the sum of squares ratio is 0.004. 

Some criticism levelled at structure-property correlation 

applications of pattern recognition was based on the suggestion that 

the compositions of the data sets were such that seemingly good 

results could be obtained by trivial analysis procedures. 

It did not seem likely that this could be the case with the 

analyses described here. All the correlations were of high statisti- 

cal significance, and the use of feature sets incorporating a greater 

degree of "chemically sensible" complexity was accompanied by stat- 

istically significant improvements in correlation. However, it. was 

thought worthwhile to reanalyse this data-set using less appropriate, 

though non-trivial, variables: poor results in this case mould 

indicate that the good correlations obtained in the previous analyses 

were not simply artefacts of the method. 

Log k values were correlated firstly with the number of 

substituents on the ring (regardless of their type), secondly with 

the number of different types of substituents (regardless of the total 

number of substituents), and ". hirdly with both of the variables together. 

The results of these analyses are shown in Table 19. 

The correlations are very much wore than that with structural 

feature set B, statistically so at the 1% level. Individually the 
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level. 

These poor results with inappropriate variables tend to 

confirm that the correlation procedure is non-trivial, and that the 

good correlations obtained are not an artefact of the data-set. 

The analyses described above demonstrate clearly that sub- 

structural analysis procedures may be used to correlate structure 

with property for multisubstituted benzene derivatives, giving good 

correlations and chemically sensible results for a data set where 

positional and interactive effects of substituents are known to be 

of importance. The systematic derivation of features representing 

relative positions of substituents, reported here for the first time, 

may be of considerable importance in studies of this kind. 

The success of these analyses, and the relative ease with 

which algorithmic feature generation may be carried out using WLN, 

suggested that this type of technique could be applicable to other 

properties of benzene derivatives, and to derivatives of other ring 

systems. These topics were examined in work to be discussed in 

following sections. 

The work described in this section has been reported in 

part in a paper published in Journal of Chemical Information and 

Computer Sciences. 
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pk Values of Carboxylic Acid Derivatives of Benzene 

The work described in this section had as its aim the 

application of the structural feature derivation procedure for 

cyclic structures described above to a data set of different 

characteristics. It also enabled the testing of an additional type 

of structural feature set. 

The data used consisted of acid dissociation constants, 

pk values, for substituted ß-phenylpropionic, phenoxy-, phenylthio-, 

phenylsulfinyl-, plienylsulfonyl-, phenylselenoacetic acids, i. e. 

with the structure shown below: 

)C-CH2COOH 

Y= various substituents 

X= CH2,0, S, S0, SO2, Se 

Property values were taken from two papers. In one case the values 

were measured at 20.0 0C in aqueous solution (V=O. lOH KNO3) (PETTIT 

et al., 1968). In the other case the values were measured in water 

at C (PASTO et al., 1965): these values were 
Made 

compatible 

by the necessary correction factor of 0.20 plc unit, as noted by 

Pettit et al. The data set used is listed in Table 20. 

It will be noted that this data set is far from ideal 

for quantitative structure-property correlation. Although the 

number of structure, 98, is larger than in many such physical 

organic studies, no compound contains more than one substituent, 

in addition to the acid group. Thus in no case is more than one 

data point available as a measure of the effect of a given substituent 

in a particular position relative to a given acid group. Also the 

range of plc values is only just over 2.5 log units, considerably 
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Five sets of structural features were used in these 

analyses: 

A: breaking down the substituents into smaller units 

B: keeping the substituents whole 

C: including as structural features substituents and'their 

relative positions (ortho, meta, and Para) 

D: including as structural features substituents and their 

relative positions (ortho, meta, and Para) but treating 

the various acid groups, i. e. -X-CH2COOH, as the same 

E: including as structural features substituents and their 

co-occurrence, but not relative position. 

Examples of structural feature derivation are given in Figure 15. 

It will be seen that the use of structural feature set E is essentially 

equivalent to the I3ocek-Kopecky additive model for disubstituted benzene 

derivatives (KOPECKY et al., 1965, BOCEK et al., 1967). 

i. e. log activity = aX + by +eX. eY t constant 

The overall results of the regression analyses are shown 

in Table 21. 

No analysis was possible using structural feature set C, 

because of the great number of variables, 113, involved. 

The analysis using structural feature set B is statistically 

superior at the 1% level to the analyses with sets A and D. The 

correlation is not improved by the use of set E. The F values show 

that all the correlations are significant at the 1% level, with the 

exception of that using structural feature sit D which, is statistically 

insignificant. 

It is not unexpected that the ccrrelation with structural 
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feature set A is inferior to that with set B, since using set A 

-structural features are derived without regard for their immediate 

environment. Thus in one of the examples in Figure 15 -S- is 

derived as a structural feature from both the acidic -SCII2000H 

side-chain and the -SCH3 group. 

The very poor correlation with set D indicates that the 

major influence on pk is the nature of the ionising side-chain, rather 

than the nature of the other substituent on the ring, or the relative 

position of the two groups. It will be noted that in this case the 

introduction of extra parameters into the analysis has resulted-in a 

very much worse correlation. 

The regression coefficient values and t statistics for the 

structural features of set B are listed in Table 22. The predominant 

influence of the nature of the heteroatom in the acidic side-chain 

is demonstrated by the relative magnitudes of the coefficient values 

for the acidic groups and other substituents. A decrease in pk is 

seen, in the order SO2 > SO >0>S> Se > C. Although the coefficients 

themselves are all highly statistically significant, there is no 

significant difference between any pair of coefficients. By comparison 

the coefficient values for other substituants are very small, though 

several are statistically significant. They are generally as would 

be expected from electronic factors (JAFFE, 1953, MCD. +NIEL et al., 1958): 

a certain inaccuracy is inevitable here, since position relative to the 

dissociating side-chain is not specified. 

Examination of the estimated pk values, from the residuals 

of the regression with set B structural features listed in Table 20, 

shows that only 7 of the 98 values differ from the observed value by 

more than 0.1 pk units. These are structures 32,38,67,43,44,71 

and 84, i. e. phenylthio- ortho - OMe, ortho- S, te, meta-SMe, ortho- 
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. COON, and meta-NO 2, and phenylsulfinyl-meta-N02 acetic acids. 

This may indicate that some deviation from the normal substituent 

effects occurs for certain phenylthio derivatives: the ability 

of the thio group to transmit electronic effects is known to 

be greater than for the other groups considered here (PASTO et al., 

1965). On the other hand Pasto et at. have noted the limited 

solubility in water of some phenylthio acids, which may lead to 

experimental error and hence these discrepancies. 

The structural features from set E included in an analysis 

at the 10% significance level are listed in Table 23, together with 

their regression coefficient and t statistic values. Although 

three "cooccurrence" terms are included, none has a large coefficient 

value, and these results add nothing to the interpretation from the 

set B analysis. 

The results of the analysis of this data set are less 

conclusive than those described in the previous section. The data 

set contained only disubstituted structures, and the compounds. had 

been. selected in order to obtain a Hammett plot for each of the subsets 

with different acidic groups. The more complex structural feature 

sets could therefore not be used. 

The study of this data set is nonetheless of value. Firstly, 

data sets of this sort are likely to be common, particularly in 

areas where linear free energy relationship techniques are applied, 

and a failure of the substructural analysis techniques to deal with them 

would necessarily restrict their applicability. In the event, good 

correlations have been achieved, and the interpretation of the results 

is in accordance with those of workers using Hammett equation concepts. 

Secondly, a number of useful points of technique may be 

noted. Simple structural features are adequate for good correlation 
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in this data set. The advantage of treating ring substituents as 

whole units is shown in this case by the significant improvement in 

correlation. The automatic derivation of"cq-0 ccurrence'" structural 

features, corresponding to the Bocek-Kopecky additive model for 

disubstituted derivatives, from WLN has been demonstrated, although 

in this case their use did not bring a significant improvement in 

correlation. Finally, the very much worse. correlation observed to 

result from an increase in the number of variables in set U, 

further demonstrates that the improvements in correlation brought 

about by the use of complex structural feature sets are non-trivial. 
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Keats of Formation for Unsaturated Aliphatics 

The aim of the work described in this section was to develop 

methods for derivation of structural features to represent unsaturation 

in aliphatic compounds. 

The data set used included gas-phase heats of formation for 

70 alkenes and alkynes, taken from a review article (BENSON et al., 1969): 

this property has been measured with high accuracy for a relatively large 

number of unsaturated aliphatics. The structures and property values 

are listed in Table 24. 

The structural features used to represent the unsaturated linkages 

were, for the most part, very similar to the augmented pair type of 

fragment, derived from connection tables (ADAMSON et al., 1976a). 

They included the multiple bond with its terminal atoms and their 

connections. Allenic linkages were treated as a single unit, including 

both multiple bonds and the central atom. In some cases, with small 

structures, these criteria resulted in the whole structure being treated 

as a single, unique structural feature: this is also the case with some 
/ 

thermochemical property estimation schemes (BENSON et al., 1969). 

Structural features of this sort have been regarded by some workers as the 

smallest units capable of giving consistent results for the estimation 

of the thermodynamic properties of unsaturated compounds (JANZ, 1967d). 

Examples of structural feature derivation are given in 

Figure 16. The saturated parts of the structures were dealt with as 

described in the preceding section. 

Details of the modifications to the computer program necessary 

for the derivation of these features are given in the Appendix. These 

procedures are applicable to unsaturated linkages containing heteroatoms, 

although c(rapatible heat of formation data for such compounds was not 

available. 
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The procedures were able to detect the presence of conjugation, 

i. e. with unsaturated linkages separated by one single bond. This was 

a somewhat crude measure, since the type of unsaturation, and its 

environment, was not distinguished. 

Some allowance was made for the cis type of interaction, by 

including an additional structural feature for each pair of non-hydrogen 

substituents in a cis relation about a double bond. Thermochemical 

additivity schemes often make use of this sort of correlation factor, 

though usually in a more elaborate form, with distinctions for particularly 

bulky groups, e. g. t-butyl (BENSON et al., 1969, JANZ, 1967c). 

Examples of some structures with such cia interactions are shot's 

in Figure 17, together with their Wiswea3er notations. In scam cases, 

e. g. structure 8, the cis transl distinction included in the notation 

(SFUITH et P1., 1975) may be used straightforwardly. In other cases, 

because of the crude definition cf the cis interaction used here, both 

cis and trans ise<uera are regarded as having a cis interaction, as in 

structures 22 and 23. Other structures, where cis and trans isomerism 

does not occur, may contain one or two cis interactions, as in structueen 

12 and 27 respectively. 

Four sets of structural features were used in the analysis of 

this data sot. These ware: 

set A- including only simplo structural features, as des- 

cribed above 

set B- as set As including alro cis interaction terms 

set C- as net As including also structural features representing 

conjugation 

set D- as net As including also structural features representing 

both cis interaction and conjugation 

The overall results of the multiple regression analyses are 
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shown in Table 25. Structural feature sets B, C and D give correlations 

which are not statistically superior to that with sat A. Examination 

of the residuals of the regressions showed that improvements in estimated 

values using sets B, C and D are not particularly marked for any 

structural type. 

Thus, although the overall regressions results are statistically 

highly significant, the inclusion of the variables representing cis 

interactions and conjugation have little effect. Repeating the analysis 

with only cis and trans isomer pairs gave very much the same results, 

indicating that this is not a case of a significant effect in a e-mail 

number of structures being lost in a larger data-set. Rather it may 

reflect the very simple nature of the representation of the isomerism, 

with no distinction between the type of cis groups. Similarly the 

relatively crude representation of conjugation probably explains the 

insignificant improvement brought about by the inclusion of this variable. 

The structural features of set D are shown in Table 26, with 

the corresponding regression coefficients and t statistics. All the 

regression coefficients, with the exception of those for C11, -, the cis 
J -- 

interaction, and conjugation are statistically very highly significant. 

A number of coefficients however, as noted above, are based on a single 

observation.. 

These results snow clearly the consistent negative effect of 

carbon branching on heat of formation. 

It was not thought worthwhile for the purposes of this study 

to deal in a more exact fashion with cis interactions and the effect of 

conjugation, to try to obtain a significant improvement in correlation. 

This could probably best be done by a substructure search procedure, 

adapted for some particular application. 

The work described in this section had demonstrated that sub- 



structural analysis procedures based on WLN can deal adequately with 

multiply bonded compounds, and lead to highly significant correlations. 

/ 
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Heats of vaporization for diverse structures 

The work described in this section had as its aim the 

application of the methods developed previously to a relatively 

large data set including compounds of various structural types. 

In particular the quality of simulated property predictions from 

correlations of data sets of varying size and composition were to 

be examined. 

Heat of vaporization was the property correlated against. 

structure in this study. This quantity has been accurately measured 

for a wide variety of structural types: thermochemical data of this 

type is amenable to computer processing (PEDLEY, 1976), so that 

automated data analysis of the kind described here could be of 

practical use in this area. This property is also of interest as 

it reflects inter-molecular forces, rather than intra-molecular 

effects. 

The property values used, measured in kilocalories per gm. 

formula wt. at 25°C and 1 atmosphere pressure, were taken a standard 

compilation of thermochemical data (COX et al., 1970a). 

The data set used is listed in Table 27. It comprises 

alkanes, alkenes, alcohols, ketones, benzenes and pyridines. 

Heats of vaporization were used directly in the correlations, 

without conversion to logarithmic values, since this is conventional 

in the majority of additive schemes for thermochemical property 

estimation (COX at al., 1970b, JANZ, 1957c). 

The procedures used for structural feature derivation were 

for the most part as described in preceding sections. Modifications 

were made to allow inclusion of pyridine structures with benzenes 

for correlation, to allow derivation of ring substituent interaction 

terms in an analysis including both cyclic and acyclic structureA, 
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and to select-a particular substructure as a feature: these points 

will be discussed further below, 

A number of subsets of structures were examined separately: 

sets of data will be donoted as 'set (n)', where n is numeric, to 

avoid confusion with sets of structural features, denoted as 'set X', 

where X is upper case alphabetic. 

It is convenient to deal firstly with the correlations, in 

three subsections: those data sets including only saturated aliphatic 

structures, those including unsaturated structures, and those including 

aromatic structures. The analyses of mixed data sets will then be 

described. Finally, simulated property predictions will be considered. 

It should be noted that it is not possible to compare 

statistically the results of regression analyses of different data 

sets, i. e. different sets of values for the dependent variables. 

Because of the relatively small number of variables generally 

involved these analyses were carried out for the most part at the 

99.99°% level. 
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Saturated Aliphatic Structures 

Five subsets of data in this category were studied: 

(1) 12 alcohols (structures 38-49) 

(2) 11 ketones (structures 50-60) 

(3) 23 alcohols and ketones (sets (1) and (2) combined) 

(4) 37 alkanes (structures 1-37) 

(5) 60 saturated aliphatics (sets (3) and (4) combined) 

The structural features used for these correlations were 

the simple hydrocarbon fragments and functional groups described in 

earlier sections. 

The overall results of the multiple regression analyses 

are given in Table 28. All the correlations are very highly 

significant, though, as noted above, statistical comparison of the 

results for diff-rent data sets is not possible. 

The regression coefficients from the analyses of these 

sets of structures are for the most part individually statistically 
I/ 

tsignificant. They differ very little from the larger set, shown 

in Table 35, and are therefore not set out in full. Some discrepancies 

between individual values for different sets of structures may be 

expected, apart from the usual limitations on the reliability of 

coefficient values. For example, the incremental values for hydro- 

carbon groups are affected by the presence of ketonic groups (ccX et al., 

1970c). This may lead to an "averaging" effect, leading to lowered 

significance of coefficient values, with mixed sets of structures. 

The use of these subsets of data for simulated property 

predictions will be described below. 
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Unsaturated Aliphatic Structures 

Only one subset of data of this type was examined: 

(6) 36 alkenes (structures 61-76) 

This data set was analysed using structural features 

appropriate to unsaturated compounds, as described in an earlier 

section. The usefulness of the simple representation of cis 

substitution was again tested. 

Two sets of structural features were used: 

set A: including simple structural features 

set B: as At including also a term representing cis interaction 

The overall regression results for these structural feature 

sets are shown in. Table 29. 

The use of set B gives no improvement in correlation over 

set As indicating that the inclusion of the simple type of cis represen- 

tation used here is not useful in accounting for the property variation, 

as was the case for the heats of formation data discussed above. 

Set A gives a highly significant correlation. The regression 

coefficients and t statistics for this data set are shown in Table 30. 

It will be noted that carbon branching consistently reduces heat 

of vaporization: this will be discussed further below. 
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Aromatic Structures 

Three subsets of data in this category were considered: 

(7) 31 benzene derivatives (structures 97-127) 

(8) 10 pyridine derivatives (structures 128-137) 

(9) 41 aromatic structures (sets (7) and (8) combined) 

The analyses of data set (7) were carried out using the 

types of structural features first developed for the correlation 

of reaction kinetics data for benzene derivatives, and described 

in an earlier section. Two sets of structural features were used: 

set C: including type and number of substituents 

set D: including type and number of substituents, plus 

positions of substituents-relative to one-another. 

The overall results of the regression analyses are shown in Table 31. 

Structural feature set D gives a correlation superior at the 1% 

level to that with set C, indicating the importance of substituent 

interactions in this case. 

In order to deal with derivatives of pyridine, the program 

for structural feature derivation was adapted to include the ring 

nitrogen atom as a substituent, as has been the procedure in some 

applications of Hammett analysis (EXNER, 1972g). Details of the 

modified program are given in the Appendix. 

Data set (8) was then analysed using two sets of structural 

features: 

set E: including number and type of substituent 

set F: including number and type of substituent, plus 

relative positions of substituents 

including the heteroatom as a substituent in each case. 

The overall results of the multiple regression analyses are 

shown in Table 32. Despite the large discrepancy in the multiple 

correlation coefficients, 0.997 cf. 0.881, the set F analysis is 
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superior to set E only at the 5/ levels a typical example of the 

inadequacy of this measure of correlation. This less significant 

improvement may well be accounted for by the very small number of 

structures, and small range of property values in the set. 

Data subset (9), comprising all 41 benzene and pyridine 

structures, was analysed in some detail, in order to investigate 

the substituent interaction effects. Five sets of structural feature 

sets were used: 

set G: including number and type of substituents 

set H: as set G, and also including ortho substituent inter- 

actions 

set I: as set H, and also including meta substituent inter- 

actions 

set J: as set H, and also including para substituent inter- 

actions 

set K: including number and type of substitucnts, and all 

ortho, meta, and Para substituent interactions. 

The overall results of these regression analyses are shown 

in Table 33. Structural feature set H gives a correlation better at 

the 1% level than set G, set I gives a correlation better at the 5% 

level than H, and set K gives a correlation not significantly better 

at the 10; ö level than set I. Set J gives a slightly worse correlation 

than set Is but the difference is not significant at 10%. 

These results indicate that ortho interactions exert an 

important effect on heat of vaporization, meta interactions a less 

important effect, while the effect of Fara interactions is negligible. 

This important ortho effect is in accordance with the use of ortho 

correction factors in additive estimation schemes for thermochemical 

properties (BENSON et al., 1979) and for boiling points (KELLIE et al., 
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1975). 

The regression coefficients and t statistics for the set K 

structural features are listed in Table 34. These results confirm 

the relatively large effects of ortho interactions: in particular 

alkyl-alkyl interactions increasing the heat of vaporization and 

alkyl-hydroxy interactions reducing its value. Methyl substitution 

ortho to the ring nitrogen of pyridines decreases the otherwise 

positive effect of this substituent. 
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Diverse Structural Types 

Two subsets of data for diverse structures were analysed. 

These were: 

(10) 96 aliphatic structures (sets (5) and (6) combined) 

i. e. alcohols, ketones, alkaries, and alkenes 

(11) 137 diverse structures (sets (9) and (10) combined) 

i. e. the total set of structures. 

Data subset 10 was analysed using the straightforward structural 

feature set comprising hydrocarbon fragments, functional groups, and 

unsaturated units. The overall regression result was: no. of features 

11, no. included = 11, degress of freedom = 85, R => 0.999, r=0.22, 

F= 7721.48 (range of property values = 11.59), a highly significant 

correlation. 

The structural features in this analysis, together with their 

regression coefficients and 1. statistics are listed in Table 35. All 

the coefficient values are significant at the 1% level. 

These results illustrate clearly the effect, noted above, 

of carbon branching in decreasing heat of vaporization, although, as 

is so frequently the case, the differences between pairs of coefficient 

values are not statistically significant. This trend is seen in both 
'f 

saturated fra; lments, - CH >- CH -2>- CH ->- C -, and unsaturated 
311ý1 

C112 = CH ->- CH = Of ->CII2-_ý C->- CH =C ->--"C =C-. This is 

to be expected, since a greater degree of branching implies a decrease 

in molar volume and hence surface area, and consequently decreased 

non-polar intermolecular forces: the heat of vaporization is thereby 

lowered (Cox et al., 1970a). 

The anticipated effect of the - O1-1 and -C=0 groups 

in increasing heat of vaporization is also clearly seen. 
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From the estimated heats of vaporization, i. e. the residuals 

of the regression, it is observed that for only four compounds is the 

discrepancy between observed and estimated values greater than O. $ 

kcal. /g. f. w. Three of these structures are CI13-CO-CH3, CH CII -CO-CH 

and CH3-ECH243CO+CH2+ C113: this suggests that the widely-known anomalies 

in the incremental values for hydrocarbon groups in ketones, as 

discussed above, may be the only cause of non-additivity in this data 

set. The set does not, of course, contain any of the difunctionalities 

known to cause deviation from additivity for various thermodynamic and 

physicochemical properties (BENSON et al., 1969, NYS et al., 1973, 

IWASA et al., 1965). 

The coefficient values from this analysis were used to further 

examine the adequacy with which this substructural analysis method 

accounts for effects due to chain branching. The differences in heat 

of vaporization between two pairs of structures, differing only in 

extent of carbon branching, were estimated: these values were then 

compared with the observed values, and those estimated by the Green- 

shield-Rossini and Laidler-Lovering structural contribution schemer 

(COX et al., 1970d). 

The results are presented in Table 36. The substructural 

analysis technique estimates the values to a high degree of accuracy, 

in contrast to the other estimation procedures. 

Data subset (11), i. e. the whole set of 137 structures, 

was analysed using two sets of structural features. 

The feature derivation program was modified, so as to allow 

analysis of a data set including both cyclic and acyclic structures, 

giving features representing substituent interactions on rings. 
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Ring substituents are broken down into simpler units, as are acyclic 

structures: interaction terns are derived representing substituents 

as whole units. Full details of this modified program are given in 

the Appendix. 

The feature. sets used were: 

set L: including as structural features hydrocarbon fragments, 

simple functionalities, 'unsaturated units, and whole 

ring systems. 

set M: as set L, but including also terns representing 

substituent positions on rings. 

Examples of structural feature derivation are given in 

Figure 18. The overall results of the regression analyses are shown 

in Table 37. 

The correlation with set td structural features is superior 

at the 1114) level to that with set L, re-emphasising the importance of 

relative positions of ring substituents. 

The regression coefficients and t statistics for set 11 

structural features from the analysis at the 99.99% level are 

listed in Table 38. The major effects noted above, i. e. those of 

polar groups, carbon branching, and intersubstituent interaction, are 

clearly shown here. 

For comparison these values for set M structural features 

included in an analysis which excluded variables insignificant at 

the 10% level are listed in Table 39. So many variables have been 

excluded that the effects of carbon branching and substituent inter- 

action cannot be identified clearly. This may suggest that analyses 

omitting variables whose effects are of low statistical significance 

may lead to a loss of potentially useful information, although they 

give highly reliable results and illustrate the most important 



effects on the variation in the observed property values. For this 

reason the simulated property predictions carried out below all used 

analyses carried out at the 99.99% significance level. 

/ 
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Simulated Property Predictions 

Simulated property predictions were carried out for the 

following structures: 

a) n-heptane, 2,2 dimethyl pentane, toluene, chlorobcnzene, 

pentan-2-one, and n-butanol, so that comparisons could be 

made with predicted values from other thermochesical 

estimation procedures (COX et al., 1970e). 

b) cis-2-butene, so that the effect on prediction of 

including the cis structural feature could be tested. 

c) 1,2,3 trimethylbenzene and 1-methyl, 2-ethyl benzene, 

so that the effect on prediction on including substituent 

interaction terms could be tested. 

Predictions were simulated by the hold-one-out procedure 

described above, using various applicable data subsets and/or 

structural feature sets in each case. It should be noted that reference 

to a particular data subset in this connection implies that subset 

minus the structure under consideration. The results of the simulated 

predictions are summarised in Tables 40 to 48. 

n-heptane and 2,2 dimethylpentane are both well predicted 

from the alkane subset, from the total aliphatic subset, and from 

the total set including interaction terms; less well so from the 

total set without interaction terms. 

Toluene is well predicted from the benzene and total aromatic 

subsets, provided interaction terms are included, poorly if they are 

not. It is reasonably well predicted from the total set, better if 

interaction terms are not included. 

Chlorobenzene is well predicted from all the data subsets 

and structural feature sets tested. 
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Pentan-2-one is well predicted from those data subsets 

containing only ketones or only ketones and alcohols, poorly 

predicted by the other subsets. n-butanol is similar, though the 

disparity in performance is less marked. 

Cii-2-butene was reasonably well predicted from data subset 

(6). Inclusion of the parameter representing cis interaction had 

very little effect on the prediction, as might have anticipated from 

its negligible effect on the overall correlation. 

The predicted values using data set (11) were somewhat 

better than those with subset (16). 

/ 
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1,2,3-trimethyl beazeae is reasonably well predicted by 

the subset of all aromatics and the total set, provided iateractios 

terms are included. 

1-mothyl, 2-ethyl benzene was chosen for property prediction 

testing, since it was the only structure in the set to contain one 

particular structure feature, Me-ortho-Et. When this compound is 

omitted from the set it is therefore impossible to calculate a value 

for this feature, and thus impossible to accurately predict the 

property value for this compound. This, as has been noted earlier, 

may well be a common problem, where property prediction is attempted, 

using complex structural feature sets. 

Three alternative methods for alleviating this problem are 

possible: use of a simpler structural feature set, -ignoring the out- 

standing structural feature, or approximating its value by that of a 

similar structural feature. In this case Me-ortho-Me wad thought 

to be the most appropriate substitute. It will be seen from Table 

that the third course of action, using Me-ortho-Me, gives a reasonable 

prediction. 
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The simulated predictions for n-heptane, 2,2-dimethylpentane, 

toluene, chlorobenzene, pentan-2-one, and n-butanol were compared 

with predictions made for these compounds using other methods 

(COX et al., 1970e). The other methods were: 

- Laidler-Lovering's method, the method of CH2 increments, 

and Wright's method, all based on additive structural contributions. 

Chen's equation, considered by Cox and Pilcher to be the 

best of a group of methods using critical parameter data to predict 

heat of vaporization. 

- Fishtine's equation, one of a number of methods using 

boiling point data to predict heat of vaporization, and recommended 

by Cox and Pilcher as the most generally effective prediction method. 

The predicted values for the six compounds by these methods 

are summarised in Table 49, for comparison with predictions made using 

substructural analysis techniques. Two values are given for each 

compound from the simulated predictions described above: one derived 

from using the smallest relevant data subset, and one using the total 

data set. 

It appears from these results that, although for each 

compound one of the other methods gives a better simulated prediction 

than substructural analysis, overall the whole set the methods 

described here are more consistently accurate. 

- -This in, of course, far from being a comprehensive test of 

performance for the various methods. Also the different requirements 

for data input should be borne in mind. Thus the methods involving 

boiling points and critical parameters require that certain other 

properties of the compound under consideration should be known, 
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whereas substructural analysis, and the other techniques involving 

additive structural contributions, require heat of vaporization data 

for a number of compounds other than that under consideration. 

It appears from these results that this type of substructural 

analysis is likely to give property predictions of at least comparable 

accuracy to other methods currently in use, for relatively accurate 

data of the kind discussed here. 

/11, 



Physico-chemical and Biological Properties of Benzinidazole Derivatives 

The work described in this section involved the application 

of the type of structural feature sets originally devised for benzene 

derivatives to benziceidazole structures. It allowed the examination 

of several properties for a relatively large series of compounds. 

The data sets used were pKa, aqueous solubility, and mammalian 

toxicity values for trifluoromethylbenzimidazoles, made available by 

Fisons Agrichemicals Division. In total 154 pKa values, 123 aqueous 

solubility (parts per million) values, and 129 rat oral LD50 (pmol) 

values were used: these data sets overlapped to a large extent. Log- 

arithmic values were used for the correlation of solubility and LD50 

values. The trifluoromethylbenzimidazole nucleus, with its numbering 

system, is shown in Figure 19, and the data sots are tabulated in Table 50. 

These compounds have all been tested for herbicidal activity 

(BURTON et al., 1965) and are known to be uncouplers of oxidative 

phosphorylation (JONES et al., 1965). The uncoupling activities 

of some of these compounds have been studies, using substructural 

analysis techniques of the kind described here (UFTON, 1976). pKa 

values of compounds of this sort have been correlated with semi- 

empirical parameters (TOLLANAERE, 1973). 

Since the position of nitrogen protonation is not known for 

these compounds, the structures were treated as symmetrical. The 

positions of substituents on the benzenoid ring can be related only to 

the nearer ring fusion point, and thereby to the nearer nitrogen atom, 

rather than to the -NH- group, considered to be important for biological 

activity (TOLLANAERE, 1973)" 

Four types of structural feature set were used for the 
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analysis of this set of compounds. 

A- including type and number of substituents as structural 

features 

B- including position of substituents, ortho or meta, relative 

to nearer ring fusion point 

C- including only positions of substituents relative to one 

another. For monosubstituted structures, type of sub- 

stituent is used. 

D- including positions of substituents relative to the nearer 

ring fusion point and relative to one another. 

Examples of structural feature derivation are given in Figure 20. 

These structural feature sets are very similar to those used 

for benzene derivatives. Set C allows the investigation of inter- 

substituent intc-actien effects, regardleac of position relative to ring 

fusion points. 

It should be noted that, because of the different structures 
V 

for which the three types of property value are available, the sets 

of structural features produced by each type of fraonentation will 

differ somewhat for the various properties. 

The overall regression analysis results are summarised in 

Tables 51,52 and 53. All these analyses are statistically significant 

at the 1%. Ievel. Although exact statistical comparison of the quality 

of correlations on different data sets is not possible, inspection of 

the correlation coefficients and F values indicates that the corre- 

lations for pKa data are superior to those for solubility, in turn 

superior to those for toxicity. This may reflect, at least in part, 

the relative accuracy of the measurement of the data. 



pKa data regressions 

The correlation with Type D structural features, i. e. 

including both substituent ring position and substituent interaction 

terms, was found to be significantly better at the 1% level than the 

correlations with Type A and Type B feature sets, and significantly 

better at the 5% level than that with the Type C feature set. This 

indicates the importance of both position and inter-substituent inter- 

actions in determining the effect of a substituent on pK value. 

The regression coefficients of the Type D structural 

feature set are shown in Table 54. They are generally as would be 

expected from the known effects of substituents on heterocyclic pKs 

(ALBERT, 1963). The results may tentatively be further interpreted 

by assuming that substituents ortho to a ring fusion point exert a 

largely inductive effect, while for substituents meta to a ring fusion 

point mesomeric effects are of comparable importance. It must however 

be noted that a number of these coefficients are individually statistically 

insignificant, emphasising the need for discretion in interpreting the 

-results in mechanistic terms. 

Thus -0H and -OMe groups in the ortho position are base-weak- 

ening (-I, -M) and -Me groups are base-strengthening (+I, +M). There 

is little difference in the coefficient values for thescl substituents 

in the ortho compared with the meta position. This may indicate that a 

decrease in inductive effect in the meta compared with the ortho position, 

i. e. further from the t'-containing ring, is compensated by an increased 

mesomeric effect in the meta position. 

As expected ethyl and t-butyl groups are shown to be base- 

strengthening (+I, +M) and carboxylic acid and amide substituents base- 
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weakening Positional comparisons cannot bo made for these 

substituents, nor for several others, since the alternative substitution 

positions were not represented in the structures examined. 

The -SH and -NHCOCF3 substituents are perfectly correlated, 

and hence it is not possible to partition the observed base-weakening 

effect between these groups. 

The NH2 group is base-weakening, as would be expected due to 

the strong -I effect of the -Nll3 zwitterionic form (BURTON et al., 1965). 

Meta substitution appears to give a larger effect than ortho. but the 

situation is complicated by the perfect correlation of the o-N112 group 

with the interaction term for NIi2-p-Cl. An interaction of this kind 

would be expected to reduce the -I effect (see below). 

Halogen and -CF3 substituents are base-weakening, with ortho 

substitution resulting in a greater effect than meta, presumably due 

to a weak +M effect for the meta bubstituent opposing the strong -I 

effect. The base-weakening effect for substitution both ortho and meta 

to a ring fusion varies in the order F< Cl < ßr I< CF3, in accordance 

with the previously observed effects of these substitucnts on pK 

(ALBERT, 1963, MACDANIEL et al_., 195$). 

The -SO 311 substituent gives a base-strengthening effects though 

the unionized -SO3H group usually exhibits a strong -I tendency. 

The situation is complicated by three perfectly correlated structural 

features for C1-S031i interactions. 

The -NHCONe and -NHCOPh substituents both appear to be bass- 

weakening. This is unexpected, since the -I effect for these groups is 

usually found to be weaker than +M. 

The coefficients for substituent -OCOMe and -OCOEt and for 

-OCONHEt and -OCONII}1e2 show differing effects on pK for pairs of 
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substituents which would be expected to have similar properties. 

The regression coefficients for substituent interaction terms 

are nearly all small and statistically insignificant, with no obvious 

trends. However the statistical significance of the improvement obtained 

by including these values shows that this improvement is not due simply 

to the increase in the number of variables. 

The strong base-strengthening interactions Cl-o-NH2 and 

Cl-p-NH2 (and probably Cl-p-N11 2, perfectly correlated with RF-o-NH2) 

are likely to be due to mutual inhibition of electron-withdrawal between 

two -I groups (DUBOIS et al., 1972). Cl-p-OH can only occur in structure 

with the -OH group ortho to a ring fusion point, i. e. where it appears 

that the -I effect of -OH makes the major contribution to its effect 

on pK. 

The base-weakening interaction Cl-o-OH can be explained as the 
1 

inhibition of the strong +M effect of -OH, in those compounds where this 

is the predominant effect, by the weakly +M -Cl substituent. 

It should be re-emphasised that since some individual coefficient 

values are not statistically significant, despite the good overall 

correlation, it is not to be expected that all regression coefficients 

and differences between pairs of coefficients will be reliable. Hence 

interpretation of the results should be based on trends rather than 

particular values, if the conclusions drawn are to be more than 

tentative. 

Solubility data regressions 

The correlations achieved using sets of structural features 

of Type B and Type D were not statistically superior at the 5% level 



to that using Type As the simplest set. This indicates that the greater 

part of the variation in the measured solubilities is accounted for 

simply by the number and type of substituents, with substituent positions 

and interactions of lesser importance. An analysis using Type C structural 

features could have added no further useful information. 

The regression coefficients for the Type A structural feature 

set are shown in Table 55 and for the Type D set in Table 56. 

The results from the analysis with Type A structural features 

are generally in accordance with expectations, with hydrophobic sub- 

stituents, e. g. alkyls and halogens, decreasing solubility, and hydro- 

philic substituents, e. g. -0H and -COON, increasing solubility. The 

-OCOMe and -000Et substituents appear to exert opposite effects, as 

was the case with pK. The statistical, limitations on the reliability 

of coefficients, with may be individually inzignificant, should again 

be borne in mind when considering seemingly anomalous values. 

The interpretation of the results from the analysis with Type D 

structural features should be treated cautiously, since it is not 

superior, according to the most commonly applied statistical criterion, 

to the simpler Type A analysis. A definite trend is evident for those 

substituents where values for substitution both ortho and meta to the 

ring fusion point are available, in that a substituent tends to give a 

higher solubility in the ortho position than in the meta position. 

The -Nil2 groups is an exception. 

Thus all the halogens and -OMe have a higher negative 

coefficient for meta cf. ortho, -011 has a higher positive coefficient 

for ortho cf. meta, and -NO2, -CF 3, and He have positive coefficients 

when ortho to a ring fusion point and negltive coefficients when meta, 
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-OCOMe and -OCOEt now both have negative coefficients, with 

-OCOMe the more strongly negative. Both ortho and meta -F substituents 

show negative coefficient values, though in the Type A analysis F 

has a slightly positive coefficient. This sort of effect shows the 

possible dangers in placing too much emphasis on single coefficient 

values of low statistical significance. 

No clear trends can be seen in the terms representing uubstituent 

interactions. The OH-p-OH interaction has a large and statistically 

significant negative effect on solubility, possibly due to a mesomeric 

interaction resulting in mutual inhibition of polarity (DUDOIS et al., 1972) 

The Cl-p-C1 and Cl-pNO2 interactions also show negative effects, while 

OMe-o-OMe has a large-. positive effect on solubility. 

Toxicity data regressions 

The analyses using Type D structural feature sets are 

significantly better than those with Type A and Type B sets at the 

5% level. This, together with the lack of improvement in correlation, 

as assessed by the residual error, from set A to set B, may indicate 

that relative positions relative to the benzimidazole ring in determining 

the substituents' effects on the measured LD50 values. 

The detailed interpretation of the results is less clear than 

for the pK and solubility data sets, with fewer obvious trends among 

the regression coefficients. Many coefficients are small and statisti- 

cally insignificant. The analysis using Type D structural features 

(Table 58) shows that -F, -Br, -Cl, -CF3, -NO2, and -CN substituents 

have a negative effect on measured LD50 values, i. e. increase 
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mammalian toxicity. -I, -NH2, and -NMe2 substituents have a positive 

effect on LD50, while -Me, -OMe and OH groups have a negative 

effect when ortho to a ring fusion point and a positive effect when meta. 

SO2X groups, with the exception of SO2NH2, have a positive effect, but 

comparison between different positions is generally lacking. 

Interhalogen ihteraction terms appear to depend on relative 

position, with ortho pairs of halogens having a largely positive effect 

and meta pairs usually a negative effect. Halogen interactions with 

-Me, -OH, -NO2, and -CN groups increase LD50, with Cl-NO2 interactions 

notably large and statistically significant. -NO2 groups ortho and meta 

to one another similarly considerably increase LD50, and a marked 

decrease in mammalian toxicity on the introduction of -NO2 groups into 

chlorinated derivatives has been noted (BUaTON et a]., 1965). The 

interaction term for OMe-o-OMe has a large negative coefficient which 

may be compared with the positive effect of this feature on solubility 

(see above). 

For comparison, the results of the analysis with Type B 

structural features are shown in Table 57. These support the summary 

of effects noted above. 

The work described above demonstrated the applicability of.. 

substructural analysis techniques of the kind under consideration to 

multisubstituted heterocyclic systems. It indicated that good correlations 

could be obtained for both physicochemical and biological properties, 

suggesting that these methods could allow for a detailed analysis of a 

range of structure-property relationships for a series of compounds. This 
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could be useful if used in conjunction with the semi-empirical type 

of inter-property correlation: this has been investigation for part 

of this data set (UFTON, 1976). 

A study of the structure-activity relationship for the 

uncoupling of oxidative. phosphorylation of structures of this type 

was subsequently carried out using these methods (UFTON, 1976). This 

study gave statistically significant correlations, giving a further 

illustration of the whole range of applicability of this type of 

substructural analysis. 

The results described above show that significant improvements 

in correlation are brought about for some properties by the inclusion of 

terms representing relative position of substituents. This suggests 

that this type of structural feature, originally devised for benzene 

derivatives, may be generally applicable to a variety of cyclic structures. 

An alternative form of structural feature derivation was 

investigated for compounds of this sort (UFTON, 1976). Hydrogen atoms 

on the benzenoid ring were included explicitly as structural features, 

rather than the implicit consideration in-the structural feature sets 

described above. These alternatives are also found in the various 

forms of Free-Wilson analysis (KUBINYI et al., 1976b). In the sub- 

structural analysis procedures it was found that inclusion of hydrogen had 

no effect on the overall correlation, as had been anticipated, and that 

the results, in terms of individual coefficient values, were less 

readily interpretable. This suggests that the most useful structural 

feature sets for aromatic structures may be those implicitly including 

hydrogen substituents, in accordance with the conventional chemical 

approach, and with suggestions regarding Free-Wilson methodologies 

(KUBINYI et al., 1976a). 
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The substructural analysis procedures described here have 

been used for simulated property predictions, using "training sets" 

of structures to allow prediction for all three properties (SAGGERS, 

1976). The quality of the simulated predictions with type B structural 

feature sets, equivalent to Free-Wilson analysis, is in general 

superior to that with the simpler type A sets. Simulated predictions 

from type D sets are of high quality, but frequently are not possible 

because of the lack of coefficients for some of the necessary structural 

features, which do not occur in the "training set" of structures. 

This may well be a common problem with such complex structural feature 

sets, reducing their predictive usefulness. 

/ 
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pKa Values for Diverse Heterocyclic Systems 

The work described here had as its aim the development 

of a substructural analysis technique which would allow for the 

treatment of data sets including a number of different types of hetero- 

cyclic system in a single analysis. 

The technique devised was applicable to those ring systems, 

including fused systems, which may be treated as a derivative of a six- 

membered nucleus: only nitrogen heterocycles were considered. Hetero- 

atoms and ring fusion points were treated as substituents, as in come 

applications of the Hammett equation (EXNER, 1972g). Other substituent 

groups were treated as whole units. Relative positions of substituents 

were represented as ortho, meta, or pars, taking the shortest path 

between pairs of substituents, as ih the structural. feature sets for 

cyclic structures described in earlier sections. 

An amount of approximation is involved here. Thus in the 

benzene derivative shown in Figure 21 the Me-ortho-Me interactions 2-3 

and 3-4 are not identical, because of the different position of the NH2 

group. A compromise is necessary between specifying structural feature3 

in sufficient detail and keeping the number of variables to an acceptable 

level. The good correlations achieved in the study of benzene reactivities 

described in an earlier section suggests that the level of approximation 

was not too great for that data set. However the situation is rather- 

different for heterocycles. Thus, for example, it is evident that in 

the pyridine nucleus (Figure 21) there are three possible forms of meta 

interaction: 2-4 (equivalent to 4-6), 3-5 and 2-6. The 2-6 interaction 

is distinct in that a heteroatom is included between the meta position. 

In some of the analyses below, structural features were derived to 

distinguish between interaction terms involving substituents separated by 

heteroatoms and those involving only carbon atoms, and their usefulness 
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assessed. 

In generalifor each set of structures investigated, analyses 

were carried out on a number of sets of structural features of increasing 

complexity representing number and type of substituent only or position 

of aubstituents relative to heteroatoms, fusion points (if applicable), 

and/or other substituents. 

A computer program (described fully in the Appendix) was 

written to derive these structural features from WLM. Details of the 

structural feature sets-used for each set of structures investigated 

are given below. 

These structural feature sets were tested by multiple 

regression analysis of pKa data for various heterocyclic systemse 

pKa values measured at 20°C in aqueous solution for 169 compounds were 

taken from standard compilations (ALBERT, 1963, ALBERT, 1971). The 

numbers of derivatives of each of eleven parent ring systems used are 

shown in Figure 22. Pyridine derivatives comprised approximately one 

third of the set, and pyrimidine derivatives made up another third. 

The remainder of the set consisted of derivatives of seven different 

ring systems. Just over 20% of the total set comprised derivatives of 

fused ring systems. 

pKa was regarded as a suitable property value to test this 

method since it has been measured accurately for derivatives of a variety 

of heterocyclic ring systems. It has also been recognised as an important 

factor in determining some kinds of biological activity (FUJITA, '1966, 

TOLLENAERE, 1973)" 

The effects of substituents on pka values have been described 

in detail (ALBERT, 1963), and comparison of the results of the analyses 

with these documented effects enabled an assessment of the reliability 
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and usefulness of the technique. 

The analyses were carried out on the whole set of structures, 

and on subsets of pyridines, pyrimidines, and the remaining diverse 

ring systems, to compare the correlations obtained on data sets of 

varied size and composition. 

In some cases where a complex structural feature set produced 

a large number of variables, these analyses were carried out so as to 

include only those variables significant at the 10%, 5% or 1% level. 

Pyridine Subset 

The subset of 52 pyridine structures was analysed correlating 

pta with several sets of structural features. These sets included: 

A: number and type of substituents 

B: position of each substituent relative to the heteroatom 

C: as B, and additionally including relative positions cf 

each pair of substituents 

D: as C, making a distinction between meta substituent pairs 

in the 2 and 6 positions, separated by heteroatom, and other 

meta substituent pairs, separated by a carbon atom. 

E: number and type of substituents, plus relative positions 

of each substituent pair as in D. 

Examples of structural feature derivations are given in Figure 23. 

The overall results of the regression analyses are shown 

in Table 59. The F values indicate that all the correlations are 

significant at the 1% level. 

Comparison of the regression results by the F-test indicates 

that the improved correlations brought about by including firstly 

positions relative to the hetoroatom, and secondly intersubstituent intor- 

actionstare both statistically significant at the 1% level. Structural 



f= ýiºý; 

feature set A, including intersubstituent relative positions but not 

including positions relative to the heteroatom, gives a correlation not 

significantly better than that with set At including only number 

and type of substituont. Distinguishing between the two forms of meta 

interaction did not give a significant improvement in correlation, 

possibly due to the small number of structures affected. Values for 

both kinds of meta substituent were available for only two substituent 

pairs; Me-Me, occurring in 9 structures for which both meta interaction 

terms have negligible coefficient values, and Cl-NH2 occurring in 2 structures 

for which the 2-6 meta interaction has a negligible value, and other meta 

interactions show a negative coefficient corresponding to about 0.6 of 

a pKa unit. 

The best correlation for the pyridine cubuet data is clearly 

that using structural feature set C, i. e. indicating the position of each 

substituent relative to the ring nitrogen, and including the relative 

position of all substituent pairs. The structural features in this set, 

with their regression coefficients and t statistics are listed in Table 60. 

These results are largely interpretable from the electronic 

properties of the substituent groups, although values wore not available 

in the data set for all the structural features necessary for an 

exhaustive examination of trends in coefficient values. 

Amino, methylamino and dimethylamino substituents are highly 

base-strengthening when ortho and para to the heteroatom, while the lesser 

effect of the methyl group does not appear to be position-dependent. 

Halogen and nitro substituents are base-weakening in all positions, while 

OMe and SMe. substituents' effects are position-dependent, with strongly 

negative coefficients when ortho to the ring nitrogen, weakly negative 

when meta, and positive when para. This may be accounted for by the 

opposed inductive and resonance effects"of thcae groups (ALBERT, 1963). 
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The moot notable coefficient values for the terms representing 

intersubstituent interactions and those between amino, methyl. amino, 

dimethylamino and methyl groups. All those are base-weakening, 

probably representing inhibition of electron-release by similar 

substituents (DUBOIS et al., 1972). 

Pyrimidine subset 

The pyrimidine nucleus (Figure 27) appears to present more 

complex problems in deriving structural features useful in structure- 

property correlation than is the case with pyridine. The terms 

representing relative position of substituent and heteroatom, in the 

'ortho case, reflect widely different physical situations because of the 

difference between the 2 and 1k positions, both of which are ortho to a 

heteroatom. This does not, in fact, affect the overall correlation, 

since the 4 position ortho interaction is perfectly correlated with the 

substituent-tiara-heteroatom term: thus any discrepancy between the two 

ortho terms will be correlated by the alteration of the "true" value for 

the Para interaction. Substitucnt position relative to hetoroatoms can, 

therefore, be accounted for equally well by using either explicit position 

on the ring, or substituent-heteroatom interaction terms. Reliable inter- 

pretation of the results is made easier by using explicit position, tut 

at the expense of generality, i. e. of the applicability to deal with other 

classes of compound simultaneously. 

Aistincticns between 2-4 and 2-6 meta interactional including. 

a heteroatom, and 4-6 meta interactions, including a carbon atom, may be 

made as in the pyridine subset. 

The structural feature sets used to analyse the pyrimidine data 

were very similar to those used for the pyridine structures. They included: 



F: number and type of substituent 

C: explicit substituent positions, i. e. 2,4 (equivalent to 6), 

or 5 

H: explicit substituent positions plus intersubstituent inter- 

action terms 

I: as set H, distinguishing the two forms of meta interaction 

J: number and type of substituent, plus relative positions of 

substituent pairs as in set J. 

Examples of structural feature derivation for pyrimidinos are 

givenin Figure 24. 

The overall results of the regression analyses are shown in 

Table 61. The F-values indicate that all the correlations are sig- 

nificant at the 1% level. 

Comparison of the correlations by the F-test show that inclusion 

of substituent position, set G, and of relative position of substituents 

without distinction between the meta interactions, set H, does not sig- 

nificantly improve the correlation beyond that achieved with the structural 

features reprEsenting only number and type of substituent, set F. Only 

when intersubstituent interaction terms reflecting the two forms of meta 

interaction are included, i. e* structural feature set Is is the correlation 

shown to be improved at the 1% significance level. Set J gives a 

correlation which is not significantly better than that with the simple 

set F. These results suggest that the positions of substituents relative 

both to heteroatoms and to other substituents are of importance. Speci- 

fication of the position of a substituent does not in itself improve 

the correlation, as it did with the pyridino subset. This may be inter- 

preted as a measure of the non-additivity of the effects of substituents 

in the pyrimidine system. The importance of the distinction between the 

two possible meta relationships between substituents seems to further 
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indicate the Importance of inter-substituent effects in this system. 

It may be noted that structural feature set I produced 66 

variables, i. e., in excess of the number of measured property values. 

Because of perfect correlation the number of features included was 

sufficiently small to allow a regression analysis, but with so large 

a number of variables the predictive usefulness of such a correlation 

is doubtful, as discussed below. In order to reduce the number of 

variables, the analysis was repeated in such a way that the regression 

program omitted variables insignificant at the 10% level. This 

eliminated approximately half the variables included at the 99.99%_level. 

The structural features included in this 10% level analysis are listed 

in Table 62 together with their regression coefficients and t statistics: 

the overall result is shown in Table 61. These results again demonstrate 

the importance of intersubstituent interaction in this system: of the 

thirty structural features significant at the 10% level, half are 

substituent pair relative positions, and all except one of these rep- 

resent meta interaction. The major trends in these results appears 

reasonable on the basis of known electronic factors (ROTH et al., 1969). 

Amino derivative substituents in the 2 and 1: positions increase pKa 

markedly, while halogen and nitro groups reduce pKa, particularly in tho 

5 position. OMe and SMe substituents exert a positive effect on pKa 

in the 4 position and a negative effect in the 2 position. Of the sub. " 

stituent interaction terms amino substituents meta to one another shuw'a 

negative effect on pKa, reduced when the substituents are separated by 

a heteroatom, and presumably indicating a mutual inhibition factor. 

Amino substituents meta to halogens, OMe and SHe show a strong interaction 

reducing pica, except when the amino substituent is separated by a hetero- 

atom from Me, when a positive effect on pKa is observed. 
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When these results are compared with the coefficients for 

the same structural feature set, analysed at the 99.99% level, it appears 

that the same general conclusions may be drawn from each. The 10% 

level analysis, including only half the number of structural features, 

is less complex and hence easier to interpret; the 99.99% level analysis 

on the other hand allows for the observation of more trends in indivi- 

dually insignificant coefficients. -The results of the two analyses are 

not in total accord: thus the Br-ortho-OMe structural feature which has 

a significant positive coefficient in the 10% level analysis appears 

to have a negligible effect in the analysis involving more variables. 

Some variation of this kind in particular coefficient values in different 

analyses is to be expected, and acts as a caution against placing undue 

emphasis on single coefficients in interpreting the results of such 

correlations. 

Diverse subset 

In order to deal with this subset of derivatives of nine ring 

systems the approximations introduced by the use of structural features 

representing, the simplest form of relative position were accepted. To 

use, for example, explicit substituont positions or more accurately 

specified interaction terms as applied to particular ring systems would 

have introduced so many variables as to defeat the purpose of a genera- 

lised analysis. 

Four sets'of structural features were used, including: 

K: number and type of substituents only (including heteroatoma 

and fused rings) 

L.: positions of substituents (including ring fusion points) 

relative to heteroatoms 

M: as L, plus positions of substituents relative to ring 

fusion points 
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N: as fit plus positions of substituents in relation to one 

another 

Examples of structural feature derivation are given in 

Figure 25. 

The overall results of the regression analyses are given 

in Table 63. All the correlations are significant at the 1% level. 

Co. -tparicon of the regression by -the F-test shows that, 

compared with the analysis using set K structural features, no significant 

improvement is brought about by the use of structural feature set L, 

and an improvement only at the 10%, level by the use of set M. The 

analysis with set N structural features brings about no further signifi- 

cant improvement. 

In view of the known general similarity of substituent effects 

in a variety of nitrogen heterocyclic systems (ALBERT, 19631 ALBERT, 1971), 

this suggests that the approximations involved in the use of simple 

relative position terms for groups of diverse structures are too great 

to allow highly significantly improved calculations. 

Total set 

The subsets of pyridines, pyrimidines, and diverse structures 

were combined, giving a total of 169 structures. This set was analysed 

using the same types of structural features as for the subset of diverse 

structures, so as to allow for the different ring systems in this 

combined group of structures. 

The sets of structural features used were as follows: 

0: number and type of substituent only (including heteroatoms 

and fused rings) 

P: positions of substituents (including ring fusion points) 

relative to heteroatoms 
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Q: as P, plus positions of substituents relative to ring 

fusion points 

R: as Q, plus positions of substituents in relation to one 

another 

The results of the regression analyses are summarised in Table 64. The 

correlations with structural feature sets P and Q are not significantly 

better than that with set O, and the analysis with set R is superior 

only at the 10% level (all the analyses being carried out ao as to 

include as many features as possible). An analysis with set R, excluding 

structural features insignificant at the 10% level, was significantly 

better at 5% than the analysis using structural feature set 0. 

Structural features, with regression coefficients etc., for 

the analyses with set 0 structural features and with set R structural 

features at the . 0% level are listed in Tables 65 and 66 respectively. 

The results from the set 0 analysis reflect accurately, at a 

simple level, the Affects of substituents upon pKa, which are largely 

as might be expected from the known electronic properties of these sub- 

stituents (ALBERT, 1963). Thus ring nitrogen atoms have a negative 

coefficient, reflecting the base-weakening effect of multi-heteroatomic 

substitution. Amino, methylamino, and dimethylamino substituents are base- 

strengthening, as is the methyl group, to a lesser extent, while. halogens 

and nitro substituents are strongly base-weakening. OMe and SMe sub- 

stituents show a weak effect, due to an averaging out of their contri- 

butions at different positions observed in the more detailed analyses 

described above. The presence of a fused ring has a small overall effect 

upon pKa, which may again be partly due to an averaging effect. 

The results listed in Table 66 show some aspects of the effects of. 

substituents upon pKa in finer detail. Thus the effect of relative 

position of heteroatoms upon the base-weakening effect of the introduction 
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of more than one ring nitrogen is shown, as are the base-strengthening 

due to amino-type substituents ortho and para to the heteroatom. 

For the other substituent groups the position relative to ring nitrogen 

for their more reliably assessed effects are shown, for example the 

negative coefficients of the OMe and SMe groups in the ortho position, 

probably due to a large inductive effect. The intersubstituent interaction 

terms included, and therefore statistically significant for the whole 

set, are almost entirely those noted in the pyrimidine subset, emphastsing 

the importance of substituent interaction the pyrimidine system. The 

representing ring fusion has only a relatively small negative coefficient, 

again showing the small effect of ring fusion on pKa, while the only 

structural feature included, representing interaction between substituent 

and fused ring, demonstrates the base-strengthening effect of the amino 

group ortho to a ring fusion. 

Discussion of results 

The work described above demonstrated that substructural analysis 

techniques can be used to produce structural features which allow detailed 

analysis of data sets containing heterocyclic compounds. It further 

indicated that such analyses can produc'reliable and potentially useful 

results. 

It has shown that a more detailed analysis is possible for a set 

of derivatives of a common parent ring system than for a set of diverse 

ring systems. An inverse relationship exists between the generality ofn 

application of a substructural analysis technique of this kind and the 

specificity of the structural features which may be derived. Although 

it is advantageous from this point of view to deal only with closely 

related structures at one tiae, it has been demonstrated that an analysis 

in considerable depth for derivatives of a number of ring systems is 
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possible, using simple procedures, although it may often be the case, 

as in the examples here, that highly significant improvements in 

correlation are not brought about, as discussed above. A more complex 

procedure for structural feature derivation, perhaps based on a minimum 

spanning tree algorithm, could be useful in making possible further 

generalisation of such analyses. Alternatively ring systems could be 

fragmented into individual rings, or still smaller unite, by relatively 

simple procedures (WILLETT, 1976). 

From the analyses on this data set, an with other analyses 

described in this thesis, it appears that in many cases the significantly 

better correlations are to be obtained by using the more detailed 

structural feature sets, in this case those including interaction terms. '- 

This raises the problem of the very large number of variables which may 

be included in s'tch analyses. One potentially useful method of reducing 

the number of variables is to carry out the regression analysis in such a 

way that variables insignificant at a particular confidence level are 

omitted from the calculation. This has been demonstrated in the work above, 

using the 10% significance. If the aim of the analysis is the investi- 

gation, perhaps in a qualitative sense, of the factors involved in a 

structure-prorerty relationship, it may be advantageous to use the analysis 

of highest statistical significance, even if this contains a very large 

number of variables. Useful information may be gained in this way, 

provided that the results are interpreted in terms of trends among the 

coefficients, which may individually be statistically insignificant. 

Analyses carried out with omission of less significant variables may be 

useful in that they concentrate on the more important factors. 

I. the aim of the analysis is quantitative prediction of unknown 

property values, the complex structural feature sets, even if giving 
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significant better correlations, may be of limited use, as noted in the 

preceding section. Because of the greater specificity of structural 

feature description in complex sets, it is likely that in many cases 

coefficient values for the features in a structure not included jr. the 

analysis will-not be available, either because these structural features 

do not occur in any structure in the analysed set, or because they are 

perfectly corrblated with other structural features. The extent of 

perfect correlation almost always increases with increasing complexity 

of structural feature sets. The simpler feature sets, with which this 

problem is less likely to arise, may be more useful for predictive 

purposes. 
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Boiling Points of Alicyclic Structures 

The aim of the work described in this section was to 

determine whether good correlations, of potential usefulness, could be 

obtained by substructural analysis procedures for a property crucially 

dependent on the three-dimensional structure of molecules. 

As noted in chapter 2, previous empirical correlation studies 

of this sort of property have relied-largely upon calculated or experi- 

mentally determined molecular dimensions for derivation of appropriate 

variables. The aim here was rather to make use of features derived 

from representations of the structure diagram. Two possibilities then 

arose. 

Firstly, the use of simple, non-stereochemical structural 

features could give a relatively crude account of three-dimensional 

structure. At the simplest level, atom and bond counts will give a 

rough indication of molecular size. It was thought possible that this 

sort of implicit representation of stereochemical factors could possibly 
/ 

give a reasonable correlation for some properties. 

Secondly, the facilities in Wiuwesser Line Notation for 

describing stereochemistry might enable the derivation of structural 

features Rxplicitly representing aspects of three-dimensional molecular 

structure. Such features could be useful in correlation of particular 

molecular properties. 

The property chosen for investigation was boiling point. 

This property has been measured for many organic substances, because of 

its importance for structure-determination, as noted earlier. 

A recent study of the boiling points of several series of 

cyclic structures made use of structural features representing 
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stereochemical factors to correlate structure with boiling point 

(KELLIE et all 1975). It was decided to reinvestigate a part of the 

data used in that study, comprising boiling points of methyl derivatives 

of cyclohexane and 1,3-dioxan. For liquids of this sort, boiling point 

is closely related to molar volume. This then seemed a cuitable data 

set for testing both explicit and implicit representation of three- 

dimensional structure, by structural. features derived from WLN: 

particularly since the findings of the original investigators, who used 

structural features representing the equatorial and axial nature of methyl 

substituente, were available for comparison. 

-The data act used in this work, comprising 29 derivatives of 

cyclohexane and 31 derivatives of 1,3 dioxan, is listed in Table 67. 

These structures were coded in WLN, according to the tentative 

rules for describing cis-trans isomerism in buch systems. Since all 

these compounds are known to exist in the chair form (KELLIE et al., 1975), 

and since only one type of substitucnt is proaent, it was relatively 

straightforward to devise an algorithm to derive the most stable conform- 

ation for eaca compound from its WIN, according to the principles of 

conformational analysis (ELIEL, 1962c). Structural features could then 

be generated to represent the equatorial and axial methyla, and their 

relative positions: geminal (, �em), ortho, meta, and p. ira. The corre- 

lations obtained using structural feature sets of this sort were compared 

with those using sets which did not include the equatorial-axial distinction, 

and therefore could only represent stereochemical factors implicitly. 

With the derivatives of 1,3 dioxan there was the additional 

problem of representing substituent position relative to the hetercatoms. 

As will be seen from the structure of 1,3 dioxan, Figure 26, this 

situation is exactly analogous to the pyrimidines discussed in the 
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preceding section. There are two forms of meta interaction: 2,6 and 

2,4, including a heteroatom, and 4,6 including a carbon atom, between 

the csubstituents. 

It may be noted that these analyses also enabled the 

investigation of the usefulness of terms representing relative position 

of substituents for alicyclic systems, since the applications of such 

structural features described above were all concerned with aromatic rings. 

Full details of the computer programs for generation of this 

type of structural feature set are given in the Appendix. 
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A total of eleven sets of structural features were used in 

the analysis of the relationship of boiling point with structure for 

cyclohexanes. These were devised to investigate the effects of 

equatorial and axial substitution, and relative position of substituents 

on tho property. These sets were: 

A- including on the number of methyl substituents 

B- as As also including the number of geminal interactions 

C- as B, also including the number of ortho interactions 

D- as Cl also including the number of meta interactions 

E- as D, also including the number of para interactions 

F- including the numbers of equatorial and axial methyl 

substituents 

G- as F, also including the numbers of peminal interactions 

H- as G, also including the numbers of ortho interactions 

I- as H, also including the numbers of meta interactions 

J- as G, also including the number of Para interactions 

K- as I, also including the numt. er of para interactions 

Examples of structural feature derivation are given in 

Figures 27,28 and 29. 

The overall results of the regression analyses using these 

structural feature sets ara shown in Table 68. All correlations are 

significant at the 1% level. 

The statistical significance of the differences in overall 

correlation were assessed by the F-test. For those structural feature 

sets which made no distinction between equatorial and axial methyl 

groups* set B gave a correlation superior at the 10% level to that 

with Bet As and set C superior at the 5% level to set B, while no 
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significant improvement was gained by the use of sets I) or E. 

Set F, making the equatorial-axial distinction, gives a 

worse correlation than set As although the difference is not significant. 

However, when terms representing relative positions of substituents, 

are included, structural feature sets including the equatorial-axial 

distinction give significantly better correlation than the corresponding 

sets without this distinction. Thus, for example, sets H and K give 

correlations better at the 1% level than sets C and E respectively. 

For the structural feature sets including the equatorial-axial 

distinction, set G gives a superior correlation to set F, and set H to 

set G, both at the 1% level. The correlations with set I and J are 

not significantly different to that with set H, while the correlation with 

set K is superior at the 5% level to that with set H. 

These results suggest that the structural factors affecting 

boiling points to the greatest extent are equatorial-axial substitution, 

geminal substitution, and ortho interactions. This is in accordance with 

the findings of the original workers (KELLIE et al., 1975). Two other 

points, howavcr, may be noted. 

Firstly, a good correlation is obtained by considering solely 

numaber of methyls, indicating that in this case the implicit account of 

three-dim: nsional structure is reasonably effective. 

Secondly, the inclusion of structural features representing meta 

and Para interactions, not considered by the original authors (KELLIE 

et al., 1975), gives a correlation improved at the 5% level, when the 

equatorial-axial distinction is made. 

The structural features of set K are listed in Table 69, 

together with their regression coefficients and t statistic,,. The 

contributions to boiling point of equatorial and axialmethyls and . rainal 

and ortho interactions here are very similar to those found by Kellie 
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and Riddell (KELLIE et al., 1975). It is notable that the effects 

of ortho interactions are opposed to those of meta and Para interactions, 

indicative of the steric, rather than electronic, factors influencing 

this property. 
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In the analyses of the 1,3 dioxan derivatives, atructural 

feature sets were derived so as to investigate the effects of substituent 

position relative to the heteroatoms. A total of thirteen structural 

feature sets were used: 

set L- including only number of methyl substituents 

set H- including number of equatorial and axial methyl 

substituents 

set N- as M, including also the number of gem interactions 

set 0- as N, including also the number of ortho interactions 

set P- including the positions of methyl substituents 

(2,4(or6), or 5) 

set Q- as P, including also the numbers of jsein, ortho, meta, 

and pars interactions 

set R- as Q, distinguishing between 2,4(or 2,6) and 4,6 

meta interactions 

set S- including the positions of equatorial and axial 

methyl substituenta 

set T- as S, including also the number of gem interactions 

set U- as S, including also the positions of QQn interactions 

set V- as T, including also the numbers of ortho interactions 

set W- as V, including also the numbers of meta and Para 

interactions 

set X- as W, distinguishing between types of meta interaction. 

Examples of structural feature derivation are given in Figures 30 and 31. 

The overall results of the regression analyses are listed in 

Table 70. All the correlations are statistically significant. 

Much the same factors are seen in the comparison of the 

correlations with various structural feature sets as were noted with 
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the cyclohexanes. Introduction of the equatorial-axial distinction to 

feature sets including only number or position of methyl groups brings 

about no significant improvement, in sets H compared with L, and S 

compared with P. However for feature' sets including substituent inter- 

actions, W compared with Q, inclusion of the equatorial-axial distinction 

brings about an improvement significant at the 1% level. 

The inclusion of terms representing number and position of 

geminal interactions bring about no significant improvement; sets T 

and U compared with S, and N compared with M. Inclusion of ortho 

interactions improves the correlation at the 5% level, (set 0 compared 

with N) or 1% level (set V compared with T). Inclusion of meta ands ara 

interactions, when the equatorial-axial distinction is made, gives a 

correlation significantly improved at the 5% level: set V compared with 

V. 

Inclusion of position of the methyl substituents relative to 

the heteroatoms brings about an improvement in correlation significant 

at 5%, set P compared with set L, or 1%, sets S and V compared with H 

and 0 respectively. This indicates that the position of substitution 

is of importance in determining the boiling point, as is to be expected, 

since the alignment of these dipolar molecules will be affected by the 

position of substitution (KELLIE et al., 1975). 
, 

Distinction between the two types of meta interaction, nets R 

and X compared with Q and W respectively, gives worse correlations, 

indicating that this distinction is inappropriate to this data set. 

This is a notable contrast to the situation with the pKa data discusscd 

in the preceding section, and probably reflects the predominantly 

steric, rather than electronic, factors affecting boiling point. 

The structural features of set W, together with their 

regression coefficients and t statistics, arc listed in Table 71. 
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These values are broadly in line with these of the original investigators 

(KELLIE et al., 1975). Particularly noticable are the differcuces in 

the coefficient values for equatorial and axial substitution in the 2 and 

4 positions. Some coefficient values for interaction terms are not 

statistically significant, but they follow for the most part the trends 

observed with cyclohexanes, i. e. ortho interactions positive, the 

remainder negative, geminal strongly'so. 

Finally these two data sets, cyclohexanes and dioxans, were 

combined to give a set of 60 structures, with a range of boiling point 

values of 192 degrees. An analysis was carried out using a set of 20 

structural features including the equatorial-axial distinction and all 

substituent interactions. The ring oxygen atoms of the dioxans were 

treated as ring substituents to which the-positions of the methyl groups 

were related. 19 structural features were included in this analysis, 

which gave a correlation with R-0.990, r-3.14, F- 103.69 (40 degrees 

of freedom). The structural features of this set, together with their 

regression coefficients and t statistics, are listed in Table 72. They 

are in general in accordance with the results described above, although 

for the reasons discussed for pyrimidic: e structures in the preceding 

section, detailed interpretation of coefficient values for positions 

relative to heteroatoms is difficult. This result shows the feasibility 

of studying diverse structural types with features representing three- 

dimensional structure. 
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The work discussed above demonstrated that substructural 

analysis techniques can give good correlations for a property crucially 

dependent upon three-dimensional structure. Reasonable results may be 

obtained using relatively crude structural features which reflect 

stereochemical factors implicitly. Significant improvements in. 

correlation are brought about by the use of explicit representation 

of steric factors which, in this case, may be readily achieved using 

WLN. Significant improvements are also brought about by the use of 

terms representing relative position of substituents, indicating that 

such structural features may be usefully applied to a variety of 

alicyclic as well as aromatic structures. 



Chapter Four, Part 2 

Cluster Analyses 

I 

X 
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Classification, the grouping of entities according to their 

similarities, has for long been an important aspect of most sciences 

'(SOKAL, 1974). This is certainly the case in chemistry, particularly 

organic chemistry. In this field, classifications based on structural 

ideas have been found useful from the earliest development of the 

subject (FISHER, 1973a, FISHER, 1973b). This is reflected in the 

very common practice of dividing the subject matter of organic 

chemistry texts and monographs into sections corresponding to structural 

types, usually according to the presence of functional grouping, ring 

systems etc. 

Such classifications are almost always monothetic, i. e. based 

upon the presence or absence at each stage of a single attribute. 

Relatively little use has been made of more recently development metho- 

dologies of automatic classification, which rely upon a computerised 

analysis of similarity based upon a number of attributes, in this case 

structural features. As noted in an earlier chapter, classificatory 

procedures, both supervised and unsupervised, have been applied to 

problems of structure-property correlation. 

One potentially useful procedure involves the algorithmic generation 

of structural features from a computer-readable structural representation, 

which may be subsequently input to an automatic classification procedure. 

The feasibility of this type of substructural analysis has been demon- 

strated, using a connection table structural representation, and using 

cluster analysis techniques (ADAMSON et al., 1973a, ADAMSON et al., 1975a, 

BUSH, 1976). The aim of the work described below was twofold: firstly 

to investigate the use of structural features derived from WLN for 

classification, and secondly to investigate various cluster analysis 

procedures of potential applicability to chemical structure classification. 
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A procedure of this sort has two possible applications. The first 

is information retrievals providing an alternative to the usual "present/ 

absent" substructure search. The second is structure-property correlation, 

where the classification is presumed to be indicative of attributes, i. e. 

property values, not included in the analysis. As noted in an earlier 

chapter, this application could be useful where accurate quantitative 

data is not available. 

The evaluation of the success of classification techniques presents 

particular problems. A classification displays relationships between 

objects, and there are in general many possible relationships which could 

be considered, and many different ways of ordering the relationships in 

their assumed importance to the overall classification. Taking a group 

of chemical structures as an example, possible relationships between them 

I 
could consider the size, i. e. number of atoms, diversity, i. e. number 

of types of atoms or groups, the presence/absence/number of any atoms, 

functional groups, or ring systems, the relative positions or the 

environments of any groups, or any combinations of these factors. There 

is no'"correct" classification of any group of entities, and the value 

of any particular classification depends upon its usefulness in practic: o. 

The correlation between chemical structure and property achieved by moans 

of classification has been used to assess the success of that classification 

(SHEATH, 1966, ADA31SON et al., 1973a, ADAMSON et al., 1975a, BUSH, 1976). 

Since, however, it appears that the use of regression analysis will 

generally yield more accurate results than classification where accurate 

data is available (BUSH, 1976), it may well be that the major applications 

of cluster analysis and related techniques will be for information retrieval, 

or for obtaining a qualitative overview of a data set. A formal evaluation 

of any technique would be likely to be either prohibitively time- 

consuming, or relatively meaningless in the absence of any practical 
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situation. It was therefore decided to evaluate the results of the 

work described below on the basis of an intuitive judgement of the 

adequacy of the classificaticnc. This was thought to be sufficient 

to give a general impression of the success of the classificatory 

procedures. 

ý 

i 
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Data Sets (Cluster Analysis) 

The purpose of this work, as noted above, was an investigation, 

in general terms, of the usefulness of various cluster analysis methods 

with the type of structural features readily derived from WIN. It 

was decided that this would as well be achieved using "artificial" data 

sets, i. e. sets of structures chosen for this purpose, as with sets 

of "real" structures, i. e. from literature data, as used in the corre- 

lations described in earlier sections. 

Four sets of structures were investigated. The first two, 

comprising relatively simple aliphatic structures and benzene derivatives 

respectively, were used to assess classifications based on simple WIN 

fragments. 

A further set of benzene derivatives was used to examine 
v 

classifications taking account of substituent positions. 

Finally the set of 44 benzene derivatives, for which the 

correlation of structure with reaction kinetics data was discussed in 

an earlier section, was classified, in order to attempt clusterings 

based on structural features reflecting nutatituent positions relative 

to a specified position, in addition to relative intersubstituent 

positions. 

For each of these data sets clustering was carried out using 

the techniques described above. The results are discussed below for 
ý 

each data-set in turn, and finally summarised. 

It was found that in the majority of cases, the centroid and 

median clustering methods were unsatisfactory. Frequently, with these 

methods, the centre of a newly formed cluster Has within the boundaries 

of an existing cluster. Although mathematically valid, this situation 
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results in a meaningless dendrogram, with overlapping lines; so that 

interpretation of the classification in the way proposed here is not 

possible. These methods will not therefore be further discussed. 

Structural features were derived algorithmically from 'WLN 

representation of structure, and the cluster analyses carried out using 

the CLUSTAN package (David Wishart, University of St. Andrews). 
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Aliphatic Structures (cluster analysis) 

The structures are shown in Figure Al. There are 40 aliphatic 

structures, comprising straight-chain and branched hydrocarbons, 

primary and tertiary amines, ketones, and alcohols. Bifunctional 

and mixed functionality compounds are included. 

The structural feature set used is shown in Figure A2" 

The classifications are displayed as noted below. 

Clustering method Raw data Standard data 

Single link AA AF 

Further neighbour AB AG 

Group average AC AH 

Ward AD Al 

McQuitty AE AJ 

Single link clustering gives a generally intuitively sensible 

classification, with both raw and standardised data, but the strong 

"chaining" effect, with structures joining the main group individually, 

prevents the emergence of well-defined clusters. This drawback is more 

pronounces with raw data. 

The remaining four techniques using raw data give intuitively 

sensible classifications with well-defined clusters. The clusters are 

based on both functional groupings and carbon skeleton. Thus, in all 

cases, structures 11 (an alcohol) and 33 (containing both alcohol and ketone 

functions) are brought together at a very high similarity level. 

These four clustering methods again give sensible, and potentially 

useful, classifications with standardised data. The well-defined clusters 

are here based largely on functional group. Certain differences in the 

detail of clustering may be noted: thus for example compound 40 

(containing both primary and tertiary amine functions) is placed by 
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McQuitty's analysis as most similar to compound 23 (with two primary 

amine groups) and by the other three methods as most similar to non. 

37 and 38 (with two tertiary amino functions). 

V 

x 
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Benzene Derivatives (Cluster Analysis) 

A set of 36 benzene derivatives was examined, varying from 

unsubstituted benzene to hexasubstituted. - Substituents were Me, OMo, 

F, Cl, Br, Me., and two types of substituent were present in some 

structures. The structures in the set are shown in Figure B1. The 

structural features used represented type and number of substituents. 

The classifications are shown as noted below. 

Clustering method Raw data Standard data 

Single link BA BF 

Furthest neighbour BB iG 

Group average - BC BH 

Ward ED BI 

McQuitty BE Bi 

All the classifications with raw data show a greater degree 

of chaining than was the case with the aliphatic structures. The 

single link classification is virtually completely chained, and thereby 

valueless. 

The remaining methods give apparently sensible classifications 

based on both type and number of substituent. Thus all four methods 

bring structures 5,6,7,21,22 and 23 (i. e. with several !: e substituents) 

together as a cluster. Again differences of fine detail are apparent: 

the furthest neighbour algorithm brings together numbers 8,9,25,26 

and 27 (which all contain, inter alia, Me groups), whereas McQuitty's 

method places 25 with the other Cl containing structures, 26 with the Br s 

etc. Group average and Ward's method give a classification intermediate 

between these two. 
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With the standardised data, the classifications obtained 

were based primarily on substituent type. Single link gave a somewhat 

chained, though still sensible clustering, while the other methods 

showed regular well-defined clusters. Furthest neighbour analysis 

differed somewhat from the other methods: for example compound number 

21 (1C1,4Me) was classed as most similar to the other mixed halo- 

methyl structures by furthest neighbour, rather than most similar to the 

other chloro structures, as by the other methods. 

x 
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Positional Isomer Benzenes (Cluster Analysis) 

This set of structures, shown in Clwas devised so as to 

investigate classifications based on structural features representing 

substituent interaction. These structures include all the possible isomers 

of di- and tri- fluaro, chloro, bromo, and iodo benzenes. 

Three sets of structural features were considered. Firstly, 

only structural features representing number and type of substituents, 

i. e. F, Cl, Br, and I were used. Secondly, features reflecting relative 

positions of substituents were included: this structural feature 

set is shown in CZ. Thirdly, relative positions of substituents, regardless 

of substituent type, were used: the feature set consisting of ortho, 

meta, and Para interactions. 

The classifications using the first structural feature set 

are set out as below: 

Clustering method Raw data Standard data 

Single link CA CF 

Furthest neighbour CB CG 

Group average CC CH 

Ward CD CI 

J"icQui tty CE CJ 

It is particularly notable that all five clustering methods, 

with both raw and standardised data, show exactly the same pattern of 

clusters (though with different similarity levels). Classification is 

I 
firstly by substituent type, and secondly by number of substituents. 

The anomalous position of structure lis presumably an artifact of 

the clustering procedures. 

The classifications using the second structural feature set 
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are shown as below: 

Clustering method 

Single link 

Furthest neighbour 

Group average 

Ward 

McQuitty 

Raw data Standard data 

DA DF 

DB DG 

DC DH 

DD 

DE 

Di 

DJ 

With raw data the five methods produce an identical clustering 

pattern. Classification is firstly by substituent type, secondly by 

substituent number, and thirdly by substituent position. 

Variation in the classifications produced by the different 

clustering methods is observed with standard data. Group average, 

Ward's method, and McQuitty's method give classifications based firstly 

on substituent type, secondly on number and position of substituents. With 

single link and furthest neighbour, on the other hand, there is no initial 

substituent type division: rather similar substituent patterns are 

grouped together. 

The classifications using structural features representing only 

relative position of substituents, regardless of substituent type are shown: 

Clustering method Raw data Standard data 

Single link EA EF" 

Furthest neighbour Eß EG 

Group average EC EH 

Ward ED 

bfcQuitty EE 

EI 

EJ 

These classifications, with both raw and standardised variables, 

reflect only substitution pattern. The interr^lations shown between 

substitution patterns differ between the various methods. Although no 
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method shows a clear-cut discrimination between di- and tri-substituted 

structures, a tendency to divide on the basis of number of substituents 

is seen with unstandardised variables. With standardisation the 

occurrence of ortho, meta, and para interactions are clearly dominating 

the clustering: thus the 1,4 and 1,2,4 substitution patterns (i. e. 

those including pars substituents) are brought together. 

. 

I 

4 
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Benzene Derivatives - Reaction Rate Set (Cluster Analysis) 

The set of multisubstituted benzene derivatives, for which 

the correlation of structure against rate of bromination was described 

in an earlier chapter, were used in structure-based cluster analyses. 

The structures are listed in Table 13. 

Three structural feature sets were used for the classifications: 

a) number and type of substituent only 

b) including positions of substituents relative to the reaction' 

site 

c) as b, including also relative positions of substituents 

The analyses were performed using the group average method, 

Ward's method, and McQuitty's method, since these had given the most 

interesting clusterings with previous sets of structures. Both raw and 

standardised data were used. 

For the structural feature set including only number and type 

of substituents the clusterings are shown thus: 

Classification method Raw data Standard data 

Group average FA FD 

ward's method Fß FE 

McQuitty's method FC FF- 

All these analyses show generally similar classifications, 

which reflect in an intuitively sensible manner the composition'of the 

data-set. One major distinction between analyses using raw and standard 

data is apparent for all three clustering methods. Classifications with 

raw data make an initial division between structures with three or 

more substituents and those with less, whereas with standardised data 

no such breakdown is observed. 

Dendrograms for cluster analyses using structural features 

representing substituent position relative to the reaction site as shown: 
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Classification method Raw data Standard data 

Group average FG PI 

Ward's method FH FJ 

These classifications all appear reasonably sensible. There 

is relatively little difference from the corresponding classifications 

where substituent positions were not considered. The inter-relations 

of some sets of isomers, e. g. the methoxy-methyls (compound numbers 

17-20 and 34-39), is noticable. With standardised data, where no marked 

division by number of substituents is seen, there is little structure 

in the classification. 

The classifications obtained using structural features 

representing relative position of substituents an well as their position 

relative to the reaction site are shown: 

Classification method Raw data Standard data 

Group average FIC FM 

Ward's method FL FN 

The classifications are in general a reasonable reflection 

of the data-sets. Ward's method gives more distinct clusters than does 

the group average method. With standardised data Ward's method gives 

a particularly good representation of interrelationship between isomers. 
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Summary of Classifications 

The studies of automatic classifications of chemical structures 

using WLN fragments described above achieved their limited objective of 

demonstrating that such classifications can display relationships bctween 

structures in a manner in general accord with chemical intuition. These 

classifications were able to include relative positions of substituont 

groups. 

Various clustering procedures were shown to yield different, 

but all potentially useful, classifications. Group average, Ward's 

method, and McQuitty's method gave particularly sensible classifications, 

with well-defined clusters, and are therefore possibly most useful for 

practical application. However the single link method, although it 

gave classifications of little practical value in several cases here, 

should not be ignored. It has the advantages of computational simplicity, 

and hence the potential for larger-scale application, and a firm mathe- 

matical basis, and may be less likely than other methods to impose an 

arbitrary form onto a data-set. / 

The use of standardised as well as raw data may also hem 

advantageovis, since it appears to tend to give classifications based on 

type, rather than number, of structural features. 
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Chapter Five 

Conclusions 

'Thus slowly, one by one, its quaint events were hammered out' 

(Lewis Carroll) 

1 
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Three aspects will be considered in concluding this 

thesis. Firstly, the work described will be summarised, and 

attention drawn to some of its more important features. Secondly, 

the potential for practical application of these methods will be 

discussed. Thirdlyisome indications of possible further research 

in extending this work will be made. 
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Summary of Thesis 

The work described in this thesis demonstrates the 

applicability to various sets of structure and, property data of 

a form of substructural analysis using structural fragments corres- 

ponding to chemically significant groupings of atoms. Such fragments 

are particularly suitable for representing functional groupings, ring 

systems, ring substitution patterns, stereochemical features; and 

all these aspects have been investigated in the work described above. 

Algorithmic procedures for automatic generation of structural 

fragments of this sort for standard WLN representation have been devised. 

Their implementation by relatively simple computer programs, capable 

of dealing with a wide variety of types of compound, has been described. 

Two techniques of statistical analysis have been used in 

this work: multiple regression analysis and cluster analysis. 

Multiple regressions, with some molecular property as 

independent variable and the occurrence of structural features of the 

sort noted above as dependent variables, have shown statistically 

significant correlations with a number of data sets, with widely 

differing structures and property values. In those cases where a 

direct comparison has been made, the use of relatively simple fragments 

givesvery similar correlations to those using alternative sorts of 

structural fragments, derived from connection tables. In some data 

sets, particularly with multisubstitution on ring systems, it has been 

" shown that significant improvements in correlation are obtained by using 

structural features representing the relative position of substituent 

groups, heteroatoms etc. It has been shown that these improvements are 

not due simply to the increased number of variables, nor to fortuitous 

data set characteristics, but rather to the necessity to include 
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"interaction" terms for an adequate account of the variation in the 

data. Rationalisations, in physico-chemical terms, have been possible 

in most cases. It may be that the ability to deal with such potential 

non-additive effects, by automatic generation of terms to represent 

the many possible intra-molecular effects, will be a major contribution 

of this type of substructural analysis. 

The use of cluster analysis with sets of chemical structures, 

using structural features of the sort described above, dcmonstrated that 

sensible and potentially useful classifications can be produced with 

this type of structural feature. The inclusion of relative position terms 

for ring substitution resulted in classifications reflecting these 

factors, and showing relationships between structures at a more detailed 

level than on the basis of occurrence of simpler structural features. 

This is a further example of the value of this type of structural 

fragment. Thus, by the choice of structural feature type, different, 

though all equally "correct", classifications of a set of structures can 

ý 
be produced. The flexibility of an automated substructural analysis 

procedure may be used to advantage in this kind of situation. 

The availability of the CLUSTA!: package enabled a comparison, 

for the first time, of different clustering methods with chemical structures. 

No single "best" method could be identified (although some were considered 

of little value): rather it was concluded that the use of a number of 

clustering methods on any set of structures could be advantageous, in 

highlighting different ways of viewing the relationships between structures. 

The demonstrated usefulness of chemically significant 

structural features in the two types of analysis investigated here 

suggests that they might be also of use with oýhor data analysis methods, 

e. g. discriminant analysis or principal components analysis. In general, 
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whatever statistical procedure is used, the substructural analysis 

methodology has the advantage of allowing a rapid, systematic and 

exhaustive generation of structural features at any level of detail 

which may be required. The use of fragments corresponding to chemically 

significant moieties has been shown to be of value in the types of 

analyses investigated here: it may well be that it will prove equally 

valuable with other statistical techniques. Fragments of this sort 

have, in all cases, the further advantage that an'analysis may be planned, 

and the results subsequently interpreted, in conventional chemical terns. 

This methodology also has considerable advantages as regards 

data-handling system requirements. The procedures discussed here use a 

WLN representation of structure, widely used in computer-bated information 

systems, together with relatively simple programs for fragment generation. 

It is likely that only trivial amendments need be made to the existing 

software capabilities of many chemical information systems in order to 

implement a fragcuentation method of this sort. Although the structural 

feature selection can be'done by hand, as was done for the initial tests 

of the work described in this thesis, the agility to perform this task 

automatically gives the user a convenient, rapid, and flexible means of 

routinely dealing with large data sets- 

One notable feature of the work described here is the variety 

of data examined by multiple regressio; º analysis, including biological, 

physicochemical, and thermodynamic molecular properties. All the data- 

sets used consisted of relatively accurate, quantitative measurements, 

because of the necessity for this sort of data, in order to compare 

statistically results of regression analyses with different structural 

feature sets. There is of course no reason why fra gq3entation techniques 

as described here should not be used with semi-quantitative or qualitative 
data, with an appropriate analytical technique. 
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Potential Practical Application 

In the discussion above it was suggested that the substructural 

analysis procedure under consideration here, i. e. a derivation of 

chemically significant fragments from a structure diagram or computer- 

readable equivalent followed by an appropriate form of data analysis, 

could have useful practical application. This will now be further 

considered, under two headings: applications in structure-property 

correlation, and applications in information retrieval. It may be 

useful to note that there can be no rigid distinction between these two. 

If the questions "which compounds contain these substructures" and 

"which compounds have this activity" are considered (as would usually 

be the case) as problems in information retrieval, then it seems 

sensible to consider the question "which substructures contribute most 

to this activity" as being in the same area. In this case however, 

it will be useful to make a loose distinction. 

/ 

I 



i) Structure-property correlation 

The work in this thesis has shown that these techniques can. 

be usefully applied to a range of molecular properties, and therefore 

their applicability in a number of fields must be considered. 

The computerised estimation of thermochemical properties, 

based on group additivity schemes, is well suited to the application of 

automatic structure-handling techniques. As noted in the discussion in 

an earlier section, proposals to this effect have been made by a number 

of workers in this area. The multiple regression analyses of thermo- 

chemical data described in this thesis demonstrate, on a small scale, 

the applicability of a WLN-based substructural analysis procedure in 

this field. This method is currently being investigated by a research 

group active in this area (Personal communication from Dr. J. B. Pedley). 

Another area of potential applicability is physical organic 

chemistry. The work with reaction rate data and pKa values described 

in earlier sections indicates the possible usefulness of substructural 
j 

analysis in such problems. Two kinds of application could be envisaged: 

firstly as an aid to the analysis of large data sets as carried out 

by Wold for reaction kinetics data ( HOLD et al., 1972 

and secondly as a means of detailed, systematic treatment of intra- 

molecular interactions, as in the work in this thesis. The need for 

automation in this area is not so evident, largely because of the 

relatively simple compounds involved in mechanistic studies. 

One particularly important potential application wi. thin 

the area of physicochemical properties could be the calculation of 

molecular properties used for semi-empirical calculations, such as 

partition coefficients and molar refractivities. Such properties are 

reasonably approximated by an additive model, and hence may be correlated 
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with structure by regression analysis, and unknown values predicted, 

as evidenced by the work of Nys and Rekker (NYS et al., 1974). 

The application of substructural analysis to the correlation of 

partition coefficient with structure, described in an earlier section, 

illustrates how readily the technique fits in with existing practice. 

It should be noted that in this case, as in many others, the structural 

fragments most readily derived from WLN cgrrespond very closely with 

those assigned manually on purely chemical considerations. 

Automated data analysis procedures could be helpful here 

in two ways: 

i) by making possible the rapid and convenient analysis 

of large amounts of computer-readable data, e. g. the 

Hansch data-base* 

ii) by making possible the rapid and convenient analysis of a 

data-set using a variety of sets of structural features, 

thus investigating the effect of including terms rep- 

resenting intra-molecular interactions. This may be 

particularly useful in complex sets of structures with 

multi-substitution or multi-functionality. 

The correlation of structure with biological activity, important 

in areas such as drug design, offers further opportunities for useful 

application of substructural analysis techniques. The situation here is 

more complicated than with the physical properties mentioned above, 

because of the possibility of several mechanisms of action involved 

in any biological property. Also the data available is frequently 

relatively crude, often semi-quantitative or qualitative. 

It is likely that substructural analysis can most usefully 
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be used here as one part of an approach to these problems using a variety 

of methodologies. In particular the ability of the sort of methods 

discussed hare to deal rapidly and flexibly with large amounts of 

structural information could make them well suited for an initial 

analysis of large and/or complex data-sets. Data analysis techniques 

such as cluster analysis, discriminant analysis, or principal components 

analysis, could be used in conjunction with an automated fragmentation 

procedure to gain an initial crude understanding Of the relation of 

structure to property, which could then be further investigated by more 

precise techniques. This "first look" analysis in substructural terms 

could then be used for physicochemical and mechanistic rationalisations. 

Subsequently a more precise quantitative correlation could be formulated, 

perhaps using physicochemical property variables. The contribution of 

substructural analysis in such cases would be to assist in the 

visualisation of likely forms of structure-property relationships, by 

systematically dealing in detail with large and complex data-sets. In 

particular they could help to draw attention to the effect of co-occurrence 

and relative position of structural features, factors which are hard to 

take account of in any large set of structures without the aid of such 

an automatic procedure. 

Another useful contribution o: substructural analysis �together 

with the classification methods, could be to divide a large data-set 

into sub-sets, on the basis of structural similarities. The various 

sub-sets could then be treated individually by more precise correlation 

procedures. This sort of classification could also be useful in distin- 

guishing between different pharmacological activities or modes of action. 

One interesting aspect of structure-biological property 

correlation is the potential use of multiple regression analysis with 
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structural features of the sort discussed"here. With a large data-set 

of the kind of complex structures frequently encountered in this area, 

a large number of structural features is generally produced, particularly 

if detailed aspects of structure, e. g. ring substitution patterns, 

are dealt with. This will often lead to violation of the guidelines 

for the maximum desirable ratio of variables to observations for 

regression analysis. Under these circumstances it may be advisable 

to regard the regression approach as a "non-parametric" treatment, 

on a par with cluster analysis, discriminant analysis etc. i. e. a 

representation of a complex data-set. A value would be obtained representing 

the contribution to property for each fragment, which could be used for 

rationalisation in physicochemical terms and formulation of a more precise 

equation; but the conventional measures of significance for the regression 

could not be confidently applied. This could he a useful compromise 

between the desirability of explicitly accounting for the many detailed 

aspects of the chemical structures in order to directly determine the 

effect of such factors as substituent interactions, -and the contending 

requirement for a relatively small set of independent variables for 

a statistically sound correlation equation. 



ii) Information Retrieval 

The work described in an earlier section has shown that 

substructural analysis, using chemically significant fragments and 

a cluster analysis procedure, can give classifications of chemical 

structure which appear sensible in chemical terms. Classifications 

using such fragments can include factors such as substitution patterns 

in displaying relationships between compounds. 

Such classification procedurescould find application within 

computer-based information systems as a complement to existing sub- 

structure search facilities. The major limitation to the method as 

described here is the limited number of compounds, probably a few 

hundred, able to be dealt with in one classification by currently 

available cluster analysis programs. This limitation is primarily 

due to the computer storage requirement for the similarity measures 

for each pair of structures which must all be stored during the 

classification. Until the introduction of classification programs 

capable of dealing simultaneously with a larger number of structures, 

it seems that automatic classification techniques will be restricted to 

small-scale applications. 

One such application could lie in the ranking of output from 

structure searches. Thus in answer to a request for "compounds of 

similar structure to A", a conventional substructure search system 

can produce only a list of compounds with some structural features in 

common with A. An advance on this would be to calculate a measure of 

similarity between each compound and A, and to present the results in 

crder of similarity, i. e. presumed relevance. This of course is not a 

classification procedure, since it involves only the first part of 



such a procedure, the calculation of similarity. 

Another application could be a "browsing" capability, i. e. 

investigation of the composition of small files, or sub-files of 

structures. This could have the aim, for example, of selecting a 

"typical" structure as representative of the set, for further study. 

L 
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Future Research 

Future investigations in this area of substructural analysis 

could be directed into three aspects fragmentation procedures, 

statistical analysis techniques, and the operation of complete 

systems, perhaps emphasising efficiency of operation and analysis on 

a larger scale. 

The usefulness of different types of structural feature set 

in analyses of this type should be further investigated,, in order to 

decide whether any general principles can be identified as to the most 

useful types of structural features. Such work would need to examine 

a wider range of structural types and property values than was possible 

in the studies described in this thesis. In particular further comparisons 

of the "chemically significant" types of structural fragments readily 

derived from WLN with other types, e. g. from connection tables, could 

be of value. It would also be desirable to investigate the differences 

between the optimal types of fragments for structure-property corre- 
c 

lation and for information retrieval. 

With regard to the statistical analysis techniques, the work" 

on cluster analysis described in this thesis has established that 

sensible classifications of chemical structures can be obtained using 

WLN-type fragments. More detailed study of this topic would be of value: 

to investigate with "real" data the potential value for both structure- 

property correlation and information retrieval. 

Another area which could be well worth investigation is the 

use of WLN-type fragments with other data analysis techniques: notably 

discriminant analysis, principal components analysis, and the various 

mapping procedures. Of particular value would be comparative evaluations 

of a number of data analysis techniques on the same set of structure- 
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property data, in order to establish the extent to which the techniques 

yield usefully complementary information. This could result in a 

greater understanding of the value of these techniques, used alone or 

in conjunction. 

Investigations of the "scaling-up" of these techniques, to deal 

with much larger numbers of structures than attempted in the wortc 

described herescould also be valuable. Apart from the computer systems 

aspects of such work, a further problem worth investigating is the 

optimal size of data-set for structure-property correlation. The ability 

to deal with large numbers of compounds simultaneously, if only to divide 

them into sub-sets on a systematic basis, is certainly valuable: but it 

does not necessarily follow that all analyses should be carried out on 

the largest scale possible. It is possible in some cases that dealing 

with-sub-sets of data can allow separation of different mechanisms 

of action, and thus simplify the interpretation of results. Also slight 

discrepancies between fragment values in different sub-sets may be found: 

/ 
e. g. between CH2 groups in ketones and hydrocarbons noted in the heats 

of vaporis? tisn correlations. In such cases more precise correlations 

could be obtained on data sub-sets, with, however-itho sacrifice of the 

generalised diverse-structure applicability, valuable for "lead- 

seeking". These points could well be examined, using realistic data-sets 

as far as. possible. 

in conclusion, the work described in this thesis has demonstrated 

that this form of substructural analysis can yield potentially useful 

results. Further work along the lines mentioned above will be valuable, 

but major advances with these techniques must await their application on 

a routine basis in operational environments. 
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APPENDIX 

WLN FRAGMENTATION PROGRAMS 
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The computer programs written for the work described in this 

thesis derived structural features from WLN structural representation, 

for subsequent analyses by standard commercial statistical programs. 

The rationale for the type of structural features, and hence the type 

of fragmentation used, has been discussed in an earlier chapter. 

As noted in that discussion, the fragmentation procedures 

used in this work, being relatively simple, could be emulated by many 

of the widely-known structure-handling systems. These programs were 

written mainly to assist the data-handling for the correlations described 

above, and thereby to demonstrate the simplicity and flexibility of 

the automated procedures needed in this area. No attempt was made to 

generalise the applicability, or optimise the efficiency, of these programs 

beyond the level required for this work. 

The description to be given of these programs should therefore 

be taken as purely illustrative of some simple techniques useful in 

this area, rather than as a documentation of a fully tested and optimised 

working system. For this reason the description will be brief. 

The programs were written in ICL COBOL, and originally run 

on an ICL 1907E computer. Subsequently they were transferred, with 

minimal alterations, to an ICL 1906S machine. 

The programs all required less than 20K workds of, core storage. 

A disc file was used for intermediate storage of data, the capacity 

required depending upon the number of compounds being processed, but 

generally not exceeding 10K words. No accurate assessments of run times 

were made, but the programs typically used less than 100 seconds of 

CPU time in dealing with over 100 structures, depending upon the 

complexity of the fragmentaticn procedure. 



A program listing and outline flowchart are given for the 

algorithm which fragmented diverse structures. 

The fragmentation procedure was in this case very simple. 

Each WLN symbol was taken in turn and compared with a predetermined list 

of functionalities, unsaturated linkages, ring systems etc. represented 

by more than one WLN symbol. Numeric symbols, representing aliphatic 

chains, were fragmented into their component CH2 and CH3 groups. Apart 

from these cases, individual symbols from the WLN'were taken as the 

fragments: this fragmentation procedure is therefore completely open- 

ended, i. e. capable of dealing with any structure, without the necessity 

of specifying all the fragments which could occur. 

After. the fragmentation of each structure the occurrence 

of each type of fragment is totalled, for each structure and then for 

the whole set. The fragment occurrence array for each structure is 

then output for subsequent statistical analysis. 

In the algorithms for dealing with substitution on ring systems. 

this type of fragmentation is not applied. Instead a table is set up 

with an entry for each substituent comprising its WLN locant and the 

symbols of the substituent group, after a canonicalisation procedure. 

This latter procedure corrects variations in the ordering of WLN 

symbols for any group: to take a simple example the COOII group may 

appear as QV or VQ. Fragments then consist of the substituent groups 

or heteroatoms, treated as whole units. Relative position terms are 

derived by considering locant pairs for each pair of substituents: 

thus for a benzene ring locants "BC" would indicate an ortho interaction, 

"CE" meta etc. . 



Structures, coded in WLll, and property values were input 

on punched cards, or as card-image on a disc-file. The output, 

arrays of fragment occurrence values for each structure, is 

produced, again on cards or card-image on disc, for subsequent input 

into a statistical analysis program. 

J 
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Figure 19 

Trifluoromethylhenzinidazole nucleus 
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Structure Side-chain Structure log (b/f) log (b/f)b 
Number observed estimated 

1 

2 

3 

4 

H- -0: 659 -0.659 

-CH 3 -0.753 -0.654 

cH3f cH2+5cH2- 1.085 0-936 

CH3CH2CH2 
I 

CH3CH3CH3-C- 1.144 1.414 

CH3CH2CH2 

5 CFI3OCH2- -1.110 -0.750 

6 C113C1120CH2- 0.154 -0.485 

7 CH3CH2CH2CH2OCH2- 0.154 -0.045 

8 

9 

10 

CH3cii 2 

criocii�- -0.052 -0.166 

3 ctl 
/Z 

CH3CH2CH- 
-0.602 -0.431 

OC1i3 

CH CH CH CH CH- 
322 21 0.454 . 0.364 

CH3CH2-0 

Il CH3CH2OCH2CH2- -0.477 -0.220 

12 cx3cH2cfi2+ H- 
-0.308 -0.636 

NH2 

13 CH3CH2CH2CH2CH2CH2It1- 0.292 0.159 
Nil 

2 

0.826 0.179 

OCH 
3 

15 /ý ýC -0.017 . 
0-125 

octl 3 
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Structure Side-chain Structure 
Number 

16 

17 

18 

19 

20 

21 

22 

Cl 

23 

24 

C1 

25 

H... - 

1 

log (b/f) log (b/f)b 

observed 
e 

estimated 

1.005 1.237 

0.188 " 0.444 

OCH_ 
3 

CH 2- 0.525 0.390 

CH 0.327 0.497 
3 

CH2CH3 

CH2CH3 1.165 1.187 

Y14- 
Br 0.673 0.673 

ýH- 
Cl 0.550 0.596 

Cu. -. 
1.195 1.127 

CH-- 
Cl 1.195 1.117 

1.510 
. 

1.554 
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Structure 
Number 

27 

28 

Side-chain Structure 

Cu 

Cl - 

C1 

CH- 
N H2 

Cii- 
NH2 

log (b/fj log (b/f)b 

observed estimated 

-0.659 -0.333 

0.176 -0.212 

ýH- 0.087 0.243 
NH2 

29 Ci -ýý 'ý- ýx- 0.664 o. 625 

30 

Nil 

31 

oil 

NH2 

cx- -0.454 -0.2711 
, 

NN2 
ý 

CH- 
N112 

-0.865 -0.865 

32 // \\ 
,.,, -0.695 -0.65 7, 

33 

34 

35 

110 

cti3o 

a. n- 
ISHZ 

CH- 
NHZ 

cfi- NH2 

p- 
NH 
6-0 

-0.575 -0.613 

-0.213 -0.069 

-0.140 -0.140 
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1 

Structure Side-chain Structure 
Number observed" estimated 

36 

37 

38 

39 

40 

42 cl 

43 

44 

45 

C1 

gIi- 
OH 

Cti- 
ý octt3 

qH- 
ocH3 

CH- 
öCH3 

p- 

ocH3 

cl --ý --ý-- p_ 
OCH 

H- 
CH3 

log (b/fj log (b/f)b 

0.231 0.231 

0.056 0.056 

0.213 0.136 

0.865 0.877 

0.689 0.667 

0.720 0.706 

1.061 1.094 

1.440 i: 44o 

0.689 0.626 

0.269 0.199 
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Structure Side-chain Structure 
Number observeda estimated 

46 
2 

Fl- 
OCHý 

47 
0-CH2- 

48 // \\ 0.644 

49 

50 

51 

52 

53 

54 

55 

56 
C1 

OýH- 
CH3 

iH3 

0-ý- 
tt3 

O-CII- 
6II2cH3 

log (b/f' log (b/f) 
b 

0.176 0.176 

0.589 0.586 

0.639 

1.091 0.799 

. 0.792 0.904 

1.541 1.471 

ocli., - 1.032 0.797 
z 

OCH2- 

O-CHZ 

0.704 0.648 

0.644 0.693 

0 Ii- 
1ý13 1.380 1.320 

3 
1.261 1.215 
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Structure Side-chain Structure log (b/f) log (b/f)h 
Number observed- estimated- 

57 

C1 

Cl 

C1 

o-cH- 
CH11 

1.380 1.210 

58 
C1_1,11 

Sýý- 
O-CH- 

1"574 1.560 

C1 

60 

61 

62 

63 

64 

65 

66 

67 

O-cH- 
CH3 

C1 

Cl ---2---3 

O-CH- 
C}t Of 

cH3 

ocH3 

1.510 1.510 

0.788 0.851 

0.720 0.702 

0.602 0.747 

1.297 1.475 

0.788 0.951 

1.327 1.064 

o. 661 0.545 

0.602 0.687 
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Structure Side-chain Structure log (b/f) log (b/f),, 
Number observed- estimated' 

68 

69 

70 

71 

72 

O-CH- 

QI 

OCH2CH3 

OCH- 
CH3 

CH2- 

cs- 

/S\ 
CHCii2- 
NH2 

73 
ý\ 

cf1_ 
öcH3 

74 

75 

76 

77 

YH- 
OCH3 

CFi- 
öCH3 

OCH 
3 

ocH3 

oct13 

3 ocH2ctl 

0.921 0.952 

1.252 1.525 

1.574 1.411 

0.140 0.263 

-0.327 -0.249 

0.158 -0.044 

, 

0.940 0.928 

/ 

0.707 0.719 

0.122 0.110 

0.207 6.204 

78 Ll- U, 
.. ýJ 0.362 0.374 
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Structure Side-chain Structure 
Number 

79 

Notes: penicillin nucleus 

is common 

a from BIRD et al., 1967 

log (b/f) log (b/f)b 

observed 
a 

estimated 

0.466 0.469 

-cohIJ /S ctý3 
G{3 

�N coox 

b 
using structural feature set B 

Penicillin serum binding 

Observed and estimated activities 

Table 1 



43 
a2 

Structural WLN Regression t statistic 
Feature string Coefficient (60 degrees of 

freedom) 

OIZ 

rl -ý `-, s --- 

T6NJ excluded by regression program 

T66 BNJ 1.09 

T5SJ 0.84 

L66J 

5.84 

4.69 

1.81 10.67 

R 1.07 8.28 

-CH3 (it) 

-CEI2- (l c) 

i 
- CI I- Y 

ý 
-C- X 

-Clio Vil 

-CONH- 
yM 

Q 
-011 

-N1l2 

-0- 

-so 2NH2 

-NO2 

-0.04 0.44 

0.28 7., 46 

0.34 3.37 

0.68 2.70 

0.27 0.83 

-0.25 0.84 

-0.44 2.41 

-0.67 6.70 

0 0.04 0.44 

swz -1.44 3.50 

NW -0.30 1.06 
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Structural WLN Regression t statistic 
Feature string Coefficient (60 degrees of 

freedom) 

-Cl G 0.36 

-Br E 0.42 

-F F 0.11 

regression 
constant 

t= terminal, c:. = connective 

7.06 

2.35 

1.01 

-0.59 1.30 

Penicillin serum binding 

Regression analysis results with structural feature set A 

Table 2 

/ 



ý t.. ý. 3,1 

Structural WLN Regression t statistic 
Feature string Coefficient (45 degrees of 

freedom) 

-CH3 (it) 1 --0.10 1.33 

-CH 2- (1c) 0.27 8.99 

-CH- Y 0.42 4.08 

-C- 

-CHO 

-so 2NH2 

-NO2 

-0- (chain) 

-0-(ring) 

-NH2(chain) 

-Nil 2(ring) 

-OH(chain) 

-OH(ring) 

-C1(chain) 

-C1(ring) 

-Br(chain) 

-Br(ring) 

-F(ring) 

x o. 67 3.16 

vH -0.10 0.43 

5wz -1.33 3.96 

NW -0.13 0.51 

0 -0.36 3.52 

(10c) 0 0.14 1.67 

Z -0.93 7.81 

(10c) Z -0.71 2.73 

Q -0.54 2.36 

(10c) Q -0.50 2.54 

G 0.01 0.01 

(loc) G 0.36 % 3.16 

E 0.08 0.35 

(loc) E 0,57 2.59 

(loc) F -0.11 0.81 

T6NJ excluded by regression program 

T66 BNJ (D, E) 0.62 3.23 

T66 BNJ (c, D, E) 0.81 3.69 

/\. 
T5 SJ 0.55 3.82 

S 



Structural WLN Regression t statistic 
Feature string Coefficient 45 degrees of 

freedon) 

/\ T5 SJ (B, E) 

L66J (B) 

L66J (C) 

L66J (B, C) 

R (A) 

il 

0.96 4.49 

1.51 8.40 

1.62 

1.20 

0.74 

R (A, B) 1.06 

R (A, C) 0.91 

R (A, D) 0.95 

R (A, B, E) 0.59 

R (A, C, D) 0.98 

R (A, C, E) 0.89 

R (A, C, D, E) 0.97 

9.03 

7.08 

7.16 

6.71 

/ 

5.78 

'6.32 

2.71 

4.07 

2.76 

2.50 
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Structural WLN Regression t statistic 
Feature string Coefficient 45 degrees of 

freedom) 

regression excluded by regression program 
constant 

Notes: c= connective, t= terminal, (loc) = WLN ring locant 

Penicillin serum binding 

Regression analysis results with structural feature set B 

Table 3 

/ 
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Feature Number Structural Feature 

1 

2 

N 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

r-A 

Ns -" 

CH3- 

-CH = 
2 

-CH- 

-C- 
I 

I 

-CHO 

-CONH- 

-OH 

-NH2 

(directly joined to 
penicillin nucleus) 

(joined via chain 
to penicillin nucleus) 

(directly joined to 
penicillin nucleus) 

(joined via chain 
to penicillin nucleus) 

16 -0- 



'ýý: k ý 

Feature Number Structural Feature 

17 -SO2NH2 

18, -NO2 

19 -Cl 

20 -Br 

21 -F 

22 

Penicillin serum binding 

Structural Features in Set C 

Table 4 

x 
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Feature Number Structural Feature 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

s 

-Cli3- 

-CIi2- 

i- 

_C_ 
I 

-Clio 

-CONIi- 

11 -OH 

12 

13 

14 

. 15 

16 

-NH2 

-0- 

-S02NH2 

-V02 

/ 

-Cl (on alkyl chain) 

17 -Cl (benzene - ortho) 

18 -Cl (benzene - meta) 

19 -Cl (benzene - para) 

20 -Cl (thiophene) 

21 -Br (on alkyl chain) 
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Feature Number Structural Feature 

22 -Br 

23 -Br 

24 

25 

26 

27 

-F 

-F 

-F 

28 

29 

(benzene - meta) 

(thiophene) 

(benzene - ortho) 

(benzene - meta) 

(benzene - para) 

halogen substituted 

30 

31 

32 

`33 

34 

---ýM indicates chain to penicillin nucleus 

r 

(without halogen subatitution) 

- positions for halogens on benzene rings are relative to chain 

to penicillin nucleus 

Penicillin serum binding 

Structural Features in Set D 

Table 5 
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Structural Regression t statistic 
Feature Coefficient (54 degrees of freedom) 

-CH2- 
I 

-CH- 
I 

-C- 
I 

-CONH- 

-S02N112 

-0-(chain) 

-O-(ring) 

-NH 2(chain) 

-NH2(ring) 

-0H(chain) 

-OH(ring) 

-C1(ring) 

-Br(ring) 

cs 

- 

s 

0.23 9.15 

0.29 3.88 

0.44 3.03 

-0.48 5.43 

-0.90 3.59 

-0.40 4.92 

0.21 3.72 

-0.84 8.49 

-0.54 2.25 

-0.48 2: 12 

-0.31 1.80 

0.63 12.22 

0.79 4.18 

0.39 

0.49 

0.53 

2.30 

2.85 

3.74 

0.70 3.66 

1.41 8.18 

0.99 6.77 
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Structural 
Feature 

Regression t statistic 
Coefficient (54 degrees of freedom) 

0.72 

0.83 

8.25 

6.83 

0.70 

0.71 

0.43 

Penicillin serum binding 

Structural features of set B included at 10% 

Table '7 

6.88 

6.63 

3: 49 
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Structural Regression t statistic 
Feature Coefficient (72 degrees of freedom) 

CH3- 0.70 15.26 

-CH 2- 0.50 38.49 

-CH- 0.20 4.25 

-000H -0.68 9.48 

-Coo- -1.07 12.60 

-0- -1.13 18.05 

-OH -1.12 15.41 

-NH2 -1.09 - 12.12 

-NH- -1.52 18.43 

-N- -1.76 17.70 

benzene 
ring 1.94 32.05 

regression 
constant -0.19 

Diverse Structures Partition Coefficients 

1.55 

Regression Analysis Results with Structural Feature Set A 

Table 10 
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Structural Regression t statistic Perfectly correlated 
Feature Coefficient (69 degrees structural features 

of freedom) 

CH3- 0.60 16.80 

-CH 2- 
0.50 36.72 

-CH- 0.31 4.81 

-coon -0.78 15.52 

-COo- -1.07 11.72 

-0- -1.14 15.60 

-011 -1.22 24-76 

-NH2 -1.19 18.71 

-NH- -1.53 17.33 

I 
-N- -1.67 14.00 

benzene 1.84 53.41 
ring 

*CH2* 0.17 4.32 

I *CH* 1.73 7.23 
*CH* -0.78 6.03 *N* 

*NH* excluded by regression program 
, 

"0. -0.54 4.40 

regression 
constant excluded by regression program 

Diverse Structures Partition Coefficients 

Regression Analysis Results with Structural Feature Set B 

Table 11 

Note: * indicates ring bond 
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Structural Regression t statistic 
Feature Coefficient (69 degrees of freedom) 

-CH3 

-CH- V 

1 

-CH- 

-000H 

-coo- 

0.81 

0.50 

0.10 

-0.57 

-1.07 

-1.14 

-1.01 

-0.98 

-1.53 

-1.88 

7.94 

36.72 

0.83 

5.27 

11.72 

15.60 

9.33 

8.49 

17.33 

12.28 

-0- 

-OH 

-NH2 

-NH- 
1 

-N- 

benzene 
ring 

0 

N 
H 

Co ) 

0 regression 
constant 

2.05 20.12 

0.84 3.92 

1.25 4.60 

excluded by regression program 

2.77 16.06 

-0.42 2.19 

Diverse Structures Partition Coefficients 

Regression Analysis Results with Structural Feature Set C 

Table 12 
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Structure Heat of 
Number Structure for-mation 

(kcal/mole) 

1. 

2. CH3CH=CH2 

3. CH3CH2CH=CH2 

4. CH3CH=CHCH3 cis 

5. CH3CH=CHCH3 trans 

CH3CHZCH: CHCH3 cis 

6. cH2=cfi(cr[3)2 -4.04 

7. CH2=CHCH2CH2CH3 

B. 

9" 

12.50 

4.88 

--0.03 

-1.67 

-2.67 

-5.00 

-6.71 

CH3CH2CH: CHCH3 trans -7.59 

10. CH2=C(CH3)CH2CH3 -8.68 

11. CH2=CHCII(CI13 )2 -6.92 

12. CH3CH=C(CH3)2 -10.17 

13. CH2=CI14CI12+3CH3 -9. ,6 

14. CH3CH=CHCH2CH2CH3 cis -12.51 

15. CH3CH=CHCH2CH2CH3 trans -12.88 

16. CH3CH2CH=CHCH2CI13 cia -11.38 

17. CH3cti2CH=CHCH2CH3 trans -13.01 

18. CH2=c(CH3)CH2Ctt2CH3 -14.19 

19. cH2=cHCH(cH3)cH2cH3 -11.82 

20. CH2*CHCH2CII(CH3)2 -12.24 

21. CH3CI12CII. C(CIi3)2 -15.98 

22. CH3CHaC(CI-13)C112CH3 cis -14.86 

23. CH3CH=C(CH3)CIi2CH3 trans -15.08 

24. CH3CH=CHCHI(CH3)2 cis -13.73 

25. CH3CIi=CI! CH(CH3)2 trans -14.69 

26. CH2=C(CH3)2 -13.36 



4g5 

Structure Heat of 
Number Structure formation 

(kcal/mole) 

27. CH2=C(CH3)CH(CH 
3)2 -15.85 

28. CH2=CHC(CH3)3 -14.70 

29. (CH3)2c=C(cH3)2 -16.68 

30. CH2=CH{CH2 }4CH3 -14.89 

31. CH3CH=CHfCH2+3CH3 trans -17.60 

32. "CH3CH=CHfCH2+3CH3 cis -16.90 

33" CH3CH2CH=CHCH2CH2CH3 trans -17.60 

34. CH3CH2CH=CHCH2CH2CH3 cis -16.90 

35" - CH3CH2CH=C(CH3)CH2CH3 cis -18.60 

36. CH3CH2CH=C(CH3)CH2CH3 trans -19.22 

37" ü12. c(CH3)CH2CH(CII 
3)2 -20.27 

38. CH2=CHCH2C(CH3)3 -19.20 

399 (CH3)2C=CHCH(cH3)2 -21.44 

40. CH3CH-CHC(CH3)3 cis -17.60 

41. CH3CH=dHC(CH3)3 trans -21.46 

42. CH2=c(cH2Of3)cH(cn3)2 -19.25 

43. CH 20C(CH3)C(CH3)3 -20.67 

44. CH2=CH{-CH2}5CH3 " -19.82 

45. CH3CH2CH=CHC(CH3)3 cis -21.77 

46. CH3CH2CH=CHC(CH 3)3 trans -26.16 

47. CH2jCH(CH3)CH(CH2CH3)2 -24.40 

48. CH2=CH(Ci13)CH2C(CH 3)3 -26.68 

49. (cH3)2C-CHC(CH3)3 -25.50 

50. CH2-C=CH2 45.90 

51. CH3CH=C=CH2 38.77 



ýO6 

Structure 
Number Structure 

52. CH3CH2CH_C=CH2 

53. CH3CII=C=CHCH3 

54. CH2=CHCH=CH2 

55. CH3CH=CHCH=CH2 cis 

56. CI1 3CH=CHCH=CH2 trans 

57. CH2=CHCH2CII=CH2 

58. CI12=C(CH3)CH=CH2 

59. CH=CH 

60. CH3C=CH 

61. CH3CH2C=CH 

62. CH3CzCCL{3 

63. CH3CH2CH2Cm-CH 

64. CH3CH2C=CCH3 

65. CH=CCH(CH3)2 

66. CH=CCH2CH2C_CH 

67.. CH3CH=CIIC-CH cis 

68. CH3CH=CIICCH trans 

69. CH3. (CH2)5CH=CHC=CH cis 

70. CH3(CH2}SCH=CHC-CH trans 

Table 24 

Unsaturated Aliphatics Heats of Formation 

Structures and Property Values 

Heat of 
formation 
(kcal/mole) 

33.61 

31.79 

26.33 

19.77 

18.77 

25.41 

18.09 

54.19 

44.32 

39.48 

34.97 

34.50 

30.80 

32.60 

99.44 

60.60 

60.92 

36.25 

36.95 
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Structural Feature 

cH3- 

-CH2- 
I 

-CH- 
I 

-C- 
i 

CH�=CH2 
4. 

CH2=C11- 

-CH=CH- 

a 

I 
CHZ=C- 

-CH=C- 
1I 

-C=C- 

CH2=C=CH2a 

CH2=C=CH- 

-CH=C=CH- 

CH= CHa 

CHäC- 

-CäC- 

cis interaction 

conjugation 

regression constant 

Regression t statistic . Coefficient (51 degrees of freedom) 

0.64 0.95 

-4.74 50.86 

-11.99 17.82 

-18.34 13.63 

33.95 16.61 

24.83 22.83 

16.89 23.50 

15.93 24.27 

8.52 13.60 

excluded by regression program 

67.37 32.97 

59.37 43.56 

51.96 45.82 

75.64 37.01 

65.22 61.07 

55.42 59.04 

1.10 3.05 

-1.65 2.55 

-21.45 11.62 

Note a unique feature representing single structure 

Table 26 

Unsaturated Aliphatics Heats of Formation 

Regression results for structural feature se' 
_D 



Structure 
Number 

1. 

2. 

3" 

4. 

5" 

6. 

7" 

8. 

9" 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

Structure Heat of vaporization 
(kcal. /a. f. w. ) 

CH3-fCH2-}2CH3 

CH CH(CH ICH 

5.02 

CH3CH(cH3)CH3 4.61 

CH3-ECH--23CH3 6.39 

CH3CH2CH(CH3)2 6.03 

cH3-ECH23-4CH3 7.54 

CH34CHZ-3-2CH ( CH3 )27.14 

CH3CH2CII(CH3)CH3CH3 7.24 

CH3CH ( CH3 ) C}1( CH3 )2 6.96 

CIi3CH2c (cH3 )36.62 

cH34cH2-)-5CH3 8.74 

CH3(CII2-}3CH (CH 
3)28.33 

CI134CH2+2 ( CI13 )CH 
2 CH3 8.39 

CH3CH2CH(CII2CH3)2 8.42 

CH3{CH2}2C(CH3)3 7.75 

CH3CH2CH(CH3)CH(CH3)2 8.18 

3.33 

c11 
3cH(cH3)cH2cH(cH3)2 7.86 

CH3CH2C(CH3)2CH2CH3 7.89 

CH3C(CH3)2CH(CH3)2 7.66 

CH3-ECH2I6CH3 9.92 

CH3{CH --2ýCH (CH3 )2 

9.92 

9.48 

CH3{CH2+3CH(CH3)Ct12CH3 9.52 

CH3CH2CH2CH (CH3 )CH2Cli2Cli3 g. 48 

CH3CH2CH2CH(Cif 2CH3)2 9.48 

CH34, CH2-}-3C (Cif 
3)38.91 

CH3CH2CH2CH(CH3)CH(CH3)2 9.27 

CI13CH2CH(CH3)CII2CII(CI13)2 9.03 



Structure 
Number 

27. 

28. 

29. 

30. 

31. 

32. 

33" 

34. 

35" 

36. 

37. 

38" 

39" 

ILO. 

41. 

42. 

43- 

44. 

45. 

46. 

47. 

48. 

49. 

50" 

51. 

52. 

53" 

54. 

Structure 

CH3CH(CH3)CHZCH2CH(CH3)2 

CH3CH2CH2C(CH3)2CH2CH3 

CH3CH2CH(CH3)CH(CH3)CH2CH3 

CH3CH2CH(CH2CH3)CH(CH3)2 " 

CH3CH2C(CH2CH3)2CH3 

cH3cH2CH(ctl 3)c(cH3)3 
CH3C(CH3)2CH2(CH3)2 

v 

CH3CH2C(CH3)2CH(CH3)2 

CH3CH(CH3)CH(CH3)CH(CH3)2 

CH -EcH+ cH 
32? 3 

CH3-ECH2+ $CH3 

CHOH 

CH3CH2OH 

CH3CH2OH 

CH3CH(OH)CH 3 

CH3-(CH 23-3oH 

CH3CH(CH3)CH2011 

CH3CH2CH(OH)CH3 

CH3c(CH3)2oH 

CH3-eCH2+4011 

CH2CH2CH2CH(OH)CH 

CH3ýCH2-}-5oH 

CH3-ECH 2+60H 

cii -'CO-CH 

CH3CH2 CO-CH3 

CH3CII2CII2-CO-CH3 

CH3CH ( CI13 ) -cO-c113 

CI13CH2CH2-CO-CH2CH3 

Heat of vaporization 
(kcal. /g. f. w. ) 

9.05 

8.97 

9.32 

9.21 

9.08 

8.82 

8.40 

8.90 

9.01 

11.10 

12.28 

8.94 

10.18 

11.34 

10.90 

12.50 

12.15 

11.89 

11.14 

13.61 

12.56 

15.00 

16.20 

7.37 

8.34 

9.14 

8.82 

10.01 



4)1 

Structure Structure Heat of vaporization 
Number (kcal. /p. f. w. ) 

55" 

56. 

CH3CH2CO-CH(CH3)2 

C11 3CH2CO-c(cH3 
)3 

57. CH3CH(CH3)-CO-CH(CH3)2 

58. Cii3c(CH3)2 CO-CH(CH3)2 

59" CH3-(CH2)-3 CO -ECH2-ý-3CH3 

60. cH3c(cH3)2 Co-C(C113)3 

61. CH3CH2CH = CH2 

62. 
, 

CH3CH a CH CH3 cis 

63. CH3CH = CH CH3 trsnts 

64. CH2 = c(cH3)2 

65. CH3CH2CH2CH = CH2 

66. CH3CH2CH = CH C113 cis 

67. CH3CH2CH = CH CH3 trans 

68. CH2 = c(cH3')cH2CH3 

69. CH2= CH CH(CH3)2 

70*. CH3CH = C(CH3)2 

71. CH3ýCH2-}-3CH = CH2 

72. CH3CH2CH2CH = CH CH3 cis 

73. CH3CH2CH2CH = CH CH3 trans 

74. CH3CH2CH = CHCH2CH3 cis 

75. CH3CH2CII L CHCH2CH3 trans 

76. CH2 = C(CH3)CH2CH2CI13 

77. CH2 = CHCH(CH3)CH2Cii3 

78. CH2 = CHCH2CH(CH3)2 

79" CH3CH2CII a CH(CH32 

80. CH3CH = C(C113)CH2CIi3 cis 

81. CH3CH = C(CH3)CH2CH3 trans 

9.51 

10.12 

9"93 

10.35 

12.59 

10.84 

4.92 

5.40 

5.16 

4.92 

6.09 

6.41 

6.38 

6.18 

5.70 

6.47 

7.34 

7.54 

7.56 

7.49 

7.56 

7.31 

6.85 

6.88 

7.57- 

7.69 

7.51 



Structure Structure Heat of vaporization 
Number 

82. 

83" 

84. 

85. 

86. 

87. 

88. 

89. 

9o. 

91. 

92. 

93. 

94. 

95. 

96. 

97- 

98. 

99. 

100. 

101. 

102, 

103. 

104. 

(kcal. /g. f. w. ) 

CH3CH = CH CH(CH3)2 cis 7.06 

CH3CH = CH CH(C113)2 trans 7.18 

CH2 = C(CH3)CH(CH3)2 6.99 

CH2 = Of c(cH3)3 6.38 

CH3C(CH3) = c(cH3)2 7.80 

CH3{CH2ýkCH = CH2 8.52 

C1i3CH2CH = C(CH3)CH2CH3 cis 8.73 

CH3CHCH = C(CH3)CH2CH3 trans 8.58 

CH2 = C(CH3)CH2CH(CH3)2 7.93 

CH2, = cNCH2c(cH3)3 7"47. 

CH3CH(CH3)CH = C(CH3)2 8.22 

CH3CH = CH c(CH3)3 cis 7.81 

CH3CH = CH C(cH3)3 tr:. ns 7.87 

CH3CH2CH = CH C(CH3)3 cis 8.88 

CH3CH2CH = CH C(cH3)3 trans 8.91 

benzene derivatives 

H 8.09 

CH3 9.08 

CH2CH3 10.10 
1,2 - (CH3)2 10.38 

10 - (CH3)2 
. 

10.20 

1,4 - (CH3)2 10.13 

CH2CH2CH3 11.05 

CH(CH3)Z 10.79 

105.1- Cfi2CH3,2-CH3 ii. 40 



493 

Structure Structure Heat of vaporization 
Number (kcal. /g. f. w. ) 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 

114. 

115. 

116. 

i- cH2cH3,3-cH3 

cH2cH3,4-cx3 

1,2,3- (CH3)3 

1,2,4- (CH3)3 

1,3,5- (CH3)3 

1- OH, 3-CH3 

1- OH, 2-CH2CH3 

1- OH, 3-CH2CH3 

1- OH, 2,4-(CH3)2 

F6 
I 

11.21 

11.14- 

11-73 

11.46 

11.35 

14.75 

15.20 

16.30 

15.74 

8.53 

F5 8.65 

117.1,2- F2 8.65 

118.1,3- F2 8.29 

119.1,4- F2 -8.51 

120.1,2- Cl2 11.4 
/ 

121.1,3- C12 11.1 

122. F 8.27 

123. Cl 9.63 

124.1- CH3, F5 9.78 

125.1- CH3,4-F 9.42 

126.1- C1,2-CH2CH3 11.3 

127.1- c1,4-cH2CH3 11.5 

pyridine derivatives 

128. H 9.61 

129.2- CH3 10: 15 

130.3- CH3 10.621- 

131- 4- CH3 10.83 

132.2,3- (CH3)2 11.70 



Structure Structure Heat of vaporization 
Number (kcal. /q. f. w. ) 

133.2,4- (CH3)2 11.42 

134.2,5- (CH3)2 11.43 

135" 2,6- (CH3)2 11.01 

136.3,4- (CH3)2 12.38 

137" 1 3v5- (CH3)2 12.04 

Table 27 

Diverse Structures Heats of Vaporization 

Structures and Property Values 
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ý5r 

Structural Regression t Statistic 
Feature Coefficient (28 degrees of freedom) 

CH3- 

-CH2 
1 

-CH- 
I 

-C- I 

CH2=CH- 

-CH=CH- 
i 

CHZ=G- 

I 
-CH=C- 

It 
ýCsCý 

regression 
constant 

1.95 107.80 

1.15 71.26 

-0.09 2.17 

-1.3? 25.61 

1.90 39.98 

1.36 28.38 

1.10 20.38 

0.56 8.81 

excluded by regression program 

excluded by regression program- 

Table 30, 

Diverse Structures Heats of Vaporization 

Regression results for structural feature set A analysis of 

data subset (6) 
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o'()i. 

Structural 
Feature 

aromatic ring 

ring N 

CH3- 

CH3CH2-. 

CH3CH2CH2- 

-CH(CH3)2 

-OH 

-F 

-C1 

Me-ortho-ring N 

'Me-meta-ring N 

Me-para-ring N 

Me-ortho-Me 

Me-meta-Me 

Me-para-Me 

Me-ortho-Et. 

Me-meta-Et 

Me-para-Et 

Me-ortho-OH 

Me-meta-OH 

Et-ortho-OH 

Et-meta-OH 

Me-ortho-F 

Me-para-F 

Et-ortho-C1 

Regression t statistic Perfectly correlated 
Coefficient (11 degrees of structural features 

freedom 

common to all structures 

1.46 18.72 

0.99 17.59 

2.02 21.43 

2.96 31.54 

2.70 28.77 

6.20- . 61.56 

0.22 4.97 

1.54 16.42 

-0.34 6.78 

0.20 4.06 

0.26 3"99 

0.30 5.77 

0.09 1.86 

0.03 0.47 

0.31 2.66 

0.12 1.01 

0.05 0.41 

-0.62 4.80 Me-para-OH 

-0.53 4.09 

-1.10 10.92 

excluded by regression program 

0.03 0.45 Me-meta-F 

0.17 1.36 

-0.34 2.49 



50 %1.. 

Structural Regression t statistic Perfectly correlated 
Feature Coefficient (11 degrees of structural features 

freedom 

Et-para-C1 -0.14 1.04 

F-ortho-F 0.11 2.07 

F-meta-F -0.25 4.50 

F-para-F -0.03 0.34 

C1-ortho-C1 0.23 1.33 

C1-meta-C1 -0.07 0.43 

regression 
constant 8.09 132.10 

Table 34 

Diverse Structures Heats of Vaporization 

Regression Results for structural feature set K analysis of data 

subset (9) 



5fý3 

Structural Regression t statistic 
Feature Coefficient (85 degrees of freedom) 

-Cit3 1.61 32.08 

-CH 2- 1.12 59-00 
i 

-CH- 0.22 2.38 

ý-- 
-ý- -0.87 5.80 

-OH 7.45 110.30 

-C=O 3.41 40.08 

CH2=CH- . 2.33 30.45 

-CH=CH- 2.12 22.89 

CH2=C- 1.82 14.78 

-Cfi=c- 1.62 10.49 

-C=ý- 1.37 4.57 

regression 
constant 

excluded by regression program 

Table 35 1 

Diverse Structures Heats of Vaporization 

Regression results for data subset (10) 



ý 50 

(i) CHH3CIi2CH2CH2CH3 CH3 

(ii) CH3-CH-CH2CH3 (iii) C11 3-C"CH3 
CH3 CH3 

6Hv value QHv (i)- LaHv (ii) 
'aHV(iii) - pi3v (i) 

Observed -0.42 -1.05 

SSA subset (10) -0.41 -1.02 

Greenshield-Rossini -0.19 -1.25 

Laidler-Lovering -0.32 -0.51 

Table 36 

Diverse Structures Heats of Vaporizatiol 

Comparisons of estimations (chain branching) 
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501; 

Structural 
Feature 

CH -- 3. ý 
-CH2- 

-CH- 

-C- 

-OH 

F 

C1 

CH2'CH- 

-CH=CH- 

CH2=C- 

-CH=C- 

-C=C- 

Regression t statistic Perfectly correlated 
Coefficient (99 degrees of structural features 

freedom) 

0.97 5.94 

1.12 63.56 

0.86 5.04 

0.40 1.21 

3.41 42.75 

0.26 2.01 

1.59 5.92 

1.68.9.11 

2.11 24.45 

1.81 15.72 

2.25 11.41 

2.63 6.58 

6.74 32.21 

Me-ortho-ring N 

Me-meta-ring N 

Me-para-ring N 

Me-ortho-Me 

Me-meta-Me 

Me-para-Me 

Me-ortho-Et 

Me-meta-Et 

Me-para-Et 

Me-meta-Ofi 

Me-para-OH 

Et-ortho-OH 

8.27 24.62 

-0.35 2.38 

0.20 1.33 

0.26 1.35 

0.35 2.40 

0.13 1.01 

0.09 0.49 

0.31 1.09 

0.12 0.42 

0.05 0.18 

-1.06 3.60 

-1.17 3.61 Me-ortho-Oll 

-1.73 5.85 



Structural Regression t statistic Perfectly correlated 
Feature Coefficient (99 degrees of structural features 

freedom) 

Et-meta-0E1 -0.63 2.12 

F-ortho-F 0.11 0.65 

F-meta-F -0.26 1.60 

F-para-F -0.04 0.17 

C1-ortho-C1 0.18 0.35 

C1-meta-C1 -0.12 0.25 

Me-ortho-F 0.01 0.06 Me-meta-F 

Me-para-F 0.16 0.65 

Et-ortho-C1 -0.41 1.23 

Et-para-C1 -0.22 0.64 

Table 
_38 

Diverse Structures Heats of Vaporization 

Regression Results for structural feature set M analysis of 

data subset (11) (99.99%) 

ý( )! 



54lß 

Structural Regression t statistic 
Feature Coefficient (121 degrees of freedom) 

CH3- 

-CHZ 

-C- 1 

-OH 
1 

-CaO 

1.59 

1.01 

-1.14 

6.90 

3.03 

1.14 

2.45 

1.87 

1.60 

1.26 

1.04 

18.44 

24.77 

6.51 

34.02 

15.58 

5.75 

12.04 

7.32 

7.99 

4.52 

4.51 

F 

C1 

CF12=CH- 

-CH=CH- 

CH2=C- 

-CH=C- 

. Me-ortho-ring N 

F-meta-F 

regression 
constant 

5.69 28.33 

'8.39 24.91 

-0.72 2.79 

-0.86 4.08 

. o; 78 2.26 

Table 39 

Diverse Structures Heats of Vaporization 

Regression Results for structural features of set M included 

in analysis of data subset (11) at the 10% level 



609 

Data subset Structural Feature Seta Predicted Value 

(4) - 8.67 

(10) - 8.82 

(11) set L'8.95 

(11) set M 8.82 

structure: CH3-4CH2j3 CH3 

observed value: 8.74 

Note a where applicable 

Table 
_40 

I 

Diverse Structures Heats of Vaporization 

Property Prediction for n-heptane 



610 

Data subset 

(4) 

(10) 

(11) 

(11) 

Structural Feature Seta 

"set L 

sot M 

structures CH3CH2CH2C(CH3)3 

observed value: 7.75 

Note a 
where applicable 

Tnhle 41 

Diverse Structures Heats of Vaporization 

Property Prediction for 2,2 dimethyl pentane 

x 

Predicted Value 

7.84 

7.81 

7.94 

7.81 



511 

Data subset 

(7) 

(7) 

(9) 

(9) 

(11) 

(11) 

structure --CH 3 

observed value: 9.08 

Table 42 

Structural Feature Set Predicted Value 

set C 9.28 

set D 9.10 

set G 9.28 

set K 9.08 

set L 9.04 

set M 8.99 

Diverse Structures Heats of Vaporization 

Property Prediction for Toluene 



512 

Data subset 

(7) 

(7) 

(9) 

(9) 

(11) 

(11) 

Structural Feature Set 

set C 

set D 

set G 

set K 

set L 

set M 

i 

structure: 
--Cl 

observed value: 

Table 4 

9.63 

Diverse Structures Heats of Vaporization 

Property Predictions for Chlorobenzene 

z 

Predicted Value 

9.67 

9.58 

9.67 

9.59 

9.58 

9.57 

0 



51 3 

I 

Data subset 

(2) 

(3) 

(5) 

(10) 

(ii) 

(u) 

structure: 

Structural Feature Seta 

act L 

set M 

CH3CH2CH2-CO-CH3 

observed value: 9.14 

Note a where applicable 

Table 

Diverse Structures Heats of Vaporization 

Property Predictions for pentan-2-one 

Predicted Value 

9.20 

9.15 

8.87 

8.84 

8.92 

8.84 



514 

Data subset 

(1) 

(3) 

(5) 

(zo) 

(11) 

(11) 

Structural Feature Seta 

x 

Predicted Value 

12.55 

12.52 

12.42 

12.41 

12.17 

12.61 

set L 

set M 

structure: CH3CH2CH2CIi2OH 

observed value: 12.50 

Note a 
where applicable 

Table 4 

Diverse Structures Heats of Vaporization 

Property Prediction of n-butanol 



5 15 

Data subset Structural Feature Set Predicted Value 

(6) set A 5.23 

(6) set B 5.24 

(11); set L 5.44 

(11) set H 5.34 

33 structure: CHCH=CHCH 

observed value: 5.40 

Table 46 

Diverse Structures Heats of Vaporization 

Property Prediction for cis-2-butene 



516, 

Data subset Structural Feature Set Predicted Value 

(9) set G 11.35 

(9) set K 11.81 

(11) set L 10.92 

(11) set M 11.83 
Me 

structure: 

observed value: 11.73 

Table 47 

Diverse Structures Heats of Vaporization 

Property Prediction for 1,2,3 trimethyl benzene 



517 

Data subset. Structural Feature Set Predicted Value 

(9) set G 11.14 

(9) set K 11.09a 

11.40b 

. (11) 

(ii) 

Me 

structure: 
Et 

observed value: 11.40 

Notes a ignoring Me-ortho-Et. 

set L 

set H 

11.09 

11.09a 

11.44b 

b 
approximating Me-ortho-Et as equivalent to Me-ortho-Me 

Table 48 

Diverse Structures Heats of Vaporization 

Property Prediction for 1-methyl, 2-ethyl benzene 
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51. E 

Structure Substituents pKa log log 
number solubility toxicity 

2718 H 8.79 2.71 2.17 

2727 5-CH3 8.90 - 2.50 

7489 5-C2H5 8.81 - 2.11 

4098 5-tc09 9.12 - 2.16 

3895 5-F 8.00 2.63 1.91 

3990 4-Cl 7.57 2.88 1.94 

2785 5-C1 7"97 2.23 1.49 

4307 4-Br 7.37 - 2.02 

4173 5-Br 7.89 - 2.27 

4762 5-I 7.71 - 2.49 

4005 5-CN 7.16 2.73 1.32 

3391 5-CF3 7.52 1.98 1.55 

4025 5-000H 8.36 2.78 - 

6727 5-000CH3 10.80 2.66 1.98 

6717 5-COOC2H5 7.81 2.15 2.19 

6735 5-CONI{2 7.78 3.18 2.14 

6704 5-OH 9.00 3.34 2.31 

4027 5-NH2 4.54 - 2.52 

4166 5-NHCOCH3 8.30 1.88 1.99 

4083 4-NO2 6.84 2.93 1.66 

2814 5-NO2 6.68 2.32 1.20 

10157 5-SO2CH3 6.90 3.45 2.42 

": f4765 5-SO2NH2 7.12 - 1.90 

4347 5-C6115 8.36 1.95 2.42 

3522 5,6-ICH3)2 9.18 1.23 2.53 

6099 416-F 
2 -7.28 2.64 1.05 



. 
520 

Structure Substituents pK& log log 

number 
ýý 

5940,4-F; 5-c1 7.12 

6082 4-F; 6-C1 6.76 

6698 5-F; 6-C1 7.66 

5876 4-C1; 6-F 7.11 

5342 4-Br; 6-F 7.10 

3363 4,5-C12 6.96 

2983 5,6-C12 7.40 

3531 4,6-Cl 
2 

6.78 

3048 4,7-c12 6.24 

5263 4-C1; 6-Br 6.69 

5086 4-Br; 6-C1 6.76 

7972 5-Br; 6-C1 7.25 

6098 4-C1; 6-I 6,74 

5500 4-I; 6-Cl 6.82 

4342 4,6-Br2 6.77 

9309 516-Br2 7.26 

4006 4,7-Br2 5.99 

4379 4,5-Br2 6.73 

4925 4,6-12 6.85 

8452 4-011,5-C1 6.94 

8613 5-C1; 6-OH 7.80 

6920 4-OCH3; 5-cl 7.63 

5737 4-CH 
3; 5-C1 8.22 

4499 5-CH 
3; 

6-Ci 8.26 

5253 4-Br; 5-CH 3 
7.75 

5792 5-0113; 6-Br 8.22 

solubility toxicity 

1.97 

1.41 

2.66 

2.85 

1.84 

1.32 

1.82 

1.56 

2: 18 

1.90 

1.56 

2.03 

2.11 

2.00 

1.43 

&. 00 

1.49 

1.56 

0.92 

1.30 

1.71 

1.49 

1.11 

1.01 

1.33 

1.38 

1.48 

1.62 

1.84 

1.24 

1.48 1.72 

1.30 

3.48 

3.08 

2.38 

1: 90.. 

1.9: 

2.04 

1.43 

1.84 

2.37 

1.10 

1.97 

2.37 

2.36 

2.44 



521 

Structure Substituents pKa log log 

number solubility toxicity 

6801 4-Br; 6-tC4H9 7.98 

6700 4-C1; 6-CN, 5.82 

6917 4-CN; 6-C1 6.12 

5855 4-CF 
3; 

6-C1 6.52 

4892 4-N02i5-CH 3 7.10 

5449 5-N02; 6-CH3 7.04 

4317 4-N02; 5-C1 5.98 

3534 4-N02; 6-C1 6.33 

3946 4-C1; 6-N02 5.48 

4064 5-C1; 6-NO2 6.20 

4570 4-c1; 7-N02 5.86 

4782 4-N02; 5-Br 5.90 

4466 4-NO2; 6-Br 6.04 

4487 4-Br; 6-N02 5.45 

4420 4,6-(NO2)2 4.96 

3047 5,6-(NO2)2 4.96 

3963 4-NH00W 3; 
6-SH 5.57 

5585 4.7-(OH)2 

4066 5+6-(OCH3)2 8.95 

545o 4,7-(OCH3)2 

0.30 2.70 

0.99 

2.38 1.29 

2.08 0.76 

2.43 1.50 

2.04 - 

2.41 1.57 

2.30 1.02 

3.11 1.57 

- 1.32 

2.36 1.62 

- 1.64 

2.15 0.60 

- 1.67 

- 1.62 

2.48 1.74 

2.00 

2: 12" 

2.23 

2.39 

7925 4,5,6-F3 6.69 2.93 

7069 4"5v7-F3 6.07 

8589 4-Br; 5-C1; 6-F 6.52 

2786 

2813 

5381 

3.00 0.98 

1.11 1.40 

4,5,6-c13 6.18 1.63 0.72 

4,5,7-C13 5.64 1.40 . 1.34 

4,5-C12; 6-Br 6.24 1.67 0.92 



522 

Structute Substituents 
number 

7960 4,6-C1; 5-Br 

7021 4-Br; 5,6-C12 

8246 4,6-Br2; 5-C1 

9294 4,5-Br2; 6-C1 

4690 495º7-Br3 

7974 4,5,6-Br3 

4348 4,6-C12; 5-CH3 

7355 

8614 

8489 

8380 

8530 

8528 

10156 

10155 

6073 

4179 

5428 

5443 

4069 

4558 

4433 

4255 

4559 

7621 

10815 

4,7-C12; 5-cH3 

5,6-Ci2; 4-OH 

4,6-c1235-oH 

4,6-c12; 5-oCH3 

5,6-C12; 4-OCtt3 

4,5-c12; 7-OCH3 

4-000NHC2H5; 5,6-C12 

4-OCON(CH3)2f5,6-C12 

4-CH 
3; 

5-C1; 6-Br 

4-NO2; 5,6-CH 3 
4-NO 

2; 
5-CH3; 6-C1 

4-NO 
2; 

5-CH3; 6-Br 

4-N02; 516-C12 

4,5-C12; 6-N02 

4,6-C12; 5-N02 

4,7-C12; 5-NO2 

4964NO2)2; 5-C1 

4,5-C12; 6-CN 

4,5-C12; 6-so2cH3 

pka log log 
solubility toxicity 

6.35 1.92 1.42 

6.38 1.32 0.82 

6.19 1.57 1.35 

6.17 1.30 - 

5.58 2.08 1.48 

6.31 1.28 1.23 

7.04 1.65 - 

6.44 1.57 - 

6.12 3.08 2.28 

6.35 3.11 2.33 

6.66 2.04 1.45 

7.08 1.49 - 

6.29 1.08 - 

9.71 2.04 2.53 

6.61 /-2.13 

7.43 1.54 1.98 

7.14 1.74 2.41 

6.21 1.50 2.05 

6.16 i. 54 2.41 

5.25 - 2.48 

5.24 - 2.26 

4.86 2.20 2.08 

4.42 2.67 - 

4.22 - 

5.14 1.30 1.15 

5.10 -- 



523 

Structure Substituents pKa log log 
number 

ý. ý 
solubility toxicity 

-11158 4,5-C12; 6-nS02C3 H7 5.10 2.08 

6787 4,5-C12 ; 7-OH 9.72 - 

7372 4,5,6,7-F4 5.37 2.71 1.11 

7927 5-C1; 4,6,7-F3 5.42 2.26 

6100 4-F; 5,6,7-c13 5.36 1.23 0.44 

6149 4,6-F2; 5,7-c12 4.94 - 0.76 

4178 4,6,7-c13; 5-F 5.38 1,4g 0.89 

6133 4,6-F2; 5,7-Br2 5.31 - 1.28 

5858 4,5,7-Br3; 6-F 5.24 1.48 1.34 

7429 4,6,7-F3; 5-OCH3 5.82 2.67 1.03 

7695 4,6,7-F3; 5-CH3 4.76 2.57 1.19 

6132 4-Br; 5+7-01; 6-Br 5.50 1.75 1.25 

5960 ': =C1; 5,7-Br; 6-F 5.33 1.41 1.20 

2265 4,516,7-C14 6.04 1.34 -0.19 

3447 4-Br; 5,6,7-C13 5.27 
/ 

1.49 1.05 

5065 4,6,7-C13; 5-Br 5.04 1.34 1.11 

5517 4,5-C12; 6,7-Br2 5.40 1.65 0.92 

5257 4,6-C12; 5,7-Br2 5.31 0.95 -0.92 

5690 4,7-C12; 5,6-Br2 5.14 0.95 0.92 

5924 4,7-Br2; 5,6-C12 5.27 1.00 0.92 

5824 4-C1; 5,6,7-Br3 5.28 0.85 1.06 

5739 " 4+5s7-Br3; 6-C1 5.25 1.68 1.26 

4792 49516,7-Br4 5.80 0.60 1.00 

6061 4-CH3; 5,6,7-C13 6.42 1.52 1.33 

3234 4,6,7-C13; 5-CH3 5.96 - 1.78 

6331 4-C113; 5+7-C12; 6-Br 6.46 1.04 1.72 



524 

Structure Substituenta pKa log, log 

number solubility toxicity 

5733 4-CH 
3; 5-C1; 6,7-ar 6.54 0.90 1.77 

9430 4-0CH3; 5,6,7-C13 5.92 1.34 - 

8529 4,6,7-c13; 5-OCH3 5.57 1.58 2.01 

6379 4,7-c12; 5-CH3; 6-0C113 6.32 1.51 - 

3853 4,6,7-C13; 5-N02 4.14 2.18 1.70 

4008 4,5,6-c13; 7-N02 4.32 1.26 1.82 

3944 4,6-C12; 5,7-(NO2)2 3.40 2.43 2-53, 

3945 4,7-c12; 5,6-(N02)2 2.96 2.48 - 

4245 4,7-NO2; 516-C12 3.20 -- 

5312 4,7-N02; 5-CH3; 6-c1 4.04 2.41 2.51 

10158 4,6,7-C1; 5-NH2 6.33 2.18 1.88 

9729 4-NH2; 5,6,7-C13 6.60 1.28 - 

10354 4-14H0006H5; 5,6,7-c13 5.86 - 2.39 

6123 4-N(CH3)2; 5,6,7-c13 6.25 0.69 1.82 

11362 4-N(C2H5)2; 516, -C1; 7-Br 5.90 -- 

4378 4-S03H; 5,6,7-C13 7.04 - 2.77 

4718 4-502NH2; 5,6,7-C13 5.92 - 2.35 

10356 4-S02N(C113)2; 5,6,7-c13 6.12 - 1.08 

10355 4-S02N(C2H5)2; 5,6,7-C13 6.12 1.11 1.42 

10826 4-S02N/(CH2)2 H/2; 5,6: 7- 5.80 2.40 - 
Gl 

3 
4695 4,5,6,7-(CH39.26 1.11 

8135 4-OH; 5,6,7-C13 5.59 2.89 

8131 4,6,7-c13; 5-014 5.48 3.11 

8051 4,7-(0H)2; 5,6-C13 4.93 2.36 

2.38 



525 

Structure Substituents pKa log log 
number solubility toxicity 

8054 4,7-(OCH3)2; 5,6-C12 6.62 2.32 2.50 

8087 4,7-c12; 5,6-(OCH3)2 6.00 1.89 2.50 

9991 5-rrHCOEt --1.54 

Table 50 

Structures and Property Values for Benzimidazole Derivatives 
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520 

Structural Regression t statistic Perfectly correlated 
Feature Coefficient (12 degrees of freedom) structural features 

ring system common to all structures 

Me-o-RF 0.33 0.90 

N. e-m-RF 0.36 1.25 

Et-m-RF 0.23 0.62 

CMez-m-RF 0.54 1.45 

Ph-m-RF -0.22 0.59 

F-o-RF -0.87 3.32 

F-m-RF -0.39 1.59 

Cl-o-RF -0.10 5.92 

Cl-m-RF -o. 64 3.87 

Br-o-RF -1.22 6.66 

Br-m-RF -0.82 4.40 

I-o-RF -1.15 1.92 

I-m-RF -0.87 2.33 

CF3-o-RF -1.42 4.19 C1-m-CF 
3 

CF3-m-RF -1.06 2084 

CN-o-RF -1.48 2.47 

CN-n-RF -1.42 3.80 

COOH-m-RF -0.22 0.59 

OH-o-RF -0.37 1.05 

OH-m-RF 0.95 2.91 

OMe-o-RF -0.09 0.25 

OMe-m-RF 0.14 0.25 

N02-o-RF -1.86 8.33 

N02-m-RF -1.87 8.84 

NH2-o-RF -1.97 4.69 C1-p-NH2 

NH 2-m-RF -4.04 10.81 



s 

Structural 
Feature 

Regression t statistic 
Coefficient (12 degrees of 

freedom) 

NMe2 2o-RF 

NHCOMe-m-RF 

NHCOPh-o-RF 

SH-m-RF 

CONH2-m-RF 

OCOMe-m-RF 

OCOEt-m-RF 

OCONHEt-o-RF 

OCONMe2-o-RF 

S03H-o-RF 

SO2Me-m-RF 

SO2Pr-m-RF 

S02NH2-o-Rr 

S02NN2 m-RF 

S02NMe2 2o-RF 

0.01 0.01 

-0.28 

-0.39 

-3.01 

-0.80 

2.22 

-0.77 

2.37 

-0.73 

0.80 

-1.68 

-1.88 

-0.33 

-1.46 

-0.13 

S02NEt2 o-RF -0.13 

S02N(C2H40H)2-o-RF -0.45 

0.75 

1.13 

8.06 

2.14 

5.94 

2.06 

6.86 

2.12 

2.32 

4.50 

5.44 

0.95 

3.91 

0.37 

0.37 

1.30 

530 

Perfectly correlated 
structural features 

Cl-o-NMe2, C1-m-NMe2, 

2 
Cl-p-Me 

Cl-o-NHCOPh, Cl-m-NHCOPh1 

C1-p-NHCOPh 

NHCOCF3-o-RF 

SH-m-NHCOCF3 

C1-o-000NHEt, C1-m-OCONHEt 

C1-o-OCONMe2, C1-m-OCONMe2 

cl-o-so 
3H, 

C1-m-SO3H, 

C1=p-so 
3H 

/ 

C1-o-so 2Pr, C1-m-S02Pr 

C1-o-SO 
2NH2, 

Cl-m-SO 
2NH2, 

Cl-p-so 2NH2 

C1-o-so 
2NMe2I. 

Cl-m-S02Nlte2ý 

C1-p-so 
2NMe2 

C1-o-so 
2NEt21 

C1-m-so 
2NEt2 

C1-o-S02N(C2H40H)21 

C1-m-so 
2N(C2}140H)2, 

C1-p-so 
2N(C2H4OH)2 



531 

Structural Regression t statistic Perfectly correlated 
Feature Coefficient (12 degrees of structural features 

freedom) 

Me-o-Me -0.15 0.28 

Me-m-Me -0.13 0.21 Me-p-Me 

Me-o-OMe -0.11 0.18 

OMe-o-OMe -0.02 0.02 

OMe-p-OAie O. L6 0.10 

Dle-o-N02 -0.08 0.29 

Ma-m-N02 -0.06 0.14 

N02-o-N02 0.19 0.57 

N02-m-N02 0.07 0.24 

N02 p-N02 -0.39 1.00 

OH-p-DH -0.54 0.85 

F-o-F -0.02 0.09 

F-m-F -0.24.0.50 

F-p-F -0.13 0.32 

F-o-C1 0.01 0.01 

F-m-C1 -0.03 0.15 

F-p-Cl -0.18 0.49 

F-o-Br -0.09 0.50 

F-m-Br 0.10 0.38 

F-p-Br 0.35 0.57 

C1-o-C1 0.04 0.30 

Cl-m-Cl -0.14 0.86 

cl=p-C1 -0.12 0.51 

C1-o-Br 0.11 0.85 

C1-m-Br -0.01 0.01 



532 

Structural 
Feature 

Regression 
Coefficient 

t statistic Perfectly correlated 
(12 degrees of structural features 

freedom) 

Cl-p-Br 

Cl-M-I 

Br-o-Br 

Br-m-Br 

Br-p-Br 

I-m-I 

F-o-OMe 

F-o-CF3 

Cl-o-Me 

Cl-m-Me 

Cl-p-Me 

Cl-o-CN 

C1-m-CN 

C1-o-N02 

C1-m-N02 

Cl-p-NO2 

Cl-o-NH2 

Cl-m-NH2 

Cl-o-OH 

Cl-m-OH 

Cl-p-OH 

Cl-o-OMe 

Cl-m-OMe 

Cl-p-OMe 

Cl-m-SO2Me 

0.06 

0.03 

0.22 

0.18 

0.01 

0.29 

-0.19 

-0.12 

-0.04 

-0.20 

0.08 

-0.08 

-0.34 

0.03 

-0.04 

0.08 

2.32 

excluded 

-0.91 

0.34 

1.52 

-0.09 

-0.21 

-0.16 

-0.20 

0.26 

0.06 

1.36 

0.86 

0.06 - 

0.33 

0.56 F-m-OMe 

0.44 F-m-CF3 

0.20 

0.64 

0.20 
0.18 

0.73 

0.21 
0.23 

0.32 

8.94 

by regression program 

4.18- 

1-07 

3.71 

0.30 

0.73 

0.37 

0.41 C1-o-SO2Me 



II 

ýýý ýi 

Structural Regression t statistic Perfectly correlated 
Feature Coefficient (12 degrees of structural features 

freedom) 

Cl-p-SO2NEt2 excluded by regression program 

Br-o-Me 0.03 0.10 

Br-m-Me -0.09 0.23 

Br-p-Me 0.12 0.25 

Br-m-CMe3 0.08 0.17 

Br-o-NO 2 -0.01 0.01 

Dr-m-NO 2 
0.07 0.24 

Br-p-SO2NEt2 -0.20 0.42 

regression constant 8.58 41.07 

Notes RF a ring fusion point 

0= ortho, m- meta, 
_p = para 

Table 54 

pKa data for benzimidazole derivatives 

Regression resultsfor set D structural features 



534 

Structural 
Feature 

ring system 

He 

CMe3 

Ph 

F 

C1 

Br 

I 

cF3 

OH 

oMe 
NH2 

NMe2 

NHCOCH3 

COOH 

OCOMe 

OCOEt 

CONH2 

OCONHEt 

NO2 

S02Me 

S02Pr 

SO2NEt2 

S02N(C2HýOH)2 

Regression t statistic Perfectly correlated 
coefficient (98 degrees of freedom) structural features 

common to all structures 

-0.43 

-1.85 

-0.59 

0.03 

-0.30 

-0.38 

-0.47 

-0.26 

0.79 

-0.05 

0.08 

-0.95 

-0.67 

0.24 

0.12 

-0.39 

0.64 

0.10 

0.17 

0.91 

0.14 

-0.54 

0.? 5 

s. a6 
4.78 

1.49 

0.51 

6.86 

7.51 

2.82 

1.10 

6.12 

0.43 

0.30 

2.44 

1.69 

0.62 

0.31 

0.98 

1.63 

0.25 

1.97 

2.31 

0.36 

1.38 

1.95 



Structural Regression t statistic Perfectly correlated 
Feature coefficient (98 degrees of freedom) structural features 

CN -0.10 

regression constant 2.54 

0.44 

21.82 

Table 55 

Solubility data for benzimdazole derivatives 

Repression results for set A structural features 
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Structural 
Feature 

ring system 

Me-oRF 

Me-m-RF 

Ph-m-RF 

Cme3-m-RF 

F-o-RF 

F-m-RF 

C1-o-RF 

Cl-m-RF 

Br-o-RF 

Br-m-RF 

I-o-RF 

I-m-RF 

CF3-o-RF 

CF3-m-RF 

OH-o-RF 

OH-m-RF 

OMe-o-RF 

OMe-m-RF 

CN-o-RF 

CN-m-RF 

NH 2-o-RF 

NHZ-m-RF 

NMe2-o-RF 

Regression t statistic Perfectly correlated 
coefficient (39 degrees of structural features 

freedom) 

common to all structures 

0.23 o. 48 

-0.13 0.29' 

-0.79 1.92 

-2.14 5.49 Br-m-C'te3 

-0.04 0.10 

-0.18 0.69 

* -0.13 0.62 

-0.82 4.12 

-0.30 1.35 

-0.60 2.85 

-0.32 0.98 

3.44 

0.17 0.46 C1-m-CF 3 

-0.76 1.84 

0.23 3.17 

0.70 1.84 

-0.26 0.45 

-1.15 1.15 

excluded by regression program 

-0.01 0.01 

-0.70 1.76 Cl-p-NH 
2 

excluded by regression program 

-0.94 2.58 C1-o-NMe2, C1-rr-NMe2, 

C1-p-Me 
2 



rr ºº 
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Structural 
Feature 

NO Z o-RF 

N02-m-RF 

COOH-m-RF 

OCOMe-m-RF 

OCOEt-m-RF 

CONH2-m-RF 

OCONHEt-c-RF 

NHCOMe-m-RF 

S02Me-m-RF 

SO2Pr-m-RF 

S02NEt2-o-RF 

Regression t statistic Perfectly correlated 
coefficient (39 degrees of structural features 

freedom) 

0.18 

-0.01 

0.05 

-0.08 

-0.59 

0.45 

0.72 

-0.87 

0.72 

0.06 

-0.53 

S01N(C2H40Y)Z-o-RF 0.76 

Me-o-Me 

Me-m-Me 

Me-o-N02 

Me-m-N02 

Me-o-OMe 

OMe-o-OMe 

OMe-m-OMe 

OH-p-OH 

N02-o-N02 

NO2 -m-NO 2 

-1.24 

0.96 

-0.46 

0.79 

0.47 

1.30 

0.49 

-2.59 

-0.27 

0.48 

0.67 

0.04 

0.11 

0.18 

1.43 

1.09 

1.95 

2.11 

1.75 

0.17 

1.45 

C1-o-000: VHEt, C1-m-OCONHEt 

Cl-. Cl-m-SO2Pr 

Cl-o-SO2NEt2, Cl-m-SO 
2NF. 

t2, 

C7 Cl-p-SO 
2NEt2 . 

2.09 C1-o-so 
2N(C2H40H)2, 

C1-m-so 
2N(C2H40H)2, 

Cl-p-S02N(C2H40H)2 

1.38 

1.16 

1.22 

1.32 

o. 65 

1.13 

0.72 

3.87 

0.66 

0.89 

Me-p-Me , 
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Structural Regression t statistic Perfectly correlated 
Feature coefficient (39 degrees of structural features 

freedom ) 

N02-p-N02 

F-o-F 

F-ra-F 

F-p-F 

F-o-Cl 

F-m-Cl 

F-p-Cl 

F-o-Br 

F-m-Br 

Cl-o-Cl 

cl-In-cl 

Cl-p-Cl 

Cl-o-Br 

Cl-m-Br 

Cl-p-Br 

Cl-m-I 

Br-o-Br 

Br-m-Br 

Br-p-Br 

I-m-I 

C1-o-Me 

C1-w-Me 

C1-p-Me 

Br-o-Me 

Br-m-Me 

-0.41 0.64 

-0.03 0.11 

0.12 0.24 

0.37 0.82 

-0.07 0.42 

0.21 0.75 

-0.51 1.03 

-0.14 0.70 

0.31 1.00 

0.23 1.38 

0.22 1.11 

-o. 61 2.34 

0.07 0.51 

0.26 1.48 

-0.27 1.07 

0.51 1.72 

-0.13 0.72 

0.24 0.92 

-0.09 0.30 

/ 

excluded by regression program 

-0.12 0.39 

0.07 0.18 

-0.42 1.00 

-0.33 0.78 

-0.08 0.18 



5 '3 1. 
J 

Structural 
Feature 

Br-p-Me 

C1-o-OMe 

Cl-m-OMe 

Cl-p-OMe 

Cl-o-OH 

C1-m-OH 

Cl-p-OH 

Cl-o-N02 

Cl-m-NO 
2 

Cl-p-NO2 

Br-m-NO2 

Cl-o-CN 

Cl-m-CN 

Cl-o-NH2 

Cl-m-NH2 

F-o-OMe 

F-o-CF3 

regression constant 

Regression t statistic 
coefficient (39 degrees of 

freedom) 

-0.34 

0.64 

-0.12 

-0.56 

0.28 

0.31 

-0.56 

0.17 

0.30 

-0.73 

-0.01 
-1.18 

0.47 

0.34 

excluded 

0.44 

0.19 

2.74 

Notes RF - ring fusion point 

0.69 

1.32 

0.34 

1.16 

1.07 

0.88 

1.19 

1.02 

1.54 

2.20 

0.03 

1.71 

1.29 

1.88 

Perfectly correlated 
structural features 

by regression program 

0.80 F-m-OMe 

0.62 F-m-CF 
3 

11.05 

o: orthol m= metag pm para 

Table 56 

Solubility data for benzimidazole derivatives 

Regression results for structural feature set D 
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" Structural feature Regression coefficient t statistic 
(89 degrees of freedom) 

Me-o-RF 

Me-m-RF 

Et-m-RF 

CMe3-m-RF 

Ph-m-RF 

F-o-RF 

F-m-RF 

Cl-o-RF 

Cl-m-RF 

Br-o-RF 

Br-m-RF 

I-o-RF 

I-m-RF 

CF3-o-RF 

CF3-m-RF 

CN-o-RF 

CN-m-RF 

OCOMe-m-RF 

OCOEt-m-RF 

OCONHEt-o-RF 

OCONMe2-o-RF 

OH-o-RF 

OH-m-RF 

OMe-o-RF 

OMe-m+RF 

NO2- 

N02 2m-RF 

0.16 

0.46 

0.46 

0.84 

0.77 

-0.33 

-0.07 

-0.21 

--0.08 

-0.12 

-0.10 

0.03 

0.39 

-0.81 
0.08 

-0.28 i 

1.08 

4.02 

1.08 

2.71 

1.81 

2.66 

0.47 

3.00 

1.12 

1.33 

1.00 

0.11 

1.42 

1.93 

0.26 

0.67 

-0.33 1.29 

0.33 0.78 

0.54 1.27 

1.04 2.45 

0.64 1.51 

0.35 1.81 

0.81 3.22 

0.34 2.31 

0.43 J. 14 

0.09 0.76 

0.22 1.65 

I 

I 



Structural Feature 

NH2-m-RF 

NMe2-o-RF 

CONH2-m-RF 

NHCOMe-m-RF 

NHCOEt-m-RF 

NHCOPh-o-RF 

SO2NH2-o-RF 

SO2NH2-m-RF 

SO2NMe2-o-RF 

SO2NF. t2 o-RF 

S0311-o-RF 

SO2Me-m-RF 

regression constant 

Regression doefficient t statistic 
(89 degrees of freedom) 

0.80 

0.55 

0.49 

0.34 

-0.11 

1.12 

1.08 

0.25 

-0.20 

0.15 

2.65 

1.30 

1.15 

0.80 

0.26 

2.66 

2.57 

0.59 

0.47 

0.35 

1.50 

0.77 

1.65 

Table 7 

Toxicity data for benzimidazole derivatives. 

Regression results for set B structural features 

01 

3.57 

1.81 

13.60 

I 

f 
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Structural Regression t statistic Perfectly correlated 
Feature coefficient (39 degrees of structural features 

freedom) 

ring system 

Me-o-RF 

Me-m-RF 

Et-m-RF 

CMe3-m-RF 

Ph-m-RF 

F-o-RF 

F-m-RF 

C1-o-RF 

C1-m-RF 

Br-o-RF 

Br-m-RF 

I-o-RF 

I-m-RF 

CF3-o-RF 

CF3-m-RF 

N02-o-RF 

NO 
2 -m-RF 

OH-o-RF 

OH-m-RF 

OMe-o-RF 

OMe-m-RF 

CN-o-RF 

CN-m-RF 

CONH2-m-RF 

OCOMe-m-RF 

common to all structures 

-0.18 0.45 

6.07 0.22 

-0.14 0.35 

-0.09 0.22 

0.17 0.44 

-0.43 1.34 

-0.56 1.85 

"-0.35 1.81 

-0.52 2.81 

-0.30 1.37 

-0.38 1.75 

0.63 1.02 

0.24 0.62 

-0.97 2.77 Cl-m-CF3 

-0.70 1.78 

-0.84 3.35 

-0.82 3.18 

-0.06 0.90 

0.07 0.18 

-0.23 0.37 

1.12 1.35 

-0.46 0.73 

-0.93 2.36 

-0.11 0.27 

-0.27 0.68 

I 
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Structural 
Feature 

OCOEt-m-RF 

OCONHEt-o-RF 

OCONMe2-o-RF 

NH2-m-RF 

NMe2 2o-RF 

Regression t statistic 
coefficient (39 degrees of 

freedom) 

-0.06 

1.16 

0.77 

0.27 

0.90 

0.14 

3.25 

2.14 

0.70 

2.54 

Perfectly correlated 
structural features 

Cl-o-OCONHEt, C1-m-OCONHEt 

C1-o-OCONMe2, C1-m-000NMe? 

C1-o-NMe 
2, 

C1-m-NMe2, 

C 1-p-Ntie2 

NHCOMe-m-RF 

NHCOEt-m-RF 

NHCOPh-o-RF 

S03H-o-RF 

SO2Me-m-RF 

S02NH2-o-RF 

S02NH2 m-RP 

S02NMe2-o-RF 

S02NEt2 o-RF 

Me-o-M3 

Me-m-Me 

Me-o-N02 

Me-m-N02 

N02-o-N02 

2 N02 -m-NO 

-0.26 

-0.71 

1.47 

1.85 

0.17 

1.43 

-0.35 

0.16 

0.50 

0.14 

-0.03 

0.20 
0.52 

1.13 

0.78 

0.65 

1.80 

4.13 

5.20 

0.44 

4.02 

0.88 

o. 46 

1.111 

0.22 

0.04 

0.64 

0.96 

2.22 

2.15 

C1-o-NHCOPh, Cl-m-NHCOPh, 

Cl-p-NHCOPh 

C1-o-503H, Cl-m-SO3H, 

cl-p-so 
3H 

C1-o-SO2NH2, C1-m-SOZNH2 
/ 

C1-p-S02Nh2 

Cl-o-so 
2NMe2, 

C1-m-so 
2NMe2, 

C1-p-SO2NMe2 

C1-o-so 
2NEt2, 

C1-m-so 
2NEt2ý 

Cl-p-SO2NEt2 

Me-p-Me 
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Structural 
Feature 

NOZ p-N02 

OMe-o-OMe 

OMe-o-OMe 

OH-o-OH 

F-o-F 

F-m-F 

F-p-F 

F-o-Cl 

F-m-C1 

F-p-Cl 

F-o-Br 

F-m-Br 

F-p-Br 

Cl-o-Cl 

Cl-m-Cl 

Cl-p-Cl 

Cl-o-Br 

Cl-in-Br 

C1-p-Br 

Cl-m-I 

Br-o-Br 

Br-m-Br 

Br-p-Br 

I-m-I 

C1-o-Me 

Regression 
coefficient 

-0.07 

-2.22 

0.57 

excluded 

0.44 

-0.18 

-0". 10 

0.34 

-0.10 

-0.26 

0.30 

-0.08 

0.29 

0.15 

-0.25 

-0.18 

0.28 

-0.23 

0.10 

-0.52 

0.20 

-0.31 

0.18 

-1.28 

0.42 

t statistic 
(39 degrees of 

freedom) 

0.11 

1.40 

0.47 

by regression program 

1.49 

0.37 

0.14 

2.13 

0.36 

0.64 

1.64 

0.26 

0.46 

0.96 

1.38 

o. 66 

2.11 

1.29 

0.21 

1.07 

1.08 

1.07 

0.63 

1.44 

1.36 

Perfectly correlated 
structural features 

I 
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Structural Regression t statistic Perfectly correlated 
Feature coefficient (39 degrees of structural features 

freedom) 

C1-m-Me 0.10 0.21 

C1-p-Me 0.07 0.16 

Br-o-Me 0.58 1.72 

Br-m-Me 0.10 0.25 

Br-p-Me 0.12 0.24 

Br-m-CMe3 0.84 1.67 

F-o-CF3 0.45 1.52 F-m-CF 
3 

C1-o-OH 0.57 2.08 

C1-m-OH 0.41 0.90 

C1-o-OMe -0.40 0.78 

C1-m-OMe 0.93 1.89 

F-o-OMe -0.53 1.13 F-m-OMe 

C1-o-CN 0.53 1.13 

C1-m-CN 0.02 0.03 

C1-o-N02 0.72 4.91 

C1-m-NO2 0.59 2.88 

Cl-p-NO 
2 

0.37 1.30 

Br-o-N02 0.61 1.52 

Br-m-NO2 0.21 0.76 

Cl-o-NH 
2 0.42 1.55 C1-m-NH 2". 

regression constant 2.25 9.84 

Table 58 

Toxicity data for benzimidazole derivatives* 

Regression results for set D structural features 
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$tructural Regression t statistic Perfectly correlated 
Feature Coefficient (13 degrees of structural features 

freedom) 

He-ortho-RING N 0.71 6.21 

Me-meta-RING N 0.47 4.14 

Me-para-RING N 0.75 5.50 

NH2-ortho-RING N 1.67 9.83 

NH 2-meta-RING N 0.69 3"40 

NH 
2-para-RING 

N 3.90 24.82 

NHMe-meta-RING N 0.95 2.81 

NHMe-para-RING N 4"37 23.35 

NMe2para-RING N 4.33 23.18 

Ome-ortho-RING N -2.01 9.97 

Ome-meta-RING N -0.41 2.05 

One-para-RING N 1.33 6.57 

SMe-ortho-RING N -1.67 8.29 

SMe-meta-RING N -0.84 4.18 

SMe-para-RING N 0.68 3.35 

N02-meta-RING N -4.52 22.40 

N02para-RING N -3.68 18.26 

Cl-ortho-RING N -4.13 29.25 Cl-p-NH2 

C1-para-RING N -1.41 7.00 

Br-meta-RING N -2.38 11.80 

Br-para-RING N -1.47 7"30 

Me-ortho-Me 0.08 0.65 

Me-Meta-Me 0.01 0.: 1 

Me-para-Mo 0.02 0.18 

Me-ortho-NH2 -0.30 2.24 
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Structural 
Feature 

Me-meta-NH2 

Me-ortho-NHMe 

Me-meta-NHMe 

Me-ortho-NMe2 

NH2-ortho-NH2 

NH2eara-NH2 

NH 
2-ortho-NHMe 

N02ortho-NH2 

N02ortho-NHMe 

C1-ortho-NH2 

Cl-meta-NH2 

Br-ortho-NH2 

Br-ortho-NHMe 

Br-ortho-NMe2 

regression constant 

Table 60 

EKa values for heterocyclic 

Pyridine subset 

Structural feature set C 

Regression t statistic Perfectly correlated 
Coefficient (13 degrees of structural features 

freedom) 

2.09 

2.21 

5.22 

8.66 

-0.31 

-0.32 

-0.78 

-1.27 

3.10 -0.73 

-1.10 3.98 

-0.78 2.71 

0.16 0.64 

0.19 0.05 

0.29 0.89 Cl-meta-Cl 

excluded by regression program 

0.23 0.85 

0.19 0.67 

-0.72 2.53 

5.29 x, 0.38 

structures 
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Structural Regression t statistic Perfectly correlated 
Feature Coefficient (29 degrees of features 

freedom) 

2-Me 

2-NH2 

4"NH2 

2-NHMe 

4-NHMe 

2"NMe2 

4-NMe2 

2-OMe 

2-SMe 

4-SMe 

2-Cl 

4-Cl 

5-Cl 

5- Br 

5-NO2 

NH2-meta*-NH2 

NH2-meta*-NMe2 

NH2-meta-NH2 

NH2 meta-NHMe 

NHMe-meta-NMe2 

NHZ meta"-OMe 

NMe2-meta'-OMe 

NHZmeta-OMe 

NNe2 meta-OMe 

NH 2-me 
ta-SMe 

NMe2 meta-SMe 

0.76 1.79 

2.23 9.98 

4.09 21.90 

2.53 6.72 

2.14 11.66 

2.53 8.84 

. 
4.56 17.14 

-0.91 3.22 

-0.90 3.65 

0.73 2.95 

-. 1.08 2.69 

-1.42 4.45 

-1.76 5.65 

-1.83 8.38 

-3.95 18.73 

-0.81 3.66 

-0.67 1.83 

-3.96 12.62 

-1.68 5.55 

-2.08 4.45 

1.03 3.15 

1.17 3.33 

-2.33 7.23 

-2.08 4.61 

-2,60 7.07' 

-2.49 5.10 

Me-meta*-Me 
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Structural 
Feature 

NHZ meta-Cl 

NMe2 meta-Cl 

Br-ortho-OMe 

Me-meta"-NH2 

regression constant 

Regression t statistic Perfectly correlated 
Coefficient (29 degrees of feature 

freedom) 

-2.42 6.50 

-2.48 4.62 

1.41 3.18 

0.37 2.05 

1.77 10.96 

notes meta' denotes 4-6 meta interaction 

4 denotes either 4 or 6 position 

Table 62 

pKa values for heterocyclic structures 

Pyrimidine subset 

Structural Feature Set I 

Analysis at 10% level 
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554 

Structural feature Regression coefficient t statistic (157 degrees 
of freedom) 

RING N -2.58 13.94 

He 0.72 5.09 

NH2 1.75 11.89 

NHMe 1.98 7.38 

NMe2 2.85 8.14 

OMe -0.42 1.47 

SMe -0.58 1.81 

Cl -2.75 8.03 

Br -1.4 3.32 

NO2 -3.44 8.07 

FUSED RING -0.16 0.60 

REGRESSION CONSTANT 7.85 20.40 

I 

Table 65 

pKa values for heterocyclic structures 

Total Set 

Structural Feature Set 0 



Structural Regression t statistic Perfectly correlated 
Feature Coefficient (142 degrees of structural features 

freedom) 

RING N-ortho-RING N -I. 41. 

RING N-meta-RING N -3.24 

RING N-para-RING N -3.43 

NH2-ortho-RING N 1.49 

N11 2 Para-RING N 2.69 

NHMe-para-RING N 3.21 

NMe2 ortho-RING N 1.66 

NMe2 para-RING N 2.84 

Me-ortho-RING N 0.54 

Me-meta-RING N 0.59 

C1-ortho-RING N -2.95 

C1-para-RING N -1.01 

Br-meta-RING N -1.28 

OMe-ortho-RING N -0.60 

Sme-ortho-RING N -0.74 

N02-meta-RING N -2.46 

NO2-para-RING N -3.52 

NH2-meta-NH2 -2.41 

NH2-meta-NHMe -2.41 

NH2-meta-NMe2 -1.59 

NHMe-meta-NHme -1.16 

NHHe-meta-NMe 2 -3.22 

C1-meta-NHMe 3.39 

Br-ortho-OMe 2.61 

5.44 

12.35 

10.70 

8.63 

11.48 

9.12 
, 

5.63 

7.76 

3.57 

3"57 

6.25 

1.99 

5.29 

2.76 

3.18 

10.22 

3.44 

6.51 

3.86 

1.87 

1.90 NHMe-ortho-NHMo 

2.85 

4.45 

2.30 
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ý 

Structural Regression t statistic Perfectly correlated 
Feature Coefficient (142 degrees of structural features 

freedom) 

RING N-meta-RING- 
FUSION 

NH-ortho-RING- 
FDSION 

-0.31 1.94 

1.67 3.87 

regression constant 5.13 31.00 

Table 66 

pKa values for heterocyclic structures 

Total Set Structural Feature Set R 

Analysis at 10% level 



Structure number Structure Boiling Point 
(substituents) (°c, 760 mmHg) 

cyclohexane derivatives 

H 

2.1-Me 

3.1,1-Me2 

4. c-1,2-Me2 

5. t-1,2-Me2 

6. 

?" 

8. 

9" 

c-1,3-Me2 

t-1,3-Me2 

c-1,4-Me2 

t-1,4-Me2 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

111,3-Me3 

1$1,4-Me3 

r-1-c-30-Me3 

r-1-c-3-t-5-Me3 

r-1-c-2,3-Me3. 

r-1-c-2-t-3-Me3 

r-1-t-2-c-3-Me3 

r-1-c-2,4-Me3 

r-1-c-2-t-4-Me3 

r-1-t-2-c-4-He 3 

r-1-t-2m4-Me 3 
1x1,3%3-Me4 

22,1,1,4,4-Me4 

23, c-1,1,3,5-Ye4 

24. t-1,1,3,5-Me4 

25. r-1-c-2,3,5-Me4 

26. r-1-t-2,4-c-5-Me4 

81 

101 

120 

130 

123 

120 

p4 

124 

119 

136 

135 

139 

142 

151 

151 

146 

146 

146 

145 

142 

155 

153 

152 

156 

169 

161 



Structure number Structure Boiling Point 
(substituents) (oC, 760 mmHg) 

27. r-1-t-2-c-4,5-me4 

28. r-1-c-2-t-4,54le 4 

29. 

30. 

31. 

r-1-c-2,4,5-Me4 

1,3 dioxan derivatives 

H 

2-tie 

32.4-Me 

33" 5-Me 

34.5,5-Me2 

35" c-4,6-Me2 

36- t-4,6-Me2 

37. 

38" 

39. 

40. 

c-2,4-Me2 

C-21,5 

t-2,5 

212-Me2 

2 
41.4,4-me 

42.4,4,6-Me3 

43, r-2-c-4,6-Me3 

44. r-2-c-4-t-6-Me3 

45. r-4-c-5-t-6-Me3 

46. r-4-c-5,6-Me3 

47" r-4-t-5-c-6-Me3 

48.2,5,5-Me3 . 

49" 2,2,4-Me3 

50, c-2,4,4,6-Me4 

, 6-lte4 51. r-2-c-4-t-5 

52. c-2,4,5,5-Me4 

165 

170 

170 

105 

110 

114 

118 

127 

126 

137 

119 

121 

127 

125 

133 

143 

129 

138 

. 157 

148 

148 

132 

132 

139 

159 

147 



Structure number Structure Boiling Point 
(substituents) (°C9 760 mmllg) 

53- c-2,2,4,6-Me4 

/' 

138 

54.2,2,5,5-Me4 

55" r-2-c-4,5,6-Me4 

56. r-2-c-4,6-t-5-Me 4 

57. t-4,5,5,6 

58. c-4,5,5,6 

59. c-2,4,4,5 

60.2,2,5 

Notes 

r relative to 

c- cis 

t: trans 

Table 67 

Alicyclic Structures Boiling Points 

Structures and Property Values 

145 

149 

149 

173 

159 

156 

13? 
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5111 

Structural feature Regression coefficient 
t statistic (17 
degrees of 
freedom) 

ring system 

eq Me 

ax He 

eq Me-Sem-ax Me 

ax Me-ortho-eq Me 

eq Me-ortho-eq Me 

eq Me-meta-oq Me 

ax Me-meta-eq Me 

ax Me-meta-ax He 

ax Me-Para-eq Me 

eq Me- ara-eq Me 

ax Me- ara-ax Me 

regression constant 

Notes 

eq - equatorial 

ax - axial 

gem - geminal 

common to all structures 

19.19 

25.53 

-5.97 

3.05 

3.04 

-0.79 

-2.35 

-1.32 

-2.48 

-1.97 

-0.73 

80.91 

Table 69 

Boiling Points of Cyclohexanes 

Regression results for structural feature-set K 

28.77 

22.26 

8.30 

4.99 

5.34 

1.69 

4.25 

1.46 

4.06 

3.52 

0.67 

87.31 



5G2 

0 
M 
ýt 

't 
cý 
h 
N 
m 
OW 
0 

y 
A 

rt 
rx 

O 
ti 
a 
0. 
O 

ýO 

rWQ 
tp t6 N 

"S 
-. J. O 
OMO 

ºQ 
cr 
om 
w ý+ 

r" C 

bh 
o tD 

.wý 
rr u 
<" w 
Nr 

A 

x t< c Na cn :o0c"02Xr 

Nr F+ " 
0VN h+ %0 00 0 %0 V1 00 V1 ý- W 

U ý+ ý+ r----- 
C% 

V1 0 CO -! Oi OD VW cr% WNr 

CO +++++++++++++ 
CAAAAAAAAAAAAA 

0 N" 00000000ä0 

p t* et tM e* r+ ei rt e+ e+ eº ý e* e+ 

ýý to. ý 4+ C+ col C+ 

º+ b+ NNNNNNNNNNN 
N V1 0Nw w- NW -1 w- "V Co %D 

.......... 

.O .o .o .o. 
.o. .O 

.D .o. 
.o 

.o .c ao 0o 00 .D .0 -1 -l1 Q. CN Q\ w (7% 0 ýt u 
u Co or- N h+ , F- Wr V1 ,PNN. 0 

ýA 
m 

0000000000000 

, p- rN ý4- 4- V1 ýU 8p- V CO 00 
"".. "". """". " 

WwZ. W '-3 ý O. O ýO ýNON `fl 0+ Co %. n w c% 1- %O (7% W , ß- V Co 

Mt/1 
fD t+ 

Im 2 CA 
ýý ýý ý 

ý" ýý 
ý 

º+, a Z !D r+ C 

CA ID 

cýD C 
ti 

Oo '1 O 

M" 
p r" 7 

A+ 9 
º 

Dý C 19 
ý Cl $I 
u, ca W 

00 

MC 
KA 

lD 
Mto 

aý 

f1 A 
OO3 
N "1 C 
M h'1 ºý 
MA et 
r" r" r" 
A W'Lf 
r" ý º+ 

O 
fi O 

AA 
'f öl 
MA 
o º"i 

MW 

ýýý 
Vý Vf ww C% VI wý 00 

ý 

r .o 1J1 VýN Vl ýO NN %O ý º+ º+ or, 
"""""""""""""Q 

ý1 Nr0N VI ºr Cý V1 V1 Ný D` A 
N Vt v Vt 0v rr co CN y co w ,ý 



563 

Structural feature Regression coefficient 
t statistic (15 
degrees of 
freedom 

ring system 

0-meta-0 

2-eq Me 

2-ax Me 

4-eq Me 

4-ax Me 

5-eq Me 

5-ax Me 

eq Me-gem-ax Me 

eq Me-ortho-eq Me 

eq Me-ortho-ax Me 

ax Me-ortho-ax Me 

eq Me-meta-eq he 

eq Me-meta-ax Me 

eq !: e-para-eq Me 

eq Me-para-±tx Me 

ax Me-para-ax Me 

regression constant 

common to all structures 

common to all structures 

5.57 

21.92 

12.28 

24.39 

14.86 

15.15 

-6.92 

2.13 

2.91 

5.42 

-1.54 

-3.27 

1.32 

-2.37 
1.00 

103.77 

Table 71 

1,3 Dioran Boiling Points 

Regression Results for Structural Feature Set V 

4.65 

13: 49 

12.63 

16.74 

12.00 

9.68 

7.30 

, 
2.92 

4.14 

4. o3 

2.27 

4.32 

1.07 

2.06 

0.49 

90.52 
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Structural feature 

ring system 

ring O-meta-ring 0 

eq Me 

ax He 

eq Me-gem-ax Me 

eq Me-ortho=eq Me 

eq Me-ortho-ax Me 

ax Me-ortho-ax He 

eq Me-meta-eq Me 

eq Me-meta-ax Me 

ax Me-meta-ax Me 

eq Me-pare-eq Me 

eq Me-para-ax Me 

AN ? ie-para-ax He 

eq Me-ortho-ring 0 

AN Me-ortho-ring 0 

eq Me-meta-ring 0 

ax Me-meta-ring 0 

eq Me-para-ring 0 

ax Me-pare-ring 0 

regression constant 

Regression coefficient 

common to all structures 

15.43 

18.66 

21.58 

-5.33 

2.37 

4.10 

-8.46 

-1.21 

-1.34 

1.34 

-0.90 

-1.57 

0.78 

-5.48 

-1.46 

-0.82 

-4.10 

-1.78 

4.78 

85.61 

Table 72 

Alicyclic Structure Boiling Points Rey 

/ 

ressien Results 

t statistic (4o 
degrees of 
freedom) 

7.89 

12.14 

9.04 

3.53 

2.00 

3.44 

2.73 

1.19 

1.15 

0.52 

0.64 

1.11 

0.30 

7.11 

1.33 

1.13 

4.49 

1.44 

. 2.76 

38.92 


